
Professional , ..

300seres
PRO/BASIC Language Manual

AA-N601C-TH

digital equipment corporation

Preface

INTENDED AUDIENCE

This manual is designed as a reference tool for users with some knowledge of
BASIC programming.

You should also be familiar with use of the Professional 350 computer as de­
scribed in the Professional 300 Series Use1·'s Guide for Hard Disk System.

HOW YOU SHOULD USE THIS MANUAL

Chapter 1 is on the installation of PRO/BASIC and using the PRO/BASIC Line
editor. An example program is included. All readers will want to see this chap­
ter, if only for the use of the Line editor.

Chapters 2 and 3 contain information of a fundamental nature about the compo­
nents of PRO/BASIC and the use of PRO/BASIC statements. Readers knowl­
edgeable in BASIC can scan these chapters. Those less familiar with BASIC
might read chapter 2 and 3 more closely.

Chapters 4 through 7 contain reference information on the use of com­
mands, language statements, library functions and Graphics statements of
PRO/BASIC.

PREFACE

DOCUMENTATION CONVENTIONS

The following documentation conventions are used throughout this manual:

ii

o Red type
Ih•d type marks information you type in to PHO/BASIC. For example:

10 PAINT "HELLO"
RUN
Hello

Ready

D RETURN Key
All sample program lines and user type-in lines are terminated by the
RETURN key. For example, the command to list the current program
is shown as:

LIST

What you actually type is the command LIST, after which you press
the RETURN key:

LIST RETURN

o UPPER/lower Case
In the Syntax sections of the keywords, all items in uppercase letters
must be typed exactly as they appear. Items in lowercase letters must
be replaced as described in the accompanying text. For exan1iJle:

MERGE filespec

The above line indicates that you should type MERGE exactly as
shown and replace filespec with the appropriate file specification.

D (brackets]
In the Syntax sections of the keywords, brackets enclose an optional
portion of the format. When entries are stacked, one entry can be
selected. For example:

OPEN filespec (FOR INPUT] AS FILE #channelnum (.VIRTUAL)
(FOR OUTPUT]

D {braces}
In the Syntax sections of the keywords, braces enclose a mandatory
portion of the format. When braces enclose stacked entries, you must
choose one of the entries. For example:

THEN statement(s) I
THEN linenum
GOTO linenum

PREFACE

D ellipses
In the Syntax sections of the keywords, ellipses indicate the item may
be repeated as needed. The example below shows that many channel
numbers may be included in the CLOSE statement:

CLOSE (#channelnum[.#channelnum) ...)

When used in program examples, vertical ellipses indicate that there
arc other statements of the program but that they are not shown. For
example:

10 RANDOMIZE
20 A= AND
30 PRINT A

•

TERMS ANO ABBREVIATIONS

The general meaning of terms frequently used in the Syntax sections of com­
mands, sta.tements, and library functions are listed below. Further clarification
is provided in the text.

D #channelnum-a number or a numeric expression specifying a
channel number.

D expression-a single item of data (either numeric or string), or a sel"ies
of data items combined with operators-for instance an arithmetic plus
sign-to produce a single data item.

D filespec-a file specification or a string expression that specifies a file.

D identifier-refers to any of the following: variable names, array
variable names, library functions, and user-defined functions.

o linenum-a line number in a PRO/BASIC program.

D progname-a PRO/BASIC program name.

D value-a data item, numeric or string, variable or constant.

RELATED DOCUMENTATION

D Pr~fessiunal 300 Series User's Guide for Hard Disk System

D Professional 300 Series Owner's Manual

iii

Contents

CHAPTER1 INTRODUCTION AND USE OF THE LINE EDITOR

1.1

1.2

1.3
1.3.1
1.3.2
1.3.3
1.3.4

1.4
1.4.1
1.4.2
1.4.3

Choosing PRO/BASIC from a Menu

Modes of Operation

The PRO/BASIC Line Editor
Using the Line Editor
Making Changes to a Program
Numeric Keypad .. .
Syntax Checking .. .

A Sample Programming Session
Example 1: Immediate Mode
Example 2: Program Mode
A Few Other Commands

CHAPTER2 BUILDING BLOCKS OF PRO/BASIC

2.1
2.1.1
2.1.2
2.1.3

2.2

2.3

2.4
2.4.l
2.4.2

Program Lines
Line Numbers .. .
Program Documentation
Statements

The PRO/BASIC Character Set

Keywords .. .

Constants .. .
String Constants .. .
Numeric Constants

1
2

2
3
5
6
6

7
7
8
9

13
13
14
14

15

15

15
15
16

v

2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.7

Variables .. .
Identifiers .. .
Variables and Data Type
Conversion of Numbers of Mixed Data Types
Subscripted Variables

Operators and Expressions
Numeric Expressions Use Arithmetic Operators
Numeric Relational Expressions Use Relational Operators .. .
Logical Expressions Use Logical Operators
Order of Precedence in Numeric Expressions
String Relational Expressions Use Relational Operators
String Concatenation

Functions .. .

CHAPTER3 USING PRO/BASIC

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2

vi

Arrays .. .
Creating Arrays .. .
Assigning Values .. .
Implicit Arrays

Files .. .
File Organizations
Naming Files

Name and Type
Versions .. .

Specifying Directory and Device
Keyboard Input/Screen Output

Displaying Data on the Screen (PRINT statement)
Formatting with the PRINT Statement

Print Format
Print Margins
PRINT USING

Receiving Data from the Keyboard
INPUT Statement.
LINPUT Statement
Storing Data in the Program (READ and DATA)

File Input and Output.
Opening and Closing Files (OPEN and CLOSE)

OPEN Statement
CLOSE Statement

Writing to a Sequential File (PRINT#)

17
19
rn

21
22
22
24
25
26
2!:J
29
30

35
35
36
38

38
39
39
39
40
40
41
42
43
43
44
45
45
45
46
47
48
48
48
49
49

3.4.3
3.4.4
3.4.5
3.4.t.i

3.5

3.6
3.6.1
3.6.2
3.li.:{
:U.4
3.6.4. l
3.6.4.2
3.6.5

3.7

3.8

3.9
3.9.1
3.9.2

Reading from a Se4uential File (INPUT #,LINPUT#)
Appending Records to a File
Creating a Virtual Array File (DIM# Statement)
Writing to and Reading from a Virtual Array File

Program Errors and Error Handling
Program Control

Unconditional 11-ansfer (GOTO)
Multiple Branching (ON GOTO)
Conditional Transfer (IF)
Loops <FOR and NEXT)

How a Loop Works
Using FOR and NEXT

Subroutines (GOSUB,ON GOSUB,RETURN)
Halting Program Execution

Chaining
Using Control Functions

Control Character
Escape Sequence .. .

CHAPTER4 COMMANDS

49
50
51
51

52

53
54
54
55
57
57
58
58

60

61

64
65
65

4.1 CATALOG.. 70
4.2 CONTINUE . 72
4.3 DELETE... 73
4.4 EDIT . 74
4.5 EXIT . 75
4.6 LIST... 76
4.7 MERGE.. 77
4.8 NEW... 80
4.9 OLD... 81
4.10 RENAME . 82
4.11 RENUMBER... 83
4.12 RUN... 86
4.13 SAVE.. 87
4.14 SET.. 88
4.15 SHOW . 90
4.16 STEP . 92

vii

CHAPTERS STATEMENTS

5.1 CALL COLLATE ·..... H8
5.2 CHAIN... 100
5.3 CLOSE... 103
5.4 DATA.. 104
5.5 DECLARE . lOli
5.6 DEF . 1118
5.7 DIM .. Ill
5.8 DIM# ... 114
5.9 END ... 118
5.10 FOR/NEXT.. 119
5.11 GOSUR... 123
5.12 GOTO . 125
5.13 IF . 126
5.14 CALL INKEY.. 129
5.15 INPUT. 130
5.16 KILL . 132
5.17 LET . 13:J
5.18 LINPUT . 135
5.19 NAME AS .. 137
5.20 NEXT.. 138
5.21 ON ERHOR . 139
5.22 ON GOSUB..... 142
5.23 ON GOTO . 145
5.24 OPEN.. 147
5.25 PRINT . 149
5.26 PRINT USING . 152
5.27 PROGRAM . 158
5.28 RANDOMIZE . lliO
5.29 READ. 162
5.30 REM ... · 164
5.31 RESTORE . 165
5.32 RESUME . llili
5.33 RETURN . 167
5.34 SET CURRENCY... Hi8
5.35 SET RADIX. HiH
5.36 SET SEPARATOR .. 170
5.37 STOP . 171

viii

CHAPTERS LIBRARY FUNCTIONS

6.1
6.2
li.3
6.4
6.5
6.6
6. 7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

ABS.. 176
ASCII ... : 177
ATN . 179
CCPOS ... 180
CHR$.. 182
cos.. 184·
DATE$... 185
EDIT$... 186
ERL... 188
ERR ... 189
ERT$.. 190
EXP ... 191
FIX.. 192
INT.. 194
LEN ... 196
LOG . 197
LOGlO .. 198
MID$... 199
NUM$.. 201
Pl .. 203
POS .. 205
RND ... 207
SIN.. 209
SQR .. 210
TAB .. 211
TIME$... 213
VAL ... 214

CHAPTER7 PRO/BASIC GRAPHICS

7.1 Graphics Hardware.. 219
7.2 Coordinates... 220
7.3 Viewport Coordinates.. 222
7.4 Window Coordinates ... 224
7.5 1\vo Graphics Statements..................................... 226
7.6 ASK POSITION ... 227
7.7 CLEAR .. 228
7.8 GRAPHIC PRINT . 229
7.9 PLOT . Zll
7.10 PLOT ARC ... 233
7.11 PLOT CURVE .. 235

ix

7.12 PRINTSCREEN.. 2:w
7.13 SCROLL ... 2;{8
7.14 SET CHARACTER , 240
7.15 SET CHARACTER SIZE 24:l
7.16 SET CHARACTER SPACING . 245
7.17 SET CLIP.. 247
7.18 SETCOLOR .. 248
7.19 SET COLORMAP. 250
7.20 SET FILL.. 25:1
7.21 SET FILL OFF ... 255
7.22 SET FILL STYLE,... 256
7.23 SET 1',ILLX ... ·. 258
7.24 SET FILLY .. 260
7.25 SET FONT . 262
7.26 SET ITALICS . 263
7.27 SET LINE STYLE .. 265
7.28 SET POSITION.. 267
7.29 SET TEXT ANGLE . 268
7.30 SET VIEWPORT . 270
7.31 SET WINDOW . 271
7.32 SET WRITING MODE . 273 1

APPENDIX A THE DEC MULTINATIONAL CHARACTER SET

APPENDIXB KEYWORDS

APPENDIXC LOGICAL OPERATORS

C. l Numeric Values in Logical Expressions ; 289
C.1.1 'Irue and False Are Actually Numeric Values.. 289
C.1.2 Integers in Logical Expressions............................... 290
C.1.3 The Logical Complement of -1 (true) is 0 (false)................. 291
C.2 Masking . 292

APPENDIXD ADVANCED PROGRAMMING TECHNIQUES

APPENDIXE PRO/BASIC PROGRAM ERROR MESSAGES

x

1
Introduction and Use of
the Line Editor

Chapter 1

Introduction and Use of the Line Editor

This chapter introduces PRO/BASIC, selecting and leaving PRO/BASIC,
using the PRO/BASIC Line Editor, and using HELP in PRO/BASIC. A
programming example is included.

1.1 CHOOSING PRO/BASIC FROM A MENU

PRO/BASIC appears on either the Main Menu or the Additional Applications
Menu. When making selections from menus use the I arrow key to move the
pointer.

D If PRO/BASIC appears on the Main Menu, move the pointer to
PRO/BASIC and press DO.

D If PRO/BASIC does not appear on the Main Menu, move the pointer
to Additional Applications and press DO. Another menu will appear.
Move the pointer to a Group menu to display a list of applications.
Move the pointer to PRO/BASIC on this menu and press DO.

Once you have chosen PRO/BASIC and pressed DO, an identification appears:

PRO/BASIC Version 1.0
(C) Copyrighl 1982 DIGITAL EQUIPMENT CORPORATION

To leave PRO/BASIC, press EXIT. When you press EXIT to leave PRO/BASIC,
a message appears if you have made changes to the program:

Error 109: Unsaved changes, type EXIT again to exit

CHAPTER 1 I INTRODUCTION AND USE OF THE LINE EDITOR

If you want to include the latest changes to the program, use the SAVI•; com­
mand, after which you can press EXIT again. Otherwise, follow the instruction
and just press EXIT.

1.2 MODES OF OPERATION

PRO/BASIC can be used in two modes: immediate mode ancl program mode.

Immediate mode means that PRO/BASIC will execute your instructions as
soon as they are entered. For example:

PAINT 44/11
4

Program mode is how you enter and execute programs. To indicate that the line
you type is part of a program, start the line with a number. The line is then
stored with other program lines and executed with the RUN command. For
example:

10 PAINT 44/11
AUN

4
Ready

1.3 THE PRO/BASIC LINE EDITOR

You use the PRO/BASIC Line Editor to enter a line or change any data on the
screen; it handles one line at a time.

When you type, a blinking rectangular marker moves from left to right on the'
screen. This marker is called the cursor. The cursor indicates the location on the
screen where the next character will be typed, inserted, or deleted.

Keys for printing characters, the arrow keys, and the delete key will repeat if
held down for more than a short time.

Some keys are not used by the Line Editor. PF1, INSERT HERE, and FN4 are
examples. These keys will beep when pressed.

2

•,~

INTRODUCTION AND USE OF THE LINE EDITOR (CHAPlER 1

1.3.1 Uaing the Une Editor

Below is a list of the keys you use while in the PRO/BASIC Line Editor. The
keys are grouped according to the operation they perform.

Moving Ute cursor
You can move the cursor back and forth in the line, entering characters at any
location. If you enter a character between other characters, the characters to
the right of the cursor will move to the right to make room for the new
character.

Key Function

GJ] Moves the cursor one character to the right.

l~f -•'

Moves the cursor one character to the left.

Deleting Ch.vacten

Whenever a character is deleted, any characters to the right of the character
move to the left, filling in the deleted character's position.

Key Function

<8J Deletes the character to the left of the cursor.

Fl2 Deletes the character at the cursor.

Fl3 Deletes all characters to the end of the line.

Deletes the entire line.
INTERRUPT DO (Presa INTERRUPT then 00)

Enlel'lng • Une

All the keys listed below enter the current line, tlijit is, the line the cursor is in.
The last three keys are used in editing a program.

Key

ENTER

RETURN

Function

Enters the current line.

Enters the current line.

3

CHAPTER 1 I INTRODUCTION AND USE OF THE LINE ~DITOA

Fll

Using Other Keys

Key

RELP

EXIT

TAB

CONTROL

4

Enters the current line. For use when editing a
program. Fil also creates a copy of the current line
to edit. This key is useful if you have several similar
lines to enter. You can type the first line, and then
just edit copies. You must change the original line
number, otherwise the original line is overwritten
when the copy is entered.

Enters the current line. For use when editing a pro­
gram. Displays the following line for editing. This is
useful when making edits to many lines in an exist­
ing program.

Enters the current line. For use when editing a
program. Displays the previous line for editing. This
is useful when making edits to many lines in an exist­
ing program.

Function

During program execution, HELP is available in
PRO/BASIC after an error message is displayed,
indicating that an error has occurred in processing.
Press HELP to display explanatory information on
the latest error.

Exits PRO/BASIC and returns to the Main Menu.

Inserts spaces until you reach a tab stop. Tclb stops
occur every eight character positions.

The control key can be held down while another key
is pressed, producing a value other than the face
value of the key pressed. Such values are called
control characters. Refer to Control Functions in
Chapter 3 for more information on control
characters.

INTRODUCTION AND USE OF THE LINE EDITOR j CHAPTER 1

1.3.2 Making Changes to a Program

Any instruction given to PRO/BASIC and preceded by a number is considered
a program line. Following is an explanation of a few time-saving techniques for
use when editing a program.

Moving Around and Displaying the Program

If the cursor is on a program line, press f to enter the current line and display
the previous line, press I to enter the current line and display the following
line.

If you change the line number of an existing program line and press
f or I the line above or below the line's original location will display.

If the cursor is on a blank line, press I to display the first line in the program
or I to display the last line in the program.

To display the entire program, or a portion of the program, use the LIST
command. Simply type LIST, or LIST followed by a line number or a range of
line numbers. Refer to the LIST command in Chapter 4 for more information.

Adding a Program Une

To add a line to a program, enter a line number (0-32767) followed by one or
more characters and press ENTER. The line is stored as part of the current
program.

Insert a line between existing Jines in the program by entering a line with a line
number which is between two existing line numbers.

Replacing or Changing a Program Une

To replace a program line enter a line number that matches an existing line
number, followed by one or more characters. The new program line replaces the
old one.

To change a program line you can use the above method or use the EDIT
command. Simply type EDIT followed by a line number. The specified program
line will display. You can then make any changes and press ENTER to enter
the line.

5

INTRODUCTION AND USE OF THE LINE EDITOR j CHAPTER 1

Deleting a Program Line

To delete a line, enter only the line number of an existing line and press ENTER.

Another way to delete lines in programs is to use the DELETE command.
Simply type DELETE followed by a line number or a range of line numbers.
Refer to the DELETE command in Chapter 4 for more information.

1.3.3 Numeric Keypad

The keys of the Numeric keypad have the same values as the keys on the
standard keyboard. ENTER has the same value as RETURN. The PF1-PF4
keys along the top row of the numeric keypad have no function in immediate
mode. During program execution these keys, as well as the keys along the top
row of the keyboard, and the keys of the editing keypad generate a variety
of escape sequences when pressed. Use CALL INKEY to get these characters
in your program. Refer to the Terminal Subsystem Manual for the escape
sequence generated by each key.

1.3.4 Syntax Checking

When you enter a line to PRO/BASIC, in immediate mode or in program mode,
it is checked for adherence to 'syntax' requirements, for example; that quotation
marks match, that a plus sign be used between two numbers to be added, that
an equals sign is used to assign a value, or that parentheses be used in match­
ing pairs.

If PRO/BASIC finds no syntax errors in the line, it is accepted.

If there is incorrect syntax in the line, PRO/BASIC moves a pointer to the
error, displays an error message to identify the incorrect syntax, and displays
the statement again with the cursor positioned at the problem.

We'll make an error to demonstrate how syntax checking works. The example
below uses the PRINT statement to tell the computer to display the phrase "My
dog has no nose" on the screen. We will not provide ending quotation marks in
the immediate mode statement.

6

PRINT "My dog has no nose,,,_

Missing quote at end of string
PRINT "My dog has no nose .i

CHAPTER 1 I INTRODUCTION AND USE OF THE LINE EDITOR

We can correct the error by placing matching quotation marks at the end of the
phrase. Once the error has been corrected the computer can print the phrase.

PRINT 11My dog has no nose" RETURN
My dog has no nose

When entering numbered lines, rather than immediately fixing incorrect syn­
tax, you can press RETURN, which will store the line for you. The syntax error
will not be reported again. You can return to it later and correct it.

1.4 A SAMPLE PROGRAMMING SESSION

In this section we will look briefly at PRO/BASIC's two modes, immediate
mode and program mode-and see an example of each use.

The first example shows how immediate mode calculations use the Professional
computer as a calculator. The second example shows the use of PRO/BASIC in
program mode, and what a program looks like. You should be in PRO/BASIC
now to try the following examples on your Professional computer.

1.4.1 Exampre 1: Immediate Mode

To work out how many miles to the gallon your car goes you do a quick
computation:

/v/;i.5o
The calculation is simple enough; divide miles traveled by gallons used. To do
this on your Professional computer, enter the following and press RETURN:

250/ 10

The number that displays after you press RETURN is the result of the calcula­
tion you entered.

In immediate mode the computer does what you tell it immediately. However,
your instmctions are limited to what can fit on one line, and they are not saved
after execution.

We can now continue with a program which will do that calculation for you, any
time you want.

7

INTRODUCTION ANO USE OF THE LINE EDITOR I CHAPTER 1

1.4.2 Example 2: Program Mode

The program in this section calculates the distance/fuel ratio for a car.

A program uses program mode. In program mode your instructions to the
computer remain after they are executed, and you must type the RUN com­
mand in order to execute them. So, type in the program below:

10 PRINT 'Allow me to calculate your distance/luel ratio'
20 PRINT 'Please type in the number of miles traveled'
30 INPUT MILES
40 PRINT 'Please type in the p~mber of gallons used'
50 INPUT GALLONS
60 LET MILEAGE = MILES/GALLONS
70 PRINT 'Thal comes lo';MILEAGE;'miles per gallon'
80 PRINT 'Have a Nice Day'
90 END

You can correct any typing errors by using the left arrow and the right arrow
and DELETE, or you can retype the line. Lines can be typed in any order. PRO/
BASIC stores the lines according to the order of their line numbers, regardless
of the sequence they are entered in.

Type RUN and press RETURN to start the execution of the program you just
typed in. You should see the following on the screen:

Allow me lo calculate your distance/fuel ratio
Please type in the number of miles traveled
? 250

The program pauses here so that you can enter a number. Enter the number
250.

Please type in the number of gallons used
? 10

Here the program pauses again so that you can enter a number. Enter the
number 10. You should then see the following:

Thal comes lo 25 miles per gallon
Have a Nice Day

Type RUN and press RETURN to run the program again. Try using different
numbers.

8

CHAPTER 1 I INTRODUCTION AND USE OF THE LINE EDITOR

1.4.3 A Few Other Commands

PRO/BASIC's SAVE command stores a copy of the program on a storage
device (disk or diskette).

To use the SAVE command, type SAVE followed by a name you give the
pl"ogram. Keep the name short, and use only letters, perhaps PROGHAM. Fur
example:

SAVE some name you give it

Now, to prove a point, Jet's use another command. This command will erase the
program that you executed with the RUN command. 'fype the following:

DELETE 10 - 90

Now type RUN. This should cause the following error message to display:

Error 111: No program to run

Now use the OLD command to restore a copy of the program from the storage
device. 'fype:

OLD whatever you named it belore

To verify that you have a copy of the p1·ogram back, type RUN again, or type
LIST to display the program on the screen.

What happened through all this is simply the transfer of a copy of the program
from the place where it was created, to the storage device, and then back to the
place where it was created.

The place where your program was cl"eated is called memory. Memory is the
pol"tion of the computer that sto1·es a program for execution. A progrnm can
only be executed when it is in memory; it cannot be executed when it is on a disk
or diskette.

The SAVE command made a copy of the program and placed it on the storage
device. With the DELETE command you erased the copy in memory. With the
OLD command you moved a copy of the program back to memory.

9

2
Building Blocks of
PRO/BASIC

Chapter 2

Building Blocks of PRO/BASIC

This chapter treats the elements of PRO/BASIC that you use to write
programs.

2.1 PROGRAM LINES

A line in a PRO/BASIC program consists of the following:

line number one or more statements

A line is ended and entered in PRO/BASIC when the RETURN key is pressed.
A line with just one statement is shown below:

10 PRINT 'HELLO'

2.1.1 Line Numbers

Line numbers precede PRO/BASIC program statements and assodate the
statements with the line numbers. A line number before a statement (or series
of statements) saves that statement for execution until RUN is typed and the
RETURN key is pressed. A program consists of a series of numbered lines
containing statements.

Programs are executed in order from low line numbers to high line numbers. No
two lines can have the same line number. Line numbers also serve as addresses
when you want to alter a program's normal order of execution (altering normal
execution is treated in Chapter 3).

Line number:; are valid in the range of 1 to 32767.

13

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

The convention of using sequences of ten for line numbers allows you to modify a
prngl'am by insel'ting up to nine lines between existing lines.

The nol'mal order of pl'ogram execution is as follows:

10
20
30
35
40
50
60
70

2.1.2 Program Documentation

Explanatory comments can be written into the program to explain what's hap­
pening in a program. Comments can be included anywhere in a program as a
numbered line with a REM (remark) statement. For example:

400 REM This section prints final totals

Anything that follows a REM statement is ignored by the computer.

2.1.3 Statements

A statement is a grammatical unit for PRO/BASIC, like a sentence in natural
language. Statements in a program line direct processing, depending upon the
combination of elements it contains.

One or more statements may appear in a program line; the maximum length of
the program line is 80 characters. If a number of statements are included on the
same line, they must be separated by a backslash chal'acter \ or by two slash
symbols(//). The two following examples have the same effect:

100 PRINT A\PRINT BIPRINT C 100 PRINT A
110 PRINT B
120 PRINT C

The remainder of this chapter lists the individual elements of PRO/BASIC that
are used, alone or joined to other PRO/BASIC components, to write programs.

14

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

2.2 THE PRO/BASIC CHARACTER SET

To write PRO/BASIC programs, you can use the following characters. Note
that you can use the DEC Supplemental Graphic Set characters only in strings.
(Refer to Section 2.4.1, String Constants for more information on strings.)

alphabetic characters

numeric characters

special characters

A-Z upper case and lower case

0-9

+-•/'II=-%$#!()\

DEC Supplemental Graphic Set (use only in quoted strings)

< >

f i • t f y f 1 • t a « f f f f • ! t J f ~ t . f 1 a » ~ ~ f l
A A A A A A I C ~ ~ £ E t t t I f ~ 0 6 0 D b l ~ u u 0 u v f B
a a a i ~ l ~ y ~ e e e 1 1 i 1 ~ n o o & a o • • u u u u ij ~ ~

PRO/BASIC translates all lower case DEC Multinational alphabetic characters
to upper case. All other characters, and characters in strings are accepted as
entered. (Appendix A contains a table of the DEC Multinational Character Set.)

Note that the DEC Supplemental Graphic Set uses 8-bit character codes. The
remaining characters of the DEC Multinational Character Set use 7-bit charac­
ter codes. Refer to the Terminal Subsystem Manual for more information on 7-
and 8-bit character codes.

2.3 KEYWORDS

Keywords belong to PRO/BASIC, and dictate the action of a program state­
ment. Because they have specific meanings to PRO/BASIC, they cannot be
used as variable names. Keywords must be separated from other characters
with a blank space. Refer to Appendix B for a list of keywords.

2.4 CONSTANTS

A constant is a data item with a fixed value used in the execution of a PRO/
BASIC program. Constants can be specified in the program, read from a file, or
entered during execution. Constants can be either string or numeric.

2.4.1 String Constants

A string constant is a series of alphabetic, numeric, and special characters
endosed in single or double quotation marks. String data (also called character
data) is treated as a single unit of data. All special characters and DEC Supple­
mental Graphics characters are allowed in strings.

15

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

Following are some examples of string constants:

'"Name change for DEC Japan"'
111he Statue of Liberty"
11$1,999.9911

When handling data, there must be agreement in data type; for example a
string ("cat") cannot be added to a numeric value (5).

2.4.2 Numeric Constants

Numeric constants consist of the numeric characters 0-9. Numeric data is
positive, negative, or zero. Never use commas in numbers when calculating in
PRO/BASIC.

Numeric data can be represented as integer or real constants.

16

D Integer Constants-An integer is a whole number between -32768
and 32767 with no decimal point and fractional part. In PRO/BASIC
the percentage sign (%)suffix is used to identify an intege1·. Integers
require the least storage space and are the fastest of the numeric
constants to process. For example:

1234%
1%

2500%
-1451%

D Real Constants-A real constant has one or more decimal digits, either
positive or negative with an optional decimal point and fractional part.

25
5659 94.36

Exponential notation is used to represent very large or very small
real constants. Exponential notation expresses a number as a constant
multiplied by the appropriate power of 10. A number represented expo­
nentially has the format: an integer, or real constant (the mantissa)
followed by the letter E (indicating ten to the power ot) followed by a
whole number (the exponent). Both the mantissa and the exponent are
optionally signed. For example:

8.0E+3
.4593E-4

5E+3
34E-2

Real constants are of two different types; single precision and
double precision-which differ in the amount of precision of the data
they represent. The precision of a number is dcle1·mined by the
storage space it uses.

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

D single precision-real constants of up to 6 digits with optional decimal
point and fractional part. Single precision real constants use twice as
much space as integers and are slower to process. Some examples
follow:

57.9
-2.11E-05
4501.0

D double precision-real constants of at least 7 digits and up to 16 digits
with optional decimal point and fractional part. Double precision real
constants use four times as much space as integers. Some examples
follow:

34567812
3232.72984
-2.10534E-4

Note that although single and double precision each store a different number of
digits internally, they display the same number of digits. It is possible to display
the additional digits of double precision constants by using the PRINT USING
statement.

If a real number of six or fewer digits is entered to PRO/BASIC it is stored with
single precision, otherwise it is stored with double precision. If the mantissa of a
real number in exponential format is of six or fewer digits, the number is stored
with single precision, otherwise it is stored with double precision.

When more precision is used more space in memory is taken up. To use many
double precision real numbers will slow the execution of a program. Use dou­
ble precision only when a high degree of accuracy is needed. (Hefer to the
DECLARE statement in Chapter 5 fur more information on creating single
and double precision real variables.)

2.5 VARIABLES

A variable is a location that stores a piece of information. A variable can contain
one value.

A variable is created simply by making a reference to its name. The variable
name stands for the value in the variable. A value is assigned to, taken from,
and changed in the variable by referring to the variable name.

17

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

Variables (like constants) are either numeric or string. Numeric variables han­
dle only numeric data, and string variables handle only string data.

The following example shows a variable named HATSIZE. The example con­
sists of a storage area (now empty) labeled HATSIZE. HATSIZE is the vari­
able name that stands for a space in the computer's memory whe1·e a value can
be stored.

Values can he assigned to variables with an assignment statement (the LET
statement.) Refer to the LET statement in Chapter 5.

The following example shows that a value, 8, has been assigned to the variable
HATSIZE. Note that the location receiving the value is on the left in the
statement, and the value being assigned is on the right.

10 LET HATSIZE = 8

Variables can receive the result of calculations in a program. For example:

160 LET GROSWAGE=PAYRATE"HOURS

After creating a variable but before assigning a working value to it, PRO/
BASIC sets a numeric variable equal to a value of zero and sets a string variable
equal to a zero length string, which contains no characters. This process is callee!
initialization.

18

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

2.5.1 Identifiers

An identifier is used to name variables, arrays, and functions.

All identifiers start with an alphabetic character, which is followed by a series of
alphabetic and numeric characters. The underscore character(_) can be used in
variable name identifiers. Identifiers can contain up to a::~ characters inclllding a
suffix to indicate data type. (Refer to Section 2.5.2, Variables and Data Type.)

Do not use keywords as identifiers. Do not use the DEC Supplemental Graphic
Set characters in identifiers. An identifier preceded by FN is taken to be a user­
defined function.

2.5.2 Variables and Data Type

When a variable is created the type of data it can store is specified.

Variables can store either string or numeric constants; and if the constants are
numeric, they can be either integer or real.

Use a suffix in the variable name to indicate the data type of the variable, and
therefore, the data type of the value which the variable can store. PRO/BASIC
uses three types of variables:

O String-Indicated by a dollar sign ($) in the last position of the variable
name. A string variable stores string data up to a maximum length of
255 characters. An example of a string variable follows:

FIRSTNAME$

0 Integer-Indicated by a percentage sign(%) in the last position of the
variable name. An integer variable stores a whole number. An example
of an integer variable follows:

NUM1%

0 Real-No suffix. A real variable stores a real number of either single
or double precision, depending upon the setting of the DOUBLE switch
(see the SET command in Chapter 4) or the use of the DECLARE
statement (see the DECLARE statement in Chapter 5). An example
of a real variable follows:

NUMl

19

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

2.5.3 Conversion of Numbers of Mixed Data Types

When you al'e handling numel'ic data in val'iables, program exeeutiun will be
faster if all val'iables are of the same data type and pl'ecision; howevel' this is not
essential. Conversion is automatic if data assigned tu a val'ialJle is not of the
same type as the variable.

The convel'sion favors the highest precision of any of the values in the eakula­
tion: if an integer value is paired with a l'eal variable, the conve1·sion is to real; if
a real value is paired with a double precision value the convel'sion is to double.
These conversions are shown in the following example, where 1% indicates a
value of integer data type, and Sand D indicate real number values of single and
double precision in the calculation:

1% = (S • D) • (1% - S)
D S

D
1% =

calculation
after operations
result becomes double precision
result stored in integer variable

During assignment, the conversion is to the data type of the variable that holds
the final value. In the example above the result is in double precision but is
finally assigned to an integer variable. During assignment, the value is trun­
cated, as shown in the following example:

10 DECLARE DOUBLE A
20 A=12.3456789
30 8%=12.3456789
40 PRINT USING'##.#######', A,8%
RUN
12.3456789
12.0000000

Ready

In line 20, the double precision value is assigned to a double precision variable
and displays 9 digits. In line 30, the same value is truncated to a whole number
when assigned to an integer variable.

20

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

Double precision values are not rounded when assigned to single precision vari­
ables. For example:

10 DECLARE DOUBLE A
20 A=12.3456789
30 C=A
40 PRINT USING'##.#######', A,C
RUN
12.3456789
12.3456000

Ready

During assignment of a low precision result to a higher precision variable, the
final result stored can be only as accurate as the lowest precision permits. For
example:

10 DECLARE DOUBLE B
20 A=PI
30 B=A
40 PRINT USING'#.###############' ,Pl,A,B

RUN
3.141592653589793
3.141590000000000
3.14159

In the preceding- example, the value of Pl is assig-ned to B after being- stored in
A. Note the value of Pl as printed from variable B. The double precision repre­
sentation in variable Bis accurate only to the fifth digit after the decimal point,
since A is a single precision variable.

2.5.4 Subscripted Variables

A series of variables of the same data type can be given the same name. This is
called an array. With an array you can refer to many variables by one variable
name, called an array-name.

The array-name is common to all variables in the series. A number is used to
distinguish one variable from the next. This number is called a subscript. A
subscript appears enclosed in parentheses immediately after the array name. To
identify a particular variable (an element) in an array, use a subscripted vari­
able name.

21

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

An array-name can be string, integer, or real data type and indicates the data
type the array can store. The example below shows three arrays, eaeh of a
different data type. Element 6 of each array is refereneed in eaeh of the .
examples:

A$(6) A%(6) A(6)

Refer to Chapter 3 for more information and examples about arrays.

2.6 OPERATORS AND EXPRESSIONS

An operator is a symbol used in an expression to specify an action to be per­
formed on operands.

An expression can have one m· more operands, and zero or more operators.
Operations in an expression are executed until a single value is produced.

Operands are the constants, variables, or functions that are acted upon by the
operators.

There are four groups of operators. The four groups and associated symbols are
as follows:

arithmetic
relational
logical
concatenation

("+-*/)
(< > = >= <= <>)
(NOT AND OR XOR)
(+)

Numeric expressions use arithmetic, relational, or logical operators. String
expressions use relational operators and concatenation. An expression with no
operators takes its data type from the value it contains.

2.6.1 Numeric Expressions Use Arithmetic Operators

Numeric expressions use integer or real data type operands and arithmetic
operators.

PRO/BASIC uses the standard arithmetic operations and their operators.
When PRO/BASIC evaluates an expression, it does some operations before
others, and works through the expression from beginning to encl a number of
times.

22

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

The operators below are listed in order of precedence, that is, according to
which operator will be executed during the first pass PRO/BASIC makes
through the expression, and which operators are then executed in subsequent
passes.

Operator Operation Example

unary minus -3

"(or**) exponentiation 2"3

* multiplication 2*3

I division 2/3

+ addition 2+3

subtraction 2-3

When both values in a division operation are integer data type, integer division
is used and the result is truncated to an integer.

10 A,A%=3.25
20 B,8%=2.75
30 PAINT A;'/';B,A;'/';8%,A%;'/';8,A%;'/';8%
40 PAINT
50 PRINT A/B,A/8%,A%/8,A%/8%
RUN
3,25 I 2.75
1.18182

Ready

3.25 I 2
1.625

3 I 2.75
1.09091

3/2

In the preceding example real number division is used in the first three division
operations, where at least one of the values are not integer, and integer division
is used in the last division operation, where both operands are integers.

PRO/BASIC does not support exponentiation performed on negative single or
double precision bases to real number powers.

In order to perform exponentiation on negative integer bases the power must
abo be an integer. For example:

-2% " 1 is an invalid operation
-2% " 1% is a valid operation

23

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

2.6.2 Numeric Relational Expressions Use Relational Operators

Numeric relational expressions compare two integer or real values. If the com­
parison is correct, a true value is returned. If the comparison is incorrect, a
false value is returned. (Refer to Appendix C for more information on values
returned by relational operators.)

The relational operators are as follows. All relational operators have the same
order of precedence, that is, after other operators of higher precedence are
executed, relational operators are evaluated as they are encountered.

Operator Operation Example

< less than 2<3

> greater than 2>1

equal to 2=2

>= greater than or equal to 3>=3

<= less than or equal to 2<=3

<> not equal to 2<>3

Because all the examples above are true, they would all return a true value.

Relational expressions are often used with IF statements which test for certain
conditions and make decisions based on the result. For example:

10 INPUT A
20 IF A<=O THEN PRINT 'Value must be greater than 0, reenter';\GOTO 10
30 PRINT 'OK'
RUN
? -1

Value must be greater than 0, reenter ? 0
Value must be greater than 0, reenter ? 1
OK
Ready

In the preceding example a numeric value is received from the keyboard and
assigned to variable A. In line 20 the contents of A are compared to O; if the
value in A is equal to or less than 0 a message is displayed and program control
returns to line 10. There the prompt is repeated. When a value greater than O is
entered, the message 'OK' is displayed.

24

BUILDING BLOCKS OF PRO/BASIC I CHAPTEA 2

2.6.3 Logical Expressions Use Logical Operators

Logil'.al exµressiom; use logil'.al operators to perform logil'.al operations on oper­
ands. Operands can be relational expressions, numeric values, or other logical
expressions.

Logical expressions l'.an combine relational expressions and evaluate their true/
false values to produce a single true/false result.

The logical operators are as follows, in order of p,recedence.

D NOT-The logical opposite of A. If A is true, NOT A is false. If A is
false, NOT A is true.

D ANO-The logical product of A and B. A AND Bis true only if both
A is true and B is true.

0 OR-The logical sum of A and B. A ORB is true if either A is true or
B is true.

0 XOR-The logical exclusive OR of A and B. A XOR Bis true if either
A or B is true, but not both.

The following truth tables show the results the operator produces depending
upon the values of operands A and B. A true value is indicated by T, and a false
value by F.

NOT
A NOTA
T F
F T

AND
A B AANDB
T T T
F T F
T F F
F F F

OR
A B A OH B
T T T
T F T
1" T T

"' F F

~

25

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

XOR
A Il A XOll B
F F F
T "' T
F T T
T T F

In the following examples the IF statement uses a logical operator to compare
two relational expressions. Logical operators are frequently used for testing a
number of relational operands, though this is not their only use: an IF state­
ment can perform a test on a logical operand to return a result. (Refer to
Appendix C for more detail on logical expressions.)

In the example below, program control will pass to line 20 if a true value is
produced by the AND operator.

IF A>B AND C<D THEN GOTO 20

The relational operands (A >B), (C<D) each evaluate to a true or false value,
determined by the values in the variables A,B,C, and D. If both operands are
true, the AND operator produces a true value. Refer to the truth table for AND
to see the possible combinations of true and false values.

Another example of relational operands in a logical expression follows. If the
value tested is less than 18 or greater than 65, control will pass to the subroutine
at line 2000.

IF AGE < 18 OR AGE > 65 THEN GOSUB 2000

2.6.4 Order of Precedence in Numeric Expressions

When many operators appear in an expression they are evaluated in an estab­
lished order. The order of execution within each group of operators is listed in
the treatments of the operators. There is also an order of execution among the
groups of operators which is as follows:

ARITHMETIC

26

unary minus
exponentiation
multiplication/division
acldition/subtraction

RELATIONAL

LOGICAL

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

all operators have same order of precedence

NOT
AND
OR
XOR

The order of precedence can be changed using parentheses. Anything enclosed
in parentheses will be executed first.

The operations are executed one step at a time, from the highest to the lowest
priority. Operators with the same precedence are executed as they are encoun­
tered, moving from left to right. An example of the execution of an expression
according to the order of precedence is shown in Figure 1:

x = 6 - 2 / 5 • 4 - 1 + 0.5 " -3 Execution order

=6-2/5

= 6 - 0.4

~6-

4.4

= 11.4

11 t_• - 2

3

4

'--~~~~~~~~~~~~ 5

• 4 - 1 +

• 4-1 +

1.6 -1 +

- 1 +

3.4 +

8

8

8

8

8

6

7

27

CHAPTER 2 I BUILDING BLOCKS OF PRO/BASIC

If we modify the order in Figure l, with parentheses, we find that the expres­
sion no longer evaluates to the same number, as shown in Figure 2:

x = 6 - 2 / 5 • 4 - (1 + o.5)} " -3 Execution order

t • fl'----- ~
..__._~~~~~~~~~~~~- 5

'--~~~~~~~~~~~~ 6

'--~~~~~~~~~~~~~~~ 7

x = 5.9744

Figure :l shows another example of expression evaluation with a combination of
arithmetic, relational, and logical operators.

1% ~ 1% + J% = K% OR MASK% - 2% • X > Y AND 3%

t •
j + ' •

II J%=5%. K%=6%, MASK%=7%. X=25, and Y=50, then

1% =true

Execution order

1

2

3

4

5

6

7

Refer to Appendix C for more information on values returned by relational and
logical operators.

28

BUILDING BLOCKS OF PRO/BASIC j CHAPTER 2

2.6.5 String Relational Expressions Use Relational Operators

Helationul operators can also be used to compare two strings to determine
which string precedes the other alphabetically. 1\vo factors are considered:
string contents and string length.

Strings are compared character by character until a difference is found. The
comparison uses the numeric equivalent of the characters in the character set.
(Appendix A contains a table of all DBC Multinational Characters.) For
example:

10 IF 'a' < 'b' THEN PRINT 'Y'

In the preceding example 'a' is Jess than 'b' because the numeric value of 'a' is
less than the numeric value of 'b: Therefore, the relational express~on is true.

The other factor is string length. In a comparison of two strings, identical
except that one is longer than the other, the shorter string is 'filled' with spaces
(DEC Multinational value a2) to generate strings of equal length. PRO/BASIC
compares the remaining characters in the longer string against these spaces.
For example:

10 A$ = 'ABCDE'
20 8$ ='ABC'
30 IF B$<A$ THEN PRINT "8$ COMES FIRST" ELSE PRINT "A$ COMES FIRST"
40 END
RUN
8$ COMES FIRST
Ready

2.6.6 String Concatenation

String concatenation joins character strings: end of the first to front of the
second. The plus sign (+) indicates concatenation. l''or example:

10 A$= 'PRO/'+ 'BASIC'
20 PRINT A$
RUN
PRO/BASIC
Ready

29

CHAPTER 2 I BUILDING BLOCKS OF PAO/BASIC

2.7 FUNCTIONS

A function is a series of statements that accepts values and returns a single
result. Functions can do complex computations for you and save program writ­
ing time and effort.

To use a function, specify the name of the function, and pass values to it. A
function's type is the same as that of the result it returns.

PRO/BASIC includes many functions for handling numeric data or for handling
string data. These are called library functions and are at the end of this section.

In addition, the user can write functions to complement the library functions.
These are called user-defined functions. Refer to the DEF statement in Chapter
5 for more on user-defined functions.

The table below lists by category all the PRO/BASIC library functions.

Library Functions by Category

Trigonometric

Pl The Pl function returns the value of pi

SIN The sine function returns the sine of an angle

COS The cosine function returns the cosine of an angle

ATN The arctangent function returns the arctangent of an angle

Algebraic

SOR The SOR function returns the square root of a number

EXP The EXP function returns the value of e, an algebraic constant, raised to any power

LOG The LOG function returns the natural logarithm of a number

LOG10 The LOG 10 function returns the common logarithm of a number

INT The INT function returns the largest integer equal to or less than the number provided

ABS The ABS function returns the absolute value of a number

FIX The FIX function returns the integer portion of an expression

30

BUILDING BLOCKS OF PRO/BASIC I CHAPTER 2

Library Functions by Category (cont.)

Name Ettect

String

LEN The LEN function determines the length of a string

POS The POS function searches foe the position of a set of characters in a string

MID$ The MID function extracts segments from a string

EDIT$ The EDIT function edits a string

Conversion

ASCII The ASCII function converts from DEC Multinational character to the equivalent
decimal value

CHA$ The CHA$ function converts from decimal value to the DEC Multinational character
equivalent

NUM The NUM function returns a string of numeric characters formatted as it would be by
a PAINT statement

VAL The VAL function returns the number represented by the specified string

Error Handling

ERL The ERL function stoces the line number where the last erroc occurred

ERR The ERR function stoces the number of the latest erroc

EAT$ The EAT function accesses the error text associated with each error number

File Handling

TAB The TAB function moves the print position to the specified column

CCPOS The CCPOS function stores the current position of the cursoc on the current tine

DATE and TIME

DATE$ The DATE$ function returns the current date

TIME$ The TIME$ function returns the current lime

Random Number

AND The AND function returns a random number between but not including O and 1

31

3
Using PRO/BASIC

Chapter 3

Using PRO/BASIC

This chapter explains how some PRO/BASIC statements are used to write
programs.

3.1 ARRAYS

An array is a series of variables referred to by the same name. The variables are
numbered, and are referred to by that number, called a subscript.

An array handles a series of data values more efficiently than a number of
variables would; an array can be moved or processed as a unit, without the need
to handle many separate variables.

3.1.1 Creating Arrays

You can create an array with the DIM statement by specifying the name and the
size of the array. The array name can be any valid variable name (with the
proper suffix to indicate the type of data it stores). Subscript(s) determine the
size of the array.

One dimension is established in the array for each subscript used. The dimen­
sion's size is determined by the number which established it. In the example
below, AARDVARK is the name of the array and 3 is the subscript.

200 DIM AARDVARK(3)

35

CHAPTER 3 I USING PAO/BASIC

You can think of array AARDVARK as looking like this:

AARDVARK(O) AAADVARK(l) AARDVARK(2) AARDVARK(3)

Dimensions are numbered from 0 to the subscript value, so array AARDVARK,
created with subscript value 3, has 4 storage locations, or 'elements'; one more
than the specified size of the dimension.

3.1.2 Assigning Values

Use the LET statement to assign values to and receive values from an element
in an array. (Refer to the LET statement in Chapter 5.) The variable and the
value assigned can either both be numeric or both be string data types.

To assign a value to an element of an array, locate the array element on the left
in the assignment statement; the element (identified by its subscripts) is as­
signed the value on the right. For example:

10 LET TABLE$(6)='apple strudle'

Line 10 in the example assigns the value 'apple strudle' to array element
TABLE$(6).

To assign a value to a variable from an array, locate the variable on the left and
the array element on the right. The variable is assigned the contents of the
array element. For example:

20 LET DESSERT$=TABLE$(6)

The preceding example assigns the contents of TABLE$(6) to the variable
DESSERT$.

In line 10 in the example below a two dimensional array is created. Line 20
causes the contents of element (1,0) to be increased by the value 1 each time it is
executed.

10 DIM A(2,3)
20 A(1,0) = A(1,0) + 1

36

USING PAO/BASIC I CHAPTER 3

You can think of an·ay A as looking like this. Note that there are three rows and
four columns, because arrays are created beginning with zero.

A(0.0) A(0.1) A(0,2) A(0,3)

A(l,0) A(l .1) A(l .2) A(l.3)

A(2.0) A(2.1) A(2.2) A(2,3)

The effect of line 20 above is to add 1 to the value in element (1,0).

Elements of arrays which i;tore numeric values and reside in memory are given
values of 0 (or null for string arrays) when the array is created. Element (1,0) of
array A will have value 0 when the array ii; created, and value 1 after line 20 is
executed.

line 10 executed line 20 executed

Arrayi; usually reside in memory, however the DIM# statement createi; an
array located in a file, called a virtual array. (See Section 3.4, File Input and
Output, in this chapter for more information on virtual array files.)

The advantage to locating an array in a file rather than in memory is that you
can store more data on disk than could be stored in memory. However, there are
disadvantages. These are treated under the DIM statement in Chapter 5.

37

CHAPTER 3 I USING PRO/BASIC

3.1.3 Implicit Arrays

This section has only shown arrays created with the DIM statement,_ though
arrays can be created by merely referencing the array name and subscript(s).
This is called implicit creation. When an array is created in this fashion, each
dimension is automatically created with size of 10 (11 elements, starting from 0).
For example:

10 NUMBERS (4,3)=250

The program line above creates an array called numbers, to store integer data,
with two 11-element dimensions (because there are two subscripts). This state­
ment also assigns the integer value 250 to element 4,3 in array numbers.

3.2 FILES

A file is a collection of information stored on disks and diskettes instead of in the
random-access memory of the computer. A file can be as long as needed up to
the size of the storage medium. A file is referred to by a name assigned when it
is created. It can contain different types of information-for instance text, or
data for a program to use, or a PRO/BASIC prob'Tam. Let's look briefly at the
way in which data is stored.

The file is the largest unit of disk storage of information; files contain smaller
units of information called records and fields. We will sta1·t with the smallest
unit, the field.

A field is an indivisible amount of information consisting of a character or a
number of characters. A field can be numeric or string and can store data of its
own type.

A record is a collection of related fields. An employee record is a typical exam­
ple. An employee record could -consist of such fields as employee name, em­
ployee address, social security number, job title, and pay rate.

A file is a group of related records. Each record in a particular file can holil the
same amount of information. For example, an employee file would contain one
record for each employee of a company.

38

o.

USING PRO/BASIC I CHAPTER 3

Think of a tile as looking like this:

FILE X

•
•
•

3.2.1 File Organizations

- JOHN DOE, 212, al ._ Record 1

JANE JONES, 196, 7.5] ..._ Record 2

BOB SMITH, 220, 6 j .,._ Record 3

•
•
•

•
•
•

PHO/BASIC supports two types of files: sequential and virtual anay.

D Sc1111e11tiu.l Pi/cs-Records in a sequential file are stored in the order in
which they were entered. In order to reach a specific record, all the
records that go before it must be read.

D Virtual Array Files-Virtual array files are anays located on disk.
Each virtual array element is one record. Virtual arrays ca11 contain
integer, real, or string data. To access the contents of any element of
the array just specify the subscript value(s) of the array element you
want.

3.2.2 Naming Files

A file needs identification to specify its location and to distinguish it from other
files.

The full identification of a file is called a file specification (filespec for short). It is
as follows:

device: (directory]filename. type ;version

3.2.2.1 Name and Type

A tile is identified at a minimum by its file name and type. Only alphabetic (A
through Z) and numeric (0 - 9) characters are valid in the tile name and type. The
DEC Supplemental Graphic characters are not valid in file names.

39

CHAPTER 3 I USING PRO/BASIC

D The name identifies the file. The file name can have from une lo
nine characters.

D The type identifies the contents of the file. The type appears after
the name and is separated from the name by a period. One to three
characters may be used.

Below are some examples of PRO/BASIC files:

NEWPROG.BAS

TEST.DAT

MILEAGE.BAS

The two columns below show the P/OS file types, with the equivalent file type
identifications used by PRO/BASIC.

PRO/BASIC P/OS
.BAS BASIC program

.DAT Data

.DOC Document

.TXT Text

Use the file types listed on the left when in PRO/BASIC. You will use the file
types listed on the right with P/OS Vile Services and other P/OS services.
Refer to the Professional 350 Saies User's Guicle for more information.

3.2.2.2 Versions

The version number is used to distinguish between vei·sions of the same file. The
highest version number identifies the latest version of file. This number is
incremented by 1 and associated with a new file each time a modification is
made. Version numbers use the octal number system.

When a file is referenced without a specific version number, the latest version of
the file is assumed. Previous versions are kept until deleted.

Include a version number to access a particular version of the file. The version
number follows the file type and is separated from the file type by a semicolon(;)
or a period(.).

3.2.3 Specifying Directory and Device

When a file is to be input from or output to the current device or directory you
need not specify the device name 01· the directory. PRO/BASIC uses the cur-

40

USING PAO/BASIC I CHAPTER 3

rent device, as selected by the user. The default device is the hard disk if the
user has not explicitly changed the current directory.

To change the default directory, select "Specify new current directory" from the
File Services Menu.

By adding the directory name to the file specification you can access a file on a
directory other than the default directory. Some information on directories
follows:

On a storage medium, files are grouped by directories. A directory is an index of
tiles. Each diskette has at least one directory. The directory has an entry for
each file it contains. The entry contains information on the characteristics and
activity of the file. Directory names are assigned by the user. Directory names
are from one to nine alphabetic or numeric characters and are enclosed either in
square brackets<[)) or in angle brackets (<>).

Add the device name to the file specification to access a file on a device other
than the current device. Some information on storage devices follows.

Storage disks and diskettes have a logical name, which is associated with the
disk m· diskette drives. Volume names are properties of the media (diskette or
hard disk) and do not change. Diskettes can be mounted in either diskette drive
slot, and therefore the logical name may be different each time you use the
diskette. Either the logical name of the device or the volume nanw of the
storage media can be used as the device name in the file specification.

The possible names for the Professional 350 are listed in the table below. The
logical name must be followed by a colon (:).

Logical Name Device Type

DISKETTE1: RX50 diskette

DISKETTE2: RX50 diskette

BIG DISK: ROSO disk

3.3 KEYBOARD INPUT /SCREEN OUTPU1'

Keyboard input is data input to the program from the keyboard. Screen output
is data from the program that is displayed on the screen.

The PRINT statement is frequently used to write data to the screen. In this
section we will see the PHI NT statement used to handle string values and to do

41

CHAPTER 3 I USING PRO/BASIC

arithmetic operations that resolve numeric expressions tu their simplest value.
We will also look at the characteristics of PRINT when displaying data on the
screen.

Data is received from the keyboard with the INPUT and LINl'UT statements.
We will look at the use of INPUT to assign a single data value to a variable, and
the use of LINPUT to assign a line of string data to a variable. We will also
introduce the READ and DATA statements, used for storing data in a program.

3.3.1 Displaying Data on the Screen (PRINT statement)

You can use PRINT in immediate mode to display string data on the screen. For
example:

PRINT "Be Here Now"
Be Here Now

PRINT can also be used as a statement in program mode (preceded by a line
number). In either case the effect is the same.

The contents of a variable can be displayed by specifying the name of the
variable in the PRINT statement. In the following example, the LET statement
is used to assign values to string variables S1$ and S2$:

10 LET S1$ = "'Hi'"
20 LET S2$ = " There"
30 PRINT S1$;S2$
RUN
'Hi' There
Ready

Note in line 10 that the string is enclosed in two matched pairs of quotation
marks.

String data must be delimited by quotation marks, either single or double. Data
enclosed in quotation marks is printed literally, that is, with no change to the
string value. In this example, the outermost set of quotation marks delimit
string SI$; the inner quotation marks are part of the string. In line 20 a blank
space appears as the first character in string S2$ and is printed as part of the
string.

A semicolon used between a number of items to be printed causes the items to
be printed with no additional spaces between them. (Refer tu Section 3.3.2,
Formatting with the PRINT statement.)

42

USING PRO/BASIC I CHAPTER 3

The l'RINT statement can also display numeric data. In the following example,
line 10 handles string data, line 20 prints a blank line, and line 30 prints a
numeric constant:

10 PRINT "'Madam I'm Adam"
20 PRINT
30 PRINT 44
RUN
Madam I'm Adam

44
Ready

The PRINT statement also resolves a numeric expression to its simplest value
and prints only the result. For example:

10 PRINT s•7;4

RUN

14
Ready

In the next example, the LET statement assigns numeric values to two numeric
variables and the PRINT statement performs the addition operation indicated
in line 30. Notice that the commas used to separate the items to be printed cause
additional spaces to print between the items.

10 LET Nl = 25
20 LET N2 = 75
30 PRINT N1,N2,N1 + N2
RUN

25
Ready

75 100

3.3.2 Formatting with the PRINT Statement

3.3.2.1 Print Format

A line on a display screen consists of print zones that are each 14 columns wide.
The PIUNT statement can use commas or semicolons to separate items on the
list to be printed; each has different properties with regard to print zones.
A comma causes a data item to print at the beginning of the next print zone.
A semicolon used to separate data items will not print any extra spaces between
them.

43

CHAPTER 3 I USING PRO/BASIC

The example below shows the effect of each of the separators between data
items to be printed:

10 PAINT 'cat','dog'
20 PAINT 'cat';'dog'
RUN
cat dog
catdog
Ready

Numbers separated with a semicolon (;) are printed with a space before and
after the number. If the number is negative, a minus sign (-) takes the place of
the space before the number.

PRO/BASIC uses exponential notation to represent numeric values greater
than 6 digits Jong. For example:

PRINT 74·3 5

.348587E +07

'Irailing zeros to the right of the decimal point in a number are not printed.

PRINT 57.00

57

3.3.2.2 Print Margins

When printing numeric or string data, PRO/BASIC displays data together on a
line when possible, but starts a new line if a line of data on the screen is longer
than 80 characters, or longer than 132 characters for file output.

PRO/BASIC tests to see how many spaces remain on a line and prints the
remaining data if it will fit, or goes on to the next line if it will not fit. The
example below shows that two lines of 42 characters will not fit within the 80
columns of the display screen: ·

44

10 A$= 11 HEAE'S A CHARACTER STRING OF 42 CHARACTERS"
20 PAINT A$;A$

30 B$= 11 HERE'S ONE WITH FEWER CHARACTERS"
40 PRINT B$;B$
RUN

HERE'S A CHARACTER STRING OF 42 CHARACTERS
HERE'S A CHARACTER STRING OF 42 CHARACTERS
HERE'S ONE WITH FEWER CHARACTERS HERE'S ONE WITH FEWER CHARACTERS
Ready

USING PAO/BASIC I CHAPTER 3

J.J.2.J PRINT USING

The PRINT USING statement is a variation of PRINT. This statement gives
you more control over the appearance and location of data on the output line. It
can be used for printing both numeric and string data. When printing numbers it
is possible to truncate and round values, to locate a decimal point, and to specify
special symbols, for instance floating-dollar signs or asterisk-filled fields, trail­
ing minus signs, and commas.

3.3.3 Receiving Data from the Keyboard

3.3.3.1 INPUT Statement

You can assign data to a PRO/BASIC program using the INPUT statment. The
INPUT statement assigns data typed at the keyboard to a variable. When this
statement is executed, it asks that a value be assigned to the variable it spe­
cifies. For example when the statement below is executed it will ask for a value
to be assigned to the variable B:

10 INPUT B

PRO/BASIC uses a question mark(?) to indicate that it is waiting for a value to
be entered. The question mark is called a 'prompt'. When this statement is
executed, it prompts for a value to be entered as shown below:

10 INPUT B
AUN

?

You respond by entering a number because B is a numeric variable. Variables
and the data types of the values assigned to them must always agree.

If you make a mistake in typing when responding to an INPUT or LINl'UT
statement's prompt, use the DELETE key to erase any incorrect characters
typed before you press RETURN to enter the response.

The value assigned to B can be used by referencing B, and can be changed at
any time by assigning a new value to B.

The following example demonstrates the action of the LET and INPUT and the
PRINT statements.

45

CHAPTER 3 I USING PRO/BASIC

10 LET A=5
20 INPUT B
30 PRINT A*B
RUN
?2
10

Ready

In line 10, the value 5 is stored in A. In this program the value of A will always
be the same. In line 20 the value input to the variable B is received from the
terminal when the user responds to the prompt (?). The PRINT statement in
line 30 multiplies the values of A and B and prints the result.

The INPUT statement can accept values for more than one variable at a time.
Tu do this, list any variables you want to input values for after the INPUT
statement. Separate each variable with a comma. When an INPUT statement
such as this is executed, you must provide a value for each variable. Be certain
that values provided are of the same data type as the variables they are
assig-ned to.

The following example shows an INPUT statement with a list of variables of
string and numeric data types to receive values. PRO/BASIC will accept values
in two ways: each value can be entered after an individual prompt, or all values,
each separated by a comma, may be entered to a single prompt. The following
example shows the same program line with the responses made in the two ways.

10 INPUT A$,B,C$,D,E$
RUN
? hippopotami
? 66
? apple pie
? 12
? hippotamus
Ready

10 INPUT A$,B,C$,D,E$
RUN
? hippopotami,66,apple pie, 12,hippopotamus
Ready

In both cases, the first value is stored in the string variable A$, the second value
is stored in the numeric variable B, and so on. The commas in the second
example serve only to separate each data item from the other.

3.3.3.2 LINPUT Statement

You can also move data to a PRO/BASIC prngram with the LINPUT state­
ment. The LINPUT statement is much like the INPUT statement, except that
LIN PUT is used exclusively for string data.

46

USING PRO/BASIC I CHAPTER 3

LIN PUT accepts and stores all characters including quotation marks and com­
mas, up to the RETURN that enters the line. An example of the LINPUT
statement follows:

10 LINPUT EMP _ADDA$
20 PRINT EMP _ADDA$
RUN
? 56 Your street, Anylown USA
56 Your street, Anytown USA
Ready

In this example, commas do not separate data items: the comma is part of the
string.

3.3.3.3 Storing Data In the Program (READ and DATA)

Another way to get data into a program is through the READ and DATA
statements. Using this pair of statements, you can enter at one time data that is
to be frequently used. They do the same work as the LET statement, but make
for better organization when handling many values. Data is written in as part of
the program; execution does not stop to receive data.

Data is stored in the DATA statements until it is moved to variables. The
READ statement assigns the data to the variable(s) during program execution.

Consider the example below:

10 DATA 1,3,5,7,9
20 PRINT, 'radius', 'area'
30 READ A
40 A=Pl*R 2
50 PRINT ,A,A
60 GOTO 30
RUN
radius area
1 3.14159
3 28.2743
5 78.5398
7 153.983
9 254.469

Error 57 at line 30: End of Data

The RESTORE statement allows data to be reread by the READ statement.
(Refer to the RESTORE statement in Chapter 5.)

47

CHAPTER 3 I USING PRO/BASIC

3.4 FILE INPUT AND OUTPUT

File input and output is the transfer of data between a tile and the PHO/BASIC
program.

In this section we will look at the statements used to perform operations on files:
the OPEN and CLOSE statements. We will look at the statements used in
reading data from and wl'iting data to sequential files, the PHINT #, INPUT#,
and LINPUT #statements, and the use of the assignment (LET) statement to
read and write data to and from virtual array files.

3.4.1 Opening and Closing Files (OPEN and CLOSE)

These two operations are similar for sequential and virtual array files.

3.4.1.1 OPEN Statement

The OPEN statement can either access an existing file or create a new one.
It also associates the file with a channel number that is used to access the file.
An example of the OPEN statement follows:

10 OPEN 11PAYAOLL.DAT1' FOR INPUT AS FILE #1

The purpose of each portion of the OPEN statement is summarized below:

48

o OPEN 1PAYROLL.OAT'
This portion of the OPEN statement identifies the file to be opened.
The file specification must be in enclosed in quotation marks or be a
string expression.

o FOR INPUT
If you specify FOR INPUT, PRO/BASIC opens an existing file. If the
file does not exist, the OPEN operation fails and an error message is
displayed.

You can also specify FOR OUTPUT. If you do, PRO/BASIC creates a
new version of the file, whether a version currently exists 01· not.

If neither FOR INPUT nor FOR OUTPUT is specified, PRO/BASIC
searches for a file with the specified name. If there is a tile by that
name, it is opened for access. If no file by that name exist:;, PRO/
BASIC creates a new file.

o AS FILE #1

The AS FILE portion uses a number, called a channel number to iden­
tify the file for input/output operation:;. PRO/BASIC estahli:;lws
#channelnum as equivalent to the file specification. The channel num-

USING PRO/BASIC I CHAPTER 3

ber can be a number from I to 15. A file may be open on one channel
only, but a number of files can be open (one file per channel) at the
same time.

3.4.1.2 CLOSE Statement

The CLOSE statement closes the specified file and disassociates it from its
channel number. The CLOSE statement looks like this:

CLOSE #1

Use the CLOSE statement to close all open files when finished transferring data
in order to recover memory. If you do not do it explicitly, all open files are
automatically closed by a subsequent RUN statement or when you exit
PRO/BASIC.

3.4.2 Writing to a Sequential File (PRINT#)

You use sequential files in much the same way that you do keyboard input and
screen output. Just as the PHINT statement displays data on the screen,
PRINT # writes data to the file. The following is an example of the PRINT #
tatement: ·

PAINT #1,EMP _NAME$

The expression after the # (number sign) is the channel number. The chan­
nel number must be the same value as the expression specified in au OPEN
statement.

Any numeric or string value or numeric or string variable to be written to the
file can be included after the channel number. A comma separates the print
items from the channel number, and a comma or semicolon is used to separate
print items.

3.4.3 Reading from a Sequential File (INPUT #,LINPUT #)

The IN PUT # statement retrieves data from a file and places that data in
specified variables. Just as the INPUT statement requests a value from the
keyboard, INPUT# requests a value from a sequential file. Once the data is in
the variables, it can be operated upon. The following is an example of the
'NPUT #statement:

INPUT #1,SSN

The expression after the # (number sign) is the channel number. The chan­
nel number must be the same value as the expression specified in an OPEN
statement.

49

CHAPTER 3 I USING PAO/BASIC

If you specify the channel number of an opened file, PRO/BASIC reads data
from the file. If you specify 0, PRO/BASIC reads data from the keyboard.
(When you specify 0, the question mark prompt("!) is overridden, so.you should
provide your own.) List variables after the channel number. A comma must
separate the channel number from any variables listed; and when more than one
variable is listed, each variable must be separated by a comma. For an example
of the use of PRINT # and INPUT # with sequential files, refer to the first
example in Section 3.8, Chaining.

When using PRINT # and INPUT # to write data to and rea1I data from
sequential files, be certain that: the variables are of the same data type as the
file data, and that the INPUT # statement uses no more variables than there
are data items present in the record. Also be sure that if INPUT # is used to
read file data, the data items written to the file with the PRINT # statement
an• each st•parated by commas enclosed in quotes so that the data items will be
properly separated when input.

The following program lines from two programs that access the same file illus­
trate these points:

100 PRINT #1, ITEM_1,',';ITEM_2% 100 INPUT #1, A, 8%

In this example, both lines use the same number of variables of the same data
type, and the data items written to the file in the PRINT # statement are
separated by commas.

The LINPUT # statement inputs an entire line from a file as a string. PRO/
BASIC treats LIN PUT #just as it treats LINPUT; all characters on the input
line, including commas and quotation marks, are assigned to the string. The
following is an example of the LIN PUT# statement:

100 LINPUT #1,EMPL_NAME$

3.4.4 Appending Records to a File

When handling sequential files, you can read records from the file until the end
of the file is reached, and then you can write more records onto the bottom of the
file. This is called appending.

A good method of appending records to the end of the file is to use an error­
handling routine. When end-of-tile is detected, control can pass to a routine that

50

USING PAO/BASIC I CHAPTER 3

writes new records to the file. (See Section 3.5, Error-handling, for an example
of such an error-handling routine.)

If after appending records to the end of a file, you need to return to the top of
the tile, close the file, and then open it again. This will locate program control at
the first record in the file.

3.4.5 Creating a Virtual Array File (DIM# Statement)

To create a file containing a virtual aiTay, place a DIM # statement and an
OPEN statement with the same channel in a program.

There is one significant difference in the use of the OPEN statement for virtual
array files: the use of the VIRTUAL option. Include the optional VIRTUAL
clause after the channel number to create the array in a file rather than
in memory. In the following example the DIM # statement creates an array
and the OPEN i:;tatement, with the VIRTUAL option, associates the array with
a file:

10 DIM #1,A(20,20)
20 OPEN 'TABLE.DAT' FOR INPUT AS FILE #1,VIRTUAL

If no file type is provided in the name of the virtual array file, the default file
type .DAT is used.

After the file is opened, the elements of the virtual array can Le used in the
same way as elements of an array in memory.

3.4.6 Writing to and Reading from a Virtual Array File

You access virtual array files the way you access arrays in memory: ui:;e the
LET statement to assign information (write) to and reference information
(read) from the virtual array file. (Refer to Section 3.1 Arrays.)

To assign a value to an element of a virtual array file, locate the element on the
left in the assignment statement; the element (identified by its subscripts) is
assigned the value on the right. For example:

100 A(5,7) = HAT_SIZE

i'o assign a value to a variable from a virtual array element, locate the variable
011 the left in the assignment statement; the variable is assigned the value of the
vil'tual array element on the right. Fo1· example:

100 EMP_NUM = A(20,1)

51

CHAPTER 3 I USING PRO/BASIC

'3.5 PROGRAM ERRORS AND ERROR HANDLING

During execution of a program some things may happen that are not anticipated
by the program. For example, the end of a file may be reached so a program has
no more data to work on, or an invalid mathematical operation may occur. Some
of these errors-for instance the encl-of-file condition-can be detected by the
system.

When the system detects a prog1·am error it displays a message about the error.
Depending on the severity of the error, PRO/BASIC may display a warning
message and continue processing, or display a fatal error message and halt the
program's execution. When an error occurs, you can press the HELP key to
display more information on the error.

Other errors may not be discerned by the system until later, or perhaps not at
all-for example, if a value entered is of the correct data type but is outside the
valid range.

The ON ERROR GOTO statement allows you to include statements in the
program that catch errors before the system does and then transfer program
control to recover from the error or correct it before proceeding. The ON
EHROR GOTO statement looks like this:

100 ON ERROR GOTO 1000

When an error occurs after line 100, the ON ERROR statement directs program
control to the specified line, line 1000. It also places the error's number, and the
line the error occurred at, in two special variables.

At the specified line number there are statements to test the contents of the
variable that contains the error code number (ERR) and the line that was
executing when the error occm·red (ERL). Program control is then transferred
accordingly.

You can specify a line number in the ON ERROR statement to handle errors
within the program, or you can specify 0 to allow PRO/BASIC to handle errors.

The example below opens file JUNK.DAT, prints each record on the display
screen, and-when the end of the file is reached-goes to the error handler. The
error handler is simply the RESUME statement, which transfers control to a
loop to input new records to the bottom of the file. If you wish to run the
example program below, use an immediate mode statement to create the file
'JUNK.DAT':

52

USING PRO/BASIC I CHAPTER 3

OPEN 'JUNK.DAT' AS FILE #1

10 ON ERROR GOTO 1000
20 OPEN 'JUNK.DAT' FOR INPUT AS FILE #1
30 LINPUT #l,P$
40 PRINT 'OLD RECORD:';P$
50 GOTO 30
100 PRINT 'Now type in new lines to append to the file'
105 PRINT 'Press RETURN to stop'
106 PRINT 'NEW RECORD:'
110 LINPUT #O,P$ \IF LEN(P$)=0 THEN 200
120 PRINT #l,P$
130 GOTO 106
200 CLOSE #1
210 STOP
1000 REM Error handler
1010 IF ERL=30 THEN RESUME 100
RUN
Now type in new lines to append to the file
Press RETURN to stop
NEW RECORD:first line in file
NEW RECORD:RETURN

STOP at line 210
RUN
OLD RECORD:lirst line in file
Now type in new lines to append to the file
Press RETURN to stop
NEW RECORD:now add another record to the tile
NEW RECORD:RETlJRN

STOP at line 210

J<'or simplicity of discussion all exceptional conditions encountered in processing
are termed "error"; some are errors and some are not. For example, an end-of­
file error is not really an error, it indicates no faulty processing. Error-handling
routines, which can respond to end-of-file and other exceptional conditions,
make the term error still less accurate. The term "error" is only appropriate in a
general sense and should not be construed to mean "mistake."

3.6 PROGRAM CONTROL

In a PRO/BASIC program, control ordinarily passes from statement to state­
ment and from line number to line number in ascending order. Ttle normal order
of execution can be altered to:

53

CHAPTER 3 I USING PRO/BASIC

D Repeat a group of statements.

D Continue processing elsewhere in the program.

D Terminate the program.

The following sections describe the statements that affect program control.

3.6.1 Unconditional Transfer (GOTO)

The GOTO statement is the simplest method of changing the normal lowest-to­
highest line number execution of a program. Control may be directed to any
existing line number.

When a GOTO is executed, program control branches to the specified line num­
hl'r. In the example below, program control gets to line 40, ancl then goes to line
10: this process continues until the READ statement in line 10 reads all the
valul's in the I >ATA statemPnt.

10 READ A$
20 PAINT A$
30 DATA a, little, example
40 GOTO 10
AUN

a
little
example

Error 57 at line 10: End of Data

A GOTO should be the only or last statement on a line; any statements appear­
ing after the GOTO will not be executed. Transfer of control is to the first
statement on the specified line.

3.6.2 Multiple Branching (ON GOTO)

ON GOTO is a more powerful form of the GOTO statement. ON GOTO allows
you to specify several line numbers ms alternatives to branch to. Which line is
chosen depends on the value in a variable or the result of an expression. An
example of the ON GOTO statement follows:

54

100 ON CODE GOTO 500,700,900

~
1, 2. 3

I I \
500 700 900

USING PAO/BASIC j CHAPTER 3

The expression can result in as many values as there are line numbers listed. In
the preceding example, CODE is a variable that can validly contain values
l,~,ur 3 because there are three line numbers listed.

When PRO/BASIC executes an ON GOTO statement it first evaluates the
numeric expression. The value is then truncated to integer if necessary. If the
value is equal to 1, PRO/BASIC passes control to the first line number in the
list; if the value is equal to 2, PRO/BASIC passes control to the second line
number in the list, and so on. Consider the following:

500 ON A GOTO 100,200,400,300

if value in A equals:

less than I

I

2

3

4

greater than 4

PRO/BASIC transfers control to:

causes an error

line 100

line 200

line 400

line 300

causes an error

If the value is less than I, or greater than the number of line numbers listed, the
error message, "Expression in ON statement out of bounds" is displayed. An
error message is also displayed if a line number specified in the ON GOTO
statement does not exist.

3.6.3 Conditional Transfer (IF)

The IF statement tests a conditional exp1·ession and executes a statement or
series of statements if the expression is true. If the conditional expression is
false, the statement or statements are not executed. For example:

10 PRINT 'ENTER A VALUE LESS THAN 6'
20 INPUT N
30 IF N >= 6 THEN PRINT 11WRONG11

In the preceding example lines IO and 20 i·equest and assign a value to N. In line
30, if the value of N is equal to or greater than 6, the expression is true, and the
message WRONG is displayed. If the value of variable N is less than 6, the
expression is false and processing will continue after line 30.

55

CHAPTER 3 I USING PAO/BASIC

The IF statement also tests relational expressions. Following are two examples
of the IF statement:

10 INPUT A,B
20 IF A< >B THEN PRINT 'A is not equal to B'
RUN
? 3,4
A is not equal to B
Ready

10 INPUT A,B
20 IF A<>B THEN PRINT 'A<>B'\PRINT 'A=';A, 'B=';B
RUN
? 3,4
A<>B
A=3 8=4

The IF i:;tatement can be followed with an ELSE clause, which is executed only
wht•n the conditional expression is false. The word ELSE can be followed by
either a line number or statement(s). For example:

10 INPUT A,B
20 IF A<>B THEN PRINT 'A<c·B' ELSE PRINT 'A=B'
RUN
? 3,4
A<>B
Ready
RUN
? 4,4
A=B

Note that IF THEN ELSE is all one statement. The THEN clause and optional
ELSE clause can only be used with the IF and must appear on the same line as
the IF.

Logical operations can be performed with IF statements. The following exam­
ple uses an IF statement in line 30 to perform a logical operation on a value
entered from the keyboard. If the number is less than I or greater than 2, a
message is displayed, the prompt is repeated, and the IF statement transfers
program control to line IO.

If the value is within the valid range the IF statement in line 40 does a relational
test on it and then transfers program control to one of two lines.

56

USING PRO/BASIC j CHAPTER 3

10 PAINT 'ENTER 1 OR 2'
20 INPUT A
30 IF A<1 OR A>2 THEN PAINT 'Value must be either 1 or 2, reenter?' \GOTO 10
40 IF A=1 GOTO 300 ELSE GOTO 400

3.6.4 Loops (FOR and NEXT)

If it were not possible to return to a section of your program you would have to
rewrite the statements of that portion of the program each time the same
operation was needed. The technique of returning to the same statements for
repeated execution is called looping.

The loop below repeatedly executes the statements between lines 30 and 60
until a condition is met and program control goes to line 70.

10
20

(!~~
60
70
•
•

PRO/BASIC provides the FOR and NEXT statements for constructing loops.
A loop can also be created with a GOTO statement and an IF statement. As an
introduction to loops made with the FOR and NEXT statements, we will look
first at loops you make yourself.

3.6.4.1 How a Loop Works

We'll look at a loop constructed of familiar components that you can handle
yourself, without the FOR/NBXT statements.

10 LET COUNTER = 1 (assigns beginning value to variable)
20 IF COUNTEA>=10 GOTO 99 (establishes ending value)
30 PRINT 'EXECUTION ';COUNTER;' OF THE LOOP' (statement to execute)
40 LET COUNTER = COUNTEA+l (increments counter)
50 GOTO 20
99 END

57

CHAPTER 3 j USING PAO/BASIC

When this program is executed, line 20 checks COUNTER to see if it is equal to
10 or greater. Ifit is not, the PRINT statement is executed. In line 40 the value
1 is added to COUNTER. Line 50 transfers control back to line 20, where
COUNTER is tested again. When the value of COUNTER equals 10 or more,
control is transferred to line 99, and the program ends. To make a loop the
following are needed:

D A counter to keep track of the number of executions of the loop

D A value that is the starting point for the counter

D The ending value, that is, the value of the counter that will
stop execution

Loops are so frequently used that PRO/BASIC has a pair of statements which
simplify the process.

3.6.4.2 Using FOR and NEXT

The FOR/NEXT statements handle the details of constructing a loop. These
statements must be used together. The FOR statement defines the beginning of
the loop, the NEXT statement defines the end of the loop. Anything appearing .
between the FOR and the NEXT is executed at each pass through the loop. ·

A counter variable is specified in the FOR statement which is incremented by
the NEXT statement at each pass through the loop. The following example
shows two loops: the loop on the left uses an IF statement and a GOTO state­
ment; the loop on the right uses the FOR and NEXT statements.

10 1=1
20 PAINT I
30 1=1+1
40 IF 1<=10 THEN 20
50 END

10 FOR I= 1TO10
20 PRINT I
30 NEXT I
40 END

(Refer to the FOR and NEXT statements in Chapter 5 for more information
and examples.)

3.6.5 Subroutines (GOSUB,ON GOSUB,RETURN)

A subroutine is a section of statements that does one thing whenever needed. In
many programs there are sections of statements which do the same thing or
nearly the same thing a number of times. To use subroutines can save the need
to use unique program statements each time an execution is done. Subroutines
in a program help organize the program and decrease the amount of memory
required. Programs containing subroutines can be thought of like this:

58

USING PRO/BASIC J CHAPTER 3

10
20
•
• 500~500 100 GOSUB start

• i •
•

550 end

The following statements are used when using subroutines:

D The GOSUB statement contains the beginning line number of a sub­
routine and, when executed, transfers program control to that line.
The GOSUB statement also records the location from which control
was transferred. The statements of the subroutine are then executed
until the RETURN statement at the end of the subroutine is reached.
The GOSUB statement looks like this:

GOSUB 1000

D The ON GOSUB statement transfers program control tu one of a num­
ber of subroutines (1·eferenced by their first line numbers), depending
upon the value of a numeric expression. The GOSUB statement also
records the location from which control was transferred. The ON
GOSUB statement looks like this:

ON CLASS GOSUB 500,1000,1500

D A RETURN statement appears after the last program statement of
all subroutines. Its purpose is to transfer program control back to the
statement after the pa1'licular GOSUB or ON GOSUB statement last
executed. (That location was recorded by the GOSUB or ON GOSUB
statement.) The RETURN statement looks like this:

RETURN

59

CHAPTER 3 I USING PRO/BASIC

A small example of a program with a subroutine follows.

10 INPUT A,8,C
20 GOSUB 40
30 PRINT D
35 GOTO 70
40 REM THIS IS A SUBROUTINE
50 D=A·s-c
60 RETURN
70 END
RUN
? 5,10,15

35
Ready

3-7 HALTING PROGRAM EXECUTION

Four methods to halt program execution are the following:

D Using the END statement

D Execution of the program through its highest line number

D Using the STOP statement

D INTERRUPT /DO

The END statement is optional. If you include an END statement, it shoukl be
the last statement in the program. 'Ihnsferring control to an END statement
with a GOTO or an IF statement terminates program execution.

The STOP statement causes PRO/BASIC to halt and print a message:

STOP at linen

where n is the line number location of the STOP statement. STOP can be useful
when looking for problems in your program. By placing one or more STOP
statements throughout your program you can check the contents of variables at
any intermediate point in processing_ Continue execution with the CONTINUE
statement or an immediate mode GOTO statement.

The STOP statement does not close files. Use the END statement to close files.
If the program does not execute an END statement, the execution of the last
statement of the program ends the program and closes all open files.

60

USING PRO/BASIC I CHAPTER 3

To use INTERRUPT /DO press the INTERRUPT key and the DO key.
INTERRUPT /DO terminates the currently executing program and returns to
PRO/BASIC. -

3.8 CHAINING

Chaining, or prog1·am segmentation is the process of breaking a large program
into two or more smaller programs. A large program, when made into smaller
progmms, will use less space in memory as shown below:

Be lore
Program A
is Segmented

,-,.-
PROGRAM

A
PROGRAM

B
CHAIN

1 Unused 1
'-----.J

Memory
Required
before
Segmentation

After
Program A
is Segmented

PROGRAM
c

CHAIN

1 Unused 1 _____ J

PROGRAM]Memory
D Required

CHAIN alter

~ _u~~~d- ~ Segmentation

After program A is segmented into smaller programs, only program B is in
memory at the start of execution. After program B runs, program B chains to
progrnm C, that is, PRO/BASIC erases program B, replaces it with program C,
and runs program C. After program C runs, program C chains to program D.
Less memory is required because smaller programs, each in their tul'll, occupy
memory.

Use the CHAIN statement to segment a program. To use the CHAIN state­
ment, create the program as usual, but include a CHAIN statement with a file
specification as the last statement in the program. The CHAIN statement looks
like this:

200 CHAIN 11PRGRM2.BAS 11

Include a CHAIN statement in each program that is to be followed by another
program. When PRO/BASIC executes the CHAIN statement, it closes any
open files, erases the program just executed, and transfers the program spe­
cified in the CHAIN statement into memory. Consider the following example:

61

CHAPTER 3 I USING PRO/BASIC

The file specified by 'SEGI' contains:

10 PRINT 'program seg1 is working'
20 OPEN 'DATA1' FOR OUTPUT AS FILE #1
30 FOR 1=1 TO 100
40 PRINT #1,2*1
50 NEXT I
60 CLOSE #1
70 CHAIN 'SEG2'
80 END

The file specified by 'SEG2' contains:

10 PRINT 'program seg2 is working'
20 OPEN 'DATA1' FOR INPUT AS FILE #1
30 FOR I= 1 TO 100
40 INPUT # 1,J
50 T=T+J
60 NEXT I
70 PRINT 'THE TOTAL IS ';T
80 CLOSE #1
90 END

Prints identifying message
Creates output file
Writes out all even numbers
2 to 200
to the file
Closes the file
Chains to the next
program

Prints identifying message
Opens existing file
Inputs the numbers
from the file and adds
them, storing the total
in T.
Prints the total.
Closes the file.

A run of these programs produces the following output:

RUN SEG1
program seg1 is working
program seg2 is working
THE TOTAL IS 10100

Ready

Run the first segment
Segment I executes and
chains to Segment 2
Prints the total.

Remember to use the SAVE command to save a program containing a CHAIN
statement before running it. If you don't save the program, it is lost when PRO/
BASIC transfers the next program into memory.

Using the LINE option in the CHAIN statement, you can begin execution of
the chained-to program at any specified line num!Jer location. For example:

100 CHAIN 'SEG3' LINE 200

It is also possible to save values from the chaining program for use by the
chained-to program.

62

USING PRO/BASIC j CHAPTER 3

FIRST

CHAIN 'SECOND'
WITH X,Y(),Z

X, Y().Z

SECOND

X,Y().Z ·

At the left program FIRST is in memory. When PRO/BASIC executes the
CHAIN statement with the WITH option in FIRST, it erases all of FIRST
except the values in the variables X an<l Z, an<l the array Y as illustrated in the
center. At the right, PRO/BASIC brings program SECOND into memory an<l
assigns the preserved values to variables X and Z and array Y in program
SECOND.

Use the WITH option of the CHAIN statement to preserve the values of vari­
ables and arrays. The WITH option of the CHAIN statement looks like this:

100 CHAIN 'SEG3' WITH S_ TOTAL,TOTAL

The PROGRAM statement is used in the chained-to program if the WITH
option is used in the CHAIN statement to pass values from the chaining pro­
gram. The PROGRAM statement looks like this:

10 PROGRAM SEG3 (A$,8,C)

Consider the following example:

The file specified by 'PROGl' contains:

10 C=9
20 DIM A(C),B(C)
30 PRINT 'EXECUTING PROG1'
40 FOR D=O TO C
50 A(D)=D*2
60 B(D)=D*3
70 TOTAL_A=TOTAL_A+A(D)
BO TOTAL_B=TOTAL_B+B(D)
90 NEXT D
100 PRINT C,TOTAL_A,TOTAL_B
110 CHAIN 'PROG2' WITH C,A()
120 END

Assigns 9 to C
C used in DIM statements
Prints identifying message

Multiplies value in D and 2
and 3
stores D•2 in TOTAL_A
stores n•3 in TOTAL_B
Does loop nine times
Prints C,TOTAL_A,TOTAL_B
Passes variable C, array A

63

CHAPTER 3 I USING PRO/BASIC

The file specified by 'PROG2' contains:

10 PROGRAM PROG2(SIZE%,TABLE())
20 REM SIZE% now DIMs TABLE

Variable C renamed to SIZE%,
Array A renamed to TABLE
Prints identifying message 30 PRINT 'EXECUTING PROG2'

40 FOR X=O TO SIZE%
50 T1=T1+TABLE(X)
60 T2=T2+B(X)
70 NEXT X
80 PRINT SIZE%,T1,T2
90 END

Sums values in TABLE
(passed from PROGl) and in new array B
(original B not passed)
Prints SIZE%,Tl,T2

A run of these two programs produces the following:

RUN
EXECUTING PROG1
9 90

EXECUTING PROG2
9

Ready
90

3.9 USING CONTROL FUNCTIONS

135

0

Control functions are non-display single- or multiple-character codes that you
can use to give direct instructions to your Professional computer. The single
character codes are the control characters that appear in columns 0, 1, 8, and 9
of the DEC Multinational code table. The multiple-character codes are either
escape sequences or control sequences. Escape sequences are unique sequences
of ASCII characters preceded by the ESC control character (decimal code ~7).
Control sequences are unique sequences of ASCII characters preceded by the
CSI control character (decimal code 155). Note that PRO/BASIC uses 8-bit
mode. For more information on character codes refer to the Ter111inal Subsys­
tem Manual.

All control functions and their use are explained in detail in the Professional .JOO
Series Terminal Subsystem Manzwl. '1\vo examples are given below to show
how to enter control functions in a PRO/BASIC program.

64

USING PRO/BASIC j CHAPTER 3

3.9.1 Control Character

The following program demonstrates the use of the "Bell" control character
(BEL, decimal code 7). The program asks you for a number from 1 to 10. If the
number is invalid, the keyboard beeps ("bell" sound) three times and asks for
more input. Note the use of CHR$ (line 40) to return the character associated
with the numeric code 7. This is so the BEL character can be printed in lines
1-10 - ltiO.

1 O REM demonstrates use of Bell control character
20 REM
30 REM Define B$ to be the BEL control character
40 LET B$=(CHR$(7))
50 REM
60 PRINT "Type a number from 1 to 1011

70 INPUT NUMBER
80 IF NUMBER<l GOTO 140
90 IF NUMBER>10 GOTO 140
100 PRINT "Number entered (";NUMBER;") is valid"
110 GOTO 180
120 REM
130 REM "Print" the BEL character 3 times to ring the bell 3 times.
140 PRINT B$
150 PRINT B$
160 PRINT B$
170 GOTO 60
180 END

3.9.2 Escape Sequence

The following program demonstrates the use of an escape sequence to print text
at a speeified line and eolumn of the screen. The escape sequence used is

ESC [P1 ; Pc H

It places the cursor (where the next character will appear) at line Pl and column
Pe. Pl and Pe are variable parameters. All characters shown are part of the
sequenee, including the semieolon, and are interpreted as ASCII codes.

In line 70 of the program, the user-defined function FNAT$ is used to represent
the escape sequence. FNAT$ plaees the cursor at line X and column Y (X and Y
are temporary variables). The library function EDIT$, with the parameter 2,
removes any spaces embedded in the sequence. NUM$, whi1th expresses a
number as a string, is used beeause EDIT$ operates only on strings.

65

CHAPTER 3 I USING PRO/BASIC

As with contrnl characters, you use a PRINT statement to enter the escape
sequence. The first part of each PRINT statement on lines !JO and 100 places the
cursor at the specified position. The second part prints the message.

66

10 REM Program demonstrates use of an escape sequence to print text
20 REM at a specified line and column of the screen.
30 REM
40 REM first clear the screen
50 CLEAR
60 REM
70 DEF FNAT$(X,Y)=EDIT$(CHR$(27) +'[' +NUM$(X)+';' +NUM$(Y) +'H' ,2)
BO REM
90 PRINT FNAT$(0,0); 'hello there!'
100 PRINT FNAT$(12,B);'Where are the snows of yesteryear?'
110 PRINT
120 PRINT
130 PRINT
140 END

4
Commands

Chapter4

Commands

This chapter lists the commands of PRO/BASIC. Commands generally perform
an action on a program, for example, start execution, move or copy a program,
make a change to a program, or display information on a program.

The presentation of each command consists of four parts:

o Syntax - the syntax required by the command
D Purpose-what affect the command can have on the program
o Comments-explanations and suggestions for use
D Example-typical or explanatory example

69

CHAPTER 4 I COMMANDS

CATALOG

Syntax

CAT[ALOG) [hlespec]

whe1·e:

file spec is a file specification or a directory name.

Examples of Syntax

CAT
CAT*.BAS

Purpose

CATALOG displays the tiles in a directory.

Comments

There are a numlwr of different methods of using CATALOG:

70

D Omit filespec to display all files in the current directory.

D Include a di1·cctory name to display filt•s in a directory other tha11 the
present directory. For example:

CAT <MEMOS>

0 Use the wildcarcl character, denoted by an m;terisk (*).The wilclcanl
character used in a portion of the file spceilication (file name, exten,;ion,
or version number) means "all". The wil<lcanl allows the CATAL01;
command to display any file specification that matches the information
provided, while ignoring the element(s) replaceil by the wiltlcard.

For instance, a wildcard in the file name will display any file
specification that matches the fik• type named. A wil<h:anl in the file
type will display all file specifications that match the specifiL·cl file name.

The example below uses a wildcard instead of the file name, and
specifies the file type as .BAS to display all tiles with the extension
.BAS;

CAT •.BAS
AP.BAS;1 GL.BAS;5 PROG1.BAS;13 PROG2.BAS;2

The example below substitutes a wildcanl for a specific file type, and
specifics l'A YROLL as the tile name, to display any filps with file name
PAYIWLL, without regard to their types.

COMMANDS I CHAPTER 4

CAT PAYROLL.•
PAYROLL.BAS;3 PAYROLL.DAT;5 PAYROLL.DAT;4 PAYROLL.DAT;3

You can also specify a pol'tion of a file name-for instance,
PIWG*.BAS to display any file specification where the file name has
chal'actel's in common with chal'acters appearing before the wildcard.

D PRO/BASIC assumes a wildcard for the version number unless a
version is specified.

D CAT*.* is the same as CAT.

Example

CAT

AP.BAS;6 AP.BAS;11 AP.BAS;24 AR.BAS;12
AR.BAS;14 AR.BAS;15 CHECK.BAS;24 EXP.BAS;12
EXP.BAS;12 EXPENSE.DAT;11 EXPENSE.DAT;12 GLEDGER.BAS;2
GLEDGER.BAS;3 GLEDGER.DAT;17 GLEDGER.DAT;15 INVNTRY.BAS;15
INVNTRY.BAS;3 INVNTORY.DAT;2 JUN82.DAT;2 JUN82.DAT;3
MAY82.DAT;1 MEMO.DAT;3 REPORT.BAS;4 T.OAT;14

Ready

71

CHAPTER 4 I COMMANDS

CONTINUE

Syntax

CONT(INUE]

Purpose

CONTINUE causes PRO/BASIC to resume execution of a program halted by a
STOP statement or a STEP command.

Comments

D If execution was halted by a STOP statement or after a STEP
command, the CONTINUE command transfers control to the
statement immediately following the STOP or STEP. If execution
was halted by pressing INTERRUPT, then DO, the CONTINUE
command re-executes the interrupted statement.

D The CONTINUE command cannot be used if you have changed your
program since the last time it was run. You can however, resume
execution with an immediate mode GOTO statement.

Example

72

05 STOP
1 O REM Demonstrate CONTINUE command
20 A = 15 \ B = 150
30 X = A/B
40 STOP
50 PRINT X
60 END
RUN

STOP at line 5
CONT

STOP at line 40
DELETE 5
CONT

Error 114 at line 40: Can not continue

GOTO 50
.1
Ready

Syntax

DEL[ETE]

where:

linenum

linenum1-linenum2

linenum -

- linenum

Example of Syntax

DEL 10

Purpose

(linenum

(linenum1 - linenum2

(linenum1 -

[- linenum2

is a single line number

COMMANDS I CHAPTER 4

DELETE

specifies all lines from line number 1 to line number
2, inclusive.

specifies all lines from line number to the end of the
program.

specifies all lines from the beginning of the program
to line number.

DELETE erases one or more lines from the current program.

Comments

D You must specify a line number or range of lines.

D Not all program lines must exist within the range specified.

Example

DEL - 100

DEL 100-350

73

CHAPTER 4 I COMMANDS

EDIT

Syntax

where:

linen um

EDIT linenum

Example of Syntax

EDIT 150

Purpose

is the number of a line in your program that you wish to
change.

l•:I HT allows you to modify your program by changing individual lines using the
J ,ine Editor.

Comments

74

D When you have finished editing your input line, press RETURN or
ENTER. PRO/BASIC either accepts the line or, if invalid, prints an
error message and reinvokes the editor.

D See Chapter 1 for more information on the Line Editor.

COMMANDS I CHAPTER 4

EXIT

Syntax

EXIT

Purpose

EXIT terminates PHO/BASIC and returns control to the Main Menu.

Comments

D If changes have been made to the program in memory and you
type EXIT to leave PRO/BASIC, the following warning message
is displayed:

Error 109: Unsaved changes, type EXIT again to exit.

D The message indicates that you should use the SAVE command if
you wish to presl.'rve the latest version of your program before you
leave PRO/BASIC.

0 If you do not want to save the latest version of the program, press
EXIT to leave PRO/BASIC.

D Pressing EXIT has the same effect as the EXIT command.

75

CHAPTER 4 I COMMANDS

LIST

Syntax

(linenum

LIST (linenum1 - linenum 2)

(linenum -

(- linenum

where:

linenum

linenum1-linenum2

linenum -

- linenum

Examples of Syntax

LIST 100
LIST 220-290

Purpose

is a single line number.

specifies all lines from line number 1 to line
number 2, inclusive.

specifies all lines from line number to the end
of the program.

specifies all lines from the beginning of the
program to line number.

LIST displays the program currently in memory.

Comments

76

D If you do not include a line number or range, PRO/BASIC lists your
entire program preceded by a line showing the program name, the
date, and the current time.

o Press INTERRUPT, then DO, or HOLDSCREEN to stop listing a long
program.

0 All lines specified within a range do not have to exist.

COMMANDS I CHAPTER 4

MERGE

Syntax

MERGE [filespec]

Examples of Syntax

MERGE MYFILE

MERGE Diskettel :SEG22

Purpose

MERGE transfers the specified program from disk or diskette and merges it
with the program currently in memory.

Comments

O PRO/BASIC inserts each line (by line number) from the stored
program. In the case of duplicate line numbers, PRO/BASIC erases
the line in the current program and inserts the line from the specified
program.

o A large program can be segmented and stored in a number of files.
To run the program, use the MERGE command to load the needed
segments.

When writing program segments to be merged, assign each one a
discrete block of line numbers. The merged program will then have
all its lines in the correct order regardless of the order in which you
merge the segments.

O Be careful that all unwanted lines are replaced by lines in the specified
file, or deleted by using the DELETE command.

0 If you type MERGE with no file specification PRO/BASIC searches
for a file named NON AME.BAS. If no file with that name is found an
error message is displayed.

o If there is no program in memory, a MERGE command is equivalent
to an OLD command, except that it does not change the current
program name.

D You can use the MERGE command to modify the current program by
replacing specific segments. For example, you can quickly replace a
subroutine or one block of DATA statements with another (see the
following example).

77

CHAPTER 4 I COMMANDS

Example

78

200 REM *** DATA1 ***
210 DATA ONE.TWO.THREE

Ready

OLD DEMO

Ready

LIST

200 REM ••• DATA2 ***
210 DATA FOUR
220 DATA FIVE
230 DATA SIX

100 REM ••• Demonstrate the MERGE command •••
310 FOR 1% = 1% TO 3%
320 READ D$ \PRINT D$;' ';
330 NEXT 1% \PRINT\ END

Ready

MERGE DATA1

Ready

LIST
100 REM••• Demonstrate the MERGE command•••
200 REM *** DATA1 •••
210 DATA ONE.TWO.THREE
310 FOR 1% = 1% TO 3%
320 READ D$ \ PRINT D$; ' ';
330 NEXT 1% \ PRINT\ END

Ready

RUN

ONE TWO THREE

Ready

MERGE DATA2

Ready

LIST
100 REM••• Demonstrate the MERGE command•••
200 REM ••• DATA2 •••
210 DATA FOUR
220 DATA FIVE
230 DATA SIX
310 FOR 1% = 1% TO 3%
320 READ D$ \ PAINT D$;' ';
330 NEXT 1% \ PRINT\ END

Ready

RUN

FOUR FIVE SIX

Ready

COMMANDS I CHAPTER 4

79

CHAPTER 4 I COMMANDS

NEW

Syntax

NEW [progname]

where:

progname is a program name of up to 9 alphabetic
and/or numeric characters.

Example of Syntax

NEW MYPAOG

Purpose

NEW clears memory, deletes all variables and user-defined function definitions,
and saves the name of your new program.

Comments

D Supply only the program name. Do not supply a directory name,
extension, or version number to the NEW command.

0 If you later save the program with the SA VE commaml without
specifying an extension, the program name you provide is used as
the file name and is given the extension . BAS .

D If you do not include a program name, PRO/BASIC uses NON AME
by default.

D You can always change the name you chose for your new program by
using the RENAME command, and you can store it with a different
name by specifying a filespe~ with the SA VE command.

D If you want to keep the program currently in memory, enter a SA VE
command before you use the NEW command.

Example

NEW PROG1

80

COMMANDS I CHAPTER 4

OLD

Syntax

OLD [filespec]

Examples of Syntax

OLD MYPROG

OLD LABGEN.BAS;3

Purpose

OLD transfers the specified PRO/BASIC program from disk/diskette to
memory.

Comments

D If you want to keep the program currently in memory enter a SAVE
command before you use the OLD command.

D Before transferring the program, OLD clears memory, deletes all
variables and function definitions, and closes all open files.

D If you do not provide a file specification, PRO/BASIC searches for
file specification NONAME.BAS.

D If the specified file is not found, PRO/BASIC displays an error
message and does not clear memory.

D OLD extracts the file name portion of the file specification provided
and assigns it as the program name.

D Ifa filespec is included with the RUN command, RUN can perform the
same function as the OLD command and also start program execution.

81

CHAPTER 4 I COMMANDS

RENAME

Syntax

RENAME progname

where:

progname is a program name of up to nine alphabetic and/or numeric
characters.

Example of Syntax

RENAME NEWNAM

Purpose

HENAME changes the name of the program in memory.

Comments

D When the program is saved with the SA VE command, the program
name is used as the file name, and the extension. BAS is assigned.
Refer to the SAVE command in this chapter for more information on
saving files.

Example

RENAME SEG1

82

COMMANDS I CHAPTER 4

RENUMBER

Syntax

RENUMBER (linenum[.increment]]

where:

linenum

increment

is the first line number of the new line number
sequence; the default is 10.

is the increment for the new line number sequence;
the default is 10.

Example of Syntax

RENUMBER 100,10

Purpose

Renumbers program lines.

Comments ·

D The RC:NUMBER command organizes a program in a uniform line
number sequence, for example after extensive additions or deletions
of program lines.

D EIU, references are not changed as a result of the RENUMBC:H
command.

83

CHAPTER 4 I COMMANDS

Example

84

This example shows how PRO/BASIC checks for line numbers during a
RENUMBER operation.

2 REM This program demonstrates errors in a RENUMBER
13 REM
20 GOTO 9582 \ REM Line 5982 does not exist
56 GOT 30 \REM Line 30 does not exist, but will afler a RENUMBER
99 END
RENUMBER

Error 71 at line 30: Can not find specified line
Error 71 at line 40: Can not find specified line
Error 234 at line 40: Renumbered line matches specified line
LIST
10 REM This program demonstrates errors in a RENUMBER
20 REM
30 GOTO 9582 \REM Line 9582 does not exist
40 GOTO 30 \ REM Line 30 does not exist, but will after the RENUMBER
50 END

7 REM This program demonstrates the RENUMBER command
8 REM
9 ON ERROR GOTO 30
10 PAINT 11Enter N (1, 2 or 3) 11 \INPUT N
18 ON N GOSUB 100,132,159
20 GOTO 10 \REM Go back to line 10 for more input
24 REM
26 REM Note: The 'line 10' comment is not changed alter a RENUMBER
28 REM
30 IF ERL=18 THEN IF N<O THEN 999 ELSE PRINT 11 1nvalid N11 \RESUME 10
31 ON ERROR GOTO 0
48 REM
49 REM Note: 'ERL=18' is not changed after a RENUMBER
50 REM
100 PRINT 11 1 squared = 111 \RETURN
132 PRINT 11 2 squared = 411 \ RETURN
159 PRINT 113 squared = 911 \RETURN
200 REM
999 END

COMMANDS I CHAPTER 4

••• After a RENUMBER 100,5 command •••

100 REM This program demonstrates the RENUMBER command
105 REM
110 ON ERROR GOTO 145
115 PRINT "Enler N (1, 2 or 3) 11 \INPUT N
120 ON N GOSUB 170,175,180
125 GOTO 115 \REM Go back to line 10 for more input
130 REM
135 REM Note: The 'line 10' comment is not changed after a RENUMBER
140 REM
145 IF ERL=18 THEN IF N<O THEN 190 ELSE PRINT "Invalid N11 \RESUME 115
150 ON ERROR GOTO 0
155 REM
160 REM Nole: 'EAL=18' is not changed alter a RENUMBER
165 REM
170 PAINT 11 1 squared = 111 \RETURN
180 PRINT 11 2 squared = 411 \ RETURN
180 PRINT 113 squared= 911 \RETURN
185 REM
190 END

Note that line numbers in REM statements and the ERL function have not been
changed.

85

CHAPTER 4 I COMMANDS

RUN

Syntax

RUN (filespec]

Examples ot Syntax

RUN MYPROG

RUN

Purpose

RUN begins program execution.

Comments

86

D The RUN command with no filespec included begins execution of a
program in memory. If there is no program in memory, PRO/BASIC
signals an error.

D The RUN command with a filespec included transfers a program
currently on disk/diskette to memory ar,id then begins execution.

D The RUN command closes all files, initializes all numeric variables
to 0 and all string variables to zero length, and releases all function
definitions before starting execution.

D The RUN command begins execution at the lowest numbered line.

D The GOTO and GOSUB statements in immediate mode also can begin
program execution, but they do not initialize the program.

COMMANDS I CHAPTER 4

Syntax

SAVE (filespec]

Examples of Syntax

SAVE

SAVE MYPAOG

SAVE TESTBED.BAS;6

Purpose

SAVE stores the program currently in memory to a file.

Comments

D If you do not include a file name, PRO/BASIC uses the current
program name as the file name in the file specification.

If you do not include a file type, .BAS is assigned by default.

D If a file of the same name already exists, PRO/BASIC creates
a new file and assigns it the next higher version number.

,.

SAVE

87

CHAPTER 4 I COMMANDS

SET

Syntax

where:

mode

NO

SET (NO) mode

is one of the following:

DOUBLE STEP TRACE

disables the specified mode.

Examples of Syntax

SET DOUBLE

SET NO STEP

Purpose

SET controls the settable modes of PRO/BASIC processing.

Comments

88

D Use the SHOW command to display the modes currently in effect.

o DOUBLE

D In DOUBLE mode, all real variables created are of double precision.
For example:

10 A=PI
SET DOUBLE
20 B=PI
30 PRINT USING 1#.############## 1,A,B
RUN
3 .14159000000000
3.14159265358979

Ready

Variable A is still single precision, even after the SET double com­
mand, because it was created with single precision. (Refer to the
DECLARE statement in Chapter 5 for more on creating variables
with single and double precision.)

o STEP

With STEP mode you can execute one statement of a program at
a time.

COMMANDS I CHAPTER 4

When in STEP mode, press RETURN to execute one statement. The
CONTINUE command also causes the execution of one statement.

To u::;e STEP mode, first specify SET STEP, then start program
execution with RUN. SET STEP has no effect ifthe program has not
been run, or if the progTam has executed to completion. STEP mode
ean be set at any time. STEP mode will stop at a STOP statement in a
program; press RETURN again to execute through the stop. STEP
mode execution will also stop at an error; when this happens, you
cannot continue.

SET STEP is similar to the STEP command, though the STEP
command allows the execution of a number of statements at a time.

Refer to the STEP command in this chapter for examples comparing
the effects of SET STEP and the STEP command.

o TRACE

In TRACE mode, each line number and initial keyword executed is
displayed. Each assignment executed is displayed, as are all REM
statements.

FOR/NEXT loops display the FOR statement first, then each
oecurrence of the NEXT statement displays NEXT and the latest value
of the counter variable. This mode is useful for debugging a program
because it shows the current values in variables and displays events
of program execution.

1 O REM This is the first line
20 A=1+2
30 IF A=3 THEN PRINT 'A is equal to 3'
RUN
A is equal to 3
Ready
SET TRACE
RUN
10 REM This is the first line
20 A = 3
30 IF
A is equal to 3

Ready

PAINT

0 The settable modes of PRO/BASIC are unrelated to Immediate and
Program modes.

89

CHAPTER 4 I COMMANDS

SHOW

Syntax

SHOW [identifier]

where:

identifier is a variable, array, or function in the current
program.

Examples ot Syntax

SHOW

SHOW 1%

SHOW COS

Purpose

SHOW displays detailed information about the current program, memory use,
and PRO/BASIC's settable modes.

Comments

90

D 'fype SHOW by itself to display information on all variables, arrays,
and functions in the current program. SHOW displays the name and
the data type of each existing variable, the subscripts of an array,
and the arguments in a function. Individual array elements cannot be
displayed with SHOW.

SHOW also displays the program size, the number of lines, the number
of identifiers and the amount of available memory. SHOW displays a
list of the currently enabled settable modes. (See the SET command in
this chapter for more on settable modes.)

D 'fype SHOW, and the name of any variable, array, library or user­
defined function to display its current value.

COMMANDS I CHAPTER 4

Example

Below are four unrelated program lines. SHOW is executed, displaying the
contents of variables, arrays, etc., before and after the four lines are executed.

1 O A$ = "abcdef"
20 DIM 8(5,10)
30 C = SIN(6)
40 DEF FNAREA(D) = 2•p1••D \0 = FNAREA(22)
SHOW

A$=
8(?, ?)
C=O
FNAREA(real) : real user defined function
D=O

Program Size (bytes): 86
Number of lines : 4
Number of Symbols: 36
Free Memory: 5844

RUN
Ready
SHOW

A$ = abcdef
8(5, 10)
c = -.279416
FNAREA(real) : real user defined function
D = 138.23

Program size (bytes) 86
Number of lines: 4
Number of Symbols: 36
Free Memory: 5564

91

CHAPTER 4 I COMMANDS

STEP

Syntax

STEP [integer)

whe1·e:

integer is a positive integer constant indieating the 11t1mber of

statements to execute before stopping; the default is l.

Example of Syntax

STEP10

Purpose

8TEP allows you to execute statements in your program, one or more at a time,
at'eording lo the number specified.

Comments

92

D If the number provided is greater than the number of statements in
the program, execution ceases at the last statement in the program.

D STEP implies a RUN statement, that is, it causes exeeution of a
program to begin if the program has not been run or has executed
to completion.

o Step will halt at a STOP statement. Use STEP or CONTINUE to
continue execution through the STOP statement. STEP will also
halt at an error. The cause of the error should be eliminated and the
program restarted.

D SET STEP and STEP can be used together in a program. (Refer to
the SET command in this chapter for more on SET STEP mode.)

D Use the SHOW command to display all identifiers and their values, or
type the name of the identifier to display its contents.

Example

The state11wnts of the program
bl'low are executed with SET
STEP. A statement is executed
by pressing RETURN.

10 PRINT 1
20 PRINT 2 \PRINT '2A' \PRINT '28'
30 PRINT 3
40 PRINT 4
50 PRINT 5
55 STOP
60 PRINT 6
SET STEP
RUN

1

RETURN
2

RETURN
2A

RETURN
28

RETURN
3

RETURN
4

RETURN
5

RETURN

STOP at line 55
RETURN

6
Ready

COMMANDS I CHAPTE:R 4

The statements of this program
are executed with the STEP
command. Any number of statements
to execute can be specified in
STEP.

10 PRINT 1
20 PRINT 2 \PRINT '2A' \PRINT '28'
30 PRINT 3
40 PRINT 4
50 PRINT 5
55 STOP
60 PRINT 6

..

STEP 1
1

STEP 1
2

STEP 2
2A
28

STEP

3
STEP 2

4
5

STEP

STOP at line 55
CONT

6
Ready

93

5
Statements

Chapters

Statements

This chapter lists the statements of PRO/BASIC. Statements are the individual
instructions that make up a program.

The presentation of each statement consists of four parts:
D Syntax - the syntax required by the statement
D Purpose - what the statement can do in a program
D Comments - explanation and suggestions for use
D Example - typical or explanatory example

97

CHAPTER 5 I STATEMENTS

CALL COLLATE

Syntax

CALL COLLATE (expressionl, expression2, variable)

where:

expression1
expression2
variable

is a string expression.
is a string expression.
is an integer variable which receives the result.

Example ol Syntax

100 CALL COLLATE(A$,B$,C%)

Purpose

CALL COi.LAT!<~ compares two strings to determine the relation of one to the
olhe1· hased on the order of characters in the DEC Multinational Character Set.

Comments

98

D The DEC Multinational Character Set includes many characters
specific to a variety of languages. CALL COLLATE provides for the
correct alphabetic ordering of letters that are identical except for
accents. For example, CALL COLLATE allows A, A, A, and A to sort
between A and B, although the numeric equivalent of each of these
letters would not by itself result in the proper alphabetic sequence.

D If expression! is alphabetically sorted before expression2, the value I
is returned to the integer variable; if the string expressions are equal,
0 is returned; if expressionl is greater than expression2, -1 is returned.

D Refer to Chapter 2 and Appendix A for more on character sets.

STATEMENTS I CHAPTER 5

Example

1 REM Sort DEC Multinational Characters using CALL COLLATE
5 LAST=156

10 DIM A$(LAST)
11 FOR 1%=32% TO 126%\A$(1%-32%)=CHR$(1%) \NEXT 1%
12 FOR 1%=192% TO 253%\A$(1%-192%+95%)=CHR$(1%) \NEXT 1%

100 FOR l=O TO LAST
110 MIN=I\ CH$=A$(MIN)
150 FOR J=l+l TO LAST
200 CALL COLLATE (CH$,A$(J),1%)
250 IF 1%<0 THEN MIN=J\CH$=A$(MIN)
260 NEXT J
261 IF MIN=I THEN 270
262 TEMP$=A$(1) I A$(1)=A$(MIN) IA$(MIN)=TEMP$
270 NEXT I
300 FOR l=O TO LAST
310 PRINT USING 11 'L11 ,A$(1);
320 NEXT I
330 END
RUN

' " I S X & ' (l • + , - • I 0 1 2 3 4 5 & 7 B 9 : 1 < • > 7 i A ~ A ~ A i ~
i ~ a A a e b c c c i 0 d E e t * £ e £ i f e F f G 9 H h I ' l I t l t i t i J
J K k L ~ H • N n A n E a 0 O. 0 0 0 6 0 6 0 o o o P p Q ~ R r S s ~ T t U u u u
u u 0 u u u y v w w x k y y y ij z z I • • • A l [\) A - • { I } ~ f f f
RHd\j

99

CHAPTER 5 I STATEMENTS

CHAIN

Syntax

CHAIN filespec [WITH value [.value] ...] [LINE linenum]

where:

file spec is a string expression that specifies a file containing
a PRO/BASIC program.

value is one or more constants or variables to be preserved
for reference by the chained-to program.

linenum is a line number in the chained-to program.

Examples of Syntax'

CHAIN "MOD3.BAS" WITH A. 8%, C$ LINE 200

CHAIN FILENAME$ WITH TABLE%(.)

Purpose

CHAIN transfers program control from one program to another.

Comments

100

D When a CHAIN statement is executed, all variables and functions are
erased, memory is cleared, and the chained-to program is transferred
into memory and executed.

If the LINE option is used, the same processes take place, but
execution of the chained-to program starts at the specified line number.
If no line number is specified, execution of the chained-to program
starts at the lowest numbered line.

If the WITH option is used, the specified values are saved and all
others are erased, memory is cleared, and the chained-to progTam
is transferred into memory and executed. When the PROGRAM
statement in the chained-to program is executed, values previously
saved in the CHAIN statement are associated with the variables
in the PROGRAM statement. (Refer to the PROGRAM statement
in this chapter.)

STATEMENTS I CHAPTER 5

D When you pass values between programs, the data types of the
values in the CHAIN statement must agree with the data types of
the variables in the PROGRAM statement (string values to string
variables, numeric values to numeric variables). For example:

100 PROGRAM AAA
110 CHAIN 'BBB' WITH A, 2, C$

Program AAA chains to program BBB, and passes the value in variable
A, the integer constant 2, and the value in variable C$.

100 PROGRAM BBB (X, Y%, A$)

Note that although the names of the variables have been changed in
program BBB, variable X is real, variable Y% is integer, and variable
Z$ is string.

Numeric values listed in the WITH option are converted to the
data type of the target variable in the PROGRAM statement of the
chained-to program.

However, when you pass an array between programs, the array
variables must be of the same type in both programs, that is, an
integer array variable in one program must be integer in the program
receiving the array variable, and so on.

D To specify an array in a CHAIN statement, use a pair of parentheses
containing only the appropriate number of commas to indicate the
number of dimensions in the array. For example:

100 DIM A(3),B(4,5).C(6,7,8)
110 CHAIN 'NEXT.BAS' WITH A(),B(.),C(,,)

In the preceding example, arrays A,B, and C, are real arrays of 1,2,
and 3 dimensions respectively.

o You can pass an array, an element from an array, or an element from a
virtual array, between programs; but you cannot pass an entire virtual
array.

101

CHAPTER 5 I STATEMENTS

D If a CHAIN statement includes the WITH option, a PROGRAM
statement must be executed in the chained-to program in order
to assign values passed to new variables. Be certain tu execute a
PROGRAM statement before using passed variables. By convention,
the PROGRAM statement is on the first line of the chained
to program.

Note: When you type in or e1lit a program that contains a CHA IN
statement, be sure to enter a SAVE command before running your
program. Otherwise, you will lose the current program.

D Programs are chained to by their file specifications, not program
names. (See the following example.)

Example

In this example, file AAA.BAS contains program A, file BBB.BAS contains
progTam B, and file CCC.BAS contains program C. The chained-to programs
are referenced by 'BBB'and 'CCC', which are file specifications.

100 PROGRAM A
110 PAINT 'Entering AAA'
120 A$='This is how you can pass data'
130 CHAIN 'BBB' WITH A$

100 PROGRAM B(B$)
110 PAINT 'Entering BBB'
120 PAINT B$ \B$ = 'between program segments'
130 CHAIN 'CCC' WITH B$

100 PROGRAM C(C$)
110 PAINT 'Entering CCC'
120 PAINT C$
130 END

Runing AAA produces the following results:

102

AUN

Entering AAA
Entering BBB
This is how you can pass data
Entering CCC
between program segments

Ready

STATEMENTS I CHAPTER 5

CLOSE

Syntax

CLOSE [#channelnum[,#channelnum] ...]

where:

#channelnum

Examples of Syntax

is a numeric expression specifying
currently open channel.

CLOSE #2%,#5%

CLOSE

Purpose

CLOSE closes a file and ends its association with a channel.

Comments

D Closing files when they no longer need to be open: frees memory,
protects the data in the files, and allows the re-use of the channel
number. In any case, all open files are closed by the execution of l!:XIT,
OLD, and RUN commands or a CHAIN or by an END statement.

0 If you do not specify a channel number in the CLOSE statement,
all open files are closed when it is executed. Valid channel numbers
are 1 - 15.

D No error is produced if the CLOSE statement is used with no channel
numbers when no files are open.

D The screen and keyboard (channel 0) cannot be closed.

Example:

200 PRINT 'File name'; I LINPUT FILNAM$
210 OPEN FILNAM$ FOR INPUT AS FILE #1%
(process file)
500 CLOSE #1%
510 GOTO 200

103

CHAPTER 5 I STATEMENTS

DATA

Syntax

DATA value[,value] ...

where:

value is real, integer, or string, quoted or unquote<l.

Examples of Syntax

100 DATA 1.o.11Aac 11 , 111,211 .o.o
300 Data January,February,March,April,May,June,

Purpose

DATA stores values for use by the READ statement.

Comments

104

D Values are read from the DATA statements from left to right. When
the last value in a data statement is assigned to a variable, the first
value in the next DATA statement is taken.

D A DATA statement can contain as many values as space on the line
allows. As many DATA statements as needed can be used.

D A DATA statement must be the only statement on the line.
PRO/BASIC handles all characters from the keyword DATA to
the end of the line as data.

D Values can be numeric or string. The data type of the value must agree
with the data type of the variable it is assigned to (string values to
string variables, numeric values to numeric variables). Use exactly the
same data type for numeric values (integer to integer, single to single
and double to double). Strings that contain spaces before (lea<ling
spaces) or spaces after (trailing spaces) a printing value, or commas,
must be quoted.

STATEMENTS j CHAPTER 5

D If a DATA value consists only of space(s}, the variable receiving that
value is assigned zero if it is numeric and null if it is string ..

D Use the RESTORE statement to reread data. (See the RESTORE
statement in this chapter.}

D PRO/BASIC ignores excess data in DATA statements when there are
more reads than data values.

D Do not follow the last value in a DATA statement with a comma.

D The READ and DATA statements must be used together. (Refer to
the READ and the RESTORE statements in this chapter.)

105

CHAPTER 5 J STATEMENTS

DECLARE

Syntax

DECLARE {SINGLE } { #channelnum, array(subscript(s)) l
DOUBLE { array(subscript(s)) [,array(subscript(s))]. .. }

variable [,variable]. ..

where:

SINGLE/DOUBLE is the precision selected.

specifies a virtual array file. #channelnum

array is an identifier of up to 32 characters that specifies
a real array.

subscript(s) is one or more numeric constants or variables,
separated by commas and enclosed in parentheses.

variable is a real variable.

Examples ol Synta.x

100 DECLARE DOUBLE TABLE1, TABLE2, TABLE4

100 DECLARE SINGLE A,B(3),C,D(5,4),E,F

Purpose

DECLARE creates and assigns a precision to one or more real data type vari­
ables or arrays.

Comments

106

D A variable or array created with single precision will contain a value
of up to 6 digits; a variable or array created with double precision will
contain a value of up to 16 digits. Use PRINT USING to display the
contents ofa double precision variable. (Refer to the PRINT USING
statement in this chapter.)

D If you specify a subscripted variable, the DECLARE statement
creates an array in the same manner that the DIM statement does.
(Refer to the DIM or DIM # statements in this chapter for more on
creating arrays.)

STATEMENTS j CHAPTER 5

0 The DECLARE statement establishes the precision of a program's
real variables. Because the accuracy of a result depends upon the
smallest amount of precision in any of the operands, all operands in a
computation that requires double precision should be double precision.

D Because DECLARE initializes variables to zero when executed,
including those that existed before, it is recommended that you locate
this statement at the beginning of your program.

D It is not advisable to name a variable in Qne DECLARE statement and
name it once again in another DECLARE.

Example

In this example, the real variable A is declared with single precision in line 10.
The variable B is declared with double precision in line 40. The single precision
variable A displays six digits of precision, while variable B, decla1·ed with dou­
ble precision, displays lt.i digits.

10 DECLARE SINGLE A
2B A=1234567890123456
30 PAINT A
40 DECLARE DOUBLE B
50 8=1234567890123456
60 PAINT USING '################',B
AUN

.123457E+16
1234567890123456

107

CHAPTER 5 I STATEMENTS

DEF

Syntax

DEF FNlunction-name [(variable[variable, ...)]=expression

where:

FNfunction-name is an identifier. The function-name must be
preceded by FN. The function-name can have a
suffix to indicate the type of value returned by the
function; percent sign (%) for integer, dollar sign
($) for string, or no suffix, indicating a real number
is returned.

variable is a temporary variable to reserve space for the
arguments passed to the defined function.

expression returns a value of the same data type as the
function name.

Examples of Syntax

DEF FNSTRIP$(S$)=MID$(S$,2,LEN(S$)-1)

DEF FNADDR%(N%,P%)=N%"(N%+1%)/2

Purpose

DEF allows you to define functions that are used in the same way as library
functions, such as LOG or SIN.

Comments

108

0 The DEF statement defines the function, as in line 10 in the following
example. When the function is referenced (line 20), the expression to
the right of the definition statement is evaluated and the result
returned.

10 DEF FNDEC$='Digital Equipment Corporation'
20 PRINT FNDEC$
RUN
Digital Equipment Corporation

Ready

--~- ---- --------------i

STATEMENTS I CHAPTER 5

You can also define a function that returns a value that depends on the
value(s) passed to it. This is a more dynamic use of the DEF statement
and is treated next.

In the DEF statement, the two following items are supplied:

D Zero or more temporary variable(s), to be replaced by an
argument value when the defined function is referenced.

D The expression, which returns a value.

In the following example, line 10 is a function definition;

10 DEF FNAREA(A)==2"Pl"A

When the defined function is referenced, as many argument values are
supplied as there are temporary variables holding places for them.

In the following example, line 20 is a function reference, passing the
value 1.9 to the temporary variable '.Nin the function definition, with
a PRINT statement to display the results:

20 PRINT FNAREA(1.9)

The names of the temporary variables in a function definition have no
purpose other than to act as place holders for argument values passed
from a function reference. An intermediate step in the execution of a
function would look like this:

FNAREA(1.9) == 2"P1"1.9

In the following example temporary variable 'A' is replaced with
'APPLE' with no change to the meaning of the statement:

10 DEF FNAREA(APPLE)==2"Pl"APPLE
20 PRINT FNAREA(1.9)
Ready
RUN
11.9381

When PRO/BASIC encounters a user-defined function reference,
it goes through the following sequence: it evaluates the expressions
in the function refe1·ence, looks up the DEF statement expression,
replaces the temporary variables with the corresponding argument
values from the function reference; evaluates the DEF statement;
and it returns the result.

D The expression on the right side of a function definition can contain
variables, just like an assignment expression, in addition to temporary
variables.

109

CHAPTER 5 j STATEMENTS

D No more than 5 temporary variables can be passed to the function
definition.

0 User-defined functions can reference library functions or other
user-defined functions. !<'or example, the following is a valid DEF
statement:

DEF FNA=SIN(FNB)

A user-defined function reference is valid in immediate mode; however,
the DEF statement is not.

D There can only be one function associated with a DEF statement.

Example

110

10 REM Function to convert an angle from degrees to radians
20 DEF FNANGLE(A)==A*2*Pl/360
30 PRINT "ENTER ANGLE TO BE CONVERTED"
40 INPUT A
50 PRllH ''THE RADIAN OF THAT ANGLE IS 11;FNANGLE(A)
60 PRINT
70 PRINT "WANT TO CONVERT ANOTHER ANGLE? ENTER Y 11

80 PRINT "- - OR PRESS ENTER TO END"
90 INPUT X$llF X$= 11Y11 THEN GOTO 20
99 END
RUN

ENTER ANGLE TO BE CONVERTED
? 45

THE RADIAN OF THAT ANGLE IS .785398

WANT TO CONVERT ANOTHER ANGLE? ENTER Y
- - OR PRESS ENTER TO END
? RETURN
Ready

STATEMENTS I CHAPTER 5

DIM

Syntax

DIM [E NSION] array-name (subscript(s))[.arr ay-name(subscript(s))] ...

where:

array-name is an identifier. The array-name can have a suffix
to indicate the type of data the array will contain;
percent sign (%)for integer, dollar sign ($) for
string, or no suffix, indicating real numbers.

subscript(s)

E11amples of Synta11

10 DIM A(6)

is one or more numeric constants or variables,
separated by commas and enclosed in
parentheses.

10 DIM B(100),C(15,3)

Purpose

DIM creates an array by specifying the array's name aud dimensions.

Comments

D The array-name determines the type of data stored in the array.
The array's dimensions are specified by a subscript or subscripts.
Each subscript used creates one dimension in an array. The siw of a
dimension is equal to the number that created it. (Note that the use
of a subscript both establishes a dimension and specifies its size.) The
size of an array is determined by the number of dimensions and the
sizes of the dimensions. Up to 7 dimensions can be defined in an array.

In the first of the examples in the Syntax section above, A is an array
of one dimension, with 7 elements (starting at zero, counting to 6;
dimensions begin at zero). In the second example, one DIM statement
defines two arrays: B is an array of one dimension, of 101 elements
(starting at zero, count to 100); C is an array of two dimensions,
Hi elements by 4 elements, that total 64 elements.

111

CHAPTERS j STATEMENTS

112

So far, only numeric constants have been used as subscripts to define
arrays. An array with constants for all the subscripts is a static array.
The size of a static array cannot be changed. An array defined as static
cannot be referred to again in a subsequent DIM statement.

D You can also create an array that can be redimensioned by using
variables for subscripts instead of constants. This is called a
dynamic array.

If one or more variables are used to define an array, the size of
the array can be changed by changing the values in the variables
and repeating the DIM statement, or by using different variables
and repeating the DIM statement. The number of dimensions cannot
be changed, nor can all the original variable subscripts be replaced
with constants.

In the following example, array A is first created with 2 dimensions
of 6 and 8 elements. On line 40, variable I is assigned value 23. On
line 50, another DIM statement is used to change the dimensions
of array A.

10 X::::5IY=7
20 DIM A(X,Y)
30 REM array A is now 6 by 8 elements, or 48 elements in size
40 1=23
50 DIM A(l,15)
60 REM array A is now 24 by 16 elements, or 384 elements in size
70 REM array A is dynamic because one subscript is a variable

D An array can be created without the DIM statement by referencing
the array-name. When you reference an array that does not exist (has
not been created using a DIM statement), PRO/BASIC creates a new
array with that name. This is called an implicit array. When you create
an array implicitly, each dimension contains 11 elements numbered
0-10. In the following ex.ample, line 10 creates an ll-by-11 array that
stores real numbers and assigns the value 3.14159 to element (5,5).

10 LET A(5,5)=3.14159

All implicitly created arrays are static and cannot be redimensioned.

D An array explicitly created using constants cannot be redimensioned.

D When an array is created (with the DIM statement or implicitly) its
elements are initialized to zero for numeric arrays, or to null strings
for string arrays. Arrays are also initialized when redimensioned.

STATEMENTS I CHAPTER 5

D Use only a variable or a constant for a subscript; do not use
expressions.

D See the DIM # statement in this chapter for information on creating
arrays in files.

Example:

10 REM - PROGRAM TO CREATE A 4-BV-6 ARRAY AND FILL WITH NUMBERS
20 DIM A(3,5)
30 FOR l=O TO 3 \FOR J=O TO 5
40 A(l,J)=l+J"10
50 NEXT J \NEXT I
60 FOR l=O TO 3 \FOR J=O TO 5
70 PRINT A(l,J);
80 NEXT J
90 PRINT

100 NEXT I
110 END
RUN
0 10 20 30 40 50
1 11 21 31 41 51
2 12 22 32 42 52
3 13 23 33 43 53

Ready

113

CHAPTER 5 I STATEMENTS

DIM#

Syntax

DIM(ENSION) #channelnum, array-name(subscript(s)) [=string length]

where:

#channelnum specifies a virtual array file.

array-name is an identifier. The array-name can have a suffix
to indicate the type of data the virtual array will
contain; a percent sign(%) for integer, a dollar sign
($) for string, or no suffix, indicating real numbers.

subscript(s) is one or more numeric constants or variables
separated by commas and enclosed in parentheses.

string length is a positive numeric constant which specifies the
maximum length of the elements of a string array.

Examples ot Syntax

10 DIM #1,A$(100)=80

10 DIM #3,TABLE%(15,30)

Purpose

DIM# creates a virtual array by specifying the array's name and dimensions.

Comments

114

D A virtual array stores data in a file, rather than in memory. When the
file is open, you can access the elements by subscript. Because the
array is stored in a file, its contents may be reused.

D DIM# declares the array's name and dimensions, and identifies the
channel number of a file containing a virtual array. The array-name
determines the type of data to be stored in the array. Each subscript
used creates one dimension in a virtual array. The size of a dimension
is equal to the number that created it. (Note that the use of a subscript
both establishes a dimension and specifies its size.) Up to 7 dimensions
can be defined in an array.

STATEMENTS I CHAPTER 5

D A virtual array can be defined using variables in place of constants, for
subscripts. (See the DIM statement in this chapter for more on the use
of variables.) However, you cannot redimension a virtual array, even
when variables.are used.

D Because a virtual array is stored in a file, PRO/BASIC must execute
an OPEN statement with the same channel number specified in the
DIM #statement before any references are made to elements of the
array. The OPEN statement must contain the qualifier "VIRTUAL."
For example:

10 DIM #1, A$(1000)=132
20 OPEN 'VIRT.DAT' FOR OUTPUT AS FILE #1, VIRTUAL
30 LINPUT A$(47)

This program fragment opens a virtual array file and stores an
input line in element 47 of the file VIRT.DAT. If you do not specify an
extension with the file name when handling a virtual array file, the
default file type .DAT is used.

D A virtual array can be much larger than a normal array because it uses
disk space rather than memory. If your program needs a very large
array or needs to store information between executions, a virtual array
may be helpful.

Virtual array files have two major advantages over sequential files:

1. You don't have to read values in order. For example, you can
access the last element in a virtual array as easily as the first.

2. You can store numeric data with no Joss of precision. In a
virtual array, numbers have the same binary format that
PRO/BASIC uses internally. Storing numeric data in a
sequential file results in a small loss of precision for some
fractions because of the binary value to character
value conversion.

Virtual array files also have two major disadvantages:

1. Virtual array accesses are slower than normal because each
one requires a disk input/output operation.

2. You cannot directly examine a virtual array file. Unlike text
files, virtual array files are stored in binary format.

115

CHAPTER 5 I STATEMENTS

116

D The size of elements of string clata type virtual arrays can he set.
Any size specified is rounded up to a power of 2 0,2,4,8,Hi,:t~.G4,2fili).
If a value contains more characters than the specified size, charackrs
are Jost. If a value contains fewer characters than the specified size,
disk storage space is wasted.

The maximum size you can specify for a string virtual array is 25G.

D The default size of elements in a virtual string array is 16.

D For compatibility with other versions of BASIC, place each DIM #
statement in a lower-numbe1·ed line than the corresponding OPEN
statement.

D Virtual arrays are not initialized to zero, or null strings in the case
of string artays, during creation.

D Use only a variable or a constant for a subscript in the DIM #
statement.

Example

10 REM This example uses a dynamic array to
20 REM store a sorted list ol names on disk.
30 REM
40 DIM #1,NAME$(4)=20 I REM Maximum name length is 20
50 OPEN 'name.dat' FOR OUTPUT AS FILE #1, VIRTUAL
60 N_NAMES=4 \ REM Maximum number of names
70 REM Initialize the array
80 FOR N=l TO N_NAMES
90 NAME$(N)=1111

100 NEXT N
110 REM
120 1=1

STATEMENTS I CHAPTER 5

. 130 IF l<=N_NAMES THEN PAINT 11 input name 11 ; ELSE PAINT 11no room"\ GOTO 230
140 LINPUT NAME$(1)
150 IF NAME$(1)= 11 11 THEN GOTO 230
160 REM Do sort upon entry
170 X=I
180 FOR J=I TO 1 STEP -1
190 IF NAME$(X)<NAME$(J) THEN SWITCH=l ELSE SWITCH=O
200 IF SWITCH=l THEN T$=NAME$(J) \ NAME$(J)=NAME$(X)\NAME$(X)=T$ X=J
210 NEXT J
220 1=1+1 \GOTO 130
230 REM Print the array
240 FOR 1=1 TO N_NAMES
250 PAINT l,NAME$(1)
260 NEXT I
270 CLOSE #1
280 PAINT 11done 11

290 END
AUN
input name ? JOHN
input name ? PAUL
input name ? GEORGE
input name ? RINGO
no room

1 GEORGE
2 JOHN
3 PAUL
4 RINGO

done
Ready

117

CHAPTER 5 I STATEMENTS

END

Syntax

END

Example of Syntax

32767 END

Purpose

END terminates execution of a program and closes all open files.

Comments

118

D The END statement should be the last statement on the last line of
your program, for compatibility with other versions of BASIC.

STATEMENTS I CHAPTER 5

FOR/NEXT

Syntax

FOR variable = expressionl TO expression2 (STEP expression3]

where:

variable

expression1

expression2

expression3

Examples of Syntax

is the counter variable, a numeric variable.

is the initial value of U~e counter variable,
a numeric expression.

is the final value of the counter variable,
a numeric expression.

i::; the STEP value, a numeric expression
(the default is 1).

10 FOR 1=1 TO 10 STEP 2

program statements

50 NEXT I

200 FOR Z% = INT(T(l)•7.02)) TO 0% STEP -10%

program statements

300 statements \NEXT Z%

Purpose

FOR/NEXT performs a series of program instructions a number of times.

Comments

D The FOR ::;tatement acts as a counter for the loop and define::; the be­
ginning of the loop. The NEXT statement adjusts the counter and
define::; the end of the loop. Any statements appearing between the
FOR ::;tatement and the NEXT ::;tatement are executed until the final
value of the counter variable is reached. The normal line number se­
quence i::; then resumed at the statement after the NEXT statement.

119

CHAPTER 5 I STATEMENTS

120

These two statements must be used together. <Refer to the NEXT
statement in this chapter.)

D At execution, PRO/BASIC evaluates all expressions in the FOR
statement before it assigns a value to the counter variable. After
evaluation, the beginning value is assigned from exprcssionl to the
counter variable.

Expression2 contains the final value for the loop. If the value in the
counter variable is larger (with positive STEP value) or smaller (with
negative STEP value) than the final value, the loop is ended. Other­
wise, the loop is performed and the statement(s) executed. When the
NEXT is reached, the value in the counter variable is changed by the
value in STEP. This value is 1 unless you specify otherwise.

Expression3 contains the optional STEP value. STEP can have any
numeric value, positive or negative. STEP defines the amount by which
the counter variable is to be incremented or decremented each time
the loop is executed. f<~ach time the loop is executed, the value in STEP
is added to the value of the counter variable, and the result compared
with the final value. The type of comparison made to the final value
depends upon the sign of the STEP value. If the STEP value is positive,
the counter variable is tested to determine whether it exceeds the
final value; if the STEP value is negative, the test is made to determine
if the value of the counter variable is less than the final value.

D If the counter variable is incorrectly greater than or Jess than the
ending value at the start of the loop, execution of the loop will not
occur, as demonstrated in the following two examples:

10 FOR 1=20 TO 2 STEP 2 50 FOR J=1 TO 3 STEP -1

Neither of the two program statements will execute properly. In the
first example, the initial value of the counter variable is greater than
the final value, so the loop is never executed. A negative value in
STEP would allow this statement to work. In the second example, the
negative STEP causes the NEXT statement to test for a counter value
less than the final value. However, the counter value is already less
than the ending value. A positive value in STEP would allow this
statement to work.

STATEMENTS j CHAPTER 5

D You can place a 1',0R/NEXT loop inside another FOR/NEXT loop.
This is called "nesting." For example:

10 FOR l=O TO 4
20 FOR J=O TO 4
30 PAINT 1•1o+J,
40 NEXT J
50 PRINT
60 NEXT I
RUN
0 2 3 4
10 11 12 13 14
20 21 22 3 24
30 31 32 33 34
40 41 42 43 44

Ready

Note the use of indentation in the example. Statements within loops
are indented to show that they are within the same loop. Line 30 is
indented twice because it is inside two loops. Indentation makes pro­
grams easier to understand.

When you use nested loops, each loop must be completed within any
outer loops, as in the preceding example, where the FOR J and NEXT
J are paired within the FOR I and NEXT I. (Also, each FOR and
NEXT statement pair must have a unique counter variable.) The fol­
lowing example demonstrates an invalid use of nesting J.'OR/N EXT
statements:

10 FORM= 1 TO 10
20 FOR N = 1 TO 10
30 NEXT M
40 NEXT N

121

CHAPTER 5 I STATEMENTS

D After the completion of a loop, the counter variable has the last value
that caused execution of the loop. Although PRO/BASIC increments
the counter variable until it is greater than the ending value,
PRO/BASIC subtracts the STEP value to return the counter variable
to the value last used to execute the loop. For example:

10 FOR I = 1 TO 3
20 PRINT I
30 NEXT I
40 PRINT I
50 END
RUN

1
2
3
3

The variable I does not contain the value 4, which caused the end of
the loop. It was subtracted back out. The result, 3, is the 'last good
value'.

Example

In this example, when line 100 is executed, CONTROL% is assigned the value l
and PRO/BASIC tests to determine whether it has exceeded the final value of
4. It has not and the loop (line 150) is executed.

When control gets to line 200, PRO/BASIC increments CONTROL% to 3 and
tests to determine whether the value of CONTROL% has exceeded the final
value of 4. It has not, and control is transferred back to line 150.

The next time control gets to line 200, PRO/BASIC increments CONTROL%
to 5 and tests again. This time, it exceeds the final value and control passes
out of the loop to Ji!'le 210. The value 3 was the last valid value and remains in
CONTROL% after the loop ends.

122

100 FOR CONTROL%= 1% TO 4% STEP 2%
150 PRINT CONTROL%;
200 NEXT CONTROL%
210 PRINT 'Done.' \END
Ready

RUN
1 3 Done.

Ready

STATEMENTS j CHAPTERS

GOSUB

Syntax

GOSUB linenum

where:

linenum specifies the first line number of a subroutine.

Example of Syntax

Purpose

100 GO SUB 500 \ REM Call subroutine to perform AAA
110 REM The next operation is BBB

program statements

500 REM *** Subroutine to perform A •••

program statements

590 RETURN

GOSUB saves the location of the statement following the GOSUB and transfers
control to the specified line.

Comments

D In the example under the Syntax section above, the GOSUU at line
100 saves the location of the statement following the GOSUB (line 110),
and transfers control to line 500. The RETURN statement at line 590
transfers control to the location after the GOSUB (line 110). (Refer to
the RETURN statement in this chapter.)

D A subroutine may call another subroutine. This is called nesting. The
maximum number of nesting levels depends on the amount of memory
available.

D A GOSUB can transfer control to the first statement of a multistate­
ment line, but not to subsequent ones.

123

CHAPTER 5 j STATEMENTS

D Do not allow execution of a subroutine other than by means of a
GOSUB statement. If control "falls" into a subroutine, the RETU J{N
statement will produce an error. You can use GOTO statements to
transfer control around a subroutine.

D The GOSUB statement used in immediate mode can be a valuable
debugging tool.

Example

124

10 A=O
20 GOSUB 60 I A=S
30 GOSUB 60 \ A=6
40 GOSUB 60
50 GOTO 120
60 REM This subroutine executes a loop with values from lines 20 and 30
70 FOR I = 1 TO 6
80 LET A=A+A
90 PRINT A,
100 NEXT I
110 RETURN
120 END
RUN

0 0 0 0 0 0
10 20 40 80 160 320
12 24 48 96 192 384

Ready

STATEMENTS I CHAPTER 5

GOTO

Syntax

GOTO linenum

Example of Syntax

100 GOTO 300

Purpose

GOTO transfers program control to any line in your program.

Comments

D Execution resumes at the first statement on the line branched to,
unless that line contains nonexecutable statements (such as a DATA
statement). In this case, execution resumes at the first executable
statement.

D Other statements must never follow a GOTO statement on the same
line, since they will never be executed.

D The GOTO statement can be a valuable debugging tool in immediate
mode. For example, you can put a STOP statement at the end of a
problem area and execute the program. When PRO/BASIC executes
the STOP, you can examine and modify variables or program state­
ments and then transfer control with an immediate mode GOTO back
into the problem area.

D Another spelling of GOTO is GO TO.

Example

The following example, taken from a program that prints out the contents of a
document file, demonstrates a correct application of the GOTO statement. Be­
cause the print loop exits only when an end-of-file condition at line 210 produces
an error, a simple GOTO loop is appropriate. (Assume that an ON ERROR
statement is present elsewhere.)

200 REM ••• Print loop-exit is caused by end of file •••
210 LINPUT #1%,LINE$ I REM Get a line
220 PRINT LINE$ \REM Print the line
230 GOTO 210 \REM End of print loop

125

CHAPTER 5 I STATEMENTS

IF

Syntax
IF expression

where:

expression

statement

is any conditional, i.e., relational or logical expression.

is a single statement or several statements, separated
by backslashes.

linenum is the line number in the current program to which
control is transferred.

Examples of Syntax

IF A>B THEN 100 ELSE 200

IF A>B THEN PRINT A ELSE PRINT B

IF A>B THEN C=B \ B=O ELSE C=A \ A=O

Purpose

IF tests a relational or logical expression and executes statements depending on
the result.

Comments

126

D Use IF to perform an operation or series of operations only if a certain
condition or set of conditions is satisfied. If the expression is true,
PRO/BASIC executes the THEN (or GOTO) portion of the statement.
If the expression is false, PRO/BASIC transfers control to the next
numbered line, or executes the statement(s) in the ELSE clause, if an
ELSE statement is present.

A conditional expression can test the relation of two operands. The
pair of operands can be either both string or both numeric. The expres­
sion is said to be true if the relation between the two operands is true,
or false if the relation between the operands is false.

A conditional expression can also test a number of relational expres­
sions by separating the relational expressions with the logical operator!:'
AND, OR. The expression results in a true or false value depending
upon the relations tested and the effect of the logical operator.

STATEMENTS I CHAPTER 5

D Nute that IF THEN ELSE i::; all one ::itatement. The THEN clau::;e and
optional ELSE clause can only be use<l with the IF an<l mu::;t appear
on the ::;ame line a::; the IF. More than one ::;tatement can be included
after the word THEN for execution if the IF condition is true. For
example:

10 PRINT 'WHAT DAY IS TODAY?'
20 INPUT DAY$
30 IF DAY$='FAIDAY' THEN PAINT 'HIP' I PRINT 'HIP' I PRINT 'HOORAY'
AUN
WHAT DAY IS TODAY?
? FRIDAY
HIP
HIP
HOORAY
Ready

The ability to execute multiple statement::; also applies to statements
appearing in the ELSE clau::;e. Note in the preceding example that the
statements after THEN are ::ieparated by a backslash (\).When multi­
ple statement::; are u::ied in the IF ::itatement, the back::ilash character
mu::it separate each one. A GOTO clause can end the line, or be followed
by an ELSE or by a REM statement.

D An IF statement can include other IF statements (as many as will fit
on one line). This is called a "nested IF" statement. For example:

10 IF A<B THEN PRINT '<' ELSE IF A=B THEN PRINT '=' ELSE PRINT '>'

An ELSE clause belong::; to the close::it preceding IF statement that
does not already have an associated ELSE clause. In the preceding
example, each ELSE belongs to the IF statement that immediately
precedes it.

D An IF ::;tatement can be used to execute a loop until a certain condition
i::; met. For example:

10 INPUT A$
20 IF LEN(A$)=0 THEN 100

90 GOTO 10
100 REM Processing continues after user enters a null string

127

CHAPTER 5 I STATEMENTS

Example

128

10 REM Program does an insertion sort to demonstrate IF statement
20 DIM A(12)
30 FOR 1=1 TO 12
40 READ A(I)
50 NEXT I
60 HIGH=12
70 FOR 1=1 TO HIGH-1
80 FOR J=l+1 TO HIGH
90 IF A(l)<A(J) THEN T=A(I) \ A(l)=A(J) \ A(J)=T
100 NEXT J
110 NEXT I
120 FOR 1=1 TO HIGH
130 PAI.NT A(I)
140 NEXT I
150 DATA 2,3,66,55,33,44,43,21,43,32, 16, 78
Ready
RUN

78
66
55
44
43
33
32
21
16

3
2

STATEMENTS I CHAPTER 5

CALLINKEV

Syntax

CALL INKEY(variable)

where:

variable is a string variable.

Example of Syntax

100 CALL INKEY(CH$)

Purpose

CALL IN KEY allows a program to respond immediately to a user's keystroke.

Comments

D CALL IN KEY gets a single character from the keyboard if one is
typed. If no key is pressed, it returns a null string (string of length
zero), and processing continues.

D It allows escape sequences and control characters to be input directly
to your program.

D The character is accepted as it is typed; it is not necessary to type
RETURN.

Example

This example illustrates how CALL INKEY can filter input. In this case, only
numeric keys can be entered. All other keys (except RETURN) will beep when
pressed. The program stops accepting input when RETURN is pressed.

10 CALL INKEY(A$) \IF LEN(A$)=0 THEN GOTO 10
20 IF A$=CHR$(13) THEN GOTO 70
30 IF A$<'0' OR A$>'9' THEN PRINT CHR$(7); \GOTO 10
40 PRINT A$;
50 N$=N$+A$
60 GOTO 10
70 PRINT I PRINT 'OK ';N$
RUN
123
OK 123
Ready

129

CHAPTER 5 I STATEMENTS

INPUT

Syntax

INPUT [#channelnum,) variable[. variable] ...

where:

#channelnum is a numeric expression specifying a valid channel
number (0-15). Channel 0 is the default and indicates
the keyboard.

variable receives a value from the keyboard or a file.

Examples of Syntax

10 INPUT A,B%,C$

10 INPUT $2,N,TABLE%(1,J)

Purpose

INPUT assigns data from the keyboard or a document file to one or more
variables.

Comments

130

D When data is to be accepted from the keyboard; a "prompt" is displayed
at execution indicating the program is waiting for data. For example:

10 INPUT N
RUN
? 5
Ready

If channel 0 is explicitly _specified, data is to be accepted from the
keyboard, but the PRO/BASIC"?" prompt is overriden. For example:

10 INPUT #0,N
RUN
5
READY

D You can use a PRINT statement before an INPUT statement to help
explain the prompt when receiving data from the keyboard. This prac­
tice is particularly important when overriding the prompt, as above.

STATEMENTS j CHAPTER 5

For example:

10 PAINT "ENTER A NUMBER"\ INPUT #0,N
RUN
ENTER A NUMBER
5
READY

D If a channel number from 1 to 15 inclusive is specified, data is to be
accepted from a file. When receiving data values from a file, all data
items required for assignment to variables must be satisfied from
one record.

D Data types of values and the variables they are assigned to must agree.

D Leading and trailing blanks are deleted from data values. PRO/BASIC
does not alter the contents of a quoted string.

D Data values accepted from the keyboard can be input one-by-one
in response to individual prompts, or all values can be entered to one
prompt for assignment to variables. Separate each value with a comma
when entering multiple values to one prompt.

D Use the DELETE key to erase incorrect characters entered to an
INPUT prompt. The full range of keys of the Line Editor is not
available when responding to INPUT because you are entering
data, not text.

Example

This example program adds a list of numbers together, printing oul the sum of
all the numbers entered after each number is entered.

10 SUM=O \ N%0
20 SUM=SUM+N
30 PAINT SUM,
40 INPUT N
50 GOTO 20
RUN
0
12
149.98
150.21
100.21

? 12
? 137.98
? .23
? -50
? INTERRUPT /DO

Error 28 at line 40 INTERRUPT-DO keys entered

131

CHAPTER 5 I STATEMENTS

KILL

Syntax

KILL lilespec

where:

filespec is a string expression that indicates a file
specification.

Example ol Syntax

120 KILL 'TEMP.DAT'

Purpose

KILL deletes the specified file(s) from a storage device.

D When no file type is included, .DAT is the default.

D If a version number is not specified, all versions of the specified file
are deleted.

D If no files match the file specification, an error message is displayed,
and no files are deleted.

Example

132

100 OPEN 'TEMPXX.DAT' FOR OUTPUT AS FILE #1
(use the file)
670 CLOSE #1 \ KILL 'TEMPXX.DAT'

STATEMENTS I CHAPTER 5

LET

Syntax

(LET] variable(. variable] ... = expression

where:

expression is any valid value or variable or expression.

Examples of Syntax

Purpose

10 LET A=482.5

10 A,B,C(7%)=0 \ E$=F$

10 LET TAX=PRICE*RATE

LET assigns the value of the expression on the right of the equal sign to the
variable or list of variables on the left of the equal sign.

Comments

0 The equal sign, when used by the LET statement, assigns a value
and does not indicate algebraic equality.

D The keyword LET is optional and can be omitted.

D All expressions are evaluated before assignment.

o You cannot mix numeric and string data types in an as::;ignment
statement (assign a numeric value only to a numeric variable, and
a string value only to a string variable).

You can mix numeric values of all data types in calculations and
assignment; integer, single and double precision values can be used
together.

0 You can assign a value to a user-defined function only if the assignment
statement is the definition of that function (see the DEF statement in
this chapter).

133

CHAPTER 5 f STATEMENTS

Example

134

LET A=1
PRINT A
1

A=2
PRINT A
2

STATEMENTS I CHAPTER 5

LINPUT

Syntax

LINPUT (#channelnum,) variable

where:

#channelnum is a numeric expression specifying a valid
channel number (0-15). Channel 0 is the default
and indicates the user's terminal.

variable receives a line from the keyboard or a file.

Examples of Syntax

10 LINPUT A$

10 LINPUT #2,NAMELIST$(1,J)

Purpose

LINPUTassigns all characters on a line accepted from the keyboard or a docu­
ment file to a string variable.

Comments

D LINPUT treats the entire input line as a string data item and does
not change it in any way.

D When data is to be accepted from the keyboard; a prompt is displayed
at execution indicating the program is waiting for data. For example:

10 LINPUT ITEM
?

If channel 0 is explicitly specified, data is to be accepted from the
keyboard, but the PRO/BASIC"?" prompt is overriden. For example:

LINPUT #O,A$

D Use a PRINT statement before a LINPUT statement to help explain
the prompt when receiving data from the keyboard. This practice is
particularly important when overriding the prompt, as above.

30 PRINT 11 ENTER YOUR LAST NAMP; \ LINPUT LAST_NAME$

135

CHAPTER 5 I STATEMENTS

0 Use the DELETE key to erase characters incorrectly entered to a
LIN PUT prompt. The full range of keys of the Line Editor is not
available when responding to LIN PUT, because you are enterin~
data, not texL

o If a channel number from 1 to 15 is specified, data is to be accepted
from a file.

o When entering data from a document file, and end-of-file error occurs
when there are no records left.

Example

This example prints out parts of a sentence, split at the spaces. Everything you
type is accepted l!nd stored in the variable (LINE$ in this case).

10 LINPUT LINE$
20 P=POS (LINE$,' ',1)
30 IF P>O THEN PRINT MID$(LINE$,1,P) I LINE$=MID$(LINE$,P+1,1000) \GOTO 20
40 PRINT LINE$
RUN
? "What?", she said, thoughtfully.
"What?",
she
said,
thoughtfully.
Ready

136

STATEMENTS I CHAPTER 5

NAME AS

Syntax

NAME filespec1 AS filespec2

where:

filespec1

filespec2

is a string expression that specifies an existing file.

is a string expression t~at specifies the new file
specification.

Examples of Syntax

300 NAME A$ AS 8$

950 NAME 'TEST.DAT' AS 'TEST.BAK'

Purpose

NAME AS changes the name of a file.

Comments

D If the second file specification already exists, PRO/BASIC creates
a new file specification with the next higher version number.

D The first file specification will no longer exist after execution; thti new
file specification replaces the old one and the old one is deleted.

D The default file type . DAT is used if no file type is provided.

D Both files must be on the same device.

Example

100 REM • •• File processor • • •
110 PRINT 'File name' \ LINPUT FILENAME$
120 OPEN FILENAME$ FOR INPUT AS FILE #1
130 OPEN 'TEMPXX.OAT' FOR OUTPUT AS FILE #2
(process the file)
900 CLOSE \ KILL FILENAME$
910 NAME 'TEMPXX.OAT' AS FILENAME$

137

CHAPTER 5 I STATEMENTS

NEXT

Syntax

NEXT variable

where:

variable

Examples ol Syntax

50 NEXT I

Purpose

is the counter variable, and is the same numeric
variable named in the associated FOR statement.

The NEXT statement defines the end of a FOR/NEXT and returns control to
the FOR statement.

Comments

138

D The FOR statement sets the counter for the loop. The NEXT
statement adjusts the counter.

o The NEXT statement must be used with the FOR statement. (Refer
to the FOR/NEXT statement for more information and examples.)

STATEMENTS I CHAPTER 5

ON ERROR

Syntax

ON ERROR GOTO linenum

where:

linenum is an existing line number or 0. 0 is the default and
causes errors to be handled by PRO/BASIC.

Examples of Syntax

Purpose

ON ERROR GOTO 0

ON ERROR GO TO 400

ON ERROR allows you to control error handling.

Comments

D PRO/BASIC detects computational and input/output errors during
execution. Normal error handling then displays a warning message
and continues, or displays a fatal error message and stops program
execution. For example:

110 A=1/0 \ REM Division by 0 causes fatal error
RUN

Warning 61 at line 110: Division by zero is not defined
Ready

User-defined error handling can be included in the program to replace
normal error handling.

To enable user-defined error handling use ON ERROR GOTO with
a line number. The line number is the location of an error-handling
routine. When an error occurs after ON ERROR (linenum) is executed,
PRO/BASIC transfers control to the line specified in the ON ERROR
statement. (If an error occurs.before the ON ERROR statement is
executed normal error handling is used.)

139

CHAPTER 5 I STATEMENTS

140

In the following example, when an error occurs in line 110, program
control is immediately transferred to the error-handling routine at
line 200.

100 ON ERROR GOTO 200
110 A=1/0 \REM Division by 0 causes fatal error
120 REM next line not executed due to the error in line 11 O
130 PRINT A=100
200 PRINT 'Entering error-handling routine'
210 RESUME 300
300 END
RUN

Entering error-handling routine
Beady

O Error handling can be returned to PRO/BASIC at any time in
your program.

To return to normal error handling use ON ERROR GOTO 0.

In the following example, if an error occurs before line 300,
PHO/BASIC handles it. If an error occurs after line 300 but before
line 10000, the error is handled by the error-handling routine at
19000. If an error occurs between lines 10000 and 12000 it is handled
by PRO/BASIC.

100
110
120

program statements

300 ON ERROR GOTO 19000

400
410

program statements

10000 ON ERROR GOTO 0

12010
12015

program statements

errors that
occur between
lines 100 and 300
are handled by
PRO/BASIC

errors that
occur het ween
lines :ioo aml 1000
are handled by
user

errors that
occur bet ween
lines 10000 and
14000 are handled
hy l'IW/llASIC

STATEMENTS I CHAPTER 5

14000 GOTO 32767

19000 REM
32767 END

error handling statements

D PRO/BASIC provides three special functions that contain status
information (after execution of an ON ERROR statement) for use
by your error-handling routine.

ERL contains the number of the line at which the last error
occurred.

ERR contains the number of the error.

EAT$ contains the error message associated with the specified
error number.

Use IF statements to test the contents of these functions.

Place an ON ERROR GOTO 0 statement at the end of an error handler,
after testing for likely errors, to allow PRO/BASIC to handle any
errors your error handler does not test for. For example:

19000 REM - Error Handling Routine
19010 IF ERR=54 THEN PRINT 'Imaginary Square Root'\ RESUME
19020 IF ERR=55 THEN PRINT 'Subscript out of Range'\ STOP
19030 ON ERROR GOTO 0

Use the RESUME statement to leave the error handler and return to
regular processing. See the RESUME statement in this chapter.

D Errors that occur during error handling are not recoverable.

D User-defined error handling can be used only in a program, not in
immediate mode.

D A frequent use of ON ERROR is to detect the end of a file (as in line
1900 in the following example).

Example

10 ON ERROR GOTO 19000
20 OPEN 'FILE.LST' FOR INPUT AS FILE #1
30 LINPUT #1, A$
40 PRINT A$
50 GOTO 30
19000 IF (ERR=11) AND (ERL=30) THEN CLOSE #1 ELSE ON ERROR GOTO 0
32767 END

141

CHAPTER 5 I STATEMENTS

ONGOSUB

Syntax

On expression GOSUB linenurn [.linenurn] ...

where:

expression is a numeric expression.

Examples ol Syntax

ON I GOSUB 100,200

ON INT(4*~ND+1) GOSUB 300,500,700,900

Purpose

ON GOSUB branches to one of several subroutines and saves the location of the
statement following the ON GOSUB to return to.

Comments

142

D The ON GOSUB statement branches to one of several subroutines
(represented by the first program line of each) depending upon the
value of an expression. The number of valid values the expression can
result in starts with the value 1 and continues until equal to the number
of line numbers listed.

The RETURN statement is located at the end of the program
statements of the subroutine. When the RETURN is executed
control branches back to the location previously recorded. (Refer
to the RETURN statement for more information.)

D At execution of an ON GOSUB statement, PRO/BASIC first evaluates
the numeric expression, and truncates the value to an integer if
necessary. If the result of the expression is 1, control branches to the

STATEMENTS I CHAPTER 5

first line number in the list, if the value is 2, control branches to the
second line number in the list, and so on .. F'or example:

50 ON A*B+l GOSUB 100,200

when:

A*B+l = <1 PRO/BASIC signals an error

A*B+l = 1 PRO/BASIC goes to the subroutine on line 100

A*B+l = 2 PRO/BASIC goes to !he subroutine on line 200

A*B+l = >2 PRO/BASIC signals an error

If the expression is less than 1 or greater than the number of line
numbers in the list, PRO/BASIC displays an error message.
A negative or 0 value always causes an error.

It is a good practice to check the value of the expression before the
ON GOSUB statement is executed.

D Subroutines using ON GOSUB can be nested. The maximum number
of nesting levels depends on the amount of memory available.

D Do not allow execution of a subroutine except by GOSUB or
ON GOSUB. If a subroutine is executed mistakenly, the RETURN
statement at the end of the subroutine will cause an error.

143

CHAPTER 5 I STATEMENTS

Example

In this example, the third action (printing '-') is shared by the other two
actions, and the second action (printing '<- >') is shared by the firnt action
(printing '(<->]').

144

10 RANDOMIZE
20 FOR 1=1 TO 10
30 ON RND"3+1 GOSUB 70,100,130
40 PRINT
50 NEXT I
60 GOTO 160
70 REM First subroutine
80 PRINT '('; I GOSUB 100 I PRINT ')';
90 RETU8N
100 REM Second subroutine
110 PRINT'<'; I GOSUB 130 I PRINT'>';
120 RETURN
130 REM Third subroutine
140 PRINT'-';
150 RETURN
160 END
RUN
[<->]

<->

[<->]
[<->]
[<->]

[<->]
<->
Ready

STATEMENTS I CHAPTER 5

ON GOTO

Syntax

ON expression GOTO linenum [,linenum] ...

where:

expression is a numeric expression.

Examples ol Syntax

ON 1% GOTO 100,200

ON INT(4"RND+1) GOTO 300,310,320,330

Purpose

ON GOTO branches to one of several possible line numbers depending on the
value in the expression.

Comments

D When ON GOTO is executed, the numeric expression is evaluated and
truncated to an integer if necessary.

If the value is 1, PRO/BASIC branches to the first line number in the
list, if the value is 2, PRO/BASIC branches to the second line number
in the list, and so forth. For example:

80 ON GROUP GOTO 300,400,500
when:
GROUP < 1 PRO/BASIC signals an error
GROUP = 1 branches to line 300
GROUP =2 branches to line 400
GROUP =3 branches to line 500
GROUP >3 PRO/BASIC signals an error

D If the expression is less than one or greater than the number of line
numbers in the list, PRO/BASIC displays an error message. Negative
values and 0 cause an error.

D It is a good practice to check the value of the expression before the
ON GOTO statement is executed.

145

CHAPTER 5 I STATEMENTS

Example

100 INPUT 1% \ IF 1%=0% THEN 300
110 ON 1% GOTO 200,210,220
200 PRINT 'Al line 200' I GOTO 100
210 PRINT 'Al line 210'\ GOTO 100
220 PRINT 'Al line 220' I GOTO 100
300 END
RUN
? 2
At line 210
? 1
At line 200
? 3
At line 226
? 0
Ready

The function of the ON statement is equivalent to a series of IF statements. The
preceding program could have been written:

146

100 INPUT 1% \IF 1%=0% THEN 300
110 IF 1%=1% THEN 200
120 IF 1%=2% THEN 210
130 IF 1%=3% THEN 220
140 PRINT 'Error - ON statement out of range'\ STOP
200 PRINT 'At line 200' I GOTO 100
210 PRINT 'At line 210'\ GOTO 100
220 PRINT 'At line 220'\ GOTO 100
300 END

STATEMENTS I CHAPTER 5

OPEN

Syntax

[FOR INPUT
OPEN filespec [FOR OUTPUT] AS FILE #channelnum [.VIRTUAL]

where:

file spec

#channelnum

is a string expression that specifies a file.

is a number or an expression specifying a valid
channel number (1-15).

VIRTUAL indicates that the file is a virtual array.

Examples of Syntax

OPEN NAME$ AS FILE #1

OPEN 'TT:' FOR INPUT AS FILE #3

OPEN 'VIRT.DAT' FOR OUTPUT AS FILE #2, VIRTUAL

Purpose

OPEN allows input and output from an existing file or creates a new file.

Comments

D Specify FOR INPUT to open an old file. Specify FOH OUTPUT to
open a new file. If you do not specify FOR INPUTor FOR OUTPUT,
PRO/BASIC:

opens a file if the file exists.

creates a file if the file does not exist.

o PRO/BASIC supports two types of files:

I. Document (sequential) files can be on disk or on peripheral
devices such as printers. Use the INPUT# statement and the
PRINT# statement to read from and write to a document file.
Remember that you cannot simultaneously read from and write
to the same document file.

147

CHAPTER 5 I STATEMENTS

2. Virtual array files exist only on disk (see the DIM # statement
for detailed information). You can read from or write to a
virtual array file exactly as if it were in memory.

D Use VIRTUAL to create a virtual array in a file. Specify FOR INPUT
to read and write data from an existing file. Specify FOR OUTPUT to
read and write data from a newly created file.

If you do not specify FOR INPUTor FOR OUTPUT with VIRTUAL
file organization, PRO/BASIC opens an existing file to read and write,
or creates a new file to read and write if the file does not exist.

NOTE: If you open an existing document file with FOR OUTPUT,
closing the file creates a new version of the file.

D A file opened FOR INPUT must exist.

D The valid range of channel numbers is 1 - 15. Channel 0 (the default) is
the keyboard and display screen and is always open.

Example

148

The example below types the contents of a specified file. In this case,
file ABC. BAS, with 2 lines, is printed.

10 PAINT 'File to Type';
20 LINPUT FILE$
30 OPEN FILE$ FOR INPUT AS FILE #1
40 LINPUT #1,LINE$\PAINT LINE$\GOTO 40
SAVE TYPER
RUN TYPER
File to Type? ABC.BAS
SET NO DOUBLE
10 PRINT 'abc'
20 END

Error 11 at line 40: End of file

STATEMENTS I CHAPTER 5

PRINT

Syntax

where:

print list

PAINT [[#channelnum,]print list]

consists of one or more valid expressions to be
printed, separated by commas or semicolons and
optionally followed by a comma or semicolon.

#channelnum is a valid channel number (0 - 15) or an expression
that specifies a valid channel number. Channel 0 is
the default and indicates the display screen.

Examples of Syntax

PRINT 2+2

Purpose

600 PAINT 'The average is:';TOTAL% /ITEMS%

50 PAINT #4%,TTLINE$;

PRINT displays data from your program on the screen or stores data in a
document file.

Comments

D Use the PRINT statement to display the value of an expression.
For example:

10 A= 45\B = 55
20 PAINT A+B
30 END
RUN
100

Ready

D If no channel is specified, PRO/BASIC prints to the screen (channel
U). Printing to channel 0 does not require an OPEN statement
bl•fureharnl because the display screen and keyboard are always
open for input/output.

D To print to a channel other than 0, a document file must be open on
that channel. ..

149

CHAPTER 5 I STATEMENTS

150

D A line on a screen consists of a series of print zones, each of 14 spaces.
Commas and semicolons between expressions determine where on a
line program data is printed. A comma causes PRO/BASIC to print
program data at the beginning of a print zone and advance one print
zone for each comma between expressions. When a semicolon separates
expressions, PRO/BASIC does not print additional spaces between
them. For example:

10 PRINT 10,20
20 PRINT 10.,20
30 PRINT 10;20
RUN
10
10
1p 20

READY

20
20

You can advance print zones by using consecutive commas, as in line
20 in the preceding example.

D If you end a PRINT list with a comma or a semicolon, the cursor
remains on the same line. Otherwise, the cursm· moves to the
beginning of the next line. For example:

10 PRINT 'AAA'
20 PRINT 'BBB';
30 PRINT 'CCC'
40 PRINT 'DOD',
50 PRINT 'EEE'
RUN
AAA
BB BC CC
ODD EEE
Ready

D When printing numeric fields, PRO/BASIC precedes each number
with a space or a minus sign, and follows it with a space. A PRINT
statement with no expressions simply goes on to the next line. If an
expression returns a string, PRO/BASIC prints no extra spaces at all.
For example:

PRINT 'Hel'; 'lo'
Hello
Ready

STATEMENTS I CHAPTER 5

0 The TAB function is a special library function designed to be used
with the PRINT statement. It moves the cursor directly to a specific
character position. (Refer to the TAB function in Chapter 6.)

0 To print to a line printer:

1. to print a probrram file-use the SAVE command, followed by
the line printer specification, to print the program currently in
memory.

SAVE LP:

2. to print a print list-specify:

OPEN 'LP:' FOR OUTPUT AS FILE #channelnum

You can then print to hardcopy by specifying:

PAINT #channelnum, print list

where print list is any valid expression. It is possible to
print a file by opening the file to be printed, opening the line
printer as the output file, and then using the LINPUT# AND
PRINT# statements to print each line from the file to the
printer. The following program statements would print a.
column head and all the values in a file.

3fl0 ON ERROR GOTO 380
310 OPEN 'FROM_FILE' FOR INPUT AS FILE #1
320 OPEN 'LP:' FOR OUTPUT AS FILE #2
330 PAINT 'COLUMN HEAD'
340 PRINT
350 LINPUT #1,TO_PRINT
360 PAINT #2,TO_PAINT
370 GOTO 350
380 PRINT 'DONE' \ END

151

CHAPTER 5 I STATEMENTS

PRINT USING

Syntax

PRINT (#channelnum,) USING format string, print list

where:

#channelnum is a numeric expression specifying a valid channel
number (1 - 15). Channel 0 is the default and indicates
the display screen.

format string is a string expression that describes the format used
for printing. ·

print list is one or more valid expressions to be printed,
separated by commas or semicolons.

Examples of Syntax

100 PRINT USING FS3$,N%,NAME$,TAXRATE

100 PAINT #2% USING '**###,###.##-',-12.34

100 PRINT #3% USING 11## 'E 19##11, 10,'January',81

Purpose

PRINT USING controls the appearance and location of data passed from your
program to the display screen or a document file.

Comments

152

D The format string contains field descriptors and string data:

A field descriptor holds a place for formatted data and controls
how it is output.
Any other character data in a format string is printed
unchanged with the formatted output.

Refer to the format string (within double quotation marks) in the last
example under Syntax in this section. The two pound signs(##) are
a field descriptor reserving space for two digits: in this case the first
data item in the list is the value 10. The 'E in the format string is a
field descriptor for handling strings: in this case, the string is 'January'.

STATEMENTS I CHAPTER 5

The two digits (19) are string data, they are printed as they appear.
There are also single spaces before the 'E and the 19.

D There are field descriptors for numeric output and for string output.
The field descriptors that control numeric output are:

The pound sign(#), which reserves one position for a digit or a minus
sign. For example:

PAINT USING 'You have#### points.',-6
You have -6 points.

The period(.), which inserts a decimal point. The number of reserved
positions on either side of the period determines where the decimal
point appears in the output. (See SET RADIX in this chapter.) For
example:

PAINT USING '###.###',2.22
2.220

The comma(,), which reserves one position (for a comma or a digit)
and inserts commas before every third significant digit to the left of
the decimal point. In the format string, place a comma anywhere to
the left of the decimal point (if present) and to the right of the dollar
sign or asterisk (if present). (See SET SEPARATOR in this chapter.)
For example:

PAINT USING '####,####.##',3333333
3,333,333.00

The hyphen(-), which reserves one position (for a sign) and priuts the
numbers in the list with a trailing minus sign if negative or a trailiug
space character if positive. The hyphen must be the last character in a
field in a format string. For example:

PRINT USING '###-',2,-17,100
2

17-
100

'l\vo dollar signs ($$), which reserve two positions (for a dollar sign
and a digit) and print the number with a dollar sign immediately to the
left of the most significant digit. This produces floating-dollar-sign
format. (See SET CURRENCY in this chapter.) For example:

PRINT USING '$$######.##',250
$250.00

153

CHAPTER 5 I STATEMENTS

154

1\vo asterisks(..), which reserve two positions (for two digits) and
fill the left side of the numeric field with asterisks. This produces
asterisk-filled format. For example:

PRINT USING '**######.##',250
*****250.00

Four carets r · · ·), which reserve four positions (for an exponent) and
print the numbers in the list in E notation format. The carets must be
the rightmost characters in the format string. See Section 2.4.2 for a
discussion of E notation. For example:

PRINT USING '###.#tr ... ',5,1000
500.00E-02
100.00E+OO

PRO/BASIC prints the number in the format field in the furthest left
position (left-justified) and adjusts the exponent to compensate, except
when printing zero. When printing zero, PRINT USING prints leading
spaces and zeros, if necessary, and the exponent E+OO.

The field descriptors that control string output are:

A single quotation mark ('), which reserves one position (for one
character) and marks the beginning of a character field. Therefore, a
literal string containing a character field must be enclosed in double
quotation marks. If the expression is too large for the field,
PRO/BASIC truncates the expression from the right.
For example:

PRINT USING 11-> '<- 11, 'PLASTIC', 'MAN'
-> P<-
-> M<-

An "L" or "1" reserves one position and prints the expression in
the furthest left position of the field. The number of L's (plus one for
the single quotation mark) determines the size of the field. If the
expression is too large for the field, PRO/BASIC truncates the
expression from the right. For example:

PRINT USING 11 - >'LLLL <- 11, 'PLASTIC', 'MAN'
-> PLAST<-
-> MAN <-

An "R" or "r" reserves one position and prints the expression
right-justified. The number of R's (plus one for the single quotation
mark) determines the size of the field. If the expression is too large
for the field, PRO/BASIC truncates the expression from the right.

STATEMENTS I CHAPTER'S

l<"'or example:

PAINT USING 11 - >'ARRA <- 11, 'PLASTIC', 'MAN'
-> PLAST<-
-> MAN<-

A "C" or "c" reserves one position and prints the expression centered.
If the expression can not be centered exactly, it is offset one character
to the left. The number of C's (plus one for the single quotation mark)
determines the size of the field. If the expression is too large for the
field, PRO/BASIC truncates the expression from the right. For
example:

PRINT USING 11->'CCCC <-11, 'PLASTIC', 'MAN'
-> PLAST<-
-> MAN <-

An "E" or "e" reserves one position and expands the field to hold the
entire expression. The number of E's (plus one for the single quotation
mark) determines the size of the field. If the expression is smaller
than the field, PRO/BASIC prints the expression left-justified.
For example:

PRINT USING 11 ->'EEEE <-11, 'PLASTIC', 'MAN'
- > PLASTIC<-
->MAN <-

Comments

Below is a summary of the symbols used with PRINT USING:

Format Characters for Numeric Fields

number sign

decimal point

comma

.. two asterisks

hyphen

$$ two dollar signs

Reserves place for one digit or minus sign.

Determines location of decimal point.

Reserves one position and inserts commas before
every third digit left of the decimal.

Reserves two positions and fills the field left of the
number with asterisks.

Reserves one position and prints negative numbers
with trailing minus sign.

Reserves two positions and prints a dollar sign
before the first digit.

155

CHAPTER 5 I STATEMENTS

• · · • four circumflexes Reserves four positions for exponent and prints
number in E format.

Format Characters for String Fields

l

R

c

E

156

single quote Reserves one position for character and starts
string field.

Reserves one position for character and left­
justifies the string.

Reserves one position for character and right­
justifies the string.

Reserves one position for character and centers
the string in the field.

Reserves one position for character and expands
the field to print the string.

D To print to a file other than 0, a document file must be open on that
channel.

D Commas and semicolons separate items to be printed but do not specify
print zones. If a comma or a semicolon follows the last expression in
the list, a line terminator is not generated, that is, the cursor remains
on the current line. For example:

PRINT USING '###',1,2,3 \REM cursor moves to new line
PAINT USING '###',1,2,3\ REM cursor remains on line

D If there is more data to print after expressions are entered to the
format string, PRO/BASIC uses the format string again from the
beginning and starts on a new line.

D You can use PRINT USING to align columns of numbers. For example:

PRINT USING '### .##-', 100, -23.4, -.175,96.32
100.00
23.40-
0.17-

96.32

STATEMENTS I CHAPTER 5

D You can use PRINT USING to insert blanks and other printing
characters at precise locations. For example:

PAINT USING 11Phone: (###) ###'#### 11 ,617,123,'-',4567
Phone: (617) 123-4567

o To print negative numbers in floating-dollar-sign or asterisk-filled
format, you must use trailing minus sign format. For example:

PRINT USING '""######.##-',-12.34
······12.34-

D E notation format cannot be combined with any other numeric format
in a single field.

D Character control symbols (R, L, C, and E) cannot be combined in a
single field.

D If a numeric field does not contain enough positions for the given
number, PRO/BASIC prints a percentage sign followed by the number
in normal PRINT format. For example:

PAINT USING '#', 22
% 22

o If a fractional value contains more digits than there are spaces provided
in the format string, the value is rounded according to the first digit
after the end of the format string. Jt,or example:

10 DECLARE DOUBLE N
20 INPUT N
30 IF N=O THEN 50
40 PAINT USING '.##',N \GOTO 10
50 END
RUN
? .223
.22

? .229
.23

?
Error 28 at line 20: INTERRUPT-DO keys entered

If a character field (other than the E format character) does not contain
enough format string symbols for the given string PRO/BASIC
truncates the string to fit and discards the excess characters without
warning.

157

CHAPTER 5 I STATEMENTS

PROGRAM

Syntax

PROGRAM progname [(variable(. variable] ...)]

where:

progname is any combination of alphabetic and numeric
characters, up to 32 maximum.

variable is a variable of the same data type as the value(s)
specified in the CHAIN statement.

Examples of Syntax

PROGRAM MOD3(A,8%,C$)

PROGRAM PEACHESNCREAM(TABLE%(,))

PROGRAM ABC123(LIST$(),N%)

Purpose

PROGRAM is used when the chained-to program is to receive values from the
chaining program.

Comments

158

D The PROGRAM statement should be the first statement in the chained­
to program. Enclose the variables receiving values in parentheses. The
names of the variables receiving values need not be the same as those
passing values from the CHAIN statement.

D The data types of the values passed and the variables receiving
them must agree-that is, string values can only be passed to string
variables, numeric values to numeric variables. However, when you
pass numeric values, integer, single or double precision, the value is
converted to agree with the data type of the variable. Arrays, on the
other hand, must agree precisely-that is, a single precision value
must be assigned to a variable of single precision.

D To specify an array in a PROGRAM statement, use parentheses
containing only the appropriate number of commas to indicate the
number of dimensions. For example, in the second example under
Syntax in this section, TABLE% has two dimensions; in the third
example, LIST$ has one dimension.

STATEMENTS I CHAPTER 5

D You can pass an array, an element from an array, or an element of a
virtual array between programs. You can not pass an entire virtual
array.

D A warning message is displayed if the number of variables listed in
the CHAIN statement is not equal to the number of variables listed
in the PROGRAM statement.

D Use only one PROGRAM statement. Any PROGRAM statements
appearing after the first PROGRAM statement are ignored by
PRO/BASIC.

D Although the PROGRAM statement must be followed by a valid
filename, (progname), that value is ignored.

D See the CHAIN statement for more information and examples.

159

CHAPTER 5 I STATEMENTS

RANDOMIZE

Syntax

RANDOMIZE

Purpose

RANDOMIZE causes RND, the random number function, to create a new
series of random numbers.

Comments

D Without the RANDOMIZE statement, the random number
function, RND, always provides the same random number sequence.
RANDOMIZE reshuffles the random number sequence to create a
different series of numbers.

D When a program is run or chained to, execute RANDOMIZE to create
different random number patterns.

Example

'IWo executions of this program produce the same sequence of numbers.

20 FOR 1% = 1 TO 6
30 PRINT AND;
40 NEXT 1% \ PRINT
RUN
.76308 .179978 .902878 .88984 .387011 .475943

Ready
RUN
.76308 .179978 .902878 .88984 .387011 .475943

Ready

160

STATEMENTS j CHAPTER 5

1\vo executions of this program, which includes the RANDOMIZE statement,
produce different number sequences each time.

10 RANDOMIZE
20 FOR 1% = 1 TO 6
30 PRINT AND;
40 NEXT 1% \ PRINT
A.UN
.243497 .127635

Ready
RUN

.617749 .321294 .442961 .888113

.207654 .160614E-01 .852302 .111175 .849465 .472174
Ready

161

CHAPTER 5 I STATEMENTS

READ

Syntax

READ variable(, variable] ...

where:

variable (or array element) is numeric or string

Examples ol Syntax

100 READ A,B(10o/o),C$,D%(10%),E$,F$(10%)

200 READ A$,B$,C$,D$,E$,F$,

Purpose

Rl';AD assigns values from DATA statements to variables.

Comments

162

D The READ and DATA statements allow your program to contain
information that otherwise would have to be typed in or read in from
a file.

D When PRO/BASIC executes a READ statement, it assigns a value to
each variable in the READ statement, from left to right. Values are
assigned from DATA statements from left to right and from lower- to
higher-numbered DATA statements. One READ can access values
from one DATA statement or several DATA statements. More than
one READ statement can be used.

D The data type of the value must agree with the data type of the
variable it is assigned to-that is, you can only assign numeric values
to numeric variables. However, when you assign numeric values,
integer, single or double precision, the value is converted to agree
with the data type of the variable in the READ statement.

D If there are more reads than data values, an error message is
displayed. If there are fewer reads than there are values in a DATA
statement, subsequent reads will start from the last value read.

STATEMENTS I CHAPTER 5

D There must be at least one DATA statement if a READ statement is
used in a program.

D Refer to the DATA and RESTORE statements in this chapter for
more on the use of these statements.

Example:

110 READ 1%,R,A$,B$
120 PRINT l%,R,A$,B$
130 DATA 335,209.38,'disk drive',terminal
RUN
335

Ready
209.38 disk drive terminal

163

CHAPTER 5 I STATEMENTS

REM

Syntax

REM [text)

where:

text is any string of printing characters

Example of Syntax

700 REM ••• This subroutine performs a bubble sort • ••

Purpose

REM permits you to include comments, notes, or messages in your program.

Comments

D A REM statement must be the last statement on a line, since anything
that follows it is assumed to be a comment.

Example

740 FOR 1=1 TO N-1 \ REM Sort one less element each time

164

STATEMENTS I CHAPTER 5

.>yntax

where:

linenum

RESTORE (linenum)

is the line number of a DATA statement.

Examples of Syntax

100 RESTORE

100 RESTORE 150

Purpose

RESTORE

RESTORE causes values in a DATA statement to be reread from a specified
line number.

Comments

D Use the RESTORE statement to select data items starting from a
specified line number. If you do not specify a line number, RESTORE
selects the lowest-numbered DATA statement in your program.

D See the READ and DATA statements in this chapter.

Example

100 DATA 1
110DATA2
120 DATA 3
130 READ A%,B%,C% \PRINT A%;B%;C%
140 RESTORE
150 READ A%,B%,C% \ PRINT A%;B%;C%
160 RESTORE 110
170 READ A%,B% \ PRINT A%;8%
RUN
1 2 3
1 2 3
2 3
Ready

165

CHAPTER 5 I STATEMENTS

RESUME

Syntax

RESUME (linenum)

where:

linenum is the number of the line where program execution con­
tinues after processing an error.

Example ol Syntax

RESUME

Purpose

RESUME marks the end of an error-handling routine and returns program
control to a specified line.

Comments

O If a line number is specified, program control returns to the first
statement on that line. If no line number is specified, program control
is returned to the first statement on the line where the error occurred.

O When PRO/BASIC executes a RESUME statement, it clears the error
condition.

O This statement is used with user-defined error handling. In the absence
of user-defined error handling, PRO/BASIC detects and handles errors
by itself. (See Chapter 3 for more on error handling.)

O The RESUME statement is not valid in immediate mode.

Example

166

10 ON ERROR GOTO 19000

program statements

19000 PRINT ERT$(ERR) \REM THIS IS THE ERROR HANDLER
19010 PRINT "RESUME?";
19020 INPUT A$
19030 IF A$='Y' THEN RESUME ELSE RESUME 32767
32767 END

STATEMENTS I CHAPTER 5

RETURN

~yntax

RETURN

Example of Syntax

RETURN

Purpose

RETURN terminates a subroutine and transfers control to the statement
immediately following a GOSUB.

Comments

D The last line in a subroutine must be a RETURN statement.

D A RETURN statement can be followed by the ELSE portion of an IF
statement (conditional RETURN) or a REM statement.

D To execute a subroutine without branching from a GOSUB or ON
GOSUB statement causes a fatal error and displays the error message,
"Return without GOSUB."

D See the GOSUB and ON GOSUB statements in this chapter for more
information and examples.

167

CHAPTER 5 I STATEMENTS

SET CURRENCY

Syntax

SET CURRENCY expression

where:

expression is a string expression, a symbol which identifies a
currency.

Example of Syntax

SET CURRENCY 11$11

Purpose

SET CURRENCY specifies the character that identifies a currency and allows
the character to 'float,' or appear at a variable location, depending upon the size
of the currency value.

Comments

D The specified value is substituted for the dollar sign ($) in the PRINT
USING string.

D If no currency symbol is specified with SET CURRENCY, the dollar
sign ($) is used.

Example

168

10 SET CURRENCY 'fr'
20 INPUT A
30 PRINT USING '$$###'###.##',A
40 GOTO 20
RUN
? 4321
fr 4,321.00
? 45

fr 44.00
? 2126
fr 2,126.00
?
Error 28 at line 20: INTERRUPT-DO keys entered

STATEMENTS I CHAPTER 5

SET RADIX

yntax

SET RADIX expression

where:

expression is a string expression, a punctuation mark inserted to the
currency value.

Example ot Syntax

SET RADIX"·"

·Purpose

SET RADIX specifies the character that separates the fractional part of a
number.

Comments

D The character specified is substituted for the decimal point in the
PRINT USING string.

D If no character is specified with SET RADIX, the decimal point(.) is
used.

Example

10 SET RADIX •••
20 INPUT A
30 PRINT USING '$$##.##',A
40 GOTO 20
RUN
? 4
$4"00
?

Error 28 at line 20: INTERRUPT-DO keys entered

169

CHAPTER 5 I STATEMENTS

SET SEPARATOR

Syntax

SET SEPARATOR expression

where:

expression is a string expression, a character that separates groups
of digits in a large number.

Example of Synlax

SET SEPARATOR 11 11

Purpose

SET SEPARATOR specifies the character used to separate groups of digits in a
large number.

Comments

D The character specified is substituted for the comma in the PRINT
USING string.

D If no character is specified with SET SEPARATOR, a comma(,) is
printed.

Example

170

10 SET SEPARATOR'!'
20 INPUT A
30 PRINT USING '###,###.##',A
40 GOTO 20
AUN
? 1234.56
1 !234.56

?
Error 28 at line 20: INTERRUPT-DO keys entered

STATEMENTS I CHAPTER 5

STOP

Syntax

STOP

Purpose

STOP suspends program execution, reports the last line number executed, and
waits for input.

Comments

D The STOP statement allows you to halt your program at any
intermediate point in processing to examine and modify variables
and program statements. Program processing can be resumed by
entering the CONTINUE command or an immediate mode GOTO or
GOSUB statement.

D The STOP statement does not close files; therefore, if your program
opens an output file, you must either allow it to complete execution or
execute a CLOSE statement to preserve the contents of the file.

171

CHAPTER 5 I STATEMENTS

Example

172

10 REM program calculates the sum of the first N integers
20 PRINT 'this program calculates the sum of the first N integers'
30 PRINT 'enter N' \ INPUT N
40 FOR 1=1 TON
50 S=S+1
60 T=T+S
70 STOP
80 NEXT I
90 PRINT 'sum is';T
RUN
this program calculates the sum of the first N integers
enter N
? 2

STOP at line 70
CONT

STOP at line 70
SHOW

N=2
I = 2
S=2
T = 3

Program size (bytes): 207
Number of lines: 9
Number of Symbols: 34
Free Memory: 10343

CONT
sum is 3
Ready

6
Library Functions

Chapter 6

Library Functions

This chapter lists the library functions of PRO/BASIC.

A function is a series of statements that accepts one or more values (called
arguments), performs an operation and returns a result. All numeric functions
return a single precision number.

t'o use a function, specify the function name and the arguments.

The presentation of each library function consists of four parts:

D Syntax-the syntax required by the function

D Purpose - the result the function returns

D Comments-explanation and suggestions for use

D Example-typical or explanatory example

175

CHAPTER &j LIBRARY FUNCTIONS

ABS

Syntax

ABS (expression)

where:

expression is a numeric expression.

Example of Syntax

A%=ABS(B% • -2%)

Purpose

ABS returns the absolute value of a numeric expression.

Comments

D Absolute value is the magnitude of a number, without regard for
its sign.

D You can use ABS to find the difference between variables with
unknown values.

Example

176

1 O REM This program asks for two values to be entered
11 REM and then displays the difference between them
20 PRINT 'POSITION 1'
30 INPUT X1
40 PRINT 'POSITION 2'
50 INPUT X2
60 PRINT 'THE DIFFERENCE IS';ABS(X1·X2)
70 END
RUN
POSITION 1
? -2.4
POSITION 2
? 3.5
THE DIFFERENCE IS 5.9

LIBRARY FUNCTIONS I CHAPTER 6

ASCII

;;,yntax

ASCII (expression)

where:

expression is a string expression.

Example of Syntax

ASCII (BNAME$)

Purpose

ASCII returns the decimal value of a DEC Multinational character.

Comments

D ASCII allows you to identify and manipulate characters by numeric
value, rather than by string value.

D If the string expression contains more than one character, the ASCII
function returns the decimal value of the first (leftmost) character in
the string.

D The ASCII function is the opposite of the CHR$ function, which
converts a decimal value into its character equivalent.

O See Appendix A for a complete list of the DEC Multinational
characters and their decimal values.

177

CHAPTER 6 I LIBRARY FUNCTIONS

Example

178

100 REM ••• Program to Demonstrate ASCII Function ••
110 REM
120 PRINT 'Line';\ LINPUT TTLINE$ \PRINT
130 FOR 1=1 TO LEN(TTLINE$)
140 CH=ASCll(MID$(TTLINE$,l,1))
150 IF CH<>32 THEN PAINT USING'####', CH; ELSE PAINT
160 NEXT I \ PRINT
170 END
RUN

Line? The quick brown lox jumped over the lazy white dog.

84 104 101
113 117 105 99 107
98 114 111 119 110

102 111 120
106 117 109 112 101 100
111 118 101 114
116 104 101
108 97 122 121
119 104 105 116 101
100 111 103 46

Ready

r

LIBRARY FUNCTIONS I CHAPTER 6

ATN

yntax

ATN (expression)

where:

expression is a numeric expression representing the tangent of an
angle.

Example of Syntax

A=ATN(1)

Purpose

ATN returns the arctangent of the specified tangent in radians.

Comments

The result is expressed in radians in the range -PI/2 to PI/2.

!Exam!)le

1 o REM ••• Program to Print the Arcsine of an Angle • ••
20 PRINT "angle in radians"; \INPUT ANGLE
30 PRINT "arcsine = 11 ;ATN(ANGLE/SQR(1-ANGLF 2))
40 END
RUN
angle in radians? .5
arcsine = .523599
Ready

179

CHAPTER 6 I LIBRARY FUNCTIONS

CCPOS

Syntax

CCPOS (channelnum)

where:

channelnum is a numeric expression specifying a valid channel number
(0 - 15) for a document file. The default is 0, indicating the
display screen.

Example ol Syntax

C%=CCPOS(2%)

Purpose

CCPOS returns the current cursor position in the current line on the specified
channel.

Comments

You can use CCPOS to find out if there is enough room on the current line for
what you want to print.

180

Example

10 FOR 1=1 TO 10
20 FOR J=1 TO I
30 PRINT I';
40 NEXT J
50 PRINT CCPOS(O)
60 NEXT I
70 END

RUN

1
2

3
4

5
6

7
8

9
10

Ready

LIBRARY FUNCTION~HAPTER.6

181

CHAPTER 6 j LIBRARY FUNCTIONS

CHA$

Syntax

CHR$ (expression)

where:

expression is a numeric expression which is the decimal value of a
DEC Multinational character.

Example of Syntax

BELL$=CHR$(7%)

Purpose

CH R$ returns the DEC Multinational character associated with the provided
decimal value.

Comments

182

D The CHR$ function accepts any number through 255 and returns the
associated character

D CHR$ is the opposite of the ASCII function, which converts character
data to numeric data.

D See Appendix A for a complete list of the DEC Multinational
characters and their decimal equivalents.

LIBRARY FUNCTIONS I CHAPTER 6

Example

'l'his program uses the CHR$ function to print the DEC Multinational Charac­
..!r Set.

10 FOR J=O TO 7
20 IF J=O OR J=4 THEN GOTO 80
30 FOR l=O TO 31
40 C=l+J"32
50 PRINT CHR$(C)+' ';
60 NEXT I
70 PRINT
80 NEXT J
RUN

! " I f X & ' (l * + , - , I 0 1 2 3 4 6 & ~ B g· 1 I < • > 7
8 A B C D E F C H I J K L M N 0 P Q R S T U V W X Y Z C \ J A -

' a b c d e F 9 h i j k l m n a p q r • t u v w x ~ z C I > N

~ i 4 t ~ y ~ 1 • 1 a • r r r r • ± i ~ ~ ~ • • r a a » ~ ~ r l
A A A A A A I c t t ~ E t t ! t f A b 0 0 D a E ~ u u 0 0 y r B
a a i i a & • ~ e e i e t 1 i i Y n b 6 o a a • • u ~ u u ~ Y Y
Reild~

183

CHAPTER 6 I LIBRARY FUNCTIONS

cos
Syntax

COS (expression)

where:

expression is a numeric expression representing the
angle in radians.

Example of Syntax

C = COS(N)

Purpose

COS returns the cosine of an angle.

Comments

D The argument is expressed in radians.

D The result is between -1 and 1.

D COS and SIN may return inaccurate results when handling large
numbers.

D You can use the COS function (with the SIN function) to determine
the tangent of an angle.

Example

184

100 REM ••• Program to Print the Tangent of an Angle •••
110 REM
120 DEF FNTAN(ANGLE)=SIN(ANGLE)/ COS(ANGLE)
130 REM-Angle is input in radians in line 140
140 PRINT 'Angle';\ INPUT A
150 PRINT 'Tangent =';FNTAN(A)
160 END
RUN

Angle? .5
Tangent = .546302

Ready

LIBRARY FUNCTIONS I CHAPTER 6

DATE$

1ntax

DATE$ (0%)

Example of Syntax

TODAY$=DATE$(0%)

Purpose

DATE$ returns a string containing the current date.

Comments

D DATE$ returns the date in the format:

dd-mmm-yy

where:
dd is the day.
mmm is the first three letters of the month.
yy is the year.

D The only valid argument for the DATE$ function is 0. An
argument is included only for compatibility with other versions
of BASIC.

D If the day of the month is less than ten, DATE$ returns a leadi11g
0 in the first character position.

Example

PRINT DATE$(0%)
12-Jun-81

Ready

185

r

CHAPTER 6 I LIBRARY FUNCTIONS

EDIT$

Syntax

EDIT$ (string expression, numeric expression)

where:

string expression is a string or a variable containing a string to
be edited.

numeric expression is the value 2,8,16,32,64,or 128 or a sum of these
values. The value indicates which editing operations
to do.

Examples ol Syntax

LINES = EDIT$(LINE$,32%)

PRINT EDIT$(NAME$,128+16+8)

Purpose

EDIT$ performs one or more editing operations on a string.

Comments

186

D You can select editing operations by specifying the corresponding
value(s) from the following table:

Value Edit Operation

2 Discards all spaces and tabs
8 Discards leading spaces and tabs

16 Converts multiple spaces and tabs to a single space
32 Converts lower case letters to upper case

128 Discards trailing spaces and tabs

D You can perform several editing operations at once by adding up
the values representing edit operations.

D The EDIT$ function is useful for "cleaning up" input lines.

r

LIBRARY FUNCTIONS j CHAPTER 6

Examples

'n the following example, the value 2 is specified in the EDIT$ function so that
.. II spaces and tabs will be removed.

10 S$ = ' aaa bbb ccc ddd eee fff'
20 PRINT EDIT$(S$,2)
RUN
aaabbbcccdddeeeffl
Ready

In this example, the value 48 specified in the EDIT$ function represents
the sum of the values of two edit operations: conversion of multiple spaces
and tabs to a single space (16), and conversion of lowercase to uppercase (32))

1 O S$ = ' aaa bbb ccc ddd eee fff'
20 PRINT EDIT$(S$,48)
AAA BBB CCC DOD EEE FFF

Ready

187

r

CHAPTER 6 j LIBRARY FUNCTIONS

ERL

Syntax

ERL

Example of Syntax

IF ERL=2000 THEN RESUME 2000

Purpose

J<.:RL returns the line number of the statement executing when the last error
occurred.

Comments

188

D Use IF statements to test the contents of ERL to determine where
the error occurred.

D The ERL function is ;.o he used after an error occurs and before a
HESUME statement is executed.

D The EHL function is used for user-defined error handling. In ihe
absence of user-defined error handling, PRO/BASIC itself detects
and handles errors. (Refer to Chapter 3, Section 5 for more on error
handling.)

r

LIBRARY FUNCTIONS I CHAPTER 6

ERR

.yntax

ERR

Example of Syntax

IF ERR=9 THEN RESUME 730

Purpose

ERR returns the number of the latest error.

Comments

o Use IF statements to test the contents of ERR to determine which
error occurred.

D The ERR function is to be used after an error occurs and before
a RESUME is executed.

D The ERR function is used for user-defined error handling. In the
absence of user-defined error handling, PRO/BASIC itself detects
and handles errors. (Refer to Chapter 3, Section 5 for more on error
handling.)

189

CHAPTER 6 I LIBRARY FUNCTIONS

EAT$

Syntax

ERT$(expression)

where:

expression is a numeric expression.

Example ot Syntax

2020 ERROR_TX$=ERT$(11)

Purpose

ERT$ returns the error message text associated with the specified error
number.

Comments

190

D The error number must be between 0 and 255, inclusive.

D The ERT$ function can be used at any time to return the text
associated with a specified error number.

D The ERT$ function is used for user-defined error handling. In the
absence of user-defined error handling, PRO/BASIC itself detects
and handles errors. (Refer to Chapter 3, Section 5 for more on error
handling.)

r

LIBRARY FUNCTIONS I CHAPTER 6

EXP

.... yntax

EXP (expression)

where:

expression is a numeric expression.

Example of Syntax

A=EXP(B)

Purpose

EXP returns e, an algebraic constant approximately equal to 2. 71828, raised to
the power specified.

Comments

o The value of e raised to a power must be in the range -88 to 88,
inclusive.

D The EXP function is the inverse of the LOG function.

Example

10 REM-PROGRAM TO DISPLAY HYPERBOLIC SIN OF X FOR 1-10
20 DEF FNSINH(X)={EXP(X)-EXP(-X))/ 2
30 FOR 1%=1 TO 10
40 PAINT 'SINH',1%,FNSINH(I%)
50 NEXT 1%
60 END
RUN

SINH 1.1752
SINH 2 3.62686
SINH 3 10.0179
SINH 4 27.2899
SINH 5 74.2032
SINH 6 201.713
SINH 7 548.316
SINH 8 1490.48
SINH 9 4051.54
SINH 10 11013.2

191

CHAPTER 6 I LIBRARY FUNCTIONS

FIX

Syntax

FIX (expression)

where:

expression is a numeric expression.

Example ol Syntax

N = FIX(N)

Purpose

Ji'J X truncates a real number at the decimal point.

Comments

192

D FIX returns a real :1Umber.

D When handling negative numbers FIX may return a value whose
absolute value is smaller than the argument. For example:

10 READ A,B
20 PRINT A;FIX(A)
30 PRINT B;FIX(B)
40 DATA 9.9,-9.9
RUN

9.9
-9.9
Ready

9
-9

In the example above, the first line of results shows the value
9 returned from 9.9. The second line ofresults shows the value
-9 returned from -9.9. Note that when handling a negative number,
FIX returned a value larger than the argument.

D Refer to the Example in the INT function in this chapter.

r

Example

LIBRARY FUNCTIONS I CHAPTER 6

10 REM FIX Returns the whole number portion of a real number.
20 FOR 1=1 TO 5
30 READ N
40 PRINT FIX(N)
50 NEXT I
60 DATA 50.2, -2.12, .056, 17.63, 100.5
70 END
RUN

50
-2

0
17
100
Ready

193

CHAPTER 6 I LIBRARY FUNCTIONS

INT

Syntax

INT (expression)

where:

expression is a numeric expression

Example ol Syntax

N = INT(N)

Purpose

INT returns the real number value of the largest integer less than or equal to
the expression provided.

Comments

194

D The INT function always returns the value of the largest integer
that is less than or equal to the argument. As a result, when handling
negative numbers I NT can return a value whose absolute value is
larger than that of the expression provided. For example:

10 READ A,B
20 PRINT A;INT(A)
30 PRINT B;INT(B)
40 DATA 9.9,-9.9
RUN
9.9

-9.9
9

-10

In the example above, the first line of results shows the value 9
returned from 9. 9. The second line of results shows the value -10
returned from 9.9. Note that when handling a negative number,
INT returns a value smaller than the argument.

D When handling positive numbers, the FIX and the INT functions
produce the same results.

D The INT function does not round off numbers. However, you can use
the INT function to define a ROUND function.

LIBRARY FUNCTIONS I CHAPTER 6

Example

100 REM ••• Demonstrate rounding off with INT •••
110 DEF FNROUND(N)=INT(N + 0.5)
120 PRINT ,'INT','ROUND','FIX'
125 PRINT
130 FOR 1%=10% TO -10% STEP -2%
140 TEMP=l%+1%/9
150 PRINT TEMP,INT(TEMP),FNROUND(TEMP),FIX(TEMP)
160 NEXT 1% \END
RUN

INT ROUND FIX

11.1111 11 11 11
8.88889 8 9 8
6.66667 6 7 6
4.44444 4 4 4
2.22222 2 2 2
0 0 0 0

-2.22222 -3 -2 -2
-4.44444 -5 -4 -4
-6.66667 -7 -7 -6
-6.66669 -9 -9 -6
-11.1111 -12 -11 -11

Ready

195

CHAPTER 6 j LIBRARY FUNCTIONS

LEN

Syntax

LEN (expression)

where:

expression is a string expression.

Examples of Syntax

PRINT LEN(NAME$)

IF LEN(A$)=20 THEN 400

Purpose

LEN returns the number of characters in a string expression.

Comments

If the string expression is null, LEN returns 0.

Example

196

10 REM PROGRAM RIGHT-ALIGNS PRINT OUTPUT
20 READ N
30 FOR J=1 TON
40 READ P$
50 PRINT TAB(20-LEN(P$));P$
60 PRINT
70 NEXT J
80 DATA 5,'EMPLOYEE NAME','JOB NO.','JOB CATEGORY','REGULAR HOURS'
90 DATA 'OVERTIME HOURS'
RUN

EMPLOYEE NAME

JOB NO.

JOB CATEGORY

REGULAR HOURS

OVERTIME HOURS

Ready

LIBRARY FUNCTIONS I CHAPTER 6

iyntax

LOG (expression)

where:

expression

Example of Syntax

A=LOG(B"C)

Purpose

is a numeric expression greater than zero.

LOG returns the natural logarithm of the specified number.

Comments

LOG

D Natural logarithms are exponents of the base e, where e is a
mathematical constant approximately equal to 2. 71828. That is, the
natural logarithm of a number n is the power to which e must be raised
to equal n. For example, the natural logarithm of 100 is 4.60517,
because e raised to the power of 4.60517 equals 100.

D The LOG function is the inverse of the EXP function.

Example

100 REM ••• Find the log of a number to any base •••
110 REM
120 DEF FNLOGX(BASE,X)=LOG(X)/ LOG(BASE)
130 REM
140 PRINT 'Number'; \INPUT N \PRINT 'Base'; \ INPUT B
160 PRINT 'The log of';N; 'to the base';B; 'is';FNLOGX(B,N)
170 END
RUN
Number? 81
Base? 3
The log of 81 to the base 3 is 4
Ready

197

CHAPTER 6 I LIBRARY FUNCTIONS

LOG10

Syntax

LOG10 (expression)

where:

expression is a numeric expression greater than 0.

Example of Syntax

A=LOG10(B)

Purpose

LOG IO returns the common logarithm of a specified number.

Comments

A logarithm is the exponent of another number (called a base). Common
logarithms use base 10. Tt..: common logarithm of a number n therefore is the
power to which 10 must be raised to equal n. For example, the common
(base 10) logarithm of 100 is 2, because 10 raised to the power 2 equals 100.

Example

198

10 REM PROGRAM TO DEMONSTRATE LOG10 FUNCTION
20 FOR I = 10 TO 100 STEP 10
30 PRINT i;LOG10(1)
40 NEXT I
50 END
RUN

10
20 1.30103
30 1.47712
40 1.60206
50 1.69897
60 1.77815
70 1.8451
80 1.90309
90 1.95424
100 2
Ready

LIBRARY FUNCTIONS I CHAPTER 6

MID$

Syntax

MID$ (string, expressionl, expression2)

where:

string

expression1

expression2

Examples ot Syntax

is the string expression from which a substring is
extracted.

is a numeric expression indicating the starting
position of the substring.

is a numeric expression indicating the number of
characters in the substring.

PRINT MID$ (NAME$, 1%, 4%)

VOWEL$ = MID$ ('AEIOUY', N%, 1%)

Purpose

MID$ extracts a substring (section) from a string.

Comments

D Starting with the character at expression!, a copy of a substring
with length of expression2 is returned.

D If the starting position (expression!) is less than 1, PRO/BASIC
assumes a value of 1.

D If the number of characters in the substring (expression2) is greater
than the number of characters from the starting position to the end of
the string, PRO/BASIC returns the remainder of the string.

D If the number of characters in the substring (expression2} is less than
or equal to 0, or if the starting position is greater than the length of
the string, PRO/BASIC returns an empty string.

199

CHAPTER 6 I LIBRARY FUNCTIONS

Example

200

100 REM••• Program to demonstrate MID$•••
110 REM
120 REM Define a function to return a substring containing
130 REM the rightmost No/o characters of the string S$
140 REM
150 DEF FNRIGHT$(S$,N%)=MID$(S$,LEN(S$)-N%+1%,256%)
160 REM
170 PRINT 'Line'; \ LINPUT TTLINE$
180 FOR 1% = 1% TO LEN (TTLINE$)
190 FOR Jo/o = LEN(TTLINES)-1% TO 1% STEP -1%
200 PRINT ' ';
210 NEXT Jo/o
220 PAINT FNRIGHT$(TTLINE$,1%)
230 NEXT 1% \END
RUN
Line? Can you write FNLEFT?

$?
T$?

FT$?
EFT$?

LEFTS?
NLEFT$?

FNLEFTS?
FNLEFT$?

e FNLEFT$?
le FNLEFTS?
ite FNLEFTS?

rite FNLEFT$?
write FNLEFT$?
write FNLEFTS?

u write FNLEFTS?
ou write FNLEFT$?

you write FNLEFT$?
you write FNLEFTS?

n you write FNLEFTS?
an you write FNLEFTS?

Can you write FNLEFTS?

Ready

LIBRARY FUNCTIONS I CHAPT~R 6

NUM$

iyntax

NUM$ (expression)

where:

expression

Example of Syntax

N$=NUM$(N)

Purpose

is a numeric expression.

NUM$ returns numeric characters in string data type, formatted as they would
be by the PRINT statement.

Comments

D PRO/BASIC does not allow direct conversion of numeric data to
string data. For example, the following line is invalid:

10 A$=8%

To convert numeric data to string data, you must use the NUM$
function, as shown in the following example:

10 A$=NUM$(8%)

D The NUM$ function used with the EDIT$ function allows you lo modify
the standard print format for numbers. For example, suppose that you
want to create a file with line numbers beginning in the first character
position. You could write:

100 OPEN 'TEST.OAT' FOR OUTPUT AS FILE #1
110 FOR I = 10 TO 1000 STEP 10
120 PRINT #1, EOIT$(NUM$(1),2)
130 NEXT I
140 ENO

D NUM$ allows you to perform string operations on numbers. For
example, by converting a number to a string you can search for and
extract a substring with the POS or MID functions.

D If the specified number is negative, NUM$ places a minus sign in the
returned string.

201

CHAPTER 6 I LIBRARY FUNCTIONS

D NUM$ converts the specified number to E notation if necessary. For
example:

PRINT NUM$(1000000000)
.1E+10

Ready

D The NUM$ function is the inverse of the VAL function, which returns
the numeric equivalent of a specified string.

Example

202

100 REM••• Program to Demonstrate NUM$ •••
110 REM
120 REM Find the number of nines in a number.
130 REM
140 PRINT 'Number';\ INPUT N
150 N$=NUM$(N) \ NINES%=0%
160 FOR 1% = 1% TO LEN(N$)
170 IF MID$(N$.1%, 1%)='9' THEN NINES%=NINES%+1%
180 NEXT 1%
190 PRINT 'The number'; N; 'contains'; NINES%; 'nines.'
RUN
Number? 89419.3
The number 89419.3 contains 2 nines.
Ready

LIBRARY FUNCTIONS I CHAPTER 6

Syntax

Pl

Example of Syntax

PRINT 'Pl ='; Pl

Purpose

PI returns the value 3.141592653589793.

Comments

D Use PI in any numeric expression that requires the constant PI.

D Use PRINT USING to display the double-precision value of PI.

D You cannot change the value returned by PI.

Pl

203

r

CHAPTER 6 I LIBRARY FUNCTIONS

Example

204

100 REM ••• Program to convert radians to •••
110 REM •••degrees and degrees to radians •••
120 REM
130 DEF FNDEG(RAD)=RAD*(160/PI)
140 DEF FNRAD(DEG)=DEG*(Pl/160)
150 REM
160 ON ERROR GOTO 300
170 PRINT 'O Exit program'
160 PRINT '1 Radians to Degrees'
190 PRINT '2 Degrees to Radians'
200 PRINT \ PRINT 'Command';\ INPUT N% \ PRINT
210 ON N%+1% GOTO 32767,220,240
220 PRINT 'Radians'; \INPUT V \ PRINT
230 PRINT V; 'Radians =';FNDEG(V);'Degrees' \GOTO 200
240 PRINT 'Degrees';\ INPUT V \PRINT
250 PRINT V;'Degrees =';FNRAD(V);'Radians' \GOTO 200
300 REM
310 REM ••• Error-~:indling routine•••
320 REM
330 IF ERL=200 THEN PRINT\ RESUME 170
340 IF ERL=210 THEN RESUME 170
350 IF ERL=220 OR ERL=240 THEN RESUME
360 ON ERROR GOTO 0 \ RESUME 32767
32767 END
RUN

0 Exit program
1 Radians to Degrees
2 Degrees to Radians

Command? 1

Radians? 1

1 Radians = 57.2956 Degrees

Command? 2

Degrees? 360

360 Degrees = 6.26319 Radians

Command? 0

Ready

LIBRARY FUNCTIONS I CHAPTER 6

POS

Syntax

POS (string1, string2, expression)

where:

string1

string2

expression

Examples ot Syntax

is a string to be searched (the searched-string).

is a substring to search for (the search-for string).

is a numeric expression indicating
the position at which to begin the search
(the begin-search position).

P%= POS(ALPHA$, 'NOP', 1)

ON POS('AEIOU',LETTEA$,1) GOTO 10,20,30,40,50

Purpose

POS searches a string for a substring and returns the position of the substring's
first character.

Comments

D If the search fails, POS returns 0.

D If the begin-search position is less than 1, POS assumes a value of 1.

D POS returns the substring's position by counting from character
position 1, regardless of the begin-search position. For example:

PAINT POS ('ABCDEFG', 'FG', 3%)
6

Ready

D If the begin-search position is greater than the length of the searched
string, POS returns a value of 0.

205

CHAPTER 6 f LIBRARY FUNCTIONS

D If the search-for string is null:

and the begin-search value is greater than 1 but less than or
equal to the length of the searched-string, POS returns the
begin··search position. For example:

PRINT POS ('ABCDEFG', ", 3%)
3

Ready

and the searched-string is also null, POS returns a value of 1.
For example:

PRINT POS (", ", 2%)
1

Ready

If the begin-search position is greater than the length of the
searched-string, POS returns the length of the searched-string
plus 1. For example:

PRINT POS ('ABCDEFG', ", 10%)
8

Ready

Example

206

10 PRINT 'What is the current month';
20 INPUT MONTH$ \MS = MID$ (MONTH$, 1%, 3%)
30 N% = POS('JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC', M$, 1%)
40 IF N% = 0% THEN PRINT 'No such month' \ GOTO 60
50 PRINT MONTH$;' is month number'; 1% + (N% - 1%) / 3%
60 END
RUN

What is the current month? JUNE
JUNE is month number 6

Ready

LIBRARY FUNCTIONS I CHAPTER 6

RND

yntax

AND

Example of Syntax

l%=1NT(RND*10)+1%

Purpose

RND returns a random number greater than or equal to 0 and less than 1.

Comments

D Each time PRO/BASIC executes an OLD, NEW, or RUN command
or a CHAIN statement, RND is reset to produce the same random
number or random number sequence.

However, when the RANDOMIZE statement is executed before the
RND function, a different random number or series of random numbers
is produced each time the RND function is used.

D You can generate random integers within a range using the following
formula:

A%= INT((MAX_VAL%)*RND)+1%

where: MAX_ VAL% is the largest integer you want to generate.

For example, to generate random integers between 1 and 10:

10 FOR 1%=1% TO 10%
20 PRINT INT(10%*RND)+1%;
30NEXT1%
RUN

9 3 5 2 7 4 10 3 8 5

Ready

207

CHAPTER 6 I LIBRARY FUNCTIONS

Example

208

100 REM ••• Program to Demonstrate the AND Function •••
110 REM
120 REM A simulation of the game of craps
130 REM
140 RANDOMIZE \ WON%, LOST% = 0%
150 PRINT 'Games'; \ INPUT GAMES%
160 FOR 1% = 1% TO GAMES%
170 GOSUB 360\REM Roll the dice
180 IF ROLL%= 7% OR ROLL%= 11% THEN 270
190 IF ROLL%= 2% THEN PRINT' Snakeyes!'; \GOTO 280
120 IF ROLL%= 3% THEN 280
210 IF ROLL%= 12% THEN PRINT' Boxcars!';\ GOTO 280
220 POINT% = ROLL% \ PRINT ' Your point is'; POINT%
230 GOSUB 360 REM Roll the dice
240 IF ROLL% = 7% THEN 280
250 IF ROLL% = POINT% THEN 270
260 PRINT \ GOTO 230
270 PRINT' You win!'\ WON%= WON%+ 1% \GOTO 290
280 PRINT' You lose!'\ LOST%= LOST%+ 1%
290 PRINT
300 NEXT 1% \ PRINT
310 PRINT 'Your score was'; WON%; 'wins and'; LOST%; 'losses.';
320 GOTO 32767
330 REM
340 REM ••• Subroutine to roll a pair of dice •••
350 REM
360 DIE1% = INT (6% • AND) + 1% \ DIE2% = INT (6% • AND) + 1%
370 ROLL% = DIE1% + DIE2%
380 PRINT USING 'Your rolled# and# for##. ', DIE1%, DIE2%, ROLL%;
390 RETURN
32767 END
RUN

Games? 3

You rolled 6 and 5 for 11. You win!

You rolled 5 and 5 for 10. Your point is 10
You rolled 4 and 6 for 10. You win!

You rolled 5 and 2 for 7. You lose!

Your score was 2 wins and 1 losses.

Ready

LIBRARY FUNCTIONS I CHAPTER 6

Syntax

SIN (expression)

where:

expression

Example ol Syntax

A=SIN(B)

Purpose

is a numeric expression which represents an angle
expressed in radians.

The SIN function returns the sine of an angle.

Comments

o The argument is expressed in radians.

D The value returned is between -1 and 1.

D COS and SIN may produce inaccurate results when handling large
numbers.

Example

SIN

The following example program uses SIN to plot a sine curve on the display
screen. Type it in and run it to see the results. Press INTERRUPT then DO to
stop the program.

10 PRINT TAB (INT (30% *(SIN (I)+ 1%) + 0.5)); '*'
20 I = I + 0.2 \ GOTO 10

Press INTERRUPT /DO to stop.

209

r

CHAPTER 6 I LIBRARY FUNCTIONS

SOR

Syntax

SOR (expression)

where:

expression is a numeric expression.

Example of Syntax

C=SQR(A. 2+e· 2)

Purpose

SQR returns the square root of a specified number.

Comments

The number specified must be greater than or equal to 0. If a negative number
is specified, an error messabe is displayed.

Example

210

PRINT SQR(2)
1.41421

Ready

LIBRARY FUNCTIONS I CHAPTER 6

TAB

Syntax

TAB (expression)

where:

expression

Example ot Syntax

is a numeric expression indicating the
printing position.

PRINT TAB(10%);'Name';TAB(30%);'Address'

Purpose

TAB is used with a PRINT statement to move the cursor or print position
rightward to a specified column on the display screen or in a file.

Comments

D When TAB is used to move the cursor on the display screen, it moves
the print position to the specified column. A line on the screen is 80
columns long.

When TAB is used to move the print position in a file, it moves the
print position to the specified column on the line in the file.
A line in a file is 132 columns long.

D Use semicolons with the TAB function. If commas are used,
PRO/BASIC goes on the the next print zone before executing the
TAB function.

D The first column at the left margin is column 0. The print position
can be anywhere from 0 to the right margin of the screen. The print
position can be moved only from the left to the right. If the cursor
position is greater than the number specified in TAB, the print position
is not changed.

211

r

CHAPTER 6 I LIBRARY FUNCTIONS

Examples

10 PRINT 11NAME11 ;TAB(15);11ADDRESS11 ;TAB(30);11 PHONE N0. 11

20 END
RUN
NAME ADDRESS PHONE NO.
Ready

Without TABS 15 and 30, PRO/BASIC prints:

NAMEADDRESSPHONE NO.

TAB formats numbers as well:

212

10 PRINT "Column 0'1;TAB (15) "Column 1611 ;TAB (30);11Column 31 11

20 PRINT 100;TAB(15);29;TAB(30);35
30 END
RUN

Column O
100

Ready

Column 16
29

Column 31
35

TIME$ (0%)

Example of Syntax

NOW$=TIME$(0%)

Purpose

TIME$ returns the current time.

Comments

D TIME$ returns the time in the format:

hh:mm

where:

hh is the hour in 24 hour format.

LIBRARY FUNCTIONS I CHAPTER 6

TIME$

mm is the minutes in 00 to 59 format.

D The only valid argument for the TIME$ function is 0. An argument is
included only for compatibility with other versions of BASIC.

Example

PRINT TIME$(0%)
11 :21

Ready

213

CHAPTER 6 I LIBRARY FUNCTIONS

VAL

Syntax

VAL (expression)

where:

expression is a string expression representing a number in
either standard notation or E notation.

Examples of Syntax

A=VAL(B$)

TEN%=VAL('10')

Purpose

VAL returns a real number equivalent to the number represented by a string
expression.

Comments

214

D PRO/BASIC does not allow direct conversion of string data to numeric
data. For example, the following program is invalid:

10 A%=B$

D To convert string data to numeric data, you must use the VAL
function, as shown in the following example:

10 A%=VAL(B$)

D The string cannot contain embedded spaces or tabs. For example, the
following program will cause an error:

PAINT VAL(' 1 2 3 ')

D If the string is null, VAL returns 0.

D The VAL function is the opposite of the NUM$ function, which returns
the string equivalent of a numeric argument.

Example

10 NOW$=TIME$(0%)
20 HOURS%=VAL(MID$(NOW$,1,2))
30 MINUTES%=VAL(MID$(NOW$,4,2))
35 T$= 11 The time at the tone will be: ## :##11

36 LET B$=CHR$(7)
40 IF HOURS%<12 GOTO 50 ELSE GOTO 70

LIBRARY FUNCTIONS I CHAPTEfl 6

50 PRINT USING T$+ 11 AM11 ,HOURS%,MINUTES% \PRINT B$ \GOTO 75
70 HOURS%=HOURS%-12 \PRINT USING T$+ 11 PM11 ,HOURS%,MINUTES% \PRINT B$
75 END
RUN
The time at the tone will be: 2:30 PM
Ready

215

7
PRO/BASIC Graphics

Chapter 7

PRO/BASIC Graphics

INTRODUCTION

PRO/BASIC graphics statements allow you to draw lines, curves, and poly­
gons, and print characters in different sizes, styles, and at different angles,
using a palette of 256 colors.

To describe these statements fully, we must introduce coordinates, and the
viewport and window coordinate systems used in PRO/BASIC graphics.

But first, let us outline the possible hardware configurations and the capabilities
of each.

7.1 GRAPHICS HARDWARE

PRO/BASIC graphics capabilities are determined by two components, the
monitor and the extended bit-map option (EBO). The two types of monitors
available are color and monochrome. The extended bit-map option can be pur­
chased for your Professional 350.

If you do not have the extended bit-map option you can display graphics in black
and white.

If you have the extended bit-map option and a monochrome monitor, you can
use eight shades of gray, ranging from black to white.

If you have the extended bit-map option and a color monitor,• you can choose.
from 251.i colors and display any eight of them on the screen at one time.

219

CHAPTER 7 I PRO/BASIC GRAPHICS

MONITOR

COLOR MONOCHROME

256Colors

Yes
Any8 8 Shades
at One of Grey
Time

EBO

No Black and White

Figure7-1

7.2 COORDINATES

Coordinates are used to specify a point in space, on a wall or on a computer's
display screen. To hang a painting on a wall we say, hang the painting 10 feet out
from the corner, and 8 feet up from the floor. The horizontal distance paired with
the vertical distance specifies a single location.

To locate a point we need to identify its horizontal location and its vertical
location. These measurements are made from the same starting point, as the
bottom corner is the starting point for measurements to hang a painting.

220

PRO/BASIC GRAPHICS I CHAPTER 7

The following example suggests a rectangle by describing a line drawn from a
·tart point, or origin, first horizontally to 'first here,' then vertically to 'up here,'
.1en horizontally to 'over here,' and finally back to the origin. ·

~~~: I 1:~::, 
ORIGIN"-------------' HERE 

Numeric values provide a more realistic method of describing the rectangle. 
Coordinates are pairs of numbe1·s which determine the location of a point. By 
specifying a pair of coordinates, one horizontal, one vertical, and giving the 
value 0 to the origin, we can identify a location relative to the origin. 

The method used is: 

horizontal displacement from origin, vertical displacement from origin 

.forizontal and vertical displacement relative to the origin are represented by x 
and y. A value in x represents horizontal location; a value in y represents 
vertical location. The shorthand notation is: 

(x,y) 

We can now use numeric values to define a rectangle. Using (x,y) to identify a 
location, let the origin be at (0,0). From the origin move horizontally to (.5,0), 
then vertically to (.5,3), then horizontally to (.3,0), and finally back to the origin. 

, ... ,1 r·~ 

(0,0) ..... __________ _,_ (.5,0) 

) locate the center of the rectangle, find the midpoints of the horizontal line 
and vertical line by dividing the lengths of the horizontal line (x=.5) and vertical 
line (y=.3) by 2 . 

. 5/2 = .25 

.3/2 = .15 

221 



CHAPTER 7 I PRO/BASIC GRAPHICS 

From the origin (0,0), move to the horizontal midpoint at (.25,0), then move to 
the vertical midpoint at (.25,.15). This identifies the middle point of the 
rectangle. 

(0 .. 3) I I (.5 .. 3) 

(.25,.15) 

(0,0)------'-----_.(.5,0) 
(.25,0) 

Having introduced the notion of coordinates, we can proceed to a discussion of 
two coordinate systems that are important in PRO/BASIC graphics: viewport 
coordinates, which allow us to choose a part of the screen to display graphics, 
and window coordinates, which allow us to choose a convenient scale for that 
portion of the screen. 

7.3 VIEWPORT COORDINATE~ 

The viewport is the portion of the screen available for graphics. The viewport 
can be as large as the physical screen, but no larger. The size of the viewport 
can be set by specifying four points. 

Viewport coordinates are used to specify the size of the viewport; however, 
because four values are needed to do this, a range of x values and a range of y 
values are provided instead of a pair of coordinates. Ranges for x and y are 
identified in the following format: 

minimum x, maximum x, minimum y, maximum y 

This format says, create a region on the screen for the display of graphics from 
min x to max x, and from min y to max y. The default values for the viewport 
setting are as follows: 

.375, 1,0,.625 

222 



PAO/BASIC GRAPHICS I CHAPTER 7 

These values set the viewport equal to a square region at the right of the screen 
with the origin at its lower left, as shown in Figure 7.2. 

r 

Figure 7-2 

(.375,.625) 

Origin 

(.375,0) 

Delaull 
View port 

(1,.625) 

(1,0) 

The viewport setting shown is the default setting; the viewport is reset to these 
values each time you run a program. 

The following settings are used to set the viewport equal to the entire screen: 

0,1,0,.625 

This viewport setting causes the lower left corner of the viewport, that is, the 
origin, to be in the lower left corner of the screen, as shown in Figure 7.3: 

223 



CHAPTER 7 I PRO/BASIC GRAPHICS 

(0,.625) 

(0,0) 

Flgure7·3 

Viewport Equals 
Whole Screen 

(1,.625) 

(1,0) 

Because of the inequality of the display screen's vertical and horizontal sizes, 
a proportional adjustment is made to reconcile the y dimension and the 
x dimension. 

The horizontal dimension is defined as extending from 0 to 1. They dimension is 
62.5% as long as the x dimension, and extends from 0 to .625. 

To review viewport coordinates, the viewport coordinate system is used to 
identify the region on the display screen used for graphics, called the viewport. 
Four points, within the range of 0 to 1 horizontally, and 0 to .625 vertically, 
define the viewport. 

The default viewport setting provides for equal length in the two dimensions 
(a square of .625 by .625 in viewport coordinates). 

7.4 WINDOW COORDINATES 

The viewport coordinate system defines the portion of the screen to use for 
graphics: the window coordinate system specifies a scale to use within that 
region of the screen. 

224 



PRO/BASIC GRAPHICS I CHAPTER 7 

The window coordinate system specifies a range of values for the horizontal (x) 
dimension and a range of values for the vertical (y) dimension. Points are 
plotted with window coordinates in the range specified for each dimension. 

You determine the scale that points are plotted on. Ranges for x and y are 
identified in the same format as for the viewport: 

min x, max x, min y, max y 

The values provided create vertical and horizontal scales within which points 
are plotted. The default window coordinates are as follows: 

0,1,0,1 

The measurements range from 0 to 1 horizontally and 0 to 1 vertically, as shown 
in Figure 7-4. 

(0,1) (1,1) 

Default Viewport 
with Default Window Coordinales 

(0,0) (1,0) 

Figure7-4 

The origin is at the lower left corner and has value 0,0. The window coordinates 
are reset to these values each time a program is run. 

225 



CHAPTER 7 I PRO/BASIC GRAPHICS 

To review the distinction between viewport coordinates and window coordi­
nates; the viewport specifies which part of the screen to use for graphics, the 
window specifies which scale to use for plotting points. Points are plotted in 
window coordinates, not viewport coordinates. 

7.5 TWO GRAPHICS STATEMENTS 

The SET VIEWPORT statement receives values for the viewport setting. The 
SET WINDOW statement determines the scale to be applied to the viewport 
dimensions. Consider these two statements which set up a graph: 

10 SET VIEWPORT 0,1,0,.625 
20 SET WINDOW 1900,1985,0,15 

The values in SET VIEWPORTset the viewport to equal the entire screen. The 
values in SET WINDOW apply a scale ranging from 1900 to 1985 horizontally 
and 0to15 vertically to plot average monthly rainfall, as shown in Figure 7-5. 

(1900,15) 

(1900,0) 

Flgure7-5 

Viewport Equals 
Entire Screen 

Scales Measure 
190().1985 Horizontally and 

0-15 Vertically 

(1985,15) 

(1985,0) 

Any points that we wish to plot on the screen, then, must have x values between 
1900 and 1985, and y values between 0 and 15. 

226 



PRO/BASIC GRAPHICS j CHAPTER 7 

ASK POSITION 

Syntax 

where: 

x,y 

ASK POSITION (x,y) 

are real variables which receive the 
coordinates of the current location. 

Example ot Syntax 

ASK POSITION (TEMP _X,TEMP _ Y) 

Purpose 

Stores the horizontal coordinate of the current location in the x variable and the 
vertical coordinate of the current location in the y variable. 

Comments 

D The position is given in terms of the window coordinate system. 
See SET WINDOW. 

D ASK POSITION is useful if you do not wish to constantly keep track 
of the current position but need to know it at times. For example, a 
subroutine may need to alter the current location but must restore the 
previous position before it returns. 

Example 

340 SET POSITION (.5,.5) 
350 GOSUB 1000 
360 PLOT ARC (.6,.5,360) 

1000 REM subroutine that changes position, but must restore it 
1010 ASK POSITION (TEMPX,TEMPY) 
1020 SET POSITION (0,0) 
1030 GRAPHIC PRINT 'Hello.' 
1040 SET POSITION (TEMPX,TEMPY) 
1050 RETURN 

227 



CHAPTER 7 I PRO/BASIC GRAPHICS 

CLEAR 

Syntax 

CLEAR 

Purpose 

Clears the screen. 

Comments 

228 

D The CLEAR statement causes the entire screen to become the 
background color. 

D It also moves the graphics cursor to the origin ((0,0) in the default 
window coordinates) and moves the text cursor to the top left corner 
of the screen. 

D CLEAR also negates the effect of a separator at the end of the last 
PLOT statement. 



PRO/BASIC GRAPHICS I CHAPTER 7 

GRAPHIC PRINT 

iyntax 

GRAPHIC PAINT print list 

GRAPHIC PRINT USING format string, print list 

where: 

print list is one or more valid expressions to be printed, 
separated by commas or semicolons. 

format string 

Examples of Syntax 

is a string expression which describes the format 
used for printing. 

100 GRAPHIC PRINT "Hello 11 ;NAME$;11 !11 

200 GRAPHIC PRINT USING 'The answers are ##.##',N1;N2 

Purpose 

Prints graphics characters. 

Comments 

D The separator used in the print list (";" or ",") has the same effect 
as separators used in PRINT and PRINT USING statements. If a 
semicolon (";") is used to separate print list items, no extra spaces 
are inserted when the items are printed. If a comma (" ,") is used to 
separate print list items, spaces are inserted to cause the next print 
list item to start at a multiple of 14 spaces from the original position. 

D The appearance of printed text depends upon other previous settings 
such as position, font, character spacing, character size, italic angle, 
text angle, color, and writing mode. 

D If no trailing separator is used, the graphics cursor is restored to the 
position it had prior to execution of the GRAPHIC PRINT statement. 
To leave the graphics cursor at the end of the item printed, use a 
separator at the end of the GRAPHIC PRINT statement. 

229 



CHAPTER 7 I PAO/BASIC GRAPHICS 

Ellample 

10 REM Demonstrate the GRAPHIC PRINT statement 
20 REM (Note the use of separators). 
30 REM 
40 SET POSITION CO,.Z5> 
50 GRAPHIC PRINT ' a' I 'be',' def"; 
60 GRAPHIC PRINT '*'\ REM Here is the graphics cursor position 
?O REH 
BO SET POSITION C0,.21 
~o GRAPHIC PRINT, a';'bc','def' 
100 GRAPHIC PRINT 'i'\ REM Cursor restored to original position 
110 ENO 
r·un 

Read~ 

230 

abc 
iabc 

def* 
def 



PRO/BASIC GRAPHICS I CHAPTER 7 

PLOT 

.. yntax 

PLOT [(x,y) [separator(x,y)] ... [separator] ] 

where: 

x,y 

separator 

are numeric expressions indicating the drawing position. 

is a comma or a semicolon. 

uamples of Syntax 

PLOT (.1,0) 

Purpose 

PLOT (0,0),(1,0),(1, 1),(1,0),(0,0) 

PLOT (.5,.5),(. 75,.5), 

Draws a point at the specified position, or draws lines between successive 
?ecified positions. 

Comments 

O The positions are specified in window coordinates. 

D If the last PLOT statement had a separator at the end, a line will be 
drawn from the current position to the point given in the PLOT 
statement. 

If no separator was used, a point is drawn at the first point given in 
the PLOT statement. Consider the example below: 

10 PLOT (0,0), 
20 PLOT (1,1) 

Plots a line from (0,0) to (1, 1), whereas 

10 PLOT (0,0) 
20 PLOT (1,1) 

just plots the points (0,0) (1, 1) 

Remember that many graphic statements change the current position. 

D A CLEAR statement negates the effect of a separator at the end of a 
PLOT statement. 

231 



CHAPTER 7 I PRO/BASIC GRAPHICS 

O A PLOT statement without any coordinates is a way to end a line. The 
following example draws lines through 50 random points. The PLOT 
statement in line 340 has no separator, and ends the line. 

310 FOR I = 1 TO 50 
320 PLOT (AND.AND); 
330 NEXT I 
340 PLOT \ REM End the current line 
350 PLOT (0,0),(1,0),(1,1),(0,1),(0,0) \REM Plot a border 

Example 

l(U) N~t:-' 

110 FOR l=O TON 
120 RA0=2•P J • l/N 
130 x~<SIN<RAD>+1 l/2 
HO Y=lCOSlRAD>+1>12 
15(1 FOR J=I•1 TO N 
I f,(1 RAD2•2•P I• JIN 
1~0 X2=l51NlRA02)+1)/2 
11l•) Y2=lCOSIRAD2>+11/2 
1':10 PLOT IX,Y>, IX2,Y2) 
200 NEXT J 
210 NEXT I 
220 PRINTSCREEN 
run 

232 



PRO/BASIC GRAPHICS I CHAPTER 7 

PLOT ARC 

Syntax 

where: 

x,y 

angle 

PLOT ARC (x,y, angle) 

are real expressions indicating the center of the arc. 

is a numeric expression which specifies the angle 
(in degrees) of the arc. 

Examples ot Syntax 

PLOT ARC (.1,.1,360) 

PLOT ARC (x,edge -.5,180) 

Purpose 

Plots an arc, i.e., a section of a circle, using the current position as a point on the 
circumference. 

Comments 

D The current location is specified in window coordinates. 

D The arc will be drawn from the current position along an arc, the center 
of which is at the specified position. For example: 

-- °"' ,,. -,,. ,,, ,,, 
/ 

I 
I 

I 
I 
I 
I ... ... ,, --

D If the angle is positive, the arc will be drawn counter-clockwise, and if 
the angle is negative, the arc will be drawn clockwise. 

D PRO/BASIC draws the arc and changes the current position to the 
last position on the arc. 

D You can draw a circle by specifying an arc of 360 degrees. 

233 



CHAPTER 7 I PRO/BASIC GRAPHICS 

Example 

10 DELTA=.05 
20 X_CENTER,Y_CENTER=.5 
30 X_CIRCUH=.l\Y_CIRCUH=.5 
40 REH Plot a 45 degree slice 
50 PLOT IX_CENTER.Y_CENTERl,IX_CIRCUH,Y_CIRCUH-DELTAI. 
60 GRAPHIC PRINT '45' 
70 PLOT ARC IX CENTER,Y CENTER,451\ REH Positive angle -- CCW 
80 PLOT IX_CENTER,Y_CENTERI, 
90 REH Plot a 90 deqree slice 
100 PLOT IX CIRCUM,Y CIRCUH+DELTAI. 
110 GRAPHIC-PRINT '90' 
120 PLOT ARC IX CENTER.Y CENTER,-901\ REH Negative angle -- CW 
130 PLOT IX_CENTER,Y_CENTERI 
140 REH Plot a border 
150 PLOT I 0, 0 I , I 1. 0 I , ( l. ll , C 0 , l I , C 0, 0 I 
160 END 
run 

/! , I 
I / 

~ 
. 

\'\. / 
v 

Ready 

234 

.. 



PRO/BASIC GRAPHICS I CHAPTER 7 

PLOT CURVE 

Syntax 

where: 

x array 

y array 

PLOT CURVE (x array, y array, expression, type) 

is the one-dimensional single-precision array of 
x values of the curve to be plotted. 

is the one-dimensional single-precision array of 
y values of the curve to be plotted. 

expression is an integer expression that specifies the number 
of points, beginning with array element 0, that are 
to be plotted on the curve. 

type if a non-zero value, requires that the ends of the 
curve meet, or if equal to zero, does not require that 
the ends of the curve meet. 

Example of Syntax 

PLOT CURVE (X(),Y(),11,-1%) 

Purpose 

Draws a curve through the specified points. 

Comments 

D The points are specified in window coordinates. 

D The two arrays must have only one dimension. 

D Points on the curve are plotted starting with array element 0. Note 
that the last array element of each array plotted is I less than the 
number of points specified (since plotting starts at element 0). 

D If you specify four equidistant points the PLOT CURVE statement 
can draw circles (and elipses). For example: 

10 X(0)=.2 \ X(1)=.5 \ X(2)=.8 \X(3)=.5 
20 Y(0)=.5 \ Y(1)=.3 \ Y(2)=.5 \ Y(3)=.7 
30 PLOT CURVE (X(),Y(),4%,-1%) 

235 



CHAPTER 7 I PRO/BASIC GRAPHICS 

Example 

10 N=50 
20 DIM X<N>,Y<Nl 
30 FOR I=O TO N-1 
40 X<I>•RNO•.B•.1\Ylll•RNO•.B•.1 
5(1 NEXT I 
60 X1=X<N-1l\Y1=Y<N-1l 
:'I) SET POSITION t ><1. Yl) 
Ek• PLOT CURVE t X ti, Y <>, N-1, 1l 
;J1_1 PRINTSCREEN 
tno ENO 
run 

236 



PRO/BASIC GRAPHICS I CHAPTER 7 

PRINTSCREEN 

.>yntax 

PRINTSCREEN 

Purpose 

Pri:its the current screen image on the printer. 

Comments 

D You must have an appropriate printer connected to your Professional 
350 in order to use this statement. The LAlOO and LA50 printers are 
both suitable. 

D While the screen image is being printed, no other activity can take 
place. Your program will appear to freeze, but will continue after the 
printer is done. 

D The printer displays a reversed image, in the sense that it prints black 
on a white background, whereas your screen usually displays white 
(and other colors) on a black background. Thus, with the default color 
settings, the printer interprets the background color (color 0) as white, 
and all other colors (1 through 7) as black. The printer ignores the red, 
green and blue settings of the colors. 

However, if the background color (color 0) is specified as anything but 
black, its image will be reversed as well, and the entire screen will be 
printed as black. 

237 



CHAPTER 7 I PAO/BASIC GRAPHICS 

SCROLL 

Syntax 

SCROLL (dx,dy) 

where: 

dx,dy are numeric expressions indicating the amount of horizon­
tal shift (dx) and the amount of vertical shift (dy) from 
the current location. 

Example ot Syntax 

SCROLL (.1,.05) 

Purpose 

SCROLL moves the graphic image in the specified direction. 

Comments 

238 

D The horizontal and vertical shifts are given in terms of the current 
window coordinates. See SET WINDOW. 

D The graphics which move off the edge of the screen are lost, and solid 
background comes in at the opposite edges. 



PRO/BASIC GRAPHICS I CHAPTER 7 

Example 

10 CLEAR 
0 SET POSITION (.5,.35) 

30 PLOT ARC (.5,.5,360) \ REM 
40 DX=.002 \DY=O \REM 
50 CALL INKEY (A$) \ REM 
60 REM 

DRAW THE CIRCLE 
INITIAL X,Y DIRECTION 
HAS USER HIT A KEY? 

70 REM if we get a character with INKEY, see if it means anything 
80 REM 
90 IF A$='q' OR A$='Q' THEN GOTO 190 \REM 0--> 'QUIT' 
100 IF A$='a' OR A$='A' THEN GOTO 10 \REM A--> 'AGAIN' 
110 IF A$='2' THEN DX=O \ DY=.0045 \REM 2--> move down 
120 IF A$='4' THEN DX=.0045\DV=O \REM 4--> left 
130 IF A$='5' THEN DX=O\ DY=O 'REM 5--> stop 
140 IF A$='6' THEN DX=-.0045 \ DY=O \REM 6--> right 
150 IF A$='8' THEN DX=O \DY=-.0045 \REM 8--> up 
160 REM 
170 SCROLL (Dx·2.DV-2) \REM MOVE THE CIRCLE BY SCROLLING THE SCREEN 
180 GOTO 50 \REM GET ANOTHER KEY 
•go END 

239 



CHAPTER 7 I PRO/BASIC GRAPHICS 

SET CHARACTER 

Syntax 

SET CHARACTER character, array 

where: 

character 

array 

is a single character to be defined in a font. 

is a 16 element integer array which contains the 
character's definition. 

Example ol Syntax 

SET CHARACTER 'A',NEW_A%( ) 

Purpose 

Allows the user to design printing characters. 

Comments 

240 

D To create a character you must design the character and then translate 
that design to numeric information understandable to the computer. 
The numeric information is then stored in an array which has the name 
of the character defined. When the character is defined, the information 
about its composition needed to display it is copied from the array. 

A grid is used to help design and define a character. The grid is 
numbered along its horizontal and vertical dimensions to represent 
the rows and columns of the character cell. A character cell is made 
up of many pixels, which are identified according to the columns in 
each row. (A pixel is the smallest controllable unit on the screen. 
A pixel can be lighted or can be turned off. Characters are displayed 
with lighted pixels against a background of unlighted pixels. If you 
look closely at the screen, you can see that characters are composed 
of these small spots.) 

The numbering along the vertical dimension counts the rows that 
make up the character. It goes from top to bottom, starting from 0. 
The numbering along the horizontal dimension goes by column from 
left to right. It starts at -32768 and works down from 16384 by 
dividing by two each time. These are the bit values of each pixel. 



10 

1 

13 

14 

IS 

PRO/BASIC GRAPHICS I CHAPTEfl 7 

Below are two grids. They are of different sizes and have different 
numbering because they are each used to define characters for different 
fonts. Characters of font 1 are of 16 pixels by 16 pixels. Characters of 
font 2 are of 8 pixels by 8 pixels. Use the correct grid for the font you 
are creating characters for. 

fOHT I FONT 2 

~~~fit l ~ ~ .rL~L ~ ~1 · .. ; ~1 f_~. l/ !/___" d__ I ;f ~ .., 'Ii 

To create a printing character:

1. Design your character in the grid. When the design is done, add
the values in each row of each pixel value that has been drawn in to
compose the character.

2. Use the SET FONT statement to specify which font the character is to
be included in. See the SET FONT statement in this chapter.

3. Enter the sum of the values from each row of the grid to each element
of the array.

4. Use the SET CHARACTER statement to associate the character with
the array.

241

CHAPTER 7 I PRO/BASIC GRAPHICS

Example

The example program below includes a sma:ll routine (lines 300 - .400) that you,
can use to automate the process of defining the values that compose a character,
and entering those values to an array.

242

100 REM 0123456789012345
110DATAM
120 DATA ' X
130 DATA ' X XX
140 DATA ' X XXX
150 DATA ' X XX
160 DATA ' X XXXXXX
170 DATA ' XX XXXXXX XX
180 DATA ' XXX XXXX XXX
190 DATA ' X XXX XXX

xx xx
x xx

200 DATA '
210 DATA '
220 DATA '
230 DATA '
240 DATA '
250 DATA '
260 DATA '
270 DATA '

xx xx

280 DIM A%(15)
290 CLEAR

xx
x

xx

300 READ CHAR$
310 FOR l=O TO 15
320 N=O
330 READ A$

xx

x

xxx
x

x
x

xx

340 FOR J%=15% TO 1% STEP -1%
350 IF MID$(A$,J%+1%,1%)< >' 'THEN N=N+ (15%-Jo/o)
360 NEXT J%
370 IF MID$(A$,1%,1%)< >' 'THEN N=N-32768
380 Ao/o(l)=N
390 NEXT I
400 SET FONT 1 \SET CHARACTER CHAR$,A%()
41 O SET CHARACTER SIZE .2, .2 \ GRAPHIC PRINT CHAR$

PRO/BASIC GRAPHICS I CHAPTER 7

SET CHARACTER SIZE

yntax

SET CHARACTER SIZE width, height

where:

width is a numeric expression which specifies the width of
a character cell in the current window coordinates.

height is a numeric expression which specifies the height of
a character cell in the current window coordinates.

Example of Syntax

SET CHARACTER SIZE .04,.083334

Purpose

Sets the size of the graphics characters displayed in subsequent GRAPHIC
PRINT statements.

,;omments

D The width and height you specify determines the size (in window
coordinates) of the character, though the displayed size is actually
the closest multiple of the number of pixels used in the character's
definition. The displayed size of the character therefore will be no
larger than the size specified, and may be smaller. (A pixel is the
smallest controllable unit of the screen. The screen has 240 pixels
vertically and 960 horizontally.)

Font 0 characters are 12 pixels wide and 1 O pixels high.
Font 1 characters are 16 pixels wide and 16 pixels high.
Font 2 characters are 8 pixels wide and 8 pixels high.

Thus, characters in font 0 can be 12 pixels wide, 24 pixels wide,
or 36 pixels wide, and they can be 10 pixels high, 20 pixels high,
or 40 pixels high.

D The size also depends on the text angle. Characters written with text
angles other than horizontal and vertical will appear 1.6 times larger
than they do normally.

D Using font 0, and assuming the default viewport and window, the
default character width is .02 (1.6/80) and the default character height

243

CHAPTER 7 I PRO/BASIC GRAPHICS

is .041667 (1/24). These dimensions result in the fu11 24 row by 80
column size of the screen. These values are reset whenever you run
a program.

D Setting the character size also sets character spacing. You must reset
the character spacing if you do not want characters to display with
default spacing.

Example

10 SET CHARACTER S.IZE .3, .3
20 PLOT (1),01, ((I, .31, (.3, .31, (.3,01, (Q,t)I
30 GRAPHIC PRINT 'ABC'
40 PRINTSCREEN

run

le]BC
Read\f

244

PRO/BASIC GRAPHICS I CHAPTER 7

SET CHARACTER SPACING

.Syntax

SET CHARACTER SPACING x, y

where:

x

y

is a numeric expression representing the horizontal
distance between characters.

is a numeric expression representing the vertical
distance between characters.

Example of Syntax

SET CHARACTER SPACING .08,.15

Purpose

Sets the spacing between characters.

':om men ts

D The space between characters is measured (in window coordinates)
from the beginning of one character to the beginning of the next. In
other words, if characters should appear right next to each other, the
horizontal character spacing should be the same as the character width.
See SET CHARACTER SIZE.

D The default value for horizontal spacing is the same as the horizontal
character size, which is .02 (1.6/80). The default value for vertical
spacing is 0, that is, ch.aracters are displayed on the same
horizontal line.

245

CHAPTER 7 I PRO/BASIC GRAPHICS

Example

l 0 SET CHARACTER SI::E .(•5 .. 15
~O SET POSITION !0,.3)
3•.I GRAPHIC PRINT 'd191tal'
~O SET POSITION 10,0l
b•) SET CHARACTER SPACING .15,0
;:.o Gl!APHIC PRINT 'd191tal'
:'O PRINTSCREEN

246

dlgltal

d
.
l 9

.
l t a 1

PRO/BASIC GRAPHICS I CHAPTER 7

SET CLIP

Syntax

SET CLIP{ON }

OFF

Example of Syntax

SET CLIP OFF

Purpose

Turns clipping on or off.

Comments

D The SET CLIP statement enables or disables the display of images
that are not within the viewport boundaries most recently set.

D This statement affects only the graphics displayed after this statement
is executed.

D Clipping is on by default.

Example

;et position < .E., .55)
plot arc (.25, .~b,3E.O>

set clip "off"
<;;et ltne St\jle :?
s"t. pos1tu:m < .E., .4"il
plot arc (.25, .45,3E.Ol

I

/
I

I

\
\ ,,

~ ..- ._
/

..... ,.., --

' \

247

CHAPTER 7 I PRO/BASIC GRAPHICS

SET COLOR

Syntax

SET COLOR color

where:

color is represented by an integer expression of value
0 to 7 which specifies one of the eight colors.

Example ol Syntax

SET COLOR 4

Purpose

Selects a color for use by subsequent graphics statements.

Comments

248

D SET COLOR identifies the colors to be used when drawing patterns to
the screen.

o The background is defined as color number 0. Its default is black.

D If the color number specified falls outside the range 0 - 7 the color is
not changed.

D The color is reset to 7 whenever you run a program. Since color 7 is
reset to white whenever you run a program, the default color is white.

D The default colors for color monitors are listed below:

Color Default
Number Color

0 (background) BLACK
1 RED
2 GREEN
3 BLUE
4 YELLOW
5 MAGENTA
6 CYAN
7 (default WHITE

writing color)

PRO/BASIC GRAPHICS I CHAPTER 7

D Refer to the SET COLORMAP statement in this chapter for more
information on color settings.

Example

10 CLEAR
15 REM Print the color labels ...
20 PLOT (0,0),(1,0),(1, 1),(0,1),(0,0)
40 SET POSITION (.35,.87) \ GRAPHIC PRINT 11A COLOR WHEEL11

50 SET POSITION (.4,.15) \SET COLOR 1 \GRAPHIC PRINT 11red11

60 SET POSITION (.7,.25) \SET COLOR 4 \GRAPHIC PRINT 11yellow11

70 SET POSITION (.8, .57) \ SET COLOR 2 \ GRAPHIC PRINT 11green11

80 SET POSITION (.62,. 77) \ SET COLOR 6 \ GRAPHIC PRINT 11cyan11

. 90 SET POSITION (.2,.7) \SET COLOR 3 \GRAPHIC PRINT 11blue11

100 SET POSITION (.06,.4) \SET COLOR 5 \GRAPHIC PAINT 11magenta11

105 REM print the color wheel
110 SET FILL (.5,.5) \SET POSITION (.3,.3)
120 FOR 1=1 TO 6
130 READ COLOR
140 SET COLOR COLOR
150 PLOT ARC (.5,.5,360/6)
160 NEXT I
170 PRINT 'hit RETURN' \ LINPUT WAIT$ \ CLEAR \ REM wait til user types return
190 DATA 1,4,2,6,3,5
200 END

249

CHAPTER 7 I PAO/BASIC GRAPHICS

SET COLORMAP

Syntax

SET COLORMAP color-number, red value, green value, blue value

where:

color-number

red value

green value

blue value

Example of Syntax

is a numeric value between 0 and 7 indicating the
color to be defined.

is a numeric value between 0 and 1 indicating the
intensity of red in the color defined.

is a numeric value between 0 and 1 indicating the
intensity of green in the color defined.

is a numeric value between 0 and 1 indicating the
intensity of blue in the color defined.

SET COLORMAP 0,.i:J,.2,.9

Purpose

SET COLORMAP defines eight colors available to your program.

Comments

250

D If your system has a color monitor and the extended bit-map option
you can draw in eight colors. With a monochrome monitor you can
draw in eight shades of grey. If your system doesn't have the extended
bit-map option, this statement has no effect.

PRO/BASIC GRAPHICS I CHAPTER 7

The default colors for color monitors are fo;ted below:

Default
Color Color map Display
Number (R GB) Color

0 (background) 0 0 0 BLACK
1 1 0 0 RED
2 0 1 0 GREEN
3 0 0 1 BLUE
4 1 1 0 YELLOW
5 1 0 1 MAGENTA
6 0 1 1 CYAN
7 (default 1 1 1 WHITE

writing color)

D The eight colors are defined by intensities of red, green, and blue,
re1u-esented by numeric values between 0 and 1, with 0 the lowest
intensity and 1 the highest intensity.

D The color 0 is the background color. The color 7 is the default writing
color.

The default shades for monochrome monitors are listed below:

Color Default
Number Value

0 0 0
1 1/7 1/7
2 2/7 2/7
3 3/7 3/7
4 4/7 4/7
5 5/7 5/7
6 6/7 6/7
7 1 1 .

0
1/7
2/7
3/7
4/7
5/7
617

1

Shade of
Grey

DARKER

LIGHTER

251

CHAPTER 7 I PRO/BASIC GRAPHICS

0 Anything previously written on the screen with the defined colors will
be immediately changed to the new colors. The example below draws a
circle with color set to 2 (green), then changes the color from green
to red.

10 SET COLOR 2
20 SET POSITION (.3,.3)
30 PLOT ARC (.5,.5,360) \REM Plot circle
40 LINPUT WAIT$
50 SET COLORMAP 2, 1,0,0 \ REM Change green to red

Example

252

100 SET VIEWPORT 0,1,0,.625 \CLEAR
110 SET FILLY 1
120 FOR C=O TO 7
130 SET COLOR C
140 PLOT (C/8,0),((C+.5)/8,0)
150 NEXT C
160 SET FILLX 1
170 FOR C=O TO 7
180 SET COLOR C
190 PLOT (O,C/8),(0,(C+.5)/8)
200 NEXT C
210 FOR GREEN=O TO 7 \G=GREEN 7
220 FOR BLUE=O TO 3 \ B=BLUE 3
230 RED=O TO 7 \ R=RED 7
240 SET COLOR MAP RED,G,R,B
250 NEXT RED
260 NEXT BLUE
270 NEXT GREEN
280 SET COLOR MAP 7, 1, 1, 1
290 SET COLORMAP 0,0,0,0

PRO/BASIC GRAPHICS I CHAPTER 7

SET FILL

Syntax

SET FILL (x,y)

where:

x,y are numeric expressions which specify the coordinates of
a point to fill to.

Example of Syntax

SET Fill (.9,.5)

Purpose

Specifies a point to fill to.

Comments

D The point to fill to is specified in window coordinates.

D The fill pattern is affected by the current fill style and by the current
writing mode. See SET FILL STYLE, SET LINE STYLE, and SET
WRITING MODE.

D All graphics executed after this statement will be filled to the specified
point. Fill is done with the foreground color, the fill pattern is solid by
default.

D SET FILL to a point is much slower than fill to a horizontal line or fill
to a vertical line. Use SET FILLX or SET 1''ILLY whenever possible.

253

CHAPTER 7 I PRO/BASIC GRAPHICS

Example

setf1ll ((J,.5l
p I at I 0, 0 l , I 1. 1 l

254

Syntax

SET FILL OFF

Example of Syntax

SET FILL OFF

Purpose

Turn fill off.

Comments

The fill style is reset to solid.

Example

set f' I';! • 5
plot < ,(J),11,1)
set ft I off
plot < ,1), <1,0l

Read';j

PRO/BASIC GRAPHICS I CHAPTER 7

SET FILL OFF

255

CHAPTER 7 I PRO/BASIC GRAPHICS

SET Fill STYLE

Syntax

SET FILL STYLE character

where:

character is to be used as the fill pattern.

Example of Syntax

SET FILL STYLE '2'

Purpose

Change the fill pattern to be the specified character in the current font.

Comments

256

D If more than one character is provided in the string, the first character
is used. If the string is empty (length of 0), the fill style is not changed.

D Specify control characters in SET FILL STYLE to get a small
checkerboard pattern as the fill style. Control characters have ASCII
values 1-31. Use the CHR$ function with ASCII values to specify
control characters, for example CHR$(1).

D To get solid fill after using some other character as the fill pattern, use
SET FILL STYLE CHR$(0).

D The fill style is reset to solid whenever you run a program.

o The effect of SET FILL STYLE depends on SET WRITING MODE.
(See SET WRITING MODE in this chapter.)

Example

10 REM De111onstrat.e SET FILL STYLE
20 SET FILL STYLE '•'
30 SET FILLY .5
40 F~OT C0,01,11,11
50 ENO

Read!j

••••••••••••••••••••••••• ,
•••••••••••••••••••••
·t••HHt•t••tHtt• , .
........... .!'

•••••••••
. ,

PAO/BASIC GRAPHICS I CHAPTER 7

. ., ...
, ...

••••••
...............

.................
•••••••••••••••••••

•••••••••••••••••••••

257

CHAPTER 7 J PRO/BASIC GRAPHICS

SETFILLX

Syntax

SET FILLX x

where:

x

Example of Syntax

SET FILLX .9

Purpose

is the numeric expression that specifics the horizontal
coordinate of a vertical line to fill to.

Specifies a vertical line to fill to.

Comments

258

D The horizontal position of the line is specified in window coordinates.

D The fill pattern is affected by the current fill style and by the current
writing mod·e. See SET FILL STYLE, SET LINE STYLE, and SET
WRITING MODE.

D All graphics executed after this statement will be filled to the specified
line. Fill is done with the foreground color, and is solid fill by default.

PRO/BASIC GRAPHICS I CHAPTER 7

Example

set f1ll• .5
p 1 ot. I O, 0 > , I L 1 >

Read~

259

CHAPTER 7 I PRO/BASIC GRAPHICS

SET FILLY

Syntax

SET FILLY y

where:

y is the numeric expression that specifies the vertical
coordinate of a horizontal line to fill to.

Example of Syntax

SET FILLY .35

Purpose

Specifies a horizontal line to fill to.

Comments

260

D The vertical position of the line is specified in window coordinates.

D The fill pattern is affected by the current fill style and by the current
writing mode. See SET FILL STYLE, SET LINE STYLE, and SET
WRITINGMODE.

D All graphics executed after this statement will be filled to the specified
line. Fill is done with the foreground color, and is solid fill by default.

PRO/BASIC GRAPHICS I CHAPTER 7

Example

SOl.?t fdl';j .5
p I ot < IJ, u >, < 1, 1 l

Read';j

261

CHAPTER 7 I PRO/BASIC GRAPHICS

SET FONT

Syntax

SET FONT integer

where:

integer is 0, 1 or 2. 0 indicates the DEC Multinational
Character Set, 1 and 2 indicate user-definable fonts.

Example ol Syntax

SET FONT 2

Purpose

Selects a font.

Comments

262

D SET FONT is usm: •o select a character set, and causes GRAPHIC
PHINT statements to display characters from the selected font.

D Each font defines the appearance of 95 characters. The characters in
these fonts are defined with different dimensions:

Font 0 characters are 12 pixels wide and 10 pixels high.
Font 1 characters are 16 pixels wide and 16 pixels high.
Font 2 characters are 8 pixels wide and 8 pixels high.

The characters of font 0 cannot be changed. The other fonts can be
defined by using SET CHARACTER.

D The DEC Multinational Character Set (font 0) is the default.

D The only characters of the DEC Multinational Character Set
that can be defined by the user are those from the space character
(ASCII 32) to the tilde character (ASCII 127). No other characters
can be redefined. See Appendix A for a table of the DEC
Multinational Characters and their values.

D See SET CHARACTER in this chapter for more information
and examples.

PRO/BASIC GRAPHICS I CHAPTER 7

SET ITALICS

iyntax

SET ITALICS expression

where:

expression

Example of Syntax

is a positive or negative numeric expression indicating
the angle at which characters are slanted.

SET ITALICS 22

Purpose

Determines the forward or backward slant of the text.

Comments

D The SET ITALICS statement will slant text on a horizontal line to
the right (clock-wise) if a negative value is provided, and to the left
(counter-clockwise) if a positive angle is provided. Normally
characters have a slant angle of zero.

D Each character is slanted to the left or right, but the positions of
successive characters are not changed. That is, the angle of lines of
text is not changed. See SET TEXT ANGLE.

D The default slant angle is 0.

D The text is most readable if the angle is within 45 degrees and
-45 degrees.

263

CHAPTER 7 I PAO/BASIC GRAPHICS

Example

10 SET CHARACTE!l SIZE .04 •• OB
20 SET ITALICS -45
30 SET POSITION C.~ •• B>
40 GRAPHIC PRINT 'forward slant'
50 SET ITALICS -15
60 SET POSITION 1.2,.71
:'O GRAPHIC PRINT 'forward slant'
BO SET ITALICS 0
90 SET POSITION 1.2,.6)
100 GRAPHIC PRINT 'no slant'
110 SET ITALICS 15
120 SET POSITION 1.2,.51
\30 GRAPHIC PRINT 'backward slant'
140 SET ITALICS 45
150 SET POSITION 1.2,.41
160 GRAPHIC PRINT 'backward slant'
1?0 PRINTSCREEN

run
Rea~

264

.rl~"'#~-Y°'d _..-/.::1-:-?.t.
f'orward slant
no slant
'cac.\l..~aro s \an\:.
~-;..s~-~~-;..~·~ ~-;..~~ ..

PRO/BASIC GRAPHICS I CHAPTER 7

SET LINE STYLE

Syntax

SET LINE STYLE integer

where:

integer

Example of Syntax

is an integer variable or an expression which
specifies a line style.

SET LINE STYLE 2

Purpose

Select line style.

Comments

D Select line style by specifying an integer in the range I - 9 from the
list below:

1 solid (default)
2 dashed
3 dot-dashed
4 dotted
5 dot-dot-dashed
6 dotted (wide spacing)
7 dashed (short lines)
B dashed (long lines)
9 dot-dashed (short lines)

o The line style is reset to solid (style 1) whenever you run a program.

O Selecting values beyond the valid range (1 - 9) results in selection of
line style I (solid).

265

CHAPTER 7 I PRO/BASIC GRAPHICS

Example

10 SET CHARACTER s1;:E .(14, .oa
;:(I FOR L-STYLE='3 TO 1 STEP -l
30 SET LINE STYLE L_STYLE
4(1 HEIGHT=l-<L-STYLE/101
50 SET POSITION <.::?,HEICHT-.041
€.(I GRAPHIC PRINT L-STYl.E
::'c) PLOT C .3,HEICHTI, <.'3,HEICHTI
8(1 NEXT L_STYLE
'31) PR INTSCREEN

run

Read'J

266

1
2
3 ------------------
4
5
6
? ------------------
8 ---------
9 -- -- -- -- -- -- -- -- --

PRO/BASIC GRAPHICS I CHAPTER 7

SET POSITION

.iyntax

where:

x,y

SET POSITION (x,y)

are numeric expressions indicating the new horizontal
and vertical coordinate location of the starting point.

Example of Syntax

SET POSITION (.5,.75)

Purpose

SET POSITION sets the specified position as the starting point for graphics.

Comments

D The new position is given in terms of the current window coordinate
system. See SET WINDOW.

D The position is reset to (0,0) whenever you run a µrogram.

267

CHAPTER 7 I PRO/BASIC GRAPHICS

SET TEXT ANGLE

Syntax

SET TEXT ANGLE integer

where:

integer is an integer expression representing the angle at which
graphic text prints.

Example ot Syntax

SET TEXT ANGLE 4

Purpose

To specify the angle at which a line of graphic text is printed.

Comments

268

D Select from the following eight valid values, each value
corresponds to an angle as shown below:

(3)

129°

231°
(5)

(2)

90•

270°
(6)

(1)

s1·

309•
(7)

PRO/BASIC GRAPHICS I CHAPTER 7

D The text angle is reset to 0 each time you run a program.

D If the number specified does not fall in the range of 0 to 7 the text
angle is not changed. ·

D Contrast SET ITALICS which determines the shift to left or right of
each character but does not change the angle of the entire line of text.

Example

'6 REM Prlr.t teAt at different i:iiigles
10 PLOT (,5,.51
20 SET TEXT ANGLE 4
30 GRAPHIC PRINT 'text at 180 de9rees'
40 SET TE~T ANCLE 0
50 GRAPHIC PRINT 'text at 0 deoarees'
f.0 ENO
n..11

tl'.l<t at () degrl'H
saa~6ap OB~ +v 1xa+

Read1;1

269

CHAPTER 7 I PRO/BASIC GRAPHICS

SET VIEWPORT

Syntax

SET VIEWPORT x min, x max, y min, y max

where:

x min, x max are the coordinates of the horizontal dimension of
the viewport: values are valid in the range of 0 to I.

y min, y max are the coordinates of the vertical dimension of the
viewport: values are valid in the range 0 to .625.

Example of Syntax

SET VIEWPORT 0,.5,0,.5

Purpose

Specifies the region of the screen which can be used for graphics.

Comments

D SET VIEWPORT sets the clipping region boundaries. When clipping
is on, any graphics drawn beyond the viewport boundaries will not
appear. When clipping is off, graphics drawn beyond the viewport
boundaries are displayed. (Refer to the SET CLIP statement in this
chapter.)

D The default viewport is a square filling the right side of the screen.
Following are the default values:

SET VIEWPORT .375,1,0,.625

D SET VIEWPORT fails if you attempt to specify a viewport that
does not lie completely within the screen, that is, if either x min or
y min is less than 0, or if x max is greater than 1, or if y max is
greater than .625.

Example

270

10 SET VIEWPORT .5,1,0,.5
20 PLOT (0,0),(1,1)

PRO/BASIC GRAPHICS I CHAPTER 7

SET WINDOW

Syntax

SET WINDOW x min, x max, y min, y max

where:

x min, x max are the minimum and maximum values of the scale
on the horizontal dimension of the viewport.

y min, y max

Example ot Syntax

are the minimum and maximum values of the scale
on the vertical dimension of the viewport.

SET WINDOW 0,10,-1,.5

Purpose

Specifies a range of values applied to the horizontal (x) and vertical (y)
dimensions.

Comments

D The window is set along the current viewport boundaries specified
with SET VIEWPORT.

D The default window coordinates are 0 to 1 in both the horizontal and
vertical directions, as shown below:

SET WINDOW 0,1,0,1

D SET WINDOW sets the clipping region boundaries.

271

CHAPTER 7 j PRO/BASIC GRAPHICS

Example

272

1 REM plot y = sin(x) and y=log(x)
20 CLEAR
25 SET VIEWPORT .1,.45,.1,.45 \REM
30 SET WINDOW -Pl,Pl,-2,2 \REM
40 PLOT (-Pl,O),(Pl,O) \REM
50 PLOT (0,-2),(0,2)
70 FOR X=-PI TO Pl STEP .1 \REM
80 PLOT (X,SIN(X)),
90 NEXT X
100 REM
110 SET VIEWPORT.55,.9,.1,.45 \REM
120 SET WINDOW 0,50,-5,5 \REM
150 PLOT (0,-5),(0,5) \REM
160 PLOT (0,0),(50,0)
170 FOR X=O TO 50 STEP .5 \REM
190 PLOT (X+,1,LOG(X+.1))
200 NEXT X
500 END

area for graphics on left
scale for I sine wave
plot axes

plot the points (x,sin(x))

now graphics on right
and scaled for log(x)
plot the axes

plot the points (x,log(x)}

PRO/BASIC GRAPHICS I CHAPTER 7

SET WRITING MODE

Syntax

SET WRITING MODE integer

where:

integer is an integer expression which specifies a writing mode.

Example ot Syntax

SET WRITING MODE 4

Purpose

·Selects the writing mode for use with PRO/BASIC graphics.

Comments

D There are ten different writing modes, each associated with a number
(0 through 9). They are as follows:

0,1
2,3
4,5
6,7
8,9

transparent, transparent negate
complement, complement negate
overlay, overlay negate
replace, replace negate
erase, erase negate

D Some writing modes make a distinction between the foreground of the
pattern being drawn and the background of the pattern being drawn.
Some patterns (solid patterns, like a solid line) are all foreground.

Other patterns (like a dotted line, or a character) have both a
foreground and a background part. In a dotted line, the dots are the
foreground and the holes between the dots are the background. In a
character, the strokes that make up the character are the foreground,
while the rest of the box within which the character is drawn form
the background.

D Negated modes switch what they do with the foreground and
background of the pattern. For example, complement mode
complements the foreground pattern and leaves the background
pattern alone. Complement negate mode complements the background
pattern and leaves the foreground alone. If a mode makes no
distinction between foreground and background, then the negated
mode is the same as the unnegated mode. 'fransparent mode and
transparent negate mode, for example, are identical.

273

CHAPTER 7 I PAO/BASIC GRAPHICS

274

o Transparent (mode 0)
Draws nothing, but changes the current position as if it were.

o Complement (mode 2)
Draws the pattern specified using the complement of the color at
the current drawing position on the screen. Complement mode thus
does not depend on the color being used. Here is a list of the pairs of
complementary colors (and their default appearance):

0 and 4 (black and yellow)
1 and 6 (red and light blue)
2 and 5 (green and magenta)
3 and 7 (blue and white)

If you were plotting a dotted line, the dots would be complemented,
and the holes would be left alone.

D Overlay (mode 4)
Draws the pattern specified using the current color. Only the
foreground of the pattern is written, the background is left the
original color.

o Replace (mode 6)
Writes the pattern using the current color (as overlay does) and writes
the background of the pattern using the background color. ·

o Erase (mode 8)
Writes the pattern using the background color.

D The writing mode is reset to overlay (4) whenever you run a program.

D Complement mode is useful when you wish to draw some image
temporarily, and remove the image leaving the original image. This can
be accomplished by writing the image twice in complement mode, since
the complement of the complement of a color is the original color.

.PRO/BASIC GRAPHICS I CHAPTER 7

Example

10 SET CHARACTER SIZE .2,.2\ SET POSITION <.2,.3)
15 GRAPHIC PRINT 'AB'
17 SET POSITION 10,.05>
20 GRAPHIC PRINT "A 0 \ GRAPHIC PRINT 11811 \ REM The default mode is OVERLAY
30 SET WRITING HOOE 6
40 SET POSITION C.6,.051
50 GRAPHIC PRINT "A"\ GRAPHIC PRINT 0 8"\ REM Replace 'A' with 'B'
C.O END

AB
B

Read4:1

275

Appendix A

Appendix A

The DEC Multinational Character Set

This appendix contains a table of the DEC Multinational Character Set. Octal,
decimal, and hexidecimal numeric codes appear next to each character.

The DEC Supplemental Graphics Characters appear in columns 10 - 15. These
characters can only be used as literals in quoted strings.

279

APPENDIX A I THE DEC MULTINATIONAL CHARACTER SET

0 2 3

.~ BITS

1.Ct.11.]1,1

70 '" "" 0 D O 0 0 NUL OLE •• SP " 0 ••

4

"'" @ p

s

IJO

""

6 7

p
--ll-----+--+-+-D-C-1--+ :7 ----.-:~ ~ 4{J IJI ·~I

0 0 0 I SOH O..ONt 11 ! lJ 0 A ()~ a 81 a <J/ q

2 0 0 I 0
lb}

+--->----o-;,-· ·---t-;j --- -~7 t---- ~~ r--- ,~: 14}
STX DC2 II II ,. 2 "" B •• R " b ..

--1-----.-----+-'--+--D-C-3+~: •• :+---+--,-~~~1------+--:: .:~ i~~ 1--1~ --ri-~i
3 0 0 I I ETX # "' 3 •• c ., s HJ c s
-----------·-----+--+--··-0-"-'-+--,-'~-+---+--:~- t-- ~; .~~ \~~ 1H+-~ t~~
4 0 I 0 0 EOT DC 4 10 S ,. 4 " D .. T •• d 100 I ""

" 14 }C 44 !14 14
---------j--•---t---+-,--,-+---+ .. ~ b!> 1-o;~ t---11; t----< 14':,, lb';

s 0 I 0 I ENQ ; NAK ,, "' " 5 " E b9 u "" • IOI u ,,,
----~ +-t---~· --- : ~ .: .: --t-f;~-t---r;~~

6 0 I I u ACK • SYN n a J8 6 .. F 10 v .. ' I()/ v ""

----- ----~~-4 ~~ ~ ~ .~, t--+tt .~, .:~
0 I I I BEL ; ETB }I J'J 7 .. G II w ., 9 10) w ...

---- ~,+----t-i- ~ :~ ,:; t---~~ I~: 1/0

7

8 I 0 U 0 BS a CAN >• '° 8 '° H 11 X .. h "" x ''" •• 18 lll 4H !>8 68 Id

~I II 111 1)1 ,~, J /1

9 I 0 0 I HT " • EM]~ 41 9 !>1 /j y 8\J i 10!> Y IJI

19 ~ ~ 49 ':..9 69 /'J

1-1;· r------+-~j+-- ,-, 1
!JO IOb Z 117

I] J1 !>1 ---+-l-,-+-----+-1i} ..--

10 , o , o LF •o sue 16 * ., •• J " z
IA 2A]A <IA ~A bA /A

r--t-----+---+-,-,-+----t---oll~t----+--,-, t----+-1-,+---+-,c-,,ct---+-,-JJ l~J ---+J-,J
11 I 0 I I VT II ESC 11 + 4] .. K " (.. k 101 { "j

f-- I: ~~ ~: ~: I~:~~ I~: -- -i;~
12 I I 0 0 FF 11 FS ,. .. < 60 L 16 ' ., IOH I "'
t---4-----+---+-~-,-+--+-;c-~-t--{~ --+--';"--~-f---+-,'-,~+---+-i~----1 10:., t----f-j~

CR " GS ,. ., = 61 M 11] " m •o• } 11·,
10 711 lU 40 '.:llJ b\l ID

13 I I 0 I

---------<o--~-,-.-+---+--]b--+----+---'.>b 16 ~1.-,;I-- llb l!.fi ·-~ii,
14 , , , o SO ,. RS JO .. > ., N 1e /1. •• n 110 ''"

1---,t-------f----+-,'-1 +----t-,--~:+---+--~: t--- --:·-I >----<f--.4,\ ·---·-}~ -----1 ,~; ---- -~~
15 I I I I SI .. us]I I " ? ., 0 ,. ., 0 Ill DEL '"

280

KEY
(llARACJ[flE]Jsc 11 OCfAL

]I U(CIMAL

US H(X

IF lf JF <If !if 6f

i--------ASCll GRAPHIC CHARACTER SET---------.

THE DEC MULTINATIONAL CHARACTER SET j APPENDIX A

8 9 10 11 12 13 14 15 <.UtuMt~

"",,,BITS
1.t> I•!. .,_...,

,,4 j,] t•} •.• 11(1

IOU
0 ~ A ~ ~~ ~ ~~ :a~ lJ o u u o

UO (_0 fiO lO IU "" DCS
.'Ill Ill 141 Jt..I t------t:;;-,-t---+-Jl-1-t---r,-.--,~---+--~~ ---- f--

·~~ PU1 ·:~ i ·;·, ± ·~~ 1 ·~: N '~~ ' ':~ ii ':: 0 0 0 l 1
1---~-,.-.,·~]/I J4l ·:1-+-if:l ~-t-x,;~--,-1-,-,-, ~---+--,.-,-·--,-+--,.,-,-+-----+----!

I~~ Pu2 ·~~ c ·~; ,~~ A ·~~ 0 l~~ a i:-; o i:; u o 1 o 2
t-------12Ulr----r;~-J-<---+-,.-J-<--3-+-~-J-f----+-M-IJ-~---+-J-1)-f----<-,.-J-+---<-~-l+-------jl--

I]. sTs 141 £ lb) 119 A •% o 111 a 12, 6 243 o o 1 • 3

IND

tU 'IJ Al UJ Cl OJ El fl

]04 }}4

w CCH , ..
84 !M

m ~ m A m -
lb.. •80 ;: 196 0 112 a na
A4 84 C4 04 £4

• 0

,., ,
lt»

0 I 0 0 4

NEL m MW ,.. 14!> 0 I 0 I 5

]Ob 'J/6

SSA '" SPA '"°
,..
lf.L .. 1l 18] A: 14601106, .. ••

iu1 r:n J07 J21 141)LJ

ESA '" EPA '" §
,~, ,.,
Al

"'' ltl] l!)!j 0: ll!i 211 (» 141 0 1 I I J
81 91 .,

(I 01 u t1 r----t-·-
J/O "" HTS "'" .. no 1~0 no , 110 uo lMi

1!.2 :U: 1t>t1 1e" E 100 QI 21b i n2 "248 1000 8
ua AH 8tl Cb 08 [II

·----lf--+---+---t----lc--+--+-+---1---

t~ ~-E-f---+--~~-~ ~ c- -~~-~-----'-+-~=~ E ~i u ~!t ' ~E
]12])l I J!>2 v 11J A)12)]2]~]

' u

,
u

f8

]II ,.,
••

]IJ

2!.0
fA v1s '~: 1~: ·~~ I~ e 2~~ u 2~~ a 2:~

r----1r,-1-,t---r,-3-1 +---1-,-,-,-t---t-11-3-t--.-.-+-,,-,~-n-,-~---+-,,-3-t--.-+-Jl-,-
PLD I~~ CSI \~~ « ·:'. » 1tl1 E l{)Ljb u 2L~ .. 2:~ u 2;~

Bti ~---1··--+---+---

~U ~ n = ~ % =) : U ~ 1 ~
r-----1r,-~~-0 -~---,r,-~-,~---r-2:-~-r---t-1"-,~~··---.-:-,~- ~~ J~~~lJ~~

RI 141 osc l!il Ill 112 18!1 i 10!. y· Ul I 1)1

t-----t--~-l---+!i_, ___ ,_•_u+---+--"-"-+---+-c_u+---+ ou ui
Jib]Jb]~ llb A 116 llb A

114 u , ... ,
--------j f L

y ~~~
___ flJ

Jli1

SS2 14;,o PM 1t:18 114 100 I 2Ub rn 1 .. 111

SS3 :ii APC ~~· t---i-;-i,-'. t--,-. _,r,,-~-': i--.-.. -t-~-~i •--JI--<-~-(,-;+---.-,.__,>-~-~~ ~ ;f;

i.-------OEC Supplemental Graphic Characters------~.,

I 0 0 l 9

l 0 l 0 10

I 0 I l 11

l I U 0 12
------ ..

I l 0 I 13
---- ...

l I l U 14

I l I l 15

281

Appendix B

Appendix B

Keywords

ABS
AND
AS
ASCII
ASK
ATN
CALL
CAT(ALOG)
CCPOS
CHAIN
CHR
CLEAR
CLOSE
CONT[INUE]
cos
DATA
DATE
DECLARE
Dl.:F
DEL[ETE)
DIM
DIMl<:NSION
DOUBLE
EDIT

ELSE
END
ERL
ERR
ERROR
ERT
EXIT
EXP
FILE
FIX
FOR
GO
GOSUB
GOTO
GRAPHIC
IF
INPUT
INT
KILL
LEN
LET
LINE
LINPUT
LIST

LOG
LOG IO
MERGE
MID
NAME
NEW
NEXT
NOT
NUM
OLD
ON
OPEN
OR
OUTPUT
Pl
PLOT
POS
PRINTSCREEN
PRINTUSING
PROGRAM
RANDOMIZE
READ
REM
RENAME

RENUMBER
RESTORE
RESUME
RETURN
RND
RUN
SAVE
SCROLL
SET
SHOW
SIN
SINGLE
STEP
STOP
SQR
TAB
THEN
TIME
TO
VAL
VIRTUAL
WITH
XOR

285

Appendix C

Appendix C

Logical Operators

C.1 NUMERIC VALUES IN LOGICAL EXPRESSIONS

Logical expressions can combine relational and/or other logical expressions,
and evaluate them to produce a single true/false result.

Logical expressions can also use logical operators to perform logical operations
on numeric values.

C.1.1 'n'ue and False Are Actually Numeric Values

The discussion of relational and logical operators in Chapter 2 used the terms
true and false to indicate the results produced by relational and logical opera­
tions. In fact, true and false are derived from numeric values. PRO/BASIC's
logical tests consider a value of 0 to be false and a non-zero value to be true.

PRO/BASIC assigns 0 to a false value and -1 to a true value. In the example
below the result of the relational expression (B% = C%) is assigned to A%.

A%= (B% = C%)

The variable A% is assigned true (-1) if the values in B% and C% are equal, or
false (0) if the values in B% and C% are not equal.

Log"ical expressions are often used to link relational expressions. Let's look at
an example from Chapter 2 of using logical operators with relational operands.

IF (A>B) AND (C<D) THEN GOTO 20

289

APPENDIX C I LOGICAL OPERATORS

The relational operands (A>B), (C<D) are first evaluated to true or false,
depending on the values in variables A,B,C, and D. Then the logical AND
operation is performed on those two values to produce one final result, either
true (-1) or false (0).

C.1.2 Integers in Logical Expressions

Logical expressions can use the true or false values output from relational
operations. Logical expressions can also use other numeric values as operands.

When numeric values are given to a logical expression, the Hi-bit internal inte­
ger representation is operated upon with reference to the particular logical
operator. (A bit is a digit used in the binary number system; it has a value of
0 or 1.)

The logical operations (NOT, AND, OR, XOR) are performed bit by bit on the
16-bit sequences. Each bit result is determined by the two corresponding bits of
the two operands, with reference to the truth tables.

The logical NOT operation complements each bit of the sequence, that is, 0
replaces 1 and 1 replaces 0 in the result of a NOT operation.

For example, assume that J% == 5 and K% == 6 in the following example:

1% = J% AND K%

The logical expression says perform the logical AND operation on J% and K%,
and store the result in 1%. The integers are represented in 16 bits:

5% = 0000000000000101 (binary)
6% = 0000000000000110 (binary)

The logical AND operation is performed on the corresponding bits from both
sequences of numbers. The result is:

0000000000000100 (binary)

This result is then stored in 1%. If 1% is accessed as a number, its value is 4
(decimal); if accessed as a logical, its value is true because I% contains a non­
zero value.

The results produced by a logical operator can then be tested. When PRO/
BASIC evaluates an IF statement containing a logical integer variable, a non­
zero value is considered true, and 0 is considered false. For example, this
statement:

290

LOGICAL OPERATORS I APPENDIX C

100 IF A% < > 0% THEN RETURN

can be replaced with:

100 IF A% THEN RETURN

The second statement executes faster because the value tested is simpler and
requires fewer operations.

C.1.3 The Logical Complement of -1 (true) is 0 (false)

Note that logical expressions with integer operands other than -1 and 0 can
produce unpredictable results. l<'or example, in the logical NOT operation that
follows, A% is true in both cases because in both cases A% is not equal to zero.
The binary and true/false values of A% are shown below.

A% = 0100100001000001 true
NOT A%= 1011011110111110 true

A% is true and its logical complement is also true.

Another example:

IF X% AND Y% THEN RETURN

The decimal, binary, and true/false values of X% and Y% are shown below.

X% = 2877 =0000101100111101 true
Y% = 9216 =001010001000010 true

0000000000000000 false

When the logical AND operation is performed on these integer values, the
result is false, which is obviously incorrect. Use only -1and0 to avoid problems
with logical expressions in logical operations. For example:

10 FALSE%= 0%
20 TRUE% = -1%

150 DONE% = TRUE%

200 IF NOT DONE% THEN 900

Logical operations performed on these values will perform predictably.

291

APPENDIX C I LOGICAL OPERATORS

C.2 MASKING

Masking is a useful technique that allows only specified bits to be visible to a
program, so that only specified bits will be tested for the value they contain.
These bits can then be tested, set, or cleared. For example, the function in line
10 below creates a mask that causes only the rightmost, or 3 least significant,
bits to be used. Bits 4 through Hi are ignored.

10 DEF FNMODB(NUMBERo/o) =NUMBER% AND 7o/o
20 INPUT lo/o
30 PRINT FNMODB(lo/o)
RUN
? 37
5

The function FNMOD8 performs a logical AND operation on 7-the mask-am)
on 37-the value input. The decimal and binary representations of37 and 7 and
the binary and decimal representation of the result, 5, are shown below:

292

37 = 0000000000100101
7 = 0000000000000111

0000000000000101 = 5 (decimal)

Appendix D

Appendix D

Advanced Programming Techniques

PROBASIC.BAS

PROBASIC.BAS is a file that is accessed each time PRO/BASIC is run. You
can include any PRO/BASIC program statement(s) for execution each time
PRO/BASIC is run. Do not include commands or immediate mode statements in
PRO/BASIC. BAS.

You can use PROBASIC.BAS, for example, to priut text on the screen when
PRO/BASIC is run.

Comment fields

Comment fields are an alternative to the use of REM statements to include
comments in a program. They are indicated by the exclamation point symbol (!).
PRO/BASIC ignores anything following the comment field.

The difference between comment fields and the REM statement is that when a
program with comment fields is listed from PRO/BASIC's memory the com­
ment fields are removed. This is useful when you wish to comment a program
fully but do not want to sacrifice too much space in memory.

Because comment fields are removed when the program is listed in PRO/
BASIC's memory, use the Professional text editor, PROSE, to list or edit
the program, to keep the comment fields in the program.

Comment fields will display when you view the program with PROSE.

295

Appendix E

Appendix E

PRO/BASIC Program Error Messages

I Invalid directory for device
'The device directory is unreadable or does not exist. Hardware error
possible on device.

2 File name not acceptable

File specification is not valid. Check for imbedded blanks, special char­
acters, proper format in the file specification:

device: <directory> filename. type;version

3 Required device is in use
Wait for the device to finish.

4 No room for file on device
There is not enough space for the file. Either the file cannot fit in the
available space on the device, or the device directory is full and cannot
accept another file name. Delete unnecessary files.

5 File or directory of file not found
No file by that name, or the directory of the file does not exist. Check
for spelling errors in the file specification, be certain that the requested
file is in the current directory.

6 Not a valid device
No device by that name. Check for correct device name.

7 Channel is already open
A file was already open on this channel when OPEN was executed.
Close file on channel.

299

APPENDIX E I PRO/BASIC PROGRAM ERROR MESSAGES

8 Device not available
Required device is not currently available.

9 Channel is not open

File must be opened on this channel before the file can be accessed.
Open file on channel.

10 File is protected or diskette is not in drive
File is protected against specified action, or there is no diskette in the
specified drive. Protection may be changed by using the file services.

11 End of file
All records in the file have been read. No more records can be read.

12 Input or output error
Possible hardware error during attempted operation. Check your sys­
tem with the System Maintenance diskette.

14 Device is write locked
You can not write to files on this device as Jong as it is locked.

16 File name already in use
Use a different file name or a·different file version, or delete the old file.

28 INTERRUPT-DO keys entered
The INTERRUPT-DO keys were entered at the keyboard.

45 Virtual array not yet open

The disk file containing the virtual array is not open. An OPEN com­
mand is needed to access a virtual array file.

46 Invalid channel number
The channel number is outside valid range. Channel numbers must be
positive and less than 16; channel 0 is reserved for the terminal.

47 Input line is too long
Keep termi!lal input lines shorter than 80 characters, and file records
shorter than 132 characters.

49 Exponentistoolarge

300

The EXP function ("e" raised to a power) overflows with numbers
larger than approximately 88. Exponents have low limits in general.

PRO/BASIC PROGR~M ERROR MESSAGES I APPENDIX E

50 Data has invalid format
Strings must have matching quotes or no quotes at all, and numbers
may not have quotes. Check that there are no charactel's between a
quoted string and the end of the line or the next comma.

51 Integer overflow

Integers can not be greater than 32767, or less than -32767. If values
outside this range are needed, use real numbers.

52 Invalid number

The input is not a number, is too larger or small, or is an incorrectly
formed number; for example, "$1.00" is not a valid number.

53 LOG can not accept this argument

A negative or zero value argument can not be passed to LOG or LOG IO.
Use positive values.

54 The square root of a negative number is not defined

Taking the square root of a number less than zero is not possible. Use
the ABS function to insure that numbers are never negative, or check
for negative values.

55 Subscript of array out of bounds

A subscript used in an array reference was le,,.; than 0 or larger than the
array dimension. Check for unexecuted DIM statements. Dynamic DIM
statements can change array sizes, so make sure the array is the ex­
pected size.

57 End of data

All data in the program has been read. Check for more READs than
data in DATA statements, or wrong line number specified for
RESTORE.

58 Expression in ON statement out of bounds

The index value in an ON GOTO or ON GOSUB statement is less than 1
or greater than the number of line numbers in the statement. Check
that the index value is in the correct range.

59 INPUT statement required more data than present in record

Input statement has more variables than elements in the record.
Change the number of variables to equal the number of elements in the
record, or change the record.

301

APPENDIX E I PRO/BASIC PROGRAM ERROR MESSAG~S

61 Division by :tero is not defined
The program attempted to divide a quantity by zero. Change· lhP pro­
gram logic or trap the error with an error handler.

70 Stack overHow
The program's logic requires too many locations to be recordrd for
program control. Check for missing RETURN statements, jumping out
of a FOR/NEXT loop, or FOR/NEXT or GOSUB nested too deeply.

71 The specified line can not be found
The line may have been deleted or renumbered. LIST the program to
check the actual line number.

72 No subroutine called; can not RETURN
Program executed a RETURN statement, but was not executing a
subroutine. Check program logic. Use GOSUB to enter a subroutine.
Use RETURN to exit a subroutine.

74 An undefined function is referenced
Functions must be defined before they are referenced.

88 Arguments do not match
A function or subroutine received an argument of the wrong type. For
example, string instead of numeric, or two-dimensional array when one
dimension was expected.

89 Expected fewer arguments
Too many arguments passed. For example, an array can not be defined
with more than 7 arguments; the MID$ function should have 3
arguments.

92 Matching NEXT must follow this FOR
The program has a FOR statement without a NEXT statement, or an
incomplete FOR/NEXTwithin a FOR/NEXT.

93 NEXT does not match immediately preceding FOR
The program has a NEXT statement without a FOR statement.

97 Expected more arguments
Too few arguments passed. For example, POS requires 3 arguments.

99 Expected a string
The program required a string where a numeric value was supplied.

302

PRO/BASIC PROGRAM ERROR MESSAGES I APPENDIX E

100 Expected a number
The program required a number where a string value was supplied.

104 Encountered Rlt~SUMft~ when not handling an error
Encountered a RESUME when not handling an error. Isolate error­
handling subroutines from normal processing with GOTO statements.

106 Inconsistent subscript usage
The number of subscripts of an array or a function can not change during
the execution of a program.

109 Unsaved changes, type EXIT again to exit
Changes to a program are lost if you leave PRO/BASIC without saving
the program. 'fype EXIT again to leave without saving the changes.

110 Expected an array
The DIM statement establishes the dimension of arrays. You can not
dimension a function.

111 No program to run
There is no program in memory.

112 Invalid line range
A line range is of the form "number-number", where both numbers are
positive and less than 32768, and the first number is less than the
second.

113 Strings and numbers can not be compared
Comparison between strings and numbers is not defined.

114 Can not continue
The program can not continue because it is at the end, or an error has
occurred. Use RUN or GOTO to start again.

115 Can not pass an entire virtual array
Virtual arrays can not be passed to subroutines or to other programs.
Use normal arrays.

116 PRINT USING format error
No field descriptor found in PRINT USING format string.

117 Too many FOR/NEXT statements nested
FOR/NEXT statements can be moved into subroutines to decrease the
number of nested FOR/NEXT statements.

303

APPENDIX E I PAO/BASIC PROGRAM ERROR MESSAGES

118 Implementation error

This is an error in the implementation of PRO/BASIC.

120 PRINT USING buffer overOow
A field or literal string in a PRINT USING format string is too large.
Decrease the size of the string to be printed.

123 STOP

The program has executed a STOP statement. Type CONTINUE to
continue.

126 No memory available

The program required more memory than was available. To gain mem­
ory, deallocate arrays, close files, use fewer files at a time, or split up
the program by using CHAIN.

138 File is locked
The file was not properly closed. Use the UNLOCK disk service to
unlock the file.

141 Invalid operation on file
The program attempted to PRINT, INPUT, or LINPUT from a virtual
array file. Virtual array files can only be accessed as arrays.

149 Not at the end of the file

The program attempted to write to a file when not at the end of the file.
Do not write to a file until the end has been reached by executing
INPUT or LINPUT statements.

227 String too long
The maximum length of a string is 255. Decrease the length of the
string.

228 Wrong type of file
You can not open a virtual array file without stating VIRTUAL in the
OPEN, or open a document file while stating VIRTUAL in the OPEN.

234 Renumbered line matches specified line
A reference to a nonexistent line was found. It was not changed, but a
renumbered line now matches it.

240 Invalid redimension of array

304

An array that was declared with constants can not be redeclared. Use
variables as subscripts in all declarations of the array ifthe array will be
redeclared.

PRO/BASIC PROGRAM ERROR MESSAGES I APPENDIX E

241 Numeric overflow
Result of an operation is a real number too large to be represented. The
largest representable value is approximately 1. 7E+38.

242 Numeric underflow
Result of an operation is a real number too small to be represented. The
smallest representable value is approximately .3E-38.

243 CHAIN to nonexistent line
The line referred to in the CHAIN statement does not exist.

249 Argument out of bounds
One or more of the arguments in a statement is outside the valid
bounds, or a range is specified from high to low rather than from low
to high.

250 An unimplemented feature
The program has tried to use a feature that is not implemented.

253 A system directive failure
The system failed to execute an action required by PRO/BASIC. Check
your system with the System Maintenance diskette.

305

Index

ABS, 176
Accuracy, 17, 21
Arlding a program line, 5
Algebraic functions

ABS, 176
EXP, 191
FIX, 192
INT, 194
LOG, 197
LOGlO, 198
SQR, 210

AND, 25
Appending to a file, 50, 53
Arithmetic Operators, 22
Arrays

see Initialization
definerl,35

Index

subscripted variables, 21
ASCII (function), 177
ASK POSITION, 227
Assigning values

see LET statement
to arrays, 36
to variables, 18
to virtual arrays, 36

ATN, 179

CALL COLLATE, 98
CALL INKEY, 129
CATALOG, 70
CCPOS, 180
CHAIN, 100
Chaining, 61

see PROGRAM statement
Changing a program line, 5
Choosing PRO/BASIC from a menu, 1

CHR$, 182
CLEAR, 228
Clipping, 247, 270
CLOSE, 49, 103
Commands

defined,69
Comment Fields, 295
Comparison, string, 29
Concatenation, 29
Conditional transfer, 65

IF statement, 126
Constants

numeric, 15
string, 16

CONTINUE, 72
Control characters, 4, 65
Control functions, 64
CONTHOL key, 4

see Using control functions
Conversion functions

ASCII, 177
CHR$, 182
NUM$, 201
VAL, 214

Conversion when handling numbers, 20
Coordinates, 220-226
COS, 184
Cursor, 2
Cursor control keys, 3

DATA, 104
DATE and TIME functions

DATE$, 185
TIME$, 213

DATE$, 185

309

INDEX

DEC Multinational Character Set, 15, 262,
279

DECLARE, 106
DEF, JOB
DELETE, 73
DELETE key, 3, 45
Deleting a program line, 6
Deleting characters, 3
DIM, 111
DIM#, 114
Displaying the program, 5

EDIT, 74
EDIT$, 186
END, 118
Entering a line, 3
ERL, 188
ERR, 189
Error Handling

ERL (function), 188
ERR (function), 189
ERT$ (function), 190
ON ERROR GOTO, 52, 139

ERT$, 190
Escape sequences, 65
EXIT, 75
EXIT key, 4
EXP, 191
Exponential notation, 16
Expressions, 22
Extended bit-map option (EBO), 219

File
defined, 38
device name, 41
directory name, 41
fields, 38
name, 39
records, 38
sequential, 39, 147
type, 39
versions, 40
virtual array, 39, 148

File handling functions
CCPOS, 180
TAB, 211

FIX, 192
FOR/NEXT, 119

see Loops
Functions

control, 64
defined,30
table of, 30
User defined <DEF), 108

310

GOSUB, 123
GOT0, 125
GRAPHIC PRINT, 229

Halting program execution, 60
HELP key, 4

Identifiers, 19
IF, 126
Immediate mode, 2
Implicit arrays, 38
Initialization, 18

arrays, 112, 116
variables, 107

INPUT, 45, 130
INPUT#, 49, 130
INT, 194
Integer constants, 16
Integer variables, 19
INTERRUPT/DO keys, 61

Keywords, 15, 285
KILL, 132

LEN, 196
LET, 133
Line Editor, 2
Line length, 14
Line numbers, 13
LINPUT, 46, 135
LINPUT#, 49, 135
LIST, 76
LOG, 197
LOGlO, 198
Logical expressions, 25
Logical names, 41
Logical operators, 25, 289-292
Loops

explained, 57
FOR/NEXT, 58, 119

Making changes to a program, 5
Memory, 9
MERGE, 77
MID$, 199
Modes of Operation

Immediate mode, 2
Program mode, 2

Monitor, 219
Moving the cursor, 2
Multiple branching, 54

ON GOTO statement, 145

NAME AS, 137
Naming files, 3!l
NEW, 80
NEXT, 138
NOT, 25
NUM$, 201
Numeric constants, 16-17
Numeric relational expressions, 24

OLD, 81
ON ERROR, 139
ON GOSUB, 142
ON GOT0, 145
OPEN, 48, 147
Operands, 22
Operators

arithmetic, 22-23
logical, 25-26
relational, 24

OR, 25
Order of Precedence, 22, 26

Pl, 203
Pixel, 240
PLOT, 231
PLOT ARC, 233
PLOT CURVE, 235
POS, 205
Precision, 16-17
PRINT, 43, 149

and control functions, 64
and print format, 43
and TAB function, 211

Print margins, 44
PRINT USING, 152
PRINT#, 49, 149
Printing to line printer, 151
PRINTSCREEN, 237
PRO/BASIC Character Set, 15

see Appendix A
PROBASIC.BAS, 295
PROGRAM, 158
Program Control, 53-59
Program Documentation, 14, 295
Program line length, 14
Program lines, 14
Program mode, 2

RANDOMIZE, 160
HEAD, ltl2
HEAD and DATA, 47
Real constants, 16
Real variables, 19
Relational operators, 24
HEM, Ui4
RENAME, 82
RENUMBER, 83

RESTORE, 165
RESUME, 166
HETURN, 167
HND, 207

see RANDOMIZE
HUN, 86

SAVE, 87
SCROLL, 238
SI<:T, 88
SET CHARACTER, 240
SET CHARACTER SIZE, 243
SI<:T CHARACTER SPACING, 245
SET CLIP, 247
SET COLOR, 248
SET COLORMAP, 250
SET CURRENCY, 168

see PRINT USING
SET FILL, 253
SET FILL OFF, 255
SI<:T FILL STYLE, 256
SET FlLLX, 258
SET FILLY, 260
SET FONT, 262
SET ITALICS, 263
SET LINF~ STYLE, 265
SET POSITION, 267
SET RADIX, 169

see PRINT USING
SET SEPARATOR, 170

see PRINT USING
SET TEXT ANGLE, 268
SET VIEWPORT, 270
SET WINDOW, 271
SET WRITING MODE, 273
Settable modes, 88
SHOW, 00
SIN, 209
Special characters, 15
SQH, 210
Statement separators, 14
Statements,

defined, 14
STEP, 92
STOP, 60, 171
String comparison, 29
String concatenation, 29
String constants, 15
8tring functions

EDIT$, 186
U:N, 196
MID$, 1!19
P08, 205

String relational exp1·essions, 29

INDEX

311

+--+
I CSA <IT> d 1 g 1 t a 1 I
I L I S T A dei C 0 H P 0 N E N T I 1 I 1 I
+--+
I Prodotto : PRO/BASIC Vl.2 I Codice : QBA04-A3 I
+--~-------+
I
I 1ta Codice Descrizione del componente
1~; ' I I I ' I I I I I I I 1 1 I I 1 I I 1 I I I I I I

I
I 1 BH-Nl99D-TH DCSPD (40.005.03>
I
I

.. I
i

I
I
I
I
I
I
I

1 BL-N606C-BH PRO/BASIC Vl.2 BIN RX50

1 AA-N601C-TH PRO/BASIC LANGUAGE MANUAL RELEASE NOTES

1 AV-U706A-TH REFERENCE CARD

1 LISTA DEI COMPONENT!

1 P.E.R.

1 CONTRATTO DI LICENZA SOFTWARE

1 BUSTA PER INVIO CONTRATTO DI LICENZA SOFTWARE

Sommario:
1 Dischetto(il 1 Hanuale(il
0 Nastro!il mag. 1 Scheda riferimento

Note :

1
1
3

Licenza Sw/Garanzia
DCSPD
Doc/Hw varia

<ClDiqital Equipment Corporation

HW

~I

I

I PC300 !PROFESSIONAL>

P/OS

!El Classificazione SW Supportato

<F> Durata qaranzia : gg 365

I Dispositivo di protezione del software : Assente
I
+--+
I Data I I I I I
I Ultima modifica I 04-FEB-85 I I I I I
+--+

Software
Product
Description

••DIGITAL CLASSIFIED SOFTWARE

Nome del Prodotto: PRO/BASIC, Verslone 1.2
per Professional

DCSPD 40.005.03

PRO/BASIC e un prodotto sviluppato e distribuito dalla Digital Equipment Corpo­
ration.

Descrlzlone
II BASIC e un linguaggio di programmazione di tipo interattivo, sviluppato al
Dartmounth College.
II linguaggio usa per eseguire le operazioni, semplici istruzioni molto simili alia
lingua inglese corrente e notazioni matematiche assai familiari.

PRO/BASIC e ii nome del BASIC interattivo adottato per ii sistema Professional
300. Le sue funzioni rispecchiano gli standard adottati dall'industria dei personal
per ii linguaggio BASIC, mantenendo tuttavia un alto grado di compatibilita con ii
BASIC disponibile sui piu grossi sistemi Digital PDP-11 e VAX.

Le caratteristiche del_PRO/BASIC sono:
- Nomi a lunghezza variabile (fino a 31 caratteri)
- Archivi sequenziali
- Archivio ad accesso diretto (matrici virtuali)
- Concatenamento di un programma ad un altro con passaggio parametri
- Possibilita di aggiornare e modificare le linee di istruzione a video
- Controllo immediato della sintassi durante l'inserzione dell'istruzione
- Strumenti per controllare la correttezza dei programmi con controllo immediato

dei passi d'esecuzione del programma stesso
- Singola e doppia precisione che permettono una accuratezza pari a 6 cifre ed a

16 cifre rispettivamente
- Matrice a dimensioni multiple (fino a sette)
- lstruzioni estese IF - THEN - ELSE
- Possibilita di scrivere piu istruzioni su una medesima riga
- Possibilita di stampa tipo calcolatrice
- Formato di stampa con l'istruzione PRINT USING
- Gestione programmabile degli errori (ON ERROR GO TO)
- Funzioni definibili dal programmatore

P/OS e un marchio registrato della Digital Equipment Corporation.

soft Ware
Ottobre 1984

BH-N199D-TH

PRO/BASIC Verslone 1.2
per Professional

-2-

- Funzioni aggiuntive per la grafica (piu di 20 istruzioni)

DCSPD 40.005.03

- Supporto per gestione di stringhe e matrici di stringhe
- Messaggi di errore significativi, ad es. "£ prevista la virgola" anziche "Errore di

sintassi" - i
- Guida interattiva alle operazioni

PRO/BASIC mette a disposizione dell'utente 18 Kbyte di memoria nell'area di
lavoro. L'aggiunta di una scheda per l'espansione della memoria non permette di
incrementare questo limite.

Hardware necessarlo
Qualsiasi configurazione valida di Professional 300 con:
- 512 Kbyte di memoria
- Adattatore per virgola mobile

Hardware addlzlonale
Modulo di estensione della memoria video.

Software necessarlo
Sistema Operativo P/OS a Disco Rigido, Versione 1.7

Software addlzlonale
Nessuno

lnstallazlone
A cura dell'utente.

Dlsposltlvl di protezlone del software
Assenti.

Forme e modi d'ordlne
II software in codice binario viene fornito in licenza di uso secondo le condizioni
generali espresse nel "Contratto di licenza di prodotti Software Digital della Libre­
ria DCS" che deve essere sottoscritto per ogni copia del software ordinato.

QBA04-A3 Versione inglese, licenza singola, moduli binari
su AX50, documentazione.

GARANZIA

Prodotto software
I prodotti software sono classificati dalla Digital nel Quadro "E" del "Contratto di
licenza di Prodotti Software Digital della Libreria DCS" come segue:

- Prodotti Software contrassegnati con "A"
La Digital renders gratuitamente disponibile su di essi, tramite ii proprio Centro
di Assistenza Telefonica (CAT-PC) assistenza e/o consulenza concernenti:
a) le modalita d'impiego sul Sistema di detti Prodotti Software;
b) La redazione da parte del Cliente di correzioni di errori o modifiche, anche

tempo ranee, necessarie per eliminare o limitare gli effetti di eventuali diffor­
mita dei Prodotti Software stessi rispetto alle relative specifiche funzionali di
cui al DCSPD.

PRO/BASIC Verslone 1.2
per Professional

-3- DCSPD 40.005.03

II servizio verra reso esclusivamente per telefono o per corrispondenza sulla
base dell'analisi di errore che ii Cliente fornira al CAT-PC all'atto della
richiesta di intervento, se del caso documentando i dati per iscritto tramite
appositi moduli (P.E.R.) in conformita alle relative procedure standard Digi­
tal indicate o richiamate nella Documentazione.
Quanto sopra all'espressa condizione che i Prodotti Software Digital siano in
versione standard Digital non modificata.
La garanzia avra durata pari al numero di giorni indicato nel Quadro "F" del
"Contratto di licenza di Prodotti Software Digital della Libreria DCS" con
decorrenza dalla data di consegna al Cliente dei Prodotti Software.

II servizio esclude espressamente la soluzione di problemi applicativi.

II Rivenditore e/o la Digital non garanfiscono che, nonostante ii diligente
intervento di quest'ultima tutti gli errori potranno essere corretti e le diffor­
mita superate, ovvero, che lo saranno nei tempi e modi voluti dal Cliente.

- Prodotti Software non contrassegnati con "A"
Sono torniti nello stato in cui si trovano, senza obblighi di garanzia o di altra
natura da pa rte della Digital, del Rivenditore e/o deg Ii eventuali terzi Produttori.

La Digital e/o i Rivenditori Digital locali, forniranno eventualmente dietro paga­
mento del corrispettivo e previa richiesta del Cliente, versioni aggiornate del
prodotto software che la Digital stessa rendera disponibili per l'uso generalizzato
da parte dei propri Clienti.

Per ulteriori servizi rivolgersi alla sede locale Digital o al Rivenditore Digital locale.

Support! magnetlcl
La Digital garantisce contro difetti di materiale o di lavorazione i supporti magne­
tici dei Prodotti Software forniti con questi ultimi, per un periodo di 90 (novanta)
giorni dalla data di consegna.
In base a tale garanzia l'unica obbligazione della Digital sara quella di sostituire i
supporti magnetici che risultino difettosi.
La sostituzione avverra per corrispondenza.

(

Product
Exception
Report

DIGITAL CLASSIFIED SOFTWARE

Modulo per la segnalazlone di anomalle del prodotto Software:

Nome del prodotto Codice del prodotto

Sistema Operativo -------- Versione -----------

Modello dells CPU-------- Serial No. ----------

Supporto magnetico ------- Grandezza dells memoria -----

Terminale sistema -------- Configurazione del sistema ____ _

i= possibile riprodurre, a comando, l'anomalia riscontrata? Si __ No __

Spazio riservato alla descrizione delle anomalie riscontrate:

softWare

(

(

Societa -----------

lndirizzo -----------

SPEDIRE A:

Telefono ----------- · Digital Equipment S.p.A.

Data Spedizione --------
CAT- PC
V.le Fulvio Testi, 11

Nome rivenditore -------- 20092 CINISELLO BALSAMO (Ml)

	00000
	00001
	00002
	00003
	00005
	00006
	00007
	00008
	00009
	00010
	001a
	001b
	002
	003
	004
	005
	006
	007
	008
	009
	011
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	033
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	095
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	217
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	277
	279
	280
	281
	283
	285
	287
	289
	290
	291
	292
	293
	295
	297
	299
	300
	301
	302
	303
	304
	305
	307
	309
	310
	311
	Inventory
	SPD-01
	SPD-02
	SPD-03
	SPR-01
	SPR-02

