
COBOL-81
RSX-11 MI M-PLUS
User's Guide

Order No. AA-M1798-TC

COBOL-81
RSX-11 MI M-PLUS
User's Guide

Order No. AA-M179B-TC

July 1983

This manual describes how to use COBOL-81 on the RSX-11 MI M-PLUS
operating systems.

OPERATING SYSTEM AND VERSION: RSX-11 M V4
RSX-11 M-PLUS V2

SOFTWARE VERSION: COBOL-81 V2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright© 1983 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid READER'S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~n~nomoTM DECwriter RSTS
DIBOL RSX

DEC MASSBUS UNIBUS
DEC mate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT
DEC US Rainbow Work Processor

Commercial Engineering Publications typeset this manual using DIGITAL's TMS-11 Text
Management System.

Part I Developing COBOL-81 Programs
Contents
Using COBOL-81 on Your Operating System
Creating and Entering a COBOL-81 Program
Compiling a COBOL-81 Program
Linking a COBOL-81 Program
Running a COBOL-81 Program

Appendix A, Compiler Implementation Limitations
Appendix B, Compiler Error Messages
Appendix C, Run-Time Error Messages
Appendix D, Using COBOL-81 MCR / CCL Commands

Part II Using COBOL-81 Programming Options
Contents
Using the COBOL-81 Reformat Utility
Troubleshooting
Debugging Your Program
Reducing Your Task Size
Improving Program Performance
lnterprogram Communication

Appendix A, Debugger Error Messages

Part Ill Handling Data with COBOL-81
Contents
Numeric Character Handling
Nonnumeric Character Handling
Table Handling
Data Handling Optimization

Part IV Processing Files and Records with COBOL-81
The Basics of Handling COBOL-81 Files and Records
Processing Sequential Files
Processing Relative Files
Processing Indexed Files
Input/Output Exception Conditions Handling
Sharing Files and Protecting Records
File Optimization Techniques
Producing Printed Reports With COBOL-81
Forms for Video Terminals
Sorting Records and Merging Files

Appendix A, Designing Your Form with Escape Sequences
Appendix B, Logical Unit Number (LUN) Assignments

Master Index

Book Map

To the Reader

Objectives

This manual explains how to use COBOL-81 on the RSX-11 M/M-PLUS operating system.

The information in this manual supplements the description of the COBOL programming language in
the COBOL-81 Language Reference Manual.

Intended Audience

This documentation set is for the experienced COBOL programmer. It does not attempt to teach the
COBOL language or operating system concepts and procedures. If you are a new COBOL user, you
should read introductory COBOL textbooks and take DIGITAL COBOL courses - either self-paced or
classroom.

Prerequisites

Those unfamiliar with the RSX-11 operating system should refer to either the RSX-11 MI RSX-11 S
Information Directory and Index, or the RSX~ 11 M-PLUS Information Directory and Index. The direc­
tory appropriate for your operating system lists and describes all manuals in the system documenta­
tion set.

Structure of This Document

The COBOL-81 User's Guide is divided into four parts:

Part I

Part II

Part Ill

Part IV

Developin.g COBOL-81 Programs

Using COBOL-81 Programming Options

Handling Data with COBOL-81

Processing Files and Records with COBOL-81

iii

The Book Map, which follows the title page, lists the contents of all four parts. A detailed table of
contents precedes each of these four parts of the manual.

The User's Guide contains a master index of all topics discussed in the COBOL-81 Language Refer­
ence Manual and the COBOL-81 User's Guide.

Associated Documents

•The COBOL-81 Language Reference Manual, Order No. AA-J434B-TC, describes the COBOL
programming language rules and formats.

•The COBOL-81 Pocket Guide, Order No. AV-H630C-TC, provides quick reference informa~
tion needed to create, compile, link, and run COBOL programs.

•The COBOL-81 Installation Guide! Release Notes, Order No. AA-Ml 81 C-TC, describes the
installation and certification procedures for the COBOL-81 compiler on the RSX-11M/M­
PLUS operating system.

• The PDP-11 COBOL to COBOL-81 Translator Utility, Order No. AA-N339A-TC, tells users
how to convert PDP-11 COBOL application programs to COBOL-81 programs.

Conventions Used in This Document

Throughout this manual, commands are displayed in the Digital Command Language (DCL) format.
See Part I, Appendix D, for the Monitor Console Routine (MCR) equivalents. Additional conventions
follow:

Convention Meaning

A symbol with a one- to three-character abbreviation indicates that you must press a key
on the terminal; for example, RET and TAB indicate that you press the RETURN key and
the TAB key on your terminal.

The symbol CTRL/x indicates that you must press a key labeled CTRL while you simulta­
neously press another key; for example, CTRL/C, CTRL/O.

COBOLOOl
File:

Black ink indicates all output lines or prompting characters that the system prints or
PAYROLLOOl displays. Red ink indicates all user-entered commands.

PROCEDURE DIVISION,
BEGIN-PROGRAM.

END-PROGRAM,

A vertical series of periods, or ellipses, means that not all the data a user would enter is
shown.

Summary of Technical Changes

This section lists, by part and chapter, the major technical changes documented in Version 2 of the
COBOL-81 User's Guide. These modifications reflect new features in existing software as well as
changes and additions to COBOL program development.

iv

Part I Developing COBOL-81 Programs

• Chapter 1, Using COBOL-81 on RSX-11 MI M-PLUS, provides a description of the DCL HELP
facility.

•Chapter 3, Compiling a COBOL-81 Program, describes the flagging of a destructive reference
with the CROSS-REFERENCE compiler qualifier.

• Appendix D, MCR Commands for COBOL-81, includes the following new switches that are
used with the BLDODL utility:

/CLU

/ULIB

/FMS

Part II Using COBOL-81 Programming Options

• Chapter 3, Debugging Your Program, includes qualification support for the following
Debugger commands:

Part Ill

SET BREAKPOINT

CANCEL BREAKPOINT

DISPLAY

MOVE

DEFINE

UN DEFINE

Handling Data with COBOL-81

• Chapter 3, Table Handling, describes changes to the following features of the COBOL-81

Part IV

SEARCH statement:

OCCURS DEPENDING ON clause

KEY IS phrase

DEPENDING ON phrase

Processing Files and Records with COBOL-81

• Chapter 3, Processing Relative Files, describes the use of fixed-size record cells and the use of
a key to retrieve records.

• Chapter 5, Input/Output Exception Conditions Handling, provides information on the follow­
ing special registers containing status values from the RMS-11 file system:

RMS-STS

RMS-STV

v

• Chapter 7, File Optimization Techniques, describes the APPLY WINDOW clause, which
corresponds to window pointers.

• Chapter 8, Producing Printed Reports with COBOL-81, discusses use of the LINAGE clause to
define the logical page.

• Chapter 9, Forms For Video Terminals, describes ACCEPT I DISPLAY extensions for screen
formatting. These options allow you to do the following:

Erase parts or all of the screen

Use relative and absolute cursor positioning

Specify form attributes on data to be displayed and accepted

Convert data to appropriate usage when accepting data

Handle errors in filling out the form

Provide field and screen protection by limiting the number of characters typed on the
terminal

Accept data with no echo

Specify default values for ACCEPT statements

Define and handle special control keys

Translate any data item to usage DISPLAY for terminal use

• Chapter 10, Sorting Records and Merging Files, discusses a wide range of sorting capabilities
and options provided with the SORT and MERGE verbs.

Incompatibilities with VAX-11 COBOL

COBOL-81 is a subset of VAX-11 COBOL, but the two products have some incompatibilities due to
differences between the PDP-11 and the VAX-11 computer systems. The /STA:VAX compiler switch
tells the compiler to flag COBOL-81 code that is incompatible with VAX-11 COBOL. Appendix Din
the COBOL-81 Language Reference Manual, Ensuring COBOL-81 Compatibility with VAX-11
COBOL, lists and describes all known incompatibilities.

vi

Acknowledgment

COBOL is an industry language and is not the property of any company or gmup of companies, or of
any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Commit­
tee as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are: FLOW-MA TIC (trade­
mark of Sperry Rand Corporation), Programming for the UNIVAC (R) I and II, Data Automation
Systems, copyrighted 1958, 1959, by Sperry Rand Corporation, IBM Commercial Translator Form
No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27 A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

VII

Contents

PARTI

Chapter 1 Using COBOL-81 on RSX-11 M/M-PLUS

1 .1 Operating System Commands

1 .1 .1 Aids to Entering Commands .
1.1.2 Getting HELP

1.2 File Specifications and Defaults . . .

1.2.1 Accounts, Directories, and Files
1.2.2 Logical Names

1.3 File Creation and Maintenance.

Chapter 2 Creating and Entering a COBOL-81 Program

2.1 Creating the Source File.
2.2 Choosing a Reference Format . . .

2.2.1 Terminal Reference Format
2.2.2 ANSI Reference Format .

2.3 Using the COPY Statement

Chapter 3 Compiling a COBOL-81 Program

3.1 Functions of the Compiler .
3.2 Command Line Format
3.3 Command Qualifiers ...
3 .4 Examples
3.5 Common COBOL-81 Command Line Errors
3.6 Compiler Diagnostics Summary
3.7 Compiler Limitations Summary.

Chapter 4 Linking a COBOL-81 Program

4.1 Functions of the LINK Command
4.2 Using the LINK/C81 Command to Build an

Executable Image

4.2.1 Library Routine Qualifiers .
4.2.2 Output File Qualifiers.

4.3 Linking Error Message Summary .

Chapter 5 Running a COBOL-81 Program

5.1 Functions of the COBOL-81 Object Time System (OTS) .
5.2 Command Line Format
5.3 Run-Time Error Message Summary

Page

. 1-2

. 1-2

. 1-2

. 1-3

. 1-3

. 1-5

. 1-6

. 2-1

. 2-2

. 2-2

. 2-2

. 2-3

. 3-1

. 3-2

. 3-2

. 3-6

. 3-7

. 3-7

. 3-8

. 4-1

. 4-1

. 4-2

. 4-3

. 4-3

. 5-1

. 5-1

. 5-2

Part I

Appendix A COBOL-81 Compiler Implementation Limitations

Appendix B Compiler Error Messages

Appendix C Run-Time Error Messages

Appendix D MCR Commands for COBOL-81

Figure

D.1 Compiling

D.1.1 Using the Compiler. . . .

D.1.1.1 Switches Requesting Special Functions
D.1.1.2 Switches Suppressing Functions.
D.1.1.3 Switches Altering Functions
D.1.1.4 Examples of Switches

D.2 Using the BLDODL Utility.

D.2.1 BLDODL Command Line and Switches .
D.2.2 BLDODL Utility Command Line Defaults

D.3 Task-Building

D.3.1
D.3.2
D.3.3

D.4 Executing

Using the CMD File as Input.
Using a Direct Command Line as Input .
Results of the Task Build

D.5 Examples

D-1

D-2

D-4
D-5
D-6
D-7

D-7

D-8
. D-10

. D-10

. D-10

. D-11

. D-11

. D-12

. D-12

1-1 COBOL-81 Program Development .. 1-4

Tables

ii Part I

1-1 DefaultFileTypes
1-2 Commands for File Operations.
3-1 Qua I ifiers
D-1 Summary of Compiler Switches

. 1-5

. 1-6

. 3-2
D-3

Chapter 1
Using COBOL-81 on RSX-11M/M-PLUS

The RSX-11 M and RSX-11 M-PLUS operating systems and their command language, DCL (DIGITAL
Command Language), provide numerous tools and utilities for program development. If your terminal
is not set to DCL mode, enter the following command:

SET /DCL=TI:

where:

Tl: is the physical device name of your terminal.

This chapter summarizes the fundamental information you need to develop your COBOL-81 pro­
grams, including:

• The DCL commands you use to create, compile, link, and execute COBOL-81 programs

• The rules for specifying input and output files for commands and programs

• The commands you use to create, modify, and maintain files

For an introduction to these concepts, see the RSX-11 MI M-PLUS Guide to Program Development.
For detailed definitions of DCL commands and file specifications, see the RSX-11 MI M-PLUS
Command Language Manual.

1-1

1.1 Operating System Commands

To develop COBOL-81 programs, you use four DCL commands:

• The EDIT command allows you to create the source file.

•The COBOL command invokes the COBOL-81 compiler.

•The LINK/C81 command produces an executable image of your program.

• The RUN command executes the program.

1.1.1 ·Aids to Entering Commands

The next few chapters of this manual describe in detail the commands you use to develop COBOL-81
programs and the qualifiers that modify the operation of these commands. The following hints can
help you enter commands easily and accurately:

• You can abbreviate any command name or qualifier name to four characters. In most cases,
fewer than four characters are accepted, as long as there is no ambiguity about the name of the
command. ·

• You must precede each qualifier in the command line with a single slash character (/) or a
space.

• If you omit a required parameter (for example, a file specification), the DCL command inter­
preter prompts you to enter it.

• You can enter a command on as many lines as you want, as long as you end each continued
line with a hyphen (-) and the maximum line length does not exceed 80 characters for
RSX-11 M or 255 characters for RSX-11 M-PLUS.

• After you have entered a complete command, you must press the RETURN key to pass the
command to the system for processing.

• You can cancel a command before the final RETURN by typing CTRL/U.

If you make an error entering a command (for example, if you misspell a command or qualifier
name), the command line interpreter issues an error message, and you must reenter the entire com­
mand line including any qualifiers.

1.1.2 Getting HELP

The HELP command invokes the RSX-1 lM/M·PLUS HELP utility, which gives you online information
about a command, its parameters, and qualifiers. When you type HELP, the utility displays informa­
tion available in the system help files or in any help library that you specify.

To obtain information about the COBOL compile command, you enter the following command:

HELP COBOL

The HELP command response displays a description of the COBOL command and a list of its
qualifiers.

. I 1-2 Using COBOL-81 on RSX-11 M/M-PLUS

1.2 File Specifications and Defaults

Because many DCL commands and qualifiers affect files, it is helpful to understand the relationship
between accounts and directories when you work with files.

1.2.1 Accounts, Directories, and Files

You log into an account when you begin an RSX-11 MI M-PLUS session. Your account name identifies
you to the system.

The system uses your account name to keep track of the resources you use, such as the amount of
time you access the computer's memory or are logged in and the amount of storage space your files
require.

A directory is a list of the files in your account that are kept in a specific location on a disk. Each
directory stores such information as the name and size of each file stored on a particular mass-storage
device under a particular User File Directory (UFO).

You identify a file by specifying its location and its name. A file's complete location consists of:

• The device. Files are kept on mass-storage devices such as disks or magnetic tapes.

• UFO. Files are contained in User File Directories (UFOs). The UFO is a two-number code in
the form [g,m] that is in every_ file specification, either explicitly or by default, and that locates
the file. In the form [g,m], g signifies group, while m signifies member.

A file's name, chosen by the person who creates the file, consists of:

• The file name (one to nine alphanumeric characters)

• The file type (zero to three alphanumeric characters), preceded by a period

• The version number, in octal, of the file, preceded by a semicolon

A file specification is the full name and location of a file. In its complete form, the file specification
includes:

device: [g,m]filename. typ;version

The delimiters in a file specification are brackets, commas, colons, and semicolons. Brackets ([])
surround the UFO. A comma (,) separates the two numbers of the UFO. A single colon follows the
device name. A semicolon separates the file type from the version number.

A complete file specification that does not assume any defaults is:

080:(30, 1 OJPAYROLL.CBL;3

You need not give a complete file specification each time you refer to a file. A simple file specifica­
tion, one that uses system defaults, consists of the file name and type:

PAYROLL.CSL

In Figure 1-1, all input and output files are given in their simplest forms. To define· a unique
COBOL-81 source file, you need only give it a unique name and a file type of CBL.

UsingCOBOL-81 on RSX-11M/M-PLUS 1-3 I

Figure 1-1: COBOL-81 Program Development

I Commands I

EDIT PAYROLL.CSL

COBOL PAYROLL/LIST Compile the

LINK/C81 PAYROLL

RUN PAYROLL

source program

Build the
executable

image

Execute the
image

The following DCL commands appear in Figure 1-1:

EDIT PAYROLL,CBL
COBOL PAYROLL/LIST
LINK /C81 PAYROLL
RUN PAYROLL

I 1-4 Using COBOL-81 on RSX-11 M/M-PLUS

j 1nput I Output Files I

PAYROLL.CSL

PAYROLL.LST

PAYROLL.SKL

PAYROLL.OBJ

SUPPORT
ROUTINES

PAYROLL.TSK

C81ART-10002-58

For these commands, the following defaults are in effect:

• All the commands shown use the current default device and the user's UFD to locate a file that
you specify.

• The EDIT command does not assume a default file type. By explicitly specifying CBL as a file
type when you create the source program, you can omit the fife type in your compile com­
mand line.

• The COBOL command assumes that if no file type has been specified for a source file, its file
type is CBL. Unless you use qualifiers to change the names of its output files, the compiler uses
the default file types LST and OBJ for the listing and object files, respectively. The compiler
also produces a skeleton overlay descriptor file with a default file type of SKL.

• The LINK/C81 command assumes that if no file type has been specified for an input file, its
file type is SKL. To use the LINK/C81 command, you must be sure that the SKL file is available
in addition to the OBJ file. If no qualifiers override the default output file types, the LINK/C81
command assigns the default file type TSK for the executable file.

• The RUN command assumes that if no file type has been specified for a file, its file type is TSK.

Table 1-1 summarizes the default file types.

Table 1-1: Default File Types

Type of File Default Value

Input to compiler CBL

Output from compiler OBJ, SKL

Compiler listing file LST

Input to LINK/C81 SKL

Output from LINK/C81 TSK

Input to RUN command TSK

1.2.2 Logical Names

Logical names allow you to keep programs and batch control files independent of the physical
locations of files. They also provide a convenient, shorthand way to specify devices and directories
that you refer to frequently.

With the ASSIGN command, you can assign a logical name to a physical device. The logical names
you assign can be system-wide or local, and you can assign any number.

The logical names that you assign for devices do not depend on the physical device specifications.
Unlike a physical name, a logical name is independent of the drive on which the medium is
mounted. Device logical names make it easier to adapt a program for use on different drives: You can
use logical names within file specifications in your COBOL-81 source code, and you do not need to
reference specific devices until run time.

Using COBOL-81 on RSX-11M/M-PLUS 1-5

1.3 File Creation and Maintenance

You create a source file with the CREATE command or with a text editor. The default DIGITAL
Standard Editor available on RSX-11 M/M-PLUS is EDT. Consult the EDT Editor Manual for informa­
tion about how to use this editor. You can also use EDI, but EDT is now the default editor. (EDI is
described in the RSX-11MI11 M-PLUS Utilities Manual.)

Table 1-2 describes some of the basic DCL file-handling commands available to programmers. For
online assistance in entering a command or determining its parameters, qualifiers, or options, use the
HELP command.

Table 1-2: Commands for File Operations

Creating and Modifying Files

CREATE Creates a file from records or data that you input following the
command; for example, lines entered from a terminal or placed
in a batch input file.

EDIT Invokes the EDT text editor.

Displaying Files and File Names

TYPE Displays the contents of individual files at the terminal.

DIRECTORY Displays information about the files in a UFO.

Copying, Renaming, and Appending Files

COPY Copies the contents of a file or files to another file or files.

RENAME Assigns a new name to a file.

APPEND Concatenates a file to the end of another file.

Deleting Files

DELETE Deletes files from a directory.

I 1-6 Using COBOL-81 on RSX-11M/M-PLUS

Chapter 2
Creating and Entering a COBOL-81 Program

To create a source program file you use a text editor. EDT, the DIGITAL Standard Editor, is the default
editor for DCL on RSX-11 MI M-PLUS. When you use the EDIT command, the I EDT qua I ifier is
optional. The text editor enables you to type in your source code and store it in a system file. Once
you have stored the program, you can use EDT to make any desired changes.

2.1 Creating the Source File

To invoke EDT on an RSX-11 M/M-PLUS system, you type: EDIT filename.typ. For example:
I

EDIT PAYROLL.CBL

If the file you specify already exists, you can then modify it. If the file does not exist, EDT prints:

InPut file does not exist

CEOBJ

*

The asterisk is EDT's prompt for the next command. Following is a sample program created with EDT:

IDENTIFICATION DIVISION.
PROGRAM-ID, TEST-1+
ENVIRONMENT DIVISION,
DATA DIVISION.
WORKING-STORAGE SECTION,
01 MESSAGE-AREA PIC XC24> VALUE "THIS IS A TEST PROGRAM",
PROCEDURE DIVISION.
000-BEGIN.

DISPLAY MESSAGE-AREA,
STOP RUN,

Consult the EDT Editor Manual for further instructions on using EDT.

2-1

2.2 Choosing a Reference Format

Before you can develop a COBOL-81 program, you must decide on a source reference format and
prepare your source program accordingly. The COBOL-81 compiler accepts source programs written
in either DIGITAL's terminal reference format or ANSI reference format. However, you cannot mix
reference formats in the same compile command line, even when you are copying text from a
COBOL-81 library.

2.2.1 Terminal Reference Format

Use DIGIT Al's terminal reference format when you create source files from interactive terminals. The
COBOL-81 compiler accepts terminal format as the default reference format unless the default was
changed by your system manager during installation. Terminal format eliminates the line-number and
identification fields of ANSI format and allows horizontal tab characters and short lines. This saves
disk space and decreases compile time. Because the spacing requirements of terminal format are
more flexible, it is usually easier to edit source programs written in this format.

There are four rules regarding this format.

1. The maximum number of characters you can put on a line is 200. However, the listing
that the compiler produces displays only the first 120 characters.

2. The indicator area, if used, is the first character position of the line. Valid characters in
this area are hyphen (-), slash (/), and asterisk(*).

3. If an indicator is present in character position 1, Area A occupies positions 2 through 5; if
not, Area A occupies positions 1 through 4.

4. Area B immediately follows Area A.

You can use the TAB key or the SPACE bar to position source entries in a line. Terminal format
recognizes a RETURN as the end of a line. When you use indicators such as continuation (-),
comment(*), or skip-to-top-of-page (/) characters, you must enter these characters in position 1. Area
A then occupies positions 2 through 5 and Area B occupies positions 6 through 200.

For more information, see the COBOL-81 Language Reference Manual.

2.2.2 ANSI Reference Format

ANSI format (defined in the COBOL-81 Language Reference Manual) is useful on a card-oriented
system. If your program is in ANSI format, you must compile it using the I ANSLFORMAT qualifier
(see Chapter 3) or convert it to terminal format using the REFORMAT utility (see Part 11, Chapter 1).
You can choose this format if your COBOL program was written for a compiler that used ANSI
reference format.

The REFORMAT utility allows you to convert from terminal format to ANSI format or from ANSI
format to terminal format. You can also use REFORMAT to match the formats of source files and
COBOL-81 library files when their formats are not the same. See Part 11, Chapter 1, for a full
description of the REFORMAT utility.

I 2-2 Creating and Entering a COBOL-81 Program

2.3 Using the COPY Statement

The COPY statement allows you to access COBOL-81 libraries at compile time. These libraries
contain source text that can be merged with one or more COBOL-81 programs at installation.

The simplest form of the statement is: COPY text-name. For example:

COPY CUSTRC,

A complex application can consist of many separately compiled programs that share the same struc­
ture declaration or variable declarations. In such cases, it is convenient to maintain only one copy of
the declaration of the variables and to include this declaration in each source program.

Although most statements contained in your program specify actions taken at run time, the COPY
statement specifies an action taken at compile time. When your program contains a COPY statement,
the compiler creates a "temporary" source file that is a composite of the CBL file you submit to the
compiler and the library text you include with the COPY statement. The compiler processes this

' temporary source file rather than the file you originally submit to it. Therefore, your program listing
(LST file) contains all text included by the COPY statement, but your original source file is un­
changed. For more information on the COPY statement, see Chapter 6 of the COBOL-81 Language
Reference Manual.

Creating and Entering a COBOL-81 Program 2-3

Chapter 3
Compiling a COBOL-81 Program

Once you have created your source program and are satisfied with it, you are ready to compile it.
This chapter describes how to use the COBOL command to compile your source programs into object
files. Topics include:

• Functions of the COBOL-81 compiler

• COBOL command syntax and qualifiers

• Compiler diagnostics and limitations

3.1 Functions of the Compiler

The primary functions of the COBOL-81 compiler are to:

• Verify COBOL source program statements and issue diagnostic messages.

• Generate machine language instructions in the form of an object module (OBJ file) from the
source program.

• Produce a skeleton overlay descriptor language file (SKL file) used by the Task Builder to
identify independent segments of the source program.

• Create a listing with diagnostics, a data allocation map, and cross-references.

The following is a sample compile command:

COBOL PAYROLL

This COBOL command invokes the COBOL-81 compiler and specifies that the source file is
PAYROLL.CBL. The file type is optional in the command line because CBL is the default. If the
compilation is successful, the output is assembled in an object module named PAYROLL.OBJ and a
skeleton overlay descriptor language file named PAYROU.SKL.

3-1

3.2 Command Line Format

The format of the command line to the compiler is:

COBOL[/qualifiers] file-spec[/qualifiers]. ..

where:

file-spec specifies the files that contain the COBOL-81 source program. If you do not spec­
ify a file type, the compiler assumes CBL as the default.

/qualifiers specify compiler options.

3.3 Command Qualifiers

You can use qualifiers to select or suppress compiler options. Table 3-1 lists the COBOL-81 com­
mand qualifiers and their normal defaults. Following the table are complete descriptions of the
compiler command qualifiers. The default qualifiers are indicated by (0). These defaults can be
changed during the installation of the compiler.

Table 3-1: Qualifiers

Qualifier

I ANSl_FORMAT

/NOANSLFORMAT (D)

/CHECK (D)

/CHECK: BOUNDS

/CHECK: PERFORM

/NOCHECK
/CHECK:NOBOUNDS
/CHECK:NOPERFORM

/CODE:[NOJCIS

/CROSS_ REFERENCE

/NOCROSS_REFERENCE (D)

/DEBUG

/NODEBUG (0)

/DIAGNOSTICS[:filename]

/NODIAGNOSTICS (D)

/LIST[:filename]

/NOLIST (D)

/NAMES:xx

Summary Description

Accepts a source program in ANSI format.

Accepts a program in terminal reference format.

Enables range checking of subscripts, indexes, and nested PERFORM state­
ments at run time.

Enables range checking of subscripts and indexes only.

Enables range checking of nested PERFORM statements at run time.

Disables range checking.

Specifies object code (with or without the Commercial 1.nstruction Set)
appropriate for the system that will execute the program.

Produces a cross-reference table of data and procedure-names in your LST
file.

Suppresses production of a cross-reference table.

Creates symbol information in the object code for use by the Symbolic
Debugger.

Suppresses creation of the symbol information used by the Symbolic
Debugger.

Produces a DIA file of the compilation.

Suppresses production of a DIA file.

Produces a LST file of the compilation.

Suppresses production of a LST file.

Changes the PSECT kernel in your object file from SC (the default) to the
value you specify for xx.

(continued on next page)

I 3-2 Compiling a COBOL-81 Program

Table 3-1: Qualifiers (Cont.)

Qualifier Summary Description

/OBJECT[:filename] (D) Creates an OBJ file as output.

/NOOBJECT Suppresses the production of an OBJ file.

/SHOW Produces Procedure Division and Data Division offset maps in your LST file.
/SHOW: MAP

/NOSHOW (D) Suppresses the production of offset maps.

/SUBPROGRAM Treats the source program as a subprogram.

/NOSUBPROGRAM (D) Examines the Procedure Division statement to determine if the program is
the main or the subprogram.

/TEMPORARY[:device] Changes the storage area for temporary work files from SY: (the default) to
the value you specify for device.

/TRUNCATE Performs decimal, rather than binary, truncation on COMP data items.

/NOTRUNCATE (D) Performs binary truncation on COMP data items.

/WARNINGS[:INFORMATfONAL] (D) Tells the compiler to issue diagnostics including informational messages.

/NOWARNINGS Suppresses informational diagnostics.
/WARNINGS[:NOINFORMATIONAL]

The following are complete descriptions of the COBOL-81 compiler qualifiers:

I ANSLFORMAT
/NOANSLFORMAT (D)

The I ANSLFORMAT qualifier tells the compiler that your program is in conventional (or ANSI)
format, rather than the default, terminal format.

/NOANSl_FORMAT is the default.

/CHECK (D)
/CHECK:BOUNDS
/CHECK:PERFORM
/CHECK:NOBOUNDS
I CHECK:NOPERFORM
/NOCHECK

The /CHECK:BOUNDS qualifier compares subscript and index ranges at run time against the
ranges defined by corresponding OCCURS clauses. If any range is exceeded during program
execution, COBOL-81 issues an error message.

The /CHECK:PERFORM qualifier determines whether or not your program's PERFORM state­
ments are nested properly (if nested at all). If COBOL-81 detects improper nesting during pro­
gram execution, it issues an error message.

With /CHECK:NOBOUNDS, COBOL-81 does not check subscript and index ranges at run time
against the ranges defined by OCCURS clauses. If any range is exceeded during execution,
COBOL-81 does not issue an error message.

Compiling a COBOL-81 Program 3-3

Similarly, with /CHECK:NOPERFORM, the compiler does not check to determine whether your
program's PERFORM statements are nested properly (if at all). If COBOL-81 detects improper
nesting during execution, it issues an error message. If you use /CHECK:NOPERFORM, the
compiler does not produce diagnostics when PERFORM statements are nested improperly. Do
not use the /CHECK:NOBOUNDS and the /CHECK:NOPERFORM qualifiers in the same com­
mand line. COBOL-81 issues a message indicating conflicting qualifiers. Instead, use the
/NOCHECK qualifier.

The /NOCHECK qualifier tells the compiler to suppress range checking for both subscripts and
indexes and for the nesting of PERFORM statements. The purpose of the suppression of checking
is to reduce task size and improve performance.

/CHECK is the default.

/CODE:[NO]CIS
The /CODE:CIS qualifier tells the compiler to use CIS (Commercial Instruction Set) in the object
code it produces. If the system manager set the default to non-CIS code when COBOL-81 was
installed, and if your machine does have CIS, this qualifier overrides that default. This qualifier is
needed when you are developing a program to run on a system other than your own. See the
system manager if you do not know whether or not your machine has CIS.

/CROSS-REFERENCE
/NOCROSS-REFERENCE(D)

The /CROSS_REFERENCE qualifier tells the compiler to add two cross-reference tables to the
end of your list file: one for data-names and one for procedure-names. In each table, the names
you used in your program are listed alphabetically. Opposite each name is a list of every line
number in which that name occurs. A "D" after a number indicates the line in which you
defined the name. An asterisk (*) after a line number indicates a destructive reference, such as a
value assignment to a data-name.

Here is an excerpt from a list file (SAMPLE.LST) that resulted from the command line COBOL
SAMPLE/CROSS_REFERENCE/LIST:

CROSS REFERENCE IN ALPHABETICAL ORDER

DATA NAMES and MNEMONIC NAMES

END-OF-DATA
FAKE-CARD
F-NUMBER

25D
18
22D

75
18D
82*

85
8£1

This qualifier is particularly useful if, for example, one variable yields unexpected results when
you run your program. You can trace the variable through your program, and the table gives you
a list of the lines to check (see Part 11, Chapter 2).

The cross-reference tables are also helpful .when you use the Symbolic Debugger.

/NOCROSS_REFERENCE is the default.

/DEBUG
/NODEBUG (D)

The /DEBUG qualifier tells the compiler that you intend to use the COBOL-81 Symbolic
Debugger (see Part 11, Chapter 3). The compiler then generates symbol information in the object

I 3-4 Compiling a COBOL-81 Program

module for all data-names and procedure-names. This increases the size of the object file.
However, when you finish debugging and no longer need the symbols, you can recompile
without this qualifier.

If you include the Symbolic Debugger in your program, you must also use the /DEBUG qualifier
to the LINK/C81 command.

ID IAGNOSTICS[:filename]
/NODIAGNOSTICS (D)

The /DIAGNOSTICS qualifier enables the creation of a diagnostics file with the same file name
as the source file and with the file type DIA. The DIA file contains the compiler diagnostic
summary. You can specify a different file name or type for this diagnostics file.

/NODIAGNOSTICS is the default.

/LIST[:filename]
/NOLIST (D)

The /LIST qualifier tells the compiler to produce a LST file containing the source code and any
diagnostic messages. /LIST is necessary when you want to use the /CROSS_REFERENCE or the
/SHOW qualifiers.

If you append the /LIST qualifier to an input file specification instead of to the compile com­
mand, the resulting LST file has the same name as the qualified file.

/NOLIST is the default.

/NAMES:xx

The /NAMES qualifier tells the compiler to use the two alphanumeric characters you specify as
the PSECT kernel for this program. The only time you need this qualifier is when your executable
image uses both subprograms and segmentation. See Part II, Chapter 5 for a detailed
explanation.

/OBJECT[:filename]
/NOOBJECT

The /OBJECT qualifier allows you to specify a file other than the default as the compiled object
file. /NOOBJECT suppresses the creation of an object file.

If you append the /OBJECT qualifier to an input file specification instead of to the compile
command, the resulting OBJ file has the same name as the qualified file.

/OBJECT is the default.

/SHOW
/SHOW:MAP
/NOSHOW (D)
/SHOW:NOMAP (D)

The /SHOW and /SHOW:MAP qualifiers are equivalent. They tell the compiler to add two
offset maps to the list file, one referring to the Data Division and one referring to the Procedure
Division. The compiler provides these maps for use with ODT (Online Debugging Tool). Consult
the /AS I RSX-11 ODT Reference Manual for more information.

/NOSHOW or /SHOW:NOMAP is the default

Compiling a COBOL-81 Program 3-5 I

/SUBPROGRAM
/NOSUBPROGRAM (D}

The /SUBPROGRAM qualifier tells the compiler that it is compiling a subprogram. You must use
this qualifier only if the subprogram does not use parameters from the main program; that is, if it
does not contain the PROCEDURE DIVISION USING header.

/NOSUBPROGRAM is the default.

/TEMPORARY[:device]

The /TEMPORARY qualifier tells the compiler to store its temporary working files on the device
you specify during compilation. This qualifier is useful if there is little system disk space avail­
able and you want to specify a device other than SY:, which is the default.

/TRUNCATE
/NOTRUNCATE (D}

The /TRUNCATE qualifier tells the compiler to perform decimal truncation on the values of
COMPUTATIONAL (or COMP) data items. By default, COBOL-81 performs binary truncation.
With binary truncation, the maximum value a COMP item can contain depends on its storage
allocation. If you specify the /TRUNCATE qualifier, the maximum value depends on the item's
PICTURE character-string.

/NOTRUNCATE is the default.

/WARNINGS (D}
/WARNINGS:INFORMATIONAL
/WARNINGS:NOINFORMATIONAL
/NOWARNINGS

The /WARNINGS and /WARNINGS:INFORMATIONAL qualifiers are equivalent. They tell the
compiler to include informational diagnostics during compilation. The /NOWARNINGS and
/WARNINGS:NOINFORMATIONAL qualifiers are equivalent. They prevent the compiler from
issuing informational diagnostics during compilation. If you use either of these qualifiers, only
warning and fatal diagnostics are included in the list file, diagnostic file, and diagnostic
summary.

/WARNINGS (or /WARNINGS:INFORMATIONAL) is the default.

3.4 Examples

In addition to producing OBJ and SKL files, the compile command lines in the following examples
show the use of various qualifiers.

1. COBOL YEARLY/WARNINGS:NOINFORMATIONAL

Gives you a summary display of warning and fatal errors only.

2. COBOL ANNUAL/LIST/SHOW:MAP/CROSS_REFERENCE

Creates the list file ANNUAL.LST with offset maps and cross-reference tables.

I 3-6 Compiling a COBOL-81 Program

3. COBOL TEST /TEMPORARY:DKZ

Uses DK2: for storing temporary files during compilation.

4. COBOL TEMP/CROSS_REFERENCE

Is a meaningless use of the /CROSS_REFERENCE qualifier because no list file has been
specified to contain the cross references. COBOL-81 ignores the qualifier, proceeds with
the compilation, and gives you a summary of the results.

3.5 Common COBOL-81 Command Line Errors

Some common errors to avoid when you enter COBOL command lines include:

• Omitting the I AN SL FORMAT qualifier from source programs that are in ANSI format

• Including contradictory qualifiers, such as /SHOW with /NOLIST

• Forgetting to include a file type in a file specification when you do not want the default file
type

3.6 Compiler Diagnostics Summary

During a compilation, the COBOL-81 compiler checks your program against COBOL syntax and
semantic rules. It issues a diagnostic message for each violation it finds. A diagnostic belongs to one
of three classes, depending on the function it serves: I (Informational), W (Warning), or F (Fatal).

Informational

If the violation in your source code has no effect on the rest of the program and the recovery is
obvious, the compiler can overlook it. However, it issues an informational message to remind
you of the COBOL-81 statement the code has violated or to point out potential problems the
code creates.

Warning

Fatal

If the recovery action taken by the compiler for a particular error can affect the rest of the
program, a warning message is issued.

If no recovery action can be taken by the compiler for an error in the code, a fatal message is
issued. When a fatal error is found, the compilation temporarily stops. Before resuming, the
compiler sometimes skips a section of source code. If source code has been skipped, an infor­
mational message is issued to show you where the compilation resumes.

If only informational or warning diagnostics occur, the program is said to have compiled successfully.
However, you should check all informationals and all warnings. If the program contains any fatal
errors, the compilation is unsuccessful and neither an object file nor an SKL file is created.

For example, assume you typed this line to compile the source program and get an object file and a
list file:

COBOL DATE IL I ST

Compiling a COBOL-81 Program 3-7 I

There are several possible responses from the COBOL-81 compiler. One of the possible responses
follows:

CB1 - 0 FATAL ERRORS
C81 - 2 WARNINGS
CB1 - 3 INFORMATIONALS

This indicates successful compilation because. there are no fatal errors; that is, DATE.OBJ and
DATE.SKL were created. However, you should examine DATE.LST to see which rules the source
code violated.

Another possible response includes the following lines:

CB1 - 2 FATAL ERRORS - object deleted
C81 - 2 WARNINGS
CB1 - 4 INFORMATIONALS

Due to the two fatal errors, the compilation is unsuccessful and the compiler did not create
DATE.OBJ or DATE.SKL. You must examine DATE.LST for the diagnostic messages, correct
DATE.CBL, and compile it again.

The compiler issues (that is, puts in the list and diagnostic files) a maximum of 500 errors. The
compilation continues and the summary count continues to be updated, but you have no way of
knowing what errors occurred after the first 500.

See Appendix B for a list of the COBOL-81 compiler error messages.

3.7 Compiler Limitations Summary

There are several implementation limits to the COBOL-81 compiler, and you receive diagnostics if
you exceed them. For a list of these limitations, see Appendix A.

I 3-8 Compiling a COBOL-81 Program

Chapter 4
Linking a COBOL-81 Program

After you have compiled your source program, you must link the resulting object modules(s) to create
an executable (or task) image of your program. The LINK/C81 command accepts COBOL-81 OBJ
files and SKL files as input, invokes the COBOL-81 BLDODL utility to create ODL and CMD files, and
calls the Task Builder, which produces an executable image (TSK file).

This chapter describes the use of the DCL LINK/C81 command. See Appendix D for information
about using MCR (Monitor Console Routine) commands to produce an executable image. You must
refer to Appendix D if you plan to use BLDODL utility options that DCL does not provide.

4.1 Functions of the LINK Command

The primary functions of the LINK/C81 command are to allocate memory within the executable
image, to resolve symbolic references among the modules being linked, to assign values to relocat­
able global symbols, and to perform relocation.

4.2 Using the LINK/C81 Command to Build an Executable Image

To link your program, you specify the SKL file as the input file specification to the LINK/C81.
command. The resulting output (or task) file (containing the executable image) has the same file name
as the input file, but its file type is TSK. The format of the LINK/C81 command is:

LINK/C81 [/qualifier] file-spec[, ...] [/qualifier][, ...]

where:

file-spec specifies the COBOL-81 object file(s) to be linked.

/qualifiers specify options to the command.

There are two categories of qualifiers to the LINK/C81 command. Library routine qualifiers are
discussed in Section 4.2.1 and output file qualifiers are discussed in Section 4.2.2

4-1 I

4.2.1 Library Routine Qualifiers

In most cases, the LINK/C81 command supplies your program with the run-time and 1-0 support you
need by default, and you do not need to use any qualifiers to include:

• Disk-resident RMS-11 libraries for Record Management Services 1-0, if your program requires
RMS

• Disk-resident COBOL-81 OTS library C81 LIB or C81 CIS, depending on whether or not your
system has the Commercial Instruction Set (CIS)

For example:

LINK/C81/RMS:RES/OTS:RES PAYROLL

This command includes memory-resident libraries when you have them installed on your system, and
it clusters these libraries without requiring any input from you. Only use this command if both
libraries have been installed as memory-resident on your system.

The following qualifiers allow you to specify libraries other than the defaults:

/FMS

Using the /FMS qualifier indicates that you are including FMS (File Management Support) library
support in your task image. You must specify FMS support if you call FMS routines from your
program.

/OTS:RESIDENT
/OTS:NORESIDENT

The /OTS:RESIDENT qualifier includes memory-resident OTS, either C81CIS or C81 LIB, in your
task if memory-resident OTS is installed. If you use the /OTS:RESIDENT qualifier and your
system does not have memory-resident OTS, an error message will be issued at link time.

The /OTS:NORESIDENT qualifier creates a reference to the disk-resident OTS library.

I RMS:RESIDENT
I RMS:NORESIDENT

The /RMS:RESIDENT qualifier creates a reference to the shared RMS-11 memory-resident
library. The resulting executable image is smaller and uses the resident library, RMSRES, at run
time.

The /RMS:NORESIDENT qualifier creates a reference to the disk-resident RMS library.

I 4-2 Linking a COBOL-81 Program

4.2.2 Output File Qualifiers

The following qualifiers control the output files produced by the LINK/C81 command.

/MAP
/NOMAP

Use the /MAP qualifier to indicate that you want the LINK/C81 command to produce a memory
map file. The /NOMAP qualifier indicates that you do not want a memory map file.

If you use I MAP, you can also assign a file specification for the memory map file that is different
from the file specification in your command line. If you omit the file specification, LINK/C81
produces a map file on the same device, with the same directory and name, as the executable
file. The default file type is MAP.

/NOMAP is the default.

/DEBUG
/NODEBUG

Use the /DEBUG qualifier to indicate that you are including the COBOL-81 Symbolic Debugger
in your task. You must have used the /DEBUG compiler qualifier to the COBOL command to
use the /DEBUG qualifier to the LINK/C81 command.

/NODEBUG is the default.

4.3 Linking Error Message Summary

If the Task Builder detects any errors while linking object modules, it displays messages indicating the
cause and severity of the error. If any fatal error conditions occur, that is, errors with severities of F,
the Task Builder does not produce an image file. MAP files with diagnostics are produced, however,
if you use the /MAP qualifier.

A common error that can occur during linking is that a reference to a symbol name remains unre­
solved. This error occurs when you omit required library qualifiers from the LINK/C81 command and
the Task Builder cannot locate the definition for a specified global symbol reference. It can also occur
when a subprogram to be called from the main program has been omitted from the LINK/C81
command line. If an error occurs when you build modules, you can often correct the error by
reentering the command line and specifying the correct modules or libraries.

If execution of the LINK/C81 command is unsuccessful, an error message is issued to your terminal
before the return to the system prompt.

For example, command execution is unsuccessful if the resulting image is too large. The following
message indicates this condition:

SEGMENT sed-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Seg-name is the name of the object file the Task Builder was processing when the overflow occurred.
To recover, you must make more efficient use of memory by overlaying sections of the task. Use the
COBOL-81 segmentation facility to overlay your object code or the BLDODL utility to overlay
RMS-11 routines. See Part 11, Chapters 4 and 5 for information about these facilities.

Refer to the RSX-11 MI M-PLUS Task Builder Manual for an explanation of all other link-time_ errors.

Linking a COBOL-81 Program 4-3 I

Chapter 5
Running a COBOL-81 Program

Your COBOL-81 TSK file is an executable form of the declarations and instructions represented in
your COBOL source program. It includes I /O routines and other subprograms inserted by the Task
Builder as a result of your commands or the contents of the ODL file. It also includes the COBOL-81
run-time system, which is a library of predefined routines that perform standard functions for your
program, such as arithmetic and data movement. The run-time system is also referred to as the Object
Time System (OTS).

5.1 Functions of the COBOL-81 Object Time System (OTS)

The principal functions of the COBOL-81 OTS include:

• Arithmetic operations

• Input-output operations

• Subscripting, indexing, and table handling

• String operations

• Error handling

5.2 Command Line Format

To run a COBOL-81 program, type:

RUN task-file

where:

task-file names your executable (or task) image. The default file type is TSK.

5-1

5.3 Run-Time Error Message Summary

The COBOL-81 Object Time System checks adherence to COBOL-81 general rules and issues error
messages to your terminal if there is a general rule violation in your program.

If a run-time error occurs, the OTS issues two lines of information to your terminal. The first line
contains the number associated with the error message and a description of the error. The second line
contains the location of the error in your source code.

The general format of this information is:

nn message-text
Error occurred in program program-name at line number n.

where:

nn identifies the number associated with the error. For a complete listing of run­
time error messages, see Appendix C.

message-text describes the error.

program-name is the name that appears in the PROGRAM-ID paragraph of the source pro­
gram in which the error has occurred.

n is the compiler-generated line number of the source statement that caused the
error.

For example, if PAYROLL.TSK attempts to read a record from a file that is not open, this message is
issued:

33 Pro•raM atteMPted an I/O operation on a file that is not oPen.
Error occurred in Pro•raM PAYROLL at line nuMber 32.

If the program is executing within one or more PERFORM statements when the error occurs, the line
number of each active PERFORM statement will be issued in addition to the message (unless you
compiled the program with the /NOCHECK or the /CHECK:NONE qualifier). For example:

2 Pro•raM atteMPted to exit PERFORMs in the wrong order.
Error occurred in Pro•raM REPORT at line nuMber 22+

The currently active PerforM line nuMberCsl are:
25
22

If the error occurs in a called program, the calling sequence will be issued in addition to the message.
For example:

42 Pro•raM atteMPted division by zero,
Er-ro r occurred in Pro•raM SUBR5 at line nuMber 15+

SUBR5 was called froM line nuMber 20 in Pro•raM SUBR4+
SUBR4 was called f roM line nuMber 43 in Pro•raM SUBR3,
SUBR3 was called froM line nuMber 35 in Pro•rahl SUBR2+

See Appendix C for the complete list of run-time error messages, along with suggested recovery
actions.

I 5-2 Running a COBOL-81 Program

Appendix A
COBOL-81 Compiler Implementation Limitations

This appendix lists the implementation limitations for the COBOL-81 compiler. The compiler issues
diagnostics whenever you exceed any of these limits.

1. The run-time storage that the compiler allocates for object code and data cannot exceed
65535 bytes.

2. The run-time storage that the compiler allocates for an indexed file's RECORD KEY or
ALTERNATE KEY data item cannot be greater than 255 bytes.

3. The number of ALTERNATE KEY data items for an indexed file cannot exceed 254.

4. The value of the integer in the EXTENSION option of the APPLY clause must be from 0 to
65535 (inclusive).

5. The number of SAME AREA or SAME RECORD AREA clauses cannot exceed 30.

6. The length of any record in a file description cannot exceed 16384 bytes.

7. The physical block size for a sequential tape file must be from 18 to 8192 bytes
(inclusive).

8. A PICTURE character-string cannot contain more than 30 characters.

9. PICTURE character-strings for alphanumeric edited or numeric edited data items cannot
represent more than 255 standard data format characters (each character occupies one
byte in storage).

A-1

10. PICTURE character-strings for alphanumeric or alphabetic data items cannot represent
more than 65535 standard data format characters.

11. A nonnumeric literal cannot contain more than 256 characters.

12. The number of operands in the USING phrase of a CALL statement cannot be greater than
255.

13. The number of operands in a DISPLAY statement cannot be greater than 254.

14. The number of operands in a GO TO DEPENDING statement cannot be greater than 512.

15. The integer in the TIMES option of the PERFORM statement cannot exceed
2, 147,483,648.

16. The number of SORT keys is limited to 16. Each of these must be less than 256 charac­
ters. The sum of the keys must be less than or equal to 512 characters.

I A-2 COBOL-81 Compiler Implementation Limitations

Appendix B
Compiler Error Messages

This appendix lists the COBOL-81 compiler error messages that are preceded by an asterisk(*). The
compiler error messages have been made as self-explanatory as possible; however, some require
further clarification. In these cases, the compiler issues the asterisk along with the message to tell you
that more information is available in this appendix. For each message, a numeric code and severity
level are provided. There are three severity levels: Informational (1), Warning (W), and Fatal (F).

004 *This literal contains a non-printing character.

If you intended to include the non-printing character in the literal, no further action is
necessary. If not (that is, if the character is there by error), use a text editor to correct
the I iteral.

010 W *This character is not in the COBOL character set.

016 F

019 F

025 F

201

The compiler ignores the character.

*This picture string is too long.

This is due to one of the following:

• More than 30 characters in the PICTURE string

• More than 18 digits represented for a numeric item

• More than 256 characters represented for a nonnumeric item

*This is not a valid picture string.

See the COBOL-B 1 Language Reference Manual for the syntax rules regarding PICTURE
character-strings.

*Invalid character used with repeat count.

See the COBOL-B 1 Language Reference Manual for the syntax rules regarding PICTURE
strings.

*The redefining item is smaller than the redefined item.

If the difference in the items' sizes is not intentional, correct the source code.

B-1

203 I

229 F

233 F

263 F

268 F

300 I

*Fill bytes have been inserted in this record or item.

Fill bytes will make this item longer than you might expect. To see how much space the
compiler allocates for this item, use the /SHOW:MAP qualifier when you compile the
program.

*The VALUE clause is incompatible with the category of this item.

A numeric item can have only a numeric literal value. An alphanumeric, alphanumeric
edited, numeric edited, or alphabetic item can have only a nonnumeric literal value.

*This value exceeds the maximum for this parameter.

See the COBOL-81 Language Reference Manual for the rules and limits for the particular
statement causing the error.

*Multiply defined name.

Each name in a COBOL-81 program can belong to only one set of user-defined words.
Condition-names, data-names, and record-names belong to the same set; therefore, you
can define a data-name, record-name, and condition-name with the same word. In these
cases, you can qualify the word so that there is no ambiguity when you reference an
item.

However, if you define a word to be in one of the following sets, you cannot use that
- word to define an item in any of the other sets:

• Alphabet-name

• File-name

• Index-name

• Mnemonic-name

• Paragraph-name

• Program-name

• Section-name

•Text-name

Revise your source code so that the name does not duplicate a name in another set.

*Use of this file in a SAME AREA clause implies its usage in more than one SAME
RECORD AREA clause.

If any file in a SAME AREA clause is in a SAME RECORD AREA clause, all files in that
SAME AREA clause must be in the SAME RECORD AREA clause.

*The redefining item is larger than the redefined item.

If the difference in the items' sizes is not intentional, correct the source code.

310 W *The RECORD CONTAINS value is greater than length of longest record.

I B-2

When the program reads or writes a record, it will access the number of characters
specified by the RECORD CONTAINS clause, including characters you did not define as
part of the record.

Compiler Error Messages

311 W *The length of longest record is greater than RECORD CONT Al NS value.

The RECORD CONTAINS value is ignored. When the program reads or writes a record, it
will access the number of characters specified by the longest record description.

312 W *The upper bound on RECORD VARYING clause is greater than longest record length.

316 I

The upper bound will be used to determine the maximum number of characters that can
be read or written.

*Fill bytes have been inserted before this data item.

Fill bytes will make this item longer than you might expect. To see how much space the
compiler allocates for this item, use the /SHOW:MAP qualifier when you compile the
program.

353 W *Index data items are allocated differently using VAX-11 COBOL.

The compiler issues this message only if you compile your program with the /STA:VAX
switch.

USAGE IS INDEX data items in COBOL-81 are two bytes long. In VAX-11 COBOL, they
are four bytes long. You must not store these items in COBOL-81 files if a VAX-11
COBOL program also accesses those files. Appendix D of the COBOL-81 Language
Reference Manual explains how you must use index data items in your program to be
compatible with VAX-11 COBOL.

354 W *The storage allocation of this item is incompatible with VAX-11 COBOL.

453 F

The compiler issues this message only if you compile your program with the /STA:VAX
switch.

COBOL-81 aligns USAGE IS COMP items on a word boundary. VAX-11 COBOL aligns
these items on any byte boundary. If your program generates files containing COMP data
items and a VAX-11 COBOL program must access those files, you must resolve this
incompatibility. The easiest way to do this is to specify the SYNCHRONIZED clause for
all COMP items in your program. Appendix D of the COBOL-81 Language Reference
Manual also explains a manual method (explicit FILLER item insertion) you can use to
resolve COMP alignment differences.

*Ambiguous reference.

Your reference to this item is not unique; that is, your reference points to more than one
user-defined word in your program. Remember that data-names and procedure-names
need to be unique only if you refer to them in Procedure Division statements. This
message appears when you define a name more than once in your program and cannot
use qualification to make it unique. In this case, you must change one of the duplicate
names to a unique one.

501 *Compilation resumed at this point.

This message may be issued after the compiler detects a fatal error. It indicates that the
compiler skipped source code from the last error to this point, and in doing so it might
have overlooked errors or created new errors. For example, skipping a SELECT clause will
cause an error when the compiler encounters the file description.

Compiler Error Messages B-3 I

512 F

520 F

532 F

543 F

637 F

I 8-4

*A required operand is missing.

See the COBOL-81 Language Reference Manual for the rules regarding the statement
causing this error.

*Invalid PROCEDURE DIVISION header.

See the COBOL-81 Language Reference Manual for the rules regarding the two formats
for this header.

*Illegal combination of sending and receiving items.

See the COBOL-81 Language Reference Manual for tables of valid MOVE or SET operand
combinations.

*This program-name contains an invalid character.

A program-name can contain characters from the set A through Z, a through z, 0 through
9, and hyphen (-).

*Invalid use of the INTO phrase.

When you use the INTO phrase of a READ or RETURN statement, one of the following
conditions must be true:

• Only one record description applies to the file.

• All record descriptions for the file and the receiving data item are group items or
alphanumeric elementary items.

Either change your program so that these conditions are true or delete the INTO phrase
from the statement.

Compiler Error Messages

Appendix C
Run-Time Error Messages

This appendix lists the COBOL-81 run-time error messages. COBOL-81 displays these messages
when it detects errors during program execution.

Each message is followed by an explanation and one or more suggested solutions.

Messages preceded by asterisks (*) indicate Synchronous System Traps, which are described in the
documentation set for your operating system. A Synchronous System Trap can occur if:

• You compile your program with any of the following qualifiers: /NOCHECK, /CHECK: NONE,
/CHECK:NOPERFORM, or /CHECK:NOBOUNDS

• You get a link-time error but execute the task anyway

When a Synchronous System Trap occurs, the line number of the source code is not available;
COBOL-81 displays the object-address instead. To associate this address with the source program
statement that caused the error, use the memory allocation map produced by the LINK/C81 com­
mand (when its /MAP qualifier is specified). Revise the source code so that the PERFORM statement
(or the subscript or index) is within the range specified in the program.

COBOL-81 also issues message 15, RESERVED INSTRUCTION, if a program was compiled with the
/CODE:CIS qualifier and you attempt to run it on a system without the Commercial Instruction Set
(CIS). In this case, you must recompile the program with the /CODE:NOCIS qualifier and then
recreate the task image.

C-1

If the corrective actions just described do not solve the problem, submit an SPR (Software Problem
Report).

1 Program attempted to PERFORM a range that is already being performed.

An active PERFORM range must be exited before it can be performed again. Revise the
program logic.

2 Program attempted to exit PERFORMs in the wrong order.

All PERFORM ranges, whether physically nested or not, must be exited in reverse order.
Revise the program logic.

3 A subprogram attempted to CALL itself either directly or indirectly.

The EXIT PROGRAM statement must be executed in a subprogram before the subprogram can
be called again. Revise the program logic.

4 Number of parameters used by subprogram does not equal number in CALL statement.

The number of arguments in the calling program's CALL statement must equal the number
of arguments in the called program's PROCEDURE DIVISION USING header. Revise the
source code.

5 Program evaluated a subscript outside the range of the OCCURS clause.

A subscript value must be within the range defined by the OCCURS clause, and not less than
one. Determine why the program is using a value outside the range and revise the code.

6 Program attempted to OPEN more than one file specified in a SAME AREA clause.

Only one file in a SAME AREA clause can be open at one time. Revise the program logic.

7 Version number of program does not match that of the OTS.

This error will occur in two situations:

• When a new version of the OTS has been installed and the version numbers of the main and
subprograms do not match. In this case, recompile all the programs in the task and build a
new executable image.

• When a new version of the compiler has been installed but a new OTS has not been
installed. In this case, install the new OTS and build a new executable image.

8 Environmental integrity fault.

Part of the run-time system has been damaged by the program or by an error in the run­
time system itself. Thiserrorcould result from an out-of-range subscript in a program compiled
with qualifiers that suppress subscript range checking (I NOCHECK, /CHECK: NONE,
/CHECK:NOBOUNDS). Recompile the program with the /CHECK:BOUNDS qualifier and
correct any errors the bounds checking detects. If the error still occurs, submit an SPR
(Software Problem Report).

9 Program attempted to OPEN more than the maximum of 15 files.

No more than 15 files can be open at the same time. Revise the source code.

I C-2 Run-Time Error Messages

10 Error in an input-output operation. The RMS error code is n.

This is an RMS-specific error; see the RMS-11 User's Guide for more information.

An appropriate USE procedure in the program can handle this error during execution. The file
status key value for this error is 98 if the operation was CLOSE, and 30 for all other operations.

*11 ODD ADDRESS FAULT.

*12 MEMORY PROTECTION VIOLATION.

*13 BPT INSTRUCTION.

*14 IOT INSTRUCTION.

*15 RESERVED INSTRUCTION.

*16 INVALID EMT INSTRUCTION.

*17 TRAP INSTRUCTION.

*18 FLOATING POINT EXCEPTION.

19 Program could not find a record with the record key specified.

Determine why the record was not in the file. If this error is to be expected, add a routine to
the source code that will handle it during execution. It can be handled by either:

• The INVALID KEY phrase.

• An appropriate USE procedure. The file status key value for this error is 23.

20 Program attempted to WRITE beyond the boundary of the file.

This error occurs if the system cannot extend the file. To recover, make the file noncontiguous
(see your operating system documentation for instructions).

To handle this error during execution, add a routine to the source code. The error can be
handled by either:

• The INVALID KEY phrase.

• An appropriate USE procedure. The file status key value for this error is 34 if the organiza­
tion is sequential, and 24 if it is indexed.

21 Program attempted to OPEN a file that another program is accessing.

A file cannot be accessed for writing or updating by more than one program at a time unless
ALLOWING ALL was specified in its OPEN statement. Either revise the OPEN statement or add
an appropriate USE procedure to the program to handle the error during execution. The file
status key value for this error is 91.

22 Program attempted to access a record that another program is writing or updating.

A record cannot be written or updated by more than one program at a time. An appropriate
USE procedure in the program can handle this error during execution. The file status key value
for this error is 92.

Run-Time Error Messages C-3 I

23 Program attempted an l~O operation that is invalid with the OPEN mode for the file.

Either revise the source code (changing the OPEN mode or the 1-0 operation) or add an
appropriate USE procedure to the program to handle the error during execution. The file status
key value for this error is 94.

24 Program attempted a DELETE or REWRITE not immediately preceded by a successful READ.

Either revise the source code or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 93.

25 Program attempted to WRITE or REWRITE a record with a nonascending key value.

If nonascending keys are to be allowed, change the access mode to RANDOM or DYNAMIC.
Otherwise, add a routine to the program to handle the error during execution. The error can
be handled by either:

• The INVALID KEY phrase.

• An appropriate USE procedure. The file status key value for this error is 21.

26 Program attempted to WRITE or REWRITE a record with a duplicate key value.

If the error occurred on an alternate key, recreate the file specifying DUPLICATES. Otherwise,
add a routine to the program to handle the error during execution. The error can be handled
by either:

• The INVALID KEY phrase.

• An appropriate USE procedure. The file status key value for this error is 22.

27 Program attempted to REWRITE a record after changing the value of its primary key.

For indexed files in sequential access mode, the values of the primary keys in the record to be
replaced and the last record read from the file must be equal. Either revise the source code
(changing the access mode to RANDOM or DYNAMIC) or add a routine to the program to
handle the error during execution. The error can be handled by either:

• The INVALID KEY phrase.

• An appropriate USE procedure. The file status key value for this error is 21.

28 Program attempted to READ from a missing optional file.

Add a routine to the program to handle this error during execution. It can be handled by
either:

•The AT END phrase.

• An appropriate USE procedure. The file status key value for this error is 15.

29 Program could not find a file specified to be OPENed.

I C-4

Determine whether the values in the ASSIGN and VALUE OF ID clauses are incorrect or the
file is actually missing. An appropriate USE procedure in the program can handle this error
during execution. The file status key value for this error is 97.

Run-Time Error Messages

30 Program attempted to create a file but could not find enough space.

This error occurs if the device in the file specification does not contain the preallocation
amount of space. (If the program does not specify a preallocation amount in its APPLY clause,
the RMS-11 default is four blocks for a sequential file and four times the bucket size for an
indexed file.) Either change the preallocation amount in the APPLY clause, create more space
on the device, or add an appropriate USE procedure to the program to handle the error during
execution. The file status key value for this error is 95.

31 Program attempted an 1-0 operation on a file that was already closed.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

32 Program attempted to READ a record but the end of the file was reached.

Add a routine to the program to handle this error during execution. It can be handled by
either:

• The AT END phrase.

• An appropriate USE procedure. The file status key value for this error is 13 for the first
occurrence, and 16 for each subsequent occurrence before a valid record position is
established.

33 Program attempted an 1-0 operation on a file that is not open.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

34 Program attempted to OPEN a file that was previously closed WITH LOCK.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

35 Program attempted to OPEN a file that is already open.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

36 Program attempted to use an exponent greater than the 99 maximum.

Determine how the exponent was generated and revise the source code.

37 Program attempted to use a non-integer exponent.

Determine how the exponent was generated and revise the source code.

38 Program generated an intermediate value that exceeded the maximum of 10 to the 99th.

Determine how the value was generated and revise the source code.

39 Program failed in an attempt to ACCEPT data.

This is an indication of a hardware error. The terminal is busy, off line, or otherwise
unavailable.

40 Program failed in an attempt to DISPLAY data.

This is an indication of a hardware error. The terminal is busy, off line, or otherwise
unavailable.

Run-Ti me Error Messages C-5 I

41 Program encountered a protection code violation when it tried to OPEN a file.

This condition can be handled two ways:

• By an appropriate USE procedure in the program. The file status key value for this error
is 30.

• By lowering the file's protection code. Use the SET PROTECTION command.

42 Program attempted division by zero.

Determine how the zero value was generated and revise the source code.

43 Program attempted to raise zero to the zero power.

Determine how the values were generated and revise the source code.

44 Program attempted to execute a PERFORM statement beyond the maximum number of
times.

The maximum number of times is 2, 147,483,648. Determine how the value was generated
and revise the source code.

45 SELECT clause organization does not match organization of file opened.

File organization is fixed when the file is created and cannot be subsequently changed. Revise
the ORGANIZATION clause in the source code.

46 SELECT clause index key description does not match that of file opened.

The data descriptions of all record keys, and their relative locations in the record, must be the
same as when the file was created. Revise the SELECT clause in the source code.

47 Program attempted to create a print file on a tape without specifying PRINT CONTROL.

The PRINT-CONTROL phrase of the APPLY clause must be specified for print files on mag­
netic tape. Revise the source code.

48 Program attempted to activate a USE PROCEDURE which is already active.

One USE AFTER EXCEPTION procedure can invoke another. However, a USE AFTER
EXCEPTION procedure must return control to the routine that invoked it before it can be
invoked again. Revise the source code.

49 The BY operand in a PERFORM VARYING is zero.

The value for the index-name following the VARYING BY phrase must not be zero. Determine
how the zero value was generated and revise the source code.

50 Invalid LINAGE value.

The values for data items specified as page-lines or footing-line must be greater than zero.
Determine how the zero value was generated and revise the source code.

51 LINAGE value is less than FOOTING value.

I C-6

In the LINAGE clause, the value for a data-name specified as page-lines must be greater than
or equal to the value for a data-name specified as footing-line. Determine which value is
incorrect and revise the source code.

Run-Time Error Messages

52 Enter the numbers of switches you want "ON" during program execution.

The program you are running uses external switches to determine internal logic paths. Consult
the documentation accompanying your program to determine which switches should be set
"ON" for your application or environment. Then, enter the numbers of the switches you want
set (separated by commas, spaces, or tabs). Or, if you want to set all switches in the program,
you can simply enter an asterisk (*).

53 OCCURS DEPENDING ON item is not within the specified range.

In the OCCURS clause, all values for a data-name specified in the DEPENDING ON phrase
must be within the range delimited by OCCURS min-times TO max-times. Determine why an
invalid value is being generated and revise the source code.

54 Attempt to WRITE a record that already exists in a relative file.

An appropriate USE procedure in the program can handle this error during execution. The file
status key value for this error is 22.

55 Switch input is invalid or out of range.

COBOL-81 programs can test the status of no more than 16 switches. Switch numbers must be
integers within the range 1 to 16 (inclusive). Switch input is out of range if you entered an
integer that is less than 1 or greater than 16. Input is invalid if you entered a switch number
that is not an integer or is not specified in your program.

When you enter the input character string, each switch number must be separated by a space,
a comma, or a tab character. Typing the string incorrectly results in input that is invalid or out
of range.

Re-execute your program and enter valid switch numbers correctly.

56 Switch input string must be 64 characters or less.

The string of input characters you enter is restricted to a maximum of 64 characters. Only
integers (1 through 16, inclusive), separated by commas, spaces, or tabs should appear in the
input string. Re-enter the characters correctly.

58 Attempt to start a SORT I MERGE when one is already in progress.

A task must execute SORT and MERGE statements one at a time; that is, it cannot execute a
SORT or MERGE statement before another has finished execution. This error could occur
when a task contains subprograms and two programs in the task attempt simultaneous sort or
merge operations.

59 Attempt to RELEASE/RETURN a record from the wrong sort or merge file.

The SD entry for the sort or merge file does not contain the record specified in the SORT or
MERGE statement. Revise the source code.

60 Attempt to RELEASE a record during a merge operation.

The MERGE statement cannot specify an input procedure. Therefore, RELEASE is an invalid
statement during a merge operation. Revise the source code.

61 Error in a sort or merge operation. The SORT I MERGE error code is n.

Submit an SPR (Software Problem Report).

Run-Time Error Messages C-7 I

Appendix D
MCR Commands for COBOL-81

All of the examples in this manual for compiling, linking, and running COBOL-81 programs were
written using the DIGITAL Command Language (DCL). This appendix provides equivalent Monitor
Console Routine (MCR) commands.

You must use the MCR interface for program development when:

• You want to edit a command (CMD) file or an overlay descriptor language (ODL) file for input
to the Task Builder.

• You want to specify disk resident RMS-11 libraries that are less heavily overlaid than the
LINK/C81 /RMS:NORESIDENT default.

• You want to specify a user library as input to the Task Builder.

• You want to store or delete SKL files in a directory other than the one in which the OBJ files
reside.

If you are in DCL and you want to change to MCR to use the commands in this appendix, you type:

SET TERMINAL MCR

You will remain in MCR mode until you log off. If you want MCR to be the default command line
interpreter for your terminal, have the system manager change your account file.

D.1 Compiling

The compiler scans your source statements for syntax and semantic errors. Once it has finished, it
responds with a diagnostic summary of any errors it found. You can also request additional compiler
functions depending on the command line you use.

D-1

0.1.1 Using the Compiler

To invoke the COBOL-81 compiler, type:

CB 1 00J

The RETURN key is optional. If you press it, the compiler gives you this prompt:

C81>

Then you must enter a command line as input to the compiler. If you do not press the RETURN key,
you must enter compiler commands on the same line.

If you type /HELP instead of a command line, the compiler displays a help message on your screen.
The message summarizes the command line format and switches. The HELP text also specifies current
default switches for the compile command line.

The format of the command line to the compiler is:

[obj-file], [I ist-fi le], [diag-file] =source-file[I switch] ...

This command produces an object file, a list file, and a diagnostics file. The diagnostics file is simply
a subset of the list file. It contains only the diagnostics issued, along with the line of source code to
which each diagnostic applies. A fourth file, with the file type SKL, is produced along with each
object file. It consists of skeleton overlay descriptor language, which is needed as input to the
COBOL-81 BLDODL utility. You control the production of all four files through your input to the
compiler.

The default file types are:

OBJ for the object file
LST for the list file
DIA for the diagnostics file
CBL for the source file

The object, list, and diagnostics files are optional; each is produced only if you give a file name for it.
The compiler expects the file names, separated by commas, in the order shown in the command line
format. If you want to stop the compiler from producing one file but not the one following it in the
command line, you must still type the comma for the one you wish to omit.

To illustrate the use of the commas, here are sample command lines showing the eight possible
combinations of input and output files:

1. C81 FILE11FILE2 iFILE3 = FILE

Creates FILE1 .OBJ, FILE1 .SKL, FILE2.LST, and FILE3.DIA from FILE.CSL.

2. C81 MONTH, MONTH = MONTH

Creates MONTH.OBJ, MONTH.SKL, and MONTH.LST from MONTH.CSL.

3. CB 1 LABEL, , LABEL = PROGRM

Creates LABEL.OBJ, LABEL.SKL, and LABEL.DIA from PROGRM.CBL.

I D-2 MCR Commands for COBOL-81

4. C81 , LIST, TT: = MYFILE+CRG

Creates LIST.LST from the source file MYFILE.CRG. The diagnostics are output directly to
your terminal; that is, they are displayed on the screen rather than stored in a file.

5. C81 INVEST = TANZAN, ITE

Creates the object module INVEST.OBJ and its accompanying SKL file (INVEST.SKL) from
TANZAN.ITE.

6. C81 t TI: = GRADE

Creates only a temporary list file from GRADE.CBL, and outputs it directly to the terminal.

7. C81 t t REPORT = REPORT

Creates the diagnostics file REPORT.DIA from REPORT.CBL.

8. C81 = TEST.311

Compiles the source file TEST.311 but creates no output files. You get the diagnostic
summary, however.

You can request various compiler functions by indicating compiler switches after you specify the
source file in the command line. Table 0-1 summarizes the available compiler switches and the
functions they perform.

Table 0-1: Summary of Compiler Switches

You Type To Tell the Compiler

/BLD To create an ODL and a CMD file to submit to the Task Builder

/CIS To use CIS (Commercial Instruction Set) in the object code

/CRF To produce a cross-reference table of data and procedure names in your LST file

/CVF. To accept a source program in conventional (ANSI) format

/DEB To create symbol information in the object code for use by the Symbolic Debugger

/MAP To produce Procedure Division and Data Division offset maps in your LST file

/STA:VAX To flag COBOL-81 code that might be incompatible with VAX-11 COBOL code

/SUB To treat the source program as a subprogram

/TRU To perform decimal, rather than binary,. truncation on COMP data items

/-BOU Not to produce the code needed for checking subscript and index ranges at run time

/-CIS Not to use CIS in the object code

/-INF Not to issue informational diagnostics

/-PER Not to produce the code needed for checking nested PERFORM statements at run time

/-SKL Not to produce a skeleton overlay descriptor language file

/FIPS:74 To change values for FILE STATUS data items and sizes for some arithmetic operations

/KER:xx To change the PSECT kernel in your object file from SC (the default) to the value you specify for "xx"

/TMP:dev To change the storage area for temporary work files from SY: (the default) to the value you specify for
"dev"

MCR Commands for COBOL-81 0-3

As shown in the table, the 17 available switches can be divided into three groups:

• Those requesting special functions

• Those suppressing normally performed functions

• Those altering normally performed functions

D.1.1.1 Switches Requesting Special Functions - There are nine special functions available. By
default, the compiler does not perform any of these, unless the default is changed by your system
manager when installing the compiler.

/BLD

/CIS

Tells the compiler to create an ODL and a CMD file. The Task Builder needs both files if your
task uses overlaid or resident library I /0, uses segmentation, or includes the Symbolic
Debugger. Using this switch is equivalent to using the BLDODL utility without specifying any
switches in the BLDODL command line. See Section D.2 on BLDODL.

The /BLD switch cannot be used when compiling subprograms or programs that call
subprograms.

Tells the compiler to use CIS (Commercial Instruction Set) in the object code it produces. If the
system manager set the default to non-CIS code when COBOL-81 was installed, and your
machine does have CIS, this switch overrides that default. See the system manager if you do not
know whether or not your machine has CIS.

/CRF

Tells the compiler to add two cross-reference tables to the end of your list file: one for data­
names and one for procedure-names. In each table, the names you used in your program are
listed alphabetically. Opposite each name is a list of every line number in which that name
occurs. A "D" after a number indicates the line in which you defined the name. An asterisk(*)
after a number indicates a destructive reference.

Here is an excerpt from a list file (SAMPLE.LST) which resulted from the command line "C81 ,
SAMPLE = SAMPLE/CRF":

CROSS REFERENCE IN ALPHABETICAL ORDER

DATA NAMES and MNEMONIC NAMES

END-OF-DATA
FAKE-CARD
F-NUM6ER

25D
18
220

75
19D
82*

85
84

This switch is particularly useful if, for example, one variable yields unexpected results when
you run your program. You can trace the variable through your program, and the table gives you
a list of the lines to check.

The cross-reference tables are also helpful when you use the Symbolic Debugger.

/CVF

Tells the compiler that your program is in conventional (or ANSI) rather than terminal format.

I D-4 MCR Commands for COBOL-81

/DEB

Tells the compiler that you intend to use the Symbolic Debugger (see Part II, Chapter 3). The
compiler then generates symbol information in the object module for all data names and proce­
dure names. This increases the size of the object file. When you finish debugging and no longer
need the symbols, you can recompile without this switch.

If you include the.Symbolic Debugger in your program, you must also do one of the following:

• Use the compiler's /BLD switch. For example:

C81 TAXDAT = TAXDAT/DE6/6LD

• Use the BLDODL utility, specifying its /DEB switch. For example:

6LD>TAXDAT = TAXDAT/DE6

/MAP

Tells the compiler to add two offset maps to the list file, one referring to the Data Division and
one referring to the Procedure Division. The compiler provides these maps for use with ODT
(Online Debugging Tool); consult the IAS/RSX-11 ODT Reference Manual for more information.

/STA:VAX

Tells the compiler to flag COBOL-81 code that is incompatible with VAX-11 COBOL code in
the following situations:

• some COMP items (without SYNC clause)

• USAGE IS INDEX items

• RMS-STS AND RMS-STV

/SUB

Tells the compiler that it is compiling a subprogram. You must use this switch only if the
subprogram does not use parameters from the main program; that is, if it does not contain the
PROCEDURE DIVISION USING header.

/TAU

Tells the compiler to perform decimal truncation on the values of COMP data items. By default,
COBOL-81 performs binary truncation. With binary truncation, the maximum value a COMP
item can contain depends on its storage allocation. If you specify this switch, the maximum
value depends on the item's PICTURE character-string.

D.1.1.2 Switches Suppressing Functions - Four switches suppress functions that the compiler nor­
mally performs (unless the defaults have been changed by your system manager). Each is prefaced by
a minus sign, indicating that you are "turning off" the function.

/-BOU

Stops the compiler from generating code for checking subscripts and indexes. By default,
COBOL-81 checks each one at run time against the ranges defined by its data name's OCCURS
clause. If any range is exceeded during execution, COBOL-81 issues an error message to that
effect. However, if this switch is used to suppress checking, an out-of-range subscript or index
does not generate an error message, and the program does not produce valid results.

MCR Commands for COBOL-81 0-5 I

/-CIS

Stops the compiler from using CIS (Commercial Instruction Set) in the object code it produces. If
the system manager set the default to CIS code when COBOL-81 was installed, this switch
overrides that default.

/-INF

Stops the compiler from issuing informational diagnostics during the compilation. If you use this
switch, only warning and fatal diagnostics appear in the list file, diagnostic file, and diagnostic
summary.

/-PER

Stops the compiler from generating code needed for checking PERFORM statement ranges. At
run time, COBOL-81 uses this code to determine if your program's PERFORM ranges are nested
properly (if nested at all). If COBOL-81 detects improper nesting during execution, it issues an
error message to that effect. If you use this switch, however, and the program's PERFORM
statements are nested incorrectly, the program does not produce valid results.

/-SKL

Note

Both /-PER and /-BOU can save execution time and decrease the size of the
task image.

Stops the compiler from producing the skeleton overlay descriptor language file. This file is
normally produced each time the compiler creates an object file.

Note

The SKL file must be produced if you want to use the compiler's /BLD switch or
the BLDODL utility.

D.1.1.3 Switches Altering Functions - There are three switches you can use to alter compiler func­
tions:

/FIPS:74

Compilation with this switch produces the following:

• The value 10 replaces file status values 13, 15, and 16.

• The maximum size of intermediate values generated during arithmetic computations is 19
digits, rather than 18 digits.

/KER:xx

Tells the compiler to use the two alphanumeric characters you specify as the PSECT kernel for
this program. The only time you need this switch is when your task image uses both subpro­
grams and segmentation; see Part 11, Chapter 5, for a detailed explanation.

I D-6 MCR Commands for COBOL-81

/TMP:dev

Tells the compiler to store its temporary working files on the device you specify by dev during
compilation. Since the default device is SY:, this switch is useful if there is limited system disk
space available, or if you have a high-speed swapping device, such as a fixed-head disk or
electronic memory, available.

D.1.1.4 Examples of Switches - These command lines illustrate the use of various switches:

1. CB1 = YEARLY/-INF

Gives you a summary of warning and fatal errors only.

2. CB1 t ANNUAL = ANNUAL I MAP I CRF

Creates the list file ANNUAL.LST with offset maps and cross-reference tables.

3. CB 1 TEST = TEST I TMP: DK2:

Uses DK2: for storing temporary files during compilation.

4. CB1 MAIL = MAIL I CRF

Is a meaningless use of the /CRF switch, because no list file has been specified to contain
the cross-references. COBOL-81 ignores the switch and proceeds with the compilation.

D.2 Using the BLDODL Utility

This section explains the use of the COBOL-81 BLDODL utility and the optional functions it provides.

For an explanation of the RMS-11 concepts referred to in this section, see the RMS-11 User's Guide.

To invoke BLDODL, type:

BLDODL ID

The RETURN key is optional. If you type it, BLDODL will give you this prompt:

BLD>

You then enter a command line. If you do not press the RETURN key, you must enter commands on.
the same line as BLDODL, If you type /HELP instead of a command line, BLDODL displays a help
message on your terminal. This message summarizes the format of the command and its switches.

To exit to the system prompt, press CTRL/Z.

MCR Commands for COBOL-81 0-7 I

D.2.1 BLDODL Command Line and Switches

The format of the command line is:

output[/switch] ... = input1 [/switch] ... [,inputx[lswitch). ..). ..

where:

output is the file specification you want BLDODL to use for the ODL and CMD files it
produces.

input1 is the file specification of the SKL file you are processing. (Remember, the compiler
gives the SKL file the same file specification as the one you defined for the OBJ file.)

inputx specifies either another SKL file (created by the compiler), a user library, or an
ODL file you have created to describe the overlay structure for the RMS-11 portion of
your task. If you specify an ODL file, you must follow it with the /IO:USEROV switch.
If you specify a user library, you must follow it with the /ULIB switch. See the
RSX-11 MI M-PLUS Task Builder Manual for more information.

switch is one of the following:

I 0-8

/CLU:RESLIB1 :RESLIB2

Allows you to cluster up to two other memory-resident libraries with a
COBOL-81 OTS resident library. The RMS resident library, RMSRES.TSK, is one
library you can cluster with a COBOL-81 OTS resident library. The following
BLDODL command line illustrates how to do this:

TEST= TEST/CLU:RMSRES

If you use the /CLU switch to cluster with RMS, you cannot use the /10: switch.

/ULIB

Allows you to include one user library per task image. Append /ULIB to a library
name of six or fewer characters.

/DEB

Indicates that you are including the COBOL-81 Symbolic Debugger in your task.
You must use this switch in the BLDODL command line if you used the com­
piler's /DEB switch.

/FMS

Indicates that you are including the FMS library in your task image.

/MAP

Creates a request in your CMD file for a Task Builder memory allocation map (or
MAP file).

MCR Commands for COBOL-81

/MER

Creates an ODL file that is a concatenation of the SKL files in your task. This ODL
file contains every line from every SKL file used. If you do not use this switch,
BLDODL produces an abbreviated ODL file. This file includes only a one-line
reference to each SKL file. An abbreviated ODL file is smaller, but a conca­
tenated ODL file eliminates the need for keeping each SKL stored on disk. If you
do not plan to recompile any part of your program, you can use I MER and then
delete each SKL file from your directory.

I OBJ :dev:project:programmer

/10:

Specifies the location of your OBJ file. Use this switch on an input SKL file when
the SKL file and its corresponding OBJ file are in different directories.

Specifies how you want the RMS-11 routines included in your task image. There
are four choices:

/IO:DECOV is the default if you do not use an /10: switch. It specifies that the
I /0 routines are to be overlayable (that is, that they will share memory) in your
task. If your program requires RMS-11 support for indexed files, the routines will
occupy 9K bytes in the task. Support for sequential I /0 occupies only 8K bytes.
In your ODL file, BLDODL includes DIGITAL-supplied instructions that specify
how the Task Builder must overlay the RMS-11 routines.

/IO:NONOV includes the I /0 routines so that they are not overlayable. The
amount of memory occupied by the routines depends on the amount of I /0 your
program performs. Execution speed may be considerably better with this switch
than it would be with the default, /IO:DECOV.

/IO:MEMRES specifies that your task will use the memory-resident RMS-11
library, RMSRES. It occupies 16K bytes in your task. See the RMS-11 User's
Guide for an explanation of RMS-11 resident libraries.

/IO:USEROV indicates a locally written ODL file. Use this switch only if you
specify an ODL file as one of the input files in the BLDODL command line. The
switch must immediately follow the ODL file specification.

/LAG

Specifies a large overlay structure (12K bytes) for RMS-11 routines. With a large
overlay, execution speed will increase, but your task size will be larger.

If you are not overlaying RMS-11 routines (with the /IO:DECOV switch or by
accepting the default), and your task does not perform indexed I /0, BLDODL
ignores this switch.

/RES

Creates a reference in the CMD file to the shared OTS resident library. The
resulting task image will be smaller; it will use the resident library at run time.
Use of the resident library will save memory space if several COBOL-81 tasks are
executing at the same time.

Do not use the I RES switch if the resident library is not installed on your system.

MCR Commands for COBOL-81 D-9 I

/DIA

Invokes a dialog from BLDODL that prompts you for each BLDODL option. This
switch is available primarily for former PDP-11 COBOL users who are accus­
tomed to this dialogue from the PDP-11 COBOL Merge Utility (documented in
the PDP-11 COBOL User's Guide).

D.2.2 BLDODL Utility Command Line Defaults

A BLDODL command line with no switches produces default ODL and CMD files. These default
files:

• Do not include the Symbolic Debugger

• Do not produce a Task Builder map

• Do not concatenate SKL files (each SKL file is referred to indirectly)

• Use the device and project-programmer number of the output file specified to find each SKL
and OBJ

• Use DIGITAL-supplied overlay descriptors for RMS-11 routines

• Use the small RMS-11 overlay structure (9K bytes) for indexed file support if the task requires­
that support

The examples at the end of this appendix (Section D.5) illustrate the use of BLDODL in the process of
producing a task image.

D.3 Task-Building

The RSX-11 M /M-PLUS Task Builder produces an executable (or task) image of your program. It
builds the image either by processing a direct command line, or by processing the command (CMD)
file produced when you use either the BLDODL utility or the compiler's /BLD switch.

This section first explains using the CMD file as input to the Task Builder. Then, it shows you how to
build tasks with a direct command line.

D.3.1 Using the CMD File as Input

To build a task using the CMD file, type:

TKB @command-file

where:

TKB invokes the Task Builder.

@ indicates to the Task Builder that the file specified is a command file (that is, it
contains Task Builder commands).

command-file is the name of the CMD file produced by the compiler when you used the
/BLD switch or the BLDODL utility.

The Task Builder processes the commands in the file specified and produces an executable image. It
uses the same file name as that of the command file, and the file type TSK.

I D-10 MCR Commands for COBOL-81

D.3.2 Using a Direct Command Line as Input

The format of the Task Builder command line is:

TKB task-file[,map-file[,symbol-table-file]] = object-file(s), library-file /LB,LB: [1, 1) RMSLIB /LB

where:

TKB invokes the Task Builder.

task-file specifies the name of the task image. The default file type is TSK.

object-file(s) specifies the names of each object .file to be included in the task. If you specify
more than one file, one must be a main program and the others subprograms.
The order in which they are specified is not important. The default file type for
an object file is OBJ.

library-file specifies a system library file needed by the Task Builder to process all
COBOL-81 programs. Use one of the following:

LB:[1, 1]C81CIS if your object code contains CIS (ICIS)

LB:[1,1]C81LIB if your object code does not contain CIS (1-CIS)

LB: [1, 11 RMSLIB is necessary only if your task performs file I /0. This file spec­
ification refers to a system library file of RMS-11 routines.

If you specify the RMS-11 library file (LB: [1, 1)RMSLIB), the Task Builder builds nonoverlaid RMS-11
routines into your task. This is equivalent to using the BLDODL utility with the /IO:NONOV switch.

1 Your task will use more memory with nonoverlaid I /0 routines, but you will achieve the fastest
execution speed this way.

D.3.3 Results of the Task Build

A successful task build creates an executable image and returns to the system prompt.

If the task build is unsuccessful, a Task Builder error message is issued to your terminal before the
return to the system prompt.

The task build will be unsuccessful if the resulting image is too large. The following message indicates
this condition:

SEGMENT sed-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Seg-name is the name of the object file the Task Builder was processing when the overflow occurred.
To recover, you must make more efficient use of memory by overlaying sections of the task. Use the
COBOL-81 segmentation facility to overlay your object code (see Part II, Chapter 5), or the BLDODL
utility to overlay RMS-11 routines.

MCR Commands for COBOL-81 D-11

If you are unsure of whether your compiler produces CIS or non-CIS code and you task build your
object file with the incorrect COBOL-81 OTS library (LB:[1, 1)C81 CIS/LB or LB:[1, 1)C81 LIB /LB), the
Task Builder will be unable to define certain symbols. You will get the following error message if you
have built CIS object code with the non-CIS library (LB:[1,1)C8HIB/LB):

n UNDEFINED SYMBOLS SEGMENT se•-name

$ENC IS

You will get the following message if you have task built non-CIS object code with the CIS library
(LB: (1; 1)C81 CIS/LB):

n UNDEFINED SYMBOLS SEGMENT se•-name

$ENLIB

Refer to the RSX-11 MI M-PLUS Jask Builder Manual for all other Task Builder errors.

D.4 Executing

Just as in DCL, the command to execute a task image is RUN. The format for executing a task
image is:

RUN task-file

Task-file is the name of the executable image created by the Task Builder. The default file type is TSK.

D.5 Examples

To illustrate some of the options COBOL-81 provides, here are some examples of compiling, task
building, and executing programs, and of using the BLDODL utility:

1. The following example shows how to compile, task build, and run a simple COBOL
program that does not perform file I /0. It uses a direct command line, rather than a CMD
file, as input to the Task Builder. All that is required, in addition to the object file created
by the compiler, is the Object Time System library (in this case, the non-CIS library}:

I D-12

C81 TEST1 TEST1
TKB TEST1 = TEST11 LB:[l dJCBlLIB/LB
RUN TEST1

Here is another method that produces the same results. It uses the CMD and ODL files
(produced as a result of the compiler /BLD switch) as input to the Task Builder:

C81 TEST1 = TESTl/BLD
TKB @TEST1
RUN TEST1

MCR Commands for COBOL-81

2. The BLDODL command line shown here requests a Task Builder memory allocation map
(or a MAP file):

C81 TEST2 = TEST2
BLDDDL TEST2 = TEST2/MAP
TKE) @TEST2
RUN TEST2

The Task Builder processes TEST2.CMD and TEST2.0DL to produce both TEST2.TSK and
TEST2.MAP.

3. If you want to use a locally written ODL file (shown here as USRRMS.ODL) to specify the
RMS-11 overlay structure in your task, you use a BLDODL command line similar to the
following one:

C81 TEST3 = TEST3
BLDODL TEST3 = TEST31 USRRMS.ODL/IO:USEROV
TKB @TEST3
RUN TEST3

4. This example shows how to compile, build, and run a COBOL-81 task that uses subpro­
grams (BLDODL is used to create single CMD and ODL files referring to each of the
programs):

C81 MAIN = MAIN
C81 SUB1 = SUB1
C81 SUB2 = SUB2
BLDODL TESTa = MAIN1 SUB11 SUB2
TKB @TESTa
RUN TESTa

5. Here are two different ways to include the Symbolic Debugger in your task image:

C81 TESTS = TESTS/DEB/BLD
TKB @TESTS
RUN TESTS

C81 TESTS = TESTS/DEB
BLDODL TESTS = TESTS/DEB
TKB @TESTS
RUN TESTS

6. The following example shows how to include FMS support in your task:

C81 TESTS = TESTS
BLD TESTS = TESTS/FMS
TKB @TESTS
RUN TESTS

MCR Commands for COBOL-81 D-13 I

Contents

PART II

Chapter 1 Using the COBOL-81 REFORMAT Utility

1.1 ANSI-to-Terminal Format Conversion
1.2 Terminal-to-ANSI Format Conversion
1.3 REFORMAT Error Messages

Chapter 2 Troubleshooting

2.1 Reading a Program Listing.
2.2 Program Run Errors. . . .

2.2.1
2.2.2
2.2.3

Faulty Data . . .
Common Logic Errors.
COBOL-81 Symbolic Debugger

Chapter 3 Debugging Your Program

3.1 Overview of the Debugger.
3.2 Preparing the Program . .
3.3 Using the Debugger Commands

3.3.1
3.3.2
3.3.3
3.3.4

3.3.5

Using the HELP Command
Using the DISPLAY Command .
Using the MOVE Command .
Using Breakpoints

3.3.4.1 SET BREAKPOINT .
3.3.4.2 CANCEL BREAKPOINT
3.3.4.3 SHOW BREAKPOINTS

Using Synonyms ...

3.3.5.1
3.3.5.2
3.3.5.3

DEFINE ..
UN DEFINE
SHOW SYNONYMS

3.3.6 Using the PROCEED Command
3.3.7 Jnterrupting Program Execution.
3.3.8 Using the STOP Command

Chapter 4 Reducing Your Task Size

4.1 When to Use Task Size Reduction Techniques .
4.2 Reduction Techniques Available
4.3 Selecting Library Support Routines

Page

. 1-1

. 1-3

. 1-4

. 2-1

. 2-6

. 2-6

. 2-7

. 2-8

. 3-1

. 3-2

. 3-3

. 3-5

. 3-5

. 3-6

. 3-7

. 3-7

. 3-8

. 3-8

. 3-9

. 3-9
3-10
3-10

3-10
3-11
3-11

. 4-1

. 4-1

. 4-2

4.3.1 Disk Libraries, Resident Libraries, and Clustered Resident Libraries . . 4-2
4.3.2 Estimating COBOL-81 OTS Support . 4-5
4.3.3 Using Disk Libraries Only. . 4-5
4.3.4 Using Resident Libraries. 4-6

Part II

4.4
4.5

Using Subprograms with Implicit Overlays.
Using the COBOL-81 Segmentation Facility

4.5.1
4.5.2

4.5.3

Programming Considerations. . .
Creating a Segmented Task Image

4.5.2.1 Segmenting a Single-Program Task
4.5.2.2 Segmenting a Multiple-Program Task

Reading a Memory Allocation Map.

Chapter 5 Improving Program Performance

5.1
5.2
5.3

5.4

5.5
5.6
5.7
5.8

Introduction
Performance Versus Task Image Reduction.
Using Compiler Qualifiers to Improve Performance .

5.3.1 Using the /NOCHECK and /CHECK Qualifiers
5.3.2 Using the /TEMPORARY:dev Qualifier .

Using BLDODL Switches to Improve Performance

5.4.1 Using the BLDODL/IO:NONOV Switch.
5.4.2 Using the BLDODL/LRG Switch

Using Terminal Format Source Programs.
Data Handling Techniques for Improving Performance
Using File Optimization to Improve Performance .
Using Subprograms.

Chapter 6 lnterprogram Communication

ii Part II

6.1 A Multiple COBOL-81 Program Task

6.1 .1 Identifying a COBOL-81 Subprogram .
6.1.2 Compiling Main and Subprograms . .
6.1.3 Transferring Execution Control with the CALL Statement.

6.1.3.1 The CALL Statement
6.1.3.2 The EXIT PROGRAM Statement.
6.1.3.3 Sharing Execution Control .
6.1.3.4 Nesting CALL Statements

6.2 Accessing Another Program's Data Division

6.3

6.2.1 The USING Phrase .
6.2.2 The Linkage Section
6.2.3 Examples
6.2.4 COBOL-81 OTS - Error Checking

Including Non-COBOL-81 Programs in a Task .

6.3.1 MACRO Programs and COBOL-81 Programs

6.3.2
6.3.3

6.3.1.1 Calling a MACRO Program from a COBOL-81 Program

Calling a COBOL-81 Program from a MACRO Program .
Using the Argument Address List

. 4-6

. 4-7

. 4-7

. 4-8

. 4-8

. 4-9

4-11

. 5-1

. 5-1

. 5-1

. 5-2

. 5-2

. 5-2

. 5-2

. 5-2

. 5-3

. 5-3

. 5-3

. 5-3

. 6-1

. 6-2

. 6-2

. 6-3

. 6-3

. 6-3

. 6-4

. 6-4

. 6-7

. 6-7

. 6-8

. 6-9
6-12

6-12

6-13

6-13

6-14
6-15

Appendix A Debugger Error Messages

Examples

Figures

Tables

4-1
4-2
6-1

6-2

2-1
4-1
4-2
6-1
6-2
6-3
6-4
6-5

6-6

6-7
6-8

3-1
6-1

Sample Segmented Program
Sample Memory Allocation Map
Sharing Program Execution Control Between a Main Program and
Multiple Subprograms.
Redefining a Calling Program's Data Items in the Called Subprogram's
Linkage Section .

4-12
4-13

. 6-5

6-10

Partial Listing of the Program REPORT. 2-3
How Use of Libraries Affects Task Size 4-4
Memory Allocation of a Segmented Program . . 4-9
Sharing Execution Control Between a Main Program and One Subprogram. . 6-4
Nesting CALL Statements . 6-4
Sharing Execution Control Between a Main Program and Multiple Subprograms . 6-5
Correspondence of Single Sets of Data 6-7
Sharing Execution Control and Data Between a Main Program and
One Subprogram . 6-9
Sharing Nested Execution Control and Data Between a Main Program and
Multiple Subprograms. 6-10
Argument Address List General Format 6-15
Sample Argument Address List 6-16

Debugger Commands
Correspondence of Data-Names

. 3-2

. 6-8

Part II iii

Chapter 1
Using the COBOL-81 REFORMAT Utility

COBOL-81 accepts source programs written in either ANSI (conventional) reference format or
DIGITAL terminal format.

• ANSI format results in source programs that are compatible with the reference format of other
COBOL compilers. If your program is in ANSI format, you must compile it using the
/ANSLFORMAT qualifier, unless the default was changed by the system manager during
installation.

• Terminal format works with text editors on an on line keyboard. It is the format expected by the
COBOL-81 compiler, unless the default was changed by the system manager during installa­
tion. Terminal format eliminates the line-number and identification fields of ANSI format. It
saves disk space and decreases compile time.

The COBOL-81 Language Reference Manual explains both formats in detail.

COBOL-81 provides the REFORMAT Utility to convert terminal format source programs to ANSI
format and vice versa. This chapter shows you how to use REFORMAT to do both types of
conversions.

1.1 ANSI-to-Terminal Format Conversion

REFORMAT converts each ANSI-format source line to terminal format by:

• Removing the six-character sequence field in the first six character positions of the
ANSI-format line.

• Moving any continuation (-)or comment(* or /)symbols from character position 7 to charac­
ter position 1 .

• Replacing spaces with horizontal tabs immediately to the right of Margin B and every eight
character positions thereafter until the end of the line. This occurs only in those source lines
not containing a nonnumeric literal.

1-1 11

• Removing the identification entry field in character positions 73 through 80 of the ANSI-format
line.

• Removing insignificant trailing spaces before character position 73 of the ANSI-format line.

• Replacing every form feed character with a line containing a slash(/) in character position 1.

• Placing the converted code in positions 1 through the end of the line, thereby creating a
terminal-format line.

Because spaces are not converted to tabs in lines containing nonnumeric literals, those lines might be
aligned differently from the rest when you use a text editor on the program. However, the list file
produced by the compiler will be aligned correctly.

To run REFORMAT:

• On RSTS/E you type:

RFM lBDJ

•On RSX-11M/M-PLUS you type:

MCR RFM (BD)

REFORMAT executes and prompts you with this message:

REFORMAT - ANSI-to-terMinal conversion Mode [Y I N J?

For an ANSI-to-terminal conversion, type "Y" and press the RETURN key. REFORMAT confirms your
choice with this message:

REFORMAT - ANSI-to-terMinal forMat selected

REFORMAT then asks for input and output file specifications:

REFORMAT - ANSI-forMat inPut file spec
REFORMAT - TerMinal-forMat output file spec

REFORMAT reads the input file and writes a terminal-format output file. After processing the last
source line, REFORMAT displays these messages:

REFORMAT - n ANSI COBOL source lines converted to terMinal forMat
REFORMAT - ANSI-to-terMinal forMat conversion Mode [Y I N J?

The first message indicates the number of input source lines converted to terminal format; the second
message prompts you for conversion of another file. Type CTRL/Z to end execution.

II 1-2 Using the COBOL-81 REFORMAT Utility

1.2 Terminal-to-ANSI Format Conversion

REFORMAT converts each terminal-format source record to ANSI format by:

• Placing a six-character line number (000010) in the first six character positions of the line and
increasing it by 000010 for each subsequent line.

• Moving any continuation (-)or comment(* or I) symbols from character position 1 to charac­
ter position 7.

• Replacing horizontal tabswith space characters at every eighth character position, starting at
character position 5 until the end of the line.

• Moving spaces into remaining character positions after the last character of code and before
character position 73.

• Expanding a terminal line with more than 65 characters into two or more ANSI-format lines
and right justifying these lines at character position 72.

• Placing either identification characters (if you supply them when you run REFORMAT) or
spaces into character positions 73-80.

• Right justifying (at position 72) the first line of a continued nonnumeric literal. This makes sure
that the literal remains the same length as it was in the default format.

• Replacing every form feed character with a line containing a slash (/) in position 7 and space
characters in positions 8 through 72.

• Placing the converted code in character positions 8 through 73, thereby creating one or more
ANSI-format lines.

To run REFORMAT:

• On RSTS/E you type:

RFM 00

• On RSX-11 MI M-PLUS you type:

MCR RFM 00

REFORMAT prompts you with this message:

REFORMAT - ANSI-to-terMinal conversion Mode CY I N J?

For a terminal-to-ANSI conversion, type "N" and press the RETURN key. REFORMAT confirms your
choice with this message:

REFORMAT - TerMinal-to-ANSI forMat selected

REFORMAT then asks for input and output file specifications:

REFORMAT - TerMinal-forMat inPut file spec
REFORMAT - ANSI-forMat output file spec

Using the COBOL-81 REFORMAT Utility 1-3 II

After you enter the file specifications, REFORMAT asks for an identification entry in columns 73
through 80:

REFORMAT - Columns 73 to BO:

If you want an identification entry, type from one to eight characters. REFORMAT places these
characters, left justified, in columns 73 through 80 of each output line. If you do not want an
identification entry, type a carriage return.

REFORMAT reads the input file and writes the output file in 80-character ANSI-format lines. After
processing the last line, REFORMAT displays these messages:

REFORMAT - n Terminal COBOL source lines converted to ANSI format
REFORMAT - ANSI-to-terminal format conversion mode [Y I N l?

The first message indicates the number of input source code lines converted to ANSI format; the
second message prompts you for conver~ion of another file. Type CTRL/Z to end execution.

1.3 REFORMAT Error Messages

If any of your responses to the prompts are incorrect, REFORMAT displays messages. It replaces the
parentheses and the parenthetical text in the following examples with the appropriate format type you
specified:

REFORMAT - Error in oPenin~ <ANSI or terminal) format inPut file:
REFORMAT - <ANSI or terminal) format inPut file sPec:

REFORMAT could not open the file; either the file is not on the specified device or you typed the
file specification incorrectly. The default device is SY:, and the default directory is your current
directory.

To recover from this error, examine the input file specification and type a corrected version. To
process another file, type a new input file specification. To end execution, type CTRL/Z.

REFORMAT - Error in oPenin~ <ANSI or terminal) format output file:
REFORMAT - <ANSI or terminal) format output file spec:

REFORMAT could not open the output file. An incorrectly typed file specification causes this
error. The default device is SY:, and the default directory is your current directory.

To continue, examine the output file specification and type a corrected version. To end execu­
tion, type CTRL/Z.

REFORMAT - <ANSI or terminal) format inPut file is emPtY
REFORMAT - CANSI or terminal) format inPut file spec:

REFORMAT issues this message if it opens an empty file; that is, one that contains no source
code. To continue, type a new input file specification. To end execution, type CTRL/Z.

11 1-4 Using the COBOL-81 REFORMAT Utility

REFORMAT - Error in readin!I <ANSI or terMinal> forMat inPut file
REFORMAT - ReforMattin!I aborted
REFORMAT - n <ANSI or terMinal) COBOL source lines converted to

<ANSI or terMinal) forMat
REFORMAT - ANSI-to-terMinal forMat conversion Mode [Y I N J?

You will receive these messages if REFORMAT failed to read a source line from the input file.
This error ends the conversion process. REFORMAT closes both files and displays the number of
converted input lines.

At this point, you can either convert another file or end the session by typing CTRL/Z. Before
REFORMAT can completely convert the file that contains the error, you will have to examine the
file and make the necessary correction.

REFORMAT - Error in writin!I <ANSI or terMinal> forMat output file
REFORMAT - ReforMattin!I aborted
REFORMAT - n <ANSI or terMinal) COBOL source records converted to

<ANSI or terMinal) forMat
REFORMAT - ANSI-to-terMinal forMat conversion Mode [Y or N J?

REFORMAT failed the attempt to write an output record. It ends execution and closes both files.

To process another file, type a new input file specification and continue the prompting message
sequence. To end execution, type CTRL/Z.

Using the COBOL-81 REFORMAT Utility 1-5 II

Chapter 2
Troubleshooting

This chapter discusses how to find and correct program logic errors. It explains how to read a
program listing and discusses techniques that you can use for program debugging.

2.1 Reading a Program Listing

The circled numbers on the program listing REPORT (see Figure 2-1) correspond to the following
numbered text explanations:

• • • • • •
•
•
• •
•
•

The program name as declared in PROGRAM-ID .

The date and time of compilation .

The creation date and time of the file specified in 5 .

The version of the COBOL-81 compiler .

The source file specification in file-spec format (device: [directory]filename.type) .

Source line numbers assigned by the compiler. The COBOL-81 Symbolic Debugger uses these
line numbers as location specifications .

Source text. Although a terminal line can contain 200 characters, a source listing line contains a
maximum 120 characters .

Identification field. If the source file is in ANSI format, this field contains the identification field
(positions 73 through 80) .

Error pointer. The caret n points to the closest approximation of where the error occurred .

Error message line. This line gives the error severity code, the error message number, and the
error message .

A summary total, by diagnostic level, of compiler-generated diagnostics. Diagnostics can be
Informational (I), Warning (W), or Fatal (F) .

COBOL-81 command qualifiers. The first line of qualifiers is the compiler command line; the
second group shows the remaining qualifiers and qualifier defaults in effect at compile time.

2-1 II

•
• • • • • • •
• • • • • • •

•
•
•
•

Procedure Division Map. This is a list of procedure-names and their attributes that you get by
specifying the I MAP command qualifier .

A list of procedure-names .

The source line number, where the procedure-name is defined .

PSECT. This gives the procedure-name's program section identification .

OFFSET. This gives the offset in octal and decimal from the beginning of the PSECT .

Lists the procedure-name type (either PARAGRAPH or SECTION) .

REF indicates whether or not the section or paragraph was referenced in the program .

Data Division Map. This lists file names, data items, and their attributes. You get this listing by
specifying the /MAP command qualifier .

The.data item's level number .

The name of the data item .

The source line number where the data item is defined .

PSECT. This identifies the data item's PSECT .

OFFSET. This gives the offset in octal and decimal from the beginning of the PSECT .

REF indicates whether or not a data item is referenced in the program .

The category of data described. Category classifications include:

FILE NAME
GROUP ITEM
ALPHABETIC
ALPHANUMERIC
ALPHANUMERIC EDITED
NUMERIC
NUMERIC EDITED
DECIMAL SIGNED
DECIMAL UNSIGNED

Indicates the number of occurrences specified by the OCCURS clause of a data definition entry.
This column is blank if the data definition entry does not define a table .

The number of bytes allocated to the data item. For numeric values, field size and bytes can be
different.

Alphabetical Cross Reference of Data Items. This table displays the line numbers for each
occurrence of a data item. The letter "D" is suffixed to the line number at which the data item
was defined. An asterisk(*) indicates the line numbers of destructive references, such as assign­
ment statements that change the value of a data item .

Alphabetical Cross Reference of Procedure Names. This table displays the line numbers at which
each procedure-name is referenced. The letter "D" is suffixed to the line number at which the.
procedure begins.

II 2-2 Troubleshooting

Figure 2-1 : Partial Listing of the Program R.EPOR;T.

REPRT---0

IDENTIFICATION DIVISION. ~
PROGRAM-IO. REPRT. ~

• ••lo--- 7-MAR-1983
......- 3-MAR-1983

15,59,27
13: 30: 01

COBOL-Bl VD2.DO •• PAGE
DB2: [1 I 250)REPORT .CBL; 2

·' 4~0ATE-WRITTEN. 8 MARCH 1982. .

~-- ... '·
7 This program reads a pre-sorted course data ft le
8 and wr ttes a simple 1 ncome report based on the
9 input data. Each input record contains information

10 about one course sal actad by a atudant (student·
11 number and name, course number and name, and
12 instructor name). The program assumes: 1) that all •
13 input records have been val tdated and 2) that re:.. •·
14 cords have been sorted in ascending order, first by
15 course number and next by instructor name.
16 The program implements a major control break on
17 course number and a minor control break on instruc-
18 tor name, l 1sting al 1 students tn each class. A
19 tally ts kept for total student enrollment in each'
20 course. When a course tally 1s complete, the pro-
21 gram outputs a 1 ine totaling both anrol lment and
22 tuition tncome for that course.
23
24
25 ENVIRONMENT DIVISION.
26 CONFIGURATION SECTION.
27 SOURCE-COMPUTER. VAX-11.
28 OBJECT-COMPUTER. VAX-11.
29 INPUT-OUTPUT SECTION.
3D FI LE-CONTROL.
31
32 SELECT COURSE-DATA-FILE
33 ASSIGN TO "COURSE.DAT"
34 ORGANIZATION IS SEQUENTIAL
35 FILE STATUS IS COURSE-DATA-FILE-STAT,
36
37 SELECT INCOME-REPORT-FILE
38 ASSIGN TO "INCOME. RPT"
39 ORGANIZATION IS SEQUENTIAL
40 FILE STATUS IS INCOME-REPORT-FILE-STAT.
41
42 DATA DIVISION;
43 FILE SECTION.
44
45 FO COURSE-DATA-FILE.
46 01 COURSE-DATA-REC A--------------........ ••• w
47
48
49
5D
51
52
53

REPRT

D03 A period ts assu.med after
05 STUOENT-NUM-IN
D5 STUOENT-NAME-IN
D5 COURSE-NUM-IN
05 COURSE-NAME-IN
05 I.N5TRUCTOR-~AME-IN

FO INCOME-REPORT-El LE.

DIAGNOSTICS-­

Warning:

COMMAND SWITCHES --e
REPORT, REPORT=REPORT /BLO/CRF /MAP

this word .
i>IC 9(5).
PIC X(3D).
PIC X(5).
PIC X(2D).
PIC .. ~~·~·20).

7-MAR-1983 15: 58: 27 COBOL-81 V02. 00
3-MAR-1983 13:30:01 OB2:[1,250]REPOfH.CBL;2

/CRF /-DEB/ -CVF I BOU/MAP I PERI-CI SI I NF /-SUB/ SKL/-=TRU'/BLD/-F IP /-·STA

PAGE 6

(continued on next page)

Troubleshooting 2-3 u

Figure 2· 1 : Partial Listing of the Program REPORT (Cont.)

REPRT • 7-MAR-1983 15,51,27 C080L-B I V02, 00 PAGE
3-M4R-198~ 13130101 0121 (I, 250)REP()RT .C8L;2

p R 0 C E 0 U R E D J· v I S I 0 N M 4 p

.NAM .LINE PSICT .OFFSi!T .TVPl.R!F • OCTAL DECIMAL

A-ODO-CONTROL 125. PARAGR4PH
B- I OD-OPEN-Fl LES 138. ssoosc 114 78. PARAORAPH •
B- I DO-OPEN-Fl LES-EXIT 139. ssoosc 160 I 12. PARAGRAPH •
B-200•INITIALI ZE 142. ssoosc 218 142. PARAGRAPH
B-200-INITIALI ZE-EXIT 158. S$00SC 342 228. PARAGRAPH
B-300-WRAP-UP 159. ssoosc 400 258. PARAGRAPH
B-300-WRAP-UP-EXIT 184. SSQOSC 430 no. P•RAGRAPH
B-400-CLOSE-FILES 187. ssoosc 4$6 310. P4RAGRAPH
B-400-CLOSE-F I LES-EXIT 170. ssoosc 536 3~0. PARAGRAPH
C- I CO-GET-THE-DATE 173, ssoosc 574 380. PARAGRAPH
C- I 00-GET-THE-OATE-EXI T 118, ISOOSC 872 442. PARAGRAP"1
C-200-PROCESS-DATA 179. $SOOSC . 730 472 • PARAORAPH
C-200-PROCESS-DATA-EXI T 192. ssoosc 1054 556. PARAGRAPH
0" I 00-WR !TE-STUDENT-LI NE 195; ssoosc I 112 586. PARAGRAPH
D-1 00-WRITE-STUDENT-LI NE-eXIT 207. ssoosc 1242 674, PARAc;RAPH
D-200-WR I TE-INSTRUCTOR-LI NE 210. ssoosc 1300 704. PARAGRAPH
0-200-WR I TE• I NSTRUCTOR-LN-EX IT 218. ssoosc 1371 718. PARAGRAPH
0-300-WR I TE-COURSE-LI NE 221. ssoosc 1434 796, PARAGRAPH
D-300-WR I TE·COURSE-L I NE·EXI T 231. ··ssoosc 1614 908. PARAGRAPH
X- I OD-READ-A-REC 234. ssoosc 1852 938. PARAGRAPH
X- I OD-READ-A-REC-EXIT 237. ssoosc 1704 964. PARAGRAPH
X-200-0UTPUT-TOTALS 240. ssoosc 1742 994. PARAGRAPH
X-200-0UTPUT·TOTALS·EX IT 246. ssoosc 2022 1042, PARAGRAPH
X-300-WR I TE-TOT AL ·LI NE 249. ssoosc 2060 1072. PARAGRAPH
X-300-WR I TE-TOT Al..-L I NE ... EXI T 2§6. ssoosc 2146 1126. PARAGRAPH
X-400-START·NEW·PAGE 259. ssoosc 2204 1156. PARAGRAPH
X-400-ST ART-NEW· PAGE-EXIT 273. ssoosc 2544 1380, PARAGRAPH

REPRT • 7•MAR•l983 15:58:27 COBOL-81 V02, 00 PAGE 8
3•MAR•19U 13:30:01 082: (1, 25D)REPORT .CBL:2 • • D A T A D I v I S I 0 N MA P • • • LEVEL D A T A N A M E .LINE PSECT .OFFSET .REF CLASS OCCURS LENGTH • OCTAL DECIMAL

COURSE-DATA-Fl LE 32. . FILE NAME
I NCOME-REPORT·F I LE 37. • FILE NAME

01 COURSE·OATA•REC 46. SI08Uf 2· 2. GROUP ITEM 80.
05 STUOENT-NUM-IN 47, $108UP 2 2. . DECIMAL UNSIGNED 5,
05 STUDENT-NAME· IN 48. SIOBUF 7 7. • ALPHANVMER IC 30.
05 COURSE·NUM•IN 49. SIOBUF 45 37. • ALPHANUMERIC 5.
05 COURSE-NAME-IN 50. SIOBUF 52 42. ALPHANUMERIC 20.
05 INSTRUCTOR-NAME-IN 51, $108UF 76 62. . ALPHANUMERIC 20 •

01 INCOME-REPORT-REC 54. Sl08UF 1126 598. • ALPHANUMERIC 70.
01 FLAGS 58. SDATSC 1010 520. GROUP ITEM 1.

05 ENO-OF-COURSE-DATA 59. SoATSC 1010 520. • ALPHANUMERIC I.
01 COURSE·OATA·F I LE-ST AT 61, DATC 1012 S22. . ALPHANUMERIC 2 •
01 INCOME-REPORT-FI LE-STAT 63. $DAT SC 1014 524. • ALPHANUMERIC 2.
01 THE-DATE 65. so.use 1016 526. . ALPHANUMERIC 6 •
01 TUITION 67. SDATSC 1024 532, . r;>ECIMAL UNSIGNED 5.
01 INCOME 69. SO!ITSC 1032 538. • DECIMAL UNSIGNeo 9 •
01 COUNTERS 71. $0ATSC 1044 546. GROUP ITEM 8.

05 STUDENT-TOTAL 72. SDATSC IQ44 548. . DECIMAL UNSIGNED 3 •
05 PAGE-HUM 73. $DATSC 1047 551, . DECIMAL UNSIGNeQ 3 •
05 LINE-NUM 74. $DATSC 1052 554. • {IECIMAL UNSIGNt:O 2.

01 PAGE-HEADER-LI NE ... 1 76. $0ATSC 10112 562. . GROUP ITEM 70.
05 DATE-EDITED 78. SDATSC 1071 H9. l)RQUP ITEM 8.
10 MO 79, SDATSC 1071 569. . DECIMAL UNSIGNED 2.
10 ov BL $0ATSC 1014 S72. . DECIMAL UNSIGNt:O 2. ro VA n. $DATSC 1077 575. . DECIMAL UNSIGNED 2.
05 PAGE-NUM-EDIT 88. DATC 1165 628. • NUllERIC f;OITEO 3.

01 PAGE·HEADER•LI NE-2 90. SDATSC I 170 6U. • GR(>UP ITEM 70 •
01 COURSE-HEADER·L I NE 95. $DAT SC 1276 702. . GROUP ITEM 70 •

05 COURSE-NUM·OUT I 97. QATC 1306 710. • ALPHANUMeRIC 5.
01 I NSTRUCTOR·HEAOER·LINE 100. SOATSC 14Q4 172, • GROUP ITEM 70.

05 I NSTRUCTOR·NAME-OUT 1Q3~ $DAT SC 1424 788. • ALPHANUMERIC 20 •
01 STUDENT-ENTRV-L I NE 106~ SDATSC 1512 842. • GROUP ITf;M 70.

05 STUOENT·NUM·OUT 108. SDAT$C 1$26 8S4. • DECIMAL UNSll:\NEO s.
05 STUDENT-NAME-OUT I.ID. Sl>ATSC 1H4 860, • ALPHANUMERIC 3o.

01 COURSE-TOTAL-LINE I 13, $DAT SC Hl42 930. • GROUP ITEM 10 •
05 COURSE-NUM·OUT2 114. SDATSC 1&4i '930. . ALPHAHUMl;RIC 5 .
05 STUDENT-TOT AL-EDIT 116. SPATSC 1672 954, . NUMERIC !;CITED 3.
05 INCOllE·EOITED 118. $0ATSC 1717 975. . NUMERIC EDITED 11.

01 BLANK ... LINE 121. SDATSC 1750 IQOO. • ALPHANUMERIC 70.

'- _,J

(continued on next page)

II 2-4 Troubleshooting

Figure _2-1: Partial Listing of the Program REPORT (Cont.)

RE PAT

CROSS REFERENCE IN ALPHABETICAL ORDER

DATA NAMES and MNEMONIC NAMES.

BLANK-LINE
COUNTERS
COURSE-DATA-FILE
COURSE-DATA-FI LE-STAT
COURSE-DATA-REC
COURSE-HEADER-L.J NE
COURSE-NAME-IN
COURSE-NUM-IN
COURSE-NUM-OUT 1
COURSE-HUM-OUT 2
COURSE-TOTAL-LINE
DATE-EDITED
DV
END-OF-COURSE-DATA
FLAGS
INCOME
INCOME-EDITED
INCOME-REPORT-Fl LE
l NCOME-REPORT-F I LE-STAT
INCOME-REPORT-REC

INSTRUCTOR-HEAOER-L INE
I NSTAUCTOR-NAME- IN
I NSTAUCTOR-NAME-OUT
LINE-HUM

MO
PAGE-HEAOER-LINE-1
PAGE-HEADER-LI NE-2
PAGE-NUM
PAGE-NUM-EDIT
RMS-STS
RMS-STS
RMS-STV
RMS-STV
STUDENT-ENTRV-L I NE
STUDENT-NAME- IN
STUDENT-NAME-OUT
STUDENT-NUM-1 N
STUDENT-NUM-OUT
STUDENT-TOTAL
STUDENT-TOTAL-EDIT
THE-DATE
TUITION
VR

REPRT

CROSS REFERENCE IN ALPHABETICAL

PROCEDURE NAMES--e

A-OOO-CONTROL
B-100-0PEN-FILES
B-100-0PEN-F IL.ES-EXIT
8-200- INITIALIZE
B-200-INITIALIZE-EXI T
8-300-WRAP-UP
B-300-WRAP-UP-EXI T
8-4DO-CLOSE-FILES
8-400-CLOSE-F l LES-EXIT
C-1 DO-GET-THE-DATE
C-100-GET-THE-DATE-EXIT
C-200-PROCESS-DAT A
C-200-PROCESS-DAT A-EX! T
0-100-WRITE-STUOENT-LINE
0-1 DO-WRITE-STUDENT-LINE-EXIT
D-200-WR l TE- INSTRUCTOR-LI NE
D- 200-WRI TE- I NSTRUCTOR-LN-EXI T
D-300-WRI TE-COURSE-LINE
D-300-WRI TE-COURSE-LINE-EX! T
X-1 DO-READ-A-REC
X-1 OD-READ-A-REC-EXIT
X-2DO-OUTPUT-TDTALS
X-20D-OUTPUT-TOT A LS-EX! T
X-300-WRI TE-TOTAL-LI NE
X-300-WR I TE-TOTAL-LI NE-EXIT
X-400- ST ART-NEW-PAGE
X-400-START-NEW-PAGE-EX IT

1210
71D
320
35
460
95D
500
490
970

1140
1130

78D
SID
590
58D
69D

llSD
37D
40
54D

267
100D
SID

1030
740

272•
79D
76D
90D
73D
880
32D
370
320
370

106D
480

1100
470

1080
72D

1160
65D
670
83D

ORDER

1250
126
127
128
129
130
131
132
133
149
150
153
154
182
183
184
185
190
191
143
144
160
161
162
163
151
152

7-MAR-1983 15,5s,21 COSOL-81 VD2. OD
3-MAR-1983 13.3D.OI D82, [1 , 25D) REPORT. CSL; 2

227 228 263 265 268 269

45D 137 168 235
61D

229 27D

145 180 226
145• 180 226• 242
146• 242•
254

175•
155 236*

243• 244
244•

530 138 169
630

202 216 227 228 229 254 263 265 266
268 269 270 271
216 271
147 181 215
148• 181 215•
196 204• 211 217• 222 230• 25D 255* 262•

175•
266
267
260• 261
261 •

2D2
2D1
201 •
200
200•
203• 241 243 245•
241 •
174• 175
243
175•

7-MAR-1983 15,59,27 C080L-81 V02.00
3-MAR-1983 13,30,01 DB2, [I ,250JREPORT .CSL;2

136D
1390
1420
156D
159D
164D
1670
1700
1730
1760
1790
192D
195D
207D
210D
218D
2210
231D
205 234D
206 237D
186 240D
187 246D
188 249D
189 256D
198 213 224 252 259D
199 214 225 253 273D

Troubleshooting

PAGE 9

PAGE 10

C81ART-10003-180

2-5 II

2.2 Program Run Errors

If your program terminates abnormally, you receive one of the COBOL-81 run-time error messages to
identify the problem. Appendix C of Part I lists and describes these error messages.

However, your program can run to completion and still not yield the results you expect. These
incorrect or undesirable program results are usually caused by data errors or program logic errors.
You can resolve most of these errors by "desk-checking" your program and by using the COBOL-81
Symbolic Debugger.

2.2.1 Faulty Data

Faulty or incorrectly defined data can often produce incorrect results. Data errors can sometimes be
attributed to:

• Incorrect picture size. If the picture size of a receiving data item is too small, data may be
truncated.

• Incorrect file definition. The block size you specify when accessing a file should be the same
block size you used when creating the file.

• Incorrect record field position. The record field positions that you specify in your program
might not agree with a file's record field positions. For example, a file could have this record
description:

01 PAY-RECORD,
03 P-NUMBER
03 P-WEEKLY-AMT
03 P-MONTHLY-AMT
03 P-YEARLY-AMT

PIC XC5),
PIC S8C5)V88
PIC S8C5)V88
PIC S8C5>V88

COMP-3,
COMP-3,
COMP-3,

Incorrectly positioning these fields can produce faulty data.

An attempt to read the file according to the following input record definition would place monthly
data in P-YEARLY-AMT and annual data in P-MONTHLY-AMT.

01 PAY-RECORD,
03 P-NUMBER
03 P-WEEKLY-AMT
03 P-YEARLY-AMT
03 P-MONTHLY-AMT

PROCEDURE DIVISION.
ADD-TOTALS,

PIC XC5),
PIC S8(5)V88 COMP-3,
PIC S8C5>V88 COMP-3,
PIC S8C5>V88 COMP-3,

ADD P-MDNTHLY-AMT TD TOTAL-MONTHLY-AMT,

II 2-6 Troubleshooting

You can minimize file definition and record field position errors by writing frequently accessed file
and record descriptions to a library file and then using the COPY statement in programs that access
those files.

Your choice of test data can minimize faulty data problems. Rather than using "live" or ideal data,
use test files that include data extremes. For example, test data for an update program should contain
tests for duplicate adds, a delete to a nonexistent master record, multiple change records, and so
forth. Give particular attention to the first and last records read into the program. Many errors occur at
these key points.

Determining when a program produces incorrect results can often help your debugging effort. You
can do this by maintaining audit counts (such as total master in = nnn, total transactions in = nnn,
total deletions = nnn, total master out = nnn) and displaying the audit counts when the program
ends.

2.2.2 Common Logic Errors

When checking your program for logic errors, first examine your program for some of the more
obvious bugs, such as the following:

1. Hidden periods. Periods inadvertently placed in a statement usually produce unexpected
results. For example:

OS0-00-WEEKLY-TOTALS,
IF W-CODE = "W"

PERFORM 100-WEEKLY-SUMMARY
ADD WEEKLY-AMT TO WEEKLY-TOTALS,
GO TO 000-READ-A-MASTER,

WRITE NEW-MASTER-REC,

The period at the end of ADD WEEKLY-AMT TO WEEKLY-TOTALS changes the logic of
the statement by transforming GO TO 000-READ-A-MASTER from a conditional to an
unconditional GO TO. As a result, the statement following the GO TO will never be
executed.

2. Testing for equality, rather than inequality. Executing a procedure until a test condition is
met can cause errors:

PERFORM ABC-ROUTINE UNTIL A-COUNTER = 10

If, during execution, the program increments A-COUNTER by an integer other than 1
(1.5, for example), A-COUNTER might never equal 10, causing an infinite loop in
ABC-ROUTINE. You can prevent this type of error by changing the statement to:

PERFORM ABC-ROUTINE UNTIL A-COUNTER > 8

Troubleshooting 2-7 II

3. Combining two negative test conditions with an OR. The intent of the following statement
is to execute GO TO 200-PRINT-REPORT when TEST-FIELD contains any character
except "A" or "B". However, the GO TO always executes because the logical equivalent
(IF TEST-FIELD NOT = ("A" AND "B")) for the stated test condition can never be true. A
single character input (TEST-FIELD) cannot be equal to two characters ("A" and "B") at
the same time.

IF TEST-FIELD NOT = "A" OR NOT = "B"
GO TO ZOO-PRINT-REPORT+

You can correct this logic error by changing the statement to:

IF TEST-FIELD NOT = "A" AND NOT = "B"
GO TO ZOO-PRINT-REPORT,

2.2.3 COBOL-81 Symbolic Debugger

The COBOL-81 Symbolic Debugger lets you debug a COBOL program at run time. With the
Debugger, you can interactively examine and change the contents of data fields and control the order
of statement execution. For information on how to use the Debugger, see Chapter 3.

II 2-8 Troubleshooting

Chapter 3
Debugging your Program

The COBOL-81 Symbolic Debugger helps you debug programs written for the COBOL-81 compiler.
The Debugger lets you control and monitor your program as it runs by referring to the source version
rather than the object code produced by the compiler.

This chapter shows you how to prepare your program for using the Debugger and how to use each
Debugger command. It begins with an overview of the functions the Debugger provides. Appendix A
lists the Debugger error messages.

3.1 Overview of the Debugger

The Debugger gives you control over your program's execution by letting you specify breakpoints,
which are positions in your program where execution temporarily stops.

At these breakpoints, you can examine the contents of data items and, if necessary, assign new values
to them.

The Debugger also lets you associate synonyms with data-names and positions in your program.
Once you have defined a synonym, you can use it in any Debugger command rather than typing the
actual name or position: If you refer to particular data items or positions often during a debugging
session, defining synonyms for them saves time.

Table 3-1 shows the available Debugger commands and the functions they provide. The letters
underlined in each command indicate that command's abbreviation. You can use an abbreviation in
place of the full command at any time.

3-1 II

Table 3-1: Debugger Commands

Command Description

SET BREAKPOINT Specifies a point at which program execution will be interrupted.

CANCEL BREAKPOINT Removes a breakpoint. - -
SHOW ~REAKPOINTS Displays information about the breakpoints currently set.

DISPLAY Displays the contents of data items on the terminal.

MOVE Changes the contents of data items. -
DEFINE Associates a synonym with a data-name or a position.

UNDEFINE Deletes a synonym.

SHOW SYNONYMS Displays information about the synonyms currently in use. - -
PROCEED Begins execution or continues execution after a breakpoint.

STOP Stops execution.

HELP Displays inform~tion about a Debugger command or topic.

3.2 Preparing the Program

To include the Debugger in your program, compile it using the /DEBUG qualifier (see Part I, Chapter
3.) For example:

COBOL PROGRM/DEBUG

If the program calls subprograms, each subprogram must also be compiled with the /DEBUG
qualifier.

After compiling the program(s), use the LINK/C81 command with the /DEBUG qualifier.

When you include the Debugger in your task, the Task Builder creates a "symbols file." This file has
the same file name as your task image and a file type of STB. It contains information the Debugger
needs to know about your program's data-names, procedure-names, and line numbers. You must not
delete this file from your directory if you want to use the Debugger. You can delete it, however, once
you have finished debugging the program.

The Debugger occupies under 1 K words to 6K words in your task image if your program performs file
I /0. PDP-11 Record Management Services (RMS-11) routines required by the Debugger for support
are already part of your task. In this case, if you do not include a COBOL-81 resident library, the size
of the Debugger depends on how much of the COBOL-81 OTS your program uses. The more OTS
your program uses, the less address space the debugger will require. If you do include a COBOL-81
resident library, the Debugger occupies the full 6K words in your task image.

The Debugger can occupy up to 1 OK words in your task image if your program does not perform file
I /O because the RMS-11 routines required by the Debugger are not already part of your task image.
The Debugger must therefore add these routines to your task image, increasing your task size by an
additional 4K words.

11 3-2 Debugging your Program

If the addition of the Debugger makes your task too large to fit in memory, the Task Builder issues this
message:

SEGMENT sed-name HAS ADDR OVERFLOW: ALLOCATION DELETED

To correct this problem, you have to make more sections of your task overlayable. See Chapter 4 for
information on how to use the COBOL-81 segmentation facility to overlay your object code, and on
how to use the BLDODL utility to overlay RMS-11 routines if you have not already done so.

To begin the debugging session, type RUN followed by the name of your task image, as you normally
would to execute your program. For example:

RUN PRDGRM

The Debugger then initializes its internal tables. The initialization can take several minutes if your
program is large. Once it is finished, the Debugger gives you this prompt:

COB>

You also see this prompt whenever the Debugger assumes control after a breakpoint.

In response to the prompt, you can type any Debugger command. The commands are explained in
detail in the next section.

A Debugger command can continue over several lines, but it cannot exceed 200 characters. To
continue a Debugger command line, type a hyphen (-) at the end of the line to be continued. The
Debugger gives you a shortened version of its prompt, as this example shows:

CDB>MDVE "This is an exaM-
)Ple of line continuation" TO ITEMA

The Debugger considers the character immediately preceding the hyphen and the character immedi­
ately following the shortened prompt to be contiguous. The previous command lines are equivalent to
this single line:

CDB>MDVE "This is an exaMPle of line continuation" TD ITEMA

3.3 Using the Debugger Commands

This section shows you the syntax of each Debugger command, along with examples illustrating
its use.

The format of each command's syntax uses the following conventions (which are the same as those
used in the COBOL-81 Language Reference Manual):

• Braces, { }, enclose lists from which you must choose one element.

• Brackets, [] , enclose optional elements.

• Uppercase words and letters mean that you type the word or letter as shown. The letters
underlined are those needed to uniquely define the command to the Debugger. That is, you
can use the underlined letters as abbreviations.

• Lowercase words mean that you substitute a word or value of your choice.

Debugging your Program 3-3 II

Some commands refer to "position," which yo_u must supply using this format:

{

[LINE] line-number] }

[progmm-name \] [PARAGRAPH I pamgraph-name [{ :F} section-name-2

[SECTION] section-name-1

where:

program-name\

line-number

paragraph-name
section-name-1

section-name-2

is necessary only if you are referring to a position in a program other than the
one currently executing. For example, if the Debugger stops at a breakpoint
you set in SUB1, and you want to refer to line 112 of MAIN, you must type:

MAIN\LINE 112

is one of the line numbers the compiler assigned to your source code. Your
LST file contains these numbers.

refer to paragraphs or sections you defined in your program's Procedure
Division.

qualifies your reference to paragraph-name (when needed to make this refer­
ence unique). Section-name-2 refers to the Procedure Division section to
which paragraph-name is subordinate.

As the syntax for position shows, you do not have to type the words LINE, PARAGRAPH, or
SECTION. However, if a section-name or paragraph-name in your program is numeric, you must
specify SECTION or PARA to distinguish it from a line number.

The data-names you use in Debugger commands must also be unique, and they can be qualified or
subscripted. See Part Ill, Chapter 3, Table Handling, for further information on subscripting and
qualifying. Use this format when specifying a data-name:

[program-name \] data-name-1 [{ :F } data-name-2] . .. [(literal...)]

where:

program-name\

data-name-1

data-name-2

must be specified only if the data-name is defined in a program other than
the one currently executing. For example, if you are stopped at a breakpoint
in MAIN and you want to refer to ITEMA in SUB1, type:

SUB1 \ ITEMA

refers to a data item in your program. If the item is a table element, you must
specify a subscript value.

qualifies your reference to data-name-1 (when needed to make this reference
unique). Data-name-2 refers to the data item to which data-name-1 is
subordinate.

11 3-4 Debugging your Program

3.3.1 Using the HELP Command

To get information about a Debugger command or topic, use the HELP command. The format of this
command is:

!::!_ELP [topic-word]

If you do not specify a topic-word, the Debugger will give you a list of topics for which information is
available. You can then use any item in the list as a topic-word.

Examples

COB> HELP

Displays a list of Debugger commands and topics.

COB> H DATA-NAME

Displays information about data-names.

3.3.2 Using the DISPLAY Command

Use the DISPLAY command to display the contents of data items on your terminal. The format of this
command is:

QISPLAY (--name [::]]

This is similar to the COBOL-81 DISPLAY statement, except that it edits numeric data into SIGN
TRAILING with decimal point.

If data-name is subscripted, you can specify either a single subscripted item or a range of subscripted
items. For example:

COB>DISPLAY ITEMB<31 6:8)

Displays the contents of three data items: ITEMB(3,6), ITEMB(3,7), and ITEMB(3,8).

As the syntax shows, you do not have to specify a data-name. Whenever you specify a data-name in a
DISPLAY or MOVE command, that data-name becomes the current data-name. The Debugger keeps
track of this current data-name and uses it in each subsequent DISPLAY and MOVE command until
you specify another one. To avoid ambiguity, however, you cannot specify the BYTE or ASCII option
unless you also specify a data-name.

The BYTE and ASCII options let you override the format of the data item as specified in the
COBOL-81 source program. You can use them, for example, to see the exact values of nonprinting
characters in an alphanumeric variable. BYTE displays the octal value of each byte of the item. ASCII
outputs the item as a series of ASCII characters, with any nonprinting characters in the item repre­
sented by the backslash (\).

Debugging your Program 3-5 II

Examples

COB> DISPLAY SALES-TOTAL

Displays the contents of the item SALES-TOT AL.

COB> D MY-ARRAY (5)

Displays the contents of the item MY-ARRAY(S).

COB> DIS ITEM-NAME BYTE

Displays the octal value of each byte in the item ITEM-NAME.

COB> DISPLAY SALE-TABLE< 1, 2:20)

Displays the contents of SALE-TABLE(1,2), SALE-TABLE(1,3), ... ,SALE-TABLE(1,20).

COB> DISPLAY MATRIX-ONE<1:2t 1:21 1:2)

Displays the contents of the following:

MATRIX-ONE (1 t1 t1)
MATRIX-ONE<1 t1 t2)
MATRIX-ONE< 1 t2 t1)
MATRIX-ONE< 1t212)
MATRIX-ONE<2t111>
MATRIX-ONE<2 t112)
MATRIX-ONE<21211)
MATRIX-ONE<21212l

COB> DIS PART1 IN TDOLG3

Displays the contents of the PART1 subordinate to TOOL63.

3.3.3 Using the MOVE Command

Use the MOVE command to change the value of a COBOL-81 data item. The format of this com­
mand is:

MOVE literal [[TO] data-name J

This command simulates a COBOL-81 MOVE statement.

The source of the move must be either a numeric or nonnumeric literal.

As the syntax shows, you do not have to specify a destination (that is, a data-name). Whenever you
specify a data-name in a DISPLAY or MOVE command, that data-name becomes the current data­
name. The Debugger keeps track of this current data-name and uses it in each subsequent DISPLAY
and MOVE command until you specify another data-name.

All moves behave as though the MOVE statement had appeared in the COBOL-81 source program;

II 3-6 Debugging your Program

Examples

CDB>MDVE -100,5 TD TAX-RELIEF

Moves the numeric value -100.5 to the item TAX-RELIEF.

CDB>MDVE "JOHN BULL" EMPLOYEE-NAME

Moves the character string JOHN BULL to the item EMPLOYEE-NAME.

CDB>M 0

Moves the value 0 to the data item you specified most recently.

3.3.4 Using Breakpoints

Three Debugger commands apply to breakpoints:

• SET BREAKPOINT inserts a breakpoint in your program.

• CANCEL BREAKPOINT removes one or all breakpoints.

• SHOW BREAKPOINTS displays information about each breakpoint you have currently set.

3.3.4.1 SET BREAKPOINT-The format of the SET BREAKPOINT command is:

~ET !!REAKPOINT position [QISPLA Y data-name] [~ROCEED {
integer }]

ALWAYS

This command inserts a breakpoint at the position indicated. The Debugger assumes control just
before the first executable statement that occurs after that position. For this reason, the Debugger
considers a section and its first paragraph, and a paragraph and its first line, to be at the same
"position".

When program execution reaches a breakpoint, the Debugger issues a message of the form:

BreakPoint at Position in Module Prodram-name

If you use the DISPLAY option, the contents of data-name is displayed on your terminal. This option,
therefore, saves you from typing a separate DISPLAY command every time the breakpoint is reached.

Using the PROCEED option saves you from having to type a separate PROCEED command to resume
execution after the data-name is displayed. If you specify an integer, execution does not stop until the
breakpoint has been encountered the specified number of times. At that point, you receive the CDB>
prompt.

Specifying PROCEED ALWAYS lets you set up a "watchpoint" for the displayed data item. That is,
each time the program passes the breakpoint, the contents of data-name is displayed but the program
does not stop. This is useful, for example, if you want to check the way your program is changing the
value of data-name as execution loops.

Debugging your Program 3-7 II

Examples

CD6> SET 6REAI'{ 48

Sets a breakpoint at line 46 in your program.

CD6> S B SECTION ALPHA

Sets a breakpoint at section ALPHA in your program.

CD6> SET BREAKPOINT LINE 101 DIS MONEY

Sets a breakpoint at line 101 in your program. Each time the breakpoint is reached, the contents
of the data item MONEY are displayed.

3.3.4.2 CANCEL BREAKPOINT- The format of the CANCEL BREAKPOINT command is:

{
position}

QANCEL §REAKPOINT
ALL

This command removes breakpoints. If you specify a position, only the breakpoint at that position is
removed. The ALL option removes all the breakpoints currently set in the main program and in any
subprograms.

Examples

CD6 > C 5 Ein \ 2346

Cancels the breakpoint on line 2346 in program EXT.

CD6 > CANCEL BREAK ALL

Cancels all the breakpoints in the main program and subprograms.

3.3.4.3 SHOW BREAKPOINTS - Use the SHOW BREAKPOINTS command to display information
about each breakpoint you have set. The format for this command is:

SHOW §REAKPOINTS

When you enter this command:

CD6>SHB

The Debugger responds with the following:

1. The position of each breakpoint in the main program and subprograms

2. For each breakpoint, the name of any data item you have specified to be displayed

3. For each breakpoint, any proceed count you have specified

The information appears in this format:

position DisPlaY: data-name Proceed: inte~er

II 3-8 Debugging your Program

Examples

line 281 in Module DATFD
line 273 in Module DATFD
line 285 in Module DATFD

Display: PACKED-UNSIGNED-FD

The examples indicate the information displayed if three breakpoints are in effect.

3.3.5 Using Synonyms

Three Debugger commands apply to synonyms:

• DEFINE associates a synonym with a data-name or a position.

• UNDEFINE deletes a synonym. It is no longer recognized by the Debugger.

• SHOW SYNONYMS displays information about the currently used synonyms.

3.3.5.1 DEFINE - The format of the DEFINE command is:

DEflNE synonym [
j dat~~name}
l pos1t1on

After you use this command to define a synonym, you can use that synonym, rather than its corre­
sponding data-name or position, in Debugger commands. If you refer to a particular data-name or
position frequently during the debugging session, using a synonym for it saves time.

The synonym you specify must be unique. No data-name or procedure-name in the program can
have the same name, and the name must not be a synonym that the Debugger is already using.

Examples

CDB>DEFINE X = SALESMAN-CODE

Defines X as a synonym for SALESMAN-CODE.

coe>oEFINE TA = SALES-TOT OF STORE-A

Defines TA as a synonym for the data-name SALES-TOT that is subordinate to the data-name
STORE-A.

CDB>DE Y SU61\INITIAL-PARA

Defines Y as a synonym for the paragraph-name INITIAL-PARA in the program SUB1.

CDB>DEFINE A EMPTA6(51411Gl

Defines A as a synonym for the table element EMPTAB(S,4, 16).

Defining synonyms uses extra workspace. Conscientious use of UNDEFINE will avoid exhaustion of
this resource. (See error message 1 in Appendix A)

Debugging your Program 3-9 II

3.3.5.2 UNDEFINE -The format of the UNDEFINE command is:

!,!NDEFINE synonym

After you use this command, the Debugger no longer recognizes the synonym. You can then define
that synonym as some other data-name or position.

Examples

CDB > UN DEF I NE SYN 1

Removes the synonym SYN1 from the Debugger's synonym list.

CDB> U){

Removes the synonym X from the Debugger's synonym list.

3.3.5.3 SHOW SYNONYMS - The format of the SHOW SYNONYMS command is:

SHOW SYNONYMS - -

This command displays a list of all the currently recognized synonyms, along with their actual names
in this format:

SYl"IOl"IYITl:

Examples

Cl: CMP-1
CZ: CMP-2
C3: CMP-3

actual na1T1e

Displayed if three synonyms are in effect.

3.3.6 Using the PROCEED Command

To start program execution or to continue execution of your program after a breakpoint, use the
PROCEED command. The format is:

.!:ROCEED [integer]

If you specify an integer, the program ignores (integer - 1) breakpoints. That is, the Debugger does
not give you control until the nth breakpoint is reached, where n = integer.

Examples

COB> P

Begins or continues your program.

CDB> PROCEED 20

Begins or continues your program and tells it to ignore the next 19 breakpoints. Execution stops
at the 20th breakpoint, and the Debugger will prompt you for another command.

II 3-10 Debugging your Program

3.3.7 Interrupting Program Execution

You can type CTRL/C to stop execution, rather than waiting for your program to encounter a break­
point. After you type CTRL/C, you receive the Debugger prompt. You can enter any Debugger
command at this point.

3.3.8 Using the STOP Command

To stop your program and end the debugging session, use the STOP command. The format of this
command is:

STOP [.B_UN]

This command is equivalent to the COBOL-81 STOP RUN statement. Your program stops, the
COBOL-81 OTS closes any open files, and control returns to the operating system.

Debugging your Program 3-11 II

Chapter 4
Reducing Your Task Size

4.1 When to Use Task Size Reduction Techniques

Your program is too large to fit into memory when it requires more than 32K words of address space
at any one time. This 32K word area in memory must provide for the support routines your program
needs when it runs, as well as the data specifications and procedures that originate in your source
file. In the following discussion, the term task image, or simply task, refers to all code that one 32K
word memory area must accommodate. The term TSK file refers to the file you execute with the RUN
command.

When you reduce task size, you are changing the way the operating system accesses your program
code and support routines. Task reduction techniques are the methods that you use to ensure that one
32K word partition in memory can handle everything your program specifies or needs in order to run.

All of the techniques available to you for reducing program task size cause varying degrees of
performance degradation. Because of this, use the techniques described in this chapter only when
your program is too large to fit into memory.

4.2 Reduction Techniques Available

You can use the following techniques to reduce your COBOL-81 task:

• Clustered resident libraries

• Overlayable RMS-11 input/output disk routines

• Callable subprograms with implicit overlays

• Segmentation

• File-handling optimization

4-1 11

This chapter discusses all of the task reduction techniques in this list except the last. Refer to Part IV,
Chapter 7, File Optimization Techniques, for information on using file-handling techniques to reduce
task size.

,
The techniques you use for a particular task depend primarily on whether or not (1) your system
supports resident libraries and (2) your task image was created using COBOL-81 defaults.

4.3 Selecting Library Support Routines

All programs automatically include COBOL-81 OTS (Object Time System) support routines. In addi­
tion, RMS-11 (PDP-11 Record Management Services) support routines are automatically included if
your program opens and closes files. FMS (PDP-11 Forms Management System) and user-defined
routines also can be included, but only if you select the appropriate options when you create the task
image.

The support routines included in your task image reside in libraries. OTS, RMS-11, and FMS libraries
are DIGITAL-supplied. User-defined libraries are those created at your installation. All systems sup­
port disk versions of these libraries. Optionally, systems can support resident versions of these librar­
ies. However, provisions for resident libraries must be included when your system manager generates
your operating system, and then each library mus_t be separately installed on your system.

To determine if your system supports resident libraries, and, if it does, which ones are installed:

• For a RSTS/E system, type:

SYSTAT IC

• For an RSX-11 M/M-PLUS system, type:

SHOW COMMON

When you enter this command, the resident libraries that are installed on your system are named in
the terminal display.

Including the most appropriate library support for your program can be the best way to reduce the
size of your COBOL-81 task and minimize the effect of library use on performance. The following
sections explain some of the major differences between disk and resident libraries and the options
you can have on your system for a particular task.

4.3.1 Disk Libraries, Resident Libraries, and Clustered Resident Libraries

When you use disk libraries, their routines are actually built into your TSK file and add to its size.
However, only those routines in the library that apply to your program are added, not the whole
library. Programs that i1Jclude only disk library support can be run on any system large enough to
support the size of the task; that is, when you include only disk library support, your program is
"transportable" to systems that do not support resident libraries. However, as the number of
COBOL-81 programs your installation has to store and run increases, disk library support for these
programs becomes more costly in terms of system disk and memory space.

II 4-2 Reducing Your Task Size

When you use resident libraries, their routines are not included in your TSK file. (However, some
OTS routines are an exception to this rule. See Section 4.3.2.) This means a savings in disk space, if
many of the TSK files being stored use the same support routines. Resident libraries can be shared by
other programs that run simultaneously with yours. This is a big advantage to your system because
disk and memory space is not wasted by duplicates of program support routines. However, when you
use resident libraries, your task probably includes support routines that your program does not need.
This disadvantage (at least from the perspective of a single program) can be more than offset by using
the clustering option that is available for resident libraries. The following paragraphs discuss disk and
resident library use in greater detail.

Figure 4-1 illustrates the differences in using disk libraries, resident libraries, and clustered resident
libraries in terms of disk and memory space allocation for a program. The figure assumes that:

• Two COBOL-81 applications (YOUR.TSK and OTHER.TSK) run simultaneously.

• Both applications require RMS-11 support.

• Neither program uses segmentation. (If the programs included the SEGMENT LIMIT clause,
they would occupy more disk space than memory space.)

If you look at a single "typical" COBOL-81 program that requires RMS-11 as well as OTS support,
using resident libraries always results in a smaller TSK file than using disk libraries. However, depend­
ing both on your program and on the system environment in which it runs, using resident libraries
might or might not conserve memory space from your system's point of view.

When your program runs with resident library support, the system must allocate space in memory for
a whole library. Resident libraries remain in memory as long as they are being used, and they can be
shared by programs with a wide range of support requirements. Therefore, all the support routines in
the library are in memory with your program, not just the ones your program needs. For this reason,
systems typically install support routines as resident libraries only when they (1) will be heavily used
and (2) will be accessed by two or more programs running at the same time.

The clustering option for resident libraries is a newer DIGITAL feature than are resident libraries
themselves. It allows two or more resident libraries to share the same address space. When you use
the LINK/C81 command or the COBOL-81 BLDODL utility to create a task image, you can cluster up
to three resident libraries.

Figure 4-1 illustrates the difference in memory allocation that clustering makes when you use resident
libraries. The specific advantage of clustering resident libraries is that you can use resident libraries
efficiently to conserve address space for your task. This is because clustering requires only enough
words of address space for the largest resident library being used. In most cases, clustering requires
only 8K words of address space no matter how many libraries you specify. (The only exception is
when you specify a user-defined resident library that requires more than 8K words.)

To use clustered resident libraries (for one program) to both your and the system's advantage, your
program must (1) access at least two resident libraries and (2) require support routines that in disk
form total more than 8K words. If your program is a "typical" COBOL-81 program (one that opens
and closes files), using clustered resident library support always (1) allows you to fit a larger program
into memory than using disk libraries and (2) results in maximum memory conservation for your
operating system.

Reducing Your Task Size 4-3 II

Figure 4-1: How Use of Libraries Affects Task Size

Space Occupied by TSK
Files on Disk

Using Disk Libraries

10K words
YOUR

xK words YOUR.TSK
RMS-11 routines

aK words
OTS routines

12K words OTHER
yK words OTHER.TSK

RMS-11 routines

bK words

(A TSK file can occupy no more than 32K words.)

Using Resident Libraries Without Clustering

10K words

Space Occupied by TSK
Files in Memory

(10 + x + a)K words

(12 + y + b)K words

YOUR.TSK -~---- (1 O + c)K words
cK words

12K words

dK words
OTHER

(A TSK file can occupy no more than 16K words when
it uses both the RMS-11 and OTS resident libraries.)

Using Resident Libraries With Clustering

10K words

(12 + d)K words

RMS-11 Resident Library __j. t
OTS Resident Library ----~-

YOUR YOUR.TSK -------- (1 O + c)K words
cK words

OTS routines

12K words

dK words

OTHER OTHER.TSK -------

OTS routines

(A TSK file can occupy no more than 24K words.)

(12 + d)K words

RMS-11 Resident Library l t
OTS Resident Library r

Legend: x and y represent values that depend on a program's requirements for RMS-11 library support
a and b represent values that depend on a program's total requirements for OTS library support
c and d represent values that depend on a program's requirements for supplementary OTS support
(support not provided in the OTS resident library)
K represents the value 1000 ce1ART-10004-so

II 4-4 Reducing Your Task Size

4.3.2 Estimating COBOL-81 OTS Support

The COBOL-81 OTS support a program requires can range from 2K to 12K words.

If your program requires only COBOL-81 OTS support, including the OTS as disk library routines
might allow you to fit a larger program into memory than using the resident library. The COBOL-81
resident library requires 8K words in your task image. If your program requires fewer OTS routines
than are included automatically using the resident library, then using the disk library could be an
advantage to you. ·

Also, the COBOL-81 resident library does not include all OTS support routines. If your task uses the
COBOL-81 resident library and requires OTS routines not included in the resident library, those OTS
routines are included in the TSK file.

If your task requires support from libraries in addition to the one containing the COBOL-81 OTS,
using OTS disk routines generally loses all space-saving advantages. Most COBOL-81 programs
require considerably more than 2K words of OTS support. For this reason, clustering the COBOL-81
resident library with other resident libraries results in significant task size reduction.

4.3.3 Using Disk Libraries Only

Some systems are too small to allow resident library installation. Other systems can support resident
libraries, but for one reason or another, do not have the ones you require installed. In this case, you
are limited to disk library support routines. This section discusses your task reduction options when
you are limited to disk library use.

If your task image was created using COBOL-81 disk library defaults, it includes only those OTS
routines and the smallest overlayable RMS-11 routine structure that your program needs.

If your task image was created using the COBOL-81 BLDODL utility (and then the Task Builder),
check to see if either the BLDODL /LRG switch or /IO:NONOV switch was specified. Both of these
switches are intended primarily to improve program performance. They add more space in the.task
image for RMS-11 routines than does the default BLDODL command line.

If you rerun BLDODL without the /LRG switch and then rebuild your task, you can reduce your task
size by either 3K or 4K bytes (depending on whether your program requires sequential or indexed file
support).

If you rerun BLDODL without the /IO:NONOV switch and then recreate your task image, you can
reduce your task size more than 4K bytes. The amount of reduction depends on how many
input/output routines your program requires.

At this point, the remaining options you can use to reduce your task size are callable subprograms
and segmentation. Subprograms are discussed in Section 4.4 and Chapter 6 and segmentation in
Section 4.5. You should also discuss use of resident libraries with your system manager if you think
that using them would be to both your and the system's advantage.

Reducing Your Task Size 4-5 II

4.3.4 Using Resident Libraries

This section discusses your task reduction options when you have the support routines your program
needs installed as resident libraries on your system.

If your task was created using the LINK/C81 command:

• On a RSTS/E system, the LINK/C81 command line default includes resident library support (if
available) and clusters resident libraries. If your program needs only COBOL-81 OTS support,
you might be able to fit your program into memory by recreating a task image and specifying
the /OTS:NORESIDENT qualifier in the LINK/C81 command line.

• On an RSX-11 M/M-PLUS system, the LINK/C81 command line default includes disk library
support in your task image. If your program needs only COBOL-81 OTS support, you might
have the most size-efficient task image you can achieve by manipulating library support.
However, if your program requires support from RMS-11 as well, using the clustering option
with resident libraries can obtain more memory space for your program. If you specify resident
library qualifiers in the LINK/C81 command line, clustering is invoked by default. This com­
mand line has the following format:

LINK/C81/0TS:RESIDENT/RMS:RESIDENT PrograM-naMe

If your TSK file was created using the COBOL-81 BLDODL utility defaults and then the Task Builder,
it includes disk library support. Therefore, if your program requires support from at least two resident
libraries, you can reduce your task size by rerunning the BLDODL utility with the /CLU switch. Refer
to Part I, Appendix D, for instructions on using the BLDODL utility.

4.4 Using Subprograms with Implicit Overlays

If you organize your application as subprograms, COBOL-81 can overlay some parts of your TSK file
for you. This implicit overlaying significantly reduces your task size if your program contains many
data items and I iterals and I or if its Procedure Division is large.

When you use subprograms, COBOL-81 can overlay the storage space required for each program's
descriptors. (For each data item or literal in a program, COBOL-81 allocates three words of storage
for its "descriptor".) Therefore, the space required for a task's descriptors has to be only as large as
needed for the program that has the most data items and literals. Also, Procedure Division code for
each program in the task can be overlaid. As with the case for descriptors, the space required for
Procedure Division code has to be only as large as needed for the largest Procedure Division among
the programs.

To take advantage of this COBOL-81 feature, you must specify the SEGMENT-LIMIT clause in the
OBJECT-COMPUTER paragraph of each program included in your TSK file. Within this clause, you
can specify any segment number within the integer range 1 through 49. You do not need to explicitly
segment the Procedure Divisions of any program in the task (unless you need additional overlaying
for a very large TSK file).

For more information on using callable subprograms, refer to Chapter 6, lnterprogram
Communication.

11 4-6 Reducing Your Task Size

4.5 Using the COBOL-81 Segmentation Facility

COBOL-81 allows you to divide the Procedure Division into overlayable and nonoverlayable pro­
gram segments to optimize memory use. Only enough memory space is allocated in the task image to
store the largest overlayable program segment. Overlayable program segments are read into memory
only when needed.

An overlayable program segment can be overlayed by and can overlay any other overlayable seg­
ment. A nonoverlayable program segment, however, can never be overlayed within the program. All
code generated for the Identification Division through the Data Division becomes part of the nonover­
layable portion of the task image.

4.5.1 Programming Considerations

Using segmentation allows you to specify those segments you want to be overlayable and those you
want to be nonoverlayable. To use segmentation, you must first define a segment limit by specifying
the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph of the Environment Division of
your source program. The integer value you specify in this clause is used by the compiler to deter­
mine whether a program segment is overlayable or rionoverlayable. A segment consists of one or
more COBOL-81 sections. Each COBOL-81 section should be composed of a series of closely related
operations designed to collectively perform a particular function.

In the Procedure Division, you specify a number in each section header that assigns that section to a
segment. For example:

INITIALIZATION SECTION 10.

In this section header, INITIALIZATION is the user-defined word that identifies the section, SECTION
is a COBOL-81 required word, and 10 is the number of the segment to which the section is assigned.

If you specify a segment-number whose value is less than the value specified in the SEGMENT-LIMIT
clause, you have defined the section as being nonoverlayable. A segment-number whose value is
greater than or equal to the value specified in the SEGMENT-LIMIT clause defines the segment as
being overlayable. All segment-numbers specified must be in the range 0 through 49.

The most frequently referenced sections of your program should be made nonoverlayable. This
reduces the number of 1-0 reads and improves performance. Assign segment-numbers that are less
than the value specified in the SEGMENT-LIMIT clause to those sections.

Infrequently used sections should be made overlayable. Assign segment-numbers that are greater than
or equal to the value specified in the SEGMENT-LIMIT clause to those sections. Sections that commu­
nicate with each other should be assigned to the same segment. Thus, the communicating sections
are read into memory as a unit, again improving performance. Sections having identical segment­
numbers are regrouped and assigned to the same segment. This regrouping does not affect the
program's logical flow.

If your program task consists of a main program and callable subprograms, you can assign duplicate
segment-numbers in any or all of the programs. However, the Task Builder expects to receive unique
Program Section (PSECT) names, and you must ensure this by using the /NAMES:XX qualifier when
you compile the main and subprograms.

Reducing Your Task Size 4-7 II

Do not use more segmentation than ... r,e<;Juired: to get your task to fit into memory; the more heavily
segmented a task is, the worse the performance. Keep the following three guidelines in mind when
deciding how many overlayable segments you need and how large each should be:

1 . The overlayable portion of your task is only large enough to accommodate the largest
overlayable segment.

2. A few large segments run faster than many small segments. - .

3. Segments that are equal (or nearly equal) in size use memory most efficiently.

As a first try, choose a segment size that you feel will reduce the total task size enough to fit it into
memory. Segment your program(s) accordingly and try to create the task image. If the attempt to
create the task is successful, read the memory allocation map and note the size of the total task and
the sizes of the segments. With this information, you can now tailor your program segments to
maximize performance. To achieve the best .run-time performance, you must use the minimum
amount of segmentation necessary to fit your task in memory.

4.5.2 Creating a Segmented Task Image

The Task Builder needs segmented object code along with other information to include segmentation
in the task image. This information is included automatically when you use DCL commands (the
COBOL command followed by the LINK{C81 command).

However, if you intend to use the Task Builder's TKB command, the information is provided by the
compile-time /BLD switch or by the COBOL-81 BLDODL utility. Remember that you can use the
compiler /BLD switch only if the task image does not include subprograms.

4.5.2.1 Segmenting a Single-Program Task -To illustrate the concept of using the segmentation
facility on a single-program task, the following program skeleton is presented. The value specified in
the SEGMENT-LIMIT clause is 16. Therefore, any section assigned a segment-number equal to or
greater than 16 belongs to an overlayable segment.

IDENTIFICATION DIVISION,
PROGRAM-IO, SEG-EXAMP~
ENVIRONMENT DIVISION,
SOURCE COMPUTER, PDP~11,

OBJECT-COMPUTER. PDP-11
SEGMENT-LIMIT IS 16,

DATA DIVISION,
PROCEDURE DIVISION,

SECT-NAME-1 SECTION 10,

SECT-NAME-2 SECTION 16.

SECT-NAME-3 SECTION 12.

SECT-NAME-4 SECTION 18,

SECT-NAME-5 SECTION 14,

II 4-8 Reducing Your Task Size

The compiler produces the following default PSECT names, along with their literals and literal
descriptors:

SEG-EXAMP

$SOOSC
$S1GSC
$S1BSC

$LOOSC
$L1GSC
$L18SC

Figure 4-2 illustrates the way memory is allocated for the sample segmented program above. Program
segments 10, 12, and 14 are nonoverlayable, while segments 16 and 18 are overlayable. The code
and literals for sections with segment-numbers 10, 12, and 14 are located in PSECTs $SOOSC and
$LOOSC. The relative sizes of the two overlayable segments are represented by the size of the segment
blocks. Note that the memory space provided for the overlayable parts of the program is only large
enough to accommodate the largest overlayable segment. Also, each overlayable segment is read into
memory only when needed.

Figure 4-2: Memory Allocation of a Segmented Program

Available
Memory

J __

DATA

Nonoverlayable
Memory
$SOOSC
$LOOSC

Overlayable
Memory

$S16SC $S18SC
$L16SC $L18SC

_J
""'-....

C81ART·10005-18

4.5.2.2 Segmenting a Multiple-Program Task- Segmenting a multiple-program task is very much like
segmenting a single-program task. First you must specify the SEGMENT-LIMIT clause in each program
to be segmented. Next you segment the Procedure Division of those programs you want to segment
by assigning segment-numbers to sections.

More than likely, you will have to use duplicate segment-numbers in the various programs, particu­
larly if there are numerous sections or more than one programmer is writing the source code. This
poses no problem as long as you ensure that the compiled object code for each program in the task
contains unique PSECT names. You do this by using the /NAMES:XX qualifier when you compile
each segmented program. XX can be any of the characters $, A-Z, or 0-9. For example, consider a
five-program task comprised of one main program and four subprograms, three of which include
exp I icit segmentation:

1. Main program "MAIN":

SEGMENT-LIMIT IS 10,
SECTION 00.
SECTION 11,
SECT ION 12.
SECTION 13.
SECTION 14,

(continued on next page)

Reducing Your Task Size 4-9 II

2. Subprogram "SUBA":

SEGMENT-LIMIT IS 10+
SECTION oo.
SECTION 11 •
SECTION 12.
SECTION 13.
SECTION 15.

3. Subprogram "SUBB":

SEGMENT-LIMIT IS 10+
SECTION oo.
SECTION 11 •
SECTION 12.
SECTION 18.
SECTION 17.

4. Subprogram "SUBC":

SEGMENT-LIMIT IS 10,
SECTION oo.
SECTION 11.
SECTION 18.
SECTION 18.
SECTION 20.

5. Subprogram "SUBD":

SEGMENT-LIMIT IS 10.
SECTION 00.

If you do not use the /NAMES:XX qualifier, the compiler generates the following default PSECT
names:

Program

Segment-Number MAIN SUDA SUBB SUBC SUBD

11 $S11SC $S11SC $S11SC $S11SC
$L11SC $L11SC $L11SC $L11SC

12 $512SC $512SC $512SC
$L12SC $L12SC $L12SC

13 $513SC $513SC
$L13SC $L13SC

14 $Sl4SC
$L14SC

15 $515SC
$L1 SSC

16 $516SC
$L16SC

17 $517SC
$L17SC

18 $518SC
$L18SC

19 $519SC
$L19SC

20 $520SC
$L20SC

II 4-10 Reducing Your Task Size

Note the duplicate PSECT names. For example, each program (except SUBD) generates $S11 SC and
$L 11 SC PSECT names for segment number 11 .

The Task Builder requires unique PSECT names. It recognizes only the first of any duplicate names
when it creates a task.

For example, programs MAIN, SUBA, SUBB, and SUBC can reference only their own segment 11
routines at run time. However, the Task Builder recognizes only one name, $S11 SC, for this segment
number. Therefore, each program executes the same segment 11 routine.

By specifying the /NAMES:XX qualifier when compiling each program, you override the compiler's
default PSECT names. For example, if you compile each program as follows, the resulting PSECT
names are shown.

COBOL MAIN/LIST/NAMES:MM
COBOL SUBA/LIST/NAMES:AA
COBOL SLJBB IL I ST I NAMES: BB
COBOL SUBC IL I ST I NAMES: CC
COBOL SLJBO/LIST/NAMES:DD

Segment-Number MAIN SUBA

11 $511MM $511AA
$L11MM $L 11AA

12 $512MM $512AA
$L12MM $L 12AA

13 $513MM $513AA
$L13MM $L13AA

14 $514MM
$L14MM

15 $51 SAA
$L15AA

16

17

18

19

20

Program

SUBB SUBC SUBD

$511BB $511CC
$L 11BB $L11CC
$512BB
$L12BB

$516BB
$L16BB
$517BB
$L17BB

$518CC
$L 18CC
$519CC
$L 19CC
$520CC
$L20CC

Now each PSECT name is unique. Therefore, when you link these programs, each program accesses
its own segment number 11 routines. When MAIN references segment number 11 routines, it
accesses its own $S 11 MM segment.

4.5.3 Reading a Memory Allocation Map

The memory allocation map provides the means for you to determine the exact amount of memory
each segment requires. This section explains how to obtain a memory allocation map and how to
read it.

Reducing Your Task Size 4-11 II

You request a memory map listing by specifying the /MAP qualifier to the LINK/C8l command. An
alternative way to request the listing is to specify the I MAP switch in the BLDODL utility command
line.

A complete memory allocation map is comprised of numerous memory sub listings. What you are
interested in is the memory allocation synopsis for each main or subprogram and for each overlayable
segment. These are the only parts of the memory allocation map discussed in this section. Example
4-1 shows a sample skeleton program using segmentation. With a SEGMENT-LIMIT of 10, SECTION
10 and SECTION 12 are overlayable, and SECTION 5 is nonoverlayable. The parts of the memory
allocation map applicable to segmentation are shown in Example 4-2.

Example 4-1 : Sample Segmented Program

IDENTIFICATION DIVISION,
PROGRAM-ID, XSEG21.
ENVIRONMENT DIVISION,
SOURCE-COMPUTER. PDP-11,
OBJECT-COMPUTER, PDP-11

SEGMENT-LIMIT IS 101

DATA DIVISION.
PROCEDURE DIVISION.
MAINSTUFF SECTION,
* the root segment
MASTERSTUFF,

* ouerlaYable segment
SECTION-1 SECTION 10.
PROC-1,

* ouerlaYable segment
SECTION-2 SECTION 12+
PROC-2,

* nonouerlaYable segment
SECTION-3 SECTION 5+
PROC-3,

STOP RUN,

Example 4-2 shows a sample memory allocation map.

II 4-12 Reducing Your Task Size

Example 4-2: Sample Memory Allocation Map

segment: $AOOSC (entire program)

Memory allocation synopsis:

Section

$CROSC:(RO, D ,GBL, REL, CON)
$LOOSC:(R0,D,GBL,REL,CON)
$SOOSC:(RO,l,GBL,REL,CON)
$$ALVC:(R0,1,LCL,REL,CON)
$$RTS :(RO,l,GBL,REL,OVR)

013674 000006 00006. +--
013702 000144 00100. +--
014046 000304 00196-
014352 000000 00000.
013556 000002 00002.

segment: $A 10SC (SECTION 10 overlayable segment)

Memory allocation synopsis:

Section

$L 1 OSC:(RO,D,GBL,REL,CON)
$S1 OSC:(RO, l,GBL, REL, CON)
$$ALVC:(R0,1,LCL,REL,CON)
$$RTS: (RO,l,GBL,REL,OVR)

014354 000036 00030-
014412 000116 00078-
014530 000000 00000.
013556 000002 00002.

segment: $A 12SC (SECTION 12 overlayable segment)

Memory allocation synopsis:

Section

$L 12SC:(RO,D,GBL,REL,CON)
$S12SC:(RO,l,GBL,REL,CON)
$$ALVC:(R0,1,LCL,REL,CON)
$$RTS: (RO,l,GBL,REL,CON)

014354 000012 00010. +--
014366 000034 00028-
014422 000000 00000.
013556 000002 00002.

In the following discussions of the memory allocation synopses, the rows of interest (indicated with
arrows) are those where the Section PSECT name is of the form $XXXSC. In these particular rows, the
column of interest is the one at the far right, which lists, in decimal bytes, the memory allocated for
the named PSECT.

Segment $AOOSC is the memory allocation synopsis for the entire program. You are interested in the
nonoverlayable portions. Row $CROSC lists the memory allocated for data descriptors, row $LOOSC
that for literals, and row $SOOSC the memory for program sections whose section number is less than
the segment limit number.

If, after segmentation, the program task image is still too large, one of your options is to reduce, if
possible, the nonoverlayable portion of the image. If the entire Procedure Division is already over­
layed, the only options left are to reduce the size of the largest overlayable segment or to divide the
program into subprograms.

Reducing Your Task Size 4-13 II

Segments $A 1 OSC and $A 12SC are the memory allocation synopses for the two overlayable segments
in the program. From these notice that PSECT $S10SC has been allocated 108 bytes (30 for literals
($L 1 OSC) and 78 bytes for the remainder ($51 OSC)) while PSECT $512SC has been allocated 38 bytes
(10 for literals ($L12SC) and 28 bytes for the remainder ($S12SC)). To use memory most efficiently,
you should make overlayable program segments as nearly equal in size as possible. If your Procedure
Division is already fully overlayed, your only option at this point is to reduce the largest overlayable
segment. This might mean breaking up present segments into additional smaller segments. Breaking
up segment $A 1 OSC into two smaller overlays would reduce the memory requirements for the over­
lays. Although fine-grained segmentation degrades performance, there is no other option to reducing
your task size.

11 4-14 Reducing Your Task Size

Chapter 5
Improving Program Performance

5.1 Introduction

If your COBOL-81 application program is large and/or processes large quantities of data, you will
probably be interested in improving run-time performance. In addition, if you are compiling very
large programs on a busy system, you may want to improve compile-time performance as well. This
chapter discusses some general concepts that you can use to improve performance and provides
references to other parts of this manual that give more detailed information.

5.2 Performance Versus Task Image Reduction

In general, significant reduction of run time can be accomplished only at the expense of increasing
task image size. If you are forced to use segmentation /overlaying techniques to get your COBOL-81
program to fit into the available main memory, a significant reduction in run time might not be
possible, but some minor improvements can be made. However, to optimize the run-time perform­
ance of your program, limit ·overlaying to the absolute minimum required to fit your program task
image into main memory. See Chapter 4 for a discussion of program segmentation and overlaying
techniques.

5.3 Using Compiler Qualifiers to Improve Performance

There are three compiler qualifiers that you can use to improve run-time and /or compile-time per­
formance. These qualifiers are in addition to any other compiler qualifiers that you might have to
specify for other reasons. The following sections discuss these qualifiers.

5-1 II

5.3.1 Using the I NOCHECK and I CHECK Qualifiers

By default, the compiler generates the code necessary to check valid ranges for subscripts, indexes,
and nested PERFORM statements. This extra code both increases task image size and degrades
performance. You can override these defaults with the /NOCHECK, /CHECK:NOBOUNDS, and
/CHECK:NOPERFORM qualifier. Specify /CHECK:NOBOUNDS to turn off subscript and index
range checking, /CHECK:NOPERFORM to turn off nested PERFORM statement checking, and
/NOCHECK to suppress range checking for both subscripts and indexes, and for the nesting of
PERFORM statements. Use of these qualifiers will improve run-time performance and also reduce
your task image size. Use these qualifiers only after you have completely debugged your program.
See Part I, Appendix D, for additional information.

5.3.2 Using the /TEMPORARY:dev Qualifier

The /TEMPORARY:dev qualifier instructs the compiler to store its temporary working files on the
device you specify by "dev". By default, the compiler stores these files on the system disk. If for
"dev", you specify a disk that has more free blocks, compile-time performance will improve.

5.4 Using BLDODL Switches to Improve Performance

There are two BLDODL switches that you can specify to significantly improve run-time performance.
Both affect the overlaying of RMS-11 I /0 routines. If your program performs I /0 functions, the
compiler builds into the task image those I /0 routines required. These routines are provided by
RMS-11. Whether or not these routines are overlayed, and if so how much space is allocated for their
storage, has a significant effect on run-time performance. These switches are in addition to other
BLDODL switches that you might have to specify for other reasons. The following sections discuss
these BLDODL switches.

5.4.1 Using the BLDODL/IO:NONOV Switch

If you do not specify any BLDODL/10 switches, by default the required RMS-11 I /0 routines are
overlayable and increase the task image size. For sequential file support, 8K bytes are allocated and
for indexed files 9K bytes are allocated. If it is not absolutely necessary for you to overlay the RMS-11
routines, specify the BLDODL/IO:NONOV switch. This switch specifies that RMS-11 routines are
not overlayable, but instead are to be included as part of the task image. Because there is no longer a
need to read the overlayable routines into memory, performance improves considerably. See Part I,
Appendix D for additional information.

5.4.2 Using the BLDODL I LRG Switch

If you do overlay RMS-11 routines you can improve run-time performance by allocating more storage
space for the routines. To specify a large overlay structure for RMS-11 routines, use the
BLDODL/LRG switch. Instead of the 8K or 9K bytes allocated for the routines, 12K bytes are now
allocated, thus improving performance by reducing the number of reads to memory. This might mean
that you will have to rely more heavily on other segmentation/overlaying techniques to obtain the
additional memory space needed. See Part I, Appendix D, for additional information.

II 5-2 Improving Program Performance

5.5 Using Terminal Format Source Programs

You can write your source programs using either the conventional ANSI format or the DIGIT AL
terminal format. The DIGITAL terminal format eliminates line-number and identification fields and
allows tab characters and short lines, thus saving disk space and reducing compile time. If your
source program is written in ANSI format you can convert it to terminal format before compiling by
using the REFORMAT Utility. See Chapter 1 for instructions on using the REFORMAT Utility.

5.6 Data Handling Techniques for Improving Performance

There are several data handling techniques you can use to improve program performance. These
include:

• Using the same scale in arithmetic operations

• Reducing the number of significant digits in numeric data types

• Using indexes instead of subscripts in table handling

• Avoiding decimal truncation

• Using the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements instead of the COMPUTE
statement

• Using the GO TO DEPENDING statement instead of IF ... GO TO sequences

• Using the SEARCH ALL statement instead of the SEARCH statement

These techniques are explained in Part 111, Chapter 4, Data Handling Optimization

5.7 Using File Optimization to Improve Performance

There are several file optimization techniques available to you to improve program performance.
However, some of these techniques may involve significant trade offs. These file optimizing tech­
niques include:

• Optimizing file I /0 ... the APPLY clause

• Sharing record areas

• Reserving additional I /0 buffer space

• Tailoring I /0 buffers

• Optimizing file design

These techniques are explained in Part IV, Chapter 7, File Optimization Techniques.

5.8 Using Subprograms

You can reduce the compile time for a large program if you break it into subprograms. This way, you
only need to recompile those subprograms with coding changes. This technique also simplifies
program segmentation if you keep segmentation in mind when you break up your large programs. A
properly designed overlay structure will have minimal effect on run-time performance.

Improving Program Performance 5-3 II

Chapter 6
lnterprogram Communication

COBOL-81 allows you to link separately compiled COBOL-81 and non-COBOL-81 programs into a
single task image. The CALL statement then allows these separately compiled programs to communi­
cate with each other when the task executes.

This chapter introduces you to multiple program (COBOL-81 and non-COBOL-81) tasks. It discusses
and presents examples of how to transfer execution control and data from one program to another
within the task.

The first section explains multiple COBOL-81 program tasks. The remaining sections then discuss the
inclusion of non-COBOL-81 programs into the task image and how to communicate with them from a
COBOL-81 program.

6.1 A Multiple COBOL-81 Program Task

A multiple COBOL-81 program task must consist of both:

•One main COBOL-81 program

• One or more COBOL-81 subprograms

A main program calls subprograms but cannot be called in return. Task execution begins and ends in
its Procedure Division. It contains one or more CALL statements and is a "calling" program.

A subprogram must always be called by a main program or another subprogram. It contains none,
one, or more than one CALL statement. If it contains a CALL statement, it is both a "calling" and a
"called" program. If it does not contain a CALL statement it is a "called" program only.

6-1 II

6.1.1 Identifying a COBOL-81 Subprogram

At compile time, the COBOL-81 compiler must be able to distinguish between main programs and
subprograms. Depending on the need to pass parameters between programs, there are two methods
of identifying subprograms.

1. When passing parameters between programs, you must specify the USING phrase in the
Procedure Division header of the called subprogram. The USING phrase identifies this
particular program as a subprogram.

For example:

PROCEDURE DIVISION USING At B,

The use of the data-name is discussed in Section 6.2.

2. When you do not need to pass parameters, you do not need to specify the USING phrase.
To identify the program as a subprogram, you must specify the /SUBPROGRAM compiler
qualifier.

For example:

COBOL SUB1 = SUB1/SUBPROGRAM

6.1.2 Compiling Main and Subprograms

When you use subprograms and also use segmentation in more than one of the programs, you must
ensure that all PSECT names generated by the compiler and used by the Task Builder are unique. You
do this by specifying the /NAMES:XX compiler qualifier when you compile any of the programs using
segmentation. XX is any two-character alphanumeric combination you choose to uniquely identify
PSECT names. This is in addition to any other compiler qualifiers that you might have specified.

For example, a multiple program task consists of:

MAIN (with segmentation)
SUB1 (no segm·entation)
SUB2 (with segmentation)

You compile these as follows:

COBOL MAIN =
COBOL SUB1
COBOL SUB2

MAIN /NAMES:MM
SUB1
SUB2 I NAMES: AA

Now all PSECT names assigned by thecompiler will be unique and of the form $SnnXX where nn are
the section numbers you assigned to the program segments in the Procedure Division and XX are the
a·lphanumeric characters you specified in the /NAMES qualifier. See Chapter 4 for a more complete
discussion of program segmentation.

11 6-2 lnterprogram Communication

6.1.3 Transferring Execution Control with the CALL Statement

You control a multiple program execution sequence in much the same way that you control the
execution sequence in a single COBOL-81 program.

In a single COBOL-81 program, you execute a GO TO or PERFORM statement to change its logic
flow. In a multiple COBOL-81 program, you execute both:

• A controlling CALL statement in the calling program (main or subprogram).

• An EXIT PROGRAM statement in the called subprogram.

6.1.3.1 The CALL Statement - Execution of a CALL statement causes the task's execution control to
pass from the calling program to the beginning of the called subprogram's Procedure Division. The
first time the called subprogram assumes execution control, its state is that of a fresh copy of the
program. Each subsequent time it is called, its state is as it was upon the last exit from that program.

Note

If you are passing parameters between programs, you must also specify the
USING phrase in the CALL statement. See the COBOL-81 Language Reference
Manual for a complete discussion of the CALL statement and the USING phrase.

6.1.3.2 The EXIT PROGRAM Statement - To return execution control to the calling program, the
called subprogram executes an EXIT PROGRAM statement. The EXIT PROGRAM format for the called
program is:

EXIT PROGRAM

You can include more than one EXIT PROGRAM statement in a subprogram. However, if it appears
in a consecutive sequence of imperative statements, it must appear as the last statement of the
sequence. For example:

IF A = B DISPLAY "A e9uals B" 1 E){IT PROGRAM,

READ INPUT-FILE AT END DISPLAY "End of inPut file"
PERFORM END-OF-FILE-ROUTINE
E){ IT PROGRAM,

If you do not specify an EXIT PROGRAM statement, control returns to the calling program after the
last executable statement.

Control returns to the next statement following the CALL statement when an EXIT PROGRAM state­
ment executes.

Note

When the EXIT PROGRAM executes, the called program is considered to have
reached the ends of the ranges of all PERFORM statements. Thus, an error does
not occur if the called program is entered again during image execution.

lnterprogram Communication 6-3 II

6.1.3.3 Sharing Execution Control ..._ Figure 6-1 shows ho~ execution control is shared between a
main program and a subprogram.

Figure 6-1 : Sharing Execution Control Between a Main Program and One Subprogram

IDENTIFICATION DIVISION, IDENTIFICATION DIVISION,
PROGRAM-ID, MAIN, PROGRAM-ID, SUB,
ENVIRONMENT DIVISION, ENVIRONMENT DIVISION,
DATA DIVISION, DATA DIVISION,

rPR:EDURE DIV l S l ON, ,---. PROCEDURE D l V lS I ON,

• N, • 6EGIN, !•
CALL II SUB II. ____ __, EXIT PROGRAM.

• I STOP RUN.~•f-----------~

C81ART-10006-18

6.1.3.4 Nesting CALL Statements - A called subprogram can itself transfer execution control to a
subprogram. This technique is known as CALL statement nesting. For example, consider a nested task
that executes a series of three call statements from three separate programs:

MAIN calls SUB,
SUB then calls SUBA,
SUBA then calls SUBB.

In Figure 6-2 SUBB cannot directly call SUBA, nor can it call SUB or MAIN.

Note

The COBOL-81 OTS issues a fatal error message if a called subprogram either
directly or indirectly calls a subprogram already in a nest.

Figure 6-2: Nesting CALL Statements

I MAIN 1----8---')lr~ I SUSA I----·· I SUBS I
+ I + I + I

II 6-4 lnterprogram Communication

C81ART-10007-8

Figure 6-3 shows how execution control is shared between a main program and multiple
subprograms.

Figure 6-3: Sharing Execution Control Between a Main Program and Multiple
Subprograms

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION, IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.

PROGRAM-JD, MAIN, PROGRAM-JD, SUB. PROGRAM-ID. SUBA. PROGRAM-ID, SUBB.

ENVIRONMENT DIVISION, ENVIRONMENT DIVISION. ENVIRONMENT DIVISION, ENVIRONMENT DIVISION.

DATA DJl.JJSION, DATA QJl.JJSIQN, DATA Dl'.JISION. DATA DJl.'ISION.

:::::~u1• Jl.J ISIDN. .r:::::~ur•D I VI SIDN. .r:::::~ul•DJl.JIS ION. .r:::::~u"j'oo Jl.I IS ION.

CALL "SUB" ,__J CALL 'SUBA" ,__:j CALL "SUBB" ,__J ,

• • • STOP RUN, E)< IT PROGRAM, E)< IT PROGRAM, E>(IT PROGRAM,

C81ART-10008-26

The following three programs illustrate their execution sequence through the display of a series of 12
messages on the default terminal. Task execution begins in MAIN with message number 1. It ends in
MAIN with message number 12. The task's message sequence is shown following the program
example.

Example 6-1 : Sharing Program Execution Control Between a Main Program and Multiple
Subprograms

IDENTIFICATION DIVISION,

* *MAIN is a calling Pro•raM onlY

* PROGRAM-ID, MAIN,
ENVIRONMENT DIVISION,
DATA Dil,JISION,
PROCEDURE DIVISION,
BEGIN,

DISPLAY 11 1. MAIN has the first execution control.
DISPLAY 11 2. MAIN transfers execution control to SUB1 11

upon executing the following CALL. DISPLAY II

CALL 11 SUB1",
DISPLAY 11 11.
DISPLAY "12.
DISPLAY II

STOP RUN,

MAIN has the last execution control.
MAIN terMinates the entire task upon

execution of the STOP RUN stateMent 11

IDENTIFICATION DIVISION,

* * SUB1 is both a called and a calling subPro•raM

* * It is called by MAIN

* * It then calls SUB2

* PROGRAM-ID. SUB1,
ENVIRONMENT DIVISION,
DATA D!l.'ISIQN,
PROCEDURE DIVISION,

(continued on next page)

lnterprogram Communication 6-5 II

Example 6-1 : Sharing Program Execution Control Between a Main Program and Multiple
Subprograms (Cont.)

BEGIN,
This is the entrY Point to SUBi. II DISPLAY II 3,

DISPLAY II

DISPLAY II

DISPLAY II

a. SU61 now has execution control. 11

s. SUB1 transfers execution control to SU62 11

upon executinf the followinf CALL, 11

CALL 11 SUB2 11 ,

DISPLAY II 9; SUB1
DISPLAY 11 10, SUB1
DISPLAY II

DISPLAY II

EXIT PROGRAM,

refains execution control.
returns execution control to MAIN
after executinf the following
EXIT PROGRAM stateMent.

IDENTIFICATION DIVISION,

* * SU62 is a called subProfraM onlY

* * It is called by SU61

* PROGRAM-ID, SUB2,
ENVIRONMENT DIVISION,
DATA DIVISION,
PROCEDURE DIVISION,
BEGIN,

DISPLAY II s.
DISPUW II 7,
DISPLAY 11 e.
DISPLAY II

This is the entrY Point to SU62. 11 ,

DISPLAY II

SU62 now has execution control.
SU62 returns execution control to

upon executinf the followinf
EXIT PROGRAM stateMent.

EXIT PROGRAM,

The message sequence results displayed on the terminal are:

1, MAIN has the first execution control.
2, MAIN transfers execution control to SUB1

uPon executinf the followinf CALL,
3. This is the entrY Point to SU61,
a. SU61 now has execution control.
s, SUBl transfers execution control to SU62

upon executinf the followinf CALL.
s. This is the entrY Point to SU62.
7. SU62 now has execution control.
8, SU62 retu~ns execution control to SU61

uPon executinf the followinf
EXIT PROGRAM stateMent.

9, SU61 refains execution control.
10, SUBl returns execution control to MAIN

after ex~cutinf the followinf
EXIT PROGRAM stateMent.

11. MAIN has the last execution control.
12, MAIN terMinates the entire task uPon

execution of the STOP RUN stateMent.

II 6-6 I nterprogram Communication

II

SUBl 11,

II

II

II

6.2 Accessing Another Program's Data Division

In a multiple COBOL-81 program task, a called subprogram can have access to its calling program's
Data Division; however, the calling program controls how much of it is to be accessible to the called
subprogram th rough:

1. The USING phrase in both the CALL statement and the Procedure Division header

2. The Linkage Section

6.2.1 The USING Phrase

To access a calling program's Data Division use a CALL statement and a Procedure Division USING
phrase. The CALL statement's and the Procedure Division's USING phrase must contain equal
numbers of data-names. For more information on the USING phrase, see the COBOL-81 Language
Reference Manual.

The order of appearance of USING identifiers in both calling and called programs determines the
correspondence of single sets of data available to the called subprogram. The correspondence is
positional and not by name. Figure 6-4 shows the correspondence of single sets of data.

Figure 6-4: Correspondence of Single Sets of Data

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN. PROGRAM-ID. SUB.

ENVIRONMENT DIVISION. ENVIRONMENT DIVISION.

DATA DIVISION. DATA DIVISION.

WORKING-STORAGE SECTION, LINKAGE SECTION.

01
01
01
01

A
B
c
D

PICTURE X • ... --i::---------01 PART PICTURE X.
AMOUNT PICTURE 8,
COST PICTURE 88.
COLOR PICTURE XX.

PICTURE 8. -* 01
PICTURE X~<."'lllf 01
PICTURE 88 •• -=01

rPROCEDURE DIVISION,

• •
~PROCEDURE DIVISION USING PART1

AMOUNT1
COLOR1
COST·-

START-l,JP. SUB-START-UP,

•
'-------'~~CALL "SUB" USING

RJ•
A1 B•i---~
C1 D,[,4._0-------EXIT PROGRAM,4.....-r-------~ •

STOP

lnterprogram Communication

CB1ART-10009-35

6-7 II

When execution control passes to SUB, the called, program can access the four data items in the
calling program by referring to the data-names in its own Procedure Division USING phrase. The
data-names correspond as shown in Table 6-1.

Table 6-1: Correspondence of Data-Names

Calling Program Called Subprogram
Data-Name Data-Name

A PART
B AMOUNT
c COLOR
D COST

6.2.2 The Linkage Section

You must define each data-name in the Procedure Division USING ph.-ase data-item-list in the called
subprogram's Linkage Section. For example:

LINKAGE SECTION+

01 PART PICTURE ...
01 AMOUNT PICTURE
01 INVOICE PICTURE •••
01 COLOR PICTURE
01 COST PICTURE •••

PROCEDURE DIVISION USING PART1 AMOUNT1 COLOR1 COST,

Of those items you define in the Linkage Section, only those appearing in the Procedure Division
USING phrase data-item-list are accessible to the called program. In the above example, INVOICE is
not accessible to the called program because it is not in the Procedure Division USING phrase data­
item-list.

Whenever a subprogram references a data-name·from the Procedure Division USING phrase data­
item-list, the subprogram processes it according to the definition in its own Linkage Section.

The compiler does not allocate storage space for data items in the called subprogram's Linkage
Section. Subprogram references to those items are resolved at run time. The OTS equates the refer­
ence's address in the subprogram to the location in the calling program. For index-names, no such
correspondence exists; index-name references in the calling and called programs always refer to
separate indexes.

A called program's Procedure Division can reference data items in its Linkage Section only if it
references one of the following:

• Any data item in the Procedure Division USING data-item-list.

• A data item that is subordinate to a Linkage Section data item in the Procedure Division
USING data-item-list.

• Any other association with a data item in the Procedure Division USING data-item-list. For
example, index-name, redefinition, etc.

II 6-8 lnterprogram Communication

6.2.3 Examples

In the example in Figure 6-5, SUB is called by MAIN (see the solid arrows). Because MAIN includes
FILE-RECORD and WORK-RECORD in its CALL "SUB" USING statement, SUB can reference these
data items just as if they were in its own Data Division. However, SUB accesses these two data items
with its own data-names, F-RECORD and W-RECORD (see the broken line arrows).

In the example in Figure 6-6, SUBA references data items in both MAIN and SUB.

Example 6-2 shows how a subprogram (SUB1) redefines data items in its own Linkage Section.

Figure 6-5: Sharing Execution Control and Data Between a Main Program and One Subprogram

IDENTIFICATION DIVISION, IDENTIFICATION DIVISION.

PROGRAM-ID, MAIN, PROGRAM- ID, SUB,

ENVIRONMENT DIVISION. ENVIRONMENT DIVISION,

DATA DilJISION. DATA Dil.lISIDN.

FI LE SECT ION, FILE SECTION.

01 FILE-RECORD PICTURE , , ·•-------~

WORKING-STORAGE SECTION, WORKING-STORAGE SECTION.

01 WORK -RECORD PICTURE , , , -.-------1
I

i LINKAGE SECTION.
I
I
: ----- 01 F-RECORD PICTURE
I
!._ ______ 01 W-RECORD PICTURE

rPROCEDURE Dil.II SION, ~PROCEDURE D Il.l IS ION US I NG F-RECORD
W-RECORD ,..,

BEGIN, BEGIN.

• • •
USING FILE-RECOR~l:::-:---:

WORK-RECORD -*---.-. --E>< IT PROGRAM,._-
~CALL "SUB"

i•
STOP RUN,

C81ART·10010·40

lnterprogram Communication 6-9 II

Figure 6-6: Sharing Nested Execution Control and Data Between a Main Program and Multiple
Subprograms

IDENTIFICATION DIVISION, IDENTIFICATIDN DIVISION, IDENTIFICATION DIVISION

PROGRAM-JD, MAIN, PROGRAM-ID. SUB. PROGRAM-ID SUBA.

ENVIRONMENT DIVISION, ENVIRONMENT DIVISION, ENVIRONMENT DIVISION,

DATA DIVISION, DATA DIVISION, DATA DIVISION,

FILE SECTION, FILE SECTION, FILE SECTION,

01 FILE-RECORD PICTURE , , ·~-----, 01 S-FILE-REC
"'1, I

PICTURE , , .-.---------,

WORK ING-STORAGE SECT ION• ':',I :
I I

WORK I NG_-STORAGE SECT ION,-+------,
I

01 WORK-RECORD PICTURE , , •+. 1 I 01 S-WORK--REC PICTURE
• l : :
I I I I LINKAGE SECTION.
I I I I

I
I
I
I
I
I

1 WORKING-STORAGE SECTION,
I
I
I

i LINKAGE SECTION,
I
L-01 SUB-F-RECDRD PICTURE

I I I I
1 1 I ---01 F -RECORD Pl CTURE , , , L---01 SUB-W-RECDRD PICTURE : l '---------------------------------i
I -~-------01 W-RECDRD PICTURE • • • '------01 MAIN-F-RECDRD PICTURE
-----------------------------------,

!__-------01 MAIN-W-RECDRD PICTURE

PROCEDURE DIVISION USING MAIN-F-RECORD

PROCEDURE DIVISION,

BEGIN, j·
CALL "SUB" USING

l•
STOP RUN,

FILE-RECORD
WORK-RECORD,

~ROCEDURE Dlj~IDN

BEGIN,

USING F-RECORD
W-RECORD,

CALL "SUBA" USING F-RECDRD

• S-FILE-REC
S-WDRK-REC. 1 W-RECORD

EXIT PROGRAM,

MAIN-W-RECORD

• SUB-F-RECORD

SUB-W-RECDRD,
BEGIN

•
EX IT PROGRAM.------------'

C81AAT·20900-30

Example 6-2: Redefining a Calling Program's Data Items in the Called Subprogram's Linkage
Section

IDENTIFICATION DIVISION+

* * MAIN is a calling PrograM

*
PROGRAM-ID, MAIN+

ENVIRONMENT DIVISION,
DATA DIVISION,
FILE SECTION,

WORKING-STORAGE SECTION,

01 A PIC x.
01 B PIC 9,
01 c PIC X<S>,
01 D PIC S9(5)V99,
01 E PIC ZZZtZZZ.99-,
01 F PIC xxxxx.
01 G PIC 99999,
01 H,

03 H1 PIC x.
03 HZ PIC xx.
03 H3 PIC xxx.

11 6-10 lnterprogram Communication

(continued on next page)

Example 6-2: Redefining a Calling Program's Data Items in the Called Subprogram's Linkage
Section (Cont.)

01 I•
03 I 1 PIC 888.
03 12 PlC 88.
03 13 PIC 8.

01 J,
03 J1.

05 Jl-1 PIC x (11).
05 Jl-2 PIC x (1 z).

03 J2,
05 JZ-1 PIC x (21).
05 JZ-2 PIC XC22),

01 K PIC XC 1000),
01 L PIC XC 132),

PROCEDURE DIVISION.

BEGIN,
CALL "SUBl" USING A1 B1 C1 D1 E1 F1 Gt Ht I, J,
STOP RUN,

IDENTIFICATION DIVISION,

* * SUBl is a called Pro~ram

*
PROGRAM-ID, SUBl,

ENVIRONMENT DIVISION,
DATA DIVISION,

WORKING-STORAGE SECTION.
01 WORK-AREA PIC XC1000),

LINKAGE SECTION,
01 SUBA PIC X.
01 SUBB PIC 8.
01 SUBC PIC 8(5),
01 SUBD PIC S8C5lV88,
01 SUBE PIC XC11),
01 SUBF PIC XXXXX,
01 SUBG PIC XXXXX,
01 SUBH PIC XCG),
01 SUBI PIC 8CG),
01 SUBJ PIC XCGG),
PROCEDURE DIVISION USING SUBA1 SUBB1 SUBC1 SUBD1 SUBE1

SUBF1 SUBG1 SU6H1 SUBI, SUBJ,
BEGIN,

DISPLAY 'This is the entry Point to SUB1
DISPLAY SUBl can access ten data items in MAIN
DISPLAY just as if they are in SUB1,
DISPLAY However, note that SUB1 redefines some
DISPLAY of the MAIN data descriPtions.
DISPLAY For examPle1 SUBl references SUBC as a
DISPLAY five character numeric item, whereas MAIN
DISPLAY references C as a five character alPha-
DISPLAY numeric item.
DISPLAY SU61 cannot however reference any other data
DISPLAY in MAIN that has not been listed in the
DISPLAY Usin~ Phrase. For examPle1 Kand Lin MAIN ,
DISPLAY " cannot be referenced by SU61.
DISPLAY "Execution control returns to MAIN after
DISPLAY " executin~ the next stat~ment.
EX IT PROGRAM,

lnterprogram Communication 6-11 11

6.2.4 COBOL-81 01s·- Error Checking

At execution, the COBOL-81 OTS performs a check to ensure that the number of arguments passed to
a called subprogram is the same as the number expected. That is, the subprogram Procedure Division
USING phrase data-item-list must contain the same number of data-names as the USING phrase in
the calling program's CALL statement. If the number of arguments is not equal, the OTS issues a
diagnostic error message and aborts the task. No checks are made to ensure that the passed argu­
ments are the same size as the expected arguments. It is the programmer's responsibility to ensure
that these size limits are compatible.

Recursive calls to COBOL-81 subprograms are not allowed. If a subprogram contains a call that
directly or indirectly causes a subprogram to be reentered before it has exited from its original entry,
the OTS issues a diagnostic error and aborts the task.

6.3 Including Non-COBOL-81 Programs in a Task

COBOL-81 object modules can be task-built with other non-COBOL-81 object modules. This capa­
bility is often useful, especially when a feature is not available in COBOL-81, but is available in
another language.

Note

Non-COBOL-81 programs must not include nor use the file management services
provided by RMS-11 (Record Management Services) if a COBOL-81 program
performs file I /0 in the same task. (COBOL-81 programs reference RMS-11 to
perform file I /0.) Other file management services are available to the
non-COBOL-81 program. This note of caution is very important, because the
PDP-11 programming languages do not share a common Object Time System
(OTS). For more information on alternative file management services, see RSTS/E
System Directives Manual or RSX-11 110 Operations Reference Manual.

To use BLDODL to include a non-COBOL-81 object module in a task image, you must:

1. Create a standard COBOL-81 SKL file (using the text editor).

2. Specify this SKL file as input to BLDODL.

A standard COBOL-81 SKL file for a non-COBOL-81 object module contains at least ·one of the
following directive lines:

• Object Program ID Line. This line is required. It identifies the object module to be included in
the task image. The format of this line is:

;coBOBJ=XXXXXX+OBJ

where:

XXXXXX.OBJ is the name of the object module to be included in the task image.

II 6-12 lnterprogram Communication

• Main Program ID Line. This line is present only for non-COBOL-81 object modules that are
main programs rather than subprograms. The format of this line is:

;coBMAIN

• Commercial Instruction Set (CIS) ID Line. This line is required only if your COBOL program
was compiled with the /CODE:CIS switch. The /CODE:CIS switch can be implicitly or explic­
itly specified. The format of this line is:

;cis

Consider the following examples:

Example 1:

MACRO program START.OBJ is a main program in a task consisting of a main program and several
subprograms. The /CODE:CIS switch was specified at compile time. The SKL file to be hand­
generated is:

;coBOBJ=START.OBJ
;coBMAIN
;cis

Example 2:

MACRO subprogram SUBX.OBJ is to be part of a task image consisting of several COBOL-81 subpro­
grams and a COBOL-81 main program. The /CODE:NOCIS switch was specified at compile time.
The SKL file to be hand-generated is:

;coBOBJ=SUBX.OBJ

To activate a COBOL-81 subprogram, a non-COBOL-81 calling program must contain the equivalent
of a COBOL-81 CALL statement. If data is being passed to the COBOL-81 subprogram, program
register RS must be set to the address of an argument list. The argument list must contain pointers to
the data being passed. (See Figure 6-7, Argument List Format, in Section 6.3.1.3)

A non-COBOL-81 subprogram, to be activated by a COBOL-81 program, must contain the equiva­
lent of the COBOL-81 PROGRAM-ID statement and the EXIT PROGRAM statement. If data is being
passed, the non-COBOL-81 subprogram can access that data through program register RS. The
following sections further describe how to include non-COBOL object modules in a task.

6.3.1 MACRO Programs and COBOL-81 Programs

6.3.1.1 Calling a MACRO Program from a COBOL-81 Program - When calling a MACRO program
from a COBOL-81 program, you specify the global entry point in the MACRO program for the
program name in the CALL statement. For example:

IDENTIFICATION DIVISION.
PROGRAM-ID+ CALLMAC+
ENVIRONMENT DIVISION,
DATA DIVISION,

(continued on next page)

lnterprogram Communication 6-13 II

WORKING-STORAGE SECTION,
01 BOFFIN PICTURE ,,,
01 BOMBUR PICTURE ,,,
01 BOFUR PICTURE ,,,
PROCEDURE DIVISION,
BEGIN.

CALL "BILBO" USING BOFFINt BY DESCRIPTOR BOMBURt BOFUR,

Note

This CALL statement specifies both calling mechanisms; BOFFIN is BY
REFERENCE (the default mechanism), and both BOMBUR and BOFUR are BY
DESCRIPTOR. This is because the MACRO program BILBO defines them this
way.

The MACRO program, BILBO, must contain:

,GLOBL BILBO
BILBO: ;entry Point - equivalent to PROGRAM-ID

RTS PC ;return Point - equivalent to EXIT PROGRAM

If there are any arguments to be passed to the called program (BOFFIN, BOMBUR, and BOFUR in
this example), these arguments can be accessed through program register RS.

6.3.2 Calling a COBOL-81 Program from a MACRO Program

When calling a COBOL-81 subprogram from a MACRO program you use the command:

JSR PCtsubPro~ram-name

where:

subprogram-name is the first six characters of the COBOL-81 program-name.

For example, if the MACRO program contains:

,GLOBL FRODO

MDV •ARGLSTtRS
JSR PCtFROOO

;point RS to ar~ument list
;subPro~ram call statement

II 6-14 lnterprogram Communication

The COBOL-81 subprogram contains:

PROGRAM-ID. FRODO.

LINKAGE SECTION,

01 BOFFIN PICTURE ...
01 BOMBUR PICTURE

PROCEDURE DIVISION USING BOFFIN1 BOMBUR,

EXIT PROGRAM+

Note

All calls to COBOL-81 subprograms from non-COBOL-81 programs specify the
BY REFERENCE (default) mechanism. Non-COBOL-81 programs cannot specify
other passing mechanisms.

The MACRO program in this example has set register RS to point to the argument list expected by
the COBOL-81 program. The COBOL-81 OTS will use RS to access the passed arguments BY
REFERENCE only.

6.3.3 Using the Argument Address List

The COBOL-81 compiler generates one Argument Address List for each CALL statement. Its general
format is shown in Figure 6-7.

Figure 6-7: Argument Address List General Format

Word 1 Unused Number of
arguments
in list (n-1)

Word 2 Address of argument #1
- or -

Address of descriptor for argument #1

Word 3 Address of argument #2
- or -

Address of descriptor for argument #2

Word n Address of argument #n-1
- or -

Address of descriptor for argument #n-1

RS must be set
to point here ~

lnterprogram Communication

C81ART-10012-26

6-15 II

The sequence of arguments in the Argument Address List corresponds to the sequence of arguments in
the USING phrase. For example, a COBOL-81 program calls the MACRO program MACK:

CALL "MACK" USING A1 61 BY DESCRIPTOR 01 C1
BY REFERENCE E,

MACK can then access five data items in the COBOL-81 program through the address stored in
program register RS. MACK accesses a specific data item by selecting the appropriate Word in the
Argument Address List. If it references Word (5) in the Argument Address List, the address of the
descriptor for C in the COBOL-81 program's Data Descriptor PSECT (C is called BY DESCRIPTOR) is
made available. C's length (Word 1) and argument address (Word 2) can then be determined by
examining Descriptor (3). If it references Word (2) in the Argument Address List, the address of A in
the COBOL-81 program's Data PSECT (A is called BY REFERENCE, the default) is made available.
Figure 6-8 shows the Argument Address List.

figure 6-8: Sample Argument Address list

Argument Address List

Word 1 Unused Number of arguments ~R5poin ts here
in list is (5)

Word 2 Address of argument A

Word 3 Address of argument B

Word 4 Address of descriptor for argument D

Word 5 Address of descriptor for argument C

Word 6 Address of argument E f--

Data Descriptor PSECT Data PSECT
($CROSC) ($DATSC)

Word 1 Length of argument A G
Descriptor

(1) Word 2 Address of argument A J

Descriptor Word 1 Length of argument B E ~
(2)

Word 2 Address of argument B v c

Wora 1_,,, Length of argument C B ""---
Descriptor

~

(3) Word 2 Address of argument C F

Word 1 Length of argument D A ""-""'.
Descriptor

~

(4) Word 2 Address of argument D

~
H

Word 1 Length of argument E I
Descriptor

(5) Word 2 Address of argument E D

C81ART-10013-50

II 6-16 lnterprogram Communication

Appendix A
Debugger Error Messages

This appendix lists the COBOL-81 Symbolic Debugger error messages and their explanations. Itali­
cized words in the error message substitute for the actual numbers or data-names that appear on the
terminal during a debugging session.

Some messages refer to RMS error codes. See the RMS-11 User's Guide for an explanation of these
codes.

1 No more work space available for synonym definitions.

You may not execute any more DEFINE commands.

2 No more free memory. Please delete some breakpoints or synonyms.

The Debugger has a limited amount of memory in which to define breakpoihts and synonyms.

3 Line number x does not occur in "module."

4 Line number x in "module'' does not contain a statement.

5 RMS error x occurred while Debugger tried to access its work file.

6 Symbol file contains an illegal ISO record type (type-number).

The symbol file contains illegal information that has been generated by the compiler or by the
Task Builder. Report all displayed information to local support or submit an SPR with the
program source.

7 The Debugger cannot find a symbol (STB) file corresponding to filename.

8 RMS error x occurred while Debugger tried to open filename.

9 RMS error x occurred while Debugger tried to access filename.

1 O "Filename'' is not a valid file specification.

The filename you have typed contains illegal characters, is incorrectly terminated, or is incor­
rectly formatted.

A-1 II

11 Time stamp in filename does not match the stamp in the task image.

Find the correct symbol file (the one that was created with the task image).

12 A module named "module'' is already being used by the Debugger.

13 Symbol file contains an illegal ISO item code (code-number).

The symbol file contains illegal information generated by the compiler or Task Buflder. Report
all displayed information to local support or submit an SPR with the program source.

14 Symbol file contains illegal correlation information.

The symbol file contains illegal information generated by the compiler or Task Builder. Report
all displayed information to local support or submit an SPR with the program source.

15 The data-name used in this command is ambiguous.

You have used a name in your program that is used elsewhere in the program for a different
entity.

16 Illegal structure information for symbol "symbol."

There has been an internal error. Report all displayed information to local support or submit
an SPR with the program source.

17 RMS error x occurred while Debugger tried to open its work file.

18 RMS error x occurred while Debugger tried to access its work file.

19 RMS error x occurred while Debugger tried to access its symbol (STB) file.

20 A breakpoint already exists at position.

21 No breakpoint is currently set at position.

Use SHOW BREAKPOINTS to find out where breakpoints are currently set.

22 A command line cannot be longer than 200 characters.

31 The word "BREAKPOINT" must follow "CANCEL" in this command.

32 Please specify either a position or "ALL" after "BREAKPOINT".

33 Please specify a data-name in this command.

34 Please specify either a position or data-name in this command.

35 "Synonym" has already been defined as a synonym.

Use SHOW SYNONYMS to get a list of currently recognized synonyms and their actual
names.

36 "Synonym" is already in use as a paragraph or section name.

Use SHOW SYNONYMS to get a list of currently recognized synonyms and their actual
names.

37 "Synonym" is already in use as a data-name.

Use SHOW SYNONYMS to get a list of currently recognized synonyms and their actual
names.

II A-2 Debugger Error Messages

38 The word "BREAKPOINT" must follow "SET" in this command.

39 Please specify a position in this command.

40 Please specify a data-name in this command.

41 Please specify either an integer or "ALWAYS" after "PROCEED".

42 "String'' is not a currently defined synonym.

Use SHOW SYNONYMS to get a list of the currently recognized synonyms and their actual
names.

43 This task is too large for use with the Debugger.

44 No room on the system device to create the Debugger work file.

45 This command is incorrectly terminated by "string''.

Either the command was terminated by something other than <CR><LF>, or the end of the
command was reached before the end of the line. When this error occurs, the Debugger
displays the part of the command line it could not recognize, and executes the command
anyway (unless it is STOP or PROCEED).

46 This is not a valid Debugger command.

47 "String'' is not a data-name.

48 Too many subscripts specified for this item.

49 Subscript ranges cannot be specified here.

50 Subscripts cannot be specified here.

51 Command specifies an invalid module name.

52 The module named "string'' does not exist.

53 "String'' is already being used by the Debugger.

54 "String'' is neither a data-name nor a synonym.

55 Command specifies an illegal section or paragraph name.

56 Please specify an integer as a line number in this command.

57 Only one module name can be specified in this command.

58 Command specifies an illegal subscript.

59 "String'' is not a valid receiving field for a MOVE operation.

60 The nonnumeric literal in a MOVE cannot be longer than 80 characters.

61 A nonnumeric literal must be terminated with a quotation mark.

62 Only a nonnumeric literal can be moved to an alphanumeric item.

Debugger Error Messages A-3 II

63 Only a numeric literal can be moved to a numeric item.

64 Debugger cannot find Help file "filename''; inform system manager.

65 RMS error x occurred while Debugger tried to open Help file ("filename'').

66 RMS error x occurred· while Debugger tried to access the Help file.

67 RMS error x occurred while Debugger tried to access the Help file.

68 The numeric value in this command is specified incorrectly.

69 A numeric literal cannot have more than 18 digits.

70 The subscript value specified is out of the legal range.

71 Command is missing either a position, data-name, or number.

72 Command is missing either a numeric or nonnumeric literal.

73 There is no current data-name; this command must specify one.

74 Either "BREAKPOINTS" or "SYNONYMS" must follow "SHOW".

75 Please specify a position instead of "string".

76 The synonym was already defined as being subscripted.

77 Debugger cannot read symbol (STB) file; inform system manager.

78 Command specifies too few subscripts for data-name.

79 "PROCEED ALWAYS" cannot be specified unless the "DISPLAY" option precedes it.

80 The numeric value in this command must be > 0.

81 The numeric value in this command must be < 65536.

82 A synonym cannot be used as a qualifier.

83 A module name is illegal with a qualifier.

84 The position used in this command is ambiguous.

85 The qualified name cannot be found.

86 Maximum number of qualifiers exceeded.

87 A Synonym cannot be qualified.

101 Number of logical units assigned to resulting task exceeds system maximum.

II A-4

Refer to Part IV, Appendix B, Logical Unit Number (LUN) Assignments, for the LUN assign­
ment restrictions placed on a COBOL-81 program.

Debugger Error Messages

Contents

PART Ill

Chapter 1 Numeric Character Handling

1.1

1.2
1.3

1.4
1.5

1.6

1.7

1.8

How the Compiler Stores Numeric Data.

1 . 1 .1 COMP and COMP SYNC Usage .
1.1.2 COMPUTATIONAL-3 Usage.
1.1.3 DISPLAY Usage

Decimal Scaling Position
Sign Conventions.

1.3.1 Sign Storage for COMP and COMP SYNC Items
1.3.2 Sign Storage for COMP-3 Items
1.3.3 Sign Storage for DISPLAY Items

Illegal Values in Numeric Items .
Testing Numeric Items

1.5.1 Numeric Relation Tests .
1.5.2 Numeric Sign Tests.
1.5.3 Numeric Class Tests

Using the MOVE Statement .

1.6.1 Group Moves . . .
1.6.2 Elementary Numeric Moves .
1.6.3 Elementary Numeric Edited Moves .
1.6.4 Common Move Errors

Using the Arithmetic Statements

1.7.1 Intermediate Results
1.7.2 Binary Truncation of COMP SYNC and COMP Items
1.7.3 Using the ROUNDED Phrase .
1.7.4 Using the SIZE ERROR Phrase
1.7.5 Using the GIVING Phrase.
1.7.6 Multiple Operands in ADD and SUBTRACT Statements .
1 . 7. 7 Common Errors in Arithmetic Statements

Arithmetic Expression Processing . .

Chapter 2 Nonnumeric Character Handling

2.1

2.2
2.3

2.4

Data Organization

2.1. l Group Items .. .
2.1.2 Elementary Items.

Special Characters
Testing Nonnumeric Items.

2.3.1 Relation Tests of Nonnumeric Items

2. 3. 1. 1 Classes of Data.
2.3.1.2 Comparison Operations .

2.3.2 Class Tests for Nonnumeric Items

Data Movement

Page

. 1-1

. 1-2

. 1-5

. 1-6

. 1-6

. 1-6

. 1-7

. 1-7

. 1-7

. 1-9

. 1-9

. 1-9
1-10
1-10

1-11

1-11
1-11
1-13
1-14

1-15

1-15
1-15
1-16
1-17
1-18
1-18
1-19

1-20

. 2-2

. 2-2

. 2-2

. 2-2

. 2-3

. 2-3

. 2-4

. 2-4

. 2-5

. 2-5

Part 111

2.5 Using the MOVE Statement . 2-6

2.5.1 Group Moves . . 2-7
2.5.2 Elementary Moves . 2-7

2.5.2.1 Edited Moves . 2-8
2.5.2.2 Justified Moves . . 2-9

2.5.3 Multiple Receiving Items . 2-9
2.5.4 Subscripted Moves . 2-10
2.5.5 Common Nonnumeric Item MOVE Statement Errors 2-10
2.5.6 Using the MOVE CORRESPONDING Statement for

Nonnumeric Items . 2-10

2.6 Concatenating Data Using the STRING Statement. 2-11

2.6.1 Multiple Sending Items . 2-11
2.6.2 Using the POINTER Phrase 2-12
2.6.3 Using the DELIMITED BY Phrase. 2-12
2.6.4 Using the OVERFLOW Phrase . 2-14
2.6.5 Subscripted Items in STRING Statements 2-15
2.6.6 Common STRING Statement Errors . 2-17

2.7 Separating Data Using the UNSTRING Statement. 2-18

2.7.1 Multiple Receiving Items 2-18
2.7.2 Controlling Moved Data Using the DELIMITED BY Phrase . 2-20

2.7.2.1 Multiple Delimiters . 2-23

2.7.3 Counting UNSTRING Characters Using the COUNT Phrase 2-24
2.7.4 Saving UNSTRING Delimiters Using the DELIMITER Phrase 2-25
2.7.5 Controlling UNSTRING Scanning Using the POINTER Phrase 2-26
2.7.6 Counting UNSTRING Receiving Items Using the TALLYING

Phrase 2-27
2.7.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase 2-28
2.7.8 Using Subscripted Items in UNSTRING Statements . 2-29
2.7.9 Common UNSTRING Statement Errors 2-31

2.8 Examining and Replacing Characters Using the INSPECT Statement . 2-31

2.8.1 Restricting Data Inspection Using the BEFORE/AFTER Phrase. 2-32
2.8.2 Implicit Redefinition 2-33
2.8.3 Examining the INSPECT Operation . 2-34

2.8.3.1 Setting the Scanner . 2-35
2.8.3.2 Active/Inactive Arguments . 2-35
2.8.3.3 Finding an Argument Match 2-36

2.8.4 Subscripted Items in INSPECT Statements 2-37
2.8.5 The TALLYING Phrase 2-37

2.8.5.1 The Tally Counter 2-38
2.8.5.2 The Tally Argument. 2-38
2.8.5.3 The Tally Argument List . 2-39
2.8.5.4 Interference in Tally Argument Lists. 2-40

2.8.6 Using the Replacing Phrase . 2-43

2.8.6.1 The Search Argument . 2-44
2.8.6.2 The Replacement Value . 2-45
2.8.6.3 The Replacement Argument 2-45
2.8.6.4 The Replacement Argument List 2-45
2.8.6.5 Interference in Replacement Argument Lists 2-46

2.8.7 Common INSPECT Statement Errors 2-47

ii Part Ill

Chapter 3 Table Handling ,

3.1 Introduction .
3.2 Defining Tables

3.~.1

3.~.2

3.2.3
3.2.4

Defining Fixed-Length, One-Dimensional Tables .
Defining Fixed-length, M1,1ltidimensional Tables
Defining V<;lriable-l.ength Tables
Storage Allocation for Table$

3.2.4.1 Tables without COMP, COMP SYNC, or USAGE INDEX
Items ·

3.2.4.2 Tables with COMP or COMP SYNC Items .

3.3 Initializing Values of Table Elements
3.4 Accessing Table Elements . , . .

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7

3.4.8

Subscripting.
Subscripting with Literals .
Subscripting with Data-Names .
Subscripting with Indexes . . .
Relative Indexing.
Index Data Items. · . .
Assigning Index Values Using the SET Statement .

3.4.7.1 Assigning an Integer Index Value with a SET Statement
3.4.7.2 Incrementing an Index Value with the SET Statement

Identifying table Elem~.n~s l)sin$ the SEARCH StaWment .

3.4.8. l lrnplerner\l:iM a Seqµen~i""l S,e,<11rch
3.4.8 . .2 Implementing q. Non~qt.mnt~al (Bin9ry) Search .

. 3-1

. 3-1

. 3-2

. 3-3

. 3-5

. 3-5

. 3-5

. 3-6

. 3-8
3-10

3-10
3-10
3-12
3-12
3-13
3-13
3-13

-~fg
3-14

3-14

3-14
3-15

Chapter 4 Data Handling Optimization

Examples

4.1 Numeric Data Representation

4.1.1 Scaling and Mixing Data Type$
4.1.2 Significant Digits. . . . • . .
4,. l.3 Jnde:i<ing lnsitf1a~ of $@$cripting
4.J,4 AvQid Using Oe\::irn~I Tmnq:Hiun.

4.2 · Proc~dure Division Statements

4.2.1
4.2.2
4.2.3

ADD, SUBTRACT, tx\Wl.. TIP~ Y iilnq QIYJ.Q~ l!l~teilp.of COMPUTE.
GO TO DEPENDING ON lmW\\d qf If, ~o T6 .
SEARCH ALL Instead qf S~AR~H. . . • . . . •

. 4-1

. 4-2

. 4-2

. 4-3

. 4-3

. 4-4

. 4-4

. 4-4

. 4-5

1-1 Sample Record Description . 1-2
1-2 Sample Record Description . 1-3
1-3 Sample Record Description . 1-3
1-4 Sample Record Description . 1-4
2-1 Item Concatenation. 2-6
2-2 Sample Record Description Using the MOVE CORRESPONDING Statement . 2-11
2-3 Sample Overflow Condition . 2-15

Part .rtl iii

Figures

iv Part Ill

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14

One-Dimensional Table.
Multiple Data Items in a One-Dimensional Table. • • . . .
Defining a Table with an Index and an Ascending Search Key
Defining a Two-Dimensional Table .
Defining a Three-Dimensional Table
Defining a Variable-Length Table.
Sample Record Description Defining a Table.
Record Description Containing a COMP SYNC Item
Adding an Item Without Changing the Table Size ..
Adding 3 Bytes That Adds 4 Bytes to the Element Length
Initializing Tables.
Initializing Mixed Usage Items
Initializing Alphanumeric Items
Using a Literal Subscript to Access a Table
Subscripting a Multidimensional Table
Subscripting with Index-Name Items ...
A Serial Search.
Using SEARCH and Varying an Index OtP.er Tn~fl the First Index .
Using SEARCH and Varying an Index Data Item
Using SEARCH and Varying an Index Npt As.sociated with the Target Table
Doing a Serial Search Without Using the Varying Phrase
A Multiple-Key Binary Search

~

Word and Byte Representation in Storage for Example 1-1
Storage Allocation for COMP Items for Example 1-2
Storage Allocation for Two-Word COMP SYNC Items for Example 1-3.
Storage Allocation for a Four-Word COMP SYNC Item for Example 1-4
Storage of COMP-3 Data Items. .
Sign Storage in COMP-3 Items . •
Results of the ROUNDED Phrase.
Results of the ROUNDED Phrase.
Sequence of Subscript Evaluation.
Sample INSPECT Statement . . .
The Replacement Argument . . .
Organization of the One-Dimensional Table in Example 3-1
Organization of Multiple Data Items in a One-Dimensional Table
Organization of a Table with an Index and an Ascending Search Key .
Organization of a Two-Dimensional Table.
Organization of a Three-Dimensional Table
Memory Map for Example 3-7 .
Memory Map for Example 3-8 .
Memory Map for Example 3-9 .

. 3-2
• . ' :t-i

. 3-3

. 3-3

. 3-4

. 3-5

. 3-5

. 3-6

. 3-7

. 3-7

. 3-8

. 3-9

. 3-9
3-10
3-11
3-12
3-18
3-18
3-18
3-19
3-19
3-20

. 1-2

. 1-3

. 1-4

. 1-4

. 1-5
.• 1-7

1-16
1-17
2-30
2-35
2-45
. 3-2
. 3-2
. 3-3
. 3-4
. 3-4
. 3-6
. 3-6
. 3-7

Memory Map for Example 3-10 l..a
. 3-8
. 3-9
3-10
3-12
3-17

Memory Map for Example 3-11
Memory Map for EXample 3-12
Memory Map for Example 3-1 3
Subscripting with Data-Names .
Using SEARCH to Access This Sample Table .

Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17

2-18
2-19
3-1
4-1

Memory Allocation for COMP Items
Memory Storage of COMP Items
Overpunched Character for Sign and Digit Combinations
Sign Tests .
Numeric Editing
Maximum Values with Decimal and Binary Truncation
Rules for Intermediate Result Size.
Relational Operator Descriptions . . .
Nonnumeric Elementary Moves . . .
Data Movement with Editing Symbols.
Data Movement with No Editing ...
Results of Sample Overflow Statements
Results of Sample Delimiter Subscripts
Values Moved into the Receiving Items Based on the Sending Item Value
Handling a Short Sending Item
Results of Delimiting with an Asterisk
Results of Delimiting Multiple Receiving Items .
Results of Delimiting with Two Asterisks
Results of Delimiting with ALL Asterisks
Results of Delimiting with ALL Double Asterisks
Results of Multiple Delimiters
Matching Delimiter Characters to Characters in a Field
Values Resulting from Implicit Redefinition
Relationship Between INSPECT Argument, Delimiter, Item Value, and
Argument Active Position
LEADING Delimiter of the Inspection Operation
Results of the Scan with Separate Tallies
Subscripting Rules for a Multidimensional Table
Relative Efficiency of COBOL-81 Numeric Data Types

. 1-2

. 1-5

. 1-8
1-10
1-14
1-16
1-22
. 2-3
. 2-7
. 2-8
. 2-9
2-15
2-17
2-19
2-19
2-20
2-21
2-22
2-22
2-23
2-24
2-33
2-34

2-36
2-39
2-40
3-11
. 4-1

Part 111 v

Chapter 1
Numeric Character Handling

This chapter describes how COBOL-81 stores, represents, moves, and manipulates numeric data.

1.1 How the Compiler Stores Numeric Data

Understanding how data is stored is particularly important when you are defining data items that will
participate in group moves or be the subject of a REDEFINES clause. When moving a complex record
consisting of several levels of subordination, you should be sure that the receiving item is large
enough to prevent data truncation. You can also use the concepts of data storage to your advantage to
minimize storage space, particularly when the data file is very large. The storage considerations
applicable to table handling are discussed in Chapter 3.

For each numeric data item, COBOL-81 stores the numeric value, a scaling factor (if a V or a P
appears in the PICTURE), and a sign (if an S appears in the PICTURE). Each of these subjects is
discussed separately in the following sections.

The USAGE clause of a numeric data item specifies the data's internal format in storage. COBOL-81
has three formats for numeric data storage:

• COM PUT A Tl ON AL (COMP)

• COMPUTATIONAL-3 (COMP-3)

•DISPLAY

When you do not specify a usage in a PICTURE clause, the default usage is DISPLAY. (The special
case of INDEX usage for tables is discussed in Chapter 3.)

The basic unit of data storage is the byte. Depending on the item usage, stored data is aligned on one­
byte, one-, two-, or four-word boundaries or on multiples of one-, two-, or four-word boundaries
when several items make up the record. A word is comprised of 2 bytes.

Alignment is always described in relation to the beginning of the record, which is always defined by
an 01 level number. All items subordinate to the 01 level are part of the record.

1-1 Ill

Example 1-1 and Figure 1-1 show the basic representation of words and bytes in storage.

Example 1-1 : Sample Record Description

01 A,
02 6 PIC 8.
02 c.

03 D PIC 89.
03 E PIC 999.

02 F PIC 99.

02 Z PIC 98,

Figure 1-1: Word and Byte Representation in Storage for Example 1-1

Word no.

Byte no.

Level 01

Level 02

Level 03

1

1

A

B

2

2 3

A A

c c
D D

Record Description

3 4 ... n

4 5 6 7 8 ... n

A A A A A ... A A

c c c F F ... z z
E E E

1.1.1 COMP and COMP SYNC Usage

C81ART-10014-20

COMP and COMP SYNC data items are stored in standard binary format as a binary value and an
optional sign. Sign storage is discussed in Section 1.3.1. Depending on the size of the item defined by
the PICTURE clause, both COMP and COMP SYNC items are stored as one, two, or four words as
shown in Table 1-1.

Table 1-1 : Memory Allocation for COMP Items

PICTURE Range Storage Allocated

59 to 59(4) 1 word (2 bytes)

59(5) to 59(9) 2 words (4 bytes)

59(10) to 59(18) 4 words (8 bytes)

Although both COMP and COMP SYNC items require the same number of storage words, the storage
alignment in a record description for each item is quite different. This can lead to significant differ­
ences in the total amount of storage space required for a record description. COMP SYNC items are
aligned on a one-, two-, or four-word boundary depending on the number of decimal digits specified
in the PICTURE clause. The alignment boundary is the same as the number of words required for
storage. COMP items, however, are always aligned on a one-word boundary regardless of the item
size.

Ill 1-2 Numeric Character Handling

Note

Data defined as COMP SYNC usage in COBOL-81 is compatible with data de­
fined as COMP SYNC usage in VAX-11 COBOL.

Figures 1-2, 1-3 and 1-4 show the difference in total storage space required to store a record defined
for COMP and COMP SYNC usage. In Figures 1-2 and 1-3 ITEM-C requires two words of storage
because the item is defined as containing seven decimal digits. For the record defined as COMP
usage, ITEM-C must start at a one-word boundary. Thus, the compiler adds one fill byte to the first
word. The total storage requirement is three words. The record defined as COMP SYNC usage,
however, requires a total of four words of storage because the SYNC clause requires that ITEM-C start
on a two-word boundary. (There would be no difference if ITEM-C required only one word of
storage.)

Figure 1-4 is similar to Figures 1-2 and 1-3; however, ITEM-C now defines 12 decimal digits. Because
of its increased size, ITEM-C requires four words of storage and must start on a four-word boundary.
Notice the seven implicit fill bytes added by the compiler to align ITEM-Con a four-word boundary.

Any item that is to be a receiving item for RECORD-A must be defined so that its size is large enough
to accommodate the subordinate items plus any fill bytes.

Example 1-2: Sample Record Description

01 RECORD-A.
OZ ITEM-B
OZ ITEM-C

PIC X.
PIC 8(7) COMP.

Figure 1-2: Storage Allocation for COMP Items for Example 1-2

Word no.

Byte no.

Level01

, Level 02

1

1

A

B

Record
Description

2 3

2 3 4 5 6

A A A A A

f c c c c

Legend: f = Fill byte added by the compiler for data-item alignment

Example 1-3: Sample Record Description

01 RECORD-A.
OZ ITEM-B PIC X,
OZ ITEM-C PIC 8<7> COMP SYNC,

Numeric Character Handling

C81ART·10015-18

1-3 Ill

Figure 1-3: Storage Allocation for Two-Word COMP SYNC Items for Example 1-3

Word no.

Byte no.

Level 01

Level 02

1

A

B

1

2

A

f

Record
Description

2 3 4

3 4 5 6 7 8

A A A A A A

f f c c c c

Legend: f Fill bytes added by the compiler for data-item alignment

Example 1-4: Sample Record Description

01 RECORD-A.
OZ ITEM-6
OZ ITEM-C

PIC X.
PIC 8(1Z)
COMP SYNC.

Figure 1-4: Storage Allocation for a Four-Word COMP SYNC Item for Example 1-4

Word no.

Byte no.

Level 01

Level 02

1

A

B

1

2

A

f

2 3

3 4 5

A A A

f f f

Record Description

4 5 6 7 8

6 7 8 9 10 11 12 13 14 15 16

A A A A A A A A A A A

f f f c c c c c c c c

Legend: f Fill bytes added by the compiler for data-item alignment

Ill 1-4 Numeric Character Handling

C81ART-10016-18

C81ART-10017-20

Table 1-2 shows the memory storage of COMP data items.

Table 1-2: Memory Storage of COMP Items

addressed
word

high low
byte byte
(2) (1)

one-word COMP data item

addressed next
word word

high low high
byte byte byte
(2) (1) (4)

two-word COMP data item

addressed next next
word word word

high low high low high
byte byte byte byte byte
(2) (1) (4) (3) (6)

four-word COMP data item

1.1.2 COM PUT ATIONAL-3 Usage

low
byte
(3)

next
word

low high low
byte byte byte
(5) (8) (7)

COMP-3 data items are stored in packed-decimal format with an optional sign. Sign storage is
discussed in Section 1.3.2. COMP-3 items are stored two decimal digits per byte. The 4 rightmost bits
of the rightmost byte are reserved for the sign. If there are an even number of digits in the item, the
leftmost 4 bits of the leftmost byte contain a zero.

Figure 1-5 represents the storage of COMP-3 items with one, two, and three digits. The blank portion
of the byte is reserved for the sign.

Figure 1-5: Storage of COMP-3 Data Items

PICTURE 9
value: 5

1st byte 2nd byte

o I 3 2 1
PICTURE 9(2)

value: 32

1st byte 2nd byte

2 l 6 2 1
PICTURE 9(3)

value: 262

Numeric Character Handling

C81ART-10018-14

1-5 Ill

1.1.3 DISPLA V Usage

A numeric item with DISPLAY usage is stored as an ASCII character string with an optional sign.
DISPLAY items are stored one digit per byte. Sign storage is discussed in Section 1.3.3.

1.2 Decimal Scaling Position

The assumed decimal scaling position, or scaling factor, is not stored as part of an actual numeric
value. However, it is used to control operations on numeric data items.

The maximum size of all COBOL-81 numeric items is 18 decimal digits, regardless of the decimal
scaling position. In the following example, both NUM-1 and NUM-2 represent COMP-3 items of
maximum size:

03 NUM-1 PIC S8(18) USAGE IS COMP-3+
03 NUM-2 PIC SS<S>V8<12) USAGE IS COMP-3,

The following example shows how the scaling factor is used to control a numeric operation:

01 ORDER-PRICE PIC 88V89 COMP VALUE 12+34,

COBOL-81 stores this item as a one-word binary number. The word contains the integer value 1234
and another location contairl'!i the scaling factor, which is 2 in this example. The scaling factor
indicates that this integer has two decimal positions to the right of the implied decimal point. Thus,
the Object Time System (OTS) knows that the stored binary integer is 100 times larger than the
programmer intends it to be.

Suppose the compiler subsequently encounters this statement:

ADD 1 TO ORDER-PRICE,

It then adds 1 to the 1234 stored in ORDER-PRICE. The OTS, however, scales the literal 1 up by two
decimal places and adds the resultant literal, 100, to the number in ORDER-PRICE. Thus,· after the
ADD operation, ORDER-PRICE contains the new value 1334, which is actually 13.34 with the stored
decimal scaling position.

Thus, the COBOL-81 compiler and OTS manipulate the data in COMP-3 and DISPLAY data items in
much the same way. The usages have exactly the same accuracy and precision and can be freely
mixed in a program. The only advantage of specifying a binary (COMP) or packed-decimal (COMP-3)
usage over a DISPLAY usage is that they reduce the space required for most numbers and can speed
up the execution of arithmetic statements.

1.3 Sign Conventions

All COBOL-81 numeric items can be signed or unsigned. However, all COBOL-81 arithmetic opera­
tions yield signed results. If you store a signed result in an unsigned item, only the absolute value
is stored. Thus, unsigned items only contain the value zero or . positive values. The way
COBOL-81 stores signed results in signed data items depends on the usage and the presence of the
SIGN clause. Each usage type is discussed in the following sections.

In general, do not use unsigned numeric items. They are usually a source of programming errors and
are handled less efficiently than signed numeric items. ·

Ill 1-6 Numeric Character Handling

1.3.1 Sign Storage for COMP and COMP SYNC Items

Both COMP types are stored in two's complement format with the sign represented by the high-order
bit.

1.3.2 Sign Storage for COMP-3 Items

The results of arithmetic operations are stored in COMP-3 usage items in packed decimal format. The
rightmost four bits of the last byte are reserved for the sign.

Signs resulting from operations in which the receiving item usage is COMP-3 are:

Positive sign: binary 1100, hexadecimal C
Negative sign: binary 1101, hexadecimal D
Unsigned: binary 1111, hexadecimal F

The following signs are recognized as being valid. However, they do not result from program
operations.

Positive signs: binary 1010, hexadecimal A
binary 1110, hexadecimal E

Negative signs: binary 1011, hexadecimal B

Figure 1-6 represents the storage of COMP-3 signed items of one, two, and three digits.

Figure 1-6: Sign Storage in COMP-3 Items

~
~

PIG S9
value: +5

1st byte 2nd byte

0 l 3 2 l D

PIC S9(2)
value: -32

1.3.3 Sign Storage for DISPLAY Items

1st byte 2nd byte

2 l 6 2 l G

PIG S9(3)
value: +262

C81ART-10019-12

The position and format of the sign storage for DISPLAY items depends on the contents of the SIGN
clause. SIGN LEADING and SIGN TRAILING clauses result respectively in left overpunched and right
overpunched formats. Overpunching is the result of the sign sharing a byte with a digit. For SIGN
LEADING, the sign and the most significant digit (leftmost digit) share a byte, while the sign and the
least significant digit (rightmost digit) share a byte for SIGN TRAILING. When a signed DISPLAY item
description contains no SIGN clause the default is SIGN TRAILING. Table 1-3 shows the over­
punched characters resulting from all combinations of signs and digit values. These are the actual
ASCII characters that would be printed. Where more than one character appears, the first is the
character generated as the result of machine operations.

Numeric Character Handling 1-7 Ill

Table 1-3: Overpunched Character for Sign and Digit Combinations

Digit Value 0 1 2 3 4 5 6 7 8 9

Sign + - + - + - + - + - + - + - + - + - + -
Overpunched {, [},] A J B K c L D M E N F 0 G p H Q I R

Char ?,O . I 1 2 3 4 5 6 7 8 9 II•

C81ART·10020·16

A byte containing a +0 stores as an octal 173, which prints as either a {or a [depending on the
printing device.

A byte containing a -0 stores as an octal 175, which prints as e.ither a } or a] depending on the
printing device.

The following program example shows the results obtained when you use the SIGN LEADING and
the SIGN TRAILING clauses and the default when you use no SIGN clause:

01 A PIC S888 SIGN LEADING+
01 B PIC S888 SIGN TRAILING,
01 C PIC S888+

MOVE +123 TO A1 61 C,
DISPLAY A+
DISPLAY B+
DISPLAY C+

Statement

DISPLAY A
DISPLAY B
DISPLAY C

Result

A23
12C
12C

When you specify the SIGN LEADING SEPARATE or the SIGN TRAILING SEPARATE clause, the sign
is stored in a separate byte ahead of the most significant digit or after the least significant digit
respectively. The actual ASCII character stored is the ASCII plus sign (octal 053) or the ASCII minus
sign (octal 055).

The following program example shows the results when you specify the SIGN LEADING SEPARATE
and the SIGN TRAILING SEPARATE clauses.

01 A PIC S888 SIGN LEADING SEPARATE+
01 B PIC S888 SIGN TRAILING SEPARATE+

MOVE +123 TO A1 B,
DISPLAY A,
DISPLAY B,

Statement

DISPLAY A
DISPLAY B

Result

·+ 123
123+

Ill 1-8 Numeric Character Handling

1.4 Illegal Values in Numeric Items

All COBOL-81 arithmetic operations store legal values in their result items. However, it is possible to
store data in numeric items that does not conform to the data definitions of those items. For example,
you can place signed values into unsigned items and place nonnumeric or improperly signed data
into signed numeric display items. This can happen when you use invalid input data, redefine items,
and perform group moves.

The results of arithmetic operations that use invalid data in numeric items are undefined.

1.5 Testing Numeric Items

COBOL-81 provides three kinds of tests for evaluating numeric items:

1. Relation tests that compare the item's contents to another numeric value

2. Sign tests that examine the item's sign to see if it is positive or negative

3. Class tests that inspect the item's digit positions for legal numeric values

The following sections explain these tests in detail.

1.5.1 Numeric Relation Tests

A relation test compares two numeric quantities and determines if the specified relation between
them is true. For example, the following statement compares item FIELD1 to item FIELD2 and deter­
mines if the numeric value of FIELD1 is greater than the numeric value of FIELD2:

IF FIELD! > FIELDZ ,,,

If the relation condition is true, the program control takes the true path of the statement.

Either item in a relation test can be a numeric literal or the figurative constant ZERO. The numeric
literals 0, 00, 0.0, or ZERO are all equivalent, both in meaning and in execution speed.

The size of the items (including numeric literals) in a numeric relation test do not have to be the same.
The comparison operation aligns both items on their assumed decimal positions through scaling or
filling with leading or trailing zeros.

The comparison operation always compares the signs of nonzero items and considers positive items
to be greater than negative items. However, since it does not compare them, positive zeros and
negative zeros are equal. A negative zero could be placed in an item through redefinition of the item
or a move to a group item. The operation considers unsigned numeric items to be positive.

The form of representation of the number (COMP, COMP-3, or DISPLAY usage) and the various
methods of storing DISPLAY usage signs have no effect on numeric relation tests.

The results of relation tests involving illegal (nonnumeric) data in a numeric item are undefined.

Numeric Character Handling 1-9 Ill

1.5.2 Numeric Sign Tests

The sign test compares a numeric quantity to zero and determines if it is greater (positive), less
(negative), or equal (zero). Both the relation test and the sign test can perform this function. For
example, consider the following relation test:

IF FIELDI > 0 ,,,

Now consider the following sign test:

IF FIELDI POSITIVE ,,,

Both of these tests accomplish the same thing and always arrive at the same result. The sign test,
however, shortens the statement and shows, at a glance, that it is testing the sign.

Table 1-4 shows the sign tests and their equivalent relation tests as applied to FIELD1.

Table 1-4: Sign Tests

Sign Test Equivalent Relation Test

IF FIELD I POSITIVE . . . IF FIELD I ., 0 . ..
IF FIELD1 NOT POSITIVE,,, IF FIELD1 NOT > 0 ...
IF FIELD1 NEGATIVE ... IF FIELDl < 0 . ..
IF FIELOl NOT NEGATIVE,,, IF FIELDl NOT < 0 ...
IF FIEL01 ZERO ... IF FIELD1 = 0 • ••
IF FIELD1 NOT ZERO ... IF FIELD1 NOT = 0 • ••

Sign tests have no execution speed advantage over relation tests because the compiler substitutes the
equivalent relation test for every correctly written sign test. (Sections 1.3 and 1.4 discuss the accept­
able sign values and the treatment of illegal sign values.)

1.5.3 Numeric Class Tests

The class test inspects an item to determine if it contains numeric or alphabetic data - and uses the
result to alter the program flow control. For example, the following statement determines if FIELD1
contains numeric data:

IF FIELDl IS NUMERIC •••

If the item is numeric, the test condition is true, and program control takes the true path of the
statement.

Both relation and sign tests treat illegal characters in DISPLAY usage items as zeros. Both tests only
determine if an item's contents are within a certain range. 'Therefore, certain items in newly prepared
data can pass both the relation and sign tests and still contain data preparation errors.

The NUMERIC class test checks numeric or alphanumeric DISPLAY usage items for valid numeric
digits.

lll 1-10 Numeric Character Handling

If the item being tested contains a sign (whether carried as an overpunched character or as a separate
character), the test checks it for a valid sign value. If the character position carrying the sign contains
an illegal sign value, the NUMERIC class test rejects the item, and program control takes the false
path of the IF statement.

The ALPHABETIC class test checks alphabetic or alphanumeric items for valid alphabetic characters
and the space character. If all the character positions of the item contain ASCII characters A to Z
(upper or lower case) or the space character, the item passes the ALPHABETIC class test and causes
program control to take the true path of the IF statement. (For further information concerning the
ALPHABETIC class test, see Part I, Chapter 2, Creating and Entering a COBOL-81 Program.)

1.6 Using the MOVE Statement

The MOVE statement moves the contents of one item into another item. The following sample MOVE
statement moves the contents of item FIELD1 into item FIELD2: ·

MOVE FIELDl TD FIELD2+

This section considers MOVE statements as applied to numeric data items. These MOVE statements
can be grouped into the following categories:

• Group moves

• Elementary moves with numeric receiving items

• Elementary moves with numeric edited receiving items

The following sections discuss each of these categories separately.

1.6.1 Group Moves

The compiler considers a move to be a group move if either the sending item or the receiving item is a
group item. It treats both items in a group move as alphanumeric items and performs the move as an
alphanumeric to alphanumeric elementary move.

If either item in a group move is a numeric elementary item, the OTS treats the storage area occupied
by that item as alphanumeric bytes and ignores the usage, sign, and decimal point location of the
numeric item.

Only the item's allocated size, in bytes, affects the move operation. The OTS considers a separate
sign character to be part of the item and moves it along with the numeric digits.

1.6.2 Elementary Numeric Moves

If both items of a MOVE statement are elementary items and the receiving item is numeric, the OTS
considers the move to be an elementary numeric move. The sending item can be either numeric or
alphanumeric. The numeric receiving item can be COMP, COMP-3 or DISPLAY usage. The elemen­
tary numeric move converts the data format of the sending item to the data format of the receiving
item.

Numeric Character Handling 1-11 UI

An alphanumeric sending item can be either:

• An elementary data item

• Any alphanumeric literal other than the figurative constants SPACE, QUOTE, LOW-VALUE,
HIGH-VALUE, or ALL literal

The elementary numeric move accepts the figurative constant ZERO and considers it to be equivalent
to the numeric literal 0. lttreats alphanumeric sending items as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending item to the data format of the receiv­
ing item and aligns the sending item's decimal point on that of the receiving item. It then moves the
sending item's digits to their corresponding receiving item's digits.

If the sending item has more digit positions than the receiving item, the decimal point alignment
operation truncates the sending item, with resulting loss of digits. The end truncated (high-order or
low-order) depends upon the number of sending item digit positions that find matches on each side of
the receiving item's decimal point. If the receiving item has fewer digit positions on both sides of the

·decimal point, the operation truncates both ends of the sending item. Thus, if an item described as
PIC 999V999 is moved to an item described as PIC 99V99, it loses one digit from the left end and one
from the right end. In the following example, the caret n indicates the stored decimal scaling
position:

01 AMOUNT1 PIC 88V89 VALUE ZEROS,

MOVE 123.321 TO AMOUNT!,

Before execution: 00'00

After execution: 23'32

If the sending item has fewer digit positions than the receiving item, the move operation supplies
zeros for all unfilled digit positions. The caret n indicates the stored decimal scaling position:

01 TOTAL-AMT PIC 989V99 VALUE ZEROS,

MOVE 1 TO TOTAL-AMT.

Before execution: 000'00

After execution: 001 '00

The following statement produces the same results:

MOVE 001.00 TO TOTAL-AMT.

Consider the following two MOVE statements and their resultant truncating and zero-filling effects:

Statement TOT AL-AMT After Execution

MOVE 00100 TO TOTAL-AMT 100'00

MOVE "00100" TO TOTAL-AMT 100'00

Ill 1-12 Numeric Character Handling

Literals with leading or insignificant trailing zeros have no significant advantage in space or execution
speed with COBOL-81, and the zeros are often lost by decimal point alignment.

The MOVE statement's receiving item dictates how the sign will be moved. A signed DISPLAY usage
receiving item causes the sign to be moved as a separate quantity. An unsigned DISPLAY usage
receiving item causes no sign movement. A COMP usage receiving item~ whether signed or unsigned,
causes the sign to be moved; however, if the receiving item is unsigned, the OTS takes the absolute
value of the sending item and stores it in the receiving item.

1.6.3 Elementary Numeric Edited Moves

The COBOL-81 OTS considers an elementary numeric move to a numeric edited receiving item to be
an elementary numeric edited move. The sending item of an elementary numeric edited move can be
either numeric or alphanumeric. If it is numeric, its usage can be COMP, COMP-3, or DISPLAY. The
OTS treats alphanumeric sending items in numeric edited moves as unsigned DISPLAY usage
integers.

The OTS considers the receiving item to be numeric edited if its PICTURE character-string contains
either a BLANK WHEN ZERO clause or a combination of the following symbols:

B Space insertion character

P Decimal scaling position character

V Assumed decimal point location character

Z Leading zero suppression and space replacement character

0 Zero insertion character

9 Numeral position character

I Slash insertion character

Comma insertion character

Decimal point insertion character

* Leading zero suppression and asterisk replacement character

+ Positive editing sign control symbol

Negative editing sign control symbol

CR Credit editing sign control symbol

DB Debit editing sign control symbol

CS Currency insertion symbol

A numeric edited item can contain 9, V, and P, but it also must contain one or more of the other
symbols to qualify as numeric edited.

The numeric edited move operation first converts the sending item to DISPLAY usage and aligns both
items on their decimal point locations. The sending item is truncated or zero filled until it has the
same number of digit positions on both sides of the decimal point as the receiving item. The operation
then moves the sending item to the receiving item, following the COBOL-81 editing rules.

Numeric Character Handling 1-13 Ill

The rules allow the numeric edited move operation to perform any of the following editing functions:

• Suppress leading zeros with either spaces or asterisks

• Float a currency sign and a plus or minus sign through suppressed zeros, inserting the sign at
either end of the item

• Insert zeros and spaces

• Insert commas and a decimal point

Table 1-5 illustrates several of these functions with the statement:

MOVE FLO-B TD TOTAL-AMT+

Assume that FLD-B is described as S9999V99.

Table 1-5: Numeric Editing

TOTAL-AMT

FLD-8 PICTURE String Contents After MOVE

0023·00 ZZZZ.99 23.00

ooss·9p + + + +.99 -85.97

1234·00 Z,ZZZ.99 1,234.00

0012·34 $,$$$.99 $12.34

0000·34 $,$$9.99 $0.34

1234·00 $$,$$$.99 $1,234.00

0012·34 $$9,999.99 $0,012.34

0012'34 $$$$,$$$. 99 $12.34

0000·00 $$$,$$$.$$

0012.3M + + + +.99 -12.34

0012·34 $***I***• 99 $*****12.34

The currency symbol ($ or other currency sign) and the editing sign control symbols (+ -) are the
only floating symbols. To float them, enter a string of two or more occurrences of the symbol, one for
each character position over which you want the symbol to float.

1.6.4 Common Move Errors

The most common errors programmers make when writing MOVE statements are:

• Placing an incorrect number of replacement characters in a numeric edited item

• Moving nonnumeric data into numeric items with group moves

Ill 1-14 Numeric Character Handling

• Trying to float the $ or + insertion characters past the decimal point to force zero values to
appear as .00 instead of spaces. Use $$. 99 or . 99

• Forgetting that the $ or + insertion characters require an additional position on the leftmost
end that cannot be replaced by a digit, unlike the* insertion character that can be completely
replaced.

1. 7 Using the Arithmetic Statements

The COBOL-81 arithmetic statements allow programs to perform arithmetic operations on numeric
data. The following sections explain how to use the COBOL-81 arithmetic statements.

1.7.1 Intermediate Results

Most forms of the arithmetic statements perform their operations in temporary work locations, then
move the results to the receiving items, aligning tlie decimal points and truncating or zero filling the
resultant values. This temporary work item, called the intermediate result item, has a maximum size
of 18 numeric digits. The actual size of the intermediate result varies for each statement and is
determined at compile time based on the sizes of the operands used by the statement.

When the compiler determines that the size of the intermediate result exceeds 18 digits, it goes to the
software floating point and keeps the most significant 18 digits, bypassing leading zeros.

When you are using large numbers or numbers with many decimal places that are close to 18 digits
long, examine all of the arithmetic operations that manipulate those numbers to determine if trunca­
tion will occur.

1.7.2 Binary Truncation of COMP SYNC and COMP Items

By default, COBOL-81 truncates values of COMP SYNC and COMP items according to the amount of
storage allocated for them. This is called binary (as opposed to decimal) truncation.

With binary truncation, the maximum value both COMP items can contain depends on its storage
allocation. With decimal truncation, the maximum value depends on the item's PICTURE character­
string.

To understand the difference between binary and decimal truncation, consider the following data
descriptions:

01 ITEMA PIC 9 COMP,
01 ITEMB PIC 9(4) COMP,

The PICTURE character-string of ITEMA imposes a one-digit limit on the item's value; therefore, the
maximum value of ITEMA is 9. Likewise, the maximum value of ITEMB is 9999.

The compiler allocates one word (2 bytes, 16 bits) of memory for each of the above items. Therefore,
both ITEMA and ITEMB can contain maximum values of (2 ** 15) - 1 or 32,767. Recall that the high
order bit is reserved for the sign. Table 1-6 shows maximum values with decimal and with binary
truncation.

Numeric Character Handling 1-15 Ill

Table 1-6: Maximum Values with Decimal and Binary Truncation

Maximum Values

With With
Decimal Truncation Binary Truncation

ITEMA 9 32,767

ITEMB 9,999 32,767

Binary truncation does not occur when either COMP item appears in an arithmetic statement that
uses the ON SIZE ERROR phrase. In this instance, COBOL-81 performs decimal truncation.

If you want COBOL-81 to perform decimal truncation in all numeric data manipulations, specify the
/TRUNCATE compiler qualifier.

1.7.3 Using the ROUNDED Phrase

Rounding off is an important tool with most arithmetic operations. The ROUNDED phrase causes the
OTS to round off the results of COBOL-81 arithmetic operations.

The phrase can be used with any COBOL-81 arithmetic statement. Rounding off takes place only
when the ROUNDED phrase requests it- and then only if the intermediate result has more low-order
digits than the result.

COBOL-81 rounds off by adding a 5 to the leftmost truncated digit of the absolute value of the
intermediate result before it stores that result.

Figure 1-7 shows the results of rounding off an intermediate value of 54321.2468.

Figure 1-7: Results of the ROUNDED Phrase

Coding:

0 1 FLD-A PIC SB (5) \.IBBBB.
01 FLD-B PIC SBC 5) t,IB9. . . .

ADD FLD-A TO FLD-B ROUNDED. . . .
Intermediate Result:

PIC SBC 6) t,IB989,

The ROUNDED Operation: -V- truncated
digits

Intermediate Result 054321.24 68
l-1ett-most

ROUNDED .oo 50 truncated
FLO-B's ROUNDED result 054321.25 18 digit

C81ART-10021-30

Ill 1-16 Numeric Character Handling

Figure 1-8 rounds off to the decimal scaling position (P). Assume an intermediate result of 24680.
(Section 1.7.5 discusses the GIVING phrase in numeric operations.)

Figure 1-8: Results of the ROUNDED Phrase

Coding:

01 AMOUNT1 PIC 8888.
01 AMOUNT2 PIC 8888PP.

MULTIPLY AMOUNT1 6Y 10
GIVING AMOUNT2 ROUNDED.

Intermediate Result:

PIC 888888.

The ROUNDED Operation:

.i:-- truncated
T digits

Intermediate Result
ROUNDED

0246 80.
50.

AMOUNT2's ROUNDED result 0247 30.

1.7.4 Using the SIZE ERROR Phrase

C81ART-10022-30

The SIZE ERROR phrase detects the loss of high-order nonzer~ digits in the results of COBOL-81
arithmetic operations.

The phrase can be used in any COBOL-81 arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in a size error, the OTS
truncates the high-order digits and stores the result without notifying the user. When the same
statement includes a SIZE ERROR phrase, the OTS discards the entire result without altering the
receiving items in any way and executes the SIZE ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the OTS rounds the result before
it checks for a size error.

The SIZE ERROR phrase cannot be used with numeric MOVE statements. Thus, if a program moves a
numeric quantity to a smaller numeric item, it can inadvertently lose high-order digits. For example,
consider the following move of an item to a smaller item:

01 AMOUNT-A PIC 8C8)V88,
01 AMOUNT-6 PIC 8(4)V88,

MOVE AMOUNT-A TO AMOUNT-6,

Numeric Character Handling 1-17 Ill

This MOVE operation always loses four of AMOUNT-A's high-order digits. Either of the following two
statements could determine whether these digits are zero or nonzero and could be tailored to any size
item:

1. IF AMOUNT-A NOT > 8999.99

MOVE AMOUNT-A TO AMOUNT-B

ELSE , , ,

2. ADD ZERO AMOUNT-A GIVING AMOUNT-B

ON SIZE ERROR , , ,

Both alternatives allow the MOVE operation to occur only if AMOUNT-A loses no significant digits. If
the value in AMOUNT-A is too large, both avoid altering AMOUNT-Band take the alternate execu­
tion path.

1.7.5 Using the GIVING Phrase

The GIVING phrase moves the intermediate result of an arithmetic operation to a receiving item. The
phrase acts exactly like a MOVE statement in which the intermediate result serves as the sending
item, and the data item following the word GIVING serves as the receiving item.

The phrase can be used with the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements.

If the data item following the word GIVING is a numeric edited item, the OTS performs the editing
the same way it does for MOVE statements.

1.7.6 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements can contain a string of operands preceding the word TO,
FROM, or GIVING.

Multiple operands in either of these statements cause the OTS to add the string of operands together
and use the intermediate result of that operation as a single operand to be added to, or subtracted
from, the receiving item. TEMP is an intermediate result item. Consider the following examples:

1 . Statement: ADD A B C DTOEFG H,

Equivalent coding: ADD A B, GIVING TEMP,
ADD TEMP1 c' GilJING TEMP,
ADD TEMP1 D' Gil..IING TEMP,
ADD TEMP1 E1 GIVING E,
ADD TEMP1 F GIVING F,
ADD TEMP1 G GIVING G,
ADD TEMP1 H GIVING H,

2. Statement: SUBTRACT At B t c' FROM D,

Equivalent coding: ADD At B' GIVING TEMP,
ADD TEMP1 C GIVING TEMP,
SUBTRACT TEMP FROM D GIVING D.

(continued on next page)

Ill 1-18 Numeric Character Handling

3. Statement:

Equivalent coding:

ADD A 6 C D GIVING E+

ADD A 6
ADD TEMP C
ADD TEMP D

GIVING TEMP,
GIVING TEMP,
GIVING E+

As in all COBOL-81 statements, any commas in these statements are optional.

Only statement 3 can have a numeric edited receiving item, because it is the only statement contain­
ing a GIVING phrase.

1.7.7 Common Errors in Arithmetic Statements

The most common errors programmers make when using arithmetic statements are:

• Using an alphanumeric item in an arithmetic statement. The MOVE statement allows data
movement between alphanumeric items and certain numeric items, but arithmetic statements
require that all items be numeric.

• Writing the ADD or SUBTRACT statements without the GIVING phrase, and attempting to put
the result into a numeric edited item.

• Using an ADD statement with both the words TO and GIVING as in the following example:

ADD A TD 6 GIVING C,

• Subtracting a 1 from a numeric counter that was described as an unsigned quantity and then
testing for a value of less than zero.

• Forgetting that the MULTIPLY statement, without the GIVING phrase, stores the result back
into the second operand (multiplier).

• Performing a series of calculations that generates an intermediate result larger than 18 digits
when the final result will be fewer digits. You can prevent this problem by interspersing
divisions with multiplications or by dropping nonsignificant digits after multiplying large num­
bers or numbers with many decimal places.

• Performing an operation on an item that contains a value greater than the precision of its data
description. This can happen only if the item was disarranged by a group move or redefinition.

• Forgetting that you must specify the ROUNDED phrase for each item in an arithmetic state­
ment containing multiple receiving items.

• Forgetting that the ON SIZE ERROR phrase applies to all receiving items in an arithmetic
statement containing multiple receiving items. Only those receiving items for which a size
error condition is raised are left unaltered. The ON SIZE ERROR imperative statement is
executed after all the receiving items are processed by the OTS.

Numeric Character Handling 1-19 Ill

1.8 Arithmetic Expression Processing

COBOL-81 provides the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the
facilities of arithmetic expressions using the +, -, *,I, and **operators. You can perform a given
arithmetic computation in any of several ways. For example, if you want to compute a salesman's
total yearly sales as the sum of the four individual sales quarters, you might use this sample code:

MOVE 0 TO TEMP,
ADD 1ST-SALES TO TEMP,
ADD ZND-SALES TO TEMP,
ADD 3RD-SALES TO TEMP,
ADD 4TH-SALES TEMP GIVING TOTAL-SALES,

In this example, a series of single ADD statements compute the final value of TOT AL-SALES by
holding the partial sums in a temporary location called TEMP, which you defined in the Data
Division of the program. You specify the class, usage and number of integer and decimal places to be
maintained.

Another possible solution to the problem is:

ADD 1ST-SALES1 ZND-SALES1 3RD-SALESt 4TH-SALES
GIVING TOTAL-SALES,

In this example, the program computes TOTAL-SALES using a single ADD statement. As in the
previous example, an intermediate result is required to develop the partial sums of the four quarterly
sales quantities. However, in this example, the compiler defines the intermediate result in a manner
transparent to the source program. It allocates storage for and assigns various attributes to this result
according to the rules defined by COBOL-81. (Refer to the section on arithmetic operations in
Chapter 5 of the COBOL-81 Language Reference Manual.) In particular, the composite of the ADD
statement operands determines the number of integer arid decimal places, and the usage assigned to
the intermediate result. (See the COBOL-81 Language Reference Manual for details of the composite
of operands for the arithmetic statements.) In the next example, consider another computational
method:

COMPUTE TOTAL-SALES = 1ST-SALES + ZND-SALES + 3RD-SALES + 4TH-SALES,

Ill 1-20 Numeric Character Handling

This sample coding uses a single COMPUTE statement with an embedded arithmetic expression.
Again, an intermediate result is required and is defined by the compiler. The compiler generates the
intermediate result using the two following rules:

1. Arithmetic operations are combined without restrictions on the composite of operands
and I or receiving items.

2. Each COBOL-81 compiler implementor indicates techniques used in handling arithmetic
expressions.

Thus, you can and should expect differences between various implementations of American National
Standard COBOL 1974. The rest of this section describes how the COBOL-81 compiler computes the
sizes of intermediate results.

The compiler computes the size of an intermediate result for each component operation of an arith­
metic expression. Each component operation can be stated as:

OP1 OPR OP2

where:

OP1 is the first operand.

QPR is an arithmetic operator.

OP2 is the second operand.

The compiler describes the size of an intermediate result in terms of the number of integer places (IP)
and the number of decimal places (DP), both of which are a function of the integer and decimal
places contained in the component operation. The symbol DPEXP represents the maximum number
of decimal places in the entire arithmetic expression. Table 1-7 gives the rules for determining the
intermediate result size for each of the arithmetic operators.

Note

If IP plus DP is greater than 18, arithmetic is done in a temporary work area
where only the 18 most significant digits are held.

Numeric Char.acter Handling 1-21 Ill

Table 1-7: Rules for Intermediate Result Size

Arithmetic
Operator ,

(OPR) Intermediate Result Size

+ and - IP = max(IP(OPl), IP(OP2)) + 1
DP= max(DP(OPl), DP(OP2))

* IP = IP(OPl) + IP(OP2)
DP = DP(OPl) + DP(OP2)

I IP = IP(OPl) + DP(OP2)
DP = max(DPEXP, max(DP(OPl), DP(OP2) + 1))

** For exponents that convert to one-word values:
a = OP2
b = OP2 + DP(OPl)

Otherwise,

a = 9, if IP(OP2) = 1
otherwise, a = 19

b = DPEXP

and

IP = IP(OPl) *a
DP = max(DPEXP, DP(OPl) * b)

Ill 1-22 Numeric Character Handling

Chapter 2
Nonnumeric Character Handling

COBO_L programs hold their data in items whose sizes are described in their source programs. These
items are thus "fixed" during compilation to remain the same size throughout the lifespan of the
resulting object program.

Items in a COBOL program belong to any of three data classes - alphanumeric, alphabetic, or
numeric. Numeric items contain only numeric values. Alphabetic items contain only A to Z (upper­
case or lowercase) and space characters. Alphanumeric items can contain values that are:

• all alphabetic

• all numeric

• a mixture of alphabetic and numeric

• any character from the ASCII character set

The item's data description specifies which class the item belongs to.

Classes are furtlier subdivided into categories. For alphanumeric and numeric data items, class and
category are synonymous. Alphanumeric items can be numeric edited, alphanumeric edited, or
alphanumeric. Every elementary item, except for an index data item, belongs to one of the classes
and its categories. The class of a group item is treated at run time as alphanumeric regardless of the
classes of subordinate elementary items.

If the data description of an alphanumeric item specifies that certain editing operations be performed
on any value that is moved into it, that item is called an alphanumeric or a numeric edited item.

When you are reading the following sections of this chapter, keep in mind the distinction between the
class or category of a data item and the actual value that the item contains.

Sometimes the text refers to alphabetic, alphanumeric, and alphanumeric edited data items as nonnu­
meric data items to distinguish them from items that are specifically described as numeric items.

Regardless of the class of an item, it is usually possible to store a value in the item, at run time, that is
"illegal". Thus, nonnumeric ASCII characters can be placed in an item described as numeric, and an
alphabetic item can be loaded with nonalphabetic characters.

2-1 Ill

2.1 Data Organization

A COBOL-81 record must have an 01 level number and consists of a set of data description entries
that describe record characteristics. A data description entry can be either a group item or an elemen­
tary item. A group item is a data item that is followed by one or more elementary items or other group
items, all of which have higher valued level numbers than the group to which they are subordinate.
An elementary item has no higher valued subordinate level number. The record must have an 01 or a
77 level number.

All of the records used by COBOL-81 programs (except for certain registers and switches) must be
described in the Data Division of the source program. The compiler allocates memory space for these
items (except for Linkage Section items) and fixes them in size at compilation time.

The following sections explain how the compiler handles group and elementary data items.

2.1.1 Group Items

The size of a group item is the sum of the sizes of its subordinate elementary items. The compiler
considers group items to be alphanumeric DISPLAY items, and it ignores the structure of the data
they contain.

2.1.2 Elementary Items

The size of an elementary item is determined by the number of symbols that represent character
positions contained in the PICTURE character-string. For example, consider this record description:

01 TRANREC+
03 FIELD-1 PIC XC7),
03 FIELD-2 PIC S8C5lV88,

Both elementary items require seven bytes of memory; however, item FIELD-1 contains seven
alphanumeric bytes while item FIELD-2 contains seven decimal digits and an operational sign. Oper­
ations on such items are independent of the mapping of the item into memory words (16-bit words
that hold two 8-bit bytes). An item can begin in the leftmost or rightmost byte of a word with no effect
on the function of any operations that refer to that item.

In effect, the compiler sees memory as a continuous array of bytes, not words. This becomes particu­
larly important when you are defining a table using the OCCURS clause (see Chapter 3).

Records, items with a 77 level number, and all literal values given in the Procedure Division auto­
matically begin on even byte addresses.

2.2 Special Characters

COBOL-81 allows you to manipulate any of the 128 characters of the ASCII character set as alpha­
numeric data, even though many of the characters are control characters, which usually control
input/output ~~vices. Generally, alphanumeric data manipulations attach no meaning to an 8-bit
byte. Thus, you can move and compare these control characters in the same manner as alphabetic
and numeric characters.

Ill 2-2 Nonnumeric Character Handling

Although the object program can manipulate all ASCII characters, certain control characters cannot
appear in nonnumeric literals since the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input key for many of the special
characters, thus making it difficult to place them into nonnumeric literals.

Special characters can be placed into items of the object program by placing the binary value of the
special character into a numeric COMP item and redefining that item as alphanumeric DISPLAY.
Consider the following example of redefinition (keep in mind that the even byte of a word corre­
sponds to the low-order bits of a binary word):

01 LF-COMP PIC 888 COMP VALUE 10+
01 LF REDEFINES LF-COMP PIC X,
01 HT-COMP PIC 888 COMP VALUE 8+
01 TAB REDEFINES HT-COMP PIC X,
01 CR-COMP PIC 888 COMP VALUE 13+
01 CR REDEFINES CR-COMP PIC X,

The sample coding introduces each character as a one-word COMP item with a decimal value, then
redefines it as a single byte. (The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically sized items.)

The ASCII character set listed in Appendix B of the COBOL-81 Language Reference Manual indicates
the decimal value for any ASCII character.

2.3 Testing Nonnumeric Items

The following sections describe the relation and class tests applicable to nonnumeric items.

2.3.1 Relation Tests of Nonnumeric Items

An IF statement with a relation condition (greater than, less than, equal to) can compare the value in a
nonnumeric data item with another value and use the result to alter the flow of control in the
program.

An IF statement with a relation condition compares two operands, either of which can be an identifier
or a literal, except that both cannot be literals. If the stated relation exists between the two operands,
the relation condition is true.

When coding a relational operator, leave a space before and after each reserved word. When the
reserved word NOT is present, the compiler considers it and the next key word or relational character
to be one relational operator defining the comparison. Table 2-1 shows the meanings of the relational
operators.

Table 2-1: Relational Operator Descriptions

Operator Description

IS [NOT] GREATER THAN The first operand is greater than (or not greater than) the second operand.
IS [NOT]>

IS [NOT] LESS THAN The first operand is less than (or not less than) the second operand.
IS [NOT]<

IS [NOT] EQUAL TO The first operand is equal to (or not equal to) the second operand.
IS [NOT]=

Nonnumeric Character Handling 2-3 Ill

2.3.1.1 Classes of Data-COBOL-81 allows comparison of both numeric class operands and nonnu­
meric class operands; however, it handles each class of data differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified in their respective USAGE
clauses, but it requires that all other comparisons (including comparisons of any group items) be
between operands with the same usage. It compares numeric class operands with respect to their
algebraic values and nonnumeric (or a numeric and a nonnumeric) class operands with respect to a
specified collating sequence.

If only one of the operands is numeric, it must be an integer data item or an integer literal, and it must
be DISPLAY usage. The manner in which the compiler handles numeric operands depends on the
non numeric operand. ·

1. If the nonnumeric operand is an elementary item or a literal, the compiler treats the
numeric operand as if it had been moved into an alphanumeric data item the same size as
the numeric operand and then compared. This causes any operational sign, whether
carried as a separate character or as an overpunched character, to be stripped from the
numeric item so that it appears to be an unsigned quantity.

In addition, if the PICTURE character-string of the numeric item contains trailing P char­
acters indicating that there are assumed integer positions that are not actually present,
they are filled with zero digits. Thus, an item with a PICTURE character-string of
S9999PPP is moved to a temporary location where it is described as 9999999. If its value
is 432J (-4321), the value in the temporary location will be 4321000. The numeric digits,
stored as ASCII bytes, take part in the comparison.

2. If the nonnumeric operand is a group item, the compiler treats the numeric operand as if
it had been moved into a group item the same size as the numeric operand and then
compared. This is equivalent to a group move.

The compiler ignores the description of the numeric item (except for length) and, there­
fore, includes in its length any operational sign, whether carried as a separate character or
as an overpunched character. Overpunched characters are never ASCII numeric digits.
They are characters ranging from A through R, {, or}. Thus, the sign and the digits, stored
as ASCII bytes, take part in the comparison, and zeros are not supplied for P characters in
the PICTURE character-string.

The compiler does not accept a comparison between a noninteger numeric operand and a nonnu­
meric operand. If you try to compare these two items, you receive a diagnostic message at compile
time.

2.3.1.2 Comparison Operations - If the two operands are acceptable, the compiler compares them
byte for byte. The comparison starts at the first byte and compares the corresponding bytes until it
either encounters a p~ir of unequal bytes or reaches the last byte of the longer operand.

If the compiler encounters a pair of unequal characters, it considers their relative position in the
collating sequence; The operand with the character that is positioned higher in the collating sequence
is the greater operand.

If the operands have different lengths, the comparison proceeds as though the shorter operand were
extended on the right by sufficient ASCII spaces (octal 40) to make them both the same length.

If all the pairs of characters are equal, the operands are equal.

Ill 2-4 Nonnumeric Character Handling

2.3.2 Class Tests for Nonnumeric Items

An IF statement with a class condition (NUMERIC or ALPHABETIC) tests the value in a nonnumeric
data item (USAGE DISPLAY only) to determine whether it contains numeric or alphabetic data and
uses the result to alter the flow of control in the program. For example:

IF ITEM-1 IS NUMERIC,,,
IF ITEM-2 IS ALPHABETIC •• ,
IF ITEM-3 IS NOT NUMERIC •••

If the data item consists entirely of the ASCII characters 0 through 9, with or without the operational
sign, the class condition is NUMERIC. If the item consists entirely of the ASCII characters A through Z
(upper or lower case) and spaces, the class condition is ALPHABETIC.

When the reserved word NOT is present, the compiler considers it and the next key word as one class
condition defining the class test to be executed. For example, NOT NUMERIC determines if an
operand contains at least one nonnumeric byte.

If the item being tested is described as a numeric data item, it can only be tested as NUMERIC or
NOT NUMERIC. The NUMERIC test cannot examine either of the following:

• An item described as alphabetic

• A group item containing elementary items whose data descriptions indicate the presence of
operational signs

For further information on using class conditions with numeric items, see the COBOL-81 Language
Reference Manual, Chapter 5.

2.4 Data Movement

Three COBOL-81 statements (MOVE, STRING, and UNSTRING) perform most of the data movement
operations required by business-oriented programs. The MOVE statement simply moves data from
one item to another. The STRING statement concatenates a series of sending items into a single
receiving item. The UNSTRING statement disperses a single sending item into multiple receiving
items. Section 2.5 describes the MOVE statement, Section 2.6 describes STRING, and Section 2.7
describes UNSTRING.

The MOVE statement handles most data movement operations on character strings. However, it is
limited in its ability to handle multiple items. For example, it cannot, by itself, concatenate a series of
sending items into a single receiving item or disperse a single sending item into several receiving
items.

Two MOVE statements will, however, bring the contents of two items together into a third (receiving)
item if the receiving item has been subdivided with subordinate elementary items that match the two
sending items in size. If other items are to be concatenated into the third item, and they differ in
size from the first two items, then the receiving item requires additional subdivisions (through

-redefinition).

Nonnumeric Character Handling 2-5 Ill

Example 2-1 demonstrates item concatenation using two MOVE statements.

Example 2-1 : Item Concatenation ·

01 SEN0-1
01 SEN0-2

01 RECEIVE-GROUP+

PIC X<5> VALUE "FIRST".
PIC X VALUE "SECOND"+

05 REC-1 PIC X<5>.
05 REC-2 PIC X<S>.

PROCEDURE DIVISION+
AOO-BEGIN.

MOVE SEND-1 TD REC-1.
MOVE SEN0-2 TD REC-2.

DISPLAY RECEIVE-GROUP.
STOP RUN.

The result of the concatenation is:

FIRSTSECDND

Two MOVE statements can also disperse the contents of one sending item to several receiving items.
The first MOVE statement moves the left-most end of the sending item to a receiving item; then the
second MOVE statement moves the right-most end of the sending item to another receiving item. (The
second receiving item must first be described with the JUSTIFIED clause.) Characters from the middle
of the sending item cannot easily be moved to any receiving item without extensive redefinitions of
the sending item or a character-by-character movement loop (as with concatenation).

The STRING and UNSTRING statements handle concatenation and dispersion more easily.

2.5 Using the MOVE Statement

The MOVE statement moves the contents of one item into another. For example:

MOVE FIEL01 TO FIELD2

MOVE CORRESPONDING FIELD1 TD FIEL02

FIELD1 is the sending item name, and FIELD2 is the receiving item name.

The first statement causes the compiler to move the contents of FIELD1 ·into FIELD2. The two items
need not be the same size, class, or usage; they can be either group or elementary items. If the two
items are not the same length, the compiler aligns them on one end or the other. It also truncates or
space-fills the other end. The movement of group items and nonnumeric elementary items is dis­
cussed in the next section.

The MOVE statement alters the contents of every character position in the receiving item.

Ill 2-6 Nonnumeric Character Handling

2.5.1 Group Moves

If either the sending or receiving item is a group item, the compiler considers the move to be a group
move. It treats both the sending and receiving items as if they were alphanumeric items.

If the sending item is a group item, and the receiving item is an elementary item, the compiler ignores
the receiving item description except for the size description, in bytes, and any JUSTIFIED clause. It
conducts no conversion or editing on the receiving item.

If a receiving item contains an OCCURS ... DEPENDING ON clause, you must either initialize the
item using the VALUE clause or move a value into depending-item anytime prior to the group move.

2.5.2 Elementary Moves

If both items of a MOVE statement are elementary items, their PICTURE character-strings control their
data movement. If the receiving item was described as numeric or numeric edited, the rules for
numeric moves control the data movement. (See Chapter 1, Numeric Character Handling.)

Table 2-2 shows the legal and illegal nonnumeric elementary moves.

Table 2-2: Nonnumeric Elementary Moves

Receiving Item Category

Sending Item Category Alphanumeric
Alphabetic Alphanumeric Edited

ALPHABETIC Legal Legal

ALPHANUMERIC Legal Legal

ALPHANUMERIC EDITED Legal Legal

NUMERIC INTEGER Illegal Legal
(DISPLAY ONLY)

NUMERIC EDITED Illegal Legal

In all legal moves, the compiler treats the sending item as though it had been described as PIC X(n). A
JUSTIFIED clause in the sending item's description has no effect on the move. If the sending item's
PICTURE character-string contains editing characters, the compiler uses them only to determine the
item's size.

Numeric items must be in DISPLAY (byte) format and must be integers.

If the description of the numeric data item indicates the presence of an operational sign (either as a
character or an overpunched character) or if there are P characters in its character-string, the compiler
first moves the item to a temporary location. It removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value as the sending item as if it had been described as PIC
X(n). The temporary value can be shorter than the original if a separate sign was removed - or longer
if P character positions were filled in with zeros.

If the sending item is an unsigned numeric class item with no P characters in its character-string, the
compiler does not move the item to a temporary location.

Nonnumeric Character Handling 2-7 Ill

A numeric integer data item sending item has no effect on the justification of the receiving item. It
the numeric sending item is shorter than the receiving item, the compiler fills the receiving item
with spaces.

In legal, nonnumeric elementary moves, the receiving item controls the movement of data. All of the
following characteristics of the receiving item affect the move:

• Its size

• Editing characters in its description

•The JUSTIFIED RIGHT clause in its description

The JUSTIFIED clause and editing characters are mutually exclusive.

When an item that contains no editing characters or JUSTIFIED clause in its description is used as the
receiving item of a nonnumeric elementary MOVE statement, the compiler moves the characters
starting at the leftmost position of the item and scans across, character-by-character, to the rightmost
position. If the sending item is shorter than the receiving item, the compiler fills the remaining
character positions with spaces. If the sending item is longer than the receiving item, truncation
occurs on the right.

2.5.2.1 Edited Moves - Alphabetic or alphanumeric items can contain editing characters. Consider
the following insertion editing characters:

B Blank insertion position

0 Zero insertion position

I Slash insertion position

When an item with an insertion editing character in its PICTURE character-string is the receiving item
of a nonnumeric elementary MOVE statement, each receiving character position corresponding to an
editing character receives the insertion byte value. Table 2-3 illustrates the use of such symbols with
the following statement, where FIELD1 is described as PIC X(7):

MOVE FIELD1 TO FIELD2

Table 2-3: Data Movement with Editing Symbols

FIELD2
FIELD1

Character-String Contents After MOVE

070476 XX/99/XX 07/04/76

04JUL76 99BAMB99 04 JUL 76

2351212 XXXBXXXX/XX/ 235 1212/ I

123456 OXBOXBOXBOX 01 02 03 04

Ill 2-8 Nonnumeric Character Handling

Data movement always begins at the left end of the sending item and moves only to the byte positions
described as A, 9, or X in the receiving item PICTURE character-string. When the sending item is
exhausted, the compiler supplies space characters to fill any remaining character positions (not
insertion positions) in the receiving item. If the receiving item is exhausted before the last character is
moved from the sending item, the compiler ignores the remaining sending item characters.

2.5.2.2 Justified Moves - A JUSTIFIED RIGHT clause in the receiving iterri's data description causes
the compiler to reverse its usual data movement conventions. It starts with the rightmost characters of
both items and proceeds from right to left. If the sending item is shorter than the receiving item, the
compiler fills the remaining leftmost character positions with spaces. If the sending item is longer than
the receiving item, truncation occurs on the left. Table 2-4 illustrates various PICTURE character­
string situations for the following statement (with no editing):

MOVE FIELD1 TO FIELD2•

Table 2-4: Data Movement with No Editing

FIELDl FIELD2

PICTURE
PICTURE Character-string

Character-string Contents (and JUST Clause) Contents After MOVE

xx AB

xxxxx ABC

xxx ABC XX JUST BC

XXXXX JUST ABC

2.5.3 Multiple Receiving Items

If you write a MOVE statement containing more than one receiving item, the compiler moves the
same sending item value to each of the receiving items. It has essentially the same effect as a series of
separate MOVE statements, all with the same sending item. For information on subscripted items, see
Section 2.6.4.

The receiving items need have no relationship to each other. The compiler checks the legality of each
one independently and performs an independent move operation on each one.

Multiple receiving items on MOVE statements provide a convenient way to set many items equal to
the same value, such as during initialization code at the beginning of a section of processing. For
example:

MOVE SPACES TD LIST-LINE, EXCEPTION-LINE, NAME-FLO,

MOVE ZEROS TD EDL-FLAG1 EXCEPT-FLAG, NAME-FLAG,

MOVE 1 TD COUNT-11 CHAR-PTRt CURSOR,

Nonnumeric Character Handling 2-9 Ill

2.5.4 Subscripted Moves

Any item of a MOVE statement can be subscripted, and the referenced item can be used to subscript
another name in the same statement.

When more than one receiving item is named in the same MOVE statement, the order in which the
compiler evaluates the subscripts affects the results of the move. Consider the following examples:

Example 1:

MOVE FIELDl<FIELDZ> TO FIELDZ FIELD3,

Example 2:

MOVE FIELD1 TD FIELDZ FIELD3<FIELDZ>,

In Example 1, the compiler evaluates FIELD1 (FIELD2) only once, before it moves any data to the
receiving items. It is as if the statement were replaced with the following statements:

MOVE FIELDl<FIELDZ> TD TEMP,

MOVE TEMP TO FIELDZ,

MOVE TEMP TD FIELD3,

In Example 2, the compiler evaluates FIELD3(FIELD2) immediately before moving the data into it but
after moving the data from FIELD1 to FIELD2. Thus, it uses the newly stored value of FIELD2 as the
subscript value. It is as if the statement were replaced with the following statements:

MOVE FIELD1 TD FIELDZ.

MOVE FIELDl TD FIELD3<FIELDZ>,

2.5.5 Common Nonnumeric Item MOVE Statement Errors

The compiler considers any MOVE statement that contains a group item to be a group move. If an
elementary item contains editing characters, or a numeric integer, these attributes of the receiving
item, which determine the action of an elementary move, have no effect on the action of a group
move.

2.5.6 Using the MOVE CORRESPONDING Statement for Nonnumeric Items

The MOVE CORRESPONDING statement allows you to move multiple items from one group item to
another group item using a single MOVE statement. See the COBOL-81 Language Reference Manual
for rules on the CORRESPONDING phrase. When you use the CORRESPONDING phrase, the com­
piler performs an independent move operation on each pair of corresponding items from the oper­
ands and checks the legality of each. Example 2-2 shows the use of the MOVE CORRESPONDING
statement.

Ill 2-10 Nonnumeric Character Handling

Example 2-2: Sample Record Description Using the MOVE CORRESPONDING Statement

01 A-GROUP, 01 B-GROUP,
oz FIELD1, oz FIELD1,

03 A PIC x. 03 A PIC x.
03 B PIC 8. 03 C PIC xx.
03 C PIC xx. 03 E PIC xxx.
03 D PIC 88.
03 E PIC xxx.

MOVE CORRESPONDING A-GROUP TO B-GROUP,

Because FIELD1 qualifies the elementary items for both the A-GROUP and B-GROUP items named in
the MOVE CORRESPONDING statement, the preceding example is equivalent to the following series
of MOVE statements:

MOVE A OF A-GROUP TO A OF B-GROUP,

MOVE C OF A-GROUP TO C OF B-GROUP,

MOVE E OF A-GROUP TO E OF B-GROUP,

2.6 Concatenating Data Using the STRING Statement

The STRING statement concatenates the contents of two or more sending items into a single receiving
item.

The statement has many forms; the simplest is equivalent in function to a nonnumeric MOVE state­
ment. Consider the following example:

STRING1 FIELD1 DELIMITED BY SIZE INTO FIELDZ,

If the two items are the same size, or if the sending item (FIELD1) is larger, the statement is equivalent
to the following statement:

MOVE FIELD1 TO FIELDZ,

If the sending item is shorter than the receiving item, the compiler does not replace unused positions
in the receiving item with spaces. Thus, the STRING statement can leave some portion of the receiv­
ing item unchanged.

The receiving item must be an elementary alphanumeric item with no JUSTIFIED clause or editing
characters in its description. Thus, the data movement of the STRING statement always fills the
receiving item from left to right with the sending item and with no editing insertions.

2.6.1 Multiple Sending Items

The STRING statement can concatenate a series of sending items into one receiving item. Consider
the following example of the STRING statement:

STRING FIELD1A FIELD1.B FIELD1C DELIMITED BY SIZE
INTO FIELDZ,

Nonnumeric Character Handling 2-11 Ill

In this sample STRING statement, FIHD1 A,' FIELD1 B, and FIELD1 Care all sending items. The.com­
piler moves them to the receiving item (FIELD2) in the order in which they appear in the statement,
from left to right, resulting in the concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation stops when it is full. If this occurs
while moving one of the sending items, the compiler ignores the remaining characters of that item
and any other sending items not yet processed. For example, if FIELD2 is filled while it is receiving
FIELD1 B, the compiler ignores the rest of FIELD1 Band all of FIELD1C.

If the sending items do not fill the receiving item, the operation stops when the last character of the
last sending item (FIELD1C) is moved. It does not alter the contents nor space-fill the remaining
character positions of the receiving item.

The sending items can be nonnumeric literals and figurative constants (except for ALL literal). For
example, the following statement sets up an address label with the literal period and space between
the STATE and ZIP items:

STRING CITY SPACE STATE " " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

2.6.2 Using the POINTER Phrase

Although the STRING statement normally starts scanning at the leftmost position of the receiving item,
the POINTER phrase makes it possible to start scanning at another point within the item. The scann­
ing, however, remains left-to-right. Consider the following example:

MOVE 5 TO p,
STRING FIELDlA FIELDlB DELIMITED BY SIZE

INTO FIELDZ WITH POINTER p,

The value of P determines the starting character position in the receiving item. In this example, the 5
in P causes the compiler to move the first character of FIELD1 A into character position 5 of FIELD2
(the leftmost character position of the receiving item is character position 1) and leave positions 1
through 4 unchanged.

When the STRING operation is complete, P points to one character position beyond the last character
replaced in the receiving item. If FIELD1 A and FIELD1 Bare both four characters long, P will contain a
value of 13 (5 + 4 + 4) when the operation is complete (assuming that FIELD2 is at least 13 characters
long).

2.6.3 Using the DELIMITED BY Phrase

Although the sending items of the STRING statement are fixed in size at compile time, the sending
items are frequently filled with spaces. For example, a 20-character city item can contain only the
word MAYNARD followed by 13 spaces. The STRING statement using the DELIMITED BY SIZE
phrase would move the word "MAYNARD" and the unwanted 13 spaces, assuming the receiving
item is at least 20 characters long. The DELIMITED BY phrase, written with a data-name or literal,
eliminates this type of problem.

Ill 2-12 Nonnumeric Character Handling

The delimiter can be a literal, a data item, a figurative constant, or the word SIZE. It cannot be ALL
literal since ALL literal has an indefinite length. When the phrase contains the word SIZE, the com­
piler moves each sending item in total, until it either exhausts the sending item or fills the receiving
item.

Consider the following example:

STRING CITY SPACE STATE 11 , 11 ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

If CITY is a 20-character item, the result of the STRING operation might look like the following:

AYER MA. 01432

16 spaces

C81ART-10023-6

A far more attractive and functional report can be produced by having the STRING operation produce
this line:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter on the sending item:

MDI.IE 1 TO p,
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LI NE WITH POINTER p.
STRING II I II STATE II . II ZIP

DELIMITED BY SIZE
INTO ADDRESS-LINE WITH POINTER p.

This example uses the pointer's characteristic of pointing to one character position beyond the last
character replaced in the receiving item to enable the second STRING statement to begin at a position
one character past where the first STRING statement stopped. The first STRING statement moves data
characters until it encounters a space character - a match of the delimiter SPACE. The second
STRING statement adds the literal, the 2-character STATE item, another literal, and the 5-character
ZIP item.

The delimiter can be varied for each item within a single STRING statement by repeating the DELIM­
ITED BY phrase after the sending item names to which it applies. Thus, the following shorter state­
ment has the same effect as the preceding example. Placing the operands on separate source lines, as
shown in the following example, has no effect on the operation of the statement, but it improves
program readability and simplifies debugging.

STRING CITY DELIMITED BY SPACE
II' II STATE II. II

ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

Nonnumeric Character Handling 2-13 Ill

The sample STRING statement cannot handle two-word city names, such as New York, since the
compiler considers the space between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (nonnumeric literal), can solve this problem. Only when a
sequence of characters matches the delimiter does the movement stop for that data item. With a two­
character delimiter, the same statement can be rewritten in a simpler form:

STRING CITY "t "STATE"• "ZIP
DELIMITED BY " " INTO ADDRESS-LINE,

Since only the CITY item contains two consecutive spaces (the entire STATE item is only two charac­
ters long), the delimiter's search of the other items will always be unsuccessful, and the effect is the
same as moving the full item (delimiting by SIZE).

Data movement under control of a data-name or literal is generally slower in execution speed than
movement delimited by SIZE.

Remember the remainder of the receiving item is not space-filled as with a MOVE statement. If
ADDRESS-LINE is to be printed on a mailing label, for example, the STRING statement should be
preceded by the statement:

MOVE SPACES TD ADDRESS-LINE,

This guarantees a space-fill to the right of the concatenated result. Alternatively, the last item conca­
tenated by the STRING statement can be an item previously set to SPACES. This sending item must be
moved under control of a delimiter other than SPACE.

2.6.4 Using the OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING operation, and the pointer
value is either known or the POINTER phrase is not used, you can add the sending items together to
see if the receiving item is large enough to hold the sending items. However, if the DELIMITED BY
phrase contains a literal or an identifier, or if the pointer value is not predictable, it can be difficult to
tell whether or not the size of the receiving item is large enough. An overflow can occur if this is
the case.

An overflow occurs when the receiving item is full and the compiler is either about to move a
character from a sending item or is considering a new sending item. Overflow can also occur if,
during the initialization of the statement, the pointer contains a value that is either less than 1 or
greater than the length of the receiving item. In this case, the compiler moves no data to the receiving
item and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an overflow condition:

STRING FIELDlA FIELDlB DELIMITED BY "C"
INTO FIELDZ WITH POINTER PNTR
ON OVERFLOW GO TD PN57,

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad initial value in pointer
PNTR from the overflow caused by a receiving item that is too short. Only a separate test, preceding
the STRING statement, can distinguish between the two.

Ill 2-14 Nonnumeric Character Handling

Example 2-3 illustrates the overflow condition.

Example 2-3: Sample Overflow Condition

DATA DIVISION,

01 FIELDlA PIC XXX VALUE "ABC",
01 FIELDZ PIC XXXX,

PROCEDURE DIVISION,

1. STRING FIELDlA QUOTE DELIMITED BY SIZE INTO FIELOZ,
2. STRING FIELDlA FIELD1A DELIMITED BY SIZE INTO FIELDZ,
3. STRING FIELD1A FIELDlA DELIMITED BY "C" INTO FIELOZ,
4. STRING FIEL01A FIELD1A FIELDlA FIELDlA

DELIMITED BY "B" INTO FIELDZ,
5. STRING FIEL01A FIELD1A "C" DELIMITED BY "C"

INTO FIELDZ,
a MOVE Z TO p,

STRING FIELD1A "AC" DELIMITED BY "C"
INTO FIELDZ WITH POINTER p,

The STRING statement numbers in the example point to corresponding results shown in Table 2-8.

Table 2-5: Results of Sample Overflow Statements

Value of FIELD2 After
the STRING Operation Overflow?

1. ABC" NO

2. ABCA YES

3. ABAB NO

4. AAAA NO

5. ABAB YES

6. AABA NO

2.6.5 Subscripted Items in STRING Statements

All STRING statement data-names can be subscripted, and the pointer value can be used as a
subscript.

Since you can use the pointer value as a subscript on one or more items in the statement, it is
important to understand the order in which the compiler evaluates the subscripts and exactly when it
updates the pointer.

Nonnumeric Character Handling 2-15 Ill

Note

The rules in this section concerning subscripts in the STRING statement are not
specified by 1974 American National Standard COBOL. Therefore, dependence
on these rules, particularly those involving the use of the pointer item as a
subscript, can produce programs that will not perform the same way on other
COBOL compilers.

The compiler updates the pointer after it moves the last character out of each sending item. Consider
the following example:

MOVE 1 TO p,
STRING "ABC"

SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER p,

During the movement of "ABC" into the receiving item (R), the pointer value remains at 1. After the
move, the compiler increases the pointer value by 3 (the size of the sending item literal "ABC") and
assumes the value 4. The compiler then moves the figurative constant SPACE and increases the
pointer value by 1, making it 5. "DEF" is then moved, and, on completion of the move, the compiler
increases the pointer to its final value of 8.

Now, consider the updating characteristics of the pointer when applied to subscripting:

MOVE 1 TO p,
STRING CHAR<P>

CHAR<P>
CHAR<P>
CHAR<P> DELIMITED BY SIZE
INTO R WITH POINTER p,

If CHAR is a one-character item in a table, the pointer increases by one after each item has been
moved and the compiler will move them into R as if they had been subscripted as CHAR(l),
CHAR(2), CHAR(3), and CHAR(4). If CHAR is a two-character item, the pointer increases by two after
each item has been moved and the items will move into R as if they had been subscripted as
CHAR(l), CHAR(3), CHAR(S), and CHAR(7).

Thus, the compiler evaluates the subscript of a sending item once, immediately before it considers the
item as a sending item.

The compiler evaluates the subscript of a receiving item only once - at the start of the STRING
operation. Therefore, if you use the pointer as a subscript on the receiving items, changes made to the
pointer during execution of the STRING statement do not change the choice of which receiving string
is altered.

Ill 2-16 Nonnumeric Character Handling

You can subscript the delimiter field using a data-name or the pointer. The compiler reevaluates the
delimiter subscript once for each sending item, immediately before it compares the delimiter to the
item. Thus, by subscripting it with the pointer value, the delimiter can be changed for each sending
item. This has the peculiar effect of choosing the next sending item's delimiter based on the position
(in the receiving item) into which its first character will fall. Consider the following example:

01 DTABLE,
03 D PIC X OCCURS 7 TIMES,

MOVE 1 TO p,
STRING "ABC"

"ABC"
"ABC" DELIMITED BY D<P>
INTO R WITH POINTER p,

Table 2-6 shows the values moved from the three "ABC" literals to receiving item (R) for the DTABLE
values shown in the left column:

Table 2-6: Results of Sample Delimiter Subscripts

DT ABLE Value R Value

ABCDEFG (Unchanged)

BCDEFGH AABABC

CDEFGHI ABABCABC

cccccccc ABABAB

However, if the pointer item is not used as a subscript on any of the items in the statement, the point
at which the compiler evaluates the subscripts is immaterial to the execution of the statement.

Note

By avoiding the use of the pointer as a subscript, you can expect uniform results
from all COBOL compilers that adhere to 1974 ANSI COBOL.

2.6.6 Common STRING Statement Errors

The most common errors you are likely to make when writing STRING statements are:

• Using the word "TO" instead of "INTO"

• Forgetting to write "DELIMITED BY SIZE"

• Forgetting to initialize the pointer

• Initializing the pointer to 0 instead of 1

• Forgetting to provide for space-filling of the receiving item when it is desirable

Nonnumeric Character Handling 2-17 Ill

2.7 Separating Data Using the UNSTRING Statement

The UNSTRING statement disperses the contents of a single sending item into multiple receiving
items.

The statement has many forms·; the simplest is equivalent in function to a nonnumeric MOVE state­
ment. Consider the following example:

UNSTRING FIELD1 INTO FIELDZ.

The sample statement is equivalent to MOVE FIELD1 TO FIELD2, regardless of the relative sizes of the
two items.

The sending item (FIELD1) can be either (1) a group item or (2) an alphanumeric or alphanumeric
edited elementary item. The receiving item (FIELD2) can be alphabetic, alphanumeric, or numeric,
but it cannot specify any type of editing.

If the receiving item is numeric, it must be DISPLAY usage. The PICTURE character-string of a
numeric receiving item can contain any of the legal numeric description characters except for P and
the editing characters. The UNSTRING statement moves the sending item to the numeric receiving
item as if the sending item had been described as an unsigned integer. It automatically truncates or
zero-fills as required.

If the receiving item is not numeric, the compiler follows the rules for elementary non numeric MOVE
statements. It left-justifies the data in the receiving item, truncating or space-filling as required. If the
data description of the receiving item contains a JUSTIFIED clause, the compiler right-justifies the
data, truncating or space-filling to the left as required.

2. 7 .1 Multiple Receiving Items

The UNSTRING statement, can disperse one sending item into several receiving items. Consider the
following example of the UNSTRING statement written with multiple receiving items:

UNSTRING FIELD1 INTO FIELDZA FIELDZB FIELDZC,

The compiler performs the UNSTRING operation by scanning across FIELD1, the sending item, from
left to right. When the number of characters scanned equals the number of characters in the receiving
item, the compiler moves the scanned characters into that item and begins scanning the next group of
characters for the next receiving item.

If each of the receiving items in the preceding example (FIELD2A, FIELD2B, and FIELD2C) is five
characters long, and FIELD1 ·is 15 characters long, the compiler scans across FIELD1 until the number
of characters scanned equals the size of FIELD2A (five). It then moves those first five characters to
FIELD2A, and it sets the scanner to the sixth character position in FIELD1. Next, the compiler scans
across FIELD1 from character position six, until the number of scanned characters equals the size of
FIELD2B (five). The compiler then moves the sixth through the tenth characters to FIELD2B, and it sets
the scanner to the next (eleventh) character position in FIELD1. For the last move in this example, it
moves characters 11 through 15 of FIELD1 into FIELD2C.

Each data movement acts as an individual MOVE statement, the sending item of which is an alphanu­
meric item equal in size to the receiving item. If the receiving item is numeric, the move operation
converts the data to numeric form. For example, consider what would happen if the items under
discussion had the data descriptions and were manipulating the values shown in Table 2-7.

Ill 2-18 Nonnur:neric Characte.r Handling

Table 2-7: Values Moved into the Receiving Items Based on the Sending Item Value

FIELD1 FIELD2B
PIC X(15) FIELD2A PIC S9(5) FIELD2C
VALUE IS: PIC X(5) LEADING SEPARATE PIC S999V99

ABC DE 1234512345 ABC DE + 12345 3450{
XXXXX0000100123 xxxxx +00001 1230{

FIELD2A is an alphanumeric item. Therefore, the compiler simply conducts an elementary non­
numeric move with the first five characters.

FIELD2B, however, has a leading separate sign that is not included in its size. Thus, the compiler
moves only five numeric characters and generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to the right of it, plus an over­
punched sign on the low-order digit. The sending item should supply five numeric digits. However,
since the sending item is alphanumeric, the compiler treats it as an unsigned integer; it truncates the
two high-order digits and supplies two zero digits for the decimal positions. Further, it supplies a
positive overpunch sign, making the low-order digit a + 0 (ASCII {). There is no simple way to have
the UNSTRING statement recognize a sign character or a decimal point in the sending item.

If the sending item is shorter than the sum of the sizes of the receiving items, the compiler ignores the
remaining receiving items. If it reaches the end of the sending item before it reaches the end of one of
the receiving items, the compiler moves the scanned characters into that receiving item. It left-justifies
and fills the remaining character positions with spaces for alphanumeric data, or it decimal point
aligns and zero fills the remaining character positions for numeric data.

Consider the following statement with reference to the corresponding PICTURE character-strings and
values in Table 2-8.

UNSTRING FIELD1 INTO FIELDZA FIELDZB+

FIELD2A is a three-character alphanumeric item. It receives the first three characters of FIELD1 (ABC)
in every operation. FIELD2B, however, runs out of characters every time before filling, as Table 2-8
illustrates.

Table 2-8: Handling a Short Sending Item

FIELD1 FIELD2B
PIC X(6) FIELD2B Value After

VALUE IS: PICTURE IS: UNSTRING Operation

ABC DEF xxxxx DEF

599999 0024F

ABC246 59V999 600{

59999 +0246

LEADING SEPARATE

Nonnumeric Character Handling 2-19 Ill

2.7.2 Controlling Moved Data Using the DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter, rather than by the size of the
receiving item. The DELIMITED BY phrase supplies the delimiter characters.

UNSTRING delimiters can be literals, figurative constants (including ALL literal), or identifiers (identi­
fiers can even be subscripted data-names). This section discusses the use of these three types of
delimiters. Subsequent sections cover multiple delimiters, the COUNT phrase, and the DELIMITER
phrase. Subscripting delimiters is discussed at the end of this section.

Consider the following sample UNSTRING statement with the figurative constant, SPACE, as a
delimiter:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2+

In this example, the compiler scans the sending item (FIELD1), searching for a space character. If it
encounters a space, it moves all of the scanned (nonspace) characters that precede that space to the
receiving item (FIELD2). If it finds no space character, it moves the entire sending item. When it has
determined the size of the sending item, the compiler moves the contents of that item following the
rules for the MOVE statement, truncating or zero-filling as required.

Table 2-9 shows the results of the following UNSTRING operation that uses a literal asterisk
delimiter:

UNSTRING FIELD1 DELIMITED BY "*"
INTO FIELD2+

Table 2-9: Results of Delimiting with an Asterisk

FIELD1 FIELD2
PIC X(6) FIELD2 Value After

VALUE IS: PICTURE IS: UNSTRING

xxx ABC

ABC DEF X(7) ABC DEF

XXX JUSTIFIED DEF

****** xxx t:i.t:i.t:i.

*ABCDE xxx t:i.t:i.t:i.

A***** XXX JUSTIFIED t:i.t:i.A

246*** S9999 024F

12345* 59999 TRAILING 2345+
SEPARATE

2468** S999V9 LEADING +4680
SEPARATE

*246** 9999 0000

Legend: t:i. = space

Ill 2-20 Nonnumeric Character Handling

If the delimiter matches the first character in the sending item, the compiler considers the size of the
sending item to be zero. The operation still takes place, however, and fills the receiving item with
spaces if it is nonnumeric or zeros if it is numeric.

A delimiter can also be applied to an UNSTRING statement that has multiple receiving items:

UNSTRING FIELD! DELIMITED BY SPACE
INTO FIELDZA FIELDZB,

The compiler scans FIELD1 searching for a character that matches the delimiter. If it finds a match, it
moves the scanned characters to FIELD2A and sets the scanner to the next character position to the
right of the character that matched. It then resumes scanning FIELD1 for a character that matches the
delimiter. If the compiler finds a match, it moves all of the characters between the character that first
matched the delimiter and the character that matched on the second scan, and it sets the scanner to
the next character position to the right of the character that matched.

The DELIMITED BY phrase handles additional items in the same manner as it handled FIELD2B.

Table 2-10 illustrates the results of a delimited UNSTRING operation into multiple receiving items:

UNSTRING FIELD! DELIMITED BY "*"
INTO FIELDZA FIELDZB,

Table 2-1 O: Results of Delimiting Multiple Receiving Items

Values After UNSTRING Operation

FIELD1
PIC X(8) FIELD2A FIELD2B

VALUE IS: PIC X(3) PIC X(3)

ABC* DEF* ABC DEF

ABCDE*FG ABC FG6

A*B***** A66 B66

*AB*CD** /':,,!::,/::, AB6

**ABCDEF /':,,/':,,/':,, /':,,/':,,/':,,

A*BCDEFG A66 BCD

ABC**DEF ABC /':,,/':,,/':,,

A******B A66 /':,,/':,,/':,,

Legend: /':,, space

The last two examples illustrate the limitations of a single-character delimiter. Accordingly, the
delimiter can be longer than one character, and it can be preceded by the word ALL.

Table 2-11 shows the results of an UNSTRING operation using a two-character delimiter:

UNSTRING FIELD! DELIMITED BY "**"
INTO FIELDZA FIELDZB,

Nonnumeric Character Handling 2-21 Ill

Table 2-11: Results of Delimiting with T~o Asterisks.

Values After UNSTRING Operation

FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX

VALUE IS: PIC XXX JUSTIFIED

ABC**DEF ABC DEF

A*B*C*D* A*B b.b.b.

AB***C*D ABb. C*D

AB**C*D* ABb. *D*

AB**CD** ABb. b.CD

AB***CD* ABb. CD*

AB*****CD ABb. b.b.b.

Legend: b. space

Unlike the STRING statement, the UNSTRING statement accepts the ALL literal as a delimiter. When
the word ALL precedes the delimiter, the action of the UNSTRING statement remains essentially the
same as with one delimiter until the scanning operation finds a match. At this point, the compiler
scans farther, looking for additional consecutive strings of characters that also match the delimiter
item. It considers the "ALL delimiter" to be one, two, three, or more adjacent repetitions of the
delimiter item.

Table 2-12 shows the results of an UNSTRING operation using an ALL delimiter:

UNSTRING FIELDl DELIMITED BY ALL "*"
INTO FIELDZA FIELDZ6,

Table 2-12: Results of Delimiting with ALL Asterisks.

Values After UNSTRING Operation

FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX

VALUE IS: PIC XXX JUSTIFIED

ABC* DEF* ABC DEF

ABC** DEF ABC DEF

A******F Ab.b. b.b.F

A*F***** Ab.b. b.b.F

A*CDEFG Ab.b. EFG

Legend: b. = space

Ill 2-22 Nonnumeric Character Handling

f
\

/

I

\.

(
\"

Table 2-13 shows the results of an UNSTRING operation that combines ALL with a two-character
delimiter:

UNSTRING FIELD1 DELIMITED BY ALL "**"
INTO FIELDZA FIELDZB.

Table 2-13: Results of Delimiting with All Double Asterisks.

Values After UNSTRING Operation

FIELD1
PIC X(8) PIC XXX

VALUE IS: PIC XXX JUSTIFIED

ABC**DEF ABC DEF

AB**DE** ABL':.. L':..DE

A***D*** AL':..6 6*0

A******* AL':..6 L':,.L':,.*

Legend: 6 space

In addition to unchangeable delimiters, such as literals and figurative constants, delimiters can be
designated by identifiers. Identifiers (which can even be subscripted data-names) permit variable
delimiting. Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY DEL1
INTO FIELDZA FIELDZB.

The data-name DEL 1, must be alphanumeric. It can be a group or elementary item. If the delimiter
contains a subscript, the subscript can be varied as a side effect of the UNSTRING operation. The
evaluation of subscripts is discussed later in this section.

2.7.2.1 Multiple Delimiters - The UNSTRING statement scans a sending item, searching for a match
from a list of delimiters. This list can contain ALL delimiters and delimiters of various sizes. The only
requirement of the list is that delimiters must be connected by the word OR.

The following sample statement unstrings a sending item into three receiving items. The sending item
consists of three strings separated by one of the following: (1) any number of spaces, (2) a comma
followed by a single space, (3) a single comma, (4) a tab character, or (5) a carriage-return character.
The comma and space must precede the single comma in the list if the comma and space are to be
recognized.

UNSTRING FIELD! DELIMITED BY ALL SPACE
OR " t "

OR " t"

OR TAB
OR CR
INTO FIELDZA FIELDZB FIELDZC.

Nonnumeric Character Handling 2-23 Ill

Table 2-14 shows the potential of this statement. The tab and carriage-return characters represent
single-character items containing the ASCII horizontal tab and carriage-return characters.

Table 2-14: Results of Multiple Delimiters

FIELD1 FIELD2A FIELD2B
PIC X(12) PIC XXX PIC 9999

A,O,Cfil}) Al:::.!:::. 0000

A@W456, E Al:::.!:::. 0456

A 3 9 Al:::.!:::. 0003

A@W@WBfil}) Al:::.!:::. 0000

A,,C Al:::.!:::. 0000

ABCD, 4321,Z ABC 4321

Legend: fill) = carriage-return character
@W = tab character
!:::.= space

FIELD2C
PIC XXX

(/:::,./:::,.

El:::,./:::,.

91:::.1:::.

Bl:::.!:::.

(!::::,./:::,.

Z!:::.!:::.

2.7.3 Counting UNSTRING Characters Using the COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and stores the length in a user­
supplied data area.

The length of a delimited sending item can vary from zero to the full length of the item. Some
programs require knowledge of this length. For example, some data is truncated if it exceeds the size
of the receiving item, so the program's logic requires this information.

To use the phrase, follow the receiving item name with the words COUNT IN and an identifier.
Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C,

The compiler counts the number of characters between the leftmost position of FIELD1 and the first
asterisk in FIELD1 and places the count into COUNT2A. The compiler does not include the delimiter
in the count because it is not a part of the string. The data preceeding the first asterisk is then moved
into FIELD2A.

The compiler then counts the number of characters between the last contiguous asterisk in the first
scan and the next asterisk in the second scan and places the count in COUNT2B. The data between
the delimiters of the second scan is moved into FIELD2B.

The third scan begins at the first character after the last contiguous asterisk in the second scan. Any
data between the delimiters of this scan is moved to FIEt.D2C.

The phrase should be used only where needed. In this example, the length of the string moved to
FIELD2C is not needed, so no COUNT phrase follows it.

Ill 2-24 Nonnumeric Character Handling

If the receiving item is shorter than the value placed in the count item, the compiler truncates the
sending string. If the number of integer positions in a numeric item is smaller than the value placed
into the count item, high-order numeric digits have been lost. If the compiler finds a delimiter match
on the first character it examines, it places a zero in the count item.

The COUNT phrase can be used only in conjunction with the DELIMITED BY phrase.

2.7.4 Saving UNSTRING Delimiters Using the DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that delimited the sending item to be
stored in a user-supplied data area. This phrase is most useful when:

• The UNSTRING statement contains a delimiter list

• Any one of the delimiters in the list might have delimited the item

• Program logic flow depends on the delimiter match found

By using the DELIMITER and COUNT phrases, you can make program logic flow dependent on both
the size of the sending string and the delimiter terminating the string.

To use the DELIMITER phrase, follow the receiving item name with the words DELIMITER IN and an
identifier. The compiler places the delimiter character in the area named by the identifier. Consider
the following sample UNSTRING statement:

UNSTRING FIELD! DELIMITED BY "1"
OR TAB
OR ALL SPACE
OR CR
INTO FIELDZA DELIMITER IN DELIMA
FIELDZB DELIMITER IN DELIMB
FIELDZC+

After moving the first sending string to FIELD2A, the compiler takes the character (or characters) that
delimited that string and places it in DELIMA. In this example, DELIMA contains either a comma, a
tab, a carriage return, or any number of spaces. Because the delimiter string is moved under the rules
of the elementary nonnumeric MOVE statement, the compiler truncates or space-fills with left- or
right-justification.

The compiler then moves the second sending string to FIELD2B and places its delimiting character
into DELIMB.

When a sending string is delimited by the end of the sending item rather than a match on a delimiter,
the delimiter string is of zero length and the DELIMITER item is space-filled. The phrase should be
used only where needed. In this example, the character that delimits the last sending string is not
needed, so no DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an alphanumeric item. It can
contain editing characters, and it can also be a group item.

When you use both DELIMITER and COUNT phrases, the DELIMITER phrase must precede the
COUNT phrase. Both of the data items named in these phrases can be subscripted or indexed. If they
are subscripted, the subscript can be varied as a side effect of the UNSTRING operation. The evalua­
tion of subscripts is discussed in Section 2.7.8.

NonnumeriC Character Handling 2-25 Ill

2.7.5 Controlling UNSTRING Scanning Using the POINTER Phrase

Although the UNSTRING statement scan usually starts at the leftmost position of the sending item, the
POINTER phrase lets you control the character position where the scan starts. Scanning, however,
remains left-to-right.

When a sending item is to be unstrung into multiple receiving items, the choice of delimiters and/or
the size of subsequent receiving items can depend on the size of the first sending string and/or the
character that delimited that string. Thus, the program needs to move the first sending item, hold its
scanning position in the sending item, and examine the results of the operation to determine how to
handle the sending items that follow.

This is done by using an UNSTRING statement with a POINTER phrase that fills only the first
receiving item. When the first string has been moved to a receiving item, the compiler begins the next
scanning operation one character beyond the delimiter that caused the interruption. The program
examines the new position, the receiving item, the delimiter value, and the sending string size. It
resumes the scanning operation by executing another UNSTRING statement with the same sending
item and pointer data item. In this way, the UNSTRING statement moves one sending string at a time,
with the form of each succeeding move depending on the context of the preceding string of data.

The POINTER phrase must follow the last receiving item in the UNSTRING statement. You are
responsible for initializing the pointer before the UNSTRING statement executes. Consider the follow­
ing two UNSTRING statements with their accompanying POINTER phrases and tests:

MOl.lE 1 TO PNTR,
UNSTRING FIELDl DELIMITED BY ":"

OR TAB
OR CR
OR ALL SPACE
INTO FIELDZA DELIMITER IN DELIMA COUNT IN LSIZEA
WITH POINTER PNTR.

IF LSIZEA = 0 GO TO ND-LABEL-PROCESS.
IF DEL I MA = . " : II

IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.

IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELDl DELIMITED BY ••• WITH POINTER PNTR.

PNTR contains the current position of the scanner in the sending item. The second UNSTRING
statement uses PNTR to begin scanning the additional sending strings in FIELD1.

Because the compiler considers the leftmost character to be character position 1, the value of PNTR
can be used to examine the next character. To do this, describe the sending item as a table of
characters and use PNTR as a sending item subscript. This is shown in the following example:

01 FIELD!+
02 FIELD1-CHAR OCCURS 40 TIMES.

UNSTRING FIELDl

WITH POINTER PNTR+
IF FIELD1-CHAR<PNTR> = "X" •••

Ill 2-26 Nonnumeric Character Handling

Another way to examine the next character of the sending item is to use the UNSTRING statement to
move it to a one-character receiving item:

UNSTRING FIELD1

WITH POINTER PNTR,
UNSTRING FIELD1 INTO CHAR1 WITH POINTER PNTR,
SUBTRACT 1 FROM PNTR,
IF CHAR1 = "X" , , ,

The program must decrement PNTR in order to work, because the second UNSTRING statement
increments the pointer by 1.

The program must initialize the POINTER phrase data item before the UNSTRING statement uses it.
The compiler will terminate the UNSTRING operation if the initial value of the pointer is less than one
or greater than the length of the sending item. Such a pointer value causes an overflow condition.
Overflow conditions are discussed in Section 2.7.7.

Sending items can also be subscripted. For example, the following statement uses subscripts to
concatenate the elements of a table (A-TABLE) into a single item (A-FOUR). SUB1 can be either a
subscript or an index-name.

STRING A-TABLE<BUB1> A-TABLE<SU61+1) A-TABLE<SUB1+2> A-TABLE<SUB1+3)
DELIMITED BY SIZE INTO A-FOUR,

2. 7 .6 Counting UNSTRING Receiving Items Using the TALL YING Phrase

The TALLYING phrase counts the number of receiving items that received data from the sending item.

When an UNSTRING statement contains several receiving items, there are not always as many
sending strings as there are receiving items. The TALL YING phrase provides a convenient method for
keeping a count of how many receiving items actually received strings. The following example shows
how to use the TALL YING phrase.

MOVE 0 TO RCOUNT,
UNSTRING FIELD1 DELIMITED BY "t"

OR ALL SPACE
INTO FIELD2A

FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT,

If the compiler has moved only three sending strings when it reaches the end of FIELD1, it adds 3 to
RCOUNT. The first three receiving items (FIELD2A, FIELD2B, and FIELD2C) contain data from the
UNSTRING operation, but the last two (FIELD2D and FIELD2E) do not.

The TALL YING data item always contains the sum of its initial contents plus the number of receiving
items receiving data. Thus, you might want to initialize the tally count before each use.

Nonnumeric Character Handling 2-27 Ill

You can use the POINTER and TALLYING phrases together in the same UNSTRING statement, but
the POINTER phrase must precede the TALLYING phrase. Both phrases must follow all of the item
names, the DELIMITER phrase, and the COUNT phrase. The data items for both phrases must contain
numeric integers without editing characters or the symbol P in their PICTURE character-strings; both
data items can be either COMP or DISPLAY usage. They can be signed or unsigned and, if they are
DISPLAY usage, they can contain any desired sign option.

The data items for both phrases can be subscripted or indexed, or they can be used as subscripts on
other items in the statement. The evaluation of subscripts is discussed in Section 2.8.8. A convenient
use of the TALL YING phrase data item is as a subscript of a receiving item. The following example
causes program control to execute the UNSTRING statement repeatedly until it exhausts the sending
item: ·

MOVE 1 TO PNTRt TLY+
PAR1+ UNSTRING FIELD1 DELIMITED BY "t"

DR CR
INTO FIELD2<TLY) DELIMITER IN DEL2
WITH POINTER PNTR

IF DEL2 = " t" GO TD PAR 1,

Program control loops through the UNSTRING statement, using pointer PNTR to scan FIELD1 with
successive executions. Each comma isolates a sending string until the scan reaches either a carriage
return or the end of FIELD1. If the scan reaches the end of the item without encountering a carriage
return, the compiler places a space into delimiter item DEL2, and control falls through the IF state­
ment and out of the loop.

Because TALLYING item TLY is incremented by 1 after each string movement, TL Y serves as a
subscript on the receiving item. In effect, this causes the compiler to unpack the value in FIELD1 into
an array of fixed-size items.

An array of COUNT data items can be supplied and loaded using the UNSTRING /TALL YING state­
ment by adding the COUNT IN phrase. For example:

COUNT IN C<TLY>

The TALL YING data item, in the previous example, is one greater than the number of receiving items
acted upon by the UNSTRING operation because the data item must be initialized to a value of one
in order to be used as a subscript for the first receiving item.

2.7.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and causes an imperative statement to be
executed when it detects the condition. An overflow condition exists:

1. When the UNSTRING statement is about to execute and its pointer data item contains a
value less than one or greater than the size of the sending item. The compiler executes the
OVERFLOW phrase before it moves any data, and the values of all the receiving items
remain unchanged.

Ill 2-28 ~Nonnumeric Character Handling

2. When data still remains in the sending item after the UNSTRING statement has filled all
the receiving items. The compiler executes the OVERFLOW phrase after it has executed
the UNSTRING statement. The value of each receiving item is updated, but some data is
still unmoved.

If the UNSTRING operation causes the scan to move past the rightmost position of the sending item
(thus exhausting it), the compiler does not execute the OVERFLOW phrase.

The following set of instructions causes program control to execute the UNSTRING statement repeat­
edly until it exhausts the sending item. The TALL YING data item is a subscript that indexes the
receiving item. Compare this loop with the previous loop, which accomplishes the same thing.

MOVE 1 TO TLY PNTR.
PARl+ UNSTRING FIELD1 DELIMITED BY "1"

OR CR
INTO FIELDZ<TLYl WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PAR1.

Note

The overflow condition also occurs if the value of a pointer data item lies outside
the sending item at the start of execution of the UNSTRING statement (the value
is less than one or greater than the length of the sending item). This type of
overflow is not distinguishable from the overflow condition described at the start
of this section, except that this condition causes the UNSTRING statement to
terminate before any data movement takes place. Then, the values of all receiv­
ing items remain unchanged.

2. 7 .8 Using Subscripted Items in UNSTRING Statements

Because the flexibility of the UNSTRING statement is enhanced by subscripting and indexing, it is
important to understand how often and exactly when the compiler evaluates these subscripts and
indexes. This section discusses the frequency and timing of subscript evaluation.

The compiler evaluates the subscripts and indexes of some data items only once before the
UNSTRING statement executes. Any changes to the subscripts and indexes during execution of the
UNSTRING statement have no effect on the data items. These data items are as follows:

• Sending item

• POINTER data item

• TALL YI NG data item

Nonnumeric Character Handling 2-29 Ill

The compiler evaluates subscripts and indexes of some data items immediately before moving data
into them and moves data into these items in the order that they are listed in the UNSTRING
statement - the same order as the following:

1. Receiving item

2. DELIMITER data-item

3. COUNT data-item

The compiler evaluates any subscripts and indexes on the delimiter data-names in the DELIMITED BY
phrase immediately before it scans each sending string looking for a delimiter match. Thus, it reevalu­
ates these subscripts and indexes once for each receiving item in the UNSTRING statement.

If any of the following items are used as subscripts on any receiving items, you must be aware of the
point at which these items are updated:

• POINTER data-item

•TALLYING data-item

•COUNT data-item

• Another receiving item

Figure 2-1 shows a flow chart of the sequence of evaluation operations:

Figure 2-1: Sequence of Subscript Evaluation

Start

Evaluate
all

Delimiter
Subscripts

Scan
Sending
Field for
Delimiter

Ill 2-30

B

Continue
Scanning for

Repetitive
Matches

Update
Scanner

Evaluate
Receiving

Field
Subscript

Move Sending
String to

Receiving
Field

Nonnumeric Character Handling

Evaluate
Delimiter
Receiving

Field
Subscript

Store
Delimiter
String in

Receiving
Field

Evaluate
Count
Field

Subscript

Store Count
Value in

Count Field

H
POINTER
Phrase
Present

If
TALLYING
Phrase
Present

Store
Scanner in

Pointer
Data Item

Add 1 to
Tallying

Data Item

Yes

No

End

C81ART-10046-30

Note

The rules concerning the exact point at which the compiler evaluates DELIMITED
BY phrase identifiers, and the point at which it updates the POINTER and
TALL YI NG data items, are specified by 197 4 American National Standard
COBOL. There are no such rules for the STRING statement.

2.7.9 Common UNSTRING Statement Errors

The most common errors made when writing UNSTRING statements are:

• Leaving the OR connector out of a delimiter list

• Misspelling or interchanging the words DELIMITED and DELIMITER

• Writing the DELIMITER and COUNT phrases in the wrong order when both are present
(DELIMITER must precede COUNT)

• Omitting the word INTO (or writing it as TO) ahead of the receiving item list

• Repeating the word INTO in the receiving item list as shown in this example:

UNSTRING FIELDl DELIMITED 6Y SPACE
OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD26 DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

• Writing the POINTER and TALLYING phrases in the wrong order (POINTER must precede
TALLYING)

2.8 Examining and Replacing Characters Using the INSPECT
Statement

The INSPECT statement examines the character positions in an item and counts or replaces certain
characters (or groups of characters) in that item.

Like the STRING and UNSTRING operations, INSPECT operations scan across the item from left to
right. Included in the INSPECT statement is an optional phrase that allows scanning to begin or
terminate upon detection of a delimiter match. This feature allows scanning to begin within the item
as well as at the leftmost position.

The TALLYING operation, which counts certain characters in the item, and the REPLACING opera­
tion, which replaces certain characters in the item, can be applied to all of the characters in the

Nonnumeric Character Handling 2-31 Ill

delimited area of the item being inspected, or to only those characters that match a given character
string under stated conditions. Consider the following sample statements, both of which cause a scan
of the complete item:

INSPECT FIELD1 TALLYING TLY FOR ALL "B",

INSPECT FIELD1 REPLACING ALL SPACE BY ZERO,

The first statement causes the compiler to scan FIELD1 looking for the character B. Each time a B is
found, TL Y is incremented by 1.

The second statement causes the compiler to scan FIELD1 looking for spaces. Each space found is
replaced with a zero.

You can use both the TALLYING and REPLACING phrases in the same INSPECT statement. However,
when used together, the TALL YING phrase must precede the REPLACING phrase. An INSPECT
statement with both phrases is equivalent to two separate INSPECT statements. In fact, the compiler
compiles such a statement into two distinct INSPECT statements. To simplify debugging, it is best to
initially write the two phrases in separate INSPECT statements.

2.8.1 Restricting Data Inspection Using the BEFORE I AFTER Phrase

The BEFORE I AFTER phrase acts as a delimiter and can restrict the area of the item being inspected.

The following sample statement counts only the zeros that precede the percent sign (%) in FIELD1:

INSPECT FIELD! TALLYING TLY
FOR ALL ZEROS BEFORE "%",

The delimiter (the percent sign in the preceding sample statement) can be a single character, a string
of characters, or any figurative constant. Further, it can be either an identifier or a literal.

• If the delimiter is an identifier, it must be an elementary data item of DISPLAY usage. It can be
alphabetic, alphanumeric, or numeric, and it can contain editing characters. The compiler
always treats the item as if it had been described as an alphanumeric string. It does this by
implicit redefinition of the item, as described in Section 2.8.2.

• If the delimiter is a literal, it must be nonnumeric.

The compiler repeatedly compares the delimiter characters against an equal number of characters in
the item being inspected. If none of the characters matches the delimiter, or if insufficient characters
remain in the rightmost position of the item for a full comparison, the compiler considers the compar­
ison to be unequal.

The examples of the INSPECT statement in Table 2-15 illustrate the way the delimiter character finds
a match in the item being inspected. The portion of the item the statement ignores as a result of
the BEFORE/ AFTER phrase delimiters is crossed out with a slash, and the portion it inspects is
underlined.

Ill 2-32 Nonnumeric Character Handling

Table 2-15: Matching Delimiter Characters to Characters in a Field

Instruction FIELD1 Value

INSPECT FIELD1,,,BEFORE 11E11 • ~;¢w
INSPECT FIELD1,,,AFTER "E" • FGHI

INSPECT FIELD1 ••• BEFORE II K II. ABCDEFGHI
INSPECT FIELD1,,,AFTER II K II. l-V.¢i{;'F-VC/AV'ol
INSPECT FIELD1 ••• BEFORE "AB", ;.~¢r/Jt~¢W
INSPECT FIELD1., .AFTER "AB", f/.~CDEFGHI

INSPECT FIELD1 ••• BEFORE II HI II. ABCDEFG~/
INSPECT FIELD1 ••• AFTER II HI II. f/.,,<tVJV.VC/AW
INSPECT FIELD1 ••• BEFORE II I II . ABCDEFGHI
INSPECT FIELD1 ••• AFTER II I II . ,.,,ctv;~v~w

The ellipses represent the position of the TALL YING or REPLACING phrase. The compiler scans the
item for a delimiter match before it scans for the inspection operation (TALL YING or REPLACING),
thus establishing the limits of the operation before beginning the actual inspection. Section 2.8.3
further discusses the importance of the separate scan.

2.8.2 Implicit Redefinition

The compiler requires that certain items referred to by the INSPECT statement be alphanumeric items.
If one of these items is described as another data class, the compiler redefines that item so the
INSPECT statement can handle it as an alphanumeric string. This implicit redefinition is conducted as
follows:

• If the item is alphabetic, alphanumeric edited, or unsigned numeric, the compiler redefines it
as alphanumeric. This is a compile-time operation; no data movement occurs at run time.

• If the item is signed numeric, the compiler first removes the sign and then redefines the item as
alphanumeric. If the sign is a separate character, the compiler ignores that character, essen­
tially shortening the item, and that character does not participate in the implicit redefinition. If
the sign is an "overpunch" on the leading or trailing digit, the compiler actually removes the
sign value and leaves the character with only the numeric value that was stored in it.

The compiler alters the digit position containing the sign before beginning the INSPECT operation and
restores it to its former value after the operation. If the sign's digit position does not contain a valid
ASCII signed numeric digit, the action of the redefinition causes the value to change.

Table 2-16 shows these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage position. All redefinition
occurs in place.

The position of an implied decimal point on numeric quantities does not affect implicit redefinition.

Nonnumeric Character Handling 2-33 Ill

Table 2-16: Values Resulting from Implicit Redefinition

Original Value Altered Value Restored Value

} (173) 0 (60) } (173)
A (101) 1 (61) A (101)
B (102) 2 (62) B (102)
c (103) 3 (63) c (103)
D (104) 4 (64) D (104)

E (105) 5 (65) E (105)
F (106) 6 (66) F (106)
G (107) 7 (67) G (107)
H (110) 8 (70) H (110)
I (111) 9 (71) I (111)

{ (175) 0 (60) { (175)

J (112) 1 (61) J (112)
K (113) 2 (62) K (113)
L (114) 3 (63) L (114)
M (115) 4 (64) M (115)

N (116) 5 (65) N (116)
0 (117) 6 (66) 0 (117)
p (120) 7 (67) p (120)
Q (121) 8 (70) Q (121)
R (122) 9 (71) R (122)

0 (60) 0 (60) } (173)
1 (61) 1 (61) A (101)
2 (62) 2 (62) B (102)
3 (63) 3 (63) c (103)
4 (64) 4 (64) D (104)

5 (65) 5 (65) E (105)
6 (66) 6 (66) F (106)
7 (67) 7 (67) G (107)
8 (70) 8 (70) H (110)
9 (71) 9 (71) I (111)

All other values 0 (60) } (173)
-

2.8.3 Examining the INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the INSPECT statement has only one
method for inspecting the characters in the item. This section analyzes the INSPECT statement and
describes this method.

Figure 2-2 shows an example of the INSPECT statement. The item to be inspected must be named
(FIELD1), and the item name must be followed by an operation phrase (TALLYING TLY). The opera­
tion phrase must be followed by one or more identifiers or literals (B). These identifiers or literals
comprise the "arguments" (items to be compared to the item being inspected). More than one
argument makes up the "argument list."

Ill 2-34 Nonnumeric Character Handling

Figure 2-2: Sample INSPECT Statement

INSPECT FIELDl TALLYING TLY FOR ALL "B" BEFORE "Au•

I'
Item being
inspected

Operation
phrase

! I II

Argument Delimiter
phrase

C81ART-10024-10

Each argument in an argument list can have other items associated with it. Thus, each argument that
is used in a TALL YING operation must have a tally counter (TL Y) associated with it. The compiler
increments the tally counter each time it matches the argument with a character or group of charac­
ters in the item being inspected.

Each argument in an argument list used in a REPLACING operation must have a replacement item
associated with it. The compiler uses the replacement item to replace each string of characters in the
item that matches the argument. A typical REPLACING phrase is shown in the following example
(with $ as the replacement item):

INSPECT FIELDl REPLACING ALL "0" BY "$",
I

Replacing argument

C81ART-10025-4

Each argument in an argument list used with either a TALLYING or REPLACING operation can have a
delimiter item (BEFORE I AFTER phrase) associated with it. If the delimiter item is not present, the
compiler applies the argument to the entire item. If the delimiter item is present, the compiler applies
the argument only to that portion of the item specified by the BEFORE I AFTER phrase.

2.8.3.1 Setting the Scanner - The INSPECT operation begins by setting the scanner to the leftmost
character position of the item being inspected. It remains on this character until an argument has
been matched with a character (or characters) or until all arguments have failed to find a match at that
position.

2.8.3.2 Active/Inactive Arguments - When an argument has a BEFORE/AFTER phrase associated
with it, that argument has a delimiter and might not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has an active/inactive status at any
given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it starts the INSPECT operation in
an inactive state. The delimiter of the AFTER phrase must find a match before the argument can
participate in the comparison. When the delimiter finds a match, the compiler retains the character
position beyond the matched character string; then, when the scanner reaches or passes this position,
the argument becomes active. This is shown in the following example:

INSPECT FIELD1 TALLYING TLY
FDR ALL "B" AFTER "X",

Nonnumeric Character Handling 2-35 Ill

If FIELD1 has a value of "ABABXZBA," the argument B remains inactive until the scanner finds a
match for delimiter X. Thus, argument B remains inactive while the compiler scans character posi­
tions 1 through 5. At character position 5, delimiter X finds a match, and since the character position
beyond the matched delimiter character is the point at which the argument becomes active, argument
B is compared for the first time at character position 6. It finds a successful match at character
position 7, causing TL Y to be incremented by one.

Table 2-17 shows an INSPECT ... TALLYING statement that is scanning FIELD1, tallying in TLY, and
looking for the arguments and delimiters listed in the left column. Assume that TL Y is initialized to 0.

Table 2-17: Relationship Between INSPECT Argument, Delimiter, Item Value, and Argument Active
Position

Argument
Argument and FIELD1 Active at Contents of

Delimiter Value Position Tl Y After Scan

BXBXXXXBB 6 2
"B" AFTER "XX" xxxxxxxx 3 0

BXBXBBBBXX never 0

BXBXXBXXB 6 2
"X" AFTER "XX" xxxxxxxx 3 6

BBBBBBXX never 0

BXYBXBXX 7 0
"B" AFTER "XB" XBXBXBXB 3 3

BBBBBBXB never 0

XXXXBXXXX 6 0
"BX" AFTER "XB" XXXXBBXXX 6 1

XXBXXXXBX 4 1

When an argument has an associated BEFORE delimiter, the inactive/active states reverse roles: the
argument is in an active state when the scanning begins and becomes inactive at the character
position that matches the delimiter. Regardless of the presence of the BEFORE delimiter, an argument
becomes inactive when the scanner approaches the rightmost position of the item and the remaining
characters are fewer in number than the characters in the argument. In such a case, the argument
cannot possibly find a match in the item, so it becomes inactive.

Since the BEFORE I AFTER delimiters are found on a separate scan of the item, the compiler recog­
nizes and sets up the delimiter boundaries before it scans for an argument match; therefore, the same
characters can,be used as arguments and delimiters in the same phrase.

2.8.3.3 Finding an Argument Match - The compiler selects arguments from the argument list in the
order in which they appear in the list. If the first one it selects is an active argument, and the
conditions stated in the INSPECT statement allow a comparison, the compiler compares it to the
character at the scanner's position. If the active argument does not find a match, the compiler takes

Ill 2-36 Nonnumeric Character H,andling

the next active argument from the list and compares that to the same character. If none of the active
arguments finds a match, the scanner moves one position to the right and begins the inspection
operation again with the first active argument in the list. The inspection operation terminates at the
rightmost position of the item.

When an active argument does find a match, the compiler ignores any remaining arguments in the list
and conducts the TALL YING or REPLACING operation on the character. The scanner moves to a new
position and the next inspection operation begins with the first argument in the list. The INSPECT
statement can contain additional conditions, which are described later in this section; without them
however, the argument match is allowed to take place, and inspection continues following the
match.

The compiler updates the scanner by adding the size of the matching argument to it. This moves the
scanner to the next character beyond the string of characters that matched the argument. Thus, once
an active argument matches a string of characters, the statement does not inspect those character
positions again unless program control executes the entire statement again.

2.8.4 Subscripted Items in INSPECT Statements

Any identifier named in an INSPECT statement can be subscripted or indexed. The compiler evaluates
all subscripts in an INSPECT statement once, before the inspection begins; therefore, if the action of
the INSPECT statement alters one of the subscripts, the new subscript value has no effect on the
selection of operands during that inspection operation. For example, consider the following:

MOVE 1 TO TLY,
INSPECT FIELDl TALLYING TLY

FOR ALL XCTLY),

In this sample statement, the compiler evaluates the address of X(TL Y) only once, before it begins
inspecting the item; hence, it evaluates X(TL Y) as X(l). If the action of inspecting and tallying alters
TL Y, the value of TL Y has no effect on the choice of the X operand. The value (1) will be used
throughout the operation.

Note

When subscripting an INSPECT statement that contains both a TALLYING and a
REPLACING phrase, keep in mind that the statement will be compiled into two
separate INSPECT statements. Therefore, any item that is altered by the action of
the INSPECT ... TALLYING statement will be in its altered state if used as a sub­
script by the INSPECT ... REPLACING statement.

2.8.5 The TALL YING Phrase

An INSPECT statement that contains a TALL YING phrase counts the occurrences of various character
strings under certain stated conditions. It keeps the count in a user-designated item called a tally
counter.

Nonnumeric Character Handling 2-37 Ill

2.8.5.1 The Tally Counter-The identifier following the word TALLYING designates the tally counter.
The identifier can be subscripted or indexed. The data item must be a numeric integer with no editing
or P characters; it can be COMP or DISPLAY usage, and it can be signed (separate or overpunched).

Each time the tally argument matches the delimited string being inspected, the compiler adds one to
the tally counter.

You can initialize the tally counter to any numeric value. The INSPECT statement does not initialize it.

2.8.5.2 The Tally Argument - The tally argument specifies a character-string and a condition under
which that string should be compared to the delimited string being inspected.

The CHARACTERS form of the tally argument specifies that every character in the delimited string
being inspected should be considered to match an imaginary character that serves as the tally argu­
ment. This increments the tally counter by a value that equals the size of the delimited string. For
example, the statement in the following illustration causes TL Y to be incremented by the number of
characters that precede the first comma, regardless of what those characters might be:

INSPECT FIELDl TALLYING TLY FOR
CHARACTERS BEFORE "t"•

The ALL and LEADING forms of the tally argument specify a particular character-string, which can be
represented by either a literal or an identifier. The tally argument character-string can be any length;
however, each character of the argument must match a character in the delimited string before the
compiler considers the argument matched.

• A literal character-string must be either nonnumeric or a figurative constant (other than ALL
literal). A figurative constant, such as SPACE or ZERO, represents a single character and can
be written as /1 " or "O" with the same effect.

• An identifier must be an elementary item of DISPLAY usage. It can be any data class. How­
ever, if it is other than alphanumeric, the compiler performs an implicit redefinition of the
item. This redefinition is identical to the BEFORE/ AFTER delimiter redefinition discussed ear­
lier in Section 2.8.1.

The words ALL and LEADING supply conditions that further delimit the inspection operation.

• ALL specifies that every match that the search argument finds in the delimited character string
be counted in the tally counter. When a literal follows the word ALL, it does not have the
same meaning as the figurative constant, ALL literal. The ALL literal meaning of ALL "," is a
string of consecutive commas (as many as the context of the statement requires). ALL"," used
as a tally argument means, "count each comma without regard to adjacent characters."

• LEADING specifies that only adjacent matches of the TALLY argument at the leftmost position
of the delimited character string be counted. At the first failure to match the tally argument, the
compiler terminates counting and causes the argument to become inactive. The sample state­
ment INSPECT ... TALL YING, (scanning FIELD1, tallying in TL Y, and looking for the arguments
and delimiters listed in the left column) gives the results in Table 2-18 if the program initializes
TLY to 0.

Ill 2-38 Nonnumeric Character Handling

Table 2-18: LEADING Delimiter of the Inspection Operation

Argument and FIELD1 Contents of TL Y
Delimiter Value After Scan

F***O**F 2
F**Oh* 0

LEADING "*" AFTER "O". F**F**O 0
O***F** 3

F**O**F*** 1
F**FO***FF** 1

LEADING"**" AFTER "O". F**FO****F** 2
F**F**O* 0

2.8.5.3 The Tally Argument List-One INSPECT ... TALLYING statement can contain more than one
tally argument, and each argument can have a separate BEFORE I AFTER phrase and tally counter
associated with it. These tally arguments with their associated tally counters and BEFORE I AFTER
phrases form an argument list. The manner in which this list is processed affects the action of any
given tally argument.

The following three examples show INSPECT statements with argument lists. The text following each
one explains how that list is processed.

INSPECT FIELDI TALLYING T FOR
ALL ","
ALL "I"
ALL " ; II I

These three tally arguments have the same tally counter, T, and are active over the entire item being
inspected. Thus, this statement adds the total number of commas, periods, and semicolons in FIELD1
to the initial value of T.

INSPECT FIELDI TALLYING
T 1 FOR ALL " 'II

T2 FOR ALL II I "

T3 FOR ALL II ; " I

Each tally argument in this statement has its own tally counter and is active over the entire item being
inspected. Thus, this statement adds the total number of commas in FIELD1 to the initial value of T1,
the total number of periods to the initial value of T2, and the number of semicolons to T3.

INSPECT FIELOI TALLYING
Tl FOR ALL "1" AFTER "A 11

T2 FOR ALL "I" BEFORE "6 11

T3 FOR ALL II ; "I

Each tally argument in this statement has its own tally counter; the first two arguments have delimiter
phrases, and the last one is active over the entire item being inspected. Thus, the first argument is
initially inactive and becomes active only after the scanner encounters an A; the second argument
begins the scan in the active state but becomes inactive after a B has been encountered; and the third
argument is active during the entire scan of FIELD1.

Nonnumeric Character Handling 2-39 Ill

Table 2-19 shows various values of FIELD1 and the contents of the three tally counters after the scan.
Assume that the counters are initialized to 0 before the INSPECT statement.

Table 2-19: Results of the Scan with Separate Tallies

Contents of Tally Counters
After Scan

FIELD1
Value T1 T2 T3

A.C;D.E,F 1 2 1

A.B.C.D 0 1 0

A,B,C,D 3 0 0

A;B;C;D 0 0 3

*,B,C,D 0 0 0

The BEFORE/AFTER phrase applies only to the argument that precedes· it and delimits the item for
that argument only. Each BEFORE/ AFTER phrase causes a separate scan of the item to determine the
limits of the item for its corresponding argument.

2.8.5.4 Interference In Tally Argument Lists - When several tally arguments contain one or more
identical characters active at the same time, they can interfere with each other so that when one of
the arguments finds a match, the scanner steps past the matching character(s), preventing those
character(s) from being considered for any other match.

These two identical tally arguments do not interfere with each other since they are not active at the
same time. The first A in FIELD1 causes the first argument to become inactive and the second
argument to become active:

MOVE 0 TO T1 TZ.
INSPECT FIELD1 TALLYING

T1 FOR ALL "1" BEFORE "A"
TZ FOR ALL "t" AFTER "A",

However, the following identical tally arguments interfere with each other since both are active at the
same time:

INSPECT FIELD1 TAL~YING
T 1 FOR ALL " I"

TZ FOR ALL "t" AFTER "A",

For any given position of the scanner, the arguments are applied to FIELD1 in the order in which they
appear in the statement. When one of them finds a match, the scanner moves to the next position and
ignores the remaining arguments in the argument list. Each comma in FIELD1 causes T1 to be
incremented by 1 and the second argument to be ignored. Thus, T1 always contains an accurate
count of all the commas in FIELD1, and T2 is always unchanged.

Ill 2-40 Nonnumeric Character Handling

The following INSPECT statement arguments only partially interfere with each other:

INSPECT FIELD1 TALLYING
T2 FOR ALL "t" AFTER "A"
T 1 FOR ALL " t" ,

The first argument does not become active until the scanner encounters an A. The second argument
tallies all commas that precede the A. After the A, the first argument counts all commas and causes
the second argument to be ignored. Thus, T1 contains the number of commas that precede the first A,
and T2 contains the number of commas that follow the first A. This statement works well as written,
but it could be difficult to debug.

The following three examples show that one INSPECT statement cannot count any character more
than once. Thus, when you are using the same character in more than one argument of an argument
list, consider the nature of the interference and choose the order of the arguments very carefully. The
solution can require two or more INSPECT statements. Consider the following problem:

INSPECT FIELD1 TALLYING
Tl FOR ALL "A6"
T2 FDR ALL "6C",

If FIELD1 contains "ABCABC" after the scan, T1 is incremented by two, and T2 is unaltered. The
successful matching of the argument includes each B in the item. Each match resets the scanner to the
character position to the right of the B and causes the second argument never to be successfully
matched. The results remain the same even if the order of the arguments is reversed. Only separate
INSPECT statements can develop the desired counts.

Sometimes you can use the interference characteristics of the INSPECT statement to good advantage.
Consider the following sample argument list:

MOVE 0 TO T4 T3 T2 Tl+
INSPECT FIELD1 TALLYING

T4 FOR ALL "****"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*"•

The argument list counts all of the asterisks in FIELD1 in four different tally counters. T4 counts the
number of times that four asterisks occur together; T3 counts the number of times three asterisks
appear together; T2 counts double asterisks; and T1 counts singles.

If FIELD1 contains a string of more than four consecutive asterisks, the argument list breaks the string
into groups of four and counts them in T4. It then counts the less-than-four remainder in T3, T2,
or T1.

Reversing the order of the arguments in this list causes T1 to count all of the asterisks and T2, T3, and
T4 to remain unchanged.

Nonnumeric Character Handling 2-41 Ill

When the LEADING condition is used with an argument in the argument list, that argument becomes
inactive as soon as it fails to be matched in the item being inspected. Therefore, when two arguments
in an argument list contain one or more identical characters and one of the arguments has a
LEADING condition, the argument with the LEADING condition should appear first. Consider the
following sample statement:

MOVE 0 TO Tl TZ,
INSPECT FIELDl TALLYING

Tl FOR LEADING "*"
TZ FOR ALL "* 11 •

T1 counts only leading asterisks in FIELD1; the occurrence of any other character causes the first tally
argument to become inactive. T2 keeps a count of any remaining asterisks in FIELD1.

Reversing the order of the arguments in the following statement results in an argument list that can
never increment T1 :

INSPECT FIELDl TALLYING
TZ FOR ALL "*"
Tl FOR LEADING "*"•

If the first character in FIELD1 is not an asterisk, neither argument can match it, and the second
argument becomes inactive. If the first character in FIELD1 is an asterisk, the first argument matches
and causes the second argument to be ignored. The first nonasterisk character in FIELD1 will fail to
match the first argument, and the second argument becomes inactive because it has not found a
match in any of the preceding characters.

An argument with both a LEADING condition and a BEFORE phrase can sometimes sucessfully
"delimit" the item being inspected as in the following example:

MOVE 0 TO Tl TZ,
INSPECT FIELD1 TALLYING

Tl FOR LEADING SPACES
TZ FOR ALL " 11 BEFORE
TZ FOR ALL BEFORE
TZ FOR ALL II II BEFORE

IF TZ > 0 ADD 1 TO TZ,

II II •
II ti • ..

These statements count the number of "words" in the English statement in FIELD1, assuming that no
more than three spaces separate the words in the sentence, that the sentence ends with a period, and
that the period immediately follows the last word. When FIELD1 has been scanned, T2 contains the
number of spaces between the words. Since a count of the spaces renders a number that is one less
than the number of words, the conditional statement adds one to the count.

The first argument removes any leading spaces, counting them in a different tally counter. This
shortens FIELD1 by preventing the application of the second through the fourth arguments until the
scanner finds a nonspace character. The BEFORE phrase on each of the other arguments causes them

Ill 2-42 Nonnumeric Character Handling

to become inactive when the scanner reaches the period at the end of the sentence. Thus, the
BEFORE phrases "shorten" FIELD1 by making the second through the fourth arguments inactive
before the scanner reaches the rightmost position of FIELD1. If the sentence in FIELD1 is indented
with tab characters instead of spaces, a second LEADING argument can count the tab characters. For
example:

INSPECT FIELDl TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " "

When an argument list contains a CHARACTERS argument, it should be the last argument in the list.
Since the CHARACTERS argument always matches the item, it prevents the application of any argu­
ments following in the list. However, as the last argument in an argument list, it can count the
remaining characters in the item being inspected. Consider the following example:

MOVE 0 TO Tl T2 T3 T4 TS.
INSPECT FIELDl TALLYING

Tl FOR LEADING SPACES
T2 FOR ALL " • " BEFORE " 'II

T3 FOR ALL 11 + 11 BEFORE "1"
T4 FOR ALL "-" BEFORE II t 11

TS FOR CHARACTERS BEFORE II' II.

If FIELD1 is known to contain ·a number in the form frequently used to input data, it can contain a
plus or minus sign, and a decimal point; further, the number can be preceded by spaces and
terminated by a comma. When this statement is compiled and executed, it delivers the following
results:

• T1 contains the number of leading spaces.

• T2 contains the number of periods.

• T3 contains the number of plus signs.

• T4 contains the number of minus signs.

• TS contains the number of remaining characters (assumed to be numeric).

The sum of T1 through TS (plus 1) gives the character position occupied by the terminating comma.

2.8.6 Using the REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement selectively replaces
characters or groups of characters in the designated item.

The REPLACING phrase names a search argument of one or more characters and a condition under
which the stringcan be applied to the item being inspected. Associated with the search argument is
the replacement value, which must be the same length as the search argument. Each time the search
argument finds a match in the item being inspected, under the condition stated, the replacement
value replaces the matched characters.

Nonnumeric Character Handling 2-43 Ill

A BEFORE I AFTER phrase can be used to delimit the area of the item being inspected. A search
argument applies only to the delimited area of the item.

2.8.6.1 The Search Argument - The search argument of the REPLACING phrase names a character
string and a condition under which the character string should be compared to the delimited string
being inspected.

The CHARACTERS form of the search argument specifies that every character in the delimited string
being inspected should be considered to match an imaginary character that serves as the search
argument. Thus, the replacement value replaces each character in the delimited string. For example:

INSPECT ITEMA REPLACING CHARACTERS •••

The ALL, LEADING, and FIRST forms of the search argument specify a particular character string,
which can be represented by a literal or an identifier. The search argument character string can be
any length. However, each character of the argument must match a character in the delimited string
before the compiler considers the argument matched. For example:

INSPECT ITEMA REPLACING ALL •••

The necessary literal and identifier characteristics are as follows:

• A literal character string must be either nonnumeric or a figurative constant (other than ALL
literal). A figurative constant, such as SPACE or ZERO, represents a single character and can
be written as " " or "O" with the same effect. Because a figurative constant represents a single
character, the replacement value must be one character long.

• An identifier must represent an elementary item of DISPLAY usage. It can be any class.
However, if it is other than alphabetic, the compiler performs an implicit redefinition of the
item. This redefinition is identical to the BEFORE I AFTER delimiter redefinition discussed in
Section 2.8.1.

The words ALL, LEADING, and FIRST supply conditions that further delimit the inspection operation:

• ALL specifies that each match the search argument finds in the delimited string is to be
replaced by the replacement value. When a literal follows the word ALL, it does not have the
same meaning as the figurative constant, ALL literal. The figurative constant meaning of ALL
11

1
11 is a string of consecutive commas, as many as the context of the statement requires. ALL

11
1

11 as a search argument of the REPLACING phrase means "replace each comma without
regard to adjacent characters."

• LEADING specifies that only adjacent matches of the search argument at the leftmost position
of the delimited character-string be replaced. At the first failure to match the search argument,
the compiler terminates the replacement operation and causes the argument to become
inactive.

• FIRST specifies that only the leftmost character string that matches the search argument is to be
replaced. After the replacement operation, the search argument containing this condition
becomes inactive.

Ill 2-44 Nonnumeric Character Handling

2.8.6.2 The Replacement Value - Whenever the search argument finds a match in the item being
inspected, the matched characters are replaced by the replacement value. The word BY followed by
an identifier or literal specifies the replacement value. For example:

INSPECT ITEMA REPLACING ALL "A" BY "){" ALL "D" BY "><",

The replacement value must always be the same size as its associated search argument.

If the replacement value is a literal character-string, it must be either a nonnumeric literal or a
figurative constant (other than ALL literal). A figurative constant represents as many characters as the
length of the search argument requires.

If the replacement value is an identifier, it must be an elementary item of DISPLAY usage. It can be
any class. However, if it is other than alphanumeric, the compiler conducts an implicit redefinition of
the item. This redefinition is the same as the BEFORE/ AFTER redefinition discussed in Section 2.8.1.

2.8.6.3 The Replacement Argument - The replacement argument consists of the search argument
(with its condition and character-string), the replacement value, and an optional BEFORE I AFTER
phrase as shown in Figure 2-3.

Figure 2-3: The Replacement Argument

ALL "i" BY SPACE BEFORE II II .
, ._I -~-__.11.___~ _ __,

Search Replacement
argument value

BEFORE I AFTER
phrase (optional)

C81ART-10026-10

2.8.6.4 The Replacement Argument List - One INSPECT ... REPLACING statement can contain more
than one replacement argument. Several replacement arguments form an argument list, and the
manner in which the list is processed affects the action of any given replacement argument.

The following examples show INSPECT statements with replacement argument lists. The text follow­
ing each one tells how that list will be processed.

INSPECT FIELD1 REPLACING
ALL "," BY SPACE
ALL "," BY SPACE
ALL ";" BY SPACE,

The previous three replacement arguments all have the same replacement value, SPACE, and are
active over the entire item being inspected. The next statement replaces all commas, periods, and
semicolons with space characters and leaves all other characters unchanged:

INSPECT FIELD1 REPLACING
ALL "O" BY "1"
ALL "1" BY "O",

Each of these two replacement arguments has its own replacement value and is active over the entire
item being inspected. The next statement exchanges zeros for ones and ones for zeros. It leaves all
other characters unchanged.

Nonnumeric Character Handling 2-45 Ill

Note

When a search argument finds a match in the item being inspected, the compiler
replaces that character string and scans to the next position beyond the replaced
characters. It ignores the remaining arguments and applies the first argument in
the list to the character-string in the new position. Thus, it never inspects the new
value that was supplied by the replacement operation. Because of this, the search
arguments can have the same values as the replacement arguments with no
chance of interference.

INSPECT FIELDl REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE+

The next sample statement also exchanges zeros and ones except that here the first occurrence of a
space in FIELD1 causes both arguments to become inactive.

INSPECT FIELDl REPLACING
ALL "O" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE+

The first space causes the three replacement arguments to become inactive. This argument list
exchanges zeros for ones, ones for zeros, and asterisks for all other characters that are in the delimited
area. If the BEFORE phrase is removed from the third argument, that argument will remain active
across all of FIELD1. Within the area delimited by the first space character, the third argument
replaces all characters except ones and zeros with asterisks. Beyond this area, it replaces all charac­
ters (including the space that delimited FIELD1 for the first two arguments and any zeros and ones)
with asterisks.

2.8.6.5 Interference In Replacement Argument Lists - When several search arguments, al I active at
the same time, contain one or more identical characters, they can interfere with each other - and
consequently have an effect on the replacement operation. This interference is similar to the interfer­
ence that occurs between tally arguments.

The action of a search argument is never affected by the BEFORE I AFTER delimiters of other argu­
ments, since the compiler scans for delimiter matches before it scans for replacement operations.

The action of a search argument is never affected by the characters of any replacement value, since
the scanner does not inspect the replaced characters again during execution of the INSPECT state­
ment. Interference between search arguments, therefore, depends on the order of the arguments, the
values of the arguments, and the active/inactive status of the arguments. The discussion in Section
2.8.5.4 about interference in tally argument lists applies generally to replacement arguments as well.

The following rules help minimize interference in replacement argument lists:

1. Place search arguments with LEADING or FIRST conditions at the start of the list.

2. Place any arguments with the CHARACTERS condition at the end of the list.

3. Consider the order of appearance of any search arguments that contain one or more
identical characters.

Ill 2-46 Nonnumeric Character Handling

2.8. 7 Common INSPECT Statement Errors

The most common errors programmers make when writing INSPECT statements are:

•Leaving the FOR out of an INSPECT ... TALLYING statement

• Using the word "WITH" instead of "BY" in the REPLACING phrase

• Failing to initialize the tally counter

• Omitting the word "ALL" ahead of the comparison character-string.

Nonnumeric Character Handling 2-47 Ill

Chapter 3
Table Handling

3.1 Introduction

COBOL-81 requires that all data items be uniquely defined. This is usually done by assigning a
unique name to each data item or by qualifying the data items. In many applications, however, this is
tedious or inconvenient. Programs often contain numerous data items that have different data names
but contain the same type of information. Tables provide a solution to this problem. COBOL-81
provides full table-handling capabilities.

A table is one or more repetitions of one element, comprised of one or more data items, stored in
contiguous memory locations. You define a table by using an OCCURS clause following a data
description entry. The literal integer value you specify in the OCCURS clause determines the number
of repetitions, or occurrences, of the data description entry, thus creating a table. You can define
one-, two-, and three-dimensional tables.

After you have defined a table, you can load it with data in two ways. In the most direct way, you
assign values, with the VALUE clause, as part of the data description entry when you define the table.
The second method allows you to store table values in a separate data file and then read and move
the values into the table (with the READ and MOVE statements) when you need them.

To access data stored in tables, use subscripted or indexed procedural instructions. In either case, you
can directly access a known table element occurrence or search for an occurrence based on some
known condition.

This chapter discusses the procedures required to define, initialize, and access tables accurately and
efficiently.

3.2 Defining Tables

To define a table you specify the OCCURS clause in the data description entry. You can define either
fixed-length tables or variable-length tables. The following sections describe how to use the OCCURS
clause and its options.

3-1 Ill

3.2.1 Defining Fixed-Length, One-Dimensional Tables

To define fixed-length tables, use Format 1 of the OCCURS clause (refer to the COBOL-81 Language
Reference Manual). This format is useful when you are storing large amounts of stable, frequently
used reference data. Options allow you to define single or multiple keys and /or indexes.

A definition of a one-dimensional table is shown in Example, 3-1. In Example 3-1, the integer 2 in the
OCCURS 2 TIMES clause determines the number of element repetitions. For the table to have any real
meaning, this integer must be equal to or greater than two.

Example 3-1: One-Dimensional Table

01 TABLE-A,
05 ITEM-B PIC X OCCURS 2 TIMES,

The organization of this table is shown in Figure 3-1.

Figure 3-1: Organization of the One-Dimensional Table in Example 3-1

Word no.

Byte no.

Level 01

Level 05

1

B

1

I 2

A

1 B

Legend: A = TABLE-A
B = ITEM-B C81ART-20010-15

Example 3-1 specifies only a single data item. However, you can specify as many data items as you
need in the table. Use of multiple data items is shown in Example 3-2.

Example 3-2: Multiple Data Items in a One-Dimensional Table

01 TABLE-A,
05 GROUP-B OCCURS 2 TIMES,

10 ITEMC PIC X.
10 ITEMD PIC X,

The organization of this table is shown in Figure 3-2.

Figure 3-2: Organization of Multiple Data Items in a One-Dimensional Table

Word no.

Byte no.

Level 01

Level 05 B

2

2 3 4

A

B

Level 10 C D C D

Legend: A = TABLE-A
B = GROUP-8
C = ITEMC
D = ITEMD

Ill 3-2 Table Handling

C81ART-20020-20

Neither Examples 3-1 nor 3-2 use the KEY IS or INDEXED BY optional phrases. If you use either the
SEARCH or the SEARCH ALL verbs, you must specify at least one index. The SEARCH ALL verb
also requires that you specify at least one key. Specify the search key using the ASCENDING/
DESCENDING KEY IS phrase. See Section 3.4.8 for information about the SEARCH verbs and Section
3.4.4 for information about indexing. When you use the INDEXED BY phrase, the index is internally
defined and need not be defined elsewhere. Example 3-3 defines a table with an ascending search
key and an index.

Example 3-3: Defining a Table with an Index and an Ascending Search Key

01 TABLE-A,
05 ELEMENTB OCCURS 5 TIMES

ASCENDING KEY IS ITEMA
INDEXED BY INDXl,

10 ITEMC PIC X,
10 ITEMD PIC X.

The organization of this table is shown in Figure 3-3.

Figure 3-3: Organization of a Table with an Index and an Ascending Search Key

Word no. 2 3 4 5

Byte no. 1 2 3 4 5 6 7 8 9 10

Level 01 TABLE-A

Level 05 B B B B B

Level 10 C D C D c D C D C D

Legend: B ELEMENTS
c = ITEMC
D = ITEMD

3.2.2 Defining Fixed-Length, Multidimensional Tables

C81ART-20030-20

In addition to one-dimensional tables, COBOL-81 also allows you to define two- and
three-dimensional tables. You define a two-dimensional table by defining another one-dimensional
table within each element of the one-dimensional table. This process can be carried one step further
by defining another one-dimensional table within each element of the two-dimensional table. This
defines a three-dimensional table. A two-dimensional table is shown in Example 3-4.

Example 3-4: Defining a Two-Dimensional Table

01 ZD-TABLE-X,
05 LAYER-Y OCCURS 2 TIMES,

10 LAYER-Z OCCURS 2 TIMES,
15 CELLA PIC X,
15 CELLB PIC X,

Table Handling 3-3 Ill

The organization of this two-dimensional table is shown in Figure 3-4.

Figure 3-4: Organization of a Two-Dimensional Table.

Word no.

Byte no.

Level01

Level05

Level 10

Level 15

1 2 3 4

112 3}4 5} s 718

2D-TABLE-X

LY LY

LZ LZ LZ LZ

AJB AJB AIB AI B

Legend: LY = LAYER-Y
LZ = LAYER-Z
A = CELLA
B = CELLB

Example 3-5 shows a three-dimensional table.

Example 3-5: Defining a Three-Dimensional Table

01 TABLE-A,
05 LAYER-6 OCCURS Z TIMES,

10 ITEMC PIC X,
10 ITEMD PIC X OCCURS 3 TIMES,
10 ITEME OCCURS 2 TIMES,

15 CELLF PIC X,
15 CELLG PIC X OCCURS 3 TIMES,

The organization of this three-dimensional table is shown in Figure 3-5.

Figure 3-5: Organization of a Three-Dimensional Table

Word no. 2 3 4 5 ·a 1 8 9 10 11 12

Byte no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Level 01

Level05

Level 10 C D D D

Level 15

Legend: A = TABLE-A
B = LAYER-B
C = ITEMC
D = ITEMD
E = ITEME
F = CELLF
G = CELLG

B

E

F G G

Ill 3-4 Table Handling

G F

A

B

E C D D D E E

G G G F G G G F G G G

C81ART-20040-20

C81ART-20050-25

3.2.3 Defining Variable-Length Tables

To define a variable-length table, use Format 2 of the OCCURS clause (refer to the COBOL-81
Language Reference Manual). Options allow you to define single or multiple keys and I or indexes.

Example 3-6 illustrates how to define a variable-length table. It uses from two to four occurrences
depending on the integer value assigned to NUM-ELEM. You determine the table's minimum and
maximum size with the OCCURS (minimum size) TO (maximum size) clause. The minimum size
value must be equal to or greater than zero and the maximum size value must be greater than the
minimum size value. The data-name in the DEPENDING ON clause must be within the minimum to
maximum range.

Unlike fixed-length tables, you can dynamically alter the number of element occurrences in variable­
length tables.

By generating the variable-length table in Example 3-6, you are, in effect, saying: "Build a table that
can contain at least two occurrences, but no more than four occurrences, and set its present number
of occurrences equal to the value specified by NUM-ELEM".

Example 3-6: Defining a Variable-Length Table

01 NUM-ELEM PIC 9,

01 VAR-LEN-TABLE,
05 TAB-ELEM OCCURS 2 TO 4 TIMES DEPENDING ON NUM-ELEM,

10 A PIC X,
10 B PIC X,

3.2.4 Storage Allocation for Tables

The compiler maps the table elements into memory, following mapping rules that depend on the
presence or absence of COMP or COMP SYNC data items in the table element.

3.2.4.1 Tables Without COMP, COMP SYNC, or USAGE INDEX Items - When there are no COMP,
COMP SYNC, or USAGE INDEX data items in a table definition, successive data items are mapped
into adjacent memory locations using a left-to-right allocation scheme. Consider the following
data description of a table and the way it is mapped into memory, illustrated by Example 3-7 and
Figure 3-6.

------------- · Note

To determine exactly how much space your tables use, specify the /SHOW:MAP
compiler qualifier. This gives you an offset map of both the Data Division and the
Procedure Division.

Example 3-7: Sample Record Description Defining a Table

01 TABLE-A,
03 GROUP-G PIC XC5) OCCURS 5 TIMES,

Table Handling 3-5 Ill

Figure 3-6: Memory Map for Example 3-7

Word no. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 l 2 314 516 1J0 9110 11}2 13}4 15}6 11}0 19120 21122 23124 25 26

TABLE-A

Byte no.

Level 01

Level03 GROUP-G l GROUP-G GROUP-G l GROUP-G GROUP-G

CB1ART-20060-15

Alphanumeric data items require 1 byte of storage per character. Therefore, each occurrence of
GROUP-G occupies 5 bytes. The first byte of the first element is automatically aligned at the left
record boundary and the first 5 bytes occupy words 01, 02, and half of 03. A memory word is
comprised of 2 bytes. Succeeding occurrences of GROUP-Gare assigned to the next 5 adjacent bytes
so that TABLE-A is comprised of 5 five-byte elements for a total of 25 bytes. Each table element, after
the first, is allowed to start in either the first or second byte of a word with no regard for word
boundaries.

3.2.4.2 Tables with COMP or COMP SYNC Items - Both COMP and COMP SYNC data items can
occupy one, two, or four words of storage, depending on the number of digits you specify in the data
definition. COMP data items, regardless of their size, always align on one-word boundaries. COMP
SYNC data items, on the other hand, align on either one-, two-, or four-word boundaries depending
on the number of storage words. This can have a significant effect on the amount of memory required
to store tables containing COMP and COMP SYNC data items. See Chapter 1 for a discussion of
COMP and COMP SYNC data items.

Example 3-8 describes a table containing a COMP SYNC data item. Figure 3-7 illustrates how it is­
mapped into memory.

Example 3-8: Record Description Containing a COMP SYNC Item

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.

05 ITEM1 PIC X,
05 ITEMZ PIC S9(51 COMP SYNC.

Figure 3-7: Memory Map for Example 3-8

Word no. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Byte no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Level 01 A-TABLE

GROUP-G GROUP-G GROUP-G GROUP-G Level03

Level05 f f 2 2 2 2 1 f f f 2 2 2 z 1 f f f 2 2 2 2 1 f f f 2 2 2 2

Legend: 1 ITEM1
2 = ITEM2
t = fill byte

Ill 3-6 Table Handling

C81ART-20070-20

Because a five-digit COMP SYNC item requires two words (4 bytes) of storage, ITEM2 must start on a
two-word boundary. This adds 3 fill bytes after ITEM1, and each GROUP-G occupies 8 bytes. In the
previous example, A-TABLE requires 32 bytes to store 4 elements of 8 bytes each.

If, in the previous example, you define ITEM2 as a COMP data item of the same size, the storage
required would be considerably less. Although ITEM2 would still require two words of storage, it
would align on a one-word boundary. Two less fill bytes would be needed between ITEM1 and
ITEM2, and A-TABLE would require a total of 24 bytes.

If you now add a 3-byte alphanumeric item (ITEM3) to Example 3-8 and locate it between ITEM1 and
ITEM2 (see Example 3-9), the new item occupies the space formerly occupied by the 3 fill bytes. This
adds 3 data bytes without changing the table size, as Figure 3-8 illustrates:

Example 3-9: Adding an Item Without Changing the Table Size

01 A-TABLE,
03 GROUP-G OCCURS 4 TIMES,

05 ITEM1 PIC X,
05 ITEM3 PIC XXX,
05 ITEMZ PIC 8(5) COMP SYNC,

Figure 3-8: Memory Map for Example 3-9

Word no. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Byte no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Level 01 A-TABLE

Level 03 GROUP-G GROUP-G GROUP-G GROUP-G
1--~--------------+----.-----.--..--.,........,.--..--...-..+-....---.--.--.................... --.--.--+--..---.--.,--..--~~--~

Level 05 3332222133322221333222213332222

Legend: 1 ITEM1
2 = ITEM2
3 = ITEM3

C81ART-20080-20

If, however, you place ITEM3 after ITEM2, the additional 3 bytes adds its own length plus another fill
byte. The additional fill byte is added after the third ITEM3 character to ensure that all occurrences of
the table element are mapped in an identical manner. Now, each element requires 12 bytes, and the
complete table occupies 48 bytes. This is illustrated by Example 3-10 and Figure 3-9.

Example 3-10: Adding 3 Bytes That Adds 4 Bytes to the Element Length

01 A-TABLE+
03 GROUP-G OCCURS 4 TIMES,

05 ITEMl PIC X,
05 ITEMZ PIC 8(5) COMP SYNC,
05 ITEM3 PIC XXX,

Table Handling 3-7 Ill

Figure 3-9: Memory Map for Example 3-1 O

Word no. 2 3 4 5 6 7 8 9 10 11 12

Byte no.

Level 01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A-TABLE

Level03

Level 05 1 f f

Legend: 1 = ITEM1
2 = ITEM2
3 = ITEM3
f = fill byte

GROUP-G GROUP-G

2 2 2 2 3 3 3 f 1 f f f 2 2 2 2 3 3 3 f

3.3 Initializing Values of Table Elements

C81 ART-20090-22

You can initialize a table that contains only DISPLAY items to any desired value. To initialize a table,
you specify a VALUE clause in the record level preceding the record description of the item contain­
ing the OCCURS clause. Initialization is illustrated by Example 3-11 and Figure 3-10.

Example 3~ 11: Initializing Tables

01 A-TABLE VALUE IS "JANFEBMARAPRMAY
"JUNJULAUGSEPOCTNOVDEC",

03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES,

Figure 3-1 O: Memory Map for Example 3-11

Word no. 2 3 4 5 6

Byte no. 1 2 3 4 5 6 7 8 9 10 11 12

13

25 26

Level01 A-TABLE

Level 03 M M M M M

Byte contents J A N F E B M A R A p R s E

Legend: M = Month-Group

14 15 16 17 18

27 28 29 30 31 32 33 34 35 36

M M M

p 0 c T N 0 v D E c

C81ART-20100-20

Often a table is too long to initialize using a single literal, or it contains numeric, alphanumeric,
COMP, or COMP SYNC items that cannot be initialized. In these situations, you can initialize
individual items by redefining the group level that precedes the level containing the OCCURS clause.
Consider the sample table descriptions illustrated in Examples 3-12 and 3-13. Each fill byte between
ITEM1 and ITEM2 in Example 3-12 is initialized to X. Figure 3-11 shows how this is mapped into
memory.

Ill 3-8 Table Handling

Example 3-12: Initializing Mixed Usage Items

01 A-RECORD-ALT+
05 FILLER PIC }{X 1,JALUE II AX II.
05 FILLER PIC S99 COMP VALUE 1 •
05 FILLER PIC X}{ VALUE "BX II.
05 FILLER PIC S99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT,
03 A-GROUP OCCURS 28 TIMES.

05 ITEM1 PIC){,
05 ITEM2 PIC S99 COMP.

Figure 3-11: Memory Map for Example 3-12

Word no.

Byte no.

Level 01

Level 03

Level 05

Byte contents

Legend: 1
2
f

1 2 3 4

1 2 3} 4 5 6 718
A-RECORD

A-GROUP

1

A

ITEM1
ITEM2
fill byte

f

x
2J 2

t
binary 1

A-GROUP

-1 f 2J 2

B x

t
binary 2 ...

C81ART-20110-25

In Example 3-13, and as shown in Figure 3-12, each FILLER item initializes three 10-byte table
elements.

Example 3-13: Initializing Alphanumeric Items

01 A-RECORD-ALT.
03 FILLER PIC Xl30) VALUE IS

"AAAAAAAAAA6666666666CCCCCCCCC~".
03 FILLER PIC Xl30) VALUE IS

"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF",

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEM1 PIC XllO> OCCURS 28 TIMES+

Table Handling 3-9 Ill

Figure 3-12: Memory Map for Example 3-13

Word no.

Byte no.

Level 01

Level 03

Byte contents
at initialization
time

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A-RECORD

ITEM1 ITEM1 ITEM1

A A A A A A A A A A B B B B B B B B B B C C C C

C81ART-20120-20

When redefining or initializing table elements, allow space forany fill bytes that might be added due
to synchronization. You do not have to initialize fill bytes, but you can do so if desired. If you do
initialize fill bytes to an uncommon value, you can use them as a debugging aid in situations where a
Procedure Division statement refers to the record level preceding the OCCURS clause or to another
record redefining that level.

Sometimes the length and format of table items are such that they are best initialized using Procedure
Division statements.

3.4 Accessing Table Elements

Once tables have been created using the OCCURS clause, the program must have a method of
accessing the individual elements of those tables. Subscripting and indexing are the two methods
COBOL-81 provides for accessing individual table elements. To refer to a particular element within a
table, follow the name of the desired element with a subscript or index enclosed in parentheses. The
following sections describe how to identify and access table elements using subscripts and indexes.

3.4.1 Subscripting

A subscript is an integer or a data-name that has an integer value. The integer value represents the
desired element of the table. An integer value of 3, for example, refers to the third element.

3.4.2 Subscripting with Literals

A literal subscript is an integer value, enclosed in parentheses, that represents the desired table
element. In Example 3-14, the literal subscript (2) in the MOVE instruction moves the contents of the
second element of A-TABLE to I-RECORD.

Example 3-14: Using a Literal Subscript to Access a Table

Table Description:

01 A-TABLE.
03 A-GROUP PIC X<5>

OCCURS 10 TIMES,

Procedural Instruction:

MOVE A-GROUP<Z> TO I-RECORD,

Ill 3-10 Table Handling

If the table is multidimensional, follow the data name of the desired data item with a list of subscripts,
one for each OCCURS clause to which the item is subordinate. The first subscript in the list applies to
the first OCCURS clause to which the desired item is subordinate. This is the most inclusive level, and
is represented by A-GROUP in Example 3-1 S. The second subscript applies to the next most inclusive
level and is represented by ITEM3 in the example. And finally, the last subscript applies to the least
inclusive level, represented by ITEMS. In Example 3-1 S, the subscripts (2, 11,3) in the MOVE instruc­
tion move the third repetition of ITEMS in the eleventh repetition of ITEM3 in the second repetition of
A-GROUP to I-FIELDS. For illustration simplicity, I-FIELDS is not defined. ITEMS(1, 1, 1) refers to the
first occurrence of ITEMS in the table, and ITEMS(S,20,4) refers to the last occurrence of ITEMS.

Example 3-15: Subscripting a Multidimensional Table

Table Description:

01 A-TABLE+
03 A-GROUP OCCURS S TIMES.

OS ITEM! PIC X,
OS ITEM2 PIC 88 COMP OCCURS 20 TIMES,
OS ITEM3 OCCURS 20 TIMES,

07 ITEM4 PIC x.
07 ITEMS PIC XX OCCURS 4 TIMES,

Procedural Instruction:

MOVE ITEMS<2t 11 t 3) TD I-FIELDS,

Note

Because ITEMS is not subordinate to ITEM2, an occurrence number for ITEM2 is
not permitted in the subscript list. The ninth occurrence of ITEM2 in the fifth
occurrence of A-GROUP would be selected by ITEM2(S,9).

Table 3-1 shows the subscripting rules applicable to Example 3-1 S.

Table 3-1: Subscripting Rules for a Multidimensional Table

Number of Subscripts
Name Required to Refer to Size of

of Item the Name Item Item

A-TABLE NONE 1110

A-GROUP ONE 222

ITEMl ONE 1 *

ITEM2 TWO 2

ITEM3 TWO 9

ITEM4 TWO 1

ITEMS THREE 2

* Plus a fill byte

Table Handling 3-11 Ill

3.4.3 Subscripting with Data-Names

You can also use data-names to specify subscripts. To use a data-name as a subscript, define it with
COMP, COMP-3, or DISPLAY usage and with a numeric integer value. If the data-name is signed, the
sign must be positive at the time the data-name is used as a subscript.

The sample subscripts and data-names used in Figure 3-13 refer to the table previously defined in
Example 3-15.

Figure 3-13: Subscripting with Data-Names

Data Descriptions of Subscript Data-Names

01 SUBI PIC 88 USAGE DISPLAY.
01 SUB2 PIC 88 USAGE COMP+
01 SUB3 PIC S88+

Procedural Instructions

MOtJE 2 TO SUB 1 •
MOl.JE 11 TO SUB2,
MOlJE 3 TO SUB3,
GO TO TABLERTN.

TABLERTN,
MOt..JE ITEMS (SUB 1 ,SUB2 tSUB3) TO I-FIELDS.

3.4.4 Subscripting with Indexes

The same rules apply for the specification of indexes as apply to subscripts except that the index must
be named in the INDEXED BY phrase of the OCCURS clause.

You cannot access index items as normal data items; you cannot use them, redefine them, or write
them to a file. However, the SET statement can change their values, and relation tests can examine
their values. The index integer you specify in the SET statement must be in the range of one to the
integer value in the OCCURS clause. The sample MOVE statement shown in Example 3-16 moves the
contents of the third element of A-GROUP to I-FIELD. For illustration simplicity, I-FIELD is not
defined.

Example 3-16: Subscripting with Index-Name Items

Table Description:

01 A-TABLE
03 A-GROUP OCCURS 5 TIMES

INDEXED BY IND-NAME.

Procedural Instructions:

SET IND-NAME TO 3.
MOVE A-GROUP (!ND-NAME) TO I-FIELD,

Ill 3-12 Table Handling

Note

COBOL-81 initializes the value of all indexes to 1. Initializing indexes is an
extension to the ANSI COBOL standards. Users who write COBOL programs that
adhere to standard COBOL should not rely on this feature.

3.4.5- Relative Indexing

To perform relative indexing when referring to a table element, you follow the index name with a plus
or minus sign and an integer literal. Although easy to use, relative indexing generates additional
overhead each time a table element is referenced in this fashion. The run-time overhead for relative
indexing of variable-length tables is significantly greater than that required for fixed-length tables. If
any of the range checks reveals an out-of-range index value, program execution terminates, and an
error message is issued.

The following sample MOVE statement moves the fourth repetition of A-GROUP to I-FIELD, provided
IND-NAME has not been changed by a SET statement:

MOVE A-GRDUPIIND-NAME + 3) TD I-FIELD,

Run-time table access using relative indexing is faster because the literal index value is calculated and
stored during compilation.

3.4.6 Index Data Items

Often a program requires that the value of an index be stored outside of that item. COBOL-81
provides the index data item to fulfill this requirement.

Index data items are stored as one-word COMP items and must be declared with a USAGE IS INDEX
phrase in the item description. Index data items can be explicitly modified only with the SET verb.

3.4.7 Assigning Index Values Using the SET Statement

The SET statement assigns values to indexes associated with tables so that you can reference particu­
lar table elements. Two SET statement formats are available to you as shown in the COBOL-81
Language Reference Manual. They are discussed in the following sections.

3.4.7.1 Assigning an Integer Index Value with a SET Statement - When you use the SET statement,
the index is set to the value you specify. The most straightforward use of the SET statement is to set an
index name to an integer literal value. This example references the fifth occurrence of the table
containing the specified index name:

SET IND-1 TD 5+

You can also set an index name to an integer data item. For example:

SET INDEX-A TD COUNT-1,

fable Handling 3-13 Ill

More than one index can be set with a single set statement. For example:

SET TAB1-IND TAB2-IND TO 15.

Table indexes specified in INDEXED BY phrases cannot be displayed, moved, or manipulated in any
manner. You do this by setting an index data item to the present value of an index. You could, for
example, set an index data item and then display its value as shown in the following example:

SET INDEX-ITEM TO TAB-IND.

DISPLAY INDEX-ITEM,

However, you can display, move, and manipulate the value of the table index with an index data
item.

.;

3.4.7.2 Incrementing an Index Value with the SET Statement - You can use the SET statement with
the UP BY /DOWN BY clause to arithmetically alter the value of an index. A numeric literal is added
to (UP BY) or subtracted from (DOWN BY) a table index. For example:

SET TABLE~INDEX UP BY 12.

SET TABLE-INDEX DOWN BY 5,

3.4.8 Identifying Table Elements Using the SEARCH Statement

The SEARCH statement is used to search a table for an element that satisfies a known condition. The
statement provides for sequential and binary (nonsequential) searches, which are described in the
following sections.

3.4.8.1 Implementing a Sequential Search-The SEARCH statement allows you to perform a sequen­
tial search of a table. The table description entry OCCURS clause must contain the INDEXED BY
phrase. If more than one index is specified in the INDEXED BY phrase, the first index is the control­
ling index for the table search unless you specify otherwise in the SEARCH statement.

The search begins at the current index setting and progresses through the table, checking each
element against the conditional expression. The index is incremented by one as each element is
checked. If the conditional expression is true, the associated imperative statement executes (if one is
present), or program control passes to the next procedural sentence. This terminates the search, and
the index points to the current table element that satisfied the conditional expression.

If no table element is found that satisfies the conditional expression, the AT END exit path is taken,
provided you specified one. Otherwise, program control passes to the next procedural sentence.

You can use the optional VARYING phrase of the SEARCH statement by specifying any of the
following:

1. VARYING index name associated with table.search

2. VARYING index data item or integer data item

3. VARYING index name not associated with table search

Ill 3-14 Table Handling

Regardless of which method you use, the index specified in the INDEXED BY phrase of the table
being searched is incremented. This controlling index, when compared against the allowable number
of occurrences in the table, dictates the permissible search range. When the search terminates, either
successfully or unsuccessfully, the index remains at its current setting. At this point, you can reference
the data in the table element pointed to by the index unless the AT END condition is true. If the AT
END condition is true, under these circumstances, the compiler issues an error message indicating
that the subscript is out of range.

The index is not initialized when the search begins. It is your responsibility to ensure that the initial
index setting is the appropriate one. If you want to ensure that the entire table is included in the
search range, set the controlling index to 1 before starting the search. Otherwise, the search starts at
the current setting of the controlling index.

When you are varying an index associated with the table being searched, the index name can be any
index you specify in the INDEXED BY phrase. It becomes the controlling index for the search and is
the only index incremented. See Figure 3-14 and Example 3-18 at the end of this chapter, for an
example of how to vary an index other than the first index.

When you are varying an index data item or an integer data item, either the index data item or the
integer data item is incremented. The first index name you specify in the INDEXED BY phrase of the
table being searched becomes the controlling index and is also incremented. The index data item or
the integer data item you are varying does not function as an index; it merely allows you to maintain
an additional pointer to elements within a table. See Figure 3-14 and Example 3-19 at the end of this
chapter for an example of how to vary an index data item or an integer data item.

When you are varying an index associated with a table other than the one you are searching, the
controlling index is the first index you specify in the INDEXED BY phrase of the table you are
searching. Each time the controlling index is incremented, the index you specify in the VARYING
phrase is incremented. In this manner, you can search two tables in synchronization. See Figure 3-14
and Example 3-20 at the end of this chapter for an example of how to vary an index not associated
with the table you are searching.

When you omit the VARYING phrase, the first index you specify in the INDEXED BY phrase becomes
the controlling index. Only this index is incremented during the serial search. See Figure 3-14 and
Example 3-21 at the end of this chapter for an example of how to perform a serial search without
using the VARYING phrase. ·

3.4.8.2 Implementing a Nonsequential (Binary) Search - You can use the SEARCH statement to
perform a nonsequential table search. A nonsequential search is also known as a binary search.

To perform a binary search, you must specify an index name in the INDEXED BY phrase and a search
key in the KEY IS phrase of the OCCURS clause of the table being searched.

A binary search depends on the ASCENDING /DESCENDING KEY attributes. If you specify an
ASCENDING KEY, the data in the table must either be stored in ascending order or sorted in ascend­
ing order prior to the search. The same is true for a DESCENDING KEY.

During a binary search, the first, or only, index you specify in the INDEXED BY phrase of the
OCCURS clause of the table being searched is the controlling index. You do not have to initialize an
index in a binary search because index manipulation is automatic.

In addition to being generally faster, a binary search allows multiple equality checks.

Table Handling 3-15 Ill

The following object-time search sequence is presented to help you better understand the capabilities
inherent in a binary search. At program execution time, the object-time system:

1. Examines the range of permissible index values, selects the median value, and assigns this
value to the index.

2. Checks for equality in WHEN and AND clauses.

3. Terminates the search if all equality statements are true. If you use the imperative state­
ment after the final equality clause, that statement executes; otherwise program control
passes to the next procedural sentence, the search exits, and the index retains its current
value.

4. Takes the following actions if the equality test of a table element is false:

a. Executes the imperative statement associated with the AT END statement (if present) if
all table elements have been tested. If there is no AT END statement, program control
passes to the next procedural statement.

b. Determines which half of the table is to be eliminated from further consideration.
This is based on whether the key being tested was specified as ASCENDING or
DESCENDING and whether the test failed because of a greater than or less than
comparison. For example, if the key values are stored in ascending order, and the
median table element presently being tested is greater than the value of the argument,
then all key elements following the one being tested must also be greater. Therefore,
the upper half of the table is removed from further consideration and the search
continues at the median point of the lower half.

c. Begins processing all over again at Step 2.

A useful variation of the binary search is that of specifying multiple search keys. Multiple search keys
allow you to select a specified table element from among several elements that have duplicate low
order keys. A typical example is a telephone listing where more than one person has the same last
and first names - but different middle initials. All specified keys must be either ascending or descend­
ing. Example 3-22 shows how to use multiple search keys.

Figure 3-14 presents an example of a table. The table is fol lowed by several examples of how to
search it as shown in Examples 3-17 to 3-21.

Ill 3-16 Table Handling

Figure 3-14: Using SEARCH to Access This Sample Table

DATA DIVISION,

WORKING-STORAGE SECTION,

01 FED-TAX-TABLES,
02 ALLOWANCE-DATA+

03 FILLER
"0001440
"0202880
"0304320
"0405780
"0507200
"0808840
"0710080
"0811520
"0812880
"1014400".

PIC XC70) lJALUE

02 ALLOWANCE-TABLE REDEFINES ALLOWANCE-DATA,
03 FED-ALLOWANCES OCCURS 10 TIMES

ASCENDING KEY IS ALLOWANCE-NUMBER
INDEXED BY IND-1,
04 ALLOWANCE-NUMBER
04 ALLOWANCE

02 SINGLES-DEDUCTION-DATA,
03 FILLER

0250008700000018
0870011500087220
1150018300183223
1830024000318821
2400027800438328
2780034800540730
3480088888741738".

PIC XX.
PIC 888V88.

PIC XC112) VALUE

02 SINGLE-DEDUCTION-TABLE REDEFINES SINGLES-DEDUCTION-DATA,

01

03 SINGLES-TABLE OCCURS 7 TIMES
ASCENDING KEY IS S-MIN-RANGE S-MAX-RANGE
INDEXED BY IND-2t TEMP-INDEX,
04 S-MIN-RANGE PIC
04 S-MAX-RANGE PIC
04 S-TAX PIC

888V88.
888V88,
88V88,

04 S-PERCENT PIC V88,
02 MARRIED-DEDUCTION-DATA+

03 FILLER
04800088000000017
08800173000081820
17300284000235817
28400348000380325
34800433000585328
43300500000838832
50000888881053338".

PIC XC118) VALUE

02 MARR ED-DEDUCTION-TABLE REDEFINES MARRIED-DEDUCTION-DATA+
03 MARRIED-TABLE OCCURS 7 TIMES

ASCENDING KEY IS M-MIN-RANGE M-MAX-RANGE
INDEXED BY IN0-01 IND-3.
04 M-MIN-RANGE
04 M-MAX-RANGE
04 M-MAX
04 M-PERCENT

TEMP-INDEX USAGE

PI C 88.8V88,
PIC 888V88,
PIC 898V88,
PIC V98,

INDEX,

Table Handling 3-17 Ill

Example 3-17: A Serial Search

PROCEDURE DIVISION,,
BEGIN,

SINGLE,
IF TAXABLE-INCOME < 02488

GO TO END-FED-COMP,
SET IND-2 TO 1,
SEARCH SINGLES-TABLE VARYING IND-2 AT END

GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME= S-MIN-RANGE<IND-2)

MOVE S-TAX<IND-2> TO FED-TAX-DEDUCTION OF
OUTPUT-MASTER

GO TO STORE-FED-TAX
WHEN TAXABLE-INCOME < S-MAX-RANGE<IND-2)

SUBTRACT S-MIN-RANGE<IND-2> FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT<IND-2) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION OF

OUTPUT-MASTER,

Example 3-18: Using SEARCH and Varying an Index Other Than the First Index

PROCEDURE DIVISION.
BEGIN,

MARRIED,
IF TAXABLE-INCOME < 04799

MOVE ZEROS TO FED-TAX-DEDUCTION OF OUTPUT-MASTER1
GO TO END-FED-COMP.

SET IND-3 TO 1.
SEARCH MARRIED-TABLE VARYING IND-3

AT END GO TO TABLE-3-ERROR
WHEN TAXABLE-INCOME= M-MIN-RANGE<IND-3>

MOVE M-TAX<IND-3> TO FED-TAX-DEDUCTION OF OUTPUT-MASTER1
GO TO STORE-FED-TAX1

WHEN TAXABLE-INCOME< M-MAX-RANGE<IND-3)
MOVE M-TAX<IND-3) TO FED-TAX-DEDUCTION OF OUTPUT-MASTER1
SUBTRACT M-MIN-RANGECIND-3) FROM TAXABLE-INCOME ROUNDED1
MULTIPLY TAXABLE-INCOME BY M-PERCENT<IND-3) ROUNDED1
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION

OF OUTPUT-MASTER ROUNDED1
GO TD STORE-FED-TAX.

Example 3-19: Using SEARCH and Varying an Index Data Item

PROCEDURE DIVISION.
BEGIN,

Ill 3-18 Table Handling

(continued on next page)

Example 3~ 19: Using SEARCH and Varying an Index Data Item (Cont.)

SINGLE+
IF TAXABLE-INCOME < 02488

GO TO END-FED-COMP,
SET IND-2 TO l,
SEARCH SINGLES-TABLE VARYING TEMP-INDEX AT END

GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGECIND-2)

MOVE S-TAX<IN0-2) TO FED-TAX-DEDUCTION OF
OUTPUT-MASTER

GO TD STORE-FED-TAX
WHEN TAXABLE-INCOME< S-MAX-RANGECIND-2)

SUBTRACT S-MIN-RANGE<IND-2> FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT<IN0-2> ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION OF

OUTPUT-MASTER+

Example 3-20: Using SEARCH and Varying an Index Not Associated with the Target Table

PROCEDURE DIVISION.
BEGIN.

SINGLE,
IF TAXABLE-INCOME < 02488

GO TO END-FED-COMP+
SET IND-2 TO 1.
SEARCH SINGLES-TABLE VARYING IND-0 AT END

GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGE<IND-2>

MOVE S-TAX<IND-2, TO FED-TAX-DEDUCTION OF
OUTPUT-MASTER

GO TO STORE-FED-TAX
WHEN TAXABLE-INCOME< S-MAX-RANGE<IND-2)

SUBTRACT S-MIN-RANGE<IND-2> FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT<IND-21 ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION OF .

OUTPUT-MASTER,

Example 3-21: Doing a Serial Search Without Using the Varying Phrase

PROCEDURE DIVISION,
BEGIN.

FED-DEDUCT-COMPUTATION,
SET IND-1 TO 1.
SEARCH ALL FED-ALLOWANCES AT END GO TO TABLE-1-ERROR

WHEN ALLOWANCE-NUMBER<IND-11 = NR-DEPENDENTS OF
OUTPUT-MASTER•

SUBTRACT ALLOWANCECIND-11 FROM GROSS-WAGE OF OUTPUT-MASTER
GIVING TAXABLE-INCOME ROUNDED,

IF MARITAL-STATUS OF OUTPUT-MASTER = "M"
GO TO MARRIED,

Table Handling 3-19 Ill

Example 3-22: A Multiple-Key Binary Search

IDENTIFICATION DIVISION,
PROGRAM-IO, MULTI-KEY-SEARCH,
DATA DIVISION,
WORKING-STORAGE SECTION,

01 DIRECTORY-TABLE+
05 NAMES-NUMBERS,

10 FILLER PIC X<30)
VALUE "SMILEY HAPPY T.213-4332"+

10 FILLER PIC X<30)
VALUE "SMITH ALAN C.881-4987",

10 FILLER PIC X<30)
VALUE "SMITH CHARLES J,345-2398",

10 FILLER PIC XC30)
VALUE "SMITH FREDERICK 745-0223",

10 FILLER PIC X<30)
VALUE "SMITH HARRY C.573-3308",

10 FILLER PIC X(30)
VALUE "SMITH HARRY J,295-3485",

10 FILLER PIC XC30)
VALUE "SMITH LARRY X.978-5504",

10 FILLER PIC X<30)
VALUE "SMITHWODD ALBERT J,349-9927",

05 PHONE-DIRECTORY-TABLE REDEFINES NAMES-NUMBERS OCCURS 8 TIMES
ASCENDING KEY IS LAST-NAME

FIRST-NAME
MID-INIT

15 LAST-NAME
15 FIRST-NAME
15 MID- INIT
15 PHONE-NUM

PROCEDURE DIVISION,
MULTI-KEY-BINARY-SEARCH,

INDEXED
PIC XC10l+
PIC XC10l+
PIC XX,
PIC XC8l,

SEARCH ALL PHONE-DIRECTORY-TABLE

BY DIR-INOX,

WHEN LAST-NAMECDIR-INDX> = "SMITH"
AND FIRST-NAMECDIR-INDX> "HARRY"
AND MID-INITCDIR-INDX> = "J,"

NEXT SENTENCE,
DISPLAY-RESULTS,

DISPLAY LAST-NAMECDIR-INDX>"t"
FIRST-NAME<DIR-INDXl
MID-INITCDIR-INDXl " "
PHONE-NUM<DIR-INDXl,

Ill 3-20 Table Handling

Chapter 4
Data Handling Optimization

You can decrease processing time and save storage space by using compiler optimization features
when you write your COBOL-81 programs. This chapter shows how certain numeric data types and
Procedure Division statements can help you optimize your COBOL-81 programs.

4.1 Numeric Data Representation

Optimizing numeric data is the best way to improve program performance. The most efficient type of
numeric data depends on the item's size and whether or not CIS (Commercial Instruction Set) is
available on your machine. Table 4-1 shows the relative efficiency of COBOL-81 data types on both
CIS and non-CIS machines. Refer to Chapter 1 for discussions of the individual numeric data types.

Table 4-1: Relative Efficiency of COBOL-81 Numeric Data Types

PIC S9 to S9(9) PIC S9(10) to 59(18)

CIS non-CIS CIS non-CIS

Most Efficient COMP COMP COMP-3 COMP

Intermediate COMP-3 DISPLAY DISPLAY DISPLAY

Least Efficient DISPLAY COMP-3 COMP COMP-3

In general, you describe numeric data items as USAGE COMP when:

• The data item(s) is part of an arithmetic operation and is less than 4 words (S9 to S9(9)).

• The data item(s) is used as a subscript. In this case, allocate 1 word by specifying PIC S9 to PIC
S9(4).

4-1 Ill

Although not as storage-efficient as USAGE COMP, data items with a USAGE COMP-3 let you store
two digits per byte rather than one digit per byte for USAGE DISPLAY items. For example:

USAGE DISPLAY

PICTURE Storage

S9(5)V99 7 bytes

S9(12)V9 13 bytes

USAGE COMP-3

PICTURE

S9(5)V99

S9(12)V9

Storage

4 bytes

7 bytes

To calculate the number of storage bytes for a COMP-3 item, divide the PICTURE size by 2 (without
rounding) and add 1 to the result. You can check the allocation with the /SHOW:MAP compiler
qualifier. In general, you describe numeric data items as USAGE COMP-3 when the size of the data
item is from 10 to 18 decimal digits long, and you are using CIS.

4.1.1 Scaling and Mixing Data Types

Scaling is the process of aligning decimal points for COMP and COMP-3 numeric data items. This is
important when two or more data items are to be used in an arithmetic operation. If the data items do
not have the same scaling factor, they must be rescaled before the arithmetic operation can be
performed. Two data items have the same scaling factor when they have an equal number of speci­
fied digits to the right of the implied decimal point. Digits specified to the left of the implied decimal
point play no part in the scaling factor. For example, data items defined as PIC S9V99 and PIC
S99V99 have the same scaling factor.

Whenever you know that two or more data items are to be used in an arithmetic operation, use the
same data type for all. This avoids a conversion to a common data type.

For example, consider these three WORKING-STORAGE examples for the statement ADD A TO B:

Poor

01 A PIC S99V999 COMP, Requires conversion and rescaling
01 B PIC S99V9999 COMP-3,

Improved

01 A PIC S99V9 COMP, Requires rescaling
01 B PIC S99V999 COMP,

Best

01 A PIC S99V999 COMP, No rescaling or conversion required
01 B PIC S99V999 COMP,

4.1.2 Significant Digits

In general, the fewer significant digits in an item, the better the performance (except as described in
Section 4.1.1.). For example, for a numeric data item to contain a number from 1 to 999, declare it as
PIC S9(3), not S9(10).

Ill 4-2 Data Handling Optimization

4.1.3 Indexing Instead of Subscripting

Using index-names for table handling is generally more efficient than using COMP-3 or numeric
DISPLAY subscripts, because the compiler declares index-names as one~word binary data items.
Subscript data items described in WORKING-STORAGE as one-word binary items are as efficient as
index-items. Indexing also provides more flexibility in table-handling operations, because it allows
you to use the SEARCH statement for sequential and binary searches. See Chapter 3 for more informa­
tion about indexing and subscripting in table handling.

The efficiency for indexing and subscripting in decreasing order is:

1. Index-names or subscript data items described as one-word COMP

2. Subscript data items described as COMP-3

3. Subscript data items described as two- or four-word COMP

4. Subscript data items described as numeric DISPLAY

Example

WORKING-STORAGE SECTION+
01 TABLE-SIZE.

03 FILLER PIC X<300),
01 THE-TABLE REDEFINES TABLE-SIZE+

03 TABLE-ENTRY OCCURS 30 TIMES PIC X<10),
01 SUB-1 PIC S9(4l COMP VALUE ZEROS,

This is as efficient as:

WORKING-STORAGE SECTION+
01 TABLE-SIZE+

03 FILLER PIC X(300),
01 THE-TABLE REDEFINES TABLE-SIZE,

03 TABLE-ENTRY OCCURS 30 TIMES PIC XC10l
INDEXED BY IND-1,

If applicable, use a numeric literal to access a table. For example:

MOVE TABLE-ENTRY CnuMeric literal> TD , ..

This is faster than either of these:

MOVE TABLE-ENTRY CSUB-1) TD

MOVE TABLE-ENTRY CIND-1> TD

...

...
4.1.4 Avoid Using Decimal Truncation

The final factor in optimizing numeric data handling is to avoid decimal truncation. If performance is
an important factor, do not use the /TRUNCATE qualifier when compiling your programs. Because of
the additional operations required to implement decimal truncation, use of this qualifier will cause
performance to slow down.

Data Handling Optimization 4-3 Ill

4.2 Procedure Division Statements

Some Procedure Division statements make better use of the COBOL-81 compiler than others. This
section discusses these statements and shows how to use them.

4.2.1 ADD, SUBTRACT, MUl.TIP.L Y and DIVIDE Instead of COMPUTE

The ADD, SUBTRACT, MULTIPLY, and DIVIDE statements are generally faster than the COMPUTE
statement; they usually execute fewer instructions. For example, consider the following separate
arithmetic and COMPUTE statements using the listed record definitions.

Record definitions:

01 A PIC SS V88 COMP-3.
01 B PIC S8C4>V88 COMP-3,
01 c PIC S8C4)V88 COMP-3,
01 D PIC S8C4>V88 COMP-3.
01 E PIC S8C4>V88 COMP-3,
01 F PIC S8C4>V88 COMP-3.
01 TEMP1 PIC S8C4)V88 COMP-3.
01 TEMP2 PIC S8C4>V88 COMP-3,

Separate arithmetic statements:

ADD At B GIVING TEMP1.+
ADD Ct D GIVING TEMP2+
SUBTRACT TEMP2 FROM TEMP1.
DIVIDE TEMP1 BY 2 GIVING TEMP2.
MULTIPLY TEMP2 BY E GIVING F,

Computed statement:

COMPUTE F = C (CC A + B) - (C + D)) I 2) * E),

4.2.2 GO TO DEPENDING ON Instead of IF, GO TO

The GO TO DEPENDING ON statement generates fewer instructions than a sequence of IF and GO
TO statements; it can also improve a program's readability. For example:

GO TO 100-PROCESS-MARRIED
200-PROCESS-SINGLE
300-PROCESS-DIVORCED
400-PROCESS-WIDOWED

DEPENDING ON MARITAL-STATUS,

This example generates fewer instructions and is easier to read than:

IF MARITAL-STATUS = "1"
GO TO 100-PROCESS~MARRIED+

IF MARITAL-STATUS = "2"
GO TO 200-PROCESS-SINGLE.

IF MARITAL-STATUS = "3"
GO TO 300-PROCESS-DIVORCED.

IF MARITAL-STATUS = "4"
GO TO 400-PROCESS-WIDOWED.

Ill 4-4 Data Handling Optimization

Remember, data items referenced by the DEPENDING ON clause must contain a numeric value that
is: (a) greater than zero and (b) not greater than the number of procedure names in the statement.
Otherwise, control passes to the next executable statement.

4.2.3 SEARCH ALL Instead of SEARCH

When you are performing table look-up operations, SEARCH ALL - a binary search operation - is
usually faster than SEARCH - a sequential search operation. A binary search determines a table's
size, finds the median table entry, and, by using compare processes, searches the table in sections. A
sequential search manipulates the contents of an index to search the table sequentially. However,
SEARCH ALL requires the table to be in ascending or descending order by search key, while SEARCH
imposes no restrictions on table organization. Chapter 3 contains samples of binary and sequential
table-hand Ii ng operations.

Data Handling Optimization 4-5 Ill

Contents

PART IV

Chapter 1 The Basics of Handling COBOL-81 Files and Records

1 . 1
1.2
1.3
1 .4

1.5
1.6

Record Management Services
COBOL-81 File Organizations
File Attributes
COBOL-81 Record Attributes

1.4.1

1.4.2

Record Format. . .

1.4.1.1
1.4.1.2

Fixed-Length Records .
Variable-Length Records.

Print-Controlled File

File Design Considerations ..
File Handling

1.6.1 Identifying a File from Your COBOL-81 Program .

Page

. 1-1

. 1-2

. 1-3

. 1-3

. 1-3

. 1-4

. 1-4

. 1-8

. 1-8

. 1-8

1.6.1.1 Using the VALUE OF ID Clause for Device Independence .

. 1-9

1-10
1-11

Chapter 2

Chapter 3

1.7

1.6.2

1.6.1.2 Using Logical Names

Choosing File Organization and Record Access Mode.

1.6.2.1
1.6.2.2

File Organizations . .
Record Access Modes .

Opening and Closing Files. .

Processing Sequential Files

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Sequential File Organization
Design Considerations
Statements for Sequential File Processing
Defining a Sequential File .
Creating Sequential Files
Reading Sequential Files.
Rewriting Records in a Sequential File.
Extending Sequential Files
Backing Up Your Sequential Files.

Processing Relative Files

3.1
3.2
3.3
3.4
3.5

Relative File Organization
Design Considerations
Statements for Relative File Processing
Defining a Relative File
Creating Relative Files

3.5.1
3.5.2

Sequential Access Mode Creation
Random Access Mode Creation .

1-11

1-11
1-12

1-13

. 2-1

. 2-2

. 2-3

. 2-3

. 2-4

. 2-6

. 2-7

. 2-8

. 2-9

. 3-1

. 3-2

. 3-3

. 3-4

. 3-4

. 3-5

. 3-5

Part IV

3.6 Reading Relative Files

3.6.1 Sequential Reading.
3.6.2 Random Reading.
3.6.3 Dynamic Reading .

3.7 Updating Relative Files ...

3.8

-3.7.1

3.7.2

Rewriting. Relative Records
·'

3.7.1.1 Sequential Access Mode Rewriting
3.7.1.2 Rand~m Access Mode Rewriting .

Deleting Relative Records

3.7.2.1
3.7.2.2

Sequential Access Mode Deletion.
Random Access Mode Deletion

Backing Up Your Relative Files.

Chapter 4 Processing Indexed Files

4.1 Indexed File Organization
4.2 Design Considerations
4.3 Statements for Indexed File Processing
4.4 Defining an Indexed File
4.5 Creating and Populating Indexed Files.
4.6 Reading Indexed Files. . . .

4.6.1 Sequential Reading.
4.6.2 Random Reading.
4.6.3 Dynamic Reading ·.

4.7 Updating Indexed Files ...

4.8

4.7.1
4.7.2
4.7.3

Sequential Updating
Random Updating .
Dynamic Updating.

Backing Up Your Indexed Files.

Chapter 5 Input/Output Exception Conditions Handling

5.1 Planning for the At End Condition . .
5.2 Planning for the Invalid Key Condition
5.3 Using File Status Values.

5.3.1 COBOL-81 File Status Values
5.3.2 RMS-11 File Status Values ..

5.4 Using Declarative Procedures to Handle Exception Conditions .

Chapter 6 Sharing Files and Protecting Records

11 Part IV

6.1
6.2

File Sharing and Record Locking Concepts.
Ensuring Successful File Sharing . .

6.2.1
6.2.2
6.2.3
6.2.4

Providing Disk Residency
Using File Protection
Determining the Intended Access Mode to a File .
Indicating the Access Allowed to Other Streams .

. 3-6

. 3-6

. 3-7

. 3-8

. 3-9

. 3-9

3-10
3-11

3-12

3-12
3-13

3-14

. 4-1

. 4-2

. 4-3

. 4-4

. 4-4

. 4-6

. 4-6

. 4-8

. 4-9

4-10

4-11
4-12
4-15

4-15

. 5-2

. 5-2

. 5-3

. 5-3

. 5-5

. 5-6

. 6-1

. 6-3

. 6-3

. 6-3

. 6-4

. 6-5

6.3 Describing Types of Access Streams. . . .
6.4 Summarizing Related File-Sharing Criteria .
6.5 Checking File Operations
6.6 Specifying the OPEN EXTEND with a Sequential File
6.7 Using Record Locking.

Chapter 7 File Optimization Techniques

7.1 Using the APPLY Clause.
7 .2 Current Record Area .
7.3 Sharing Record Areas ..
7.4 1/0 Buffers
7.5 Reserving Additional 1/0 Buffer Space for Your Files
7.6 Sharing Buffer Areas
7.7 Tailoring I /0 Buffers to Increase Speed of I /0 Operations.
7.8 Optimizing File Design

7.8.1

7.8.2

7.8.3

Sequential Files

7.8.1.1
7.8.1.2
7.8.1.3

Buffer Size Calculations for Sequential Files
Unit of Transfer for Sequential Files on Magnetic Tape.
Unit of Transfer for Sequential Files on Disk

Relative Files

7.8.2.1
7.8.2.2
7.8.2.3
7.8.2.4
7.8.2.5

Maximum Record Number (MRN)
Cell Size .
Bucket Size
File Size
Bucket Size and Buffer Size Calculations for Relative
Files

Indexed Files

. 6-5

. 6-6

. 6-8

. 6-8

. 6-9

. 7-1

. 7-3

. 7-4

. 7-5

. 7-6

. 7-7

. 7-7

. 7-8

. 7-8

. 7-9
7-10
7-12

7-13

7-13
7-14
7-14
7-15

7-16

7-18

7.8.3.1
7.8.3.2
7.8.3.3
7.8.3.4
7.8.3.5
7.8.3.6
7:8.3.7'
7.8.3.8

Records . . . 7 -1 9
Alternate Keys 7-19
Bucket Size . 7-20
Index Depth . 7-21
File Size. . . 7-21
Alternate Key Index Level Calculations 7-23
Caching Index Roots 7-23
Bucket Size and Buffer Size Calculations for Indexed Files . 7-23

Chapter 8 Producing Printed Reports with COBOL-81

8.1 Designing the Report
8.2 Components of a Report.
8.3 The Logical Page and the Physical Page .

8.3.1 Horizontal Spacing for the Logical Page.
8.3.2 Vertical Spacing for the Logical Page .

8.4 Modes for Printing Reports.

8.4.1 Online Printing
8.4.2 Spooling to a Mass Storage Device .

. 8-1

. 8-4

. 8-6

. 8-6

. 8-6

. 8-6

. 8-7

. 8-7

Part IV iii

8.5
8.6

8.7

8.8

8.9

Accumulating and Reporting Totals
Programming the Conventional COBOL-81 Report

8.6.1 Defining the Logical Page
8.6.2 How to Advance to the Next Logical Page.
8.6.3 Programming for the Page-Overflow Condition.
8.6.4 Using a Line Counter. . .
8.6.5 A Special Forms Example

Programming the Linage-File Report

8.7.1 Defining the Logical Page with the LINAGE Clause.
8.7.2 Advancing to the Next Logical Page
8.7 .3 Programming for the Page-Overflow Condition.
8.7.4 Using the LINAGE-COUNTER .
8.7.5 A Special Forms Example

How to Print Your Report

8.8.1 Printing the Conventional Report.
8.8.2 Printing a Linage-File Report. . .

Solving Report Problems

8.9.1
8.9.2
8.9.3
8.9.4
8.9.5
8.9.6

Printing More Than One Logical Line on a Single Physical Line
Group Indicating.
Fitting Reports on the Page . . .
Printing Totals Before Detail Lines
Underlining Items in Your Reports
Bolding Items in Your Reports .

Chapter 9 Forms for Video Terminals

9.1 Designing Your Form with ACCEPT I DISPLAY Options

9.1.1 Clearing a Screen Area
9.1.2 Horizontal and Vertical Positioning of the Cursor.
9.1.3 Assigning Character Attributes to Your Format Entries .
9.1.4 Handling Data with ACCEPT Options

9.1.5

9.1.6

9.1.4.1 Using CONVERSION with ACCEPT Data .
9.1.4.2 Using ON EXCEPTION When Accepting Data

with CONVERSION.
9.1.4.3
9.1.4.4
9.1.4.5

Protecting Your Screen
Using NO ECHO With ACCEPT Data . .
Assigning Default Values to Data Fields .

Using Keys on Your Terminal to Define Special Program
Functions
Using the CONVERSION Clause to Display Data.

Chapter 1 O Sorting Records and Merging Files

iv Part IV

10.1 ASCENDING and DESCENDING KEY Phrases
10.2 USING and GIVING Phrases.
10.3 INPUT PROCEDURE and OUTPUT PROCEDURE Phrases .
10.4 WITH DUPLICATES IN ORDER Phrase
10.5 File Organization.
10.6 Multiple Sorts

. 8-8
8-10

8-10
8-10
8-11
8-12
8-12

8-15

8-15
8-17
8-17
8-21
8-22

8-24

8-24
8-25

8-25

8-25
8-29
8-30
8-30
8-31
8-31

. 9-2

. 9-3

. 9-5

. 9-8

. 9-9

. 9-9

. 9-9
9-11
9-13
9-14

9-17
9-24

10-1
10-2
10-2
10-4
10-5
10-5

10.7 Sorting Variable-Length Records
10.8 Preventing I /O Aborts.
10.9 The MERGE Statement
10.10 Sample Programs. . .

10-6
10-6
10-7
10-8

Appendix A Designing Your Form with Escape Sequences

A.1 Defining the Escape. A-1
A.2 Defining Items for Line and Column NumbersA-2
A.3 Sending Control Character Sequences to the Terminal . . A-2

A.3.1 Sending to VT100 Terminals.A-3
A.3.2 Sending to VT52 TerminalsA-4
A.3.3 Switching from VT100 Mode to VT52 Mode. .A-6

A.4 ExamplesA-7

A.4.1 VT100 Example .A-7
A.4.2 VT52 Example. .A-8
A.4.3 Example of Double-Height and Double-Width Lines on a VT100. A-10

Appendix B Logical Unit Number (LUN) Assignments

Examples

1 -1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
2-1
2-2
2-3
2-4
2-5
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
4-1

Sample Record Description
Defining a Fixed-Length Record
Defining Variable-Length Records with the DEPENDING ON Phrase
Defining Variable-Length Records with Multiple Record Descriptions
Defining Variable-Length Records with the OCCURS DEPENDING ON Phrase .
Defining Variable-Length Records for Compatibility with VAX-11 COBOL.
Defining Fixed-Length Records with Multiple Record Descriptions
Defining a Disk File .
Defining a Magnetic Tape File
How to Override or Supplement a File Specification at Run Time.
Sequential File SELECT Statements
Relative File SELECT Statements
Indexed File SELECT Statements
Defining a Sequential File .
Creating a Sequential File .
Reading a Sequential File .
Rewriting a Sequential File
Extending a Sequential File
Defining a Relative File . .
Creating a Relative File in Sequential Access Mode .
Creating a Relative File in Random Access Mode.
Sequentially Reading Relative Files .
Randomly Reading a Relative File
Dynamically Reading a Relative File
Rewriting Relative Records in Sequential Access Mode
Rewriting Relative Records in Random Access Mode .
Deleting Relative Records in Sequential Access Mode.
Deleting Relative Records in Random Access Mode.
Defining an Indexed File

. 1-3

. 1-4

. 1-5

. 1-6

. 1-6

. 1-7

. 1-8

. 1-9

. 1-9
1-10
1-12
1-12
1-13
. 2-4
. 2-5
. 2-6
. 2-7
. 2-8
. 3-4
. 3-5
. 3-5
. 3-7
. 3-8
. 3-9
3-10
3-11
3-12
3-13
. 4-4

Part IV v

vi Part IV

4-2
4-3
4-4
4-5
4-6
4-7
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2
7-1
7-2
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9~10
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11

Creating and Populating an Indexed File.
Sequentially Reading an Indexed File .
Randomly Reading an Indexed File . .
Dynamically Reading an Indexed File.
Sequentially Updating an Indexed File
Randomly Updating an Indexed File
Handling the At End Condition ...
Handling the Invalid Key Condition.
Defining a File Status for a File. . .
Using the File Status Value in an Exception Handling Routine
Referencing RMS-STS and RMS-STV Values
The Declarative Skeleton
A Declarative Procedure Skeleton
Five Types of Declarative Procedures
Creating Two Access Streams to a File fro~ the Same Program.
Automatic Record Locking.
Sharing Record Areas
Statements Causing Three Files to Share One 1/0 Buffer .
Directly Allocating a Printer for Immediate Use. . .
Spooling a Report to a Disk Pack for Later Printing .
Checking for the Page-Overflow Condition
Page Advancing .and Line Skipping
Checking for Page-Overflow on a 28-Line Logical Page
A Sample LINAGE Clause for a 20-Line Logical Page .
Programming a 20-Line Logical Page defined by the LINAGE Clause
Printing Labels Four-Up
Printing Labels Four-Up in Sort Order.
Erasing a Screen
Cursor Positioning
Use of PLUS for Cursor Positioning .
Character Attributes. . .
Use of ON EXCEPTION .
Use of SIZE . . . : . .
Use of NO ECHO . . .
Use of the DEFAULT Clause .
Use of the CONTROL KEY Clause
Use of CONVERSION.
Using the ASCENDING KEY and DESCENDING KEY Phrases.
Using the USING and GIVING Phrases
Using the INPUT PROCEDURE and OUTPUT PROCEDURE Phrases
Replacing the INPUT PROCEDURE Phrase with the USING Phrase .
Sorting With and Without the DUPLICATES IN ORDER Phrase.
Multiple Sorts in the Same Program.
A Declarative Procedure for a Sort
Merging Two Files into One File
SORTA - Sorting with the USING and GIVING Phrases .
SORTB - Sorting with the USING and OUTPUT PROCEDURE Phrases
SORTC - Sorting with the INPUT PROCEDURE and OUTPUT
PROCEDURE Phrases

10-12 SORTE - Sorting a File and Expanding Its Output Records .
10-13 MERGE01 - Merging Three Files

.4-5

. 4-7

. 4-8
4-10
4-11
4-13
. 5-2
. 5-2
. 5-3
. 5-4
. 5-5
. 5-6
. 5-6
. 5-7
. 6-5
. 6-9
. 7-4
. 7-7
. 8-7
. 8-7
8-11
8-13
8-19
8-22
8-23
8-26
8-28
. 9-3
. 9-5
. 9-7
. 9-8
9-10
9-12
9-13
9-15
9-21
9-25
10-1
10-2
10-3
10-4
10-4
10-5
10-7
10-7
10-8
10-9

.10-10

. 10-12

. 10-14

Figures

2-1 Sequential File Organization . . 2-1
2-2 A Multiple Volume Sequential File . 2-2
3-1 Relative File Organization . . 3-2
4-1 Indexed File Organization . . 4-2
6-1 Multiple Access to a File . 6-1
6-2 File Sharing and Record Locking Relationship . 6-2
6-3 The Overwrite Condition . 6-9
7-1 Current Record Areas for Three Files . 7-4
7-2 Two Files Sharing a Record Area . . 7-5
7-3 A Program's Buffer Area in a Task Structure . 7-5
7-4 Using One 1/0 Buffer to Process Three Files . 7-7
8-1 A Sample Report Layout Worksheet. . 8-2
8-2 Typical Report Layout. . 8-3
8-3 Components of a Report. . 8-5
8-4 Subtotals, Crossfoot Totals, and Rolled Forward Totals . 8-9
8-5 Logical Page Area for a Conventional Report. 8-10
8-6 A 20-Line Logical Page . 8-12
8-7 A Double-Spaced Master Listing . 8-13
8-8 Logical Page Areas for a Linage-File Report 8-16
8-9 A 28-Line Logical Page . 8-18
8-10 A 20-Line Logical Page . 8-22
8-11 Printing Labels Four-Up . 8-25
8-12 Printing Labels Four-Up in Sort Order. 8-27
9-1 Adding Information to a Master File with a Video Form . 9-2
9-2 Effects of the ERASE Option . . 9-4
9-3 Positioning the Data on Line 19 Column 5. . 9-6
9-4 Cursor Positioning Using the PLUS Option. . 9-7
9-5 Screen Display with Character Attributes . 9-9
9-6 Accepting Data with the ON EXCEPTION Option. 9-11
9-7 Screen Display of NUM-DATA Using the PROTECTED Option . 9-13
9-8 Accepting Data with the NO ECHO Option . 9-14
9-9 Accepting Data with the DEFAULT Option 9-16
9-10 COBOL-81 's Control Keys on the Standard VT52 Keypad 9-18
9-11 COBOL-81 's Control Keys on the Standard VT100 Keypad. 9-19
9-12 COBOL-81 's Control Keys on the Standard Professional Keypad 9-19
9-13 Screen Display of Program SPECIAL. 9-24
9-14 Sample Run of Program CONVERT . 9-26.
A-1 Double-Height and Double-Width Lines on a VT100 A-11

Tables

1-1 ~OBOL-81 File Organizations - Advantages and Disadvantages . 1-2
2-1 Valid 1/0 Statements for Sequential Files. . 2-3
3-1 Valid 1/0 Statements for Relative Files. . 3-3
4-1 Valid 1/0 Statements for Indexed Files. . 4-3
6-1 File Sharing and Intended COBOL-81 Operations. . 6-4
6-2 File Protection and Open Mode Requirements for File Sharing . 6-6
6-3 File Sharing Options . 6-7

Part IV vii

6-4 COBOL-81 File Status Values and RMS-11 Completion/Error Codes . . 6-8
7-1 Permissible APPLY WINDOW Values. 7-3
7-2 Def...ult Buffer Areas Reserved by the COBOL-81 OTS. . 7-6
8-1 Results of Group Indicating 8-30
9-1 Cursor Positioning Requirements for ERASE Options. . . 9-3
9-2 Available Character Attributes by Terminal Type 9-8
9-3 COBOL-81 Characters Returned by the OTS for Cursor Positioning,

Program Function, and Auxiliary Keypad Keys 9-17
9-4 Characters Returned by the OTS for the Professional's Top Row Function

and Editing Keys . 9-19
B-1 Logical Unit Assignments for COBOL-81 Features and Files Open

at the Same Time. B-2

viii Part IV

Chapter 1
The Basics of Handling COBOL-81 Files and Records

Input and output services require a complex management system; otherwise the programmer is left
with the task of producing detailed Input/Output control for each program. With the PDP-11 opera­
ting systems, complete I /0 services are provided for handling, controlling, and spooling I /0 needs
or requests. Record Management Services (RMS-11) gives a wide range of file management tech­
niques while remaining transparent to you. This chapter introduces you to:

• Record Management Services

• COBOL-81 file organizations

• COBOL-81 file attributes

• COBOL-81 record attributes

• COBOL-81 record access modes

• COBOL-81 OPEN and CLOSE statements

1.1 Record Management Services

COBOL-81 provides extensive capabilities for data storage, retrieval, and modification for the
COBOL-81 programmer through Record Management Services (RMS-11). You can select from one of
several file organizations and access techniques - each of which is suited to a particular application -
from the simplest sequential search of a sequentially organized file to a sophisticated dynamic access
of an indexed file based on several alternate key fields.

The three file organizations built by COBOL-81 and RMS-11 - sequential, relative, and indexed - are
variously available to three different access modes: sequential, random, and dynamic. COBOL-81
also supports access mode switching, or dynamic access, a useful feature that allows your program to
switch from sequential to random access and back during file processing.

1-1 IV

You should consider learning about how RMS-11 works and become familiar with the information
contained in the RMS-11 documentation set. It discusses the following topics:

1. Application design

2. File design

3. Task design

4. Common optimization techniques

5. RMS-11 utilities

6. Magnetic tape handling

If you do not learn how RMS-11 works, you probably will not get the best performance possible from
your application. You can even get less performance because of the defaults you're accepting without
knowing it.

1.2 COBOL-81 File Organizations

Table 1-1 lists the three file organizations available to you and includes their advantages and disad­
vantages. Chapters 2, 3, and 4 further discuss each of these file organizations.

Table 1-1: COBOL-81 File Organizations - Advantages and Disadvantages

File
Organizations

Sequential

Relative

Indexed

Advantages

Disadvantages

Advantages

Disadvantages

Advantages

Disadvantages

Advantages and Disadvantages

Uses disk and memory efficiently
Provides optimal usage if the application accesses all records sequentially on
each run
Provides the most flexible record format
Allows data to be stored on many types of media, in a device-independent
manner
Allows easy file extension

Allows sequential access only
Allows records to be added only to the end of a file
Allows write access by multiple, concurrent users, but only in very restricted cases

Allows sequential, random, and dynamic access
Provides random record deletion and insertion
Allows records to be read- and write-shared
Requires that files contain a record cell for each record stored in the file; that is,
files may not be densely populated because not all record cells may be used

Allows data to be stored on disk only
Requires that record cells be the same size

Allows sequential, random, and dynamic access modes
Allows random record deletion and insertion
Allows records to be read- and write-shared
Allows variable-length records to change length on update
Allows easy file extension

Allows data to be stored on disk only
Requires more disk space
Uses more memory to process records
Generally requires multiple disk accesses to randomly process a record

IV 1-2 The Basics of Handling COBOL-81 Files and Records

1.3 File Attributes

In COBOL-81 programs, you specify a file's attributes in the Environment and Data Divisions:

• The SELECT statement specifies the file organization

• File description entries specify record format and record blocking

• Record description entries specify physical record size(s)

Chapters 2, 3, and 4 present and discuss examples of each type of file organization supported by
COBOL-81.

Your system uses these attributes to create a file and stores them with the file. When a program
accesses a file, it should specify the same attributes stored when the file was created. For example, a
program cannot read a sequential file as an indexed file, because no index keys exist.

1.4 COBOL-81 Record Attributes

A record is a group of related data elements. The space a record needs on a physical device depends
on:

• The file organization

• The record format

• The number of bytes the record contains

If a file has more than one record description, the records automatically share the same record area in
memory. The Object- or Run-Time System does not clear this area before it executes the READ
statement. Therefore, if the record read by the latest READ statement does not fill the entire record
area, the area not overlaid by the incoming record remains unchanged.

1.4.1 Record Format

The compiler determines record format from a combination of record description entries and the
RECORD CONTAINS clause.

In Example 1-1, a file contains a company's stock information (part number, supplier, quantity,
price.) Within this file, the information is divided into records. All information for a single piece of
stock constitutes a single record.

Each record in the stock file is itself divided into discrete pieces of information known as elementary
items. You give the item a specific location in the record, give it a name, and define its size. The part
number is an item in the part record, as is supplier, quantity, and price. In this example,
PART-RECORD defines four elementary items: PART-NUMBER, PART-SUPPLIER, PART-QUANTITY,
and PART-PRICE.

Example 1-1 : Sample Record Description

01 PART-RECORD.
02 PART-NUMBER
02 PART-SUPPLIER
02 PART-QUANTITY
02 PART-PRICE

PIC 9999,
PIC X(20l,
PIC 99999,
PIC S9<5lV89,

The Basics of Handling COBOL-81 Files and Records 1-3 IV

You can completely control the grouping of elementary items into r_ecords and records into files.
COBOL-81 programs either build records and pass them to RMS-11 for storage in a file, or they issue
requests for records while RMS-11 performs the necessary operations to retrieve the records from
a file.

The maximum size of a record depends on its format:

• For fixed-length records, the maximum size is the record size

• For variable-length records, the maximum size is the size of the largest record plus the number
of overhead bytes needed by the storage medium

In either case, the length of any record in a file description entry cannot exceed 16384 bytes.

1.4.1.1 Fixed-Length Records - Files with a fixed-length record format contain the same size
records. The compiler generates the fixed-length format when all of the following conditions are true:

1. The file has only one record description. If the file has multiple record descriptions, the
largest record description determines record size.

2. The file description does not contain a RECORD CONTAINS phrase or a RECORD VARY­
ING phrase.

3. The program does not specify a print-controlled file by referring to the file with:

a. The ADVANCING phrase in a WRITE statement

b. An APPLY PRINT-CONTROL clause in the Environment Division

c. A LINAGE clause in the file description

Fixed-length record size is determined by either the record description or the record size specified by
the RECORD CONTAINS phrase, whichever is larger. In Example 1-2, the RECORD CONTAINS
phrase specifies a record size larger than the record description; therefore, record size is 100
characters.

Example 1-2: Defining a Fixed-Length Record

FD FIXED-FILE
RECORD CONTAINS 100 CHARACTERS,

01 FIXED-REC PIC X<75),

1.4.1.2 Variable-Length Records - Files with a variable-length record format can contain different
length records. The system stores the record's size in bytes in a record-length field that precedes each
record.

• For disk files, the record-length field is a 2-byte value specifying record length in bytes. A
record's length does not include this 2-byte field, however.

• For ANSI magnetic tape files, the record-length field is a 4-byte decimal value specifying
record length in bytes. A record's length does not include this 4-byte field.

The compiler generates the variable-length attribute for a file when the file description contains
a RECORD VARYING phrase or a RECORD CONTAINS phrase. (See also Section 1.4.2,
Print-Controlled Files.)

IV 1-4 The Basics of Handling COBOL-81 Files and Records

Examples 1-3, 1-4, and 1-5 show you the three ways COBOL-81 lets you create a variable-length
record file.

In Example 1-3, the DEPENDING ON phrase sets the OUT-REC record length. The IN-TYPE data field
determines the OUT-LENGTH field's contents.

Example 1-3: Defining Variable-Length Records with the DEPENDING ON Phrase

FILE SECTION,
FD INFILE

LABEL RECORDS ARE STANDARD+
01 IN-REC+

03 IN-TYPE PIC X,
03 REST-OF-REC PIC X<499),

FD OUTFILE
RECORD VARYING FROM 200 TD 500 CHARACTERS
DEPENDING ON OUT-LENGTH,

01 OUT-REC PIC X<500),
WORKING-STORAGE SECTION,
01 OUT-LENGTH PIC 999 COMP VALUE ZEROES,
PROCEDURE DIVISION,
000-0PEN-FILES,

OPEN INPUT INFILE OUTPUT OUTFILE,
010-READ-INPUT,

READ INFILE AT END
CLOSE INFILE OUTFILE STOP RUN,

IF IN-TYPE = "A"
********************************** * OutPut is a ZOO-character record. *

MOVE 200 TD OUT-LENGTH
WRITE OUT-REC FROM IN-REC
GO TD 010-READ-INPUT,

IF IN-TYPE = "B"
********************************** * OutPut is a 300-character record. *

MOVE 300 TD OUT-LENGTH
WRITE OUT-REC FROM IN-REC
GO TO 010-READ-INPUT,

IF IN-TYPE = "C"

* OutPut is a 400-character record, *

MOVE 400 TD OUT-LENGTH
WRITE OUT-REC FROM IN-REC
GO TD 010-READ-INPUT,

IF IN-TYPE = "D"
********************************** * Output is a 500-character record *

MOVE 500 TD OUT-LENGTH
WRITE OUT-REC FROM IN-REC
GD TD 010-READ-INPUT,

DISPLAY "INVALID RECORD TYPE " IN-TYPE,
DISPLAY "INPUT RECORD IS BYPASSED"
GO TD 010-READ-INPUT,

The Basics of Handling COBOL-81 Files and Records 1-5 IV

In Example 1-4, the length of the output record determines the record length.

Example 1-4: Defining Variable-Length Records with Multiple Record Descriptions

FILE SECTION,
FD FILE-A

LABEL RECORDS ARE STANDARD,
01 A-RECORD PIC X!ZOO),
FD FILE-B

LABEL RECORDS ARE STANDARD.
01 B-RECORD PIC X<500),
FD OUTFILE

RECORD VARYING FROM ZOO TO 500 CHARACTERS+
01 OUT-REC-1 PIC X<ZOO),
01 OUT-REC-2 PIC X!500),
PROCEDURE DIVISION,
000-0PEN-FILES+

OPEN INPUT FILE-A FILE-B OUTPUT OUTFILE+
010-READ-FILE-A.

READ FILE-A AT END
CLOSE FILE-A
GO TO 020-READ-FILE-B.

WRITE OUT-REC-1 FROM A-RECORD+
GO TO 010-READ-FILE-A+

020-READ-FILE-B+
READ FILE-B AT END

CLOSE FILE-B OUTFILE STOP RUN,
WRITE OUT-REC-2 FROM B-RECORD,
GO TO 020-READ-FILE-B+

Example 1. -5 creates variable-length records by using the OCCURS DEPENDING ON phrase in the
record description. COBOL-81 determines record length by adding the sum of the variable record's
fixed portion to the size of the table described by the number of table occurrences at execution time.

In this example, the variable record's fixed portion size is 113 characters. (This is the sum of
P-PART-NUM, P-PART-INFO, and P-BIN-INDEX.) If P-BIN-INDEX contains a 7 at execution time,
P-BIN-NUMBER would be 35 characters long. Therefore, PARTS-REC's length would be 148 charac­
ters; the fixed portion's length is 113 characters, and the table entry's length at execution time is 35
characters.

Example 1-5: Defining Variable-Length Records with the OCCURS DEPENDING ON Phrase

FILE SECTION.
FD TRANS-FILE

LABEL RECORDS ARE STANDARD,
01 TRANS-REC+

03 T-PART-NUM
03 T-PART-INFO
03 T-BIN-NUMBER

FD PARTS-MASTER

PIC X!10),
PIC X!100),
PIC X!5),

RECORD VARYING 118 TO 163 CHARACTERS+
01 PARTS-REC,

03 P-PART-NUM PIC X!10)+
03 P-PART-INFO PIC X!100),
03 P-BIN-INDEX PIC 999,
03 P-BIN-NUMBER PIC X!5)

OCCURS 1 TO 10 TIMES DEPENDING ON P-BIN-INDEX+
WORKING-STORAGE SECTION,
01 INITIAL-READ PIC X VALUE "Y",
PROCEDURE DIVISION,

IV 1-6 The Basics of Handling COBOL-81 Files and Records

(continued on next page)

Example 1-5: Defining Variable-Length Records with the OCCURS DEPENDING ON Phrase (Cont.)

000-0PEN-FILES,
OPEN INPUT TRANS-FILE OUTPUT PARTS-MASTER,

010-READ-TRANS,
READ TRANS-FILE AT END

WRITE PARTS-REC
CLOSE TRANS-FILE PARTS-MASTER STOP RUN,

IF INITIAL-READ = "Y"
MOVE ZEROES TO P-BIN-INDEX
MOVE "N" TO INITIAL-READ
PERFORM 040-SETUP-PARTS-REC
GO TO 010-READ-TRANS,

020-CDMPARE-PART-NUMBER.
IF T-PART-NUM = P-PART-NUM

ADD 1 TO P-BIN-INDEX
MOVE T-BIN-NUMBER TO P-BIN-NUMBER CP-BIN-INDEX>
GO TO 010-READ-TRANS.

030-UNEQUAL-PART-NUMBER.
WRITE PARTS-REC.
MOVE SPACES TO PARTS-REC.
MOVE ZEROES TO P-BIN-INDEX.
PERFORM 040-SETUP-PARTS-REC.
GO TO 010-READ-TRANS.

040-SETUP-PARTS-REC.
MOVE T-PART-NUM TO P-PART-NUM.
MOVE T-PART-INFO TO P-PART-INFO.
ADD 1 TO P-BIN-INDEX,
MOVE T-BIN-NUMBER TOP-BIN-NUMBER CP-BIN-INDEX>.

If you describe a record with both the RECORD VARYING ... DEPENDING ON clause and the
OCCURS DEPENDING ON clause, COBOL-81 specifies record length as the value of data-name-1.

If your variable-length record requirements include compatibility with COBOL-74, the system gen­
erates variable-length attributes when you use the RECORD CONTAINS ... CHARACTERS clause in
place of VAX-11 COBOL's RECORD VARYING clause. For example:

Example 1-6: Defining Variable-Length Records for Compatibility with VAX-11 COBOL

FD PARTS-MASTER
RECORD CONTAINS

01 PARTS-REC-1
01 PARTS-REC-2
01 PARTS-REC-3
01 PARTS-REC-4
PROCEDURE-DIVISION,

100-WRITE-REC-1 +

200 TO 500 CHARACTERS,
PIC XC200),
PIC XC300),
PIC XC400),
PIC XC500),

MOVE IN·REC TO PARTS-REC-1.
WRITE PARTS-REC-1,
GO TO , , ,

200-WRITE-REC-2,
MOVE IN-REC TO PARTS-REC-2+
WRITE PARTS-REC-2,
GO TO , , ,

The Basics of Handling COBOL-81 Files and Records 1-7 IV

If you have multiple record-length descriptions for a file and omit either the RECORD VARYING
clause or the RECORD CONTAINS clause, all records ·written to the file will have a length equal to
the length of the longest record described for the file. See Example 1-7.

Example 1-7: Defining· Fixed-Length Records with Multiple Record Descriptions

FD PARTS-MASTER,
01 PARTS-REC-1
01 PARTS-REC-2
01 PARTS-REC-3
01 PARTS-REC-4

PIC X<200),
PIC X!300),
PIC XC400),
PIC XC500),

PROCEDURE DIVISION.

100-WRITE-REC-1.
MOVE IN-REC TO PARTS-REC-1,
WRITE PARTS-REC-1.
GO TO , , ,

200-WR ITE-REC-2,
MOVE IN-REC TO PARTS-REC-2,
WRITE PARTS-REC-2
GO TO ,,,

Writing PARTS-REC-1, PARTS-REC-2, or PARTS-REC-3 produces records equal in length to the long­
est record, PARTS-REC-4.

1.4.2 Print-Controlled File

Print-controlled files contain form-advancing information with each record. COBOL-81 places ex­
plicit form-control bytes directly into the file. Therefore, any COBOL-81 program trying to read a
print-controlled file can have unpredictable results.

If you use the WRITE AFTER ADVANCING, the LINAGE, or the APPLY PRINT-CONTROL statement,
the compiler generates variable-length print-controlled records.

1.5 File Design Considerations

The importance of design is proportional to the complexity of the file organization. That is, design is
least important for applications using sequential organization, more important for relative organiza­
tion, and most important for indexed organization. Chapters 2, 3, and 4 discuss file design for
sequential, relative, and indexed files, respectively.

1.6 File Handling

Before your program can perform I /0 on a file, it must identify the file to the operating system,
specify the file's organization and access modes, and make the file available by opening it. A
program must follow these steps whenever creating the file or processing one that has already been
created.

IV 1-8 The Basics of Handling COBOL-81 Files and Records

1.6.1 Identifying a File from Your COBOL-81 Program

A file description entry defines a file's logical structure and associates the file with a file name that is
unique within the program. The program uses this file name in the OPEN, READ, START, DELETE,
and CLOSE statements.

You must establish a link between the file name your program uses and the file specification that
RMS-11 uses. The SELECT and ASSIGN clauses do this. Together these clauses define a file connec­
tor. A file connector is storage area that contains information about a file. It links:

• A file name and a physical file

• A file name and its associated record area

The program must include a SELECT clause, followed by an ASSIGN clause, for every file description
entry (FD) it contains. The file name you specify in the SELECT clause must match the file name in the
file description entry. In the ASSIGN clause following a SELECT clause, you specify a literal that
associates the file name with a file specification. This literal can be a complete file specification or
one that relies on operating system defaults.

To understand the relationships between the SELECT clause, the ASSIGN clause, and the FD entry,
consider two examples. In Example 1-8, because the file name specified in the FD entry of Example
1-8, DAT-FILE, all 1/0 statements in the program referring to that file must use the name DAT-FILE.
RMS-11 uses the ASSIGN clause to interpret DAT-FILE as REPORT.DAT and requires that
REPORT.DAT be in the account under which the program is running.

Example 1-8: Defining a Disk File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION+
FILE-CONTROL.

SELECT DAT-FILE
ASSIGN TO "REPORT.DAT"

DATA DIVISION+
FD DAT-FILE

The I /0 statements in Example 1-9 refers to MYFILE-PRO, which the ASSIGN clause identifies to the
operating system as MARCH.311. Additionally, the operating system looks for the file in directory
[2,202] on the magnetic tape mounted on MM1 :.

Example 1-9: Defining a Magnetic Tape File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION+
FILE-CONTROL,

SELECT MYFILE-PRO
ASSIGN TO "MM1:C21202JMARCH+311"

(continued on next page)

The Basics of Handling COBOL-81 Files and Records 1-9 IV

Example 1-9: Defining a Magnetic Tape File (Cont.)

DATA DIVISION,
FD MYFILE-PRO

PROCEDURE DIVISION,
,AOOO-BEGIN.

OPEN INPUT MYFILE-PRO,

READ MYFILE-PRO,

CLOSE MYFILE-PRO,

1.6.1.1 Using the VALUE OF ID Clause for Device Independence - If the file specification is subject
to change, it is inconvenient to edit the ASSIGN clause and recompile the program every time you
run it. To avoid this problem, you can use a partial file specification in the ASSIGN clause and
complete it by using the optional VALUE OF ID clause of the FD entry.

The VALUE OF ID clause completes or overrides the file specification in the ASSIGN clause. This lets
you keep the file specification a variable until run time.

Example 1-10 illustrates how to use the VALUE OF ID clause to complete a partial file specification
MARCH, with operator input. Notice how the Procedure Division statements prompt the operator for
a file specification. This technique allows:

• Maximum flexibility for file access. The operator can override any part of the file specification
in the ASSIGN clause.

• Maximum use of system hardware. The operator can mount a tape (or any other volume) on
any available tape drive and direct the program to it.

• Maximum use of computer operator and operating system. The operator and operating system
no longer have to wait for one job to finish using a specific tape drive before the next job can
be started.

Example 1-10: How to Override or Supplement a File Specification at Run Time

ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT MYFILE-PRO
ASSIGN TO "MARCH"

DATA DIVISION,
FILE SECTION,
FD MYFILE-PRO

* VALUE OF ID IS USER-EXTENSION,

* ***

IV 1-10 The Basics of Handling COBOL-81 Files and Records

(continued on next page)

Example 1-10: How to Override or Supplement a File Specification at Run Time (Cont.)

WORKING-STORAGE SECTION.

* 01 USER-EXTENSION PIC >«20),

* ***

PROCEDURE DIVISION.
AOOO-BEGIN.

*

*

DISPLAY "Enter file specification".
ACCEPT USER-EXTENSION.

OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO.

CLOSE MYFILE-PRO.

1.6.1.2 Using Logical Names - Another option you have when using the ASSIGN clause is to use a
logical name in the file specification. For system specific information on the use of logical names,
refer to Part I, Chapter 1, of your COBOL-81 User's Guide.

1.6.2 Choosing File Organization and Record Access Mode

Your program always specifies - either explicitly or implicitly - a file's organization and access
mode before the program opens the file. The ORGANIZATION and ACCESS clauses of the
FILE-CONTROL paragraph, if present, specify these two attributes. If these clauses are not present,
the compiler assumes sequential organization and sequential access.

1.6.2.1 File Organizations - COBOL-81 supports three types of file organizations:

•ORGANIZATION IS SEQUENTIAL - This organization is useful for programs that normally
access each record, as in a payroll or mailing list file.

•ORGANIZATION IS RELATIVE - This organization lets you access records randomly accord­
ing to their key values (relative record numbers).

This organization is less flexible than indexed organization because you cannot insert a record
in the middle of your file unless you have an empty cell to contain it.

•ORGANIZATION IS INDEXED - This organization lets you access records randomly accord­
ing to their key values. Therefore, it is a useful way to organize a file in which records will be
added, changed, or deleted upon demand.

If you do not use the ORGANIZATION clause, COBOL-81 assumes the file organization is
sequential.

The Basics of Handling COBOL-81 Files and Records 1-11 IV

1.6.2.2 Record Access Modes - The methods for retrieving and storing records in a file are called
record access modes. COBOL-81 supports three types of record access modes:

1. ACCESS MODE IS SEQUENTIAL

• With sequential files, sequential access retrieves the records in the same sequence
established by the WRITE statements that created the file.

• With relative files, sequential access retrieves the records in the order of ascending
record key values (or relative record numbers).

• With indexed files, sequential access retrieves records in the order of ascending record
key values.

2. ACCESS MODE IS RANDOM - The value of the record key your program specifies
indicates the record to be accessed.

3. ACCESS MODE IS DYNAMIC - This access mode allows you to switch from sequential
access mode to random access mode and back to sequential access mode while process­
ing a file. You can switch back and forth as much as you like; the only limitation is that
the file must support the selected access mode.

If you do not use the ACCESS clause, COBOL-81 assumes sequential access.

A different access mode can be used to process records within the file each time it is opened. A
program can also change access mode during the processing of its file. Chapters 2, 3, and 4 discuss
the access mode(s) applicable to sequential, relative, and indexed file organization, respectively.

Example 1-11 shows a sample SELECT statement for a sequential file with sequential access modes:

Example 1-11 : Sequential File SELECT Statements

(1)

FILE-CONTROL+
SELECT LIST-FILE

ASSIGN TO "MAIL.LIS"
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL+

(2)

FILE-CONTROL+
SELECT PAYROLL

0 ASSIGN TO "PAYROL+DAT",

COBOL-81 assumes sequential organization and sequential access unless you specify otherwise.

Sample statements for a relative file are shown in Example 1-12.

Example 1-12: Relative File SELECT Statements

(1)

FILE-CONTROL,
SELECT MODEL

ASSIGN TO "ACTOR.DAT"
ORGANIZATION IS RELATIVE
ACCESS IS SEQUENTIAL+

(2)

FILE-CONTROL,
SELECT PARTS

ASSIGN TO "PARTS.DAT"
O.RGANIZATION IS RELATIVE
ACCESS IS DYNAMIC
RELATIVE KEY IS PART-NO+

Sample statements for an indexed file are shown in Example 1-13.

IV 1-12 The Basics of Handling COBOL-81 Files and Records

Example 1-13: Indexed File SELECT Statements

(1)

FILE-CONTROL.
SELECT GROUP

ASSIGN TO "RFC6A.PRO"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS WRITER
ALTERNATE RECORD KEY IS EDITOR,

(2)

FILE-CONTROL.
SELECT TEAS

ASSIGN TD "TETLY"
ORGANIZATION IS INDEXED
RECORD KEY IS LEAVES.

Because the default organization is sequential, both the relative and indexed examples require the
ORGANIZATION clause.

1.7 Opening and Closing Files

A COBOL-81 program must open a file with the OPEN statement before any other I /0 statement can
reference it. Files can be opened more than once in the same program as long as they are closed
before the second and subsequent opens.

Opening a file allocates the buffers, creates or checks the file labels, and positions the I /0 device to
the start of the file. Closing a file writes out any remaining records in the output buffers, writes an
end-of-file label on magnetic output files, and optionally rewinds and I or locks magnetic tape files.
Examples of OPEN and CLOSE statements are:

OPEN INPUT MASTER-FILE.

OPEN OUTPUT REPORT-FILE.

OPEN I-0 MASTER-FILE
TRANS-FILE

OUTPUT REPORT-FILE.

CLOSE MASTER-FILE.

CLOSE TRANS-FILE
REPRT-FILE.

The OPEN statement must specify one of four open modes: INPUT, OUTPUT, 1-0, or EXTEND. Your
choice, along with the file's organization and access mode, determines which I /0 statements you
can use. Sections 2.3, 3.3, and 4.3 discuss the I /0 statements for sequential, relative, and indexed
files respectively.

When your program performs an OPEN statement, the following steps take place:

1. RMS-11 builds a file specification by using the contents of the VALUE OF ID clause, if
any, to alter or complete the file specification in the ASSIGN clause.

2. If the file was named in a SAME AREA clause, the Run-Time System checks the status of
all other files named in the clause. If any are open, the OPEN statement fails.

3. The Run-Time System checks the file's current status. If the file is open, or if it was closed
WITH LOCK, the OPEN statement fails.

The Basics of Handling COBOL-81 Files and Records 1-13 IV

4. If the file attributes specified by the program attempting an OPEN operation (INPUT, 1-0,
or EXTEND) differ from the attributes specified when the file was created, the OPEN
statement fails.

5. If the file specification names an invalid device, or contains any other errors, the Run­
Time System generates an error message and the OPEN statement fails.

6. The Run-Time System takes one of the following actions if it cannot find the file:

a. If the file's OPEN mode is OUTPUT, it creates the file.

b. If the file's OPEN mode is EXTEND, or 1-0 with RANDOM or DYNAMIC access, it
creates the file.

c. If the file's OPEN mode is INPUT, and its SELECT clause includes the OPTIONAL
phrase, the OPEN statement is successful. The first read on that file causes the AT END
condition.

d. If none of the previous conditions is met, the OPEN fails and the USE procedure
(if any) gets control. If no USE procedure exists, the Run-Time System aborts the
program.

7. If the file's OPEN mode is OUTPUT, and a file by the same name already exists, the pre­
existing file is replaced.

After the program successfully opens the file, the Run-Time System enables or disables all I /0
statements that refer to the file, depending on the file organization, access mode, and open mode.

RMS-11 creates an end-of-file marker whenever a program closes a sequential file. If the file is on
magnetic tape, RMS-11 rewinds it. To close a tape without rewinding it, use the NO REWIND
phrase. This speeds processing when another file is to be written beyond the end of the first file. For ~
example:

CLOSE MASTER-FILE NO REWIND,

You can also close a file and prevent it from being open again by the program in the same run. For
example:

CLOSE MASTER-FILE WITH LOCK,

IV 1-14 The Basics of Handling COBOL-81 Files and Records

Chapter 2
Processing Sequential Files

Sequential input/output, in which records are written and read in sequence, is the simplest and most
common form of I /0. It can be performed on all I /0 devices, including magnetic tape, disk,
terminals, and line printers.

2.1 Sequential File Organization

In sequential file organization, records are arranged consecutively in the order in which they were
written to the file. Figure 2-1 illustrates sequential file organization.

Figure 2-1 : Sequential File Organization

r- Beginning of file End of file -i
RECORD RECORD RECORD RECORD RECORD

1 2 3 (n-1) n

CB 1ART-20200-10

Sequential files always contain an end-of-file mark that designates the end of the file. COBOL-81
statements can write over the end-of-file mark and, thus, extend the length of the file. (RMS-11 inserts
another end-of-file mark after the last record written.) Since the end-of-file mark indicates the end of
useful data, COBOL-81 provides no method for reading beyond the end-of-file mark, even though the
amount of space reserved for the file exceeds the amount actually used.

2-1 IV

Occasionally a file with sequential organization is so large that it requires more than one volume,
such as a multiple reel magnetic tape file. An end-of-volume label marks the end of recorded infor­
mation on each volume and signals the file system to switch to a new volume. On multiple volume
files, the end-of-file mark appears only once, at the end of the last record on the last volume. See
Figure 2-2.

Note

RSTS/E does not support multiple volume files.

Figure 2-2: A Multiple Volume Sequential File

Volume 1 I REC I REC I REC I ... I REC I REC I REC I EOV I
Volume 2 I REC I REC I REC I ... I REC I REC I REC I EOV I
Volume 3 I REC I REC I REC I ... I REC I EOF I I ...

C81ART·20210·15

2.2 Design Considerations

With sequential files, design considerations include the selection of both:

1 . Record format (See Chapter 1)

• Fixed-length

• Variable-length

2. Medium type - Sequential files can be accessed on disk, magnetic tape, and unit record
devices (for example: printets and card readers). When you select the medium for your
file, consider the following:

• Speed of access - tape is significantly slower than disk.

• Frequency of use - use tape to store files and save your disk for more immediate
purposes.

• Transportability - use tape files if you need to use the file across systems (RSTS/E disk
structure is not compatible with RSX-11 MI M-PLUS or VAX/VMS).

3. Allocation - at time of file creation and file extension

4. Compiler limitations

For more information on sequential file design, see Chapter 7, File Optimization Techniques, and the
RMS-11 User's Guide.

IV 2-2 Processing Sequential Files

2.3 Statements for Sequential File Processing

Processing a sequential file involves:

1. Opening the file with the OPEN statement

2. Processing the file with valid I /0 statements

3. Closing the file with the CLOSE statement

Table 2-1 lists the valid I /0 statements and illustrates the following relationships:

• Organization determines valid access modes.

• Organization and access mode determine valid open modes.

• All three (organization, access, and open mode) enable or disable I /0 statements.

Table 2-1: Valid I /0 Statements for Sequential Files

Open Mode

File Access
Organization Mode Statement INPUT OUTPUT 1-0 EXTEND

SEQUENTIAL SEQUENTIAL READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes No Yes

2.4 Defining a Sequential File

Each sequential file in a COBOL-81 program is given a name, or file name, in a separate SELECT
clause in the Environment Division. Refer to Example 2-1 for these file names: MASTER-FILE,
TRANS-FILE, and REPRT-FILE. These names are referred to by statements in the COBOL-81 program.

The ASSIGN clause associates the file name with a file specification. The file specification points the
operating system to the file's physical and logical location on a specific hardware device. For
example:

1. MASTER-FILE is located on disk unit DB1 :, directory [1, 10], and is called MASTER.DAT.

2. TRANS-FILE is located on magnetic tape unit 1, and is called TRANS.DAT.

3. REPRT-FILE is the line printer.

Each file is then further described in the program with a file description (FD) entry in the File Section
of the Data Division; for example, MASTER-FILE, TRANS-FILE, and REPRT-FILE. The FD entry is
then followed immediately by the file's record description; for example, MASTER-RECORD,
TRANSACTION-RECORD, and REPORT-LINE.

You need not specify either the ORGANIZATION IS SEQUENTIAL phrase or the ACCESS MODE IS
SEQUENTIAL phrase in the SELECT clause. COBOL-81 assumes sequential organization and sequen­
tial access mode unless you specify otherwise.

Processing Sequential Files 2-3 IV

Example 2-1: Defining a Sequential File

ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT MASTER-FILE
SELECT TRANS-FILE
SELECT REPRT-FILE

DATA DIVISION,
FILE SECTION,

ASSIGN
ASSIGN
ASSIGN

PIC XCBOl,
PIC 99,

TO
TO
TO

"D61:[1t10JMASTER.DAT",
"MM1:TRANS.DAT",
"LPO: II.

FD MASTER-FILE,,,
01 MASTER-RECORD,

02 MASTER-DATA
02 MASTER-SIZE
02 MASTER-TABLE

03 MASTER-YEAR
03 MASTER-COUNT

OCCURS 0 to 50 TIMES
DEPENDING ON MASTER-SIZE,
PIC 99,

FD TRANS-FILE,,,
01 TRANSACTION-RECORD

FD REPRT-FILE,,,
01 REPORT-LINE

PIC S9C5lV99,

PIC XC25l,

PIC XC 132),

2.5 Creating Sequential Files

A program creates a sequential file by:

1. Opening the file as OUTPUT or EXTEND

2. Executing the WRITE statement

Each WRITE statement releases a logical record to the end of an output file, thereby creating an
entirely new record in the file. The WRITE statement releases records to files that are OPEN:

• OUTPUT - The output mode can create these two kinds of files:

1. Storage files - A storage file remains on tape or disk for future reference or processing.

2. Print files - The LINAGE clause, APPLY PRINT-CONTROL clause, or the ADVANCING
phrase in the WRITE statement designates a file as a print file. One or more records
containing carriage-control characters are written to perform line spacing. The WRITE
statement does not have to release print files directly to a storage file. It can release
them directly to the printer for immediate printing. A storage file can also be a print file.

• EXTEND - The extend mode adds new records in sequence after the last record of the file (see
Section 2.8).

There are two ways of writing records:

1. WRITE record-name FROM source-area

2. WRITE record-name

IV 2-4 Processing Sequential Files

However, the first way is best used for program readability when working with multiple record types.
For example, statements (1) and (2) in this example are logically equivalent:

FI LE SEC TI ON,
FD STOCK-FILE+
01 A-STOCK-RECORD
01 6-STOCK-RECORD

PIC X<SOl,
PIC XCSOl+

WORKING-STORAGE SECTION+
01 STOCK-WORK PIC X<SOl,

(1)

WRITE A-STOCK-RECORD FROM STOCK-WORK,

(2)

MOVE STOCK-WORK TO A-STOCK-RECORD+
WRITE A-STOCK-RECORD,

When you omit the FROM phrase, you process the records directly in the record area or buffer (for
example, A-STOCK-RECORD).

The following example writes the record PRINT-LINE to the device assigned to that record's file, then
skips three lines. When it reaches the end of the page (as specified by the LINAGE clause), it causes
program control to transfer to HEADER-ROUTINE.

WRITE PRINT-LINE BEFORE ADVANCING 3 LINES
AT END-OF-PAGE PERFORM HEADER-ROUTINE,

For a WRITE statement, if the source area is shorter than the file's record length, the source area is
padded on the right with spaces; if longer, the source area is truncated on the right.

Example 2-2 creates a sequential file.

Example 2-2: Creating a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID+ SEQ01+
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT TRANS-FILE
DATA DIVISION.
FILE SECTION+

FD TRANS-FILE+
01 TRANSACTION-RECORD

PROCEDURE DIVISION,
A000-6EGIN+

ASSIGN

PIC X<25l+

OPEN OUTPUT TRANS-FILE+

TO "TRANS.OAT",

PERFORM A010-PROCESS-TRANS UNTIL TRANSACTION-RECORD = "END",
CLOSE TRANS-FILE.
STOP RUN,

A010-PROCESS-TRANS+
DISPLAY "Enter next record - X<25l"
DISPLAY "Enter END to terminate the session"
DISPLAY "-------------------------"
ACCEPT TRANSACTION-RECORD
IF TRANSACTION-RECORD NOT = "END"

WRITE TRANSACTION-RECORD+

Processing Sequential Files 2-5 IV

2.6 Reading Sequential Files

To read a sequential file you must:

1. Open the file as INPUT or 1-0

2. Execute the READ statement

Each READ statement reads a single logical record and makes its contents available to the program in
the record area. There are two ways of reading records:

1. READ file-name INTO destination-area

2. READ file-name

For example, statements (1) and (2) in this example are logically equivalent:

FILE SECTION,
FD STOCK-FILE,
01 STOCK-RECORD PIC X<BO),

WORKING-STORAGE SECTION,
01 STOCK-WORK PIC X<80),

(1)

READ STOCK-FILE INTO STOCK-WORK,

(2)

READ STOCK-FILE.
MOVE STOCK-RECORD TO STOCK-WORK,

When you omit the INTO phrase you process the records directly in the record area or buffer; for
example, STOCK-RECORD. The record is also available in the record area if you use the INTO
phrase.

In a READ, if the destination area is shorter than the length of the record being read, the record is
truncated on the right; if longer, the destination area is filled on the right with blanks.

Example 2-3 reads a sequential file and displays its contents on the terminal.

Example 2-3: Reading a Sequential File

IDENTIFICATION DIVISION,
PROGRAM-ID, SEQOZ,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT TRANS-FILE
DATA DIVISION,
FILE SECTION,

FD TRANS-FILE,
01 TRANSACTION-RECORD

PROCEDURE DIVISION,
- AOOO-BEGIN,

OPEN INPUT TRANS-FILE,

ASSIGN TO

PIC X<25),

"TRANS.DAT",

PERFORM A100-READ-TRANS-FILE UNTIL TRANSACTION-RECORD = "END",
CLOSE TRANS-FILE,
STOP RUN,

A100-READ-TRANS-FILE,
READ TRANS-FILE AT END MOVE "END" TO TRANSACTION-RECORD,
IF TRANSACTION-RECORD NOT = "END" DISPLAY TRANSACTION-RECORD,

IV 2-6 Processing Sequential Files

2.7 Rewriting Records in a Sequential File

To rewrite a record in a sequential file you must:

1. OPEN the file as INPUT-OUTPUT

2. READ the target record

3. REWRITE the target record

The REWRITE statement places the record just read back into its file. The REWRITE statement com­
pletely replaces the contents of the target record with new data. You can use the REWRITE statement
for files on mass storage devices only; for example, disk units. There are two ways of rewriting
records:

1 . REWRITE record-name FROM source-area

2. REWRITE record-name

For example, statements (1) and (2) in this example are logically equivalent:

FILE SECTION.
FD STOCK-FILE.
01 STOCK-RECORD PIC){(80),

WORKING-STORAGE SECTION.
01 STOCK-WORK PIC Xl80),

(1)

REWRITE STOCK-RECORD FROM STOCK-WORK.

(2)

MOVE STOCK-WORK TO STOCK-RECORD.
REWRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record area or buffer; for
example, STOCK-RECORD.

For a REWRITE statement, the record being rewritten must be the same length as the record being
replaced.

Example 2-4 reads a sequential file and rewrites as many records as the operator wants.

Example 2-4: Rewriting a Sequential File

IDENTIFICATION DIVISION,
PROGRAM-IO. SEQ03,
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL,

SELECT TRANS-FILE
DATA DIVISION,
FILE SECTION.

FD TRANS-FILE.
01 TRANSACTION-RECORD

WORKING-STORAGE SECTION.

ASSIGN TO "TRANS.DAT",

PIC XIZS),

01 ANSWER PIC X.
(continued on next page)

Processing Sequential Files 2-7 IV

Example 2-4: Rewriting a Sequential File (Cont.)

PROCEDURE DIVISION,
AOOO-BEGIN.

OPEN I-0 TRANS-FILE.
PERFORM AlOO-READ-TRANS-FILE UNTIL TRANSACTION-RECORD
CLOSE TRANS-FILE,
STOP RUN I

A100-READ-TRANS-FILE.
READ TRANS-FILE AT END MOVE "END" TO TRANSACTION-RECORD,
IF TRANSACTION-RECORD NOT = "END"

PERFORM A300-GET-ANSWER UNTIL ANSWER = "Y" OR "N"
PERFORM AZOO-REWRITE-RECORD,

AZOO-REWRITE-RECORD,

"END II'

IF ANSWER = "Y" DISPLAY "Please enter new record contents"
ACCEPT TRANSACTION-RECORD
REWRITE TRANSACTION-RECORD,

A300-GET-ANSWER.
DISPLAY "Do rou want to replace this record?

TRANSACTION-RECORD
DISPLAY "Please answer Y or N"
ACCEPT ANSWER.

2.8 Extending Sequential Files

To position a file to its current end, and to allow the program to write new records beyond the last
record in the file, use both the:

• EXTEND phrase of the OPEN statement

• WRITE statement

For new files, RMS-11 positions the current record pointer at the beginning of the file. Example 2-5
shows how to extend a sequential file.

Example 2-5: Extending a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ04,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT TRANS-FILE
DATA DIVISION.
FILE SECTION.

FD TRANS-FILE,
01 TRANSACTION-RECORD

PROCEDURE DIVISION.
AOOO-BEGIN.

ASSIGN

PIC XC25),

OPEN EXTEND TRANS-FILE.

TO "TRANS.DAT",

PERFORM A100-WRITE-RECORD UNTIL TRANSACTION-RECORD
CLOSE TRANS-FILE.
STOP RUN,

A100-WRITE-RECORD.
DISPLAY "Enter next record - XC25)"
DISPLAY "Enter END to terMinate the session"
DISPLAY "-------------------------"
ACCEPT TRANSACTION-RECORD

"END" I

IF TRANSACTION-RECORD NOT = "END" WRITE TRANSACTION-RECORD,

IV 2-8 Processing Sequential Files

Without the EXTEND phrase, a COBOL-81 program would have to:

1. Open the input file

2. Copy it to an output file

3. Add records to the output file

2.9 Backing Up Your Sequential Files

If your sequential disk file becomes corrupt with bad data, or if your program abnormally terminates
when the file is opened for OUTPUT, the file can become unusable. Proper backup procedures are
the key to successf u I recovery.

You should back up your disk file at some reasonable point (daily, weekly, or monthly), depending
on file activity, and save all transactions until you create a new backup. In this way, you can easily
recreate your sequential disk file from your last backup sequential file and transaction file whenever
the need arises.

Processing Sequential Files 2-9 IV

Chapter 3
Processing Relative Files

A relative file consists of fixed-size record cells and uses a key to retrieve its records. The key, or
record key, is an integer that specifies the record's storage cell within the file. It is analogous to the
subscript of a table.

Unlike sequential files, where retrieving the twentieth record involves reading the previous nineteen
records first, relative files can directly access the twentieth record with one read. In addition, relative
files allow the program to read forward or backward depending upon the record key.

Another significant fact of relative file processing is that each cell does not have to contain a record.
Although each cell occupies one record space, a field preceding the record on the storage medium
indicates whether or not that cell contains a valid record. Thus, a fiie can contain fewer records than
it has cells, and the empty cells can be anywhere in the file. ·

The numerical order of the cells remains the same during all operations on a relative file; however,
accessing statements can move a record from one cell to another, delete a record from a cell, or insert
new records into empty cells.

Relative file processing is available only on magnetic disks.

3.1 Relative File Organization

With relative file processing, RMS-11 structures a file as a series of fixed-sized record cells. Cell size
is based on the size specified as the maximum permitted length for a record in the file. RMS-11
considers these cells as successively numbered from 1 (the first) ton (the last). A cell's relative record
number, or RRN, represents its location relative to the beginning of the file.

Each cell in a relative file can contain a single record. There is no requirement, however, that every
cell contain a record. Empty cells can be interspersed among cells containing records.

Since cell numbers in a relative file are unique, they can be used to identify both the cell and the
record (if any) occupying that cell. Thus, record number 1 occupies the first cell in the file, record
number 21 occupies the twenty-first cell, and so forth. When a cell number is used to identify a
record, it is also known as a relative record number. Figure 3-1 depicts the structure of a relatively
organized file.

3-1 IV

Figure 3-1: Relative File Organization

Cell no.

.. I Beginning of file

+ 1 2 3

I REC10RD I EMPTY I REC~RD I
t t

First record
written

Second record
written

End of file I
999 1000 +

I RE~~RD I EMPTY I

C81ART-20220-20

Relative files have three capabilities not available with sequential files:

1 . Random access by record key

2. Record deletion by record key

3. Record updating by record key

Relative files are used primarily when records must be accessed in random order and the records can
easily be associated with a sequential number. When a program creates a relative file, RMS-11
allocates disk space for each cell. Additional space in the cell cannot be added thereafter unless you
recreate the file. However, records can be replaced, so empty (dummy) records can be inserted to be
replaced later with real records, giving the effect of adding records. After a program creates a relative
file, it can be updated by replacing or deleting records. Records are replaced by rewriting the new
record over or on top of the old one.

Relative files are used like tables. Their advantage over tables is that their size is limited to disk space
rather than memory space. However, it takes much more time to retrieve an element from a relative
file than from a table. Relative files are best for records that are easily associated with ascending,
consecutive numbers, such as, but not limited to, years (the years 71 to 90 could be stored with
record keys 1 to 20), months (record keys 1 to 12), or the 50 U.S. states (record keys 1 to 50).

3.2 Design Considerations

Before you create your relative file applications, you should design .your file based on these design
considerations:

1 . Record format selection (See Chapter 1)

• Fixed-length

• Variable-length

Relative files can contain only unblocked, fixed-length records. You can use variable­
length records; however, RMS-11 calculates a cell size equal to the maximum record size
plus overhead bytes, resulting in fixed-length records. Once created, relative records can
be accessed sequentially, randomly, or dynamically.

2. Medium selection~ Relative files can be accessed on disk only. Make sure the disk pack
is large enough to meet your current and future needs.

IV 3-2 Processing Relative Files

3. Allocation - at time of file creation and file extension

4. Bucket size

5. Maximum record number

6. Compiler limitations

For more information on relative file design, see Chapter 7, File Optimization Techniques, and the
RMS-11 User's Guide.

3.3 Statements for Relative File Processing

Processing a relative file involves:

1. Opening the file with the OPEN statement

2. Processing the file with valid I /0 statements

3. Closing the file with the CLOSE statement

Table 3-1 lists the valid I /0 statements and illustrates the following relationships:

• Organization determines valid access modes.

• Organization and access mode determine valid open modes.

• All three (organization, access, and open mode) enable or disable I /0 statements.

Table 3-1: Valid I /0 Statements for Relative Files

Open Mode

File Access
Organization Mode Statement INPUT OUTPUT 1-0

RELATIVE SEQUENTIAL DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes No

RANDOM DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
WRITE No Yes Yes

DYNAMIC DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes Yes

Processing Relative Files 3-3 IV

3.4 Defining a Relative File

Each relative file in a COBOL-81 program is given a name, or file name, in a SELECT clause in the
Environment Division.

The ASSIGN clause associates the file name with a file specification. The file specification points the
operating system to the file's physical and logical location on a specific hardware device (see
HEINZ.DAT in Example 3-1). Each file is then further described in the program with a file description
(FD) entry in the File Section of the Data Division (see FLAVORS in Example 3-1). The FD entry is
then followed immediately by the file's record description (see KETCHUP-MASTER in Example 3-1).

You must specify the ORGANIZATION IS RELATIVE phrase in the SELECT clause; otherwise,
COBOL-81 assumes sequential organization. You must also specify the RELATIVE KEY IS phrase and
assign a relative key data name in random or dynamic access.

Example 3-1: Defining a Relative File

IDENTIFICATION DIVISION,
PROGRAM-ID, REL01,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY,

DATA DI!JISION,
FILE SECTION.
FD FLAVORS,
01 KETCHUP-MASTER PIC X<50l •

WORKING-STORAGE SECTION,
01 KETCHUP-MASTER-KEY PIC 99,

3.5 Creating Relative Files

A program creates a relative file by:

1. Specifying either of the following access modes in the SELECT clause:

• Sequential access

• Random access

Each of these two access mode choices require different processing techniques. The next
two sections discuss those techniques.

2. Opening the file as:

IV 3-4

• OUTPUT - The only function of a WRITE statement with output files is to place entirely
new records into the file. If a file requires more space, RMS-11 automatically extends
the file size, regardless of the access mode.

• 1-0 - With input/output files, the WRITE statement places records into cells that al­
ready exist and contain no valid record.

Processing Relative Files

3. Initializing the relative key data name for each record to be written

4. Executing the WRITE statement for each new relative record

5. Closing the file

3.5.1 Sequential Access Mode Creation

When a program creates a relative file in sequential access mode, RMS-11 does not use the relative
key. RMS-11 writes the first record in the file at relative record number 1, the second record at
relative record number 2, and so on, until the program closes the file. If you use the RELATIVE KEY IS
clause, the compiler moves the relative record number of the record being written to the relative key
data item. Example 3-2 writes 10 records with relative record numbers 1 to 10.

Example 3-2: Creating a Relative File in Sequential Access Mode

IDENTIFICATION DIVISION,
PROGRAM-ID+ RELOZ,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL,

DATA DIVISION,
FILE SECTION,
FD FLAVORS,
01 KETCHUP-MASTER

PROCEDURE DIVISION+
A000-6EGIN,

OPEN OUTPUT FLAVORS+

PIC X<SO),

PERFORM A010-WRITE 10 TIMES.
CLOSE FLAVORS,

A010-WRITE.
WRITE KETCHUP-MASTER INVALID KEY DISPLAY "BAD WRITE"

STOP RUN,

3.5.2 Random Access Mode Creation

When a program creates a relative file using random access mode, the program must place a value in
the RELATIVE KEY data item before executing the WRITE statement. Example 3-3 shows how to
supply the relative key. It writes 10 records in cells numbered: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20.
Record cells 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 are also created but contain no valid record.

Example 3-3: Creating a Relative File in Random Access Mode

IDENTIFICATION DIVISION,
PROGRAM-ID+ REL03,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY+

(continued on next page)

Processing Relative Files 3-5 IV

Example 3-3: Creating a Relative File in Random Access Mode (Cont.)

DATA DIVISION,
FILE SECTION,
FD FLAVORS,
01 KETCHUP-MASTER

WORKING-STORAGE SECTION,
01 KETCHUP-MASTER-KEY

PROCEDURE DIVISION,
A000-6EGIN,

OPEN OUTPUT FLAVORS,

PIC XC50),

PIC 99,

MOVE 0 TD KETCHUP-MASTER-KEY,
PERFORM AOlO-CREATE-RELATIVE-FILE 10 TIMES,
DISPLAY "END OF JOB",
CLOSE FLAVORS,
STOP RUN,

A010-CREATE-RELATIVE-FILE,
ADD 2 TO KETCHUP-MASTER-KEY
WRITE KETCHUP-MASTER INVALID KEY DISPLAY "BAD WRITE"

STOP RUN,

3.6 Reading Relative Files

Your program can read a relative file three ways:

1 . Sequentially

2. Randomly

3. Dynamically

3.6.1 Sequential Reading

To sequentially read relative records:

1. Specify the ACCESS MODE IS SEQUENTIAL clause.

2. Open the file as INPUT or 1-0.

3. Read records as you would a sequential file, or use the START statement.

The READ statement makes the next logical record of an open file available to the program. The
system sequentially reads the file from either: (1) cell 1 or (2) wherever you START the file, up to cell
n. It skips the empty cells and retrieves only valid records. Each READ statement updates the contents
of the file's RELATIVE KEY data item, if specified. The data item contains the relative number of the
available record. When the at end condition occurs, execution of the READ statement is unsuccessful
(see Chapter 5, Input/Output Exception Conditions Handling).

Sequential processing need not begin at the first record of a relative file. The START statement
specifies the next record to be read sequentially. It positions the current record pointer for subsequent
1/0 operations.

Example 3-4 reads a relative file sequentially and displays its contents on the terminal.

IV 3-6 Processing Relative Files

Example 3-4: Sequentially Reading Relative Files

IDENTIFICATION DIVISION,
PROGRAM-ID. REL04,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY,

DATA DIVISION,
FILE SECTION,
FD FLAVORS,
01 KETCHUP-MASTER

WORKING-STORAGE SECTION,
01 KETCHUP-MASTER-KEY

01 END-OF-FILE

PROCEDURE DIVISION,
AOOO-BEGIN,

OPEN INPUT FLAVORS,

PIC XC50),

PIC 99,

PIC X,

PERFORM A010-DISPLAY-RECOROS UNTIL END-OF-FILE "Y",
A005-EOJ,

DISPLAY "END OF JOB",
CLOSE FLAVORS,
STOP RUN,

A010-DISPLAY-RECORDS,
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE,
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER,

3.6.2 Random Reading

To randomly read relative records:

1. Specify the ACCESS MODE IS RANDOM or DYNAMIC clause.

2. Open the file as INPUT or 1-0.

3. Move the relative record number value to the RELATIVE KEY data name.

4. Read the record from the cell identified by the relative record number.

The READ statement selects a specific record from an open file and makes it available to the program.
The value of the relative key identifies the specific record. The system randomly reads the record
identified by the RELATIVE KEY data name clause. If the cell does not contain a valid record, the
invalid key condition exists, and the READ fails (see Chapter 5, Input/Output Exception Conditions
Handling).

Example 3-5 reads a relative file randomly and displays its contents on the terminal.

Processing Relative Files 3-7 IV

Example 3-5: Randomly Reading a Relative File

IDENTIFICATION DIVISION.
PROGRAM-IO. REL05.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TD "HEINZ.OAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.
FILE SECTION.
FD FLAVORS,
01 KETCHUP-MASTER

WORKING-STORAGE SECTION,
01 KETCHUP-MASTER-KEY

PROCEDURE DIVISION,
AOOO-BEGIN.

OPEN INPUT FLAVORS.

PIC X<50),

PIC 99,

PERFORM AlOO-DISPLAY-RECDRD UNTIL KETCHUP-MASTER-KEY = 00,
DISPLAY "END OF JOB",
CLOSE FLAVORS.
STOP RUN,

A100-DISPLAY-RECORD,
DISPLAY "TD DISPLAY A RECORD ENTER ITS RECORD NUMBER",
ACCEPT KETCHUP-MASTER-KEY.
READ FLAVORS INVALID KEY DISPLAY "BAD KEY"

CLOSE FLAVORS
STOP RUN,

DISPLAY KETCHUP-MASTER.

3.6.3 Dynamic Reading

The READ statement has two formats so that it can select the next logical record (sequentially) or
select a specific record (randomly) and make it available to the program. In dynamic mode, the
program can switch from random access I /0 statements to sequential access I /0 statements and in
any order without closing and reopening files. However, you must use the READ NEXT statement to
sequentially read a relative file open in dynamic mode.

Sequential processing need not begin at the first record of a relative file. The START statement
specifies the next record to be read sequentially. It positions the current record pointer for subsequent
I /0 operations.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ statement. A READ
NEXT statement should follow the START statement since the READ NEXT statement reads the next
record pointed to by the current record pointer. Subsequent READ NEXT statements sequentially
retrieve records until another START statement or random READ statement executes.

Example processes a relative file containing 57 records. Each record has a unique number from 1 to
57 as its key. The program positions the file (START statement) to the cell corresponding to the value
in INPUT-RECORD-KEY. The program's READ ... NEXT statement retrieves the remaining valid
records in the file for display on the terminal.

IV 3-8 Processing Relative Files

Example 3-6: Dynamically Reading a Relative File

IDENTIFICATION DIVISION,
PROGRAM-ID, RELOG,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAt,JORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS KETCHUP-MASTER-KEY,

DATA Dit.JISION,
FILE SECTION,
FD FLAl.JORS,
01 KETCHUP-MASTER

WORKING-STORAGE SECTION,
01 KETCHUP-MASTER-KEY
01 END-OF-FILE

PROCEDURE DIVISION,
AOOO-BEGlN,

OPEN I-0 FLAVORS,

PIC)-((50),

PIC 99.
PIC){ t,JALUE "N",

DISPLAY "Enter nu111ber",
ACCEPT KETCHUP-MASTER-KEY,
START FLAVORS KEY = KETCHUP-MASTER-KEY

INl,JALID KEY DISPLAY "Bad START statelrlent"
GO TO AOOS-END-OF-JOB,

PERFORM A010-DISPLAY-RECORDS UNTIL END-OF-FILE =
A005-END-OF-JOB,

DISPLAY "END OF JOB",
CLOSE FLAt,JORS,
STOP RUN,

A010-DISPLAY-RECORDS,

11\/11
I o

READ FLAVORS NEXT RECORD AT END MOVE "Y" TO END-OF-FILE,
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER,

3.7 Updating Relative Files

A program updates a relative file with the DELETE, REWRITE, and WRITE statements. The WRITE
statement adds a record to the file. Only the DELETE and REWRITE statements change the contents of
records already existing in the file. In either case, adequate backup must be available in the event of
error. The next two sections each discuss and present an example of how to rewrite and delete
relative records.

3.7.1 Rewriting Relative Records

Two options available for rewriting relative records are:

1. Sequential access rewriting

2. Random access rewriting

The REWRITE statement logically replaces a record in a relative file. After successfully rewriting a
record into the file, the program can access that record at any time. However, the program cannot
access the record that occupied the cell previous to the rewrite operation.

Processing Relative Files 3-9 IV

3.7.1.1 Sequential Access Mode Rewriting - To rewrite relative records in sequential access mode:

1. Specify the ACCESS MODE IS SEQUENTIAL clause.

2. Open the file as 1-0.

3. Use the START statement to position the record pointer and then READ the target record,
or sequentially READ the file up to the target record.

4. Update the target record.

5. REWRITE the target record back into its cell.

The REWRITE statement places the successfully read record back into its cell in the file.

Example 3-7 sequentially reads a relative record, displays its contents on the terminal before it
updates the record, updates the record, displays its contents on the terminal after it updates the
record, and rewrites the record in the same cell.

Example 3-7: Rewriting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION,
PROGRAM-ID+ REL07A+
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HEINZ.OAT"
ORGANIZATION IS RELATIVE
ACCESS MOOE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY,

DATA DIVISION,
FILE SECTION,
FD FLAVORS,
01 KETCHUP-MASTER PIC X<50l,

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 88+

PROCEDURE DIVISION,
AOOO-BEGIN+

OPEN I-0 FLAVORS,
PERFORM A100-UPOATE-RECORO UNTIL KETCHUP-MASTER-KEY = 00+

A005-EOJ,
DISPLAY "ENO OF JOB"+
CLOSE FLAVORS,
STOP RUN,

A100-UPDATE-RECORO,
DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER"
ACCEPT KETCHUP-MASTER-KEY
START FLAVORS KEY IS EQUAL TO KETCHUP-MASTER-KEY

INVALID KEY DISPLAY "BAD START"
STOP RUN,

IF KETCHUP-MASTER-KEY IS NOT EQUAL TO 00
PERFORM AZOO-READ-FLAVORS
DISPLAY "*********BEFORE UPDATE*********"
DISPLAY KETCHUP-MASTER

**
*
*
*

Update routine

**
DISPLAY "*********AFTER UPDATE*********"
DISPLAY KETCHUP-MASTER
REWRITE KETCHUP-MASTER, (continued on next page)

IV 3-10 Processing Relative Files

Example 3-7: Rewriting Relative Records in Sequential Access Mode (Cont.)

A200-READ-FLAVDRS+
READ FLAlJORS AT END DIS PLAY "END OF FI LE"

GO TO A005-EOJ,

3.7.1.2 Random Access Mode Rewriting - To rewrite relative records in random access mode:

1. Specify the ACCESS MODE IS RANDOM or DYNAMIC clause.

2. Open the file as 1-0.

3. Move the relative record number value of the record you want to read to the RELATIVE
KEY data name.

4. Optionally read the record from the cell identified by the relative record number.

5. Update the record.

6. REWRITE the record into the cell identified by the relative record number.

The system randomly reads the record identified by the KEY IS clause. The REWRITE statement places
the successfully read record back into its cell in the file.

If the cell does not contain a valid record, or if the rewrite operation is unsuccessful, the invalid key
condition exists (see Chapter 5, Input/Output Exception Conditions Handling).

The next example randomly reads a relative record, displays its before contents on the terminal,
updates the record, displays its after contents on the terminal, and rewrites the record in the
same cell.

Example 3-8: Rewriting Relative Records in Random Access Mode

IDENTIFICATION DIVISION,
PROGRAM-ID+ REL07B,
ENVIRONMENT DIVISION+
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION,
FILE SECT ION I

FD FLAl.JORS I

01 KETCHUP-MASTER

WORKING-STORAGE SECTION,
01 KETCHUP-MASTER-KEY

PROCEDURE DIVISION,
AOOO-BEGIN+

OPEN I-0 FLAVORS+

p I c){(50) I

PIC 99,

PERFORM A100-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY = 00,
A005-EOJ,

DISPLAY "END OF JOB",
CLOSE FLAl.,JORS I

STOP RUN I

(continued on next page)

Processing Relative Files 3-11 IV

Example 3-8: Rewriting Relative Records in Random Access Mode (Cont.)

AlOO-UPDATE-RECORD.
DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
READ FLAVORS INVALID KEY DISPLAY "BAD READ"

GO TO A005-EOJ.
DISPLAY "*********BEFORE UPDATE*********"•
DISPLAY KETCHUP-MASTER.

**
*
*
*

Update routine

**
DISPLAY "*********AFTER UPDATE*********"•
DISPLAY KETCHUP-MASTER.
REWRITE KETCHUP-MASTER INVALID KEY DISPLAY "BAD REWRITE"

GO TO A005-EOJ,

3.7.2 Deleting Relative Records

Two options are available for deleting relative records:

1. Sequential access mode deletion

2. Random access mode deletion

The DELETE statement logically removes an existing record from a relative file. After successfully
removing a record from a file, the program cannot later access it.

3.7.2.1 Sequential Access Mode Deletion-To delete a relative record in sequential access mode you
must:

1. Specify the ACCESS MODE IS SEQUENTIAL clause.

2. Open the file as INPUT-OUTPUT.

3. Either use the START statement to position the record pointer and then read the target
record, or sequentially read the file up to the target record.

4. Delete the last read record.

Example 3-9: Deleting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. RELOB.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTIDN,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "HEINZ.OAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL

DATA DIVISION,
FILE SECTION,
FD FLAVORS,
01 KETCHUP-MASTER

RELATIVE KEY IS KETCHUP-MASTER-KEY,

PIC XC50),

IV 3-12 Processing Relative Files

(continued on next page)

Example 3-9: Deleting Relative Records in Sequential Access Mode (Cont.)

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC 99.

PERFORM AOlO-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY 00,
A005-EOJ.

DISPLAY "END OF JOB",
CLOSE FLAlJORS.
STOP RUN.

AOlO-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00 PERFORM AZOO-READ-FLAVORS

DELETE FLAVORS RECORD.
AZOO-READ-FLAVORS.

READ FLAVORS AT END DISPLAY "FILE AT END"
GO TO A005-EOJ.

3.7.2.2 Random Access Mode Deletion - To delete a relative record in random access mode you
must:

• Specify the ACCESS MODE IS RANDOM clause.

• Open the file INPUT-OUTPUT.

• Move the relative record number value to the RELATIVE KEY data name.

• Delete the record identified by relative record number.

If the file does not contain a valid record, an invalid key condition exists.

Example 3-10: Deleting Relative Records in Random Access Mode

IDENTIFICATIO~ DIVISION.
PROGRAM-ID. REL09.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "HEINZ.DAT"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION,
FILE SECTION.
FD FLA\.,IORS,
01 KETCHUP-MASTER

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC XC50),

PIC 99.

PERFORM A010-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY = 00.
A005-EOJ,

DISPLAY "END OF JOB",
CLOSE FLAl..lORS.
STOP RUN. (continued on next page)

Processing Relative Files 3-13 IV

Example 3-1 O: Deleting Relative Records in Random Access Mode (Cont.)

A010-DELETE-RECORDS,
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER",
ACCEPT KETCHUP-MASTER-KEY,
IF KETCHUP-MASTER-KEY NOT = 00

DELETE FLAVORS RECORD
INVALID KEY DISPLAY "INVALID DELETE"

STOP RUN,

3.8 Backing Up Your Relative Files

If your relative file becomes corrupt with bad data, or if your program abnormally terminates when
the file is opened for OUTPUT or INPUT-OUTPUT, the file can become unusable. Proper backup
procedures are the key to successful recovery.

You should backup your disk file at some reasonable point (daily, weekly, or monthly), depending on
file activity, and save all transactions until you create a new backup. In this way, you can easily
recreate your relative file from your last backup relative file and transaction file whenever the need
arises.

IV 3-14 Processing Relative Files

Chapter 4
Processing Indexed Files

Unlike the sequential ordering of records in a sequential file or the relative positioning of records in a
relative file, the location of records in indexed file organization is transparent to the program. It is
possible to add new records to an indexed file and logically place them between physically adjacent
records, without recreating the file. Not only can records be added, but they can also be deleted,
making room for new records.

RMS-11 controls the placement of records in an indexed file based on user-specified primary and
alternate keys in the record itself. The presence of keys in the records of the file governs this place­
ment. This is the only file organization where RMS-11 uses the actual contents of the records for
record placement within the file.

Indexed file processing is available only on disk.

4.1 Indexed File Organization

COBOL-81 allows sequential, random, and dynamic access to records. Each record is accessed by
one of its primary or alternate keys.

A major feature of indexed file organization is the use of a key to uniquely identify a record within the
file. A key is a character string present in every record of an indexed file. Its location and length are
identical in all records. When creating an indexed file, you must select the character string(s) to be
the key(s). Selecting such a character string indicates to RMS-11 that the contents (key value) of that
string in any record written to the file can be used by the program to identify that record for subse­
quent retrieval. For more information, see the RECORD KEY IS clause and the ALTERNATE KEY IS
clause in the COBOL-81 Language Reference Manual.

You must define at least one main key, called the "primary key," for an indexed file. Primary key
values must be unique and defined in the record description entry. For example, if an employee file
uses Social Security numbers as a primary key, there can be no duplicate numbers in your file.

4-1 IV

You can optionally define from 1 to 254 additional keys called "alternate keys." Alternate key values
need not be unique if you specify the WITH DUPLICATES phrase in the file description entry. You
must define each alternate key in the record description entry. Each alternate key represents an
additional character string in each record of the file. The key value in any of these additional strings
can also b"e used as a means of identifying the record for retrieval.

As your program writes records into an indexed file, RMS-11 locates the values contained in the
primary and alternate keys. From the values in keys within the record, RMS-11 builds a tree­
structured table known as an "index." An index consists of a series of entries. Each entry contains a
key value copied from a record written by a program. With each key value is a pointer to the location
in the file of the record from which the value was copied. Figure 4-1 shows the general structure of an
indexed file defined with a primary key only.

Figure 4-1 : Indexed File Organization

Key Definition

Primary key index (employee name)

ABLE JONES SMITH

record record record

ABLE ELM AVE I ... JONES MAIN ST I SMITH COLT RD I
C81ART-20230-30

For a more detailed explanation of indexed file structure, see the RMS-11 User's Guide.

4.2 Design Considerations

Before you create your indexed file applications, you should design your file based on these design
considerations:

1. Record format selection (See Chapter 1).

• Fixed-length

• Variable-length

2. Medium selection - Indexed files can be accessed on disk only.

3. Allocation - At time of file creation and file extension (See Chapter 7).

4. Speed - You want to maximize the speed with which the program processes data.

5. Space- You want to minimize file size, disk space, and memory requirements to run your
program.

IV 4-2 Processing Indexed Files

6. Shared access - You want your data to be exactly as accessible to the people using the
computer system as necessary, no more, no less.

7. Ease of design - You do not want to spend more time than necessary writing the
application.

8. Compiler limitations - The logical and physical limits imposed by the COBOL-81
compiler.

For more information on indexed file design optimization, see Chapter 7, File Optimization Tech­
niques, and the RMS-11 User's Guide. If you do not carefully design your index file - that is, you take
all the file defaults - your indexed file application could run more slowly than you expect.

4.3 Statements for Indexed File Processing

Processing an indexed file involves:

1. Opening the file with the OPEN statement

2. Processing the file with valid I /0 statements

3. Closing the file with the CLOSE statement

Table 4-1 lists the valid I /0 statements and illustrates the following relationships:

• Organization determines valid access modes.

• Organization and access mode determine valid open modes.

• All three (organization, access, and open mode) enable or disable I /0 statements.

Table 4-1: Valid I /0 Statements for Indexed Files

Open Mode

File Access
Organization Mode Statement INPUT OUTPUT 1-0

INDEXED SEQUENTIAL DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes No

RANDOM DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
WRITE No Yes Yes

DYNAMIC DELETE No No Yes
READ Yes No Yes
REWRITE No No Yes
START Yes No Yes
WRITE No Yes Yes

Processing Indexed Files 4-3 IV

4.4 Defining an Indexed File

Each indexed file in a COBOL-81 program is given a name, or file name, in a SELECT clause in the
Environment Division. The ASSIGN clause associates the file name to a file specification. The file
specification points the operating system to the file's physical and logical location on a specific
hardware device (see Example 4-1, DAIRY.DAT). Each file is then further described in the program
with a file description (FD) entry in the File Section of the Data Division (see Example 4-1, FLAVORS).
The FD entry is then followed immediately by the file's record description (see Example 4-1,
ICE-CREAM-MASTER). Refer to the COBOL-81 Language Reference Manual for information relating
to the RECORD KEY and ALTERNATE RECORD KEY clauses.

Example 4-1 defines a dynamic access mode indexed file with one primary key
(ICE-CREAM-MASTER-KEY) and two alternate record keys (ICE-CREAM-MASTER-CODE and
ICE-CREAM-MASTER-STATE). Note that one alternate record key allows duplicates
(ICE-CREAM-MASTER-STATE). Any program using the identical entries in the SELECT clause as shown
in Example 4-1 can reference the DAIRY.DAT file sequentially and randomly.

Example 4-1: Defining an Indexed File

IDENTIFICATION DIVISION,
PROGRAM- I 0, I NOE XO 1 ,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA Dit,IISION,
FILE SECTION.
FD FLAtJORS,
01 ICE-CREAM-MASTER,

02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA,

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

PROCEDURE DIVISION,
AOO-BEGIN,

PIC)-(XXX,

PIC X)O<XX,
PIC x (20).
PIC x (20).
PIC)-()(.

You must specify the ORGANIZATION IS INDEXED phrase and the ACCESS MODE IS DYNAMIC
phrase in the SELECT clause; otherwise, COBOL-81 assumes sequential organization and access
mode.

4.5 Creating and Populating Indexed Files

A COBOL-81 program creates an indexed file by:

1. Opening the file for:

• OUTPUT - to add records only

• 1-0 - to add, change, or delete records

IV 4-4 Processing Indexed Files

2. Initializing the key value/s

3. Executing the WRITE statement

4. Specifying either of the following access modes in the SELECT clause:

• Sequential access - the program must write records in ascending order by primary key

• Random or dynamic access - the program can write records in any order

The best way to initially populate an indexed file is to sequentially write the records in ascending
order by primary key.

The program can add records to the file until it reaches the physical limitations of its storage device.
When this occurs, you should: (1) delete unnecessary records, (2) back up the file, and (3) recreate
the file by using either the RMSFIL utility to optimize file space or by using a COBOL-81 program. For
more information on the RMSFIL utility, see the RMS-11 Utilities Manual.

Example 4-2 creates and populates an indexed file (DAIRY.DAT). The source file (DAIRYl.DAT) has
been sorted in ascending sequence. Notice that the primary and alternate keys are initialized in
ICE-CREAM-MASTER when the contents of the fields in INPUT-RECORD are read into
ICE-CREAM-MASTER before the record is written.

Example 4-2: Creating and Populating an Indexed File

IDENTIFICATION DIVISION,
PROGRAM- ID, I NDE)<02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "DAIRY I .DAT",

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA 011.IJSION.
FILE SECTION,
FD INPUT-FILE.
01 INPUT-RECORD.

02 INPUT-RECORD-KEY
02 INPUT-RECORD-DATA

FD FLAl.JORS I

01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

PIC 8888,
PIC }((47>.

PIC }{ x }{}{ •

PIC }{X}{}{}{ •

PIC X<ZO>.
PIC){(20) I

PIC }{ }{ +

(continued on next page)

Processing Indexed Files 4-5 IV

Example 4-2: Creating and Populating an Indexed File (Cont.)

WORKING-STORAGE SECTION,
01 ENO-OF-FILE

PROCEDURE DIVISION,
AOOO-BEGIN,

OPEN INPUT INPUT-FILE,
OPEN OUTPUT FLAVORS,

A010-POPULATE.

PIC X,

PERFORM A100-READ-INPUT UNTIL ENO-OF-FILE "Y",

AOZO-EOJ,
DISPLAY "END OF JOB",
STOP RUN,

A100-READ-INPUT,
READ INPUT-FILE INTO ICE-CREAM-MASTER

AT END MOVE "Y" TO END-OF-FILE,
IF END-OF-FILE NOT = "Y"

WRITE ICE-CREAM-MASTER INVALID KEY DISPLAY "BAD WRITE"
STOP RUN,

4.6 Reading Indexed Files

Your program can read an indexed file three ways:

1. Sequentially

2. Randomly

3. Dynamically

However, to randomly read the file, the program must: (1) initialize either the primary key data name
or the alternate key data name before reading the target record, and (2) specify that data name in the
KEY IS phrase of the READ statement.

Dynamic access permits switching back and forth from sequential access to random access any
number of times during one OPEN of the file.

4.6.1 Sequential Reading

To read indexed records in a sequential mode:

1. Specify the ACCESS MODE IS SEQUENTIAL clause.

2. Open the file for INPUT or INPUT-OUTPUT.

3. Either:

IV 4-6

• Read records from the beginning of the file. Read records as you would a sequential
file, that is, use READ ... AT END ... statement.

• Read records after positioning the current record pointer somewhere in the file. Use ·
the START statement to start the file at a specific record, then use the
READ ... NEXT RECORD AT END ... statement to sequentially read subsequent records.

Processing Indexed Files

The READ statement makes the next logical record of an open file available to the program. It skips
deleted records and sequentially reads and retrieves only valid records. When the at end condition
occurs, execution of the READ statement is unsuccessful (see Chapter 5, Input/Output Exception
Conditions Handling).

Example 4-3 sequentially reads the entire indexed file from the first record in the file and displays
every record on the terminal:

Example 4-3: Sequentially Reading an Indexed File

IDENTIFICATION DIVISION,
PROGRAM- ID, I NDEX03,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE,

DATA DIVISION,
FILE SECTION,

FD FLAVORS,
01 ICE-CREAM-MASTER+

02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA,

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION,
01 END-OF-FILE

PROCEDURE DIVISION,
A000-6EGIN+

OPEN INPUT FLAVORS+

A010-SEQUENTIAL-READ+

PIC xxxx.
PIC xxxxx.
PIC X<20l,
PIC X<20),
PIC xx.

PIC x.

PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE "Y",

A020-EDJ,
DISPLAY "END OF JOB",
STOP RUN,

A100-READ-INPUT,
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE,
IF END-OF-FILE NOT = "Y"

DISPLAY ICE-CREAM-MASTER
STOP "TYPe CONTINUE to disPlaY next Master",

Processing Indexed Files 4-7 IV

4.6.2 Random Reading

To randomly read indexed records:

•Specify the ACCESS MODE IS RANDOM clause.

•Open the file for INPUT or INPUT-OUTPUT.

• Initialize the RECORD KEY or ALTERNATE RECORD KEY data name before reading the
record.

• Read the record.

The READ statement selects a specific record from an open file and makes it available to the program.
The value of the primary or alternate key identifies the specific record. The system randomly reads the
record identified by the RECORD KEY or ALTERNATE RECORD KEY clause. If RMS-11 does not find
a valid record, the invalid key condition exists, and the READ fails (see Chapter 5, Input/Output
Exception Conditions Handling).

Example 4-4 randomly reads an indexed file and displays its contents on the terminal. It makes use of
both the primary key (ICE-CREAM-MASTER-KEY) and the alternate key (ICE-CREAM-STORE-STATE).

Example 4-4: Randomly Reading an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID+ INDEX04,
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE+

DATA DIVISION.
FILE SECTION.
FD FLAVORS+
01 ICE-CREAM-MASTER+

OZ ICE-CREAM-MASTER-KEY
OZ ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION.
01 PROGRAM-STAT

88 OPERATOR-STOPS-IT
88 LETS-SEE-NEXT-STORE
88 NO-MORE-DUPLICATES
88 STOP-THE-JOB

01 ANSWER
~ROCEDURE DIVISION.
AOOO-BEGIN,

PIC X,

PIC X.

PIC XXXX.

PIC XXXXX.
PIC X<ZO>.
PIC X<ZO>.
PIC XX.

VALUE "1",
VALUE "Z".
VALUE "3"•
VALUE "4",

OPEN I-0 FLAVORS,
PERFORM A030-RANDOM-READ
DISPLAY "ENO OF JOB",
STOP RUN,

UNTIL OPERATOR-STOPS-IT.

IV 4-8 Processing Indexed Files

(continued on next page)

Example 4-4: Randomly Reading an Indexed File (Cont.)

A030-RANDOM-READ,
DISPLAY "Enter key",
ACCEPT ICE-CREAM-MASTER-KEY,
PERFORM A100-READ-INPUT-BY-PRIMARY-KEY THROUGH

A100-READ-INPUT-EXIT,
DISPLAY " Do You wish to terMinate the session?",
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N",
IF PROGRAM-STAT = "Y" MOVE "1" TO PROGRAM-STAT,

A040-GET-ANSWER.
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.

A100-READ-INPUT-BY-PRIMARY-KEY.
READ FLAVORS KEY IS ICE-CREAM-MASTER-KEY

INVALID KEY DISPLAY "Master does not exist - Try a~ain"

GO TO A100-READ-INPUT-EXIT,
DISPLAY ICE-CREAM-MASTER.
PERFORM A200-READ-BY-ALTERNATE-KEY UNTIL NO-MORE-DUPLICATES,

AlOO-READ-INPUT-EXIT.
E)<I T.

A200-READ-BY-ALTERNATE-KEY.
DISPLAY "Do You want to see the next store in this state?",
MOVE SPACE TO PROGRAM-STAT.
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT= "Y" OR "N".
IF PROGRAM-STAT = "Y"

MOVE "2" TO PROGRAM-STAT+
IF LETS-SEE-NEXT-STORE

READ FLAVORS KEY IS ICE-CREAM-STORE-STATE
INVALID KEY DISPLAY "No More stores in this state"

MOVE "3" TO PROGRAM-STAT,
IF PROGRAM-STAT = "N"

MOVE "3" TO PROGRAM-STAT.

4.6.3 Dynamic Reading

The READ statement has two formats, so it can select the next logical record (sequentially) or select a
specific record (randomly) and make it available to the program. In dynamic mode, the program can
switch from using random access I /0 statements to sequential access I /0 statements, in any order,
without closing and reopening files. However, the program must use the READ NEXT statement to
sequentially read an indexed file open in dynamic mode.

Sequential processing need not begin at the first record of an indexed file. The START statement
specifies the next record to be read sequentially. It positions the current record pointer for subsequent
I /0 operations anywhere within the file. ·

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ statement. A READ
NEXT statement should follow the START statement since the READ NEXT statement reads the next
record pointed to by the current record pointer. Subsequent READ NEXT statements sequentially
retrieve records unti I another ST ART statement or random READ statement executes.

Example 4-5 processes an indexed file containing 26 records. Each record has a unique letter of
the alphabet as its primary key. The program positions the file to the first record whose
INPUT-RECORD-KEY is equal to the specified letter of the alphabet. The program's READ NEXT
statement sequentially retrieves the remaining valid records in the file for display on the terminal.

Processing Indexed Files 4-9 IV

Example 4-5: Dynamically Reading an Indexed File

IDENTIFICATION DIVISION,
PROGRAM-ID+ INDEX05+
ENVIRONMENT DIVISION+
INPUT-OUTPUT SECTION+
FILE-CONTROL+

SELECT IND-ALPHA ASSIGN TO "ALPHA.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS INPUT-RECORD-KEY+

DATA DIVISION,
FILE SECTION,
FD IND-ALPHA,
01 INPUT-RECORD+

02 INPUT-RECORD-KEY
02 INPUT-RECORD-DATA

WORKING-STORAGE SECTION,
01 END-OF-FILE
PROCEDURE DIVISION,
AOOO-B.EGIN,

OPEN I-0 IND-ALPHA+
DISPLAY "Enter letter"
ACCEPT INPUT-RECORD-KEY+

PIC X+
PIC X<50),

PIC X,

START IND-ALPHA KEY = INPUT-RECORD-KEY
INVALID KEY DISPLAY "BAD START STATEMENT"
GO TO A010-END-OF-JOB,

PERFORM A100-GET-RECOROS THROUGH A100-GET-RECORDS-EXIT
UNTIL END-OF-FILE = "Y",

A010-END-OF-JOB+
DISPLAY "END OF JOB",
CLOSE IND-ALPHA+
STOP RUN,

A100-GET-RECORDS.
READ IND-ALPHA NEXT RECORD AT END MOVE "Y" TO END-OF-FILE,
IF END-OF-FILE NOT = "Y" DISPLAY INPUT-RECORD+

AlOO-GET-RECOROS-EXIT+
EX IT,

4.7 Updating Indexed Files

To update a record in an indexed file your program must:

1. If you are using sequential access mode:

• Read the target record.

• Verify that this record is indeed the record you want to change (once it's gone, it's
gone).

• Change the record.

• Rewrite or delete the record.

2. If you are using random access mode: rewrite or delete the record.

IV 4-10 Processing Indexed Files

Your program can update an indexed file three ways:

1 . Sequentially

2. Randomly

3. Dynamically

Note

A program cannot rewrite an existing record if it changes the contents of the
primary key in that record. Instead, the program must delete the record, and
write a new record. However, the program can change the value of any alternate
key in any record at any time, if the file description entry includes the WITH
DUPLICATES phrase in its ALTERNATE RECORD KEY IS clause.

4.7.1 Sequential Updating

To update indexed records in a sequential mode:

1. Specify the ACCESS MODE IS SEQUENTIAL clause.

2. Open the file for INPUT-OUTPUT.

3. Read records as you would a sequential file, that is, use the READ ... AT END ... statement.

4. Rewrite or delete records using the INVALID KEY phrase.

The READ statement makes the next logical record of an open file available to the program. It skips
deleted records and sequentially reads and retrieves only valid records. When the at end condition
occurs, execution of the READ statement is unsuccessful (see Chapter 5, Input-Output Exception
Conditions Handling). The REWRITE statement replaces the record just read on the file, while the
DELETE statement logically removes the same record from the file.

Example 4-6: Sequentially Updating an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID+ INDEXOB+
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAVORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

(continued on next page)

Processing Indexed Files 4-11 IV

Example 4-6: Sequentially Updating an Indexed File (Cont.)

DATA DIVISION+
FILE SECTION.

FD FLAVORS+
01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA.

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION,
01 END-OF-FILE
01 REWRITE-KEY
01 DELETE-KEY
01 NEW-ADDRESS

PROCEDURE DIVISION,
AOOO-BEGIN.

OPEN I-0 FLAVORS.

PIC xxxx.
PIC xxxxx.
PIC x (20).
PIC XC20l.
PIC xx.

PIC x.
PIC xxxxx.
PIC xx.
PIC XC20l,

DISPLAY "Which store code do you want to find?".
ACCEPT REWRITE-KEY,
DISPLAY "What is its new address?",
ACCEPT NEW-ADDRESS.
DISPLAY "Which state do You want to delete?".
ACCEPT DELETE-KEY.
PERFORM AlOO-READ-INPUT UNTIL END-OF-FILE = "Y".

A020-EOJ.
DISPLAY "END OF JOB".
STOP RUN.

A100-READ-INPUT,
READ FLAVORS AT END MOVE "Y• TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" AND

REWRITE-KEY = ICE-CREAM-STORE-CODE
PERFORM A200-REWRITE-MASTER.

IF ENO-OF-FILE NOT = "Y" AND
DELETE-KEY = ICE-CREAM-STORE-STATE
PERFORM A300-DELETE-MASTER,

A200-REWRITE-MASTER.
MOVE NEW-ADDRESS TO ICE-CREAM-STORE-ADDRESS.
REWRITE ICE-CREAM-MASTER

INVALID KEY DISPLAY "Bad rewrite -.ABORTED"
STOP RUN.

A300-DELETE-MASTER+
DELETE FLAVORS.

4.7.2 Random Updating

To randomly update indexed records:

1. Specify the ACCESS MODE IS RANDOM clause.

2. Open the file for INPUT-OUTPUT.

3. Initialize the RECORD KEY or ALTERNATE RECORD KEY data name.

4. Write, rewrite, or delete records using the INVALID KEY phrase.

IV 4-12 Processing Indexed Files

Example 4-7 shows one way to randomly update records in an indexed file.

Example 4-7: Randomly Updating an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX07,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FLAt,JORS ASSIGN TO "DAIRY.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE

WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

DATA Dit.JISION,
FILE SECTION.
FD FLAl,JORS I

01 ICE-CREAM-MASTER,
02 ICE-CREAM-MASTER-KEY
02 ICE-CREAM-MASTER-DATA,

03 ICE-CREAM-STORE-CODE
03 ICE-CREAM-STORE-ADDRESS
03 ICE-CREAM-STORE-CITY
03 ICE-CREAM-STORE-STATE

WORKING-STORAGE SECTION,
01 HOLD-ICE-CREAM-MASTER
01 PROGRAM-STAT

PIC }{}{XX.

PIC XX}{}{}{.

PIC X<20),
PIC x (20) I

PIC \/1d
/\ /\ .

PIC X<51) I

PIC " t\ I

88 OPERATOR-STOPS-IT
88 LETS-SEE-NEXT-STORE
88 NO-MORE-DUPLICATES

l,JALUE II 1 II +

t,JALUE 11211
I

t,!ALUE 11311.

PROCEDURE DIVISION,
AOOO-BEGIN,

OPEN I-0 FLAVORS,
PERFORM A030-RANDOM-READ UNTIL OPERATOR-STOPS-IT.

A020-EOJ,
DISPLAY "END OF JOB",
STOP RUN,

A030-RANDOM-READ.
DISPLAY "Enter Ker".
ACCEPT ICE-CREAM-MASTER-KEY,
PERFORM AlOO-READ-INPUT-BY-PRIMARY-KEY

THROUGH AlOO-READ-INPUT-EXIT.
DISPLAY " Do rou want to terMinate the session?",
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N",
IF PROGRAM-STAT = "Y" MOVE "1" TO PROGRAM-STAT

AOl!O-GET-ANSWER,
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT

AlOO-READ-INPUT-BY-PRIMARY-KEY.
READ FLAVORS KEY IS ICE-CREAM-MASTER-KEY

INt,!ALID KEY DISPLAY "Master does not exist - Tn a!'lain"
GO TO AlOO-READ-INPUT-EXIT,

DISPLAY ICE-CREAM-MASTER,
PERFORM A200-READ-BY-ALTERNATE-KEY UNTIL NO-MORE-DUPLICATES,

AlOO-READ-INPUT-EXIT,
EXIT. (continued on next page)

Processing Indexed Files 4-13 IV

Example 4-7: Randomly Updating an Indexed File (Cont.)

A200-READ-BY-ALTERNATE-KEY.
DISPLAY "Do You want to see the next store in this state?",
PERFORM AOao~GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N".
IF PROGRAM-STAT = "Y"

MOVE "2" TO PROGRAM-STAT
READ FLAVORS KEY IS ICE-CREAM-STORE-STATE

INVALID KEY DISPLAY "No More stores in this state"
MOVE "3" TD PROGRAM-STAT

IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "NY"

PERFORM A500-DELETE-RANDOM-RECORD.
IF LETS-SEE-NEXT-STORE AND

ICE-CREAM-STORE-STATE = "NJ"
MOVE "MonMouth" TO ICE-CREAM-STORE-CITY
PERFORM A400-REWRITE-RANDOM-RECORD,

IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "CA"

MOVE ICE-CREAM-MASTER TO HOLD-ICE-CREAM-MASTER
PERFORM A500-DELETE-RANDOM-RECORD
MOVE HOLD-ICE-CREAM-MASTER TO ICE-CREAM-MASTER
MOVE "AZ" TO ICE-CREAM-STORE-STATE
PERFORM A300-WRITE-RANDOM-RECORD,

IF PROGRAM-STAT = "N"
MOVE "3" TO PROGRAM-STAT

A300-WRITE-RANDOM-RECORD,
WRITE ICE-CREAM-MASTER

INVALID KEY DISPLAY "Bad write - ABORTED"
STOP RUN,

A400-REWRITE-RANDOM-RECORD.
REWRITE ICE-CREAM-MASTER

INVALID KEY DISPLAY "Bad rewrite - ABORTED"
STOP RUN,

A500-DELETE-RANDOM-RECORD,
DELETE FLAVORS

IV 4-14

INVALID KEY DISPLAY "Bad delete - ABORTED"
STOP RUN,

Processing Indexed Files

4.7.3 Dynamic Updating

In dynamic mode, the program can switch from using random access l/O statements to sequential
access I /0 statements in any order without closing and reopening files. To dynamically update
indexed records:

1. Specify the ACCESS MODE IS DYNAMIC clause.

2. Open the file for INPUT-OUTPUT.

3. Read the records in one of two ways:

Sequentially:

• Use the ST ART statement to position the record pointer.

• Use the READ ... NEXT statement.

Randomly:

•Initialize the RECORD KEY or ALTERNATE RECORD KEY data name.

• Read records in any order you want using the INVALID KEY phrase.

4. Write, rewrite, or delete records using the INVALID KEY phrase.

4.8 Backing Up Your Indexed Files

As you update the records in your indexed files, RMS-11 updates its record pointers. If the file
becomes corrupted with bad data, or if your program abnormally terminates when the file is opened
for OUTPUT or 1-0, the file might become unusable because the pointers might not get updated. This
can be a serious problem. Proper planning is the key for a successful recovery.

You should back up your indexed file at some reasonable point (daily, weekly, or monthly), depend­
ing on file activity, and save all transactions until you create a new backup. In this way, you can
easily recreate your current indexed file from your last backup indexed file and transaction file
whenever the need arises.

Processing Indexed Files 4-15 IV

Chapter 5
Input/Output Exception Conditions Handling

Many types of exception conditions can occur when a program processes a file, not all of which are
errors. The three categories of conditions are:

1. At end condition - This is a normal condition when you access a file sequentially.
However, if your program tries to read the file anytime after having read the last logical
record in the file, and there is no applicable Declarative procedure or AT END phrase, the
program abnormally terminates when the next READ statement executes.

2. Invalid key condition - When processing relative and indexed files, this can either be a
normal condition (if you expect it to happen and plan for it) or an abnormal condition that
causes your program to terminate if there is no applicable Declarative procedure or
INVALID KEY phrase.

3. All other conditions - These can also either be normal conditions (if you expect them to
happen and plan for them) or they can be abnormal conditions that cause your program
to terminate.

Planning for exception conditions is an effective way to increase program and programmer productiv­
ity. A program with exception handling routines is more flexible than a program without them. They
minimize operator intervention and often reduce or eliminate the time a programmer uses to debug
and rerun the program.

This chapter introduces you to the tools you will need to execute sequential, relative, and indexed file
exception handling routines as a normal part of your program. The tools you will need are:

• The AT END phrase

•The INVALID KEY phrase

• File Status Values

• Special registers - RMS-STS and RMS-STV

• Declarative Procedures

5-1 IV

5.1 Planning for the At End Condition

COBOL-81 provides you with the option of testing for this condition with the AT END phrase of the
READ statement for sequential, relative, and indexed files.

Programs often read sequential files from beginning to end. They can produce reports from the
information in the file or even update it. However, the program must know when it reaches the end of
the file, so that it can continue normal processing after experiencing the condition. If the program
does not test for this condition when it occurs, and if no applicable Declarative procedure exists (see
Section 5.4), the program terminates abnormally upon detecting it. The program must know when no
more data is available from the file so that it can perform its normal end-of-job totaling, balancing,
and closing of the file.

Example 5-1 : Handling the At End Condition

READ SEQUENTIAL-FILE AT END PERFO . .RM ABOO-TOTAL-RO.UTl,NES
PERFORM. AS 10:..vER IF"Y-TOlALS-ROUT INES
MOVE "Y" TO END-OF-FILE,

READ RELATIVE-FILE NEXT RECORD AT END PERFORM A700-CLEAN-UP-ROUTINES
CLOSE RELATIVE-FILE
STOP RUN,

READ INDEXED-FILE NEXT RECORD AT END ~ISPLAY "End of file"
DISPLAY "Do You want to continue?"
ACCEPT REPLY
PERFORM A700-CLEAN-UP-RDUTINES,

5.2 Planning for the Invalid Key Condition
An invalid key condition occurs whenever RMS-11 cannot complete a COBOL-81 DELETE, READ,
REWRITE, START, or WRITE statement. When the condition occurs, execution of the statement that
recognized it is unsuccessful, and the file is not affected.

For example, relative and indexed files use keys to retrieve records. The program specifying random
access must initialize a key before executing a DELETE, READ, REWRITE, START, or WRITE state­
ment. If the key does not result in the successful execution of any of these statements, the invalid key
condition exists. This condition is fatal to the program, if the program does not check for the condi­
tion when it occurs and if no applicable Declarative procedure exists (see Section 5.4).

This condition, although fatal if not planned for, can be used to your advantage when properly used.
You can, as in Example 5-2, read through an indexed file for all records with a specific duplicate key
and produce a report from the information in those records. However, after you have read the last of
the duplicate records, an invalid key condition exists for subsequent reads to indicate that there are
no more records in the file with this key. Planning for the invalid key condition in this case allows the
program to continue its normal processing.

Example 5-2: Handling the Invalid Key Condition

MOVE "SMITH" TO LAST-NAME,
MOVE "Y" TO ANY-MORE-DUPLICATES,
PERFORM A500-READ-DUPLICATES-ROUTINE

UNTIL ANY-MORE-DUPLICATES = "N"+

IV 5-2 Input/Output Exception Conditions Handling

(continued on next page)

Example 5-2: Handling the Invalid Key Condition (Cont.)

STOP RUN,
A500-READ-DUPLICATES-ROUTINE,

READ INDEXED-FILE RECORD INTO HOLD-RECORD
KEY IS LAST-NAME
INVALID KEY DISPLAY "Name not in file!" STOP RUN,

PERFORM A510-READ-NEXT-DUPLICATES-ROUTINE
UNTIL ANY-MORE-DUPLICATES = "N",

A510-READ-NEXT-DUPLICATES-RDUTINE.
READ INDEXED-FILE NEXT RECORD

AT END MOVE "N" TO ANY-MORE-DUPLICATES,
IF ANY-MORE-DUPLICATES = "Y" PERFORM A700-PRINT-ROUTINES,

MOVE "N" TO ANY-MORE-DUPLICATES,

A700-PRINT-ROUTINES,

5.3 Using File Status Values

Your program can check for the specific cause of the failure of a file operation by checking for
specific file status values in its exception handling routines. The values are provided by both:

• COBOL-81 - Use the FILE STATUS clause in a file description entry

• RMS-11 - Use the COBOL-81 special registers RMS-STS and RMS-STY

5.3.1 COBOL-81 File Status Values

The run-time execution of ar.iy COBOL-81 file processing statement results in an RMS-11 completion
code value that reports the success or failure of the COBOL statement. To access this value you must
specify the FILE STATUS clause in the file description entry, as shown in Example 5-3.

Example 5-3: Defining a File Status for a File

DATA DIVISION,
FILE SECTION,
FD INDEXED-FILE

***************************.*********.**
*

FILE STATUS IS INDEXED-FILE-STATUS,

* **

01 INDEXED-RECORD

WORKING-STORAGE SECTION,
01 INDEXED-FILE-STATUS

PIC X<50),

PIC XX,

Input/Output Exception Conditions Handling 5-3 IV

The program can access this file status variable, INDEXED-FILE-STATUS, anywhere in the Procedure
Division, and depending on its value, take a specific course of action without terminating the pro­
gram. See how Example 5-4 uses the file status defined in Example 5-3. However, not all statements
allow you to access the file status value as part of the statement. Your program has two options:

1. Examine the status value as part of an error recovery routine built into the statement itself.
Only these relative and indexed file processing statements allow you to do this within the
INVALID KEY clause: DELETE, READ, REWRITE, START, and WRITE. See Example 5-4.

2. Define a Declarative procedure to handle the condition (see Section 5.4). All file organ­
izations and their I /0 statements have this option available.

Example 5-4: Using the File Status Value in an Exception Handling Routine

PROCEDURE DIVISION,
AOOO-BEGIN,

DELETE INDEXED-RECORD
INt)ALID KEY MOVE "Bad DELETE" to BAD-~JERB-ID

PERFORM A800-EXCEPTION-HANDLING-ROUTINE,

READ INDEXED-FILE NEXT RECORD
INt)ALID KEY MOt)E "Bad READ" TO BAD-t)ERB- ID

PERFORM A800-EXCEPTION-HANDLING-ROUTINE,

REWRITE INDEXED-RECORD
INVALID KEY MOVE "Bad REWRITE" TO BAD-VERB-ID

PERFORM A800-EXCEPTION-HANDLING-ROUTINE.

START INDEXED-FILE KEY IS EQUAL TO MASTER-KEY
INVALID KEY MOVE "Bad START" TO BAD-VERB-ID

PERFORM A800-EXCEPTION-HANDLING~ROUTINE,

WRITE INDEXED-RECORD
INVALID KEY MOVE "Bad WRITE" TO BAD-VERB-ID

PERFORM A800-EXCEPTION-HANDLING-ROUTINE,

A800-EXCEPTION-HANDLING-ROUTINE.
DISPLAY BAD-VERB-ID " - File Status Value = " INDEXED-FILE-STATUS.
PERFORM A805-GET-ANSWER UNTIL ANSWER = "Y" DR "N",
IF ANSWER = "N" STOP RUN.

A805-GET-ANSWER.
DISPLAY "Do You want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER,

Every file processing statement in the Procedure Division of the COBOL-81 Language Reference
Manual has a specific set of file status values in its Technical Notes section. This manual contains a
complete list of all COBOL-81 file status values.

IV 5-4 Input/Output Exception Conditions Handling

5.3.2 RMS-11 File Status Values

COBOL-81 checks for RMS-11 completion codes after each file and record operation. If the code
indicates anything other than unconditional success, COBOL-81 maps the RMS-11 error code to a file
status value. However, not all RMS-11 completion codes map to distinct file status values. Many
RMS-11 completion codes map to a file status value of 30, a COBOL-81 code for permanent errors
that have no corresponding file status value.

COBOL-81 provides two special registers, RMS-STS and RMS-STV, that supplement the file
status values already available and allow the COBOL-81 program to directly access RMS-11
completion codes. Refer to the RMS-11 Macro Reference Manual for a complete list of RMS-11
completion codes.

You need not define these registers in your program. As special registers, they are available whenever
and wherever you need to use them in the Procedure Division. However, if you define more than one
file in the program, and intend to access these values, you must qualify your references to them.
Notice the use of the WITH CONVERSION phrase of the DISPLAY statement in Example 5-5. This
converts the PIC S9(4) COMP special registers from binary to decimal digits for terminal display.

Example 5-5: Referencing RMS-STS and RMS-STV Values

DATA DitJISION,
FILE SECTION.
FD FILE-1.
01 RECDRD-1 PIC X(50l,

FD FILE-2,
01 RECORD-2 PI C X (50 l,

WORKING-STORAGE SECTION,
01 ANSWER PIC X,

PROCEDURE DIVISION,
A000-6EGIN,

WRITE RECORD-1 INVALID KEY PERFORM A901-REPDRT-FILE1-STATUS,

WRITE RECORD-2 INVALID KEY PERFORM A902-REPORT-FILE2-STATUS,

A901-REPORT-FILE1-STATUS,

*

*

DISPLAY "RMS~STS = " RMS-STS OF FILE-1 WITH CONVERSION,
DISPLAY "RMS-STV = " RMS-STV OF FILE-1 WITH CONVERSION,

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" DR "N",
IF ANSWER = "N" STOP RUN,

A902-REPORT~FILE2-STATUS+

*

*

DISPLAY "RMS-STS = " RMS-STS OF FILE-2 WITH CONVERSION,
DISPLAY "RMS-STV = " RMS-STV OF FILE-2 WITH CONVERSION,

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" DR "N",
IF ANSWER = "N" STOP RUN,

(continued on next page)

Input/Output Exception Conditions Handling 5-5 IV

Example 5-5: Referencing RMS-STS and RMS-STV Values (Cont.)

A999-GET-ANSWER,
DISPLAY "Do rou want to continue?"
DISPLAY "Please answer Y oz N"
ACCEPT ANSWER.

5.4 Using Declarative Procedures to Handle Exception Conditions

A Declarative procedure executes whenever an I /0 statement results in an exception condition (a file
status value other than "00") and the 1/0 statement does not contain an AT END or INVALID KEY
phrase. The AT END and INVALID KEY phrases take precedence over a Declarative procedure but
only for the I /0 statement that includes the clause. Therefore you can have specific I /0 statement
exception condition handling for a file and also include a Declarative procedure for general excep­
tion handling.

A Declarative is a set of one or more special-purpose sections (called Declarative procedures) at the
beginning of the Procedure Division. As shown in Example 5-6, the key word DECLARATIVES
precedes the first of these sections, and the key words END DECLARATIVES follow the last.

Example 5-6: The Declarative Skeleton

PROCEDURE DIVISION,
DECLARATIVES+

END DECLARATIVES+

As shown in Example 5-7, a Declarative procedure consists of a section header, followed, in order,
by a USE sentence and zero, one, or more paragraphs.

Example 5-7: A Declarative Procedure Skeleton

DO-OO-FILE-A-PR06LEM SECTION,
USE AFTER STANDARD ERROR PROCEDURE ON FILE-A+

D0-01-FILE-A-PR06LEM+

DO-OZ-FILE-A-PROBLEM+

D0-03-FILE-A-PR06LEM+

COBOL-81 Declarative procedures execute based on these five types of conditions in the USE
statement:

1. File name - You can define a file name Declarative procedure for each file name. This
procedure overrides the next four procedures. It executes for any unsuccessful exception
condition.

IV 5-6 Input/Output Exception Conditions Handling

2. INPUT - You can define only one INPUT Declarative procedure for each program. This
procedure executes for any unsuccessful exception condition if: (1) the file is open for
INPUT and, (2) a file name Declarative does not exist for that file.

3. OUTPUT - You can define only one OUTPUT Declarative procedure for each program.
This procedure executes for any unsuccessful exception condition if: (1) the file is open
for OUTPUT and, (2) a file name Declarative does not exist for that file.

4. 1-0 - You can define only one 1-0 Declarative procedure for each program. This proce­
dure executes for any unsuccessful exception condition if: (1) the file is open for 1-0, and
(2) a file name Declarative does not exist for that file.

5. EXTEND - You can define only one EXTEND Declarative procedure for each program.
This procedure executes for any unsuccessful exception condition if: (1) the file is open
for EXTEND, and (2) a file name Declarative does not exist for that file.

The USE statement itself does not execute. It defines the condition that caused execution of the
Declarative procedure. For more information about Declarative procedures, refer to the USE state­
ment in the COBOL-81 Language Reference Manual.

Example 5-8 gives you a sample of how to include each condition in your program and contains
explanatory comments for each.

Example 5-8: Five Types of Declarative Procedures

PROCEDURE DIVISION,
DE CL AR AT I l.JES I

**
Dl-00-FILE-A-PROBLEM SECTION.

*
*

USE AFTER STANDARD ERROR PROCEDURE ON FILE-A,

* If any I/O stateMent for FILE-A results in an
* error1 Dl-00-FILE-A-PROBLEM executes.

*
* Dl-01-FILE-A-PROBLEM,

PERFORM DS-00-REPORT-FILE-STATUS,

***~**
D2-00-FILE-INPUT-PROBLEM SECTION,

USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT,

*
* * If an error occurs because of an I/O stateMent
* for any file oPen in the inPut Mode except FILE-At
* D2-00-FILE-INPUt-PROBLEM executes.

*
* D2-01-FILE-INPUT-PROBLEM.

PERFORM DS-00-REPORT-FILE-STATUS.

(continued on next page)

Input/Output Exception Conditions Handling 5-7 IV

Example 5-8: Five Types of Declarative Procedures (Cont.)

**
D3-00-FILE-OUTPUT-PR06LEM SECTION,

*
*

USE AFTER STANDARD EXCEPTION PROCEDURE ON OUTPUT.

* If an error occurs because of an I/O stateMent
*for anY file open in the outPut Mode except FILE-Ai
* D3-00-FILE-OUTPUT-PR06LEM executes.

*
* D3-01-FILE-OUTPUT-PR06LEM+

PERFORM D8-00-REPORT-FILE-STATUS,

**
D4-00-FILE-I-O-PR06LEM SECTION,

*
*

USE AFTER STANDARD EXCEPTION PROCEDURE ON I-0,

* If an error occurs because of an I/O stateMent
* for any file open in the inPut-outPut Mode excePt FILE-Ai
* DQ-00-FILE-I-O-PROBLEM executes.

*
*
* D4-01-FILE-I-O-PR06LEM,

PERFORM D8-00-REPORT-FILE-STATUS,

**
D5-00-FILE-EXTEND-PR06LEM SECTION,

*
*

USE AFTER STANDARD EXCEPTION PROCEDURE ON EXTEND,

* If an error occurs because of an I/O stateMent
*for any file open in the extend Mode except FILE-At
* D5-00-FILE-EXTEND-PR06LEM executes.

*
* D5-01-FILE-EXTEND-PR06LEM,

PERFORM D8-00-REPORT-FILE-STATUS,

**
D8-00-REPORT-FILE-STATUS SECTION,

END DECLARATIVES

**
A000-6EGIN SECTION,

IV 5-8 Input/Output Exception Conditions Handling

Chapter 6
Sharing Files and Protecting Records

This chapter introduces and discusses COBOL-81 file sharing and record locking for sequential,
relative, and indexed files. For system-specific information, refer to the RMS-11 User's Guide.

6.1 File Sharing and Record Locking Concepts

In a data manipulation environment where many users and programs access the same data, file
control must be used to protect files from nonprivileged users, to permit the right degree of file sharing
for other users, and to promote data integrity in the files. For example, in Figure 6-1, many users and
programs want to access data found in FILE-A.

Figure 6-1: Multiple Access to a File

Location 1

Use'\EJ
Acces~~
Stream 1 ~

Location 2 Location 3

I PROGA 1r2 I PROG-B JI"''
t Access ::> /Access

Stream / · Stream 3

FILE-A

C81ART-20240-20

File sharing and record locking allow you to control file and record operations when more than one
access stream is concurrently accessing a file to perform file and record operations. See Figure 6-1.

6-1 IV

You create one RMS-11 access stream with each OPEN statement. The OPEN statement readies the
file for subsequent record operations. The access stream remains active until you either terminate the
access stream with the CLOSE statement or when your program terminates. A COBOL-81 program
can define one or more access streams. For more information on access streams, see your system's
RMS-11 documentation.

File sharing allows readers and writers to access a particular file concurrently. The protection level of
the file, set by the file owner, determines whether or not a file can be shared by a particular type of
user.

Record locking controls simultaneous record operations in files that are being accessed concurrently.
Record locking ensures that when a program is writing, deleting, or rewriting a record on a given
access stream, another access stream is allowed to access the same record in a specified manner.

Figure 6-2 illustrates the relationship of record locking to file sharing. A program must successfully
meet all file-sharing requirements before it can share the records within that file with other concurrent
programs and their access streams.

Figure 6-2: File Sharing and Record locking Relationship

File Sharing

1
Automatic

Record Locking

C81ART-20250-20

File sharing is a function of the File System, while record locking is a function of RMS-11. The File
System controls the placement of and access to files. It manages the file-sharing process where
multiple access streams simultaneously access a file. RMS-1 f provides access methods to records
within a file. This includes managing the record-locking process where multiple access streams
simultaneously access a record.

You must have successful file sharing before you can consider record locking.

With COBOL-81, the file op~rations begin with an OPEN statement and end with a CLOSE statement.
The OPEN statement initiali:z:es an access stream. The CLOSE statement terminates an access stream
and can be either explicit (by the program) or implicit (on the program termination).

With COBOL-81, you use the ALLOWIN,G clause in the OPEN statement to provide the file-sharing
and record-locking specification. This clause describes what operations other access streams can
perform. It provides the specification for the read /write intentions of your access stream.

Note

The first program to open a file determines how other programs can access the
file simultaneously.

Sharing Files and Protecting Records

The record operations for COBOL-81 are:

•READ

•START

•WRITE

•REWRITE

• DELETE

6.2 Ensuring Successful File Sharing

File sharing requires that you:

• Provide disk residency for the file

• Use the PDP-11 system file protection facility

• Determine the intended access mode to the file (COBOL-81 open modes)

• Indicate the access allowed by other streams (COBOL-81 ALLOWING clause)

The remainder of this section discusses these four requirements for file sharing.

6.2.1 Providing Disk Residency

Only files that reside on disk can be shared. With COBOL-81, you can share relative and indexed
files. Also, you can share sequential files with any number of users but in read-only access mode
(RSTS/E allows multiple readers and only one writer).

6.2.2 Using File Protection

By using the appropriate file protection, the owner of a file determines how other users can access the
file. An owner can permit up to four types of file access for each of four user categories. The level of
file protection the file owner specifies determines the types of successful opens that a COBOL-81
program can specify. Those four types of file access for each user category are:

• Read - Permits the reading of the records in the file

• Write - Permits updating or extending the records in the file

•Extend - Permits extending records in the file (RSX-11M/M-PLUS)

• Delete - Permits deletion of the file and is, therefore, not applicable to a COBOL-81 program
(since COBOL--81 has no delete file facility)

In the PDP-11 file protection facility, four different categories of users exist with respect to data
structures and devices. A file owner decides which of these users can share the file:

• SYSTEM - Users of the system with certain I /0-related privileges. Project Programmer Num­
bers (PPN) or User Identification Codes (UIC) such as project 1, programmer 20 - [1,20]

• OWNER - Users whose PPN or UIC is identical to the PPN or UIC of the file owner such as
[52,20]

Sharing Files and Protecting Records 6-3 IV

_ • GROUP - Users of the system whose project number is identical to the project number of the
file owner such as 52 in [52,20]

• WORLD - All users of the system

The owner of the file has a default protection that the system applies to each newly created file unless
the owner specifically requests modified protection.

See your system's documentation for more information on its file protection.

6.2.3 Determining the Intended Access Mode to a File

Once you establish disk residency and privileges for a file, you can consider the third file sharing
criterion - how the stream accesses the file. You specify this access by using the COBOL-81 OPEN
and ACCESS modes.

The COBOL-81 open modes are INPUT, OUTPUT, EXTEND, and 1-0. The COBOL-81 access mech­
anisms are: SEQUENTIAL, RANDOM, and DYNAMIC. The combination of OPEN and ACCESS
modes determines the operations intended to be performed on the file.

You must validate your COBOL-81 file processing intention against the file protection that was
assigned by the file owner. For example, to use an OPEN INPUT statement requires that the owner of
the file has granted read access privileges to the file; to use an OPEN OUTPUT or EXTEND requires
that the owner has granted write access privileges to the file; while to use an OPEN 1-0 means the
owner has granted both read and write access privileges to the file.

Table 6-1 shows the relationship between open mode, access mode, and intended COBOL-81 opera­
tions. The DYNAMIC access mode is omitted because the result of its intention is always the same as
RANDOM. The key word, ANY, indicates that all access methods result in the same intentions.

Table 6-1: File Sharing and Intended COBOL-81 Operations

Open Access Intended COBOL-81
Mode Mode Operations

INPUT ANY READ,START
OUTPUT ANY WRITE
1-0 SEQUENTIAL READ ,ST ART, REWRITE, DELETE

RANDOM READ, ST ART, REWRITE, DELETE, WRITE
EXTEND SEQUENTIAL WRITE

Note that if the file protection does not permit the intended operations, file access is not granted on
the file, even if open and access modes are compatible.

File protection and open mode access apply to both nonshared and shared (includes more than one
access stream) files. A file protection and intent check are made when the first access stream opens a
file (nonshared file environment), and again when the second and subsequent access streams open
the file (shared file environment).

After these file sharing checks pass, you can apply the fourth file sharing criterion - access allowed to
other streams.

IV 6-4 Sharing Files and Protecting Records

6.2.4 Indicating the Access Allowed to Other Streams

You use the COBOL-81 ALLOWING clause of the OPEN statement to specify what other access
streams are allowed to that file.

The OPEN ALLOWING options are as follows:

1. OPEN ALLOWING READERS - Locks the file against operations that indicate intended
write access (OPEN 1-0 and OPEN EXTEND). Other streams can open the file for INPUT.

2. OPEN ALLOWING ALL - Allows read and write access by other streams. Other access
streams can open the file for INPUT, EXTEND, and 1-0 modes.

The first access stream uses the ALLOWING clause to specify what other access streams can do.
When the second and subsequent access streams attempt to open the file, the following checks
occur:

1. The allowed options of this access stream are checked against the intended access of the
previous stream.

2. The intended access of this access stream are checked against the allowed access of the
previous stream.

For example, if the first access stream permits ALLOWING READERS, then a subsequent access
stream that opens the file ALLOWING ALL would fail because the clause option and the 1-0 mode
declares write intent to the file.

6.3 Describing Types of Access Streams

You can establish several types of access streams. For example, two programs opening the same file
represent two access streams to that file. Both programs begin with the file open, perform record
operations, and then close the file.

In addition, a single program can establish multiple access streams to a file. In this case, you use
multiple SELECT clauses to choose the file, while the FD and all other clauses and statements treat the
file independently. Example 6-1 shows two access streams to the same file.

Example 6-1: Creating Two Access Streams to a File from the Same Program

IDENTIFICATION DIVISION+
PROGRAM-ID, ACCESSTRM+
ENVIRONMENT DIVISION+
INPUT-OUTPUT SECTION+
FILE-CONTROL+

SELECT FILE-1
ORGANIZATION IS SEQUENTIAL
ASSIGN TO "SHAREDAT+DAT"+

SELECT FILE-2
ORGANIZATION IS SEQUENTIAL
ASSIGN TO "SHAREDAT.DAT",

DATA DIVISION.
FILE SECTION,
FD FILE-1 RECORD
01 RECORD-1
FD FILE-2 RECORD

CONTAINS 512 CHARACTERS+
PIC X<512),

CONTAINS 512 CHARACTERS.
01 RECORD-2
PROCEDURE DIVISION+

PIC X<512),

(continued on next page)

Sharing Files and Protecting Records 6-5 IV

Example 6-1: Creating Two Access Streams to a File from the Same Program (Cont.)

AOO-BEGIN,

*
*
*
*
*
*
*
*

OPEN INPUT FILE-1 ALLOWING READERS,
OPEN INPUT FILE-Z ALLOWING READERS,

READ FILE-1 AT END DISPLAY "File-a is AT ENO".

READ FILE-Z AT END DISPLAY "File-Z is AT ENO",

* A99-END,
CLOSE FILE-1,
CLOSE FILE-z,
STOP RUN,

6.4 Summarizing Related File-Sharing Criteria

This section uses two tables to summarize the relationships among three of the four file-sharing
criteria (disk residency, the first file-sharing requirement, is not included).

Table 6-2 summarizes the file protection and open mode requirements. For example, the file protec­
tion privilege READ (R) permits OPEN INPUT.

Table 6-2: File Protection and Open Mode Requirements for File Sharing

File Open
Protection Mode

R INPUT
w OUTPUT, EXTEND
RW 1-0, INPUT, OUTPUT, EXTEND

Table 6-3 shows the legal and illegal OPEN ALLOWING combinations between first and subsequent
access streams.

Remember, you specify intended operations through the first access stream. For the second and
subsequent shared access to a file, you use the access (OPEN modes) intentions and the ALLOWING
clause to determine if and how a file is shared.

The abbreviations used in Table 6-3 are as follows:

1. OPEN ABBREVIATIONS

• E,10- OPEN EXTEND, OPEN 1-0

• I - OPEN INPUT

• 0 - OPEN OUTPUT

2. ALLOWING ABBREVIATIONS

• A - OPEN ALLOWING ALL

• R- OPEN ALLOWING READERS

IV 6-6 Sharing Files and Protecting Records

Table 6-3: File Sharing Options

~ E,10 E,10 I I 0
A R A R A,R

E,10 G 1 G 1 3
A

E,10 2 1,2 G 1 3
R

I G G G G 3
A

I 2 2 G G 3
R

0 G G G 1 3
A

0 G G G 1 3
R

• Assumes no file protection violations on first stream.

Legend: G Second stream successfully opens and file sharing is granted.

1 Second stream denied access to the file because first intends write, while second specifies read-only sharing.

2 Second stream denied access to the file because second intends write, while first specifies read-only sharing.

3 No sharing. Second creates new file with OPEN OUTPUT.

In the following example, four streams illustrate some of the file sharing rules.

OPEN
OPEN
OPEN
OPEN

I-0
INPUT
I-0
INPUT

ALLOWING
ALLOWING
ALLOWING
ALLOWING

In this example:

ALL
READERS
ALL
ALL

STREAM 1
STREAM 2
STREAM 3
STREAM 4

C81 ART-20260-30

• Stream 1 initiates file sharing by specifying ALLOWING ALL. This stream has read and write
privileges.

• Stream 2's ALLOWING READERS file sharing option is compatible with stream 1. Stream 2
can file share and read the file.

• Stream 3's ALLOWING ALL - file sharing option violates the intent of stream 2 (readers only).
Stream 3's OPEN 1-0 implies a write intention that stream 2 disallows. Consequently, stream 3
gets a file-locked error and becomes inactive.

• Stream 4's ALLOWING ALL file sharing option is compatible with stream 2. STREAM 4's
OPEN INPUT implies a read intention only.

Sharing Files and Protecting Records 6-7 IV

6.5 Checking File Operations

You frequently encounter the COBOL-81 file status values and RMS-11 completion codes in Table
6-4 when file sharing. You can check the success or failure of a file open operation by examining
either the COBOL-81 file status values provided through the FILE STATUS IS clause in a file descrip­
tion entry or the RMS-11 completion /error codes provided by the COBOL-81 special registers RMS­
STS and RMS-STV.

Table 6-4: COBOL-81 File Status Values and RMS-11 Completion/Error Codes

COBOL-81
File Status RMS-STS Codes

Values Decimal Value Description and Symbolic Value

00 1 Successful Operation - SU$SUC

30 -1296 File Protection Violation - ER$PRV

91 -704 File is Locked - ER$FLK

92 -1440 Bucket Containing Record is Locked - ER$RLK

94 -1784 File is Closed WITH LOCK- ER$WLK

File status 30, when it corresponds to the RMS-11 STS symbol ER$PRV, is a result of a violation of the
file protection codes as described in Section 6.2.2. To correct the condition, the file owner must reset
the protection on the file or the directory that contains the file.

File status 94, which corresponds to the symbol ER$WLK in the RMS-11 STS special register, indi­
cates that a previous accessor of the file has denied access by executing a CLOSE WITH LOCK
statement.

For a complete list of COBOL-81 file status values, see Appendix C of the COBOL-81 Language
Reference Manual. For a complete list of RMS-11 completion codes, see your system's RMS-11
Macro Programmer's Guide.

6.6 Specifying the OPEN EXTEND with a Sequential File

In a shared sequential file environment, when two concurrent access streams use EXTEND
ALLOWING ALL, and both streams issue a write (to the end of the file - EOF), the additional data in
the file comes from the stream that issued the last write to the file. Figure 6-3 illustrates why this data
overwrite occurs.

As the file operations begin, both access streams point to the EOF. Next, note that the record to be
written (immediately after the EOF) is never in a locked state. When access stream 1 writes to the file,
record 5 is created. When access stream 1 executes a CLOSE ·statement, access stream 2 then writes
to the file. Since access stream 2 still points to the EOF, the stream writes over the data written by
stream 1 (record 5). Consequently, record 6 erases record 5 and supplies the new data in FILE A.

You can avoid this overwrite condition by better control of the allowing options in the system design.

IV 6-8 Sharing Files and Protecting Records

Figure 6-3: The Overwrite Condition

FILEA

Record 1

Record 2

Record 3

Record 4

Access Stream 1 ____. rEnd-of-File-1 .,...__ Access Stream 2

Record 5/6

C81ART-20270-15

6.7 Using Record Locking

Automatic record locking is the default. In automatic record locking, if you do not specify an
ALLOWING clause on the OPEN statement, the default is ALLOWING READERS.

Automatic record locking applies the lock when you access the record and releases the lock when
you deaccess the record. In automatic record locking, the access stream can have only one record
locked at a time and can apply only one type of lock to the records of the file.

You deaccess a record by using the next READ operation, a REWRITE or a DELETE operation of the
record, or by closing the file. When you close a file, any record lock that remains is released
automatically.

In Example 6-2, the program uses automatic record locking. The program opens the file with 1-0
ALLOWING READERS clause. Another access stream in another program opens the file with INPUT
ALLOWING ALL clause.

If the first access stream is updating records in random order with a REWRITE statement, a record lock
can occur in the second stream from a READ statement until the REWRITE statement of the first stream
terminates. Record locks can also occur in the first stream when the second stream reads a record and
the first stream tries to read the same record.

Example 6-2: Automatic Record Locking

IDENTIFICATION DIVISION,
PROGRAM-ID, AUTOLOCK,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT FILE-1
ASSIGN TD "SHAREDAT.DAT",

DATA DIVISION,
FILE SECTION,
FD FILE-1

RECORD CONTAINS 100 CHARACTERS,
01 FILE-1-REC PIC X<lOO),
PROCEDURE DIVISION,
AOO-BEGIN,

OPEN I-0 FILE-1 ALLOWING READERS,
READ FILE-1 AT END STOP RUN,
REWRITE FILE-1-REC,
CLOSE FILE-1,
STOP RUN,

Sharing Files and Protecting Records 6-9 IV

Chapter 7
File Optimization Techniques

COBOL-81 provides methods of controlling RMS-11 actions during I /0 operations. You have the
choice of accepting the defaults RMS-11 provides or using these optional methods to make your
program more efficient.

The COBOL-81 language elements that can specify alternatives to the RMS-11 defaults are:

• The APPLY clause in the 1-0-CONTROL paragraph

• The RESERVE n AREAS clause in the FILE-CONTROL paragraph

• The SAME [RECORD] AREA clause in the 1-0-CONTROL paragraph

• The BLOCK CONTAINS clause in the FD entry

To use the optional I /0 techniques to your advantage, you must understand how RMS-11 puts them
into effect. This section explains COBOL-81 I /0 optimization techniques in RMS-11 terms. It also
presents the advantages and disadvantages of using each technique.

For a better understanding of the RMS-11 terms and concepts included in these explanations, see the
RMS-11 User's Guide.

7.1 Using the APPLY Clause

You can specify eight different I /0 techniques with the APPLY clause: DEFERRED WRITE,
EXTENSION, FILL-SIZE, MASS-INSERT, PREALLOCATION, CONTIGUOUS PREALLOCATION,
WINDOW, and PRINT-CONTROL. Except for PRINT-CONTROL, each APPLY technique can save
time during program execution. However, there are disadvantages in using each one. This section
explains how each technique saves execution time, and what you exchange for that saving.

APPLY DEFERRED-WRITE (relative and indexed files only)

This technique causes RMS-11 to write several records at once, instead of writing each one
separately. Normally, each WRITE or REWRITE operation performed by your program requires an
I /0 operation from RMS. With DEFERRED-WRITE, however, RMS-11 delays the operation until
the file's I /0 buffer is full. Using DEFERRED-WRITE saves execution time by reducing the number
of write operations RMS-11 performs.

If the system crashes during the program's execution, you might lose records currently in the file's
I /0 buffer. If RMS-11 has been delaying its write operations, the loss can be more than just one
record.

7-1 IV

APPLY EXTENSION integer (disk files only)

The integer you specify here overrides the default extension quantity (DEQ). The DEQ for sequen­
tial files is 5 blocks, and for relative and indexed files is four times the bucket size in blocks. The
integer specifies the number of blocks RMS-11 uses to extend a file when the allocated space
cannot hold another record. Using a large extension amount results in fewer extension operations
by RMS-11 and, therefore, saves execution time.

A large extension amount can waste space if, for example, RMS-11 extends the file for the sake of
one record and no other records are written to the file.

APPLY FILL-SIZE (indexed files only)

Fill size in COBOL is the same as an RMS-11 bucketfill size. Both indicate the number of bytes
per bucket that RMS-11 fills when inserting records. RMS-11 normally fills the entire bucket; the
only way to change this is by specifying a fill number when you create the file using the RMSDES
or RMSDEF utility (see the RMS-11 User's Guide).

To keep this fill number in effect as you add records to the file with your COBOL-81 program,
you must use APPLY FILL-SIZE. If you subsequently access the file without specifying FILL-SIZE,
RMS-11 can use the extra bucket space to insert records, thereby avoiding bucket splitting and
saving execution time. This technique has no effect unless you created the file with a bucket fill
size using the RMS-11 RMSDES or RMSDEF utility.

This technique can waste bucket space unless you open the file without specifying FILL-SIZE and
randomly insert records.

APPLY MASS-INSERT (indexed files only)

Use this technique when you have a series of records to add and:

• You have sorted the records into ascending order by the file's primary key

• The lowest key value in the records is greater than the highest key value in the file; that is,
RMS-11 inserts the records at the logical end of file

Inserting all these records at once saves execution time by eliminating the index search for all but
the first write operation.

The disadvantage in using MASS-INSERT is that you cannot perform random insertions while the
technique is in effect.

APPLY PREALLOCATION (disk files only)

The integer you specify here overrides the default preallocation that RMS-11 uses when it creates
a file. The default value for sequential files is four 512-byte blocks; for indexed files, the default is
four times the bucket size. You can save execution time by specifying a value larger than the
default, thereby reducing the number of times RMS-11 must extend the file before writing more
records.

If the eventual size of the file is known, preallocation eliminates the RMS-11 overhead needed to
extend the file. If the file grows beyond the initial preallocation, you can specify the APPLY
EXTENSION clause to override the default extension value used by RMS-11.

Do not use this technique unless you plan to use the entire preallocated amount; otherwise, you
waste disk space.

IV 7-2 File Optimization Techniques

APPLY CONTIGUOUS PREALLOCATION (disk files only)

This technique requires that the blocks RMS-11 preallocates for the file be in a continuous logical
series on disk. Your program runs faster if the file is contiguous because RMS-11 takes less time to
locate a record.

You cannot extend contiguous files; a protection violation error occurs if you attempt to write a
record and the allocated space is exhausted. Therefore, do not use contiguous preallo­
cation unless you are sure of the file's eventual size. Then, if you must extend it, make the file
noncontiguous.

APPLY WINDOW

The APPLY WINDOW value changes the value of the RTV field in the File Access Block (FAB) for
the file named in the APPLY WINDOW clause. The meaning of the RTV field depends on your
operating system. See the RMS-11 User's Guide for more information.

On an RSX-11 M/M-PLUS system, you can override your default window size with the APPLY
WINDOW clause. The one-byte Retrieval Window Size (RTV) field contains the number of
retrieval pointers kept in memory for the file represented by the FAB. This set of pointers is called
a "window." Retrieval pointers map virtual block numbers to logical block numbers. Table 7-1
lists the permissible window values.

On a RSTS/E system, you override the clustersize. The one-byte clustersize (RTV) field contains
the number of blocks in each cluster of the file represented by the FAB. Table 7-1 lists the
permissible clustersize values.

Table 7-1: Permissible APPLY WINDOW Values

Permissible
Clustersize /Window

Values

RSX-11M Result
RSTS/E RSX-11 M/PLUS

Clustersize Window Size

0 0 Causes RMS-11 to use the current default value

A power 1-127 Overrides the current default value
of two

255 As much of the file as possible is mapped with one window

255 RMS-11 sets the clustersize to 256 blocks

7 .2 Current Record Area

Your program defines the current record area by the record descriptions that follow the file descrip­
tions. The system creates one current record area for each file you open. Figure 7-1 shows a program
with three record areas for its three files. All READ and WRITE operations use this area during record
transfers to and from the I I 0 buffers (see Section 7.4).

File Optimization Techniques 7-3 IV

Figure 7-1: Current Record Areas for Three Files

! p=C Current Record Areas

COBOL Area Area Area Buffer Buffer Buffer RMS-11
Program 1 2 3 1 2 3

C81ART-20280·20

A file's current record area size is defined by the size of its largest record. The number of bytes
transferred depends on the record description named in the WRITE or REWRITE statement or the
RECORD VARYING phrase of a variable-length record file.

The system does not clear the current record area before executing a READ operation. Consider an
example where the current record area contains 20 characters from the first record read from a file. If
the next READ returns a 12-character record, the remaining 8 character positions do not change:

1. Current record area after first READ: 0238384CABINET1 FILE

2. Contents of second record: GG27402CHAIR

3. Current record area after second READ: GG27402CHAIRETt FILE

7 .3 Sharing Record Areas

You can reduce your task size by specifying that two or more files share record areas. Normally, the
COBOL-81 OTS allocates a current record area, which contains the most recently accessed record,
for each file your program opens. The SAME RECORD AREA overrides this default. In addition to
saving space, sharing record areas can improve execution by eliminating an extra MOVE operation
when you are copying from an input file to an output file, as Example 7-1 and Figure 7-2 illustrate.

Example 7-1 Sharing Record Areas

Program Without Sharing

PROCEDURE DIVISION,

READ IN-FILE ,,,

MOVE IN-REC TO OUT-REC.
WRITE OUT-REC ,,,

IV 7-4 File Optimization Techniques

Program With Sharing

I-0-CONTROL+
SAME RECORD AREA FOR

IN-FILE, OUT-FILE+

PROCEDURE DIVISION,

READ IN-FILE ,,,

WRITE OUT-REC ,,,

Figure 7-2: Two Files Sharing a Record Area

Current Record Area for
IN-FILE and OUT-FILE

t
COBOL Area Buffer
Program 1 1

Buffer
2

RMS-11

C81 ART-20290-20

The example also shows the disadvantage of sharing record areas: the records from each file do not
exist separately. Therefore, if your program changes a record in the record area defined for the output
file, the record in the record area for the input file is also changed.

7 .4 I I 0 Buffers

A buffer is a part of memory dedicated to a task (see Figure 7-3). It is a holding area for data moved to
and from other storage areas.

Figure 7-3: A Program's Buffer Area in a Task Structure

Each buffer adds to the total task size.
A task's total buffer space depends on:

• Bucket or block size (disk)
•BLOCK CONTAINS clause (tape)
• Number of files simultaneously open

Current Record~
Areas for each i-----~1
Buffer f l + ~ ,

COBOL Area Area Area Buffer Buffer Buffer RMS-11
Program 1 2 3 1 2 3

CB 1 ART -20300-35

Using buffers, the system can perform I /0 operations independent of record and file descriptions. It
can read and write more data (or less) in each operation than the program requests. For example,
when your program reads a record that is part of a block, only that record is made available in the
current record area (see Section 7.2). The remaining records in the block are still available in the file's
I /0 buffer. The system can make them available to your program without accessing the file for each
COBOL-81 I /0 operation.

For every file your program opens, COBOL-81 allocates an I /0 buffer (unless you specify shared
buffer areas; see Section 7.6). The size of each 1/0 buffer adds to your total task size.

By default, the compiler allocates a buffer size of one block, or 512 bytes, for sequential disk files.
For relative files, it allocates a buffer size in bucket increments. For indexed files, it allocates a buffer
size equal -to twice the size of one bucket, which is a unit storage structure for indexed files.

File Optimization Techniques 7-5 IV

You can override these defaults by using the BLOCK CONTAINS clause (see Section 7.7) For sequen­
tial files, COBOL-81 uses this clause to calculate the buffer size. For relative and indexed files, this
clau·se is used to calculate the bucket size, which in turn determines the buffer size.

COBOL-81 also uses the BLOCK CONTAINS clause to determine each file's unit of transfer. This
quantity is the amount of the file's data RMS-11 moves to and from the I /0 buffer at a time.

7.5 Reserving Additional 1/0 Buffer Space for Your Files

You can override the system defaults in Table 7-1 with the RESERVE n AREAS clause. Reserving more
buffers increases your task size, but it also increases execution speed because RMS-11 performs fewer
disk accesses.

Table 7-2: Default Buffer Areas Reserved by the COBOL-81 OTS

File Reserved
Organization Buffer Areas

Sequential 1

Relative 1

Indexed 2

For sequential files, the RESERVE n AREAS clause does not actually create additional buffers. Instead,
the OTS multiplies the number you specify by the block size (which is determined by the BLOCK
CONTAINS clause; see Section 7.7) to establish the size of one buffer. Consider this example:

FILE-CONTROL,
SELECT SEQ-FILE ASSIGN TD "TEST"

ORGANIZATION IS SEQUENTIAL
RESERVE 2 AREAS+

FD SEQ-FILE
BLOCK CONTAINS 512 CHARACTERS

Rather than reserving two 512-'byte buffer areas for SEQ-FILE, the OTS reserves one 1024-byte buffer.

Note

Using this clause on sequential magnetic tape files does not create a more effi­
cient task. See Section 7 .8.1 for an explanation.

Reserving additional buffer areas benefits sequential-access relative files when there are multiple
records for each buffer. Locating the next record takes less time if it is in the same buffer. However,
there is a trade-off: the larger the buffer, the larger the task, but the faster the program reads.

IV 7-6 File Optimization Techniques

Reserving additional areas for indexed files gives RMS-11 more space to store the file's index struc­
ture. Locating a record takes less time if the record's index is stored in one of the buffer areas. As a
general rule, allocate one buffer for each key that your program uses to access records, in addition to
the two default buffer areas. For example, if the file contains a primary key and two alternate keys,
and you use all these keys to access records, reserve a total of five buffer areas.

7.6 Sharing Buffer Areas

You can decrease your task size by specifying that two or more files are to share the same I /0 buffer
area. Normally, the COBOL-81 OTS establishes one I /0 buffer for every file your program opens.
The SAME AREA CLAUSE overrides that default. The code in Example 7-2 causes FILE1, FILE2, and
FILE3 to share one 1/0 buffer, as shown in Figure 7-4.

Example 7-2: Statements Causing Three Files to Share One I /0 Buffer

I-0-CONTROL,
SAME AREA FOR FILE1 FILEZ FILE3,

Figure 7-4: Using One I /0 Buffer to Process Three Files

One I I 0 buffer
for three files

t
COBOL Area Area Area Buffer RMS-11
Program 1 2 3 1

C81ART-20310-20

Without the SAME AREA clause, the OTS would have allocated three separate buffers for these files.
The amount of space you save depends on the buffer sizes defined for each file.

The only disadvantage in forcing files to share an I /0 buffer is that only one of those files can be
opened at a time during execution.

7.7 Tailoring 1/0 Buffers to Increase Speed of 1/0 Operations

Record blocking can increase the speed of I /0 operations. The block size determines the number of
records the system transfers in its buffer(s) during each I /0 operation.

1/0-bound programs should contain a large BLOCK CONTAINS value, especially when using
sequential operations. In fact, segmenting the program to allow for a larger buffer size can make a
program execute faster depending on the application; for example, a sequential access of a heavily
1/0 bound program.

In general, a larger buffer size reduces the number of I /0 transfers RMS-11 must perform, thereby
improving execution speed. However, a larger buffer size also increases the size of your task image.
Additionally, COBOL-81 performs rounding as it calculates buffer size, and the unit of transfer can
differ from the buffer size. The rounding that occurs, and the difference between buffer size and unit
of transfer, can create a large task image that executes inefficiently.

File Optimization Techniques 7-7 IV

To make efficient use of the BLOCK CONTAINS clause, you must understand how COBOL-81
calculates:

• Buffer size and unit of transfer for sequential files

• Bucket size for relative and indexed files

The next sections explain these calculations and use these terms to refer to record blocking and I /0
processing:

Logical Block

A group of consecutive bytes in memory.

Physical Block

A group of consecutive tape-resident data bytes treated as a unit; it is the number of bytes
between interrecord gaps.

Block

A group of consecutive disk-resident data bytes treated as a unit. A block's size is 512 bytes.

Bucket

For relative and indexed files, the unit of transfer between storage devices and I /0 buffers in
memory. A bucket can contain one or more records; however, records cannot span buckets.

Bucket size

Consists of either one to thirty-two 512-byte blocks for an RSX system, or one to fifteen 512-byte
blocks for a RSTS/E system, and determines the unit of transfer from disk to memory of I /0
operations.

Record Unit Size

The storage medium space (in bytes) needed to store a record in a file:

• For fixed-length records, record unit size is the record length specified by either the record
description or the RECORD CONTAINS clause, whichever is larger.

• For variable-length records, record unit size is the maximum record length plus the overhead
bytes used to specify record length.

Note

Do not confuse "record size" with "record unit size." "Record size" refers to the
number of character positions in a record - the number you define in the record
description.

7.8 Optimizing File Design

This section introduces you to sequential, relative, and indexed file design optimization.

7 .8.1 Sequential Files

Sequential files have the simplest structure and the fewest options for definition, population, and
handling. You can reduce the number of disk accesses by keeping record length to a minimum.

IV 7-8 File Optimization Techniques

7.8.1.1 Buffer Size Calculations for Sequential Files- COBOL-81 determines the file's buffer size (in
bytes) using two different formulas, depending on which format of the BLOCK CONTAINS clause you
use. The following items refer to the formulas used in this section:

1. AR = number of Areas Reserved

This quantity is determined from the RESERVE n AREAS clause. If you do not specify a
RESERVE n AREAS clause, the default is one area for sequential files (that is, AR = 1).

2. URS = Unit Record Size

For fixed-length records, this equals the record length specified by the record description
or the RECORD CONTAINS clause, whichever is larger.

For variable-length records, it equals the maximum record length plus 4 overhead bytes.

The buffer size formula when using the BLOCK CONTAINS n CHARACTERS clause is:

buffer size = n * AR

Buffer size is in bytes and is rounded up to the next multiple of four.

The buffer size formula when using the BLOCK CONTAINS n RECORDS clause is:

buffer size = n * URS *AR

Buffer size is in bytes and is rounded up to the next multiple of four.

COBOL-81 allows buffer sizes that are not multiples of 512 because magnetic tape files do not have
the 512-byte restriction (that is, they are not block-structured). However, because disk files are block­
structured, the unit of transfer must be a multiple of 512. If you create a buffer size of 600 bytes, for
example, the unit of transfer for a magnetic tape file is 600 bytes. For a disk file, however, it is 512
bytes (1 block), and the remaining 88 bytes are not used by RMS-11.

With a sequential disk file, you can use multiblocking to access a buffer area larger than the default.
Because the system transfers disk data in 512-byte blocks, a blocking factor with a multiple of 512-
bytes improves I /0 access time. In the following example, the multiblock count of four (2048 divided
by 512) causes reads and writes to FILE-A to access a buffer area of 4 physical blocks:

FILE SECTION+
FD FILE-A

BLOCK CONTAINS 2048 CHARACTERS

If you do not want to calculate the buffer size, but you want to specify the number of records in each
buffer, use the BLOCK CONTAINS n RECORDS clause. This example specifies a buffer large enough
to hold 15 records:

BLOCK CONTAINS 15 RECORDS

File Optimization Techniques 7-9 IV

When using the BLOCK CONTAINS n RECORDS clause for sequential files on disk, RMS-11 calcu­
lates the buffer size by using the maximum record unit s~ze,and rounding down to a multiple of
512 bytes.

In the next example, the BLOCK CONTAINS clause specifies five. records. RMS-11 calculates the
block size as eight records, or 512 bytes.

FILE SECTION,
FD FILE-A

BLOCK CONTAINS 5 RECORDS,
01 FILE-A-REC PIC X<64),

In short, these calculations show that you make most efficient use of your task's space if you:

• Do not reserve more than one area for a magnetic tape file

• Create a buffer size that is a multiple of 512 for a disk file

7.8.1.2 Unit of Transfer for Sequential Files on Magnetic Tape - For magnetic tape files, COBOL-81
uses the BLOCK CONTAINS clause to determine the unit of transfer in bytes. The system stores
records in the block in the order they are written (first-to-last). Records cannot span physical blocks;
therefore, a physical record can contain only complete records (regardless of record format). The
block size on magnetic tape must be between 18 and 8192 bytes long.

If the block size on magnetic tape is not evenly divisible by 4, RMS-11 rounds up the block size to the
nearest multiple of 4. The following items refer to the formulas used in this section:

1. AR = number of Areas Reserved

This quantity is determined from the RESERVE n AREAS clause. If you do not specify a
RESERVE n AREAS clause, the default is one area for sequential files (that is, AR = 1).

2. URS = Unit Record Size

For fixed-length records, this equals the record length specified by the Record Description
or the RECORD CONTAINS clause, whichever is larger.

For variable-length records, it equals the maximum record length plus 4 overhead bytes.

If you do not specify the BLOCK CONTAINS clause, the default unit of transfer formula is:

Unit of transfer = A block size set by the size of the largest record

If you specify the BLO.CK CONTAINS n CHARACTERS clause, the unit of transfer formula is:

Unit of transfer = n

Unit of transfer is in bytes and is rounded up to the next multiple of four.

IV 7-10 File Optimization Techniques

FD TEST-FILE
BLOCK CONTAINS 512 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X(484),

FD TEST-FILE
BLOCK CONTAINS 512 CHARACTERS

RECORD IS VARYING
FROM 400 TO 484 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<484),
01 REC-Z PIC X<400),

SELECT SEQ-FILE
ASSIGN TO "MT1:REPORT.DAT"
RESERVE Z AREAS,

FD SEQ-FILE
BLOCK CONTAINS 500 CHARACTERS

Samples

Unit of transfer = 512 bytes

Buffer size = 512 • 1 = 512 bytes

Unit of transfer = 512 bytes

Buffer size = 512 • 1 = 512 bytes

Unit of transfer= 500 bytes
Buffer size = 500 • 2 = 1 000 bytes

If you specify the BLOCK CONTAINS n RECORDS clause, the unit of transfer formula is:

Unit of transfer = n • URS

Unit of transfer is in bytes and is rounded up to the next multiple of four.

FD TEST-FILE
BLOCK CONTAINS SO RECORDS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<ZO),

FD TEST-FILE
BLOCK CONTAINS 8 RECORDS
RECORD IS VARYING
FROM 40 TO 88 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<40),
01 REC-Z PIC X <88),

SELECT SEQ-FILE
ASSIGN TO "MTO:REPORT.DAT"
RESERVE 3 AREAS,

FD SEQ-FILE
BLOCK CONTAINS Z RECORDS
RECORD CONTAINS ZOO CHARACTERS

t

Samples

Unit of transfer = 50 • 20 = 1000 bytes

Buffer size = 50 • 2o • 1 = 1 000 bytes

Unit of transfer 8 • (88 + 4) = 736 bytes

Buffer size = 8 • (88 + 4) • 1 = 736 bytes

Unit of transfer = 2 • 200 = 400 bytes

Buffer size = 2 • 200 • 3 = 1200 bytes

File Optimization Techniques 7-11 IV

7.8.1.3 Unit of Transfer for Sequential Flies on Disk- For disk files, COBOL-81 uses the buffer size
to determine the unit of transfer in blocks. Records are packed together in each block, and the records
can span block boundaries. The unit of transfer is simply the greatest number of 512-byte. blocks
contained in the buffer size.

The following items refer to the formulas used in this section:

1. AR = number of Areas Reserved

This quantity is determined from the RESERVE n AREAS clause. If you do not specify a
RESERVE n AREAS clause, the default is one area for sequential files (that is, AR = 1).

2. URS = Unit Record Size

For fixed-length records, this equals the record length specified by the record description
or the RECORD CONTAINS clause, whichever is larger.

For variable-length records, it equals the maximum record length plus 4 overhead bytes.

If you do not specify the BLOCK CONTAINS clause, the default unit of transfer formula is:

Unit of transfer = One block, or 512 bytes.

If you specify the BLOCK CONTAINS n CHARACTERS clause, the unit of transfer formula is:

Unit of transfer = (n *AR) I 512

Unit of transfer is in blocks and is rounded down to the next integer.

FD TEST-FILE
BLOCK CONTAINS 512 CHARACTERS
LABEL RECORDS ARE STANDARD+

01 REC-1 PIC X<484),

FD TEST-FILE
BLOCK CONTAINS 512 CHARACTERS
RECORD IS VARYING
FROM 400 TO 484 CHARACTERS
LABEL RECORDS ARE STANDARD+

01 REC-1 PIC X<484),
01 REC-2 PIC X<400),

SELECT SEQ-FILE
ASSIGN TO "REPORT.DAT"
RESERVE 2 AREAS+

FD SEQ-FILE
BLOCK CONTAINS 500 CHARACTERS
LABEL RECORDS STANDARD+

01 REC-1 PIC X<lOO>+

IV 7-12 File Optimization Techniques

Samples

Unit of transfer = (512 * 1) /512=1 block

Buffer size = (512 * 1) I 512 = 1 block

· Unit of transfer = (512 * 1) /512=1 block

Buffer size = (512 * 1) I 512 = 1 block

Unit of transfer= (500 * 2)/512= 1.9 ...
rounded down = 1 block

Buffer size = 500 * 2 = 1 000 bytes

If you specify the BLOCK CONTAINS n RECORDS clause, the unit of transfer formula is:

Unit of transfer = (n • URS• AR) I 512

Unit of transfer is in blocks and is rounded up to the next integer.

FD TEST-FILE
BLOCK CONTAINS 50 RECORDS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<20),

FD TEST-FILE
BLOCK CONTAINS 100 RECORDS
RECORD VARYING
FROM 10 TO 30 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC XC10),
01 REC-2 PIC XC20),
01 REC-3 PIC XC30),

SELECT SEQ-FILE
ASSIGN TO "REPORT.DAT"
RESERVE 3 AREAS,

FD SEQ-FILE
BLOCK CONTAINS 2 RECORDS
RECORD CONTAINS 200 CHARACTERS

7 .8.2 Relative Files

Samples

Unit of transfer = (50 • 20 • 1) I 512
rounded down = 1 blocks

Buffer size = (50 • 20) • 1 = 1000 bytes

Unit of transfer= (100 • (30+4) • 1)/512
rounded down = 6 blocks

Buffer size = (100 • (30 + 4) • 1) = 3400 bytes

Unit of transfer= (2 • 200 • 3)/512= 2.3 ...
rounded down = 2 blocks

Buffer size = 2 • 200 • 3 = 1200 bytes

I /0 optimization of a relative file depends on four items:

1. Maximum record number - the highest numbered record written to a relative file.

2. Cell size - the unit of disk space needed to store a record unit size (record unit size =
record + record overhead).

3. Bucket size - the number of blocks read or written in one I /0 operation (equivalent to
buffer size). To determine how many physical blocks a bucket can contain, refer to the
RMS-11 User's Guide.

4. File size - the number of blocks used to preallocate the file.

7.8.2.1 Maximum Record Number (MAN) - If you create a relative file with a COBOL-81 program,
the system sets the MRN to 0, allowing the file to expand to aily size.

If you create a relative file with the RMSDEF utility, select a realistic MRN. An attempt to insert a
record with a number higher than the MRN will fail.

File Optimization Techniques 7-13 IV

7.8.2.2 Cell Size - The system calculates cell size. However, you can specify a different cell size
when you create the file by using the RECORD CONTAINS clause in the file description. You cannot
write records larger than the specified cell size.

The system calculates cell size using these formulas:

Fixed-length records: cell size = 1 + record size

Variable-length records: cell size = 3 + record size

For fixed-length records, the overhead byte is a record deletion indicator. Variable-length records use
two additional overhead bytes to indicate record length. The following example calculates a cell size
of 101 BYTES for fixed-length records:

FD A-FILE
RECORD CONTAINS 100 CHARACTERS

The next example calculates a cell size of 153 for variable-length records:

FD B-FILE
RECORD IS VARYING IN SIZE FROM 50 TO 150 CHARACTERS

Avoid selecting a cell size larger than necessary: this wastes disk space. To optimize the packing of
cells into buckets, cell size should be evenly divisible into bucket size.

7.8.2.3 Bucket Size - A bucket's size is from one to thirty-two 512-byte blocks. A large bucket
improves sequential access to a relative file. You can prevent wasted space between the last cell and
the end of a bucket by specifying a bucket size that is a multiple of cell size. (See Section 7.8.2.5.)

If you omit the BLOCK CONTAINS clause, the system calculates a bucket size large enough to hold at
least one cell (or 512 bytes, whichever is larger); that is, large enough to hold a record and its
overhead byte(s). Records cannot cross bucket boundaries, although they can cross block boundaries.

To set your own bucket size (in bytes for each bucket), use the BLOCK CONTAINS n CHARACTERS
clause of the file description. Consider this example:

FILE-CONTROL+
SELECT A-FILE

ORGANIZATION IS RELATIVE,

DATA DIVISION,
FILE SECTION,
FD A-FILE

RECORD CONTAINS 60 CHARACTERS
BLOCK CONTAINS 1536 CHARACTERS

IV 7-14 File Optimization Techniques

In the example, the bucket size is three 512-byte blocks. Each bucket contains:

25 records (25 X 60)

1 overhead byte for each record (1 X 25)

11 bytes of wasted space

TOTAL

1500 bytes

25 bytes

11 bytes

1536 bytes

If you use the BLOCK CONTAINS CHARACTERS clause and specify a value that is not a multiple of
512, then the compiler issues a warning diagnostic, and RMS-11 rounds the value to the next higher
multiple of 512.

To improve I /0 access time:

• Use the BLOCK CONTAINS n RECORDS clause to specify the number of records (cells) in
each bucket

• Specify a small bucket size for random access

• Specify a large bucket size for sequential access

The following example creates buckets that contain eight records:

FD A-FILE
RECORD CONTAINS 60 CHARACTERS
BLOCK CONTAINS 8 RECORDS.

In the example, the bucket size is one 512-byte block. Each bucket contains:

8 records (8 x 60)

1 overhead byte for each record (1 x 8)

24 bytes of wasted space

TOTAL

480 bytes

8 bytes

24 bytes

512 bytes

7.8.2.4 Fiie Size - Calculating a file's size helps you determine its space requirements. A file's size is
a function of its bucket size. When you create a relative file, use these calculations to determine the
number of blocks that you need:

file size (in blocks) -

number of buckets

(511 + (number of buckets • bytes per bucket))

512

(number of records in the file)

(number of cells for each bucket)

File Optimization Techniques 7-15 IV

Assume that you want to create a relative file able.to hold 3,000 records. The records are 255 bytes
long (plus one byte for each record for overhead), four cells to a bucket (BLOCK CONTAINS 4
RECORDS). To determine file size:

1. Calculate the number of buckets:

750
3000

4

2. Calculate bucket size (see Section 7.8.2.5):

2
(4 • (1 + 255))

512

3. Calculate bytes for each bucket (bucket size * number of bytes in a block):

1024 = 2. 512

4. Calculate file size:

1500 physical blocks
511 + (750 • 1024)

512

To populate the entire file, use the APPLY CONTIGUOUS PREALLOCATION clause, if possible, to
allocate the 1500 calculated blocks for best performance.

Before writing a record to a relative file, RMS-11 must format all buckets up to and including the
bucket to contain the record. Each time bucket reformatting occurs, response time suffers. Therefore,
writing the highest-numbered record first forces formatting of the entire file only once. However, this
technique can waste disk space if the file is only partially loaded and not preallocated.

7.8.2.5 Bucket Size and Buffer Size Calculations for Relative Files- COBOL-81 determines the file's
bucket size (in 512-byte blocks) using two different formulas, depending on which format of the
BLOCK CONTAINS clause you use. COBOL-81 then determines the file's buffer size (in blocks) using
the bucket size:

buffer size (in blocks) = (bucket size) • AR

The unit of transfer for a relative file is equal to the bucket size.

The following items refer to the formulas used in this section:

1. AR = number of Areas Reserved

This quantity is determined from the RESERVE n AREAS clause. If you do not specify a
RESERVE n AREAS clause, the default is 1 area for relative files (that is, AR = 1).

2. URS = Unit Record Size (Cell size)

IV 7-16

For fixed-length records, this equals the sum of:

• 1 (for a delete code control led by RMS)

•The record length specified by the Record Description or the RECORD CONTAINS
clause, whichever is larger.

For variable-length records, it equals the maximum record length plus three overhead
bytes.

File Optimization Techniques

If you do not specify a BLOCK CONTAINS clause, the default bucket size formula is:

Default bucket size = The cell size rounded up to a multiple of 512 bytes

FD TEST-FILE
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X(500),

FD TEST-FILE
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X(900),

Samples

Bucket size = 512 bytes

Buffer size = 512 • 1 = 512 bytes

Bucket size = 900 bytes
rounded up = 1024 bytes

Buffer size = 1024 • 1 = 1024 bytes

If you specify th BLOCK CONTAINS n CHARACTERS clause, the bucket size formula is:

bucket size = n I 512, rounded up

• If n is less than the unit record size, the compiler issues a warning diagnostic and uses the
default method to compute the bucket size.

• The variable n must be a multiple of 512. If not, the compiler issues a warning diagnostic and
rounds n up to the next multiple of 512.

FD TEST-FILE
BLOCK CONTAINS 2500 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<500),

FD TEST-FILE
BLOCK CONTAINS 512 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<494),

Samples

Bucket size = 2500 I 512 = 4.88 blocks
rounded up = 5 blocks

Buffer size = 5 • 512 • 1 = 2560 bytes

Bucket size = 512 I 512 = 1 block

Buffer size = 1 • 512 * 1 = 512 bytes

If you specify the BLOCK CONTAINS n RECORDS clause, the bucket size formula is:

bucket size = (n * URS) I 512, rounded up

File Optimization Techniques 7-17 IV

FD TEST-FILE
BLOCK CONTAINS 50 RECORDS
LABEL RECORDS ARE STANDARD+

01 REC-1 PIC XCZOl+

FD TEST-FILE
BLOCK CONTAINS 100 RECORDS
RECORD CONTAINS 25 CHARACTERS
LABEL RECORDS ARE STANDARD+

01 REC-1 PIC XCZOl+

FD TEST-FILE
BLOCK CONTAINS 5 RECORDS
RECORD VARYING

FROM 90 TO 99 CHARACTERS
LABEL RECORDS ARE STANDARD+

01 REC-1 PIC XC90l+
01 REC-Z PIC X<99l+

SELECT TEST-FILE
ASSIGN TO "REPORT.OAT"
RESERVE 4 AREAS+

FD TEST-FILE
BLOCK CONTAINS 50 RECORDS
LABEL RECORDS ARE STANDARD+

01 REC-1 PIC XCZOl

7.8.3 Indexed Files

Samples

Bucket size = ((50 * (1 +20))/512 = 2.05
rounded up = 3 blocks

Buffer size = 3 * 512 = 1536 bytes

Bucket size = ((100 * (1 +25))/512 = 5.07
rounded up = 6 blocks

Buffer size = 6 * 1 * 512 = 3072 bytes

Bucket size= ((5•(99+3))/512 = .99
rounded up = 1 block

Buffer size = 1 * 512 = 512 bytes

Bucket size = ((50 * (1 +20))/512 = 2.05
rounded up = 3 block_s

Buffer size = 4 * 3 = 12 blocks = 6144 bytes

I /0 optimization of an indexed file depends on five items:

1. Records - The size and format of the data records can affect the disk space used by the
file.

2. Keys - The number of keys and existence of duplicate key values can affect disk space
and processing time.

3. Buckets - Bucket size can affect disk space and processing time .. Index depth and file
activity can affect bucket size.

4. Index Depth - The depth of the index can affect processing time.

5. File size - The length of files affects space and access time.

IV 7-18 File Optimization Techniques

7.8.3.1 Records - Variable-length records can save file space. You need to write only the primary
record key data item (plus alternate keys, if any) for each record. In contrast, fixed-length records
require that all records be equal in length.

For example, assume that you are designing an employee master file. A variable-length record file lets
you write a long record for a senior employee with a large amount of historical data, and a short
record for a new employee with less historical data.

In the following example of a variable-length record description, integer 10 of the RECORD
VARYING clause represents the length of the primary record key, while integer 80 describes the
length of the longest record in A-FILE:

FILE-CONTROL,
SELECT A-FILE ASSIGN TO "AMAST"

ORGANIZATION IS INDEXED,
DATA DIVISION,
FILE SECTION,
FD A-FILE

ACCESS MODE IS DYNAMIC
RECORD KEY IS A-KEY
RECORD VARYING FROM 10 TO 80 CHARACTERS,

01 A-REC,
03 A-KEY PIC X<lO),
03 A-REST-OF-REC PIC XC70),

Buckets must contain enough room for record insertion, or bucket splitting occurs (see the RMS-11
User's Guide for more information on bucket splitting). For each record moved, a 7-byte pointer to
the new record location remains in the original bucket. Thus, bucket splits can accumulate overhead,
possibly reducing usable space so much that the original bucket can no longer receive records.

Record deletions can also accumulate storage overhead. However, most of the space is available for
reuse. Because there can be no duplicate primary keys, RMS-11 can reclaim all but 2 bytes of the
deleted record space. This 2-byte field is a record deletion flag.

There are several ways to minimize overhead accumulation. First, determine or estimate the fre­
quency of certain operations. For example, if you expect to add or delete 100 records in a 100,000-
record file, your database is stable enough to allow some wasted space for record additions and
deletions. However, if you expect frequent additions and deletions, try to:

• Choose a bucket size that allows for overhead accumulation, if possible. Avoid bucket sizes
that are an exact or near multiple of your record size.

• Optimize record insertion performance by using the RMSDEF utility to define the file with fill
numbers; use the APPLY FILL-SIZE clause when loading the file.

7.8.3.2 Alternate Keys - Each alternate key requires the creation and maintenance of a separate
index structure. The more keys you define, the longer each WRITE, REWRITE, and DELETE operation
takes. (READ operations are not affected by multiple keys.)

If your application requires alternate keys, you can minimize I /0 processing time if you avoid
duplicate alternate keys. Duplicate keys can create long record pointer arrays, which fill bucket space
and increase access time.

File Optimization Techniques 7-19 IV

7.8.3.3 Bucket Size - Bucket size selection can influence indexed file performance.

To the system, bucket size is an integral number of physical blocks, each 512 bytes long. Thus, a
bucket size of one specifies a 512-byte bucket, while a bucket size of two specifies a 1024-byte
bucket, and so on.

The COBOL-81 compiler passes bucket size values to RMS-11 based on what you specify in the
BLOCK CONTAINS clause. In this case, you express bucket size in terms of records or characters.

If you specify block size in records, the bucket can contain more records than you specify but never
fewer. For example, assume that your file contains fixed-length, 100-byte records and you want each
bucket to contain five records, as follows:

BLOCK CONTAINS 5 RECORDS

This appears to define a bucket as a 512-byte block, containing five records of 100 bytes each.
However, the compiler adds RMS-11 record and bucket overhead to each bucket, as follows:

Bucket overhead 15 bytes per bucket

Record overhead 7 bytes per record (fixed-length)
9 bytes per record (variable-length)

Thus, in the previous example, the bucket size calculation is:

Bucket overhead 15 bytes
Record size is 100 bytes

+ 7 bytes Record Overhead
for each of 5 records

Total Record Space is (100 + 7) * 5, or 535 bytes

TOT AL 550 bytes

Because blocks are 512 bytes long, and buckets are always an integral number of blocks, the smallest
bucket size possible (the system default) in this case is two blocks. However, the system puts in as
many records as fit into each bucket. Thus, the bucket actually contains nine records, not five.

The CHARACTERS option of the BLOCK CONTAINS clause lets you specify bucket size more
directly. For example:

BLOCK CONTAINS 2048 CHARACTERS

This specifies a bucket size of four 512-byte blocks. The number of characters in a bucket is always a
multiple of 512. If it is not, the compiler rounds it to the next higher multiple of 512.

To improve I /O access time:

• Use the BLOCK CONTAINS n RECORDS clause to specify the number of records (cells) in
each bucket

• Specify a small bucket size for random access applications

• Specify a large bucket size for sequential access applications

IV 7-20 File Optimization Techniques

7.8.3.4 Index Depth - The length of data records, key fields, and buckets in the file determines the
depth of the index. Index depth, in turn, determines the number of disk accesses needed to retrieve a
record. The smaller the index depth, the better the performance. In general, an index depth of three
or four gives satisfactory performance. If your calculated index depth is greater than four, you should
consider redesigning the file.

You can optimize your file's index depth after you have determined file, record, and key size.
Calculating index depth is an iterative process, with bucket size as the variable. Keep in mind that the
highest level (root level) can contain only one bucket. For an example of index depth calculation, see
Section 7.8.3.5.

7.8.3.5 File Size - When you calculate file size:

• Every bucket in an indexed file contains 15 bytes of overhead.

• Every bucket in an indexed file contains records. Only record type and size differ.

• Data records are only in level 0 buckets of the primary index.

• Index records are in level 1 and higher numbered buckets.

• If you use alternate keys, SIDRs (Secondary Index Data Records) are only in level 0 buckets of
alternate indexes.

Use these calculations to determine data and index record size:

1. Data records:

2. Index records:

If a file has more than 65,536 blocks, the 3-byte index record overhead could increase to 5 bytes.

Use these calculations to determine SIDR record length:

1. No duplicates allowed:

2. Duplicates allowed:

Note

Bucket packing efficiency determines how well bucket space is used. A packing
efficiency of 1 means the buckets of an index are full. A packing efficiency of .5
means that the buckets, on the average, are half full.

File Optimization Techniques 7-21 IV

Consider an indexed file with these attributes:

• 100,000 fixed-length records of 200 characters each

• Primary key = 20 characters

• Alternate key = 8 characters, no duplicates allowed

• Bucket size = 3 (an arbitrary value)

• No fill number

Primary key index level calculations:

Level 0 (data level buckets):

Level 1 (index buckets):

3*512-15=7
200 + 7

100,000 = 14,286
7

3*512-15 = 66
20 + 3

14·286 = 216 level 1 buckets to address all data buckets at level 0
66

Continue calculating index depth until you reach the root level; that is, when the number of buckets
needed to address the buckets from the previous level equals one.

Level 2 (index buckets):

Level 3 (index buckets):

IV 7-22 File Optimization Techniques

7.8.3.6 Alternate Key Index Level Calculations - If you allow duplicate keys in alternate indexes, the
number and size of SIDRs depend on the number of duplicate key values in the file. (For duplicate
key alternate index calculations, see the RMS-11 User's Guide.) Since alternate index records are
usually inserted in random order, the bucket packing efficiency ranges from about .5 to about .65.
The following example uses an average efficiency of .55.

Data level buckets (no duplicate alternate keys):

Level 1 (index buckets):

Level 2 (index buckets):

1536 - 15

8 + 9

100,000

89

89

1123 level O alternate index buckets

7.8.3.7 Caching Index Roots - The system requires at least two buffers to process an indexed file:
one for a data bucket, the other for an index bucket. Each buffer is large enough to contain a single
bucket. If your program does not contain a RESERVE n AREAS clause, your system sets the default.

A RESERVE n AREAS clause creates additional buffers for processing an indexed file. At run time, the
system retains (caches) in memory the roots of one or more indexes of the file. Random access to any
record through that index requires one less I /0 operation.

The following rules apply for caching index roots:

• Allocate one buffer for each key that your program uses to access file records, in addition to
the two required buffers. For example, if the file contains a primary key and two alternate
keys, and you use all of these keys to access records, allocate a total of five buffers. If you use
only one key, you need only one additional buffer area, for a total of three.

• Use the RESERVE n AREAS clause to obtain allocation, where n is two more than the number
of distinct keys used for access. For example, the RESERVE 5 AREAS clause allocates two
required buffers, plus three buffer areas for caching the roots of three distinct file access keys.

7.8.3.8 Bucket Size and Buffer Size Calculations for Indexed Files - In its calculations for indexed
files, COBOL-81 adds 15 bytes to each bucket and 7 bytes to each record, for RMS-11 overhead.
COBOL-81 then determines the file's buffer size (in blocks) using the bucket size:

buffer size (in blocks) = (bucket size) •AR

The unit of transfer for an indexed file is equal to the bucket size.

File Optimization Techniques 7-23 IV

COBOL-81 determines the file's bucket size (in S 12-byte blocks) using two different formulas,
depending on which format of the BLOCK CONTAINS clause you use. The following items refer to
the formulas used in this section:

1. AR = number of Areas Reserved

This quantity is determined from the RESERVE n AREAS clause. If you do not specify a
RESERVE n AREAS clause, the default is 2 areas for indexed files (that is, AR = 2).

2. URS = Unit Record Size

For fixed-length records, this equals the record length specified by the record description
or the RECORD CONTAINS clause, whichever is larger.

For variable-length records, it equals the maximum record length plus 2 overhead bytes.

If you do not specify the BLOCK CONTAINS clause, the default bucket size formula is:

bucket size = (15 + (7 + URS)) I 512, rounded up

FD TEST-FILE
RECORD IS VARYING FROM 100

TO 511 CHARACTERS
LABEL RECORDS ARE STANDARD,

01 REC-1 PIC X<lOO),
01 REC-2 PIC XC511),

Sample

Bucket size= 2 rounded up= ((15+(7+(511 +2))))/512

Buffer size = 2 • 2 = 4 blocks = 2048 bytes

If you specify the BLOCK CONTAINS n CHARACTERS clause, the bucket size formula is:

bucket size = n I 512

•The variable n must be a multiple of 512. If not, the compiler issues a warning diagnostic and
rounds n up to the next multiple of 512.

• The variable n must be equal to or greater than (15 + (7 + URS)). If it is less, the compiler
issues a warning diagnostic and uses the default method to compute bucket size.

SELECT IDX-FILE
ASSIGN TO "ADORES.DAT"
ORGANIZATION IS INDEXED

FD IDX-FILE
BLOCK CONTAINS 512 CHARACTERS
LABEL RECORDS STANDARD,

01 REC-1 PIC XC100),

Sample

Bucket size = 512 I 512 = 1 block

Buffer size = 1 • 2 = 2 blocks = 1024 bytes

If you specify the BLOCK CONTAINS n RECORDS clause, the bucket size formula is:

bucket size = [15 + (n • (7 + URS))] I 512

Bucket size is in 512-byte blocks and is rounded up to the next integer.

IV 7-24 File Optimization Techniques

SELECT IDX-FILE
ASSIGN TO "RFCRA"
ORGANIZATION IS INDEXED

Samples

Bucket size = [15 + (2 * (7 + 242))]/512 = 513/512

rounded up = 2 blocks

FD IDX-FILE Buffer size = 2 * 2 = 4 blocks = 2048 bytes
BLOCK CONTAINS 2 RECORDS
RECORD CONTAINS 242 CHARACTERS

Note

The bucket in this example is rounded to 2 blocks or 1024 bytes. It actually
contains 4 records, not 2.

SELECT IDX-FILE
ASSIGN TO "RFCRA"
ORGANIZATION IS INDEXED
RESERVE 3 AREAS.

Bucket size = [15 + (1 * (7 + 500))]/512 = 522/512

rounded up = 2 blocks

FD IDX-FILE Buffer size= 2*3 = 6blocks = 3072bytes
BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 500 CHARACTERS

Even though the bucket size here is 2 blocks or 1024 bytes, it can contain only 1 record. The addition
of another record would require 507 more bytes but this bucket has only 502 free bytes (1024 - 522
= 502). Therefore, the code wastes 502 bytes in each bucket.

File Optimization Techniques 7-25 IV

Chapter 8
Producing Printed Reports with COBOL-81

This chapter introduces you to one of the most valuable and most looked-at products produced by
your COBOL-81 program: the report. It discusses the report's design, components, and modes of
printing. It also discusses the two methods of producing your COBOL-81 report: programming the
conventional report and programming the linage-file report. The chapter also discusses the accumula­
tion and reporting of control totals and gives practical solutions to everyday problems.

8.1 Designing the Report

A report is closely tied to the information in a file. It is limited by the data in the file, and, in turn, the
data in the file is often dictated by the requirements of a report.

Since the needs of a report are dictated by the data in the file, the design of the report should come
early in the design of the application system. In fact, the reporting requirements generally dictate the
need for the system. Your job is to determine the data needed in the file from the information needed
in the report. You should provide your customers with sample reports or layouts as soon as possible
so that they can make any necessary changes early in the design.

8-1 IV

The design of a report usually begins with a rough description of the data to be reported. Given a
general idea of what a report is to contain, you must fill in the details, including page headings, rows
and columns, column sizes, and so on. The usual tool for laying out the report is the report layout
worksheet shown in Figure 8-1. This form is marked off with 132 characters on a line and 60 lines on
a page. When you complete the report layout worksheet, you can use it as program documentation.
The report layout worksheet is helpful in actually formatting the report for programming, if there is a
need to position each line and column.

Figure 8-1 : A Sample Report Layout Worksheet

0
12345678901 34567890 1 2

1" 6

10

11

2" 12

13

14

15

16

17

3' 18

19 J
20

21

4" 24 I 23

25

26

28

29

5" 30 J

2
34 56

J
r'i

JJ

• • •

][10 11 12
1¥ ~1 23 4 5 67 8 9 0 1 23 4 5 67 89 0 1 23 4 5 67 89

J L

L

C81ART-20315-25

However, in practice the report layout worksheet is an acceptable design tool but it is difficult to
change. As soon as you show the report layoutworksheet to your users, they will change it. After a
few iterations of this, you will be happy never to see a report layout worksheet again.

IV 8-2 Producing Printed Reports with COBOL-81

Another way to lay out a report is to create it in a file using an editor and a video terminal. Users with
terminals can then edit the report, make changes, and move text around easily. Users who do not
have a terminal can simply print this file. Figure 8-2 is such an example.

Figure 8-2: Typical Report Layout

0
Date 99-99-99 Employee Master Listing Page 999 0

by Department

0 0
Employee Name Department Position Salary Wage Class

0 xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999 0
xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999

0 xxxxxxxxxxxxxxxx xxxxxxxxxx xx xx xx xx $ZZZ,ZZZ.99- 999 -0
xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999

0 xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999 0

xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999

0
$ZZZ,ZZZ.99-

0 xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx 999

xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999
0 0

xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999

0 xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999 0

.
0 . 0 .

0 xxxxxxxxxxxxxxxx xxxxxxxxxx xxxxxxxx $ZZZ,ZZZ.99- 999 0

Department Total $ZZZ,ZZZ.99-

0 Grand Total $ZZZ,ZZZ,ZZZ.99- 0

C81ART-20320-25

This layout sheet is easy to duplicate and distribute in memos. It is also easy to change, using the cut
and paste technique. The report does not show the exact column positions, but these are not needed.
In the design stage, the customer should be made to focus on the information contained in the report
and the general format.

Producing Printed Reports with COBOL-81 8-3 IV

8.2 Components of a Report

The seven components of a report, as shown in Figure 8-3, include:

1. Report Heading - The report heading consists of information printed before the main
body of a report. It can be printed on a separate page by itself or it can be printed as the
first page heading, with the remaining page headings abbreviated to save paper. The
report heading can contain such information as handling and distribution instructions. It
might also contain the selection criteria, the sort order, and other assumptions that went
into the creation of the report.

2. Page Heading- The page heading consists of information printed on one or more lines of
every page in the report. It usually names and dates the report, identifies the number of
the page in the report, and titles each column of information in the detail line.

3. Control Heading - The control heading consists of one or more lines of information
identifying the beginning of a new logical area on a page.

4. Detail Line(s)- The detail consists of one or more lines of the primary data of the report.

5. Control Footing - The control footing consists of one or more lines of information identi­
fying the end of a logical area. The control footing can contain one or more totals and an
accompanying message.

6. Page Footing- The page footing consists of one or more lines of information at the bottom
of each page.

7. Report Footing - The report footing consists of information printed after the main body of
the report. It can be continued on the same page of the report body or it can be a separate
page. It might contain information such as hash or control totals. A report footing is also a
convenient place to print run-time statistics, such as the number of records read and
written for each file. It can further provide warning messages, such as noting when a table
is close to overflowing.

IV 8-4

All reports should have something to indicate the end of the report, such as an "END OF
REPORT" message, so that you can tell at a glance that you have all of the pages. (The
consecutive page numbers tell if a page is missing, but they do not indicate which page is
the last.)

Producing Printed Reports with COBOL-81

Figure 8-3: Components of a Report

•

•

*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************

* * YEAR TD DATE *

* SALES REPORT *
* *

FOR INTERNAL USE ONLY
DO NOT COPY

FOR SEC UR !TY CLEARANCE LE'.'ELS 1 , c , AND 3

*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************

oa-AUGUST-83
Sa 1 esr11an

Year To Date Sales Report
Salary /Bonus Client Na111e Client Address

Pa 9e
Total Sales

************************* JANUARY REPORT *************************

SMITH
JOHN

$30,000.00 STREN
s10,ooo.oo TOM

2742 NORTH ST. $225 1000, 00
MANCHESTER, NH

TOTAL JANUARY SALES: $ 21000,000.00

************************* FEBRUARY REPORT *************************

*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL

CONTINUED ON NE::T PAGE

oa-AUGUST'-83 Year To Date Sales Report Pa9e 13Za

*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************

Total
Total
Total
Total
Total
Total

Records:
Salesrnen:
Sales:
Salaries:
Bon l.\S:

* * END OF

YEAR TO DATE *
SALES REPORT

*

1Z3a5G
G75a

$1Z3,a5G,789.99
$ 9,975,5a3.z1

617891012.34
Re Po rt Pages: 13Za

*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************
*********************** COMPANY CONFIDENTIAL ***********************

Producing Printed Reports with COBOL-81

C81ART-20330-100

8-5 IV

8.3 The Logical Page and the Physical Page

A physical page is the actual piece of paper printed by your printer.

A logical page is conceptual, consisting of a page body (required), top margin (optional), footing
(optional), and bottom margin (optional). Figure 8-5 in Section 8.6.1 and Figure 8-8 in Section 8.7.1
illustrate the logical page structure for the conventional-file report and linage-file report, respectively.

You define the number of lines on the logical page based on the number of lines on the target
physical page. The number of lines determines the size of the logical page. You must then choose
those lines within the logical page that are to be page headers, control headers, detail lines, control
footings, and page footings. Having defined the framework of the logical page, your program must
stay within those bounds; otherwise, when you print your report you will get unpredictable results.

The report your program creates consists of one or more logical pages. Each page consists of one or
more records. Each record contains two types of data:

1. The actual characters on the physical (printed) page

2. The special characters used by the system spooler and printer that control Ii ne and page
advancement (these characters never print on the physical page).

Each logical page follows the preceding logical page with no spacing between them.

8.3.1 Horizontal Spacing for the Logical Page

Your program must provide all horizontal spacing for your logical page. You do this by defining every
report item on your report layout worksheet (See Section 8.1) and every space character between
each report item.

8.3.2 Vertical Spacing for the· Logical Page

COBOL-81 lets you skip one or more lines either before or after your program writes a line of the
report. The compiler automatically provides the necessary line-feed characters for you. For example,
to print a line before advancing 5 lines, you would use a statement like this:

WRITE,,, BEFORE ADVANCING 5 LINES,

To print a line after advancing 2 lines, you would use this statement:

WRITE,,, AFTER ADVANCING 2 LINES,

8.4 Modes for Printing Reports

A program can either spool a report to a mass storage device for later printing or it can allocate the
printer directly and immediately produce the report. The next sections explain how to print a report
on line or from the system spooler.

IV 8-6 Producing Printed Reports with COBOL-81

8.4.1 Online Printing

To directly allocate a printer, you must specify the printer's device name in the file specification for
the report file. Example 8-1 shows how you allocate the system's line-printer at run time.

Example 8-1: Directly Allocating a Printer for Immediate Use

SELECT REPORT-FILE ASSIGN TO "LP:",

The advantages of directly allocating the printer are:

1. Results are immediate.

2. It is an acceptable metnod of associating a number from the preprinted form (as in the
case of payroll checks) to a record in a file. As the operator opens each box of forms and
mounts them (or remounts them if a paper jam occurs) in the printer, your program can
request and ACCEPT the starting number from each new box of forms. If the program then
outputs a record for each printed form (and includes the form number in the record) you
establish an immediate audit trail.

The disadvantages of directly allocating the printer are:

1. You must either wait until all printer requests from the system spooler are complete, or
you must change job priorities.

2. You tie up the printer for as long as your job runs. If your program is heavily compute­
bound and runs for a long time, you could significantly reduce your installation's pages­
printed-per-day production schedule.

3. You do not have a backup report file in the event of power failure or other unforeseeable
accident. Therefore, you must start the job over again from the beginning.

4. You cannot use the system network.

8.4.2 Spooling to a Mass Storage Device

To spool your report to a mass storage device (such as a disk or magnetic tape) for later printing, you
must provide a file specification. Example 8-2 shows you how to spool the "JAN28P.DAT" report to
disk pack "DB1 :".

Example 8-2: Spooling a Report to a Disk Pa<;k for Later Printing

SELECT REPORT-FILE ASSIGN TD "061:JAN28P",

The advantages of spooling to a mass storage device are:

1. You can run your job at any time regardless of other printer activity and regardless of
printer status and current mounted form.

2. Your application program does not make immediate resource demands on the target
printer.

Producing Printed Reports with COBOL-81 8-7 IV

3. You can schedule the printing at your leisure and print the file according to your priority
scheme.

4. You get optimum use of the printer. This method results in printing maximum lines/
minute.

5. You have a backup of the file.

6. You can use the system network.

The disadvantages of this method are:

1. You do not see immediate results.

2. You would find it difficult and expensive to input the preprinted form numbers (for
example, check numbers) from your forms into your report file.

8.5 Accumulating and Reporting Totals

Your program can report three catagories of totals in the control footing and report footing locations
of your report:

1. Subtotals - Subtotaling is the process of summing a detail item from each detail line. In
Figure 8-4, "Salary," "Bonus," and "Total Sales" are subtotaled. For example, to get the
first salary subtotal for January on page 1 ($75,000.00), the program must add each
salesman's salary ($30,000 + $25,000 + $20,000). After printing the salary total the pro­
gram must zero the total to begin subtotaling for the February report, and so forth.

2. Crossfoot Totals - Crossfooting is the process of summing subtotals from a common group
of totals. In Figure 8-4, "TOTAL SALARY EXPENSE" is crossfooted by adding "TOTAL
SALARY" and "TOTAL BONUS." For example, to get the first "TOTAL SALARY
EXPENSE" crossfoot total for the January report, the program must add the salary subtotal
and the bonus subtotal before the program clears the subtotals.

3. Rolled Forward Totals - Rolling forward is the process of summing either subtotals or
crossfoot totals. In Figure 8-4, the "YEAR TO DATE TOTALS" at the bottom of page 1 are
rolled forward from both "JANUARY" and "FEBRUARY" totals. The program computes
the salary and bonus "YEAR TO DATE TOTALS" from the previous salary and bonus
subtotals. It computes the total salary expense figure from the previous total salary
expense crossfoot totals.

IV 8-8 Producing Printed Reports with COBOL-81

Figure 8-4: Subtotals, Crossfoot Totals, and Rolled Forward Totals

0

0

0

0

0

0

0

0

0

0

0

04-AUGUST-83 Year To Date Sales Report Page 1
Salesman Salary/Bonus Client Name Client Address Total Sales
----------- ------------ ---------------- -------------- --------------
******************** JANUARY REPORT ************************************

SMITH $
JOHN $

LE PRO $
RONALD $

BALLET $
FRANCES $

JANUARY TOTALS
SALARY
BONUS

30,000.00
10,000.00

25,000.00
10,000.00

20,000.00
10,000.00

TOTAL SALARY EXPENSE

TOTAL SALES

STREN 2742 NORTH ST.
TOM MANCHESTER, NH

FOSTER 967 HOOVER LANE
FRANK CAMBRIDGE, MA

O'BRIEN 1001 HUGE DRIVE
PAUL MT. SNOW,

$ 7 5, 000. 00~Salary subtotal
$ 3 0 , 0 0 0 • 0 0 ~Bonus subtotal

VT

$225,000.00

$195,000.00

$ 15,000.00

$10 5, 0 0 0. 0 0 ..- Crossfoot total (salary + bonus)

Subtotal----i__,,~ $435, 000. 00
******************** FEBRUARY REPORT ***********************************

SMITH $
JOHN $

LE PRO $
RONALD $

BALLET $
FRANCES $

FEBRUARY TOTALS
SALARY
BONUS

30,000.00
10,000.00

25,000.00
10,000.00

20,000.00
10,000.00

TOTAL SALARY EXPENSE

TOTAL SALES

STREN 2742 NORTH ST.
TOM MANCHESTER, NH

FOSTER 967 HOOVER LANE
FRANK CAMBRIDGE, MA

O'BRIEN 1001 HUGE DRIVE
PAUL MT. SNOW, VT

$ 75, 000. 00~ Salary subtotal
$ 30, 00 0. 00 ~Bonus subtotal

$225,000.00

$195,000.00

$ 15,000.00

$105,000.00~Crossfoottotal (salary+ bonus)

Subtotal---~-.-$435, 000. 00
************************* YEAR TO DATE TOTALS **************************

0 SALARY
BONUS

$1 5 0 , 0 0 0 • 0 0 +- Salary rolled forward total
$ 6 0 , 0 0 0 • 0 0 +- Bonus rolled forward total

0

0

TOTAL SALARY EXPENSE $210, 000. 00 ..-crossfoot total (salary + bonus)

TOTAL SALES Rolled forward total ~ $870' 000. 00
----------------------- COMPANY CONFIDENTIAL -------------------------
----------------------- COMPANY CONFIDENTIAL -------------------------
----------------------- COMPANY CONFIDENTIAL -------------------------

0

0

0

0

0

0

0

0

0

0

0

0

0

0

C81AAT-20340-60

Producing Printed Reports with COBOL-81 8-9 IV

8.6 Programming the Conventional COBOL-81 Report

Conventional-file reports:

• Have sequential organization and access mode

• Contain variable-length records

• Consist of one or more logical pages

• Contain compiler-generated form-feed and line-feed characters that control the vertical posi­
tion of the physical page in the line printer

The next sections discuss:

1. Defining the logical page

2. Advancing to the next logical page

3. Programming for the page-overflow condition

4. Using a line counter

5. Programming for a 20-line logical page, a special forms example

8.6.1 Defining the Logical Page

After you have defined your logical page (see Section 8.3), then you must include routines that keep
track of how many lines your program writes on the page so that it can handle the page-overflow
condition and advance to the next logical page. The next two sections discuss these two subjects in
more detail.

Figure 8-5 shows the logical page area for a conventional report. The conventional report logical
page area can consist of the page areas discussed in Section 8.2.

Figure 8-5: Logical Page Area for a Conventional Report

Page body line numbers

Logical
Page

t
1
2
3
4
5
6
7

Page Body

8.6.2 How to Advance to the Next Logical Page

C81 ART-20350-25

COBOL-81 lets your program control automatic logical page advancement with the WRITE state­
ment. To advance to the next logical page and position the printer on the first print line, your program
must specify the AFTER/BEFORE ADVANCING PAGE clause. The next two sections discuss the
routines you should include in your report programs and presents a sample program that contains
them.

IV 8-10 Producing Printed Reports with COBOL-81

8.6.3 Programming for the Page-Overflow Condition

If your program writes more lines than the logical page can accomodate, a page-overflow condition
exists. This is a normal condition. It lets your program know when it should execute its top-of-page
routines. These routines should contain a WRITE ... AFTER/BEFORE ADVANCING PAGE statement.
This statement positions the line printer at the top of the next logical page.

You must include routines in your program to determine when a report's logical page is full and when
the program prints the last line on the logical page (in the case where you do not use all lines on the
page). Example 8-3 shows two methods to check for this condition:

1. Paragraph A 100-FIRST-REPORT-ROUTINES checks for a full page after it writes a report
line. If the page-overflow condition exists, A901-HEADER-ROUTINE executes.

2. Paragraph A500-SECOND-REPORT-ROUTINES checks if more than 50 lines exist on the
current logical page. If more than 50 lines exist, A902-HEADER-ROUTINE executes.

In either case, the AFTER ADVANCING PAGE clause in the A901-HEADER-ROUTINE and A902-
HEADER-ROUTINE paragraphs generate the needed form-feed characters for the printer to position
itself at the top of the next physical page.

Example 8-3: Checking for the Page-Overflow Condition

PROCEDURE DIVISION,
AOOO-BEGIN,

AlOO-FIRST-REPORT-ROUTINES,

* * A801-HEADER-ROUTINE executes whenever the number of lines written exceed
* the number of lines on the 66-line default logical page

* WRITE A-LINE1 AFTER ADVANCING 2 LINES,
ADD 2 TO REPORT1-LINE-CDUNT+
IF REPORT1-LINE-COUNT > 65 PERFORM A801-HEADER-RDUTINE,

A500-SECDND-REPDRT-RDUTINES~

* *This routine uses onlY the first 50 lines of the 66 line report+

* WRITE A-LINEZ AFTER ADVANCING 2 LINES,
ADD 2 TO REPDRTZ-LINE-CDUNT.
IF REPORTZ-LINE-COUNT IS GREATER THAN 50

PERFORM A802-HEADER-ROUTINE,

A801-HEADER-ROUTINE,
WRITE A-LINE! .FROM REPDRTl-HEADER-LINE-1 AFTER ADVANCING PAGE,
MOVE 0 TO REPDRT1-LINE-COUNT,
ADD 1 TO REPORT1-LINE-CDUNT+

A802-HEADER-ROUTINE+
WRITE A-LINEZ FROM REPDRTZ-HEADER-LINE-1 AFTER ADVANCING PAGE,
MOVE 0 TD REPDRTZ-LINE-CDUNT,
ADD 1 TO REPDRTZ-LINE-COUNT,

Producing Printed Reports with COBOL-81 8-11 IV

8.6.4 Using a Line Counter

One method of keeping track of how many lines your program writes on a logical page is to use a line
counter. Define this counter in the Working-Storage Section, and reset it every time the program
begins a new logical page. Add 1 to this counter for each line the program writes and for each line it
skips. Then, before the program writes a new line, have it check the line counter value to see if the
current logical page can accept the new line. If the line counter value equals or exceeds the maxi­
mum number of lines for the logical page, have the program execute its header routines to position
the printer to the top of the next logical page.

8.6.5 A Special F.orms Example

Example 8-4 writes two reports from the same input file. The first report, in Figure 8-6, is a statement
report with a logical page length of 20 lines and a width of 80 characters. However, it only uses the
first 15 lines on the page. This report is a preprinted form letter to be inserted in a business envelope.
The customer's name and address on lines 13, 14, and 15 are to appear through the envelope's
glassine window. The only information the program must supply is the date for line 3, the customer's
name for Ii nes 3 and 1 3, and the customer's address for Ii nes 14 and 1 5.

The second report is a double-spaced master listing of all input records (see Figure 8-7). Its logical
page is identical to the system default logical page (in this case, 66 vertical lines and 132 horizontal
characters). However, the program uses only the first 55 lines on the page. Both reports are output to
a disk for later printing.

Figure 8-6: A 20-Line Logical Page

1 2 3 4 5 8
Column 12345878901234587890123458789012345878901234587890123458789012

Line

1
2
3
4
5
8
7
8
9
10
11
12
13
14
15
18
17
18
19
20

IV 8-12

Dear Mr. XXXXXXXXXXXXXXX Date: 99-XXX-99

xx
x t x x x
x 4 Preprinted message is here ~ x
x I x
x t x
xx

TD: XXXXXXXXXX X XXXXXXXXXXXXXXX
xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx xx 99999

Producing Printed Reports with COBOL-81

C81ART-20360-35

Figure 8-7: A Double-Spaced Master Listing

PERSONNEL MASTER LISTING
0 **** COMPANY CONFIDENTIAL ****

Harold AHuit 1234 Main Street

0 Mary QJewitt 18673 s. 126 Avenue

George DCarport 990 North St., Apt
0

Catherine FBallet 2244 Maple St

Amanda DModel Pease AFB
0

Robert RLumber 2 Wayne St.

Example 8-4: Page Advancing and Line Skipping

IDENTIFICATION DIVISION,
PROGRAM-ID+ REP01,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT INPUT-FILE
SELECT FORM1-REPORT
SELECT FORM2-REPORT

DATA DIVISION,
FILE SECTION,
FD INPUT-FILE,
01 INPUT-RECORD,

OZ I-NAME,
03 I-FIRST
03 I-MID
03 I-LAST

OZ I-ADDRESS,
03 I-STREET
03 I-CITY
03 I-STATE
03 I-ZIP

FD FORM1-REPORT,
01 FORM1-PRINT-LINE
FD FORM2-REPORT,
01 FORM2-PRINT-LINE

WORKING-STORAGE SECTION,
01 END-OF-FILE

ASSIGN TO "REPIN.DAT",
ASSIGN TO "FORM1.DAT",
ASSIGN TO "FORM2.DAT",

PIC x (10).
PIC x.
PIC x (15).

PIC XC20l,
PIC x (15).
PIC xx.
PIC 99999,

PIC XCBOl,

PIC XCBOl,

PIC x
PIC 99
PIC 99

Page 1
0

Southbend VT12345

Kreosote NB87655 0

3Waymouth AL00001

Laconia NH03456
0

Portsmouth VT24567
0

Ackensack NJ56243

C81ART-20370-25

VALUE SPACE,
VALUE 55,
VALUE oo.

01 MAX-LINES-ON-FORM2
01 FORMZ-LINE-COUNTER
01 PAGE-NO PIC 99999 VALUE o.
01 FORM1-LINE-3,

02 PIC XCSl VALUE SPACES,
OZ FORM1-LAST PIC x (15).

(continued on next page)

Producing Printed Reports with COBOL-81 8-13 IV

Example 8-4: Page Advancing and Line Skipping (Cont.)

01 FORM1-LINE-13+
02
02 FORM1-NAME

01 FORM1-LINE-14+
02
02 FORM1-STREET

01 FORM1-LINE-15+
02
02 FORM1-CITY
02
02 FORM1-STATE
02
02 FORM1-ZIP

01 FORM2-HEADER-1+
02 PIC
02 PIC
02 PIC
02 PIC

PIC X<4>
PIC X<26.),

VALUE SPACES+

PIC X<4> .VALUE SPACES+
PIC X<20),

PIC
PIC
PIC
PIC
PIC
PIC

X<15) VALUE SPACES,

X<4>
X<15),
x
xx.
x
88888.

VALUE SPACES,

VALUE SPACE,

VALUE SPACE,

X<30) VALUE " PERSONNEL MASTER LISTING
XC10) VALUE SPACES,
XXXXX VALUE "Pa~e "•

02 F2H-PAGE PIC ZZZZZ+
01 FORM2-HEADER-2,

02 PIC X<15) VALUE SPACES.
02 PIC X(30) VALUE "**** COMPANY CONFIDENTIAL ****"•

PROCEDURE DIVISION+
AOOO-BEGIN+

OPEN INPUT INPUT-FILE
OUTPUT FORM1-REPORT

FORM2-REPORT+
PERFORM A800-PRINT-HEADERS-ROUTINE+
PERFORM A100-PRINT-REPORTS UNTIL END-OF-FILE
CLOSE INPUT-FILE

FORM1-REPORT
FORM2-REPORT,

DISPLAY "END OF JOB"+
STOP RUN,

A100-PRINT-REPORTS,
READ INPUT-FILE AT END MOVE "Y" TO ENO-OF-FILE,
IF END-OF-FILE NOT = "Y"

PERFORM A200-PRINT-REPORTS,

A200-PRINT-REPORTS,

uyu t

IF FORM2-LINE-COUNTER IS GREATER THAN MAX-LINES-ON-FORM2
PERFORM A800-PRINT-HEAOERS-ROUTINE,

WRITE FORM2-PRINT-LINE FROM INPUT-RECORD
AFTER ADVANCING 2 LINES,

ADD 2 TO FORM2-LINE-COUNTER+

MOVE I-LAST TO FORM1-LAST,
WRITE FORM1-PRINT-LINE FROM FORM1-LINE-3

AFTER ADVANCING 3 LINES+
MOVE I-NAME TO FORM1-NAME+
WRITE FORM1-PRINT-LINE FROM FORM1-LINE-13

AFTER ADVANCING 10 LINES,
MOVE I-STREET TO FORM1-STREET,
WRITE FORM1-PRINT-LINE FROM FORMl-LINE-14.
MOVE I-CITY TO FORM1-CITY+
MOVE I-STATE TO FORM1-STATE,
MOVE I-ZIP TO FORM1-ZIP+
WRITE FORM1-PRINT-LINE FROM FORM1-LINE-15+

IV 8-14 Producing Printed Reports with COBOL-81

(continued on next page)

Example 8-4: Page Advancing and Line Skipping (Cont.)

A800-PRINT-HEADERS-ROUTINE+

* *This routine ~enerates a forM feedt writes two linest
* sKiPs 2 linest then resets the line counter to 4 to
* indicate used lines on the current lo~ical Pa~e.

* Line 5 on this Pa~e is the next Print line.

*
ADD 1 TO PAGE-NO.
MOVE PAGE-NO TO F2H-PAGE.
WRITE FORM2-PRINT-LINE FROM FORM2-HEADER-1

AFTER ADVANCING PAGE.
WRITE FORM2-PRINT-LINE FROM FORM2-HEADER-2

BEFORE ADVANCING 2.
MOVE 4 TO FORM2-LINE-COUNTER,

8.7 Programming the Linage-File Report

A linage-file report:

• Has sequential organization and access mode

• Contains variable-length records

• Consists of one or more logical pages

• Uses the LINAGE clause to define the number of lines on the logical page and to divide it into
logical page sections

• Has a LINAGE-COUNTER special register assigned to it to monitor the number of lines written
to the current logical page

• Contains compiler-generated line-feed characters that control the vertical position of the physi­
cal page in the line printer

The next sections discuss:

1. Defining the logical page with the LINAGE clause

2. Advancing to the next logical page

3. Programming for the page-overflow condition

4. Using the LINAGE-COUNTER special register

5. Programming for a 20-line logical page

8.7.1 Defining the Logical Page with the LINAGE Clause

Use the LINAGE clause in the file description entry to define the number of lines on a logical page
and to divide it into logical page sections. The page sections are named:

1. Top margin

2. Page body

3. Footing area

4. Bottom margin

Figure 8-8 shows all four sections of a linage-file logical page.

Producing Printed Reports with COBOL-81 8-15 IV

Figure 8-8: Logical Page Areas for a Linage-File Report

Page body line numbers

Logical
Page

i

1
2
3
4
5
6
7
8
9

10
11
12

*Optional areas

*Top Margin

Page Body

*Footing Area

*Bottom Margin

C81ART-2Q380.40

To define how many lines you want your program to skip at the top or the bottom of the logical page,
you use these phrases of the LINAGE clause:

1. LINES AT TOP - to position the printer on the first print line in the page body

2. LINES AT BOTTOM - to position the printer at the top of the next logical page after the
current page body is complete

Use the WITH FOOTING phrase to define a footing area in the logical page. This area controls your
page-overflow conditions and lets you insert specific text on the bottom lines of your logical page,
such as footnotes or page numbers. Section 8.7.3 and Example 8-5 explain this topic in more detail.

IV 8-16 Producing Printed Reports with COBOL-81

8.7.2 Advancing to the Next Logical Page

Linage-files automatically control the advancement to the next logical page whenever the LINAGE­
COUNTER value equals the number of lines on the logical page. However, COBOL-81 also lets your
program control logical page advancement with the WRITE statement.

To manually advance to the next logical page from any line in the current page body and position the
printer on the first print line of the next page body, your program must include either the BEFORE
ADVANCING PAGE clause or the AFTER ADVANCING PAGE clause of the WRITE statement.

8.7.3 Programming for the Page-Overflow Condition

If your program writes more lines than the logical page can accomodate, a page-overflow condition
exists. When a page-overflow condition occurs, the compiler automatically advances the linage-file
report to the top of the next logical page.

Note

Do not write more lines than your logical page can accomodate. If you do
overflow the page, the first overflow line prints on the first line of the next logical
page. Your logical page is then out of synchronization with your physical page.

You must include routines in your program so it can determine when:

• Its logical page is full. This allows your program to print header information on the top of each
form.

• It prints the last logical line on the logical page (whenever you do not want to use all the lines
on the current logical page.) This allows your program to stop detail-line processing and
provide summary totals in the current logical page before advancing to the next logical page.

Example 8-5 shows you ways to include these routines in your program. It uses the logical page
shown in Figure 8-9. Each detail line of the report represents a separate purchase at the XYZ Clothing
Store. Each page can contain from 1 to 18 purchase lines. Each customer can have an unlimited
number of purchases. A total of purchases for each customer is to appear on line 25 of that customer's
last statement page. Headers appear on the top of each page. The input file, INPUT.DAT, consists of
individual purchase records sorted in ascending order by customer account number and purchase
date. In Example 8-5, the LINAGE clause defines a footing area so the program can check for a page­
overflow condition. When the condition is detected, the program executes its header routine to print
lines 1 through 7.

Producing Printed Reports with COBOL~81 8-17 IV

Figure 8-9: A 28-line logical Page

2 3 4 5 6
Column 12345678801234567880123456788012345678801234567880123456788012

Line

1 p
2 p
3 p
4 p
5 p
6 p
7 p
8 p
8 p
10 p
11 p
12 p
13 p
14 p
15 p
16 p
17 p
18 p
18 p
20 p
21 p
22 p
23 p
24 p
25 FP
26 FP
27 8
28 8

Legend: T
p
F
8

IV 8-18

XYZ Clothing Store
STATEMENT OF ACCOUNT

Page: 888888889
Date: 89-X)0<-89

Name.: XXXXXXXXXX X XXXXXXXXXXXXXX Account Number: 988999999
Address: XXX
Date Ar11ount DescriPtion

xx
){
v
I\

}(

}{

}{

" ,.,
" -h~
}{

}{
\I ,,
}{

}{

}{

){

}{

" ,,
\I ,,
}{

}{
\I ,.,
v
"
" " One purchase per line -------------;~~){
v
" v
"
}{

}{
v
" v
"
}{

}{

xx

Top margin
Page body
Footing area
Bottom margin =

line 00
lines 01-26
lines 25-26
lines 27-28

Producing Printed Reports with COBOL-81

C81ART-20390-50

Example 8-5: Checking for Page-Overflow on a 28-Line Logical Page

IDENTIFICATION DIVISION,
PROGRAM-ID, REPOVF,

* * For RSTS/E - Print this report: PRINT REPORT+DAT/NOFEED

* * For RSX - Print this report: PRINT/LENGTH=O REPORT.DAT

* ***
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT INPUT-FILE ASSIGN TO
SELECT REPORT-FILE ASSIGN TO

DATA DIVISION,
FILE SECTION.
FD INPUT-FILE,
01 INPUT-RECORD.

02 I-NAME,
03 I-FIRST
03 I-MID
03 I-LAST

02 I-ADDRESS,
03 I -STREET
03 I-CITY
03 I-STATE
03 I-ZIP

02 I-ACCOUNT-NUMBER
02 I-PURCHASE-DATE
02 I-PURCHASE-AMOUNT
02 I-PURCHASE-DESCRIP

FD REPORT-FILE
LINAGE IS 26 LINES

WITH FOOTING AT
LINES AT BOTTOM

01 PRINT-LINE

WORKING-STORAGE
01 HEAD-1.

SECTION,

02 Hl-LC
02 FILLER
02 FILLER
02 FILLER
02 Hl-PAGE

01 HEAD-2,
02 HZ-LC
02 FILLER
02 FILLER
02 FILLER
02 H2-DATE

01 HEAD-3+
02 H3-LC
02 FILLER
02 H3-FNAME
02 FILLER
02 H3-MNAME
02 FILLER
02 H3-LNAME
02 FILLER
02 H3-NUM

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

99.
X<ZOl
XC25l
X<Gl
2(9),

99.
X<ZOl
X<25l
X<Gl
X(9),

99.
X<Gl
X<10l+
x
x.
x
X<15l+
x (17)
2(9),

PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

25
z.

PIC

VALUE
VALUE
VALUE

VALUE
VALUE
VALUE

VALUE

VALUE

VALUE

VALUE

"INPUT.DAT",
"REPORT.DAT",

X<10l+
x.
X<15l+

X<ZOl,
X<15l+
xx.
99999.
X<9l,
xxxxxx.
S9(GlV99,
X<ZOl,

X<BOl,

"XYZ Clothin!t Store
SPACES,
"Pa !1e: "

"STATEMENT OF ACCOUNT",
SPACES,
"Date: "

"NaMe: "

SPACE,

SPACE,

II Account NuMber: "

(continued on next page)

Producing Printed Reports with COBOL-81 8-19 IV

Example 8-5: Checking for Page-Overflow on a 28-Line Logical Page (Cont.)

01

01

HEAD-4,
OZ H4-LC
OZ FILLER
OZ H4-STRT
OZ FILLER
OZ H4-CITY
OZ FILLER
OZ H4-STATE
OZ FILLER
OZ H4-ZIP
HEAD-5,
OZ H5-LC

PIC 99,
PIC XC9l
PIC X CZOl,
PIC x
PIC X<15>.
PIC x
PIC xx.
PIC x
PIC 99999,

PIC 99.
PIC X<4l
PIC XC7l
PIC XCGl
PIC x (10)

VALUE "Address: II

VALUE SPACE,

VALUE SPACE,

VALUE SPACE,

lJALUE "Date",
VALUE SPACES,
VALUE "AMount",
VALUE SPACES.

OZ FILLER
OZ FILLER
OZ FILLER
OZ F 1LLER
OZ FILLER
HEAD-G
DETAIL-LINE,
OZ DET-LC
OZ DL-DATE
OZ FILLER
OZ DL-AMT
OZ FILLER
OZ DL-DESC
TOTAL-LINE,
OZ TOT-LC
OZ FILLER
OZ TL

PIC x (11) VALUE "Description".
01
01

01

PIC X < G 1)

PIC 99,
PIC X(9),

VALUE ALL II -

PIC·X VALUE SPACE,
PIC $ZZZtZZZ.99-,
PIC X VALUE SPACE,
PIC X<ZO),

PIC 99,
PIC X<Z5) VALUE "Total
PIC $ZZZtZZZtZZZ.99-.

01 TOTAL-PURCHASES PIC S9C9lV99,
01 PAGE-NUMBER PIC S9(9),

II .

Purchases to date: "

01 HOLD-I-ACCOUNT-NUMBER PIC XC9l VALUE IS LOW-VALUES,
'01 END-OF-FILE PIC X
01 THESE-MANY PIC 99
PROCEDURE _DIVISION.
AOOO-BEGIN,

OPEN INPUT INPUT-FILE
OUTPUT REPORT-FILE,

lJALUE IS "N",
VALUE IS 1+

DISPLAY " Enter date--DD-MMM-YY:",
ACCEPT HZ-DATE,
PERFORM A100-READ-INPUT UNTIL END-OF~FILE = "Y",

A050-WRAP-UP+
CLOSE INPUT-FILE

REPORT-FILE,
DISPLAY "ENO-OF-JOB",
STOP RUN,

A100-READ-INPUT.
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE

PERFORM A400-PRINT-TOTALS
MOVE HIGH-VALUES TO I-ACCOUNT-NUMBER,

DISPLAY INPUT-RECORD,
IF END-OF-FILE NOT = "Y"

AND I-ACCOUNT-NUMBER NOT = HOLD-I-ACCOUNT-NUMBER
PERFORM AZOO-NEW-CUSTOMER,

IF END-OF-FILE NOT = "Y"
AND I-ACCOUNT-NUMBER = HOLD-I-ACCOUNT-NUMBER

PERFORM A300-PRINT-DETAIL-LINE+
MOVE I-ACCOUNT-NUMBER TO HOLD-I-ACCOUNT-NUMBER,

IV 8-20 Producing Printed Reports with COBOL-81

(continued on next page)

Example 8-5: Checking for Page-Overflow on a 28-Line logical Page (Cont.)

A200-NEW-CUSTDMER,
IF HOLD-I-ACCOUNT-NUMBER = LOW-VALUES

PERFORM AGOO-SET-UP-HEADERS
PERFORM A500-PRINT-HEADERS
PERFORM A300-PRINT-DETAIL-LINE

ELSE
PERFORM A400-PRINT-TDTALS
PERFORM AGOO-SET-UP-HEADERS
PERFORM A500-PRINT-HEADERS
PERFORM A300-PRINT-DETAIL-LINE.

A300-PRINT-DETAIL-LINE.
MOVE I-PURCHASE-DATE TD DL-DATE.
MOVE I-PURCHASE-AMOUNT TD DL-AMT.
MOVE I-PURCHASE-DESCRIP TD DL-DESC,
WRITE PRINT-LINE FROM DETAIL-LINE

AT END-OF-PAGE PERFORM A500-PRINT-HEADERS.
ADD I-PURCHASE-AMOUNT TD TOTAL-PURCHASES+

A400-PRINT-TOTALS.
MOVE TOTAL-PURCHASES TD TL.
COMPUTE THESE-MANY = 25 - LINAGE-COUNTER+
WRITE PRINT-LINE FROM TOTAL-LINE AFTER ADVANCING THESE-MANY LINES.
MOVE 0 TD TOTAL-PURCHASES.

A500-PRINT-HEADERS+
ADD 1 TD PAGE-NUMBER+
MOVE PAGE-NUMBER TO Hi-PAGE,
WRITE PRINT-LINE FROM HEAD-1 AFTER ADVANCING PAGE.
WRITE PRINT-LINE FROM HEAD-2.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE+
WRITE PRINT-LINE FROM HEAD-3.
WRITE PRINT-LINE FROM HEAD-4.
WRITE PRINT-LINE FROM HEAD-5.
WRITE PRINT-LINE FROM HEAD-6+

AGOO-SET-UP-HEADERS+
MOVE I-FIRST TD H3-FNAME+
MOVE I-MID TD H3-MNAME.
MOVE I-LAST TD H3-LNAME+
MOVE I-ACCOUNT-NUMBER TD H3-NUM.
MOVE I-STREET TO H4-STRT+
MOVE I-CITY TD H4-CITY.
MOVE I-STATE TD H4-STATE+
MOVE I-ZIP TD H4-ZIP.

8.7.4 Using the LINAGE-COUNTER

One way to keep track of how many lines your program writes on a logical page is to use the
LINAGE-COUNTER special register. The compiler resets this register to 1 every time your program
begins a new logical page, and adds 1 to this register for each line the program writes.

Before the program writes a new line, it checks the LINAGE-COUNTER value to see if the current
logical page can accept the new line. If the value equals the maximum number of lines for the page
body, the compiler generates the appropriate number of line-feed characters to position the device on
the first print Ii ne of the next page body.

Producing Printed Reports with COBOL-81 8-21 IV

8.7.5 A Special Forms Example

The file description entry in Example 8-6 uses the LINAGE clause to define the logical page areas
shown in Figure 8-10. Figure 8-10 shows a 20-line logical page which includes a top margin (T), a
page body (P), a footing area (F), and a bottom margin (B). Example 8-7 shows a complete program
that generates the logical page shown in Figure 8-10 and uses the LINAGE clause in Example 8-6.

Example 8-6: A Sample LINAGE Clause for a 20-Line Logical Page

FD MINIF1-REPDRT
LINAGE IS 13 LINES

LINES AT TOP 2
LINES AT BOTTOM 5.

The first line to which the logical page can be positioned is the third line. This is the first print line of
the page. The page-overflow condition occurs when a WRITE statement causes the LINAGE­
COUNTER value to equal 15. Line 15 is the last line on the page on which text can be written.
Automatic page-advancement occurs when a WRITE statement causes the LINAGE-COUNTER value
to exceed 15. When this condition occurs, the OTS automatically positions you on the first print line
in the page body of the next logical page.

Figure 8-10: A 20-Line Logical Page

Column

Line

T
2 T
3 p
4 p
5 p
6 p
7 p
8 p
8 p
10 p
11 p
12 p
13 p
14 p
15 FP
16 B
17 B
18 B
18 B
20 B

2 3 4 5 6
12345678801234567880123456788012345678801234567880123456788012

.Dear Mr. XXXXXXXXXXXXXXX Date: 88-)-()0(-88

xx
t x

x x
>(_.,._,____ _______ Preprinted message is here--------~-)<

i v
/\

v
" xx

TO: XXXXXXXXXX X XXXXXXXXXXXXXXX
\I \I \I \I \I \I \I \I \I \I \I \I \I\/ \I >.I \I \I \I \I
AAAAAAAAAAAAAAAAAAAA

xxxxxxxxxxxxxxx xx 88888

Legend: T = Top margin
P = Page body
F = Footing area

= lines 1 and 2
= lines 3 through 15
= line 15

B = Bottom margin = lines 16 through 20

IV 8-22 Producing Printed Reports with COBOL-81

C81ART-20400-50

Example 8-7: Programming a 20-line Logical Page Defined by the LINAGE Clause

IDENTIFICATION DIVISION.
PROGRAM-ID. REPLINAG.

* *For RSTS/E - Print the rePort - PRINT MINIF1.DAT/NOFEED

*
* *For RSX - Print the rePort - PRINT/LENGTH=O MINIF1.DAT

*

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "REPIN.DAT",
SELECT MINIF1-REPORT ASSIGN TO "MINIF1,DAT".

DATA DHJISION.
FILE SECTION,
FD INPUT-FILE,
01 INPUT-RECORD.

02 I-NAME,
03 I-FIRST
03 I-MID
03 I-LAST

02 I-ADDRESS,
03 I-STREET
03 I-CITY
03 I-STATE
03 I-ZIP

FD MINIF1-REPORT
LINAGE IS 13 LINES

LINES AT TOP 2
LINES AT BOTTOM 5.

01 MINIF1-PRINT-LINE
WORKING-STORAGE SECTION.
01 END-OF-FILE
01 LINE-UP-OK
01 MINIFl-LINE-3.

02 FILLER
02 MINIF1-LAST
02 FILLER
02 FILLER
02 MINIF1-DATE

01 MINIF1-LINE-13.
02 FILLER
02 MINIF1-NAME

01 MINIF1-LINE~14.

02 FILLER
02 MINIF1-STREET

01 MINIF1-LINE-15,
02 FILLER
02 MINIF1-CITY
02 FILLER
02 MINIF1-STATE
02 FILLER
02 MINIF1-ZIP

PROCEDURE DIVISION.
AOOO-BEGIN.

OPEN OUTPUT MINIF1-REPORT,
ACCEPT MINIF1-DATE FROM DATE.

PIC){(10),
PIC X.
PIC){(15),

PIC
PIC
PIC
PIC

X<20),
x (15) I

xx.
88888.

PIC }((80) I

PIC
PIC

}(

x

X(8)
){(15).

lJALUE SPACE,
l.JALUE SPACE I

\.JALUE SPACES I PIC
PIC
PIC
PIC
PIC

XC23) VALUE SPACES,
X<G> VALUE "Date: "
88/88/88.

PIC X<4>
PIC){(26) I

PIC X(4)
PIC XC20),

PIC
PIC
PIC X
PIC
PIC
PIC

x (4)

x (15) I

88888.

\.JALUE SPACES I

\.JALUE SPACES I

VALUE SPACES,

lJALUE SPACE I

1.,JALUE SPACE I

PERFORM A300-FDRM-LINE-UP UNTIL LINE-UP-OK = "Y",
OPEN INPUT INPUT-FILE,
PERFORM A100-READ-INPUT UNTIL END-OF-FILE = "Y",

(continued on next page)

Producing Printed Reports with COBOL-81 8-23 IV

Example 8-7: Programming a 20-Line Logical Page Defined by the LINAGE Clause (Cont.)

A010-WRAP-UP,
CLOSE INPUT-FILE

MINIF1-REPORT,
DISPLAY "END OF JOB",
STOP RUN I

A100-READ-INPUT,
READ INPUT-FILE AT END MO~IE "Y" TO END-OF-FILE,
IF END-OF-FILE NOT = "Y"

PERFORM A200-PRINT-REPORT.
A200-PRINT-REPORT,

MOVE I-LAST TO MINIF1-LAST,
WRITE MINIF1-PRINT-LINE FROM MINIFl-LINE-3 BEFORE ADVANCING 1 LINE,
MOVE SPACES TO MINIF1-PRINT-LINE,
WRITE MINIF1-PRINT-LINE AFTER ADVANCING 9 LINES.
MOVE I-NAME TO MINIFl-NAME,
WRITE MINIFl-PRINT-LINE FROM MINIFl-LINE-13 BEFORE ADVANCING 1 LINE.
MOVE I-STREET TO MINIF1-STREET,
WRITE MINIF1-PRINT-LINE FROM MINIFl-LINE-14 BE TO MINIF1-CITY,
MOVE I-STATE TD MINIF1-STATE,
MOVE I-ZIP TO MINIF1-ZIP.
WRITE MINIF1-PRINT-LINE FROM MINIFl-LINE-15 BEFORE ADVANCING 1 LINE,

A300-FORM-LINE-UP,
MOt)E ALL "){" TO INPUT-RECORD,
PERFORM A200-PRINT-REPORT 3 TIMES,
DISPLAY "Is line UP OK? IY/Nl: " WITH NO ADVANCING.
ACCEPT LINE-UP-OK+

8.8 How to Print Your Report

The next two sections discuss how to print reports on your operating system. The first section explains
how to print a conventional-file report. The second section explains how to print a linage-file report.

8.8.1 Printing the Conventional Report

It is the information in the system spooler that controls your line printer and defines its current default
page size and form identification. You must provide special form handling information to your system
spooler whenever you want to print a report on a different size form. The method you use to signal a
form change to the system spooler depends on your mode of printing (see Section 8.4).

If your report does not conform to the printer's current default page size, you - or the system manager
- must change your system spooler's form specifications from a privileged account. You must do this
each time you mount a form whose dimensions differ from the previous form.

If you are printing your special-forms report from a storage device, you must identify the form in your
PRINT command. See your system's PRINT command documentation.

If you are printing your special-forms report on line, you must change the system spooler's current
default page size before you run your program.

Once the current default page size conforms to your report's dimensions you can then print the
report.

Refer to your operating system's spooler documentation for more specific information. On a RSTS/E
system, refer to the RSTS!E System Manager's Guide. On an RSX-11 Mor RSX-11 M-PLUS system, refer
to your queue manager documentation.

IV 8-24 Producing Printed Reports with COBOL-81

8.8.2 Printing a Linage-File Report

To print a linage-file report on a RSTS/E system, use the /NOFEED file qualifier of the PRINT com­
mand to suppress the insertion of form-feed characters. For example:

PRINT rePort-file-sPecification/NOFEED

To print a linage-file report on an RSX-11 M/M-PLUS system, use the /LENGTH= 0 file qualifier of
the PRINT command to suppress the insertion of form-feed characters. For example:

PRINT/LENGTH=O report-file-specification

The LINAGE clause causes a COBOL-81 report file to be in print-file format (see Chapter 1, Section
1.4.2, Print-Controlled Record Format). When a WRITE statement positions the file to the top of
the next logical page, device positioning occurs by line spacing rather than by page ejection or
form feed. ·

The default PRINT command causes the insertion of a form-feed character when a form nears the end
of a page. Therefore, when the default PRINT command refers to a linage-file report, it can change
the report's page spacing.

8.9 Solving Report Problems

There are several variations to the basic report format. The next sections present, explain, and
propose solutions to them.

8.9.1 Printing More Than One Logical Line on a Single Physical Line

When there are few columns in your report, you can print several logical lines on one physical line. If
you were to print names and addresses on four-up self-sticking multi-label forms, you would print the
form left-to-right, top-to-bottom, as shown in Figure 8-11 and Example 8-8. To print four-up self
sticking labels you must format each logical line with four input records.

However, if the columns must be in sorted order by column, the task becomes more difficult. The last
line at the end of the first column is continued at the top of the second column of the same page,
indented to the right, and so forth, as shown in Figure 8-12 and Example 8-9. Example 8-9 defines a
table containing all data to appear on the page. It fills the table by reading the input records and
storing the data in the table as it is to appear on the page. It space-fills the table after printing its
contents. Then, when it reaches the end of file, the remaining entries in the table are automatically
blank. You can extend this technique to print any number of logical lines on a single physical line.

Figure 8-11: Printing Labels Four-Up

0 0

0

0

0

~~~(---4-h 
t 
~~~[ 8 h 

i

0

0

0

0 0

C81ART-20410-20

Producing Printed Reports with COBOL-81 8-25 IV

Example 8-8: Printing Labels Four-Up

IDENTIFICATION DIVISION,
PROGRAM-ID, REP02,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT INPUT-FILE ASSIGN TO "LABELS.DAT",
SELECT REPORT-FILE ASSIGN TO "LABELS.REP",

DATA DIVISION,
FILE SECTION,
FD INPUT-FILE.
01 INPUT-RECORD.

02 INPUT-NAME
02 INPUT-ADDRESS
02 INPUT-CITY
02 INPUT-STATE
02 INPUT-ZIP

FD REPORT-FILE.

PIC
PIC
PIC
PIC
PIC

XC20>,
x (15).
x (10).
xx.
89998.

01 REPORT-RECORD PIC XC132),
WORKING-STORAGE SECTION.
01 LABELS-TABLE,

03 NAME-LINE,
05 LINE-1 OCCURS 4

07 LABEL-NAME
07 FILLER

TIMES INDEXED BY INDEX-1.

03 ADDRESS-LINE,

PIC XC20),
PIC XClO),

05 LINE-2 OCCURS 4 TIMES INDEXED BY
07 LABEL-ADDRESS PIC XC15),
07 FILLER PIC X<15>,

03 CSZ-LINE,
05 LINE-3 OCCURS 4

07 LABEL-CITY
07 FILLER
07 LABEL-STATE
07 FILLER
07 LABEL-ZIP
07 FILLER

TIMES INDEXED BY
PIC XClO),
PIC XXXX,
PIC XX,
PIC XXXX,
PIC 99899,
PIC XXXXX,

01 END-OF-FILE PIC X,

PROCEDURE DIVISION,
AOOO-BEGIN,

OPEN INPUT INPUT-FILE
OUTPUT REPORT-FILE,

MOVE SPACES TO LABELS-TABLE,
SET INDEX-1 t INDEX-2t INOEX-3 TO 1.

INDEX-2,

INDEX-3,

PERFOR~ AlOO-READ-INPUT UNTIL END-OF-FILE = "Y",
A050-WRAP-UP,

IF LABEL-NAMEC1> IS NOT EQUAL TO SPACES
PERFORM A300-PRINT-FOUR-LABELS,

A050-END-OF-JOB,
CLOSE INPUT-FILE

REPORT-FILE,
DISPLAY "END OF JOB",
STOP RUN,

A100-READ-INPUT,
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE,
IF END-OF-FILE = "Y" NEXT SENTENCE

ELSE PERFORM A200~GENERATE-TABLE.

IV 8-26 Producing Printed Reports with COBOL-81

(continued on next page)

Example 8-8: Printing Labels Four-Up (Cont.)

A200-GENERATE-TABLE.
MOVE INPUT-NAME TO LABEL-NAMEIINDEX-11
MOVE INPUT-ADDRESS TO LABEL-ADDRESSIINDEX-21
MOVE INPUT-CITY TO LABEL-CITYIINDEX-31
MOVE INPUT-STATE TO LABEL-STATEIINDEX-31
MOVE INPUT-ZIP TO LABEL-ZIPIINDEX-31
IF INDEX-I = 4 PERFORM A300-PRINT-FOUR-LABELS

ELSE SET INDEX-I 1 INDEX-21 INDEX-3 UP BY I.

A300-PRINT-FOUR-LABELS.
WRITE REPORT-RECORD FROM NAME-LINE AFTER ADVANCING 3.
WRITE REPORT-RECORD FROM ADDRESS-LINE AFTER ADVANCING I,
WRITE REPORT-RECORD FROM CSZ-LINE AFTER ADVANCING 1.
MOVE SPACES TO LABELS-TABLE.
SET INDEX-I 1 INDEX-21 INDEX-3 TO I.

Figure 8-12: Printing Labels Four-Up in Sort Order

0

0

0

0

0

0

0

0

0

0 6 12 18 24

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Producing Printed Reports with COBOL-81

C82ART-20420-50

8-27 IV

Example 8-9: Printing labels Four-Up in Sort Order

IDENTIFICATION DIVISION,
PROGRAM-ID, REP03,
ENVIRONMENT DIVISION,
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO "LABELS.OAT",
SELECT REPORT-FILE ASSIGN TO "LABELS.REP",

DATA DilJISION,
FILE SECTION,
FD INPUT-FILE,
01 INPUT-RECORD.

02 INPUT-NAME PIC Xl20l.
02 INPUT-ADDRESS PIC Xl15l,
02 INPUT-CITY PIC XllOl.
02 INPUT-STATE PIC XX.
02 INPUT-ZIP PIC 99999,

FD REPORT-FILE,
01 REPORT-RECORD PIC Xl132l,
WORKING-STORAGE SECTION.
01 LABELS-TABLE.

03 FOUR-UP OCCURS G TIMES INDEXED BY ROW-INDEX.
04 NAME-LINE.

05 LINE-1 OCCURS 4 TIMES INDEXED BY NAME-INDEX.
07 LABEL-NAME PIC XC201.
07 FILLER PIC XllOl,

04 ADDRESS-LINE.
05 LINE-2 OCCURS 4 TIMES INDEXED BY ADDRESS-INDEX,

07 LABEL-ADDRESS PIC Xl15l,
07 FILLER PIC Xl151,

04 CSZ-LINE,
05 LINE-3 OCCURS 4 TIMES

07 LABEL-CITY
07 FILLER
07 LABEL-STATE
07 FILLER
07 LABEL-ZIP
07 FILLER

01 END-OF-FILE PI C){,

PROCEDURE DIVISION,
AOOO-BEGIN.

OPEN INPUT INPUT-FILE
OUTPUT REPORT-FILE,

MOVE SPACES TO LABELS-TABLE,

INDEXED BY
PIC){(10) •
PIC X}{}{X.

PIC xx.
PIC xxxx.
PIC 99999,
PIC }{XX}{}{.

CSZ-INDEX,

SET ROW-INDEX1 NAME-INDEX1 ADDRESS-INDEX1 CSZ-INDEX TO 1,
PERFORM A100-READ-INPUT UNTIL END-OF-FILE = "Y",

A05C>-WRAP-UP,
IF LABEL-NAMEll1 11 IS NOT EQUAL TD SPACES

PERFORM A300-PRINT-PAGE-OF-LABELS VARYING ROW-INDEX
FROM 1 BY 1 UNTIL ROW-INDEX IS GREATER THAN G,

IV 8-28 Producing Printed Reports with COBOL-81

(continued on next page)

Example 8-9: Printing Labels Four-Up in Sort Order (Cont.)

A050-END-OF-JOB.
CLOSE INPUT-FILE

REPORT-FILE.
DISPLAY "END OF JOB",
STOP RUN,

A100-READ-INPUT,
READ INPUT-FILE AT END MOVE "Y" TO END-OF-FILE+
IF END-OF-FILE = "Y" NEXT SENTENCE

ELSE PERFORM A200-GENERATE-LABELS,

AZOO-GENERATE-LABELS.
MOVE INPUT-NAME TO LABEL-NAMEIROW-INDEX1 NAME-INDEX>
MOVE INPUT-ADDRESS TO LABEL-ADDRESSIROW-INDEX1 ADDRESS-INDEX)
MOVE INPUT-CITY TO LABEL-CITYIROW-INDEX1 CSZ-INDEXl
MOVE INPUT-STATE TO LABEL-STATEIROW-INDEX1 CSZ-INOEXl
MOVE INPUT-ZIP TO LABEL-ZIPIROW-INDEX1 CSZ-INDEXl
IF ROW-INDEX = 6 AND NAME-INDEX = 4

PERFORM A300-PRINT-PAGE-OF-LABELS VARYING ROW-INDEX
FROM 1 BY 1 UNTIL ROW-INDEX IS GREATER THAN 6

MOVE SPACES TO LABELS-TABLE
SET ROW-INDEX1 NAME-INDEX1 ADDRESS-INDEX1 CSZ-INDEX TO

ELSE
PERFORM A210-UPDATE-INDEXES,

A210-UPDATE-INDEXES,
IF ROW-INDEX = 6 SET ROW-INDEX TO

ELSE

SET NAME- INDE>(
ADDRESS-INDEX
CSZ-INDEX UP BY

SET ROW-INDEX UP BY 1,

A300-PRINT-PAGE-OF-LABELS,
WRITE REPORT-RECORD FROM NAME-LINEIROW-INDEXl

AFTER ADVANCING 3.
WRITE REPORT-RECORD FROM ADDRESS-LINEIROW-INDEXl

AFTER ADVANCING 1,
WRITE REPORT-RECORD FROM CSZ-LINEIROW-INDEXl

AFTER ADVANCING 1.

8.9.2 Group Indicating

Group indicating is a process that greatly improves a report's readability where there are long
sequences of entries which have some element in common. You print the element once, then leave it
blank for subsequent lines so long as there is no change in that element. For example, if your sample
files's sort sequence is State (major key) and City (minor key), you could get sequences like those in
Table 8-1.

Producing Printed Reports with COBOL-81 8-29 IV

Table 8-1: Results of Group Indicating

Without Group Indicating With Group Indicating

STATE CITY STORE STATE CITY STORE
NUMBER NUMBER

Arizona Grand Canyon 111111 Arizona Grand Canyon 111111
Arizona Grand Canyon 123456 123456
Arizona Grand Canyon 222222 222222
Arizona Tucson 333333 Tucson 333333
Arizona Tucson 444444 444444
Arizona Tucson 555555 555555
Massachusetts Maynard 111111 Massachusetts Maynard 111111
Massachusetts Maynard 222222 222222
Massachusetts Maynard 333333 333333
Massachusetts Maynard 444444 444444
Massachusetts Tewksbury 111111 Tewksbury 111111
Massachusetts Tewksbury 222222 222222
New Hampshire Manchester 111111 New Hampshire Manchester 111111
New Hampshire Manchester 222222 222222
New Hampshire Merrimack 333333 Merrimack 333333
New Hampshire Merrimack 444444 444444
New Hampshire Merrimack 555555 555555
New Hampshire Nashua 666666 Nashua 666666

8.9.3 Fitting Reports on the Page

If you need 160 columns and the print page is limited to 132 you can:

• Eliminate as many unused spaces as possible between columns. Columns should not be run
together; however, you can use one blank space instead of several.

• Eliminate the nonessential.

• Print two or more lines, staggering the headers and columns.

• Print two reports.

8.9.4 Printing Totals Before Detail Lines

If a report must include totals at the top of the page before the detail lines, there are three solutions:

1. Store the logical print lines in a table, total the table, and then print from the table.

2. Pass through the file twice. The first time through, compute the totals. The second time
through, print the report. This method is slow and is complicated if there are many
subtotals.

3. Write the lines into a file with a sort key containing the report, page, and line number.
When your program writes the last line and computes the total, have it assign a page and
line number to the total line's sort key. Use an appropriate page and line number to cause
the total line to sort in front of its detail lines. After the program completes, sort the file,
read it, drop the sort key, and produce the report.

IV 8-30 Producing Printed Reports with COBOL-81

8.9.5 Underlining Items in Your Reports

Sometimes you must underline a column of numbers to denote a total and also underline the total to
highlight it:

123ll
1122
2358

To print a single underline use the underscore character and suppress line spacing. For example:

WRITE PRINT-LINE FROM SINGLE-UNDERLINE-TOTAL
BEFORE ADVANCING 0 LINES+

This overprints the underscore on the previous line, underlining the item: 1122. Use the equal sign
(=)to simulate double underlines. However, write the equal signs on the next line. For example:

WRITE PRINT-LINE FROM DOUBLE-UNDERLINE-TOTAL AFTER ADVANCING 1 LINE.

8.9.6 Bolding Items in Your Reports

To bold an entire line in a report:

1. Write the line as many times as you want, specifying the BEFORE ADVANCING 0 LINES
phrase (three times is sufficient). This darkens the line but does not advance to the
next line.

2. Write the line one last time without the BEFORE ADVANCING phrase. This overprints the
line again and advances to the next print line.

For example:

WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES+
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES,
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES+
WRITE PRINT-LINE FROM TOTAL-LINE.

This example produces a darker image in the report. You can use similar statements for characters
and words, as well as complete lines. To bold only a word or only a character within a line, you
must:

1. Write the print line and specify the BEFORE ADVANCING 0 LINES phrase.

2. Create a skeleton line by removing all other items in the print line that are not to be
balded.

3. Write the skeleton line as many times as you want and specify the BEFORE ADVANCING
0 LINES phrase. This darkens the items in the skeleton line but does not advance to the
next line.

4. Write the skeleton line one last time without the BEFORE ADVANCING phrase. This
overprints the line again and advances to the next print line.

Producing Printed Reports with COBOL-81 8-31 IV

For example:

WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES,

* * Move spaces over the iteMs in the source Print line <TOTAL-LINE>
* that are not to be bolded

* MOVE SPACES TO •••
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES,_
WRITE PRINT-LINE FROM TOTAL-LINE BEFORE ADVANCING 0 LINES.
WRITE PRINT-LINE FROM TOTAL-LINE.

IV 8-32 Producing Printed Reports with COBOL-81

/IE!'"'·

Chapter 9
Forms for Video Terminals

This chapter explains how you can design an online video form similar to a printed form using
COBOL-81 ACCEPT and DISPLAY statements. These statements provide you with options for devel­
oping video forms on either VT52, VTl 00, or Professional terminals, and let you write your applica­
tion without regard to the type of terminal the application will eventually run on. You can run your
forms application on any of these three terminals. However, not all options are available for the VT52
terminal. Those options that are not available for the VT52 terminal have no effect on the form.

For simple screen applications, or applications requiring specialized screen displays, such as scrolling
regions or double-width/double-height displays, refer to Appendix A, Designing Your Form with
Escape Sequences. Using escape sequences does not cause the compiler to include special screen
handling routines as does the ACCEPT /DISPLAY .options. Escape sequences can reduce the memory
space used by your program. However, most screen applications make use of both the ACCEPT and
DISPLAY options and escape sequences.

A video form allows you to:

• Improve the appearance of an application's terminal dialog

• Make data entry applications, menu selections, and special control keys easier to use

• Clarify the type of input expected from an operator

For example, Figure 9-1 is a sample form created by a COBOL-81 program that lets you enter
employee information into a master file. This program prompts the entry clerk for input data to the
form. The program then moves the cursor to another part of the form and prompts the clerk for more
data. Once all data is entered, the program writes it to the master file and paints a new form.

9-1 IV

Figure 9-1: Adding Information to a Master File with a Video Form

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 0
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1111111 PERSONNEL MASTER FILE DATA INPUT FORM 1111

EMplo~ee NuMber:!----------- Wage Class: _____ _

EMplo~ee NaMe: ___________________________________ _

EMplo~ee Address: ________________________________ _

EMplo~ee Phone No.: ______________________________ _

DepartMent: ______________________________________ _

Supervisor NaMe: _________________________________ _

Supervisor Phone No.: ____________________________ _

Current Salar~:s _________________________________ _

Date Hired: __ ; __ / __ Next Review Date: __ / __ ; __

9.1 Designing Your Form with ACCEPT /DISPLAY Options

C81ART-20430-30

To help you design a video form, the ACCEPT /DISPLAY options allow you to do the following:

• Erase parts or all of the screen

• Use relative and absolute cursor positioning

• Specify video attributes on data to be displayed and accepted

• Convert data to appropriate usage when accepting data

• Handle error conditions when accepting and displaying data

• Provide screen protection by limiting the number of characters typed on the terminal

• Accept data without echoing

• Specify default values for ACCEPT statements

• Define and handle special control keys

The remainder of this chapter discusses these topics.

IV 9-2 Forms for Video Terminals

9.1.1 Clearing a Screen Area

To clear part or all of your screen before you accept or display data, you can use one of the following
ERASE options of the ACCEPT and DISPLAY statements:

• ERASE SCREEN - Erases the entire screen before accepting or displaying data at the specified
or implied cursor position.

• ERASE LINE - Erases the entire specified line before accepting or displaying data at the
specified or implied cursor position.

• ERASE TO END OF SCREEN - Erases from the specified or implied cursor position to the end
of the screen before accepting or displaying data at the specified cursor position.

• ERASE TO END OF LINE - Erases from the specified or implied cursor position to the end of
the line before accepting or displaying data at the specified cursor position.

Table 9-1 lists the ERASE options and indicates if the option requires relative or absolute cursor
positioning for your terminal type. (See Section 9.1.2.)

Table 9-1: Cursor Positioning Requirements for ERASE Options

Cursar Positioning for Your Terminal Type

ERASE Option VT52 VTl 00 and Professional

ERASE SCREEN Absolute only Absolute or Relative

ERASE LINE Absolute only Absolute or Relative

ERASE TO END OF SCREEN Absolute or Relative Absolute or Relative

ERASE TO END OF LINE Absolute or Relative Absolute or Relative

In Example 9-1, and as shown in Figure 9-2, the entire screen is erased before "Employee number:"
is displayed.

Example 9-1 : Erasing a Screen

IDENTIFICATION DIVISION,
PROGRAM-IO, ERASEIT,
DATA DIVISION,
PROCEDURE DIVISION,
A00-6EGIN,

DISPLAY "Employee number:" LINE 4 COLUMN 5 ERASE SCREEN,
DISPLAY " " LINE 23 COLUMN 1,
STOP RUN,

Forms for Video Terminals 9-3 IV

Figure 9-2: Effects of the ERASE Option

Screen Before ERASE executes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

IV 9-4 Forms for Video Terminals

C81ART-20440-30

Figure 9-2: Effects of the ERASE Option (Cont.)

Screen After ERASE executes

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

9.1.2 Horizontal and Vertical Positioning· of the Cursor

C81 ART-20450-30

To position data items at a specified line and column, you use the LINE NUMBER (or LINE) and
COLUMN NUMBER (or COLUMN) clauses, respectively_ You can use these clauses with both the
ACCEPT and DISPLAY statements. You can also use literals or numeric data items to specify line and
column numbers.

In Example 9-2, and as shown in Figure 9-3, "Employee name:" is displayed on line 19 in column 5.

Example 9-2: Cursor Positioning

IDENTIFICATION DIVISION,
PROGRAM-ID+ LOCATE,
ENVIRONMENT DIVISION+
DATA DIVISION,
WORKING-STORAGE SECTION+
01 CDL-NUM PIC 88
PROCEDURE DIVISION,
AOO-DUT-PARA+

DISPLAY "EMPloree naMe:"

STOP RUN,

VALUE 5,

LINE 18
COLUMN COL-NUM
ERASE SCREEN,

Forms for Video Terminals 9-5 IV

Figure 9-3: Positioning the Data on Line 19 Column 5

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C81ART-20460-30

If you use LINE, but not COLUMN, data is accepted or displayed at column 1 and the specified line
position.

If you use COLUMN, but not LINE, data is accepted or displayed at the current line and specified
column position.

If you do not use either clause, data is accepted or displayed at the position specified by the current
ACCEPT /DISPLAY rules in the COBOL-81 Language Reference Manual.

Note

The presence of either or both the LINE and COLUMN clauses implies NO
ADVANCING.

You can use the PLUS phrase with LINE or COLUMN for relative cursor positioning. PLUS eliminates
the need for counting lines or columns. Once you specify an initial LINE or COLUMN number, you
can position items by using LINE PLUS or COLUMN PLUS. If you use PLUS without an integer, PLUS
1 is implied.

To get predictable results from your relative cursor positioning statements do not:

• Cause a display line to wraparound to the next line

• Accept data into unprotected fields

IV 9-6 Forms for Video Terminals

In Example 9-3,and as shown in Figure 9-4, PLUS is used twice to show relative positioning, once
with an integer, once without.

Example 9-3: Use of PLUS for Cursor Positioning

IDENTIFICATION DIVISION,
PROGRAM-ID+ LINEPLUS,
PROCEDURE DIVISION,
AOO-BEGIN+

DISPLAY "Positioning Test" LINE 10
"Changing Test" LINE PLUS 5
"Adding Test" LINE PLUS

DISPLAY " " LINE 23 COLUMN 1.
STOP RUN,

COLUMN 20 ERASE SCREEN
COLUMN PLUS 10
COLUMN PLUS,

Figure 9-4: Cursor Positioning Using the PLUS Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C81 ART-20470-30

"Positioning Test" displays on line 10, column 20; "Changing Test" on line 15, column 46 of the
form; and "Adding Test" on line 16, column 60 of the form.

Note

If you use LINE PLUS so that relative positioning goes beyond the bottom of the
screen, your form scrolls with each such display.

Forms for Video Terminals 9-7 IV

9.1.3 Assigning Character Attributes to Your Format Entries

You can use one or more of the character attributes in Table 9-2 to highlight your screen data
depending on your terminal type. Example 9-4 shows the use of these attributes in a program seg­
ment. Figure 9-5 shows the results of Example 9-4.

Table 9-2: Available Character Attributes by Terminal Type

VT100 Family Terminals
Character with the Advanced Video Option
Attribute and the Professional Terminal

BELL Available
sounds your
terminal bell

UNDERLINED Available
underlines your text

BOLD Available
intensifies your text

BLINKING Available
blinks your text

REVERSED Available
changes your
screen's background

Example 9-4: Character Attributes

IDENTIFICATION DIVISION.
PROGRAM-ID. CHARATTR.
PROCEDURE DIVISION.
AOO-BEGIN.

VT52 and the
VT100 without the

Advanced Video Option

Available

Not Available

Not Available

Not Available

Not Available

DISPLAY 11 EMPlo1ee No:" UNDERLINED LINE 5 COLUMN 5 ERASE SCREEN,

DISPLAY ''EMPloyee wage class:" BOLD LINE 5 COLUMN 24.

DISPLAY "NAME" BLINKING LINE PLUS G COLUMN G.

DI SPLAY "SALARY: $" REl,!ERSED LI NE PLUS G COLUMN 24,

DISPLAY II II LINE 23 COLUMN 1.

IV 9-8 Forms for Video Terminals

Figure 9-5: Screen Display with Character Attributes

1
2
3
4
5
6
7
B
9

10
u
12
13
14
15
16
17
1B
19
20
21
22
23
24

1 2 3 4 5 6 7 B
12345678901234567890123456789012345678901234567890123456789012345678901234567890

9.1.4 Handling Data with ACCEPT Options

C81ART-20480-30

Several ACCEPT clauses help you handle data. These include the CONVERSION, ON EXCEPTION,
PROTECTED, SIZE, NO ECHO, and DEFAULT clauses.

9.1.4.1 Using CONVERSION with ACCEPT Data - When you use the CONVERSION clause with an
ACCEPT numeric operand, COBOL-81 converts the data entered on the form to a trailing-signed
decimal field. It then moves the data from the screen to your program using standard MOVE state­
ment rules.

When an ACCEPT operand is not numeric, CONVERSION moves the input characters as an alphanu­
meric string, using standard MOVE statement rules. The clause lets you accept data into an alphanu­
meric-edited field and permits use of the JUSTIFIED clause, if you specify it on the destination item.

If you use CONVERSION with ACCEPT numeric data, you can also use the ON EXCEPTION clause.
This clause lets you control data entry errors that can occur in a numeric field with CONVERSION.

9.1.4.2 Using ON EXCEPTION When Accepting Data with CONVERSION - If you enter i I legal
numeric data or exceed the PICTURE description of the ACCEPT data (with an overflow to either the
left or right of the decimal point), the imperative statement associated with ON EXCEPTION executes,
and the destination field does not change.

Forms for Video Terminals 9-9 IV

Note

ON EXCEPTION has no effect when accepting data from PROTECTED fields.

In Example 9-5, and as shown in Figure 9-6, ON EXCEPTION executes if you enter an alphanumeric
or a numeric item out of the valid range. The valid range prompts you to try again.

If you do not use ON EXCEPTION and an error occurs:

• The field on the screen is filled with spaces

• Automatic reprompting for the data results

• The destination field does not change

Example 9-5: Use of ON EXCEPTION

IDENTIFICATION DIVISION,
PROGRAM-ID. ONEXC,
ENVIRONMENT DIVISION,
DATA DIVISION.
WORKING-STORAGE SECTION+
01 NUM-DATA PIC S9C3)V9C3) COMP-3,
PROCEDURE DIVISION.
AOO-BEGIN,

DISPLAY "Enter anY nuMber in this range: -999.999 to +999.999"
LINE 10 COLUMN 1
ERASE SCREEN,

ACCEPT NUM-DATA WITH CONVERSION LINE 15 COLUMN 15
ON EXCEPTION

DISPL~Y "Valid range is: -999.999 to +999.999"
LINE 20 REVERSED WITH BELL ERASE TD END OF SCREEN

DISPLAY "PLEASE trY again ••• Press Your carriage return KeY
" to continue" LINE PLUS REVERSED

ACCEPT NUM-DATA,
GO TD AOO-BEGIN.

IV 9-10 Forms for Video Terminals

Figure 9-6: Accepting Data with the ON EXCEPTION Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C81ART-20490-30

9.1.4.3 Protecting Your Screen - You can use the PROTECTED clause in an ACCEPT statement to
put a limit on the characters to be input. This clause prevents writing or deleting parts of the screen.

If you use this clause, and you try to type past the right-most position of the input field or delete past
the left edge of the input field, the terminal bell sounds and the screen cursor does not move. You can
accept the data on the screen by pressing a legal terminator key or you can delete the data by pressing
your delete key. For more information on legal terminator keys, refer to the CONTROL KEY phrase of
the ACCEPT statement in the COBOL-81 Language Reference Manual.

You can also use either REVERSED, BOLD, BLINKING, or UNDERLINED with the PROTECTED
clause. When you specify one of these attributes, the input field fills with spaces. This lets you seethe
size of the input field on the screen before you enter data. The characters you enter also echo the
specified attribute.

The PROTECTED SIZE clause sets the size of the input field on the screen and allows you to change
the size from the size indicated by the PICTURE clause of the destination item. Example 9-6 and
Figure 9-7 show how to use the SIZE clause with the PROTECTED clause. When the example uses the
SIZE 3 clause, any attempt to enter more than three characters results in ringing the terminal bell.
When the example uses the SIZE 10 clause, the ACCEPT statement includes the ON EXCEPTION
clause to warn you whenever you enter a number that would result in truncation at either end of the
assumed decimal point. Figure 9-7 shows such an example. The operator entered a 10-digit number
and exceeded the storage capacity of the data item NUM-DAT on the left side of the assumed decimal
point.

Forms for Video Terminals 9-11 IV

Note

The SIZE clause only controls the number of characters you can enter; it does not
alter any other PICTURE clause requirements. Truncation, space or zero filling,
and decimal point alignment occur according to MOVE statement rules.

Example 9-6: Use of SIZE

IDENTIFICATION DIVISION,
PROGRAM-ID+ PROTECT.
ENVIRONMENT DIVISION+
DATA DIVISION+
WORKING-STORAGE SECTION,
01 NUM-DATA PIC S9<9lV9<9l CDMP-3,

PROCEDURE DIVISION,
AOO-BEGIN+

DISPLAY "Enter data iteM <NUM-DATAl but SIZE 3:"
LI NE 1 COLUMN 15
UNDERLINED
ERASE SCREEN+

PERFORM ACCEPT-THREE 5 TIMES,

DISPLAY "SaMe data iteM <NUM-DATAl but SIZE = 10:" LINE PLUS 3
COLUMN 15
UNDERLINED,

PERFORM ACCEPT-TEN 5 TIMES+
STOP RUN,

ACCEPT-THREE+
ACCEPT NUM-DATA WITH CONVERSION PROTECTED SIZE 3

LINE PLUS COLUMN 15+

ACCEPT-TEN+
ACCEPT NUM-DATA WITH CONVERSION PROTECTED SIZE 10

LINE PLUS COLUMN 15

IV 9-12

ON EXCEPTION
DISPLAY "TDD MANY NUMBERS--trY this on~ a~ain! ! !"

COLUMN PLUS
REVERSED
GO TD ACCEPT-TEN.

Forms for Video Terminals

Figure 9-7: Screen Display of NUM-DATA Using the PROTECTED Option

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C81 ART-20500-30

When you do not use the PROTECTED clause, the amount of data transferred is determined accord­
ing to the ACCEPT statement rules in the COBOL-81 Language Reference Manual.

9.1.4.4 Using NO ECHO with ACCEPT Data - By default, the characters you type at the terminal are
displayed on the screen. Example 9-7 and Figure 9-8 show how the NO ECHO clause prevents the
input field from being displayed. The NO ECHO clause allows you to keep passwords and other
information confidential.

Example 9-7: Use of NO ECHO

IDENTIFICATION DIVISION,
PROGRAM-ID, NOSHOW,
ENVIRONMENT DIVISION,
DATA DIVISION,
WORKING-STORAGE SECTION,
01 PASSWORD PIC XC25),

PROCEDURE DIVISION,
AOO-BEGIN,

DISPLAY "ENTER YOUR PASSWORD: " LINE 5 COLUMN 10
ERASE SCREEN,

ACCEPT PASSWORD WITH NO ECHO,
STOP RUN,

Forms for Video Terminals 9-13 IV

Figure 9-8: Accepting Dc.tta with the NO ECHO Option

1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 B
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C81ART-20510·30

9.1.4.5 Assigning Default Values to Data Fields - Use the DEFAULT clause to assign a value to an
ACCEPT data item whenever:

• The program requires a value, in the cases where an operator does not have a value for the
data item.

• There is a high probability that the default value is identical in most records - for example,
using USA or a state's abbreviation in a mailing list.

When you use the DEFAULT clause, execution of the program proceeds as if the default value had
been typed in. However, the value does not automatically display on the screen.

Example 9-8 and Figure 9-9 show you how to use the DEFAULT clause to specify default input values
(the value must be an alphanumeric data name, a nonnumeric literal, or figurative constant). The
example uses the TO-BE-SUPPLIED abbreviations "[TBS]", "***[TBS]****", and "+00.00" as the
default values for three data items in the program.

IV 9-14 Forms for Video Terminals

Example 9-8: Use of the DEFAULT Clause

IDENTIFICATION DIVISION.
PROGRAM-ID+ TRYDEF.
ENVIRONMENT DIVISION.
DATA Dil,JISION.
WORKING-STORAGE
01 DATAlA
01 NAME1A
01 PRICEA
01 OATA123+

SECTION.
PIC 9<12).
PI C X><XXX.
PIC S99V99.

02 NAMElB PIC XXXXX.
02 PIC XX VALUE SPACES.
02 OATA1B PIC XXXXXXXXXXXX+
02 PIC XXX VALUE SPACES.
02 PRICEB PIC $99+99-.

01 NAME-DEFAULT PIC){X)<XX l.JALUE "[TBSJ",
01 COL-NUM PIC 99 VALUE 10.
PROCEDURE DIVISION.
AOO-DEFAULT-TEST.

DISPLAY "*********PLEASE ENTER THE FOLLOWING INFORMATION*********"
LI NE 5 COLUMN 15
REVERSED BLINKING
ERASE SCREEN.

DISPLAY "**"
LINE 7 COLUMN 15,

DISPLAY " Part Part Part
---------STORED AS-----------"

LINE 9 COLUMN 15.

DISPLAY " Naooe Nuoober Price
NarTJe NurTJbe r Price "

LINE 10 COLUMN 15.

DISPLAY "Defaults --->CTBSJ ***[TBS]**** +00.00"
LINE 11 COLUMN 2+

DISPLAY "----- ------------
LINE 12 COLUMN 15.

DISPLAY "**"
LINE 20 COLUMN 15.

DISPLAY 115. " RElJERSED BLINKING LINE 18 COLUMN COL-NUM.
DISPLAY II at " REVERSED BLINK ING LINE 17 COLUMN COL-NUM.
DISPLAY 11 3 t " REVERSED BLINK ING LINE 16 COLUMN COL-NUM,
DISPLAY 11 z. " REVERSED BLINK ING LINE 15 COLUMN COL-NUM.
DISPLAY " 1 • " REVERSED BLINKING LINE 1 ll COLUMN COL-NUM,
DISPLAY " " LINE 13 COLUMN 15.

PERFORM A05-GET-DATA 5 TIMES,

DISPLAY " " LINE 22 COLUMN 1.

STOP RUN. (continued on next page)

Forms for Video Terminals 9-15 IV

Example 9-8: Use of the DEFAULT Clause (Cont.)

A05-GET-DATA+

ACCEPT NAME1A
PROTECTED
DEFAULT NAME-DEFAULT
LINE PLUS COLUMN 15 ERASE TD END OF LINE.

ACCEPT DATAlA
PROTECTED
DEFAULT "***[TBSJ****"
COLUMN 21,

ACCEPT PRICEA
PROTECTED
WI TH CONVERSION
DEFAULT ZERO
COLUMN 34+

MOVE NAMElA TO NAME1B+
MOVE DATA1A TD DATA1B.
MOVE PRICEA TO PRICEB.
DISPLAY DATA123 REVERSED COLUMN 44.

Figure 9-9: Accepting Data with the DEFAULT Option

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

IV 9-16 Forms for Video Terminals

C81 ART-20520-30

9.1.5 Using Keys on Your Terminal to Define Special Program Functions

Use the CONTROL KEY IN clause of the ACCEPT statement to tailor your screen handling programs
to give special meanings to any or all of these keys on your terminal:

• Cursor positioning keys (cursor up, down, left, right)

• Program function keys (PF1, PF2, PF3, and PF4)

• Auxiliary keypad keys (if in application mode) 0 through 9, "-" (minus), "," (comma),
(period), and ENTER

• Top row function keys and editing keys - for Professional terminals

II fl

The CONTROL KEY IN clause gives your program a way to recognize these keys whenever the
program allows you to use one. Tables 9-3 and 9-4 list the characters returned by the OTS to the data­
name specified in the CONTROL KEY IN clause. Table 9-3 is for VT52, VT100, and Professional
terminals. Table 9-4 shows additional keys available on Professional terminals only. Example 9-9
shows you how to define and use the data-name in the CONTROL KEY IN clause. It also shows you
how to access your alternate keypad keys (see paragraph PO).

Table 9-3: COBOL-81 Characters Returned by the OTS for Cursor Positioning, Program Function,
and Auxiliary Keypad Keys

Characters Returned
by the OTS in the

Data-Name Specified by
Terminal Types CONTROL KEY IN

Professional Professional
Key Name - "Keypad Name" VT52 7-bit and VT100 8-bit First Remaining

Cursor up - "UP" ESC A ESC [A CSI A CSI A
Cursor down - "DOWN" ESC B ESC [B est B est B
Cursor right - "RIGHT" ESC C ESC IC est c est c
Cursor left - "LEFT" ESC D ESC [D CSI D CSI D
Program function - "PF1" ESC OP SS3 p SS3 p

Program function - "PF2" ESC OQ SS3 Q SS3 Q
Program function - "PF3" ESC OR SS3 R SS3 R
Program function - "PF4" ESC OS SS3 s SS3 s
Auxiliary keypad - left blank ESC P SS3 p

Auxiliary keypad - center blank ESC Q SS3 Q
Auxiliary keypad - right blank ESC R SS3 R
Auxiliary keypad - "O" ESC ?p ESC Op SS3 p SS3 p
Au xi I iary keypad - "1" ESC ?q ESC Oq SS3 q SS3 q
Auxiliary keypad - "2" ESC ?r ESC Or SS3 r SS3 r
Auxiliary keypad - "3" ESC ?s ESC Os SS3 s SS3 s
Auxiliary keypad - "4" ESC ?t ESC Ot SS3 t SS3 t
Auxiliary keypad - "5" ESC ?u ESC Ou SS3 u SS3 u
Auxiliary keypad - "6" ESC ?v ESC Ov SS3 v SS3 v
Auxiliary keypad - "7" ESC ?w ESCOw SS3 w SS3 w
Auxiliary keypad - "8" ESC ?x ESC Ox SS3 x SS3 x
Auxiliary keypad - "9" ESC ?y ESC Oy SS3 y SS3 y

(continued on next page)

Forms for Video Terminals 9-17 IV

Table 9-3: COBOL-81 Characters Returned by the OTS for Cursor Positioning, Program Function,
and Auxiliary Keypad Keys (Cont.)

Characters Returned
by the OTS in the

Data-Name Specified by
Terminal Types CONTROL KEY IN

Professional Professional
Key Name - "Keypad Name" VT52 7 -bit and VT1 00 8-bit First Remaining

Auxiliary keypad - II II E5C Om 553 m 553 m -

Auxiliary keypad - II !I E5C 01 553 I 553 I
'

Auxiliary keypad - II If E5C ?n E5C On 553 n 553 n
Auxiliary keypad - "ENTER" E5C ?M E5C OM 553 M 553 M
CTRL/Z - "CTRL/Z" 26 26 26 26
TAB - "TAB" 9 9 9 9
RETURN - "RETURN" 13 13 13 13

Note: At the present time the C51 and 553 character is shown for your information only. You need not check for
their presence because the remaining characters are unique and need no qualification.

For your information, the definition and value of the C51 and 553 character used in Table 9-3 and
Table 9-4 are shown below:

01 553){
01 553 REDEFINES SS3X

o 1 csrn
01 CBI REDEFINES CSIX

PIC 9999 COMP VALUE 143,
PIC i<.

PIC 9999 COMP VALUE 155,
PI C }{ +

Figures 9-10, 9-11, and 9-12 are the standard keypads for the VT52, VT100, and Professional termi­
nals, respectively. The nonblank keys correspond to the keypad names in Tables 9-3 and 9-4, which
list the characters returned to the application program by the OT5 when pressed.

Figure 9-10: COBOL-81 's Control Keys on the Standard VT52 Keypad

C81ART-20530-15

IV 9-18 Forms for Video Terminals

Figure 9-11: COBOL-81 's Control Keys on the Standard VT100 Keypad

C81ART-20540-15

Figure 9-12: COBOL-81 's Control Keys on the Standard Professional Keypad

C81ART-20550-15

Table 9-4: Characters Returned by the OTS for the Professional's Top Row Function and
Editing Keys

***Characters Returned
by the OTS in the

Data-Name Specified by
Terminal Types CONTROL KEY IN

VT52
and Professional Professional

Generic Key Name VT100 7-bit 8-bit First Remaining

Fl
F2
F3 ESC [lr CSI 1r CSI 13"
F4 ESC [14" CSI 14" CSI 14"
F5 ESC [15" CSI 15· CSI 15"
F6
F7 ESC [18" CSI 18" CSI 18"
F8 ESC [19" CSI 19" CSI 19"
F9 ESC [20" CSI 20· CSI 20"
FlO ESC [21" CSI 21" CSI 21"

(continued on next page)

Forms for Video Terminals 9-19 IV

Table 9-4: Characters Returned by the OTS for the Professional's Top Row Function and
Editing Keys (Cont.)

***Characters Returned
by the OTS in the

Data-Name Specified by
Terminal Types CONTROL KEY IN

VT52
and Professional Professional

Generic Key Name VT100 7-bit 8-bit First Remaining

F11 ESC [2r CSI 2r CSI 23-
F12 ESC [24- CSI 24- CSI 24-

F13 ESC [25- CSI 25- CSI 25-

F14 ESC [26- CSI 26- CSI 26-
F15 ESC [28- CSI 28- CSI 28-

F16 ESC [29- CSI 29- CSI 29-

F17 ESC [3r CSI 3,- CSI 3,-
F18 ESC [3r CSI 3r CSI 3r
F19 ESC [3r CSI 3r CSI 3r
F20 ESC [34- CSI 34- CSI 34-
Editing key - Find ESC W CSI 1- CSI ,-
Editing key - Insert Here ESC [r CSI r CSI r
Editing key - Remove ESC W CSI r CSI 3-

Editing key - Select ESC W CSI 4- CSI 4-

Editing key - Prev Screen ESC [5" CSI 5- CSI 5-

Editing key - Next Screen ESC [6- CSI 6- CSI 6-

*** If your system allows your application to reference this key

Note: At the present time the CSI character is shown for your information only. You need not check
for their presence because the remaining characters are unique and need no qualification.

Example 9-9 and Figure 9-13 show you how to use the CONTROL KEY clause to handle arrow keys,
program function keys, auxiliary keypad keys, CTRL/Z, TAB, and RETURN using a VT100 terminal
on an RSX-11 M/M-PLUS system. The example also includes information for changes needed for
other terminals and operating systems.

When you use this clause, you allow PF keys or arrow keys, as well as RETURN and TAB to terminate
input. Also, this clause permits you to use those keys to move the cursor around the screen and make
menu selections without typing any data on the screen.

Note

To activate the auxiliary keypad, your program must execute DISPLAY ESC "= ".
You must additionally define ESC as the escape character. Refer to the following
examples.

In Example 9-9, the terminator key codes display on the screen. Figure 9-13 shows a sample run
using the right arrow terminal key.

IV 9-20 Forms for Video Terminals

Example 9-9: Use of the CONTROL KEY Clause

IDENTIFICATION DIVISION,
PROGRAM-ID, SPECIAL.
DATA Dit.JISION.
WORKING-STORAGE SECTION,

* The code returned 1.ii 1 1 *
*
* 01

t.JT 100, or CT terrrlinals.

CONTROL-KEY.
02 FIRST-CHAR-CONTROL-KEY

be the s arrie

PIC }{ +
\I \I \I \I

on l.JT52 '

02 REMAINING-CHAR-CONTROL-KE" PIC 1\ J\ 1\ 1\ +

*
*
* Far

*
*'
*
*
*
*
*
*
*
*
*
*
*
*

88 UP-ARROW
88 DOWN-ARROW
88 RIGHT-ARROW
88 LEFT-ARROW
88 PF1
88 PF2
88 PF3
88 PF4
88 AUXO
88 AU){ 1
88 AU){2
88 AU){3
88 AUX4
88 AU){5
88 AU){G
88 AUX7
88 AU){8
88 AU){8
88 AU){M I NUS
88 AU){COMMA
88 AU)< PERIOD
88 AUl-(ENTER

the Professional:

88 Fl
88 F2

88 F20
88 EK-FIND

88 EK-NE){T

l.JALUE Au•
t.JALUE B" •
l..'ALUE en.
l.JALUE D".
t.IALUE p II t

t,IALUE Qll.

t.JALUE R" •
t.JALUE s .
t,IALUE p .
t.JALUE "I .
t,IALUE r .
l.JALUE s .
t,IALUE t .
t.IALUE u .
t.JALUE v .
t.JALUE 1,..1 .
t.IALUE x .
t.IALUE y .
t.JALUE ITl .
t.IALUE 1 .
t.JALUE n .
t,IALUE M .

l.JALUE "13N",
l.JALUE "14N",

l.JALUE "34N",
t.JALUE II 1 Nlf.

\,JALUE "GN".

* For RS){ ESCAPE value is 27.

* For RSTS/E ESCAPE value is 155.

* 01 TAB-KEY PIC 8888
01 TAB REDEFINES TAB-KEY PIC \I

/\ .
01 CARRIAGE-RETURN PIC 8888
01 CR REDEFINES CARRIAGE-RETURN PIC }{ .
01 CZ PIC 8888
01 CTRL-Z REDEFINES CZ PIC x.
01 ESCAPE PIC 8888
01 ESC REDEFINES ESCAPE PIC }{ +

01 SS3){ PIC 8888

COMP t.JALUE 8.

COMP t.JALUE 13.

COMP t.JALUE 26+

COMP t.JALUE 27+

COMP t.JALUE 143.
(continued on next page)

Forms for Video Terminals 9-21 IV

Example 9-9: Use of the CONTROL KEY Clause (Cont.)

01 SS3 REDEFINES SS3X
01 CSIX
01 CSI REDEFINES CSIX

PROCEDURE DIVISION,
PO,

*

PIC X,
PIC 8899 COMP VALUE 155,
PIC X,

* DISPLAY ESC "=" Puts You in alternate KeYPad Mode

*

p 1.

DISPLAY ESC
DISPLAY " "

II - II
- t

ERASE SCREEN,

DISPLAY "Hit an arrowt PFt returnt or tab Key IPFI stops looPl"
LI NE 3 COLUMN 4,

ACCEPT CONTROL KEY IN CONTROL-KEY,

IF CR = FIRST-CHAR-CONTROL-KEY
DISPLAY "RETURN" LINE 10 COLUMN 5 ERASE LINE GO TO Pl,

IF TAB = FIRST-CHAR-CONTROL-KEY
DISPLAY "TAB" LINE 10 COLUMN 5 ERASE LINE GD TO Pl+

IF CTRL-Z = FIRST-CHAR-CONTROL-KEY
DISPLAY "CTRL/Z" LINE 10 COLUMN 5 ERASE LINE GO TO Pl+

IF PFl DISPLAY "PFl" LINE 10 COLUMN 5 ERASE LINE GO TD PZ,

IF PFZ DISPLAY "PFZ" LINE 10 COLUMN 5 ERASE LINE GO TD Pl+

IF PF3 DISPLAY "PF3" LINE 10 COLUMN 5 ERASE LINE GO TD p 1.

IF PF4 DISPLAY "PF4" LINE 10 COLUMN 5 ERASE LINE GD TD p 1.

IF UP-ARROW DISPLAY "UP-ARROW" LINE 10 COLUMN 5 ERASE LINE
GO TO Pl+

IF DOWN-ARROW DISPLAY "DOWN-ARROW" LINE 10 COLUMN 5
ERASE LINE GO TD P 1,

IF LEFT-ARROW DISPLAY "LEFT-ARROW" LINE iO COLUMN 5
ERASE LINE GO TD Pl.

IF RIGHT-ARROW DISPLAY "RIGHT-ARROW" LINE iO COLUMN 5
ERASE LINE GO TO Pl,

IF AUXO DISPLAY "AUXILIARY KEYPAD O" LINE iO COLUMN 5
ERASE LINE GO TO Pi+

IF AUXl DISPLAY "AUX I LI ARY KEYPAD i" LINE 10 COLUMN 5
ERASE LINE GO TO Pl,

IF AUXZ DISPLAY "AUXILIARY KEYPAD .., " L. LINE 10 COLUMN 5
ERASE LINE GO TO Pi.

IF AUX3 DISPLAY "AUXILIARY KEYPAD 3" LINE iO COLUMN 5
ERASE LINE GO TO Pi.

IF AUX4 DISPLAY "AUXILIARY KEYPAD 4" LINE 10 COLUMN 5
ERASE LINE GO TO Pl,

(continued on next page)

IV 9-22 Forms for Video Terminals

Example 9-9: Use of the CONTROL KEY Clause (Cont.)

P2,

IF AUX5 DISPLAY "AUXILIARY KEYPAD 5" LINE 10 COLUMN 5
ERASE LINE GD TO Pl.

IF AUXB DISPLAY "AUXILIARY KEYPAD 6" LINE 10 COLUMN 5
ERASE LINE GO TO Pl,

IF AUX7 DISPLAY "AUXILIARY KEYPAD 7" LINE 10 COLUMN 5
ERASE LINE GO TO Pl,

IF AUXB DISPLAY "AUXILIARY KEYPAD 8" LINE 10 COLUMN 5
ERASE LINE GO TO Pl+

IF AUX8 DISPLAY "AUXILIARY KEYPAD 8" LINE 10 COLUMN 5
ERASE LINE GO TO Pl.

IF AUXMINUS DISPLAY "AUXILIARY KEYPAD " LINE 10 COLUMN 5
ERASE LINE GO TO Pl.

IF AUXCOMMA DISPLAY "AUXILIARY KEYPAD 1" LINE 10 COLUMN 5
ERASE LINE GO TO Pl,

IF AUXPERIOD DISPLAY "AUXILIARY KEYPAD ," LINE 10 COLUMN 5
ERASE LINE GO TO Pl,

IF AUXENTER DISPLAY "AUXILIARY KEYPAD ENTER" LINE 10 COLUMN 5
ERASE LINE GO TO Pi.

DISPLAY "Not an allowable control Key -
"Press Your return Key to continue"
LI NE 10 COLUMN 5
WITH BELL ERASE LINE+

ACCEPT CONTROL-KEY.
GOTO Pl,

DISPLAY "Press Your carria~e return Key to end this Job"
LINE 11 COLUMN 5 ERASE LINE,

ACCEPT CONTROL KEY IN CONTROL-KEY LINE 12 COLUMN 5 ERASE LINE,
IF CR NOT = FIRST-CHAR-CONTROL-KEY GO TO PO

ELSE
DISPLAY "END OF JOB" LINE 13 COLUMN 35

BOLD BLINKING REVERSED BELL
ERASE SCREEN
STOP RUN,

Forms for Video Terminals 9-23 IV

Figure 9-13: Screen Display of Program SPECIAL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

C81ART-20560-30

To expand upon Example 9-9, you can, for example, accept data in addition to specifying the
CONTROL KEY clause. What you get in this case is the ability to accept data and the ability to
determine what to do next. You can use the CONTROL KEY clause to move the cursor around on the
screen or take a specific course of action.

9.1.6 Using the CONVERSION Clause to Display Data

Use the CONVERSION clause to display the contents of numeric fields. When you use the
CONVERSION clause with a DISPLAY statement, the numeric item appears on the screen:

• In DISPLAY usage

• With a decimal point (if needed)

• With a sign (if needed)

This lets you see the values of COMP and COMP-3 data items in human-readable form. The size of
the displayed field is determined from the PICTURE clause of the displayed item. Example 9-10 and
Figure 9-14 shows how to display the different types of data with the CONVERSION clause.

IV 9-24 Forms for Video Terminals

Example 9-10: Use of CONVERSION

IDENTIFICATION DIVISION,
PROGRAM-ID, CONVERT,
ENVIRONMENT DIVISION, -
DATA DIVISION,
WORKING-STORAGE SECTION,
01 DATA1A PIC X<10>,
01 DATA16 PIC X(10) JUST,
01 DATA2 PIC +++++9999.99,
01 DATA3 PIC S9<2>V9<2> COMP,
01 DATA4 PIC S9(3)V9(3) COMP,
01 DATAS PIC S9<G>V9(G) COMP,
01 DATAG PIC S9(4)V9(4) COMP-3,
01 DATA7 PIC S9<1>V9(7) SIGN LEADING SEPARATE,

PROCEDURE DIVISION,
CONVERT-CHECK SECTION,
Pi,

P2,

p3,

p4,

PS,

PG,

DISPLAY "To be~in.,, Press Your carria~e return key"
LINE 1 COLUMN 1 ERASE SCREEN
BELL UNDERLINED REVERSED,

ACCEPT DATA1A,

DISPLAY "X<lO> Test" LINE 8 ERASE LINE,
ACCEPT DATAlA WITH CONVERSION PROTECTED REVERSED

LINE 8 COLUMN SO,
DISPLAY DATAlA REVERSED WITH CONVERSION

LINE 8 COLUMN GS,

DISPLAY "X<lO) JUSTIFIED Test" LINE 10 ERASE LINE,
ACCEPT DATA16 WITH CONVERSION PROTECTED REVERSED

LINE 10 COLUMN SO,
DISPLAY DATA16 REVERSED WITH CONVERSION

LINE 10 COLUMN GS,

DISPLAY "Num edited Test (+++++9999,99):" LINE 12 ERASE LINE,
ACCEPT DATA2 PROTECTED REVERSED WITH CONVERSION

LINE 12 COLUMN SO,
DISPLAY DATA2 REVERSED WITH CONVERSION

LINE 12 COLUMN SS,

DISPLAY "Num COMP Test S9(2)V9(2):" LINE 14 ERASE LINE.
ACCEPT DATA3 PROTECTED REVERSED WITH CONVERSION

LINE 14 COLUMN SO,
DISPLAY DATA3 REVERSED WITH CONVERSION LINE 14 COLUMN GS,

DISPLAY "Num COMP Test S9(3)V9<3>:" LINE lG ERASE LINE,
ACCEPT DATA4 PROTECTED REVERSED WITH CONVERSION

LINE 16 COLUMN SO,
DISPLAY DATA4 REVERSED WITH CONVERSION

LINE lG COLUMN GS,

DISPLAY "Num COMP Test SS<S>VS<G>:" LINE 18 ERASE LINE,
ACCEPT DATAS PROTECTED REVERSED WITH CONVERSION

LINE 18 COLUMN SO,
DISPLAY DATAS REVERSED WITH CONVERSION

LINE 18 COLUMN GS,

DISPLAY "Num COMP-3 Test S9(4)V9(4):" LINE 20 ERASE LINE,
ACCEPT DATAG PROTECTED REVERSED WITH CONVERSION

LINE 20 COLUMN SO,
DISPLAY DATAS REVERSED WITH CONVERSION

LINE 20 COLUMN GS,
(continued on next page)

Forms for Video Terminals 9-25 IV

Example 9-10: Use of CONVERSION (Cont.)

p7,

PB+

DISPLAY "NuM DISPLAY Test S8(1lV8(7lSi~n Lead Sep:"
LINE 22 ERASE LINE,

ACCEPT DATA7 PROTECTED REVERSED WITH CONVERSION
LINE 22 COLUMN 50,

DISPLAY DATA7 REVERSED WITH CONVERSION
LINE 22 COLUMN 85,

DISPLAY "To end,,,type END"
LINE PLUS COLUMN 1 ERASE LINE
BELL UNDERLINED REVERSED+

ACCEPT DATAlA+
IF DATAIA = "END" STOP RUN,
GO TO P 1,

Figure 9-14: Sample Run of Program CONVERT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

IV 9-26 Forms for Video Terminals

CB1ART-20570-30

Chapter 10
Sorting Records and Merging Files

The SORT and MERGE statements provide a wide range of sorting capabilities and options. You
declare the sort file or merge file with a SELECT statement in the Environment Division. Use an SD
entry in the Data Division to define the characteristics of these files.

This chapter presents and explains examples showing how to use the phrases of the SORT and
MERGE statements.

Note

Use MERGE statement phrases the same way you use equivalent SORT phrases.

10.1 ASCENDING and DESCENDING KEY Phrases

Use these phrases to specify the parameters for your sort keys. Establish your sort hierarchy by
specifying your major sort key first, your intermediate sort key(s) next, and your minor sort key last.

In Example 10-1, SORT-KEY-1 is specified first. It is the major key and will be sorted in ascending
order. SORT-KEY-2 is specified second. It is the intermediate key and will also be sorted in ascending
order. The minor key, SORT-KEY-3, is specified last and will be sorted in descending order.

Example 10-1: Using the ASCENDING KEY and DESCENDING KEY Phrases

ASCENDING KEY SORT-KEY-1 SORT-KEY-2
DESCENDING KEY SORT-KEY-3

10-1 IV

.10.2 USING and GIVING Phrases

If you only need to resequence a file - that is, you do not need to manipulate data before and after a
sort- use the USING and GIVING phrases of the SORT statement. The USING phrase opens the input
file and then reads and releases its records to the sort. The GIVING phrase opens and writes sorted
records to the output file. In Example 10-2, the SORT phrases:

1. Open INPUT-FILE

2. Read all records in INPUT-FILE and release them to the sort

3. Sort the records in ascending sequence using the data in SORT-KEY-1

4. Open the output file and write the sorted records to OUTPUT-FILE

5. Close all the files used in the SORT statement

Example 10-2: Using the USING and GIVING Phrases

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-I
USING INPUT-FILE
GIVING OUTPUT-FILE,

10.3 INPUT PROCEDURE and OUTPUT PROCEDURE Phrases

You can manipulate data.before and after a sort with the INPUT PROCEDURE and OUTPUT PROCE­
DURE phrases.

INPUT PROCEDURE replaces the USING phrase when you want to manipulate data entering the sort.
The SORT statement transfers control to the sections named in the INPUT PROCEDURE phrase. You
then use COBOL-81 statements to open and read files and to manipulate data. Use the RELEASE
statement to tranfer records to the sort. After the last statement of the input procedure is executed, the
records are sorted.

The SORT statement then transfers control to the sections named in the OUTPUT PROCEDURE
phrase. This phrase replaces the GIVING phrase when you want to manipulate data in the sort. You
can use COBOL-81 statements to open files and manipulate data. Use the RETURN statement to
transfer records from the sort.

Note

You cannot access records released to the sort file after the SORT statement ends.

You cannot transfer control directly to the INPUT PROCEDURE or OUTPUT PROCEDURE sections
from a GO TO or PERFORM statement executed in another part of your program. Example 10-3
shows the use of the INPUT PROCEDURE and OUTPUT PROCEDURE phrases.

IV 10-2 Sorting Records and Merging Files

Example 10-3: Using the INPUT PROCEDURE and OUTPUT PROCEDURE Phrases

PROCEDURE DIVISION.
000-SORT SECTION,
010-DD-THE-SORT,

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
DESCENDING KEY SORT-KEY-2
INPUT PROCEDURE IS 050-RETRIEVE-INPUT

THRU 100-DONE-INPUT
OUTPUT PROCEDURE IS 200-WRITE-OUTPUT

THRU 230-DONE-OUTPUT.
DISPLAY "ENO OF SORT",
STOP RUN,

050-RETRIEVE-INPUT SECTION.
060-0PEN-INPUT,

OPEN INPUT IN-FILE.
070-READ-INPUT.

READ IN-FILE AT END
CLOSE IN-FILE
GO TO 100-DONE-INPUT.

*You can add1 chanle1 or delete records before sortinl *
*using COBOL data ooaniPulation techniques. *

IF INPUT-RECORD-BALANCE = 0 GO TO 070-READ-INPUT.
MOVE INPUT-RECORD TO SORT-RECORD.
RELEASE SORT-RECORD.
GO TO 070-READ-INPUT.

100-DONE-INPUT SECTION.
110-EXIT-INPUT.

EX IT•
200-WRITE-OUTPUT SECTION.
210-0PEN-OUTPUT.

OPEN OUTPUT OUT-FILE.
220-GET-SORTED-RECORDS.

RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 230-DONE-OUTPUT.

*You can add1 chanle1 or delete sorted records *
•usinl COBOL data ooaniPulation techniques. *

IF SORT-RECORD-STATE = "CA" GO TO 220-GET-SORTED-RECORDS.
MOVE SORT-RECORD TO OUTPUT-RECORD.
WRITE OUTPUT-RECORD.
GO TO 220-GET-SORTED-RECORDS.

230-DONE-OUTPUT SECTION.
240-El< IT-OUTPUT.

EXIT•

You can combine the INPUT PROCEDURE and GIVING phrases, or the USING and OUTPUT
PROCEDURE phrases .. In Example 10-4, there is no need to use the INPUT PROCEDURE phrase
because the application has no need to manipulate its input data. In this example, all input records
are sorted. Example 10-4 is identical to Example 10-3; however, in Example 10-4, the USING phrase
replaces INPUT PROCEDURE.

Sorting Records and Merging Files 10-3 IV

Example 10-4: Replacing the INPUT PROCEDURE Phrase with the USING Phrase

PROCEDURE DIVISION~
000-SORT SECTION,
010-DO-THE-SORT+

SORT SORT-FILE ON ASCENDING KEY SORT-KEY-1
DESCENDING KEY SORT-KEY-Z
USING IN-FILE
OUTPUT PROCEDURE IS ZOO-WRITE-OUTPUT

THRU Z30-DONE-OUTPUT,
DISPLAY "END OF SORT",
STOP RUN,

ZOO-WRITE-OUTPUT SECTION.
ZlO-OPEN-OUTPUT.

OPEN OUTPUT OUT-FILE.
ZZO-GET-SORTED-RECORDS.

*

RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO Z30-DONE-OUTPUT,

*This routine droPs duplicate records

* IF THIS-IS-A-DUPLICATE-RECORD GO TO ZZO-GET-SORTED-RECORDS.
MOVE SORTED-RECORD TO OUTPUT-RECORD,
WRITE OUTPUT-RECORD.
GO TO ZZO-GET-SORTED-RECORDS,

Z30-DONE-OUTPUT SECTION.
Zl!O-E)< IT-OUTPUT.

EXIT,

10.4 WITH DUPLICATES IN ORDER Phrase

Use the WITH DUPLICATES IN ORDER phrase to request that records with duplicate keys be written
into the output file in the same order in which they were read into it. Without this phrase, the order of
records with duplicate keys will be unpredictable.

Example 10-5 shows an input file that is to be sorted by the name field. There are two sets of records
with duplicate keys. Note what can happen when you do not specify the WITH DUPLICATES IN
ORDER phrase.

Example 10-5: Sorting with and Without the DUPLICATES IN ORDER Phrase

SORT SORT-FILE ON ASCENDING KEY NAME
WITH DUPLICATES IN ORDER
USING INPUT-FILE
GIVING OUTPUT-FILE.

Sorted without Sorted with
Input file Duplicates in Order Duplicates in Order

Record Record Record
Name Data Name Data Name Data

JONES ABCD DAVIS LMNO DAVIS LMNO
DAVIS LMNO JONES EFGH JONES ABCD
WHITE STUV JONES ABCD JONES EFGH
JONES EFGH SMITH 1234 SMITH 1234
SMITH 1234 WHITE STUV WHITE STUV
WHITE WXYZ WHITE WXYZ WHITE WXYZ

IV 10-4 Sorting Records and Merging Files

If you omit the WITH DUPLICATES IN ORDER phrase, you cannot predict the order of records with
duplicate sort keys. The JONES records are not in the same sequence as they were in the input file,
but the WHITE records are.

In contrast, the WITH DUPLICATES IN ORDER phrase guarantees that records with duplicate sort
keys remain in the same sequence as they were in the input file.

10.5 File Organization

You can sort any file regardless of its organization. The organization of the output file can differ from
that of the input file. For example, a sort can have a sequential input file and a relative output file. In
this case, the relative key for the first record returned from the sort is 1; the second record's relative
key is 2; and so forth.

If an indexed file is described as output in the GIVING or OUTPUT PROCEDURE phrases, the first
sort key associated with the ASCENDING phrase must specify the same character positions specified
by the RECORD KEY phrase (primary key) for that file.

10.6 Multiple Sorts

A program can contain more than one sort file and I or more than one SORT statement. Example 10-6
uses two sort files to produce two differently sequenced reports.

Example 10-6: Multiple Sorts in the Same Program

DATA DIVISION,
FILE SECTION,
SD SORT-FILE1+
01 SORT-REC-1,

03 Sl-KEY-1
03 FILLER
03 Sl-KEY-2
03 FILLER

SD SORT-FILE2+
01 SORT-REC-2,

03 FILLER
03 S2-KEY-1
03 FILLER
03 S2-KEY-2
03 FILLER

PROCEDURE DIVISION,
000-SORT SECTION,
010-DO-FIRST-SORT,

PIC X<S>,
PIC X!LIO),
PIC X!S),
PIC X!50),

PIC X!20),
PIC X<lO),
PIC X<10),
PIC X< 10),
PIC X<SO>,

SORT SORT-FILE1 ON ASCENDING KEY
Sl-KEY-1
Sl-KEY-2
WITH DUPLICATES IN ORDER
USING INPUT-FILE
OUTPUT PROCEDURE IS 050-CREATE-REPORT-1

THRU 300-DONE-REPORT-1,

(continued on next page)

Sorting Records and Merging Files 10-5 IV

Example 10-6: Multiple Sorts in the Same Program (Cont.)

020-DO-SECOND-REPORT,
SORT SORT-FILE2 ON ASCENDING KEY

S2-KEY-1

030-END-JOB,

DESCENDING KEY ·
S2-KEY-2
USING INPUT-FILE
OUTPUT PROCEDURE IS 400-CREATE-REPORT-2

THRU 700-DONE-REPORT-2,

DISPLAY "PROGRAM ENDED",
STOP RUN.

050-CREATE-REPORT-1 SECTIOM,
**
* *
* * * Use the RETURN statement to read the sorted records. *
* *
* * **
300-DONE-REPORT-1 SECTION,
310-EXIT-REPORT-1,

EXIT.

400-CREATE-REPORT-2 SECTION,
**
* *
* * * Use the RETURN statement to read the sorted records. *
* *
* * **
700-DONE-REPORT-2 SECTION,
710-EXIT-REPORT,

EXIT,

1O.7 Sorting Variable-Length Records

If you specify the USING phrase and the input file contains variable-length records, the sort file
record must not be smaller than the smallest record - nor larger than the largest record - described in
the input file.

If you specify the GIVING phrase and the output file contains variable-length records, the sort file
record must not be smaller than the smallest record - nor larger than the largest record - described in
the output file.

10.8 Preventing I /0 Aborts

All I /0 errors detected during a sort can cause abnormal program termination. The USE AFTER
STANDARD ERROR PROCEDURE declarative specifies error handling procedures as shown in
Example 10-7.

IV 10-6 Sorting Records and Merging Files

Example 10-7: A Declarative Procedure for a Sort

PROCEDURE DIVISION+
DECLARATIVES+
SORT-FILE SECTION+

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-FILE+
SORT-ERROR,

DISPLAY "1-D TYPE ERROR WHILE SORTING",
DISPLAY "INPUT-FILE STATUS IS " INPUT-STATUS,
STOP RUN,

END DECLARATIVES,
000-SORT SECTION,
010-DD-THE-SORT+

SORT SORT-FILE ON DESCENDING KEY
S-KEY-1

WITH DUPLICATES IN ORDER
USING INPUT-FILE
GIVING OUTPUT-FILE+

DISPLAY "END OF SORT",
STOP RUN,

Note

The USE statement does not apply to SD (Sort Description) files.

10.9 The MERGE Statement

The MERGE statement combines two or more identically sequenced input files and makes their
records available, in merged order, to an output procedure or directly to one or more output files.
Use MERGE statement phrases the same way you use their SORT phrase equivalents.

In Example' 10-8, two district sales input files are merged into one regional sales output file.

Example 10-8: Merge Two Files into One File

DATA DIVISION,
FILE SECTION,
SD MERGE-FILE.
01 MERGE-REC,

03 FILLER
03 M-PRODUCT-CODE
03 FILLER

FD DISTRICT1-SALES,
01 DISTRICT1-REC
FD DISTRICTZ-SALES.
01 DISTRICTZ-REC
FD REGION1-SALES
01 REGION1-REC
PROCEDURE DIVISION+
000-MERGE-FILES+

PIC XX,
PIC)((10),
PIC)((88),

PIC X< 100),

PIC)((100),

PICX<100),

MERGE MERGE-FILE ON ASCENDING KEY M-PRODUCT-CODE
USING DISTRICT1-SALES DISTRICTZ-SALES
GIVING REGION1-SALES,

STOP RUN.

Sorting Records and Merging Files 10-7 IV

10.1 O Sample Programs

The following sample programs show how to use the SORT and MERGE statements.

Example 10-9: SORTA - Sorting with the USING and GIVING Phrase

IDENTIFICATION DIVISION,
PROGRAM-ID, SORTA,
*** * This Pro~ram shows how to sort *
* a file with the USING and GIVING Phrases *
* of the SORT statement. The fields to be *
* sorted are S-KEY-1 and S-KEY-2i they *
* contain account numbers and amounts. The *
* sort sequence is amount within account *
* number. *
* Notice that OUTPUT-FILE is a relative file. *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER, PDP-11.
OBJECT-COMPUTER, PDP-11,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT INPUT-FILE ASSIGN TO "INPFIL",
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL"

ORGANIZATION IS RELATIVE,
SELECT SORT-FILE ASSIGN TO "SRTFIL",

DATA DIVISION,
FILE SECTION,
SD SORT-FILE,
01 SORT-REC.

03 S-KEY-1,
05 S-ACCOUNT-NUM PIC X<Bl,

03 FILLER PIC X<32l,
03 S-KEY-2.

05 S-AMOUNT PIC S8(5lV88,
03 FILLER PIC X<53),

FD INPUT-FILE
LABEL RECORDS ARE STANDARD,

01 IN-REC PIC X<100),
FD OUTPUT-FILE

LABEL RECORDS ARE STANDARD,
01 OUT-REC PIC X<lOO),
PROCEDURE DIVISION,
000-DO-THE-SORT,

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

WITH DUPLICATES IN ORDER
USING INPUT-FILE GIVING OUTPUT-FILE,

*** * At this Point1 YOU could transfer control to another *
* section of Your Pro~ram and continue Processin~. *

DISPLAY "END OF PROGRAM SORTA",
STOP RUN,

IV 10-8 Sorting Records and Merging Fi.les

Example 10-10: SORTB - Sorting with the USING and OUTPUT PROCEDURE Phrases

IDENTIFICATION DIVISION,
PROGRAM-ID. SORTB+
**
* This PrograM shows how to sort a file *
* with the USING and OUTPUT PROCEDURE Phrases *
* of the SORT stateMent. The PrograM eliMinates *
* duPlicate records bY adding their aMounts to the *
* aMount in the first record with the saMe account *
* nuMber. DnlY records with unique account nuMbers *
* are written to the output file. The fields to be *
* sorted are S-KEY-1 and S-KEY-2; they contain account *
* nuMbers and aMounts. The sort sequence is aMount *
* within account nuMber. *
* Notice that the organization of OUTPUT-FILE is indexed. *
**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER,
INPUT-OUTPUT SECTION.
FILE-CONTROL.

PDP-11.
PDP-11.

SELECT INPUT-FILE ASSIGN TO "INPFIL",
SELECT OUTPUT-FILE ASSIGN TD "OUTFIL"

ORGANIZATION IS INDEXED
RECORD KEY IS OUT-KEY.

SELECT SORT-FILE ASSIGN TO "SRTFIL",
DATA D!l.lISION.
FILE SECTION.
SD SORT-FILE.
01 SORT-REC.

03 S-KEY-1,
05 S-ACCOUNT-NUM

03 FILLER
03 S-KEY-2,

05 S-AMOUNT
03 FILLER

FD INPUT-FILE
LABEL RECORDS ARE STANDARD.

01 IN-REC
FD OUTPUT-FILE

LABEL RECORDS ARE STANDARD.
01 OUT-REC.

03 OUT-KEY
03 FILLER

WORKING-STORAGE SECTION.
01 INITIAL-SORT-READ
01 SAi.lE-SDRT-REC,

03 SR-ACCOUNT-NUM
03 FILLER
03 SR-AMOUNT
03 FILLER

PROCEDURE DI\HSION.
000-START SECTION,
005-DO-THE-SDRT.

SORT SORT-FILE ON ASCENDING
S-KEY-1
S-KEY-2

USING INPUT-FILE

PIC){(8) +

PIC x (32).

PIC S9 (5) l.J99.
PIC x (53).

PIC){(100),

PIC){(8).

PIC x (92) +

PIC x VALUE

PIC){(8).

PIC X<32l.
PIC S9 (5)l.!99.
PIC X<53),

KEY

11y11 t

OUTPUT PROCEDURE IS 300-CREATE-OUTPUT-FILE
THRU GOO-DONE-CREATE,

**
* At this Point1 You could transfer control to another *
* section of the PrograM and continue Processing. *
**

(continued on next page)

Sorting Records and Merging Files 10-9 IV

Example 10-10: SORTB - Sorting with the USING and OUTPUT PROCEDURE Phrases (Cont.)

DISPLAY "END OF PROGRAM SORTB"+
STOP RUN,

300-CREATE-OUTPUT-FILE SECTION+
350-0PEN-OUTPUT+

OPEN OUTPUT OUTPUT-FILE+
400-READ-SORT-FILE+

RETURN SORT-FILE AT END
PERFORM 500-WRITE-THE-OUTPUT
CLOSE OUTPUT-FILE
GO TO BOO-DONE-CREATE+

IF INITIAL-SORT-READ = "Y"
MOVE SORT-REC TO SAVE-SORT-REC
MOVE "N" TO INITIAL-SORT-READ
GO TO 400-READ-SORT-FILE.

450-COMPARE-ACCOUNT-NUM+
IF S-ACCOUNT-NUM = SR-ACCOUNT-NUM

ADD S-AMOUNT TO SR-AMOUNT
GO TO 400-READ-SORT-FILE+

500-WRITE-THE-OUTPUT+
MOVE SAVE-SORT-REC TO OUT-REC+
WRITE OUT-REC INVALID KEY

DISPLAY "INVALID KEY " SR-ACCOUNT-NUM " SORTB ABORTED"
CLOSE OUTPUT-FILE STOP RUN+

550-GET-A-REC+
MOVE SORT-REC TO SAVE-SORT-REC+
GO TO 400-READ-SORT-FILE+

BOO-DONE-CREATE SECTION.
B50-EXIT-PARAGRAPH,

EXIT,

Example 10-11: SORTC- Sorting with the INPUT PROCEDURE and OUTPUT PROCEDURE
Phrases

IDENTIFICATION DIVISION+
PROGRAM-ID+ SORTC,

* This Pro~raM shows how to use the INPUT *
* ·PROCEDURE and OUTPUT PROCEDURE Phrases of the *

*
*
*
*
*
*
*
*
*
*

SORT stateMent+ InPut to the sort is two files
containin~ the saMe tYPe of data. Records with
a "D" status-code are not released to the sort+
The pro~raM eUMinates duPlicate records by
addin~ their aMounts to the aMount in the first
record with the saMe account nuMber. OnlY records
with uni9ue account nuMbers are written to
the outPut file+ The fields to be sorted are
S-KEY-1 AND S-KEY-2+ The sort se9uence is aMount
within account nuMber+

*
*
*
*
*
*
*
*
*
* ***

ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER, PDP-11+
OBJECT-COMPUTER+ PDP-11+
INPUT-OUTPUT SECTION+
FILE-CONTROL+

SELECT FIRST-FILE ASSIGN TO "FILE01"+
SELECT SECOND-FILE ASSIGN TO "FILEOZ"+
SELECT OUTPUT-FILE ASSIGN TO "OUTFIL",
SELECT SORT-FILE ASSIGN TO "SRTFIL",

DATA DIVISION+
FILE SECTION,
SD SORT-FILE+

IV 10-10 Sorting Records and Merging Files

(continued on next page)

Example 10-11: SORTC - Sorting with the INPUT PROCEDURE and OUTPUT PROCEDURE
Phrases (Cont.)

01 SORT-REC.
03 S-KEY-1,

05 S-ACCOUNT-NUM
03 FILLER
03 S-KEY-2,

05 S-AMOUNT
03 FILLER

FD FIRST-FILE
LABEL RECORDS ARE

01 RECORD 1.
03 FILLER
03 Rl-STATUS-CODE

FD SECOND-FILE
LABEL RECORDS ARE

01 RECORD2.
03 FILLER
03 R2-STATUS-CODE

FD OUTPUT-FILE

STANDARD.

STANDARD.

LABEL RECORDS ARE STANDARD.

PIC){ (8) I

PIC){(32) I

PIC S8 (5) l)88.
PIC X(53),

PIC x (88).
PIC x.

PIC){(88) I

p I c){I

01 OUT-REC PIC)-((100) I

WORKING-STORAGE SECTION.
01 INITIAL-SORT-READ
01 FILE01-COUNT
01 FILE02-COUNT
01 SORT-COUNT
01 OUTPUT-COUNT
01 SAVE-SORT-REC.

03 SR-ACCOUNT-NUM
03 FILLER
03 SR-AMOUNT
03 FILLER

PROCEDURE DIVISION.
000-START SECTION.
005-DO-THE-SORT.

PI C){
PIC
PIC
PIC
PIC

8(5)
8(5)
8(5)
8(5)

t..JALUE "Y",
t)ALUE ZEROES,
t..JALUE ZEROES I

l,JALUE ZEROES I

l)ALUE ZEROES I

PIC XCB),
PIC X(32),
PIC
PIC

S8 (5) \l99.
){(53).

SORT SORT-FILE ON ASCENDING KEY
S-KEY-1
S-KEY-2

INPUT PROCEDURE IS 010-GET-INPUT
THRU 200-DONE-INPUT-GET

OUTPUT PROCEDURE IS 300-CREATE-OUTPUT-FILE
THRU GOO-DONE-CREATE,

** * Notice the use of DISPLAY and record counters to *
* Produce sort statistics. *
**

DISPLAY "TOTAL FIRST-FILE RECORDS IS " FILE01-COUNT.
DISPLAY "TOTAL SECOND-FILE RECORDS IS " FILE02-COUNT.
DISPLAY "TOTAL NUMBER OF SORTED RECORDS IS " SORT-COUNT.
DISPLAY ''TOTAL NUMBER OF OUTPUT RECORDS IS " OUTPUT-COUNT.

**
* At this Point1 rou could transfer control to another *
* section of the Pro~raro and continue Processin~. *
**

DISPLAY "END OF PROGRAM SORTC",
STOP RUN.

010-GET-INPUT SECTION.
050-0PEN-FILES,

OPEN INPUT FIRST-FILE.

(continued on next page)

Sorting Records and Merging Files 10-11 IV

Example 10-11: SORTC-- Sorting with the INPUT PROCEDURE and OUTPUT PROCEDURE
Phrases (Cont.)

100-READ-FIRST-FILE+
READ FIRST-FILE AT END

CLOSE FIRST-FILE
OPEN INPUT SECOND-FILE
GO TO 150-READ-SECOND-FILE,

ADD 1 TO FILE01-COUNT.
IF R1-STATUS-CODE = "D"

GO TO 100-READ-FIRST-FILE,
RELEASE SORT-REC FROM RECORD1+
GO TO 100-READ-FIRST-FILE+

150-READ-SECOND-FILE+
READ SECOND-FILE AT END

CLOSE SECOND-FILE
GO TO ZOO-DONE-INPUT-GET+

ADD 1 TO FILEOZ-COUNT+
IF RZ-STATUS-CODE = "D"

GO TO 150-READ-SECOND-FILE,
RELEASE SORT-REC FROM RECORDZ,
GO TO 150-READ-SECOND-FILE,

ZOO-DONE-INPUT-GET SECTION+
250-EXIT-PARAGRAPH+

EXIT+
300-CREATE-OUTPUT-FILE SECTION+
350-0PEN-OUTPUT+

OPEN OUTPUT OUTPUT-FILE,
400-READ-SORT-FILE,

RETURN SORT-FILE AT END
PERFORM 500-WRITE-THE-OUTPUT
CLOSE OUTPUT-FILE
GO TO GOO-DONE-CREATE,

ADD 1 TO SORT-COUNT,
IF INITIAL-SORT-READ = "Y"

MOVE SORT-REC TO SAVE-SORT-REC
MOVE "N" TO INITIAL-SORT-READ
GO TO 400-READ-SORT-FILE,

450-COMPARE-ACCOUNT-NUM,
IF S-ACCOUNT-NUM = SR-ACCOUNT-NUM

ADD S-AMOUNT TO SR-AMOUNT
GO TO 400-READ-SORT-FILE,

500-WRITE-THE-OUTPUT,
MOVE SAVE-SORT-REC TO OUT-REC,
WRITE OUT -REC,
ADD 1 TO OUTPUT-COUNT+

550-GET-A-REC,
MOVE SORT-REC TO SAVE-SORT-REC,
GO TO 400-READ-SORT-FILE+

GOO-DONE-CREATE SECTIDN,
GSO-EXIT-PARAGRAPH+

EXIT,

Example 10-12: SORTE - Sorting a File and Expanding Its Output Records

IDENTIFICATION DIVISION,
PROGRAM-ID+ SORTE+
** * This Pro~ram increases the size of the *
* variable inPut records by a new six- *
* character field and uses this field *
* as the sor~ Key, *
**
ENVIRONMENT DIVISION+
CONFIGURATION SECTION,

IV 10-12 Sorting Records and Merging Files

(continued on next page)

Example 10-12: SORTE - Sorting a File and Expanding Its Output Records (Cont.)

SOURCE-COMPUTER. PDP-11,
OBJECT-COMPUTER, PDP-11,
INPUT-OUTPUT SECTION,
FILE-CONTROL,

SELECT INFILE ASSIGN TO "INFILE",
SELECT SORT-FILE ASSIGN TO "SRTFIL",
SELECT OUT-FILE ASSIGN TO "OUTFILE",

DATA DIVISION.
FILE SECTION,
FD INFILE

RECORD VARYING FROM 100 TO 480 CHARACTERS
DEPENDING ON IN-LENGTH.

01 INREC,
03 ACCOUNT PIC
03 INCOME-FIRST-QUARTER PIC
03 INCOME-SECOND-QUARTER PIC
03 INCOME-THIRD-QUARTER PIC

9(5).
8(5)V88.
9<5lV88,
9<5lV88.

03 INCOME-FOURTH-QUARTER PIC 8(5lV88,
03 ORDER-COUNT PIC 8(2),
03 ORDERS OCCURS 1 TO 7 TIMES

DEPENDING ON ORDER-COUNT,
05 ORDER-DATE PIC 8(6),
05 FILLER PIC X<58),

SD SORT-FILE
RECORD VARYING FROM 106 TO 486 CHARACTERS
DEPENDING ON SORT-LENGTH+

01 SORT-REC,

FD

03 SORT-ANNUAL-INCOME
03 SORT-REST-OF-RECORD

OUT-FILE

PIC 9(6),
PIC XC480),

RECORD VARYING FROM 106 TO 496 CHARACTERS
DEPENDING ON OUT-LENGTH+

01 OUT-REC
WORKING-STORAGE SECTION,
01 IN-LENGTH
01 SORT-LENGTH
01 OUT-LENGTH
PROCEDURE DIVISION.
000-START SECTION,
005-SORT-HERE.

SORT SORT-FILE

PIC XC486l,

PIC 8(3) COMP,
PIC 8(3) COMP,
PIC 8(3) COMP,

ON DESCENDING SORT-ANNUAL-INCOME
INPUT PROCEDURE 010-GET-INPUT

THRU 070-00NE-INPUT
OUTPUT PROCEDURE 100-WRITE-OUTPUT,

DISPLAY "END OF PROGRAM SORTE",
STOP RUN,

010-GET-INPUT SECTION,
020-0PEN-INPUT.

OPEN INPUT INFILE.
030-READ-INPUT.

READ INFILE AT END
CLOSE INFILE
GO TO 070-DONE-INPUT,

040-ADD-INCOME,
ADD INCOME-FIRST-QUARTER

INCOME-SECOND-QUARTER
INCOME-THIRD-QUARTER
INCOME-FOURTH-QUARTER
GIVING SORT-ANNUAL-INCOME,

(continued on next page)

Sorting Records and Merging Files 10-13 IV

Example 10-12: SORTE - Sorting a File and Expanding Its Output Records (Cont.)

050-CREATE-SORT-REC,
ADD 6 IN-LENGTH GIVING SORT-LENGTH.
MOVE INREC TO SORT-REST-OF-RECORD.
RELEASE SORT-REC,
GO TO 030-READ-INPUT,

070-DONE-INPUT SECTION,
080-EXIT,

EXIT,
100-WRITE-OUTPUT SECTION+
110-0PEN+

OPEN OUTPUT OUT-FILE,
120-WRITE,

RETURN SORT-FILE AT END
CLOSE OUT-FILE
GO TO 130-DONE,

MOVE SORT-LENGTH TO OUT-LENGTH.
WRITE OUT-REC,
GO TO 120-WRITE.

130-DONE.
EXIT,

Example 10-13: MERGE01 - Merging Three Files

IDENTIFICATION DIVISION,
PROGRAM-ID, MERGE01.
**
* This Pro•ram MERGEs three identically se~uenced *
* re•ional sales files into one total sales file+ *
* The Pro•ram adds sales amounts and writes one *
* record for each Product-code+ *
**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION,
SOURCE-COMPUTER, PDP-11.
OBJECT-COMPUTER, PDP-11.
INPUT-OUTPUT SECTION,
FILE-CONTROL.

SELECT REGION1-SALES
SELECT REGION2-SALES
SELECT REGION3-SALES
SELECT MERGE-FILE
SELECT TOTAL-SALES

DATA Dit.JISION,
FI LE SECT ION,
FD REGION1-SALES

ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

LABEL RECORDS ARE STANDARD+

TO "REGlSLS",
TO
TO
TO
TO

"REG2SLS",
"REG3SLS",
"MRGFILE",
"TDTLSLS",

01 REGION1-RECORD PIC XC100l.
FD REGIDN2-SALES

LABEL RECORDS ARE STANDARD.
01 REGION2-RECORD PIC XC100),
FD REGION3-SALES

LABEL RECORDS ARE STANDARD+
01 REGION3-RECORD PIC XC100),
SD MERGE-FILE.
01 MERGE-REC,

03 M-REGION-CODE
03 M-PRODUCT-CODE
03 M-SALES-AMT
03 FILLER

FD TOTAL-SALES

PIC
PIC
PIC
PIC

LABEL RECORDS ARE STANDARD.

xx.
x (10) •
S9C7lV99,
){(79) •

IV 10-14 Sorting Records and Merging Files

(continued on next page)

Example 10-13: MERGE01 - Merging Three Files (Cont.)

01 TOTAL-RECORD
WORKING-STORAGE SECTION,
01 INITIAL-READ
01 THE-COUNTERS,

03 PRODUCT-AMT
03 REGIONl-AMT
03 REGION2-AMT
03 REGION3-AMT
03 TOTAL-AMT

01 SAVE-MERGE-REC+
03 S-REGION-CODE
03 S-PRODUCT-CODE
03 S-SALES-AMT
03 FILLER

PROCEDURE DIVISION,
000-START SECTION+
010-MERGE-FILES.

OPEN OUTPUT TOTAL-SALES.

PICX<lOOl,

PIC X VALUE uyu t

PIC
PIC
PIC
PIC
PIC

S9C7lV99,
S9<9lV99+
S9<9lV99+
S9C9lV99+
S9(11lV99.

PIC XX+
PIC XC10l.
PIC S9<7lV99+
PIC X<79l,

MERGE MERGE-FILE ON ASCENDING KEY M-PRODUCT-CODE
USING REGIONl-SALES REGION2-SALES REGION3-SALES
OUTPUT PROCEDURE IS 020-BUILD-TOTAL-SALES

THRU 100-DONE-TOTAL-SALES,
DISPLAY "TOTAL SALES FOR REGION 1 " REGION1-AMT,
DISPLAY "TOTAL SALES FOR REGION 2 " REGION2-AMT,
DISPLAY "TOTAL SALES FOR REGION 3 " REGION3-AMT+
DISPLAY "TOTAL ALL SALES " TOTAL-AMT+
CLOSE TOTAL-SALES+
DISPLAY "END OF PROGRAM MERGE01",
STOP RUN,

020-BUILD-TOTAL-SALES SECTION+
030-GET-MERGE-RECDRDS,

RETURN MERGE-FILE AT END
MOVE PRODUCT-AMT TO S-SALES-AMT
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC
GO TO 100-DONE-TOTAL-SALES,

IF INITIAL-READ = "Y"
MOVE "N" TO INITIAL-READ
MOVE MERGE-REC TO SAVE-MERGE-REC
PERFORM 050-TALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS+

040-COMPARE-PRODUCT-CODE+
IF M-PRODUCT-CODE = S-PRODUCT-CODE

PERFORM 050-TALLY-AMOUNTS
GO TO 030-GET-MERGE-RECORDS.

MOVE PRODUCT-AMT TO S-SALES-AMT,
MOVE ZEROES TO PRODUCT-AMT,
WRITE TOTAL-RECORD FROM SAVE-MERGE-REC+
MOVE MERGE-REC TO SAVE-MERGE-REC.
GO TO 040-COMPARE-PRODUCT-CODE,

050-TALLY-AMOUNTS,
ADD M-SALES-AMT TO PRODUCT-AMT TOTAL-AMT+
IF M-REGION-CODE = "01"

ADD M-SALES-AMT TO REGION1-AMT,
IF M-REGION-CDDE = "02"

ADD M-SALES-AMT TO REGION2-AMT+
IF M-REGION-CODE = "03"

ADD M-SALES-AMT TO REGION3-AMT+
100-DONE-TOTAL-SALES SECTION.
120-DONE+

EXIT+

Sorting Records and Merging Files 10-15 IV

Appendix A
Designing Your Form with Escape Sequences

Before you can use escape sequences in DISPLAY statements to control output to a screen, you must
define data items in the Working-Storage Section to represent the following:

• The ESCAPE (or AL TMODE) character

• The current line number

• The current column number

This section explains how to define line and column numbers on VT100, VT52, and Professional
terminals. The definition of the ESCAPE character is the same for each terminal.

A.1 Defining the ESCAPE

To store an ESCAPE character in a data item, you must:

1. Define an item with COMP usage

2. Set its value to 155 for RSTS/E and 27 for RSX-11 M/M-PLUS/Professional (the ASCII value
for the ESCAPE key)

3. Redefine the least-significant byte as alphanumeric

The following code shows you how to define the ESCAPE character.

WORKING-STORAGE SECTION.

* * For RSX:

*
*
*
*

01 ESCAPE-VAL PIC 999 COMP VALUE 27.

* For RSTS/E:
01 ESCAPE-VAL PIC 999 COMP VALUE 155,
01 ESCAPE-RED REDEFINES ESCAPE-VAL.

03 ESCAPE PIC X+
03 FILLER PIC Xi

A-1 IV

The compiler allocates two bytes of storage for ESCAPE-VAL because it is a COMP item. The value
155 is stored in the least significant byte. The data item ESCAPE redefines that byte as alphanumeric.
You can now use the data item ESCAPE in DISPLAY statements.

A.2 Defining Items for Line and Column Numbers

If your program will be used on a VT100 terminal, define two items with DISPLAY usage to contain
the current values for line number and column number. Since (line 1, column 1) represents the upper
left position on the screen, initializing the value of each item to 1 prepares the program to begin
displaying in the upper left corner. For example:

01 LINE-NO PIC 88 VALUE 1.
01 COL-NO PIC 88 VALUE 1.

If you are programming on a VT52 terminal, the values for cursor position must be represented by
one-byte binary items and displayed as alphanumeric items, as is true of the ESCAPE. Therefore, each
of the two DISPLAY items must redefine the least significant byte of a COMP item. line and column
numbers begin with 32 on a VT52, so (line 32, column 32) represents the upper left position on the
screen. The following lines define the items you will need on a VT52 terminal, and initialize their
values to 32:

01 LINE-VAL PIC 888 COMP VALUE 32,
01 LINE-RED REDEFINES LINE-VAL+

03 LINE-NO PIC X.
03 FILLER PIC X.

01 COL-VAL PIC 888 COMP VALUE 32.
01 COL-RED REDEFINES COL-VAL+

03 COL-ND PIC X,
03 FILLER PIC X,

LINE-NO and COL-NO name the items you will use in cursor positioning sequences. To change
cursor position, you must move the new values to LINE-VAL and COL-VAL, rather than moving them
directly to LINE-NO and COL-NO.

A.3 Sending Control Character Sequences to the Terminal

The sequence of characters you must use for each screen control operation depends on the terminal
you are using. This section shows you the proper sequences to control the most frequently used
operations on VT100, VT52, and Professional terminals. For information on all the screen operations
available, consult the documentation for your terminal.

If you are developing a program for use on both VT100 and VT52 terminals, it is inconvenient to code
two different sequences for each DISPLAY statement. You can avoid this extra effort by forcing a
VT100 into "VT52-Compatible Mode" at the beginning of the program. This section explains the
sequence that puts a VT100 into that mode once it is displayed. (VT52 terminals do not have a
comparable "VT100-Compatible Mode.")

IV A-2

Note

Sending VT100 escape sequences to a VT52 terminal can lock the terminal. The
terminal can be reset by turning the unit off and on again.

Designing Your Form with Escape Sequences

A.3.1 Sending to VT100 Terminals

The following sequence controls cursor positioning:

escape "[" line-number ";" column-number "f"

Escape, line-number, and column-number must be data names for the items discussed in Sections A.1
and A.2.

Substituting an "H" for the "f" in this sequence gives the same result.

This example shows how to use the sequence in DISPLAY statements:

WORKING-STORAGE SECTION+

* * For RSX:

*
*
*
*

01 ESCAPE-VAL PIC 888 COMP VALUE 27+

* For RSTS/E:
01 ESCAPE-VAL PIC 888 COMP VALUE 155+
01 ESCAPE-RED REDEFINES ESCAPE-VAL+

03 ESCAPE PIC X+
03 FILLER PIC X+

01 LINE-NO PIC 88 VALUE 1+
01 COL-NO PIC 88 VALUE 1+

DISPLAY ESCAPE "[" LINE-NO "l" COL-NO "f" WITH NO ADVANCING,
DISPLAY MES-SAGE1+
MOVE 4 TO LINE-NO,
MOVE 20 TO COL-NO,
DISPLAY ESCAPE"[" LINE-NO "l" COL-NO "f" MES-SAGE2+

The first two statements display the contents of MES-SAGE1 in the top left corner of the screen. Then
the program changes the values of the cursor coordinates, and MES-SAGE2 begins in the 20th column
of the 4th line.

Note the WITH NO ADVANCING phrase in the first statement. If you did not specify this phrase,
COBOL-81 would position the cursor at the beginning of the second line after executing the state­
ment, thereby defeating the purpose of positioning the cursor.

The example shows another way of preventing the cursor from being repositioned: specifying the
prompt in the same statement that positions the cursor. MES-SAGE2 is displayed in this way.

The following sequences erase the screen:

escape "U"

escape "[1J"

escape "[2J"

erases from the cursor to the end of the screen

erases from the beginning of the screen to the cursor

erases the entire screen

The position of the cursor does not change when you display these sequences unless you do not
specify WITH NO ADVANCING.

Designing Your Form with Escape Sequences A-3 IV

The next example erases the entire screen and positions the cursor at the top left corner in preparation
for displaying output:

WORKING-STORAGE SECTION,

* * For RSX:

*
*
*

01 ESCAPE PIC 888 COMP VALUE 27.

* * For RSTS/E:
01 ESCAPE PIC 898 COMP VALUE 155,
01 ESC-R REDEFINES ESCAPE,

03 E PIC X,
03 FILLER PIC X,

01 X PIC 88 VALUE 1,
01 Y PIC 98 VALUE 1,

PROCEDURE DIVISION.
AOO-BEGIN,

DISPLAY 1E II [2J"1
I

Erases
screen

1E 11 [11 X "!" Y "f~ WITH NO ADVANCING,
I

Moves cursor
to top left

A.3.2 Sending to VT52 Terminals

The following sequence controls cursor positioning:

escape "Y" line-number column-number

Escape, line-number, and column-number must be data-names for the items discussed in Sections
A.1 and A.2.

This example shows how to use the sequence in DISPLAY statements:

WORKING-STORAGE SECTION,

* * For RSX:

*
*
*
*

01 ESCAPE-VAL PIC 888 COMP VALUE 27,

* For RSTS/E:
01 ESCAPE-VAL PIC 889 COMP VALUE 155,
01 ESCAPE-RED REDEFINES ESCAPE-VAL,

03 ESCAPE PIC X,
03 FILLER PIC X,

01 LINE-VAL PIC 999 COMP VALUE 32,

IV A-4 Designing Your Form with Escape Sequences

(continued on next page)

01 LINE-RED REDEFINES LINE-VAL+
03 LINE-NO PIC X.
03 FILLER PIC X.

01 COL-VAL PIC 888 COMP VALUE 32.
01 COL-RED REDEFINES COL-VAL,

03 COL-NO PIC X,
03 FILLER PIC X.

PROCEDURE DIVISION.
ADO-BEGIN.

DISPLAY ESCAPE "Y" LINE-NO COL-NO WITH NO ADVANCING.
DISPLAY MES-SAGE1+
MOVE 38 TO LINE-VAL+
MOVE 52 TO COL-VAL.
DISPLAY ESCAPE "Y" LINE-NO COL-NO MES-SAGE2+

This example produces the same output as its corresponding VT100 example. The first two statements
display the contents of MES-SAGE1 in the top left corner of the screen. Then the program changes the
values of the cursor coordinates. Note that the new values for cursor position are moved to LIN-VAL
and COL-VAL, rather than LIN-NO and COL-NO. The current line position becomes (36 - 32) = 4,
and the current c;olumn position becomes (52 - 32) = 20. Therefore, MES-SAGE2 begins in the 20th
column of the 4th line.

Note the WITH NO ADVANCING phrase in the first statement. If you did not specify this phrase,
COBOL-81 would position the cursor at the beginning of the second line after executing the state­
ment, thereby defeating th~ purpose of positioning the cursor.

The example shows another way of preventing the cursor from being repositioned: specifying the
prompt in the same statement that positions the cursor. MES-SAGE2 is displayed in this way.

Use the following sequence to position the cursor at the top left of the screen without having to
specify a line-number or column-number:

escape "H"

These two examples have the same effect:

(1)

MOVE 32 TO LINE-VAL COL-VAL+
DISPLAY ESCAPE "Y" LINE-NO COL-NO+

Use the following sequence to erase the screen:

escape "J"

(2)

DISPLAY ESCAPE "H",

This sequence erases from the current cursor position to the end of the screen. Therefore, if you want
to erase the entire screen, you must first move the cursor to the top left position, and then display this
sequence. Here is an example:

Designing Your Form with Escape Sequences A-5 IV

WORKING-STORAGE SECTION.

* * For RSX:

*
*
*
*

01 ESCAPE PIC 888 COMP VALUE 27.

* For RSTS/E:
01 ESCAPE PIC 888 COMP VALUE 155.
01 ESC-R REDEFINES ESCAPE.

03 E PIC X,
03 FILLER PIC X.

01 LINE-NO PIC 888 COMP VALUE 32.
01 LINE-R REDEFINES LINE-NO.

03 X PIC X,
03 FILLER PIC X.

01 COL-ND PIC 888 COMP VALUE 32.
01 COL-R REDEFINES COL-NO.

03 Y PIC X,
03 FILLER PIC X.

MOVE 47 TO LINE-NO,
MOVE 72 TO COL-NO,
DISPLAY E "Y" X Y MES-SAGE,
DISPLAY 1E "H"1 1E "J"1•

I I
Moves cursor

to top left
Erases
screen

A.3.3 Switching from VT100 Mode to VT52 Mode

VT100 terminals can operate in "VT52-Compatible Mode." To develop a program that will run on
both VT100 and VT52 terminals, use the VT52 control sequences. At the beginning of the Procedure
Division, prompt the user to identify the terminal type. If the terminal is a VT100, use the following
sequence to put it in VT52 mode:

escape "[?21"

At the end of the Procedure Division, use this sequence to return the terminal to VT100 mode:

escape "<"

This example shows how to use both sequences in DISPLAY statements:

PROCEDURE DIVISION,
VT52-MOOE,

DISPLAY ESCAPE "[?21",
PARA1+

DISPLAY ESCAPE "Y" LINE-NO COL-NO ESC "J",

IV A-6 Designing Your Form with Escape Sequences

(continued on next page)

PARAZ.

VT100-MODE.
DISPLAY ESCAPE "<",

FINI+
STOP RUN,

Section A.4.2. contains a VT52 programming example that optionally forces a VT100 into (and out
of) VT52 Compatible Mode.

A.4 Examples

This section includes two VT100 examples and one VT52 example. The first two examples show
cursor positioning. The last example and its screen display in Figure A-1 shows you how to display
double-height and double-width text on your screen.

A.4.1 VT100 Example

IDENTIFICATION DIVISION,
PROGRAM-ID, VT100,
ENVIRONMENT DIVISION,
DATA DIVISION,
WORKING-STORAGE SECTION,

*
*
*
*
*
*
* 01
01

For RSTS/E:
01 ESC-VAL

For RSX:
01 ESC-VAL

ESC-VAL
ESC-RDF
03 ESC

REDEFINES ESC-VAL,

03 FILLER
LIN
COL
ANS
CLEAN-SCREEN
HOME

PIC 8(4) COMP VALUE 155+

PIC 8(4) COMP VALUE 27,

PIC 8(4) COMP VALUE 27+

PIC X.
PIC
PIC
PIC
PIC
PIC
PIC
PIC

x.
88 VALUE 1,
88 VALUE 1+
x.
XC4l,
X (G l,
8C4l COMP VALUE 48,

01
01
01
01
01
01
01

FIRST-LINE
FLINE REDEFINES FIRST-LINE+
03 x
03 FILLER

01 FIRST-COL
01 FCOL REDEFINES FIRST-COL+

03 y
03 FILLER

PROCEDURE DIVISION,
SET-UP.

PIC X.
PIC
PIC

x.
8(4) COMP VALUE 48.

PIC X.
PIC X,

STRING ESC "[ZJ" DELIMITED SIZE INTO CLEAN-SCREEN,
STRING ESC "[" X •;• Y "f" DELIMITED SIZE INTO HOME,

(continued on next page)

Designing Your Form with Escape Sequences A-7 IV

NUTSHELL+
DISPLAY CLEAN-SCREEN HOME WITH NO ADVANCING,
PERFORM MESSAGE1,
MOt,JE 10 TD LIN+
MOt.JE 2S TD COL+
DISPLAY ESC "["LIN n;n COL "f" WITH ND ADVANCING+
PERFORM MESSAGE2+
ADD 1 TD LIN+
DISPLAY ESC "["LIN n;n COL "f" WITH NO ADVANCING+
PERFORM MESSAGE3+
DISPLAY ESC "[1J" ESC "["LIN "i" COL "f" WITH NO ADVANCING.
PERFORM MESSAGE4.
DISPLAY HOME WITH NO ADVANCING+
PERFORM MESSAGES.
DISPLAY CLEAN-SCREEN WITH NO ADVANCING+
DISPLAY ESC "[7m" WITH NO ADVANCING+
PERFORM MESSAGES.
DISPLAY CLEAN-SCREEN HOME WITH NO ADVANCING.
DISPLAY ESC "[Om" WITH NO ADVANCING+

FINI,
STOP RUN,

MESSAGE 1 ,
DISPLAY "Screen cleared courtesy of the sequence"+
DISPLAY "in the data iten1 CLEAN-SCREEN+"•
DISPLAY "ToP-left Positionin9 courtesy of the sequence in HOME,",
DISPLAY "Press RETURN for more , • ," WITH ND ADVANCING+
ACCEPT ANS,

MESSAGE2,
DISPLAY "This messa9e be9ins in column 2S of line 10,",

MESSAGE3,
DISPLAY "To erase the screent Press RETURN," WITH NO ADVANCING,
ACCEPT ANS,

MESSAGE4,
DISPLAY "Noi.it Press RETURN to !:let the c1.1rsor to toP-left+"

WITH NO ADVANCING.
ACCEPT ANS,

MESSAGES,
DISPLAY "Notice that n1ovin9 the cursor to toP-left",
DISPLAY "doesn't clear the screen+"•
DISPLAY "Noi...1 Press RETURN to clear." WITH NO ADt.JANCING.
ACCEPT ANS,

MESSAGES+
DISPLAY "Notice that clearin9 the screen",
DISPLAY "doesn't affect cursor Position,"+
DISPLAY "Nowt Press RETURN to end+" WITH NO ADVANCING,
ACCEPT ANS,

A.4.2 VT52 Example

IDENTIFICATION DIVISION,
PROGRAM-ID, VTS2+
ENVIRONMENT DIVISION+
DATA DIVISION+
WORKING-STORAGE SECTION,

* * For RSTS/E:
* 01 ESC-VAL PIC 9(4) COMP VALUE 1SS.

*
* 01
01

For RSX:
ESC-VAL
ESC-RDF REDEFINES
03 ESC
03 FILLER

PIC 9141 COMP ~ALLIE
ESC-VAL+

PIC X+
PIC X,

IV A-8 Designing Your Form with Escape Sequences

27+

(continued on next page)

01 LIN-VAL PIC 9 (ll) COMP VALUE 32,
01 LIN-RDF REDEFINES LIN-VAL,

03 LIN PIC x.
03 FILLER PIC x.

01 COL-VAL PIC 9(4) COMP VALUE 32.
01 COL-ROF REDEFINES COL-VAL,

03 COL PIC x.
03 FILLER PIC x.

01 TERM-ANS PIC X VALUE SPACE,
01 ANS PIC x.
01 HOME PIC xx.
01 CLEAR PIC xx.
PROCEDURE DIVISION,
PROPER-MODE,

DISPLAY "Are You on a VT52 terminal?",
DISPLAY "(TYPe 'Y' or 'N'I" WITH NO ADVANCING.
ACCEPT TERM-ANS,
IF <TERM-ANS = "N"I OR <TERM-ANS = "n"I

THEN DISPLAY ESC "[?21",
SET-UP,

STRING ESC "H" DELIMITED SIZE INTO HOME,
STRING ESC "J" DELIMITED SIZE INTO CLEAR,

NUTSHELL.
DISPLAY HOME CLEAR WITH NO ADVANCING,
PERFORM MESSAGE!,
MOVE 42 TO LIN-VAL,
MOVE 57 TO COL-VAL,
PERFORM MESSAGE2,
PERFORM ERASE-MESSAGE2.
MOVE 47 TO LIN-VAL,
PERFORM MESSAGE3.
DISPLAY ESC "H" WITH NO ADVANCING,
PERFORM MESSAGE4,
DISPLAY HOME CLEAR,

FINI,
STOP RUN,

MESSAGE!.
DISPLAY "When YOU Press RETURNt the",
DISPLAY "next messa~e will begin in",
DISPLAY "col. 25 of line 10t using",
DISPLAY "the sequence:",
DISPLAY" ESC ""Y"" Cline) (col,)" WITH NO ADVANCING,
ACCEPT ANS,

MESSAGE2,
DISPLAY ESC "Y" LIN COL WITH NO ADVANCING,
DISPLAY "Notice that the source Program had",
PERFORM NEXT-LINE,
DISPLAY "to move the new values for Posi-",
PERFORM NEXT-LINE.
DISPLAY "tion to LIN-VAL and COL-VALt"•
PERFORM NEXT-LINE,
DISPLAY "rather than LIN and COL,",
PERFORM NEXT-LINE,
DISPLAY" To e~ase this message, Press",
PERFORM NEXT-LINE,
DISPLAY "RETURN," WITH NO ADVANCING,
ACCEPT ANS,

MESSAGE3,
DISPLAY ESC "Y" LIN COL WITH NO ADVANCING.
DISPLAY "That erasure was accomplished by repositioning",
DISPLAY "the cursor to <10t1) t and DISPLAYing the sequence:",
DISPLAY " ESC ""J"" "
DISPLAY "Nowt Press RETURN and the sequence",
DISPLAY " ESC ""H""
DISPLAY "will move the cursor to toP-left," WITH NO ADVANCING,
ACCEPT ANS.

(continued on next page)

Designing Your Form with Escape Sequences A-9 IV

MESSAGE4.
DISPLAY "Nextt the Pro9raM will erase
DISPLAY "the screen by DISPLAYin9 the
DISPLAY "contents of the data iteMs
DISPLAY "HOME and CLEAR. HOME contains
DISPLAY " ESC ""H""
DISPLAY "and CLEAR contains
DISPLAY II ESC ""J""
DISPLAY "Press RETURN when ready," WITH NO ADVANCING,
ACCEPT ANS.

NEXT-LINE.
ADD 1 TO LIN-VAL,
DISPLAY ESC "Y" LIN COL WITH NO ADt,JANCING,

ERASE-MESSAGE2.
MOVE 42 TD LIN-VAL.
MOVE 32 TD COL-VAL.
DISPLAY ESC "Y" LIN COL WITH NO ADVANCING,
DISPLAY ESC "J",

A.4.3 Example of Double-Height and Double-Width Lines on a VT100

IDENTIFICATION DIVISION.

PROGRAM- ID,
ADVANCED-VIDEO-DEMO,

ENVIRONMENT DIVISION.

DATA Dil.JISION,

FILE SECTION,

WORKING-STORAGE SECTION.
01 DDUBLE-HEIGTH-LINE.

02 TOP-LINE,
05 ESCAPE-CODE PIC 9141 COMP VALUE 27,
05 ESCAPE REDEFINES ESCAPE-CODE,

10 ESCAPE-IDENT PIC X.
10 FILLER PIC X,

05 TOP-LINE-CODE PIC){){ l.JALUE ""*3",
05 MESSAGE-TEXT PIC)-((151 l.JALUE 11 :d:i:9:i:t:a:1: 11 ,

02 botto1n-line.
05 ESCAPE-CODE PIC 914) COMP VALUE 27.
05 ESCAPE REDEFINES ESCAPE-CODE,

10 ESCAPE-IDENT PIC X.
10 FILLER PIC X,

05 BOTTOM-LINE-CODE PIC XX VALUE ""*4",
05 MESSAGE-TEi<T PIC){(151 l.JALUE ":d:i:9:i:t:a:1:•,

01 DOUBLE-WIDTH-LINE.
05 ESCAPE-CODE PIC 9141 COMP VALUE 27,
05 ESCAPE REDEFINES ESCAPE-CODE,

10 ESCAPE-IDENT PIC X,
10 FILLER PIC X.

05 DOUBLE-WIDTH-LINE-CODE PIC Xi< t,JALUE ""*6",
05 MESSAGE-TEXT PIC XIBl VALUE "COBOL-81",

PROCEDURE DIVISION,

IV A-10 Designing Your Form with Escape Sequences

(continued on next page)

PROCESS-LOGO,
DISPLAY " " LINE 1

COLUMN 1
ERASE TO END OF SCREEN,

DISPLAY TOP-LINE OF DOUBLE-HEIGTH-LINE
LINE 8
COLUMN 13
REVERSED
BOLD+

DISPLAY BOTTOM-LINE OF DOUBLE-HEIGTH-LINE
LINE 9
COLUMN 13
REVERSED
BOLD+

DISPLAY DOUBLE-WIDTH-LINE
LINE 14
COLUMN 17
BOLD+

Figure A-1: Double-Height and Double-Width Lines on a VT100

1
2
3
4
5
6
7
B
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2 3 4 5 6 7 B
1234567B901234567B901234567B901234567B901234567B901234567B901234567B901234567B90

Designing Your Form with Escape Sequences

C81 ART-20595-30

A-11 IV

\

)

Appendix B
Logical Unit Number (LUN) Assignments

The COBOL-81 Object-Time System (OTS) assigns no more than 14 logical units (or channels) per
task image. The logical unit numbers (LUNs) for a given task range from 1 to 14. The first logical unit
(LUN 1) is always assigned to the terminal from which the program is executed. The OTS assigns the
remaining. LUNs as needed based on the number of files you open in your program and the
COBOL-81 features you use.

Table B-1 shows the maximum number of files that your task can open simultaneously based on the
COBOL-81 features you include in the task image. As you can see from Table B-1, if your task
includes both ACCEPT FROM device-name and DIGITAL extensions to the ACCEPT or DISPLAY
statements, your task can simultaneously open only 12 files. If your task includes one (or more than
one) SORT or MERGE statement, the OTS assigns three logical units to the sort or merge operation(s),
leaving you a maximum of only 10 files to be open simultaneously. If you include the COBOL-81
Symbolic Debugger, the OTS assigns four logical units to the Debugger, leaving you a maximum of
only 9 files to be open simultaneously.

By default, the COBOL-81 OTS dynamically assigns one logical unit for each file you open during
task execution. If you receive the following BLDODL utility error message, your task attempted to use
more than the 14 logical unit assignments:

? Maximum number of LUNs exceeded.
? Your SKL file(s) require n LUNs for file I /0.
? That value replaced by system maximum.

B-1 IV

You can ignore this error message, however, if your task does not violate the LUN assignments shown
in Table B-1. Consider, for example, a task that defines 25 files, uses the Symbolic Debugger, and
uses ACCEPT I DISPLAY extensions. As long as this task does not simultaneously open more than 9 of
its 25 files there will be no problem. Here is how the OTS makes its LUN assignments for this task:

1 - ACCEPT I DISPLAY extensions (they share LUN 1 with your terminal)
9 - maximum files that can be open at the same time in this task
4 - Symbolic Debugger

14 Total LUNs

If your task opens more files than are allowed to be open at the same time you must either:

1. Reduce the number of files your task opens at the same time - to be compatible with the
requirements in Table B-1

2. Eliminate one or more COBOL-81 features shown in Table B-1

RSX-11 MI M-PLUS systems support more than 14 LU Ns. For more information refer to the RSX-11 M
Task Builder Reference Manual.

Table 8-1: Logical Unit Assignments for COBOL-81 Features and Files Open at the Same Time

COBOL-81 Features Included in Task Image

Maximum Number
of files Open at ACCEPT I DISPLAY ACCEPT from SORT/MERGE COBOL-81
the Same Time Extensions device-name Statement(s) Symbolic Debugger

13 1

13 1

12 1 1

10 3

10 1 3

10 1 3

9 4

9 1 1 3

9 1 4

9 1 4

6 3 4

5 1 1 3 4

IV B-2 Logical Unit Number (LUN) Assignments

Master Index

This Master Index contains a complete list of the references to subjects in the COBOL-81 Language
Reference Manual and the four parts of the COBOL-81 User's Guide.

The index uses the following conventions:

Example

1-8t
4-6f

Explanation

A page number followed by at indicates a table.
A page number followed by an f indicates a figure.

Entries in the Master Index are also preceded by an acronym indicating which manual, and part to a
manual, the page number refers to:

Acronym

LRM
RSTS/E UGI
RSX UGI
UG II
UG Ill
UGIV

Title

COBOL-81 Language Reference Manual
COBOL-81 User's Guide, Part I for RSTS/E
COBOL-81 User's Guide, Part I for RSX-11 M/M-PLUS
COBOL-81 User's Guide, Part II
COBOL-81 User's Guide, Part Ill
COBOL-81 User's Guide, Part IV

Where a subject references more than one manual and/or parts, references to the COBOL-81 Language
Reference Manual appear first, followed in order by the COBOL-81 User's Guide Part I, then Part 11, Part
Ill, and Part IV.

A

Abbreviated combined relation conditions,
LRM 5-20 to 5-21

Abbreviating DCL commands, RSTS!E UC I
1-2, RSX UC 11-2

ACCEPT statement, LRM 5-34 to 5-45
reference to devices, LRM 3-6

Access mode
changing, UC IV 1-12
default, UC IV 1-12
dynamic, UC IV 1-12
random, UC IV 1-12
sequential, UC IV 1-12

ACCESS MODE clause, LRM 3-13 to 3-14
Access stream, UC IV 6-2

initializing, UC IV 6-2
terminating, UC IV 6-2
types, UC IV 6-5

Accessing a table with SEARCH, UC Ill
3-17f

Accounts, RSTSIE UC I 1-3, RSX UC I
1-3

Active Ii nactive arguments
inspecting data, UC Ill 2-35

ADD statement, LRM 5-46 to 5-47
Alignment, effect of SYNC clause, LRM

4-64 to 4-65
ALL literal figurative constant, LRM 1-8
ALLOWING clause, UC IV 6-2
ALPHABET clause, LRM 3-6
Alphabet-name, defined, LRM 1-5
ALPHABETIC test, LRM 5-16
ALTERNATE RECORD KEY clause, LRM

3-15
ANSI for.mat, LRM 1-19 to 1-22, RSTS!E

UC I 2-2, RSX UC I 2-2, UC II 5-3
I ANSLFORMAT compiler qualifier, RSTS!E

UC I 2-2, 3-2t, 3-3, RSX UC I 2-2,
3-2t, 3-3

APPEND, DCL command, RSTS!E UC I
1-6t, RSX UC I 1-6t

APPLY clause, UC IV 7-1
general rules for, LRM 3-22 to 3-23
syntax rules for, LRM 3-22

Area A
in ANSI format, LRM 1-20

lndex-1

Area A (Cont.)
in terminal format, LRM 1-17

Area B
in ANSI format, LRM 1-20
in terminal format, LRM 1-17

Argument address list
function, UC II 6-16
general format, UC II 6-15f
using, UC II 6-15

Arithmetic expressions, LRM 5-12 to 5-14
composition of, LRM 5-12
data items in, LRM 5-12
evaluation of, LRM 5-12
literals in, LRM 5-12
operators in, LRM 5-12
processing, UC Ill 1-20
using parentheses in, LRM 5-12
using signs in, LRM 5-12

Arithmetic operations
multiple receiving fields, LRM 5-22
restrictions for operands, LRM 5-22
rounding off results in, LRM 5-22, UC

1111-16
storing partial results, LRM 5-22

Arithmetic operators, LRM 5-12
Arithmetic statements, UC Ill 1-15 to

1-20
advantages over COMPUTE, UC Ill 4-4
binary truncation of, UC Ill 1-15
common errors in, UC Ill 1-19
defined, LRM 5-22
instead of COMPUTE, UC Ill 4-4
intermediate results, UC Ill 1-15
with GIVING phrase, UC Ill 1-18
with SIZE ERROR phrase, UC Ill 1-17

ASCENDING phrase, UC IV 10-1
ASCII character set, LRM B-1 to .B-2

octal and decimal equivalents, LRM B-1
to B-2

ASSIGN clause, LRM 3-16
ASSIGN, DCL command, RSTS!E UC I 1-5,

RSX UC 11-5
Asterisk delimiter

to unstring data, UC Ill 2-20t
Asterisk indicator character (*)

See also Comment character(*)
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

At end condition, LRM 5-28
planning for, UC IV 5-2

AUTHOR paragraph, LRM 2-3
Auxiliary keypad keys, UC IV 9-17

lndex-2

B

Binary search
of a table, LRM 5-119
requirements for, UC Ill 3-15
results of using, UC Ill 3-16
with AT END statement, UC Ill 3-16
with keys, UC Ill 3-15
with multiple keys, UC Ill 3-16, 3-20f

Binary truncation, UC Ill 1-15
Blank lines

in ANSI format, LRM 1-21
in terminal format, LRM 1-17

~LANK WHEN ZERO clause, LRM 4-25
/BLD compiler switch, RSTS!E UC I D-3t,

D-4, RSX UC I D-3t, D-4
BLDODL utility

command line format, RSTS!E UC I D-8,
RSX UC I D-8

BLDODL utility switches
/CLU:, RSTS!E UC I D-8, RSX UC I

D-8
/DEB, RSTS!E UC I D-8, RSX UC I D-8
/DIA, RSTS!E UC I D-10, RSX UC I

D-10
improving program performance with,

UC II 5-2
/10:, RSTS!E UC I D-9, RSX UC I D-9
/IO:DECOV, RSTSIE UC I D-9, RSX UC

I D-9
/IO:MEMRES, RSTS/E UC I D-9, RSX

UC I D-9
/IO:NONOV, RSTS/E UC I D-9, RSX

UC I D-9, UC II 4-5
/IO:USEROV, RSTS/E UC I D-9, RSX

UC I D-9
/LRG, RSTS/E UC I D-9, RSX UC J D-9,

UC II 4-5
/MAP, RSTS/E UC J D-8, RSX UC I D-8
/MER, RSTS/E UC I D-9, RSX UC I D-9
/OBJ, RSTS/E UC I D-9, RSX UC I D-9
/RES, RSTS/E UC I D-9, RSX UC I D-9
/ULIB, RSTS!E UC I D-8, RSX UC J D-8

Block
definition of, UC JV 7-8

logical, UC IV 7-8
physical, UC IV 7-8

related to a record, LRM 4-5
BLOCK CONTAINS clause, LRM 4-26 to

4-27
Block size limit, magnetic tape, UC JV

7-10
Bottom margin, UC IV 8-16

/-BOU compiler switch, RSTS!E UC I
D-3t, D-5, RSX UC I D-3t, D-5

Boundary equivalence, LRM 4-10 to 4-14
Braces, use in general formats, LRM 1-13
Brackets, use in general formats, LRM

1-13
Bucket, UC IV 7-8

related to physical record, LRM 4-5
size, UC IV 7-8

Buffer areas, sharing, UC IV 7-7

c

C81, CCL/ MCR command, RSTS/E UC I
D-1 I RSX UC I D-1

CALL statement, LRM 5-48 to 5-50
effect on program logic, UC II 6-3
nesting, UC II 6-4
transferring program control, UC II 6-3

Cal led programs
defined, UC II 6-1
exiting from, UC II 6-3
Linkage Section of, LRM 4-17, UC II

6-8
Procedure Division header of, LRM 4-17

Calling programs
accessing data items in, UC II 6-7
COBOL-81 from MACRO, UC// 6-14
MACRO from COBOL-81, UC II 6-13

CANCEL BREAKPOINT, Debugger
command, UC II 3-2t, 3-8

Categories of data items, LRM 4-6
CCL commands

C81, RSTS/E UC I D-2
commas, use in compiler command line,

RSTS/E UC I D-2
compiler command line format, RSTSIE

UC I D-2
default file types, RSTS/E UC I D-2
examples, RSTS/E UC I D-2

Cell
contents, UC IV 3-1
location in the file, UC IV 3-1
numbering, UC IV 3-1
relative record number, UC IV 3-1
size, UC IV 3-1

Channel
See Logical Unit Number (LUN)

Character attributes for terminal screen,
UC IV 9-8

Character sets
and collating sequence, LRM 3-7
ASCII, LRM 3-7
COBOL-81, LRM 1-2

Character sets (Cont.)
computer, LRM 1-2
in ALPHABET clause, LRM 3-6
iri CODE-SET clause, LRM 4-28

Character transfer
using the STRING statement, LRM 5-135

to 5-139
using the UNSTRING statement, LRM

5-143 to 5-148
Character-string, LRM 1-1
/CHECK compiler qualifier, RSTS!E UC I

3-2t, 3-3, RSX UC I 3-2t, 3-3
for improving program performance, UC

II 5-2
/CHECK:BOUNDS compiler qualifier,

RSTS/E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

/CHECK:NOBOUNDS compiler qualifier,
RSTSJE UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

/CHECK:NOPERFORM compiler qualifier,
RSTS/E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

/CHECK:PERFORM compiler qualifier,
RSTS/E UC I 3-2t, 3-3, RSX UC I
3-2t, 3-3

Choice indicators, use in general formats,
LRM 1-14

/-CIS compiler switch, RSTS/E UC I D-3t,
D-6, RSX UC I D-3t, D-6

/CIS compiler switch, RSTSIE UC I D-3t,
D-4, RSX UC I D-3t, D-4

Class condition, LRM 5-16
Class tests, UC Ill 2-5

numeric, UC Ill 1-10
Classes

for nonnumeric data, UC Ill 2-4
of data items, LRM 4-6

CLOSE statement, LRM 5-51 to 5-54
/CLU: BLDODL switch, RSTS/E UC I D-8,

RSX UC I D-8
COBOL language elements, LRM 1-1
COBOL word, LRM 1-3
COBOL, DCL command, RSTS/E UC I 1-1,

RSX UC 11-1
COBOL-81 Symbolic Debugger

See Debugger
CODE-SET clause, LRM 4-28
/CODE: [NO]CIS compiler qualifier, RSTSIE

UC I 3-2t, 3-4, RSX UC I 3-2t, 3-4
Collating sequence

as related to alphabet-name, LRM 3-5
in ALPHABET clause, LRM 3-6

lndex-3

Collating sequence (Cont.)
specifying in a COBOL program, LRM

3-3
when merging files, LRM 5-84

Combining files
See Merging files

Commas
as separators, LRM 1-11
using in C81 command line, RSTS!E UC

I D-2, RSX UC I D-2
Comment character (*), RSTS!E UC I 2-2,

RSX UC I 2-2
Comment lines

in ANSI format, LRM 1-21
in terminal format, LRM 1-17

Common errors
in nonnumeric MOVE statements, UC Ill

2-10
in STRING statements, UC Ill 2-17
when inspecting data, UC Ill 2-47
when unstringing data, UC Ill 2-31

COMP data items
as VAX-11 COBOL incompatibility,

LRM D-1
COMP SYNC data items, LRM 4-64 to

4-65
Comparing operands, LRM 5-14, UC 111

2-4
when alphabetic, LRM 5-16
when nonnumeric, LRM 5-15
when numeric, LRM 5-15, 5-16

Compile-time environment, documenting,
LRM 3-2

Compiler
command line format, RSTS!E UC I 3-2,

RSX UC I 3-2
diagnostics, RSTS/E UC I 3-7, RSX UC I

3-7,
functions, RSTS!E UC I 3-1, RSX UC I

3-1
output files

OBJ, RSTSIE UC I 3-1, RSX UC I 3-1
SKL, RSTS/E UC I 3-1, RSX UC I 3-1

Compiler implementation limitations,
RSTS/E UC I A-1, RSX UC I A-1

Compiler qualifiers
/ANSLFORMAT, RSTS!E UC I 2-2, 3-2t,

3-3, RSX UC I 2-2, 3-2t, 3-3
/CHECK, RSTS/E UC I 3-2t, 3-3, RSX

UC I 3-2t, 3-3
/CHECK:BOUNDS, RSTS!E UC I 3-2t,

3-3, RSX UC I 3-2t, 3-3

lndex-4

Compiler qualifiers (Cont.)
/CHECK:NOBOUNDS, RSTS!E UC I

3-2t, 3-3, RSX UC I 3-2t, 3-3
/CHECK:NOPERFORM, RSTS!E UC I

3-2t, 3-3, RSX UC I 3-2t, 3-3
/CHECK:PERFORM, RSTS!E UC I 3-2t,

3-3, RSX UC I 3-2t, 3-3
/CODE:[NO]CIS, RSTS!E UC I 3-2t, 3-4,

RSX UC I 3-2t, 3-4
/CROSS_REFERENCE, RSTS!E UC I 3-2t,

3-4, RSX UC I 3-2t, 3-4
/DEBUG, RSTS!E UC I 3-2t, 3-4, RSX

UC I 3-2t, 3-4, UC II 3-2
/DIAGNOSTICS, RSTS/E UC I 3-2t, 3-5,

RSX UC I 3-2t, 3-5
examples, RSTS!E UC I 3-6, RSX UC I

3-6
/LIST, RSTS!E UC I 3-2t, 3-5, 3-5t, RSX

UC I 3-2t, 3-5, 3-5t
/NAMES, RSTS!E UC I 3-2t, 3-5, RSX

UC I 3-2t, 3-5
/NOANSLFORMAT, RSTS/E UC I 3-2t,

3-3t, RSX UC I 3-2t, 3-3t
/NOCHECK, RSTS!E UC I 3-2t, RSX UC

I 3-2t
/NOCROSS_REFERENCE, RSTS/E UC I

3-2t, 3-4t, RSX UC I 3-2t, 3-4t
/NODEBUG, RSTS!E UC I 3-2t, 3-4t,

RSX UC I 3-2t, 3-4t
/NODIAGNOSTICS, RSTS/E UC I 3-2t,

3-5t, RSX UC I 3-2t, 3-5t
/NOLIST, RSTS!E UC I 3-2t, RSX UC I

3-2t
/NOOBJECT, RSTS!E UC I 3-3t, 3-5,

RSX UC I 3-3t, 3-5
I NOSHOW, RSTS!E UC I 3-3t, 3-5t,

RSX UC I 3-3t, 3-5t
/NOSUBPROGRAM, RSTS!E UC I 3-3t,

3-5t, RSX UC I 3-3t, 3-5t
/NOTRUNCATE, RSTS!E UC I 3-3t, 3-6t,

RSX UC I 3-3t, 3-6t
/NOWARNINGS, RSTS/E UC I 3-3t, 3-6,

RSX UC I 3-3t, 3-6
/OBJECT, RSTS!E UC I 3-3t, 3-5, RSX

UC I 3-3t, 3-5
/SHOW, RSTS!E UC I 3-3t, 3-5, RSX

UC I 3-3t, 3-5
/SHOW:MAP, RSTS!E UC I 3-3t, 3-5,

3-5t, RSX UC I 3-3t, 3-5, 3-5t
/SUBPROGRAM, RSTS!E UC I 3-3t, 3-5,

RSX UC I 3-3t, 3-5
/TEMPORARY, RSTS/E UC I 3-3t, 3-6,

RSX UC I 3-3t, 3-6

Compiler qualifiers (Cont.)
/TRUNCATE, RSTS/E UC I 3-3t, 3-6,

RSX UC I 3-3t, 3-6
using to improve performance, UC II

5-1
/WARNINGS, RSTS/E UC I 3-6, RSX

UC I 3-6
/WARNINGS:INFORMATIONAL, RSTS/E

UC I 3-3t, 3-6, RSX UC I 3-3t,
3-6

/WARNINGS:NOINFORMATIONAL,
RSTSIE UC I 3-3t, 3-6, RSX UG I
3-3t, 3-6

Compiler switches
/BLD, RSTS/E UG I D-3t, D-4, RSX UC

I D-3t, D-4
/-BOU, RSTS/E UC I D-3t, D-5, RSX

UC I D-3t, D-5
/-CIS, RSTS/E UGI D-3t, D-6, RSX UC

I D-3t, D-6
/CIS, RSTS/E UC I D-3t, D-4, RSX UC I

D-3t, D-4
/CRF, RSTS/E UC I D-3t, D-4, RSX UC

I D-3t, D-4
/CVF, RSTS/E UGI D-3t, D-4, RSX UC

I D-3t, D-4
/DEB, RSTS/E UC I D-3t, D-5, RSX UC

I D-3t, D-5
examples, RSTS/E UC I D-7, RSX UC I

D-7
/FIPS:74, RSTS/E UC I D-3t, D-6, RSX

UC I D-3t, D-6
/-INF, RSTS/E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/KER, RSTS/E UC I D-3t, D-6, RSX UC

I D-3t, D-6
/MAP, RSTSIE UC I D-3t, D-5, RSX UC

I D-3t, D-5
/-PER, RSTS/E UG I D-3t, D-6, RSX UC

I D-3t, D-6
/-SKL, RSTS/E UC I D-3t, D-6, RSX UC

·I D-3t, D-6
/STA:VAX, RSTS/E UGI D-3t, D-5, RSX

UC I D-3t, D-5
/SUB, RSTS/E UC I D-3t, D-5, RSX UC

I D-3t, D-5
/TMP, RSTS!E UC I D-3t, D-7, RSX UC

I D-3t, D-7
/TRU, RSTSIE UC I D-3t, D-5, RSX UC

I D-3t, D-5
Compiler-directing sentence, LRM 5-3
Compiler-directing statement, LRM 5-3
Compiling

main and subprograms, UC II 6-2

Compiling (Cont.)
source programs, RSTSIE UC I 3-1, RSX

UC I 3-1
Complex conditions, LRM 5-18
COMPUTE statement, LRM 5-55 to 5-56
Computer character set, LRM B-1 to B-2

octal and decimal equivalents, LRM B-1
to B-2

Concatenating items, UC Ill 2-11
Concise Command Language (CCL)

See CCL commands
Condition-name condition, LRM 5-17
Condition-names

associating values with, LRM 4-71 to
4-73

defined, LRM 1-5
in general formats and rules, LRM 5-11
in SWITCH clause, LRM 3-6
qualifying, LRM 5-11

Conditional expressions, LRM 5-14 to
5-18

class condition, LRM 5-16
combining, LRM 5-19
complex conditions, LRM 5-18
condition-name, LRM 5-17
evaluation of, LRM 5-21
negating, LRM 5-19
relation condition, LRM 5-14 to 5-16
sign condition, LRM 5-18
switch-status condition, LRM 5-18

Conditional sentence, LRM 5-4
Conditional statement, LRM 5-4
Conditional variables

relation to condition-names, LRM 1-5
Configuration Section, LRM 3-2
Continuation character (-), RSTS/E UC I

2-2, RSX UC I 2-2
in Debugger commands, UC II 3-3
to continue DCL commands, RSTS/E UC

11-2, RSX UG 11-2
CONTINUE, DCL command, RSTS/E UC I

1-2, RSX UC 11-2
Control footing, UC IV 8-4
Control heading, UC IV 8-4
CONTROL KEY IN clause, UC IV 9-17
Controlling index, UC Ill 3-15
Conventional report

line counter usage, UC IV 8-12
logical page, UC IV 8-10
makeup, UC IV 8-10
page advancing, UC IV 8-10
page-overflow condition, UC IV 8-11

lndex-5

Conventional report (Cont.)
printing the, UG IV 8-24

CONVERSION clause, UG IV 9-9, 9-24
COPY statement, LRM 6-1 to 6-5, RSTS/E

UG I 2-3, RSX UG I 2-3
COPY, DCL command, RSTS/E UGI 1-6t,

RSX UGI 1-6t
CORRESPONDING phrase, LRM 5-23
Counting characters in a data item, LRM

5-76 to 5-81
CREATE, DCL command, RSTS/E UG I

1-6t, RSX UG I 1-6t
/CRF compiler switch, RSTS/E UG I D-3t,

D-4, RSX UG I D-3t, D-4
/CROSS_REFERENCE compiler qualifier,

RSTS/E UG I 3-2t, 3-4, RSX UG I
3-2t, 3-4

CTRL/C
in DCL commands, RSTS!E UG I 1-2
in Debugger commands, UG II 3-11

CTRL/U
in DCL commands, RSX UG I 1-2

CURRENCY SIGN clause, LRM 3-7
Currency symbol

in PICTURE clause, LRM 4-47
in SPECIAL-NAMES paragraph, LRM 3-5

Cursor positioning keys, UG IV 9-17
/CVF compiler switch, RSTS/E UG I D-3t,

D-4, RSX UG I D-3t, D-4

D

Data description
complete entry skeleton, LRM 4-22 to

4-24
elements of, LRM 1-25, 4-1

Data Division
entries, elements of, LRM 1-25
general format and rules, LRM 4-15

Data handling techniques
for improving program performance, UG

II 5-3
Data items

assigning initial values to, LRM 4-71 to
4-73

categories of, LRM 4-6, 4-44
classes of, LRM 4-6
COMP-3, UG 1111-7
contents and class incompatibility, LRM

5-24
default initial values, LRM 4-16
DISPLAY, UG 1111-7
in arithmetic expressions, LRM 5-12
index, LRM 5-10, UG Ill 3-13

lndex-6

Data items (Cont.)
maximum size of PICTURE clause for a,

LRM 4-43
naming, LRM 4-29
specifying characteristics of, LRM 4-22

to 4-24, 4-43 to 4-52
specifying nonstandard data positioning

in, LRM 4-31
specifying storage format for, LRM 4-66

to 4-70
with DISPLAY usage, UG Ill 1-6

Data movement, UG Ill 2-5 to 2-47
with editing symbols, UG Ill 2-8f
with no editing, UG Ill 2-9f

Data organization, UG Ill 2-2
DATA RECORDS clause, LRM 4-30
Data storage

representation on media, LRM 4-28
word and byte representation, UG Ill

1-2f
Data testing, UG Ill 2-3 to 2-5
Data transfer

positioning rules for, LRM 4-6
using the MOVE statement, LRM 5-87 to

5-90
Data types

COMP, UG Ill 4-1
COMP compared to COMP SYNC, UG

1111-2, 1-7
COMP-3, UG 1111-5, 1-7, 4-2
scaling and mixing, UG Ill 4-2

Data-handling operations
undefined results

from incompatible data, LRM 5-24
from operand overlap, LRM 5-24

Data-name clause, LRM 4-29
Data-names

defined, LRM 1-5
in an identifier, LRM 5-11
using as subscripts, UG Ill 3-12

DCL commands
abbreviating, RSTSIE UG I 1-2, RSX UG

I 1-2
APPEND, RSTSIE UGI 1-6t, RSX UGI

1-6t
ASSIGN, RSTS/E UG 11-5, RSX UGI

1-5
COBOL, RSTSIE UG I 1-1, RSX UG I

1-1
CONTINUE, RSTSIE UG 11-2
COPY, RSTS/E UG I 1-6t, RSX UG I

1-6t
CREATE, RSTSIE UG I 1-6t, RSX UG I

1-6t

DCL commands (Cont.)
DELETE, RSTS/E UG I 1-6t, RSX UG I

1-6t
DIRECTORY, RSTSIE UC I 1-6t, RSX

UC I 1-6t
EDIT, RSTS/E UC I 1-1, 1-6t, RSX UC I

1-1, 1-6t
HELP, RSTS/E UC I 1-6, RSX UC I 1-6
LINK/C81, RSTS/E UC 11-1, 4-1, RSX

UC I 1-1, 4-1
RENAME, RSTS/E UC I 1-6t, RSX UC I

1-6t
RUN, RSTSIE UC 11-1, RSX UC 11-1
STOP, RSTS/E UC I 1-2
TYPE, RSTS/E UC I 1-6t, RSX UC I 1-6t
using continuation character (-) with,

RSTSIE UC I 1-2, RSX UC I 1-2
/DEB BLDODL switch, RSTS/E UC I D-8,

RSX UC I D-8
/DEB compiler switch, RSTSIE UC I D-3t,

D-5, RSX UC I D-3t, D-5
/DEBUG compiler qualifier, UC II 3-2

with COBOL command, RSTS/E UC I
3-2t, 3-4, RSX UC I 3-2t, 3-4

/DEBUG qualifier
with LINK/C81 command, RSTS/E UC I

4-3, RSX UC I 4-3
Debugger

command line format, UC II 3-3
commands for position, UC II 3-4
I /0 requirements, UC II 3-2
invoking, UC II 3-3
limitations, UC II 3-3
memory requirements, UC II 3-2
symbols file, UC II 3-2
using CTRL/C, UC II 3-11

Debugger commands
CANCEL BREAKPOINT command, UC II

3-2t, 3-8
DEFINE command, UC II 3-2t, 3-9
DISPLAY command, UC II 3-2t, 3-5

ASCII option, UC II 3-5
BYTE option, UC II 3-5

HELP command, UC II 3-2t, 3-5
MOVE command, UC II 3-2t, 3-6
PROCEED command, UC II 3-2t, 3-10
SET BREAKPOINT command, UC II 3-2t,

3-7
SHOW BREAKPOINTS command, UC II

3-2t, 3-8
SHOW SYNONYMS command, UG II

3-2t, 3-10
STOP command, UC II 3-2t, 3-11
UNDEFINE command, UC II 3-2t, 3-10

Decimal point
selecting for a program, LRM 3-5
specifying as comma, LRM 3-7

Decimal scaling position, UC Ill 1-6
Decimal truncation

reasons for avoiding, UC Ill 4-3
/TRUNCATE compiler qualifier, UC Ill

4-3
DECIMAL-POINT IS COMMA clause, LRM

3-7
Declarative procedures

examples, UC IV 5-7
EXTEND, UC IV 5-7
file name, UC IV 5-6
1-0, UC IV 5-7
INPUT, UC IV 5-7
OUTPUT, UC IV 5-7
referencing with the USE statement, LRM

5-149 to 5-150
sort, UC IV 10-6
using, UC IV 5-6

Declaratives
structure of, LRM 1-25

DEFAULT clause, UC IV 9-14
Default file types

See File types, default
DEFERRED-WRITE phrase of the APPLY

clause, LRM 3-22
DEFINE, Debugger command, UC II 3-2t,

3-9
Defining tables, UC Ill 3-1 to 3-8
DELETE statement, LRM 5-57 to 5-58
DELETE, DCL command, RSTS/E UC I 1-6,

RSX UC I 1-6t
Delimiters

as subscripts
sample results, UC Ill 2-17t

Delimiting
multiple receiving items, UC Ill 2-21t
with all asterisks, UC Ill 2-22t
with all double asterisks, UC Ill 2-23t
with two asterisks, UC Ill 2-22t

DESCENDING phrase, UC IV 10-1
Descriptions of relational operators, UC Ill

2-3f
Detail lines, UC IV 8-4
Devices

program references to, LRM 3-6
I DIA BLDODL switch, RSTSIE UC I D-10,

RSX UC I D-10
Diagnostics

See Error messages

lndex-7

/DIAGNOSTICS compiler qualifier, RSTS/E
UC I 3-2t, 3-5, RSX UC I 3-2t, 3-5

Directory
file specification for, RSTSIE UC I 1-3,

RSX UC 11-3
DIRECTORY, DCL command, RSTS/E UC I

1-6t, RSX UC I 1-6t
Di~k libraries

See Libraries
DISPLAY option with SET BREAKPOINT

Debugger command, UC II 3-7
DISPLAY statement, LRM 5-59 to 5-65

reference to devices, LRM 3-6
DISPLAY, Debugger command, UC II 3-2t,

3-5
ASCII option, UC II 3-5
BYTE option, UC II 3-5

DIVIDE statement, LRM 5-66 to 5-68
Division by zero, LRM 5-23
Divisions, in a COBOL program, LRM

1-23
Duplicate keys, not allowing, LRM D-9
DUPLICATES IN ORDER phrase, UC IV

10-4

E

. EDIT, DCL command, RSTS/E UC I 1-1,
1-6t, RSX UC I 1-1, 1-6t

Edited moves
nonnumeric data, UC Ill 2-8

Editing rules .. ,
for numeric data, UC Ill 1-13
for PICTURE clause, LRM 4-47

Editing symbols
for numeric data, UC Ill 1-13
in PICTURE clause, LRM 4-44 to 4-47

Efficiency of indexing, UG Ill 4"3
Elementary data items

defined, LRM 4-2
nonnumeric, UC Ill 2-2
specifying alternative groupings of, LRM

4-60 to 4-61
Elementary moves, LRM 5-88, UC Ill

1-11
legal, UG Ill 2-7t
nonnumeric, UG Ill 2-7
numeric, UC Ill 1-11
numeric edited, UC Ill 1-13

Ellipsis, in general formats, LRM 1-14

lndex-8

Environment Division
syntax and general rules, LRM 3-1

Erasing
a line on the terminal screen, UC IV

9-3
entire terminal screen, UC IV 9-3
to end of line on terminal screen, UC IV

9-3
to end of terminal screen, UC IV 9-3

Error handling
with the USE statement, LRM 5-149 to

5-150
Error messages

limitations, RSTS/E UC I 3-7, RSX UC I
3-7

link-time, RSTS/E UC I 4-3, RSX UC I
4-3

run-time, RSTSIE UC I 5-2, C-1, RSX
UC I 5-2, C-1

types of, RSTSIE UC I 3-7, RSX UC I
3-7

Errors
in arithmetic statements, UC Ill 1-19
in MOVE statements, UC Ill 1-14
in size, UC Ill 1-17

Escape sequences, UC IV A-1
as i ncompati bi I ity with V AX-11 COBOL,

LRM D-9
Execution control, transferring with CALL

statement, UC II 6-3
EXIT PROGRAM statement, LRM 5-70

effect on program logic, UC II 6-3
format, UC II 6-3
returning control, UC II 6-3

EXIT statement, LRM 5-69
Exponentiation, LRM 5-13

results when invalid, LRM 5-23
Expression processing

arithmetic, UC Ill 1-20
EXTENSION phrase, LRM 3-23

F

FAB
See File Access Block

Fatal diagnostics, RSTS/E UC I 3-7, RSX
UC I 3-7

FD
See File description

Figurative constants, LRM 1-8 to 1-9
ALL literal, LRM 1-8
HIGH-VALUE, LRM 1-8

Figurative constants (Cont.)
LOW-VALUE, LRM 1-8
QUOTE, QUOTES, LRM 1-8
SPACE, LRM 1-8
ZERO, LRM 1-8

File
connector, UC IV 1-9
defining a disk, UC IV 1-9
defining a magnetic tape, UC IV 1-9
handling, UC IV 1-8
identifying, UC IV 1-9
multiple openings in same program, UC

JV 1-13
opening and closing a, UC IV 1-13
optimization, UC IV 7-1
protection level, UC IV 6-2
system, UC IV 6-2

File access (OPEN statement), LRM 5-93
to 5-97

File Access Block (FAB), LRM 3-24 to
3-25

Fi le attributes
defining, UC IV 1-3

File description
clauses of, LRM 4-15
complete entry skeleton, LRM 4-18 to

4-20
purpose of, LRM 4-1
structure of, LRM 4-1 5

File mapping, LRM 3-23
File name, specifying, RSTS!E UC/ 1-3,

RSX UC/ 1-3
File optimization

for improving I /0 performance, UC II
5-3

using 1-0-CONTROL paragraph, LRM
3-21 to 3-25

File organization, UC IV 1-1
advantages and disadvantages, UC IV

1-2
default, UC JV 1-11
indexed, UC IV 1-11
relative, UC IV 1-11
sequential, UC IV 1-11
specifying, UC IV 1-3

File Section, LRM 4-15
File sharing, UC IV 6-1

common file status values, UC IV 6-8
common RMS-11 completion codes,

UC IV 6-8
requirements, UC IV 6-3

File specification, RSTS!E UC/ 1-3, RSX
UC I 1-3

File specification
assigning

with ASSIGN clause, LRM 3-16
with VALUE OF ID clause, LRM 4-74

examples, RSTS!E UC I 1-3, RSX UC I
1-3

format, RSTS!E UC I 1-3, RSX UC I 1-3
how RMS-11 builds a COBOL, UC JV

1-13
keeping as a variable, UC IV 1-10
overriding at run-time, UC IV 1-10
variable, UC IV 1-10

File status
data item, LRM 5-24
values

complete list of, LRM C-1 to C-2
for COBOL-81, UC IV 5-3
for RMS-11, UC JV 5-5

FILE STATUS clause, LRM 3-17
File structure

specifying in a COBOL program, LRM
3-18

File types, default
examples, RSTS!E UC I 1-5, RSX UC I

1-5
for object file, RSTS!E UC I 3-1, RSX

UC I 3-1
for skeleton descriptor file, RSTS!E UC I

3-1 I RSX UC I 3-1
FILE-CONTROL paragraph, LRM 3-10 to

3-12
File-handling

specifying input-output status, LRM
3-17

File-names
assigning file specifications to, LRM

3-16
defined, LRM 1-5

Fill bytes, defined, LRM 4-7
FILL-SIZE phrase of the APPLY clause,

LRM 3-23
FILLER data items, LRM 4-29
/FIPS:74 compiler switch, RSTS!E UC I

D-3t, D-6, RSX UC I D-3t, D-6
Fixed insertion editing, LRM 4-48
Fixed-length records, LRM 4-53 to 4-55
Floating insertion editing, LRM 4-49
/FMS:NORESIDENT qualifier, RSTS!E UC I

4-2
/FMS:RESIDENT qualifier, RSTS!E UC I

4-2
Footing area, UC IV 8-16
Form control bytes, UC JV 1-8

lndex-9

Format
of print files, LRM 4-34 to 4-37
record (RECORD clause), LRM 4-53 to

4-55
Format conversion

ANSI to terminal, UC 111-1
terminal to ANSI, UG II 1-3

Format, source program
See Source program reference formats

Format, syntax
See General format

FROM option of statements, LRM 5-28 to
5-29

G

General format
defined, LRM 1-12
function of, LRM 1-26
notation used in, LRM 1-12

General rules, defined, LRM 1-26
Generic term, defined, LRM 1-26
GIVING phrase

in SORT statement, UC IV 10-2
Global entry point, UG II 6-13
GO TO DEPENDING phrase

advantages of using, UC Ill 4-4
GO TO statement, LRM 5-71 to 5-72
Group data item, LRM 4-2
Group indicating, UC IV 8-29
Group items

nonnumer.ic, UC Ill 2-2
Group moves, LRM 4-8, 5-89, UC Ill

1-11

H

description, UG Ill 1-11
nonnumeric data, UC Ill 2-7

/HELP switch
with C81 command, RSTSJE UC I D-2,

RSX UC I D-2
with BLDODL utility, RSTSJE UC I D-7,

RSX UC I D-7
HELP, DCL command, RSTSJE UC I 1-2,

1-6, RSX UC 11-6
example, RSTSJE UC I 1-2, RSX UC I

1-2
HELP, Debugger command, UC II 3-2t,

3-5
HIGH-VALUE figurative constant, LRM

1-8, 3-7
Horizontal tab, LRM 1-12

lndex-10

Hyphen indicator character (-)
See also Continuation character (-)
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

1-0 status
See Input-output status

1-0-CONTROL paragraph, LRM 3-21 to
3-25

Identification area
in ANSI format, LRM 1-20
in terminal format, LRM 1-16

Identification Division
syntax and general rules for, LRM 2-1 to

2-3
Identifiers

defined, LRM 5-11
subscripted data-name, LRM 5-9

Identifying a subprogram, UC II 6-2
with /SUBPROGRAM compiler qualifier,

UC II 6-2
with USING phrase, UG II 6-2

Identifying table elements, UC Ill 3-10 to
3-20

IF statement, LRM 5-73 to 5-75
Illegal values for numeric data items, UG

111 1-9
Image size and performance trade offs, UC

II 5-1
Imperative sentence, LRM 5-4
Imperative statement, LRM 5-3
Improving I /0 performance, UC II 5-1,

5-3, UC IV 1-2
Improving program performance

/CHECK compiler qualifier, UC II 5-2
/NOCHECK compiler qualifier, UG II

5-2
/TEMPORARY compiler qualifier, UC II

5-2
using BLDODL switches, UG II 5-2
using compiler qualifiers, UC II 5-1,

5-2
using data handling techniques, UG II

5-3
using terminal format, UC II 5-3

Indentation, relation to level-numbers,
LRM 4-3

Index data items, LRM 5-10, UC Ill 3-12,
3-13, 3-14

as VAX-11 COBOL incompatibility,
LRM D-1

comparing, LRM 5-16
declaration, UC Ill 3-13
defining in program, LRM 4-67
modifying with SET, UC Ill 3-13
where defined, UC Ill 3-3

Index-names
comparing, LRM 5-16
defined, LRM 1-5
rules associated with, LRM 4-39
storing value of in a data item, LRM

5-10
Indexed file

access modes, UC IV 4-3
alternate key, UC IV 4-1
at end condition, handling, UC IV 5-2
backing up an, UC IV 4-15
bucket, UC IV 7-8
bucket size, UC IV 7-8
bucket size calculation, UC IV 7-24
buffer size calculation, UC IV 7-23
CONTIGUOUS PREALLOCATION, UC

IV 7-3
corrupt, fixing a, UC IV 4-15
creating an, UC IV 4-4
default number of 1-0 buffers for, LRM

3-20
DEFERRED-WRITE, UC IV 7-1
defining an, UC IV 4-4
design considerations, UC IV 4-2
EXTENSION, UC IV 7-2
file status values, using, UC 1V 5-3
FILL-SIZE, UC IV 7-2
I /0 statements, UC IV 4-3
index, UC IV 4-2
invalid key condition, handling the, UC

IV 5-2
key, UC IV 4-1
key length, UC IV 4-1
key location, UC IV 4-1
MASS-INSERT, UC IV 7-2
open modes, UC IV 4-3
optimization techniques,, UC IV 7-1
optional key, UC IV 4-1
organization, UC IV 4-1

advantages, UC IV 1-2
disadvantages, UC IV 1-2

population, initial, UC IV 4-5
PREALLOCATION, UC IV 7-2
primary key, UC IV 4-1
reading an, UC IV 4-6

Indexed file (Cont.)
recreating an, UC IV 4-15
reorganization of, UC IV 4-5
reserving buffer areas, UC IV 7-6
starting position in, LRM 5-131 to

5-133
updating an, UC IV 4-10
WINDOW, UC IV 7-3

Indexes, UC Ill 3-2
initializing, UC Ill 3-13

with SET statement, UC Ill 3-13
setting values for, LRM 5-117, 5-124 to

5-125
Indexing, LRM 5-10 to 5-11

advantages, UC Ill 4-3
basis for, LRM 4-38
efficiency order, UC Ill 4-3
in an identifier, LRM 5-11
versus subscripting, UC Ill 4-3

Indicator character
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

/-INF compiler switch, RSTS!E UC I D-3t,
D-6, RSX UC I D-3t, D-6

Informational diagnostics, RSTS!E UC I
3-7, RSX UC I 3-7

Initializing
alphanumeric items, UC Ill 3-9f
data item values

in Linkage Section, LRM 4-1 7
in Working-Storage Section, LRM

4-16
mixed usage items, UC Ill 3-9f
tables, UC Ill 3-8 to 3-10

INPUT PROCEDURE phrase, usage, UC IV
10-2

I h put-output
of low-volume data

using ACCEPT statement, LRM 5-34 to
5-45

using DISPLAY statement, LRM 5-59
to 5-65

specifying buffers for, LRM 3-20
status, LRM 5-24 to 5-27

specifying in a program, LRM 3-17
values for, LRM 5-24

Input-Output Section, LRM 3-10
INSPECT statement, LRM 5-76 to 5-81

using, UC Ill 2-31
Inspecting data

active/inactive arguments, UC Ill 2-35
BEFORE I AFTER phrase, UC Ill 2-32
common errors when, UC Ill 2-47
example, UC Ill 2-35f

lndex-11

Inspecting data (Cont.)
finding a match, UC Ill 2-36
implicit redefinition, UC Ill 2-33
INSPECT operation, UC Ill 2-34
interference in tally argument list, UC Ill

2-40
matching delimiter characters, UC Ill

2-33f
replacing phrase, UC Ill 2-43
results of implicit redefinition, UC Ill

2-34t
results of separate scan tallies, UC Ill

2-40f
setting the scanner, UC Ill 2-35
subscripted items, UC Ill 2-37
tally argument, UC Ill 2-38
tally counter, UC Ill 2-38
TALL YING phrase, UC Ill 2-37

Interference
in replacement argument list, UC Ill

2-46
in tally argument list, UC Ill 2-40

Intermediate data item, LRM 5-22
size of, LRM 5-22

Intermediate results
for arithmetic statements, UC Ill 1-15

Interrupting DCL commands, RSTS!E UC I
1-2

INTO phrase, LRM 5-29
Invalid decimal data, detecting, LRM D-7
Invalid key condition, LRM 5-27

planning for, UC IV 5-2
/10: BLDODL switch, RSTS!E UC I D-9,

RSX UC I D-9
/IO:DECOV BLDODL switch, RSTS!E UC I

D-9, RSX UC I D-9
/IO:MEMRES BLDODL switch, RSTS!E UC

I D-9, RSX UC I D-9
/IO:NONOV BLDODL switch, RSTS/E UC

I D-9, RSX UC I D-9
for nonoverlayable RMS-11 , UC II 5-2

/IO:USEROV BLDODL switch, RSTS!E UC
I D-9, RSX UC I D-9

J

JUSTIFIED clause, LRM 4-31
related to Standard Alignment Rules,

LRM 4-6
Justified moves, UC Ill 2-9

lndex~12

K

/KER compiler switch, RSTS/E UC I D-3t,
D-6, RSX UC I D-3t, D-6

Key word, LRM 1-6
Keys

L

ascending, UC Ill 3-2, 3-5
descending, UC Ill 3-2, 3-5

LABEL RECORDS clause, LRM 4-32
Left-to-right storage al location

compared to major-minor storage
allocation, LRM 4-8

defined, LRM 4-7
Level indicators, LRM 1-25
Level-numbers, LRM 4-2 to 4-4, 4-33

66, LRM 4-3, 4-33
77, LRM 4-4, 4-33
88, LRM 4-4, 4-33
defined, LRM 1-5
for records, LRM 4-2
01 through 49, LRM 4-2

Libraries, UC II 4-2 to 4-6
advantages of

clustering option, UC II 4-3
disk, UC II 4-2
resident, UC II 4-3

defined, UC II 4-2
using

disk, UC II 4-5
resident, UC II 4-6
to reduce task size, UC II 4-2 to 4-6

Library file, RSTS!E UC I D-11, RSX UC I
D-11

C81CIS, RSTS!E UC I 4-2, RSX UC I
4-2

C81 LIB, RSTS!E UC I 4-2, RSX UC I
4-2

Library text, copying into source program,
LRM 6-1 to 6-5

LINAGE clause, LRM 4-34 to 4-37
usage, UC IV 8-16

LINAGE-COUNTER, LRM 1-7, 4-35
special register, UC IV 8-17
usage, UC IV 8-21

Linage-file report
bottom margin, UC IV 8-16
footing area, UC IV 8-16
logical page, UC IV 8-15
makeup, UC IV 8-15
page advancing, UC IV 8-17
page body, UC IV 8-16

Linage-file report (Cont.)
page-overflow condition, UG IV 8-17
printing the, UG IV 8-24, 8-25
top margin, UG IV 8-16

Line continuation
in ANSI format, LRM 1-20
in terminal format, LRM 1-17

Line length
in terminal format, LRM 1-18

Linear search
See Sequential search

LINK/C81 qualifiers
/DEBUG, RSTSIE UG I 4-3, RSX UG I

4-3
/FMS:NORESIDENT, RSTS/E UG 14-2
/FMS:RESIDENT, RSTS/E UG I 4-2
/MAP, RSTS/E UG / 4-3, RSX UGI 4-3
/NODEBUG, RSTSIE UGI 4-3, RSX UG

I 4-3
/NOMAP, RSTSIE UGI 4-3, RSX UGI

4-3
/OTS, UG II 4-6
/OTS:NORESIDENT, RSTS/E UG 14-2,

RSX UG 14-2
/OTS:RESIDENT, RSTS/E UG I 4-2, RSX

UG 14-2
/RMS, UG II 4-6
/RMS:NORESIDENT, RSTS/E UG 14-2,

RSX UG 14-2
/RMS:RESIDENT, RSTS/E UGI 4-2, RSX

UG 14-2
LINK/C81, DCL command, RSTSIE UGI

1-1, 4-1 , RSX UG I 1-1, 4-1
functions, RSTSIE UG I 4-1, RSX UG I

4-1
Linkage Section, LRM 4-17, UG II 6-8

contents, UG II 6-8
function, UG II 6-8

/LIST compiler qualifier, RSTSIE UGI 3-2t,
3-5, 3-5t, RSX UG I 3-2t, 3-5, 3-5t

Literal subscripts
accessing tables, UG Ill 3-10
defined, UG Ill 3-10

Literals, LRM 1-9 to 1-10
in arithmetic expressions, LRM 5-12
nonnumeric, LRM 1-10
numeric, LRM '1-9

Location equivalence, LRM 4-8 to 4-14
Locking operations on files, LRM 5-51 to

5-54
Logical block, UG IV 7-8
Logical data characteristics, LRM 4-1
Logical names, RSTS/E UG I 1-5, RSX UG

I 1-5, UG IV 1-11

Logical page
defined, UG IV 8-6
horizontal spacing on the, UG IV 8-6
structure, UG IV 8-6
vertical spacing on the, UG IV 8-6

Logical records, mapping to physical
records, LRM 4-26 to 4-27

Logical Unit Number (LUN), UG IV B-1
LOW-VALUE figurative constant, LRM 1-8,

3-7
Lowercase letters, compiler treatment of,

LRM 1-3
Lowercase words, use in general formats,

LRM 1-13
/LRG BLDODL switch, RSTS/E UGI D-9,

RSX UGI D-9
for overlayable RMS-11, UG II 5-2

LUN
See Logical Unit Number (LUN)

M

MACRO programs
calling, UG II 6-13
calling command format, UG II 6-14
global entry point, UG II 6-13
in COBOL-81 programs, UG II 6-13

Magnetic tape
block size limit, UG IV 7-10

Main program
defined, UG II 6-1

Major-minor storage allocation, LRM 4-8
to 4-14

compared to left-to-right storage
allocation, LRM 4-8

/MAP BLDODL switch, RSTSIE UGI D-8,
RSX UGI D-8

obtaining memory allocation map, UG II
4-11

/MAP compiler switch, RSTSIE UG I D-3t,
D-5, RSX UG I D-3t, D-5

/MAP qualifier, RSTS/E UG I 4-3, RSX UG
I 4-3

Mapping a simple table into memory, UG
Ill 3-5f

Margin A, LRM 1-19
Margin B, LRM 1-19
Margin C, LRM 1-19
Margin L, LRM 1-19
Margin R, LRM 1-19
MASS-INSERT phrase of the APPLY clause,

LRM 3-23
Matching arguments

inspecting data, UG Ill 2-36

lndex-13

Matching delimiter characters, UC Ill
2-33f

MCR commands
C81, RSX UC I D-2
commas, use in compiler command line,

RSX UC I D-2
compiler command line format, RSX UC

I D-2
default file types, RSX UC I D-2
examples, RSX UC I D-2

Memory allocation
segmented program, UC II 4-9f

Memory allocation map
example, UC II 4-13f
obtaining, using /MAP switch, UC II

4-11
reading, UC II 4-11

MEMORY SIZE clause, LRM 3-3
/MER BLDODL switch, RSTS!E UC I D-9,

RSX UC I D-9
MERGE statement, LRM 5-82 to 5-86

sample program, UC IV 10-7, 10-8
using, UC IV 10-7

Merging files, LRM 4-21, 5-82 to 5-86
using the RETURN statement, LRM

5-112 to 5-113
Meta-language, LRM 1-12
Mnemonic-names, LRM 3-5

defined, LRM 1-5
Monitor Console Routine (MCR)

See MCR commands
MOVE statement, LRM 5-87 to 5-90, UC

Ill 1-11, 2-6
common errors, U,C Ill 1-14

MOVE, Debugger command, UC II 3-2t,
3-6

Multiple delimiters
for unstringing data, UC Ill 2-23, 2-24t

Multiple operands
in ADD and SUBTRACT statements, UC

//11-18
Multiple program task

defined, UC II 6-1
Multiple receiving items

for arithmetic operations, LRM 5-22
for unstringing data, UC Ill 2-18

Multiple record definitions, LRM 4-33
Multiple results

See Multiple receiving items
Multiple sending items

for stringing data, UC Ill 2-11
Multiple-key binary search, UC Ill 3-16
MULTIPLY statement, LRM 5-91 to 5-92

lndex-14

N

/NAMES compiler qualifier, RSTS/E UC I
3-2t, 3-5, RSX UC I 3-2t, 3-5

using to compile subprograms, UC II
6-2

Naming a COBOL program, LRM 2-1 to
2-2

Naming files in a COBOL program, LRM
3-11

Nesting CALL statements, UC II 6-4
NO ECHO clause, UC IV 9-1 3
/NOANSLFORMAT compiler qualifier,

RSTS!E UC I 3-2t, 3-3t, RSX UC I
3-2t, 3-3t

/NOCHECK compiler qualifier, RSTS/E UC
I 3-2t, RSX UC I 3-2t

for improving program performance, UC
II 5-2

/NOCROSS_REFERENCE compiler qualifier,
RSTS!E UC I 3-2t, 3-4t, RSX UC I
3-2t, 3-4t

/NODEBUG compiler qualifier, RSTS/E UC
I 3-2t, 3-4t, RSX UC I 3-2t, 3-4t

with LINK/C81 command, RSTS!E UC I
4-3, RSX UC I 4-3

/NODIAGNOSTICS compiler qualifier,
RSTS/E UC I 3-2t, 3-5t, RSX UC I
3-2t, 3-5t

/NOLIST compiler qualifier, RSTS/E UC I
3-2t, RSX UC I 3-2t

/NOMAP qualifier, RSTS!E UC I 4-3, RSX
UC 14-3

Non-COBOL-81 programs
including in a task, UC II 6-12

Non-overlayable RMS-11 routines
using /IO:NONOV compiler switch, UC

II 5-2
Nonnumeric data

classes of, UC Ill 2-4
concatenating items, UC Ill 2-11
edited moves, UC Ill 2-8
elementary moves, UC Ill 2-7, 2-7t
group moves, UC Ill 2-7
justified moves, UC Ill 2-9
organization of, UC Ill 2-2
receiving items, UC Ill 2-9
special characters, UC Ill 2-2
STRING statement, UC Ill 2-11
subscripted moves, UC Ill 2-10
transferring

with MOVE CORRESPONDING
statement, UC Ill 2-10

with MOVE statement, LRM 5-87 to 5-90,
UC Ill 2-6

Nonnumeric data
transferring (Cont.)

with the ACCEPT statement, LRM 5-40
with the DISPLAY statement, LRM

5-63
with the STRING statement, LRM

5-135 to 5-139
Nonnumeric data items

elementary, UC Ill 2-2
testing, UC Ill 2-3

Nonnumeric literals, LRM 1-10
/NOOBJECT compiler qualifier, RSTS!E UC

I 3-3t, 3-5, RSX UC I 3-3t, 3-5
/NOSHOW compiler qualifier, RSTS!E UC

I 3-3t, 3-5t, RSX UC I 3-3t, 3-5t
/NOSUBPROGRAM compiler qualifier,

RSTS!E UC I 3-3t, 3-5t, RSX UC I
3-3t, 3-5t

/NOTRUNCATE compiler qualifier, RSTS!E
UC I 3-3t, 3-6t, RSX UC I 3-3t, 3-6t

/NOWARNINGS compiler qualifier, RSTS!E
UC I 3-3t, 3-6, RSX UC I 3-3t, 3-6

Numeric class tests, UC Ill 1-10
Numeric data

class test, UC Ill 1-9
compared, UC Ill 1-6
illegal values in, UC 1111-9
optimizing, UC Ill 4-1
relation test, UC Ill 1-9
representation of, UC Ill 4-1
sign test, UC Ill 1-9
storage of, UC Ill 1-1
testing, UC Ill 1-9
transferring

with the ACCEPT statement, LRM 5-40
with the DISPLAY statement, LRM

5-63
with the MOVE statement, LRM 5-87

to 5-90
Numeric data items

maximum number of digit positions,
LRM 4-45

Numeric data types
comparing efficiency, UC Ill 4-lt

Numeric edited data items
contents, UC Ill 1-13
description, UC Ill 1-13
example of, UC Ill 1-14f
maximum number of digit positions,

LRM 4-45
rules for, UC Ill 1-13

Numeric edited moves
elementary, UC Ill 1-13

Numeric editing
symbols, UC Ill 1-13

Numeric literals, LRM 1-9
Numeric moves

elementary, UC Ill 1-11
NUMERIC test, LRM 5-16

0

OBJ file type, RSTS!E UC I 3-1, RSX UC I
3-1

/OBJ BLDODL switch, RSTS!E UC I D-9,
RSX UC I D-9

/OBJECT compiler qualifier, RSTS!E UC I
3-3t, 3-5, RSX UC I 3-3t, 3-5

Object Time System
See OTS (Object Time System)

OBJECT-COMPUTER paragraph, LRM 3-3
to 3-4

OCCURS clause, LRM 4-38 to 4-42
options

indexes, UC Ill 3-2
keys, UC Ill 3-2

related to subscripting, LRM 5-8
ON EXCEPTION clause, UC IV 9-9
Open mode

EXTEND, UC IV 1-13
1-0, UC IV 1-13
INPUT, UC IV 1-13
OUTPUT, UC IV 1-13

OPEN statement, LRM 5-93 to 5-97
effect on LINAGE values, LRM 4-35

Optional words, LRM 1-6
ORGANIZATION clause, LRM 3-18
OTS (Object Time System)

diagnostics, RSTSIE UC I 5-2, RSX UC I
5-2

error checking, UC II 6-12
functions, RSTS!E UC I 5-1, RSX UC I

5-1
/OTS:NORESIDENT qualifier, RSTS!E UC I

4-2, RSX UC I 4-2
/OTS:RESIDENT qualifier, RSTS!E UC I

4-2, RSX UC I 4-2
OUTPUT PROCEDURE phrase, usage, UC

IV 10-2
Overflow statements

sample, UC Ill 2-15t
Overlapping operands, LRM 5-24
Overlayable RMS-11 routines

using /LRG switch, UC II 5-2

lndex-15

p

Packed-decimal data format, LRM 4-68
Page

logical, UC IV 8-6
physical, UC IV 8-6
size definition, UC IV 8-24

Page body, UC IV 8-16
Page footing, UC IV 8-4
Page heading, UC IV 8-4
Paragraph

defined, LRM 1-24
header, LRM 1-24
in Procedure Division, LRM 5-32

Paragraph-names
defined, LRM 1-5
rules for, LRM 1-24

Parentheses, LRM 1-11
in arithmetic expressions, LRM 5-12

/-PER compiler switch, RSTS!E UC I D-3t,
D-6, RSX UC I D-3t, D-6

PERFORM statement, LRM 5-98 to 5-106
Performance, improving, UC II 5-1, UC

IV 1-2
Period

as a separator, LRM 1-11
in general formats, LRM 1-15

Physical block, UC IV 7-8
Physical data characteristics, LRM 4-1
Physical page

defined, UC IV 8-6
Physical records, mapping logical records

to, LRM 4-26 to 4-27
PICTURE character-strings; LRM 1-11
PICTURE clause, LRM 1-11, 4-43 to 4-52

editing methods for, LRM 4~47 to 4-51
specifying the currency symbol, LRM

3-7
symbol precedence rules for, LRM 4-51

Preallocation of disk blocks, LRM 3-23 ·
PREALLOCATION phrase, LRM 3-23
PRINT command, for LINAGE files, LRM

4-36
Print file, UC IV 2-4

format for sequential files, LRM 3-23,
4-34 to 4-37

PRINT-CONTROL phrase, LRM 3-23
Print-controlled file, UC IV 1-4, 1-8
Procedure Division

header, LRM 5-32
Procedure-names

defined, LRM 5-32
PROCEED, Debugger command, UC II

3-2t, 3-10

lndex-16

PROCEED, with SET BREAKPOINT
command, UC II 3-7

Program execution
terminating with STOP statement; LRM

5-134
Program function keys; UC IV 9~17
Program listing

example, UC II 2-3 to 2-5
explanation of, UC II 2-1 to 2-2

PROGRAM-ID paragraph, LRM 2-2
Program-name

as incompatibility with VAX-11 COBOL,
LRM D-9

defined, LRM 1-5
Project-Programmer Number (PPN),

RSTS!E UC I 1-3
PROTECTED clause, UC IV 9-11
PSECT names

Q

assigned by default, UC II 4-10
uniqueness in subprograms, UC II 6-2
using /NAMES:XX switch, UC II 4-9

Qualification, LRM 5-6 to 5-8
in an identifier, LRM 5-11

Qualifiers, compiler
See Compiler qualifiers

Quotation marks, LRM 1-12
QUOTE figurative constant, LRM 1-8

R

RAB
See Record Access B foe k

READ statement, LRM 5-107 to 5-110
Receiving items

nonnumeric data, UC Ill 2-9
Record

areas, sharing, UC IV 7-4
as a logical concept, LRM 4-1
as a physical concept, LRM 4-2
attributes, UC IV 1-3
blocking, specifying, UG IV 1-3
cells, UC IV 3-1
defining length of, LRM 4-53 to 4-55
deleting from files, LRM 5-57 to 5-58
fixed-length, UC IV 1-4
format, UC IV 1-3
locking, UC IV 6-1, 6-9
maximum size, UC IV 1-4
record-length field, UC IV 1-4
size, UC IV 7-8

Record
size (Cont.)

related to storage medium, LRM 4-26
to 4-27

space needs on a physical device, UG
IV 1-3

specifying size, UG IV 1-3
unit of transfer for, LRM 4-5
unit size, UG IV 7-8
variable-length, UG IV 1-4

Record access
by alternate key, LRM 3-15
by primary key, LRM 3-19
order of, LRM 3-13 to 3-14
using the READ statement, LRM 5-107

to 5-110
using the RELEASE statement, LRM

5-111
using the RETURN statement, LRM

5-112 to 5-113
using the ST ART statement, LRM 5-131

to 5-133
Record Access Block (RAB), LRM 3-24 to

3-25
Record alignment boundaries, LRM 4-7
Record a I location, LRM 4-7 to 4-14
RECORD clause, LRM 4-53 to 4-55
Record description

hierarchical structure of, LRM 4-2
purpose of, LRM 4-1

RECORD KEY clause, LRM 3-19
Record transfer

using the WRITE statement, LRM 5-151
to 5-156

Record-length descriptions, multiple, UG
IV 1-8

Record-name
defined, LRM 1-5

Records
logical characteristics of, LRM 4-2
physical characteristics of, LRM 4-4

REDEFINES clause, LRM 4-56 to 4-59
Redefinition

implied when inspecting data, UG Ill
2-33

Reducing compile time
using terminal format, UG II 5-3

REFORMAT utility, UG II 5-3
error messages, UG II 1-4 to 1-5
executing, UG II 1-2, 1-3

Relation condition, LRM 5-14 to 5-16
Relation tests

description, UG Ill 1-9
equivalent sign tests, UG Ill 1-1 Ot

Relation tests (Cont.)
nonnumeric data, UG Ill 2-3

Relational operators
defined, LRM 5-14
description of, UG Ill 2-3f

Relative file
access modes, UG IV 3-3
at end condition, handling, UG IV 5-2
bucket, UG IV 7-8
bucket size calculation, UG IV 7-16
buffer size calculation, UG IV 7-16
capabilities, UG IV 3-2
CONTIGUOUS PREALLOCATION, UG

IV 7-3
creating a, UG IV 3-4
default number of 1-0 buffers for, LRM

3-20
DEFERRED-WRITE, UG IV 7-1
defining a, UG IV 3-4
deleting records in a, .UG IV 3-12
design considerations, UG IV 3-2
EXTENSION, UG IV 7-2
file status values, using, UG IV 5-3
I /0 statements, UG IV 3-3
invalid key condition, handling the, UG

IV 5-2
open modes, UG IV 3-3
optimization techniques, UG IV 7-1
organization, UG IV 3-1

advantages, UG IV 1-2
disadvantages, UG IV 1-2

PREALLOCATION, UG IV 7-2
reading a, UG IV 3-6
reserving buffer areas, UG IV 7-6
rewriting records in a, UG IV 3-9
RMS-11 allocation for a cell, UG IV 3-2
starting position in, LRM 5-131 to

5-133
tables, similarity to, UG IV 3-2
updating a, UG IV 3-9
using, UG IV 3-2
WINDOW, UG IV 7-3

Relative indexing, UG Ill 3-13
system overhead, UG Ill 3-13

Relative record number, UG IV 3-1
RELEASE statement, LRM 5-111, UG IV

10-2
Removal operations for file media, LRM

5-51 to 5-54
RENAME, DCL command, RSTS/E UG I

1-6t, RSX UG I 1-6t
RENAMES clause, LRM 4-60 to 4-61
Replacement argument, UG Ill 2-45,

2-45f

lndex-17

Replacement argument list
interference in, UC Ill 2-46
to inspect data, UC Ill 2-45

Replacement value, UC Ill 2-45
Replacing characters in a data item, LRM

5-76 to 5-81
Replacing phrase

to inspect data, UC Ill 2-43
Replacing records (with REWRITE

statement), LRM 5-114 to 5· 116
Report

bolding items in a, UC IV 8-31
bottom margin, UC IV 8-16
components of a, UC IV 8-4
control footing, UC IV 8-4
control heading, UC IV 8-4
conventional, UC IV 8-10
crossfoot totals, UC IV 8-8
design, UC IV 8-1
detail lines, UC IV 8-4
footing area, UC IV 8-16
layout worksheet, UC IV 8-2 ·
line counter usage, UC IV 8-12
logical page, UC IV 8-10, 8-15
modes of printing, UC IV 8-6
online printing, UC IV 8-7
page advancing, UC IV 8-10
page body, UC IV 8-16
page footing, UC IV 8-4
page heading, UC IV 8-4
page-overflow condition, UC IV 8-11
printing the, UC IV 8-24
printing totals before detail lines, UC IV

8-30
problem solving, UC IV 8-25
report footing, UC IV 8-4
report heading, UC IV 8-4
rolled forward totals, UC IV 8-8
spooling, UC IV 8-7
streamlining your, UC IV 8-30
subtotals, UC IV 8-8
top margin, UC IV 8-16
total accumulating, UC IV 8-8
underlining in a, UC IV 8-31

Representation of numeric data, UC Ill
4-1

Required words, LRM 1-6
Requirements for binary search, UC Ill

3-15
Requirements for sequential search, UC Ill

3-14
RERUN clause

general rules for, LRM 3-24

lndex-18

/RES BLDODL switch, RSTS/E UC I D-9,
RSX UC I D-9

RESERVE clause, LRM 3-20
Reserved words, LRM 1-4 to 1-9

list of, LRM A-1
Resident libraries

See Libraries
Resultant identifiers

purpose of, LRM 5-22
RETURN statement, LRM 5-112 to 5-113

using, UC IV 10-2
Rewind operations for file media, LRM

5-51 to 5-54
REWRITE statement, LRM 5-114 to 5-116
RMS-11, UC IV 1-1

bucket filling for indexed files, LRM
3-23

completion codes, UC IV 5-5
file extension, LRM 3-23
file mapping using the WINDOW phrase,

LRM 3-23
preallocation of disk blocks, LRM 3-23

RMS-11 libraries, RSTS/E UC I 4-2, RSX
UC 14-2

RMS-STS, LRM 1-7, UC IV 5-5
as VAX-11 COBOL incompatibility,

LRM D-7
RMS-STV, LRM 1-7, UC IV 5-5

as VAX-11 COBOL incompatibility,
LRM D-7

/RMS:NORESIDENT qualifier, RSTS/E UC I
4-2, RSX UC I 4-2

/RMS:RESIDENT qualifier, RSTS/E UC I
4-2, RSX UC I 4-2

Rounding off arithmetic results, LRM 5-22,
UC Ill 1-16

Rules for numeric editing, UC Ill 1-13
Run time, see performance
RUN, DCL command, RSTS/E UC I 1-1,

RSX UC 11-1
Run-time environment, documenting, LRM

3-3 to 3-4
Run-time error messages

list of, RSTS/E UC I C-1, RSX UC I C-1

s

SAME AREA clause, LRM 3-22 to 3-23
SAME RECORD AREA clause, LRM 3-23
SAME SORT AREA clause, LRM 3-24
Sample overflow statements, UC Ill 2-15t
Scaling

defined, UC Ill 4-2
Scaling and Mixing data types, UC Ill 4-2

Scaling position, decimal, UC Ill 1-6
Scope of statements, LRM 5-4
Screen positioning

absolute, UC IV 9-5
relative, UC IV 9-5

SD
See Sort-merge file description

SEARCH ALL statement
advantages of using, UC Ill 4-5
requirements for using, UC Ill 4-5

Search argument
use in REPLACING phrase, UC Ill 2-44

SEARCH statement, LRM 5-117 to 5-123
Searching tables, UC Ill 3-14
Section headers

elements in, LRM 1-23
Section, in Procedure Division, LRM 5-32
Section-name

defined, LRM 1-5
using in segmentation, UC II 4-7

Segment numbers
using in segmentation, UC II 4-7

SEGMENT-LIMIT clause
rules for, LRM 3-4
using in segmentation, UC II 4-7

Segment-number, defined, LRM 1-5
Segmentation, LRM 5-29 to 5-30

in a multiple program task, UC II 4-9
in a single program task, UC II 4-8
nonoverlayable, UC II 4-7
overlayable, UC II 4-7
programming considerations, UC II 4-7
using PSECT names, UG II 4-9
with SEGMENT-LIMIT clause, LRM 3-4

Segmented program example, UC II 4-12f
Segmented task image

creating, UC II 4-8, 4-11
Semicolon, as a separator, LRM 1-11
Sentences, COBOL, LRM 5-.1, 5-32

compiler-directing, LRM 5-3
conditional, LRM 5-4
imperative, LRM 5-4

Separators, LRM 1-11 to 1-12
defined, LRM 1-1

Sequence numbers
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

Sequential file
access modes, UC IV 2-3
at end condition, handling, UC IV 5-2
buffer size, UC IV 7-8
buffer size calculation, UC IV 7-9
CONTIGUOUS PREALLOCATION, UC

IV 7-3

Sequential file (Cont.)
creating a, UC IV 2-4, 2-5
default number of 1-0 buffers for, LRM

3-20
defining a, UC IV 2-3
design, UC IV 2-2
end-of-file mark, UC IV 2-1
end-of-volume label, UC IV 2-2
extending a, UC IV 2-4, 2-8
EXTENSION, UC IV 7-2
file status values, using, UC IV 5-3
I /0 statements, UC IV 2-3
multiple volumes, UC IV 2-2
open modes, UC IV 2-3
optimization techniques, UC IV 7-1
organization, UC IV 2-1
organization of

advantages, UC IV 1-2
disadvantages, UC IV 1-2

PREALLOCATION, UC IV 7-2
print file, as a, UC IV 2-4
reading a, UC IV 2-6
reserving buffer areas, UC IV 7-6
rewriting records in a, UC IV 2-7
storage file, as a, UC IV 2-4
unit of transfer, UC IV 7-8
WINDOW, UC IV 7-3

Sequential search, LRM 5-118
requirements for, UC Ill 3-14
results of using, UC Ill 3-14
with AT END statement, UC /II 3-14

Serial search
See Sequential search

SET BREAKPOINT, Debugger command,
UC II 3-2t, 3-7

SET statement, LRM 5-124 to 5-125
indexing function, UC Ill 3-13

Setting program switches, LRM 5-18
Setting the scanner

inspecting data, UC /II 2-35
Sharing execution control

in multiple subprograms, UC II 6-5
Short lines

in ANSI format, LRM 1-21
in terminal format, LRM 1-18

SHOW BREAKPOINTS, Debugger
command, UC II 3-2t, 3-8

/SHOW compiler qualifier, RSTSIE UC I
3-3t, 3-5, RSX UC I 3-3t, 3-5

SHOW SYNONYMS, Debugger command,
UC II 3-2t, 3-10

/SHOW:MAP compiler qualifier, RSTS/E
UC I 3-3t, 3-5, RSX UC I 3-3t, 3-5

lndex-19

/SHOW:NOMAP compiler qualifier,
RSTS/E UC I 3-5t, RSX UC I 3-5t

Sign
conventions, UC Ill 1-6
default for unsigned operands, LRM

5-15
in arithmetic expressions, LRM 5-12
sharing same byte with digit, UC Ill 1-8t
specifying position of, LRM 4-62 to

4-63
specifying representation of, LRM 4-62

to 4-63
storage

COMP-3 data items, UC Ill 1-7
SIGN clause, LRM 4-62 to 4-63
Sign condition, LRM 5-18
Sign control symbols, LRM 4-48

in fixed insertion editing, LRM 4-48
in floating insertion editing, LRM 4-49

Sign tests
description of, UC Ill 1-10
equivalent relation tests, UC Ill 1-1 Ot

Significant digits, UC Ill 4-2
Signs valid for COMP-3, UC Ill 1-7
Simple insertion editing, LRM 4-48
Size

fixed-length tables, UC Ill 3-2
variable-length tables, UG Ill 3-5

SIZE clause, UC IV 9-12
Size error condition

and evaluation of exponentiation, LRM
5-13

description of, LRM 5-23
/-SKL compiler switch, RSTS!E UC I D-3t,

D-6, RSX UC I D-3t, D-6
SKL, skeleton descriptor file, RSTS!E UC I

3-1, RSX UC I 3-1
Slash indicator character (!), RSTS!E UC I

2-2, RSX UC I 2-2
in ANSI format, LRM 1-19
in terminal format, LRM 1-16

Sort
declarative procedure, UC IV 10-6
features

file organization, UC IV 10-5
multiple sorts, UC IV 10-5

hierarchy, UC IV 10-1
intermediate key, UC IV 10-1
major key, UC IV 10-1
minor key, UC IV 10-1
programming considerations

preventing I /0 aborts, UC IV 10-6
USE statement, UC IV 10-7

lndex~20

Sort
programming considerations (Cont.)

variable-length records, UC IV 10-6
sample program, UC IV 10-8

SORT statement, LRM 5-126 to 5-130
Sort-merge file description, LRM 4-21

clauses of, LRM 4-16
structure of, LRM 4-16

Sorting records, LRM 4-21, 5-126 to
5-130

using the RELEASE statement, LRM
5-111

using the RETURN statement, LRM
5-112 to 5-113

Source program reference formats, LRM
1-15 to 1-22

SOURCE-COMPUTER paragraph, LRM
3-2

Space characters, LRM 1-11
as delimiters of

arithmetic operators, LRM 5-12
relational operators, LRM 5-15

SPACE figurative constant, LRM 1-8
Space indicator character

in ANSI format, LRM 1-19
Spaces, as zero replacements, LRM 4-25
Special characters

nonnumeric data, UC Ill 2-2
Special insertion editing, LRM 4-48
Special registers, LRM 1-7

as VAX-11 COBOL incompatibility,
LRM D-7

LINAGE-COUNTER, LRM 1-7
RMS-STS, LRM 1-7
RMS-STV, LRM 1-7

Special-character words
defined, LRM 1-6
use in general formats, LRM 1-12

SPECIAL-NAMES paragraph, LRM 3-5 to
3-9

Special-purpose words, LRM 1-7
Spooler, system, UC IV 8-24
/STA:VAX compiler switch, RSTS!E UC I

D-3t, D-5, RSX UC I D-3t, D-5
Standard Alignment Rules, LRM 4-6
ST ART statement, LRM 5-131 to 5-133
Statements, COBOL, LRM 5-1, 5-32

compiler-directing, LRM 5-3
conditional, LRM 5-4
delimiting, LRM 5-4
imperative, LRM 5-3
options of, LRM 5-22 to 5-24

Status Key· 1, LRM 5-25
Status Key 2, LRM 5-26

STB file type, UC II 3-2
STOP statement, LRM 5-134
STOP, DCL command, RSTS!E UC I 1-2
STOP, Debugger command, UC II 3-2t,

3-11
Storage allocation, LRM 4-7 to 4-14

differences for COMP and COMP SYNC
data items, UC Ill 1-3f

effect of fill bytes on, UC 1111-3, 3-6
for COMP and COMP SYNC items, LRM

4-7, 4-10 to 4-14, UC 1111-3
for COMP-3 data items, UC Ill 1-5f
for elementary items, LRM 4-8, 4-9
for group items, LRM 4-7, 4-8, 4-9,

4-10 to 4-14
for INDEX data items, LRM 4-7
for records, LRM 4-7
for redefined items, LRM 4-7
left-to-right technique, LRM 4-7
major-minor technique, LRM 4-8 to

4-14
of table data, UC Ill 3-5
of tables containing COMP or COMP

SYNC items, UC Ill 3-6
of tables not containing COMP, COMP

SYNC, or USAGE INDEX items, UC
Ill 3-5

when multiple entries describe the same
area, LRM 4-56 to 4-59

word boundaries, UC Ill 3-6
Storage file, UC IV 2-4
Storage format of a data item, LRM 4-66

to 4-70
Storing numeric data, UC Ill 1-1
STRING statement, (RM 5-135 to 5-139
Stringing data

with DELIMITED BY phrase, UC Ill 2-12
with multiple sending items, UC Ill 2-11
with OVERFLOW statement, UC Ill 2-14
with POINTER phrase, UC Ill 2-12
with subscripted items, UC Ill 2-15

/SUB compiler switch, RSTS!E UC I D-3t,
D-5, RSX UC I D-3t, D-5

/SUBPROGRAM compiler qualifier, RSTS!E
UC I 3-3t, 3-5, RSX UC I 3-3t, 3-5

using to identify a subprogram, UC II
6-2

Subprograms
defined, UC II 6-1
identifying, UC II 6-2
unique PSECT names, UC II 6-2
using to reduce task size, UC II 4-6

Subscript sequence evaluation, UC Ill
2-30

Subscripted items
inspecting data, UC Ill 2-37
to string data, UC Ill 2-15
to unstring data, UC Ill 2-29

Subscripted moves
nonnumeric data, UC Ill 2-10

Subscripting, LRM 5-8 to 5-9
basis for, LRM 4-38
in an identifier, LRM 5-11
with index-name items, UC Ill 3-12f

Subscripts
defined, UC Ill 3-10

SUBTRACT statement, LRM 5-140 to
5-142

SWITCH clause, LRM 3-6
Switch-status condition, LRM 5-18
Switches

See also BLDODL utility switches
See also Compiler switches
setting values for, LRM 5-18
specifying in SPECIAL-NAMES paragraph,

LRM 3-6
Symbolic Debugger

See Debugger
Symbols

numeric editing, UC Ill 1-13
SYNCHRONIZED clause, LRM 4-64 to

4-65
Syntax rules, defined, LRM 1-26
System spooler, UC IV 8-24
System-names, LRM 1-4

T

Tab characters
in ANSI format, LRM 1-21
in terminal format, LRM 1-18
purpose of, LRM 1-12

Tab stops
in ANSI format, LRM 1-21
in terminal format, LRM 1-18

Table access
with SEARCH statement, UC Ill 3-14

Table elements
initializing, UC Ill 3-8

Table handling
binary search for a table element, LRM

5-119
searching for a table element, LRM

5-11 7 to 5-123
sequential search for a table element,

LRM 5-118

lndex-21

Tables
accessing

with indexes, UC Ill 3-10, 3-12
with subscripts, UC Ill 3-10, 3-11,

3-11f
defining with OCCURS clause, LRM

4-38 to 4-42, UC Ill 3-1
fixed-length

multidimensional, UC Ill 3-3
one-dimensional, UC Ill 3-2
specifying size of, UC Ill 3-2

indexing
rules for, LRM 5-10 to 5-11

initializing, UC Ill 3-8f
effect of fi II bytes on, UC Ill 3-10
redefining group level, UC Ill 3-8
with VALUE clause, UC Ill 3-8

multidimensional, UC Ill 3-1
storage allocation for, UC Ill 3-5
subscripting

rules for, LRM 5-8 to 5-9 UC Ill 3-11 f
with data-names, UC Ill 3-12, 3-12f

variable-length, UC Ill 3-5
Tally argument

to inspect data, UC Ill 2-38
Tally counter

to inspect data, UC Ill 2-38
Task Builder

diagnostics, RSTS!E UC I 4-3, RSX UC I
4-3

Task image
defined, UC II 4-1
size of, UC II 4-1

Task reduction techniques, UC II 4-1
Task-building

command line format, RSTS!E UC I
D-11 , RSX UC I D-11

with CMD files, RSTS!E UC I D-10, RSX
UC I D-10

/TEMPORARY compiler qualifier, RSTS!E
UC I 3-3t, 3-6, RSX UC I 3-3t, 3-6

for improving program performance, UC
II 5-2

Terminal format, LRM 1-16 to 1-19,
RSTS!E UC I 2-2, RSX UC I 2-2

for improving program performance, UC
II 5-3

for reducing compile time, UC II 5-3
limitations, RSTS!E UC I 2-2, RSX UC I

2-2
versus ANSI format, UC II 5-3

Testing
for the sign of a value, LRM 5-18

lndex-22

Testing (Cont.)
nonnumeric data items, UC Ill 2-3
numeric items, UC Ill 1-9

Text-name, defined, LRM 1-5
/TMP compiler switch, RSTS!E UC I D-3t,

D-7, RSX UC I D-3t, D-7
Top margin, UC IV 8-16
Top-of-page character (/), RSTS!E UC I

2-2, RSX UC I 2-2
Transferring execution control

with CALL statement, LRM 5-48 to 5-50,
UC II 6-3

with EXIT PROGRAM statement, LRM
5-70

with GO}O statement, LRM 5-71 to
5-72 ..

with IF statement, LRM 5-73 to 5-75
with MERGE statement, LRM 5-82 to

5-86
with PERFORM statement(LRM 5-98 to

5-106
with READ statement, LRM 5-107 to

5-110
/TRU compiler switch, RSTS!E UC I D-3t,

D-5, RSX UC I D-3t, D-5
/TRUNCATE compiler qualifier, RSTS/E UC

I 3-3t, 3-6, RSX UC I 3-3t, 3-6
Truth value

defined, LRM 5-1
of conditional expressions, LRM 5-14

TSK file
compared to task image, UC II 4-1

TYPE, DCL command, RSTS!E UC I 1-6t,
RSX UC I 1-6t

u

/ULIB BLDODL switch, RSTS!E UC I D-81

RSX UC I D-8
UNDEFINE, Debugger command, UC II

3-2t, 3-10
Undefined results in a data-handling

operation, LRM 5-24
Uniqueness of Reference, LRM 1-4
UNSTRING statement, LRM 5-143 to

5-148
using, UC Ill 2-18

Unstringing data, UC Ill 2-18
common errors, UC Ill 2-31
COUNT phrase, UC Ill 2-24
delimiting with all asterisks, UC Ill

2-22t

Unstringing data (Cont.)
delimiting with all double asterisks, UC

Ill 2-23t
delimiting with asterisk, UC Ill 2-20t
delimiting with two asterisks, UC Ill

2-22t
multiple delimiters, UC Ill 2-23, 2-24t
multiple receiving items, UC Ill 2-18
OVERFLOW statement, UC Ill 2-28
POINTER phrase, UC Ill 2-26
receiving items based on sending item,

UC Ill 2-19t
sending item too short, UC Ill 2-19t
TALLYING phrase, UC Ill 2-27
using subscripted items, UC Ill 2-29
with DELIMITED BY phrase, UC Ill 2-20
with DELIMITER phrase, UC Ill 2-25

Uppercase words, as used in general
formats, LRM 1-12

USAGE clause, LRM 4-66 to 4-70
USE statement, LRM 5-149 to 5-150

and invalid key condition, LRM 5-28
User-defined words, LRM 1-3 to 1-4

uniqueness of, LRM 5-6
USING phrase

v

in SORT statement, UC IV 10-2
of CALL statement, LRM 5-32, 5-48 to

5-49
of Procedure Division header, LRM 4-17,

5-32, 5-48 to 5-49

VALUE IS clause, LRM 4-71 to 4-73
use in Linkage Section, LRM 4-17
use in Working-Storage Section, LRM

4-16
VALUE OF ID clause, LRM 4-74

using the, UC IV 1-10

Variable-length records, LRM 4-53 to
4-55

creation of, UC IV 1-4 to 1-8
record-length field, UC IV 1-4

VAX-11 COBOL
ensuring COBOL-81 compatibility with,

LRM D-1 to D-9
Verbs, COBOL, LRM 5-1

w

Warning diagnostics, RSTS/E UC I 3-7,
RSX UC I 3-7

/WARNINGS compiler qualifier, RSTS/E
UC I 3-6, RSX UC I 3-6

/WARNINGS:INFORMATIONAL compiler
qualifier, RSTS/E UC I 3-3t, 3-6, RSX
UC I 3-3t, 3-6

/WARNINGS:NOINFORMATIONAL
compiler qualifier, RSTS/E UC I 3-3t,
3-6, RSX UC I 3-3t, 3-6

WINDOW phrase of the APPLY clause,
LRM 3-23

WITH DUPLICATES IN ORDER phrase,
UC IV 10-4

Word boundaries
effects on storage allocation, UC Ill 3-6
with COMP and COMP SYNC, UC Ill

1-2
Working-Storage Section of Data Division,

LRM 4-16
WRITE statement, LRM 5-151 to 5-156

effect on LINAGE values, LRM 4-35

z

ZERO figurative constant, LRM 1-8
Zero suppression editing, LRM 4-50

lndex-23

;
\.
'

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

COBOL-81
RSX-11 MI M-PLUS

User's Guide
AA-M179B-TC

Note: This form is for document comments only. DIGITAL will use comments submitted on this form at
the company's discretion. If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement. ________________________________ _

Did you find errors in this manual? If so, specify the error and the page number. ________ _

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer
D Other (please specify) _______________________ _

Name Date ----------------
Organization ________________________________ _

Street ___________________________________ _

Zip Code
City. __________________ State _______ Co~~try

•
I
I

·------Do Not Tear - Fold Here and Tape·-------------------------------------'

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: BSSG Publications ZK01-3/J35

DIGITAL EQUIPMENT CORPORATION

110 SPITBROOK ROAD

NASHUA, N.H. 03062

No Postage

Necessary

if Mailed in the
United States

------Do Not Tear - Fold Here and Tape-------------------------------------

