
FOCAL-11 
User's Manual 

DEC-11-LFOCA-F-D 



FOCAL-11 
User's Manual 

OEC-11-LFOCA-F-O 

digital equipment corporation · maynard. massachusetts 



First Printing, September 1975 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may only be used or copied in accordance to the terms of such 
license. 

Digital Equipment Corporation assumes no responsibility for the use 
or reliability of its software on equipment that is not supplied by 
Digital. 

Copyright (S) 1975 by Digital Equipment Corporation 

The postage prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in 
preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DEC 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 

Contract No. 

DECsystem-IO 
DEC tape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB-8 

LIMITED RIGHTS LEGEND 

MASSBUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RSX 
TYPESET-8 
TYPESET-II 

Contractor or Subcontractor: Digital Equipment Corporation 

All the material contained herein is considered limited rights data 
under such contract. 



CHAPTER 1 

1.1 

1.2 

1.3 

1.4 

CHAPTER 2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.5.1 
2.5.2 

CHAPTER 3 

3.1 

3.1.1 
3.1.2 
3.1.3 
3.1.4 

3.2 

3.3 

3.3.1 
3.3.2 
3.3.3 
3.3.4 
3.3.5 
3.3.6 
3.3.7 
3.3.8 

3.4 

3.4.1 
3.4.2 
3.4.3 
3.4.4 

CONTENTS 

INTRODUCTION TO FOCAL-II 

THE PHILOSOPHY OF FOCAL-11 

FOCAL PROG~1 STRUCTURE 

FOCAL COMMANDS 

FOCAL ERROR DIAGNOSTICS 

FOCAL-II ARITHMETIC 

NUMBERS 

VARIABLE NAMES 

SUBSCRIPTED VARIABLES 

LITERAL CONSTANTS 

ARITHMETIC OPERATIONS 

Priority of Arithmetic Operations 
Use of Parentheses 

FOCAL-11 COW4ANDS 

INPUT/OUTPUT COMMANDS 

TYPE Command 
ASK Command 
OPERATE Command 
KILL Command 

COMPUTATIONAL COaMAND (SET) 

CONTROL COMMANDS 

GO Command 
IF Command 
DO Command 
RETURN Command 
QUIT Command 
FOR Command 
COMMENT Command 
XECUTE Command 

EDIT COMMANDS 

WRITE or WRITE ALL Command 
ERASE Commands 
MODIFY Command 
Replacing Lines 

iii 

Page 

1-1 

1-2 

1-3 

1-5 

2-1 

2-2 

2-3 

2-3 

2-4 

2-4 
2-5 

3-1 

3-1 
3-2 
3-3 
3-4 

3-4 

3-5 

3-5 
3-6 
3-7 
3-8 
3-9 
3-9 
3-10 
3-11 

3-11 

3-11 
3-12 
3-13 
3-14 



3.5 

3.5.1 
3.5.2 
3.5.3 
3.5.4 

CHAPTER 4 

4.1 

4.1.1 
4.1.2 

4.2 

4.2.1 
4.2.2 
4.2.3 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 

4.11 

4.12 

4.13 

CHAPTER 5 

5.1 

5.1.1 
5.1.2 

5.2 

5.3 

5.3.1 
5.3.2 

LIBRARY COMMAND 

Saving a Program Under RT-11 
Running a Program Under RT-11 
Modifying a Program Under RT-11 
Virtual Files 

FOCAL-11 FUNCTIONS 

TRIGONOMETRIC FUNCTIONS 

Sine Function (FSIN) 
Cosine Function (FCOS) 

LOGARITHM FUNCTIONS (EXTENDED FOCAL ONLY) 

Exponential Function (FEXP) 
Natural Logarithm Function (FLN) 
Logarithm Base Ten (FLOG) 

UNIBUS FUNCTION (FX) 

CHARACTER I/O FUNCTION (FCHR) 

RANDOM FUNCTION (FRAN) 

ANALOG TO DIGITAL CONVERTER FUNCTION (FADC) 

CLOCK FUNCTION (FCLK) 

ABSOLUTE VALUE FUNCTION (FABS) 

SIGN FUNCTION (FSGN) 

INTEGER PART FUNCTION (FITR) 

SQUARE ROOT FUNCTION (FSQT) 

USER PROGRa~~D FUNCTION (FSBR) 

FOCAL PARAMETER FUNCTION (FPRM) 

IMPLEMENTATION NOTES 

DEBUGGING 

Using the Error Diagnostics 
Using the Trace Feature 

CREATING A PAPER TAPE FOCAL-11 PROGRAM 
OFF-LINE 

ESTIMATING PROGRAM LENGTH 

PAPER TAPE VERSION 
RT-11 VERSION 

iv 

Page 

3-14 

3-15 
3-15 
3-15 
3-16 

4-2 

4-2 
4-2 

4-2 

4-3 
4-3 
4-3 

4-3 

4-4 

4-5 

4-6 

4-6 

4-7 

4-7 

4-7 

4-8 

4-8 

4-8 

5-1 
5-1 

5-3 

5-3 

5-3 
5-4 



CHAPTER 6 

6.1 

6.1.1 
6.1.2 
6.1.3 
6.1.4 
6.1.5 
6.1.6 
6.1.7 
6.1.8 

6.2 

6.3 

6.3.1 
6.3.1.1 
6.3.1.2 
6.3.1.3 
6.3.2 
6.3.2.1 
6.3.3 
6.3.3.1 
6.3.3.2 
6.3.3.3 
6.3.3.4 
6.3.3.5 
6.3.3.6 
6.3.4 
6.3.4.1 
6.3.4.2 
6.3.5 

6.4 

6.5 

6.6 

6.7 

CHAPTER 7 

7.1 

7.2 

7.2.1 
7.2.2 
7.2.3 
7.2.4 
7.2.5 
7.2.6 

ADVANCED FOCAL-1l 

DATA FORMATS 

Fixed-Point 
Floating-Point 
Text Output 
Octal Output (to) 
Binary Output (tB) 
Integer Output (tI) 
Current Date Output (to) (RT-ll only) 
Output Positioning (tT) 

PROGRAMMING TECHNIQUES AND COMMENTS 

ADDING FUNCTIONS TO FOCAL-ll (FNEW) 

The FOCAL-ll Floating Point Package 
The Floating-Point Accumulator 
The FOCAL-ll Floating-Point Routines 
Using Standard Functions 
FOCAL-ll Subroutines 
Passing Arguments to FNEW 
FOCAL-ll Data Structure 
Text Data 
Text Lines 
Text Input and Output 
Variables (Paper Tape FOCAL) 
Variables (RT-ll FOCAL) 
Memory Layout 
Interfacing FNEW to FOCAL-ll 
Naming the Function 
Entering the Function Into FOCAL-ll 
FNEW Example 

ASYNCHRONOUS I/O PROCESSING (FINT) 

ERROR HANDLING IN FOCAL (FERR) 

SCHEDULING ROUTINES BY TIME (FQUE) 

GENERAL NOTES ON SCHEDULING ROUTINES IN FOCAL 

RT-ll FOCAL FILE CAPABILITIES 

GENERAL COMMAND FORMAT 

LIBRARY COMMAND FIELD SYNTAX 

LIBRARY Field 
<cmd) FIELD 
<file #,> Field 
<file specification> Field 
<switches) Field 
<args) Field 

Page 

6-1 

6-1 
6-2 
6-3 
6-4 
6-4 
6-5 
6-5 
6-5 

6-6 

6-7 

6-7 
6-7 
6-8 
6-12 
6-13 
6-17 
6-18 
6-18 
6-19 
6-19 
6-19 
6-20 
6-22 
6-22 
6-23 
6-24 
6-24 

6-31 

6-33 

6-33 

6-34 

7-1 

7-2 

7-2 
7-2 
7-3 
7-3 
7-5 
7-6 



7.3 

7.3.1 
7.3.2 
7.3.3 
7.3.4 
7.3.5 
7.3.6 
7.3.7 
7.3.8 
7.3.9 
7.3.10 
7.3.11 
7.3.12 

7.4 

CHAPTER 8 

8.1 

8.2 

8.2.1 
8.2.1.1 
8.2.1.2 
8.2.1.3 
8.2.1.4 
8.2.1.5 
8.2.1.6 
8.2.1.7 
8.2.2 
8.2.2.1 
8.2.2.2 
8.2.2.3 
8.2.2.4 
8.2.2.5 
8.2.2.6 
8.2.2.7 
8.2.3 
8.2.3.1 
8.2.3.2 
8.2.3.3 
8.2.3.4 
8.2.3.5 
8.2.3.6 

8.2.4 
8.2.5 
8.2.6 

8.3 

8.3.1 
8.3.2 

LIBRARY COMMANDS 

LIBRARY OPEN Command 
LIBRARY INPUT Command 
LIBRARY MAKE Command 
LIBRARY CLOSE Command 
LIBRARY GET Command 
LIBRARY RUN Command 
LIBRARY NEXT Command 
LIBRARY SAVE Command 
LIBRARY WRITE Command 
LIBRARY TYPE Command 
LIBRARY ASK Command 
LIBRARY DELETE Command 

VIRTUAL FILES 

ARll/LPS AND DRII-K FUNCTIONS 

INTRODUCTION 

THE FUNCTIONS 

The ARll/LPS Clock 
Controlling the Clock: FTIC(N[,M]) 
Start/Stop 
Reading the Timer 
Waiting 
Time of Focal Interrupt 
Saving Interrupt Time 
Returning Time of Interrupt 
Analog to Digital Conversions 
Taking Samples 
Direct Sampling 
Waiting for External Events 
Asynchronous Sampling 
Allocating Buffer Space 
Saving Samples in an RT-ll File 
Direct Memory Access Sampling 
Graphics 
Creating the Display 
Allocating Display File 
On/Off 
Loading Graphics Instructions 
Saving and Restoring the Display File 
Accessing the Display Status Register from 
Focal 
Loading the LEDS 
Rapid Function Execution 
16-bit Logical Operations 

THE DRl1-K 

Output Operations to the DRI1-K 
Input Operations 

vi 

Page 

7-6 

7-6 
7-7 
7-7 
7-7 
7-7 
7-8 
7-8 
7-9 
7-10 
7-10 
7-11 
7-11 

7-11 

8-1 

8-3 

8-3 
8-4 
8-4 
8-5 
8-5 
8-6 
8-7 
8-7 
8-8 
8-9 
8-9 
8-9 
8-10 
8-12 
8-13 
8-15 
8-16 
8-17 
8-18 
8-18 
8-18 
8-24 

8-25 
8-27 
8-28 
8-28 

8-30 

8-31 
8-31 



CHAPTER 9 

9.1 

9.2 

9.2.1 
9.2.2 

9.2.2.1 
9.2.2.2 
9.2.2.3 
9.2.2.4 
9.2.3 
9.2.3.1 
9.2.3.2 
9.2.4 
9.2.5 
9.2.6 
9.2.7 
9.2.8 
9.2.8.1 
9.2.8.2 
9.2.9 
9.2.10 

CHAPTER 10 

10.1 

10.2 

10.2.1 
10.2.2 
10.2.3 
10.2.4 
10.2.5 
10.2.6 
10.2.7 

APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIX D 

APPENDIX E 

APPENDIX F 

APPENDIX G 

APPENDIX H 

APPENDIX I 

FUNCTIONS FOR USING THE VT-ll 

INTRODUCTION 

THE FUNCTIONS 

Setting Up the Display File 
Loading the Display File with Lines and 
Points 
FVEC(LOC,X,Y) 
FMOV (LOC, X, Y) 
FPT (LOC, X, Y) 
FSET(LOC,X,Y) 
Loading Characters 
FTXT(LOC,A,B,C, ... ) 
FSPC (LOC,A [,B] ) 
Inserting Display Jumps 
Choosing the Graphic Modes 
Loading Display Characteristics 
Clearing the Display File 
Returning Coordinates 
FXCO(LOC) 
FYCO(LOC) 
Handling the Light Pen 
Altering Display of Terminal I/O 

FUNCTIONS FOR USING THE VT55 

INTRODUCTION 

THE FUNCTIONS 

Turning the Graphic Mode On and Off 
Setting Display Modes 
Displaying Vertical and Horizontal Lines 
Drawing Points and Lines 
Displaying Markers 
Alphanumeric Cursor Control 
Generating Control Commands 

FOCAL-ll OPERATIONS AND THEIR SYMBOLS 

FOCAL-ll ERROR DIAGNOSTICS 

FOCAL-ll COMMAND AND FUNCTION SUMMARY 

EXTENDED FUNCTIONS 

LOADING FOCAL-II 

ASCII CHARACTER SET 

PAPER TAPE SYMBOL TABLE 

INTERNAL CODES 

GENERATING FOCAL 

vii 

Page 

9-1 

9-2 

9-3 

9-5 
9-5 
9-6 
9-6 
9-6 
9-7 
9-7 
9-8 
9-8 
9-9 
9-10 
9-12 
9-12 
9-12 
9-12 
9-13 
9-15 

10-1 

10-2 

10-2 
10-3 
10-4 
10-6 
10-7 
10-8 
10-9 

A-I 

B-1 

C-l 

D-l 

E-l 

F-l 

G-l 

H-l 

I-l 



Page 

APPENDIX J GLOSSARY J-I 

APPENDIX K DIFFERENCES FROM PAST VERSIONS OF FOCAL-II K-I 

APPENDIX L GENERATING FORLIB.OBJ HARDWARE ARITHMETIC 
OPTIONS L-I 

APPENDIX M ASSEMBLING AND LOADING THE FOCAL LAB 
EXTENSIONS M-I 

APPENDIX N SUMMARY OF FOCAL EXTENSION FUNCTIONS N-I 

viii 



PREFACE 

While this manual covers the language and usage of FOCAL-ll, it would 
be helpful to the reader to be familiar with the RT-ll system software 
as described in the RT-ll System Reference Manual (DEC-II-ORUGA-C-D). 
Paper tape users should become familiar with the PDP-ll Paper Tape 
Software Programming Manual (DEC-ll-XPTSA-A-D). 

For readers who may not be familiar with terms such as subscript, 
variable, etc., there is a glossary of terms in Appendix J. Appendix 
K summarizes the major differences between this version of FOCAL-ll 
and previous versions. 

ix 





CHAPTER 1 

INTRODUCTION TO FOCAL-II 

FOCAL-II (FOrmula CALculator) is an easily learned high-powered 
programming language. This dynamic combination of strength and 
simplicity makes FOCAL-ll an ideal language for students, managers, 
scientists, and technicians who do not have time to learn complex 
languages but require problem-solving capabilities. 

1.1 THE PHILOSOPHY OF FOCAL-II 

In general there are two main classes of problems which are usually 
programmed for computer solution. The first of these are problems 
which require numerous operations to be performed. These problems are 
usually programmed in a high level language such as FORTRAN. The 
other main class of program generally solved by computers are those 
which are capable of solution by hand, but are used often enough to 
warrant the ti~e spent in their programming. It is this latter class 
of programs to which FOCAL addresses itself. In addition, due to 
FOCAL's ease of use, those problems which have been done in the past 
by hand because of the time required to program them are now 
candidates for solution by a computer. With FOCAL, the user is able 
to write a program, correct it when necessary, and obtain results in 
usually a single on-line session with FOCAL. 

FOCAL is the actual program which is running on the PDP-ll computer. 
The program functionally consists of three major parts. The first of 
these is the command interpreter. This section reads the FOCAL 
command and actually performs the indicated operation, hence the term 
interpret~r. 'The second part of FOCAL, is the program storage area. 
This is the area used by FOCAL to remember the program written by the 
user. The third part of the system is the variable storage area. 
This area shares the same space in the computer's memory as the 
program storage area. When FOCAL is loaded, all memory not occupied 
by the command interpreter is set aside for program and variable 
storage. 

Appendix E describes the method used for loading FOCAL into memory. 
Whenever FOCAL displays an asterisk (*) upon the terminal, FOCAL is 
indicating that it is ready to respond to a user's direct1ve. The 
user's response can either be a FOCAL COMMAND (described in the next 
section) or a directive to save a set of FOCAL COMMANDs into the 
program storage area for later use (also explained further in the next 
section). 

1-1 



In general, whenever the user wishes to return to the point where a 
directive is expected, the user can strike CNTRL/C (depress the CNTRL 
key while striking the C) twice. In the RT-ll version, the user must 
also type RE followed by the RETURN key. Appendix E further describes 
methods of restarting FOCAL. 

1.2 FOCAL PROGRAM STRUCTURE 

A FOCAL PROGRAM is a collection of commands which have been organized 
to perform a given task. The method by which these commands have been 
organized is the key to FOCAL programming. 

A FOCAL STATEMENT is a set of one or more FOCAL COMMANDs placed on a 
line. The FOCAL STATEMENT is the smallest section of a program which 
may be referenced by FOCAL. For example, the following is a FOCAL 
statement. 

SET A=15:TYPE A:QUIT 

The FOCAL COMMANDs: SET, TYPE, and QUIT would be executed in that 
order. Note that when more than one FOCAL COMMAND is placed on a 
single line, they are separated by semi-colons (:). 

When a user wishes to store a FOCAL STATEMENT for later use, a 
statement number is assigned by the user as a means of referring to 
it. The statement number may be any value from 1.01 to 99.99 in .01 
increments, with the exception of those numbers ending in ".00". Line 
numbers do not require that two digits be specified after the decimal 
point. The line number 2.1 is equivalent to 2.10. When a user wishes 
to store a FOCAL statement, he or she simply types the line prefixed 
by the appropriate statement number. For example: 

1.1 SET A=1.5:TYPE A:QUIT 

This FOCAL STATEMENT would be entered into the FOCAL PROGRAM storage 
area, and could be referenced by FOCAL COMMANDs using the number 1.1. 
If another FOCAL STATE~mNT with this line number currently exists in 
the program storage area, it will be replaced when the new line is 
entered. 

All FOCAL STATEMENTs which have the same integer portion of their line 
numbers are collectively referred to as a FOCAL GROUP. This allows 
certain FOCAL COMMANDs to refer to these FOCAL STATEMENTs as if they 
were all a single long FOCAL STATEMENT. FOCAL GROUPS are referenced 
by using the integer portion of the line number. For example: 

1.1 SET A=1.5:TYPE A 
1.2 SET B=2.4:TYPE B 
1.3 SET C=A*B:TYPE C 
2.1 SET D=A+B:TYPE D 
2.2 TYPE "THE END" 
2.3 QUIT 

The FOCAL COMMAND: "ERASE 1.2" would remove just statement 1.2, \'lhile 
"ERASE 1" would delete lines 1.1, 1.2, and 1.3. 

1-2 



( 
GROUP 

PROGRAM 

GROUP 

( 1.05 COMMENT PROGRk~ TO CALCULATE C=FSQT(A*A+B*B) 
, 1.10 TYPE !"ENTER A,B" 
) 1.20 DO 2 
tl.30 TYPE 1"C",C,!; QUIT 

1
2.10 COt1MENT PERFORM CALCULATIONS 
2.20 SET C=FSQT(A*A+B*B) 
2.30 RETURN 

1.3 FOCAL COMMANDS 

Each FOCAL STATEMENT consists of one or more FOCAL COMMANDs with their 
associated arguments, if any. Every FOCAL COMMAND may be abbreviated 
by a single character and requires at least one space between the 
command and its arguments. This will cause memory to be conserved, as 
one word of memory is required for each two characters in the user's 
program. The following table lists the commands available in 
FOCAL-ll. 

Command Abbreviation Example Function 

ASK 

COMMENT C 

DO D 

ERASE E 

FOR F 

GO G 

ASK X 

C EXAMPLE 

DO 2 

ERASE 4.1 

Used to assign values to 
variables from the keyboard. 

Used for comments or 
non-executable program steps. 
Allows the user to document 
his program. 

Used to direct program 
execution to a statement or 
group of statements which will 
be executed until either a 
"RETURN" command is executed 
or the end of a statement or 
group is reached. When this 
occurs, the next statement 
executed is the statement 
following the last DO command 
encountered. 

Used to erase part of a 
program or an entire program. 

FOR I=1,5;SET X=X+I 

GO 2.4 

1-3 

Execute the remaining commands 
on the line while incrementing 
the value of the variable 
specified in the FOR command 
over the defined limits. This 
is used for loop control. 

Begin executing commands at 
the statement specified. Used 
to direct program control to 
the lowest line number, or to 
a specific group or statement. 



Command Abbreviation Example Function 

IF I 

KILL K 

LIBRARY L 

MODIFY M 

OPERATE o 

QUIT Q 

RETURN R 

SET S 

TYPE T 

WRITE w 

XECUTE x 

IF(A)1.1,1.2,1.3 

KILL 

Conditionally directs program 
execution using the results of 
testing the sign of A. (-,0, 
or +) 

Stops the program and 
activity. 

I/O 

LIBRARY RUN TEST 

MODIFY 1.1 

OPERATE TK 

QUIT 

RETURN 

SET A=1.53l 

TYPE nHl n I ,A 

WRITE 1 

Allows the program to access 
file struc'tured devices. (RT-ll 
version only) 

Used to alter words or 
characters in a stored program 
statement. 

Used to 
structured 
I/O. 

Used to 
execution 
to user. 

select non-file 
I/O devices for 

terminate program 
and return control 

Used to return program 
execution to the statement 
following the last nDO n 
command executed. 

Assigns the value of the 
result of an expression to the 
variable. 

Send output to the currently 
selected output device. Used 
to print text, results of 
calculations, and values of 
variables. 

Used to list part or all of a 
program. 

XECUTE FPRM(3,1) 
Used to call 
functions. 

and execute 

For the convenience of the user, a detailed FOCAL-II Command Summary 
is included in Appendix C. 

Several commands may be put together on the sarne FOCAL STATEMENT as 
long as the total statement does not exceed 79 characters in length. 
Semi-colons are used to separate FOCAL-II commands within a statement. 

All FOCAL STATEMENTs must be terminated by the carriage-return 
character. A FOCAL COMMAND may be terminated by either a semi-colon 
(;) or a carriage-return. For example: 

1.10 FOR I=1,5;DO 2;TYPE nI",I,l 

1-4 



There are a few exceptions to this rule, viz., the COMMENT, ERASE, and 
certain LIBRARY commands can only be terminated by a carriage-return. 

1.4 FOCAL ERROR DIAGNOSTICS 

FOCAL has the ability to detect many user errors. Whenever one of 
these errors is detected, FOCAL displays an error message of the form: 
?NN AT LL.LL and follows this with an asterisk (*). This message 
informs the user of two facts. The first is the portion of the 
message which describes the nature of the error which occurred. A 
complete list of these error numbers (?NN) will be found in Appendix A 
along with a short description of their meaning. The other portion of 
the error message (AT LL.LL) informs the user as to where in the 
program the error was detected. If a line number (LL.LL) is zero 
(0.00), this means that a directive issued by the user when an 
asterisk (*) appeared was in error. 

The special error message ?OO AT LL.LL is used to inform the user that 
FOCAL has been restarted. 

1-5 





CHAPTER 2 

FOCAL-ll ARITHMETIC 

2.1 NUMBERS 

A FOCAL-ll number may be any decimal number between 10t(-38) and 
10t(+38). Numbers may be optionally signed (+ or -), contain a 
decimal point with a fractional part or be in exponential format with 
a mantissa and exponent (see Data Formats, paragraph 6.1). In 
single-precision FOCAL-ll, all numbers are to approximately seven 
significant digits. The following numbers are identical in 
single-precision FOCAL-ll. 

60 
60.00 
6E+Ol 
600E-Ol 
60.00003 
6El 

Additionally, FOCAL-ll allows 
constants. An octal constant 
followed by up to six (6) digits 
are treated as a signed 16 
arithmetic expression. 

*ERASE 
*SET A=@400 
*SET B=@177777 
*SE'!' C=-@400 
*TYPE $ 

* 

S A= 256.0000 
S B= -1.0000 
S c= -256.0000 
S &= 0 .. 0000 

for the specification of octal 
is specified by the character n@n 

in the range 0 to 7. Octal numbers 
bit integer, and can be used in any 

When an octal constant is to be input by the ASK command, a leading 
plus or minus sign is required. 

*ERASE ALL 
*1.1 ASK A 
*1.2 TYPE Ai QUIT 
*GO 
:+@400 
= 256.0000* 

2-1 



*** WARNING *** ' 

octal numbers are used to represent integer values 
within the range of -32,768 to 32,767. Therefore, 
the expression @077777+@1 does not equal @lOOOOO. 
@100000 represents -32,768, while @077777 
represents +32,767. If a variable has the value 
of +32,767 (@077777), and has 1.0 added to it, the 
resulting value {+32,768} can not be represented 
as an integer, and if used in the FX function, or 
as an array subscript, for example, an integer 
overflow (?38) vlill result. 

2.2 VARIABLE NAHES 

When programming by computer, it is usually necessary to refer to the 
result of a calculation by a symbolic name. These names are called 
variables because the same name may be assigned different values at 
different times in a user's program. FOCAL-II variable names may 
consist of either one or two characters. The first character must 
always be alphabetic; however, it cannot be an F because FOCAL-II 
reserves that character for functions (see FOCAL-II Functions, Chapter 
4). The second character may be either alphabetic or numeric. The 
user may write variable names consisting of more than tvlO characters, 
but FOCAL-II uses only the first t\'10 characters to identify the 
variable. Therefore, the first two characters must be unique. 

A variable is represented internally as a binary fraction vlith an 
exponent. 

*SET A=546789 
*SET B=123456 
*SET CI=15 
*SET C2=30 
*SET DEPTH=lO 
*SET DISTANCE=Cl+C2 

Variables not starting with the letters A or F may be used in place of 
a line number. The reason for this restriction is that the letter "A" 
is used in the DO ALL command and the letter "F" is used in functions. 

*2.01 SET Z=5 

*2.02 DO Z 

The above commands are the same as writing 

*2.02 DO 5.0 

The ampersand character {&} is a special variable which if: used by the 
FSBR function. See Chapter 4 for details of its use. (This variable 
is not cleared by the ERASE command.) 

2-2 



2.3 SUBSCRIPTED VARIABLES 

At times, it is convenient to refer to a table of values by a single 
name, and refer to an element of this list by a number corresponding 
to the position of this element. This is the function of subscripted 
variables or arrays. The position of a value in an array is defined 
by the use of subscripts which are placed immediately after the 
variable name used to identify the array. These subscripts are 
enclosed in parenth~ses. FOCAL-II permits the use of either singly or 
doubly subscripted variables. 

*SET AR(O) =5 
*SET AR{l)=lO 
*SET AR(2) =15 
*SET AR(3) =20 
*SET AR(4) =25 
*SET AR(5)=30 
*FOR X=0,5; TYPE AR{X) ,! 
= 5.0000 
= 10.0000 
= 15.0000 
= 20.0000 
= 25.0000 
= 30.0000 
* 

In the above example, subscripts are used to set up an array called 
AR. Any element in the array (AR) can be represented by a subscript 
in the range 0 to 5. The first element in an array alt'lays has a 
subscript of O. 

It is not necessary that all elements of an array be used. FOCAL will 
only reserve space for the elements of an array \,Thich are actually 
used. 

A subscript may be a number, another variable, or an expression. If 
it is a number, it must be in range +127 to -128 for douhly 
subscripted variables and +32,767 to -32,768 for singly sw)scri2ted 
variables. For an explanation of the symbol table typeout for 
subscripted variables using the TYPE $ command, see Appendix B. 

2.4 LITERAL CONSTANTS 

Some programs may require an alpha-numeric keyboard response to a 
question asked during program execution. The anS\'1er typed to the 
question determines the next command to be executed (for example, in 
an initial dialogue). For this purpose, alphanumeric constants may be 
used in an IF statement to direct program execution as shovTn be 10\,1 : 

*1.10 TYPE "DO YOU WANT A LINE?",! 
*1.20 ASK "TYPE YES OR NO",ANS,! 
*1.30 IF (ANS-OYES)2.1,2.2,2.1 
*2.10 QUIT 
*2.20 TYPE n---_______ ~,l 
*2.30 GO 1.1 
*GO 
DO YOU WANT A LINE? 
TYPE YES OR NO:YES 

DO YOU WANT A LINE? 
TYPE YES OR NO:NO 

* 
2-3 



The 0 in OYES indicates to FOCAL-ll that the characters following the 
o should be interpreted as numbers, not as a variable name. 

The ASCII characters A through Z have the values of 1 through 26, 
except for the character E which is interpreted by FOCAL-ll as an 
indication of floating-point format (see Data Formats). Therefore, in 
the above example, OYES will be interpreted as 25E+19, where Y=25 and 
S=19 

2.5 ARITHrmTIC OPERATIONS 

To print the results of arithmetic calculations, the user issues the 
FOCAL-ll command TYPE. This is followed by a space and the data to be 
calculated followed by the RETURN key. For example: 

*TYPE 6+10-3-1 
= 12.0000* 

User presses RETURN key. 
FOCAL-ll prints the answer. 

The above example shows two of the arithmetic operations (+ and -) 
performed by FOCAL-ll. 

Unless othenlise indicated, FOCAL-ll mathematical computations retain 
an accuracy of approximately seven significant digits. FOCAL-ll is 
also available in double precision. This version provides the user 
with approximately seventeen digits of accuracy. 

2.5.1 Priority of Arithmetic Operations 

Arithmetic operations are performed from left to right except when the 
operation to the right has priority or when parentheses are used. 

The priorities of FOCAL-ll arithmetic operations are: 

First priority 
Second priori t:{ 
Third priority 
Last priority 

When FOCAL-ll evaluates an 
arithmetic operations, the 
Therefore, FOCAL-ll evaluates 

exponentiation (t) 
multiplication (*) 
di vision (/) 
addition ( +) 
subtraction (-) 

expression 
above order 

which includes several 
of priority is followed. 

25+5*2+5 as 25+(5*2)+5 

or 

= 40.0000* 

because multiplication (*) has a higher priority than addition (+). 

A negative number may only be raised to a positive integer power. 

2-4 



2.5.2 Use of Parentheses 

The order of arithmetic operations may be altered by using 
parentheses: () or [] or <>. On some terminals, [and are formed 
by SHIFT/K and SHIFT/H, respectively. FOCAL alvlays computes the 
expression within parentheses first. 

If the expression contains parentheses 
"nesting") , FOCAL-ll executes the 
parentheses first and works out~Tard. 

(5 *< 2+3 >-5) t2 

is the sarne as 

(5*5-5) t2 

and as 

(25-5) t2 

and as 

20t2 

and as 

400.00 

2-5 

within parentheses (called 
contents of the innerMost 





CHAPTER 3 

FOCAL-II COMMANDS 

3.1 INPUT/OUTPUT COMMANDS 

3.1.1 TYPE Command 

The TYPE command is used to print results of calculations, values of 
variables, text or character strings, and variable tables. TYPE may 
also be used to print combinations of text and variables. 

The format of this command is the FOCAL COMMAND: TYPE followed by a 
series of expressions, variables, constants, or text strings. Any 
variable, constant, or expression, except text, in a TYPE or ASK 
command must be followed by either a comma, semicolon, or carriage 
return. In addition, the exclamation mark (1) causes a carriage 
return (CR) and line feed (LF) to be output to the terminal. 

The user may command FOCAL-II to print all of the user-defined 
variables (variable table) by using the TYPE command and a dollar sign 
($). This feature may be used as a debugging aid to determine the 
value of all stored variables in the user's program. 

Result of a Calculation 

*TYPE 1+1 
= 2.0000* 

Value of Variable or Variables 

Text 

*SET N=5*5; SET M=30 
*TYPE N,M 
= 25.0000= 30.0000* 

*TYPE "THIS IS A LINE OF TEXT",! 
THIS IS A LINE OF TEXT 
* 

Variable tables 

*TYPE $ 
S M= 30.0000 

3-1 



S G(27)= 3.5000 
S N= 25 0 0000 
S A(3)= 14.0000 
S &= 0.0000 * 

Combination of Variable and Text 

*SET N=25 
*TYPE "N IS",N 
N IS= 25.0000* 

3.1.2 ASK Command 

The ASK command is normally used in stored statements to enable the 
user to input numerical data during the execution of the program. 

The ASK command is used with a single variable or, more commonly, with 
a text string and a variable. When an ASK command is executed, 
FOCAL-ll prints a colon (:) or a text string and a colon, and the user 
types the value to be input. Each input value is followed by a 
terminator character. Terminators are SPACE, COMMA, ALTMODE, 
LINE-FEED and RETURN keys. 

The value is assigned to the variable when the terminator is typed. 
At any time before the terminator is typed, the value can be changed 
by typing a CNTRL/U immediately after the value and then retyping the 
correct value and a terminator. The RUB OUT key can be used to delete 
one character at a time. 

More than one value can be input with a single ASK command, and a 
colon (:) is printed for each variable specified. 

Carriage return and line spacing in 
controlled the same as with the 
paragraph 6.1). 

an ASK conunand with text are 
TYPE command (see Data Formats, 

The ALTMODE key is a special non-spacing terminator which enables the 
user to leave a previously assigned value unchanged. 

The LINE-FEED key is used to perform the same function as the ALTMODE 
key. In addition this character also performs a carriage return to 
start a new line. 

Alphabetic characters may be entered in response to an ASK command. 
See section 2.4 for details. 

Input to the ASK command may be an ex~ression instead of a value 
following the colon (:). This express10n will be evaluated using the 
current variables in the symbol table. If an expression is used, a 
leading plus or minus sign is required. 

The form of the ASK command is: 

ASK variable 

or 

ASK "text" variable 

3-2 



For example; 

*ASK "HOW MANY ENTRIES?",E 
HOW MANY ENTRIES?:5 

When this line is executed, 
FOCAL prints HOW MANY 
ENTRIES?: and the user types 
a value and a terminator. 

Using more than one variable in a single ASK command: 

*ASK "HI LIMIT",HI,"LO LIMIT",LO 
HI LIMIT:125 
LO LIMIT:50 

The values 125 and 50 are assigned to the variables HI and LO 
respectively. 

Using the ALTMODE 

*ASK "HI LIMIT",HI,"LO LIMIT",LO 
HI LIMIT: LO LIMIT:O User typed ALTMODE to keep 

the old value. 
*TYPE HI,1 LO 
= 125.0000 
= 0 

Inputting expressions: 

*1.1 SET A=l 
*1.2 SET B=2 
*1.3 SET X=3 
*1.4 ASK Y 
*1.5 TYPE Y 
*GO 
:+A+Xt2+B 
= 12.0000* 

3.1.3 OPERATE Command 

The OPERATE command is used to select the input and/or output device 
for the TYPE and ASK commands. FOCAL-ll selects the terminal keyboard 
and printer by default unless the user specifies, by the OPERATE 
command, another I/O device or devices. Selectable I/O devices are: 

P for the high speed paper tape punch 

R for the high speed paper tape reader 

T for the terminal printer 

K for the terminal keyboard 

L for the line printer 

The command OPERATE RP selects both the high-speed paper tape reader 
and punch. OPERATE TK selects both the low speed terminal keyboard 
and printer. 

The following example program prints ABC on the line printer and then 
on the console terminal. 

3-3 



*1.10 OPERATE L 
*1.20 TYPE "ABC"! 
*1 .. 30 OPERATE T 
*1.40 TYPE "ABC" 

3.1.4 KILL Command 

The KILL command is used to reinitialize all peripheral devices such 
as clocks and AID converters by doing a RESET instruction. Error code 
?09 is issued when the KILL command is executed. (CTRL/C halts the 
program but does not halt all I/O devices.) 

NOTE 

RESET is a PDP-ll machine language 
instruction, not a FOCAL-ll Command. In 
the RT-ll version of FOCAL (using the 
single job monitor), the KILL command 
performs a ".HRESET" monitor call. This 
will perform a similar function to the 
PDP-ll RESET instruction, but allows the 
RT-ll monitor to continue to function 
normally. The Foreground/Background 
version of RT-ll FOCAL performs the same 
function as if a tC and REenter sequence 
had been performed. 

Although the tc does not reinitialize 
all peripheral devices in RT-ll, it does 
purge all library channels which were 
open at that time. 

3.2 COMPUTATIONAL COMMAND (SET) 

The SET statement is used to set a variable equal to the result of an 
expression. All of the usual arithmetic operations, including 
exponentiation, may be used. 

The SET command consists of the command 
variable. This is then followed by 
expression to be evaluated. 

For example: 

*SET B=2 
*SET D=4 
*SET A=B*(6+8/D) 
*TYPE A 
= 16.0000* 

SET 
an 

followed by a 
equal sign (=) 

single 
and an 

In the RT-ll version, it is possible to display the results of all SET 
commands. For details, see section 5.1.2 of this manual. 

3-4 



3.3 CONTROL COMMANDS 

3.3.1 GO Command 

The GO command is used to instruct FOCAL to continue executing 
commands from memory. 

This command may have a line number, a group number, or no argument 
associated with it. 

The GO command, without an argument, 
FOCAL-ll to transfer control to the 
program and begin execution. 

is a 
lowest 

command which causes 
numbered line in the 

The GO command, with a line number as an argument, causes FOCAL-ll to 
transfer control to a specific line in the program and begin execution 
of the commands in ascending line number order. 

FOCAL-ll also allows a group number to be given in place of a line 
number. In this instance, program control would transfer to the first 
FOCAL statement in the group. 

In the above cases where an argument is used, this 
constant, a variable (not beginning with the 
expression. 

Example of a GO used with no argument: 

*1.1 SET A=l 
*1.3 SET 3=2 
*1.5 TYPE A,B 
*GO 
= 1.0000= 2.0000* 

may be 
letter 

either a 
A), or an 

In the above example the GO command caused execution to begin at line 
1.1. 

Transfer to a specific line: 

*SET A=O 
*SET B=O 
*1.1 SET A=l 
*1.3 SET B=2 
*1.5 TYPE A,B,QUIT 
*GO 1.3 
= 0.0000= 2.0000* 

In the above example, A and B are set equal to zero before the start 
of the program. Since the GO causes program execution to begin at 
line 1.3, line 1.1 is never executed and A is not set to 1. 

Example of group transfers: 

*SET A=O 
*SET B=O 
*1.1 SET A=l 
*1.2 SET B=2 
*1.5 TYPE A,B;QUIT 
*GO 1 
*= 1.0000= 2.0000* 

3-5 



3.3.2 IF Command 

The IF command lets the program make decisions to transfer program 
control after a comparison. 

The normal IF command format is: 

IF (expression) linel,line2,line3 
or 

IF (expression) groupl,group2,group3 

The expression or variable is evaluated, and program control is 
transferred to "linel" if the value of the expression is less than 
zero, "line2" if the value is zero, or to "line3" if the value is 
greater than zero. In addition FOCAL-ll allows the user to specify a 
group number in place of any line number in the IF command. This will 
direct program control to transfer to the first statement in the 
specified group. 

The IF command format can be altered to transfer program control to 
one of two lines: i.e., if a semicolon or a carriage return is 
immediately after the first line number, control goes to the first 
line number if the value of the expression is less than zero. If the 
value is greater than or equal to zero, control goes to the next 
sequential command. 

If a semicolon or a carriage return follows the second line number, 
control goes to the first or second line number, depending upon 
whether the value of the expression is less than or equal to zero. If 
the value is greater than zero, control goes to the next sequential 
command. 

The program below transfers control to line number 2.1, 2.3 or 2.5 
according to the value of the expression in the IF command. 

*2.1 TYPE "LESS THAN ZERO"; QUIT 
*2.3 TYPE "EQUAL TO ZERO"; QUIT 
*2.5 TYPE "GREATER THAN ZERO"; QUIT 
*IF (25-25) 2.1,2.3,2.5 
EQUAL TO ZERO* 

Example of an IF with less than 3 line numbers: 

*2.20 IF (X) 1.8;TYPE "Q" 

When line 2.20 is executed, program control goes to line 1.8 if X is 
less than zero. If X is greater than or equal to zero, Q is typed. 

Another example using less than three line numbers: 

3.19 IF (B)l.8,1.9 
3.20 TYPE B 

If B is less than zero, control goes to line 1.8; if B equals zero, 
control goes to 1.9; and if it is greater than zero, control goes to 
the next sequential command, in this case line 3.20, and the value of 
B is typed. 

3-6 



CAUTION 

When using non-integer arithmetic in the IF 
command, a test for zero may not always be 
appropriate due to the nature of the 
floating-point arithmetic used by the computer. 
To avoid this problem, the programmer should 
either avoid using non-integer arithmetic in the 
IF command, or test for fractional values less 
than the tolerance desired and set the value to O. 

IF state~ents that test the running variable in 
FOR loops which use non-integer increments, are 
particularly senRitive to this problem. For 
example: 

1.10 FOR A=-5,.1,5;DO 2 
1.20 QUIT 

2.10 IF (A)2.20,2.30,2.40 
2.20 RETURN 
2.30 TYPE "EQUAL TO ZERO"iQUIT 
2.40 RETURN 

The above program will never ~o to statement 2.30 
because the value 0.1 can not be represented 
exactly by FOCAL. This causes the value of A to 
be slightly less than zero after fifty iterations. 
If statement 2.10 were written as: 

2.10 IF (FABS(A)-0.01)2.30,2.20 

then statement 2.30 would be executed after fifty 
iterations of the FOR in line 1.10. This is 
because A was now being tested for the case where 
its magnitude was less than 0.01. Notice that the 
third number is not present. This is to further 
demonstrate that if a number is not present, the 
IF command will transfer to the next sequential 
line (2.20) in the user's program. In this case, 
only the first number (2.30) was needed, since if 
the expression is zero, and the line number is not 
given, then statement 2.20 would be executed. 

3.3.3 DO command 

At times, it is beneficial to have a section of a program perform a 
general function which is used in several other portions of a program. 
For this reason, the DO command is provided in FOCAL. This command 
causes transfer to a specified point in a user's program, and then 
automatic return to the point in the program from which it was called. 
The DO command is used to cause execution of single lines or groups of 
lines. Control is returned to the command following the DO command 
after the subroutine is executed. 

If the user types a command such as DO 3, the DO command treats the 
group of program lines beginning with 3 as a subroutine. Control 
proceeds in ascending order through the group numbers until the end of 
the group is reached. 

3-7 



~e DO ALL command executes the entire program as a subroutine. 

DO c~L~ands may be nested, i.e., while executing a DO command, another 
DO command may be encountered and executed. The number of nested DO 
commands is limited only by the amount of memory available for 
preserving information as to where to return. 

If this memory space is exhausted, and the user attempts to use more 
than is available, the user will get an error. If th~ RT-ll monitor 
is used, a ?M-TRAP TO 4? message will be given. A RE (REenter) 
command may be given to restart FOCAL. Paper-tape users will be 
notified by a ?09 error, followed by an asterisk (*). This amount of 
memory space may be altered by using the /B switch when linking FOCAL 
under RT-ll (see Appendix I). 

In most instances, the user need not be concerned by this, as 
sufficient memory has been reserved for a moderate amount of nesting. 
In order to ensure that this problem is not encountered, nesting of DO 
commands should be limited to three levels. 

The following is an example of the DO command: 

*1.1 SET A=l; SET B=2 
*1.2 TYPE "STARTING" 
*1.3 DO 3.3; TYPE "FINISHED" 
*3.1 SET A=3; SET B=4 
*3.3 TYPE A+B 
*GO 
STARTING= 3.0000FINISHED= 7.0000* 

The following is an example of nested DO's: 

*1.1 TYPE "BEGIN",! 
*1.2 DO 2 
*1.3 TYPE "END",!;QUIT 
*2.1 DO 5.1; TYPE A,! 
*2.2 DO 5.2; TYPE A,! 
*2.3 DO 7.5; TYPE A,! 
*5.1 SET A=l 
*5.2 SET A=2 
*7.5 SET A=3 
*GO 
BEGIN 
= 1.0000 
= 2.0000 
= 3.0000 
END 
* 

3.3.4 RETURN Command 

The RETURN command is used to exit from a DO subroutine at a line 
other than the last line of the group. When a RETURN command is 
encountered during execution of a DO subroutine, the program exits 
from its subroutine status and returns to the command following the DO 
command that initiated the subroutine status. 

3-8 



3.10 ASK Y; DO 10 
3.11 TYPE X; QUIT 

10.10 IF (Y)10.20,10.30,10.40 
10.20 SET X=-l . 
10.25 RETURN 
10.30 SET X=O 
10.35 RETURN 
10.40 SET X=l 
10.45 RETURN 

3.3.5 QUIT Command 

The QUIT command is used to stop the execution of a program under 
program control. FOCAL-1l then returns to command mode and prints an 
asterisk. The QUIT command does not affect the current operation of 
the I/O devices. 

3.3.6 FOR Command 

The FOR command is used to set up program iterations. 
command format is: 

*FOR A=B,C,D;commands 
*FOR A=B,Dicommands 

The general 

The variable A is initialized to the value B, then the command or 
commands on that line following the semicolon are executed. When all 
the commands on the line have been executed, the value of A is 
incremented by C and compared to the value of D. If A has not been 
incremented past the limit (D) the commands after the semicolon are 
executed again. This process is repeated until A is incremented past 
D, at which time FOCAL-ll goes to the next sequential statement. The 
command or commands will always be executed at least once. 

A must be a single variable. B,C, and D may be expressions, variables 
or numbers. If the value C is omitted, it is assumed that the 
increment is one. If C and D are omitted, the FOR command is handled 
like a SET command (i.e., A is set to the value of B) and the program 
will continue following the semicolon. The values of B,C, and D may 
be positive or negative. 

The DO command may be used in conjunction with a FOR command in order 
to access subroutines during the iterative process of the FOR command. 

*ERASE ALL 
*1.1 FOR X=1,1,5;DO 2 
*1.2 QUIT 
* 
*2.1 TYPE 1" X",X 
*2.2 SET A=X+lOO 
*2.3 TYPE 1" A",A 
*00 

X= 1.0000 
A= 101.0000 
X= . 2.0000 
A= 102.0000 

3-9 



X= 3.0000 
A= 103.0000 
X= 4.0000 
A= 104.0000 
X= 5.0000 
A= 105 0 0000* 

It is often useful to have one or more loops within a loop as in the 
following example. 

*1.10 FOR Z=1,3, TYPE " A B C " 
*1.20 TYPE ! 
*1.50 FOR A=1,3, DO 3 
*1.70 QUIT 

*3.10 FOR B=1,3, DO 4 

*4.10 FOR C=1,3, TYPE %l,A,B,C," 
*4.30 TYPE ! 

* 
*00 

A B C A B C A B C 
= 1= 1= 1 = 1= 1= 2 = 1= 1= 3 
= 1= 2= 1 = 1= 2= 2 = 1= 2= 3 
= 1= 3= 1 = 1= 3= 2 = 1= 3= 3 
= 2= 1= 1 = 2= 1= 2 = 2= 1= 3 
= 2= 2= 1 = 2= 2= 2 = 2= 2= 3 
= 2= 3= 1 = 2= 3= 2 = 2= 3= 3 
= 3= 1= 1 = 3= 1= 2 = 3= 1= 3 
= 3= 2= 1 = 3= 2= 2 = 3= 2= 3 
= 3= 3= 1 = 3= 3= 2 = 3= 3= 3 

Another way of writing the same program is: 

*1.1 
*1.2 
" 
*GO 

FOR Z=1,3, 
FOR A=1,3, 

3.3.7 COMMENT Command 

TYPE " ABC " 
FOR B=1,3, TYPE I, 

" 

FOR C=1,3,TYPE %l"A,B,C," 

The COMMENT command (abbreviated as C) causes the program line to be 
ignored by FOCAL-II. The user may use the C command to insert 
explanatory comments into the program. Program lines beginning with C 
are skipped when the program is executed. However, comments are 
printed in response to a WRITE command. (Refer to paragraph 3.4.1.) 

*ERASE ALL 
*1.1 CO~NT INITIALIZE VARIABLES 
*1.2 SET A=5 
*1.3 SET B=6 
*1.4 SET C=7 
*2.1 COMMENT PERFORM CALCULATION 
*2.2 TYPE A+B+C 
*GO 
= 18.0000* 

3-10 



NOTE 

A comment command may be terminated only 
by a carriage return. 

*ERASE ALL 
*1.05 SF.T A=l;SET B=2:SET c=o 
*1.10 COYMENT DEFINE C=A+BiSET C=A+B 
*1.20 TYPE C 
*GO 
= 0.0000* 

In this case, the SET commann following 
the comment will never be seen by FOCAL. 

3.3.8 XECUTE Command 

Some routines or functions do not return a value (i.e., they perform 
an operation rather than a calculation). To call such a routine 
requires a dummy SET command (i.e., SET X=FCHR(48» or the more 
efficient XECUTE command. The XECUTE command performs a subroutine 
call for these functions (such as FCHR or FSBR). Any expression may 
follow the XECUTE command. 

*XECUTE FCHR(48) Outputs the character O. (48(10) = 7 
bit ASCII code for 0.) 

*XECUTE FSBR(lO,S) Execute the lines in group 10 with 
variable & (ampersand) equal to 5. 

The FOCAL-ll functions, including the, special variable &, are 
described in Chapter 4. 

3.4 EDIT COMMANDS 

3.4.1 WRITE or WRITE ALL Command 

The WRITE or WRITE ALL command causes FOCAL-ll to print a program 
line, a group of lines, or an entire program on the console terminal. 
Using the WRITE ALL command after an editing session is a practical 
method of producing a clean listing of the program. 

*WRITE 2.1 
*WRITE 2 
*WRITE 
*WRITE ALL 

Print a line 
Print a group 
Print entire program 
Print entire program 

The write command can be used to create paper-tapes on-line. Once his 
program has completed and in command mode, the user may save it by 
putting it on paper tape. It is also possible to save and restore 
programs using RT-ll files. This is described in section 3.5 of this 
manual. The procedure for saving a FOCAL-ll program on-line is as 
follows: 

1. Make sure FOCAL-ll is in command mode(*). 
2. Type WRITE. 
3. Set low-speed punch to ON position. 
4. Type RETURN key. 

3-11 



FOCAL-ll will punch the entire program onto the low-speed paper tape 
punch and simultaneously print it on the terminal. Once the program 
has been punched, the paper tape punch should be immediately turned 
off. 

TO load and run a program previously saved on paper tape: 

1. Make sure FOCAL-ll is in command mode(*). 
2. Put the program tape in the low-speed reader. 
3. Switch the low-speed reader to START. 

The program will be put into memory the same as if the user were 
typing it on the terminal keyboard. When the entire program has been 
read into memory, the user should type CTRL/C since the asterisk 
printed when the WRITE command is finished is also punched and may be 
interpreted as a command. 

To load programs into the computer via the high-speed paper-tape 
reader: 

1. Make sure FOCAL-ll is in command mode(*). 
2. Put the program tape in the high-speed reader. 
3. Type 0 R (or OPERATE R) and the RETURN key. 
4. Either a. Paper-Tape FOCAL types CTRL/C when tape reading is 

completed or, 
b. RT-ll FOCAL automatically outputs ?OO AT 00.00 

error message. 

To save programs on paper tape using the high-speed paper-tape punch: 

1. Make sure FOCAL-ll is in command mode(*). 
2. Type 0 PiW A;O T and the RETURN key. 

3.4.2 ERASE Commands 

The ERASE command erases a single line or a group of lines. 

ERASE used alone has the function of merely removing the variables 
without affecting the program text. The special character "&" 
(ampersand) is not cleared by this command in RT-ll FOCAL. This is so 
that a value can be passed from one program to another, while freeing 
all other variable area. The Paper-tape version of FOCAL does clear 
this variable with the ERASE command. This may also be thought of as 
initializing the values of the variables to zero. Modifications to 
the text using the MODIFY command mayor may not cause the variables 
to be deleted as if an ERASE command was given. It is suggeste·~ ':~lat 
lines be retyped instead of using the MODIFY command if it is required 
that variables be saved. It is good practi.::-· to use an ERASE at the 
beginning of a program. 

The ERASE TEXT command leaves the variables intact but removes all 
program text in preparation for using another program of the same or 
smaller size ''lith the same variables. This command allows the same 
data to be used for many programs. 

The ERASE ALL command deletes the entire program. It is good 
programming practice to type ERASE ALL before starting to enter a new 
program. 

3-12 



The ERASE ALL and ERASE TEXT commands should never be used as part of 
a FOCAL program. The ERASE<line or group number> may be used inside 
of a program under the following conditions. 

1. It is not part of a FOR command. 
2. It is not used as part of a DO. 
3. It is the last command on that line. 

Examples of the ERASE command: 

*ERASE 2 
*ERASE 2.2 
*ERASE 
*ERASE TEXT 
*ERASE ALL 

Deletes all lines that begin with 2. 
Deletes line 2.2 
Initialize variables to zero. 
Delete text, leave variables intact. 
Delete both text and variables. 

3.4.3 MODIFY Command 

The MODIFY command is used to change, insert, or delete characters 
within a line without the need to retype the entire line. The format 
for MODIFY is: 

MODIFY line number RETURN key 
Search character 

The search character is not printed. After the user has typed the 
line number, RETURN key, and search character (which is not echoed). 
FOCAL-ll prints the contents of the specified line up to and including 
the search character. When printing stops, the user has the following 
options: 

1. Type new characters in addition to those already printed. 
The new characters are inserted at that point. 

2. Type a form feed (CTRL/L). This causes the search to proceed 
to the next occurrence, if any, of the search character. 

3. Type CTRL/G(bell). The user can then change 
character he specified in the MODIFY command 
another search character (again not echoed). 

the search 
by typing 

4. Type the RUBOUT key. This causes FOCAL-ll to delete a 
character, starting with the last character printed and 
moving one character to the left each time RUBOUT is typed. 
FOCAL-ll echoes each character deleted. Groups of deleted 
character are separated from the rest of the line by 
enclosure in back-slashes (\). 

5. Type CTRL/U or back arrow (~). This causes FOCAL-ll to 
delete everything between the current character and the line 
number. 

6. Type the RETURN key. This causes FOCAL-ll to terminate the 
line at that point, deleting everything to the right. 

7. Type the LINE FEED key. This is normally done after the user 
has exercised one or more of the above options. After the 
user has modified the line, he may type LINE FEED and cause 
the remainder of the line from the search character to the 
end to be printed and saved. 

3-13 



*7.01 FOR C=2,3; TYPO %l,A,B,C," " 
*MOOIFY 7.01 
FOR C=2\2\1,3; TYPD\O\E %l,A,B,C," " 

In the above example, 2 was typed as the search character for line 
7.01 (Note that the search character did not print.) FOCAL-ll stopped 
typing when it encountered the search character (2), and the user 
type:', the RUBOUT key to delete the 2. Then he typed the correct 
character 1. Next he typed CTRL/G(bell) and the D key to change the 
search character. FOCAL-ll continued to print the line until the 'new 
search character was encountered. The user typed RUBOUT to delete the 
D and then typed the correct character E. He then typed the LINE FEED 
key and the remainder of the line was printed. 

*WRITE 7.01 
7.01 FOR C=1,3; TYPE %l,A,B,C," " 

The WRITE command can be used to display the corrected line. 

The MODIFY command cannot be used to change the line number itself, or 
to divide the line into two lines. Once the MODIFY command has been 
started, the best way to undo a mistake (for instance an unintentional 
CTRL/U) is to type a CTRL/C. If the RT-ll version of FOCAL is used, a 
REENTER command is also required. FOCAL will print ?OO AT 00.00 and 
return with an asterisk. 

3.4.4 Replacing Lines 

It is sometimes easier to replace a line in a program rather than 
attempt to make a modification to it. To replace a line, retype the 
line number followed by the new command or commands. The old line is 
automatically erased. 

3.5 LIBRARY COMMAND 

THE LIBRARY command, provided in the RT-ll version of FOCAL, allows 
the user to access any RT-ll file structured device. 

A file is a collection of information which can be stored on a 
mass-storage device such as a disk or a DECtape, and assigned a name 
which can be later used to reference this information. A file 
structured device is any device which is capable of storing one or 
more files. 

One of the features of the RT-ll operating system is to maintain files 
in a manner which allows them to be easily accessed by the user. The 
RT-ll version of FOCAL makes use of this feature through the FOCAL 
LIBRARY commands. 

The user is allowed to store information (programs and data) on a 
RT-ll file-structured device and assign to it a unique name which can 
be used to reference the material. 

This name (which will be refered to in the examples as "file-name") is 
composed of two separate parts. The first part of the file name 
consists of up to six (6) characters. These characters may be either 
letters, numbers, or both. No other characters may be used in a file 

3-14 



name. The second portion of the file name is optional. This portion 
is called the file extension because it qualifies the first part of 
the file name. This section may be composed of up to three characters 
having the same restriction on special characters as the first part. 
If this part of the file name is specified, a period (.) must be 
placed between the first and second parts. If this section is not 
specified, FOCAL will automatically supply ".FCL" as an extension. 

Some examples of legal file names appear below: 

FILE. EXT 
PROGOl 
DATA. 001 
123456.789 

This section should provide enough material for the user to effectivly 
utilize the LIBRARY command. Due to the versitility of this command, 
Chapter 7 has been devoted to providing the user with a full 
explaination the features available. 

The material presented in this section pertains to all RT-ll versions 
of FOCAL-11. 

3.5.1 Saving a Program Under RT-ll 

In order to save a program on an RT-ll file for later use, the LIBRARY 
SAVE command is used. 

After a program has been entered into memory, a command of the form: 

LIBRARY SAVE file-name 

is given to FOCAL. This command will cause FOCAL to save the user's 
program in the specified file. If an older version of this file 
existed, it would be deleted when this version of the program was 
saved. 

3.5.2 Running a Program Under RT-ll 

Once a program has been saved, it can later be recalled from the RT-ll 
file and started by giving the command: 

LIBRARY RUN file-name 

This will cause the specified program to be brought into memory, the 
variables erased, and the program started as if a GO command was 
issued. 

3.5.3 Modifying a Program Under RT-ll 

In order to modify an existing program using FOCAL under RT-ll, three 
distinct steps should be taken. These are: 

1. Retrieve the program into memory. 
2. Modify the program as described in Section 3.4 
3. Save the modified program. 

3-15 



Both steps 2 and 3 have been discussed previously. There remains only 
the method of loading a program into memory without starting it. This 
is done by using the LIBRARY GET command. 

The function of this command is to input a file under RT-II just as if 
the user had entered the contents of the file on the terminal. This 
means that if a user already had a program in memory at the time that 
the LIBRARY GET command was issued, the new program which was being 
entered would combine with the program already in memory, replacing 
lines which have the same line number, and inserting lines where no 
line had existed before. This is useful if the user wishes to include 
a general subroutine into a program. 

The LIBRARY GET command should be combined with an ERASE ALL command 
when using this command to load a program for modification. This will 
ensure that only the desired program will be in memory at that time. 

For example: 

*ERASE ALL (The user clears memory) 
*LIBRARY GET file-name (The program is loaded) 
* 

3.5.4 Virtual Files 

In addition to saving and restoring programs under RT-II, it is 
possible to use RT-II files for storing data in the form of arrays 
similar to normal arrays. Files used in this way are called VIRTUAL 
FILES S1nce it looks to the programmer as if the variables reside in 
memory instead of on the file. 

Preparing a Virtual File for use 

In order to access a file on an RT-II file structured device, the 
LIBRARY OPEN command is used. The form of this command is: 

LIBRARY OPEN file#,file-name[size]/Z/V:variable 

All files must have a number associated with them so that the user is 
able to refer to them within his program. The file# can range from 
zero (0) to seven (7). 

If no file by the specified name is found (i.e. the first time a file 
is used), the LIBRARY OPEN command will create one according to the 
parameters specified in the command. 

If a file by the specified name already exists, then the LIBRARY OPEN 
command will use the data placed in it. 

If it is desired to either alway create a new file, or to always use 
an existing file, the LIBRARY MAKE and LIBRARY INPUT commands may be 
used. These commands have the same format as the LIBRARY OPEN 
command. 

For example: 

or 
LIBRARY MAKE file#,file-name[size]/Z/V:variable 

LIBRARY INPUT file#,file-name/V:variable 

3-16 



The LIBRARY INPUT command does not need all of 
specified for the LIBRARY MAKE or LIBRARY OPEN 
because LIBRARY INPUT command may only use existing 
create them. Therefore, the information which 
creating files is not needed, and may be eliminated 
example. 

the information 
commands. This is 
files, and can not 
is only used for 

as in the above 

The "[size]" parameter informs FOCAL as to the number of data blocks 
to be reserved for the file if it is to be created. The value which 
1S placed inside of the brackets ([]) must be a numerical constant. 
Variables and expressions are not allowed. There is ~ means of 
altering this value under program control. This is described in 
Section 7.2.4. In general, the user should maye this value equal to 
the result of following expression: 

(maximum subscript)/64+l (truncate result) 

or for doubly subscripted variables: 

(maximum second subscript)*4+l 

More information concerning the "[size]" parameter, and its relation 
to Virtual Files can be found in Section 7.4. 

The /Z indicates that the array should be initialized to zero if it is 
created. If a file already exists, the data stored in it will not be 
destroyed. 

Accessing the data in a Virtual File 

The variable in the LIBRARY OPEN, r~E, or INPUT commands specified 
after the IV: should be the name by which the data is to be 
referenced in the user's program. For example, if "/V:X(O)" was 
specified in the LIBRARY OPEN command, then whenever the program 
referenced the variable "X(n)", the information will be stored on the 
RT-ll file rather than in memory. There is no restriction on the use 
of the variable. 

Subscripts used in a Virtual File should be positive integer values 
within the range of 0 to 32,767 for singly subscripted variables, and 
from 0 to 127 for doubly subscripted variables. It is possible to use 
negative subscripts, but due to the extra considerations required for 
their use, information can be found in section 7.4. 

Virtual Files created by the single and double precision versions of 
FOCAL are not compatable. Once data has been placed in a Virtual 
File, only the version of FOCAL which created it should access the 
data. Provisions are available to use Virtual Files in a manner which 
can be compatable with other versions of FOCAL. This is described in 
Section 7.2.5. 

One fact which the user should be aware of is that the variables are 
stored on a device much slower than memory. In order to prevent the 
necessity of accessing the mass storage device each time that data is 
requested by the user, FOCAL reserves a small amount of memory for 
each Virtual File in use. When a variable is needed by the program, 
FOCAL checks to see if the data is contained in the region of memory 
reserved for that file. If it is, the data is immediately made 
available to the program. If the requested data is not in memory, 

3-17 



FOCAL must first check to see if the user program has altered the 
contents of any of the data currently in memory. If any data had been 
altered, this data is rewritten to the device. Then FOCAL reads the 
data requested from the mass storage device. When this data is read, 
several adjacent (subscript-wise) variables are also read from the 
device into memory. If a program then references one of these 
adjacent variables, FOCAL will be able to return to the user with the 
results immediately. 

Closing a Virtual File 

When processing of a virtual file is completed, FOCAL must be informed 
of this fact so that it is able to ensure that all of the data is 
recorded properly in the RT-ll file. This is done by using the 
LIBRARY CLOSE command. There are two major forms of this command. 
These are: 

LIBRARY CLOSE filet 
and 

LIBRARY CLOSE 

The first form of this command is used to te~inate activity on a 
specific file specified by the filet. The other form is used to close 
all open files. It is usually a safe practice to perform the latter 
form of LIBRARY CLOSE command before issuing a QUIT command in a 
user's program. Files will not be closed by the QUIT command itself. 
This is so that data files can be left open for several programs to 
use. 

Example 

For example, suppose a user \,Tished to use a virtual file. The 
following program will open a file, set the elements equal to the 
value of the subscript squared. 

1.10 LIBRARY ~~E 0,DATA[2]/Z/V:X(0) 
1.20 FOR I=O,lOO;SET X(I)=It2 
1.30 LIBRARY CLOSE 0 

The data is now placed in the file: "DATA.FCL". Since 100 was the 
highest subscript value, the file size was calculated to be 100/64+1=2 
(when truncated). 

A second program can now be written to use the file "DATA.FCL". This 
program will use the old data and output the sum of the squares: 

1.10 LIBRARY INPUT 3,DATA/V:Y(0) 
1.20 SET SUM=O 
1.30 FOR 1=0,100; SET SUM=SUM+Y(I) 
1.40 LIBRARY CLOSE 3 
1.50 TYPE !"THE ANSWER ",SUM,!;QUIT 

It should be noted that data can be read from a file by using a 
different variable from which it was created. This was illustrated by 
the above example, since the data was created using X(n) and was later 
used by the variable Y(n). 

3-18 



Statement 1.10 in both programs could have been replaced by a LIBRARY 
OPEN command. The form of this command would have been: 

1.10 LIBRARY OPEN (0 or 3),DATA[21/Z/V:(X(0) or Y(O» 

3-19 





CHAPTER 4 

FOCAL-ll FUNCTIONS 

The FOCAL-ll functions, which are subprograms internal to 
FOCAL-ll, improve and simplify arithmetic capabilities and give 
the potential for expansion to additional input/output devices. 

In general, the FOCAL-II functions may be used an~here a number 
or a variable is legal in a mathematical express~on. A standard 
function call consists of tyro or more letters beginning with the 
letter F and followed by an argument expression in parenthesis. 

Fxxx(expression) 

The following standard functions are available: 

FSIN (R) 
FCOS (R) 
FEXP(arg)* 
FLOG (arg)* 
FLN(arg)* 
FX(func,addr,data) 
FCHR(arg) 
FRAN ( ) 
FADC (channel) 
FCLK ( ) 
FADS (arg) 
FSGN (arg) 
FITR( arg) 
FSQT{arg) 
FSBR ( group, arg) 
FPRM {parameter ,value) 
FERR(group/line) * 
FINT(vector,group,pri,CSR 

Sine function (radians) 
Cosine function (radians) 
Exponential function 
Logarithm to the base 10. 
Natural logarithm 
Access to UNIBUS 
Print and accept ASCII codes 
Random number function 
Analog to digital converter function 
Clock function 
Absolute value function 
Sign function 
Integer part function 
Square root function 
User programmed function 
Alter FOCAL internal parameters 
Define error handling routine 

addr,mask) * 
Establish a routine to be executed on 
the detection of a specific hardware 
interrupt. 

FQUE(count,group,interval,delay,priority)* 
Schedule a group or line number to be 
run "count" times, once every "interval" 
seconds, starting "delay" seconds from 
now. The routine will have a priority 
of "priority". 

The above functions may be used where any legal FOCAL-ll expression is 
allowed. For example: 

4-1 



*SET Z=A+FSQT(FSIN(X» 
'*XECUTE FCHR ( 4 8) 

NOTE 

The starred (*) functions are not 
available in either the 4K Paper-tape or 
the 8K RT-ll versions of FOCAL-II. Some 
of these functions can be obtained by 
using the FSBR function as indicated in 
Appendix D. 

The FERR, FINT, and the FQUE functions 
are discussed in Chapter 6. 

4.1 TRIGONOtlliTRIC FUNCTIONS 

4.1.1 Sine Function (FSIN) 

The sine function (FSIN) is used to calculate the sine of a 
user-specified angle in radians. The format for FSIN is: 

FSIN(angle) 

For example: 

*~YPE FSIN(3.14159/4) 
= 0.7071* 

The format for calculating the sine of an angle in degrees is: 

~SIN(degrees*3.l4l59/l80) 

For example: 

*TYPE FSIN(30*3.l4l59/l80) 
= 0.5000* 

4.1.2 Cosine Function (FCOS) 

The cosine function (FCOS) is used to calculate the cosine of a user 
specified angle in radians. The format for FCOS is: 

FCOS(ang1e) 

For example: 

*TYPE FCOS(2*3.141S9) 
= 1.0000* 
*TYPE FCOS(.SOOO) 
= 0.8776* 
*TYPE FCOS(45*3.14159/180); C COS OF 45 DEG. 
= 0.7071* 

4-2 



4.2 LOGARI'I'HH FUNCTIONS (EXTENDED FOCAL ONLY) 

4.2.1 Exponential Function (FEXP) 

The exponential function is used to calculate powers of "e". For 
example: 

SET X=FEXP(-A*T) 

will set the value of X to 
-A*T 

e 

This function is the inverse of the natural logarithm funtion (FLN) • 

i.e. 
FLN (FEXP (X) ) 

is equal to 
FEXP (FLN (X) ) 

which is equal to 
X 

4.2.2 Natural LogarithM Function (FLN) 

The natural logarithm function is used to find the power to which "e" 
must be raised in order to be equal to the specified argument. This 
function is complementary to the exponential function (FEXP). See the 
section above on FEXP for an example of this. 

4.2.3 Logarithm Base Ten (FLOG) 

This fWlction is used to determine the power to which 
raised in order to be equal to the specified argument. 

ten must be 
For example: 

is equal to: 

''1hich is equal to: 

4.3 UNIBUS FUNCTION (FX) 

10tFLOG(X) 

FLOG(lOtX) 

x 

The UNIBUS control function FX is used to control additional device 
options, nonstandard peripherals and references to core storage. The 
first argument "func" can have a value that is negative (-2,-1), zero 
(0), or positive (+1,+2) to select the function that is to be 
performed. The functions are respectively read (+1,+2), logical "AND" 
(0), and load (-1,-2) onto the UNIBUS. The reason that two functions 
are supplied for the read and load operations, is that one is for byte 
transfers (+1,-1), and the other is for word operations (+2,-2). The 
second argument "UNIBUS-address" must be either an octal number (16 
bits maximum) or a variable name (maximum integer value of 15 bits). 
The function selected will be performed on the UNIBUS address 
specified with the data given, if any, in the third argument ("data"). 
The format for FX is: 

FX(func, UNIBUS-address, data) 

XECUTE FX(+2,@177570) 

4-3 

One word is 
UNIBUS from 

taken from the 
address 177570, 



XECUTE FX(+1,@177570) 

XECUTE FX(-2,@1630,X} 

XECUTE FX(-1,@35773,x) 

XECUTE FX(O,@432l0,ALPHA) 

NOTE 

and is returned as a signed 
integer value. If the address 
does not exist, or is odd, 
error ?09 will result. 

Data is taken through the 
UNIBUS from address 177570 
(where 177570 is an octal byte 
address) and the value of the 
function is the UNIBUS 
reading. 

One word is put into the 
UNIBUS to octal address 1630, 
where x is the data stored. 
If the address does not exist, 
or is odd, error ?09 will 
result. 

Data is put into the UNIBUS to 
octal byte location 35773 
(octal), where X is the data. 
If the address does not exist, 
error ?09 will be given. 

Bit information is selectively 
taken from the UNIBUS by 
"ANDing" the contents of 
UNIBUS address 43210 with the 
value of the bits of ALPHA. 
The value of the function call 
is the result of the 
intersection of the argument 
and the data found in the 
UNIBUS address. The address 
used must be even numbered, or 
an error ?09 ~ill result. 

The "@" used 
examples is 
the digits 
octal. See 
information. 

as a prefix in the above 
used to inform FOCAL that 

immediately following are 
section 2.1 for further 

4.4 CHARACTER I/O FUNCTION (FCHR) 

The FCHR function is used to accept and/or print ASCII codes. Its 
principal use is to convert characters from ASCII to decimal or from 
decimal to ASCII. The function manipulates the value of a single 
character from the currently selected input or output device (see the 
OPERATE command for how to select devices). If the argument is 
negative then the function will read the next available eight bit 
character from the input device. If the argument is zero or positive 
then that (decimal) value will be converted to an eight bit integer 
and transmitted to the currently selected output device. (The value 
of the function is the integer value of the argument.) Multiple 
arguments and literals are accepted. This function makes it possible 
to print control characters to the line printer \'lhen selected. 

4-4 



The format for FCHR is: 

FCHR(args) 

*COMMENT 77.=115(8)=ASCII"M"=OM+64 
*XECUTE FCHR(77,@12,OB+64,-1) This command 
M 8-bit ASCII 

prints three 
characters: 

B* 
"M", 

<line-feed), and "B". The 
function then inputs one 
character from the input 
device. This last character 
becomes the (decimal) value of 
the function. It is not 
echoed. 

The function may also be used recursively. 

*SET Z=FCHR(FCHR(-l» This command accepts a 
character from the input 
device, outputs the same 
8-bits, and leaves the value 
in the variable z. 

The FCHR function is useful in analyzing a character or string of 
characters. For example, FCHR can be used to check the answer given 
in a teaching program which uses questions and answers. In a multiple 
choice quiz, the anS\'Ter to the following question 

THE PAPER-TAPE VERSION FOCAL-II RESTART ADDRESS IS : 
a) 111111 b) 000000 c) 000111 
YOUR ANSWER? B 

could be analyzed with the following code: 

1.45 SET RE=FCHR(-l) 
1.50 IF (RE-65)3.l0,4.l0,3.10 

3.10 TYPE "SORRY, THAT'S INCORRECT",17G 1.45 

4.10 TYPE "THAT'S CORRECT",! 

4.5 RANDOM FUNCTION (FRAN) 

The random number function (FRAN) is used to generate a value between 
-1 and 1. This is formed by generating a sixteen bit random integer 
within the range of -32,768 and +32,767. This value is then scaled 
down to the normalized range of -1 to +1. The format for FRAN is: 

FRAN () 

*TYPE FRAN ( ) 
=- 0.3916* 
*TYPE FRAN ( ) 
= 0.1659* 

FRAN(l) restarts the sequence 

*XECUTE FRAN (1) 

4-5 



FRANCl} executed once at the beginning of a program is useful in 
debugging that program because the same sequence of random values is 
produced each time the program is restarted. When the RT-ll version 
is first loaded, the lO\'lest portion of the time of day is used for the 
first random number. This insures randomness for the first program 
run. 

4.6 ANALOG TO DIGITAL CONVERTER FUNCTION (FADC) 

The analog to digital converter function FADe allows easily programmed 
access to as many as 16 AID channels on the ARII. The argument is the 
channel number. The function returns a value in the range 0 to 4095, 
which corresponds to the digital value returned by the device. 

The format for FADC is: 

FADC (channel) 

*SET A=FADC(3) Channel 3 is read and it's value 
stored in the variable A. 

For other types of AID converters, use the FX(func, addr, data} 
function. 

4.7 CLOCK FUNCTION (FCLK) 

The clock function FCLK has a 
SOths) of a second since the 
real-time clock (KWll-L) runs 
used to set the time of day. 
FOCAL, the elapsed time since 

value of the time elapsed in 60ths (or 
clock was started. In RT-ll, the system 
at all times. The RT-il TIME command is 

When the FCLK function is used in RT-ll 
midnight (00:00) is returned. 

The paper tape version of FOCAL-II attempts to start the user's clock 
when it is loaded. This version supports either the KWll-L or the 
KWlI-P clocks. The KWll-L line clock is tried first. If this clock 
is not available, then the KWII-P programmable clock will be tried. 

In the Paper-Tape version the clock can be stopped by the KILL 
co~and, the statement FX (-1,@177546,0) for the KWll-L, 
FXC-l,@172540,0) for the KWll-P, power-fail, or manual-restart, but 
not by CTRL/C. 

The format for FCLK is: 

* SET X=FCLK () 

If an argument is given, this value will be subtracted from the 
present value of the clock. 

*1.1 SET X=FCLK() 
*1.2 DO 7 
*1.3 TYPE FCLK(X)/60 

=14.5000* 

Get initial clock value 
Execute group 7 
Print the elapsed time 
in seconds 
14.5 seconds were spent in group 7 

4-6 



4.8 ABSOLUTE VALUE FUNCTION (FABS) 

The absolute value function (FABS) is used to obtain the absolute 
(positive) value of an expression. The format for FABS is: 

FABS(expression) 

*TYPE FABS(-66) 
= 66.0000* 
*TYPE FABS(+23) 
= 23.0000* 
*TYPE FABS(-99.05) 
= 99.0501* 

4.9 SIGN FUNCTION (FSGN) 

The sign function (FSGN) is used to obtain the sign of a number. If 
the argument is <0, FSGN returns -lJ if -0, FSGN returns 0, and if 
>0, +1. 

FSGN(expression) 

*TYPE FSGN (6-4) 
= 1.0000* 
*TYPE FSGN ( 0 ) 
= 0.0000* 
*TYPE FSGN(-7) 
=- 1.0000* 

4.10 INTEGER PART FUNCTION (FITR) 

The integer part function (FITR) is used to obtain the integer part of 
a number. The format for FITR is: 

FITR (expres sion) 

NOTE 

The FITR function returns the integer 
part of a number by truncating the 
practional portion. It is not 
equivalent to the greatest integer 
function, as for negative numbers the 
truncation causes the result to be 
larger than the argument. i.e.: 
FITR(-3.5)=-3 and -3>-3.5 

*TYPE FITR(5. 2) 
= 5.0000* 
*TYPE FITR(55.66) 
= 55.0000* 
*TYPE FITR(77.434) 
= 77.0000* 
*TYPE FITR(-4.1) 
=- 4.0000* 

4-7 



4.11 SQUARE ROOT FUNCTION (FSQT) 

The square root function (FSQT) is used to compute the square root of 
an expression. The format for FSQT is: 

FSQT(expression) 

*TYPE FSQT(4) 
= 2.0000* 
*TYPE FSQT(9) 
= 3.0000* 
*SET Z=FSQT(144)~TYPE Z 
= 12.0000* 

It is illegal to take the square root of a negative number in FOCAL. 

4.12 USER PROGRAHMED FUNCTION (FSBR) 

The user programmed function FSBR (group,arg) is similar to the 00 
command in that it is used to call the indicated group of lines (or 
single line) as a subroutine. The function call transmits the second 
argument to the variable & (ampersand) and when the subroutine 
returns, the last value of & (ampersand) is taken as the function 
return (i.e., the final value of the function FSBR (group,arg». 

*1.2 SET Y=FSBR(S,A+B+C) 

In a group 5 subroutine, the argument & (ampersand) is automatically 
set to A+B+C then & is used in the subroutine. The final value of & 
is returned as the final value of the FSBR function. Notice that the 
command which includes the FSBR function cannot be in the same group 
which is called by the FSBR function. 

This technique is analogous to the more cumbersome: 

*SET &=A+B+C~DO 5; SET Y=& 

The FSBR function can also be used to present the same argument to a 
sequence of functions, and can even be used recursively. 

*FOR J=S,1,14~ SET Y(J-S)=FSBR(J,FSQT(BETA» 

Refer to Appendix D for examples of extended functions which make use 
of the FSBR function. 

4.13 FOCAL PARAMETER FUNCTION (FPRM) 

It is often of use to the FOCAL-II user to be able to alter some of 
the operations of FOCAL-II to suit one's needs. In the past, the user 
was required to make physical patches (i.e. alter locations in FOCAL) 
to produce the desired Changes. The FPRM function now performs many 
of the more common alterations for the user under program control. 
There are two forms of the FPRM f~nction 

FPRM(prm) 
or 

FPRM(prm,value) 

4-8 



If the FPRM function contains only a single argument, the function 
will return as a value the current value associated with the parameter 
number specified. The value of this parameter will not be altered. 
If two arguments are specified, the first will designate the parameter 
number, and the second will specify a new value for that parameter. 
The function will return the old value of the parameter. The 
permissible parameters, and their functions are shown in the table 
below. 

Param * Default 

o o 

1 o 

2 73 

3 o 

4 @60 

5 o 

6 o 

7 x 

8 o 

FPRM Parameters 

Function 

Determine the top of FOCAL (RT-ll only) 
o - Full area (USR swapping) 
I - Top is below user area (USR non-swapping) 

(see RT-II Programming Manual for information 
on USR swapping) 

Extended symbol table 
o - Normal FOCAL symbols 
I - "BASIC" type symbols (RT-ll) 

"Sequential" symbol storage (Paper Tape) 

Terminal width for output of TYPE 

Switch for ":" and "=" in TYPE/ASK 
o - Characters are printed 
1 - ":" is not printed on ASK 
2 - "=" is not printed on TYPE 
3 - Neither ":" or "=" are printed on TYPE/ASK 

FOCAL input expressions from ASK 
o - Input of "YES" is the variable YES 

@60- Input of "YES" is constant OYES 
xx - This character is prefixed to all ASK input 

Extended debug mode (Section 5.1.2) 
o - Normal mode 
I - Line numbers are printed as well as variable 

values (using current type format) 
-1 - Same as above but format is %8.04 

output rounding switch 
o - Rounding is performed on TYPE output 
1 - Rounding is not performed on TYPE output 

Holds the current output position 
(should not be changed by user) 

Switch for leading zeroes on TYPE output 
conversions (TYPE to, tB, and tIl 
(Sections 6.1.3 - 6.1.5) 
o - Only significant digits are output 
1 - Leading zeroes are output 

4-9 



9 1 

10 o 

l~ o 

Floating point underflow error disposition 
o - Report error (?12) 
1 - Ignore underflow errors 

Scientific notation switch (Section 6.1.2) 
o Use standard floating point notation 
1 - Use scientific notation 

Time 
o 
1 -

scale for FQUE function (Section 
Time is in units of seconds 
Time is in units of "ticks" 

(either 1/60 or 1/50 of a 
second depending upon the 
power line frequency.) 

4-10 

6.6) 



CHAPTER 5 

IMPLEMENTATION NOTES 

5.1 DEBUGGING 

5.1.1 Using the Error Diagnostics 

Whenever FOCAL-ll detects an illegal command or improbable condition 
within a user's program, the execution of the program stops and an 
error message is printed in the form ?XX AT GG.ss, where ?XX is the 
error message and GG.ss is the line at which the error occurred. (See 
FOCAL-ll Error Diagnostics, Appendix B, for the complete list of error 
messages. ) 

For example, if the user types CTRL/C (and RE in RT-ll) to terminate a 
loop, the error message ?OO is printed and program control goes to 
command mode. In this case, the user ignores the message and types 
his next command. 

For example: 

*ERASE ALL 
*1.10 SET A=2i TYPE "A",A,! 
*1.20 SET B=4i TYPE "B",B,! 
.* 1. 30 GO 1. 01 
*1.40 TYPE "A+B",A+B 
*00 
A= 
B= 

2.0000 
4.0000 

?05 AT 1.30 
* 

?05 AT 1.30 indicates to the user that line 1.30 referenced a 
nonexistent line number, 1.01. 

5.1.2 Using the Trace Feature 

The user may want to check the logic in sections of his program. The 
trace feature is used for that purpose. To implement the trace 
feature, the user inserts a question mark (?) into a command string at 
any point. FOCAL-ll prints each succeeding character in the program 

5-1 



as it is executed until another question mark is encountered or until 
the program returns to command mode. 

For example, the trace feature is used to print parts of 3 lines in 
the following program: 

*ERASE ALL 
*1.1 SET A=l 
*1.2 SET B=5 
*1.3 SET C=3 
*1.4 TYPE ?A+B-C?,l 
*1.5 TYPE ?B+A/C?,l 
*1.6 TYPE ?B-C/A?,l 
*GO 
A+B-C= 3.0000 
B+A/C= 5.3333 
B-C/A= 2.0000 

Extended Debug features are also available in FOCAL-ll. To enable 
this feature, set FOCAL parameter 5 to a non-zero value, e.g. 
FPRM(5,1) (see Chapter 4 for information on the FPRM function). This 
mode, in addition to the normal debug output, displays the line number 
of the FOCAL statement to be executed. In the RT-ll version, the 
results of each SET and FOR command are also displayed. 

*ERASE ALL 
*1.1 TYPE %8.047SET A=l 
*1.2 FOR I=1,3JOO 2 
*1.3 QUIT 
*2.1 SET B=(B+A)*I 
*2.2 RETURN . 
*X FPRM (5,1) 
*GO? 

(enables p.xtended debug mode) 
(starts extended debug mode) 

C:FOCAL-llS V1 (RT-11) 14-AUG-74 
1.10 TYPE %8.047SET A=l 

[A= 1.0000] 
1.20 FOR I=l,[I= 1.0000] 

37002 
2.10 SET B=(B+A)*I 

[B= 106. 0000 ] 
2.20 RETURN 

[I= 2.0000] (this is from the FOR in line 1.2) 
DO 2 

2.10 SET B=(B+A)*I 
[B= 214.0000] 

2.20 RETURN 
[I= 3.0000] (this is from the FOR in line 1.2) 

DO 2 
2.10 SET B=(B+A)*I 

[B= 645.0000] 
2.20 RETURN 

[I= 4.0000] (this is from the FOR in line 1.2) 
1.30 QUIT 

* (Debug mode is now turned off.) 

5-2 



5.2 CREATING A PAPER TAPE FOCAL-ll PROGRAM OFF-LINE 

To create a FOCAL-ll program off-line, the procedure is: 

1. Turn the terminal knob to LOCAL. 
2. Set the low-speed punch to ON. 
3. Type the off-line program. Type the RETURN key and the LINE 

FEED key at the end of each line. Every time RETURN and LINE 
FEED are typed, type CTRL/@ (CTRL/SHIFT/P) three times. 

NOTE 

If the user types an incorrect character 
while he is preparing an off-line tape, 
he can correct the error by pressing 
RUBOUT. The user then types the correct 
character. 

To run a program created off-line, the procedure is: 

1. Load FOCAL-ll. 
2. Put off-line program tape in the low-speed reader. 
3. Switch the low speed reader to START. 

If a high-speed paper-tape reader is available: 

1. Load FOCAL-ll. 
2. Put the off-line program tape in the high-speed reader. 

3. Type OPERATE R. 

4. When the tape is finished being read, type CTRL/C to return 
to conunand mode. 

Either way, the program will be put into core the same as it would if 
the user were typing it on the terminal keyboard. 

5.3 ESTIMATING PROGRAM LENGTH 

5.3.1 PAPER TAPE VERSION 

In a 4K PDP-ll, FOCAL-ll permits approximately 450 (decimal) word 
locations for program text and variables. Space not used by text may 
be used for variables. Since FOCAL-ll uses four words for each 
variable stored in the variable table, and one word for each two 
characters of stored program, the approximate length of a program may 
be determined by the formula 

where: 

Length of program=4S+C/2+2L 

S=number of variables 
C=number of characters in program 
L=number of lines. 

If the total program area or variable table area becomes too large, 
FOCAL-ll types an error message (?10 or ?ll). 

5-3 



The following technique allows the user to find out how many memory 
locations are left for his use: 

*FOR I=l,lOOO; SET A(I)=l 

110 AT 00.00 
*TYPE %4,I*4,"LOCATIONS LEFT" 
=910 LOCATIONS LEFT* 

disregard error code 

The number 1000 in the FOR command is assumed to be large enough for a 
4K machine. A larger number would be required for a machine with more 
memory. At the end of this routine, use ERASE to clear all the 
variables A(I) from the symbol table. 

5.3.2 RT-II VERSION 

Estimating the program size is slightly more complex in RT-II than in 
Paper-Tape FOCAL. In Single precision: 

where: 
SV = 
NV = 
C = 

L = 
0 = 

LENGTH = 4*SV+3*NV+C/2+2*L+O 

Number of subscripted variables 
Number of nonsubscripted variables 
Number of characters in the program 

(excluding line numbers) 
Number of lines 
Overhead: 256 words per open file plus the maximum 
size required to contain all of the non-system device 
handlers required at one time by the user's FOCAL 
program. Each handler requires at least 256 words of 
memory. If a handler is larger than 256 words, memory 
is reserved in multiples of 256 words. Virtual files 
are not counted into the number of variables used in 
the above expression. 

For double precision users, the coefficients for SV and NV should be 
changed to 6 and 5 respectively. 

LENGTH(double precision) = 6*SV+5*NV+C/2+2*L+O 

5-4 



CHAPTER 6 

ADVANCED FOCAL-ll 

6.1 DATA FORMATS 

6.1.1 Fixed-Point 

Unless it is instructed to do otherwise, FOCAL-11 produces numerical 
results showing up to eight digits, normally four digits to the left 
of the decimal and four digits to the right. This is called 
fixed-point format. Leading zeros are suppressed, and trailing zeros 
are printed. For example: 

*TYPE 7777.7777,1111.1111,6666.6666 
= 7777.7771= 1111.1110= 6666.6669 

Although eight digits are shown in this format, only approximately 
seven digits are significant in single precision FOCAL. This is 
demonstrated in the above example by the number 1111.1111 which is 
printed as 1111.1110. The user may alter the fixed-point format by 
typing 

*TYPE %w.dd, 

where % is the FOCAL-11 format symbol, w is the total number of digits 
to be printed and dd is the number of digits to the right of the 
decimal point. Formats remain in effect until changed by the user. 

The numbers w and dd, called the "format specification", must always 
be positive integers. If dd is less than ten, a leading zero must be 
inserted. For example: 

*TYPE %4.02 
* 

indicates that the total number of digits is four and the number of 
digits to the right of the decimal is two. 

Notice that the example below has a comma immediately after the last 
number of the format specification. The comma separates the format 
specification from the data it is to format. 

6-1 



*TYPE %4.02, 12.22+2.37 
= 14.59* 

Once a format is requested by the user, all subsequent evaluations 
appear in that format until the user changes it. For example, 
FOCAL-ll is designed to initially evaluate numbers with four digits to 
the left of the decimal and four to the right (TYPE %8.04,). 

The TYPE format specification can also be an expression: 

*SET V=3.02 
TYPE %V,A,B,C 
= 0.00= 0.00= 0.00* 

6.1.2 Floating-Point 

If the user wants to use numbers 
possible with the fixed-point 
floating-point format by typing 

that are larger 
format, he may 

or smaller than 
request a standard 

*TYPE %,x 

where X is the number to be evaluated. 

For example: 

*TYPE %,678 
= 0.678000E+03* 

Where E represents "times ten to the", and +03 is the power of ten 
(10t3) The value of the expression is interpreted as .678 times 10t3 
or 678. 

After floating-point format is requested, all 
appear in floating-point format until the 
format. 

subsequent evaluations 
user specifies another 

The floating-point format enables FOCAL-ll to handle numbers as large 
as 1 times 10t38 and as small as 1 times 10t(-38). If the format 
specification is too small to print an evaluated number, FOCAL-ll will 
use floating"-point format. 

In double precision, the default size of the output field is extended 
to 12 digits after the decimal point. This allo\-1s for display of the 
extended precision. In addition, if a format of the form %w.dd is 
used with "w" being set to zero, "dd" digits will be displayed to the 
right of the decimal point. 

The various numerical data formats available with FOCAL-l1 are shown 
below: 

Format Number Printed Result 

TYPE %, .123456E02 = 0.123456E+02 
TYPE %8.04, .123456E02 = 12.3456 
TYPE %4.02, .123456E02 = 12.35 
TYPE %4, .123456E02 = 12 
TYPE %0.04 .123456E02 = 0.1235E+02 

6-2 



In addition, another mode of floating point notation is available with 
FOCAL-Il. If the user alters FOCAL parameter 10 (see Section 4.13) to 
a non-zero value, scientific notation will be used in place of the 
normal floating point format discussed above. The difference between 
scientific notation and normal floating point representation is that 
the normal representation uses a fraction (a number between zero and 
one) and a power of ten. Scientific notation uses a value within the 
range of one and ten along with its power of ten. 

For example: 

Standard Notation 

0.123456E+02 
O.OOOOOOE+OO 
O.500000E+Ol 

Scientific Notation 

1.234560E+Ol 
O.OOOOOOE+OO 
5.000000E+OO 

The FPRM function is used to enable and disable this mode: 

XECUTE FPRM(lO,l) 

will enable scientific notation in place of normal floating point 
representation, while: 

XECUTE FPRr1 (10,0) 

will return FOCAL to normal floating point representation. 

6.1.3 Text Output 

The user may request FOCAL-II to print text by typing 

*TYPE "text" 

where the text is a single character or a group of characters. The 
text is a string of characters which is printed exactly as it was 
typed on the user's terminal. 

*TYPE "THIS IS AN EXAMPLE OF TEXT OUTPUT",! 
THIS IS AN EXAMPLE OF TEXT OUTPUT 
* 

The carriage return and line spacing on the terminal are controlled 
with an exclamation mark (!). For example: 

*TYPE !,"LINE l",!,"LINE 2",!,"LINE 3",! 
LINE 1 
LINE 2 
LINE 3 
* 

If the user wants to return the carriage without line spacing, he may 
use the number sign (i). For example: 

*TYPE "L N l",i," IE",! 
LINE 1 
* 

6-3 



NOTE 

After typing 72 characters on a 
line, FOCAL-II automatically types 
a CR-LF and continues on the next 
line. The value 72 may be changed 
using the FPRM function. See 
Chapter 4 for details. 

6.1.4 Octal Output (to) 

In addition to outputting a number in decimal notaotion, FOCAL-II has 
the capability to display °a constant, variable, or expression in the 
form of an octal number. This is performed by the special output 
sequence of 

to(constant,variable, or expression} 

used in place of a normal value in a TYPE command. This feature may 
only be used within the value range of -32,768 to 32,767. Attempts to 
use this feature outside of this range will result in an error. 

This output mode does not normally output any leading zeros. For 
example: 

*TYPE "ABCD",tO(256},"EFGH",! 
ABCD40 OEFGH 
*TYPE to(@256),! 
256 
*TYPE to(-l),! 
177777 
* 

Leading zeros may be obtained by using the FPRM function, described in 
Chapter 4, set parameter number 8 to a non-zero value. 

NOTE 

Throughout this discussion tCHAR is 
used to describe the sequence (t 
key) followed by (CHAR). This is 
distinguished from the normal 
connotation of CTRL/CHAR. 

6.1.5 Binary Output (tB) 

The user may display output in the binary radix in a s·imilar manner to 
the octal method described above. This is accomplished by using the 
form of 

tB(constant,variable, or expression) 

in place of a value in the 
normally printed, but will 
non-zero value. For example: 

*TYPE tB(4) 
IOO*X FPRM(8,1) 
*TYPE tB(4) 

TYPE 
be 

command. 
if FOCAL 

6-4 

Leading zeros are not 
parameter 8 is set to a 



OOOOOOOOOOOOOlOO*SET A=S.S 
*TYPE tB (A+l) 
OOOOOOOOOOOOllO*X FPRM(8,0) 
*TYPE tB (A) ," " , to (A) , II " ,A, ! 
101 5 = 5.0000 
* 

6.1.6 Integer Output (tI) 

It is at times convenient to place an integer value within a text 
string, and not have excess spaces placed in front of the number due 
to formatting. For this reason, a method similar to the to and tB 
modes above is available for integer values. As an example, suppose a 
user desired to TYPE output of the form: THERE "'JERE xx ITERATIONS. 
and it is desired to not leave extra spaces within the line. This 
could be accomplished by the following statement: 

*SET ITER=348 
*TYPE "THERE WERE ",tI(ITER)," ITERATIONS."! 
THERE WERE 348 ITERATIONS. 
* 

The range of possible values which may be output in this manner is 
-32,768 to 32,767. Any attempt to output a number outside of this 
range will result in an integer overflow error (?38). 

6.1.7 Current Date Output (tD) (RT-ll only) 

RT-ll maintains a current date in the format of DD-MMM-YY where DD is 
the day of the month, ID1 is the month (abbreviated as the first three 
characters), and YY as the last two digits of the current year. 
FOCAL-ll allows the user to take advantage of this and request the 
nine character date to be placed into the user's output line. This is 
accomplished by placing tD at the point in the TYPE command where the 
date is desired. For example: 

*TYPE "TODAY IS ",to 
TODAY IS l4-SEP-74* 

6.1.8 Output Positioning (tT) 

FOCAL-ll also allo\tls the user to tab to a specific location on an 
output line. This is provided by the tT special function. An 
expression, constant, or variable may be used in conjunction with this 
feature to enable the user to place the next character to be output in 
the specified column of the output line. The format of the tT feature 
is: 

tT(constant, variable, or expression) 

This feature may be used with the TYPE, ASK, or LIBRARY TYPE commands. 
The value of the associated argument must be within the range of one 
(1) to the current value of the terminal width parameter FPRM(2) (See 
Section 4.13). 

If the expression is larger than the allowed value, no action is 
taken. If the expression designates a column which is lower in value 
than the current output position, a single space is output. However, 

6-5 



if the argument specifies a column within the legal range of values 
which is higher in value than the current output position, sufficient 
spaces (blank characters) are output to position the next character in 
the specified column. 

For example: 

*1.10 TYPE I"SINE - COSINE TABLE"!!! 
*1.20 TYPE tT(5),"X",tT(15),"SIN(X)",tT(30),"COS(X)"! 
*1.30 FOR I=0,5,45; DO 2 ' 
*1.40 TYPE !!;QUIT 

*2.10 XECUTE FPRM(3,3) jTYPE !tT(3),%2,I 
*2.20 TYPE tT(14),%6.04,FSIN(3.14159*I/180) 
*2.30 TYPE tT(29) , FCOS (3.14159*I/180) 

*G 

SINE - COSINE TAB~E 

x SIN(X) COS (X) 

0 0.0000 1.0000 
5 0.0872 0.9962 

10 0.1736 0.9848 
15 0.2588 0.9659 
20 0.3420 0.9397 
25 0.4226 0.9063 
30 0.5000 0.8660 
35 0.5736 0.8192 
40 0.6428 0.7660 
45 0.7071 0.7071 

6.2 PROG~~ING TECHNIQUES AND COMMENTS 

To decrease program length and maximize available storage area, the 
programmer may use the following suggestions: 

A. All commands may be abbreviated to one or two letters (see 
FOCAL-Il Command Summary, Appendix C) • 

B. A string of commands, except RETURN, MODIFY, QUIT, COMMENT, 
LIBRARY, and ERASE, can be combined on anyone line (up to 
72 characters), with each command separated by a semi-colon. 

C. When a lengthy program is being written it is a good 
programming practice to leave free line numbers scattered 
throughout the body of the program. This will permit 
insertion of additional lines without complicated 
referencing routines. Remember that programs are executed 
in sequence by line numbers, therefore the order in which 
the lines are typed in is of no consequence. Line numbers 
must be in the range 1.01 to 99.99. 

D. To avoid filling storage and have pushdown list errors occur 
during long routines, it may be helpful to limit the number 
of levels of nesting within arithmetic expressions. Using 
abbreviations and limiting the number of variable names will 
also maximize the use of storage space. Non-subscripted 

6-6 



variables should be used wherever possible, as they will use 
one less word per variable than a subscripted variable. 

E. Virtual files should be used wherever possible for large 
arrays. Besides saving memory space, virtual files can tend 
to be much faster than arrays stored in memory. This is due 
to the fact that arrays stored in memory must be size 
efficient, whereas virtual files need only be speed 
efficient. 

F. When defining new variables, it is faster if they are 
defined in reverse alphabetical order if using the RT-ll 
FOCAL. This is due to the method by which new variables are 
stored in memory. 

6.3 ADDING FUNCTIONS TO FOCAL-ll (FNEW) 

FOCAL-ll has the capacity for one or more user defined and written 
assembly language functions. These user functions (called FNEW for 
purposes of this discussion) may use as many arguments as desired, and 
when interfaced to FOCAL-ll, they can be used as any other FOCAL-ll 
function. 

To write a function for FOCAL-ll, the user should have a knowledge of 
programming the PDP-ll at the machine language level. The information 
in this secton describes the data formats and internal routines used 
by FOCAL-1I, both of which may be used in the implementation of the 
FNEW function. This section also describes the procedure necessary to 
interface the function to FOCAL-ll, so that it is callable in the 
FOCAL language. In addition to the information described in this 
section, a source listing for the version of FOCAL-ll in use would be 
most helpful to the programmer. 

6.3.1 The FOCAL-ll Floating Point Package 

Most FNEW functions will require the use of some floating-point 
operations through the FOCAL-ll floating-point package. The following 
is a discussion of the floating-point package and how to use it. 

6.3.1.1 The Floating-Point Accumulator 

One of the operands of all floating-point operations is the 
floating-point accumulator (FLAC) , and the result of all 
floating-point operations is always stored in the floating-point 
accumulator. 

FI,AC: exp + high mantissa 

10\,1 mantissa 

The double precision package expands the mantissa field by an 
additional 2 words. 

6-7 



NOTE 

Capitalized names in this 
discussion refer to specific 
symbols in the FOCAL-II listing. 
To find their value or memory 
location for the version of 
FOCAL-II that you are using, refer 
to the symbol table (Appendix G) at 
the end of this manual. 

6.3.1.2 The FOCAL-II Floating-Point Routines 

The operations performed by the floating-point package are as follQws: 

FGET to load an operand into the FLAC 

FPOW to raise the FLAC to an integer power (especially useful for 
evaluating series) 

FMUL to multiply the FLAC by the operand 

FDIV to divide the FLAC by the operand 

FADD to add the operand to the FLAC 

FSUB to subtract the operand from the FLAC 

FPUT to store the FLAC at the address specified 

With each of these operations there is a choice of seven addressing 
modes for specifying the address of the operand. 

In addition to the above, the floating-point package can be used to 
perform certain elementary functions: 

FABS to take the absolute value of the FLAC 

FSGN to leave the FLAC=-l if the FLAC(O, 0 if the FLAC=O, +1 if 
the FLAC)O. 

FINT to convert the FLAC into an integer and leave the result in 
Rl. 

FLOAT to convert the integer in Rl into a floating-point nunber 
and leave the result in the FLAC. 

FNEG to negate the FLAC 

FCODE to execute the floating point instruction in Rl 

The floating point operations are identified by adding the code for 
the operation plus the addressing mode to the octal value of 007000, 
thus making an illegal instruction. This is preceded by the FPMP trap 
call (104626). When the FPMP call is invoked, floating point 
operations defined in the manner above are performed by the floating 
point processor routines. Successive operations may be placed after a 

6-8 



single FPMP call. Return from the floating point routines will be to 
the first word encountered by the routines which does not have as its 
base the illegal instruction 007000. As all user registers are 
preserved when entering the floating point routines. Placing several 
operations ofter a single FPMP trap call will save the time required 
for repetatively saving and restoring the registers. The codes for 
the floating point operations are: 

Operation Code 

FGET 00 
FADD 10 
FSUB 20 
FDIV 30 
FMUL 40 
FPOvl 50 
FPUT 60 
FINT 71 
FSGN 72 
FABS 73 
FNEG 74 
FLOAT 75 
(unused) 76 
FZER 77 
FCODE 200 

The addressing mode available 
described below: 

Mode Code 

DIRECT o 

It-mED 5 

IPTR 1 

XPTR 2 

THROUGH+STACK 3 

F ROM+S TACK 3 

to 

Complete instruction 

7000+00+address code 
7000+l0+address code 
7000+20+address code 
7000+30+address code 
7000+40+address code 
700 0+5 O+address code 
7000+60+address code 
7000+71 
7000+72 
7000+73 
7000+74 
7000+75 

7000+77 
7000+200 

the floating point package are 

Meaning 

The address of the operand is in 
the next word. 

The next four 
operand. 

words are 

The address of the operand 
contained in register 2 (@R2). 

the 

is 

Register 2 is used as a pointer to 
the operand. After use, register 2 
is updated by the addition of 
either 4 bytes (single precision), 
or 8 bytes (double precision). 

The stack currently holds the 
pointer to the operand to be used. 

The operand is contained on the 
stack. The single precision 
version only uses the top two 
words. The double prec1s10n 
version uses the top four words. 
For this reason, it is good 

6-9 



REL 6 

practice to reserve four words of 
stack space for each variable on 
the stack. This allows the same 
code to be used by both the single 
and double precision versons 
without modification. 

The next word contains the offset 
from that location to the operand 
(address-.). 

A complete instruction to add the constant 1.0 to the floating point 
accumulator (FLAC) would consist of: 

10'4626 
70'0'0+10+5 
0'40200 
0'00000 
000000 
0'00000 

;FPMP CALL 
;BASE+FADD+IMMED 
iFLOATING CONSTANT 1.0 
iHUST BE 4 WORDS IN LENGTH 

iEND OF THE CONSTANT 
;IF ANOTHER BASE+OPER+ADDR IS 

USED HERE, IT WOULD BE PERFORMED, 
i IF NOT, THEN THE INSTRUCTION 
i PLACED HERE WOULD BE EXECUTED. 

Addressing modes 3 and 4 (THROUGH+STACK and FROM+STACK which use the 
stack) do not perform the necessary stack maintenance. The user's 
floating point program must ensure that the necessary amount of area 
be reserved on the stack prior to using these operations. An example 
is shov-1n below: 

SUB #lO,SP 
FPMP 
FPUT+3 

SUB #lO,SP 
FPI-1P 
FPUT+3 

FP!'-1P 
FGET+3 
ADD #lO',SP 

FPMP 
FGET+3 
ADD #lO,SP 

iOPEN FOUR WORDS ON THE STACK 
iINVOKE FLOATING POINT CALL 
iSAVE FIRST OPERAND ON THE STACK 

iOPEN A SECOND AREA 
iCALL THE FLOATING POINT PACKAGE 
iSAVE SECOND OPERAND 

iFLOATING POINT CALL 
iRECOVER THE SECOND VALUE 
iRELEASE THE AREA 

iCALL FLOATING POINT 
i RECOVER FIRST VALUE 
i RELEASE THE SAVE AREA 

Addressing modes 0' and 6 (DIRECT and REL) are two word operations. An 
example of these is shown below: 

6-10' 



FPMP 
FPUT+DIRECT 
A 

FPMP 
FGET+REL 
A-. 

iCALL FLOATING POINT 
iINDICATE A DIRECT CALL 
iLOCATION OF OPERAND. 

iCALL FLOATING POINT 
iUSE RELATIVE MODE 
iOFFSET TO OPERAND 

Following are some examples of routines which use the FOCAL-II 
floating point routines: 

EXAHPLE 1 

A routine is required to add successive numbers in an ASCII string 
which is pointed to by register 2 until a zero value is encountered. 
The result is to then be output to the terminal. 

FREAD=l04664 
FPRINT=104666 
FPMP=104626 
FPP=OO7000 
GETC=104614 

i 
START: SUB #10,SP 

FPMP 
FPP+77 

LOOP: FPMP 
FPP+60+3 
GETC 
FREAD 

TST FLAC 
BEQ DONE 
FPr1P 
FPP+1O+3 

BR LOOP 
i 
DONE: FPMP 

FPP+OO+3 
ADD ilO,SP 
CLR R3 
FPRINT 

RTS PC 

iREAD ROUTINE 
iPRINT ROUTINE 
iFLOATING POINT CALL 
iFLOATING POINT BASE 
iREAD A CHARACTER (R2)+ 

iOPEN AN AREA 
iFLOATING POINT CALL 
iZERO THE FLAC 
i NEW ENTRY POINT (FPMP!) 
;STORE THE FLAC ON THE STACK 
;EXTRACT A CHARACTER (FIRST ONE) 
; INTERPRET AS A NUMBER 
; THE RESULT IS IN THE FLAC 
iSEE IF ZERO 
iEXIT IF SO 
iELSE ADD TO THE TOTAL 
iADD THE SUBTOTAL TO THE FLAC 
iLEAVING THE RESULT IN THE FLAC 
iCONTINUE UNTIL A ZERO IS FOUND 

iENTER FLOATING POINT ROUTINES 
i RECOVER THE RESULT 
i RELEASE THE, WORK AREA 
iSET FOR FLAOTING POINT FOru1AT 
iOUTPUT THE VALUE TO THE 
i TERMINAL 
iPOSSIBLE RETURN THIS WAY ••• 

EXAMPLE 2 

The following section of code evaluates xt2+2X+l assuming that R2 
initially points to X. 

6-11 



START: SUB ilO,SP 

FPMP 

FPP+77 
FPP+OO+l 
FPP+40+1 
FPP+60+3 
FPP+OO+l 
FPP+IO+l 
FPP+IO+5 
040200 
000000 
000000 
000000 
FPP+IO+3 
ADD #lO,SP 

iOPEN A WORK AREA 
i ON THE STACK 
;CALL THE FLOATING POINT 
i PACKAGE 
;ZERO THE FLAC 
;GET X (R2) 
i*X=Xt2 
;SAVE Xt2 ON THE STACK 
;GET·X AGAIN 
i+X=2X 
iADD ONE 
;FLOATING POINT 
i VALUE OF 
i 1.0 MUST BE 
i FOUR WORDS LONG! 
iADD Xt2 FROM THE STACK 
;RELEASE THE WORK AREA 
;AT THIS POINT, Xt2+2X+l IS 

LEFT IN THE FLAC FOR FURTHER 
; USE. 

It should be noted that use of the stack for temporary storage can 
reduce the core requirements for the floating point routines, as 
single word operations can be used. In addition, there is no need for 
special memory locations to be set aside for storage of these 
temporary values. The above example should make this quite clear. 

6.3.1.3 Using Standard Functions 

Besides those arithmetic operations available through the 
floating-point package, the user may wish to call the standard 
functions provided with FOCAL-II. These functions may then be called 
by setting up an argument and then executing a 

JSR PC,STARTING ADDRESS 

The starting addresses of the various functions can be found from the 
symbol table, and are named as shown in the table below: 

Function 

FSIN 
FCOS 
FRAN 
FCLK 
FSQT 

For example: 

Entry Point Argument. Address 

FSIN FLAC 
FCOS FLAC 
XRAN FLAC 
XFCLK FLAC 
XSQT FLAC 

NOTE 

Only functions requiring 
argument may be called 
fashion. 

6 -12 

a single 
in this 



1. To call the SIN function 

FPMP 
FGET+DIRECT,ARG 
JSR PC,FSIN 
FPMP 
FPUT+DIRECT, RESULT 

2. To call the FSQT function 

FPMP 
FGET+DIRECT,ARG 
JSR PC,XSQT 
FPMP 
FPUT+DIRECT , RESULT 

3. To call the Random Number Generator 

FPMP 
FZER 
JSR PC,XRAN 
FPMP 
FPUT+DIRECT, RESULT 

iLOAD ARG INTO FLAC 
i CALCULATE SINE 

iON RETUR:l, RESULT 
iIS IN FLAC. 

iARG INTO FLAC 

;SAVE RESULT 

iFLOATING CALL 
iZERO FLAC 
;NO NEED FOR ARG 

iSAVE RESULT 

6.3.2 FOCAL-ll Subroutines 

FOCAL-ll has many subroutines that can prove quite useful when writing 
an FNEW. These subroutines are permanent parts of the FOCAL-Il 
interpreter, and are called via the TRAP instruction. 

FORMAT: 

Mnemonic 

GETC 

SORTC 

TRAP(104400)+TRAP CODE(8 bits) 

NOTE 

In the following text, CHAR is 
equal to R4. In the discussion of 
SORTC and TESTC, the entries 
labeled "RETURN" represent the 
addresses of routines to be entered 
if the condition is met, not 
instructions that are actually 
executed. 

Trap Code (Octal) Description 

214 Get the next character from 
the text; character is 
returned in CHAR. 

202 

6-13 

Compare contents 
against list. 
sequence: 

of CHAR 
Calling 



PRINTC 204 

OUTCH 210 

READC 206 

INCH 212 

SPNOR 234 

ERROR 20l+error no.*2 

TESTC 220 

SORTJ 200 

SORTC 
LIST 

RETURN 

; CALL 
;ADDRESS OF LIST 
;OF BYTES. 
;RETURN IF IN LIST 
; RETURNS HERE IF NOT 
;IN LIST. 

NOTE 

Lists are terminated by a zero 
byte. 

" Print the contents of CHAR (7 
bit ASCII) or internal code 
for terminators. 

Print 8 bit ASCII in CHAR. 

Read and echo a character from 
the keyboard and put it into 
CHAR in FOCAL internal code. 

Read 8 bit ASCII character 
into CHAR. 

Ignore spaces in text; exit 
with the first character that 
is not a space in CHAR. 

Transfer control to the error 
routine and terminate 
execution; print error 
message. (error no. is the 
octal equivalent of the 
appropriate error diagnostic 
message from Appendix B) 

This subroutine is a series of 
SORTC's with various returns: 

CALL: TESTC ; CALL 

6-14 

RETURNl 

RETURN2 

RETURN 3 

;TERMINATOR RETURN 

; NUMBER RETURN 

;FUNCTION RETURN 
;CHARACTER ="F". 

; RETURN HERE IF 
; ALPHABETIC 
; CHARACTER. 

This subroutine is used as a 
multiple sort and branch 
subroutine. CHAR is compared 
to a list. If it is in the 



EVAL.X 260 

GETLN 222 

FINDLN 224 

PRNTLN 226 

LIST AN ADDRESS IS LOOKED UP 
AND AN EFFECTIVE JMP address 
is executed. If a match is 
not in the list, then return 
is to CALL+6. 

CALL: SORTJ 
LISTCHAR ;ADDRESS OF 

;CHARACTER LIST 
iTO BE SEARCHED. 
iADDRESS OF JUMP 

6-15 

LIST ADDR 
i LIST. 
iRETURNS HERE 
iIF NOT IN 
;LIST ADDR 

This subroutine evaluates an 
arithmetic expression. The 
subroutine return is to CALL+2 
with the floating-point value 
of the expression it evaluated 
in the FLAC. 

This routine accepts a 
character string pointed to by 
R3 and returns a value 1n 
LINENO in special line number 
notation (integer portion of 
the line number * 256; 
i • e. 2 • 5 \-lould return in LINENO 
the octal value of 001200 = 
640 decimal = 2.5*256.0). 

This routine is used in 
conjunction with the GETLN 
routine explained above. The 
line number stored in "LINENO" 
is used to look up the desired 
line. If the line is now 
found, return is to the 
routine pointed to by the word 
following the call. In this 
case, R2 points to the line 
prior to the desired line, and 
R3 points to the next line (or 
zero if no more lines in the 
program) • 

If the line is found, return 
is to the instruction 
following the not-found 
pointer with R3 set up for 
GETC calls to extract the 
ASCII data (start of line plus 
8) • 

This routine outputs a line 
number which has been stored 
in RI prior to call. This 
line number is in the same 
format as when stored in 
LINENO. 



ERASEV 236 

PRINT2 242 

DIGTST 244 

SKPNON 254 

FPMP 262 

FREAD 264 

6-16 

This routine 
variables: 

erases 

This routine prints 
characters stored in the 
following the call. 
routine returns to 
instruction following 
word. 

all 

the 
word 

The 
the 

this 

This routine perfor.ms an 
integer division by the value 
stored in the location 
following the call. The 
number to be divided is stored 
in R2 prior to the call. R4 
is initially set to the ASCII 
character "0" by the routine, 
and is incremented each time 
the divisor is subtracted from 
R2. This leavs a printable 
result in R4 and R2 has the 
remainder (always less than 
the divisor). Return is to 
the instruction following the 
divisor value. 

This routine examines the 
contents of R4 and returns 
either to the routine pointed 
to by the word following the 
call if the character in R4 is 
between "0" and "9", or to the 
instruction following the 
pointer if it is not within 
that range. 

This routine is used to invoke 
the floating point 
interpreter. All registers 
are saved, and words following 
the call are interpreted as 
floating point instructions. 
Return is to the first 
instruction following the 
pseudo floating point 
instructions (Floating point 
instructions are based upon 
the illegal instruction 
007XXX. As soon as an 
instruction not of this for.m 
is detected, the registers are 
restored and control is passed 
to that instruction.). 

This routine reads characters 
pointed to by R3 and evaluates 
them as a floating point 
value. The result is returned 
in FLAC. 



FPRINT 266 This routine prints a value 
stored in the FLAC according 
to the format code stored in 
R2. The format code is in the 
form of a line number. (see 
GETLN) 

6.3.2.1 Passing Arguments to FNEW 

The above FOCAL subroutines are most often used when passing arguments 
to FNEW from the main program. When control is passed to the FNEW 
function, the first argument in the argument list is in the FLAC. If 
this 1S the only argument desired, the FNEW need only perform its 
function and place the result in the FLAC prior to returning (via RTS 
PC). More than one argument may be passed, however, using the 
following techniques: 

Assume an FNEW that uses three arguments: FNEW (X,Y,Z). When control 
is passed to the function, the value of X is in the FLAC, with the 
contents of CHAR (Register 4) containing the "," following the X in 
the argument list. 

SET Xl = FNEW(X,Y,Z) 

FLAC C~R 

When FNEW requires the value for Y, it executes a call to EVAL to 
evaluate the expression for the second argument into the FLAC, and 
repeats the process for Z. For example: 

;PORTION OF FNEW TO SAVE THE THREE ARGUMENTS 
JON THE STACK 

FPMP=104662 
FPP=007000 
EVAL.X=104660 

ARGGET: CMP -(SP),-(SP) 
FPMP 
FPP+60+3 
EVAL.X 
CMP -(SP) ,-(SP) 
FPMP 
FPP+60+3 
EVAL.X 
CMP -(SP),-(SP) 
FPMP 
FPP+60+3 

;FLOATING POINT CALL 
;FLOATING POINT TRAP BASE 
iCODE FOR EVAL.X 
iOPEN TWO LOCATIONS ON STACK 
;INVOKE FLOATING POINT MODE 
;SAVE X ON THE STACK 
;EVALUATE Y INTO THE FLAC 
;OPEN 2 MORE STACK LOCATIONS 
;FLOATING POINT 
;SAVE Y ON THE STACK 
;EVALUATE Z INTO THE FLAC 
;OPEN LAST 2 STACK LOCATIONS 
iFLOATING POINT 
;SAVE Z ON THE STACK 

A variable number of arguments may be passed by testing the value of 
CHAR after each use of EVAL.X for the right parenthesis in the 
function call (using TEST or SORTC). When the right parenthesis is 
detected, the end of the argument list has been reached. 

6-17 



For example, we can create an FNEW that sums all the arguments and 
returns that sum. Sample calls to this FNEW might appear as follows: 

SET X = FNEW(1,2,3,4,5,6) 

OR 

SET X = FNEW(A,B,C/D) 

The code to implement this FNEW would look like: 

LIST: 

FNEW: 

DONE: 

6.3.3 FOCAL-II 

FADD~007000+10 
FPUT=007000+60 
STACK=3 
EVAL.X=104660 
FPMP=104662 
SORTC=1046 02 

.BYTE 211 

• BYTE 0 

CMP - (SP) ,- (SP) 
FPMP 
FPUT+STACK 
SORTC 
LIST 
DONE 
EVAL.X 

FPMP 
FADD+STACK 
BR FNEW 
FPMP 
FGET+STACK 
CMP (SP) +, (SP) + 
RTS PC 

Data Structure 

;DEFINE FLOATING POINT 
; CALLS 
;ADDRESSING MODE 
; TRAP CALL TO EVAL 
;FLOATING POINT CALL 
; TRAP CALL TO SORTC 

;INTERNAL CODE FOR ")" 
; OBTAINED FROM TABLE 
;IN APPENDIX H • 
;A ZERO BYTE 

TO TERMINATE LIST 

; OPEN 2 WORDS ON STACK 
; CALL FLOATING POINT 
iSAVE FIRST ARG ON STACK 
;TEST CHAR FOR RIGHT PARENTHESIS 
;ADDRESS OF LIST 
;JUMPS TO "DONE" IF NEXT CHAR H)" 
;MORE ARGS TO COME - GET 
iNEXT ONE INTO FLAC 
;FLOATING POINT CALL 
;ADD TO CUMULATIVE SUM ON STACK 
iAND LOOP 
iENTER FLOATING POINT 
; GET FINAL RESULTS INTO FLA(; 
; CLEAR UP STACK 
;AND RETURN 

6.3.3.1 Text Data - FOCAL-II text is stored in linked lines and each 
line is stored as a string of single 7-bit ASCII characters, byte to 
byte, with all terminators coded in a special internal form. The last 
character in a line is always 216 (the internal form for CR), and no 
further characters should be used beyond the CR unti.l a new line is 
found. The internal codes for all terminators may be found in 
Appendix H. 

Byte No. Octal Code Letter 

0 101 "A" 
1 102 "B" 
2 200 space code 
3 216 CR code 

102 101 

216 200 

6-18 



These characters may be accessed by means of the subroutine "GETC", 
which returns the next character in CHAR. If the character fetched by 
GETC was a terminator, the sign bit will be set on return. 

GETC 
BMI DONE 

;READ TEXT 
;TERMINATOR FOUND 

6.3.3.2 Text Lines - The FOCAL-II program is stored as a series of 
linked text lines. 

Each line has associated with it an explicit line number, composed of 
a group number plus an extension. For example, 12.50 has a group 
number of 12. These two bytes of binary data form the second word of 
the line storage. The first word is a l6-bit pointer to the next 
line. The pointer is taken relative to the current location minus two 
(NEXT-.-2). This makes it easy to debug the program using Octal 
Debugging Technique program (ODT) to compute the relative address. 
Furthermore, a single word instruction is all that is required to 
chain to the next entry. ADD (RO)+,RO makes RO point to the next 
line. 

All input is packed into a special buffer before it is either 
interpreted as a direct command or stored as part of the text buffer. 

next-.-2 

005200 (12.5*256.0) 

byte #2 I byte #1 

. . . 
I 216 

6.3.3.3 Text Input and Output - A 7-bit ASCII byte placed in the 
register CHAR can be printed by calling the PRINTC routine. Internal 
codes for terminators are automatically translated before printing. 
An input ASCII byte or internal terminator code may be read from the 
current input device by the routine READC. The result of a READC is 
left in the register CHAR. Pure 8-bit ASCII input and output are 
handled by the routines INCH and OUTC~ respectively. 

6.3.3.4 Variables (Paper Tape FOCAL) 
To maximize the efficiency of memory usage, FOCAL-II variables are 
created as they are used, and each variable is stored with its own 
subscript. Each variable has an exponent of eight bits and a signed 
24-bit mantissa as follows: 

6-19 



name 

subscript 

exp + high mantissa 

+ low mantissa 

The name may be one or two characters. If it is one, the high-order 
byte is blank, as the first character of the name is always in the 
low-order byte. If the variable is unsubscripted, the subscript word 
is 0, while a double subscripted variable has the first subscript in 
the low-order byte of the subscript word and the second subscript in 
the high-order byte. 

blank name 

sub 2 sub 1 

exp + high mantissa 

+ low mantissa 

6.3.3.5 Variables (RT-ll FOCAL) 
In general, the means of storing variables in RT-ll FOCAL is similar 
to that in Paper Tape FOCAL. The basic format is as follows: 

name 

subscript 

exp + high mantissa 

low mantissa 

The major difference made to the Paper Tape structure is in the "name" 
and "subscript" field. 

The "name" field consists of the two characters which make up the 
variable name. The first character, unlike the pqpertape version, is 
always in the high byte. If a second character exists, it is placed 
into the low byte. 

Since no terminator character can be used as part of a variable name, 
it is guaranteed that each character will be in the range of 0-177 
octal. This leaves the high bit in each of the bytes holding the name 
free to carry other information. In order to conserve memory, the 
highest bit of the highest byte (bit 15) is used to indicate if a 
non-zero subscript is used. If this bit is set, the next word 
contains the subscript value. If not set, the value of the variable 
immediately follows the name field. 

6-20 



name 

exp + high mantissa 

low mantissa 

The high bit of the low byte (bit 7) is used to indicate whether the 
variable is to be interpreted as a singly or doubly subscripted 
variable. In the normal subscripting mode (FPRM(l)=O) this bit is 
ignored. If FPRM(l)=l, and if this bit is set, the follo\'ling word 
will be treated as a double subscript. 

name (bit l5=l,bit 7=1) 

sub2 J subl 

exp + high mantissa 

low mantissa 

The double precision version of RT-ll FOCAL extends the mantissa 
fields by an additional two words. 

In extended subscript mode (FPRM(l) not equal to zero), if a user was 
to use the variable A(n), the user would be able to also use the 
variable A(n,m) to store information separately from the first 
variable. In addition, the scalar (non-subscripted) variable A can 
contain a different value from the subscripted variable A(O). 

When using normal subscript mode, the variables A, A(O), and A(O,O} 
are the same variable. 

When changing subscript modes, it is essential that the user combine 
the FPRM function call with an ERASE command. If this is not 
performed, it is possible that variables previously stored as double 
subscripted values will only be able to be accessed as single 
subscripted variables. When converting from the extended subscript 
mode back to normal mode, it is possible that some variables will no 
longer be able to be referenced. 

If it is essential that the subscript mode be changed 
execution, and the variables must remain intact, 
sequence of FOCAL statements can be used: 

LIBRARY HAKE 7,SYUBOL.THP 
LIBRARY TYPE 7,$ 
LIBRARY CLOSE 7 
ERASE 
XECUTE FPRM(l,x) 
LIBRARY GET SYHBOL. THP 
LIBRARY DELETE SYtmOL.TMP 

during program 
the following 

This will cause a file named SYMBOL.TMP to be created, and the current 
variables to be written to the file. The variables are then erased, 
and the subscript mode is changed. The LIBRARY GET command is then 
used to input the variables. 

6-21 



6.3.3.6 Memory Layout - The memory layout of FOCAL-II is arranged in 
such a way as to take advantage of the hardware stack limit at 400 and 
also to allow dynamic allocation of resources between the text and the 
variables. In the paper tape version of FOCAL-II, the variable/text 
area is adjusted automatically upon loading to use all memory up to 
the beginning of the absolute binary loader. In the RT-II version of 
FOCAL-II, the variable area resides in the highest portion of memory, 
just below the resident monitor. 

Location Pointers 

TRUEND CRT-II only) 

BOTTOM 

SINDEX CRT-II only) 

BUFBEG 

BEGIN 
1000 

400 

o 

End of Hemory 

absolute loader 
or 

resident RT-II 

device handlers 
and 

file buffers 
CRT-II only) 

variables 

free memory CRT-II only) 

text 

interpreter 

tables 

stack 

interrupt/trap vectors 

6.3.4 Interfacing FNEW to FOCAL-II 

Once the FNEW function has been written, its name must be entered in 
FOCAL-II's function table such that the function can be referenced by 
FOCAL-II statements. First the name must be created, then added to 
the FOCAL function table. 

6-22 



6.3.4.1 Naming the Function - All function names in FOCAL must be 
prefaced by "F". There are no other restrictions on the mnemonic 
chosen. The user should keep in mind when choosing the function name 
that each character in the mnemonic will occupy one byte of memory 
each time the function is used, hence shorter names are more core 
efficient. 

FOCAL-ll stores the function name internally, in a special l6-bit hash 
code. To form this code, perform the following operations: 

~ 
1. Determine the 7-bit ASCII 

value for each letter in the 
mnemonic. 

2. Multiply each of these 
letter values by its 
place value in a base 5 
system; i.e., the rightmost 
number is multiplied by 
4t2, etc., until the "F" 
is multipled by 4t (# of 
chars in name). Remember 
to perform all arithmetic 
in octal. If the result 
is greater than 200000 
octal, bits to the left 
are lost and zeroes are 
brought in from the 
right (Modulo 200000). 

3. Sum the products to form 
the hash code (in this 
example, for FSBR). 

Example Using "FSBR" 

F=106 
S=123 
B=102 
R=122 

R=122 
B=102 x 4 
S=123 x 20 
F=106 x 100 

= 122 
= 410 
= 2460 
= 10600 

14012 

It is possible that this hash code conflicts with one of the codes 
already in the function table. Since all function codes must be 
unique, compare the hash code for the new name against the following 
list of hash codes for functions already in FOCAL-1l. If the hash 
code is not unique, a new name must be chosen. 

Function 

FCLK 
FITR 
FCOS 
FSIN 
FSQT 
FADC 
FX 
FLN 
FLOG 
FEXP 
FPRM 
FINT 
FQUE 
FRAN 
FCHR 
FSBR 
FSGN 
FABS 

Hash Codes 

6-23 

13453 
13662 
13477 
14042 
14110 
13343 

560 
2736 

13703 
13600 
14025 
13634 
14051 
13762 
13442 
14012 
14032 
13353 



In order to help the user to generate the hash code needed for the 
FNEW function, the following FOCAL program can be used. 

1.10 S A=O;S S=O;C-INITIALIZE 
1.15 T l"ENTER THE FUNCTION NAME" 
1.20 S A=FCHR(FCHR(-l»;C-GET CHARACTER 
1.30 I (A-@15) 1.2,1.9;C-DETECT CARRIAGE RETURN 
1.35 C-DROP BITS OFF THE LEFT ••• 
1.40 S S=S*4+A;I (S-65536)1.2,1.2;S S=S-65536;G 1.2 
1.80 C-CONVERT FROM 16 BIT UNSIGNED TO 15 BIT SIGNED 
1.90 I (FABS(S» ,1.99;I (S-32768)1.95;S S=S-32768+@100000 
1.95 T I n THE CORRECT HASH CODE IS: ",fO(S),l;G 1 
1.99 T II;Q 

6.3.4.2 Entering the Function Into FOCAL-II - Once the hash code has 
been determined, the function is added to FOCAL-II as follows: 

6.3.5 FNEW Example 

The following step by step example of implementing an FNEW function 
illustrates the passing of arguments and use of FPP. This particular 
FNEW, which we shall call FQUAD solves a quadratic equation by means 
of the quadratic formula. It requires three argument (A,B,C) 
representing the coefficients of the equation to be solved and a 
fourth argument for the root desired. The code to implement the 
function FQUAD in both the Paper Tape and RT-ll versions of FOCAL-II 
follows: 

Paper-Tape Version: 

; 

; 

. , 

• TITLE FQUAD - FOCAL FNEW (PAPER-TAPE) 

FUNCTION FQUAD(A,B,C,R) 

THIS IS AN FNEW FUNCTION TO FI'ND ONE OF THE ROOTS 
OF A QUADRATIC EQUATION OF THE FORM: 

A (Xt2) + B (X) + C = 0.0 

THIS FUNCTION REQUIRES FOUR ARGUMENTS. THE FIRST 
; THREE ARE THE COEFFICIENTS A,B, AND C. "R" IS THE 
; SIGN OF THE SQUARE ROOT TERM IN THE EXPRESSION: 

; -B +/- FSQT(Bf2-4AC) 

2A 

6-24 



007000 
007010 
907020 
007030 
007040 
007050 
007060 
007070 

000005 

000001 
000003 
000000 

007074 
007075 

013404 

104660 
104662 

104400 

000000 
000001 
000002 
000003 
000004 
00000 5 
000006 
000007 

001050 

001610 

001652 

000000 

017314 

; 

· , 
; 

; 

WITH "R" BEING +1 FOR POSITIVE, AND -1 FOR NEGATIVE. 

IMMAGINARY ROOTS GENERATE AN ERROR MESSAGE ?63 (UNIQUE) 

; FLOATING POINT CALL DEFINITIONS 
; 

· , 

FGET=7000 
FADD=7010 
FSUB=7020 
'FDIV=7030 
FMUL=7040 
FPOW=7050 
FPUT=7060 
FUNCT=7070 

; FLOATING POINT ADDRESSING MODES 

IMMED=5 

IPTR=l 
STACK=3 
DIRECT=O 

;OPERAND FOLLOWS THE INSTRUCTION 
; AND MUST BE 4 WORDS LONG! 

;R2 POINTS TO ARGUMENT 
;2 OR 4 WORD VALUE ON STACK 
;POINTER FOLLOWS INSTRUCTION 

; FLOATING POINT FUNCTIONS 
; 

· , 

; 

; 

; 

; 

; 

FNEG=FUNCT+4 
FLOAT=FUNCT+5 

FSQT=13404 

EVAL.X=104400+260 
FPMP=104400+262 

ERROR=104400 

RO=%O 
R1=RO+l 
R2=Rl+1 
R3=R2+1 
R4=R3+1 
R5=R4+1 
SP=R5+1 
PC=SP+1 

FBASE=1050 

FLAC=1610 

BOTTOM=1652 

.ASEeT 

.=17314 

;NEGATE THE FLAC 
;CONVERT Rl TO A FLT PT VALUE 

;TAKE THE SQR RT OF FLAC 

;EVALUATE THE EXPRESSION 
; ENTER FLO]"TING POINT HODE 

; BASE FOR ERROR MESSAGES 

;FUNCTION BASE ADDRESS 

;FLT PT ACCUMULATOR 

;CALCULATED BY USING 
; ABSOLUTE LOADER BASE ADDRESS 
; -6 (STACK SPACE) - FUNCTION 
; SIZE. THIS IS FOR A 4K SYSTEM. 

017314 162706 FQUAO: SUB #10,SP ;OPEN 4 WORDS ON THE STACK 

6-25 



000010 . BY USING 4 WORDS, THIS ! 

i FUNCTION COULD BE USED 
BY BOTH THE SINGLE AND 

i DOUBLE PRECISION PACKAGE. 
017320 104662 FPMP i TRAP CALL TO INVOKE FLT PT 
017322 007065 • WORD FPUT+IMMED iSAVE A 
017324 000000 A: • WORD 0,0,0,0 iFOUR WORDS 
017326 000000 
017330 000000 
017332 000000 
017334 104660 EVAL.X iGET B 
017336 104662 FPMP iFLOATING CALL 
017340 007065 • WORD FPUT+IMMED iSAVE B 
017342 000000 B: • WORD 0,0,0,0 i B 
017344 000000 
017346 000000 
017350 000000 
017352 104660 EVAL.X iGET C 
017354 012701 MOV #4,R1 iSAVE A FOUR FOR LATER 

000004 
017360 012702 MOV #A,R2 iPOINT TO "A" FOR IPTR CALLS 

017324 
017364 104662 FPMP iFLOATING POINT 
017366 007041 • WORD FMUL+IPTR ;MULTIPLY BY "A" (A*C) 
017370 007063 • WORD FPUT+STACK iSAVE IT ON THE STACK 
017372 007075 • WORD FLOAT i FLOAT R1 (R1=4) 
017374 007043 • WORD FMUL+STACK iMULTIPLY BY FOUR 
017376 007063 • WORD FPUT+STACK iPLACE IT BACK (4AC) 
017400 007000 • WORD FGET+DIRECT iRECOVER B 
017402 017342 • NORD B 
017404 007040 • WORD FMUL+DIRECT iHULTIPLY AGAIN FOR B2 
017406 017342 • WORD B 
017410 007023 • WORD FSUB+STACK iB2-4AC 
017412 005767 TST FLAC iSEE IF NEGATIVE NUMBER 

162172 
017416 100424 BMI SETERR ;SET ERROR ?63 
017420 004767 JSR PC,FSQT i PERFORM SQUARE ROOT 

173760 
017424 104662 FPMP iENTER FLOATNG POINT 
017426 007063 • WORD FPUT+STACK iSAVE FSQT(B2-4AC) 
017430 104660 EVAL.X iGET R 
017432 012702 MOV #A,R2 iPOINT AT "An 

017324 
017436 104662 FPMP ;ENTER FLOATING POINT 
017440 007043 • WORD FMUL+STACK iSET CORRECT SIGN 
017442 007020 • WORD FSUB+DIRECT iSUBTRACT OUT B 
017444 017342 • WORD B i (-B) 
017446 007063 • WORD FPUT+STACK ,SAVE IT ON THE STACK 
017450 007001 • WORD FGET+IPTR iGET A 
017452 007011 • WORD FADD+IPTR ;MULTIPLY BY 2 
017454 007061 • WORD FPUT+IPTR ;SAVE BACK IN A 
017456 007003 • WORD FGET+STACK ; RECOVER NUMERATOR 
017460 007031 • WORD FDIV+IPTR iDIVIDE BY 2A 
017462 062706 ADD #10,SP ;FIX UP THE STACK 

000010 
017466 000207 RTS PC ;RETURN WITH THE ANSWER 

, IN THE FLAC 
; 

017470 104777 SETERR: ERROR+201+63.+63. iSEND ERROR 63 ( IMMAGINARY 
i ROOTS!) 

6-26 



001050 

001050 017314 
001052 060330 

001044 
001044 000000 
001046 000000 

001652 

001652 017314 

000001' 

SYMBOL TABLE 

A 017324 
DlRECT= 000000 
FADD = 007010 
FGET = 007000 
FMUI.J = 007040 
FPOW = 007050 
FSQT = 013404 
IMMED = 000005 
RO =%000000 

i 
i 
i--- HERE WE PATCH FOCAL PAPER TAPE TO HANDLE THINGS RIGHT! 

· , · , 
; HASH CODE CALCULATION: 

· , 
1) DETERMINE ASCII VALUES 

F=106 
; Q=121 
i U=125 
i A=101 
; D=104 

· , 
i 
i 2) HULTIPLY CORRECTLY 

· , 

i 

· , 

D=104 
A=101*4 
U=125*42 
Q=121*43 
F=106*44 

3) PERFORM SUM 

.=FBASE 

.WORD FQUAD 

.WORD 60330 

.=FBASE-4 

.WORD 0,0 

104 
404 

2520 
12100 
43000 

60330 

iFUNCTION BASE ADDRESS 

;ENTER IT INTO THE TABLE 
iENTER THE HASH CODE ALSO 

iTERMINATE THE TABLE 
iWITH ZEROS 

i SET NEW TOP Llr-1IT FOR FOCAL 

.=BOTTOM 
; 

.WORD FQUAD 
; 
i 
i 

.END 

B 017342 BOTTOM= 001652 
ERROR = 104400 EVAL.X= 104660 
FBASE = 001050 FDIV = 007030 
FLAC = 001610 FLOAT = 007075 
FNEG = 007074 FPMP = 104662 
FPUT = 007060 FQUAD 017314 
FSUB = 007020 FUNCT = 007070 
IPTR = 000001 PC =%000007 
R1 =%000001 R2 =%000002 

6-27 



R3 =%000003 R4 =%000004 
=%000006 

R5 =%000005 
STACK = 000003 SETERR= 017470 SP 

• ABS. 017472 000 
000000 001 

ERRORS DETECTED: 0 
FREE CORE: 9620. WORDS 
FQUAD,FQUAD=FQUAD.PTP 

RT-ll Version: 

i 
• TITLE FQUAD - FOCAL FNEW (RT-11) 

i FUNCTION FQUAD(A,B,C,R) 

007000 
007010 
007020 
007030 
007040 
007050 
007060 
007070 

000005 

000001 
000003 
000000 

007074 

· , 
· , 
; THIS IS AN FNEW FUNCTION TO FIND ONE OF THE ROOTS 

OF A QUADRATIC EQUATION OF THE FORM: 

A (Xt2) + B eX) + C = O~O 

THIS FUNCTION REQUIRES FOUR ARGUMENTS. THE FIRST 
i THREE ARE THE COEFFICIENTS A,B, AND C. "R" IS THE 

SIGN OF THE SQUARE ROOT TERM IN THE EXPRESSION: 
i 

-B +/- FSQT(Bt2-4AC) 
; 

2A 

WITH "R" BEING +1 FOR POSITIVE, AND -1 FOR NEGATIVE. 

i IMMAGINARY ROOTS GENERATE AN ERROR MESSAGE 163 (UNIQU 

· , 
; 

FLOATING POINT CALL DEFINITIONS 

FGET=7000 
FADD=7010 
FSUB=7020 
FDIV=7030 
FMUL=7040 
FPOW=7050 
FPUT=7060 
FUNCT=7070 

; 
FLOATING POINT ADDRESSING MODES 

· , 
IMMED=5 ; OPERAND FOLLOWS THE INSTRUCT. 

i AND MUST BE 4 WORDS LONG! 
IPTR=l ;R2 POINTS TO ARGUMENT 
STACK=3 ;2 OR 4 WORD VALUE ON STACK 
DIRECT=O iPOINTER FOLLOWS INSTRUCTION 

FLOATING POINT FUNCTIONS 

FNEG=FUNCT+4 ;NEGATE THE FLAC 

6-28 



007075 

· , 
; 

; 
104400 

· , 
· , 

000000 
000001 
000002 
000003 
000004 
000005 
000006 
000007 

· , 
000000 162706 FQUAD: 

000010 

000004 OOOOOOG 
000006 007065 
00 0010 00000 0 A: 
000012 000000 
000014 000000 
0000 16 000000 
000020 OOOOOOG 
000022 OOOOOOG 
000024 007065 
000026 000000 B: 
000030 000000 
000032 000000 
000034 000000 
000036 OOOOOOG 
000040 012701 

000004 
000044 012702 

000010' 
000050 OOOOOOG 
000052 007041 
000054 007063 
000056 007075 
000060 007043 
000062 007063 
000064 007000 
000066 000026' 
000070 007040 
000072 000026' 
000074 007023 
000076 005767 

oooroOG 
000102 100424 

FLOAT=FUNCT+5 

.GLOBL FSQT 

.GLOBL EVAL.X 

.GLOBL FPMP 

ERROR=104400 

RO=%O 
R1=RO+l 
R2=R1+1 
R3=R2+1 
R4=R3+1 
R5=R4+1 
SP=R5+1 
PC=SP+1 

.GLOBL 

.GLOBL 

SUB 

FPMP 
• WORD 
• WORD 

EVAL.X 
FPHP 
• WORD 
• WORD 

EVAL.X 
MOV 

~{OV 

FPMP 
• WORD 
• WORD 
• ''lORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
• WORD 
TST 

BMI 

FLAC 

FQUAD 

#lO,SP 

FPUT+IMMED 
0,0,0,0 

FPUT+IMMED 
0,0,0,0 

#4,R1 

#A,R2 

FMUL+IPTR 
FPUT+STACK 
FLOAT 
FMUL+STACK 
FPUT+STACK 
FGET+DIRECT 
B 
FMUL+DIRECT 
B 
FSUB+STACK 
FLAC 

SETERR 

6-29 

; CONVERT R1 TO A FLT PT VALUE 

;TAKE THE SQUARE ROOT OF FLAC 

iEVALUATE THE EXPRESSION 
;ENTER FLOATING POINT MODE 

; BASE FOR ERROR MESSAGES 

iFLOATING POINT ACCUMULATOR 

;ENTRY POINT 

;OPEN 4 WORDS ON THE STACK 

; BY USING 4 WORDS, THIS 
; FUNCTION COULD BE USED 
; BY BOTH THE SINGLE AND 
; DOUBLE PRECISION PACKAGE. 

;TRAP CALL TO INVOKE FLT PT 
;SAVE A 
;FOUR HORDS 

;GET B 
; FLOATING CALI, 
;SAVE B 
;B 

;GET C 
;SAVE A FOUR FOR LATER 

;POINT TO "A" FOR IPTR CALLS 

iFLOATING POINT 
;MULTIPLY BY "A" (A*C) 
;SAVE IT ON THE STACK 
; FLOAT R1 (Rl=4) 
iMULTIPLY BY FOUR 
;PLACE IT BACK (4AC) 
;RECOVER B 

iMULTIPLY AGAIN FOR Bt2 

;Bt2-4AC 
;SEE IF NEGATIVE NUMBER 

;SET ERROR ?63 



000104 004767 JSR PC,FSQT ; PERFOR~ SQUARE ROOT 
000 OOOG 

000110 OOOOOOG FPMP ;ENTER FLOATNG POINT 
000112 007063 • WORD FPUT+STACK ;SAVE FSQT(Bt2-4AC) 
000114 OOOOOOG EVAL.X ;GET R 
000116 012702 MOV #A,R2 ;POINT AT "A" 

000010 ' 
000122 OOOOOOG FPi'1P ;ENTER FLOATING POINT 
000124 007043 • WORD FMUL+STACK JSET CORRECT SIGN 
000126 007020 • WORD FSUB+DlRECT ;SUBTRACT OUT B 
000130 000026' • WORD B . (-B) , 
000132 007063 • WORD FPUT+STACK ;SAVE IT ON THE STACK 
000134 007001 • WORD FGET+IPTR JGET A 
000136 007011 • WORD FADD+IPTR ;MULTIPLY BY 2 
000140 007061 • WORD FPUT+IPTR ;SAVE BACK IN A 
000142 007003 • WORD FGET+STACK ; RECOVER NUMERATOR 
000144 007031 • WORD FDIV+IPTR ;DIVIDE BY 2A 
000146 062706 ADD #lO,SP ;FIX UP THE STACK 

000010 
000152 000207 RTS PC ;RETURN WITH THE ANSWER 

; IN THE FLAC . , 
000154 104777 SETERR: ERROR+201+63.+63. ;SEND ERROR 63 ( IMMAGINARY 

; ROOTS!) 

000001' .END 

SYMBOL TABLE 

A 0000 lOR B 000026R DIRECT= 000000 
ERROR = 104400 EVAL.X= ****** G FADD = 007010 
FDIV = 007030 FGET = 007000 FLAC = ****** G 
FLOAT = 007075 FMUL = 007040 FNEG = 007074 
FPMP = ****** G FPOW = 007050 FPUT = 007060 
FQUAD OOOOOORG FSQT = ****** G FSUB = 007020 
FUNCT = 007070 IMMED = 000005 IPTR = 000001 
PC =%000007 RO =%000000 Rl =%000001 
R2 =%000002 R3 =%000003 R4 =%000004 
R5 =%000005 SETERR 000154R SP =%000006 
STACK = 000003 
• ABS. 000000 000 

000156 001 
ERRORS DETECTED: 0 
FREE CORE: 9628. WORDS 
FQUAD,FQUAD=FQUAD 

It should be noted that the paper-tape version of the FQUAD function 
required several equates. This is because the FQUAD function for this 
version of FOCAL is essentially a patch. An absolute binary tape of 
that routine would be generated, and loaded following the loading of 
FOCAL. FOCAL would then be restarted by starting the computer at 
location o. 

The RT-ll version of the FQUAD function used the availability of the 
GLOBAL variables supported by the RT-ll LINK program. This version of 
the FQUAD function must be incorporated into FOCAL by adding the file 
FQUAD.OBJ to the linking process just prior to the IF switch (see 
Appendix I). 

6-30 



In addition, the file PUBLIC.MAC must be modified. After the macro 
symbol FBASE, a FIDlCT macro should be added prior to the definition of 
the symbol FNTABL. Full instructions for this will be found in the 
listing of PUBLIC. MAC. 

It is necessary that the entry point to the FNEW appear in a .GLOBL 
directive within the FNEW code. 

The follo\-Ting is a small FOCAL-ll program which uses the function 
FQUAD to determine both roots of a quadratic equation specified by the 
user: 

C:FOCAL-ll,PAPER-TAPE V1 

1.10 A "ENTER THE COEFFICIENTS",A,B,C 
1.20 S Al=FQUAD(A,B,C,l);S A2=FQUAD(A,B,C,-l) 
1.30 T "THE ANSWERS ARE",A1,A2,1;G 1 

*G 
ENTER THE COEFFICIENTS:l :-2 :1 
THE ANSWERS ARE= 1.0000= 1.0000 
ENTER THE COEFFICIENTS:2 :-6 :3 
THE ANSWERS ARE= 2.3660= 0.6340 
ENTER THE COEFFICIENTS:l :1 :1 

?63 AT 1.20 
* 

6.4 ASYNCHRONOUS I/O PROCESSING (FINT) 

It is possible with FOCAL-ll to service interrupts from various 
devices at the FOCAL language level. In other \-Tords, on interrupt 
from a device, execution of a FOCAL-ll statement can be stopped, 
control will pass to a specific group of FOCAL-ll instructions which 
process that interrupt, and once the interrupt is handled, control 
will return to the interrupted statement where it left off. 

To accomplish this the FOCAL Function FINT is used. 

vector 

group 

x FINT(vector,line/group,priority,CSR,mask) 

- This is the interrupt vector address for the device. 

- This is the group or line number of the interrupt 
handling routine. 

priority - This is the software priority which thf~ i;lterrupt 
routine is to execute at. 

CSR 

mask 

- Control Status Register address. This location is 
written to with the value of "mask" at the time an 
interrupt is detected. 

- Since the requested routine does not execute 
immediately, but rather as soon as FOCAL comes to a 
convienient place to allow the routine to execute, 
FOCAL needs a means of disabling further interrupts 
from being handled. This value (mask) is sent to the 
"CSR address" specified above before the routine is 
executed. It is the routine's responsibility to 
re-enable interrupts via the FX function. 

6-31 



In order to disable interrupt processing for a particular device, i.e. 
turn it off, specify a zero group value in the call to FINT. 

x FINT(vector,O) 

This will also disable the hardware device interrupts as mentioned 
above. 

Whenever FOCAL returns to its Command/Input mode, all interrupt 
scheduling is terminated. This can occur if the user either 
encounters an error (?XX) or issues a QUIT command. 

If the user is using the Foreground/Background version of the RT-Il 
monitor, and a Foreground program is loaded, FOCAL "protects" the 
device vectors used in the FINT function by informing the monitor of 
its intended use. This is done in order to prevent possible conflict 
with the Foreground program. If a program uses a device under these 
conditions, and the monitor informs FOCAL that the vector has been 
previously protected, FOCAL will issue an error message (139). 

EXAMPLE 

In RT-ll, FOCAL-II's asynchronous I/O capability might be used as 
fo110\'ls: 

Let us suppose that our hypothetical installation is using FOCAL-II to 
obtain data from an experiment by monitoring the analog output of the 
experiment's measuring device via the AR-ll analog-to-digital 
converter. The data rate is very slow, requiring 1000 points sampled 
at the rate of one every 10 seconds. Rather than tie up the computer 
for the time necessary to take these samples (2-1/2 hours), the data 
is sampled asynchronously every ten seconds and the values saved on 
paper tape, allowing another program to run during the time spent 
between the data points. 

A second terminal has been connected to the system. 
registers are at 176500, and the vector address is 300. 

The device 

The user \'Tishes to obtain the value of a channel (0-7) whenever the 
respective key is struck on that terminal. The following section of a 
FOCAL program will accompish this: 

. 
X FINT{@300,3,4,@176500,O);C-HOOK UP TERMINAL 
X FX(-2,@176500,@lOO):C-ENABLE INTERRUPTS 

3.05 C - ACCEPT TERMINAL CHARACTER AND VALIDATE IT 
3.10 S &=FX(O,@176502,@l77)-@60;I(&)3.9 8 iI(&-7)3.l5,3.99,3.98 
3.15 S &=FADC(&):S Zl=lES; C _ PERFORM OUTPUT CONVERSION 
3.20 S Z2=@60 
3.25 I (&-Zl)3.3;S &=&-Zl:S Z2=Z2+l;G 3.25iC - CALCULATE DIGIT 
3.30 X FXC-2,@176506,Z2)iDO 3.95iS Zl=Zl/lO:I(Zl-l)3.35,3.35,3.2 
3.35 S &=&+@60iX FX(-2,@176506,&)iDO 3.95 
3.95 I (-FX(l,@l76504»3.95iR;C - WAIT FOR OUTPUT TO COMPLETE 
3.98 X FX{-2,@176506,@15);DO 3.95;X FX(-2,@176506,@12);DO 3.95 
3.99 X FX(-2,@176500,@lOO)i RETURNi C - ENABLE INTERRUPTS AND EXIT 

6-32 



6.5 ERROR HANDLING IN FOCAL (FERR) 

If the program has requested that errors be handled by a user written 
routine, control will pass to the desired line or group upon the 
occurrence of an error. This is set up by the execution of the FERR 
function. 

XECUTE FERR(3) 

This will cause group 3 to be entered on the occurrence of an error. 
The error number is stored in the variable "&". If the user wishes 
the program to report the error, simply return from the subroutine and 
error diagnostics will be handled correctly. However, if the FERR 
function is re-issued with a non-zero argument, returning from the 
subroutine will cause the program to continue at the next FOCAL 
COMMAND. 

To disable this feature, simply execute the FERR function with a zero 
argument. 

6.6 SCHEDULING ROUTINES BY TIME (FQUE) 

It is possible to schedule FOCAL statements to be executed at 
specified times. These are processed in the sarne manner as the 
interrupt requests mentioned above, i.e., the routine will be run at 
the first convenient point in the user's program after the specified 
time has elapsed (usually only a few milliseconds). To do this, the 
following statement may be used: 

ID 

count 

group 

time 

delay 

pri 

SET ID=FQUE(count,group,time,delay,priority) 

This is used when canceling a request. It is the 
user's responsibility to save this information. 

This is the number of times the routine is to be 
executed (0 will cancel the routine. see below.). 

- Line or group number to be executed 

- Time interval in seconds or ticks. FOCAL parameter 
eleven is used to determine the unit of time. If it 
is zero, then seconds will be used. The range of 
values allowed for this FQUE parameter is from +1 to 
+32,767. 

Time delay in seconds until the 
scheduled routines is executed. 
immediate execution. 

Software priority level 

first of the 
Zero will cause 

To cancel a request before it executes: 

XECUTE FQUE(O,id,group) 

6-33 



where "id" is the value returned when "group" was scheduled. 

It is imperative that the system clock be running if the user intends 
to use the FQUE function. If the clock is disabled, no routines will 
ever .be scheduled. 

6.7 GENERAL NOTES ON SCHEDULING ROUTINES IN FOCAL 

FOCAL treats both scheduling on time 
device interrupt (FINT function) 
certain concepts which are common to 
routines which the user should 
effectively use these functions. 

(FQUE function) and scheduling by 
in the same manner. There are 
both methods of scheduling FOCAL 
be familiar with in order to 

Software Priority 

The concept of Software Priority enables the user to specify the 
relative importance of a particular routine (a line or group of FOCAL 
STATEMENTs) which is to be run. Whenever a program is requested to be 
interrupted, the current software priority is checked to see if the 
requesting routine is higher in priority than the one currently 
running. The range of possible priorities is from zero (0) to seven 
(7) inclusive. The initial program priority is -1, and any scheduled 
subroutine to be run, will be. If another routine becomes ready to be 
executed, it will begin execution immediately only if it has a higher 
priority than the routine currently running. If it does not, it must 
wait until there are no other routines with a higher priority which 
are able to be executed. Only at that time will the new routine will 
begin execution. 

As an example, suppose it is desired to use FOCAL to sample the AR-ll 
AID converter 1000 times on channel 3 at a rate of one sampling each 
ten seconds. These points are to be saved in a file called DATA.FCL 
on the system device for later use. 

First the size of the file must be determined by using the largest 
subscript: 

999 I 64 = 16 blocks (when truncated) 

now the main program must open the file: 

1.1 LIBRARY MAKE 7,DATA[16]/Z/V:DATA(0) 

and schedule the function: 

1.2 COUNT=O;COMMENT: ITERATION COUNT 
1.3 SET ID=FQUE(lOOO,9,10,O,7) 

9.1 SET DATA(COUNT)=FADC(3),SET COUNT=COUNT+l 
9.2 IF(COUNT-1000)9.3,LIBRARY CLOSE 7, C - CLOSE FILE WHEN DONE 
9.3 RETURN 

6-34 



Program Considerations 

~he method by which FOCAL actually executes the scheduled routine is 
quite simple. It is performed by issuing a DO command to the routine 
requiring execution at the completion of the current FOCAL command in 
the user's program. 

For this reason, a program which uses scheduling must be careful to 
refrain from using any command which may take a long time to complete. 
For instance, if a routine is scheduled to execute and the user 
program is currently performing an ASK command, the scheduled routine 
will not be executed until the user responds to the ASK command at the 
terminal, and allows the command to be completed. Certain LIBRARY 
commands may also take a long time to be completed. This is 
especially true if the command is being executed to a slow device. 

Another consideration which the programmer should be aware of is that 
in order for a scheduled routine to execute, the user program must be 
running. This means that once a QUIT command is encountered, no 
further scheduling may take place. One method of insuring that this 
never happens is to place the program into an infinite loop at its 
conclusion, instead of issuing a QUIT command. This is quite common 
in programs which maintain several time scheduled events. In this 
instance, the user program would issue the required FQUE functions to 
schedule the tasks to be performed. An additional routine is then 
scheduled to occur at a time after the last of the previously 
scheduled routines should have completed. This routine is used to 
perform any necessary clean-up (close LIBRARY files, for instance), 
and then issue a QUIT command. The program could then continue to 
execute. At its conclusion, it would then place itself into an 
infinite loop by using a GO command directed to itself. In this 
manner, the program would allow all scheduled routines to complete, 
and the program will QUIT after all of the scheduled routines have 
been completed. 

Terminating FOCAL Scheduling 

Both the FINT and the FQUE functions allow the user to cancel further 
scheduling of their routines. In addition, whenever FOCAL returns to 
its Command/Input mode via an error or by a QUIT command, all 
scheduling is terminated. 

Concurrent Routine Scheduling 

FOCAL is provided with a default maximum of eight (8) "slots" in which 
to store all the information necessary to schedule a task. This means 
that a total of eight routines may be scheduled. It is possible to 
have all eight routines to be scheduled by time, or all eight by 
device interrupt, or any combination of time and interrupt routines, 
as long as the combined total does not exceed eight. 

This number of "slots" may be altered by modifying the FOCAL source 
file PUBLIC.MAC. The symbol MAXTSK should be changed to have the 
maximum number of concurrently scheduled routines. This file should 
then be reassembled and linked into FOCAL as described in Appendix I. 

6-35 





CHAPTER 7 

RT-11 FOCAL FILE CAPABILITIES 

(LIBRARY Command) 

The LIBRARY command is used in FOCAL in order to access the RT-11 file 
structure. This command has already been treated somewhat in Section 
3.5 of this manual. 

Due to the power and complexity which this command is capable of 
attaining, Chapter 7 is devoted to defining the structure of the 
LIBRARY command, and explaining the various forms which the command 
may take. 

7.1 GENERAL COMMAND FORMAT 

All LIBRARY commands subscribe to a general command format. Not every 
command will require every field, but if a field is required by a 
command, it will be in the same relative position, and follow the same 
rules as any other LIBRARY command which uses it. 

The general form of the LIBRARY command is shown below. 
brackets denote specific argument fields. 

Angle 

LIBRARY <cmd> <file #,><fi1e specification><switches><args> 

LIBRARY 

<cmd> 

<file I,> 

<file specification> 

This is the FOCAL "LIBRARY" command. 
"LIBRARY" may be abbreviated to the letter 
"L". This part of the command must be 
followed by at least one space. 

This is the LIBRARY sub-command. This field 
specifies which of the library operations are 
to be performed. This field may be 
abbreviated to a single character and must be 
followed by at least one space. 

This is the file number required by some of 
the library commands. If this number is 
required, it must be placed in this position 
in the library command and terminated by a 
comma. The file number must be in the range 
zero (0) to seven (7). 

This field is used by some library commands 
to define the file on which the operation is 
to be performed. If no switches are 

7-1 



<switches> 

<args> 

supplied, a space should be placed after the 
specification if arguments are to follow. 

Some commands allow the user to further 
specify the types of operations to be 
performed on the file specified. This field 
should be terminated by a space. If more 
than one switch is specified, no space should 
appear between them. 

This is the field for the arguments, if any, 
of the particular LIBRARY command. 

7.2 LIBRARY COMMAND FIELD SYNTAX 

As specified above, the LIBRARY command is formed by placing several 
fields of information together in a specific order. 

The rules for each of these fields defined in section 7.1 are 
explained below. 

7.2.1 LIBRARY Field 

The FOCAL command LIBRARY is specified by a string of one or more 
characters beginning with the letter "L" followed by at least one 
space. This is the same convention used with all FOCAL commands. 

7.2.2 <cmd> Field 

The <cmd> field is used to define the sub-command to the LIBRARY 
routines. These commands may be abbreviated to one character. This 
field must be terminated by a space (blank) if any additional 
information for the command is to follow it. The possible commands 
are: 

Command Abbreviation 

OPEN o 

MAKE M 

INPUT I 

GET G 

RUN R 

NEXT N 

Function 

Opens an RT-ll file for use by a FOCAL 
program. 

Creates a new RT-ll file for use by a FOCAL 
program. 

Opens an existing RT-ll file for use by a 
FOCAL program. 

Causes the program to be loaded from a RT-ll 
file. 

ERASEs all variables and program statements, 
then "GET"s the program specified, and a "GO" 
is then performed for the new program. No 
files are closed by this operation and they 
remain open when the new program starts. 

This command erases 
memory, GET"s the 

7-2 

only the program from 
specified program, and a 



SAVE S 

CLOSE C 

WRITE W 

TYPE T 

ASK A 

DELETE D 

7.2.3 (file i,) Field 

"GO" is then executed. Variables will be 
left intact unless the new program is to 
large to fit in the remaining space in which 
case they will be deleted. All files are 
left intact, and remain in the same state as 
before the execution of the command. 

This command causes a copy of 
program currently in memory to 
to specified file for later use. 
retrieved by a LIBRARY GET, 
command. 

the entire 
a be written 
It may be 

RUN, or NEXT 

This command terminates all activity for a 
specified file number. New files are made 
permanent and all changes made to old files 
are completed. 

This command allows the program to WRITB 
statements to an previously opened file. 

This command TYPEs output to a previously 
opened file. 

This command allows the program to ASK from 
an opened file. 

This command allows the user to delete an 
RT-ll file from a mass storage device. 

This field is used to identify an opened file to the library routines. 

A user is allowed to open up to eight files at a time. The values of 
the file number may range from 0 to 7. 

This field can contain a constant (number), a variable, or an 
expression. The value specified. is truncated (made into an integer 
with the fractional part discarded) and is checked to make sure that 
it is within the range allowed. When a file is opened, the 
accompanying file number is associated with the specified file. This 
association remains in effect until a LIBRARY CLOSE has been issued or 
until an error message has been printed. 

This field must be terminated by a comma (,) if any additional 
information is to be included in the command string. 

7.2.4 (file specification) Field 

The file specification field is used to define the name of the desired 
file, as well as the device to be used and the size of the file. 

The format of this field is: 

DEVICE:NAME.EXT[SIZE) 

7-3 



where: 

DEVICE: 

NAME 

• EXT 

[SIZE] 

is an optional RT-ll type dev1ce 
specification. If no device is specified, 
the system device is assumed. Some of the 
more common device names are shown below. It 
should be noted that all device names 
terminate with a colon. 

NAME DEVICE 

SY: System device 
DTn: Dectape unit "n" 
LP: Line printer 
PP: High speed paper tape punch 

is the name of the file to be used. This 
should always be specified, as no default is 
assumed. 

is the qualifying extension field for the 
file. If this part of the specification 
field is left blank, ".FCL" is assumed. 

is the optional parameter used to specify the 
size of the file to be created in 256 word 
blocks. The value inside the brackets must 
be a constant. (Expressions or variables are 
not allowed without quotes. See the section 
on quotes below.). The following table can 
be used as a guide to the file size needed to 
store variables in the VIRTUAL FILE mode: 

Variables / 256 word block 

Double Precision: 64 
Single Precision: 128 
Integer: 256 
Byte (character): 512 

A feature of tne RT-ll version of FOCAL-1l is to allow an expression 
to be incorporated anywhere in the file specification field. This 
feature is not available in the 8K version of FOCAL. 

This is performed by enclosing the express~on in single quotation 
marks ('). The result is that the expreSS10n is evaluated, and then 
the result is truncated to an integer. Negative numbers are made 
positive by taking the absolute value of the result. 

This value is then converted into a string of ASCII characters 
(without any leading zeroes) and inserted into the command in place of 
the expression. 

For example: 

*SET M=l,SET K=5,SET L=10.l 
*LIBRARY MAKE M,TEST'M*K*L'.DAT['K'] 

is the same as: 

*LIBRARY MAKE l,TEST50.DAT[S] 

7-4 



since M*K*L=1*5*lO.1=50.5=50 

If there is more information to be entered for the current command, 
and the file specification is not followed by switches, the field 
should be followed by a blank character. 

7.2.5 <switches> Field 

The switches field is used on the OPEN, MAKE, and INPUT commands to 
further specify the type of operations to be performed on the file. 
Usually switches are only used on virtual files. A switch is 
specified by a slash character (/) followed by a single character. No 
spaces (blank character) may be placed in front of the slash 
character. 

If a switch requires an argument, this is specified by placing a colon 
after the switch character (i.e. the character following the slash), 
and following this by the argument. 

The possible switches and their meanings appear below. The 8K version 
of RT-ll FOCAL does not support the /0, /F, IX, /I, /B, and the /T 
switches. If any of these switches are specified in the 8K version of 
RT-ll FOCAL, they will be ignored. Only the default formats (/0 for 
double precision, and /F for single precision) will be used. 

Switch Argument? 

/0 no 

/F no 

/X no 

/I no 

/B no 

/T no 

/Z no 

IV yes 

function 

File is to be used to store variables in 
double precision format. 

File is to be used to store variables in 
single precision floating point format. 

File is to be used to store variables as a 
l6-bit positive magnitude. (range is from 0 
to 65534 inclusive) Negative numbers are made 
positive by taking their absolute value. 

File is to be used to store variables in 
standard signed integer format. (-32768 to 
32768 inclusive) 

File is to be used to store integer values in 
the range -128 to 127 inclusive (Byte). 

The file is used to store character data 
(text). (Range of 0 to 127) 

The newly created file is to be zeroed (made 
empty) before use. This switch should only 
be used if a file is created with a specific 
length specified (using [n]). Otherwise, all 
the space allocated to the file will be used. 
(This may be one half the the largest area on 
the device specified.) If this switch is 
specified when no new file is created, it 
will be ignored. 

The file is to be used as a virtual file. 
The argument is to be a model of the type of 

7-5 



variable used to represent the file. For 
example: 

/V:A(O) 

would assume that any time a reference is 
made to A(x), the value will be stored in 
this file at location x. 

If additional information is to be placed in the command, the switch 
field should be terminated by a blank character. 

7.2.6 <args> Field 

The argument field is always the last section of a LIBRARY command. 
In general, the format for this field follows that of the equivalent 
FOCAL command. The LIBRARY RUN and NEXT commands use arguments 
similar to those of the FOCAL "GO" command. 

For example: 

LIBRARY TYPE IFILE,"THIS IS A LINE.",! 

This will send the same character string to file number "IFILE" that: 

TYPE "THIS IS A LINE.",! 

would send to a terminal. 

LIBRARY WRITE 3,5 

will write group 5 of a FOCAL program to file 3. 

7.3 LIBRARY COMMANDS 

7.3.1 LIBRARY OPEN Command 

The LIBRARY OPEN command is a general purpose command to prepare a 
program to use a file structured device. This command first checks to 
see if the file number specified is currently in use. If it is, an 
error (?37) is given, and the command is aborted. If the file number 
is not in use, FOCAL determines if the file specified already exists. 
If it does, that file is used for all further operations which 
reference that file number. 

It should be noted that if an existing file is used, only the space 
currently allocated to the file may be used. If a user attempts to 
place more data into the file than it originally contained, an error 
(?33) will result. 

If the file does not exist, a new file will be created. This file 
will not become permanent on the disk until a LIBRARY CLOSE command is 
issued. This frees the user from having to decide if a file already 
exists or not, and having to use special LIBRARY commands for each 
case. 

The format for the LIBRARY OPEN command is shown below. 

7-6 



LIBRARY OPEN <file #,><file specification><switches> 

As an example, let us assume that a file is to be used as a virtual 
file by a program. It is desired that if no file already exists, all 
of the values be initialize to zero. If the file does currently 
exist, the current values are to be used. The following section of a 
FOCAL program would accomplish this: 

1.10 LIBRARY OPEN 1,FILE.DAT[51/Z/V:DATA(0) 
1.20 FOR I=0,99;SET DATA(I)=DATA{I)+lO.O 
1.30 LIBRARY CLOSE 1 

The first time that this program is run, and if no file "SY:FILE.DAT" 
exists, the file will be created, and set to xero (/Z switch). 
Successive executions of this program will add 10 to each of the first 
100 elements of the file. 

7.3.2 LIBRARY INPUT Command 

The LIBRARY INPUT command is identical to the LIBRARY OPEN command 
with the exception that if the file does not already exist, no new 
file is created, and an error (?34) is returned. 

7.3.3 LIBRARY MAKE Command 

The LIBRARY MAKE command is identical to the LIBRARY OPEN command with 
the exception that a new file is always created, regardless of whether 
or not a file already exists. 

7.3.4 LIBRARY CLOSE Command 

This command releases a file and makes all modifications to it 
permanent. 

The user is warned that if an existing file was opened, and the file 
was modified, unless the file is closed, the file may be left with 
only part of the modification actually ~n the file. If a newly 
created file is not closed, the file will be deleted upon completion 
of the session ,-lith FOCAL (i.e. striking tC). If a file number is 
specified only that file will be closed. If no number is specified, 
or "ALL" is used in place of a file number, all files will be closed. 

The format of the LIBRARY CLOSE command is: 

LIBRARY CLOSE (file #> 
or 

LIBRARY CLOSE 

7.3.5 LIBRARY GET Command 

The LIBRARY GET command is used to temporarily direct FOCAL to accept 
statements from the file specified. No statements currently stored by 
FOCAL will be erased unless a new statement from the input file 
replaces it. Variables are not altered unless the program becomes too 
large, and then the variables will be erased. 

7-7 



The form of the LIBRARY GET command is: 

LIBRARY GET <file specification> 

For instance, if a user wished to load a program called "PROG" into 
memory, and ready it for execution via the GO command, the following 
command caould be used: 

*ERASE ALL 
*LIBRARY GET PROG 

7.3.6 LIBRARY RUN Command 

The LIBRARY RUN command loads and starts a specified program from an 
RT-ll file. Optionally, an argument may be specified giving the 
statement number to begin execution. Otherwise, a GO is performed, 
and execution will begin with the first statement. The form of the 
LIBRARY RUN command is as follows: 

LIBRARY RUN <file specification><arg> 

For example: 
LIBRARY RUN DT:COMPUT,2.3 

would erase both text and variables, then read the program from 
DECtape called COMPUT.FCL into memory. This program would then be 
started automatically at line 2.3. If the user wants to start the 
program from the first statement of the program, then the following 
command would be used: 

LIBRARY RUN DT:COMPUT 

7.3.7 LIBRARY NEXT Command 

The LIBRARY NEXT command is equivalent to the LIBRARY RUN command, 
with the exception that the variables are not erased. As in the 
LIBRARY RUN command, an argument may be specified to direct program 
execution once the program is stored in memory. 

Variables are preserved between programs, unless a 
large to allow the variable area to remain intact. 
variables are erased. 

program is too 
In the case the 

When the called program gains execution, the special variable "&" will 
contain the line number following the LIBRARY NEXT command in the 
calling program. 

The LIBRARY NEXT command can not be used within a DO or FOR series of 
commands. 

As an example, below are three programs which call each other via the 
LIBRARY NEXT command. The first (CHAIN. FCL) calls the other two which 
alter a variable and then return to the calling program. 

CHAIN.FCL: 

C:FOCAL-llS Vl (RT-ll) 06-NOV-74 
1.10 C LIBRARY NEXT TEST PROGRAMS 
1.20 C CHAIN.FCL - MAIN PROGRAM 

7-8 



1.30 C CHAIN1.FCL - ROUTINE 1 
1.40 C CHAIN2.FCL - ROUTINE 2 
1.50 S N=l ; C-CALL ROUTINE 1 
1.60 S 1=100 
1.65 T !"CALLING CHAIN1.FCL WITH I = ",tI(I),! 
1.70 L N CHAIN'N' 
1.80 T !"RETURNED FROM CHAIN1.FCL AND I = ",tI(I),! 
2.10 S 1=1+100; S N=N+l 
2.20 T !"CALLING CHAIN2.FCL WITH I = ",tI(I),! 
2.30 L N CHAIN'N' 
2.40 T !"RETURNED FROM CHAIN2.FCL WITH I = ",tI(I),! 
2.50 QUIT 

CHAIN1.FCL: 

C:FOCAL-llS Vl (RT-ll) 06-NOV-74 
1.10 C CHAIN1.FCL 
1.20 C 
1.30 T 1"CHAIN1.FCL CALLED. WILL RETURN TO LINE ",%4.02,& 
1.35 S I=I+66 
1.40 L N CHAIN,& 

CHAIN2.FCL: 

C:FOCAL-llS Vl (RT-ll) 06-NOV-74 
1.10 C CHAIN2.FCL 
1.20 C 
1.30 T 1"CHAIN2.FCL CALLED. RETURN WILL BE TO ",&,1 
1.40 S 1=1+33 
1.50 L N CHAIN,& 

EXECUTION: 

*L R CHAIN 
CALLING CHAIN1.FCL WITH I = 100 
CHAIN1.FCL CALLED. WILL RETURN TO LINE = 1.80 
RETURNED FROM CHAIN1.FCL AND I = 166 
CALLING CHAIN2.FCL WITH I = 266 
CHAIN2.FCL CALLED. RETURN WILL BE TO = 2.40 
RETUru~ED FROM CHAIN2.FCL WITH I = 29 
* 

7.3.8 LIBRARY SAVE Command 

The LIBRARY SAVE command is used to save a program in an RT-ll file. 

This command creates a new file with the name specified and performs a 
"WRITE ALL" to the file. The file is then closed. 

The only error possible is if there is insufficient space on the 
specified device for the entire program. 

The format of this command is: 

LIBRARY SAVE <file specification) 

For example, if the program currently in memory was needed to be saved 
on the system device, the following command would be used: 

LIBRARY SAVE PROGl 

7-9 



This would save the program in a file called PROGl.FCL on the system 
device. 

7.3.9 LIBRARY WRITE Command 

The LIBRARY WRITE command performs the function of the FOCAL WRITE 
command, but directs the associated output to the specified file. The 
file must have been already opened by a LIBRARY OPEN, MAKE, or INPUT 
command. 

An optional argument may be specified. This argun~nt is in the same 
form as the one for the WRITE command in FOCAL. This argument is 
either a stat~ent number, group number, or "ALL". 

The format for this command is: 

LIBRARY WRITE <file #><,arg> 

If, for example, the user wished to make a file containing just 
section 3 of the current program, the following commands could be 
used: 

*LIBRARY MAKE 1,SEC3 
*LIBRARY WRITE 1,3 
*LIBRARY CLOSE 1 
* 

This would create a new file by the name of "SEC3.FCL"" on the system 
device which would only contain section 3 of the program currently in 
memory. 

7.3.10 LIBRARY TYPE Command 

The LIBRARY TYPE command was provided to al 1 0\01 the llser to direct the 
output of a TYPE command to an RT-ll file which has been opened with a 
LIBRARY OPEN, MAKE, or INPUT command. Any argument legal for a FOCAL 
TYPE command may be used in a LIBRARY TYPE command. 

The format of the LIBRARY TYPE command is as follows: 

LIBRARY TYPE (file #><,args> 

For example, if a file called OUTPUT.LST was to be created on the 
system device for later printing, the following program would generate 
a table of random numbers in that file. 

lQlO LIBRARY MAKE O,OUTPUT.LST 
1.20 FOR I=l,lO;LIBRARY TYPE O,!;DO 2 
1.30 LIBRARY CLOSE 
1.40 QUIT 

2.10 FOR J=l,lOiLIBRARY TYPE O,FRAN()," 
2.20 RETURN 

" 

At the conclusion of this program's execution, PIP could be run to 
print the file on the line printer. 

7-10 



7.3.11 LIBRARY ASK Command 

"The LIBRARY ASK command allows the user to accept input from an RT-ll 
file which has been previously opened by a LIBRARY OPEN, MAKE, or 
INPUT command. 

The command follows the same formats as the FOCAL ASK command. If 
character strings are placed in the LIBRARY ASK command, they will be 
ignored. 

The format of the LIBRARY ASK command is shown below. 

LIBRARY ASK <file #><,args> 

For example, i~ a file called INPUT.DAT had been previously created 
either by us~ng a LIBRARY TYPE in another program, or was prepared 
using a text editor, a program could be written in FOCAL to read this 
numeric data. 

1.10 LIBRARY INPUT 1,INPUT.DAT 
1.20 COMMENT: SUM THE FIRST 100 VALUES AND PRINT THE RESULT 
1.30 SET SUM=O 
1.40 FOR I=l,lOO;LIBRARY ASK 1,X;SET SUM=SUM+X 
1.50 TYPE l"THE SUM IS ",SUM,! 
1.60 QUIT 

7.3.12 LIBRARY DELETE Command 

The LIBRARY DELETE command is used to remove a specified file from a 
RT-ll structure mass storage device such as a disk. If the file does 
not exist, an error (?35) will be given. 

The format of the LIBRARY DELETE command is: 

LIBRARY DELETE <file specification> 

For example, if the user wished to delete a file called "DATA.DAT" on 
DECtape unit 1, the following command would be given: 

*LIBRARY DELETE DTl:DATA.DAT 

7.4 VIRTUAL FILES 

In many instances, it would be helpful if the user were able to 
manipulate large blocks of data in an array (list or table of values), 
but the memory size of the user's computer is insufficient to store 
all of the information. For this reason, the concept of virtual files 
was implemented in FOCAL. This allows FOCAL to use a file on a random 
access device, such as disk or DECtape, to store the contents of user 
defined arrays. A program on a small machine is now able to utilize 
vast amounts of array space. 

In order to utilize virtual files, the user specifys 
variable in a LIBRARY OPEN, MAKE, or INPUT command. 
the subscripted variable with a file. 

a subscripted 
This associates 

Then, whenever the program references the subscripted variable 
specified in the LIBRARY command, FOCAL will automatically use the 
file as the storage area. This means that a program can be written as 

7-11 



if it were to be run on a large machine, and then, without major 
changes, be altered to run on a small machine. Additionally, this 
makes it very easy to write several programs which reference the same 
file, allowing the values of the array to be passed from program to 
program. This is the fastest, and most efficient ~eans of saving data 
for later use, since the file contains the data in FOCAL's internal 
format and conversion to printable characters is not required. 

To specify an array as a virtual file, a standard LIBRARY OPEN MAKE, 
or INPUT is used, with the "V" switch. For example: 

LIBRARY HAKE 1,ARRAY.DAT[lO]/Z/V:A(0) 

This will cause the creation of a file on the system device, ten 
blocks in length, named ARRAY.DAT. The file will be initially filled 
with zeroes. Each time the subscripted variable "An is referenced, 
FOCAL will refer to the file ARRAY.DAT. 

The range of subscript permissible in a virtual array is 0 through 
32,767. Subscripts within the range -1 to -32,768 may be used, but 
are treated as 65,536 plus the subscript value. This would require 
vast amounts of storage area to be wasted if not all the positive 
subscripts were in use. 

In order to determine the size requirements for a virtual array, the 
largest suscript value should be used with the follo~,,'ing table. 

Variable type 

(D) Double precision 
(F) Single precision 
(I,X) Integer 
(B,T) Byte 

# variables / block 

64 
128 
256 
512 

For instance, if a virtual array with the largest subscript of 1000 in 
single precision format was used, this would take: 

BLOCKS = MAX SUBSCRIPT / # VARIABLES PER BLOCK 

7.8 = 1000/128 

requiring a file of 8 blocks in length. 

As an example of the power of virtual files, suppose an inventory 
needed to be kept on a series of items ranging in number from 0 to 99. 
Each time a transaction was to be made, a separate record was to be 
kept. At the end of the day, these transaction files were to be 
merged with the master inventory file, and a list of the current 
inventory was required. This is a fairly straight forward type of 
problem, and one which is fairly typical of a user's needs. 

The following series of three programs perform 
virtual file concept. Many other features 
demonstrated by this example. 

C:FOCAL-IIS VI (RT-ll) l3-NOV-74 
1.10 C - INVENTORY PROGRAM 1 

this 
of 

task 
RT-ll 

using 
FOCAL 

1.20 C *** UPDATE PROGRAM - GENERATE TRANSACTION FILE *** 
1.30 X FERR(2) 
1.40 SETIFILE=l 

7-12 

the 
are 



1.50 L I 1,FILE'IFILE'.TRN 
1.60 L C l;SET IFILE=IFILE+1;G 1.5 
2.10 x FPRM{3,3);T !!"TRANSACTION ",tI{IFILE),!! 
2.15 L C 
2.20 L M 1,FILE'IFILE'.TRN[51/I/Z/V:DATA(0) 
2.30 T "ENTER TRANSACTIONS BY ITEM," 
2.31 T " FOLLOWED BY NUMBER OF UNITS:"!! 
2.35 T "ENTER A -1 FOR THE ITEM NUMBER TO EXIT"!! 
2.40 A "ITEH #:",1," # OF UNITS:",J 
2.50 I (I) 2.6;SET DATA(I)=DATA{I)+J;T !;G 2.4 
2.60 L C l;T ! "TRAl~SACTION #" i tI (IFILE) , It COMPLETED."!!!;Q 

C:FOCAL-11S V1 (RT-11) 13-NOV-74 
1.10 C - INVENTORY PROGRAM 2 
1.20 C * MERGE TRANSACTION FILES INTO MASTER AND RUN REPORT * 
1.30 X FERR(2);SET IFILE=l 
1.40 L 0 2,HASTER.FIL[51/I/Z/V:MASTER(0) 
1.45 SET SWITCH=O 
1.50 L I 1,FILE'IFILE'.TRN/I/V:TRANS(0) 
1.55 IF (SWITCH) 1.8;C 
1.60 FOR I=0,99;SET MASTER{I)=MASTER(I)+TRANS(I) 
1.70 L C l;L D FILE'IFILE'.TRNiSET IFILE=IFILE+1;GO 1.5 
1.80 L R INVEN3 
2.10 LIBRARY CLOSE 
2.20 T !!tI{IFILE-1)," TRANSACTIONS WERE MERGED."! 
2.30 T "REPORT PROGRAM WILL NOW BE RUN."!! 
2.35 SET SWITCH=-l 
2.40 X FERR(2)iR 

C:FOCAL-11S V1 (RT-11) 13-NOV-74 
1.10 C - INVENTORY PROGRAM 3 
1.20 C *** REPORT GENERATOR *** 
1.25 X FPRM{3,3) 
1.30 L I 1,HASTER.FIL/I/V:MASTER(0) 
1.40 0 LiX FCHR(@14);T ! "MASTER INVENTORY LISTING"! I! 
1.50 T "ITEM UNITS ITEM UNITS"!! 
1.60 F I=0,49;DO 1.65 
1.62 GO 1.68 
1.65 T !" ",%2,1," ",%5,MA(I)," ",%2,1+50," ",%5,MA(I+50) 
1.68 T !1!!! 
1.70 LIBRARY CLOSE;OPERATE T 
1.80 QUIT 

*L R INVEN1 

TRANSACTION 1 

ENTER TRru~SACTIONS BY ITEM, FOLLOWED BY NUMBER OF UNITS: 

ENTER A -1 FOR THE ITEM NUMBER TO EXIT 

ITEM #:1 # OF UNITS:4 
ITEM #:2 # OF UNITS:89 
ITEH #:73 # OF UNITS:5 
ITEM #:14 # OF UNITS:7 
ITEM #:66 # OF UNITS:8 
ITEM #:-1 # OF UNITS:O 
TRANSACTION #1 COMPLETED. 

*L R INVEN1 

7-13 



TRANSACTION 2 

ENTER TRANSACTIONS BY ITEM, FOLLOWED BY NUMBER OF UNITS: 

ENTER A -1 FOR THE ITEM NUMBER TO EXIT 

ITEM #:6 # OF UNITS:2 
ITEH #:1 # OF UNITS:-3 
ITEM #:99 # OF UNITS:6 
ITEM #:50 # OF UNITS:3 
ITEM #:-1 # OF UNITS:O 
TRANSACTION #2 COHPLETED. 

*L R INVEN2 

2 TRANSACTIONS WERE MERGED. 
REPORT PROGRAM WILL NOW BE RUN. 

Output from line printer: 

MASTER INVENTORY LISTING 

ITEM UNITS I TEl-I UNITS 

o 0 50 3 
1 1 51 0 
2 89 52 0 
3 0 53 0 
4 0 54 0 
5 0 55 0 
6 2 56 0 
7 0 57 0 
8 0 58 0 
9 0 59 0 

10 0 60 0 
11 0 61 0 
12 0 62 0 
13 0 63 0 
14 7 64 0 
15 0 65 0 
16 0 66 8 
17 0 67 0 
18 0 68 0 
19 0 69 0 
20 0 70 0 
21 0 71 0 
22 0 72 0 
23 0 73 5 
24 0 74 0 
25 0 75 0 
26 0 76 0 
27 0 77 0 
28 0 78 0 
29 0 79 0 
30 0 80 0 
31 0 81 0 
32 0 82 0 
33 0 83 0 
34 0 84 0 
35 0 85 0 
36 0 86 0 

7-14 



37 0 87 0 
38 0 88 0 
39 0 89 0 
40 0 90 0 
41 0 91 0 
42 0 92 0 
43 0 93 0 
44 0 94 0 
45 0 95 0 
46 0 96 0 
47 0 97 0 
48 0 98 0 
49 0 99 6 

7-15 





CHAPTER 8 

ARII/LPS AND DRII-K FUNCTIONS 

8.1 INTRODUCTION 

NOTE 

The term ARII/LPS refers to either the 
ARII or the LPS. 

The ARII (Analog Real-Time Interface) and the LPS (Laboratory 
Peripheral System) are real-time interface devices adaptable to a wide 
variety of applications including biomedical research, analytical 
instrumentation, psychological research, data collection, monitoring, 
data logging, industrial testing, engineering, and technical 
education. Each consists of a multi-channel A/D converter, a 
programmable real-time clock, and two D/A converters which may be used 
to control a CRT. The LPS can have up to 64 A/D channels. Its 
digital values are in the range 0 to 4095 (12 bits). It has two 
Schmitt triggers. The ARII has 16 A/D channels. Its digital values 
are in the range 0 to 1023. It has one external event line. The LPS 
also includes a numeric display consisting of six LED (Light Emmitting 
Diode) matrices. 

The DRll-K is a general purpose digital input-output interface. Under 
program control it can parallel transfer up to sixteen bits of data 
betweeen a PDP-II computer and an external device or another DRII-K. 

The PDP-II FOCAL functions described in this chapter allow PDP-II 
FOCAL to make full use of these devices. 

The FTIC and FDLY functions allow access to the ARII/LPS programmable 
clock. Using FTIC the FOCAL program can start or stop the clock, set 
its rate to any value between 10000 ticks per second and one tick 
every 2.55 seconds on the ARll and every 640 seconds on the LPS, and 
read and set the value of a timer which maintains a count of the 
number of ticks that have occurred. Using FDLY the program can wait a 
specified number of ticks before continuing the FOCAL program, or 
continually execute a given function for a specific amount of time or 
until the function returns a positive value. 

FTOI, the time of interrupt function, returns to the user the exact 
ARll/LPS time of an interrupt scheduled by the FINT function. This is 

8-1 



useful when the exact time that an event occurs constitutes an 
important experimental parameter. 

The FSAM function allows the FOCAL program to sample the A/D channels. 
The program can read the current value of a specified channel directly 
or can create a ring buffer into which it may cause asynchronous 
sampling of any number of values at the rate at which the ARII/LPS 
clock is ticking or upon the occurrence of external events. Samples 
may be taken from a single channel or from a series of channels. This 
form of sampling is performed while the FOCAL program is executing. 
While sampling proceeds the FOCAL program can read the samples taken 
or perform other operations. Under FOCAL/RT-II the program can also 
cause data to be written to an RT-II file directly from the ring 
buffer allowing for high data aquisition and storage rates. If the 
file written to is a virtual file, the program can acceSF the data 
already loaded into the file even as it is loaded with additional 
data. 

The FDMA function, which applies only to the LPS, allows for direct 
memory access sampling in any of several modes. 

The FCRT function gives the FOCAL program powerful display 
capabilities. It allows the program to create an addressable display 
file of arbitrary length, load it with graphics instructions, and 
cause display on a CRT at a specified level of intensity. The 
graphics instructions available are instructions to display an 
absolute (or fixed) point, a relative (or movable) point, points 
plotted along the x or y axis, ASCII characters, and some control 
characters. The display file's addressability enables the FOCAL 
program to alter the screen location of graphic data causing the 
display to move, to alter characters on display, continually add to or 
delete from the display file, and, in general, manipulate the display. 

The FFRM function allows RT-II FOCAL to save the display file in an 
RT-II file and to retrieve it at a later time. Each RT-II file can 
contain a single display file or a series of separate frames. The 
FLED function allows FOCAL to load the numeric display on an LPS with 
a floating point value. 

FFNS is a function which executes sequentially the set of functions 
specified in its argument list. This greatly decreases the waiting 
time between function executions that sequential executions using the 
Xecute command would entail. By specifying a wait function as one or 
more of its arguments, the FOCAL program can cause exact time delays 
between execution of functions. 

FBIT allows the FOCAL program to perform various logical operations 
between l6-bit quantities, and to set, clear, and complement 
individual bits. It performs AND, OR, and XOR (exclusive or), and 
converts bit numbers to 16-bit values with the corresponding bits set. 
It is especially useful in conjunction with the UNIBUS function, FX, 
for accessing device registers, particularly those of the DRII-K. 

All these functions except the two that require an RT-II file will run 
under both RT-II and Paper Tape FOCAL. The user may create a version 
of FOCAL that includes all or only some of these functions. 

The next sections describe the functions in detail giving examples of 
their use. Appendix M, 'ASSEMBLING AND LOADING FOCAL LAB EXTENSIONS', 
describes how to create FOCAL for the ARII/LPS and DRII-K from the 
FOCAL language files and the function file, LABFNS.MAC. 

8-2 



8.2 THE FUNCTIONS 

The functions described in this chapter offer complete access to the 
features of the ARll/LPS and the DRll-K. They also provide certain 
generally useful capabilities. The format of each function as well as 
its name determines what operation the function will perform. That 
is, the same function called with a different number of arguments, or 
arguments of different values, can perform several related operations. 
The function in its most general format preceeds the section 
describing that function. The function in its specific format 
preceeds each subsection describing the particular operation that the 
function in that format performs. The last section of this chapter 
summarizes all possible formats for all the functions. 

Unless otherwise specified, all the functions described in this 
chapter take integer arguments from -32768 to +32767 and return 
integer values. A function will round non-integer arguments to their 
integer part and will cause an integer overflow error (?38) on integer 
values outside the range -32768 to +32767. 

8.2.1 The ARll/LPS Clock 

The ARll/LPS clock can operate at rates from lMHz to 100 Hz (Hz 
represents cycles per second). An internal counter which the program 
can load determines how many cycles comprise one clock tick. Thus, a 
clock running at 100 Hz with its counter set to 10 will tick 10 times 
per second. Using the rate and the counter in conjunction, the clock 
can be programmed to run at rates form 1 million ticks per second to 1 
tick every 2.5 seconds for an ARll and one tick every 640 seconds for 
an LPS. FOCAL allows its user a maximum clock tick rate of 10,000 
ticks per second. Due to processor and interrupt overhead 
considerations it cannot handle a faster clock tick rate than this. 

The clock can also be programmed to run at line frequency (50 Hz or 60 
Hz) or at some other externally supplied frequency. Moreover, it can 
be programmed to tick repeatedly or to tick once and stop. FOCAL 
provides access to both these features. 

The FTIC function which starts and stops the clock is the essential 
function for FOCAL's handling of the ARll/LPS since FOCAL uses the 
clock when sampling from the ARll/LPS analog to digital channels and 
when running the display. Like the other ARll/LPS functions, the 
number of arguments as well as their values determines the operation 
performed by the FTIC function. The FDLY function allows the FOCAL 
program to wait a specified number of clock ticks. The FTOI function 
allows the FOCAL program to determine the time of interrupt through an 
interrupt vector specified in a call to FINT. 

FUNCTION FORMAT 

FTIC(N,M) 
FTIC(N) 
FDLY(N) 
FDLY(N,FN) 
FTOI(V) 
FTOI(-V) 

FTOI(V,N) 

OPERATION 

START/STOP CLOCK 
RETURN TIMER VALUE LESS N 
WAIT N TICKS 
WAIT N TICKS WHILE EVALUATING FN 
SAVE TIME OF EACH INTERRUPT THROUGH VECTOR V 
STOP SAVING TIME OF INTERRUPT THROUGH 
VECTOR V 
RETURN LAST TIME OF INTERRUPT THROUGH V LESS N 

8-3 



8.2.1.1 Controlling the Clock: FTIC(N[,M]) 

The FTIC function allows the program to set the clock tlcKing 
repeatedly (or for a single tick) at a specified rate and count, to 
stop the clock, and to read and set a 16-bit timer that keeps track of 
the number of ticks that have occurred. 

8.2.1.2 Start/Stop 

FUNCTION FORMAT: FTIC(N,M), N>O 

To start or stop the clock the program uses FTIC with two arguments, 
the first greater than O. The first argument specifies a rate, the 
second argument the number of cycles at this rate per clock tick. It 
the second argument is greater than 0, the clock will tick repeatedly 
at the specified clock tick rate. If the second argument is less than 
0, the clock will tick once using the absolute value of the second 
argument as the number of cycles before the tick. FTIC will interpret 
the second argument modulo 256 for an ARll. 

The first argument (which specifies the rate) can take any value 1 or 
greater. FOCAL interprets this value as an integer modulo 8. That 
is, M set to 8 will be interpreted as rate O. The value of this 
argument corresponds to the hardware programmable clock rates except 
that FOCAL will automatically decrease rates that it cannot handle, 
i.e. those faster than 10~000 cycles per second. Thus, codes 1, 2, 
and 3 in the table below all set the rate to 10,000 cycles per second. 

FIRST ARGUMENT RATE 

1 10 KHZ 
2 10 KHZ 
3 10 KHZ 
41KHZ 
5 100 HZ 
6 EXTERNAL INPUT(ARll) 

SCHMITT TRIGGER 1 (LPS) 
7 STOP OR EXTERNAL FREQUENCY(ARll) 

LINE FREQUENCY (LPS) 
8 STOP 

To stop the clock the program specifies code 8 (interprete0 as 
hardware rate 0). Stopping the clock will automatically set a 16-bit 
timer described in the next section to the value of the second 
argument. The program can also stop the clock by specifying a rate 
other than 8 as the first argument, and specifying a counter value of 
O. This method of stopping the clock does not alter the timer value. 

Examples: 

X FTIC(3 1 5) iC: START THE CLOCK TICKING AT 2000 T.P.S. 

X FTIC(8,0) iC: STOP THE CLOCK SETTING THE TIMER TO 0 

X FTIC(6,4) iC: SET CLOCK SPEED TO LINE FREQUENCY DIVIDED BY 4 
iC: FOR A 60 HZ CLOCK, 15 TICKS PER SECOND 

X FTIC(4,-3) iC: MAKE CLOCK TICK ONCE IN EXACTLY 3/l000THS SEC. 

X FTIC(3,0) :C: TURN THE CLOCK OFF LEAVING THE TIMER UNCHANGED 

8-4 



Starting the clock using FTIC causes one of FOCAL's task scheduling 
"slots" to be filled. When FOCAL returns to command mode, the clock 
stops and the "slot" is released. 

8.2.1.3 Reading the Timer 

FUNCTION FORMAT: FTIC(N), 0<=N<65536 

A 16 bit counter called the timer maintains a count of the number of 
clock ticks that have occurred. Because each clock tick increments 
the counter by 1, the counter's value can be divided by the clock tick 
rate (expressed in ticks per second) to yield a current time 
measurement in seconds. Thus, a timer with a value of 5000 represents 
2500 seconds when the clock tick rate that produced it is 2 ticks per 
second. 

When FOCAL is loaded, the timer has the value O. Thereafter, clock 
ticks or setting the timer using rate code 8 will alter the timer's 
value. The timer can assume integer values from 0 to 65535. When it 
overflows it returns to O. 

FTIC(N) with an argument greater than or equal to 0 and less than 
65536 returns the value of the timer less the value of the argument, 
N. The program uses argument values to simplify determination of the 
number of ticks between events: When the first event occurs the 
program reads the clock and saves its value in a variable. At the 
occurrence of the next event it supplies this value as the argument to 
FTIC. The value returned is the time between events (inter-event 
interval) • 

Example: 

1.10 X FTIC(8,0);C:SET TIMER TO 0 
1.20 X FTIC(S,10);C: SET CLOC¥ TICKS AT 10 TIC~S PER SECOND 
1 • 3 0 T " W HAT I S 2 + 2 ? " I C: ASK 'T H E lJ S F R A (W E: S T ION 
1.40 S T=F'TIC(O);C: RECORD TJ~E AT ~=NO OF QUF:S'TION 
1.50 A A;C: WAIT FOR A RESPONSE 
1.60 S D=~~~rIC (T) IC: GET TIME Of RESPON~E IN T~~NTHS OF' A SECOND 
1.70 T "RF:SPONSE"%S.02,D/I0," SECONDS",! 

If the argument, when subtracted from the current value of the timer, 
would produce a value less than 0, the value returned equals 65536 
plus this negative result. In other words, FTIC(N) returns a possible 
timer value, 0 to 65535, only. 

8.2.1.4 Waiting 

FDLY (N [ ,M] ) 

The FDLY function allows the FOCAL program to wait a specified number 
of clock ticks before continuing program execution or to continually 
execute a function until the function returns a positive value or 
until a specified time expires. It requires that the ARll/LPS clock 
be running at the time of its executicn. 

8-5 



FUNCTION FORMAT: FDLY(N), N>O 

FDLY with a single argument greater than ° causes FOCAL to wait the 
number of ticks specified before returning to the next statement in 
the FOCAL program. This form of FDLY returns as its functional value 
the current value of the timer. 

Example: 

x FDLY(99)iT "DONE",! iC: WAIT 99 TICKS, THEN TYPE 'DONE' 

FUNCTION FORMAT: FDLY(N,M), N>O 

FDLY with two arguments, the first of which is greater than 0, causes 
FOCAL to continually evaluate the second argument until the value 
returned by the second argument becomes greater than or equal t.o one, 
or until the number of ticks specified by the first argument have 
elapsed, whichever comes first. The second argument is usually a 
function whose value depends on some external operation such as input 
of a character from a remote keyboard. FDLY returns the last value 
returned by the second argument. Thus, FDLY will return a value 
greater than or equal to I whenever it returns before having reached 
its time limit. A return value less than or equal to ° indicates that 
the time expired. If the clock is not running when the program calls 
FDLY, FDLY will wait indefinitely. That is, the program will hang. 

Example: 

1.10 X FTIC(3,1);C:SET CLOCK T1CKING AT 10000 TIC~S PER SECOND 
1.20 T f'TIC(5,FX(2,@177570)):C:vJAIT FIVE TICKS OR UNTIL THE VALUE 
1.30 C: IN THF REGISTER B~CO~ES GREATER THAN ZERO 

This example waits 5/10000ths of a second for data to appear in the 
specified register. It then types out either some positive non-zero 
value, or, if the time has expired, a value equal to or less than 
zero. 

FUNCTION FORMAT: FDLY(O,M) 

If the value returned by the wait format of FDLY is positive and 
non-zero, then the time limit specified by the first argument had not 
elapsed when the the return occurred. That is, the second argument 
took on a positive value before the number of ticks specified in the 
first argument occurred. FDLY(O,M) returns the number of ticks that 
did occur on the previous execution of a wait, less the value of the 
second argument. Thus, FDLY(O,O) returns the number of ticks that 
occurred in the previous wait function. If that function had used up 
all its allotted time, the value returned by FDLY(O,O) will equal the 
number of ticks specified as that wait function's first argument. 

The following line added to the previous example will type out the 
amount of time that passed before the data buffer went positive. 

1.40 l' !,"WAIT TIME:",FDLY(O,O)/IOOOO," SECONDS",! 

8.2.1.5 Time of Focal Interrupt 

The FOCAL program may specify a FOCAL group or line as an interrupt 

8-6 



handler using the function FINT. When such an interrupt occurs FOCAL 
takes the first opportunity to transfer control to this group or line. 
It must wait, however, until it enounters a delimiter in the FOCAL 
line being executed when the interrupt occured. This can mean a 
substantial delay between interrupt time and the execution of the 
FOCAL interrupt routine. Certain applications need to determine the 
precise time of interrupt. The interrupt may, for instance, represent 
an experimental subject's response time, this time being the parameter 
under study. 

FTOI(V[,N]) 

FTOI, the time of interrupt function, allows the FOCAL program to 
obtain the exact time of interrupt through any interrupt vec~or set up 
by a call to FINT. 

8.2.1.6 Saving Interrupt Time 

FUNCTION FORMAT: FTOI(V), V)O 

The FOCAL program first executes FTOI with one argument. This 
argument specifies an interrupt vector previously included in a call 
to FINT. This call to FTOI tells FOCAL to save the ARll/LPS timer 
whenever an interrupt occurs through this vector. It is capable of 
saving the time of interrupt through any vector including, that of the 
console terminal. 

FINT allows for eight separate interrupt routines. Using FTOI, the 
FOCAL program can save the time for each of them. An attempt to save 
the time through an additional vector will cause FTOI{N) to return 0 
rather than a positive value. Appendix M, ASSEMBLING AND LOADING 
FOCAL LAB EXTENSIONS, describes how to create a version of FTOI that 
can save more than eight interrupt times. 

FUNCTION FORMAT: FTOI(V), V<O 

FTOI with a single, negative argument tells FOCAL to discontinue 
saving interrupt times for the vector indicated by the magnitude of 
the argument's value. 

8.2.1.7 Returning Time of Interrupt 

FUNCTION FORMAT: FTOI{V,N) 

The FOCAL program calls FTOI in the FOCAL interrupt routine with twO 
arguments to return the timer value at interrupt time. The first 
argument indicates the vector through which the interrupt that caused 
the transfer to the FOCAL interrupt routine occurred. The second 
argument specifies a value which will be subtracted from the ARll/LPS 
timer value that was preserved at the time of the interrupt". The 
FOCAL program uses the second argument's value in the same way it uses 
the single argument to FTIC when reading the timer. If it equals 0, 
the value returned by this form of FTOI will equal the value of the 
ARll/LPS timer at the instant that the interrupt occurred. 

In the next example, FINT sets up group 5 as an 
and enables saving of the timer using FTOI. 

8-7 

interrupt processor 
The program enables 



interrupts to the device at 170400, and then continues processing. At 
a later time, an interrupt occurs through vector 340. FTOI returns 
the elapsed time between the interrupt enabling and the interrupt. 

Example: 

1.10 X FTIC(3,1):r: START CLOCK 
1.20 X FINT(@340,5,4,@170400,O);C: SCHEDUI,E GROUP 5 ON AID INTERRUPT 
1.30 X FTOI(@340);C: AND SAVE THE TIME OF INTERRUPTS 
1.31 C: THROlJGH THE VECTOR 
1.50 S 0=0 

2.05 X FX(-2,@170400,~120);C:ENABLE INTERRUPTS BY EXTERNAL EVENT 
2.07 S T=FTIC(O):C: GET CURRENT TIME 
2.10 T "Z":I (0-1) 2.1:C:THEN WAIT FOR AN INTERRUPT TO OCCUR 
2 • 2 0 T " TIM E T 1l.J LIN T ERR lJ P T : I, , D 11 0000 , " SEC 0 N D S " : C : T Y P E 0 E LAY l' I ME 
2.30 Q 

5.10 S D=FTOI(@340,Tl:C: ON INTERRUPT,SAVE TIME SINCE 
5.15 C: INTERRUPT ENABLED 
5.20 X FTOI(-@340);C: THEN STOP SAVING INTERPUPT TIMES 
5.30 RE1'l1RN;C: AND RETURN TO PROGRAM 

8.2.2 Analog to Digital Conversions 

The ARll/LPS provides access to a set of analog to digital channels 
which can take on digital values of from 0 to 1023 for the ARll and 
from 0 to 4095 for the LPS. The values correspond to supplied 
voltages in either the range -2.5 to +2.5 volts, or 0 to +5 volts for 
the ARll (depending on a software setting), and to voltage ranges 
dependent on the LPS hardware configuration. The LPS also allows 
programmable gain settings of 1, 4, 16 or 64. Individual channels may 
be sampled instantaneously, that is, at any given moment, or may be 
sampled automatically on each clock tick or on the occurrence of 
external events. 

FOCAL provides two functions useful in sampling at rates of up to 5000 
samples per second. Sampling may be from up to 8 separate channels in 
any specified sequence. FOCAL/RT-ll provides, in addition, a function 
for writing samples to a file at up to an aggregate rate of 3333 
samples per second. This allows high speed storage of samples. 

FUNCTION FORMAT 

FSAM(N), N>=O 
FSAM(N), N<O 
FSAM(N,A,B,C ••• ) 

FSAM (0 ,N) 
FBUF{N) 
FFIL{N,M) 

FDMA(N,M,L) 

OPERATION 

RETURN VALUE ON CHANNEL N 
WAIT FOR -N EXTERNAL EVENTS 
SAMPLE N POINTS INTO RING BUFFER SEQUENTIALLY 
FROM CHANNELS A, B, C ••• 
RETURN NTH SAMPLE FROM RING BUFFER 
ALLOCATE BUFFER AREA N WORDS LONG 
WRITE FROM RING BUFFER TO FILE ON 
CHANNEL N STARTING WITH SAMPLE M 
INITIATE DIRECT MEMORY ACCESS TRANSFER 
OF N WORDS FROM CHANNEL M USING SAMPLE 
MODE SPECIFIED BY L 

8-8 



8.2.2.1 Taking Samples 

F SAM (N [ ,M] ) 

The FOCAL program may use the FSAM function to sample instantaneously 
from a specified channel or to read a specified number of samples into 
a buffer. Therefore, it provides all of the capabilities of the FADC 
function. The FADC function remains available in FOCAL for 
compatibility. The call to FSAM also tells FOCAL whether to sample on 
each clock tick or upon the occurrence of external events. 

8.2.2.2 Direct Sampling 

FUNCTION FORMAT: FSAM(N}, N)=O 

The FSAM function used with a single argument greater than or equal to 
o returns the current digital value on a channel. The channel sampled 
is specified by the argument taken modulo 16 for the ARll, modulo 64 
for the LPS. The digital value returned will be in the range 0 to 
1023 for the ARll and 0 to 4095 for the LPS. 

For the ARll only, adding 32 to the value of the channel specified 
causes unipolar sampling, sampling in the range 0 to 5 volts. 
Otherwise, sampling is bipolar in the range -2.5 to +2.5 volts. When 
directed toward an LPS only, each argument can specify a gain as 
follows: 

NUMBER ADDED TO ARGUMENT 

o 
16 
32 
48 

GAIN SETTING 

1 
4 

16 
64 

The gain setting on 
incoming voltage. 
of .1 to .4. 

the LPS determines the amplification of the 
Thus, a gain setting of 4 would amplify a voltage 

Example: 

S D=FSAM(O);C: GET THE CURRENT VALUE ON ARll CHANNEL 0, BIPOLAR 

S D=FSAM(0+32)iC: GET THE CURRENT VALUE ON 0, UNIPOLAR 

S D=FSAM(2+l6)iC: GET THE VALUE ON LPS CHANNEL 2, GAIN 2 

8.2.2.3 waiting for External Events 

FUNCTION FORMAT: FSAM(N}, N<O 

FSAM with one negative argument causes a delay while external events 
take place. The number of external events is the absolute value of 
the argument. This form of FSAM allows the FOCAL program to wait for 
a number of external events, but does not return an AID value when 
completed. For the LPS, an external event is one firing of Schmitt 
trigqer one, while for the ARll an event is a TTL high-to-low 
transition on the External Event line. 

8-9 



Exampl e: 

x FSAM(-IOO)iC: WAIT FOR 100 EXTERNAL EVENTS TO TAKE PLACE 

8.2.2.4 Asynchrouous Sampling 

FUNCTION FORMAT: FSAM(N,A,B,C, ... ), N<>O 

FSAM with two or more arguments, the first non-O, allows for high 
speed asynchronous data sampling into a ring buffer described in the 
next section. The absolute value of its first argument specifies the 
number of samples to take. The remaining arguments, up to 8 of them, 
specify a sequence of channel numbers from which to take these 
samples. FSAM will return immediately after being called having 
initiated sampling from these channels. Thereafter, sampling will 
occur asynchronously. That is, while the FOCAL program runs, sampling 
will continue until the number of samples specified have been loaded 
into the ring buffer. The FOCAL program can read these values from 
the buffer while sampling occurs. 

FSAM can sample on each clock tick or upon occurrence of each external 
event. The sign of the first argument specifies which method of 
sampling it will use. A positive argument indicates sampling by clock 
tick; a negative one indicates sampling by external event. The ARII 
has a single external event input line which causes the sample to 
occur. On the LPS, Schmitt trigger one causes the sample. If the 
clock is started using rate 6, the external event rate, external 
events rather than passage of time cause clock ticks. In this case, 
requesting samp~ing on clock tick, that is, using a positive first 
argument, will, in effect, cause sampling by external event. In any 
case, sampling will not begin until a clock tick or an external event 
occurs, and sampling will discontinue when clock ticks or external 
events cease to occur. Thus, the FOCAL program that calls FSAM to 
sample by clock tick need not start the clock until after the call to 
FSAM and may stop the clock, or even change its rate, while sampling 
occurs. 

FSAM can sample at up to 5000 points per second. 
a clock rate of 3 and a counter value of 2 (i.e. 
produced by FTIC(3,2)). 

This corresponds to 
the clock tick rate 

The arguments that follow the first argument determine the sequence in 
which FSAM will read data from channels into the buffer. The first 
sample will corne from the channel whose number appears in the first 
argument, the second from the channel specified by the next argument, 
and so on for up to eight arguments. Then the sampling sequence will 
start again. The arguments may each specify a different channel or 
may specify several channels repeatedly. When directed toward an ARII 
each argument may specify unipolar (channel number + 32) or bipolar 
sampling. When directed toward an LPS each argument can specify a 
gain as described previously. If only one channel argument is 
specified in the call to FSAM, sampling will occur on that channel 
only. 

Example: 

x FTIC(5,1)iX FSAM(1000,O,32+1) 

8-10 



This example initiates the sampling of 1000 values from an ARll 
alternately from channel 0 in bipolar mode and channell in unipolar 
mode. Thus, every odd sample will come from channel 0, every even one 
from channell. A sample will occur each time the clock ticks, that 
is, 100 times per second. 

When sampling by clock tick, FSAM writes the first sample into the 
first slot in the ring buffer, the second sample into slot 2 and so 
on. When sampling by external event, FSAM can also save the ARll/LPS 
timer value when each sample occurs. If the FPRM function parameter 
13 has the value 0, sampling will occur as for clock tick sampling, 
one sample per buffer slot. If parameter 13 is greater than 0, then 
each time an external event occurs FSAM will save the timer value in 
the next available buffer slot and the A/D value in the slot 
following. Each sample taken in this mode uses two buffer slots. 

When FSAM 
sampling. 

Example: 

has loaded the required number of samples, it 
This does not affect execution of the FOCAL program. 

x FPRM(13,1)iX FSAM(-100,4) 

stops 

This example initiates sampling by external event from channel 4. It 
first sets parameter 13 positive so that sampling occurs in timer/data 
pairs. It will use 200 buffer slots to save the 100 timer/data pairs. 
This mode of sampling can be used to create Post-Stimulus (PST) and 
Time-Interval (TIH) histograms. For PST histograms, the first 
external event, sensed as described in 8.2.2.3, acts as the stimulus. 
Generally, the analog values obtained are not utilized in creating 
histograms. 

FUNCTION FORMAT: FSAM(O,N) 

FSAM with two arguments, the first equal 0, provides retrieval from 
the sampling buffer. The sampling buffer is a ring buffer. Data 
taken by the asyncrhonous form of FSAM starts loading into the first 
slot in the buffer and continues sequentially to higher slots until it 
reaches the end of the buffer. Then, if the sample count has not been 
reached the next sample will go into the first word of the buffer 
overwriting data previously placed there. This wraparound process 
continues until all samples have been taken. 

The second argument to this form of FSAM specifies a sample number. 
If the sample specified has not yet been taken, this form of FSAM 
returns a -1. If the sample called for has been taken, but has 
already been overwritten by subsequent samples, the function will 
return a -2. Otherwise, it will return the value of the nth sample. 
If the slot contains an A/D value, this value will be in the range 0 
to 1023 for the ARll and 0 to 4095 for the LPS. If it contains a 
timer value, it will be in the range 0 to 65535. 

Example: 

1.1 F I=l,l,lOOiS D(I)=FSAM(O,I);I (D(I)) 5 

This example loads array D with values from the A/D buffer presumably 
filled or being filled by a previous call to FSAM. It goes to group 5 
when ~t encounters a value not yet taken or already overwritten. 

8-11 



8.2.2.5 Allocating Buffer Space 

FBUF(N) 

FBUF allows the FOCAL program to set aside space in memory. 

FUNCTION FORMAT: FBUF(N) 

FBUF allocates or deallocates buffer area. For an argument greater 
than zero it deallocates any previously allocated buffer area, and 
then allocates as buffer area the number of words of memory specified 
as the argument. It returns the base address of this memory space or 
causes a ?09 error if unsuccessful. For an argument of zero it 
deallocates any previously allocated buffer area and returns the 
value zero. In the Paper Tape version of FOCAL, a call to FBUF also 
erases all variables. 

The buffer area allocated can be used by the FX function as storage 
area. FBUF returns as its value the base address of the usable area. 
The FOCAL program can calculate the top address of this area by adding 
the buffer's size in bytes to the base address. The size, in bytes, 
under Paper Tape FOCAL, equals twice the number of words requested in 
the call to FBUF. Under FOCAL/RT-ll, FBUF allocates enough 256 word 
blocks to satisfy the request. Thus the size, in words, of the area 
allocated is the multiple of 256 greater than the number of words 
requested. The size in bytes is twice this value. On FBUF(300), for 
example, FOCAL/RT-ll allocates 512 words (1024 bytes) of memory. 

Example: 

1.10 S BA=FRUF(lOO);C: ALLOCATE 100 WORDS AS BUFFER AREA 
1.30 S TA=HA+200:C: SET MAXI~U~ ADDRESS 
1.50 F I=RA,l,TA:X FX(-1,1,FCHR(-1)) 
1.60 F I=RA,l,TA:T FX(l,I),! 

This example stores characters by byte in the buffer area. 
lists their ASCII values. 

It then 

The space allocated by FBUF is automatically used by the asynchronous 
call to FSAM as its ring buffer area. 

The next example allocates a ring buffer 250 
sampling of 500 A/D values into it at 50 
occurs the program reads data from the buffer 
array. If it encounters overwritten data 
with an. error message. 

Example: 

words long and starts 
per second. As sampling 

and stores it in an 
while doing so, it halts 

1.10 X FTTC(5,21:C: SET CLOCK TO 50 TICKS PER SECOND 
1.20 X FHUF(250);C: ALLOCATE 250 WORDS 
1.30 X FSAM(500,0,2.1+32,2);C: SAMPLE 0,2,1,2,0,2,1,2(1 UNIPOLAR) 
1.35 S 1=I;C: INIT COUNTER 
1.40 S D(I)=FSAM(O,I);C: GET A SAMPLE 
1.50 I (D(I)+1 )2,1.4;C: QUIT IF OVERTAKEN.WAIT IF NO DATA YET 
1.60 S 1=1+1;1 (1-500)1.4,1.4 
1.61 C: IF DATA TAKEN, GO RAD NEXT SAMPLE 
1.70 T "ALL DATA SAVED",l:C: WHEN DONE,QUIT 
1.80 Q 

2.10 T"DATA RATE TOO FAST",!1C: STOP IF PROGRAM CAN'T KEEP UP 
2.20 Q 

8-12 



8.2.2.6 Saving Samples in an RT-Il File 

FFIL(N) 

A FOCAL/RT-ll program can save samples in an RT-ll file by opening the 
file using the Library Open command, retrieving each sample from the 
ring buffer using FSAM, then writing the sample to the file. This 
method limits the transfer rate to the rate at which FOCAL can execute 
the requisite 'FOR' loop. Function FFIL increases the maximum 
transfer rate to 3333 samples per second by enabling the FOCAL program 
to write directly from the ring buffer to a file. 

FUNCTION FORMAT: FFIL(N) 

FFIL writes data from the sample buffer to a file opened on the 
channel specified as its argument. It continues writing sequentially 
higher numbered samples from the ring buffer until all existing 
samples have been transferred. Then it returns to the FOCAL program 
with the number of this last sample as its functional value. FFIL 
with an argument greater than or equal to zero initializes for output 
to the channel specified by the argument. The FOCAL program must open 
a file on this channel using the LIBRARY OPEN command before issuing 
this call to FFIL. Once output is initialized a call to FFIL with a 
negative argument writes samples from the ring buffer to the file on 
disk. The first time it is called it starts writing at sample a and 
continues writing until it encounters a sample not yet written. It 
then returns the number of the first untaken sample as its functional 
value. The next call to FFIL with a negative argument starts writing 
from this untaken sample and continues until an untaken sample is 
again encountered. The FOCAL program can determine when FFIL has 
written all the data to be sampled by comparing the value it returns 
to the sample count requested in the call to FSAM. When the value 
returned exceeds the sample count, FFIL has written out all the 
samples. At this time, or any time during sampling, the FOCAL program 
can execute a Library Close to the opened channel to make the file 
there permanent. If the file was a virtual file, the FOCAL program 
can access the data already stored in it during sampling while the 
file is still open. If FFIL is called specifying an unopened channel, 
it will return a -2. 

Usually FFIL is scheduled by the FQUE function to execute often enough 
to keep up with the sampling rate as in the next example. If it cannot 
keep up, it will return a -1 indicating that it has tried to obtain 
overwritten data. In this case, the programmer must modify the 
program to either execute FFIL more frequently, decrease the sampling 
rate, or increase the size of the ring buffer. 

The rate at which FFIL can write samples to an RT-ll file is limited 
by the speed of the output device. For an RK disk, the maximum 
sustainable transfer rate is 3333 samples per second. That is, with 
the clock rate set to 3 and the clock counter set to 3, given 
sufficient ring buffer size, FFIL will write samples from the ring 
buffer as fast as samples are being added to it. The ring buffer must 
however be sufficiently large so that when FFIL pauses to write out a 
block, the values input do not catch up to the current sample being 
output by FFIL. A ring buffer 512 to 2048 entries long is sufficient 
for this purpose depending upon the transfer rate. 

The next example maintains a rate of 1000 samples per second using a 
ring buffer 1024 long. Notice that before beginning sampling but 
after the buffer allocation, it issues a call to FFIL with a count 

8-13 



argument less than O. This call performs no function other than tv 
initialize certain I/O operations which, if first executed during 
sampling, would consume valuable time. Executed before sampling 
starts, their overhead does not detract from the time available for 
writing from ring buffer to disk. 

Example: 

1 .10 X 
1 .20 I .. 
1 .30 X 
1.35 X 
1 .40 X 
1.50 S 
1 • S 5 X 
1 .57 X 
1 .60 S 
1.80 S 
1.90 T 
1 .95 D 

2.05 C: 
2.10 I 
2.20 S 
2.30 S 
2.40 R 

Fl'TC(8,())~C: STOP CLOCI< AND CLEAR TI/>t!n~ 

M A J< E 1, SA /v1 P • 0 A T III V : S ( 0 ) ~ C: 0 P E ~J A }' J L E ~'CJ k 0 LJ T PUT 
FRUF(lOOO):C: AI,LOCATE RING BUFFER 
FFIL(l)~C: OPEN CHANNEL 1 
FSAM(10000,0);C: SAMPLE 10000 POINTS 
I=O;C: SET COUNTER TO 0 
FPRM(11,1);C: Sf-:T FOR LlNE CLOCK BY TICI< 
fTIC(3,10):C: TrCK AT 1000 TICKS PER SECOND 
ID=FGHJE(lOOO,3,30,0,4)1C: SCHEDULE GROUP 3 EVERY 10. TICKS 
lJ=l;F 1=100,100,10000;0 2;C: DO 2 WHILF. GROUP THREF INTERRUPTS 
"10000 POINTS SAMPL,ED",!;C: WHEN DONE, SAY SO 
4: (.): C: THEN TYPE OUT EVERY 50TH SAMPI,t.: 

CUPY EVERY lOOTH VAUJE INTO AN ARRAY (JURING SAtv1PLING 
(C-l)2.1:C: WAIT FOR THIS POINT TO BE SAMPL~D 

f) ( J ) = S ( I ) : C: GET T HIS E I, F. MEN T J N T 0 A N A R PAY INC 0 R E 
J=lJ + 1 

3.10 S C=FFJL(-ll;C: WRITE TO DISK 
3.12 T C,!;C: TYPE LAST SAMPLE 
3.15 I (C) 3.5;C: QUIT IF OVERTAKEN 
3.20 I (tOOOO-C) 3.3,3.3:C: QUIT If ALL SAMPLES DONE 
3.25 R;C: ELSE RETURN FROM INTERRUPT 
3.30 X FQUE(O,Il),3):C: WHEN ALL DONE, UNSCHEDULE THIS ROUTINE 
3 • 3 5 T " C {) R R E N T L Y (' 0 P YIN G ", I , ! ; C: SAY vJ HAT SAM P LIN G BEl N GAL T ERE D BY NO vJ 
3.40 R 
3.50 l' "TOO F'AST";C: IF OVERTPKEN, SAY SO 
3.60 Q;C: AND QUIT 

4.10 F I=l,l,lOO:T !,I*100,D(I):C: TYPE OUT A VALUE 

This example opens the file SAMP.DAT on channel 1 as an integer 
virtual file, schedules FFIL to run every 60 ticks (1 second), then 
begins sampling. Every 60 ticks FFIL writes out all the samples taken 
since its last execution. It does so by calling FFIL with a negative 
argument. It also types out the value of ihe last untaken sample to 
indicate what sample it has reached. 

As sampling continues, the FOCAL program alters every 50th value in 
the virtual file to change their range to -2048 to 2048. When all 
samples have been taken, the program types out what sample it has 
already altered and continues to alter samples until it reaches the 
last sample taken, the 10000th. Then it halts. 

At the sampling rate of 1000 samples per second, about 1000 points are 
loaded every second. So, on the average, FFIL must write 1000 values 
to the disk each time it is called. In fact, due to varying amounts 
of time required for disk writes on each call, FFIL writes out a 
different number of values each time it is called. The sample buffer 
size must be large enough so that under worst case conditions, that 
is, when FFIL must write out the largest number of blocks, the 
incoming samples do not wraparound the ring buffer and catch up to the 

8-14 



current sample that FFIL is outputting. The ring buffer size used, 
1024 is large enough, so that FFIL always has enough time to complete 
writes to disk. A faster sampling rate might require either a larger 
buffer size or faster scheduling of FFIL. 

8.2.2.7 Direct Memory Access Sampling 

The LPS provides the user with the capability of direct memory access 
sampling. This form of sampling reads samples into memory directly 
without the intervention of an interrupt routine. This enables 
sampling at high rates. 

FDMA(N,M,L) 

The FDMA function allows the FOCAL program to use the direct memory 
access feature of the LPS. This increases the possible sampling rate 
by clock tick to 10,000 samples per second and the external event 
sampling rate to the maximum that the hardware can sustain. Using the 
FDMA function the FOCAL program can initiate direct memory access 
sampling into the sampling buffer in either single or dual mode, in 
burst or non-burst mode, and either by clock tick or by external 
event. 

FUNCTION FORMAT: FDMA(N,M,L) 

The first argument to FDMA specifies the number of samples to take. 
When sampling is initiated the number of samples specified will be 
read directly into the sampling buffer without intervention of an 
interrupt routine. The number of samples specified must be less than 
the size of the sampling buffer since direct memory access samples 
cannot wraparound the end of the buffer but must be read into a 
contiguous area of memory. FDMA will automatically limit the number 
of samples to the length of the buffer. 

The second argument to FDMA specifies the channel (modulo 64) from 
which to sample. All samples will come from this channel. Adding the 
value 128 to the second argument, however, enables dual sampling. In 
dual sampling two values are read at the same instant from two 
separate channels and entered one after the other into the sampling 
buffer. In dual mode sampling the channel number is interpretted 
modulo 8 and the second channel is determined by adding 8 to the 
number of the first channel. Thus, a second argument of 129 would 
cause dual mode sampling from channels 1 and 9. When doing dual mode 
sampling the first argument indicates the total number of samples to 
take, not the number of pairs to take, and should, therefore, be an 
even number. 

The third argument to FDMA specifies the mode of sampling as indicated 
in the table below: 

VALUE OF ARGUMENT 

o 
1 
2 
3 

OPERATION 

BURST MODE SAMPLING 
BURST MODE SAMPLING 
SCHMITT TRIGGER 1 CAUSES EACH SAMPLE 
CLOCK OVERFLOW CAUSES EACH SAMPLE 

In burst mode sampling, samples are taken at the maximum possible rate 
that the hardware will allow. 

8-15 



FDMA returns control to the FOCAL program which executes while 
sampling takes place. The FOCAL program can read samples from the 
sample buffer using FSAM in the same way it would retrieve non-DMA 
samples. Since, for DMA sampling, the buffer does not act as a ring 
buffer, all sample numbers specified in the call to FSAM must be less 
than the size of the ring buffer. Otherwise, FSAM will return a -1 
indicating sample not yet taken. The FOCAL program can also use the 
function FFIL with DMA sampling to write the samples to an RT-ll file. 
Since the sample buffer is not a ring buffer, the total number of 
samples written to the RT-ll file can never exceed the size of the 
sampl ing buffer. 

Example: 

1.10 X FTIC(3,1)~C: START CLOCK AT 10,000 TIC~S PER SECOND 
1 .20 X FBUF (2000) ; C: ALLOC ATE SAMPL J NG RUFF~~R 2000 LONG 
1.30 X fDMA(199B,22,3):C: STAPT S)MPLING BY CLOCK TIC~ 
1.40 I (fSAM(O,1999»1.4;C: WAIT FOR COMPLETION 
1.50 X F'ITC(3,O):C: THEN SHUT CLOCK flf'F 
1.60 F 1=1,1,1999:T FSAMCO,l);C: THEN LIST ALL S~MPLES TAK~N 

This example initiates DMA sampling of 1999 values from channel 22 at 
10000 values per second. It waits for completion then types out all 
the val ues. 

8.2.3 Graphics 

Under program control the ARll/LPS can output x and y coordinates to a 
CRT such as the VR14. The CRT uses these coordinates to either 
display a point or set the location of th~ display beam. FOCAL 
simplifies access to these coordinate registers by providing its user 
with a set of graphics commands. When FOCAL executes each command, it 
converts the command to a series of output operations through the 
coordinate registers. The FOCAL program can create a display file and 
load it with these graphics commands. The commands can specify 
visible and invisible fixed points, relative offset points, points 
plotted along either the x or y axis, or characters including format 
control characters. The FOCAL display processor internally converts 
the instructions in the file into a series of output operations to the 
ARll/LPS x and y registers. But the user need not concern himself 
with the mechanics of the conversion process. 

The display file is an area of memory allocated by the FOCAL program. 
It is divided into 2-word slots called 'LOC's each of which can 
contain an individual graphics instruction. The LOCs are numbered 
consecutively starting at 1 so that the FOCAL program can load them 
with instructions individually in any order. This allows the program 
to substitute one graphics instruction for another, and one character 
for another. For instance, to add to or delete from the file, to 
cause the display to move, and, in general, to completely manipulate 
the image displayed. 

When the FOCAL program starts the display. the display processor is 
activated. It interrupts the FOCAL program's exececution at regular 
intervals to execute the instructions in the display file. It starts 
execution with the instruction contained in LOC 1, performing whatever 
graphics operation it specifies. It continues executing graphics 
instructions in sequentially higher numbered LOCs until it reaches the 
end of the display file, a LOC that has not been loaded with a 

8-16 



graphics instruction, or a LOC that contains an end of file 
instruction. It then returns control to the interrupted FOCAL 
program. The more instructions in the display file, the longer it 
takes to execute a pass through it, character instructions requiring 
about ten times as long to execute as point instructions. The longer 
it takes to execute one pass, the dimmer the display at a given 
intensity setting, the greater the tendency to flicker, and the less 
processor time available to the executing FOCAL program. Actual time 
to execute a pass through the file depends on hardware factors such as 
memory speed and the type of processor used. As a rough guide, 
loading the display file with up to 500 points or up to 50 characters 
or some combination of the two will produce a relatively flicker free 
image. There is no limit, however, to the number of instructions the 
FOCAL program can load and attempt to display. 

Each time the display processor passes though the display file, it 
produces an image on the screen. At about 30 images per second, it 
acts like a motion picture projector to produce a steady image. As 
instructions in the file are changed by the executing program, the 
image produced by a pass through the display file changes, too. So 
the FOCAL program can create an image that moves or changes dimensions 
by continually changing the instructions contained in the display 
file. 

The display processor determines when to execute a pass through the 
display file by counting ARII/LPS clock ticks. Therefore, in order to 
produce an image on the screen, the FOCAL program must first start the 
ARll/LPS clock using the FTIC function. The clock must be running at 
30 ticks per second or faster to produce a steady image. The FOCAL 
program may set the time interval between images by using function 
FPRM to set parameter 13. The value of this parameter determines the 
amount of time betweeen each image. That is, the amount of time 
available to the FOCAL program. The value of parameter 13 divided by 
100 gives this time interval in seconds. Thus, setting its value to 4 
indicates a time interval of 1/25th (4/100ths) of a second between 
images. After calling FPRM to change the value of parameter 13, the 
program must call FTIC in order to effect the change in the interval. 
Parameter 13 set to 0 gives the same interval as parameter 13 set to 
1, namely, l/lOOth second. 

FUNCTION FORMAT 

FCRT(O,N) 
FCRT(N), N>=O 
FCRT (L,N [ ,M] ), L<>O 
FCRT(N), N<O 
FFRM (N ,M) 

OPERATION 

ALLOCATE/DEALLOCATE DISPLAY FILE 
TURN DISPLAY ON/OFF AT INTENSITY N 
LOAD GRAPHICS INSTRUCTION INTO LOC L 
SET CHARACTER SCALING TO SIZE N 
SAVE FRAME M IN FILE ON CHANNEL N 

8.2.3.1 creating the Display 

FCRT (N [,M] ) 

The single function FCRT in its various formats offers the FOCAL 
program access to all the graphics capabilities of FOCAL. It 
allocates/deallocates display file, turns the display on or off, sets 
the size of characters, and loads all graphics instructions. 

8-17 



8.2.3.2 Allocating Display File 

FUNCTION FORMAT: FCRT(O,N) 

When the first of two arguments to FCRT equals 0 the second argument 
specifies the number of LOCs to allocate as a display file. If the 
second argument equals 0, the display file is deallocated and the 
display turned off. Otherwise, any previous display file is 
deallocated and the number of LOC's specified is allocated. Under 
RT-ll, which can only allocate memory in blocks of 256 words (128 
LOC's), enough space is allocated to satisfy the request. This form 
of the function returns the number ~f LOC's actually allocated which, 
under RT-ll, may differ from that requested. If the amount of memory 
requested is unavailable, this form of FCRT will cause a ?23 error. 
In the paper tape version display file allocation/deallocation also 
erases all variables. 

8.2.3.3 On/Off 

FUNCTION FORMAT: FCRT(N) ,N>=O 

With one non-negative argument, FCRT specifies the intensity level of 
the display. A level of 0 turns the display off. Any other value 
indicates display on. The higher the value, the brighter the display 
but the less processor time available for executing the FOCAL program. 
Setting the argument to 1 or 2 produces a bright enough display for 
most puposes. Until the display file is loaded with graphics 
instructions, turning the display on will produce no image on the 
screen. 

8.2.3.4 Loading Graphics Instructions 

FUNCTION FORMAT: FCRT(L,N[,M]), L<>O 

FCRT with two or three arguments, the first of which is non-zero loads 
a graphics instruction into the LOC specified by the absolute value of 
the first argument. It returns as its functional value a positive 
value one greater in value than the first argument. This number is 
that of the next succeeding LOC in the display file. This simplifies 
sequential loading of the display file: the FOCAL program need only 
supply the returned value as the first argument to the next loading 
function in order to load the next sequential LOC. If the magnitude 
of the first argument is greater than the number of LOC's allocated, 
LOC 1 is loaded and the value 2 returned. 

FCRT with three arguments loads a point into the LOC specified by the 
first argument. This point can be either an absolute point, a 
relative point, or an incremental point depending on the form of the 
next two arguments. An absolute point is a point displayed at a fixed 
location on the screen. This point will remain at this location 
regardless of the beam location set by the graphics instruction in the 
preceeding LOC. The screen is addressable on a coordinate system 
starting at x=O and y=O at the lower left to x=1023 and y=1023 at the 
upper right for an ARll and x=4095 and y=4095 at the upper right for 
an LPS. Those CRT screens set up in a rectangular format (equal dot 
spacing on both x and y axes) have a maximum y value of 767 (ARll) or 
3071 (LPS). Whenever neither the x or y arguments to FCRT is 

8-18 



preceeded by a + or sign, they specify the coordinates of an 
absolute, fixed point. Since all screen locations can be specified by 
positive coordinates, there is no need for a minus sign when 
specifying an absolute point. 

If a + or - sign preceeds both the second and third arguments, they 
specify the offset of a relative point. A relative point is a point 
displayed at a distance relative to the beam location set by the 
graphics instruction in the previous LaC. Thus, FCRT(2,+10,-20) 
specifies a point in LaC 2, 10 units to the right and 20 units below 
the point or character matrix in LaC 1. A relative point loaded into 
LOC 1 specifies an offset from the lower left corner of the screen. 
If a series of LaCs contain relative points and a LaC containing an 
absolute point preceeds them, then when the program moves the absolute 
point by re-loading the LOC that contains it, all the relative points 
following it will also move. Such manipulations allow the FOCAL 
program to move figures around the screen. 

If a + or - sign preceeds only one of the coordinate arguments, that 
argument will display relatively while the other coordinate will 
display absolutely. This enables point plotting in either the x or y 
direction. FCRT(LOC,+5,100) loads a point of y-coordinate 100, 5 to 
the right of the point in the preceeding LOC. Loading sequential LaCs 
leaving the second argument as +5 and changing the y argument plots 
points along the x axis each separated by 5 units. 

Example: 

1 • 10 
1.30 
1.40 
1.50 
1.60 
t .70 
1 .80 

2.10 
2.20 
2.30 

X 
X 
X 
X 
S 
F 
() 

A. 
X 
R 

FTIC(4,1);C: STA~T CLOCK 
fCRT(0,128);C:CPEATE DISPLAY FILE OF 128 LOCS 
f'CRT(2):C: TURN DISPLAY ON WITH INTENSITY OF 2 
FCRT(I,O,O);C: PLOT A ABSOLUTE POINT AT (0,0) 
D=30:C: SET DELTA X VALUE TO 30 
1=2,1,101:0 2:C: PLOT 100 USEB SUPPLIED POINTS 

"POINT",Y: (Y)1.H;C:GET A POINT, QUIT IF<O 
FCRT(l,D,Y);C:PLOT THE POINT WITH DELTA X=30 

This example plots the values input by the user along the x axis. It 
leaves 30 units between each point. 

If the first argument to a three argument FCRT has a negative value, 
its magnitude specifies the LaC to load and the remaining two 
arguments specify the type of point to load as for the case of a 
positive first argument. But with this form of call, absolute points 
and points plotted along the x axis will not appear on the screen. 
That is, they will be invisible and will only alter the location of 
the display beam relative to which the instruction in the next LaC 
will plot. The next example sets an invisible absolute point in LOC 1 
to indicate the start of a curve drawn with relative points ~ing 
at. that screen location. 

Example: 

1.10 X FT1C(5,1);C: STPRT CLnCl< 
1.20 X FCRT(O,lOO):C: ALLOCATE DISPLAY FILE 
1.30 X FCRT(I);C: TURN ON DISPLAY 
1.40 X FCRTC-l,100,500):C: SET LOCATION OF DISPLAY REAM 
1.50 S L=2:C: POJNT TO LOC NU~REH 2 
1.60 F 1=2,1,80;5 L=FCRTCL,+10,+I):C: ADD RELATIVf POINTS 

8-19 



When FCRT has two arguments, it causes loading of a character into the 
LOC specified by the first argument. The second argument specifies 
the character. If it is positive, it specifies one of the 64 ASCII 
characters of octal codes 40 to 137. Decimal argument values 1 
through 31 specify ASCII characters of codes 100 through 137. Values 
32 through 63 specify ASCII characters of octal codes 40 through 77. 
An alternate method of specifying values 1 through 26 (decimal) is 
described in section 2.4 of this manual. 

The characters are each displayed on a 5x7 matrix, the lower left hand 
corner of the matrix positioned at the location on the screen set by 
the graphics instruction in the preceeding LOC. Once displayed, a 
character leaves the beam positioned one column to the right of the 
lower right hand corner of the 5x7 matrix so that characters loaded 
into sequential LOCs display horizontally across the screen. 

In a call to FCRT with two arguments if the value of the first 
argument is less than 0, then the second argument specifies one of 
five control characters listed in the table. 

CODE 

o 
1 
2 
3 
4 

CHARACTER 

NULL 
LINE FEED 
UPS PACE 
CARRIAGE RETURN 
END OF FILE 

The null character effectively erases anything in the LOC loaded. It 
causes no change in the display. The FOCAL program, after having 
allocated a display file may, before loading it with graphics 
instructions, first fill it completely with nulls. Then any LOC 
loaded, no matter where in the file, will be executed by the display 
processor and cause display. Otherwise, the display processor stops 
executing the display file as soon as it encounters a LOC not yet 
loaded with a graphics instruction. Any LOC beyond this loc, even 
though loaded, will not be executed and will cause no display. 

Line feed moves the display beam down 9 matrix rows. 

Upspace positions it up 9 rows. 

Carriage return moves the beam to the left edge of the screen without 
altering its height. 

End of file tells the display processor to 
graphics instructions, to ignore graphics 
succeeding LOCs. 

8-20 

discontinue executing 
instructions in all 



Example: 

1.10 X 
1.30 X 
1.40 X 
1.50 X 
1.60 5 

2.10 T 
2.20 A 
2.30 I 
2.40 5 
2.50 S 
2.60 G 
2.80 5 
2.90 G 

FTICC4,1)~C: START CLOCK 
r'CRT(0,128);C: CREATE DISPLAY FILE UF' 128 l,DCS 
FCRT(1)~C: TU~N DI5PLAY ON WITH INTENSITY 1 
FCRTC-l,0,1000);C: 5ET REAM TO (0,1000) 
L=2;C: POINT TO LOC 2 

I, T Y P E C H A R A C l' E R V A L U E S (0 l' [) QUI T ) " , ! : C: ASK FOR I N PUT 
!,C;C: GET A CHARACTEP V~LUE 
(C-l) 2.8~C: If VALUE O,GO DO NEXT LJARF:I, 
L=FCRTCIuC);C: ELSE,lJOAD CHARACTFR IN1'O NEXT toC 
L = FeR T ( - L , 3 ) ; S L = F· CPT ( - L , 1 ) : C: THE N < C R > < L F > 
2.2:C: GO GET NEXT CHARACT~R 
L=F'CRT(-L,4);C: WHEN tARE:T.! DONF, END FILF 
1.6:C: AND GO DO NfXT LABEL 

This example asks the user to input a series of character values and 
plots the corresponding characters vertically down the left side of 
the screen by inserting a carriage return and a line feed character 
after each character. 

CHARACTER SCALING 

FUNCTION FORMAT: FCRT(N), N<O 

FCRT with one negative argument specifies the size of all characters 
displayed. It can be called with display on or off. FOCAL allows 
five characters sizes indicated by arguments from -1 to -5, -1 
indicating the smallest. Size doubles for each higher magnitude 
argument. Characters of size 5 are 16 times larger than those of size 
1. When loaded, and whenever it allocates a display file, FOCAL sets 
character size to size 2. 

Example: 

The following lines added to the previous example allow the user to 
specify the size of the characters displayed: 

1.8 A "TYPE SCALING(1-5)",S 
1.9 X FCRT(-S)iC: SET SCALING TO VALUE INPUT 

The next example makes use of all the display functions. Note that 
all graphics programs require that the clock be running at 20 ticks 
per second or faster in order to produce a steady display. If the 
clock stops, the display stops but will restart as soon as the clock 
restarts. The FOCAL program may change the rate of the clock without 
affecting the display as long as the rate exceeds 30 ticks per second. 
Clock rates slower than 30 ticks per second cause the display to 
blink. The rate of blink equals the clock rate. Thus, setting the 
clock to 1 tick per second will cause the display to flash on about 
once per second. 

Example: 

1.05 C:PROGRAM SLASH 
1.10 X FPRM(13,1):X £"TIC(5,1);5 SC=I:C: 1·/1001'h BETwEEN It4AG~~S STAf<T CLOCK 
1.11 C: START CLOCK 
1.15 X FCRT(O,100):X fCRT(-3):C:ALLOCATE FILE,ETC. 
1 • 2 0 A " L P SON 5 Y S T EM? ", L : C: 1 F L P SON S Y S T F M , 
1.30 I (L-OYE5) 1.5,1.4,1.~ 

1.40 X fPRM(12,2):S 5C=4:C:CO~~ENT 

8-21 



1 • 7 0 F' £, = 1 , 1 , 2 0 ; X F'C R T C L , 5 1 2 * S C , L * 5 0 * S C ) : C: D k A'vi C E N T E R L .l N E 
1.75 C: SET SOME USEfUL VARIAPLES 
1.80 S CX=20*SC:S CY=28*SC;S PL=80*SC;S PR=954*SC;S SR=9HO*SC 
1.85 A "SPf~FD OF' PLAY (1-100)",V;C: GET START X VFLOCITY 
1.90 S CW=2*CX;S CH=2*CY;S SL=44*SC:S ST=SF:S S8=5L;S V=V*SC 

2.10 s LY=fSAM(O):S RY=fSAM(3);S PH=HO*SC;C: PADD[,E LOCATIONS AND HT 
2.20 S LP=71:X fCRT(LP,PL,LY);C: ENTER BASE OF LEFT PADDLE 
2.30 F L=LP+l,1,LP+l1:X FCRT(L,+0,+(PH/I0»:C: DRAW LEFT PADDLE 
2.40 S RP=LP+12;X F'CRT(RP,PR,RY);C: RIGHT PADPLE: FOLLOWS LP,FT 
2.50 F L=RP+l,1,RP+l1;X FCRTCL,+0,+(PH/l0) 
2.60 A "HOW MANY POINTS WINS? ",GP;C: GET POINTS PER GAfv1E.: 
2.70 S LS=~P+12;X FCRTC-LS,200*SC,900*SC);C: SFT BASE OF LEFT SCORE 
2.80 S RS=LS+3;X FCRTC-RS,700*SC,900*SC);C: AND OF RIGHT SCORE 
2 • 90S IJ T = 0 ; S R T = 0 ; D 9: C: SET S C () RES TOO AND DIS P LAY THE M 

3.10 S B=RS+3:C: SET LOC WHERF BALL STARTS 
3.20 S X=512*SC:S Y=X;C: SET BALlI'S COOPDS TO CFNTER SCRFEN 
3.30 X fCRTC-R,X-CX,Y-CY);D 11;C: DRAW IT THER~ 
3.40 X FCRT(1);C: START DISPlPY 
3.50 A "WHO SERVES, P OR l.? II , L; C: GET SERVF.R 
3.60 S DX=V: I (L-OL) 4.1,3.7,4.1;SET DELTAX NfG. OR POSe 
3.70 S DX=-V 

4 • lOS D Y = 0 ; S s = 0 : c: SF T D E~ L T P Y = 0 AND S PIN = 0 
4.20 I (V-FABS(DX)) 4.25;S DX=DX*1.5:C: KEEP GAME FAST 
4.25 S X=X+DX;C: ALTER X LOCATION OF BALL 
4.30 S Y=Y+DY~C: ALTER Y 
4.40 X FCRT(-A,X-CX,Y-CY);C: DRAW N~W CENTER Of BALL 
4.50 S Ll=I.JY:S LY=FSA~1(O):C: GET LEFT PADDLF. LOCATION 
4.60 S Rl=RY;S RY=FSAM(3);C: AND RIGHT 
4.70 X FCRT(LP,PL,LY);X FCRT(RP,PR,RY);C: MOVE PADDLE IMAGES 
4.80 D lO:C: DO BOUNCE OF~- C IFLING AND FLOOR 

5.20 I 
5.30 1. 
5.40 T 
5.50 T 
5.60 S 
5.70 T 
5.80 I 
5.90 I 

6.10 I 
6.20 S 
6.30 S 
6.40 G 
6.50 I 
6.60 S 
6.70 I 
h.BO I 
6.90 S 

(PL-(X-ctn) 5.7;C: IF BAI,L TO LEfT OF llEFT PADDLE, 
(-DX) 4.2:C: AND TRAVELING LEfT 
(Y+CY-LY) 6.5 ;C: AND ABOVE BASE OF LEFT PADDLE 
(LY+PH-(Y-CY) 6.5:C: AND BELOW ITS TOP, 
S=C(LY-T.Jl)+S)/2:S DY=DY-S;S S=LY-Ll;G 6.3:C: ALTER SPIN AND DY 
(X+CW-PR) 6.8;C: SA~E fOR RIGHT RACKET 
(OX) 4.2 
(Y+CY-RY) 6.8 

(RY+PH-(Y-CY)) 6.8 
S=CCR1-RY)+S)/2:S DY=DY+S;S S=RI-RY 
DX=~DX;C: REfLECT X VELOCITY 
4.2;C: THEN GO BACK FOR NEXT INCREMENT 
(SlJ-(X-C~n) 6.8:C: IF BALL OfF SCRFEN LEFT, 
RT=RT+l:D 9;8 X=SL1S DX=V:C: SCURE PT 
(R'l'-GP) 7.15,7.4,7.4;C: AND CHECK FOR GA~1E OVER 
(X+CW-SR)4.2:C: CHEC~ FOR POINT FOR LEFT 
LT=LT+l:D 9;5 X=SR:S DX=-V:C: ADD 1 IF SO 

7.10 I (GP-LT) 7.4,7.4 
7.15 X FCRTC-R,4):C: ON A POINT ERASE: THE BAI;[' l-,jITH EOF' 
7.20 F L=1,1,25;X FTIC(-l):O 12:C: WAIT CHANG1NG Y 
7.30 G 4.2:C: THEN HAVE BALL COME IN FROM SIDE ]T WENT OUT 
7.40 X FCRT(B,500*SC,600*SC):C: IF GAME OVER, WRITE IT OVER HALL 
7.45 S L=FCRTCB,300*SC,600*SC) 
7.50 S L=FCRT(B+l,OG1;S L=FCRTCL,OA):S L=FCF1(L,OM):S L=FCRT(L,05) 
7.60 S IJ=FCPTCIJ,ORL);S L=FCRTCIJlOO):S L=~'CR1'(L,OV) 

8-22 



7.70 S L=FCRT(L,O~):S IJ=FCRT(l.,OR) 
7.80 A "PLAY AGAIN? ",L 
7.90 I (L-OYES)8.3,S.1,8.3 

8.10 X FCRT(-B,4);X FCRT(-B-l,4);C: ERASE 'GAME OV~R' 

8.20 G 2.6;C: AND GO ON TO NFXT GAME 
8 • 3 0 X F TIC ( 5 , 0 ) : Q ; C: W HEN NOM ORE GAM E S, T URN C L (l C I< n Ff'~, (~U 1 'I 

9.05 C: THIS SE:CTION PUTS UP THE SCORE 
9.10 5 D1=FITR(LT/10):C: GET TWO DIGITS 
9.20 S D2=LT-(01*10) 
9.30 X FCRT(LS+l,Dl+481:X FCPT(LS+2,D2+481:C: ]NSERT AS ASCli 
9.40 S Dl=fITR(RT/10):C: SAMF FOR RIGHT HAND SCOPF 
9.50 S D2=RT-(D1*tO) 
9.60 X FCRT(RS+1,01+4S):X FCPTCRS+2,D2+48) 

10.05 C: THIS SECTION CHECKS FOR BOUNCE OF FLOOR OR ClfL1NG 
10.10 I (Y+CH-ST) 10.3:C: IF PALL ABOVE CIELI~G, 
10.15 I (DY) 10.3:C: AND G01NG UP 
10.20 S DX=DX-(S*.5);G 10.5:C: ADD SPIN TO OX A~D GO CHANG~ DY 
10.30 I (SB-(Y-CH)) 10.6:C:IF BALL HIT FLOO~, 

10.35 I (-OY) 10.6:C: AND GOING DOWN 
10.40 S DX=DX+(S*.~):C: ADD SPIN TO DELTAX 
10.50 5 DY=-DY*.9:S S=5*.5;C: PEFLECT DY AND DECREASF SPIN 
10.60 R 

11.05 C:THI5 ECTION DRAWS THE PALL 
11.10 X FCRT(B+l,OU):C: ~ALL IS LETTER 0 
11.20 X FCRT(-B-2,41:C: WRITE EOF AfTER IT 
11.30 R 

12.05 C: THIS SECTlClN r,1OVE:S THE RALL THRU Y AND ~1(iVFS THF PADDI.FS 
12.10 D 4.3;D 10:D 4.5;0 4.6:D 4.7 

This example requires that two users supply AID input by manipulating 
the knobs for AID channel 0 and 3. The program uses the values input 
to set the base of two short vertical lines one at either edge of the 
screen. The lines act as paddles. A moving character '0' which 
simulates a ball will bounce off these paddles as well as bouncing off 
the top (ceiling) and bottom (floor) of the screen. The ball picks up 
spin when it bounces off a moving paddle and will react to subsequent 
impacts accordingly. The ball loses its spin each time it hits the 
ceiling or floor. The amount of spin it gets depends upon the speed 
of the paddle at the moment of impact. When the ball gets past one of 
the paddles and reaches a wall it scores a point for the opposing 
player. This point registers by incrementing one of the scores 
displayed near the top of the screen. When started, the program asks 
a number of questions. It needs to determine whether the system 
includes an ARII or an LPS so it can set the correct screen scaling. 
(The LPS screen is scaled to four times that of the ARII.) It also 
asks the user to input a value that determines the average speed of 
play. The value input sets the ball's in)tial incremental movement 
along the x axis. 

Note how an invisible point at the lower left corner of the character 
'0' is continually altered to change the character's location. The 
paddles, which consist of relative points preceeded by an absolute 
point, are moved similarly. 

8-23 



8.2.3.5 Saving and Restoring the Display File 

A program may spend a considerable amount of time performing the 
calculations it uses to create an image. The image it creates may, 
also, reflect experimental data taken during the program's execution 
and be impossible to reproduce. In these and similar cases it would 
be convenient to save the display, once created, in a file on disk so 
that, at some later time, it can be restored without performing all 
the original calculations or data aquisitions. 

A graphics application may, also, require the rapid display of a 
series of complete images. Creating each image separately, that is, 
loading each LOC of the display file, requires far more time than 
pulling a completed image from an RT-ll file and loading it directly 
into the display file. If a program can create a series of images and 
write them one after another to the disk, then, when the time comes to 
rapidly display the images, it can just retrieve and display them one 
by one at high speed. 

FFRM (N, M) 

FFRM allows the FOCAL program to save the entire display file in an 
RT-ll file opened with the Library Make or Open command and to 
retrieve a complete display file from a previously saved RT-ll file. 
Each file can contain one or several display files, each called a 
frame and accessible individually. 

FUNCTION FORMAT: FFRM(N,M) 

The first argument to FFRM specifies an RT-ll channel number. When 
the FOCAL program executes FFRM, the channel specified must have been 
opened with a Library Open or Library Make command. The second 
argument of FFRM specifies a frame number. Each RT-ll file written by 
FFRM can contain several display files, each called a frame. The 
length in blocks of each frame in the file equals the length in blocks 
of the display file it contains. Under RT-ll, the length of any 
display file is always a multiple of 256 words, 1 block. The display 
file created by FCRT(0,500), for instance, is four blocks long and 
contains 512 LOCs (1024 words). The entire four blocks constitutes 
one frame. A frame number argument greater than zero means output of 
the frame specified; less than zero means input of the frame 
specified by the argument's absolute value. On output FFRM calculates 
which blocks of the opened file correspond to the frame specified and 
starts writing the display file there. Thus, for a display file four 
blocks long, FFRM(0,3) starts writing the display file at RT-ll file 
block 8. On input a similar calculation determines from what blocks 
of the RT-ll file to load the display file. Note that on input the 
length of the current display file must equal the length of the 
display file used when the RT-ll file was created. Otherwise, input 
will use a different frame length (that of the current display file) 
in its calculations and result in a different block offset (except for 
frame 1 which starts at file block 0). 

Group one of the example below saves a series of twenty images. Each 
lmage is one circle out of a series of concentric circles each 
consisting of 127 points. The display file contains one block (128 
LOCs) so that the completed RT-ll file which contains twenty frames is 
twenty blocks long. 

The user first runs section 1 by typing 'D I' to create the file. The 
program draws each circle and saves it as a separate frame in the 

8-24 



opened file. Next the user types '0 2' to run section 2. Section 2 
first allocates a one block long display file then starts up the 
display so that anything loaded into the display file will cause an 
image to appear on the screen. Next it executes a 'FOR' loop which 
rapidly retrieves each circle from the RT-ll file. This causes a 
ripple or explosion effect on the screen. 

FOCAL can load one block long frames at the rate of approximately 24 
frames per second. It can load two block long frames at half this 
rate, that is, 12 frames per second, 3 block frames at one third this 
rate and so 0 n . 

Example: 

1.05 C: PROGRAM EXPLOOF 
1.10 I.J MAK~ O,f'ILE.DAT/I/V:D(O):C: ('Rr:ATf~ AN FTl1 r'lLE: 
1 • 20 X F CRT ( 0 , 1 a 0 ) ; X F'T I C ( ~ , 1 ) : x F CRT ( 1 ) ; C: S T A F< T DIS P ld\ Y 
1.40 F 1=1,1,20:D 3:C: DO 20 FRAMES 
1.80 L CLOSE O:C: CLOSE THE COMPLETED fILE 

2 • 1 0 LOP r.; NO, F I L r: • 0 A T III V : D ( 0 ) : C: 0 P F. NTH E F r L F r1 F F k A 1v1 E S 
2.20 x FCRT(O,lOO):X FTIC(5,1):X FCFT(l):C: START THE DlSPLAY UP 
2.30 F J=1,1,lO:1" I=1,1,20:X FFRM(O,-I):C: DISPLAY ALI, FPA,r.'II::S 10 THii',S 
2.40 L CLOSE O;C: CLOSE THE FILF 

3.05 C: THIS SECTION DRAWS A CIRCLE IN THE: DISPLAY FILF: 
3.06 C: AND WRITES IT AS A F'RAME-~ IN THf OPr.:~i F 1 LF. 
3.10 S TH=O;S R=I*60;& C=2000 
3.20 F J=1,1,127:S TH=TH+.0494;X FCRT(lJ,C+(fSJN(TH)*R),C+(F'COS(TH)*R)) 
3.30 x F'FRr~(O,I) 

8.2.3.6 Accessing the Display Status Register from Focal 

The FOCAL program that uses the FCRT function to produce a display on 
a ~efresh-type scope need never directly access the display status 
register. Certain FOCAL users may, however, wish to alter the bits in 
the high byte of the display status register. These bits set the 
display mode. The FX function enables loading of the display status 
register directly by the FOCAL program. FCRT, when called to 
allocate/deallocate display file, sets the status register's high byte 
to O. No other calls to FCRT alter the setting in this byte. 
Therefore, once the display file has been allocated, the FOCAL program 
can use FX to modify the high byte of the display status register. 
This modification will remain in effect until the display file is 
again allocated. 

The standard display status register address for the LPS is @1704l6 
and for the ARIl is @1704l0. 

The high byte of the display status register allows the following 
settings: 

8-25 



BIT 

8* 

9** 

10 

11 

12 

13-15 

NAME 

COLOR (VR20) 

CHANNEL (VR14) 

STORE 

WRITE THRU 

ERASE 

UNUSED 

MEANING AND OPERATION 

=0, GREEN 
=1, RED 

=0, CHANNEL 1 
=1, CHANNEL 2 

=0, INTENSIFIED POINTS NOT STORED 
=1, INTENSIFIED POINTS STORED 

=1, INTENSIFIED POINT WILL NOT BE 
STORED EVEN THOUGH THE USER IS IN THE 
STORE OPERATION 

=1, ERASE DATA IN THE STORAGE SCOPE 

*LPS only 
**Bit 9 may be used for other control function when the CRT is not a 
VR14 or VR20. 

Bits 10, 11, and 12 refer to storage scope operations. The FCRT 
function normally operates assuming a refresh-type scope. To use FCRT 
with a storage scope, the FOCAL program may simply set the storage 
scope to refresh mode by setting bit 11 in the display status register 
after allocating the display file. 

Example: 

1.10 X FPRM(12,20:X FCRT(O,100):C: ALLOCATE fILE 
1.20 X FX(-I,(c170417,@lO);C: SE;T WRITE: THHU BIT IN LPS STATUS 

Alternatively the user can leave the storage scope in store mode and 
proceed as for a refresh scope when creating an image, setting the 
erase bit in the status register to erase an image. 

Example: 

1.10 X FCRT(O,lOO);X FTIC(S,l);C: ALLOCAT~ AND START CLOCK 
1.20 X fCRT(l);X FTIC(S,l);C: STAPT UP THE DISPLAY 
1.30 X fCRT(1,100,100);C: SET THE BEAM TO (100,100) 
1.40 F I=1,1,10;X FCRTCI,I);C: PLOT 10 CHARACTERS THERE 
1.50 D S:C: GO PERfORM SOME OTHER PROCESSING 
1.60 X FX(-1,@170410,@10);C: SFT ERASE BIT TO ERASE THE IMAGE 
1.70 F I=1,1,20:X fCRT(I,+5,+S);C: DRAW A LINE ON THE SCREEN 

This example starts up the display and loads the display file with 
character instructions. This causes the display processor to 
continually send the points that comprise the characters to the 
storage scope which displays them. After the first pass through the 
display file the data sent to the scope is redundant since it 
specifies points already plotted on the scope. The program performs 
some processing then just sets the erase bit in the status register of 
the ARll. The storage scope then erases the points it had previousiy 
plotted. 

The second method, though it makes use or the flicker free storage 
facility, continually causes loading of redundant points. This uses 
up valuable processor time. Displaying points on the storage scope 

8-26 



really requires only one pass through the display file. After one 
pass, the FOCAL program may turn off the display and continue other 
processing. To execute one pass though the display file, the FOCAL 
program can turn the clock off, turn the display on by calling 
FCRT(l), then cause the clock to tick once using FTIC with a negative 
second argument. The number of ticks per second specified by the 1st 
and second arguments to this call to FTIC should cause an interval 
between ticks at least as long as the interval between images. For 
example, if the FOCAL program has set parameter 13 to 5 producing an 
interval of 1/20th of a second between images, executing FTIC(5,-5) 
will cause the clock to tick once and the display processor to execute 
one display pass. Once the display processor has executed one pass, 
causing an image to appear permanently on the scope, the program can 
turn the display off using FCRT(O). 

Example: 

1.10 X FCRT(O,lOO);C: ALLOCATE DISPLAY FILE 
1.20 F I=1,1,100;X FCRT(I,I*10,I*10);C: LOAD THF FILF: 
1.30 X FX(-1,@170417,~4) 
1.40 C: SET LPS DISPLAY STATUS REGISTER ~OR STOR~ MODE 
1.50 X FCRT(l);C: GET DISPLAY PROCESSOR READY 
1 • 6 0 X ft'T I C ( 5 , - 1 0 0 ) : C: TIC K 0 NeE C A U SIN G S T (.1 RAG F 0 FDA T A 
1.70 D 5;C: DO SOME OTHER PROCFSSJN~ 
1.80 X FX(-1,@170417,@20);C: S~T FOR ERASE 

This example plots a diagonal line on the storage scope by setting 
store mode and causing a single display pass. After doing some other 
operations it erases the line by setting the erase bit. 

8.2.4 Loading the LEOS 

The numeric display on the LPS consists of six LED matrices. Using 
the left most LED for the sign, FOCAL can display any value between 
-99999. and 99999. 

FLED (N ,M) 

The argument to FLED contains the floating point value to display. 
The first argument indicates the number of digits to display to the 
right of the decimal point. Since FOCAL uses the left most character 
position of the LED display for the sign of the value being displayed, 
the arguments to FLED must specify a value requiring at most five 
digits. Otherwise an overflow error will occur. 

Example: 

x FLED(3,-99.9534) 

This example displays '-99.953' 

Example: 

x FLED(4,123.5) 

This example causes an error since it requires 7 digits. 

8-27 



8.2.5 Rapid Function Execution 

In processing a series of Set or xecute commands FOCAL spends an 
appreciable amount of time getting from one to the next. When these 
commands cause evaluation of functions that perform some external 
operation like sampling an A/D channel, the program may wish to 
determine the time between their execution more precisely. For 
example, the program may wish to determine the exact time an A/D 
operation began without including the delay caused when FOCAL begins 
to evaluate the function that returns the time. 

FFNS(FI,F2, ••• ) 

The arguments to FFNS are usually functions that perform external 
operations. FFNS evaluates these arguments one after another causing 
execution, in rapid succession, the external operations they perform. 
The value returned by FFNS is that obtained from the last function 
executed by FFNS. Executing FFNS by this method saves 1 to 2 
milliseconds per function execution over executing the same functions 
with Xecute commands. 

Using FFNS the FOCAL program can, for example, cause rapid execution 
of a series of events and, by making a time returning function the 
last argument, return the time of the last of these events. 

Example: 

S T=FFNS(FSAM(IOO,O) ,FTIC(O» 

This example initiates sampling from channel 0, then obtains the 
ARII/LPS timer value and types it. 

The FOCAL program can also use FFNS to cause exact time delays between 
execution of functions by placing a wait function between arguments. 

Example: 

x FFNS(CHR(I) ,FTIC(-6) ,FCHR(J) ,FTIC(-6) ,CHR(K» 

This example outputs three characters with 6 clock ticks between each 
output. 

8.2.6 16-bit Logical Operations 

Particularly when using the UNIBUS function, FX, the FOCAL program may 
need to perform the 16-bit logical operatons AND, OR and XOR 
(eXclusive OR), and also, to access individual bits in a word. These 
operations are particularly useful when setting, clearing or testing 
bits in words to be output or input. 

FBIT(V,CI,VI,C2,V2, ••• ) 

FBIT performs a series of logical operations on the l6-bit value 
specified as its first argument. The following even numbered 
arguments each contain a code interpreted modulo 4 which specifies a 
logical operation. The arguments following each code specify the 
operator for this operation. The first argument contains the original 
operand. Each time a logical operation is performed upon it, the 
result of the operation becomes the new operand. In this way a series 

8-28 



of logical operations can be performed and the result returned as the 
function's value. FBIT allows 3 logical operations: 

CODE 

1 
2 
3 

OPERATION 

OR 
AND 
XOR(EITHER/OR BUT NOT BOTH) 

In addition, negative codes complement the first operand before 
performing the operation specified by the magnitude of the code.For 
example, -1 first complements the value specified in the argument 
following the code argument, then peforms an 'OR' between the 
complemented value and the current operand. 

To perform the logical operation 'NOT', the FOCAL program can use code 
-1 with an operand value of 0: FBIT(O,-l,V) returns the complement of 
the value specified by V. 

Example: 

S V=FBIT(I,1,@377)iC: RETURN THE LOW BYTE OF I 

S V=FBIT(I,-2,J)iC: RETURN ALL BITS SET IN I AND NOT SET IN J 

S V=FBIT(I,3,@177777,1,@377)iC: COMPLEMENT THE VALUE IN I, THEN 
C: SET ALL BITS IN ITS LOW BYTE 

FBIT also allows for a bit oriented operation requested by a code of 
zero. The value following code 0 represents a bit number between 0 
and 15 (the rightmost bit is bit number 0). A code value of zero 
causes this bit to be set to 1 in the operand. 

Example: 

S V=FBIT(I,0,5)iC: SET BIT 5 IN THE 16 BIT VALUE CONTAINED IN I 

The program uses code 0 with an operand (first argument) of 0 to 
create a mask word. FBIT(O,0,5,0,4,O,3), for instance, returns a mask 
word with bits 3, 4, and 5 set. 

The FOCAL user who wishes to manipulate individual bits in l6-bit 
words can think of the operations that FBIT performs in terms of bit 
setting, testing, complementing, and clearing. To use FBIT this way, 
the program uses code 0 to create a mask word, then uses the codes in 
the following table to perform an operation between the mask word and 
the operand. 

CODE 

1 
2 
3 

-2 

BIT OPERATION 

BIT SET 
BIT TEST 
BIT COMPLEMENT 
BIT CLEAR 

The operations listed in the table above apply to all bits in the 
operand specified by the mask word. 

BIT SET returns a value with the specified bits turned on in the 
operand. 

8-29 



BIT TEST returns a non-zero value if the specified bits match any bits 
set in the operand. 

BIT COMPLEMENT returns a value with the specified bits in the operand 
having had their state change; on bits turned off, and off bits 
turned on. 

BIT CLEAR returns the value of the operand with the specified bits 
cleared. 

In the next example, the FOCAL program creates a mask word with bits 5 
and 9 set, then clears the specified bits in a value which it loads 
into register @170400. 

Example: 

2.10 S M=FBIT(O,O,5,O,9);C: CPEATE THE MASK WORD 
2.20 S V=FhIT(V,-2,M);C: CLEftP BITS 5 AND 6 I~ A VALUE 
2.30 X FX(-2,~170400,V);C: LOftD THF VALUE INTO A REGISTER 

8.3 THE DRII-K 

NOTE 

The methods discussed in this section 
apply equally to the DRII-C and the LPS 
with the LPSDR-A digital input/output 
option. 

The DRII-K input-output interface provides three registers used in 
performing I/O operations. The DRII-K status register allows the 
program to enable output and/or input interrupts. The output register 
allows output by byte or word. The input register allows 16 bit 
parallel input. 

The FOCAL program outputs data by loading a word or a byte into the 16 
bit output register with or without output interrupt enabled. If 
output interrupts are enabled, receipt of the data by the external 
device will cause an interrupt. 

Data is input by reading the 16-bit input register. Input interrupts 
may be caused by the setting of any bit in this register or by two 
control lines between the DRII-K and the external device or devices. 
A hardware setting determines which method will cause interrupts. The 
program can clear bits in the DRII-K input register by moving a one to 
the bit to be cleared. The input interrupt enable bit of the status 
register is cleared when the interrupt is accepted. The resetting of 
this enable bit will retrigger the program service subroutine. 
Therefore, new data bits will not be lost. 

There are no FOCAL functions specifically designed for the DRII-K. 
However, function FX, the Unibus function, in conjunction with the 
interrupt scheduling function, FINT, the time of interrupt function, 
FTOI, and the bit manipulation function, FBIT, give the FOCAL program 
complete access to all the DRII-K's capabilities. The FOCAL program 
needs to know the addresses of the input and output registers and of 
the interrupt vector of each DRII-K on the system. The standard 

8-30 



addresses selected for the DR11-K and the LPSDR (in parentheses) are: 

167770 (170410) 
167772 (170412) 
167774 (170414) 

STATUS REGISTER ADDRESS 
INPUT ADDRESS 
OUTPUT ADDRESS 

The standard vector addresses for the DR11-K are: 

300 (350) 
304 (354) 

INPUT VECTOR ADDRESS 
OUTPUT VECTOR ADDRESS 

The meaningful bits in the status register are: 

BIT 

6 
7 

14 
15 

USE 

INPUT INTERRUPT ENABLE 
INPUT FLAG 
(DATA HAS BEEN LOADED INTO THE INPUT REGISTER) 
OUTPUT INTERRUPT ENABLE 
OUTPUT FLAG 
(DATA IN OUTPUT REGISTER HAS BEEN ACCEPTED) 

8.3.1 Output Operations to the DR11-K 

The FOCAL program can output to a DRII-K using function FX by byte or 
by word. FX(-2,@167770,I), for instance, outputs the value in I, 
taken as a 16-bit quantity. FX(-1,@167775,@377) outputs the octal 
byte 377 to the high byte of the output register. 

The FOCAL program may use the function FBIT to create the word or byte 
to output. If, for example, the FOCAL program must output a word with 
bits 2 and 4 set as flags to the low byte of the DRII-K, 
FX(-1,@167774,FBIT(0,0,2,0,4) will do so. 

If the FOCAL program must ascertain that the external device has 
received the data loaded into the output register, it can do so by 
using FX to enable output interrupts (setting bit 14 of the status 
register) and scheduling a FOCAL interrupt processor using FINT. 

Example: 

1.10 X fX("2,(~167770,FBIT(0,0,14));C: E~NAB}'E OUTPUT ]~,IT~~R'RuprIS 

1.20 X FINT(@304,5,4,@167770,O);C: SCHf~DULE; GROUP 5 
1.30 X FX(-2,@167774,@17345);C:UUTPUT A WORD 
1.40 S DFLG=O;CLEAR OUTPUT DONE FLAG 
1.50 G 2;C: CONTINUE PROCESSING 

5 • 1 0 S 0 F L G = 1 : C: S E l' A F LAG S.lt YIN G THE 0 U T PUT H ~ S CO /111 P t. f TED 
5.20 RETURN:C: RETURN 'TO INTERRUPTED LINE 

8.3.2 Input Operations 

To perform input the FOCAL program can wait for the input flag in the 
DRI1-K status register to set. Alternatively the program can enable 
the DRII-K input interrupt by setting the input interrupt enable bit 
(bit 6) in the status register and setting up a FOCAL interrupt 
processor using FINT. The next example uses the first method to 

8-31 



create an array of DRll-K input values. After each input it loads the 
value read back into the input register to clear the register for the 
next input. 

Example: 

1.10 X F'X(-L,@167770,O);C: SET STATTJS REGISTFP, NO INTERRUPTS 
1.20 S J=O;C: CLEAR A COUNTER 
1.30 S J=FX(0,@167772,@100);C: GET INPUT READY BIT 
1.40 I (T-@100) 1.3:C: WAIT FOR IT TO SET 
1.50 S K=fX(-2,@167772,FX(2,@167772» 
1.60 C: READ DATA AND CI,EAR INPUT REGISTER 
1.70 S I.J=~J+l;S D(J)=K:C: STORF' THE DATA IN ThE NFXT AFRA't ELEMENT 
1.80 I (K-(Cl15) 1.3,1.9,1.3;C: OOIT WHEN <CR> ffCflVED 

The next example sets up an interrupt processor to perform the same 
storage operation while other processing continues. 

Example: 

1.10 X FINT(@302,5,4,ra167770,O);C: Sf:T GROUP 5 FOR INTERRUPTS 
1.20 X fX(-2,@167770,FBll(0,0,6»:C: ENABLE INPUT INTERRUPTS 
1.30 G 2;C: CONTINUE PROCESSING 

5.10 S K=EX(2,@167772);C:GET THE DATA 
5.20 X FX(-2,@167772,K);C: CLEAR THE INPUT R~GISTFR 
5.30 S J=J+l;S D(Jl=K;C: SAVE THE INPUT DATA 
5.40 X FX(-2,@167770,FRIT(0,O,6»;C: RE-ARM THE INTERRUPTS 
5.50 RETUkN;C:RETURN TO INTERRUPTED LINE 

It is important to note when processing input interrupts from a DRII-K 
connected to many separate devices, that by the time the FOCAL program 
initiates the interrupt processing routine in response to an input 
interrupt from one of these devices, one or more of the remaining 
devices may have caused other bits in the input register to set. In 
this environment the interrupt processor should check for input from 
all the devices. It must, of course, know which device is connected 
to which bit, or bits, in order to perform the correct processing for 
each bit set. 

In the next example, eight devices are connected one each to bits 0 
through 7 of the DRll-K input register. The interrupt processor 
checks each bit and performs the necessary operations if the bit is 
set. 

Example: 

5.10 S K=FX(2,@167772);C:GET THE DATA 
5.20 X FX(-2,@167772,K);C: CLFAR THE INPUT RFGIST~R 
5.30 F 1=0,1,7;D 6;C: DO GROUP SIX FOR EACH OF 8 BITS 
5.40 X FX(-2,@167770,@100):C: THEN RE-ARM THE INTERRUPTS 
5.50 RETURN:C:RETURN TO INTERRUPTED LINE 

6.10 S H=fBIT(K,2,FBIT(O,0,I));C: TEST ONE Rll IN THE INPUT WORD 
6.20 I (8-1) 6.5;C: RETURN IF BIT NOT SET 
6.30 D 7+8;C: OTHERWISE DO THF GROUP NUMBER THAT HANDLES THIS 
6.35 C: HIT FOR PROCESSING, THEN RETURN 
6.40 Q 

8-32 



CHAPTER 9 

FUNCTIONS FOR USING THE VT-ll 

9.1 INTRODUCTION 

The VTII-A is a high-performance display system that operates with a 
PDP-II computer. It is designed for applications that require both a 
visual display and a computation capability. The system can display 
either alphanumeric information, graphics data such as drawings, 
diagrams, and patterns, or any combination of these. It is 
particularly valuable for displaying dynamic data. 

The VTll's display processor retrieves display data and commands from 
the PDP-II's memory. It decodes and executes this information and 
carries out vector and character calculations that are required by the 
CRT for display presentations. The CRT display is a self contained 
unit that provides a 9.25 by 9.25 inch viewing area consisting of 1024 
by 1024 rasters. The display is an automatically refreshing type 
rather than the storage type so that a bright, continuous image, with 
excellent contrast ratio, is provided during motion or while changes 
are being made in the elements of the picture. The VTll includes a 
light pen for interactive graphics. The light pen is a pencil shaped 
light detector for use in a wide range of interactive applications. 
The VTII character generator has both upper and lower case capability 
with a large repertoire of display characters. In addition to the 96 
ASCII characters, 31 special characters are included. These special 
characters include some greek letters, architectural symbols and math 
symbols. Scope resolution is precise enough to allow overprinting. 
eight intensity levels permit the brightness and contrast to be varied 
so that the scope can be viewed in a normally lighted room. A 
hardware blink feature is applicable to any characters or graphics 
drawn on the screen. 

Under RT-ll the VTll may be used for display of terminal I/O. with 
this feature in operation, FOCAL's terminal interaction will also 
display on the VTII screen at 31 lines of 72 characters each.. The 
functions described in this chapter allow FOCAL to also make use of 
the VTll's graphics capabilities. Graphics may be used with terminal 
I/O displayed on the screen or on the console terminal. 

The functions allow the FOCAL program to create an addressable display 
file and to fill it with graphic data. The graphic data can take the 
form of lines, points, and characters. Lines are defined by a pair of 
coordinates that indicate the offset of the line's endpoint from its 
starting point. Points are defined as fixed locations on the screen. 
Characters display as italics or upright print horizontally across the 

9-1 



screen. Lines and points may be displayed visibly or invisibly. 
Lines can be displayed as one of four separate line types: solid, 
long dash, short dash, and dot dash. All graphics can be displayed at 
one of 8 intensity settings, as blinking or non-blinking, and as light 
pen sensitive or non-light pen sensitive. Light pen sensitive 
graphics when touched with the VTII's light pen may be used by the 
FOCAL program to automatically alter the location of part of the 
display. The FOCAL program may also obtain the coordinates of the 
light pen hit and the location in the display file of the graphic 
element upon which the hit occurred. The program can also wait for 
the next light pen hit to occur. 

Additional functions allow the FOCAL program to discontinue display of 
some or all data in the display file, to clear part or all of the 
display file, to discontinue the display, and to alter the number of 
lines, the intensity and the top location of the terminal I/O 
displayed on the screen. 

Together the VTII functions give the FOCAL program the ability to 
create an image on the screen and to alter any part of it. By 
continually altering the starting point of an image, the FOCAL program 
can cause it to move around the screen. By drawing a number of 
images, each with a separate starting point and continually altering 
each of the starting points, the program can cause several separate 
pictures to move independently of each other around the screen. By 
altering the lines that compose a given image, the program can change 
its shape and its size. By accessing the light pen, the program can 
allow the user to interactively alter the image. The automatic 
tracking feature of the FOCAL light pen handler allows high speed 
tracking of any tracking element the user might construct. 

In short, the VTII functions give the user a set of powerful tools by 
means of which a FOCAL program can create a complex graphic display on 
the VTII. The next sec tioI}s descr ibe the functions in detail. 

9.2 THE FUNCTIONS 

A FOCAL program that does graphics employs the graphics functions 
along with all the other statements available to FOCAL. Rather than 
simply storing its calculations in a file or typing them out for the 
user to read, the program can convert them to a graphic form and 
display them on the screen. A simple graphics program might look 
something like the one below. . 

1.05 X 
1.07 A 
1 • 1 0 X 
1 • 15 X 
1.2·0 S 
1.30 S 
1 .40 F' 
1 .41 S 
1.42 S 
1.44 S 
1.46 S 
1.48 S 
1.50 X 
1.60 X 
1.70 f" 

FSCR(5,4,740) 
"TYPE <CR> Tn START",A!! 
FVT(O,200) 
FSKP(100,-1) 
X=500:S Y=500 
LOC=1 
TH=O,.1,6.28;D 2 
LT=I.OC 
LOC=FSET(LOC,450,350) 
LOC=FTXT(LOC,OR,OA,OD,OI,OA,ON,OS) 
LOC=FTXT (LOC, 08L, 50) : S I/OC=f'SPC (LOC, 16 J 
LOC=FTXT(LOC,61,51,54,48);S LOC=FSPC(LOC,11) 
F'VT(1) 
F·SET (LOC, 500,500) 
TH=O,.1,6.28;D 3 

9-2 



1.75 X FMOV(100,O,O) 
1.79 f) 4;0 6 
1.BO A "TYPE <CR> TO EXIT",A 
1.90 X FCLR(0,LOC+2) 
1.95 X FSCR(30,4,740) 
1.99 Q 

2.10 S DX=FCOS(TH)*100;S OY=FSINCTH1*100 
2.20 S LOC=FPT(LOC,X+OX,Y+OY) 
2.30 I (FITR(TH+.09)-TH+.09)2.5,2.4,7.4 
2.40 S LOC=FTXTCLOC,48.1+TH) 
2.45 X FDIS(-1,TH+.09,-I,I) 
2.50 R 

3.10 0 2.1 
3.15 X FDIS(2,4,O,1) 
3.20 X FVEC(LOC+l,DX,DY) 

4 • lOA " BY viH A T V A Ll U E TOM U L TIP I J Y 'l' HER A DIU S" , P 
4.20 F 1=I,LT:O 5 

5.10 S OX=~'XCO (] ) : S DY=f<YCO (I) 
5.20 t (OX) 5.5 
5.30 S DX=(UX-500)*P;S OY=(DY-5001*P 
5.35 X FDIS(FDIS(l)) 
5.40 X FPTCI,DX+500,DY+500) 
5.50 R 

6 • 05 T " HIT THE C I R C L f~ wIT H THE L I G H T PEN",! 
6.10 S L=FLP(O) 
6.20 S DX=FXCO(L)-500:S DY=~'YCO(L)-500 
6.25 X FnIS(2,5,O,O) 
6.30 X f"VEC(LOC+l,[)X,DY) 
6.40 S R=(L-l)*.l 
6.50 T P," RADIANS",!! 

The example makes use of all the graphics functions available to 
FOCAL. These functions are now described in detail using lines from 
the program above for most examples. Unless otherwise indicated all 
functions take integer arguments in the range -32568 to +32567 and 
will cause an integer overflow error (?23) on arguments outside this 
range. The section describing each function begins with a line 
portraying the function in its most general form. 

9.2.1 Setting Up the Display File 

FVT (N [,M] ) 

Function FVT can perform two operations: it creates or eliminates the 
display file and turns the display on or off. When called with a 
single argument greater than 0, it turns the display on. Turning the 
display on consists of directing the VTll display processor to display 
all graphic data loaded into the display file. An argument less than 
or equal to 0 turns the display off. The VTII display processor will 
then ignore the graphic data in the display file and display only 
terminal I/O on the VTll screen provided that RT-il terminal I/O has 
been directed to the screen by the 'GT ON' command. Turning the 
display on or off has no effect if no display file has been created 

9-3 



yet. And turning the display on with no data in the display file will 
cause no image to appear on the screen. 

To create the display file the FOCAL program calls FVT with two 
arguments. The first argument specifies whether to turn the display 
on or off as it does for FVT with one argument. The second argument 
indicates the size of the display file to allocate. If the second 
argument is 0, the current display file will be eliminated and the 
first argument will have no effect. If the second argument is greater 
than 0, it will cause elimination of any current display file and 
creation of a new display file. The argument's value indicates the 
number of slots available for receipt of graphic data. Each such slot 
is called a LOC. Each LOC can contain either one line, one point, 
four characters, a display jump, or a display null (described in later 
sections) • Each LOC has a number associated with it that indicates 
its offset from the start of the display file and by means of which it 
can be addressed for loading. The first LaC in the file is LOC 0, the 
second LOC 1, and so on up to the last LOC. The second argument to 
FVT determines the total number of such LaCs in the display file. In 
terms of PDP-II memory, each LOC requires 3 words. FVT will allocate 
enough 256 word blocks of memory to provide the requested number of 
LOCs and will return as its functional value the number of LOCs 
allocated. This value may be greater than the number of LOC's 
requested since it is the number of LOCs available in the total number 
of blocks required. For example, the function FVT(l,lOO) requests 100 
LOCs. This requres 300 words of memory plus 2 words as the display 
file delimeter, thus FVT must allocate two 256 word blocks, 512 words, 
to satisfy the request. The 512 words make room for 170 LOCs, and FVT 
returns as its functional value 170. 

If the request requires too much memory, the call to FVT will result 
in a ?23 error. 

Example: 

FVT(l,lOO)iC: ALLOCATE A 100-LOC DISPLAY FILEiTURN DISPLAY ON 

FVT(O,O)iCi DE-ALLOCATE THE CURRENT DISPLAY FILE 

FVT(l)C: TURN THE DISPLAY ON 

FVT(O)iC: TURN THE DISPLAY OFF 

Once the display file has been set up using FVT, it can be loaded with 
graphics data. When the display is on, any data the display processor 
encounters in the display file will be displayed on the screen in the 
order it is encountered. Thus, the graphic datum in LOC 0 will be the 
first displayed, then the data in LOC I and so on. If no data has 
been loaded into a given LaC, the display processor will ingore it and 
go on to the next LOC. Thus, if LaC 5 contains a line, LOCs 6,7, and 
8, have not been loaded, and LOC 9 contains another line, the line in 
LOC 9 will display immediately following the line in LOC 5. If a line 
is subsequently loaded into LOC 6, this line will display between the 
two lines in LaCs 5 and 9. The data contained in the display file 
determines the image displayed on the screen. 

The next sections describe the types of graphic data that the FOCAL 
program may load into the display file. 

9-4 



9.2.2 Loading the Display File with Lines and Points 

The FOCAL program can create images consisting of straight lines 
(vectors) and points. Lines are displayed "relatively." This means 
that the starting point of each line is the point on the screen where 
the previously displayed line or point ended (called the current 
screen location) and the ending point of the line is an offset from 
this point. Points are displayed "absolutely." This means that points 
display at a fixed screen location that does not depend on the current 
screen location produced by the graphic data in the previously 
displayed LOC. Points and lines can be displayed visibly or 
invisibly. The coordinates of lines and points are interpreted 
relative to a screen scaled from (0,0) at the lower left hand corner 
to (1023,1023) at the upper right. 

Each line or point occupies a single LOC in the display file. The 
FOCAL program can load a line or point into any LOC in the file at any 
time, overwriting and destroying any data the LOC may have contained. 

The format of the four functions that cause loading of lines and 
points is the same. The first argument indicates the number of the 
LOC to load. The next two arguments indicate the x and y coordinates 
of the line or point the LOC will contain. Every function will load 
the LOC indicated and return the value of the first argument plus one. 
The FOCAL program may use this returned value as the first argument to 
the next function that loads a LOC. This simplifies sequential 
loading of LOCs. If the LOC indicated by the first argument is 
greater in magnitude that the highest numbered LOC in the display 
file, the highest LOC will be loaded and the negative of the magnitude 
of the highest LOC will be returned. Thus, if the display file 
contains 170 LOCs and the program attempts to load LOC 200, the 
loading function will return the value -200 and load LOC 170. If the 
program attempts a load without having created a display file it will 
cause a ?09 error. 

9.2.2.1 FVEC(LOC,X,Y) 

FVEC loads a visible vector into the LOC specified by its first 
argument. Its second two arguments determine the offset (x and y) of 
the endpoint of this vector from its starting point. Since all 
vectors display relatively, its starting point will be the current 
screen location as produced by the datum previously displayed. A 
vector will leave the current screen location at its own endpoint. 

Example: 

1 • lOX I' V T ( 1 , 1 0 0 ) : r. : ALL (I CAT E 1 0 0 L n c S ; T URN n 1 S PtA Y () f\; 
1.20 5 L()C=O~C: SET POlNTER TO FIRST LOC 
1.30 F J=O,.5,40;S LOC=FVEC(LOC,lO,J):C: UJAD R() VECTFRS 

This example sets up a display file and loads it with 80 vectors to 
form a parabola on the screen. 

9-5 



9.2.2.2 FMOV(LOC,X,Y) 

FMOV acts exactly like FVEC except that the line indicated will 
display invisibly. It will alter the current screen locations but 
otherwise not alter the image displayed, unless other visible vectors 
and characters are located in succeeding LOCs. 

Example: 

1 • 4 0 F' J = 1 , 1 0 0 : X F M (I V ( 0 , I , I ) 

This line, when added to the previous example, causes the parabola to 
move across the screen at a 45 degree angle. It does so by 
continually loading LOC 0 with an invisible vector of increasing 
length. This causes the starting point of the parabola to move. 

9.2.2.3 FPT(LOC,X,Y) 

FPT loads an absolute point into the LOC specified as its first 
argument. The second two arguments determine the x and y coordinates 
of the point. An absolute point will remain at the screen location 
specified regardless of movement of the remainder of the image. 

Example: 

1.10 X F'V'f(O,200);C: ALLOCATF FILE,DlSPLAY ()~F 

1 • 20 S X = 50 0 ; S Y = 5 0 0 : C: S E: T C F N T t~ ReO 0 R 0 1 NAT F S 0 rAe I R C L E 
1.30 S LOC=I;C: 5[T POINTER TO POINT TO Loe 1 
1.40 f TH=O,.1,b.2R;D 2;C: DRAW A CIRLE IN 63 LOCS 
1.50 X f"VT(l):C:DISPLAY THE CIRCLE 

2.10 S DX=fCUS(TH)*100;S DY=FSINCTH)*100 
2.15 C: LOCATE DOT ON PERIMETER OF CIRCLE 
2.20 S I,UC=r'PT(LOC,X+DX,Y+DY);C: DR 11\.1/ IT IN THE- N~XT LCiC 

This example draws a circle consisting of 62 points with its center at 
(500,500) . 

9.2.2.4 FSET(LOC,X,Y) 

FSET acts exactly like FPT except that the point loaded is not 
displayed. It can be used to set the current location on the screen 
but will otherwise not alter the image on the screen unless other 
visible vectors and points are located in succeeding LOCs. 

Example: 

1.60 X fSETCLOC,500,500) 
1.61 C: DRAW AN INVISIBL~ POINT AT CIRCLE'S ,CENT~R 
1 • 7 0 f T H = 0 , • 1 , 6 • 2 B ; D 3: C: M 0 V E ,A C I. () C K HAN DAR 0 1I N D THE C I1~ C L r: 
1.80 Q 

3.10 D 2.1;C: LOCATE POINT ON CIRCLE'S PERIMETER 
3.20 X fVECCLOC+l,DX,DY);C: DRAW LINE FROM CENTER TO PERIMETER 
3.25 C: IN THE LOC FOLLING THE INVISIBLE POINT 

These lInes when added to those of the previous example cause a vector 
to move about the circle like the hand of a clock. It sets the 
starting point of the vector using an invisible point, then constantly 

9-6 



loads the LOC that contains the vector with vectors that extend from 
the center of its circle to a point on the perimeter. 

9.2.3 Loading Characters 

VTll characters are 16 rasters wide and 12 rasters high. Each 
character displays with its lower left hand corner at the current 
screen location and leaves the current screen location at its lower 
right hand corner. Therefore, characters sequentially loaded into the 
display file display horizontally across the screen. 

9.2.3.1 FTXT(LOC,A,B,C, ••. ) 

FTXT loads characters into the display file starting at the LOC 
indicated in its first argument. Each display LOC can contain four 
characters. FTXT will take the next four arguments in its argument 
list, convert them to ASCII characters, and load them into the current 
LOC. If it encounters a fifth arugment, it will go on to the next 
LOC. It will continue loading LOCs sequentially each with four 
characters until it encounters the end of the argument list. At this 
time it will return the number of the LOC following the last LOC 
loaded. The conversion of argument values to ASCII characters maps 
the decimal arguments 0 to 32 to the ASCII characters of octal values 
100 to 137 (characters 'A' through 'J ') and decimal arguments 33 to 
127 as ASCII octal values 40 to 177. Thus, the FOCAL constants OA 
through oz when used as arguments will cause display of the 
corresponding character. Due to its value of 32, the FOCAL constant 
OBL will display as a blank. 

Example: 

2.30 I (fITR(TH+.OY)-T~+.Og)2.5,2.4,2.4 

2 • 3 5 C: 1FT HIS A N I /IJ T E G F~ R V A L II E N n \~ 
2.40 S LOC=f'l'XTCl,OC,48.1+TH) 
2 • 4 5 C: W R I 'l' E ITS 1 N '1' F~ G E R V A L U E: I NTH r: L U C 
2.46 C: FOLLOWING THE CURRENT POINT 
2.50 R 

These lines added to the previous example label the circumference of 
the circle with the angle in radians. They do this by loading the 
ASCII value for the current angle in radians into the LOC following 
each point that corresponds to a whole integer radian value. 

Example: 

1.42 S LnC=FS~:T(l,OC,450,350):C:SET POINT REI,Uw C1RCLF 
1.44 S IAIC=FTXT(LOC,OR,OA,OD,OJ,OA,ON,OS);C: tAbU THF liJ1ACr. 

These lines added to the example label the circle on the screen with 
the title 'RADIANS'. 

9-7 



9.2.3.2 FSPC(LOC,A[,B]) 

FSPC allows the FOCAL program to load an individual LaC with 1 or 2 
special characters. The GT40 USER'S GUIDE contains a list of the 
VTll's special characters and their corresponding codes. The first 
argument to FSPC indicates which LaC to load. The next argument 
inidicates the code for a special character other than shift out 
(octal code 17). The optional third argument indicates the code for a 
secorJ special character. FSPC loads the LaC with the the character 
or characters indicated and returns the value of the first argument 
plus one. . 

Example: 

1.46 S LOC=~·TXTU.A1C,Of:H,,50)~S r.OC=f'SPC(LOC,16)~C: ADD '2 PI' 
1.48 S LOC=FTXT(LOC,61,51,54,48):S LOC=FSPC(10C,11) 
1.49 C: ADD '=i60 D~GRFES' 

These lines added to the previous example use special characters in 
the label. 

9.2.4 Inserting Display Jumps 

Once the FOCAL program has loaded the display file it may need to 
temporarily discontinue display of some of the graphics loaded. It 
can do this, as well as ignore the terminal I/O, by loading individual 
LaCs with display jumps, jumps to somewhere in the display file. When 
the display processor encounters a LaC containing a jump, it uses the 
LaC specified in the jump as the next LaC to execute rather than 
executing the next sequential LaC. The jump can be forward or 
backward. It can be to a LaC within the display file, or to the end 
of the display file, or to its beginning. 

FSKP (N [ ,M] ) 

FSKP with one argument indicates a jump to the end of the display 
file. The LaC indicated by the first argument is loaded with this 
jump. All graphics in LaCs subsequent to the one loaded will 
disappear from the screen. 

If FSKP has two arguments, the first indicates the LaC to load and the 
second indicates the LaC to jump to. Thus, FSKP(S,lOO) means load LaC 
5 with a jump to LaC 100. Graphics in LaCs 6 through 99 will 
disappear from the screen. If the second LaC is beyond the display 
file, FSKP will insert a jump to the end of the display file. If the 
second LaC is a LaC preceeding the first LaC, FSKP will perform the 
load. However, the user must realize that such a jump creates an 
infinite loop for the display processor. The display processor will 
continually reach the jump and revert back to the earlier LaC. Thus, 
any terminal I/O displayed on the screen will not display. Any part 
of the display file not incuded in the loop will not display. If the 
second argument is a negative value, FSKP inserts a jump to the start 
of the display file. Terminal I/O will not be displayed. 

9-8 



Example: 

1.15 X FSKP(100,"'1);C:JllMP TO START OF FlLE: 1'(1 JG~'ClP TTY lIn 
1.75 X FVEC(lOO,O,O);C: LOAD f\JULL Vl':CTOR OVf~ SKIP TO 
1.77 C: RE-DISPLAY TTY I/U 

Line 1.15 added to the example causes terminal I/O to disappear while 
the hand is rotating. Line 1.75 redisplays teletype I/O by loading a 
null vector (a vector of 0 length) over the display jump. 

9.2.5 Choosing the Graphic Modes 

The graphic data in each LaC has a set of modes associated with it 
which determine how it will display. Lines may be solid, short dash, 
long dash, or dot dash. All graphics may have one of eight intensity 
settings, may be blinking or non-blinking, and may be light pen 
sensitive or non-light pen sensitive. 

FOIS(T,I,B,S) 

The first word of each LaC (a LaC contains 3 PDP-II words) specifies 
the "type" of graphic data the LaC contains as well as up to four 
graphic "modes" associated with the data. The type of data-vector, 
point, text, or jump is determined by the function that loads the LaC. 
FVEC, for instance, sets the first word to vector type data. The 
graphic modes- four of them- are determined by a call to FOIS. The 
four graphic modes determine line type, intensity, blink, and light 
-pen sensitivity of the graphic datum contained in the LaC. When the 
display processor encounters a LaC, it changes the current modes of 
display to the modes indicated in the LaC. It will display the 
graphic element in the LaC in the current modes and will apply these 
modes to all subsequently displayed LaCs until it encounters a LaC 
which again changes one or mode of the modes thus altering the current 
graphic modes. 

The FOCAL program can call FDIS with I or 4 arguments. These 
arguments specify the graphics modes that will be loaded into the 
first word of the next LaC loaded by a graphics function. A call to 
FOIS does not alter the display; it only determines the mode of the 
next load and applies only to that load. Subsequent loads which have 
no preceeding call to FDIS, will have no associated graphics modes. 
The data in the LaCs they load will take on the modes of the 
previously displayed LaCs in the display file. 

When the FOCAL program calls FOIS with four arguments, each argument 
specifies one of the four available graphics modes. 

The first argument to FOIS determines the type of line: 

FIRST ARGUMENT 

o 
I 
2 
3 

LINE TYPE 

SOLID 
LONGOASH 
SHORTDASH 
OOTOASH 

The second argument determines the intensity from 0 (dimmest) to 7 
(brightest). The third argument determines the blink. 0 means steady; 
1 means blink. The fourth argument determines the light pen 

9-9 



sensitivity. 
sensitive. 

o means non-light pen sensitive; I means light pen 

If any of the arguments are less than zero, then the corresponding 
mode will be left unspecified. For this unspecified mode, the datum 
in the next LOC loaded will take on the corresponding mode of the 
previously displayed LOC. This is the default condition for LOCs 
loaded with no prior call to FDIS. The LOC loaded will have no 
associated modes and will take on the modes of the previously 
displayed graphic element. The original modes, those ·which LOC 0 
takes on by default, are solid lines, intensity 4, non-blinking, and 
non-lightpen sensitive. 

Example: 

2.45 X F'DIS(-1,lH+.09,-1,1) 
2.46 c: SET INTfo~NSITY AND LJGHT Pf-:N SENSITJVt: 

3.tS X FDISC2,4,O,O);C: SET LINE TO SHORTDASH 
3 • t 7 C: NON - R L I f\J K, ld G H T P F. NSF N S J T 1 V E: 

These lines added to the example make the dots that compose the circle 
light pen sensitive, reflect in their intensity the number of radians, 
and change the clock hand to a short dash line. 

When the FOCAL program calls FDIS with a single argument, the sign of 
the argument determines the operation the function will perform. For 
an argument greater than or equal to zero, the argument represents a 
LOC number. FDIS will, in this case, return as its functional value 
the actual contents of the first word of this LOC. Since the first 
word specifies the four graphics modes associated with the LOC, the 
value returned can be used to represent all four modes. This value is 
always negative. If it is supplied to FDIS as a single argument, FDIS 
will use it to determine all four graphics modes tb associate with the 
next LOC loaded. In other words, the FOCAL program can specify the 
four graphics modes either by calling FDIS with four arguments, each 
specifying one mode, or by calling FDIS with one negative argument 
which specifies all four modes. FDIS's ability to return the modes of 
a LOC is especially useful when reloading a LOC with new coordinates. 
The FOCAL program can obtain the mode of the LOC using FDIS with one 
non-negative argument, specify these modes in a call to FDIS with one 
negative argument, then reload the LOC. The graphics modes 
associated with the LOC will then not change even though the data in 
the LOC has changed. The example in the section describing FXCO and 
FYCO makes use of this feature. The example uses the. function 
recursively, FDIS(FDIS(I)), to at once obtain the modes of LOC I and 
set these modes for the next load. 

9.2.6 Loading Display Characteristics 

In addition to the four graphic modes set by using FDIS, the FOCAL 
program can determine three other characteristics of the display; 
sync, italics, and light pen intensify. The program determines these 
characteristics by loading a LaC with a display null which specifies 
them. 

FSTA(LOC,C) 

FSTA loads the LaC specified as its first argument with the three 

9-10 



characteristics specified by its second argument. A LOC thus loaded 
is essentially a display null. It causes no new graphics to appear on 
the screen and does not alter the current screen location. It only 
determines the three characteristics as they apply to all subsequently 
displayed LOCs, until a LOC containing another change to the 
characteristics is encountered. 

When set, the sync feature causes the display processor to pause and 
wait for the next cycle of the AC line voltage (i.e. 50 or 60 Hz.) 
before resuming display. Normally, each graphic element added to the 
display causes a slight decrease in overall intensity because the 
display processor has more commands to decode. With the sync feature 
enabled, intensity changes occur only after a large number of graphics 
instructions have been added. The intensity change is then a large 
change. 

NOTE 

The FOCAL program should not load more 
than one loc with sync on. 

Loading a LOC with the italics feature enabled causes all characters 
in subsequent LOCs to display in italics. Loading a LOC with italics 
off sets characters back to upright. 

Loading a LOC with the light pen intensify feature enabled causes 
light pen sensitive graphics in all subsequent LOCs to intensify at 
the point of a light pen hit thus making the location of the hit 
obvious to the operator. 

The second argument to FSTA determines all three characteristics. Its 
value is determined by adding up a set of values, each value 
corresponding to one of the characteristics. A value not added sets 
the corresponding characteristic to the complementary state from the 
one indicated in the table below. 

VALUE ADDED 

4 
16 
64 

CHARACTERSITIC 

SYNC ON 
ITALICS ON 
LIGHT PEN INTENSIFY ON 

Thus, a second argument of 20 (16+4) sets the sync and italics 
features on, and the light pen intensify feature off. 

FSTA returns as its functional value the value of its first argument 
plus 1. 

Example: 

1.43 S LOC=FSTA(LOC,16+64)iC: SET ITALICS AND INTENSIFY 

This line added to the main example causes all characters to display 
as italics and light pen hits to cause intensification. 

9-11 



9.2.7 Clearing the Display File 

The FOCAL program can clear individual LOCs, that is, erase the 
graphics in them, by loading them with zero length vectors, i.e. 
vectors with an x and y offset of zero. A vector of zero length 
produces no screen image and does not alter the current screen 
location. To erase more than one LOC, the program can load a series 
of such vectors using a FOR loop. The FCLR function provides a 
simpler and faster way to erase graphics. 

FCLR (Ll [ ,L2] ) 

FCLR called with one argument erases the display file starting at the 
LOC specified by the argument and continues to the end of the display 
file. FCLR called with two arguments erases the file starting at the 
first LOC and continuing up to, but not including, the second LOC. If 
the second LOC is beyond the display file, FCLR will erase to the end 
of the display file. If the second LOC is one greater than the first 
LOC, FCLR will erase a single LOC. FCLR loads all LOCs with display 
nulls. When the display processor encounters a display null, it 
simply goes on to the next LOC, having left the screen image, the 
current screen location, and the current graphic modes unchanged. 

Example: 

1 • 8 () A " T Y P t: < C R > T U E X IT" , A ~ C: W A I T F' 0 RCA P RAe r: R E: T URN 
1 • 90 X Fe L R ( 0 , L [] r + 2 ) : C: eLf: A R A L r. G RA PHI C S 
1. 99 (~ 

These lines added to the example wait for the operator to type a 
carraige return when the rotation has completed, then clear all the 
LOCs that comprise the image. 

9.2.8 Returning Coordinates 

The FOCAL program that has loaded the display file with lines and 
points may at some later time need to know the coordinates of the line 
or point in a given LOC. This data might be useful, for instance, 
when blowing up an image by increasing the length of each line that 
comprises it by some percentage. The functions FXCO and FYCO return 
respectively the x and y coordinate of a specified LOC. 

9.2.8.1 FXCO(LOC) 

FXCO returns as its functional value the x coordinate of the line or 
point in the LOC specified as its argument. If the LOC contains 
characters, a display jump, nr a display null, FXCO returns the value 
-4095. 

9.2.8.2 FYCO(LOC) 

FYCO acts exactly like FXCO to return the y coordinate in the 
specified LOC. 

9-12 



Example: 

1.79 0 4:GO ALTER THt; SIZF. OF THE CIRCLE: 

4.10 A "BY WHAT VALUE TO MULTIPIJ¥ THF: RADlllS",F 
4.20 F l=l,LT:D 5 

5.10 S DX=FXCO(Il:S DY=FYCO(Il 
5.20 I (DX) 5.5 
5.30 S DX=(DX-5001*P:S DY=CDY-500)*P 
5.35 X FDIS(FDIS(I)) 
5.40 X FPT(I,DX+500,DY+500) 
5.50 R 

These lines, when added to the main example, allow the operator to 
change the size of the circle. Section 4 asks for the value by which 
to multiply the size of the radius. It then calls section 5 for each 
point on the circle. Section 5 obtains the coordinates of the next 
LaC, changes these to an offset from the center of the circle, 
multiplies this offset by the value input, then reloads the LaC with a 
new pair of coordinates. Before reloading each LaC it obtains the 
modes of the LaC by using FDIS with one positive argument, then sets 
the mode of the next load by using the negative value returned as the 
argument to FDIS. Thus, the modes associated with each LaC remain the 
same as the coordinates in the LaC change. 

9.2.9 Handling the Light Pen 

The VTII light pen consists of a photocell in a pencil-shaped 
container. The photocell, when activated by being placed near screen 
graphics, causes a pulse to be sent to the display processor. When 
the pulse arrives, the processor decides whether the graphics which 
caused the pulse has been designated as light pen sensitive. If so, 
the processor interrupts its activity and makes a note of the x and y 
coordinates of the screen location where the hit occurred, and of the 
LaC in the display file that contains the graphic element hit. 

The VTll graphics package allows the FOCAL program to make use of the 
light pen in three ways. The FOCAL program can determine the 
coordinates of the last hit as well as the number of the LaC 
containing the graphic datum which caused the hit. It can also cause 
the coordinates of the hit to be automatically used for light pen 
tracking. 

Whenever a light pen hit occurs on light pen sensitive graphics, the 
coordinates of the hit are automatically entered into the graphic 
datum in LaC 0, provided LaC 0 contains a vector or a point. This 
means that the vector or point in LaC 0 automatically alters so that 
its coordinates are those of the latest light pen hit. Thus, a vector 
in LaC 0 will extend, after a light pen hit, from the lower left 
corner of the screen to the location of the hit. A point in LaC 0 
will automatically move to the location of the hit. Moreover, the 
FOCAL program can always read the last location of a light pen hit by 
using FXCO and FYCO to read the coordinates of the graphic element in 
LOC O. The program can make use of these coordinates in another way, 
for light pen tracking. 

Light pen tracking consists of drawing a polygon or other 'tracking 
element' which will follow the light pen as the operator moves the pen 

9-13 



around the screen. The program could continually read the coordinates 
of the center of this tracking element to determine at any moment 

. where the I ight pen is located. The FOCAL program could accompl ish 
tracking by drawing the tracking element, then reading the coordinates 
of each hit in a FOR loop and using these coordinates to alter the 
center of the tracking element. This takes a great deal of time. The 
longer it takes to move the tracking element the slower the speed with 
which the tracking element can follow the light pen. 

The VTII graphics package makes available a much faster method of 
tracking the light pen. Since each light pen hit automatically alters 
the coordinates in LaC 0, making LaC 0 the center of the tracking 
element will cause the element to track the light pen automatically, 
as soon as each hit occurs, and without the intervention or 
supervlslon of the FOCAL program. To accomplish this, the program 
draws the tracking element in the LaCs immediately following LaC O. 
LaC I usually contains an invisible vector to offset the image of the 
tracking element from its center. The next LaCs contain light pen 
sensitive vectors that comprise the tracking element. The LaC 
following the last LaC that comprises the tracking element contains an 
invisible absolute point, (usually at the lower left hand corner of 
the screen) so that graphics in subsequent locs will not move when the 
tracking element moves. 

Now each time a hit occurs on the image formed by the light pen 
sensitive vectors following LaC 0, the coordinates of the visible or 
invisible vector (or point) in LaC 0 automatically alter to those of 
the light pen hit. Since the screen location produced by LaC 0 
determines the center of the tracking element, the tracking element 
moves so that its center is the location of the light pen hit. If, 
for instance, the tracking element is drawn in the shape of a square, 
a hit on one of its sides will cause the square to move so that its 
center becomes the location of the hit. 

The next example draws a tracking element consisting of a square and 
its diagonals, each diagonal drawn in two directions (When a light pen 
hit occurs, the hardware requires a certain delay before informing the 
display processor that the hit has occurred. This means the x and 
y coordinates of the hit as saved by the display processor are 
actually somewhat further along in the image than the actual hit 
coordinates. If the light pen sensitive diagonals in the tracking 
element were drawn in only one direction, it would impose a bias in 
that direction on each hit. Drawing the diagonals in two directions 
insures that on the average, the bias caused by the hardware delay 
cancels out.). Each time the user hits a carriage return on the 
keyboard, the program draws a line from the previous location of the 
tracking element to its current location thus enabling the user to 
draw a track of straight lines with the light pen. 

Example: 

1.10 X FVT(1,100l;C: SET UP DISPLAY FILE,DISPLAY ON 
1.20 X FMOV(O,500,500):D 2:C: SET UP LOC 0 AND DPAW TRACKER 
1.25 X FDIS(0,5,O,0):C: SET fOR NON-LIGHT PEN SENSITIVE 
1.30 S LOC= fSET(LOC,500,500);C: ABS POINT, CENTfR SCREEN 
1.40 S Xl=500:S Yl=500;C: SET INITAII X AND Y COORDINATES 
1.50 A "DRAW",A;C: WAIT fOR USER TO TYPE 
1.55 I (Al 1.6,1.6;Q;C: WAIT FOR USER TO TYPE 
1.60 S X=FXCO(O);S Y=FYCOCO);C: ELSE GET COORDS Of' HIT 
1.70 S LOC=r'VEC(LOC,X-X1,Y-Yl) 
1.71 C:DRAW VECTOR TO THERE FROM PREVIOUS HIT 

9-14 



1.80 S Xl=X~S Y1=Y~C: RESET CURPENT COORDINATFS 
1.90 G 1.5~C: GO BACK FOR NEXT HIT 

2.05 X FDIS(0,5,0,1)~C: SET LIGHT PfN SENSITIVE 
2.07 C: THEN DRAW THE TRACKER,A CROSSED SQUARE 
2.10 X FV~C(1,30,30)~X FVEC(2,-60,-60) 
2.20 X FVEC(3,30,30) 
2.30 X FVEC(4,30,-30);X FVEC(5,-60,60) 
2.40 X FVEC(6,30,-30) 
2.50 X FMOV(7,30,30) 
2.60 X FVEC(S,0,-60):X FVEC(9,-60,O) 
2.70 X FVEC(10,0,60);X f·VEC( 11 ,60,0) 
2.80 S LOC=12:C: SET TO NEXT LOC AfTFR TRACKF~ 

FLP(N) 

Function FLP returns the number of the LOC last hit by the light pen. 
Before any hits have occurred this number will be O. As soon as a 
light pen hit occurs on light pen sensitive graphics, the current 
value will change to the number of the LOC hit. When the FOCAL 
program calls FLP with a positive argument, it returns the number of 
the LOC last hit by the light pen. If the program calls FLP with an 
argument of 0, FLP will wait for a light pen hit to occur before 
returning. It will then return the number of the LOC hit. 

Example: 

6.05 T "HIT THE CIRCI,E INITH THE LIGHT PEtIJ",! 
6.10 S L=fLP(O):C: WAIT FOR HIT:SAVF ITS Loe 
6.20 S DX=FXCO(L)-500~S OY=FYCO(L)-500 
6.21 C:GET OFfSET OF POINT HIT FROM CENTER 
6.25 X FDIS(2,5,O,O):C: SET FOP SHORTDASH 
6.30 X FVEC (IJOC+ 1 , DX, DY) ;C: RE-DRAW THE: Vr:CT(lp Tn POI ~'T Tfl THE' 
6.31 C: POINT HIT 
6.40 S R=(L-l)*.l:C: CAJ..,ULATF ANGl.IE OF HIT Ff."Of'/1 I.(lC 
6.41 C: THAT CAUSED THE HIT 
6.50 T R,II RADIANS",!!:C: TYPF IF FOR THE (lPFf<VHl~ 

These lines added to the main example wait for the operator to hit the 
circle with the· light pen. When the hit occurs the coordinates of the 
hit are used to redraw the vector to extend to the point hit. The 
LOC of the hit as returned by FLP is used to calculate the angle of 
the hit. This value is typed out. Note that when the hit occurs, LOC 
o is not loaded with the hit's coordinates because LOC 0 has not been 
loaded with a vector or a point. If LOC 0 had been loaded with a 
vector or a point, the vector or the point would take on the 
coordinates of the hit. But this would not effect the location of the 
circle since the circle consists of absolute points which do not move 
when other graphics moves. 

9.2.10 Altering Display of Terminal I/O 

The FOCAL program may need to alter the terminal I/O displayed on the 
screen in order to make room for graphics. FSCR allows the FOCAL 
program to alter the number of lines, the intensity, and the starting 
y coordinate of the terminal I/O. 

9-15 



FSCR{L,I,Y) 

By executing FSCR the FOCAL program alters the terminal I/O display. 
The first argument determines the number of lines displayed before 
scrolling occurs; to a maximum of 31 lines. The second argument 
determines the intensity of the terminal I/O display from 0 (dimmest) 
to 7. Setting the intensity to 0 effectively eliminates I/O from the 
screen when the brightness knob is set less than half-way to full 
intensity. The third argument determines the y-coordinate at which 
the first line of I/O displays. Setting y to approximately 740 sets 
I/O to the top of the screen. FSCR will have no effect on terminal 
I/O display until the next attempt to scroll takes place. 

Example: 

1 • 0 5 X F S C R ( 1 , 4 , 7 4 0 ) ; C : S f'~ T S eRn L LJ I N r. T () 1 LIN F fl f\! L 'x 
1.07 A "TYPE <CR> TO START", A, ! !:c: \oJAI T FOR USER 
1.95 X FSCR(30,4,740):C: SET SCROLLING TO ITS DEFAULT CONDITION 

These lines added to 
overlapping the image, 
program ends. 

the example prevent the scrolling from 
then restore the proper scrolling when the 

9-16 



CHAPTER 10 

FUNCTIONS FOR USING THE VT55 

10.1 INTRODUCTION 

The VT55 video-graphics terminal is a version of the VT50 video 
terminal that includes graphics capability. As an alphanumeric 
terminal it resembles in every way the VT50 except that the VT55 has 
24 lines of text with 80 characters per line (See VT50 VIDEO TERMINAL 
PROGRAMMER'S MANUAL, DEC-00-OVT5A-A-D for a complete description, of 
the VT50.) The VT55's graphics capabilities consist of the ability to 
display two graphs across the viewing area, each graph consisting of 
up to 512 points. The graphs may be programmed to display as either a 
series of points or as histograms, that is, with the vertical area 
under each point shaded. The program may selectively display or 
discontinue the display of any point in either graph and may emphasize 
the display of any point by displaying a short vertical line, called a 
graphic cursor, running through it. The program may also cause all 
points in either graph to display or disappear from the screen. In 
addition to the two graphs the VT55 can display a grid of up to 512 
vertical and 236 horizontal lines. The program may turn the display 
of the grid on or off independently of the two graphs. 

Transmission of graphic data to the VT55 from the processor is in the 
form of the normal printing ASCII characers. A program selectable 
mode setting on the VT55 determines whether the VT55 will interpret 
incoming characters as ASCII terminal output for alphanumeric display 
or as coded graphics commands. The graphics commands, each encoded in 
the lower six bits of the ASCII characters, have a simple format 
(described the the VT55 PROGRAMMER'S GUIDE, DEC-00-OVT5A-A-D). The 
user of FOCAL need never, however, encode the graphic data. The set 
of functions provided automatically convert the function calls to the 
required strings of ASCII characters. 

The functions offer the user the ability to make use of all the VT55's 
graphics capabilities. They consist of: 

FGRA which sets the mode of the VT55, alphanumeric or graphics, 

FMDO and FMDI which allow the FOCAL program to clear the entire 
display, turn each graph on and off as either histograms or points, 
and turn the ~isplay of the vertical markers and the grid on and off. 

FGRD which allow the user to cause display of an entire grid in a 
single function call. 

10-1 



FXY which enables plotting and erasing of individual points as well as 
the plotting of lines specified by their endpoints. 

FMRK, which allows the program to selectively display each vertical 
marker. 

Two additional functions increase the ease of access 
alphanumeric capabilities of the VT55: 

to the 

FCUR allows the program to move the text cursor and to create vertical 
labels. 

FALP allows the program to execute all available alphanumeric 
functions such as homing the cursor and erasing characters. 

10.2 THE FUNCTIONS 

The following sections describe the functions in detail. Each section 
begins with the function it describes in its most complete format. 
Some functions can have a variable number of arguments, the number 
determining the operation the function performs. The sections 
describing these functions are divided according to operation. Unless 
otherwise indicated all arguments to these functions are integers in 
the range -32568 to +32567. Coordinate arguments apply to a screen 
scaled from (0,0) at the lower left corner to (511,235) at the upper 
right. The values returned by the functions have no significance. 
Therefore, these functions may be invoked using the Xecute statement, 
and use of the Set statement will not prove useful. 

10.2.1 Turning the Graphic Mode On and Off 

FGRA(N) 

When the VT55 receives a string of ASCII characters it interprets them 
as either alphanumeric terminal output or as encoded graphics commands 
depending on a program selectable mode setting. Execution of each of 
the graphics functions causes output of a string of ASCII characters. 
If the VT55 is in alphanumeric mode when it receives these characters, 
the characters will display on the screen rather than causing graphics 
operations to occur. The FOCAL program uses FGRA to set the VT55 to 
graphics mode. Upon its execution, the FOCAL program can perform 
calls to the graphics functions. Before doing any character output 
using the TYPE or WRITE commands, for instance- the FOCAL program 
should call FGRA with an argument of ° to put the terminal back in 
alphanumeric mode. Otherwise, the VT55 will continue to interpret the 
characters in graphic mode rather than as text. 

The user may wonder why each graphic function executed does not turn 
graphic mode on, send its commands, then turn alphanumeric mode off. 
Graphics mode is turned on and off by sending a pair of ASCII 
characters to the VTS5. Sending all four of these characters for 
every graphic command executed would greatly increase the total number 
of characters sent, thus decreasing the maximum speed of operation. 

Example: 

X FGRA(1)iC: TURN GRAPHIC MODE ON 

x FGRA(O);C: TURN GRAPHIC MODE OFF 

10-2 



10.2.2 Setting Display Modes 

The two functions FMDO and FMDI each require three arguments. Each 
allows the FOCAL program to set three characteristics of the display. 

FMDO(D,~,H) 

The first argument to FMDO determines whether to turn the entire 
graphic display on or off. An argument greater than 0 means on, equal 
to 0 means off. The second argument determines whether to display 
either or both graphs as points. A value of 0 means display neither 
graph, a value of 1 means display graph 1 only, 2 means display graph 
2 only, and 3 means display both graphs, where FOCAL graphs 1 and 2 
correspond to the hardware manual graphs labelled ° and 1. The third 
argument determines whether or not to display the graphs as 
histograms. The possible values of this argument, 0, 1, 2, 3, have 
the same meaning as they do for the second argument. A graph 
displayed as both a series of points and as a histogram, will display 
as a histogram with its uppermost point brightened. Any of these 
three arguments may take a negative value. An argument with a 
negative value causes no change in the current status of the 
corresponding mode. Thus, a first argument of -1 would leave the 
display either on or off, depending on its current state. The initial 
state of the display before any call to FMDO is assumed to be all 
modes off (argument 'values of 0). 

ARGUMENT MODE SET VALUES 

Example: 

1 DISPLAY ON/OFF O=DISPLAY OFF 
l=DISPLAY ON 

2 POINT DISPLAY O=DISPLAY NEITHER GRAPH AS 
POINTS 

l=DISPLAY GRAPH 1 AS POINTS 
2=DISPLAY GRAPH 2 AS POINTS 
3=DISPLAY BOTH GRAPHS AS 

POINTS 

3 HISTOGRAM DISPLAY O=DISPLAY NEITHER GRAPH AS A 
HISTOGRAM 

l=DISPLAY GRAPH 1 AS A 
HISTOGRAM 

2=DISPLAY GRAPH 2 AS A 
HISTOGRAM 

3=DISPLAY BOTH GRAPHS AS 
HISTOGRAMS 

x FMDO(1,3,0)iC: DISPLAY ON, BOTH GRAPHS AS POINTS 

X FMDO(O,-l,-l)iC: DISPLAY OFF 

10-3 



FMDl(I,L,M) 

The first argument to FMDI specifies whether to erase both graphs and 
all horizontal and vertical lines. Erasing the graphs consists of 
setting the value of each of the 512 points in both graphs to zero. 
An argument value greater than zero erases both graphs, while a value 
equal to zero leaves them unchanged. 

The second argument determines whether or not to display the 
horizontal and vertical lines that the program has plotted. A value 
of ° means display neither horizontal nor vertical lines, a value of 1 
means display horizontal lines only, 2 means display vertical lines 
only, and 3 means display both horizontal and vertical lines. The 
value of the third argument determines whether or not to display the 
vertical markers the program may have plotted. The possible values 
(0,1,2,3) have the same meaning as those for the second and third 
arguments to FMDO. 

Like the arguments to FMDO, the arguments to FMDl, if less than 0, 
cause no change to the corresponding mode setting. Values of 0 for 
each of the arguments are assumed to be their original settings. 

ARGUMENT MODE SET 

1 INITIALIZE 

2 GRID LINES 

3 MARKER 

Example: 

VALUES 

O=DON'T INITIALIZE 
l=INITIALIZE BY ERASING 

O=DISPLAY NEITHER VERTICAL NOR 
HORIZONTAL LINES 

l=DISPLAY HORIZONTAL LINES 
2=DISPLAY VERTICAL LINES 
3=DISPLAY BOTH HORIZONTAL AND 

VERTICAL LINES 

O=DISPLAY MARKERS ON NEITHER GRAPH 
l=DISPLAY MARKERS ON GRAPH 1 
2=DISPLAY MARKERS ON GRAPH 2 
3=DISPLAY MARKERS ON BOTH GRAPHS 

x FMD1(1,1,2);C: CLEAR, ENABLE VERTICAL LINES AND GRAPH 2 MARKERS 

x FMDl(O,-l,O)C: TURN OFF MARKERS ON BOTH GRAPHS 

10.2.3 Displaying Vertical and Horizontal Lines 

The VT55 provides 512 vertical and 236 horizontal lines which the 
FOCAL program may selectively display using FGRD. FGRD may have from 
one to six arguments. The operation it performs depends on the number 
of arguments. The first three possible arguments refer to vertical 
lines; the last three to horizontal lines. 

FGRD(V,SV,DV,H,SH,DH) 

Called with six arguments FGRD causes display of a complete grid on 
the VT55 screen. The magnitude of the first argument determines the 
number of vertical lines in the grid, its sign determines whether to 
display or erase the lines specified by the function. A positive 

10-4 



argument means display, a negative one means erase. The second 
argument specifies the coordinate of the first such line~ and the 
third determines the spacing between lines. Thus, if the first three 
arguments are 10, 20, and 50 then ten vertical lines will display, 
with the first at x coordinate 20, the next at 70, the next at 120 and 
so on. The last three arguments similarly specify the horizontal line 
placement with reference to the y axis. 

Example: 

x FGRD(10,100,50,5,100,25) 

This example causes display of a grid consisting of 10 vertical and 5 
horizontal lines. Both sets of lines start at coordinate 100 to leave 
room for labels and text. The horizontal grid is twice as dense as 
the vertical grid. 

FGRD(V[,SV[,DV]]), V<>O 

FGRD called with one to three arguments, the first not equal to zero, 
specifies vertical lines only. If called with one argument, the 
argument's value determines the number of vertical lines to display or 
erase. These will display (or erase) evenly spaced lines starting at 
x=O and ending as close to x=512 as even spacing permits. If two 
arguments are specified, the number of lines specified by the first 
argument will plot (or erase) evenly spaced, the first line at the x 
coordinate specified by the second argument, the last line as close to 
x=512 as even spacing permits. 

Called with three arguments, FGRD plots (or erases) the number of 
vertical lines specified by the first argument starting at the x 
coordinate specified by the second argument, with spacing specified by 
the third argument. In all cases, the sign of the first argument 
determines whether the lines are to be displayed (positive) or erased 
(negative) • 

Example: 

x FGRD(3);C: PLOT VERTICAL LINES AT X=0,255, AND 511 

x FGRD(-3,100):C: ERASE AT X=lOO, 306, AND 511 

X FGRD(3,100,50)~C: PLOT AT X=100,150, AND 200 

FGRD ( 0 , H [ ,DH [ ,DH] ] ) 

When called with a first argument of zero, FGRD interprets the next 
one to three arguments as specifying horizontal lines. These three 
arguments are interpretted exactly the same way as those for vertical 
lines but relative to a y axis extending to y=235. The sign of the 
second argument determines whether the lines are to be displayed 
(positive) or erased (negative). 

Example: 

X FGRD(O,lOO);C: PLOT 100 HORIZONTAL LINES 

X FGRD(0,-100,50)~C: ERASE 100 HORIZONTAL LINES 

X FGRD(0,100,50,5);C: PLOT 100 HORIZONTAL LINES 5 APART 

10-5 



10.2.4 Drawing Points and Lines 

The FXY function, like FGRD, may be called with a variable number of 
arguments, the number determining the operation it performs. It may 
be used to erase an entire graph, plot and erase points, and plot 
straight (non-vertical) lines. 

Each graph, referred to as GRAPH 1 or GRAPH 2, can consist of up to 
512 points, each point at a separate x coordinate. Neither graph can 
have more than one point at any given x coordinate. This means that 
each time a point is plotted on a graph at a given x coordinate, any 
point previously displayed on that graph at that x coordinate 
disappears. There is always a point plotted at each x coordinate. 
But points plotted with their y coordinate greater than 235 will plot 
off screen and will not display. 

FXY(G,SX,SY,EX,EY[,DX]) 

Called with six or seven arguments, FXY.plots a straight line on the 
graph whose number (lor 2) the first argument specifies. The second 
and third argument specify the x and y coordinates respectively of the 
line'S starting point. The fourth and fifth arguments determine the x 
and y coordinates, respectively, of the line's endpoint. If the call 
does not include a seventh argument, the line drawn includes all the x 
values between the starting and endpoints. For a line plotted between 
(50,100) and (60,200), the endpoint of the line should be to the right 
of its starting point. Otherwise, only the point indicated by the 
second and third arguments will plot. The optional seventh argument 
specifies the x distance between each point on the line. A seventh 
argument of two, for instance, only plots every second possible point. 
The line from (50,100) to (60,200) would then consist of the points at 
x coordinates 50,52,54,56,58, and 60. Plotting a line using every 
point will, due to the graphic coding method, cause a faster plot than 
a line plotted using every second point, and a plot as fast as one 
using every third point. 

Example: 

X FXY(lr100,150,200,250,4) 

This example draws a line at a 45 degree angle with every 4th point 
displayed, using graph 2. 

FXY(G,SX,SY,EX) 

FXY called with four arguments causes display of a horizontal line on 
the graph specified by the first argument. The second and third 
arguments determine the x and y coordinates respectively of the line'S 
starting point. The fourth argument specifies the x coordinate to 
which the 1 ine extends. 

Example: 

x FXY(2,100,100,400) 

This example draws a horizontal line 300 long on GRAPH 2 starting at 
X=lOO, Y=lOO. 

FXY(G,SX,SY) 

FXY called with three arguments plots a point on the graph specified 

10-6 



by the first argument, at the coordinates indicated by the second and 
third arguments. 

Example: 

x FXY(1,100,130)C: DRAW ON POINT ON GRAPH 1 

FXY(G,XS) 

FXY called with two arguments erases the point on the graph specified 
by the first argument at the x coordinate specified by the second 
argument. Since only one point per graph can be plotted at any given 
x coordinate, the x coordinate alone is sufficient to specify the 
point to erase. Erasure consists of setting the y coordinate of the 
point to 236, that is, off the screen's viewing area. This method of 
erasure will not erase a point displayed as a histogram since in 
histogram mode the entire area beneath the point displays. To erase 
such a point the program should plot it at y coordinate 0 using FXY 
with three arguments. 

Example: 

FXY(G) 

x FXY(l,lOO)iC: ERASE THE POINT ON GRAPH 1 
C: AT X COORDINATE 100. 

FXY called with one argument completely erases the graph specified by 
the argument by setting all its y coordinates to 236. To erase a 
graph displayed as a histogram, the program should use FXY with four 
arguments to plot a horizontal line starting at x=O and y=O and ending 
at x=5l2. 

Example: 

X FXY(2)iC: ERASE GRAPH 2 

10.2,5 Displaying Markers 

Each of the 512 x coordinates on both graphs has an associated marker. 
The marker is a vertical line, 16 points high, which displays with.its 
base at the x coordinate that is the nearest multiple of 16 to the 
point currently on display at that y coordinate. FMRK allows the 
FOCAL program to display any or all of the markers. 

FMRK(G,X[,N]) 

The first argument to FMRK specifies the graph to which the next 
arguments apply. The second argument specifies an x coordinate. If 
there is no third argument, the marker at the specified x coordinate 
will display. The marker will also display for a third argument 
greater than O. It will cease to display for a third argument equal 
to O. 

Examples: 

X FMRK(l,lOO)iC: DISPLAY THE MARKER AT X=lOO ON GRAPH 1 

X FMRK(l,lOO,l)iC: DISPLAY THE MARKER AT X=lOO ON GRAPH 1 

x FMRK(1,100,0) iC: ERASE THE MARKER AT X=100 ON GRAPH 1 

10-7 



10.2.6 Alphanumeric Cursor Control 

The VT55'scursor may be moved to any of the 80 character positions on 
any of the 24 lines. Any TYPE command will always begin output at the 
current cursor position. All but the bottom line of characters 
displayed on the VT55 screen, displays upon the area of the screen 
used for graphics. All but the leftmost character on each line also 
displays on this area. Therefore, the graphic area of the screen has 
room for 1817 (23x79) characters. The x and y coordinates of the 
lower left corner of any characters may be located using the formulas 
below. In the formulas, the lowest line on the screen is line 0, the 
next line up, line 1, and so on. The leftmost character on the screen 
is character 0, the next character 1, and so on. The symbol L stands 
for line number; the symbol C for the character position. 

x=(L-l)*12 

Y=(C-l)*7 

Thus, the lower left hand corner of the fourth character (character 3) 
in the third line from the bottom (line 2) displays at (14,24). 

FCURallows the FOCAL program to position the cursor to any character 
position. It also provides for vertical printing useful in labelling. 

FCUR(C,L,A,B, •.• ) 

The first argument to FCUR specifies the number of character positions 
to move the cursor from its current position. A negative value means 
move left, a positive value means move right. The cursor will not 
move beyond the left or right edge of the screen regardless of the 
argument value. The second argument specifies the number of lines to 
move; a value greater than 0 means move down, a value less than 0 
means move up. The cursor cannot go beyond the top or bottom of the 
screen regardless of the argument value. When the cursor attempts to 
move below the last line on the screen, scrolling occurs. 

Any number of arguments may fOllow the first two arguments. Each of 
these arguments specifies a character. Values 0 through 32 correspond 
to ASCII characters of octal codes 100 to 177. Values 33 through 128 
correspond to ASCII characters of octal codes 40 through 177. The 
characters thus specified will be printed vertically downward from the 
cursor position created by the first two arguments. If these 
characters would extend beyond the bottom of the screen, scrolling 
will occur to make room for them. 

Example: 

x FCUR(1,-2,OL,OA,OB,5,OL) 

This example plots 'LABEL' vertically after moving the cursor 1 
character position to the right and 2 lines down. 

FCUR(C,L) 

FCUR called with two arguments moves the cursor but prints no 
char ac ter s. 

10-8 



Example: 

x FCUR(-5,10)iC: MOVE 5 LEFT AND 10 UP 

10.2.7 Generating Control Commands 

The VT55 like the VT50 responds to a number of commands in the form of 
an escape character (octal 33) followed by some printing character. 
The FOCAL program could generate such commands using FCHR to generate 
the two characters. FALP simplifies command generation by 
automatically generating the escape character. 

FALP(N) 

FALP sends an escape character followed by the value specified as its 
argument. The table below lists the operations peformed by each 
possible argument. 

ARGUMENT 

OCTAL 

110 
112 

113 
133 
134 
135 

Example: 

DECIMAL 

72 
74 

75 
91 
92 
93 

OPERATION 

MOVE THE CURSOR TO THE HOME POSITION 
ERASE ALL LINES FROM CURSOR TO BOTTOM OF 
SCREEN 
ERASE FROM CURSOR TO END OF LINE 
ENABLE HOLD MODE 
DISABLE HOLD MODE 
PRINT ENTIRE SCREEN INCLUDING GRAPHICS 

x FALP(@llO)iC: HOME THE CURSOR 

The FOCAL program should perform the following commands using the FCHR 
function rather than FALP since they do not require the preceeding 
escape character. 

ARGUMENT OPERATION 

OCTAL DECIMAL 

7 
10 
11 
12 
15 

Example: 

7 
8 
9 
10 
13 

RING THE BELL 
BACKSPACE THE CURSOR 
PERFORM TAB 
MOVE CURSOR DOWN ONE LINE 
PERFORM CARRIAGE RETURN 

x FCHR(7)iC: RING THE VT55'S BELL 

10-9 





APPENDIX A 

FOCAL-II OPERATIONS AND THEIR SYMBOLS 

Control Characters 

% 

...J 
# 
$ 

( ) 
[ ] 

< > 
" " 
? ? 

@ . , 

Terminators 

SPACE key 
ReTURN key 
ALT MODE key 
Comma 
Semicolon 
Line Feed 

Use 

Output format delimiter 
Carriage return and line feed 
(spacing) 
Carriage return without line feed 
Type variable symbol table 
Enclosures for matheMatical 
expressions 

Text string 
Trace feature 
The follm-ling numbers are to be 
interpreted as octal. 
The enclosed expression should be 
evaluated and the resulting positive 
integers used as part of the file 
name in a LIBRARY command. 

Use 

Names or numerical values 
Lines 
ASK statement 
Expression 
Multiple commands and statements 
ASK statement 

A-l 





Code 

?OO 

?01 

?02 

?03 

?04 

?05 

?06 

?07 

?08 

?09 

?10 

?1l 

?12 

?13 

114 

?15 

?16 

?17 

?18 

APPENDIX B 

FOCAL-II ERROR DIAGNOSTICS 

Explanation 

Manual restart from location 0 or by CTRL/C.(r) 

Illegal line number. 

Illegal variable or function name. 

Unmatching parentheses. 

Illegal command. 

Nonexistent line number. 

Nonexistent group or line number in DO. 

Illegal format in SET or FOR. 

Double or missing operators in expression. 

Stack overflow, nonexistent device, or bad address 
specification. 

Core filled by text or command line too long. (0) 

Core filled by variables or no room for variables. (0) 

Exponent range greater than E+38.(o) 

Disallowed bus address in "FX". (0) 

Division by zero attempted.(r) 

Attempt to exponentiate to a negative power or power too 
large. (r) 

Too many characters in input data.(r) 

Square root of negative number.(r) 

Input buffer overflow 

B-1 



?19 

?20 

?2l 

?22 

?23 

?24 

?25 

?26 

?27 

?28 

?29 

?30 

?3l 

?32 

?33 

?34 

?35 

?36 

?37 

?38 

?39 

Subscript out of range (r) 

Invalid argument to function call (0) 

Bad argument to function call (0) 

Unable to perform specified interrupt linkage 
or unable to schedule desired routine. (0) (r) 

Symbol table shuffle error (i) (R) 

Hernory allocation error (R) 

Intenal memory error (i) (R) 

Illegal RELl1 request (0) (R) 

General I/O error (r) (R) 

Insufficient resources (r) (R) 

File number out of range (0) (R) 

Illegal format code (0) (R) 

File specification syntax error (0) (R) 

Fatal write error encountered 
(unopened channel,etc) (0) (R) 

Attempt to read (or write) past EOF.(o) (R) 

File was not found (r) (R) 

Illegal library command encountered while performing 
a LIBRARY GET, RUN,or NEXT. (0) (R) 

Internal Virtual file error (i) (R) 

Illegal floating point call (i) 

Integer overflow error 
(range outside +32,767 to -32,768) (r) 

Interrupt linkage error (i) 

(i) Internal FOCAL error 
(0) Operational error 
(r) A run-time error 
(R) RT-II version only 

B-2 



APPENDIX C 

FOCAL-ll COMMAND AND FUNCTION SUMMARY 

C.l COMMANDS 

Example 
Command Abbreviation of Form Action 

ASK A ASK M Request input from the 
currrent input device. 

ASK "AGE",A Output text (AGE) and 
store input as variable 
A. 

COMMENT C COMMENT Ignore the remainder 
of the line 

DO D DO 4.1 Execute line 4.1; 
return to command 
following DO conunand. 

DO 4 Execute all group 4 
lines; upon completion, 
return to command 
follo\>ling DO command or 
when a RETURN is 
encountered. 

D A DO ALL Execute entire program as 
a subroutine. 

D v DO var Execute the line or group 
of lines defined by the 
variable (var). 

ERASE E ERASE Erase the symbol table. 

ERASE 2 Erase all group 2 lines. 

ERASE 2.1 Erase line 2.1. 

C-l 



E A 

E T 

FOR F 

GO G 

IF I 

KILL K 

LIBRARY L 

ERASE ALL 

ERASE TEXT 

Erase the entire program 
and clear all variables. 

Erase text onlY1 do not 
erase symbol table. 

FOR I=X,Y,Z;(commands) 
FOR I=X,Z1 (commands) 

GO 

GO 3.4 

GO 3 

Where the command(s) is 
executed at each new 
value of I. 

x = initial value of I. 
Y = value added to I 
until I is incremented 
beyond Z. Y assumed=l if 
omitted. 

Starts program 
at lowest numbered line 
number. 

Transfers control to line 
3.4 

Transfers control to 
lowest numbered statement 
in group 3. 

IF(X)Ll,L2,L3 
IF(X)Ll,L2; (commands) 

IF(X)L11 (commands) 
Where X is a defined 
variable, a value, or an 
expression followed by 
one to three line 
numbers. (FOCAL-ll also 
supprts group numbers) If 
X is less than zero, 
transfer control to the 
line number Ll, if X is 
equal to zero, transfer 
control to the second 
line number, L2. If X is 
greater than zero, 
transfer control to L3. 
If the line number is not 
specified, proceed to the 
next sequential command. 

KILL stop all I/O and reset 
I/O devices. Error code 
?09 is printed. 

LIB&~RY INPUT 1,TEST/T 

C-2 

Attempts to open the old 
file SY:TEST.FCL as ASCII 
file number 1. If the 
file does not exist FOCAL 
returns an error message. 



LIBRARY OPEN 1,TEST/T 
Attempts to open the old 
file SY:TEST.FCL as ASCII 
file number 1. If the 
file does not yet exist 
it is created. 

LIBRARY MAKE 1,TEST/T 

LIBRARY CLOSE 1 

Creates a new file called 
SY:TEST.FCL as ASCII file 
number 1. 

Terminate all activity 
with file number 1. 

LIBRARY TYPE l,(type args> 
Type output to fila 1. 

LIBRARY WRITE l,<write arg> 
Write output to file 1. 

LIBRARY ASK l,(ask args> 
Read ASK input from file 
1. 

LIBRARY RUN TEST<args> 
ERASE all text and 
variables, read in the 
FOCAL program saved in 
the file SY:TEST.FCL, and 
begin execution at the 
line or group specified. 
(If args are left out the 
first statement in the 
program is assumed.) 

LIBRARY GET TEST 
Reac in the file 
SY:TEST.FCL and merge it 
with the current program. 
This form of the command 
must be terminated by a 
carriage return. 

LIBRARY NEXT TEST<arg> 
ERASE all text, leaving 
variables intact, and 
"RUN" the program saved 
in the file "TEST.FCL". 
Execution will continue 
at the start of the 
program or at the 
line/group number 
specified in arg. 

LIBRARY SAVE TEST 

C-3 

The entire program text 
is saved in the newly 
created file called 
SY:TEST.FCL. If another 



MODIFY M 

OPERATE 

o 

o T 

o K 

o P 

o R 

ORP 

o TK 

o L 

QUIT Q 

RETURN R 

SET S 

TYPE T 

file by that name already 
exists, it is deleted. 

LIBRARY DELETE TEST 

MODIFY 1.15 

OPERATE 

OPERATE T 

OPERATE K 

OPERATE P 

OPERATE R 

OPERATE RP 

OPERATE TK 

OPERATE L 

QUIT 

RETURN 

SET A=S/B*C 

TYPE A+B+C 

C-4 

The RT-ll file 
SY:TEST.FCL is deleted. 

Enable editing of line 
1.15. 

Selects the input and/ or 
output device for such 
commands as TYPE and ASK. 

Forces all pending output 
to the currently selected 
output device. The 
current output device is 
not altered. (RT-ll 
maintains a rather large 
output buffer to increase 
I/O efficiency.) 

Select terminal printer. 

Select terminal keyboard 
for input. 

Select high-speed paper 
tape punch for output. 

Select high-speed paper 
tape reader for input. 

Select both high-speed 
reader and punch for I/O. 

Select 
keyboard 
I/O. 

both terminal 
and printer for 

Select line printer for 
output. 

Return control to the 
user (command mode). 

terminate DO subroutines, 
returning to the original 
sequence. 

Perform arithmetic 
assignment. The variable 
on the left side of the 
"=" is set equal to the 
value of the expression 
on the right. 

Evaluate expression and 
type "=" followed by 
result in current output 
format. 



WRITE W 

WA 

XF.CUTE X 

(TRACE) GO? 

TYPE A-B,C/E compute each 
and type the 
values. 

expression 
resultant 

TYPE "TEXT STRING" 

TYPE $ 

WRITE 

WRITE ALL 

WRITE 1 

WRITE 1.1 

Type text, may be 
followed by ! to 
generate carriage 
return/line feed, or i to 
generate only a carriage 
return. 

Type the symbol table. 
Hust be terminated by a 
carriage return only. 

Type out the entire 
program. 

Same as WRITE. 

Type out all group 1 
lines. 

Type out line 1.1. 

XECUTE FSBR(5,ARG) 

C-5 

Call functions without 
need for a dummy SET 
statement. 

Starts at lowest numbered 
line and traces entire 
program until another ? 
or an error is 
encountered , or until 
completion of program. 



C.2 FUNCTIONS 

Function 

FABS 

FADC 

FCHR 

FCLK 

Feos 

FERR 

FEXP 

FINT 

FITR 

FLN 

FLOG 

FPRM 

FQUE 

FRAN 

FSBR 

'FSGN 

Form 

FABS (expression) 

FADC(channel) 

FCHR(arg) 

FCLK() 

FCOS(angle) 

FERR(line or group) 

Action 

Returns absolute (positive) 
value of expression. 

Provides access 
channels. 

to A/D 

Accepts and/or prints ASCII 
codes. 

Returns the value of the 
time elapsed. 

Calculates the cosine of a 
specified angle in radians. 

Intercept a FOCAL error and 
perform a DO to the 
specified line or group. 

FEXP(arg) Exponential function. 

FINT(vector,group,priority,CSR address,mask) 

FITR(expression) 

FLN(arg) 

FLOG (arg) 

FPRM(parameter,value) 

This routine logically 
connects a line or group of 
the FOCAL user's program 
with a device and it's 
interrupt vector. 

Provides the integer part 
of a number. 

Natural logarithm function 

Base ten logarithm 

Alter FOCAL internal 
parameters. 

FQUE(count,group,interval,delay,priority) 

FRAN() 
FRAN (1) 

FSBR (group, arg) 

FSGN(arg) 

C-6 

This function schedules a 
line or group of the user's 
program to be performed a 
specified number of times 
at regular time intervals 
at a specified software 
priority. 

Generates a random value 
between -1 and 1. 

Calls program group 
specified as a subroutine. 

Sign function. 



FSIN FSIN(angle) 

FSQT FSQT(expression) 

FX FX(func, UNIBUS-address, data) 

C-7 

Calculates the sine of the 
specified angle in radians. 

computes square root 
expression. 

of 

Controls additional device 
options or non-standard 
peripherals or references 
core storage. 





APPENDIX D 

EXTENDED FUNCTIONS 

D.1 EXAMPLE OF A RECURSIVE FUNCTION 

1.1 5ET N=S 
1.2 TYPE F5BR(S,N);C-FACTORIAL FUNCTION 
1.3 QUIT 

5.1 IF (1-&)S.2;R 
5.2 5ET &=&*F5BR(S,&-1) 

D.2 50ME TRAN5CENDENTAL FUNCTION5 SERIE5 

11.01 C TAN: F5BR(11,ARG) 
11.10 I (&t2-.01)11.2;5 &=&/2;D 11;S &=2*&/(1-&t2+1E-20);R 
11.20 S &=&+&t3/3 +&tS/7.S+&t7/31S 

12.01 C ASIN:FSBR(12,ARG) 1 ACOS:FSBR(12.3,ARG) 
12.10 I (&t2-.01)12.215 &=&/(FSQT(1+&)+F5QT(1-&»1D 1215 &=2*&1R 
12.20 S &=&+&t3/6+.07S*&tS+&t7/22.4;R 
12.30 D 12·;S &=1.S70796-&1R 

13.01 C ATAN; F5BR(13,ARG) 
13.10 I (&t2-.01)13.2;S &=&/(1/F5QT(&t2+1»;D 13;S &=2*&;R 
13.20 5 &=&-&t3/3+&tS/S-&t7/7 

14.01 C EXP: F5BR(14,ARG) 
14.10 I (&t2-.01)14.2;5 &=&/2;D 14;5 &=&t2;R 
14.20 5 &=1+&+&t2/2+&t3/6+&t4/24+&tS/120+&t6/720 

15.01 C 
15.10 I 
15.20 5 

16.01 C 
16.10 I 
16.20 5 
16.30 D 
* 
* 

Comment 

LOG; FSBR(lS,ARG) 
(&t2-2.04*&+1)lS.2;S&=FSQT(&)1D 15;5 &=2*&;R 
&=(&-1)/(&+1);5 &=2*(&+&t3/3+&tS/S+&t7/7) 

5INH:FSBR(16,ARC) COSH:FSBR(16.3,ARG) 
(&t2-.01)16.2;5 &=&/3;D 16:S &=3*&+4*t3;R 
&=&t3/6+&tS/120;R 
16;S &=FSQT(1+&t2) 

lines contain format of call for subroutines shown. 

D-1 



D.3 EXAMPLE OF A DEVICE CONTROL FUNCTION (AND BINARY PRINTOUT) 

* 
21.01 C THIS PROGRAM PRINTS THE BIT PATTERN IN SWITCHES 15-00 
21.02 C AND WAITS FOR SWITCH 15 TO BE CHANGED. 
21.03 C EXIT WITH CTRL/C TWICE 
21.05 X FPRM( 8,1) 
21.0/ SET Zl=l 
21.10 SET Z=FX(O,@177570,-1) 
21.20 IF(Zl*(Z+1»21.5,21.1,21.1 
21.50 SET Zl=Z;TYPE !;X FSBR(40,Z);TYPE " ",tB(Z);G 21.1 

40.10 SET N=15 
40.15 IF(-&)40.2,40.2;S &=&-@100000+@77777+@1 
40.20 IF(FITR(&)-FITR(2tN»40.3;X FCHR(@61) 
40.21 SET &=FITR(&-FITR(2tN» 
40.22 SET N=N-1 
40.25 IF (N)40.4,40.2,40.2 
40.30 X FCHR(@60);G 40.22 
40.40 RETURN 
* 
* 
*GO 

1111011001001000 
0011111111111111 
1000011111111111 
000000 0000000001 
1000000011111111 
00000000 01111110 
10000000000000 00 
0111111111111111 
1111111111111111 

1111011001001000 
0011111111111111 
1000011111111111 
000000000000 0001 
1000000011111111 
0000000001111110 
1000000000000000 
0111111111111111 
1111111111111111 

D.4 EXAMPLE OF A TIMING ROUTINE 

C:FOCAL-11S VI (RT-11) 16-0CT-74 

1.10 I (A) 2,1.2,2 
1.20 T I "ENTER THE CODE TO BE TIMED IN GROUP 3."! 
1.30 T "THE CODE WILL BE EXECUTED 1000 TIMES, AND THE TIME OF THE"! 
1.40 T "COOE WILL BE PRINTED IN MILLISECONDS. TYPE 'GO' TO" 
1.41 T " PROCEED."! 
1.45 S A=l 
1.50 Q 

2.10 S X=FCLK() 
2.20 FOR I=l,1000;0 3 
2.30 S X=FCLK(X) 
2. 40 S Y=FCLK () 
2.50 FOR I=l,1000;0 4 
2.60 S Y=FCLK(Y) 
2.70 T "THE TIME IS ",(X-Y)/60," MS."!!I;S A=O 
2.80 E 3 
2.90 G 

4.10 C 

*G 

0-2 



ENTER THE CODE TO BE TIMED IN GROUP 3. 
THE CODE WILL BE EXECUTED 1000 TIMES, AND THE TIME OF THE 
CODE WILL BE PRINTED IN MILLISECONDS. TYPE 'GO' TO PROCEED. 
*3.1 S A=3,R 
*G 
THE TIME IS = 3.25000 MS. 

ENTER THE CODE TO BE TIMED IN GROUP 3. 
THE CODE WILL BE EXECUTED 1000 TIMES, AND THE TIME OF THE 
CODE WILL BE PRINTED IN MILLISECONDS. TYPE 'GO' TO PROCEED. 
* 

0-3 





APPENDIX E 

Loading FOCAL-II 

Paper-tape Versions 

The procedure for loading FOCAL-ll/PTS requires loading the Bootstrap 
Loader, followed by the FOCAL-II binary paper tape 
(DEC-ll-LFOCB-A-PB). The details for loading the Bootstrap and 
Absolute loaders are described in Chapter 5 of the PDP-II Paper Tape 
Software Programming Handbook (DEC-ll-XPTSA-A-D). The FOCAL program 
is self-starting and the message 100 AT 0.00 is printed to indicate 
the program is started. 

NOTE 

FOCAL-II only uses memory between 
the Absolute Loader and the bottom 
of core. To make full use of 
memory, make certain that the 
Absolute Loader is loaded into the 
highest location possible. 

Restarting FOCAL-ll 

If the user wants to restart FOCAL-II and give it n~w commands, there 
are two methods which may be used: typing eTRL/C, (possibly twice if 
doing I/O) or performing manual restart. Any time the user types 
CTRL/C (accomplished by holding down the eTRL key and typing e), FOCAL 
prints the message 

100 AT 0.00 
* 

The asterisk indicates that FOCAL-ll is in command mode. 

The procedure for restarting FOCAL-II manually is as follows: 

1. Press HALT if the run light is on 
2. Set the switch register to 0000000 
3. Press LOAD ADDR 
4. Press START 

FOCAL-ll prints: 

100 AT 0.00 
* 

The error code indicates manual restart. 
The asterisk indicates that FOCAL-ll 
is in command mode. 

E-l 



The res art feature would be useful, for example, if the user should 
detect that his program is not operating properly. He would then use 
one of the above restart methods, modify his program, and re-execute 
the program. 

RT-ll Versions: 

The RT-ll versions of FOCAL-ll are loaded into memory via the RT-ll 
Run command. 

.R FOCALS 
?OO AT 0.00 
*tc 

.R FOCALD 
?OO AT 0.00 
*tC 

.R FOCAL8 
?OO AT 0.00 
*tc 

(single precision 12K version) 

(double precision 12K version) 

(8K version) 

(CTRL/C is used to exit from FOCAL) 

In order to restart RT-ll versions of FOCAL, it is necessary to strike 
CTRL/C (possibley twice) and then type 'RE' (for REenter). For 
example: 

.R FOCALS 
?OO AT 0.00 
*tc 

.RE 
?OO AT 0.00 
*1.1 G 1.1 
*GO 
tC 
tC 

.RE 
?OO AT 0.00 

* 

When this is done, all LIBRARY files have been released. 
program and variables will be intact. 

E-2 

The user's 



Printing 
Character 

@ 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
y 
Z 
[ .. 
] 
t .. 
Null 
Horizontal 
Line Feed 

Tab 

vertical Tab 

APPENDIX F 

ASCII CHARACTER SET 

6-bit 
7-bit Trinuned 
ASCII ASCII 

100 00 
101 01 
102 02 
103 03 
104 04 
105 05 
106 06 
107 07 
110 10 
III 11 
112 12 
113 13 
114 14 
115 15 
116 16 
117 17 
120 20 
121 21 
122 22 
123 23 
124 24 
125 25 
126 26 
127 27 
130 30 
131 31 
132 32 
133 33 
134 34 
135 35 
136 36 
137 37 
000 
011 
012 
013 

(Octal) 

Printing 
Character 

Form Feed 
Carriage Ret. 
ALT MODE(ESC) 

Rubout 
(Space) 

! 
n 

# 
$ 
% 
& , 
( 
) 

* 
+ 

. 
/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

. , 
< 
= 
> 
? 

F-l 

6-bit 
7 -hi t 'l'rimmed 
ASCII ASCII 

014 
015 
175 
177 
040 40 
041 41 
042 42 
043 43 
044 44 
045 45 
046 46 
047 47 
050 50 
051 51 
052 52 
053 53 
054 54 
055 55 
056 56 
057 57 
060 60 
061 61 
062 62 
063 63 
064 64 
065 65 
066 66 
067 67 
070 70 
071 71 
072 72 
073 73 
074 74 
075 75 
076 76 
077 77 





APPENDIX G 

PAPER TAPE SYMBOL TABLE 

Single precision version: 

RT-11 LINK V03-01 LOAD MAP 
PFOC • LOA 12-JAN-75 
SECTION ADDR SIZE ENTRY ADDR ENTRY ADDR ENTRY ADDR 
• ABS. 000000 001000 ALOG 000000 ALOG10 000000 DEXP 000000 

DLOG 000000 DLOG10 000000 EXP 000000 
$DBL 000000 SORTJ 104600 SORTC 104602 
PRINTC 104604 READC 104606 OUTCH 104610 
INCH 104612 GETC 104614 PACKC 104616 
TESTC 104620 GETLN 104622 FINDLN 104624 
PRNTLN 104626 COPYLN 104630 START 104632 
SPNOR 104634 ERASEV 104636 ERASET 104640 
PRINT2 104642 DIGTST 104644 PARTST 104646 
GROOVY 104650 SKPLPR 104652 SKPNON 104654 
TASK 104656 EVAL.X 104660 FPMP 104662 
FREAD 104664 FPRINT 104666 ITOA 104670 
OTOA 104672 BTOA 104674 PATCH 1 104676 
PATCH 2 104700 LPSCSR 170400 LPSBUF 170402 
LPS 177514 PRS 177550 PPS 177554 
TKS 177560 TPS 177564 

001000 000240 BEGIN 001000 PATCH 001000 PATCHB 001024 
FBASE 001050 IOLIST 001140 FNTABL 001142 
lOGO 001146 IPRS 001146 ITKS 001150 
IPPS 001152 ITPS 001154 ILPS 001156 
IOPATC 001160 CONFIG 001172 CFRS 001174 

001240 010740 TERMS 001510 TLIST 001540 PCF 001570 
FLAC 001610 FSW 001620 SWITCH 001621 
LINENO 001622 FISW 001624 INDEV 001632 
OUTDEV 001634 BOTTOM 001652 PARAM 001656 
STARTX 002166 TESTX 002576 SKPNOX 002634 
SORTB 002650 SORTD 002702 GETLNX 002716 
FINDX 003030 PRIN2A 003070 XTSTLP 003100 
DIGTSA 003116 GROVX 003134 CHIN 003152 
OUT 003272 XPRNTL 003372 SPNORX 003432 
PACKX 003454 GETX 003570 PROC2 004024 
COPYLX 004512 ERTX 004522 002 004546 
EVALUX 005472 WHIPV 005664 ERVX 006050 
PARTS A 006170 FPRM 006210 TASKX 006534 
XI33 007012 XOUT 007064 $PRINT 007236 
$ READ 010264 FADC 010562 XABS 010622 
XSGN 010632 XFCLK 010640 CLKT 010732 
ITOAX 011220 XTOA 011234 OTOAX 011330 

G-1 



BTOAX 011336 XRAN 011402 XCHR 011474 
XFSBR 011544 XEX 011610 

012200 001346 $ FPMPX 012200 FINT 013202 XITR 013376 
FSOT 013404 FSIN 013412 FCOS 013420 
FLN 013426 FLOG 013434 FEXP 013442 

013546 000510 ADF$IS 013546 ADF$PS 013554 SUF$PS 013560 
SUF$MS 013564 ADF$MS 013576 SUF$IS 013606 
SUF$SS 013612 $SBR 013612 ADF$SS 013616 
$ADR 013616 ADD $ 013632 

014256 000116 AINT 014256 $INTR 014274 
014374 000354 COS 014374 SIN 014430 
014750 000306 DIF$PS 014750 DIF$MS 014754 DIF$IS 014764 

DIF$SS 014770 $DVR 014770 
015256 000312 MUF$PS 015256 MUF$MS 015262 MUF$IS 015272 

MUF$SS 015276 $MLR 015276 
015570 000174 SORT 015570 
015764 000100 CCI$ 015764 CDI$ 015764 $IC 015764 

$ID 015764 CFI$ 016000 $IR 016000 
016064 000116 CIC$ 016064 CID$ 016064 CLC$ 016064 

CLD$ 016064 $DI 016064 CIF$ 016074 
CLF$ 016074 $RI 016074 ClL$ 016174 
CLI$ 016200 

TRANSFER ADDRESS = 011752 
HIGH LIMIT = 016202 

Double precision version: 

RT-11 LINK V03-01 LOAD MAP 
PFOC8 .LDA 12-JAN-75 
SECTION ADDR SIZE ENTRY ADDR ENTRY ADDR ENTRY ADDR 
• ABS. 000000 001000 $DBL 000001 MAXTSK 000010 SORTJ 104600 

SORTC 104602 PRINTC 104604 READC 104606 
OUTCH 104610 INCH 104612 GETC 104614 
PACKC 104616 TESTC 104620 GETLN 104622 
FINDLN 104624 PRNTLN 104626 COPYLN 104630 
START 104632 SPNOR 104634 ERASEV 104636 
ERASET 104640 PRINT2 104642 DIGTST 104644 
PARTST 104646 GROOVY 104650 SKPLPR 104652 
SKPNON 104654 TASK 104656 EVAL.X 104660 
FPMP 104662 FREAD 104664 FPRINT 104666 
ITOA 104670 OTOA 104672 BTOA 104674 
PATCH 1 104676 PATCH 2 104700 LPSCSR 170400 
LPSBUF 170402 LPS 177514 PRS 177550 
PPS 177554 TKS 177560 TPS 177564 

001000 000650 BEGIN 001000 PATCH 001000 PATCHB 001024 
FBASE 001050 IOLIST 001170 FNTABL 001172 
lOGO 001176 IPRS 001176 ITKS 001200 
IPPS 001202 ITPS 001204 ILPS 001206 
IOPATC 001210 I.SLOT 001222 E.SLOT 001422 
$OUEUE 001422 CONFIG 001602 CFRS 001604 

001650 011234 TERMS 002120 TLIST 002150 PCF 002200 
FLAC 002220 FSW 002230 SWITCH 002231 
LINENO 002232 FISW 002234 PTRO 002236 
INTSW 002240 INTCHN 002242 INTPRI 002262 
INDEV 002270 OUTDEV 002272 BOTTOM 002310 
PARAM 002326 STARTX 003000 TESTX 003420 
SKPNOX 003456 SORTB 003472 SORTD 003524 
GETLNX 003540 FINDX 003652 PRIN2A 003712 
XTSTLP 003722 DIGTSA 003740 GROVX 003756 

G-2 



CHIN 003774 OUT 004114 XPRNTL 004214 
SPNORX 004254 PACKX 004302 GETX 004416 
PROC2 004656 COPYLX 005350 ERTX 005360 
002 005404 EVALUX 006330 WHIPV 006522 
ERVX 006706 PARTS A 007026 FPRM 007046 
TASKX 007372 XI33 007650 XOUT 007722 
$PRINT 010074 $ READ 011122 FADe 011420 
XABS 011460 XSGN 011470 XFCLK 011476 
CLKT 011570 ITOAX 012056 XTOA 012072 
OTOAX 012166 BTOAX 012174 XRAN 012240 
XFERR 012330 XCHR 012400 XFSBR 012450 
XEX 012514 

013104 ClO2034 INTREX 013104 ZAPINT 013372 $INTRP 013470 
$FINT 013732 XFQUE 014204 QUE SET 014744 
QUECHK 015046 

015140 001434 $FPMPX 015140 FINT 016160 XITR 016360 
FSQT 016366 FSIN 016374 FCOS 016402 
FLN 0·16410 FLOG 016416 FEXP 016424 
DINT 016432 

016574 001164 SUD$PS 016574 SUD$MS 016600 ADD$PS 016620 
ADD$MS 016624 ADD$IS 016644 SUD$IS 016656 
SUD$SS 016666 $SBD 016666 ADD$SS 016672 
$ADD 016672 

017760 000560 DCOS 017760 DSIN 020036 
020540 000634 DEXP 020540 
021374 000742 DID$PS 021374 DID$MS 021400 DID$IS 021420 

DID$SS 021430 $DVD 021430 
022336 000574 DLOG10 022336 DLOG 022342 
023132 000204 DSQRT 023132 
023336 000660 MUD$PS 023336 MUD$MS 023342 MUD$IS 023362 

MUD$SS 023372 $MLD 023372 
024216 000116 CIC$ 024216 CIO$ 024216 CLC$ 024216 

CLD.$ 024216 $DI 024216 CIF$ 024226 
CLF$ 024226 $RI 024226 CIL$ 024326 
CLI$ 024332 

024334 000152 $DINT 024334 
024506 000100 CCI$ 024506 CDI$ 024506 $IC 024506 

$ID 024506 CFI$ 024522 $IR 024522 
024606 000020 $POPR4 024606 $POPR5 024606 $POPR3 024620 

TRANSFER ADDRESS = 012656 
HIGH LIMIT = 024626 

G-3 





APPENDIX H 

INTERNAL CODES 

Octal Code Character 

200 space 
201 + 
202 
203 / 
204 * 
205 t 
206 ( 
207 [ 
210 < 
211 ) 
212 1 
213 > 
214 comma 
215 semicolon 
216 CR 
217 equals 

H-1 





APPENDIX I 

GENERATING FOCAL 
(20K RT-ll minimum for assembly) 

To generate FORLIB.OBJ for 
the various hardware 
arithmetic options, see 
Appendix L. 

PAPER TAPE VERSION (4K): 

.~ MACRO 
*PPUB, LP: IN :CND=PAPER, Sr-1ALL, PUI?L J C 
*PFOC,LP:/N:CND=PAPER,SMALL,FOC~Ll 

*PMAT, r.,p: 1"1 :CND=PAPE:R, SfAALL, SINGLE:, rnCfvlAT 
... c 
.R LINK 
*PP:,LP:=BIN:PPUB,PFOC,PMAT/F/L 
"c 

Paper tape version (8K double precision): 

.R MACRO 
*PPUB8,LP:/N:CND=PAPER,PUBLIC 
*PFOC1,LP:/N:CND=PAPER,FOCALl 
*PFOC 2, LJP: IN: CND=PAPr.:R, Foe AL2 
*PMAT8, LP: IN :CND=PAPF:k, nOUK};!!;, FOCMAT 
.. c 
.R LINK 
*PP:,LP:=PPUHA,PFOC1,prnC2,PMATB/F/L 
.. c 

RT-ll Version: 

RT-ll 8K Version (SJ Monitor) 

.R MACRO 
* PUB 8 , L P : IN: C NO = S ~1 A L I. , PUB L I C 
*FOC81,LP:/N:CNO=SMALL,FOCALl 
*FOC82,LP:/N:CND=SMALL,FOCAL2 

1-1 



* F 1-1 A T 8 , L P : IN: C N D = SMA L 1, , SIN G L E , F 0 C r<1 A T 
"c 
.R LINK 
* F OC A L 8 , lJ P : = PUB 8 , I" OC 8 1 , F' OC 8 2 , F' MAT f:l IF 
"c 

RT-ll 12K and larger systems (SJ and FB Monitor) 

.FI MACRO 
*PUBLIC,LP:IN:CND=TRAP,PUBLIC 
*F'IlCALl,LP:/N:CND=TRAP,FOCALl 
*FOCAL2,LP:/N:CND=TRAP,fOCAL2 
* F' rvT AT S P , L P : IN: C N D = T RAP, S J 1" G L E , F OC MAT 
*F'MATDP,LP:/N:CND=TRAP,DDUBLE,fOCMAT 
.. c 
.R LINK 
*FOCALS,LP:=PUBLIC,F'OCALl,rOCAL2,F'MATSP/F' 
* F 0 C A IJ D , 1, P : = P U 8 L J C , F' 0 CAL 1 , F' (1 CAL 2 , f MAT [) P I F 
.. c 

NOTE 

IB:loc should be added after IF if 
additional stack space is required. 

FOCALS.SAV - Single Precision FOCAL 
FOCALD.SAV - Double Precision FOCAL 

PAPER.I4AC: $PAPER=O ;PAPER TAPE VERSION 

TRAP.MAC: 

SMALL.MAC: 

SINGLE.MAC: 

DOUBLE.MAC: 

$TRAP=O ;USE TRAPS 

$TRAP=O ;USE TRAPS 

$ SMALL= 0 ;SMALL VERSION 

$DBL=O ; SINGLE PRECISION 

$DBL=l ; DOUBLE PRECISION 

NOTE 

The file "TRAP" may be. omitted from the 
12K and larger versions. This will 
cause approximately 250-350 more words 
of memory to be used by the interpreter. 
An increase in speed of about 15% can be 
obtained by doing this. 

I-2 

PACKAGE 

PACKAGE 



Term 

Address 

Algorithm 

Alphanumeric 

Argument 

Bug 

Call 

ASCII 

Binary 

APPENDIX J 

GLOSSARY 

A label, 
designates 
is stored. 

Definition 

name, or number which 
a location where information 

A prescribed set of well-defined rules 
or processes for the solution of a 
problem in a finite number of steps. 

Pertaining to a character set that 
contains both letters and numerals, and 
usually other characters. 

1. Variable or constant which is given 
in the call of a subroutine as 
information to it. 

2. A variable upon whose value the 
value of a function depends. 

3. The known reference factor necessary 
to find an item in a table or 
array(i.e. the index). 

A mistake in the design or 
implementation of a program resulting in 
erroneous results. 

To transfer control to a 
routine. 

specified 

Abbreviation for American Standard Code 
for Information Interchange. 

Pertaining to the number system with a 
radix of two. 

J-l 



Bootstrap 

Bug 

Call 

Character 

Command 

Data 

Debug 

Delimiter 

Digit 

Digital Computer 

Direct Command 

Dummy 

EOF 

Execute 

File 

A technique or device designed to bring 
a program into the computer from an 
input device. 

A mistake in the design or 
implementation of a program resulting in 
erroneous results. 

To transfer control to a 
routine. 

specified 

A single letter, numeral or symbol used 
to represent information. 

A user 
usually 
keyboard. 

order 
given 

to a computer 
through a 

system, 
terminal 

A general term used to denote any or all 
facts, numbers, letters and snt -30 Bug 
A mistake in the design or 
implementation of a program resulting in 
erroneous results. blank I 
To detect, locate and correct mistakes 
in a program. 

A character that separates, terminates 
and organizes elements of a statement or 
program. 

A character used to present one of the 
non-negative integers smaller than the 
radix; e.g., in binary notation, either 
o or 1. 

A device that operates on discrete data, 
performing sequences of arithmetic and 
and logical operations on this data. 

A command entered without a line number 
which is executed immediately. 

Used as an adjective to indicate an 
artificial address, intruction, or 
record of information solely to fulfill 
prescribed conditions, as in a "dummy" 
variable. 

End Of File. This 
terminating point for 
data placed in a file. 

is 
the 

a logical 
end of the 

To carry out an instruction or run a 
program on the computer. 

This is a collection of data usually on 
a mass storage device which can be 
collectively reffered to by a single 
name. 

J-2 



Fixed point 

Floating point 

Flowchart 

Hardware 

Initialize 

Interpreter 

Iteration 

Language, computer 

Language, source 

Leader 

Line feed 

Line number 

List 

Load 

The position of the radix point of a 
number system is constant according to a 
predetermined convention. 

A number system in which the position of 
the radix point is indicated by one part 
of the number (the exponent) and another 
part of information inserted solely to 
fulfill prescribed conditions, as in a 
"dummy" variable. 

A graphical representation of the 
operations required to n instruction or 
run a program on the computer. 

30 Function subprogram A subprogram 
which returns a single value result, 
usually in the accumulator. 

Physical equipment; e.g., mechanical, 
electrical or electronic devices. 

To set counters, switches and addresses 
to zero or other starting values at the 
beginning of, or at prescribed points 
in, a computer routine. 

A program that translates and executes 
source language statements at run time. 

Repetition of a group of instructions. 

A systematic 
instructions 
computer. 

means of communicating 
and information to the 

A computer language such as FORTRAN or 
FOCAL in which programs are written and 
which require extensive translation in 
order to be executed by the computer. 

The blank section of tape 
beginning of the tape. 

at the 

The terminal operation which advances 
the paper by one line. 

In source languages such as FOCAL, 
BASIC, and FORTRAN, a number which 
begins a line of the source program for 
purposes of identification. A numeric 
label. 

1. A set of items. 

2. To print out a listing on the line 
printer or terminal. 

To place data into internal storage. 

J-3 



Loop 

Machine language 
programming 

Matrix 

Nesting 

Octal 

Off-line 

On-line 

Output 

Patch 

Peripheral 
equipment 

PIC 

Program 

Pushdown list 

Radix 

A sequence of instructions 
executed repeatedly until a 
condition prevails. 

that 'is 
terminal 

In this text, synonymous with assembly 
language programming.This term is also 
used to mean the actual binary machine 
instructions. 

A rectangular array of elements. 
table can be considered a matrix. 

Any 

1. Including a program loop inside a 
loop. 

2. Algebraic nesting, such as 
(A+B*(C+D», where execution proceeds 
from the innermost to the outermost 
level. 

Pertaining to the number system with a 
radix of eight. 

Pertaining to equipment or devices not 
under direct control of the computer, or 
processes performed on such devices. 

Pertaining to equipment or devices under 
direct control of the computer and to 
programs which respond directly and 
immediately to user commands. 

Information transferred from the 
internal storage of a computer to output 
devices of external storage. 

To modify a routine in a rough or 
expedient way. 

In a data processing system, any unit of 
equipment distinct from the central 
processing unit which may provide the 
system with outside storage or 
communication. 

Position Independent Code. 
the Paper Tape Software 
Handbook. ) 

The complete sequence of 
and routines necessary 
problem. 

(Refer to 
Programming 

instructions 
to solve a 

A list that is constructed and 
maintained so that the next item to be 
retrieved is the item most recently 
stored in the list. 

The base of a number system; the number 
of digit symbols required by a number 
system. 

J-4 



Read 

Recursive 
subroutine 

Restart 

Routine 

Software 

Subroutine 

Subscript 

S ymhol table 

Table 

terminal 

User 

Variable 

Virtual File 

write 

To transfer information from an input 
device to core memory. 

A subroutine capable of calling itself. 

To resume execution of a program. 

A set of instructions arranged in proper 
sequence to cause the computer to 
perform a desired task. A program or 
subprogram. 

The collection of programs and routines 
associated with a computer. 

A sequence of program lines 
performs a particular operation 
returns to the calling line. 

that 
and 

A number or set of numbers used to 
specify a particular item in an array. 

A table in which symbols and their 
corresponding values are recorded. 

A collection of data stored for ease of 
reference, generally as an array. 

A peripheral device in a system through 
which data can enter or leave the 
computer. 

Programmer or operator of a computer. 

A symbol whose value changes during 
execution of a program. 

A term used to denot6 the storage of 
data in a file, which can be used as if 
the file were an array in memory. 

To transfer information from core memory 
to a peripheral device or to auxiliary 
core. 

J-S 





APPENDIX K 

DIFFERENCES FROM PAST VERSIONS OF FOCAL-ll 

All features of past FOCAL-ll versions are supported by this release 
of FOCAL-ll. In addition, several new features have been added: 

1. Numbers 

2. Variables 

3. Line numbers 

4. Trace 

Numerical constants may now allow 
values. 

octal 

Values may be typed in Octal, Binary, or 
Decimal radix. 

The date is available for output in the RT-ll 
versions. 

Numerous extensions to the TYPE format (%) 
values. These include a variable length 
floating point notation, and removal of 
restrictions on the size of a format value. 

Variables are now examined for correct syntax 
structure. 

An extended 
available. 

subscripting mode is now 

Virtual files are fully implemented, and can 
be used with any variable. 

Expressions may now be used for line numbers. 

Both the GO and IF commands will accept group 
numbers as agruments. 

The trace feature has been implemented with 
an extended version which will allow the user 
to display the results of any SET or FOR 
command. 

K-l 



5. Parameters 

6. Library 

Internal FOCAL modifications performed in the 
past by patches to the FOCAL program are now 
available as a function which may be altered 
at run time. 

Full library facilities are available for the 
RT-ll version of FOCAL. 

7. Double Precision 

8. Error Handling 

FOCAL-ll is now available in a double 
precision version which yields approximately 
seventeen (17) digits of accuracy. 

FOCAL errors can now be intercepted by the 
user program. 

9. Time Scheduling of FOCAL Routines 
Up to eight (8) FOCAL routines can be 
scheduled based upon time. Up to eight (8) 
software priority levels are available to the 
user. 

10. Interrupt Processing 
Up to (8) FOCAL routines can be scheduled by 
the detection of a device interrupt. The 
total number of routines scheduled by both 
time and interrupts may not exceed eight in 
the release version of FOCAL. 

11.. Functions Extended mathematical functions are 
available. These include: Sine, Cosine, 
Logarithms, and Exponential functions. 

12. UNIBUS Access 
Both word and byte 
available. 

K-2 

transfers are now 



APPENDIX L 

GENERATING FORLIB.OBJ FOR HARDWARE ARITHMETIC OPTIONS 

For FORLIB Preparation refer to the appropriate section as listed below. 

Section 

L.l 
L.2 
L.3 
L.4 
L.5 

Hardware Configuration 

Bare machine 
EIS 
FIS 
EAE 
FPU 

Underlined text is typed by the system; other text is typed by the user. 

L.l Building FORLIB for a bare machine 

.R LIBR 
*FORLIB=UNI,OTS/G 

ENTRY POINT: 
$ERRS 
$ERRTB 

*tC 

L.2 Buil4ing FORLIB for EIS option 

.R LIBR 
*FORLIB=UNI,EIS/G 

ENTRY POINT: 
$ERRS 
$ERRTB 

*tC 

L.3 Building FORLIB for FIS option 

.R LIBR 
*FORLIB=UNI,FIS/G 

ENTRY POINT: 
$ERRS 
$ERRTB 

*tC 

L-l 



L.4 Building FORLIB for EAE option 

.R LIBR 
*FORLIB=UNI,EAE/G 

ENTRY POINT: 
$ERRS 
$ERRTB 

*tC 

L.5 Building FORLIB for FPU option 

.R LIBR 
*FORLIB=UNI,FPU/G 

ENTRY POINT: 
$ERRS 
$ERRTB 

*tC 

L-2 



APPENDIX M 

ASSEMBLING AMD LOADING THE FOCAL LAB EXTENSIONS 

The source file LABFNS.MAC contains a·ll the FOCAL lab 
user may conditionally assemble it to produce object 
all of the functions by defining certain symbols at 
For the ARII/LPS functions, symbols consist of 
function less the initial 'F'. 

functions. The 
code for some or 

assembly time. 
the name of the 

SYMBOL DEFINED 

TIC 

TOI 

CRT 

FRM 

SAM 

FIL 

DMA 

LED 
BUF 
FNS 
BIT 

As the table indicates, defining 
more than one function. This 
named requires existence of some 
for instance, can produce no 
start the ARII/LPS clock. 

FUNCTION(S) PRODUCED 

FTIC 
FDLY 
FTOI 
FTIC 
FDLY 
FCRT 
FTIC 
FDLY 
FFRM (RT-II VERSION ONLY) 
FCRT 
FTIC 
FDLY 
FSAM 
FBUF 
FFIL (RT-II VERSION ONLY) 
FSAM 
FBUF 
FDMA 
FSAM 
FBUF 
FLED 
FBUF 
FFNS 
FBIT 

certain symbols produces code for 
occurs when operation of the function 
other function or functions. FCRT, 
display without the FTIC function to 

The listing of the FOCAL extensions includes comments describing the 
internal workings of the lab extension functions such as the ARII/LPS 
display mechanism and character set coding. 

M-l 



The FTOI function leaves room for eight interrupt times unless the 
symbol 'TIMES' is defined. If defined, its value indicates the number 
of interrupt times FTOI can save. 

LABFNS.MAC may be assembled to produce code usable by either the RT-ll 
or Paper Tape versions of FOCAL. Defining the symbol '$PAPER.' at 
assembly time produces the Paper Tape object code. When '$PAPER' is 
defined, setting the symbol 'CORE' to some value indicates the memory 
size in bytes. Leaving 'CORE' undefined sets memory size to 8k 
(words) • Leaving '$PAPER' undefined at assembly time produces code 
usable by the RT-ll Linker to produce a version of FOCAL/RT-ll for use 
with the ARll/LPS. 

For distribution on cassette, LABFNS.MAC has been broken into three 
files. These must be concatenated with PIP before proceeding. With 
the cassette distribution: 

.R PIP 
*LARFN1.MAC=CT:LAHFN1.MAC 
*LARFN2.MAC=CT:LAB~·N2.MAC 

*LARFN3.MAC=CT:LABfN3.MAC 
*LARFNS.MAC=LABFN1.MAC,LAHFN2.~AC,LABfN3.MAC 
"c 

To produce a 16K Paper Tape version of FOCAL which includes all the 
functions available for handling the ARll/LPS, proceed as follows: 

First, produce object code using the assembler: 

• R MACRO 
*LABFNP,LP:=TT:,DK:LABFNS 
"SPAPt:R=O 
CORE=100000 
FRM=O 
DMA=O 
TOI=O 
F'NS=O 
BIT=O 
... z .. z 

This produces the object module, LABFNP.OBJ. 

Link and output to the paper tape punch: 

.P IJINK 
*PP:,LP:=LARFNP/L 

This produces a paper tape for overlaying a 16k Paper Tape FOCAL. 

To load the paper tape: 

1. LOAD 8K PAPER TAPE FOCAL. 
2. INSERT THE TAPE CONTAINING THE FUNCTIONS IN THE READER 
3. LOAD THE START ADDRESS OF THE ABSOLUTE LOADER AND PRESS 'START'. 
4. LOAD ADDRESS 0 ~ND PRESS START. 

This will start FOCAL with all the functions loaded. 

To produce a version of FOCAL/RT-ll that includes the ARll/LPS 
functions: 

Assemble LABFNS.MAC: 

M-2 



·R MACI-HI 
*LABfNS,LP:=TT:,RK:LARPNS 
'"'fRM=O 
AFLPS=O 
DMA=O 
1'01=0 
FNS=O 
81T=0 
... z .. z 

This produces the object module LABFNS.OBJ. 

Next, modify the source file, PUBLIC.MAC, to contain in its function 
list the names of each function assembled. This involves adding 
several statements of the form 'FUNCT FXXX,FXXX' starting in 
location 'FBASE'. Using EDIT: 

.R EDIT 
*EBPlIBLIC .f'.1ACS$ 
r·fRASE:SVAS$ 
F'RASE: FUNCT 
I FUNCT 

S$ 
*rxss 

FUNCT 
rUNCT 
FUNCT 
FUNCT 
FUNCT 
FUNCT 
FUNCT 
rUNeT 
rUNeT 
FilNCT 

FCRT,FCR'J' 
F'F'HM, FFRt'" 
I:·SA.M, FSAfv1 
FBUV,FRUF 
FF'lL,FE'1L 
FDMA, FD~1A 
n.)t.;n, F IJfo:n 
FTIC,FTIC 
F"TUI,FTOI 
FF NS, ff'NS 
FRIT,F'BJT 

This adds all the ARll/LPS functions to PUBLIC.MAC. 

Reassemble PUBLIC.MAC, LINK THE OBJECT MODULE WITH THE FOCAL language 
files using either the single precision (FMATSP) or double precision 
(FMATDP) math package~ 

• R ld NK 
* Foe A L , F OC A L = PUR L I C , f DC A L 1 , LAB F N S , Foe A L 2 / F / C [/ f-\ : ~,j ) 

*F"'1ATSP 

This produces a save file, FOCAL.SAV. 

To run FOCAL, type 'R FOCAL'. 

CHANGING DEVICE REGISTER AND INTERRUPT VECTOR ADDRESSES 

The two symbols in LABFNS.MAC 'REG' and 'VEe' define respectively the 
base address of ARll/LPS device registers and the first ARll/LPS 
interrupt vector addresses. If undefined at assembly time, they take 
on the values 170400 and 340 respectively. For hardware 
configurations that use different addresses, the user should define 
one or both symbols at assembly time along with the other symbol 
definitions. For instance, if the base address of the ARll/LPS device 
addresses is 170440, the user would set 'REG' equal to 170440 when 
assembling. 

M-3 



VTll 

The VTll functions will assemble only for RT-ll. To 
the VTll functions, define 'VTll' at assembly time. 
LABFNS.MAC, to include the VTll functions, include 
string the name of the RT-ll graphics file, VTMAC • 

• R r~ACRO 
*LAAFNS,LABFNS=TT:,SY:VTMAC,LAP~'NS 

"VTl1=O 
"'z .. z 

incl ude all of 
When assembling 

in the command 

Modify PUBLIC.MAC to include in its function table the names of all 
VTll funtions: FVT, FVEC, FMOV, FPT, FSET, FTXT, FSPC, FDIS, FSTA, 
FSKP, FCLR, FXCO, FYCO, FLP, FSCR. 

When linking, include the file of RT-ll graphics routines, VTLIB • 

• R fJINK 
FClCAL,FOCAL=PlIBldC ,fOCALl, LAHrNS, ~'UCAL2/f'/C 
*FMATSP,VTJ,IB 

For a hardware configuration with the VTll device register at an 
address other than 177200, define the symbol 'VTREG' and set it equal 
to the value of the VTll device register address at assembly time. 
For a base vector other than 320, define 'VTVEC' and set it equal to 
the new value when assembling. 

VT55 

The VT55 functions will assemble for both RT-II and Paper Tape FOCAL. 
To incl ude .them, proceed exac tly as descr ibed for the ARII/LPS 
functions but define the symbol 'VT55' instead of (or in addition to) 
the ARII/LPS related symbols. 

For RT-Il modify PUBLIC.MAC to include in its function table the names 
of the VT55 functions: FGRA, FXY, FGRD, FMRK, FMDO, FMDI, FCUR, FALP. 

The user may assemble a version of FOCAL that includes any of the lab 
extension functions available under RT-II. The most complete form of 
FOCAL would include all of the ARII/LPS functions, the VTII functions, 
and the VT55 functions. Under Paper Tape FOCAL the ARII/LPS functions 
or the VT55 functions may be included. However, due to size 
limitations in the Paper Tape FOCAL's function table, ARII/LPS and 
VT55 functions can not both be included at the same time. 

M-4 



APPENDIX N 

SUMMARY OF FOCAL EXTENSION FUNCTIONS 

N.1 AR11/LPS FUNCTION SUMMARY 

AR11/LPS CLOCK 

FTIC(M[,N]) 

FUNCTION FORMAT: FTIC(N,M), N>O 
OPERATION: START/STOP THE CLOCK; SET THE TIMER 

FUNCTION FORMAT: FTIC(N), N>=O 
OPERATION: RETURN TIMER VALUE, LESS N 

FDLY(N[,M]) 

FUNCTION FORMAT: FDLY(N), N>O 
OPERATION: WAIT N TICKS 

FUNCTION FORMAT: FDLY(N,FN), N>O 
OPERATION: EVALUATE FN UNTIL FN BECOMES >=1 OR UNTIL N TICKS HAVE 
EXPIRED, WHICHEVER COMES FIRST. 

FUNCTION FORMAT: FTIC(O,M) 
OPERATION: RETURN TICKS ELAPSED IN PREVIOUS WAIT FUNCTION. 

FTOI(V[,N]) 

FUNCTION FORMAT: FTOI(V), V>O 
OPERATION: SAVE TIME OF INTERRUPTS THAT OCCUR THROUGH VECTOR AT 
ADDRESS V. 

FUNCTION FORMAT: FTOI(V,N) 
OPERATION: RETURN AR11/LPS TIME OF LAST INTERRUPT THROUGH VECTOR AT 
ADDRESS V, LESS N. 

FUNCTION FORMAT: FTOI(V) ,V<O 
OPERATION: STOP SAVING TIME OF INTERRUPTS THROUGH VECTOR AT ADDRESS 
V. 

ANALOG TO DIGITAL CONVERSIONS 

FSAM(N[,M]) 

N-l 



FUNCTION FORMAT: FSAM(N), N>=O 
OPERATION: RETURN CURRENT VALUE ON ARII/LPS A/D CHANNEL N. 

FUNCTION FORMAT: FSAM(N), N<O 
OPERATION: WAIT FOR -N EXTERNAL EVENTS BEFORE RETURNING. 

FUNCTION FORMAT: FSAM(N,A,B,C, .•. ) ,N>O 
OPERATION: SAMPLE N VALUES, I PER CLOCK TICK, INTO THE A/D BUFFER 
STARTING WITH CHANNEL A, THEN B, THEN C, FOR UP TO 8 CHANNELS, 
REPEATING THE SAMPLING SEQUENCE AFTER EACH PASS THROUGH THE ARGUMENTS. 

FUNCTION FORMAT: FSAM(N,A,B,C, ... ), N<O 
OPERATION: SAMPLE N VALUES, I PER EXTERNAL EVENT, INTO THE A/D BUFFER 
STARTING WITH CHANNEL A, THEN B, THEN C, FOR UP TO 8 CHANNELS 
REPEATING SAMPLING SEQUENCE AFTER EACH PASS THROUGH THE ARGUMENTS. 

FUNCTION FORMAT: FSAM(O,N) 
OPERATION: RETURN THE NTH VALUE FRO~1 THE A/D BUFFER. 

FBUF(N) 

FUNCTION FORMAT: FBUF(N), N>O 
OPERATION: ALLOCATE N WORDS AS BUFFER AREA; RETURN BASE ADDRESS OF 
AREA ALLOCATED 

FUNCTION FORMAT: FBUF(N), N=O 
OPERATION: DEALLOCATE BUFFER AREA; RETURN 0 

FFIL (N, M) (RT-II ONLY) 

FUNCTION FORMAT: FFIL(N,M) 
OPERATION: STARTING WITH SAMPLE M, WRITE SAMPLES AS INTEGER VALUES TO 
THE I/O CHANNEL SPECIFIED BY N. CONTINUE OUTPUT UNTIL AN UNTAKEN OR 
OVERWRITTEN SAMPLE IS REACHED. IF AN UNTAKEN SAMPLE IS REACHED, 
RETURN ITS NUMBER. IF AN OVERWRITTEN SAMPLE IS REACHED, RETURN -2. 

FDMA(N,M,L) 

FUNCTION FORMAT: FDMA(N,M,L) 
OPERATION: DO DIRECT MEMORY TRANSFER OF N VALUES FROM A/D CHANNEL M 
USING THE MODE INDICATED BY THE VALUE IN L 

GRAPHICS 

FCRT (N [ ,M< ,L>] ) 

FUNCTION FORMAT: FCRT(O,N) 
OPERATION: ALLOCATE N LOCS FOR DISPLAY BUFFER 

FUNCTION FORMAT: FCRT(N), N>=O 
OPERATION: TURN DISPLAY ON (N)O) WITH INTENSITY N OR OFF (N=O). 

FUNCTION FORMAT: FCRT(L,N), L<>O 
OPERATION: LOAD THE CHARACTER SPECIFIED BY N INTO THE LOC SPECIFIED 
BY THE ABSOLUTE VALUE OF L. FOR L<O, N REPRESENTS A SPECIAL 
CHARACTER, 0 TO 4. 

FUNCTION FORMAT: FCRT(L,X,Y), L<>O 
OPERATION: LOAD THE POINT SPECIFIED BY X AND Y INTO THE LOC WHOSE 
VALUE IS SPECIFIED BY THE ABSOLUTE VALUE OF L. X AND Y EACH SPECIFY 

N-2 



EITHER AN ABSOLUTE OR RELATIVE COORDINATE. A VALUE PRECEEDED BY A + 
OR - SIGN INDICATES A RELATIVE COORDINATE. FOR L<O AND AN ABSOLUTE Y 
COORDINATE, LOAD THE POINT SPECIFIED BY X AND Y AS AN INVISIBLE POINT. 

FUNCTION FORMAT: FCRT(N), N<O 
OPERATION: SET CHARACTER SCALING TO SIZE N. 

FFRM(N,M) (RT-ll ONLY) 

FUNCTION FORMAT: FFRM(N,M) 
OPERATION: FOR M>O SAVE FRAME M IN THE FILE ON CHANNEL N. FOR M<O 
RESTORE THE FRAME SPECIFIED BY THE ABSOLUTE VALUE OF M FROM THE FILE 
ON CHANNEL N. 

FLED (N ,M) 

FUNCTION FORMAT: FLED(N,M) (LPS ONLY) 
OPERATION: LOAD THE NUMERIC DISPLAY WITH VALUE M, DISPLAYED WITH N 
PLACES TO THE RIGHT OF THE DECIMAL POINT. 

RAPID FUNCTION EXECUTION 

FFNS (F 1, F 2, ••• ) 

FUNCTION FORMAT: FFNS(Fl,F2, ••• ) 
OPERATION: EVALUATE THE ARGUMENTS SEQUENTIALLY. 

16-BIT LOGICAL OPERATIONS 

FBIT(V,Cl,Vl,C2,V2, ••• ) 

FUNCTION FORMAT: FBIT(V,Cl,Vl,C2,V2, .•. ) 
OPERATION: TAKE V AS OPERAND, PERFORM THE OPERATION SPECIFIED BY Cl 
BETWEEN IT AND THE OPERATOR IN VI. REPLACE THE RESULTING VALUE AS 
OPERAND. CONTINUE THE SAME PROCEDURE FOR ALL CODE/OPERATOR PAIRS THAT 
FOLLOW. 

N.2 VTll FUNCTION SUMMARY 

FUNCTION 

FVT(N), N>O 
FVT(N), N=O 
FVT (N, L) 

FVEC(L,X,Y) 

FMOV(L,X,Y) 

FPT (L,X, Y) 

FSET(L,X,Y) 

OPERATION 

TURN DISPLAY ON 
TURN DISPLAY OFF 
SET UP DISPLAY FILE OF AT LEAST L 
LOCSi TURN DISPLAY ON OR OFF DEPENDING ON THE 
VALUE OF Ni RETURN ACTUAL NUMBER OF LOCS 
ALLOCATED 

LOAD VECTOR (X,Y) INTO LOC Li RETURN L+l 

LOAD INVISIBLE VECTOR (X,Y) INTO LOC Li 
RETURN L+l 

LOAD POINT (X,Y) INTO LOC L 
RETURN L+l 

LOAD INVISIBLE POINT (XY) INTO LOC Li 
RETURN L+l 

N-3 



FTXT(L,A,B,C, ••• ) STARTING IN LOC L LOAD THE CHARACTERS 
SPECIFIED BY A,B,C ••• , FOUR CHARACTERS PER 
LOC: RETURN THE FINAL LOC LOADED PLUS ONE. 

FSPC(L,A[,B]) LOAD THE SPECIAL CHARACTER SPECIFIED BY A 
AND, FOR THREE ARGUMENTS, THE SPECIAL 
CHARACTER SPECIFIED BY B, INTO LOC L; 
RETURN L+l 

FDIS(T,I,B,S) SET THE FOUR GRAPHICS MODES THAT WILL PERTAIN 
TO THE NEXT LOC LOADED 

FDIS(L), L>=O RETURN THE FIRST WORD OF LOC L 

FDIS(M), M<O SET THE FOUR MODES THAT WILL PERTAIN TO THE 
NEXT LOC LOADED TO THOSE SPECIFIED BY THE 
VALUE OF M 

FSTA(L,C) LOAD LOC L WITH THE THREE DISPLAY 
CHARACTERISTICS SPECIFIED BY C 

FSKP(LL) LOAD LOC L WITH A JUMP TO THE END OF THE FILE 

FSKP(Ll,L2), L2>=O LOAD LOC Ll WITH A JUMP TO LOC L2 

FSKP(Ll,L2), L2<0 LOAD LOC Ll WITH A JUMP TO THE START OF THE 

FCLR(L) STARTING AT LOC L, CLEAR THE DISPLAY FILE 

FCLR(Ll,L2) CLEAR THE DISPLAY FILE FROM LOC Ll TO LOC L2 

FXCO(L) RETURN THE X COORDINATE OF LOC L; FOR LOC L 
CONTAINING CHARACTERS, JUMP, OR NULL, RETURN 
-4095 

FYCO(L) RETURN THE Y COORDINATE OF LOC L; FOR LOC L 
CONTAINING CHARACTERS, JUMP, OR NULL, RETURN 
-4095 

FLP(N), N>O RETURN THE LOC OF THE LAST LIGHT PEN HIT 

FLP(N), N<=O WAIT FOR THE NEXT LIGHT PEN HIT TO OCCUR THEN 
RETURN THE LOC OF THE HIT 

FSCR(L,I,Y) SET TERMINAL SCROLLING FORMAT: L, LINES ON THE 
SCREEN; I, INTENSITY; Y, TOP Y COORDINATE 

N-4 



N.3 VT55 FUNCTION SUMMARY 

FUNCTION 

FGRA (N), N=O 
FGRA(N), N=l 
FMDO(D,P,H) 

FMDl (I,L,M) 

FGRD(V,SV,DV,H,SH,DH) 

FGRD (V [ ,SV [,DV] ] ), V>O 

FGRD(O,H[,SH[,DH]]) 

FXY(G,SX,EX,EY[,DX]) 

FXY(G,SX,SY,EX) 

FXY(G,SX,SY) 

FXY(G,SX) 

FXY(G) 

FMRK (G , X [ ,N] ) 

FCUR(C,L,A,B, •.• ) 

FCUR(C,L) 

FALP(N) 

OPERATION 

TURN ALPHANUMERIC MODE ON 
TURN GRAPHIC MODE ON 
SET DISPLAY ON/OFF, POINTS ON/OFF, 
HISTOGRAMS ON/OFF 
INITIALIZE, TURN HORIZONTAL AND VERTICAL 
LINES ON/OFF, TURN MARKERS ON/OFF 
PLOT COMPLETE GRID 

PLOT VERTICAL LINES 

PLOT HORIZONTAL LINES 

PLOT A LINE 

PLOT A HORIZONTAL LINE 

PLOT A POINT 

ERASE A POINT 

ERASE A GRAPH 

PLOT OR ERASE A MARKER 

MOVE CURSOR, PRINT VERTICAL LABEL 

MOVE CURSOR 

OUTPUT ESCAPE SEQUENCE 

N-5 





INDEX 

Absolute Value Function, 4-7 
Analogue Input, 4-6 
AR11, 8-1 
Arithmetic Priority, 2-4 
ASK Command, 2-3 
Assembly, Lab Extension, Appendix 

AR11/CPS Functions, M-l 
Device Registers, M-3 
Vector Addresses, M-3 
VT11 Functions, M-4 
VG-55 Functions, M-4 

Asynchronous Tasks, 6-33, 6-34 
Building FOCAL, Appendix I, L 

Clock, programmable, 8-1, 8-3 
Clock Function (FCLK), 4-6 

Asynchronous Processing (FQUE), 
6-33 

Command Summary, Appendix C 
COMMENT Command, 3-10 

Data Formats, FOCAL, 6-1 
Date, 6-5 
Debugging, 5-1 
Display Jump, 9-8 
Display Status Register, 8-25 
DO command, 3-7 
DR11-K, 8-1, 8-30 

Editing 
MODIFY command, 3-13 

ERASE Command, 3-12 
Error diagnostics, 5-1, Appendix B 
Expontia1 Function, 4-3 

FABS, 4-7 
FA DC , 4-6 
FALP, 10-2 
FBIT, 8-2, 8-28 
FBUF, 8-8, 8-12 
FCHR, 4-4 
FCLK, 4-6 
FCLR, 9-12 
FCRT, 8-2, 8-17, 8-18 
FCUR, 102, 10-8 
FDIS, 9-8 
FDLY, 8-1, 8-3, 8-5, 8-6 
FDM~, 10-1, 10-3 
FDM1, 10-1, 10-4 
FDMA, 8-2, 8-8, 8-15 

M 

Index-l 

FFIL, 
FFNS, 
FFRM, 
FGRA, 
FGRD, 
FINT, 
FIRT, 

8-8, 8-13 
8-2, 8-28 
8-2, 8-24 
10-1, 10-2 
10-1, 10-4 
6-31, 8-1, 8-3 
4-7 

FLED, 8-27 
Floating Point package, 6-7, ff 
FLP, 9-15 
FMOV, 9-6 
FMRK, 10-2, 10-7 
FNEW, 6-7, ff 

Example, 6-24 
Interfacing FNEW, 6-22 
Passing arguments to, 6-17 
using standard functions, 6-12 

FOR Command, 3-9 
FPRM, 4-8, 8-27 
FPT, 9-6 
FQUE, 6-33, 6-34 
FRAN, 4-5 
FSAM, 
FSBR, 
FSCR, 
FSET, 
FSGN, 
FSKP , 
FSPC, 
FSQT, 

8-2, 
4-8 
9-16 
9-6 
4-7 
9-8 
9-8 
4-8 

8-8 

FTIC, 8-1, 8-3, 8-4 
FTOI, 8-1, 8-3, 8-7 
FTXT, 9-7 
Function Table, Editing, M-3 
Function Summary, Appendix C 

Lab Extensions Summary, 
Appendix N 

WEC, 9-5 
FVT, 9-3 
FX, 4-3 
FXY, 10-2, 10-6 
FYCO, 9-12 

GO Command, 3-5 
Graphics, 8-16 
Graphic Modes, 9-9 

IF Command, 3-6 
Integer part Function, 4-7 
Interrupt Processing, 6-31 



INDEX (Cont.) 

KILL Command, 3-4 

LED IS, LPS, 8-27 
Library Commands, 

Introduction, 3-14, ff 
Syntax, 7-2 
Format, 7-1 
LIBRARY OPEN Command, 7-6 
LIBRARY INPUT Command, 7-7 
LIBRARY MAKE Command, 7-7 
LIBRARY CLOSE Command, 7-7 
LIBRARY GET Command, 7-7 
LIBRARY RUN Command, 7-8 
LIBRARY NEXT Com~and, 7-8 
LIBRARY SAVE Com~and, 7-9 
LIBRARY WRITE Command, 7-10 
LIBRARY TYPE Command, 7-10 
LIBRARY ASK Command, 7-11 
LIBRARY DELETE Command, 7-11 

Light Pen, 9-13 
Listing FOCAL program 

WRITE Command, 3-11 
Literal Constants, 2-3 
Log Functions, 4-2 
Loop Control, 

FOR Command, 3-9 

LPS, 8-1 

MDDIFY Command, 3-13 

Numbers in FOCAL, 2-1 
octal constants, 2-1 

Operate Command, 3-3 

Parameter Function, 4-8 
Parentheses 

Use in Expression, 2-5 
Program Length, 5-3 

QUIT Command, 3-9 

Random Function, 4-5 
RETURN Command, 3-8 

SET Command, 3-4 
Scaling, Character, 8-21 
SIGN Function, 4-7 
Square Root Function, 4-8 
Starting FOCAL, Appendix E 
Subroutines, 

00 Command, 3-7 
RETURN Command, 3-8 
EXCUTE Command, 3-11 

Trace, 5-1 
Trig Functions, 4-2, ff 
TYPE Command, 3-1 

UNIBUS Function, 3-4 

variable Names, 2-2 
Subscripting, 2-3 

VT11, 9-1 
Function Summary, N-3 

VT55, 10-1 
Control Characters, 10-1 
Function Summary, N-5 

WRITE Command, 3-11 

Xecute Command, 3-7 

Index-2 



FOCAL-II User's Manual 
DEC-II-LFOCA-F-D 

READER'S COMMENTS 

NOTE: This form is for document comments only. Problems 
with software should be reported on a Software 
Problem Repcrt (SPR) form 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ____________________________________________________________ ___ 

Street ____________________________________________________________________ _ 

City __________________________ State _____________ Zip Code ____________ __ 
or 

Country 

If you require a written reply, please check here. [J 



-------------------------------------------------------------Fold lIere------------------------------------------------------------

------------------------------------------------ Do Not Tear - Fold lIere and Staple -----------------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 



w' __ .: •• i9 

UPDATE NOTICE #1 

FOCAL-II 

User's Manual 

DEC-ll-LFOCA-F-DNI 

March 1976 

Insert this Update Notice page in the manual 
as a means of maintaining an up-to-date record 
of changes to the manual. 

NEW AND CHANGED INFORMATION 

This addition provides instructions for using 
FORLIB with the hardware of a particular system. 

Copyright (S) 1976 by Digital Equipment Corporation 

INSTRUCTIONS 

The following pages are to be placed in FOCAL-II 
User's Manual, DEC-ll-LFOCA-G-D as replacements 
for, or additions to, current pages. 

Old Page New Page 

N/A 1-3 





FOCAL uses FORLIB (FORTRAN library) to process all its math functions. 
FOCALS.SAV, FOCALD.SAV and FOCAL8.SAV are versions that use the no 
hardware FORLIB. To use FORLIB with the hardware configuration of a 
particular system, rename the FORLIB with the extension of that par
ticular option to "FORLIB.OBJ". The FORLIB.OBJ supplied in the kit is 
the no hardware version. 

Example: 

.R PIP 
*FORLIB.NHD=FORLIB.OBJ/R 
*FORLIB.OBJ=FORLIB.EIS/R 

;SAVE THE NO HARDWARE FORLIB 
;FORLIB FOR EIS 

NOTE 

The FORLIB OBJ's supplied in the 
FOCAL/RT-II distribution are special 
copies with only the modules included 
necessary for FOCAL to run. Do not 
confuse them with the standard RT-II 
FORTRAN library. 

I-3 3/77·15 





~ 
I 
I 
I 
I 
I 
I 
I 
I READER'S COMMENTS 

Update Notice #1 
FOCAL-II User's Manual 
DEC-ll-LFOCA-F-DNI 

NOTE: This form is for document corrments only. Problems 
with software should be reported on a Software 
Problem Repcrt (SPR) form. 

Did you find errors in this manual? If so. specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ____________________________________________________________ ___ 

Street ____________________________________________________________________ _ 

City ___________________________ State _____________ Zip Code ______________ _ 
or 

Country 

If you require a written reply, please check here. [] 



-----------------------.-------------------------------------Fold lIere------------------------------------------------------------

.----------------------------.--... --------------- Do Not Tear - Fold Here and Staple ---------------... -------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 

0('-> .. .., 


