COBOL

COBOL-81
RSX-11M/M-PLUS
User’s Guide

Order No. AA-M179B-TC

\



COBOL-81
RSX-11M/M-PLUS
User’s Guide

Order No. AA-M179B-TC

July 1983

This manual describes how to use COBOL-81 on the RSX-11M/M-PLUS
operating systems.

OPERATING SYSTEM AND VERSION: RSX-11M V4
RSX-TTM-PLUS V2

SOFTWARE VERSION: COBOL-81 V2

digital equipment corporation, maynard, massachusetts



The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright © 1983 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid READER’S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

clilalilt]a]| Mt X

DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 P/OS VMS
DECSYSTEM-20 Professional VT

DECUS Rainbow Work Processor

Commercial Engineering Publications typeset this manual using DIGITAL's TMS—11 Text
Management System.




Part | Developing COBOL-81 Programs

Contents

Using COBOL-81 on Your Operating System
Creating and Entering a COBOL-81 Program
Compiling a COBOL-81 Program

Linking a COBOL-81 Program

Running a COBOL-81 Program

Appendix A, Compiler Implementation Limitations
Appendix B, Compiler Error Messages

Appendix C, Run-Time Error Messages

Appendix D, Using COBOL-81 MCR/CCL Commands

Part Il Using COBOL-81 Programming Options

Contents

Using the COBOL-81 Reformat Utility
Troubleshooting

Debugging Your Program

Reducing Your Task Size

Improving Program Performance
Interprogram Communication

Appendix A, Debugger Error Messages

Part Il Handling Data with COBOL-81

Contents

Numeric Character Handling
Nonnumeric Character Handling
Table Handling

Data Handling Optimization

Part IV Processing Files and Records with COBOL-81

The Basics of Handling COBOL-81 Files and Records
Processing Sequential Files

Processing Relative Files

Processing Indexed Files

Input/Output Exception Conditions Handling

Sharing Files and Protecting Records

File Optimization Techniques

Producing Printed Reports With COBOL-81

Forms for Video Terminals

Sorting Records and Merging Files

Appendix A, Designing Your Form with Escape Sequences
Appendix B, Logical Unit Number (LUN) Assignments

Master Index

Book Map



To the Reader

Objectives

This manual explains how to use COBOL-81 on the RSX-11M/M-PLUS operating system.

The information in this manual supplements the description of the COBOL programming language in
the COBOL-81 Language Reference Manual.

Intended Audience

This documentation set is for the experienced COBOL programmer. It does not attempt to teach the
COBOL language or operating system concepts and procedures. If you are a new COBOL user, you
should read introductory COBOL textbooks and take DIGITAL COBOL courses — either self-paced or
classroom.

Prerequisites

Those unfamiliar with the RSX-11 operating system should refer to either the RSX-1TM/RSX-11S
Information Directory and Index, or the RSX-11M-PLUS Information Directory and Index. The direc-
tory appropriate for your operating system lists and describes all manuals in the system documenta-
tion set.

Structure of This Document
The COBOL-81 User’s Guide is divided into four parts:

Part | Developing COBOL-81 Programs
Part Il Using COBOL-81 Programming Options
Part 111 Handling Data with COBOL-81

Part IV Processing Files and Records with COBOL-81

iii



The Book Map, which follows the title page, lists the contents of all four parts. A detailed table of
contents precedes each of these four parts of the manual.

The User’s Guide contains a master index of all topics discussed in the COBOL-81 Language Refer-
ence Manual and the COBOL-81 User’s Guide.

Associated Documents

® The COBOL-81 Language Reference Manual, Order No. AA-J434B-TC, describes the COBOL
programming language rules and formats.

® The COBOL-81 Pocket Guide, Order No. AV-H630C-TC, provides quick reference informa-
tion needed to create, compile, link, and run COBOL programs.

e The COBOL-81 Installation Guide/Release Notes, Order No. AA-M181C-TC, describes the
installation and certification procedures for the COBOL-81 compiler on the RSX-11M/M-
PLUS operating system.

® The PDP-11 COBOL to COBOL-81 Translator Utility, Order No. AA-N339A-TC, tells users
how to convert PDP-11 COBOL application programs to COBOL-81 programs.

Conventions Used in This Document

Throughout this manual, commands are displayed in the Digital Command Language (DCL) format.
See Part I, Appendix D, for the Monitor Console Routine (MCR) equivalents. Additional conventions
follow:

Convention Meaning

®ED A symbol with a one- to three-character abbreviation indicates that you must press a key
on the terminal; for example, RET and TAB indicate that you press the RETURN key and
the TAB key on your terminal.

The symbol CTRL/x indicates that you must press a key labeled CTRL while you simulta-
neously press another key; for example, CTRL/C, CTRL/O.

COBOLGED Black ink indicates all output lines or prompting characters that the system prints or

File: PAYROLL®E  displays. Red ink indicates all user-entered commands.

PROCEDURE DIVISION, A vertical series of periods, or ellipses, means that not all the data a user would enter is
BEGIN-PROGRAM, shown.

+

4

END-PROGRAM.

Summary of Technical Changes

This section lists, by part and chapter, the major technical changes documented in Version 2 of the
COBOL-81 User’s Guide. These modifications reflect new features in existing software as well as
changes and additions to COBOL program development.



Part | Developing COBOL-81 Programs

¢ Chapter 1, Using COBOL-81 on RSX-11M/M-PLUS, provides a description of the DCL HELP
facility.

® Chapter 3, Compiling a COBOL-81 Program, describes the flagging of a destructive reference
with the CROSS_REFERENCE compiler qualifier.

® Appendix D, MCR Commands for COBOL-81, includes the following new switches that are
used with the BLDODL utility:

/CLU
/ULIB
/FMS

Part Il Using COBOL-81 Programming Options

® Chapter 3, Debugging Your Program, includes qualification support for the following
Debugger commands:

SET BREAKPOINT
CANCEL BREAKPOINT
DISPLAY

MOVE

DEFINE

UNDEFINE

Part lli Handling Data with COBOL-81

e Chapter 3, Table Handling, describes changes to the following features of the COBOL-81
SEARCH statement:

OCCURS DEPENDING ON clause
KEY IS phrase
DEPENDING ON phrase

Part IV Processing Files and Records with COBOL-81

e Chapter 3, Processing Relative Files, describes the use of fixed-size record cells and the use of
a key to retrieve records.

e Chapter 5, Input/Output Exception Conditions Handling, provides information on the follow-
ing special registers containing status values from the RMS-11 file system:

RMS-STS
RMS-STV



® Chapter 7, File Optimization Techniques, descrlbes the APPLY WINDOW clause which
corresponds to window pointers.

® Chapter 8, Producing Printed Reports with COBOL-81, discusses use of the LINAGE clause to
define the logical page.

® Chapter 9, Forms For Video Terminals, describes ACCEPT/DISPLAY extensions for screen
formatting. These options allow you to do the following:

Erase parts or all of the screen

Use relative and absolute cursor positioning

Specify form attributes on data to be displayed and accepted
Convert data to appropriate usage when accepting data
Handle errors in filling out the form

Provide field and screen protection by limiting the number of characters typed on the
terminal

Accept data with no echo

Specify default values for ACCEPT statements

Define and handle special control keys

Translate any data item to usage DISPLAY for terminal use

e Chapter 10, Sorting Records and Merging Files, discusses a wide range of sorting capabilities
and options provided with the SORT and MERGE verbs.

Incompatibilities with VAX-11 COBOL

COBOL-81 is a subset of VAX—11 COBOL, but the two products have some incompatibilities due to
differences between the PDP-11 and the VAX—11 computer systems. The /STA:VAX compiler switch
tells the compiler to flag COBOL-81 code that is incompatible with VAX—11 COBOL. Appendix D in
the COBOL-81 Language Reference Manual, Ensuring COBOL-81 Compatibility with VAX-11
COBOL, lists and describes all known incompatibilities.

Vi



Acknowledgment

COBOL is an industry language and is not the property of any company or greup of companies, or of
any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL Commit-
tee as to the accuracy and functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are: FLOW-MATIC (trade-
mark of Sperry Rand Corporation), Programming for the UNIVAC (R) | and I, Data Automation
Systems, copyrighted 1958, 1959, by Sperry Rand Corporation, IBM Commercial Translator Form
No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

vii






Contents

PART I

Chapter 1 Using COBOL-81 on RSX-11M/M-PLUS

1.1 Operating System Commands . . . . . . . . . . .

1.1.1 Aids to Entering Commands . . . . . . . .
1.1.2  Getting HELP . . . . . . . . . . . ...

1.2 File Specifications and Defaults . . . . . . . . . .

1.2.1 Accounts, Directories, and Files . . . . . .
1.2.2  logical Names. . . . . . . . . . . . ..

1.3 File Creation and Maintenance. . . . . . . . . . .

Chapter 2 Creating and Entering a COBOL-81 Program

2.1 Creating the Source File. . . . . . . . . . . . ..
2.2 Choosing a Reference Format . . . . . . . . . ..

2.2.1 Terminal Reference Format . . . . . . . .
2.2.2 ANSI Reference Format . . . . . . . . . .

2.3 Using the COPY Statement . . . . . . . . . . ..

Chapter 3 Compiling a COBOL-81 Program

3.1 Functions of the Compiler. . . . . . . . . . . ..
3.2  Command Line Format . . . . . . . . . . . . ..
3.3 Command Qualifiers . . . . . . . . . ... ...
3.4 Examples . . . . . ..o
3.5 Common COBOL-81 Command Line Errors . . . . .
3.6 Compiler Diagnostics Summary . . . . . . . L.
3.7  Compiler Limitations Summary . . . . . . . . . . .

Chapter 4 Linking a COBOL-81 Program

4.1 Functions of the LINK Command . . . . . . . . . .
4.2 Using the LINK/C81 Command to Build an
Executable Image. . . . . . . . . . .. .. ...

4.2.1 Library Routine Qualifiers . . . . . . . . .
4.2.2  Output File Qualifiers. . . . . . . . . ..

4.3 Linking Error Message Summary . . . . . . . . . .

Chapter 5 Running a COBOL-81 Program

5.1 Functions of the COBOL-81 Object Time System (OTS)
5.2 Command Line Format . . . . . . . . . . . . ..
5.3 Run-Time Error Message Summary . . . . . . . . .

Page



Appendix A COBOL-81 Compiler Implementation Limitations

Appendix B Compiler Error Messages

Appendix C Run-Time Error Messages

Appendix D MCR Commands for COBOL-81

D.1

D.2

D.3

D.4
D.5

Figure

1-1

Tables

ow T
==

i Partl

Compiling. . . . . . . . . . . D-1
D.1.1  Usingthe Compiler. . . . . . . . . . . . . ... ... .... D-2

D.1.1.1  Switches Requesting Special Functions . . . . . . . . . D-4

D.1.1.2  Switches Suppressing Functions. . . . . . . . . . . .. D-5

D.1.1.3  Switches Altering Functions . . . . . . . . . . . . .. D-6

D.1.1.4 Examples of Switches . . . . . . . . . . . . ... .. D-7
Using the BLDODL Utility. . . . . . . . . . . . . . ... ... .... D-7
D.2.1  BLDODL Command Line and Switches . . . . . . . . . . . . .. D-8
D.2.2 BLDODL Utility Command Line Defaults . . . . . . . . . . .. . D-10
Task-Building . . . . . . . . ... D-10
D.3.1 Usingthe CMD FileasInput. . . . . . . . . . . . . .. .. .. D-10
D.3.2  Using a Direct Command LineasInput. . . . . . . . . . . . .. D-11
D.3.3 Results of the Task Build . . . . . . . . . . ... ... .... D-11
Executing . . . . . . . . L . L L e D-12
Examples . . . . . . . . Lo D-12
COBOL-81 Program Development . . . . . . . . . . . . . . . . .. ... 1-4
Default File Types . . . . . . . .. e e e e e e 1-5
Commands for File Operations. . . . . . . . . . . . . . .. . ... ... 1-6
Qualifiers . . . . . . . e e e 3-2
Summary of Compiler Switches . . . . . . . . . . . . . ... ... .. D-3



Chapter 1
Using COBOL-81 on RSX-11M/M-PLUS

The RSX-11M and RSX-11M-PLUS operating systems and their command language, DCL (DIGITAL
Command Language), provide numerous tools and utilities for program development. If your terminal
is not set to DCL mode, enter the following command:

SET /DCL=TI:

where:
Tl:  is the physical device name of your terminal.

This chapter summarizes the fundamental information you need to develop your COBOL-81 pro-
grams, including:

® The DCL commands you use to create, compile, link, and execute COBOL-81 programs
® The rules for specifying input and output files for commands and programs

® The commands you use to create, modify, and maintain files

For an introduction to these concepts, see the RSX-1TM/M-PLUS Guide to Program Development.
For detailed definitions of DCL commands and file specifications, see the RSX-11M/M-PLUS
Command Language Manual.

1-1 1



1.1 Operating System Comrhands

To develop COBOL-81 programs, you use four DCL commands:
e The EDIT command allows you to create the source file.
e The COBOL command invokes the COBOL-81 compiler.
® The LINK/C81 command produces an executable image of your program.

® The RUN command executes the program.

1.1.1 Aids to Entering Commands

The next few chapters of this manual describe in detail the commands you use to develop COBOL-81
programs and the qualifiers that modify the operation of these commands. The following hints can
help you enter commands easily and accurately:

® You can abbreviate any command name or qualifier name to four characters. In most cases,
fewer than four characters are accepted, as long as there is no ambiguity about the name of the
command.

® You must precede each qualifier in the command line with a single slash character (/) or a
space.

e If you omit a required parameter (for example, a file specification), the DCL command inter-
preter prompts you to enter it.

® You can enter a command on as many lines as you want, as long as you end each continued
line with a hyphen (-) and the maximum line length does not exceed 80 characters for
RSX-11M or 255 characters for RSX-11M-PLUS.

® After you have entered a complete command, you must press the RETURN key to pass the
command to the system for processing.

® You can cancel a command before the final RETURN by typing CTRL/U.

If you make an error entering a command (for example, if you misspell a command or qualifier
name), the command line interpreter issues an error message, and you must reenter the entire com-
mand line including any qualifiers.

1.1.2 Getting HELP

The HELP command invokes the RSX-11M/M-PLUS HELP utility, which gives you online information
about a command, its parameters, and qualifiers. When you type HELP, the utility displays informa-
tion available in the system help files or in any help library that you specify.

To obtain information about the COBOL compile command, you enter the following command:

HELP COBOL

The HELP command response displays a description of the COBOL command and a list of its
qualifiers.

112 Using COBOL-81 on RSX-1T1M/M-PLUS



1.2 File Specifications and Defaults

Because many DCL commands and qualifiers affect files, it is helpful to understand the relationship
between accounts and directories when you work with files.

1.2.1 Accounts, Directories, and Files

You log into an account when you begin an RSX-11M/M-PLUS session. Your account name identifies
you to the system.

The system uses your account name to keep track of the resources you use, such as the amount of
time you access the computer’s memory or are logged in and the amount of storage space your files
require.

A directory is a list of the files in your account that are kept in a specific location on a disk. Each
directory stores such information as the name and size of each file stored on a particular mass-storage
device under a particular User File Directory (UFD).

You identify a file by specifying its location and its name. A file’s complete location consists of:
® The device. Files are kept on mass-storage devices such as disks or magnetic tapes.
® UFD. Files are contained in User File Directories (UFDs). The UFD is a two-number code in
the form [g,m] that is in every file specification, either explicitly or by default, and that locates
the file. In the form [g,m], g signifies group, while m signifies member.
A file’s name, chosen by the person who creates the file, consists of:
® The file name (one to nine alphanumeric characters)
¢ The file type (zero to three alphanumeric characters), preceded by a period
® The version number, in octal, of the file, preceded by a semicolon
A file specification is the full name and location of a file. In its complete form, the file specification
includes:
device:[g,mlfilename.typ;version

The delimiters in a file specification are brackets, commas, colons, and semicolons. Brackets ([ ])
surround the UFD. A comma (,) separates the two numbers of the UFD. A single colon follows the
device name. A semicolon separates the file type from the version number.

A complete file specification that does not assume any defaults is:
DBO0:[30,10]PAYROLL.CBL;3

You need not give a complete file specification each time you refer to a file. A simple file specifica-
tion, one that uses system defaults, consists of the file name and type:

PAYROLL.CBL

In Figure 1-1, all input and output files are given in their simplest forms. To define a unique
COBOL-81 source file, you need only give it a unique name and a file type of CBL.

Using COBOL-81 on RSX-11TM/M-PLUS 1-3 1



Figure 1-1: COBOL-81 Program Development

Commands

EDIT PAYROLL.CBL

Create a source
program

COBOL PAYROLL/LIST

Compile the
source program

Y

LINK/C81 PAYROLL

Build the
executable
image

Y

RUN PAYROLL

Execute the
image

The following DCL commands appear in Figure 1-1:

EDIT PAYROLL.CBL
COBOL PAYROLL /LIST
LINK/CB1 PAYROLL
RUN PAYROLL

1 14 Using COBOL-81 on RSX-11TM/M-PLUS

Y

input/Output Files

PAYROLL.CBL

PAYROLL.LST

PAYROLL.SKL
PAYROLL.OBJ

SUPPORT
ROUTINES

((0

PAYROLL.TSK

C81ART-10002-58



For these commands, the following defaults are in effect:

o All the commands shown use the current default device and the user’s UFD to locate a file that

you specify.

® The EDIT command does not assume a default file type. By explicitly specifying CBL as a file
type when you create the source program, you can omit the file type in your compile com-

mand line.

® The COBOL command assumes that if no file type has been specified for a source file, its file
type is CBL. Unless you use qualifiers to change the names of its output files, the compiler uses
the default file types LST and OB]J for the listing and object files, respectively. The compiler
also produces a skeleton overlay descriptor file with a default file type of SKL.

e The LINK/C81 command assumes that if no file type has been specified for an input file, its
file type is SKL. To use the LINK/C81 command, you must be sure that the SKL file is available

in addition to the OB file. If no qualifiers override the default output file types, the LINK/C81

command assigns the default file type TSK for the executable file.

® The RUN command assumes that if no file type has been specified for a file, its file type is TSK.

Table 1-1 summarizes the default file types.

Table 1-1: Default File Types

Type of File

Default Value

Input to compiler
Output from compiler
Compiler listing file
Input to LINK/C81
Output from LINK/C81

Input to RUN command

CBL
OBJ, SKL
LST
SKL
TSK
TSK

1.2.2 Logical Names

Logical names allow you to keep programs and batch control files independent of the physical
locations of files. They also provide a convenient, shorthand way to specify devices and directories
that you refer to frequently.

With the ASSIGN command, you can assign a logical name to a physical device. The logical names
you assign can be system-wide or local, and you can assign any number.

The logical names that you assign for devices do not depend on the physical device specifications.

Unlike a physical name, a logical name is independent of the drive on which the medium is
mounted. Device logical names make it easier to adapt a program for use on different drives: You can
use logical names within file specifications in your COBOL-81 source code, and you do not need to

reference specific devices until run time.

Using COBOL-81 on RSX-11TM/M-PLUS

1-5



1.3 File Creation and Maintenance

You create a source file with the CREATE command or with a text editor. The default DIGITAL
Standard Editor available on RSX-11M/M-PLUS is EDT. Consult the EDT Editor Manual for informa-
tion about how to use this editor. You can also use EDI, but EDT is now the default editor. (EDI is
described in the RSX-11M/11M-PLUS Utilities Manual.)

Table 1-2 describes some of the basic DCL file-handling commands available to programmers. For
online assistance in entering a command or determining its parameters, qualifiers, or options, use the
HELP command. :

Table 1-2: Commands for File Operations

Creating and Modifying Files

CREATE Creates a file from records or data that you input following the
command; for example, lines entered from a terminal or placed
in a batch input file.

EDIT Invokes the EDT text editor.

Displaying Files and File Names
TYPE Displays the contents of individual files at the terminal.

DIRECTORY Displays information about the files in a UFD.

Copying, Renaming, and Appending Files

COPY Copies the contents of a file or files to another file or files.
RENAME Assigns a new name to a file.

APPEND Concatenates a file to the end of another file.

Deleting Files
DELETE Deletes files from a directory.

¥

1 1-6 Using COBOL-81 on RSX-11M/M-PLUS



Chapter 2
Creating and Entering a COBOL-81 Program

To create a source program file you use a text editor. EDT, the DIGITAL Standard Editor, is the default
editor for DCL on RSX-11TM/M-PLUS. When you use the EDIT command, the /EDT qualifier is
optional. The text editor enables you to type in your source code and store it in a system file. Once
you have stored the program, you can use EDT to make any desired changes.

2.1 Creating the Source File
To invoke EDT on an RSX-11M/M-PLUS system, you type: EDIT filename.typ. For example:

EDIT PAYROLL.CBL

If the file you specify already exists, you can then modify it. If the file does not exist, EDT prints:

Input file does not exist
[EOB]

*

The asterisk is EDT’s prompt for the next command. Following is a sample program created with EDT:

IDENTIFICATION DIVIGION.
PROGRAM-ID. TEST-1.
ENVIRONMENT DIVISION.
DATA DIVISION,
WORKING-STORAGE SECTION.

01 MESSAGE-AREA PIC X(24) VALUE "THIS IS5 A TEST PROGRAM".
PROCEDURE DIVISION.
000-BEGIN,

DISPLAY MESSAGE-AREA.

STOP RUN.

Consult the EDT Editor Manual for further instructions on using EDT.

2-1 1



2.2 Choosing a Reference Format

Before you can develop a COBOL-81 program, you must decide on a source reference format and
prepare your source program accordingly. The COBOL-81 compiler accepts source programs written
in either DIGITAL’s terminal reference format or ANSI reference format. However, you cannot mix

reference formats in the same compile command line, even when you are copying text from a
COBOL-81 library.

2.2.1 Terminal Reference Format

Use DIGITAL’s terminal reference format when you create source files from interactive terminals. The
COBOL-81 compiler accepts terminal format as the default reference format unless the default was
changed by your system manager during installation. Terminal format eliminates the line-number and
identification fields of ANSI format and allows horizontal tab characters and short lines. This saves
disk space and decreases compile time. Because the spacing requirements of terminal format are
more flexible, it is usually easier to edit source programs written in this format.

There are four rules regarding this format.

1. The maximum number of characters you can put on a line is 200. However, the listing
that the compiler produces displays only the first 120 characters.

2. The indicator area, if used, is the first character position of the line. Valid characters in
this area are hyphen (-), slash (/), and asterisk (*).

3. If an indicator is present in character position 1, Area A occupies positions 2 through 5; if
not, Area A occupies positions 1 through 4.

4. Area B immediately follows Area A.

You can use the TAB key or the SPACE bar to position source entries in a line. Terminal format
recognizes a RETURN as the end of a line. When you use indicators such as continuation (-),
comment (*), or skip-to-top-of-page (/) characters, you must enter these characters in position 1. Area
A then occupies positions 2 through 5 and Area B occupies positions 6 through 200.

For more information, see the COBOL-81 Language Reference Manual.

2.2.2 ANSI Reference Format

ANSI format (defined in the COBOL-81 Language Reference Manual) is useful on a card-oriented
system. If your program is in ANSI format, you must compile it using the /ANSI_FORMAT qualifier
(see Chapter 3) or convert it to terminal format using the REFORMAT utility (see Part 1I, Chapter 1).
You can choose this format if your COBOL program was written for a compiler that used ANSI
reference format.

The REFORMAT utility allows you to convert from terminal format to ANSI format or from ANSI
format to terminal format. You can also use REFORMAT to match the formats of source files and
COBOL-81 library files when their formats are not the same. See Part I, Chapter 1, for a full
description of the REFORMAT utility.

1 2-2 Creating and Entering a COBOL-81 Program



2.3 Using the COPY Statement

The COPY statement allows you to access COBOL-81 libraries at compile time. These libraries
contain source text that can be merged with one or more COBOL-81 programs at installation.

The simplest form of the statement is: COPY text-name. For example:

COPY CUSTRC.

A complex application can consist of many separately compiled programs that share the same struc-
ture declaration or variable declarations. In such cases, it is convenient to maintain only one copy of
the declaration of the variables and to include this declaration in each source program.

Although most statements contained in your program specify actions taken at run time, the COPY
statement specifies an action taken at compile time. When your program contains a COPY statement,
the compiler creates a “temporary’’ source file that is a composite of the CBL file you submit to the
compiler and the library text you include with the COPY statement. The compiler processes this
" temporary source file rather than the file you originally submit to it. Therefore, your program listing
(LST file) contains all text included by the COPY statement, but your original source file is un-

changed. For more information on the COPY statement, see Chapter 6 of the COBOL-81 Language
Reference Manual.

Creating and Entering a COBOL-81 Program 2-3 1






Chapter 3
Compiling a COBOL-81 Program

Once you have created your source program and are satisfied with it, you are ready to compile it.
This chapter describes how to use the COBOL command to compile your source programs into object
files. Topics include:

® Functions of the COBOL-81 compiler
e COBOL command syntax and qualifiers

e Compiler diagnostics and limitations

3.1 Functions of the Compiler

The primary functions of the COBOL-81 compiler are to:
e Verify COBOL source program statements and issue diagnostic messages.

® Generate machine language instructions in the form of an object module (OB file) from the
source program.

® Produce a skeleton overlay descriptor language file (SKL file) used by the Task Builder to
identify independent segments of the source program.

e Create a listing with diagnostics, a data allocation map, and cross-references.

The following is a sample compile command:

COBOL PAYROLL

This COBOL command invokes the COBOL-81 compiler and specifies that the source file is
PAYROLL.CBL. The file type is optional in the command line because CBL is the default. If the
compilation is successful, the output is assembled in an object module named PAYROLL.OBJ and a
skeleton overlay descriptor language file named PAYROLL.SKL.

3-1 1



3.2 Command Line Format

The format of the command line to the compiler is:

COBOL[/qualifiers] file-spec[/qualifiers]...

where:

file-spec specifies the files that contain the COBOL-81 source program. If you do not spec-
ify a file type, the compiler assumes CBL as the default.

/qualifiers  specify compiler options.

3.3 Command Qualifiers

You can use qualifiers to select or suppress compiler options. Table 3-1 lists the COBOL-81 com-
mand qualifiers and their normal defaults. Following the table are complete descriptions of the

compiler command qualifiers. The default qualifiers are indicated by (D). These defaults can be
changed during the installation of the compiler.

Table 3-1: Qualifiers

Qualifier

Summary Description

/ANSI_FORMAT
/NOANSI_FORMAT (D)
/CHECK (D)

/CHECK:BOUNDS
/CHECK:PERFORM

/NOCHECK
/CHECK:NOBOUNDS
/CHECK:NOPERFORM

/CODE:[NOICIS

/CROSS_REFERENCE

/NOCROSS_REFERENCE (D)
/DEBUG

/NODEBUG (D)

/DIAGNOSTICS[:filename]
/NODIAGNOSTICS (D)
/LIST[:filename]

/NOLIST (D)

/NAMES:xx

Accepts a source program in ANSI format.
Accepts a program in terminal reference format.

Enables range checking of subscripts, indexes, and nested PERFORM state-
ments at run time.

Enables range checking of subscripts and indexes only.
Enables range checking of nested PERFORM statements at run time.

Disables range checking.

Specifies object code (with or without the Commercial Instruction Set)
appropriate for the system that will execute the program.

Produces a cross-reference table of data and procedure-names in your LST
file.

Suppresses production of a cross-reference table.

Creates symbol information in the object code for use by the Symbolic
Debugger. :

Suppresses creation of the symbol information used by the Symbolic
Debugger.

Produces a DIA file of the compilation.
Suppresses production of a DIA file.
Produces a LST file of the compilation.
Suppresses production of a LST file.

Changes the PSECT kernel in your object file from SC (the default) to the
value you specify for xx.

(continued on next page)

I 3-2 Compiling a COBOL-81 Program



Table 3-1: Qualifiers (Cont.)

Qualifier Summary Description

/OBJECT[:filename] (D) Creates an OB file as output.

/NOOBJECT Suppresses the production of an OB] file.

/SHOW Produces Procedure Division and Data Division offset maps in your LST file.

/SHOW:MAP

/NOSHOW (D) Suppresses the production of offset maps.

/SUBPROGRAM Treats the source program as a subprogram.

/NOSUBPROGRAM (D) Examines the Procedure Division statement to determine if the program is
the main or the subprogram.

/TEMPORARY|:device] Changes the storage area for temporary work files from SY: (the default) to
the value you specify for device.

/TRUNCATE Performs decimal, rather than binary, truncation on COMP data items.

/NOTRUNCATE (D) Performs binary truncation on COMP data items.

/WARNINGS[:INFORMATIONAL] (D) Tells the compiler to issue diagnostics including informational messages.

/NOWARNINGS Suppresses informational diagnostics.

/WARNINGS[:NOINFORMATIONAL]

The following are complete descriptions of the COBOL-81 compiler qualifiers:

/ANSI_FORMAT
/NOANSI_FORMAT (D)

The /ANSI_FORMAT qualifier tells the compiler that your program is in conventional (or ANSI)
format, rather than the default, terminal format.

/NOANSI_FORMAT is the default.

/CHECK (D)
/CHECK:BOUNDS
JCHECK:PERFORM
/CHECK:NOBOUNDS
/CHECK:NOPERFORM
/NOCHECK

The /CHECK:BOUNDS qualifier compares subscript and index ranges at run time against the
ranges defined by corresponding OCCURS clauses. If any range is exceeded during program
execution, COBOL-81 issues an error message.

The /CHECK:PERFORM qualifier determines whether or not your program’s PERFORM state-
ments are nested properly (if nested at all). If COBOL-81 detects improper nesting during pro-
gram execution, it issues an error message.

With /CHECK:NOBOUNDS, COBOL-81 does not check subscript and index ranges at run time
against the ranges defined by OCCURS clauses. If any range is exceeded during execution,
COBOL-81 does not issue an error message.

Compiling a COBOL-81 Program 3-3



Similarly, with /CHECK:NOPERFORM, the compiler does not check to determine whether your
program’s PERFORM statements are nested properly (if at all). If COBOL-81 detects improper
nesting during execution, it issues an error message. If you use /CHECK:NOPERFORM, the
compiler does not produce diagnostics when PERFORM statements are nested improperly. Do
not use the /CHECK:NOBOUNDS and the /CHECK:NOPERFORM qualifiers in the same com-
mand line. COBOL-81 issues a message indicating conflicting qualifiers. Instead, use the
/NOCHECK qualifier.

The /NOCHECK qualifier tells the compiler to suppress range checking for both subscripts and
indexes and for the nesting of PERFORM statements. The purpose of the suppression of checking
is to reduce task size and improve performance.

/CHECK is the default.

/CODE:[NOICIS

The /CODE:CIS qualifier tells the compiler to use CIS (Commercial Instruction Set) in the object
code it produces. If the system manager set the default to non-CIS code when COBOL-81 was
installed, and if your machine does have CIS, this qualifier overrides that default. This qualifier is
needed when you are developing a program to run on a system other than your own. See the
system manager if you do not know whether or not your machine has CIS.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (D)

The /CROSS_REFERENCE qualifier tells the compiler to add two cross-reference tables to the
end of your list file: one for data-names and one for procedure-names. In each table, the names
you used in your program are listed alphabetically. Opposite each name is a list of every line
number in which that name occurs. A D" after a number indicates the line in which you
defined the name. An asterisk (*) after a line number indicates a destructive reference, such as a
value assignment to a data-name.

Here is an excerpt from a list file (SAMPLE.LST) that resulted from the command line COBOL
SAMPLE /CROSS_REFERENCE/LIST:

CROSS5 REFERENCE IN ALPHABETICAL ORDER
DATA NAMES and MNEMONIC NAMES

END-OF-DATA 23D 73 83
FAKE-CARD 18 18D 84
F-NUMBER 22D 82

This qualifier is particularly useful if, for example, one variable yields unexpected results when
you run your program. You can trace the variable through your program, and the table gives you
a list of the lines to check (see Part 1l, Chapter 2).

The cross-reference tables are also helpful when you use the Symbolic Debugger.
/NOCROSS_REFERENCE is the default.

/DEBUG
/NODEBUG (D)

The /DEBUG qualifier tells the compiler that you intend to use the COBOL-81 Symbolic
Debugger (see Part I, Chapter 3). The compiler then generates symbol information in the object

1 34 Compiling a COBOL-81 Program



module for all data-names and procedure-names. This increases the size of the object file.
However, when you finish debugging and no longer need the symbols, you can recompile
without this qualifier.

If you include the Symbolic Debugger in your program, you must also use the /DEBUG qualifier
to the LINK/C81 command.

/DIAGNOSTICS[ filename]
/NODIAGNOSTICS (D)

The /DIAGNOSTICS qualifier enables the creation of a diagnostics file with the same file name

as the source file and with the file type DIA. The DIA file contains the compiler diagnostic
summary. You can specify a different file name or type for this diagnostics file.

/NODIAGNOSTICS is the default.

/LIST[:filename]
/NOLIST (D)

The /LIST qualifier tells the compiler to produce a LST file containing the source code and any
diagnostic messages. /LIST is necessary when you want to use the /CROSS_REFERENCE or the
/SHOW qualifiers.

If you append the /LIST qualifier to an input file specification instead of to the compile com-
mand, the resulting LST file has the same name as the qualified file.

/NOLIST is the default.

/NAMES:xx

The /NAMES qualifier tells the compiler to use the two alphanumeric characters you specify as
the PSECT kernel for this program. The only time you need this qualifier is when your executable
image uses both subprograms and segmentation. See Part Il, Chapter 5 for a detailed
explanation. :

/OBJECT[:filename]
/NOOBJECT

The /OB]ECT qualifier allows you to specify a file other than the default as the compiled object
file. /NOOBJECT suppresses the creation of an object file.

If you append the /OBJECT qualifier to an input file specification instead of to the compile
command, the resulting OB] file has the same name as the qualified file.

/OBJECT is the default.

/SHOW
/SHOW:MAP
/NOSHOW (D)
/SHOW:NOMAP (D)

The /SHOW and /SHOW:MAP qualifiers are equivalent. They tell the compiler to add two
offset maps to the list file, one referring to the Data Division and one referring to the Procedure
Division. The compiler provides these maps for use with ODT (Online Debugging Tool). Consult
the IAS/RSX-11 ODT Reference Manual for more information.

/INOSHOW or /SHOW:NOMAP is the default

Compiling a COBOL-81 Program 3-5



/SUBPROGRAM
/NOSUBPROGRAM (D)

The /SUBPROGRAM qualifier tells the compiler that it is compiling a subprogram. You must use
this qualifier only if the subprogram does not use parameters from the main program; that is, if it
does not contain the PROCEDURE DIVISION USING header.

/NOSUBPROGRAM is the default.

/TEMPORARY/[:device]

The /TEMPORARY qualifier tells the compiler to store its temporary working files on the device
you specify during compilation. This qualifier is useful if there is little system disk space avail-
able and you want to specify a device other than SY:, which is the default.

/TRUNCATE
/NOTRUNCATE (D)

The /TRUNCATE qualifier tells the compiler to perform decimal truncation on the values of
COMPUTATIONAL (or COMP) data items. By default, COBOL-81 performs binary truncation.
With binary truncation, the maximum value a COMP item can contain depends on its storage
allocation. If you specify the /TRUNCATE qualifier, the maximum value depends on the item'’s
PICTURE character-string.

/NOTRUNCATE is the default.

/WARNINGS (D)
/WARNINGS:INFORMATIONAL
/WARNINGS:NOINFORMATIONAL
/NOWARNINGS

The /WARNINGS and /WARNINGS:INFORMATIONAL qualifiers are equivalent. They tell the
compiler to include informational diagnostics during compilation. The /NOWARNINGS and
/WARNINGS:NOINFORMATIONAL qualifiers are equivalent. They prevent the compiler from
issuing informational diagnostics during compilation. If you use either of these qualifiers, only
warning and fatal diagnostics are included in the list file, diagnostic file, and diagnostic
summary.

/WARNINGS (or /WARNINGS:INFORMATIONAL) is the default.

3.4 Examples

In addition to producing OBJ and SKL files, the compile command lines in the following examples
show the use of various qualifiers. ‘

1. COBOL YEARLY /WARNINGS:NOINFORMATIONAL

Gives you a summary display of warning and fatal errors only.

2. COBOL ANNUAL /LIST/SHOW:MAP/CROSS _REFERENCE

Creates the list file ANNUAL.LST with offset maps and cross-reference tables.

I 3-6 Compiling a COBOL-81 Program



3. COBOL TEST/TEMPORARY:DKZ
Uses DK2: for storing temporary files during compilation.
4. COBOL TEMP/CROSS_REFERENCE

Is a meaningless use of the /CROSS_REFERENCE qualifier because no list file has been
specified to contain the cross references. COBOL-81 ignores the qualifier, proceeds with
the compilation, and gives you a summary of the results.

3.5 Common COBOL-81 Command Line Errors

Some common errors to avoid when you enter COBOL command lines include:
® Omitting the /ANSI_FORMAT qualifier from source programs that are in ANSI format
¢ Including contradictory qualifiers, such as /SHOW with /NOLIST

® Forgetting to include a file type in a file specification when you do not want the default file
type

3.6 Compiler Diagnostics Summary

During a compilation, the COBOL-81 compiler checks your program against COBOL syntax and
semantic rules. It issues a diagnostic message for each violation it finds. A diagnostic belongs to one
of three classes, depending on the function it serves: | (Informational), W (Warning), or F (Fatal).

Informational

If the violation in your source code has no effect on the rest of the program and the recovery is
obvious, the compiler can overlook it. However, it issues an informational message to remind
you of the COBOL-81 statement the code has violated or to point out potential problems the
code creates.

Warning
If the recovery action taken by the compiler for a particular error can affect the rest of the
program, a warning message is issued.

Fatal

If no recovery action can be taken by the compiler for an error in the code, a fatal message is
issued. When a fatal error is found, the compilation temporarily stops. Before resuming, the
compiler sometimes skips a section of source code. If source code has been skipped, an infor-
mational message is issued to show you where the compilation resumes.

If only informational or warning diagnostics occur, the program is said to have compiled successfully.
However, you should check all informationals and all warnings. If the program contains any fatal
errors, the compilation is unsuccessful and neither an object file nor an SKL file is created.

For example, assume you typed this line to compile the source program and get an object file and a
list file:

COBOL DATE/LIST

Compiling a COBOL-81 Program 3-7 1



There are several possible responses from the COBOL-81 compiler. One of the possible responses
follows:

€81 - O FATAL ERRORS
€81 - 2 WARNINGS
€81 - 3 INFORMATIONALS

This indicates successful compilation because there are no fatal errors; that is, DATE.OBJ and
DATE.SKL were created. However, you should examine DATE.LST to see which rules the source
code violated.

Another possible response includes the following lines:

CB1 - 2 FATAL ERRORS - obdect deleted
C81 - 2 WARNINGS
C81 - 4 INFORMATIONALS

Due to the two fatal errors, the compilation is unsuccessful and the compiler did not create
DATE.OBJ or DATE.SKL. You must examine DATE.LST for the diagnostic messages, correct
DATE.CBL, and compile it again.

The compiler issues (that is, puts in the list and diagnostic files) a maximum of 500 errors. The
compilation continues and the summary count continues to be updated, but you have no way of
knowing what errors occurred after the first 500.

See Appendix B for a list of the COBOL-81 compiler error messages.

3.7 Compiler Limitations Summary

There are several implementation limits to the COBOL-81 compiler, and you receive diagnostics if
you exceed them. For a list of these limitations, see Appendix A.

I 3-8 Compiling a COBOL-81 Program



Chapter 4
Linking a COBOL-81 Program

After you have compiled your source program, you must link the resulting object modules(s) to create
an executable (or task) image of your program. The LINK/C81 command accepts COBOL-81 OB]J
files and SKL files as input, invokes the COBOL-81 BLDODL utility to create ODL and CMD files, and
calls the Task Builder, which produces an executable image (TSK file).

This chapter describes the use of the DCL LINK/C81 command. See Appendix D for information
about using MCR (Monitor Console Routine) commands to produce an executable image. You must
refer to Appendix D if you plan to use BLDODL utility options that DCL does not provide.

4.1 Functions of the LINK Command

The primaky functions of the LINK/C81 command are to allocate memory within the executable
image, to resolve symbolic references among the modules being linked, to assign values to relocat-
able global symbols, and to perform relocation.

4.2 Using the LINK/C81 Command to Build an Executable Image

To link your program, you specify the SKL file as the input file specification to the LINK/C81.
command. The resulting output (or task) file (containing the executable image) has the same file name
as the input file, but its file type is TSK. The format of the LINK/C81 command is:

LINK/C81[/qualifier] file-spec|, ...l [/qualifierl[, ...]
where:
file-spec specifies the COBOL-81 object file(s) to be linked.

/qualifiers  specify options to the command.

There are two categories of qualifiers to the LINK/C81 command. Library routine qualifiers are
discussed in Section 4.2.1 and output file qualifiers are discussed in Section 4.2.2



4.2.1 Library Routine Qualifiers

In most cases, the LINK/C81 command supplies your program with the run-time and 1-O support you
need by default, and you do not need to use any qualifiers to include:

® Disk-resident RMS-11 libraries for Record Management Services I-O, if your program requires
RMS

® Disk-resident COBOL-81 OTS library C81LIB or C81CIS, depending on whether or not your
system has the Commercial Instruction Set (CIS)

For example:

LINK/CB1 /RMS:RES/0TS:RES PAYROLL

This command includes memory-resident libraries when you have them installed on your system, and
it clusters these libraries without requiring any input from you. Only use this command if both
libraries have been installed as memory-resident on your system.

The following qualifiers allow you to specify libraries other than the defaults:

/FMS

Using the /FMS qualifier indicates that you are including FMS (File Management Support) library
support in your task image. You must specify FMS support if you call FMS routines from your
program.

/OTS:RESIDENT
/OTS:NORESIDENT

The /OTS:RESIDENT qualifier includes memory-resident OTS, either C81CIS or C81LIB, in your
task if memory-resident OTS is installed. If you use the /OTS:RESIDENT qualifier and your
system does not have memory-resident OTS, an error message will be issued at link time.

The /OTS:NORESIDENT qualifier creates a reference to the disk-resident OTS library.

/RMS:RESIDENT
/RMS:NORESIDENT

The /RMS:RESIDENT qualifier creates a reference to the shared RMS-11 memory-resident
library. The resulting executable image is smaller and uses the resident library, RMSRES, at run
time.

The /RMS:NORESIDENT qualifier creates a reference to the disk-resident RMS library.

1 4-2 Linking a COBOL-81 Program



4.2.2 Output File Qualifiers

The following qualifiers control the output files produced by the LINK/C81 command.

/MAP
/NOMAP

Use the /MAP qualifier to indicate that you want the LINK/C81 command to produce a memory
map file. The /NOMAP qualifier indicates that you do not want a memory map file.

If you use /MAP, you can also assign a file specification for the memory map file that is different
from the file specification in your command line. If you omit the file specification, LINK/C81
produces a map file on the same device, with the same directory and name, as the executable
file. The default file type is MAP.

/NOMAP is the default.

/DEBUG
/NODEBUG

Use the /DEBUG qualifier to indicate that you are including the COBOL-81 Symbolic Debugger
in your task. You must have used the /DEBUG compiler qualifier to the COBOL command to
use the /DEBUG qualifier to the LINK/C81 command.

/NODEBUG is the default.

4.3 Linking Error Message Summary

If the Task Builder detects any errors while linking object modules, it displays messages indicating the
cause and severity of the error. If any fatal error conditions occur, that is, errors with severities of F,
the Task Builder does not produce an image file. MAP files with diagnostics are produced, however,
if you use the /MAP qualifier.

A common error that can occur during linking is that a reference to a symbol name remains unre-
solved. This error occurs when you omit required library qualifiers from the LINK/C81 command and
the Task Builder cannot locate the definition for a specified global symbol reference. It can also occur
when a subprogram to be called from the main program has been omitted from the LINK/C81
command line. If an error occurs when you build modules, you can often correct the error by
reentering the command line and specifying the correct modules or libraries.

If execution of the LINK/C81 command is unsuccessful, an error message is issued to your terminal
before the return to the system prompt.

For example, command execution is unsuccessful if the resulting image is too large. The following
message indicates this condition:

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Seg-name is the name of the object file the Task Builder was processing when the overflow occurred.
To recover, you must make more efficient use of memory by overlaying sections of the task. Use the
COBOL-81 segmentation facility to overlay your object code or the BLDODL utility to overlay
RMS-11 routines. See Part I, Chapters 4 and 5 for information about these facilities.

Refer to the RSX-11M/M-PLUS Task Builder Manual for an explanation of all other link-time errors.

Linking a COBOL-81 Program 4-3 1






Chapter 5
Running a COBOL-81 Program

Your COBOL-81 TSK file is an executable form of the declarations and instructions represented in
your COBOL source program. It includes 1/0O routines and other subprograms inserted by the Task
Builder as a result of your commands or the contents of the ODL file. It also includes the COBOL-81
run-time system, which is a library of predefined routines that perform standard functions for your
program, such as arithmetic and data movement. The run-time system is also referred to as the Object
Time System (OTS).

5.1 Functions of the COBOL-81 Object Time System (OTS)
The principal functions of the COBOL-81 OTS include:

® Arithmetic operations

® |nput-output operations

® Subscripting, indexing, and table handling
® String operations

® Error handling

5.2 Command Line Format

To run a COBOL-81 program, type:
RUN task-file

where:

task-file  names your executable (or task) image. The default file type is TSK.

5-1 1



5.3 Run-Time Error Message Summary

The COBOL-81 Object Time System checks adherence to COBOL-81 general rules and issues error
messages to your terminal if there is a general rule violation in your program.

If a run-time error occurs, the OTS issues two lines of information to your terminal. The first line
contains the number associated with the error message and a description of the error. The second line
contains the location of the error in your source code.

The general format of this information is:

nn  message-text
Error occurred in program program-name at line number n.

where:
nn identifies the number associated with the error. For a complete listing of run-
time error messages, see Appendix C.
message-text describes the error.

program-name is the name that appears in the PROGRAM-ID paragraph of the source pro-
gram in which the error has occurred.

n is the compiler-generated line number of the source statement that caused the
error.

For example, if PAYROLL.TSK attempts to read a record from a file that is not open, this message is
issued:

33 Prodram attempted an I/0 operation on a file that is not oren.
Error occurred in Pprodram PAYROLL at line number 32.

If the program is executing within one or more PERFORM statements when the error occurs, the line
number of each active PERFORM statement will be issued in addition to the message (unless you
compiled the program with the /NOCHECK or the /CHECK:NONE qualifier). For example:

2 Prodram attempted to exit PERFORMs in the wrong order.
Error occurred in Prodram REPORT at line number 22,

The currently active perform line number(s) are:
25
22

If the error occurs in a called program, the calling sequence will be issued in addition to the message.
For example:

42 Prodram attempted division by zero.
Error occurred in Pprodram SUBRS at line number 15,

SUBRS was called from line number 20 in program SUBR4.

SUBR4 was called from line number 43 in prodram SUBR3.
SUBR3 was called from line number 35 in pProdram SUBRZ.

See Appendix C for the complete list of run-time error messages, along with suggested recovery
actions.

I 5-2 Running a COBOL-81 Program



Appendix A
COBOL-81 Compiler Implementation Limitations

This appendix lists the implementation limitations for the COBOL-81 compiler. The compiler issues
diagnostics whenever you exceed any of these limits.

1.

The run-time storage that the compiler allocates for object code and data cannot exceed
65535 bytes.

The run-time storage that the compiler allocates for an indexed file’s RECORD KEY or
ALTERNATE KEY data item cannot be greater than 255 bytes.

The number of ALTERNATE KEY data items for an indexed file cannot exceed 254.

The value of the integer in the EXTENSION option of the APPLY clause must be from 0 to
65535 (inclusive).

The number of SAME AREA or SAME RECORD AREA clauses cannot exceed 30.
The length of any record in a file description cannot exceed 16384 bytes.

The physical block size for a sequential tape file must be from 18 to 8192 bytes
(inclusive).

A PICTURE character-string cannot contain more than 30 characters.

PICTURE character-strings for alphanumeric edited or numeric edited data items cannot
represent more than 255 standard data format characters (each character occupies one
byte in storage).

A-1 1



10.

11.
12.

13.
14.
15.

16.

A-2

PICTURE character-strings for alphanumeric or alphabetic data items cannot represent
more than 65535 standard data format characters.

A nonnumeric literal cannot contain more than 256 characters.

The number of operands in the USING phrase of a CALL statement cannot be greater than
255.

The number of operands in a DISPLAY statement cannot be greater than 254.
The number of operands in a GO TO DEPENDING statement cannot be greater than 512.

The integer in the TIMES option of the PERFORM statement cannot exceed
2,147,483,648.

The number of SORT keys is limited to 16. Each of these must be less than 256 charac-
ters. The sum of the keys must be less than or equal to 512 characters.

COBOL-81 Compiler Implementation Limitations



Appendix B
Compiler Error Messages

This appendix lists the COBOL-81 compiler error messages that are preceded by an asterisk (*). The
compiler error messages have been made as self-explanatory as possible; however, some require
further clarification. In these cases, the compiler issues the asterisk along with the message to tell you
that more information is available in this appendix. For each message, a numeric code and severity
level are provided. There are three severity levels: Informational (I), Warning (W), and Fatal (F).

004

010

016

019

025

201

*This literal contains a non-printing character.

If you intended to include the non-printing character in the literal, no further action is
necessary. If not (that is, if the character is there by error), use a text editor to correct
the literal.

*This character is not in the COBOL character set.

The compiler ignores the character.

*This picture string is too long.

This is due to one of the following:
® More than 30 characters in the PICTURE string
® More than 18 digits represented for a numeric item

® More than 256 characters represented for a nonnumeric item

*This is not a valid picture string.

See the COBOL-81 Language Reference Manual for the syntax rules regarding PICTURE
character-strings.

*Invalid character used with repeat count.

See the COBOL-81 Language Reference Manual for the syntax rules regarding PICTURE
strings.

*The redefining item is smaller than the redefined item.

If the difference in the items’ sizes is not intentional, correct the source code.

B-1 1



203 1

229 F

233 F

263 F

268 F

300 |

310 W

1 B-2

*Fill bytes have been inserted in this record or item.

Fill bytes will make this item longer than you might expect. To see how much space the
compiler allocates for this item, use the /SHOW:MAP qualifier when you compile the
program.

*The VALUE clause is incompatible with the category of this item.

A numeric item can have only a numeric literal value. An alphanumeric, alphanumeric
edited, numeric edited, or alphabetic item can have only a nonnumeric literal value.
*This value exceeds the maximum for this parameter.

See the COBOL-81 Language Reference Manual for the rules and limits for the particular
statement causing the error.

*Multiply defined name.

Each name in a COBOL-81 program can belong to only one set of user-defined words.
Condition-names, data-names, and record-names belong to the same set; therefore, you
can define a data-name, record-name, and condition-name with the same word. In these
cases, you can qualify the word so that there is no ambiguity when you reference an
item.

However, if you define a word to be in one of the following sets, you cannot use that

- word to define an item in any of the other sets:

® Alphabet-name
® File-name

® |ndex-name

® Mnemonic-name
® Paragraph-name
® Program-name

® Section-name

® Text-name

Revise your source code so that the name does not duplicate a name in another set.
*Use of this file in a SAME AREA clause implies its usage in more than one SAME
RECORD AREA clause.

If any file in a SAME AREA clause is in a SAME RECORD AREA clause, all files in that
SAME AREA clause must be in the SAME RECORD AREA clause.

*The redefining item is larger than the redefined item.

If the difference in the items’ sizes is not intentional, correct the source code.

*The RECORD CONTAINS value is greater than length of longest record.

When the program reads or writes a record, it will access the number of characters
specified by the RECORD CONTAINS clause, including characters you did not define as
part of the record. '

Compiler Error Messages



3w
312 W
316 1
353 W
354 W
453 F
501 1

*The length of longest record is greater than RECORD CONTAINS value.

The RECORD CONTAINS value is ignored. When the program reads or writes a record, it
will access the number of characters specified by the longest record description.

*The upper bound on RECORD VARYING clause is greater than longest record length.

The upper bound will be used to determine the maximum number of characters that can
be read or written.

*Fill bytes have been inserted before this data item.

Fill bytes will make this item longer than you might expect. To see how much space the
compiler allocates for this item, use the /SHOW:MAP qualifier when you compile the
program.

*Index data items are allocated differently using VAX-11 COBOL.

The compiler issues this message only if you compile your program with the /STA:VAX
switch.

USAGE IS INDEX data items in COBOL-81 are two bytes long. In VAX-11 COBOL, they
are four bytes long. You must not store these items in COBOL-81 files if a VAX-11
COBOL program also accesses those files. Appendix D of the COBOL-81 Language
Reference Manual explains how you must use index data items in your program to be
compatible with VAX—11 COBOL.

*The storage allocation of this item is incompatible with VAX-11 COBOL.

The compiler issues this message only if you compile your program with the /STA:VAX
switch.

COBOL-81 aligns USAGE IS COMP items on a word boundary. VAX-11 COBOL aligns
these items on any byte boundary. If your program generates files containing COMP data
items and a VAX-11 COBOL program must access those files, you must resolve this
incompatibility. The easiest way to do this is to specify the SYNCHRONIZED clause for
all COMP items in your program. Appendix D of the COBOL-81 Language Reference
Manual also explains a manual method (explicit FILLER item insertion) you can use to
resolve COMP alignment differences.

*Ambiguous reference.

Your reference to this item is not unique; that is, your reference points to more than one
user-defined word in your program. Remember that data-names and procedure-names
need to be unique only if you refer to them in Procedure Division statements. This
message appears when you define a name more than once in your program and cannot
use qualification to make it unique. In this case, you must change one of the duplicate
names to a unique one.

*Compilation resumed at this point.

This message may be issued after the compiler detects a fatal error. It indicates that the
compiler skipped source code from the last error to this point, and in doing so it might
have overlooked errors or created new errors. For example, skipping a SELECT clause will
cause an error when the compiler encounters the file description.

Compiler Error Messages B-3 1



512 F

520 F

532 F

543 F

637 F

1 B-4

*A required operand is missing.

See the COBOL-81 Language Reference Manual for the rules regarding the statement
causing this error.

*Invalid PROCEDURE DIVISION header. r

See the COBOL-81 Language Reference Manual for the rules regarding the two formats
for this header.

*lllegal combination of sending and receiving items.

See the COBOL-81 Language Reference Manual for tables of valid MOVE or SET operand
combinations.

*This program-name contains an invalid character.

A program-name can contain characters from the set A through Z, a through z, 0 through
9, and hyphen (-).

*Invalid use of the INTO phrase.

When you use the INTO phrase of a READ or RETURN statement, one of the following
conditions must be true:

® Only one record description applies to the file.

® All record descriptions for the file and the receiving data item are group items or
alphanumeric elementary items.

Either change your program so that these conditions are true or delete the INTO phrase
from the statement.

Compiler Error Messages



Appendix C
Run-Time Error Messages

This appendix lists the COBOL-81 run-time error messages. COBOL-81 displays these messages
when it detects errors during program execution.

Each message is followed by an explanation and one or more suggested solutions.

Messages preceded by asterisks (*) indicate Synchronous System Traps, which are described in the
documentation set for your operating system. A Synchronous System Trap can occur if:

® You compile your program with any of the following qualifiers: /NOCHECK, /CHECK:NONE,
/CHECK:NOPERFORM, or /CHECK:NOBOUNDS

® You get a link-time error but execute the task anyway

When a Synchronous System Trap occurs, the line number of the source code is not available;
COBOL-81 displays the object-address instead. To associate this address with the source program
statement that caused the error, use the memory allocation map produced by the LINK/C81 com-
mand (when its /MAP qualifier is specified). Revise the source code so that the PERFORM statement
(or the subscript or index) is within the range specified in the program.

COBOL-81 also issues message 15, RESERVED INSTRUCTION, if a program was compiled with the
/CODE:CIS qualifier and you attempt to run it on a system without the Commercial Instruction Set
(CIS). In this case, you must recompile the program with the /CODE:NOCIS qualifier and then
recreate the task image.

C1 1



If the corrective actions just described do not solve the problem, submit an SPR (Software Problem
Report).

1

I C-2

Program attempted to PERFORM a range that is already being performed.

An active PERFORM range must be exited before it can be performed again. Revise the
program logic.

Program attempted to exit PERFORMs in the wrong order.

All PERFORM ranges, whether physically nested or not, must be exited in reverse order.
Revise the program logic.

A subprogram attempted to CALL itself either directly or indirectly.

The EXIT PROGRAM statement must be executed in a subprogram before the subprogram can
be called again. Revise the program logic.

Number of parameters used by subprogram does not equal number in CALL statement.

The number of arguments in the calling program’s CALL statement must equal the number
of arguments in the called program’s PROCEDURE DIVISION USING header. Revise the
source code.

Program evaluated a subscript outside the range of the OCCURS clause.

A subscript value must be within the range defined by the OCCURS clause, and not less than
one. Determine why the program is using a value outside the range and revise the code.
Program attempted to OPEN more than one file specified in a SAME AREA clause.

Only one file in a SAME AREA clause can be open at one time. Revise the program logic.

Version number of program does not match that of the OTS.
This error will occur in two situations:

® When a new version of the OTS has been installed and the version numbers of the main and
subprograms do not match. In this case, recompile all the programs in the task and build a
new executable image.

® When a new version of the compiler has been installed but a new OTS has not been
installed. In this case, install the new OTS and build a new executable image.

Environmental integrity fault.

Part of the run-time system has been damaged by the program or by an error in the run-
time systemitself. Thiserror could resultfrom an out-of-range subscriptinaprogramcompiled
with qualifiers that suppress subscript range checking (/NOCHECK, /CHECK:NONE,
/CHECK:NOBOUNDS). Recompile the program with the /CHECK:BOUNDS qualifier and
correct any errors the bounds checking detects. If the error still occurs, submit an SPR
(Software Problem Report).

Program attempted to OPEN more than the maximum of 15 files.
No more than 15 files can be open at the same time. Revise the source code.

Run-Time Error Messages



10

*11
*12
*13
*14
*15
*16
17
*18

19

20

21

22

Error in an input-output operation. The RMS error code is n.
This is an RMS-specific error; see the RMS-11 User’s Guide for more information.

An appropriate USE procedure in the program can handle this error during execution. The file
status key value for this error is 98 if the operation was CLOSE, and 30 for all other operations.

ODD ADDRESS FAULT.

MEMORY PROTECTION VIOLATION.
BPT INSTRUCTION.

10T INSTRUCTION.

RESERVED INSTRUCTION.

INVALID EMT INSTRUCTION.

TRAP INSTRUCTION.

FLOATING POINT EXCEPTION.

Program could not find a record with the record key specified.
Determine why the record was not in the file. If this error is to be expected, add a routine to
the source code that will handle it during execution. It can be handled by either:

® The INVALID KEY phrase.

® An appropriate USE procedure. The file status key value for this error is 23.

Program attempted to WRITE beyond the boundary of the file.
This error occurs if the system cannot extend the file. To recover, make the file noncontiguous
(see your operating system documentation for instructions).

To handle this error during execution, add a routine to the source code. The error can be
handled by either:

® The INVALID KEY phrase.

® An appropriate USE procedure. The file status key value for this error is 34 if the organiza-
tion is sequential, and 24 if it is indexed.

Program attempted to OPEN a file that another program is accessing.

A file cannot be accessed for writing or updating by more than one program at a time unless
ALLOWING ALL was specified in its OPEN statement. Either revise the OPEN statement or add
an appropriate USE procedure to the program to handle the error during execution. The file
status key value for this error is 91.

Program attempted to access a record that another program is writing or updating.

A record cannot be written or updated by more than one program at a time. An appropriate
USE procedure in the program can handle this error during execution. The file status key value
for this error is 92.

Run-Time Error Messages C3 1



23

24

25

26

27

28

29

C-4

Program attempted an 1-O operation that is invalid with the OPEN mode for the file.

Either revise the source code (changing the OPEN mode or the I-O operation) or add an
appropriate USE procedure to the program to handle the error during execution. The file status
key value for this error is 94.

Program attempted a DELETE or REWRITE not immediately preceded by a successful READ.
Either revise the source code or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 93.

Program attempted to WRITE or REWRITE a record with a nonascending key value.

If nonascending keys are to be allowed, change the access mode to RANDOM or DYNAMIC.

Otherwise, add a routine to the program to handle the error during execution. The error can
be handled by either:

® The INVALID KEY phrase.

® An appropriate USE procedure. The file status key value for this error is 21.

Program attempted to WRITE or REWRITE a record with a duplicate key value.

If the error occurred on an alternate key, recreate the file specifying DUPLICATES. Otherwise,
add a routine to the program to handle the error during execution. The error can be handled
by either:

® The INVALID KEvahrase.

® An appropriate USE procedure. The file status key value for this error is 22.

Program attempted to REWRITE a record after changing the value of its primary key.

For indexed files in sequential access mode, the values of the primary keys in the record to be
replaced and the last record read from the file must be equal. Either revise the source code
(changing the access mode to RANDOM or DYNAMIC) or add a routine to the program to
handle the error during execution. The error can be handled by either:

® The INVALID KEY phrase.

® An appropriate USE procedure. The file status key value for this error is 21.

Program attempted to READ from a missing optional file.

Add a routine to the program to handle this error during execution. It can be handled by
either:

® The AT END phrase.
® An appropriate USE procedure. The file status key value for this error is 15.

Program could not find a file specified to be OPENed.

Determine whether the values in the ASSIGN and VALUE OF ID clauses are incorrect or the
file is actually missing. An appropriate USE procedure in the program can handle this error
during execution. The file status key value for this error is 97.

Run-Time Error Messages



30

31

32

33

34

35

36

37

38

39

40

Program attempted to create a file but could not find enough space.

This error occurs if the device in the file specification does not contain the preallocation
amount of space. (If the program does not specify a preallocation amount in its APPLY clause,
the RMS-11 default is four blocks for a sequential file and four times the bucket size for an
indexed file.) Either change the preallocation amount in the APPLY clause, create more space
on the device, or add an appropriate USE procedure to the program to handle the error during
execution. The file status key value for this error is 95.

Program attempted an 1-O operation on a file that was already closed.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

Program attempted to READ a record but the end of the file was reached.

Add a routine to the program to handle this error during execution. It can be handled by
either:

e The AT END phrase.

e An appropriate USE procedure. The file status key value for this error is 13 for the first
occurrence, and 16 for each subsequent occurrence before a valid record position is
established.

Program attempted an I-O operation on a file that is not open.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

Program attempted to OPEN a file that was previously closed WITH LOCK.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

Program attempted to OPEN a file that is already open.

Either revise the program logic or add an appropriate USE procedure to the program to handle
the error during execution. The file status key value for this error is 94.

Program attempted to use an exponent greater than the 99 maximum.

Determine how the exponent was generated and revise the source code.

Program attempted to use a non-integer exponent.
Determine how the exponent was generated and revise the source code.

Program generated an intermediate value that exceeded the maximum of 10 to the 99th.
Determine how the value was generated and revise the source code.

Program failed in an attempt to ACCEPT data.

This is an indication of a hardware error. The terminal is busy, off line, or otherwise
unavailable.

Program failed in an attempt to DISPLAY data.

This is an indication of a hardware error. The terminal is busy, off line, or otherwise
unavailable.

Run-Time Error Messages C5 1



41

42

43

44

45

46

47

48

49

50

51

C-6

Program encountered a protection code violation when it tried to OPEN a file.
This condition can be handled two ways:

® By an appropriate USE procedure in the program. The file status key value for this error
is 30.

® By lowering the file’s protection code. Use the SET PROTECTION command.

Program attempted division by zero.
Determine how the zero value was generated and revise the source code.

Program attempted to raise zero to the zero power.

Determine how the values were generated and revise the source code.

Program attempted to execute a PERFORM statement beyond the maximum number of
times.

The maximum number of times is 2,147,483,648. Determine how the value was generated
and revise the source code.

SELECT clause organization does not match organization of file opened.

File organization is fixed when the file is created and cannot be subsequently changed. Revise
the ORGANIZATION clause in the source code.

SELECT clause index key description does not match that of file opened.

The data descriptions of all record keys, and their relative locations in the record, must be the
same as when the file was created. Revise the SELECT clause in the source code.

Program attempted to create a print file on a tape without specifying PRINT CONTROL.
The PRINT-CONTROL phrase of the APPLY clause must be specified for print files on mag-
netic tape. Revise the source code.

Program attempted to activate a USE PROCEDURE which is already active.

One USE AFTER EXCEPTION procedure can invoke another. However, a USE AFTER
EXCEPTION procedure must return control to the routine that invoked it before it can be
invoked again. Revise the source code.

The BY operand in a PERFORM VARYING is zero.

The value for the index-name following the VARYING BY phrase must not be zero. Determine
how the zero value was generated and revise the source code.

Invalid LINAGE value.

The values for data items specified as page-lines or footing-line must be greater than zero.
Determine how the zero value was generated and revise the source code.

LINAGE value is less than FOOTING value.

In the LINAGE clause, the value for a data-name specified as page-lines must be greater than
or equal to the value for a data-name specified as footing-line. Determine which value is
incorrect and revise the source code.

Run-Time Error Messages



52

53

54

55

56

58

59

60

61

Enter the numbers of switches you want “ON"’ during program execution.

The program you are running uses external switches to determine internal logic paths. Consult
the documentation accompanying your program to determine which switches should be set
““ON"" for your application or environment. Then, enter the numbers of the switches you want
set (separated by commas, spaces, or tabs). Or, if you want to set all switches in the program,
you can simply enter an asterisk (*).

OCCURS DEPENDING ON item is not within the specified range.

In the OCCURS clause, all values for a data-name specified in the DEPENDING ON phrase
must be within the range delimited by OCCURS min-times TO max-times. Determine why an
invalid value is being generated and revise the source code.

Attempt to WRITE a record that already exists in a relative file.

An appropriate USE procedure in the program can handle this error during execution. The file
status key value for this error is 22.

Switch input is invalid or out of range.

COBOL-81 programs can test the status of no more than 16 switches. Switch numbers must be
integers within the range 1 to 16 (inclusive). Switch input is out of range if you entered an
integer that is less than 1 or greater than 16. Input is invalid if you entered a switch number
that is not an integer or is not specified in your program.

When you enter the input character string, each switch number must be separated by a space,
a comma, or a tab character. Typing the string incorrectly results in input that is invalid or out
of range.

Re-execute your program and enter valid switch numbers correctly.

Switch input string must be 64 characters or less.

The string of input characters you enter is restricted to a maximum of 64 characters. Only
integers (1 through 16, inclusive), separated by commas, spaces, or tabs should appear in the

input string. Re-enter the characters correctly.

Attempt to start a SORT/MERGE when one is already in progress.

A task must execute SORT and MERGE statements one at a time; that is, it cannot execute a
SORT or MERGE statement before another has finished execution. This error could occur
when a task contains subprograms and two programs in the task attempt simultaneous sort or
merge operations.

Attempt to RELEASE/RETURN a record from the wrong sort or merge file.

The SD entry for the sort or merge file does not contain the record specified in the SORT or
MERGE statement. Revise the source code.

Attempt to RELEASE a record during a merge operation.

The MERGE statement cannot specify an input procedure. Therefore, RELEASE is an invalid
statement during a merge operation. Revise the source code.

Error in a sort or merge operation. The SORT/MERGE error code is n.
Submit an SPR (Software Problem Report).

Run-Time Error Messages C-7 1






Appendix D
MCR Commands for COBOL-81

All of the examples in this manual for compiling, linking, and running COBOL-81 programs were
written using the DIGITAL Command Language (DCL). This appendix provides equivalent Monitor
Console Routine (MCR) commands.

You must use the MCR interface for program development when:

® You want to edit a command (CMD) file or an overlay descriptor language (ODL) file for input
to the Task Builder.

® You want to specify disk resident RMS-11 libraries that are less heavily overlaid than the
LINK/C81/RMS:NORESIDENT default.

® You want to specify a user library as input to the Task Builder.

® You want to store or delete SKL files in a directory other than the one in which the OB} files
reside.

If you are in DCL and you want to change to MCR to use the commands in this appendix, you type:

SET TERMINAL MCR

You will remain in MCR mode until you log off. If you want MCR to be the default command line
interpreter for your terminal, have the system manager change your account file.
D.1 Compiling

The compiler scans your source statements for syntax and semantic errors. Once it has finished, it
responds with a diagnostic summary of any errors it found. You can also request additional compiler
functions depending on the command line you use.

D-1 1



D.1.1 Using the Compiler
To invoke the COBOL-81 compiler, type:

C81 @D

The RETURN key is optional. If you press it, the compiler gives you this prompt:

c81>

Then you must enter a command line as input to the compiler. If you do not press the RETURN key,
you must enter compiler commands on the same line.

If you type /HELP instead of a command line, the compiler displays a help message on your screen.
The message summarizes the command line format and switches. The HELP text also specifies current
default switches for the compile command line.

The format of the command line to the compiler is:
[obj-file], [list-file], [diag-file] = source-file[ /switch] ...

This command produces an object file, a list file, and a diagnostics file. The diagnostics file is simply
a subset of the list file. It contains only the diagnostics issued, along with the line of source code to
which each diagnostic applies. A fourth file, with the file type SKL, is produced along with each
object file. It consists of skeleton overlay descriptor language, which is needed as input to the
COBOL-81 BLDODL utility. You control the production of all four files through your input to the
compiler.

The default file types are:

OB] for the object file

LST for the list file

DIA for the diagnostics file
CBL for the source file

The object, list, and diagnostics files are optional; each is produced only if you give a file name for it.
The compiler expects the file names, separated by commas, in the order shown in the command line
format. If you want to stop the compiler from producing one file but not the one following it in the
command line, you must still type the comma for the one you wish to omit.

To illustrate the use of the commas, here are sample command lines showing the eight possible
combinations of input and output files:

1. €81 FILELlsFILEZsFILE3 = FILE

Creates FILE1.OB]J, FILE1.SKL, FILE2.LST, and FILE3.DIA from FILE.CBL.

2. C8B1 MONTH., MONTH = MONTH

Creates MONTH.OBJ, MONTH.SKL, and MONTH.LST from MONTH.CBL.

3. €81 LABEL: » LABEL = PROGRM

Creates LABEL.OBJ, LABEL.SKL, and LABEL.DIA from PROGRM.CBL.

1 D-2 MCR Commands for COBOL-81



€81 + LIST: TT: = MYFILE.CRG

Creates LIST.LST from the source file MYFILE.CRG. The diagnostics are output directly to
your terminal; that is, they are displayed on the screen rather than stored in a file.

C81 INVEST = TANZAN.ITE

Creates the object module INVEST.OBJ and its accompanying SKL file (INVEST.SKL) from
TANZANL.ITE.

c81 » TI: = GRADE

Creates only a temporary list file from GRADE.CBL, and outputs it directly to the terminal.
€81 s+ » REPORT = REPORT
Creates the diagnostics file REPORT.DIA from REPORT.CBL.

€81 = TEST.311

Compiles the source file TEST.311 but creates no output files. You get the diagnostic
summary, however.

You can request various compiler functions by indicating compiler switches after you specify the
source file in the command line. Table D-1 summarizes the available compiler switches and the
functions they perform.

Table D-1: Summary of Compiler Switches
You Type To Tell the Compiler
/BLD To create an ODL and a CMD file to submit to the Task Builder
/CIS To use CIS (Commercial Instruction Set) in the object code
JCRF To produce a cross-reference table of data and procedure names in your LST file
/CVF. To accept a source program in conventional (ANSI) format
/DEB To create symbol information in the object code for use by the Symbolic Debugger
/MAP To produce Procedure Division and Data Division offset maps in your LST file
/STA:VAX To flag COBOL-81 code that might be incompatible with VAX—11 COBOL code
/SUB To treat the source program as a subprogram
/TRU To perform decimal, rather than binary, truncation on COMP data items
/-BOU Not to produce the code needed for checking subscript and index ranges at run time
/-CIS Not to use CIS in the object code
/-INF Not to issue informational diagnostics
/-PER Not to produce the code needed for checking nested PERFORM statements at run time
/-SKL Not to produce a skeleton overlay descriptor language file
/FIPS:74 To change values for FILE STATUS data items and sizes for some arithmetic operations
/KER:xx To change the PSECT kernel in your object file from SC (the default) to the value you specify for “xx”’
/TMP:dev To change the storage area for temporary work files from SY: (the default) to the value you specify for

udev//

MCR Commands for COBOL-81 D-3 1



As shown in the table, the 17 available switches can be divided into three groups:

® Those requesting special functions
® Those suppressing normally performed functions

® Those altering normally performed functions

D.1.1.1 Switches Requesting Special Functions — There are nine special functions available. By
default, the compiler does not perform any of these, unless the default is changed by your system
manager when installing the compiler. ‘

/BLD

Tells the compiler to create an ODL and a CMD file. The Task Builder needs both files if your
task uses overlaid or resident library 1/0O, uses segmentation, or includes the Symbolic
Debugger. Using this switch is equivalent to using the BLDODL utility without specifying any
switches in the BLDODL command line. See Section D.2 on BLDODL.

The /BLD switch cannot be used when compiling subprograms or programs that call
subprograms.

/CIS

- Tells the compiler to use CIS (Commercial Instruction Set) in the object code it produces. If the

system manager set the default to non-CIS code when COBOL-81 was installed, and your
machine does have CIS, this switch overrides that default. See the system manager if you do not
know whether or not your machine has CIS.

/CRF

Tells the compiler to add two cross-reference tables to the end of your list file: one for data-
names and one for procedure-names. In each table, the names you used in your program are
listed alphabetically. Opposite each name is a list of every line number in which that name
occurs. A /D’ after a number indicates the line in which you defined the name. An asterisk (*)
after a number indicates a destructive reference.

Here is an excerpt from a list file (SAMPLE.LST) which resulted from the command line “C81 ,
SAMPLE = SAMPLE/CRF":

CROSS REFERENCE IN ALPHABETICAL ORDER
DATA NAMES and MNEMONIC NAMES

END-OF-DATA 25D 75 85
FAKE-CARD i8 189D 84
F-NUMBER 22D 82%

This switch is particularly useful if, for example, one variable yields unexpected results when
you run your program. You can trace the variable through your program, and the table gives you
a list of the lines to check.

The cross-reference tables are also helpful when you use the Symbolic Debugger.

/CVF

Tells the compiler that your program is in conventional (or ANSI) rather than terminal format.

D-4 MCR Commands for COBOL-81



/DEB

Tells the compiler that you intend to use the Symbolic Debugger (see Part Il, Chapter 3). The
compiler then generates symbol information in the object module for all data names and proce-
dure names. This increases the size of the object file. When you finish debugging and no longer
need the symbols, you can recompile without this switch.

If you include the Symbolic Debugger in your program, you must also do one of the following:

® Use the compiler’s /BLD switch. For example:

C81 TAXDAT = TAXDAT/DEB/BLD

® Use the BLDODL utility, specifying its /DEB switch. For example:

BLD>TAXDAT = TAXDAT /DEB

/MAP

Tells the compiler to add two offset maps to the list file, one referring to the Data Division and
one referring to the Procedure Division. The compiler provides these maps for use with ODT
(Online Debugging Tool); consult the IAS/RSX-11 ODT Reference Manual for more information.

/STA:VAX
Tells the compiler to flag COBOL-81 code that is incompatible with VAX—11 COBOL code in
the following situations:
e some COMP items (without SYNC clause)
® USAGE IS INDEX items

® RMS-STS AND RMS-STV

/SUB

Tells the compiler that it is compiling a subprogram. You must use this switch only if the
subprogram does not use parameters from the main program; that is, if it does not contain the
PROCEDURE DIVISION USING header.

/TRU

Tells the compiler to perform decimal truncation on the values of COMP data items. By default,
COBOL-81 performs binary truncation. With binary truncation, the maximum value a COMP
item can contain depends on its storage allocation. If you specify this switch, the maximum
value depends on the item’s PICTURE character-string.

D.1.1.2 Switches Suppressing Functions — Four switches suppress functions that the compiler nor-
mally performs (unless the defaults have been changed by your system manager). Each is prefaced by
a minus sign, indicating that you are “‘turning off” the function.

/-BOU

Stops the compiler from generating code for checking subscripts and indexes. By default,
COBOL-81 checks each one at run time against the ranges defined by its data name’s OCCURS
clause. If any range is exceeded during execution, COBOL-81 issues an error message to that
effect. However, if this switch is used to suppress checking, an out-of-range subscript or index
does not generate an error message, and the program does not produce valid results.

MCR Commands for COBOL-81 D-5 |



/-CIS

Stops the compiler from using CIS (Commercial Instruction Set) in the object code it produces. If
the system manager set the default to CIS code when COBOL-81 was installed, this switch
overrides that default.

/-INF

Stops the compiler from issuing informational diagnostics during the compilation. If you use this
switch, only warning and fatal diagnostics appear in the list file, diagnostic file, and diagnostic
summary.

/-PER

Stops the compiler from generating code needed for checking PERFORM statement ranges. At
run time, COBOL-81 uses this code to determine if your program’s PERFORM ranges are nested
properly (if nested at all). If COBOL-81 detects improper nesting during execution, it issues an
error message to that effect. If you use this switch, however, and the program’s PERFORM
statements are nested incorrectly, the program does not produce valid results.

Note

Both /—PER and /—BOU can save execution time and decrease the size of the
task image.

/-SKL

Stops the compiler from producing the skeleton overlay descriptor language file. This file is
normally produced each time the compiler creates an object file.

Note

The SKL file must be produced if you want to use the compiler’s /BLD switch or
the BLDODL utility.

D.1.1.3 Switches Altering Functions — There are three switches you can use to alter compiler func-
tions:

/FIPS:74
Compilation with this switch produces the following:

® The value 10 replaces file status values 13, 15, and 16.

® The maximum size of intermediate values generated during arithmetic computations is 19
digits, rather than 18 digits.

/KER:xx

Tells the compiler to use the two alphanumeric characters you specify as the PSECT kernel for
this program. The only time you need this switch is when your task image uses both subpro-
grams and segmentation; see Part 1l, Chapter 5, for a detailed explanation.

1 D-6 MCR Commands for COBOL-81



/TMP:dev

Tells the compiler to store its temporary working files on the device you specify by dev during
compilation. Since the default device is SY:, this switch is useful if there is limited system disk
space available, or if you have a high-speed swapping device, such as a fixed-head disk or
electronic memory, available.

D.1.1.4 Examples of Switches — These command lines illustrate the use of various switches:

1.

C8B1 = YEARLY /-INF

Gives you a summary of warning and fatal errors only.

C81 » ANNUAL = ANNUAL /MAP /CRF

Creates the list file ANNUAL.LST with offset maps and cross-reference tables.
CB1 TEST = TEST/TMP:DKZ:

Uses DK2: for storing temporary files during compilation.

C81 MAIL = MAIL /CRF

Is a meaningless use of the /CRF switch, because no list file has been specified to contain
the cross-references. COBOL-81 ignores the switch and proceeds with the compilation.

D.2 Using the BLDODL Utility

This section explains the use of the COBOL-81 BLDODL utility and the optional functions it provides.

For an explanation of the RMS-11 concepts referred to in this section, see the RMS-11 User’s Guide.

To invoke BLDODL, type:

BLDODL

The RETURN key is optional. If you type it, BLDODL will give you this prompt:

BLD>

You then enter a command line. If you do not press the RETURN key, you must enter commands on.
the same line as BLDODL, If you type /HELP instead of a command line, BLDODL displays a help
message on your terminal. This message summarizes the format of the command and its switches.

To exit to the system prompt, press CTRL/Z.

MCR Commands for COBOL-81 D-7 1



D.2.1 BLDODL Command Line and Switches

The format of the commanrd’ line is:

output[/switch]... =input1[/switch]...[,inputx[/switch]...]...

where:

output

input1

inputx

switch

is the file specification you want BLDODL to use for the ODL and CMD files it
produces.

is the file specification of the SKL file you are processing. (Remember, the compiler
gives the SKL file the same file specification as the one you defined for the OB} file.)

specifies either another SKL file (created by the compiler), a user library, or an
ODL file you have created to describe the overlay structure for the RMS-11 portion of
your task. If you specify an ODL file, you must follow it with the /10:USEROV switch.
If you specify a user library, you must follow it with the /ULIB switch. See the
RSX-11M/M-PLUS Task Builder Manual for more information.

is one of the following:

/CLU:RESLIB1:RESLIB2

Allows you to cluster up to two other memory-resident libraries with a
COBOL-81 OTS resident library. The RMS resident library, RMSRES.TSK, is one
library you can cluster with a COBOL-81 OTS resident library. The following
BLDODL command line illustrates how to do this:

TEST = TEST/CLU:RMSRES

If you use the /CLU switch to cluster with RMS, you cannot use the /10: switch.
/ULIB

Allows you to include one user library per task image. Append /ULIB to a library
name of six or fewer characters.

/DEB

Indicates that you are including the COBOL-81 Symbolic Debugger in your task.
You must use this switch in the BLDODL command line if you used the com-
piler's /DEB switch.

/FMS
Indicates that you are including the FMS library in your task image.
/MAP

Creates a request in your CMD file for a Task Builder memory allocation map (or
MARP file).

I D-8 MCR Commands for COBOL-81



/MER

Creates an ODL file that is a concatenation of the SKL files in your task. This ODL
file contains every line from every SKL file used. If you do not use this switch, -
BLDODL produces an abbreviated ODL file. This file includes only a one-line
reference to each SKL file. An abbreviated ODL file is smaller, but a conca-
tenated ODL file eliminates the need for keeping each SKL stored on disk. If you
do not plan to recompile any part of your program, you can use /MER and then
delete each SKL file from your directory.

/OBJ:dev:project:programmer

/10:

Specifies the location of your OB]J file. Use this switch on an input SKL file when
the SKL file and its corresponding OB file are in different directories.

Specifies how you want the RMS-11 routines included in your task image. There
are four choices:

/10:DECOV is the default if you do not use an /10: switch. It specifies that the
I/0 routines are to be overlayable (that is, that they will share memory) in your
task. If your program requires RMS-11 support for indexed files, the routines will
occupy 9K bytes in the task. Support for sequential I/O occupies only 8K bytes.
In your ODL file, BLDODL includes DIGITAL-supplied instructions that specify
how the Task Builder must overlay the RMS-11 routines.

/10:NONOV includes the 1/0 routines so that they are not overlayable. The
amount of memory occupied by the routines depends on the amount of 1/0O your
program performs. Execution speed may be considerably better with this switch
than it would be with the default, /IO:DECOV.

/IO:MEMRES specifies that your task will use the memory-resident RMS-11
library, RMSRES. It occupies 16K bytes in your task. See the RMS-11 User’s
Guide for an explanation of RMS-11 resident libraries.

/10:USEROV indicates a locally written ODL file. Use this switch only if you
specify an ODL file as one of the input files in the BLDODL command line. The
switch must immediately follow the ODL file specification.

/LRG

Specifies a large overlay structure (12K bytes) for RMS-11 routines. With a large
overlay, execution speed will increase, but your task size will be larger.

If you are not overlaying RMS-11 routines (with the /10:DECOV switch or by
accepting the default), and your task does not perform indexed 1/0O, BLDODL
ignores this switch.

/RES

Creates a reference in the CMD file to the shared OTS resident library. The
resulting task image will be smaller; it will use the resident library at run time.
Use of the resident library will save memory space if several COBOL-81 tasks are
executing at the same time.

Do not use the /RES switch if the resident library is not installed on your system.

MCR Commands for COBOL-81 D-9 1



/DIA

Invokes a dialog from BLDODL that prompts you for each BLDODL option. This
switch is available primarily for former PDP-11 COBOL users who are accus-
tomed to this dialogue from the PDP-11 COBOL Merge Utility (documented in
the PDP-11 COBOL User’s Guide).

D.2.2 BLDODL Utility Command Line Defaults

A BLDODL command line with no switches produces default ODL and CMD files. These default
files:

® Do not include the Symbolic Debugger
® Do not produce a Task Builder map
® Do not concatenate SKL files (each SKL file is referred to indirectly)

® Use the device and project-programmer number of the output file specified to find each SKL
and OB}

® Use DIGITAL-supplied overlay descriptors for RMS-11 routines

® Use the small RMS-11 overlay structure (9K bytes) for indexed file support if the task requires
that support

The examples at the end of this appendix (Section D.5) illustrate the use of BLDODL in the process of
producing a task image.

D.3 Task-Building

The RSX-TTM/M-PLUS Task Builder produces an executable (or task) image of your program. It
builds the image either by processing a direct command line, or by processing the command (CMD)
file produced when you use either the BLDODL utility or the compiler’s /BLD switch.

This section first explains using the CMD file as input to the Task Builder. Then, it shows you how to
build tasks with a direct command line.

D.3.1 Using the CMD File as Input

To build a task using the CMD file, type:
TKB @command-file

where:
TKB invokes the Task Builder.
@ indicates to the Task Builder that the file specified is a command file (that is, it

contains Task Builder commands).

command-file is the name of the CMD file produced by the compiler when you used the
/BLD switch or the BLDODL utility.

The Task Builder processes the commands in the file specified and produces an executable image. It
uses the same file name as that of the command file, and the file type TSK.

I D-10 MCR Commands for COBOL-81



D.3.2 Using:a Direct Command Line as Input

"~ The format of the Task Builder command line is:

TKB task-file[,map-file[,symbol-table-file]] = object-file(s), library-file /LB,LB:[1,T]JRMSLIB /LB

where:
TKB invokes the Task Builder.
task-file specifies the name of the task image. The default file type is TSK.

object-file(s)  specifies the names of each object file to be included in the task. If you specify
more than one file, one must be a main program and the others subprograms.
The order in which they are specified is not important. The default file type for
an object file is OB).

library-file specifies a system library file needed by the Task Builder to process all
COBOL-81 programs. Use one of the following:

LB:[1,1]C81CIS if your object code contains CIS (/CIS)
LB:[1,1]C81LIB if your object code does not contain CIS (/—CIS)

LB:[1,11RMSLIB is necessary only if your task performs file 1/0. This file spec-
ification refers to a system library file of RMS-11 routines.

If you specify the RMS-11 library file (LB:[1,1]RMSLIB), the Task Builder builds nonoverlaid RMS-11
routines into your task. This is equivalent to using the BLDODL utility with the /IO:NONOV switch.
Your task will use more memory with nonoverlaid 1/O routines, but you will achieve the fastest
execution speed this way.

D.3.3 Results of the Task Build

A successful task build creates an executable image and returns to the system prompt.

If the task build is unsuccessful, a Task Builder error message is issued to your terminal before the
return to the system prompt.

The task build will be unsuccessful if the resulting image is too large. The following message indicates
this condition:

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

Seg-name is the name of the object file the Task Builder was processing when the overflow occurred.
To recover, you must make more efficient use of memory by overlaying sections of the task. Use the
COBOL-81 segmentation facility to overlay your object code (see Part II, Chapter 5), or the BLDODL
utility to overlay RMS-11 routines.

MCR Commands for COBOL-81 D-11 1



If you are unsure of whether your compiler produces CIS or non-CIS code and you task build your
object file with the incorrect COBOL-81 OTS library (LB:[1,1]C81CIS/LB or LB:[1,1]C81LIB/LB), the
Task Builder will be unable to define certain symbols. You will get the following error message if you
have built CIS object code with the non-CIS library (LB:[1,1]C81LIB/LB):

n UNDEFINED SYMBOLS SEGMENT seg-name
$ENCIS

You will get the following message if you have task built non-CIS object code with the CIS library
(LB:[1,1]C81CIS/LB): '

n UNDEFINED SYMBOLS SEGMENT seg-name
$ENLIB

Refer to the RSX-11M/M-PLUS Task Builder Manual for all other Task Builder errors.

D.4 Executing

Just as in DCL, the command to execute a task image is RUN. The format for executing a task
image is:

RUN task-file
Task-file is the name of the executable image created by the Task Builder. The default file type is TSK.

D.5 Examples

To illustrate some of the options COBOL-81 provides, here are some examples of compiling, task
building, and executing programs, and of using the BLDODL utility:

1. The following example shows how to compile, task build, and run a simple COBOL
program that does not perform file 1/0. It uses a direct command line, rather than a CMD
file, as input to the Task Builder. All that is required, in addition to the object file created
by the compiler, is the Object Time System library (in this case, the non-CIS library):

CB1 TEST1 = TESTI
TKB TEST1 = TEST!,s LB:01,11CBILIB/LB
RUN TEST1

Here is another method that produces the same results. It uses the CMD and ODL files
(produced as a result of the compiler /BLD switch) as input to the Task Builder:

CB81 TEST! = TEST1/BLD
TKB BTESTI1
RUN TEST1

1 D-12 MCR Commands for COBOL-81



The BLDODL command line shown here requests a Task Builder memory allocation map
(or a MAP file):

£81 TESTZ = TEST2

BLDODL TESTZ = TESTZ2/MAP
TKB BTESTZ

RUN TESTZ

The Task Builder processes TEST2.CMD and TEST2.0ODL to produce both TEST2.TSK and
- TEST2.MAP.

If you want to use a locally written ODL file (shown here as USRRMS.ODL) to specify the

RMS-11 overlay structure in your task, you use a BLDODL command line similar to the
following one:

C81 TEST3 = TEST3

BLDODL TEST3 = TEST3: USRRMS.0DL /I0:USEROV
TKB @TEST3

RUN TEST3

This example shows how to compile, build, and run a COBOL-81 task that uses subpro-
grams (BLDODL is used to create single CMD and ODL files referring to each of the
programs):

€81 MAIN = MAIN

€81 SuUB1 = SUBI1

C81 suB2 = sUBZ

BLDODL TEST4 = MAIN, SUB1.,» SUBZ
TKB BTEST4 )

RUN TEST4

Here are two different ways to include the Symbolic Debugger in your task image:

C81 TESTS = TESTS/DEB/BLD
TKB BTESTS
RUN TESTS

C81 TESTS = TESTS/DEB !
BLDODL TESTS = TESTS /DEB

TKB BTESTS

RUN TESTS

The following example shows how to include FMS support in your task:

CB1 TEBTGE = TESTG

BLD TESTG = TESTGE/FMS
TKB BTESTE

RUN TESTG

MCR Commands for COBOL-81 D-13 1






Contents

Page
PART I
Chapter 1  Using the COBOL-81 REFORMAT Utility
1.1 ANSI-to-Terminal Format Conversion . . . . . . . . . . . . . . . . . ... 1-1
1.2 Terminal-to-ANSI Format Conversion . . . . . . . . . . . . . . . . . ... 1-3
1.3 REFORMAT Error Messages . . . . . . . . . . . . . . . . . . . ... 1-4
Chapter 2 Troubleshooting
2.1 Reading a Program Listing. . . . . . . . . . . . . . . . .. . ... ... 2-1
2.2 Program Run Errors. . . . . . . . . . . . . ..o 2-6
2.2.1 Faulty Data . . . . . . . . . . . . . . ... 2-6
2.2.2 Common Logic Errors. . . . . . . . ..o L0 2-7
2.2.3  COBOL-81 Symbolic Debugger . . . . . . . . . . . . ... ... 2-8
Chapter 3 Debugging Your Program
3.1 Overview of the Debugger. . . . . . . . . . . . . . . . .. ... .... 341
3.2 Preparing the Program . . . . . . . . . . . . . . .. ... 3-2
3.3 Using the Debugger Commands . . . . . . . . . . . . . . . ... .... 3-3
3.3.1 Using the HELP Command . . . . . . . . . . . . . . . . . ... 3-5
3.3.2  Using the DISPLAY Command . . . . . . . . . . . . . .. .... 3-5
3.3.3 Using the MOVE Command . . . . . . . . . . . . . . . .. ... 3-6
3.3.4  Using Breakpoints . . . . . . . . . . . . ... ... .. 3-7
3.3.4.1 SET BREAKPOINT . . . . . . . . . . . . . . ... .. 3-7
3.3.4.2 CANCEL BREAKPOINT . . . . . . .. . . . ... ... 3-8
3.3.4.3 SHOW BREAKPOINTS . . . . . . . . . . .. ..... 3-8
3.3.5 Using Synonyms . . . . . . . . . . .. Lo 3-9
3.3.5.1 DEFINE . . . . . . . . . ..o 3-9
3.3.5.2 UNDEFINE . . . . . . . . . . ... 3-10
3.3.5.3 SHOW SYNONYMS . . . . . . . . . .. .. .. .. 3-10
3.3.6 Using the PROCEED Command . . . . . . . . . . . . . . ... 3-10
3.3.7 .Interrupting Program Execution. . . . . . . . . . . . . . . . .. 3-11
3.3.8  Using the STOP Command . . . . . . . . . . . .. ... ... 3-11
Chapter 4 Reducing Your Task Size
4.1 When to Use Task Size Reduction Techniques . . . . . . . . . . . . . . .. 4-1
4.2 Reduction Techniques Available . . . . . . . . . . . . . .. ... .... 4-1
4.3 Selecting Library Support Routines . . . . . . . . . . . . . . . ... ... 4-2
4.3.1 Disk Libraries, Resident Libraries, and Clustered Resident Libraries . . .4-2
4.3.2 Estimating COBOL-81 OTS Support . . . . . . . . . . . . . . .. 4-5
4.3.3 Using Disk LibrariesOnly . . . . . . . . . . . . . . . . ... .. 4-5
4.3.4  Using Resident Libraries. . . . . . . . . . . ... ... .. ... 4-6

Part Il |



Chapter 5

Chapter 6

i Partll

4.4  Using Subprograms with Implicit Overlays. . . . . . . . . . . . . . . ..
4.5  Using the COBOL-81 Segmentation Facility

4.5.1 Programming Considerations. . . . .
4.5.2  Creating a Segmented Task Image

4.5.2.1 Segmenting a Single-Program Task . . . . . . . . . ..
4.5.2.2  Segmenting a Multiple-Program Task

4.5.3  Reading a Memory Allocation Map

Improving Program Performance

Introduction . . . . . . . .. L L.
Performance Versus Task Image Reduction. . . . . . . . . . . . . . ...
Using Compiler Qualifiers to Improve Performance . . . . . . . . . . . ..

5.3.1 Using the /NOCHECK and /CHECK Qualifiers
5.3.2  Using the /TEMPORARY:dev Qualifier

5.4  Using BLDODL Switches to Improve Performance . . . . . . . . . . . ..

5.4.1 Using the BLDODL/IO:NONOV Switch. . . . . . . . . . . . ..
5.4.2  Using the BLDODL/LRG Switch

5.5 Using Terminal Format Source Programs. . . . . . . . . . . . . . . . ..
5.6  Data Handling Techniques for Improving Performance
5.7  Using File Optimization to Improve Performance . . . . . . . . . . . . ..
5.8  Using Subprograms. . . . . . . . . . . . . ... ...

Ul U1 UL
w N =

Interprogram Communication

6.1 A Multiple COBOL-81 Program Task . . . . . . . . . . . . . . .. ...

Identifying a COBOL-81 Subprogram . . . . . . . . . . . . . ..
Compiling Main and Subprograms . . . . . . . . . . . .. . ..
Transferring Execution Control with the CALL Statement. . . . . . .

6.1.3.1  The CALL Statement . . . . . . . . . . . . . . ...
6.1.3.2  The EXIT PROGRAM Statement. . . . . . . . . . . . .
6.1.3.3  Sharing Execution Control . . . . . . . . . . . . . ..
6.1.3.4 Nesting CALL Statements . . . . . . . . . . . . . ..

6.2  Accessing Another Program’s Data Division

oo
222
wio o

6.2.1 The USING Phrase . . . . . . . . . . . . . . . . .. .....
6.2.2  The Linkage Section . . . . . . . . . . . . . ... ... ...
6.2.3  Examples . . . . . ... L
6.2.4 COBOL-81 OTS — Error Checking . . . . . . . . . . . .. ...

6.3 Including Non-COBOL-81 Programs inaTask . . . . . . . . . . . . . ..
6.3.1 MACRO Programs and COBOL-81 Programs . . . . . . . . . . .
6.3.1.1 - Calling a MACRO Program from a COBOL-81 Program . .

6.3.2  Calling a COBOL-81 Program from a MACRO Program. . . . . . .
6.3.3 Using the Argument Address List. . . . . . . . . . . . . . . ..



Appendix A Debugger Error Messages

Examples

Figures

Tables

2-1
4-1
4-2
6-1
6-2
6-3
6-4

6-6

6-7
6-8

Sample Segmented Program . . . . . . . . . . . . . . . . . ... ... 4-12
Sample Memory AllocationMap . . . . . . . . . . . .. ... 4-13
Sharing Program Execution Control Between a Main Program and

Multiple Subprograms. . . . . . . . . . . L0 6-5

Redefining a Calling Program’s Data ltems in the Called Subprogram’s

Linkage Section . . . . . . . .. ..o 6-10
Partial Listing of the Program REPORT. . . . . . . . . . . . . . . ... .. 2-3
How Use of Libraries Affects Task Size . . . . . . . . . . . . .. ... .. 4-4
Memory Allocation of a Segmented Program. . . . . . . . . . . . . . . .. 4-9
Sharing Execution Control Between a Main Program and One Subprogram. . . .6-4
Nesting CALL Statements . . . . . . . . . . . . . . . ..o 6-4

Sharing Execution Control Between a Main Program and Multiple Subprograms . 6-5

Correspondence of Single Setsof Data . . . . . . . . . . . ... ... .. 6-7
Sharing Execution Control and Data Between a Main Program and

One Subprogram . . . . . . . . . L L L e 6-9
Sharing Nested Execution Control and Data Between a Main Program and

Multiple Subprograms. . . . . . . . ... L L 6-10
Argument Address List General Format . . . . . . . . . . . . . .. ... 6-15
Sample Argument Address List . . . . . . T . . . ..o Lo L L. 6-16
Debugger Commands. . . . . . . . . . . . . ... 3-2
Correspondence of Data-Names . . . . . . . . . . . ... ... e 6-8

Part Il iii






Chapter 1
Using the COBOL-81 REFORMAT Utility

COBOL-81 accepts source programs written in either ANSI (conventional) reference format or
DIGITAL terminal format.

e ANSI format results in source programs that are compatible with the reference format of other
COBOL compilers. If your program is in ANSI format, you must compile it using the
/ANSI_FORMAT qualifier, unless the default was changed by the system manager during
installation.

e Terminal format works with text editors on an online keyboard. It is the format expected by the
COBOL-81 compiler, unless the default was changed by the system manager during installa-
tion. Terminal format eliminates the line-number and identification fields of ANSI format. It
saves disk space and decreases compile time.

The COBOL-81 Language Reference Manual explains both formats in detail.

COBOL-81 provides the REFORMAT Utility to convert terminal format source programs to ANSI
format and vice versa. This chapter shows you how to use REFORMAT to do both types of
conversions.

1.1 ANSI-to-Terminal Format Conversion

REFORMAT converts each ANSI-format source line to terminal format by:

® Removing the six-character sequence field in the first six character positions of the
ANSI-format line.

® Moving any continuation (-) or comment (* or /) symbols from character position 7 to charac-
ter position 1.

® Replacing spaces with horizontal tabs immediately to the right of Margin B and every eight
character positions thereafter until the end of the line. This occurs only in those source lines
not containing a nonnumeric literal.

1-1 1l



® Removing the identification entry field in character positions 73 through 80 of the ANSI-format
line.

® Removing insignificant trailing spaces before character position 73 of the ANSI-format line.
® Replacing every form feed character with a line containing a slash (/) in character position 1.

® Placing the converted code in positions 1 through the end of the line, thereby creating a
terminal-format line.

Because spaces are not converted to tabs in lines containing nonnumeric literals, those lines might be
aligned differently from the rest when you use a text editor on the program. However, the list file
produced by the compiler will be aligned correctly.

To run REFORMAT:
® On RSTS/E you type:

RFM GED

® On RSX-11TM/M-PLUS you type:

MCR RFM

REFORMAT executes and prompts you with this message:

REFORMAT - ANSI-to-terminal conversion mode [ ¥ / N 17

For an ANSI-to-terminal conversion, type Y’ and press the RETURN key. REFORMAT confirms your
choice with this message:

REFORMAT - ANSI-to-terminal format selected

REFORMAT then asks for input and output file specifications:

REFORMAT - ANSI-format input file spec :
REFORMAT - Terminal-format output file spec

REFORMAT reads the input file and writes a terminal-format output file. After processing the last
source line, REFORMAT displays these messages:

REFORMAT - n ANSI COBOL source lines converted to terminal format
REFORMAT - ANSI-to-terminal format conversion mode [ Y / N 17

The first message indicates the number of input source lines converted to terminal format; the second
message prompts you for conversion of another file. Type CTRL/Z to end execution.

Il 1-2  Using the COBOL-81 REFORMAT Utility



1.2 Terminal-to-ANSI Format Conversion

REFORMAT converts each terminal-format source record to ANSI format by:

® Placing a six-character line number (000010) in the first six character positions of the line and
increasing it by 000010 for each subsequent line.

® Moving any continuation (-) or comment (* or /) symbols from character position 1 to charac-
ter position 7.

@ Replacing horizontal tabs with space characters at every eighth character position, starting at
character position 5 until the end of the line.

® Moving spaces into remaining character positions after the last character of code and before
character position 73.

® Expanding a terminal line with more than 65 characters into two or more ANSI-format lines
and right justifying these lines at character position 72.

® Placing either identification characters (if you supply them when you run REFORMAT) or
spaces into character positions 73-80.

e Right justifying (at position 72) the first line of a continued nonnumeric literal. This makes sure
that the literal remains the same length as it was in the default format.

® Replacing every form feed character with a line containing a slash (/) in position 7 and space
characters in positions 8 through 72.

® Placing the converted code in character positions 8 through 73, thereby creating one or more
ANSI-format lines. :

To run REFORMAT:
® On RSTS/E you type:
RFM RED)

® On RSX-1TM/M-PLUS you type:

MCR RFM
REFORMAT prompts you with this message:

REFORMAT - ANSI-to-terminal conversion mode [Y / N 17

For a terminal-to-ANSI conversion, type “N’” and press the RETURN key. REFORMAT confirms your
choice with this message:

REFORMAT - Terminal-to-ANSI format selected

REFORMAT then asks for input and output file specifications:

REFORMAT - Terminal-format input file spec :
REFORMAT - ANSI-format outrput file spec :

Using the COBOL-81 REFORMAT Utility 1-3 1l



After you enter the file specifications, REFORMAT asks for an identification entry in columns 73
through 80:

REFORMAT - Columns 73 to 80:

If you want an identification entry, type from one to eight characters. REFORMAT places these
characters, left justified, in columns 73 through 80 of each output line. If you do not want an
identification entry, type a carriage return.

REFORMAT reads the input file and writes the output file in 80-character ANSI-format lines. After
processing the last line, REFORMAT displays these messages:

REFORMAT - n Terminal COBOL source lines converted to ANSI format
REFORMAT - ANSI-to-terminal format conversion mode [ ¥ / N 17

The first message indicates the number of input source code lines converted to ANSI format; the
second message prompts you for conversion of another file. Type CTRL/Z to end execution.

1.3 REFORMAT Error Messages

If any of your responses to the prompts are incorrect, REFORMAT displays messages. It replaces the
parentheses and the parenthetical text in the following examples with the appropriate format type you
specified:

REFORMAT - Error in orenindg (ANSI or terminal) format input file:
REFORMAT - (ANSI or terminal) format input file spPec:

REFORMAT could not open the file; either the file is not on the specified device or you typed the
file specification incorrectly. The default device is SY:, and the default directory is your current
directory.

To recover from this error, examine the input file specification and type a corrected version. To
process another file, type a new input file specification. To end execution, type CTRL/Z.

REFORMAT - Error in orening (ANSI or terminal) format output file:
REFORMAT - (ANSI or terminal) format output file srPec:

REFORMAT could not open the output file. An incorrectly typed file specification causes this
error. The default device is SY:, and the default directory is your current directory.

To continue, examine the output file specification and type a corrected version. To end execu-
tion, type CTRL/Z.

REFORMAT - (ANSI or terminal) format inPut file is empty
REFORMAT - (ANSI or terminal) format input file srec:

REFORMAT issues this message if it opens an empty file; that is, one that contains no source
code. To continue, type a new input file specification. To end execution, type CTRL/Z.

in 14 Using the COBOL-81 REFORMAT Utility



REFORMAT
REFORMAT
REFORMAT

REFORMAT

Error in readind (ANSI or terminal) format input file

Reformatting aborted

n (ANSI or terminal) COBOL source lines converted to
(ANSI or terminal) format

ANSI-to-terminal format conversion mode [ Y / N 17

You will receive these messages if REFORMAT failed to read a source line from the input file.
This error ends the conversion process. REFORMAT closes both files and displays the number of
converted input lines.

At this point, you can either convert another file or end the session by typing CTRL/Z. Before
REFORMAT can completely convert the file that contains the error, you will have to examine the
file and make the necessary correction.

REFORMAT
REFORMAT
REFORMAT

REFORMAT

Error in writing (ANSI or terminal) format output file

Reformatting aborted

n (ANSI or terminal) COBOL source records converted to
(ANSI or terminal) format

ANSI-to-terminal format conversion mode [ Y or N 17

REFORMAT failed the attempt to write an output record. It ends execution and closes both files.

To process another file, type a new input file specification and continue the prompting message
sequence. To end execution, type CTRL/Z.

Using the COBOL-81 REFORMAT Utility 1-5 1l






Chapter 2
Troubleshooting

This chapter discusses how to find and correct program logic errors. It explains how to read a
program listing and discusses techniques that you can use for program debugging.

2.1 Reading a Program Listing

The circled numbers on the program listing REPORT (see Figure 2-1) correspond to the following
numbered text explanations:

The program name as declared in PROGRAM-ID.

The date and time of compilation.

The creation date and time of the file specified in 5.

The version of the COBOL-81 compiler.

The source file specification in file-spec format (device:[directorylfilename.type).

Source line numbers assigned by the compiler. The COBOL-81 Symbolic Debugger uses these
line numbers as location specifications.

Source text. Although a terminal line can contain 200 characters, a source listing line contains a
maximum 120 characters.

Identification field. If the source file is in ANSI format, this field contains the identification field

_(positions 73 through 80).

Error pointer. The caret (") points to the closest approximation of where the error occurred.

Error message line. This line gives the error severity code, the error message number, and the
error message.

A summary total, by diagnostic level, of compiler-generated diagnostics. Diagnostics can be
Informational (I), Warning (W), or Fatal (F).

COBOL-81 command qualifiers. The first line of qualifiers is the compiler command line; the
second group shows the remaining qualifiers and qualifier defaults in effect at compile time.

2-1 1l



Procedure Division Map. This is a list of procedure-names and their attributes that you get by
specifying the /MAP command qualifier.

A list of procedure-names.

The source line number, where the procedure-name is defined.

PSECT. This gives the procedure-name’s program section identification.

OFFSET. This gives the offset in octal and decimal from the beginning of the PSECT.
Lists the procedure-name type (either PARAGRAPH or SECTION).

REF indicates whether or not the section or paragraph was referenced in the program.

Data Division Map. This lists file names, data items, and their attributes. You get this listing by |
specifying the /MAP command qualifier.

The data item'’s level number.

The name of the data item.

The source line number where the data item is defined.

PSECT. This identifies the data item’s PSECT.

OFFSET. This gives the offset in octal and decimal from the beginning of the PSECT.
REF indicates whether or not a data item is referenced in the program.

The category of data described. Category classifications include:

FILE NAME

GROUP ITEM
ALPHABETIC
ALPHANUMERIC
ALPHANUMERIC EDITED
NUMERIC

NUMERIC EDITED
DECIMAL SIGNED
DECIMAL UNSIGNED

Indicates the number of occurrences specified by the OCCURS clause of a data definition entry.
This column is blank if the data definition entry does not define a table.

The number of bytes allocated to the data item. For numeric values, field size and bytes can be
different.

Alphabetical Cross Reference of Data Items. This table displays the line numbers for each
occurrence of a data item. The letter “D” is suffixed to the line number at which the data item
was defined. An asterisk (*) indicates the line numbers of destructive references, such as assign-
ment statements that change the value of a data item.

Alphabetical Cross Reference of Procedure Names. This table displays the line numbers at which
each procedure-name is referenced. The letter ‘D" is suffixed to the line number at which the
procedure begins.

2-2 Troubleshooting



Figure 2-1: Partial Listing of the Program REPORT

IDENTIFICATION DIVIS!ON._'G
PROGRAM-ID. REPRT .

DATE-WRITTEN. B8 MARCH 1982.

R R R R L R R R R R R R A R R R R A R R S )
This program reads a pre-sorted course data file
and writes a simple income report based on the
input data. Each input record contains information
about one course selected by a student (student
number and name, course number and name, and

COPNONEWN ~

1"

REPRT—‘ °————-——7~MAR—1983 15:58:27
a——a—um—mea 13:30:01

cosoL-81 VOZ.DO‘———_‘o PAGE 1
DB2:{1,250)REPORT.CBL;2

. *
- -
. .
. .
* *
12 * instructor name). The program assumes: 1) that all *
13 * input records have been validated and 2) that re- b
14 * cords have been sorted in ascending order, first by *
15 * course number and next by instructor name. *
16 * The program implements a major control break on *
17 * course number and a minor control break on instruc- *
18 * tor name, listing all students in each class. A *
19 * tally is kept for total student enrollment in each' *
20 * course. When a course tally is complete, the pro- *
21 * gram outputs a line totaling both enroliment and *
22 * tuition income for that course. .
23 LR R R R R R R A A R S R R R R R
24 .
25 ENVIRONMENT DIVISION.
26 CONFIGURATION SECTION.
27 SOURCE-COMPUTER. VAX-11,
28 OBJECT-COMPUTER. VAX-11.
29 INPUT-OUTPUT SECTION.
30 FILE-CONTROL.
31
32 SELECT COURSE-DATA-FILE
33 ASSIGN TO "COURSE.DAT"
34 ORGANIZATION IS SEQUENTIAL
35 FILE STATUS IS COURSE-DATA-FILE-STAT.
36
37 SELECT INCOME-REPORT-FILE
38 ASSIGN TO "INCOME.RPT"
39 ORGANIZATION IS SEQUENTIAL
40 FILE STATUS IS INCOME-REPORT-FILE-STAT.
41
42 DATA DIVISION:
43 FILE SECTION.
44
45 FD COURSE-DATA-FILE.
46 01 COURSE-DATA-REC
A
*** W 003 A period is assumed after this uord.—,@
47 05 STUDENT=-NUM-IN PIC 9(5) '
48 05 STUDENT-NAME-IN PIC X(30).
49 05 COURSE-NUM-IN PIC X(5).
50 05 COURSE-NAME-IN . PIC X(20).
51 05 INSTRUCTOR-NAME-IN PIC X(20).
52
53 FD INCOME-REPORT-EILE.
.
REPRT 7-MAR-1983 15:58:27  COBOL-81 v02.00 PAGE 6
3-MAR-1983 13:30:01 DB2:[1,250]REPORT.CBL ;2
D!AGNOST!CS——Q
Warning: 1
COMMAND SWITCHES —@

REPORT ,REPORT=REPORT/BLD/CRF/MAP
/CRF/-DEB/-CVF/BOU/MAP/PER/-CIS/INF/-SUB/SKL/-TRU/BLD/~FIP/~STA
. .

\.-__-__—_'____,_—--—-_-—___-_---____._...__-_f_-...____T___i -

(continued on next page)

Troubleshooting

2-3



Figure 2-1: Partial Listing of the Program REPORT (Cont.)

REPRT

PROCEDURE

‘I’N AME

A-000-CONTROL
B-100-OPEN-FILES
B-100~OPEN-FILES-EXIT
B-200-INITIALIZE
B-200-INITIALIZE-EXIT
B-300~WRAP-UP
B-300-WRAP-UP-EXIT
B8-400-CLOSE~FILES
B-~400~CLOSE-FILES-EXIT
C-100~GET~-THE~DATE
C-100-GET-THE-DATE-EXIT
C-200-PROCESS-DATA
C-200-PROCESS-DATA~EXIT
D=100-WRITE-STUDENT-LINE
D-100-WRITE-STUDENT-LINE-EXIT
D-200-WRITE-INSTRUCTOR-LINE
D-200-WRITE-INSTRUCTOR~LN-EXIT
D~300-WRITE-COURSE-LINE
D-300-WRITE-COURSE~LINE-EXIT
X=100-READ-A-REC
X-100-READ-A-REC-EXIT
X=200-OUTPUT-TOTALS
X=200-0OUTPUT-TOTALS-EXIT
X-300-WRITE-TOTAL-LINE
X=-300-WRITE-TOTAL-LINE-EXIT
X=400-START-NEW-PAGE
X=400-START~NEW-PAGE-EXIT

DI'VISION

LINE PSECT
125,
136. $s00SC
139. $S00sSC
142, $S00SC
156. $S00SC
169, $S00SC
164, $500SC
167, $S00SC
170. ' $S00SC
173, $S00SC
176. $S00SC
179. $S00SC
192, $500SC
195. $S00SC
207. $S00SC
210. $500sC
218. $S00SC
221, $S00SC
231. $S00sC
234. $500sC
237. $S00SC
240. $S00SC
246. $500SC
249. $S00SC
256. $S00SC
259, $S00SC
273. $S00sC

7-MAR-1983
3-MAR-1983

MAP

15:58:27
13:30:01

ODFFSET @TVPE QHEF

OCTAL DECIMAL

PARAGRAPH

114 76. PARAGRAPH

160 112. PARAGRAPH

216 142, PARAGRAPH

342 226, PARAGRAPH

400 256, PARAGRAPH

430 280. PARAGRAPH

466 310. PARAGRAPH

536 350. PARAGRAPH

574 380. PARAGRAPH

672 442, PARAGRAPH

730 472, PARAGRAPH

1054 556. PARAGRAPH
1112 586. PARAGRAPH
1242 674. PARAGRAPH
1300 704. PARAGRAPH
1376 766. PARAGRAPH
1434 796, PARAGRAPH
1614 908 PARAGRAPH
1682 938. PARAGRAPH
1704 964 PARAGRAPH
1742 994. PARAGRAPH
2022 1042, PARAGRAPH
2060 1072, PARAGRAPH
2146 1126. PARAGRAPH
2204 1166. PARAGRAPH
2544 1380. PARAGRAPH

L_///—\___/

tesesssreesssessERERERREE

coBOL-81 V02,00
DB2:(1,250)REPORT.CBL;2

PAGE 7

REPRT
LEVEL DATA N AME

COURSE~-DATA-FILE
INCOME-REPORT-FILE

o1 COURSE-DATA-REC

05 STUDENT-NUM-IN

05 STUDENT-NAME-IN

05 COURSE-NUM-IN

05 COURSE-NAME-IN

05 INSTRUCTOR-NAME-IN
01 INCOME-REPORT-REC
01 FLAGS

05 END-OF-COURSE-DATA
01 COURSE-DATA-FILE-STAT
01 INCOME-REPORT-FILE-STAT
01 THE-DATE

01 TUITION
01 INCOME

01 COUNTERS

05 STUDENT-TOTAL

05 PAGE-NUM

05 LINE~NUM

01 PAGE-HEADER-LINE-1
05 DATE-EDITED

05 PAGE-NUM-EDIT
01 PAGE-HEADER-LINE-2
01 COURSE-HEADER-LINE
05 COURSE~NUM-0OUT1
01 INSTRUCTOR-HEADER-LINE
05 INSTRUCTOR-NAME-OUT
01 STUDENT-ENTRY-LINE
05 STUDENT-NUM-OUT

05 STUDENT-NAME-OUT
01 COURSE-TOTAL-LINE
05 COURSE-NUM-0UT2

05 STUDENT-TOTAL-EDIT
05 INCOME-EDITED
01 BLANK~-LINE

2-4

DATA

@L!NE

Troubleshooting

7-MAR-1983
3-MAR~1983
DIVISION MAP
PSECT OFFSET REF
OCTAL DECIMAL
.
.
$I0BUF 2 2.
$10BUF 2 2. ¢
$I10BUF 7 7. .
$I0BUF 45 37. .
$I0BUF 52 a2,
$10BUF 76 62. A
$10BUF 1126 598. .
$DATSC 1010 520.
$DATSC 1010 520. ’
$DATSC 1012 522. .
$OATSC 1014 524, ¢
SDATSC 1016 526. b
$DATSC 1024 532, ¢
SDATSC 1032 538. .
$DATSC 1044 548.
SDATSC 1044 548. ¢
$DATSC 1047 551, *
$DATSC 1052 554 L
$DATSC 1062 562. .
$DATSC 1071 569.
$DATSC 1071 569. .
$DATSC 1074 §72, bd
$DATSC 1077 575. ¢
$DATSC 1165 629, ¢
SDATSC 1170 632, .
$DATSC . 1276 702 hd
$SDATSC 1306 710. *
$DATSC 1404 772, *
$DATSC 1424 788 .
$DATSC 1512 842, .
SDATSC 1526 854, b4
SDATSC 1534 860, .
$OATSC 1642 930. .
SDATSC 1642 '930. .
$DATSC 1672 954, .
$DATSC 1717 975 .
SDATSC 1750 1000. *

15:58:27
13:30:01

CLASS

FILE NAME

FILE NAME

GROUP ITEM
DECIMAL UNSIGNED
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
GROUP ITEM
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
ALPHANUMERIC
DECIMAL UNSIGNED
DECIMAL UNSIGNED
GROUP ITEM
DECIMAL UNSIGNED
DECIMAL UNSIGNED
DECIMAL UNSIGNED
GROUP ITEM

GROUP ITEM
DECIMAL UNSIGNED
DECIMAL UNSIGNED
DECIMAL UNSIGNED
NUMERIC EDITED
GROUP ITEM

GROUP ITEM
ALPHANUMERIC
GROUP ITEM
ALPHANUMERIC
GROUP ITEM
DECIMAL UNSIGNED
ALPHANUMERIC
GROUP ITEM
ALPHANUMERIC
NUMERIC EDITED
NUMERIC EDITED
ALPHANUMERIC

4____—w——-""""""--.________________",

COBOL-81 V02,00
DB2:[1,250]REPORT.CBL;2

OCCURS

PAGE 8

LENGTH

~
NOOWRNNNDONWWBOUONN — =

N~

N - N NN
OoO—-wumoownooo

(continued on next page)



Figure 2-1: Partial Listing of the Program REPORT (Cont.)

REPRT 7-MAR-1983 15:58:27  COBOL-81 V02.00 PAGE 9
3-MAR-1983 13:30:01  DB2:[1,250]REPORT.CBL;2
CROSS REFERENCE IN ALPHABETICAL ORDER
DATA NAMES and MNEMONIC NAMES:
BLANK-LINE 1210 227 228 263 265 268 269
COUNTERS 710
COURSE-DATA-FILE 320 450 137 168 235
COURSE-DATA-FILE-STAT 35 610
COURSE-DATA-REC 460
COURSE-HEADER-LINE 95D 229 270
COURSE-NAME-IN 500
COURSE-NUM-IN 490 145 180 226
COURSE-NUM-0UT1 970 145% 180 226 242
COURSE-NUM-0UT2 114D 146+ 242+
COURSE-TOTAL-LINE 1130 254
DATE-EDITED 780
oY 810 175+
END-OF-COURSE-DATA 590 155 236+
FLAGS 58D
INCOME 690 243+ 244
INCOME-EDITED 118D 244+
INCOME-REPORT-FILE 370 53D 138 169
INCOME-REPORT-FILE-STAT 40 630
INCOME-REPORT-REC 54D 202 216 227 228 229 254 263 265 266
267 268 269 270 27
INSTRUCTOR-HEADER-LINE 1000 216 271
INSTRUCTOR-NAME-IN 51D 147 181 215
INSTRUCTOR-NAME-OUT 103D 148+ 181 215%
LINE-NUM 740 196 204% 211 217+ 222 230% 250 265+ 262+
272+
MO 790 175%
PAGE-HEADER-LINE-1 76D 266
PAGE-HEADER-LINE-2 90D 267
PAGE-NUM 730 260+ 261
PAGE-NUM-EDIT 88D 261+
RMS-STS 320
RMS-STS 370
RMS-STV 320
RMS-STV 370
STUDENT-ENTRY-LINE 106D 202
STUDENT-NAME-IN 48D 201
STUDENT-NAME-OUT 1100 201+
STUDENT-NUM-IN 470 200
STUDENT-NUM-0UT 1080 200+
STUDENT-TOTAL 720 203+ 241 243 245+
STUDENT-TOTAL-EDIT 116D 2418
THE-DATE 650 174¢ 175
TUITION 670 243
YR 83D 175¢
‘f\_—//\/
REPRT 7-MAR-1983 15:58:27  COBOL-81 V02.00 PAGE 10
3-MAR-1983 13:30:01  DB2:(1,250]REPORT.CBL;2
CROSS REFERENCE IN ALPHABETICAL ORDER
PROCEDURE NAMES
A-000-CONTROL 1250
B-100-OPEN-FILES 126 1360
B-100-OPEN-FILES-EXIT 127 1390
B-200-INITIALIZE 128 1420
B-200-INITIALIZE-EXIT 129 1560
B-300-WRAP-UP 130 1590
B-300-WRAP-UP-EXIT 131 1640
B-400-CLOSE-FILES 132 1670
B-400-CLOSE-FILES-EXIT 133 1700
C-100-GET-THE-DATE 149 173D
C-100-GET-THE-DATE-EXIT 150 1760
C-200-PROCESS-DATA 153 1790
C-200-PROCESS-DATA-EXIT 154 1920
D-100-WRITE-STUDENT-LINE 182 1950
D-100-WRITE-STUDENT-LINE-EXIT 183 2070
D-200-WRITE-INSTRUCTOR-LINE 184 2100
D-200-WRITE-INSTRUCTOR-LN-EXIT 185 2180
D-300-WRITE-COURSE-LINE 190 2210
D-300-WRITE-COURSE-LINE-EXIT 191 2310
X-100-READ-A-REC 143 205 234D
X-100-READ-A-REC-EXIT 144 206 2370
X~200-0UTPUT-TOTALS 160 186 2400
X-200-0UTPUT-TOTALS-EXIT 161 187 246D
X-300-WRITE-TOTAL-LINE 162 188 2490
X-300-WRITE-TOTAL-LINE-EXIT 163 189 256D
X-400-START-NEW-PAGE 151 198 213 224 252 2590
X-400-START~NEW-PAGE-EXIT 152 199 214 225 253 273D
\—/ J

Troubleshooting

C81ART-10003-180

25 1l



2.2 Program Run Errors

If your program terminates abnormally, you receive one of the COBOL-81 run-time error messages to
identify the problem. Appendix C of Part | lists and describes these error messages.

However, your program can run to completion and still not yield the results you expect. These
incorrect or undesirable program results are usually caused by data errors or program logic errors.
You can resolve most of these errors by ““desk-checking’ your program and by using the COBOL-81
Symbolic Debugger.

2.2.1 Faulty Data

Faulty or incorrectly defined data can often produce incorrect results. Data errors can sometimes be
attributed to:

® Incorrect picture size. If the picture size of a receiving data item is too small, data may be
truncated.

¢ Incorrect file definition. The block size you specify when accessing a file should be the same
block size you used when creating the file.

e Incorrect record field position. The record field positions that you specify in your program
might not agree with a file’s record field positions. For example, a file could have this record
description:

01 PAY-RECORD,
03 P-NUMBER PIC X(3).
03 P-WEEKLY-AMT PIC 59(5)va8 COMP-3.
03 P-MONTHLY-AMT PIC S589(5)V99 COMP-3.
03 P-YEARLY-AMT PIC 59(35) V99 COMP-3.

+

+
+

Incorrectly positioning these fields can produce faulty data.

An attempt to read the file according to the following input record definition would place monthly
data in P-YEARLY-AMT and annual data in P-MONTHLY-AMT.

01 PAY-RECORD.
03 P-NUMBER PIC X(3).
03 P-WEEKLY-AMT PIC S9(5)v88 COMP-3.
03 P-YEARLY-AMT PIC §9(35)v88 COMP-3.
03 P-MONTHLY-AMT PIC S8(3)Y38 COMP-3.

+

PROCEDURE DIVISION,
ADD-TOTALS.,
ADD P-MONTHLY-AMT TO TOTAL-MONTHLY-AMT.

+

I 2-6  Troubleshooting



You can minimize file definition and record field position errors by writing frequently accessed file
and record descriptions to a library file and then using the COPY statement in programs that access
those files.

Your choice of test data can minimize faulty data problems. Rather than using ““live’”” or ideal data,
use test files that include data extremes. For example, test data for an update program should contain
tests for duplicate adds, a delete to a nonexistent master record, multiple change records, and so
forth. Give particular attention to the first and last records read into the program. Many errors occur at
these key points.

Determining when a program produces incorrect results can often help your debugging effort. You
can do this by maintaining audit counts (such as total master in = nnn, total transactions in = nnn,
total deletions = nnn, total master out = nnn) and displaying the audit counts when the program
ends.

2.2.2 Common Logic Errors

When checking your program for logic errors, first examine your program for some of the more
obvious bugs, such as the following:

1. Hidden periods. Periods inadvertently placed in a statement usually produce unexpected
results. For example:

050-DO-WEEKLY-TOTALS.
IF W-CODE = "W"
PERFORM 100-WEEKLY-SUMMARY
ADD WEEKLY-AMT TO WEEKLY-TOTALS.
GO TO 000-READ-A-MASTER.
WRITE NEW-MASTER-REC.

The period at the end of ADD WEEKLY-AMT TO WEEKLY-TOTALS changes the logic of
the statement by transforming GO TO 000-READ-A-MASTER from a conditional to an
unconditional GO TO. As a result, the statement following the GO TO will never be
executed.

2. Testing for equality, rather than inequality. Executing a procedure until a test condition is
met can cause errors:

PERFORM ABC-ROUTINE UNTIL A-COUNTER = 10

If, during execution, the program increments A-COUNTER by an integer other than 1
(1.5, for example), A-COUNTER might never equal 10, causing an infinite loop in
ABC-ROUTINE. You can prevent this type of error by changing the statement to:

PERFORM ABC-ROUTINE UNTIL A-COUNTER > 8

Troubleshooting 2-7 1



3. Combining two negative test conditions with an OR. The intent of the following statement
is to execute GO TO 200-PRINT-REPORT when TEST-FIELD contains any character
except “A” or “B"”". However, the GO TO always executes because the logical equivalent
(IF TEST-FIELD NOT = (“A” AND ‘B”")) for the stated test condition can never be true. A
single character input (TEST-FIELD) cannot be equal to two characters (“A”" and “‘B”) at
the same time.

IF TEST-FIELD NOT = "A" OR NOT = "B"
GO TO Z00-PRINT-REPORT,

+

You can correct this logic error by changing the statement to:

IF TEST-FIELD NOT = "A"™ AND NOT = "B"
GO TO 200-PRINT-REPORT.

+
+

+

2.2.3 COBOL-81 Symbolic Debugger
The COBOL-81 Symbolic Debugger lets you debug a COBOL program at run time. With the

Debugger, you can interactively examine and change the contents of data fields and control the order
of statement execution. For information on how to use the Debugger, see Chapter 3.

i 28 Troubleshooting



Chapter 3
Debugging your Program

The COBOL-81 Symbolic Debugger helps you debug programs written for the COBOL-81 compiler.
The Debugger lets you control and monitor your program as it runs by referring to the source version
rather than the object code produced by the compiler.

This chapter shows you how to prepare your program for using the Debugger and how to use each
Debugger command. It begins with an overview of the functions the Debugger provides. Appendix A
lists the Debugger error messages.

3.1 Overview of the Debugger

The Debugger gives you control over your program’s execution by letting you specify breakpoints,
which are positions in your program where execution temporarily stops.

At these breakpoints, you can examine the contents of data items and, if necessary, assign new values
to them.

The Debugger also lets you associate synonyms with data-names and positions in your program.
Once you have defined a synonym, you can use it in any Debugger command rather than typing the
actual name or position. If you refer to particular data items or positions often during a debugging
session, defining synonyms for them saves time.

Table 3-1 shows the available Debugger commands and the functions they provide. The letters
underlined in each command indicate that command’s abbreviation. You can use an abbreviation in
place of the full command at any time.

3.1 1l



Table 3-1: Debugger Commands

Command

Description

SET BREAKPOINT
CANCEL BREAKPOINT
SHOW BREAKPOINTS
DISPLAY

MOVE

DEFINE

UNDEFINE

SHOW SYNONYMS
PROCEED

STOP

HELP

Specifies a point at which program execution will be interrupted.
Removes a breakpoint.

Displays information about the breakpoints currently set.
Displays the contents of data items on the terminal.

Changes the contents of data items.

Associates a synonym with a data-name or a position.

Deletes a synonym.

Displays information about the synonyms currently in use.
Begins execution or continues execution after a breakpoint.
Stops execution.

Displays information about a Debugger command or topic.

3.2 Preparing the Program

To include the Debugger in your program, compile it using the /DEBUG qualifier (see Part |, Chapter
3.) For example:

COBOL PROGRM/DEBUG

If the program calls subprograms, each subprogram must also be compiled with the /DEBUG
qualifier.

After compiling the program(s), use the LINK/C81 command with the /DEBUG qualifier.

When you include the Debugger in your task, the Task Builder creates a “symbols file.” This file has
the same file name as your task image and a file type of STB. It contains information the Debugger
needs to know about your program’s data-names, procedure-names, and line numbers. You must not
delete this file from your directory if you want to use the Debugger. You can delete it, however, once
you have finished debugging the program.

The Debugger occupies under 1K words to 6K words in your task image if your program performs file
1/0. PDP-11 Record Management Services (RMS-11) routines required by the Debugger for support
are already part of your task. In this case, if you do not include a COBOL-81 resident library, the size
of the Debugger depends on how much of the COBOL-81 OTS your program uses. The more OTS
your program uses, the less address space the debugger will require. If you do include a COBOL-81
resident library, the Debugger occupies the full 6K words in your task image.

The Debugger can occupy up to 10K words in your task image if your program does not perform file
1/0 because the RMS-11 routines required by the Debugger are not already part of your task image.
The Debugger must therefore add these routines to your task image, increasing your task size by an
additional 4K words.

i 32 Debugging your Program



If the addition of the Debugger makes your task too large to fit in memory, the Task Builder issues this
message:

SEGMENT seg-name HAS ADDR OVERFLOW: ALLOCATION DELETED

To correct this problem, you have to make more sections of your task overlayable. See Chapter 4 for
information on how to use the COBOL-81 segmentation facility to overlay your object code, and on
how to use the BLDODL utility to overlay RMS-11 routines if you have not already done so.

To begin the debugging session, type RUN followed by the name of your task image, as you normally
would to execute your program. For example:

RUN PROGRM

The Debugger then initializes its internal tables. The initialization can take several minutes if your
program is large. Once it is finished, the Debugger gives you this prompt:

cDB >

You also see this prompt whenever the Debugger assumes control after a breakpoint.

In response to the prompt, you can type any Debugger command. The commands are explained in
detail in the next section.

A Debugger command can continue over several lines, but it cannot exceed 200 characters. To
continue a Debugger command line, type a hyphen (-) at the end of the line to be continued. The
Debugger gives you a shortened version of its prompt, as this example shows:

CDB>MOVE "This is an exam-
*ple of line cowtinuwation" TO ITEMA

The Debugger considers the character immediately preceding the hyphen and the character immedi-
ately following the shortened prompt to be contiguous. The previous command lines are equivalent to
this single line:

CDB»MOVE "This is an example of line continuation" TO ITEMA

3.3 Using the Debugger Commands

This section shows you the syntax of each Debugger command, along with examples illustrating
its use.

The format of each command’s syntax uses the following conventions (which are the same as those
used in the COBOL-81 Language Reference Manual):

e Braces, { }, enclose lists from which you must choose one element.
® Brackets, [ ], enclose optional elements.

e Uppercase words and letters mean that you type the word or letter as shown. The letters
underlined are those needed to uniquely define the command to the Debugger. That is, you
can use the underlined letters as abbreviations.

® Lowercase words mean that you substitute a word or value of your choice.

Debugging your Program 3-3 1l



Some commands refer to “‘position,” which you must supply using this format:

[ LINE ] line-number

IN
[ program-name \ ] [ PARAGRAPH ] paragraph-name |:{ } section-name-2]
OF
[ SECTION ] section-name-1 _
where:
program-name\ is necessary only if you are referring to a position in a program other than the
one currently executing. For example, if the Debugger stops at a breakpoint
you set in SUBT, and you want to refer to line 112 of MAIN, you must type:
MAIN\LINE 112
line-number is one of the line numbers the compiler assigned to your source code. Your

LST file contains these numbers.

paragraph-name  refer to paragraphs or sections you defined in your program’s Procedure
section-name-1 Division.

section-name-2 qualifies your reference to paragraph-name (when needed to make this refer-
ence unique). Section-name-2 refers to the Procedure Division section to
which paragraph-name is subordinate.

As the syntax for position shows, you do not have to type the words LINE, PARAGRAPH, or
SECTION. However, if a section-name or paragraph-name in your program is numeric, you must
specify SECTION or PARA to distinguish it from a line number.

The data-names you use in Debugger commands must also be unique, and they can be qualified or
subscripted. See Part Ill, Chapter 3, Table Handling, for further information on subscripting and
qualifying. Use this format when specifying a data-name:

IN
[ program-name \ ] data-name-1 [{ } data-name-2 ] |: ( literal... ) ]
OF

where:

program-name\  must be specified only if the data-name is defined in a program other than
the one currently executing. For example, if you are stopped at a breakpoint
in MAIN and you want to refer to ITEMA in SUBT, type:

SUBINITEMA

data-name-1 refers to a data item in your program. If the item is a table element, you must
specify a subscript value.

data-name-2 qualifies your reference to data-name-1 (when needed to make this reference
unique). Data-name-2 refers to the data item to which data-name-1 is
subordinate.

Il 3-4  Debugging your Program



3.3.1 Using the HELP Command

To get information about a Debugger command or topic, use the HELP command. The format of this
command is:

HELP [ topic-word ]
If you do not specify a topic-word, the Debugger will give you a list of topics for which information is
available. You can then use any item in the list as a topic-word.

Examples

CDB> HELP

Displays a list of Debugger commands and topics.

CDB>H DATA-NAME

Displays information about data-names.

3.3.2 Using the DISPLAY Command

Use the DISPLAY command to display the contents of data items on your terminal. The format of this
command is:

BYTE
DISPLAY data-name

ASCII

This is similar to the COBOL-81 DISPLAY statement, except that it edits numeric data into SIGN
TRAILING with decimal point.

If data-name is subscripted, you can specify either a single subscripted item or a range of subscripted
items. For example:

COB:>DISPLAY ITEMB(3, B:8)
Displays the contents of three data items: ITEMB(3,6), ITEMB(3,7), and ITEMB(3,8).

As the syntax shows, you do not have to specify a data-name. Whenever you specify a data-name in a
DISPLAY or MOVE command, that data-name becomes the current data-name. The Debugger keeps
track of this current data-name and uses it in each subsequent DISPLAY and MOVE command until
you specify another one. To avoid ambiguity, however, you cannot specify the BYTE or ASCII option
unless you also specify a data-name.

The BYTE and ASCIl options let you override the format of the data item as specified in the
COBOL-81 source program. You can use them, for example, to see the exact values of nonprinting
characters in an alphanumeric variable. BYTE displays the octal value of each byte of the item. ASCII
outputs the item as a series of ASCII characters, with any nonprinting characters in the item repre-
sented by the backslash (\).

Debugging your Program 3-5 1l



Examples

CDB> DISPLAY SALES-TOTAL

Displays the contents of the item SALES-TOTAL.

CDB> D MY-ARRAY (5)

Displays the contents of the item MY-ARRAY(5).

CDB> DIS ITEM-NAME BYTE

Displays the octal value of each byte in the item ITEM-NAME.

CDB> DISPLAY SALE-TABLE(1, 2:20)

Displays the contents of SALE-TABLE(1,2), SALE-TABLE(1,3), ...,SALE-TABLE(1,20).

CDB> DISPLAY MATRIX-ONE(1:Z2,: 1:2 1:2)

Displays the contents of the following:

MATRIX-ONE(1+141)
MATRIK-ONE(1+1+2)
MATRIX-ONE(1+241)
MATRIKXK-ONE(1+2:2)
MATRIX-ONE(2+11)
MATRIX-ONE(Z2+1:2)
MATRIX-0ONE(2+2,1)
MATRIX-ONE(Z2,2:2)

CDB» DIS PART1 IN TOOLG3

Displays the contents of the PART1 subordinate to TOOL63.

3.3.3 Using the MOVE Command

Use the MOVE command to change the value of a COBOL-81 data item. The format of this com-
mand is:

MOVE literal [[ T0 ] data-name]

This command simulates a COBOL-81 MOVE statement.
The source of the move must be either a numeric or nonnumeric literal.

As the syntax shows, you do not have to specify a destination (that is, a data-name). Whenever you
specify a data-name in a DISPLAY or MOVE command, that data-name becomes the current data-
name. The Debugger keeps track of this current data-name and uses it in each subsequent DISPLAY
and MOVE command until you specify another data-name.

All moves behave as though the MOVE statement had appeared in the COBOL-81 source program.

N 3-6 Debugging your Program



Examples

CDB>MOVE -100,35 TO TAX-RELIEF

Moves the numeric value —100.5 to the item TAX-RELIEF.

CDB>MOVE "JOHN BULL" EMPLOYEE-NAME

Moves the character string JOHN BULL to the item EMPLOYEE-NAME.

CDB*M ©

Moves the value 0 to the data item you specified most recently.

3.3.4 Using Breakpoints

Three Debugger commands apply to breakpoints:
® SET BREAKPOINT inserts a breakpoint in your program.
e CANCEL BREAKPOINT removes one or all breakpoints.
® SHOW BREAKPOINTS displays information about each breakpoint you have currently set.

3.3.4.1 SET BREAKPOINT — The format of the SET BREAKPOINT command is:

integer
SET BREAKPOINT position [ DISPLAY data-name ] PROCEED
ALWAYS

This command inserts a breakpoint at the position indicated. The Debugger assumes control just
before the first executable statement that occurs after that position. For this reason, the Debugger
considers a section and its first paragraph, and a paragraph and its first line, to be at the same
"’position”’.

When program execution reaches a breakpoint, the Debugger issues a message of the form:
BreaKpoint at position in module Program-name

If you use the DISPLAY option, the contents of data-name is displayed on your terminal. This option,
therefore, saves you from typing a separate DISPLAY command every time the breakpoint is reached.

Using the PROCEED option saves you from having to type a separate PROCEED command to resume
execution after the data-name is displayed. If you specify an integer, execution does not stop until the
breakpoint has been encountered the specified number of times. At that point, you receive the CDB>
prompt.

Specifying PROCEED ALWAYS lets you set up a ““watchpoint” for the displayed data item. That is,
each time the program passes the breakpoint, the contents of data-name is displayed but the program
does not stop. This is useful, for example, if you want to check the way your program is changing the
value of data-name as execution loops.

Debugging your Program 3-7 1l



Examples

CDB> SET BREAK 46
Sets a breakpoint at line 46 in your program.
CDB> S B SECTION ALPHA

Sets a breakpoint at section ALPHA in your program.
CDB> SET BREAKPOINT LINE 101 DIS MONEY
Sets a breakpoint at line 101 in your program. Each time the breakpoint is reached, the contents

of the data item MONEY are displayed.

3.3.4.2 CANCEL BREAKPOINT — The format of the CANCEL BREAKPOINT command is:

position
CANCEL BREAKPOINT
ALL

This command removes breakpoints. If you specify a position, only the breakpoint at that position is
removed. The ALL option removes all the breakpoints currently set in the main program and in any
subprograms.

Examples
CDB>C B EXT\2346
Cancels the breakpoint on line 2346 in program EXT.

CDB>» CANCEL BREAK ALL

Cancels all the breakpoints in the main program and subprograms.

3.3.4.3 SHOW BREAKPOINTS — Use the SHOW BREAKPOINTS command to display information
about each breakpoint you have set. The format for this command is:

SHOW BREAKPOINTS
When you enter this command:

CDB>SH B

The Debugger responds with the following:
1. The position of each breakpoint in the main program and subprograms
2. For each breakpoint, the name of any data item you have specified to be displayed

3. For each breakpoint, any proceed count you have specified

The information appears in this format:

Position Displav: data-name Proceed: inteder

i 3-8 Debugging your Program



Examples

line 281 in module DATFD
line 273 in module DATFD Displavy: PACKED-UNSIGNED-FD
line 265 in module DATFD

The examples indicate the information displayed if three breakpoints are in effect.

3.3.5 Using Synonyms
Three Debugger commands apply to synonyms:
e DEFINE associates a synonym with a data-name or a position.
e UNDEFINE deletes a synonym. It is no longer recognized by the Debugger.
® SHOW SYNONYMS displays information about the currently used synonyms.

3.3.5.1 DEFINE — The format of the DEFINE command is:

data-name
DEFINE synonym [ = ]

position

After you use this command to define a synonym, you can use that synonym, rather than its corre-
sponding data-name or position, in Debugger commands. If you refer to a particular data-name or
position frequently during the debugging session, using a synonym for it saves time.

The synonym you specify must be unique. No data-name or procedure-name in the program can
have the same name, and the name must not be a synonym that the Debugger is already using.

Exampies

CDOB>DEFINE ¥ = SALESMAN-CODE

Defines X as a synonym for SALESMAN-CODE.

CDB»DEFINE TA = SALES-TOT OF STORE-A

Defines TA as a synonym for the data-name SALES-TOT that is subordinate to the data-name
STORE-A. ,

CDB»DE Y SUBIVINITIAL-PARA
Defines Y as a synonym for the paragraph-name INITIAL-PARA in the program SUB1.

CDB»DEFINE A EMPTAB(S,4,16)
Defines A as a synonym for the table element EMPTAB(5,4,16).

Defining synonyms uses extra workspace. Conscientious use of UNDEFINE will avoid exhaustion of
this resource. (See error message 1 in Appendix A)

Debugging your Program 39 1



3.3.5.2 UNDEFINE — The format of the UNDEFINE command is:

UNDEFINE synonym

After you use this command, the Debugger no longer recognizes the synonym. You can then define
that synonym as some other data-name or position.

Examples

CDB> UNDEFINE 8YNI1

Removes the synonym SYNT1 from the Debugger’'s synonym list.

ChOB> U X

Removes the synonym X from the Debugger’s synonym list.

3.3.5.3 SHOW SYNONYMS — The format of the SHOW SYNONYMS command is:
SHOW SYNONYMS

This command displays a list of all the currently recognized synonyms, along with their actual names
in this format:

sYnonvms actual name

Examples

Ci: CMP-1
C2: CMP-2
C3: CMP-3

Displayed if three synonyms are in effect.

3.3.6 Using the PROCEED Command

To start program execution or to continue execution of your program after a breakpoint, use the
PROCEED command. The format is:

PROCEED [ integer ]

If you specify an integer, the program ignores (integer — 1) breakpoints. That is, the Debugger does
not give you control until the nth breakpoint is reached, where n = integer.

Examples
CDB> P

Begins or continues your program.
CDB> PROCEED 20

Begins or continues your program and tells it to ignore the next 19 breakpoints. Execution stops
at the 20th breakpoint, and the Debugger will prompt you for another command.

I 3-10 Debugging your Program



3.3.7 Interrupting Program Execution
You can type CTRL/C to stop execution, rather than waiting for your program to encounter a break-

point. After you type CTRL/C, you receive the Debugger prompt. You can enter any Debugger
command at this point.

3.3.8 Using the STOP Command

To stop your program and end the debugging session, use the STOP command. The format of this
command is:

STOP [ RUN ]

This command is equivalent to the COBOL-81 STOP RUN statement. Your program stops, the
COBOL-81 OTS closes any open files, and control returns to the operating system.

Debugging your Program 3-11 1l






Chapter 4
Reducing Your Task Size

4.1 When to Use Task Size Reduction Techniques

Your program is too large to fit into memory when it requires more than 32K words of address space
at any one time. This 32K word area in memory must provide for the support routines your program
needs when it runs, as well as the data specifications and procedures that originate in your source
file. In the following discussion, the term task image, or simply task, refers to all code that one 32K
word memory area must accommodate. The term TSK file refers to the file you execute with the RUN
command.

When you reduce task size, you are changing the way the operating system accesses your program
code and support routines. Task reduction techniques are the methods that you use to ensure that one
32K word partition in memory can handle everything your program specifies or needs in order to run.

All of the techniques available to you for reducing program task size cause varying degrees of
performance degradation. Because of this, use the techniques described in this chapter only when
your program is too large to fit into memory.

4.2 Reduction Techniques Available

You can use the following techniques to reduce your COBOL-81 task:
® Clustered resident libraries
® Overlayable RMS-11 input/output disk routines
e Callable subprograms with implicit overlays
® Segmentation

® File-handling optimization

4-1 1l



This chapter discusses all of the task reduction techniques in this list except the last. Refer to Part IV,
Chapter 7, File Optimization Techniques, for information on using file-handling techniques to reduce
task size. ‘

The techniques you use for a particular task depend primarily on whether or not (1) your system
supports resident libraries and (2) your task image was created using COBOL-81 defaults.

4.3 Selecting Library Support Routines

All programs automatically include COBOL-81 OTS (Object Time System) support routines. In addi-
tion, RMS-11 (PDP-11 Record Management Services) support routines are automatically included if
your program opens and closes files. FMS (PDP-11 Forms Management System) and user-defined

routines also can be included, but only if you select the appropriate options when you create the task
image.

The support routines included in your task image reside in libraries. OTS, RMS-11, and FMS libraries
are DIGITAL-supplied. User-defined libraries are those created at your installation. All systems sup-
port disk versions of these libraries. Optionally, systems can support resident versions of these librar-
ies. However, provisions for resident libraries must be included when your system manager generates
your operating system, and then each library must be separately installed on your system.

To determine if your system supports resident libraries, and, if it does, which ones are installed:
® For a RSTS/E system, type:

SYSTAT/C

® For an RSX-11TM/M-PLUS systerﬁ, type:

SHOW COMMON

When you enter this command, the resident libraries that are installed on your system are named in
the terminal display.

Including the most appropriate library support for your program can be the best way to reduce the
size of your COBOL-81 task and minimize the effect of library use on performance. The following
sections explain some of the major differences between disk and resident libraries and the options
you can have on your system for a particular task.

4.3.1 Disk Libraries, Resident Libraries, and Clustered Resident Libraries

When you use disk libraries, their routines are actually built into your TSK file and add to its size.
However, only those routines in the library that apply to your program are added, not the whole
library. Programs that include only disk library support can be run on any system large enough to
support the size of the task; that is, when you include only disk library support, your program is
“transportable’”’ to systems that do not support resident libraries. However, as the number of
COBOL-81 programs your installation has to store and run increases, disk library support for these
programs becomes more costly in terms of system disk and memory space.

I 4-2 Reducing Your Task Size



When you use resident libraries, their routines are not included in your TSK file. (However, some
OTS routines are an exception to this rule. See Section 4.3.2.) This means a savings in disk space, if
many of the TSK files being stored use the same support routines. Resident libraries can be shared by
other programs that run simultaneously with yours. This is a big advantage to your system because
disk and memory space is not wasted by duplicates of program support routines. However, when you
use resident libraries, your task probably includes support routines that your program does not need.
This disadvantage (at least from the perspective of a single program) can be more than offset by using
the clustering option that is available for resident libraries. The following paragraphs discuss disk and
resident library use in greater detail.

Figure 4-1 illustrates the differences in using disk libraries, resident libraries, and clustered resident
libraries in terms of disk and memory space allocation for a program. The figure assumes that:

® Two COBOL-81 applications (YOUR.TSK and OTHER.TSK) run simultaneously.
® Both applications require RMS-11 support.

® Neither program uses segmentation. (If the programs included the SEGMENT LIMIT clause,
they would occupy more disk space than memory space.)

If you look at a single “‘typical’” COBOL-81 program that requires RMS-11 as well as OTS support,
using resident libraries always results in a smaller TSK file than using disk libraries. However, depend-
ing both on your program and on the system environment in which it runs, using resident libraries
might or might not conserve memory space from your system’s point of view.

When your program runs with resident library support, the system must allocate space in memory for
a whole library. Resident libraries remain in memory as long as they are being used, and they can be
shared by programs with a wide range of support requirements. Therefore, all the support routines in
the library are in memory with your program, not just the ones your program needs. For this reason,
systems typically install support routines as resident libraries only when they (1) will be heavily used
and (2) will be accessed by two or more programs running at the same time.

~ The clustering option for resident libraries is a newer DIGITAL feature than are resident libraries
themselves. It allows two or more resident libraries to share the same address space. When you use
the LINK/C81 command or the COBOL-81 BLDODL utility to create a task image, you can cluster up
to three resident libraries.

Figure 4-1 illustrates the difference in memory allocation that clustering makes when you use resident
libraries. The specific advantage of clustering resident libraries is that you can use resident libraries
efficiently to conserve address space for your task. This is because clustering requires only enough
words of address space for the largest resident library being used. In most cases, clustering requires
only 8K words of address space no matter how many libraries you specify. (The only exception is
when you specify a user-defined resident library that requires more than 8K words.)

To use clustered resident libraries (for one program) to both your and the system’s advantage, your
program must (1) access at least two resident libraries and (2) require support routines that in disk
form total more than 8K words. If your program is a “typical’”” COBOL-81 program (one that opens
and closes files), using clustered resident library support always (1) allows you to fit a larger program
into memory than using disk libraries and (2) results in maximum memory conservation for your
operating system.

Reducing Your Task Size 4-3 1l



Figure 4-1: How Use of Libraries Affects Task Size

Space Occupied by TSK
Files on Disk

‘Space Occupied by TSK
Files in Memory

Using Disk Libraries

<

YOUR o
XK words | ———"| YOUR.TsK

RMS-11 routines
aK words | ———"]
° g, OTS routines
OTHER

yK words | ~————"] OTHER.TSK > (12 + y + b)K words

OTS routines

\__/ L

(A TSK file can occupy no more than 32K words.)

10K words

Y

(10 + x + a)K words

12K words

bK words

Using Resident Libraries Without Clustering

10K words -
YOUR.TSK —————— 3 (10 + c)K words
cK words W
8K words /8K words,
12K words
OTHER.TSK ——>»
dK words W (12 + d)K words
(A TSK file can occupy no more than 16K words when

it uses both the RMS-11 and OTS resident libraries.)

RMS-11 Resident L|brary
OTS Resident lerary

Using Resident Libraries With Clustering '

10K words -
YOUR.TSK > (10 + c)K words
cK words W ] ;

8K words
12K words
OTHER.TSK
dK words W ' (12 + d)K words

(A TSK file can occupy no more than 24K words.)

RMS-11 Resident lerary
OTS Resident L|brary

Legend: x and y represent values that depend on a program'’s requirements for RMS-11 library support
a and b represent values that depend on a program’s total requirements for OTS library support
¢ and d represent values that depend on a program’s requirements for supplementary OTS support
(support not provided in the OTS resident library)
K represents the value 1000 C81ART-10004-50

I 44 Reducing Your Task Size



4.3.2 Estimating COBOL-81 OTS Support

The COBOL-81 OTS support a program requires can range from 2K to 12K words.

If your program requires only COBOL-81 OTS support, including the OTS as disk library routines
might allow you to fit a larger program into memory than using the resident library. The COBOL-81
resident library requires 8K words in your task image. If your program requires fewer OTS routines
than are included automatically using the resident library, then using the disk library could be an
advantage to you. '

Also, the COBOL-81 resident library does not include all OTS support routines. If your task uses the
COBOL-81 resident library and requires OTS routines not included in the resident library, those OTS
routines are included in the TSK file.

If your task requires support from libraries in addition to the one containing the COBOL-81 OTS,
using OTS disk routines generally loses all space-saving advantages. Most COBOL-81 programs
require considerably more than 2K words of OTS support. For this reason, clustering the COBOL-81
resident library with other resident libraries results in significant task size reduction.

4.3.3 Using Disk Libraries Only

Some systems are too small to allow resident library installation. Other systems can support resident
libraries, but for one reason or another, do not have the ones you require installed. In this case, you
are limited to disk library support routines. This section discusses your task reduction options when
you are limited to disk library use.

If your task image was created using COBOL-81 disk library defaults, it includes only those OTS
routines and the smallest overlayable RMS-11 routine structure that your program needs.

If your task image was created using the COBOL-81 BLDODL utility (and then the Task Builder),
check to see if either the BLDODL /LRG switch or /IO:NONOV switch was specified. Both of these
switches are intended primarily to improve program performance. They add more space in the task
image for RMS-11 routines than does the default BLDODL command line.

If you rerun BLDODL without the /LRG switch and then rebuild your task, you can reduce your task
size by either 3K or 4K bytes (depending on whether your program requires sequential or indexed file
support).

If you rerun BLDODL without the /IO:NONOV switch and then recreate your task image, you can
reduce your task size more than 4K bytes. The amount of reduction depends on how many
input/output routines your program requires.

At this point, the remaining options you can use to reduce your task size are callable subprograms
and segmentation. Subprograms are discussed in Section 4.4 and Chapter 6 and segmentation in
Section 4.5. You should also discuss use of resident libraries with your system manager if you think
that using them would be to both your and the system’s advantage.

Reducing Your Task Size 4-5 11



4.3.4 Using Resident Libraries

This section discusses your task reduction options when you have the support routines your program
needs installed as resident libraries on your system.

If your task was created using the LINK/C81 command:

® On a RSTS/E system, the LINK/C81 command line default includes resident library support (if
available) and clusters resident libraries. If your program needs only COBOL-81 OTS support,
you might be able to fit your program into memory by recreating a task image and specifying
the /OTS:NORESIDENT qualifier in the LINK/C81 command line.

® On an RSX-1TM/M-PLUS system, the LINK/C81 command line default includes disk library
support in your task image. If your program needs only COBOL-81 OTS support, you might
have the most size-efficient task image you can achieve by manipulating library support.
However, if your program requires support from RMS-11 as well, using the clustering option
with resident libraries can obtain more memory space for your program. If you specify resident
library qualifiers in the LINK/C81 command line, clustering is invoked by default. This com-
mand line has the following format:

LINK/CB1/0TS:RESIDENT /RMS:RESIDENT Program-name

If your TSK file was created using the COBOL-81 BLDODL utility defaults and then the Task Builder,
it includes disk library support. Therefore, if your program requires support from at least two resident
libraries, you can reduce your task size by rerunning the BLDODL utility with the /CLU switch. Refer
to Part I, Appendix D, for instructions on using the BLDODL utility.

4.4 Using Subprograms with Implicit Overlays

If you organize your application as subprograms, COBOL-81 can overlay some parts of your TSK file
for you. This implicit overlaying significantly reduces your task size if your program contains many
data items and literals and/or if its Procedure Division is large.

When you use subprograms, COBOL-81 can overlay the storage space required for each program’s
descriptors. (For each data item or literal in a program, COBOL-81 allocates three words of storage
for its ““descriptor’’.) Therefore, the space required for a task’s descriptors has to be only as large as
needed for the program that has the most data items and literals. Also, Procedure Division code for
each program in the task can be overlaid. As with the case for descriptors, the space required for
Procedure Division code has to be only as large as needed for the largest Procedure Division among
the programs.

To take advantage of this COBOL-81 feature, you must specify the SEGMENT-LIMIT clause in the
OBJECT-COMPUTER paragraph of each program included in your TSK file. Within this clause, you
can specify any segment number within the integer range 1 through 49. You do not need to explicitly
segment the Procedure Divisions of any program in the task (unless you need additional overlaying
for a very large TSK file).

For more information on using callable subprograms, refer to Chapter 6, Interprogram
Communication.

Il 4-6 Reducing Your Task Size



4.5 Using the COBOL-81 Segmentation Facility

COBOL-81 allows you to divide the Procedure Division into overlayable and nonoverlayable pro-
gram segments to optimize memory use. Only enough memory space is allocated in the task image to
store the largest overlayable program segment. Overlayable program segments are read into memory
only when needed.

An overlayable program segment can be overlayed by and can overlay any other overlayable seg-
ment. A nonoverlayable program segment, however, can never be overlayed within the program. All
code generated for the Identification Division through the Data Division becomes part of the nonover-
layable portion of the task image.

4.5.1 Programming Considerations

Using segmentation allows you to specify those segments you want to be overlayable and those you
want to be nonoverlayable. To use segmentation, you must first define a segment limit by specifying
the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph of the Environment Division of
your source program. The integer value you specify in this clause is used by the compiler to deter-
mine whether a program segment is overlayable or nonoverlayable. A segment consists of one or
more COBOL-81 sections. Each COBOL-81 section should be composed of a series of closely related
operations designed to collectively perform a particular function.

In the Procedure Division, you specify a number in each section header that assigns that section to a
segment. For example:

INITIALIZATION SECTION 10,

In this section header, INITIALIZATION is the user-defined word that identifies the section, SECTION
is a COBOL-81 required word, and 10 is the number of the segment to which the section is assigned.

If you specify a segment-number whose value is less than the value specified in the SEGMENT-LIMIT
clause, you have defined the section as being nonoverlayable. A segment-number whose value is
greater than or equal to the value specified in the SEGMENT-LIMIT clause defines the segment as
being overlayable. All segment-numbers specified must be in the range 0 through 49.

The most frequently referenced sections of your program should be made nonoverlayable. This
reduces the number of 1-O reads and improves performance. Assign segment-numbers that are less
than the value specified in the SEGMENT-LIMIT clause to those sections.

Infrequently used sections should be made overlayable. Assign segment-numbers that are greater than
or equal to the value specified in the SEGMENT-LIMIT clause to those sections. Sections that commu-
nicate with each other should be assigned to the same segment. Thus, the communicating sections
are read into memory as a unit, again improving performance. Sections having identical segment-
numbers are regrouped and assigned to the same segment. This regrouping does not affect the
program’s logical flow.

If your program task consists of a main program and callable subprograms, you can assign duplicate
segment-numbers in any or all of the programs. However, the Task Builder expects to receive unique
Program Section (PSECT) names, and you must ensure this by using the /NAMES:XX qualifier when
you compile the main and subprograms.

Reducing Your Task Size 4-7 1l



Do not use more segmentation than required to get your task to fit into memory; the more heavily
segmented a task is, the worse the performance. Keep the following three guidelines in mind when
deciding how many overlayable segments you need and how large each should be:

1. The overlayable portion of your task is only Iarge enough to accommodate the largest
overlayable segment. )

2. A few large segments run faster than many small segments. -

3. Segments that are equal (or nearly equal) in size use memory most efficiently.

As a first try, choose a segment size that you feel will reduce the total task size enough to fit it into
memory. Segment your program(s) accordingly and try to create the task image. If the attempt to
create the task is successful, read the memory allocation map and note the size of the total task and
the sizes of the segments. With this information, you can now tailor your program segments to
maximize performance. To achieve the best run-time performance, you must use the minimum
amount of segmentation necessary to fit your task in memory.

4.5.2 Creating a Segmented Task Image

The Task Builder needs segmented object code along with other information to include segmentation
in the task image. This information is included automatically when you use DCL commands (the
COBOL command followed by the LINK/C81 command).

However, if you intend to use the Task Builder’s TKB command, the information is provided by the
compile-time /BLD switch or by the COBOL-81 BLDODL utility. Remember that you can use the
compiler /BLD switch only if the task image does not include subprograms.

4.5.2.1 Segmenting a Single-Program Task — To illustrate the concept of using the segmentation
facility on a single-program task, the following program skeleton is presented. The value specified in
the SEGMENT-LIMIT clause is 16. Therefore, any section assigned a segment-number equal to or
greater than 16 belongs to an overlayable segment.

IDENTIFICATION DIVISION.

PROGRAM-ID, SEG-EXAMP.

ENVIRONMENT DIVISION,

SOURCE COMPUTER. PDP-11.

OBJECT-COMPUTER. PDP-11
SEGMENT-LIMIT IS 1G6.

DATA DIVISION,

PROCEDURE DIVISION,

SECT-NAME-1 SECTION 10,

+

SECT-NAME-Z SECTION 16.

+

+

SECT-NAME-3 SECTION 12,

+

+

SECT-NAME-4 SECTION 18,

3

SECT-NAME-S5 SECTION 14.

1N 4-8 Reducing Your Task Size



The compiler produces the following default PSECT names, along with their literals and literal
descriptors:

SEG-EXAMP

$5008C $L00OSC
$5165C $L165C
$5188C $L188C

Figure 4-2 illustrates the way memory is allocated for the sample segmented program above. Program
segments 10, 12, and 14 are nonoverlayable, while segments 16 and 18 are overlayable. The code
and literals for sections with segment-numbers 10, 12, and 14 are located in PSECTs $S00SC and
$LOOSC. The relative sizes of the two overlayable segments are represented by the size of the segment
blocks. Note that the memory space provided for the overlayable parts of the program is only large
enough to accommodate the largest overlayable segment. Also, each overlayable segment is read into
memory only when needed.

Figure 4-2: Memory Allocation of a Segmented Program

DATA
Nonoverlayable 2?: ggg $S18SC
Available Memory $L18SC
Memory $S00SC
$LOOSC
Overlayable
‘ Memory <

C81ART-10005-18

4.5.2.2 Segmenting a Multiple-Program Task — Segmenting a multiple-program task is very much like
segmenting a single-program task. First you must specify the SEGMENT-LIMIT clause in each program
to be segmented. Next you segment the Procedure Division of those programs you want to segment
by assigning segment-numbers to sections.

More than likely, you will have to use duplicate segment-numbers in the various programs, particu-
larly if there are numerous sections or more than one programmer is writing the source code. This
poses no problem as long as you ensure that the compiled object code for each program in the task
contains unique PSECT names. You do this by using the /NAMES:XX qualifier when you compile
each segmented program. XX can be any of the characters $, A-Z, or 0-9. For example, consider a
five-program task comprised of one main program and four subprograms, three of which include
explicit segmentation:

1. Main program ““MAIN"":

SEGMENT-LIMIT IS 10,
SECTION 00,
SECTION 11,
SECTION 12,
SECTION 13.
SECTION 14,

(continued on next page)

Reducing Your Task Size 4-9 1l



2. Subprogram “SUBA"":

SEGMENT-LIMIT IS 10,
SECTION 00,
SECTION 11,
SECTION 12,
SECTION 13,
SECTION 15,

3.  Subprogram “SUBB"’:

SEGMENT-LIMIT IS 10,
SECTION 00,
SECTION 11,
SECTION 12,
SECTION 1G.
SECTION 17,

4. Subprogram “SUBC":

SEGMENT-LIMIT IS 10,
SECTION 00,
SECTION 11,
SECTION 18.
SECTION 19,
SECTION 20,

5. Subprogram ““SUBD"':

SEGMENT-LIMIT IS 10.
SECTION 0O,

If you do not use the /NAMES:XX qualifier, the compiler generates the following default PSECT
names:

Program

Segment-Number MAIN SUBA SUBB SUBC SUBD
1 $S11SC $S11SC $S11SC $S11SC —
$L11SC $L11SC $L11SC $L11SC —

12 $S12SC $S12SC $512SC — —
$L12SC $L12SC $L12SC — —

13 $513SC $513SC — — —
$L13SC $L13SC — — —

14 $514SC — — — —
$L14SC — — — —

15 — $S15SC — — —
— $L155C — — —_

16 — — $S16SC — —
—_ — $L16SC — —

17 — — $S17SC — —
— — $L17SC — —

18 — — — $S18sC —
— —_ — $L18SC —

19 — — — $S19SC —
— — — $L19SC —

20 — — — $520SC —
— — — $L20SC —

I 4-10 Reducing Your Task Size



Note the duplicate PSECT names. For example, each program (except SUBD) generates $S11SC and
$L11SC PSECT names for segment number 11.

The Task Builder requires unique PSECT names. It recognizes only the first of any duplicate names
when it creates a task.

For example, programs MAIN, SUBA, SUBB, and SUBC can reference only their own segment 11
routines at run time. However, the Task Builder recognizes only one name, $S11SC, for this segment
number. Therefore, each program executes the same segment 11 routine.

By specifying the /NAMES:XX qualifier when compiling each program, you override the compiler’s
default PSECT names. For example, if you compile each program as follows, the resulting PSECT
names are shown.

COBOL MAIN/LIST /NAMES:MM
COBOL SUBA/LIST /NAMES:AA
COBOL SUBB/LIST/NAMES:BB
COBOL SUBC/LIST/NAMES:CC
COBOL SUBD/LIST/NAMES:DD

Program

Segment-Number MAIN SUBA SUBB SUBC SUBD
11 $ST1TMM $ST1AA $S11BB $S11CC —
$L11MM $L11AA $L11BB $L11CC —
12 $S12MM $S12AA $S12BB — —
$L12MM $L12AA $L12BB — —
13 $S13MM $S13AA — — —
$L13MM $L13AA — — —
14 $S14MM — — — —
$L14MM — — — —
15 — $S15AA — — —
— $L15AA — — —
16 — — $S16BB — —
— — $L16BB — —
17 — — $S17BB — —
— — $L17BB — —
18 — — — $S18CC —
— — — $L18CC —
19 — — — $S19CC —
— — — $L19CC —
20 — — — $S20CC —
— — — $L20CC —

Now each PSECT name is unique. Therefore, when you link these programs, each program accesses
its own segment number 11 routines. When MAIN references segment number 11 routines, it
~accesses its own $S11MM segment.

4.5.3 Reading a Memory Allocation Map
The memory allocation map provides the means for you to determine the exact amount of memory

each segment requires. This section explains how to obtain a memory allocation map and how to
read it.

Reducing Your Task Size 4-11 1l



You request a memory map listing by specifying the /MAP qualifier to the LINK/C81 command. An
alternative way to request the listing is to specify the /MAP switch in the BLDODL utility command
line.

A complete memory allocation map is comprised of numerous memory sub listings. What you are
interested in is the memory allocation synopsis for each main or subprogram and for each overlayable
segment. These are the only parts of the memory allocation map discussed in this section. Example
4-1 shows a sample skeleton program using segmentation. With a SEGMENT-LIMIT of 10, SECTION
10 and SECTION 12 are overlayable, and SECTION 5 is nonoverlayable. The parts of the memory
allocation map applicable to segmentation are shown in Example 4-2.

Example 4-1: Sample Segmented Program

IDENTIFICATION DIVISION,
PROGRAM-ID. XSEG21.
ENVIRONMENT DIVISION,
SOURCE-COMPUTER. PDP-11,
OBJECT-COMPUTER. PDP-11
SEGMENT-LIMIT IS 10,

DATA DIVISION.,
PROCEDURE DIVISION,
MAINSTUFF SECTION.
% the root sedment
MASTERSTUFF .,

.

# overlavable sedment
SECTION-1 SECTION 10,
PROC-1.

+

*# opverlavable sedgment
SECTION-2 SECTION 12,
PROC-2.

¥ nonoverlavable sedment
SECTION-3 SECTION 5.
PROC-3.

+

+

STOP RUN.

Example 4-2 shows a sample memory allocation map.

I 4-12 Reducing Your Task Size



Example 4-2: Sample Memory Allocation Map

segment: $A00SC (entire program)

Memory allocation synopsis:

Section

$CROSC:(RO,D,GBL,REL,CON) 013674 000006 00006. <««——
$L00SC:(RO,D,GBL,REL,CON) 013702 000144 00100. -—
$S00SC:(RO,!,GBL,REL,CON) 014046 000304 00196. €—
$$ALVC:(RO,I,LCL,REL,CON) 014352 000000 00000.
$$RTS :(RO,!I,GBL,REL,OVR) 013556 000002 00002.

segment: $A10SC (SECTION 10 overlayable segment)

Memory allocation synopsis:

Section

$L10SC:(RO,D,GBL,REL,CON) 014354 000036 00030. €—
$S10SC:(RO,I,GBL,REL,CON) 014412 000116 00078. €—
$$ALVC:(RO,I,LCL,REL,CON) 014530 000000 00000.
$$RTS: (RO,I,GBL,REL,OVR) 013556 000002 00002.

segment: $A12SC (SECTION 12 overlayable segment)

Memory allocation synopsis:

Section

$L12SC:(RO,D,GBL,REL,CON) 014354 000012 00010. <€—
$512SC:(RO,I,GBL,REL,CON) 014366 000034 00028. €«—
$$ALVC:(RO,1,LCL,REL,CON) 014422 000000 00000.
$$RTS: (RO,I,GBL,REL,CON) 013556 000002 00002.

In the following discussions of the memory allocation synopses, the rows of interest (indicated with
arrows) are those where the Section PSECT name is of the form $XXXSC. In these particular rows, the
column of interest is the one at the far right, which lists, in decimal bytes, the memory allocated for
the named PSECT.

Segment $A00SC is the memory allocation synopsis for the entire program. You are interested in the
nonoverlayable portions. Row $CROSC lists the memory allocated for data descriptors, row $L00SC
that for literals, and row $S00SC the memory for program sections whose section number is less than
the segment limit number.

If, after segmentation, the program task image is still too large, one of your options is to reduce, if
possible, the nonoverlayable portion of the image. If the entire Procedure Division is already over-
layed, the only options left are to reduce the size of the largest overlayable segment or to divide the
program into subprograms.

Reducing Your Task Size 4-13 1l



Segments $A10SC and $A12SC are the memory allocation synopses for the two overlayable segments
in the program. From these notice that PSECT $S10SC has been allocated 108 bytes (30 for literals
($L10SC) and 78 bytes for the remainder ($510SC)) while PSECT $S12SC has been allocated 38 bytes
(10 for literals ($L12SC) and 28 bytes for the remainder ($512SC)). To use memory most efficiently,
you should make overlayable program segments as nearly equal in size as possible. If your Procedure
Division is already fully overlayed, your only option at this point is to reduce the largest overlayable
segment. This might mean breaking up present segments into additional smaller segments. Breaking
up segment $A10SC into two smaller overlays would reduce the memory requirements for the over-
lays. Although fine-grained segmentation degrades performance, there is no other option to reducing
your task size. ~

I 4-14 Reducing Your Task Size



Chapter 5
Improving Program Performance

5.1 Introduction

If your COBOL-81 application program is large and/or processes large quantities of data, you will
probably be interested in improving run-time performance. In addition, if you are compiling very
large programs on a busy system, you may want to improve compile-time performance as well. This
chapter discusses some general concepts that you can use to improve performance and provides
references to other parts of this manual that give more detailed information.

5.2 Performance Versus Task Image Reduction

In general, significant reduction of run time can be accomplished only at the expense of increasing
task image size. If you are forced to use segmentation/overlaying techniques to get your COBOL-81
program to fit into the available main memory, a significant reduction in run time might not be
possible, but some minor improvements can be made. However, to optimize the run-time perform-
ance of your program, limit overlaying to the absolute minimum required to fit your program task
image into main memory. See Chapter 4 for a discussion of program segmentation and overlaying
techniques.

5.3 Using Compiler Qualifiers td Improve Performance

There are three compiler qualifiers that you can use to improve run-time and/or compile-time per-
formance. These qualifiers are in addition to any other compiler qualifiers that you might have to
specify for other reasons. The following sections discuss these qualifiers.

5-1 11



5.3.1 Using the /NOCHECK and /CHECK Qualifiers

By default, the compiler generates the code necessary to check valid ranges for subscripts, indexes,
and nested PERFORM statements. This extra code both increases task image size and degrades
performance. You can override these defaults with the /NOCHECK, /CHECK:NOBOUNDS, and
/CHECK:NOPERFORM qualifier. Specify /CHECK:NOBOUNDS to turn off subscript and index
range checking, /CHECK:NOPERFORM to turn off nested PERFORM statement checking, and
/NOCHECK to suppress range checking for both subscripts and indexes, and for the nesting of
PERFORM statements. Use of these qualifiers will improve run-time performance and also reduce
your task image size. Use these qualifiers only after you have completely debugged your program.
See Part |, Appendix D, for additional information.

5.3.2 Using the /TEMPORARY:dev Qualifier

The /TEMPORARY:dev qualifier instructs the compiler to store its temporary working files on the
device you specify by ““dev’’. By default, the compiler stores these files on the system disk. If for
““dev”, you specify a disk that has more free blocks, compile-time performance will improve.

5.4 Using BLDODL Switches to Improve Performance

There are two BLDODL switches that you can specify to significantly improve run-time performance.
Both affect the overlaying of RMS-11 1/0O routines. If your program performs |/O functions, the
compiler builds into the task image those |/O routines required. These routines are provided by
RMS-11. Whether or not these routines are overlayed, and if so how much space is allocated for their
storage, has a significant effect on run-time performance. These switches are in addition to other
BLDODL switches that you might have to specify for other reasons. The following sections discuss
these BLDODL switches.

5.4.1 Using the BLDODL /IO:NONOV Switch

If you do not specify any BLDODL/IO switches, by default the required RMS-11 1/0O routines are
overlayable and increase the task image size. For sequential file support, 8K bytes are allocated and
for indexed files 9K bytes are allocated. If it is not absolutely necessary for you to overlay the RMS-11
routines, specify the BLDODL/IO:NONOV switch. This switch specifies that RMS-11 routines are
not overlayable, but instead are to be included as part of the task image. Because there is no longer a
need to read the overlayable routines into memory, performance improves considerably. See Part I,
Appendix D for additional information.

5.4.2 Using the BLDODL /LRG Switch

If you do overlay RMS-11 routines you can improve run-time performance by allocating more storage
space for the routines. To specify a large overlay structure for RMS-11 routines, use the
BLDODL/LRG switch. Instead of the 8K or 9K bytes allocated for the routines, 12K bytes are now
allocated, thus improving performance by reducing the number of reads to memory. This might mean
that you will have to rely more heavily on other segmentation/overlaying techniques to obtain the
additional memory space needed. See Part I, Appendix D, for additional information.

I 5-2 Improving Program Performance



5.5 Using Terminal Format Source Programs

You can write your source programs using either the conventional ANSI format or the DIGITAL
terminal format. The DIGITAL terminal format eliminates line-number and identification fields and
allows tab characters and short lines, thus saving disk space and reducing compile time. If your
source program is written in ANSI format you can convert it to terminal format before compiling by
using the REFORMAT Ultility. See Chapter 1 for instructions on using the REFORMAT Utility.

5.6 Data Handling Techniques for Improving Performance

There are several data handling techniques you can use to improve program performance. These
include:

® Using the same scale in arithmetic operations

e Reducing the number of significant digits in numeric data types
¢ Using indexes instead of subscripts in table handling

® Avoiding decimal truncation

® Using the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements instead of the COMPUTE
statement

® Using the GO TO DEPENDING statement instead of IF ... GO TO sequences
® Using the SEARCH ALL statement instead of the SEARCH statement

These techniques are explained in Part 1ll, Chapter 4, Data Handling Optimization

5.7 Using File Optimization to Improve Performance

There are several file optimization techniques available to you to improve program performance.
However, some of these techniques may involve significant trade offs. These file optimizing tech-
niques include:

® Optimizing file 1/0 ... the APPLY clause
® Sharing record areas

® Reserving additional 1/0O buffer space

® Tailoring 1/0 buffers

® Optimizing file design

These techniques are explained in Part IV, Chapter 7, File Optimization Techniques.

5.8 Using Subprograms

You can reduce the compile time for a large program if you break it into subprograms. This way, you
only need to recompile those subprograms with coding changes. This technique also simplifies
program segmentation if you keep segmentation in mind when you break up your large programs. A
properly designed overlay structure will have minimal effect on run-time performance.

Improving Program Performance 5-3 1l






Chapter 6
Interprogram Communication

COBOL-81 allows you to link separately compiled COBOL-81 and non-COBOL-81 programs into a
single task image. The CALL statement then allows these separately compiled programs to communi-
cate with each other when the task executes.

This chapter introduces you to multiple program (COBOL-81 and non-COBOL-81) tasks. It discusses
and presents examples of how to transfer execution control and data from one program to another
within the task.

The first section explains multiple COBOL-81 program tasks. The remaining sections then discuss the
inclusion of non-COBOL-81 programs into the task image and how to communicate with them from a
COBOL-81 program.

6.1 A Multiple COBOL-81 Program Task

A multiple COBOL-81 program task must consist of both:

® One main COBOL-81 program

® One or more COBOL-81 subprograms
A main program calls subprograms but cannot be called in return. Task execution begins and ends in
its Procedure Division. It contains one or more CALL statements and is a “calling”” program.

A subprogram must always be called by a main program or another subprogram. It contains none,
one, or more than one CALL statement. If it contains a CALL statement, it is both a “calling’”” and a
“called”” program. If it does not contain a CALL statement it is a ““called” program only.



6.1.1 Identifying a COBOL-81 Subprogram

At compile time, the COBOL-81 compiler must be able to distinguish between main programs and

subprograms. Depending on the need to pass parameters between programs, there are two methods
of identifying subprograms.

1. When passing parameters between programs, you must specify the USING phrase in the
Procedure Division header of the called subprogram. The USING phrase identifies this
particular program as a subprogram.

For example:

PROCEDURE DIVISION USING As B. ‘

The use of the data-name is discussed in Section 6.2.

2. When you do not need to pass parameters, you do not need to specify the USING phrase.
To identify the program as a subprogram, you must specify the /SUBPROGRAM compiler
qualifier. ‘ ~

For example:

CoOBOL suBl = SUB1/SUBPROGRAM

6.1.2 Compiling Main and Subprograms

When you use subprograms and also use segmentation in more than one of the programs, you must
ensure that all PSECT names generated by the compiler and used by the Task Builder are unique. You
do this by specifying the /NAMES:XX compiler qualifier when you compile any of the programs using
segmentation. XX is any two-character alphanumeric combination you choose to uniquely identify
PSECT names. This is in addition to any other compiler qualifiers that you might have specified.

For example, a multiple program task consists of:

MAIN (with segmentation)
SUB1 (no segmentation)
SUB2 (with segmentation)

You compile these as follows:

COBOL MAIN = MAIN/NAMES:MM
cCOoBOL SUB1 = SUB1
COBOL SUBZ = SUBZ2/NAMES:AA

Now all PSECT names assigned by the compiler will be unique and of the form $SnnXX where nn are
the section numbers you assigned to the program segments in the Procedure Division and XX are the
alphanumeric characters you specified in the /NAMES qualifier. See Chapter 4 for a more complete
discussion of program segmentation.

N 6-2 Interprogram Communication



6.1.3 Transferring Execution Control with the CALL Statement

You control a multiple program execution sequence in much the same way that you control the
execution sequence in a single COBOL-81 program.

In a single COBOL-81 program, you execute a GO TO or PERFORM statement to change its logic
flow. In a multiple COBOL-81 program, you execute both:

¢ A controlling CALL statement in the calling program (main or subprogram).

® An EXIT PROGRAM statement in the called subprogram.

6.1.3.1 The CALL Statement — Execution of a CALL statement causes the task’s execution control to
pass from the calling program to the beginning of the called subprogram’s Procedure Division. The
first time the called subprogram assumes execution control, its state is that of a fresh copy of the
program. Each subsequent time it is called, its state is as it was upon the last exit from that program.

Note

If you are passing parameters between programs, you must also specify the
USING phrase in the CALL statement. See the COBOL-81 Language Reference
Manual for a complete discussion of the CALL statement and the USING phrase.

6.1.3.2 The EXIT PROGRAM Statement — To return execution control to the calling program, the
called subprogram executes an EXIT PROGRAM statement. The EXIT PROGRAM format for the called
program is:

EXIT PROGRAM

You can include more than one EXIT PROGRAM statement in a subprogram. However, if it appears
in a consecutive sequence of imperative statements, it must appear as the last statement of the
sequence. For example:

IF A = B DISPLAY "A eauals B", EXIT PROGRAM.

READ INPUT-FILE AT END DISPLAY "End of input file"
PERFORM END-OF-FILE-ROUTINE
EXIT PROGRAM.

If you do not specify an EXIT PROGRAM statement, control returns to the calling program after the
last executable statement.

Control returns to the next statement following the CALL statement when an EXIT PROGRAM state-
ment executes.

Note

When the EXIT PROGRAM executes, the called program is considered to have
reached the ends of the ranges of all PERFORM statements. Thus, an error does
not occur if the called program is entered again during image execution.

Interprogram Communication 6-3 1l



6.1.3.3 Sharing Execution Control — Figure 6-1 shows how execution control is shared between a
main program and a subprogram.

Figure 6-1: Sharing Execution Control Between a Main Program and One Subprogram

IDENTIFICATION DIVISION, IDENTIFICATION DIVISION,
PROGRAM-ID, MAIN, PROGRAM-ID. SUB.
ENVIRONMENT DIVISION. ENVIRONMENT DIVISION.
DATA DIVISION, ‘ DATA DIVISION,
PROCEDURE DIVISION, PROCEDURE DIVISION.
BEGIN. BEGIN.
' Y
CALL "suB". EXIT PROGRAM.
STOP RUN, =

C81ART-10006-18

6.1.3.4 Nesting CALL Statements — A called subprogram can itself transfer execution control to a
subprogram. This technique is known as CALL statement nesting. For example, consider a nested task
that executes a series of three call statements from three separate programs:

MAIN calls SUB,
SUB then calls SUBA,
SUBA then calls SUBB.

* In Figure 6-2 SUBB cannot directly call SUBA, nor can it call SUB or MAIN.

Note

The COBOL-81 OTS issues a fatal error message if a called subprogram either
directly or indirectly calls a subprogram already in a nest.

Figure 6-2: Nesting CALL Statements

MAIN |———> | SUB |———> | suBA |——>| suBB

A | A | A I

C81ART-10007-6

Il 6-4 Interprogram Communication



Figure 6-3 shows how execution control is shared between a main program and multiple
subprograms.

Figure 6-3: Sharing Execution Control Between a Main Program and Multiple

Subprograms

IDENTIFICATION DIVISION. IDENTIFICATION DIVISION, IDENTIFICATION DIVISION, IDENTIFICATION DIVISION,
PROGRAM-ID. MAIN. PROGRAM-ID. SUB. PROGRAM-ID., SUBA. PROGRAM-ID. SUBB.
ENVIRONMENT DIVISION, ENVIRONMENT DIVISION, ENUIRONMENT DIVISION,. ENVIRONMENT DIVISION,.
DATA DIVISION, DATA DIVISION, DATA DIVISION. DATA DIVISION,
PROCEDURE DIVISION. PROCEDURE DIVISION, PROCEDURE DIWISION., PROCEDURE DIVWISION.
10 QO . lo O oo le 0 . @

CALL "suB". CALL "SuBA". CALL "susB".

STOP RUN, =€ EXIT PROGRAM. o EXIT PROGRAM. EXIT PROGRAM,.

C81ART-10008-26

The following three programs illustrate their execution sequence through the display of a series of 12
messages on the default terminal. Task execution begins in MAIN with message number 1. It ends in
MAIN with message number 12. The task’s message sequence is shown following the program
example.

Example 6-1: Sharing Program Execution Control Between a Main Program and Multiple
Subprograms

IDENTIFICATION DIVISION,

*

* MAIN is a calling Pprodram only
*

PROGRAM-ID, MAIN,

ENVIRONMENT DIVISION,

DATA DIVISION,

PROCEDURE DIVISION,

BEGIN.,
DISPLAY " 1. MAIN has the first execution control. "y
DISPLAY " 2. MAIN transfers execution control to SUB1 *".
DISPLAY " upon executing the following CALL. "y
CALL "suB1i".
DISPLAY "11, MAIN has the last execution control, "
DISPLAY "12, MAIN terminates the entire task upon "y
DISPLAY " execution of the STOP RUN statement ",
STOP RUN,.

IDENTIFICATION DIVISION.

*

# S5UB1 is both a called and a calling subprodram

*

* It is called by MAIN

*

* It then calls SUBZ

*

PROGRAM-ID. SUBI1.
ENVIRONMENT DIVISION,
DATA DIVISION.

PROCEDURE DIVISION. .
(continued on next page)

Interprogram Communication 6-5 1l



Example 6-1: Sharing Program Execution Control Between a Main Program and Multiple
Subprograms (Cont.)

BEGIN., ’ : :
DISPLAY " 3. This is the entry pPoint to SUBIL. ",
DISPLAY " 4, 8UB! now has execution control. ",
DISPLAY " 5, SUB!1 transfers execution contrel to SUBZ ".
DISPLAY " urpon executing the following CALL. ",
caLL =suz2".

DISPLAY " 89, 8UB! redains execution control, "
DISPLAY "10, SUB! returns execution control to MAIN "
DISPLAY " after executing the following ",
DISPLAY " EXIT PROGRAM statement. ",

EXIT PROGRAM.
IDENTIFICATION DIVISION.

SUBZ2 is a called subprodram only

* %k ok ok

It is called by SUB1

%*

PROGRAM-ID. SUBZ,

ENVIRONMENT DIVISION.,

DATA DIVISION,

PROCEDURE DIVISION,

BEGIN,
DISPLAY " B, This is the entry point to SUBZ2, "
DISPLAY " 7+ SUBZ2 now has execution control., .o
DISPLAY " B, SUBZ returns execution control to SUBL"
DISPLAY " uPon executing the following "
DISPLAY " EXIT PROGRAM statement. "
EXIT PROGRAM.

* o o+ o+ -

The message sequence results displayed on the terminal are:

1+ MAIN has the first execution control.,

2, MAIN transfers execution control to SUB1
upon executing the following CALL.

3. This is the entry pPoint to SUBL.

4, SUB1 now has execution control,

5, 8UB1 transfers execution control to SUBZ
upon executing the following CALL.

B This is the entry pPoint to SUBZ2.

7+ BUBZ2 now has execution control.

8, SUBZ returns execution control to SUB1
upon executing the following
EXIT PROGRAM statement.

g9, SUB1 redains execution control.,

10, SUBL1 returns execution control to MAIN
after executing the following
EXIT PROGRAM statement.

11, MAIN has the last execution control,

12+ MAIN terminates the entire task uron
execution of the STOP RUN statement.

I 6-6 Interprogram Communication



6.2 Accessing Another Program’s Data Division

In a multiple COBOL-81 program task, a called subprogram can have access to its calling program’s
Data Division; however, the calling program controls how much of it is to be accessible to the called
subprogram through:

1. The USING phrase in both the CALL statement and the Procedure Division header
2. The Linkage Section

6.2.1 The USING Phrase

To access a calling program’s Data Division use a CALL statement and a Procedure Division USING
phrase. The CALL statement’'s and the Procedure Division’s USING phrase must contain equal
numbers of data-names. For more information on the USING phrase, see the COBOL-81 Language
Reference Manual.

The order of appearance of USING identifiers in both calling and called programs determines the
correspondence of single sets of data available to the called subprogram. The correspondence is
positional and not by name. Figure 6-4 shows the correspondence of single sets of data.

Figure 6-4: Correspondence of Single Sets of Data

IDENTIFICATION DIVISION, IDENTIFICATION DIVISION,

PROGRAM-ID., MAIN. PROGRAM-ID. SUB.

ENVIRONMENT DIVISION, ENVIRONMENT DIVISION.

DATA DIVISION, DATA DIVISION,

WORKING-S5TORAGE SECTION, LINKAGE SECTION,

01 A PICTURE X. = 01 PART PICTURE X.

01 B PICTURE 9. = 01  AMOUNT PICTURE 9.

01 C PICTURE )~()~(.><O1 CosT PICTURE 99.

01 D PICTURE 99. 01 COLOR PICTURE XX.

—PROCEDURE DIVISION. —>»PROCEDURE DIVISION USING PART .
AMOUNT »

° e COLOR +
START-UP, SUB-START-UP.

CosT.
7
I | : o

+ +

L——>CALL "SUB" USING A, B
Cs D.|=€ EXIT PROGRAM. =€

¢ e °

+

STOP RUN.,

C81ART-10009-35

Interprogram Communication 6-7 1l



When execution control passes to SUB, the called program can access the four data items in the
calling program by referring to the data-names in its own Procedure Division USING phrase. The
data-names correspond as shown in Table 6-1.

Table 6-1: Correspondence of Data-Names

Calling Program Called Subprogram
Data-Name Data-Name
A PART
B AMOUNT
C COLOR
D COST

6.2.2 The Linkage Section

You must define each data-name in the Procedure Division USING phrase data-item-list in the called
subprogram’s Linkage Section. For example:

LINKAGE SECTION.

01 PART PICTURE ...
01 AMOUNT PICTURE ...
01 INVOICE PICTURE +..
01 COLOR PICTURE ...
01 COST PICTURE ...

PROCEDURE DIVISION USING PARTs AMOUNT . COLOR. COST.

Of those items you define in the Linkage Section, only those appearing in the Procedure Division
USING phrase data-item-list are accessible to the called program. In the above example, INVOICE is
not accessible to the called program because it is not in the Procedure Division USING phrase data-
item-list.

Whenever a subprogram references a data-name-from the Procedure Division USING phrase data-
item-list, the subprogram processes it according to the definition in its own Linkage Section.

The compiler does not allocate storage space for data items in the called subprogram’s Linkage
Section. Subprogram references to those items are resolved at run time. The OTS equates the refer-
ence’s address in the subprogram to the location in the calling program. For index-names, no such
correspondence exists; index-name references in the calling and called programs always refer to
separate indexes.

A called program’s Procedure Division can reference data items in its Linkage Section only if it
references one of the following:

® Any data item in the Procedure Division USING data-item-list.

® A data item that is subordinate to a Linkage Section data item in the Procedure Division
USING data-item-list.

® Any other association with a data item in the Procedure Division USING data-item-list. For
example, index-name, redefinition, etc.

11 6-8 Interprogram Communication



6.2.3 Examples

In the example in Figure 6-5, SUB is called by MAIN (see the solid arrows). Because MAIN includes
FILE-RECORD and WORK-RECORD in its CALL ““SUB” USING statement, SUB can reference these
data items just as if they were in its own Data Division. However, SUB accesses these two data items
with its own data-names, F-RECORD and W-RECORD (see the broken line arrows).

In the example in Figure 6-6, SUBA references data items in both MAIN and SUB.

Example 6-2 shows how a subprogram (SUB1) redefines data items in its own Linkage Section.

Figure 6-5: Sharing Execution Control and Data Between a Main Program and One Subprogram

IDENTIFICATION DIVISION,
PROGRAM-ID. MAIN.
ENVIRONMENT DIVISION.
DATA DIVISION.

FILE SECTION,

—PROCEDURE DIVISION,

BEGIN.,

L »CALL "SUB" USING FILE-RECORD |

01 FILE-RECORD PICTURE +.+ €-=—=—---
WORKING-STORAGE SECTION.,
01 WORK-RECORD PICTURE +..+<€-=-----

IDENTIFICATION DIVISION.
PROGRAM-ID. SUB.
ENVIRONMENT DIVISION.
DATA DIVISION.,

FILE SECTION,

WORKING-STORAGE SECTION.

LINKAGE SECTION.

---01 F-RECORD PICTURE ...

01 W-RECORD PICTURE ..

—»PROCEDURE DIVISION USING F-RECORD
W-RECORD

BEGIN.

° )

le WORK -RECORD .|

STOP RUN.

EXIT PROGRAM .,

C81ART-10010-40

Interprogram Communication 6-9



Figure 6-6: Sharing Nested Execution Control and Data

Subprograms

Between a Main Program and Multiple

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
ENVIRONMENT DIVISION.
DATA DIVISION,

FILE SECTION,

01 FILE-RECORD PICTURE ...§

WORKING-STORAGE SECTION.

01 WORK-RECORD PICTURE .

PROCEDURE DIVISION,

BEGIN,

Y
CALL "SUB" USING FILE-RECORD
WORK-RECORD.

10
\
STOP RUN.

IDENTIFICATION DIVISION,
PROGRAM-ID., SUB.
ENVIRONMENT DIVISION,

" DATA DIVISION,

FILE SECTION,

WORKING-STORAGE SECTION, €=—-——=
01 S-WORK-REC PICTURE ...

|
[}
[}
|
LINKAGE SECTION. :
I
i

PROCEDURE DIVISION USING F-RECORD

BEGIN,
A
CALL "SUBA" USING F-RECORD
W-RECORD
o ° S-FILE-REC
S-WORK-REC,

EXIT PROGRAM.

01 S-FILE-REC PICTURE ¢ gmmmmmmmmy -
| WORKING-STORAGE SECTION.

W-RECORD.

IDENTIFICATION DIVISION

PROGRAM-ID SUBA.

ENVIRONMENT DIVISION.

DATA DIVISION,

FILE SECTION.

]
: LINKAGE SECTION,
|
|

01 MAIN-W-RECORD PICTURE ...

PROCEDURE DIVISION USING MAIN-F-RECORD

MAIN-W-RECORD
SUB-F-RECORD

SUB-W-RECORD

EXIT PROGRAM,<€

CB81ART-20900-30

Example 6-2: Redefining a Calling Program’s Data Items in the Called Subprogram’s Linkage

IDENTIFICATION DIVISION,

*

Section

* MAIN is a calling Prodram

*

PR

OGRAM-ID. MAIN,

ENVIRONMENT DIVISION.,
DATA DIVISION.

FI

WORKING-STORAGE SECTION.

01
01
01
01
01
01
01
01

LE SECTION,.

PIC X.

PIC 9.

PIC X(3).

PIC §9(5)V88,
PIC
PIC
PIC

KKK
98888,

ITIoyMmMmoOoOomD

03 Hi
03 H2
03 H3

PIC X.
PIC XX,
PIC XXX.

6-10

ZE2Z24222,99-,

Interprogram Communication

(continued on next page)




Example 6-2: Redefining a Calling Program’s Data Items in the Called Subprogram’s Linkage
Section (Cont.)

o1 I,
03 I1 PIC 999,
03 12 PIC 99,
03 I3 PIC 9.
01 J.
03 Ji. ,
05 Ji-1 PIC X(11),
05 J1-2 PIC X(12).
03 J2.
03 J2-1 PIC X(Z21).
03 J2-2 PIC X(22).
01 K PIC X(1000).
01 L PIC X(132).

PROCEDURE DIVISION.

BEGIN.
CALL "SuBi1" USING Ay B» C» Dy E+ Fy» Gy Hy I Jo
STOP RUN.

IDENTIFICATION DIVISION.,
*

# SUBL1 is a called Pprodram
*

PROGRAM-ID. SUB1.

ENVIRONMENT DIVISION,
DATA DIVISION,

WORKING-STORAGE SECTION.,
01 WORK-AREA PIC X(1000).

LINKAGE SECTION.

01 SUBA PIC X.

01 SUBB PIC 9.

01 SUBC PIC 9(3).

01 SUBD PIC §8(35)V89,

01 BUBE PIC X(11).

01 SUBF PIC XXXXX.

01 SUBG PIC XXXXX.

01 SUBH PIC X(B).

01 SUBI PIC 9(B).

01 SUBJ PIC X(GB).

PROCEDURE DIVISION USING SUBA, SUBB, SUBC: SUBD. SUBE.
SUBF ., SUBG, SUBH,» SUBI, SUBJ.

BEGIN,
DISPLAY "This is the entry point to SUBI1 "
DISPLAY "SUB1 can access ten data items in MAIN "
DISPLAY " Just as if thev are in SUB1. "y
DISPLAY " Howevers note that SUB1 redefines some "
DISPLAY " of the MAIN data descrirPtions. "y
DISPLAY " For examples SUB1 references SUBC as a "
DISPLAY " five character numeric items whereas MAIN ",
DISPLAY references C as a five character alrha- "
DISPLAY " numeric item. "
DISPLAY "SUB1 cannot however reference anvy other data "y
DISPLAY in MAIN that has not been listed in the "
DISPLAY " Usind phrase, For examples K and L in MAIN",
DISPLAY " cannot be referenced by SUBL. "
DISPLAY "Execution control returns to MAIN after "
DISPLAY executing the next statédment. "y

EXIT PROGRAM.

Interprogram Communication 6-11 1l



6.2.4 COBOL-81 OTS - Error Checking

At execution, the COBOL-81 OTS performs a check to ensure that the number of arguments passed to
a called subprogram is the same as the number expected. That is, the subprogram Procedure Division
USING phrase data-item-list must contain the same number of data-names as the USING phrase in
the calling program’s CALL statement. If the number of arguments is not equal, the OTS issues a
diagnostic error message and aborts the task. No checks are made to ensure that the passed argu-
ments are the same size as the expected arguments. It is the programmer’s responsibility to ensure
that these size limits are compatible.

Recursive calls to COBOL-81 subprograms are not allowed. If a subprogram contains a call that
directly or indirectly causes a subprogram to be reentered before it has exited from its original entry,
the OTS issues a diagnostic error and aborts the task.

6.3 Including Non-COBOL-81 Programs in a Task

COBOL-81 object modules can be task-built with other non-COBOL-81 object modules. This capa-
bility is often useful, especially when a feature is not available in COBOL-81, but is available in
another language.

Note

Non-COBOL-81 programs must not include nor use the file management services
provided by RMS-11 (Record Management Services) if a COBOL-81 program
performs file 1/0 in the same task. (COBOL-81 programs reference RMS-11 to
perform file 1/0.) Other file management services are available to the
non-COBOL-81 program. This note of caution is very important, because the
PDP-11 programming languages do not share a common Object Time System
(OTS). For more information on alternative file management services, see RSTS/E
System Directives Manual or RSX-11 1/O Operations Reference Manual.

To use BLDODL to include a non-COBOL-81 object module in a task image, you must:
1. Create a standard COBOL-81 SKL file (using the text editor).
2. Specify this SKL file as input to BLDODL.

A standard COBOL-81 SKL file for a non-COBOL-81 object module contains at least one of the
following directive lines:

® Object Program ID Line. This line is required. It identifies the object module to be included in
the task image. The format of this line is:

SCOBOBJ=XXXXXX.0BJ

where:

XXXXXX.OBJ is the name of the object module to be included in the task image.

I 6-12 Interprogram Communication



® Main Program ID Line. This line is present only for non-COBOL-81 object modules that are
main programs rather than subprograms. The format of this line is:

iCOBMAIN

® Commercial Instruction Set (CIS) ID Line. This line is required only if your COBOL program
was compiled with the /CODE:CIS switch. The /CODE:CIS switch can be implicitly or explic-
itly specified. The format of this line is:

iCIS

Consider the following examples:
Example 1:

MACRO program START.OBJ is a main program in a task consisting of a main program and several
subprograms. The /CODE:CIS switch was specified at compile time. The SKL file to be hand-
generated is:

iCOBOBJ=START.0BJ
iCOBMAIN
iCIS

Example 2:

MACRO subprogram SUBX.OB]J is to be part of a task image consisting of several COBOL-81 subpro-
grams and a COBOL-81 main program. The /CODE:NOCIS switch was specified at compile time.
The SKL file to be hand-generated is:

iCOBOBJ=SUBX.0BJ

To activate a COBOL-81 subprogram, a non-COBOL-81 calling program must contain the equivalent
of a COBOL-81 CALL statement. If data is being passed to the COBOL-81 subprogram, program
register R5 must be set to the address of an argument list. The argument list must contain pointers to
the data being passed. (See Figure 6-7, Argument List Format, in Section 6.3.1.3)

A non-COBOL-81 subprogram, to be activated by a COBOL-81 program, must contain the equiva-
lent of the COBOL-81 PROGRAM-ID statement and the EXIT PROGRAM statement. If data is being
passed, the non-COBOL-81 subprogram can access that data through program register R5. The
following sections further describe how to include non-COBOL object modules in a task.

6.3.1 MACRO Programs and COBOL-81 Programs

6.3.1.1 Calling a MACRO Program from a COBOL-81 Program — When calling a MACRO program
from a COBOL-81 program, you specify the global entry point in the MACRO program for the
program name in the CALL statement. For example:

IDENTIFICATION DIVISION,
PROGRAM-ID. CALLMAC.
ENVIRONMENT DIVISION.
DATA DIVISION,
(continued on next page)

Interprogram Communication 6-13 1l



WORKING-STORAGE SECTION.
01 BOFFIN PICTURE 4.,

01 BOMBUR PICTURE ...

01 BOFUR PICTURE ...
PROCEDURE DIVISION,
BEGIN.

+

CALL "BILBO" USING BOFFIN., BY DESCRIPTOR BOMBUR: BOFUR.

Note

This CALL statement specifies both calling mechanisms; BOFFIN is BY
REFERENCE (the default mechanism), and both BOMBUR and BOFUR are BY
DESCRIPTOR. This is because the MACRO program BILBO defines them this
way.

The MACRO program, BILBO, must contain:

+GLOBL BILBO .
BILBO: jentry point - equivalent to PROGRAM-ID

+
+
*

RTS PC ireturn Point - esuivalent to EXIT PROGRAM

If there are any arguments to be passed to the called program (BOFFIN, BOMBUR, and BOFUR in
this example), these arguments can be accessed through program register R5.

6.3.2 Calling a COBOL-81 Program from a MACRO Program
When calling a COBOL-81 subprogram from a MACRO program you use the command:

JSR PCisubprogram-name

where:

subprogram-name s the first six characters of the COBOL-81 program-name.

For example, if the MACRO program contains:

+GLOBL FRODO

+

+

MOV #ARGLST sRS irpoint RS to ardument list
JER PC,FRODO isubPprogram call statement

11 6-14 Interprogram Communication



The COBOL-81 subprogram contains:

PROGRAM-ID. FRODO.
LINKAGE SECTION.

01 BOFFIN PICTURE ..
01 BOMBUR PICTURE ..

PROCEDURE DIVISION USING BOFFIN, BOMBUR.

[}
+

+

EXIT PROGRAM,

Note

All calls to COBOL-81 subprograms from non-COBOL-81 programs specify the
BY REFERENCE (default) mechanism. Non-COBOL-81 programs cannot specify
other passing mechanisms.

The MACRO program in this example has set register R5 to point to the argument list expected by
the COBOL-81 program. The COBOL-81 OTS will use R5 to access the passed arguments BY
REFERENCE only.

6.3.3 Using the Argument Address List

The COBOL-81 compiler generates one Argument Address List for each CALL statement. Its general
format is shown in Figure 6-7.

Figure 6-7: Argument Address List General Format

Word 1 Unused Number of R5 must be set
arguments to point here
in list (n-1)

Word 2 Address of argument #1

- or -
Address of descriptor for argument #1

Word 3 Address of argument #2
- or -
Address of descriptor for argument #2

Word n Address of argument #n-1
- or -
Address of descriptor for argument #n-1

C81ART-10012-26

Interprogram Communication 6-15 1l



The sequence of arguments in the Argument Address List corresponds to the sequence of arguments in
the USING phrase. For example, a COBOL-81 program calls the MACRO program MACK:

CALL "MACK" USING A, B, BY DESCRIPTOR D+ C»
BY REFERENCE E.

MACK can then access five data items in the COBOL-81 program through the address stored in
program register R5. MACK accesses a specific data item by selecting the appropriate Word in the
Argument Address List. If it references Word (5) in the Argument Address List, the address of the
descriptor for C in the COBOL-81 program’s Data Descriptor PSECT (C is called BY DESCRIPTOR) is
made available. C's length (Word 1) and argument address (Word 2) can then be determined by
examining Descriptor (3). If it references Word (2) in the Argument Address List, the address of A in
the COBOL-81 program’s Data PSECT (A is called BY REFERENCE, the default) is made available.
Figure 6-8 shows the Argument Address List.

Figure 6-8: Sample Argument Address List

Argument Address List

Word 1 Unused Number of arguments  |<— R5 points here
in list is (5)
Word 2 Address of argument A
Word 3 Address of argument B
Word 4 Address of descriptor for argument D
Word § Address of descriptor for argument C
Word 6 Address of argument E
Data Descriptor PSECT Data PSECT
(3CROSC) : ($3DATSC)
Word 1 Length of argument A G
Descriptor 9 g
M Word 2 Address of argument A J
Descriptor Word 1 Length of argument B E <
@ Word 2 Address of argument B C
Word 1 Length of argument C B <
Descriptor -
(3) Word 2 Address of argument C F
. Word 1 Length of argument D A <
Descriptor -
(4) Word 2 Address of argument D H
Word 1 Length of argument E |
Descriptor
(5) Word 2 Address of argument E D

C81ART-10013-50

11 6-16 Interprogram Communication



Appendix A
Debugger Error Messages

This appendix lists the COBOL-81 Symbolic Debugger error messages and their explanations. Itali-
cized words in the error message substitute for the actual numbers or data-names that appear on the
terminal during a debugging session.

Some messages refer to RMS error codes. See the RMS-11 User’s Guide for an explanation of these
codes.

1 No more work space available for synonym definitions.
You may not execute any more DEFINE commands.

2  No more free memory. Please delete some breakpoints or synonyms.
The Debugger has a limited amount of memory in which to define breakpoints and synonyms.

Line number x does not occur in “module.”
Line number x in “module” does not contain a statement.

RMS error x occurred while Debugger tried to access its work file.

S 1 AW

Symbol file contains an illegal ISD record type (type-number).

The symbol file contains illegal information that has been generated by the compiler or by the
Task Builder. Report all displayed information to local support or submit an SPR with the
program source.

7 The Debugger cannot find a symbol (STB) file corresponding to filename.
8 RMS error x occurred while Debugger tried to open filename.
9 RMS error x occurred while Debugger tried to access filename.

10  “Filename’” is not a valid file specification.

The filename you have typed contains illegal characters, is incorrectly terminated, or is incor-
rectly formatted.



1

12
13

14

15

16

17
18
19
20
21

22
31
32
33
34
35

36

37

Time stamp in filename does not match the stamp in the task image.
Find the correct symbol file (the one that was created with the task image).

A module named “module”’ is already being used by the Debugger.

Symbol file contains an illegal ISD item code (code-number).

The symbol file contains illegal information generated by the compiler or Task Builder. Report
all displayed information to local support or submit an SPR with the program source.

Symbol file contains illegal correlation information.

The symbol file contains illegal information generated by the compiler or Task Builder. Report
all displayed information to local support or submit an SPR with the program source.

The data-name used in this command is ambiguous.

You have used a name in your program that is used elsewhere in the program for a different
entity. -

lllegal structure information for symbol “symbol.”

There has been an internal error. Report all displayed information to local support or submit
an SPR with the program source.

RMS error x occurred while Debugger tried to open its work file.

RMS error x occurred while Debugger tried to access ifs work file.

RMS error x occurred while Debugger tried to access its symbol (STB) file.
A breakpoint already exists at position.

No breakpoint is currently set at position.
Use SHOW BREAKPOINTS to find out where breakpoints are currently set.

A command line cannot be longer than 200 characters.

The word “BREAKPOINT” must follow “CANCEL” in this command.
Please specify either a position or “ALL” after “BREAKPOINT”.
Please specify a data-name in this command.

Please specify either a position or data-name in this command.

“Synonyn?’’ has already been defined as a synonym.

Use SHOW SYNONYMS to get a list of currently recognized synonyms and their actual
names.

“Synonym’ is already in use as a paragraph or section name.

Use SHOW SYNONYMS to get a list of currently recognized synonyms and their actual
names.

“Synonym’”’ is already in use as a data-name.

Use SHOW SYNONYMS to get a list of currently recognized synonyms and their actual
names.

A-2 Debugger Error Messages



38
39
40
41
42

43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

The word “BREAKPOINT” must follow ‘“SET” in this command.
Please specify a position in this command.

Please specify a data-name in this command.

Please specify either an integer or “ALWAYS” after “PROCEED”’.

“String”’ is not a currently defined synonym.

Use SHOW SYNONYMS to get a list of the currently recognized synonyms and their actual

names.
This task is too large for use with the Debugger.
No room on the system device to create the Debugger work file.

This command is incorrectly terminated by “string’.

Either the command was terminated by something other than <CR><LF>, or the end of the
command was reached before the end of the line. When this error occurs, the Debugger
displays the part of the command line it could not recognize, and executes the command

anyway (unless it is STOP or PROCEED).

This is not a valid Debugger command.

“String” is not a data-name.

Too many subscripts specified for this item.

Subscript ranges cannot be specified here.

Subscripts cannot be specified here.

Command specifies an invalid module name.

The module named “string” does not exist.

“String’’ is already being used by the Debugger.

“String” is neither a data-name nor a synonym.

Command specifies an illegal section or paragraph name.

Please specify an integer as a line number in this command.
Only one module name can be specified in this command.
Command specifies an illegal subscript.

“String”’ is not a valid receiving field for a MOVE operation.
The nonnumeric literal in a MOVE cannot be longer than 80 characters.
A nonnumeric literal must be terminated with a quotation mark.

Only a nonnumeric literal can be moved to an alphanumeric item.

Debugger Error Messages

A-3



1

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
30
81
82
83
84
85
86
87
01

A-4

Only a numeric literal can be moved to a numeric item.

Debugger cannot find Help file “’filename’’; inform system manager.
RMS error x occurred while Debugger tried to open Help file (“filename’’).
RMS error x occurred while Debugger tried to access the Help file.
RMS error x occurred while Debugger tried to access the Help file.
The numeric value in this command is specified incorrectly.

A numeric literal cannot have more than 18 digits.

The subscript value specified is out of the legal range.

Command is missing either a position, data-name, or number.
Command is missing either a numeric or nonnumeric literal.

There is no current data-name; this command must specify one.
Either “BREAKPOINTS” or “SYNONYMS” must follow “SHOW”.
Please specify a position instead of “string”.

The synonym was already defined as being subscripted.

Debugger cannot read symbol (STB) file; inform system manager.
Command specifies too few subscripts for data-name.

“PROCEED ALWAYS” cannot be specified unless the “DISPLAY” option precedes it.
The numeric value in this command must be > 0.

The numeric value in this command must be < 65536.

A synonym cannot be used as a qualifier.

A module name is illegal with a qualifier.

The position used in this command is ambiguous.

The qualified name cannot be found.

Maximum number of qualifiers exceeded.

A Synonym cannot be qualified.

Number of logical units assigned to resulting task exceeds system maximum.

Refer to Part 1V, Appendix B, Logical Unit Number (LUN) Assignments, for the LUN assign-
ment restrictions placed on a COBOL-81 program.

Debugger Error Messages



ContenAts

PART il
Chapter 1

Chapter 2

Page
Numeric Character Handling

1.1 How the Compiler Stores Numeric Data. . . . . . . . . . . . . . . . ... 1-1
1.1.1  COMPand COMPSYNC Usage . . . . . . . . .. . ... .... 1-2
1.1.2 COMPUTATIONAL-3 Usage. . . . . . . . . . . . . v .. 1-5
1.1.3 DISPLAY Usage . . . . . . . . . . . . o o v v i e 1-6
1.2 Decimal Scaling Position . . . . . . . . . ... .. ... 1-6
1.3 Sign Conventions. . . . . . . . . . . L Lo 1-6
1.3.1 Sign Storage for COMP and COMP SYNC Items . . . . . . . . . .. 1-7
1.3.2  Sign Storage for COMP-3 Items . . . . . . . . . . . . . .. ... 1-7
1.3.3  Sign Storage for DISPLAY ltems . . . . . . . . . . . . . . . ... 1-7
1.4  |lllegal Values in Numericltems . . . . . . . . . . . . . ... ... ... 1-9
1.5  Testing Numericltems . . . . . . . . . . . . . .. ... ... ..., 1-9
1.5.1 Numeric Relation Tests . . . . . . . . . . . . . . . . .. .... 1-9
1.5.2 Numeric Sign Tests. . . . . . . . . . . . . . .. ... .. 1-10
1.5.3 NumericClass Tests . . . . . . . . . . . . . . .. ... ... 1-10
1.6 Usingthe MOVE Statement . . . . . . . . . . . . . . . ... ..... 1-11
1.6.1 GroupMoves . . . . . . L L Lo e e e e 1-11
1.6.2 Elementary Numeric Moves . . . . . . . . . . . . . . .. ... 1-11
1.6.3  Elementary Numeric Edited Moves . . . . . . . . . . . . . . .. 1-13
1.6.4 Common Move Errors . . . . . . . . . .. ..o 1-14
1.7  Using the Arithmetic Statements . . . . . . . . . . . . . . . . .. ... 1-15
1.7.1 Intermediate Results . . . . . . . . . ... ... 1-15
1.7.2  Binary Truncation of COMP SYNC and COMP ltems . . . . . . . . 1-15
1.7.3  Using the ROUNDED Phrase . . . . . . . . . . .. ... ... 1-16
1.7.4  Using the SIZEERROR Phrase . . . . . . . . . . .. . ... .. 1-17
1.7.5 Usingthe GIVING Phrase . . . . . . . . . . . . .. ... ... 1-18
1.7.6  Multiple Operands in ADD and SUBTRACT Statements . . . . . . . 1-18
1.7.7  Common Errors in Arithmetic Statements . . . . . . . . . . . .. 1-19
1.8  Arithmetic Expression Processing . . . . . . . . . . . . . . . ... ... 1-20

Nonnumeric Character Handling
2.1 Data Organization . . . . . . . . . . . . . ... 2-2
21,1 Groupltems. . . . . . . . . Lo e 2-2
2.1.2  Elementaryltems. . . . . . . . . . ... ... 2-2
2.2 Special Characters . . . . . . . . . . . . ... 2-2
2.3 Testing Nonnumericltems. . . . . . . . . . . . . . . . ... ... 2-3
2.3.1 Relation Tests of Nonnumeric ltems . . . . . . . . . . . . . ... 2-3
2.3.1.1 Classesof Data. . . . . . . . . . . . .. . ...... 2-4
2.3.1.2 Comparison Operations . . . . . . . . . . . . . . ... 2-4
2.3.2 Class Tests for Nonnumeric Items . . . . . . . . . . . . .. ... 2-5
2.4 Data Movement . . . . . . . . L L L Lo e e e e e e e e e 2-5

Part IIl i



fi

Part 1ll

2.5

2.6

2.7

2.8

Using the MOVE Statement . . . . . . . . . . . . . . . . . . oo 2-6

2.5.1 GroupMoves . . . . . . . . .o e e e e e e e 2-7
2.5.2 Elementary Moves . . . . . . . . .. L. Lo 000 2-7
2.5.2.1 EditedMoves . . . . . . .. ..o o 2-8
2.5.2.2 Justified Moves . . . . . . . . e e e e e e e e 2-9
2.5.3  Multiple Receiving ltems . . . . . . . . .. ... 0L L 2-9
2.5.4  Subscripted Moves . . . . . . . . ... ..o 2-10
2.5.5 Common Nonnumeric ltem MOVE Statement Errors . . . . . . . . 2-10
2.5.6  Using the MOVE CORRESPONDING Statement for
Nonnumeric ltems . . . . . . . . . .. oL L L. 2-10
Concatenating Data Using the STRING Statement. . . . . . . . . . . . .. 2-11
2.6.1  Multiple Sending ltems . . . . . . .. ..o 0L Lo L 2-11
2.6.2  Using the POINTER Phrase . . . . . . . . . . . . . ... ... 2-12
2.6.3  Using the DELIMITED BY Phrase. . . . . . . . . . . ... ... 2-12
2.6.4  Using the OVERFLOW Phrase . . . . . . . . . . . . . .. ... 2-14
2.6.5  Subscripted Items in STRING Statements . . . . . . . . . . . .. 2-15
2.6.6 Common STRING Statement Errors . . . . . . . . . . . . . . .. 2-17
Separating Data Using the UNSTRING Statement. . . . . . . . . . . . .. 2-18
2.7.1 Multiple Receivingltems . . . . . . . . . . .. . . ... .. 2-18
2.7.2  Controlling Moved Data Using the DELIMITED BY Phrase. . . . . . 2-20
2.7.2.1  Multiple Delimiters . . . . . . . . . ... ... ... 2-23
2.7.3  Counting UNSTRING Characters Using the COUNT Phrase . . . . . 2-24
2.7.4  Saving UNSTRING Delimiters Using the DELIMITER Phrase . . . . . 2-25
2.7.5  Controlling UNSTRING Scanning Using the POINTER Phrase . . . . 2-26
2.7.6  Counting UNSTRING Receiving ltems Using the TALLYING
Phrase . . . . . . . . Lo 2-27
2.7.7  Exiting an UNSTRING Statement Using the OVERFLOW Phrase . . . 2-28
2.7.8  Using Subscripted Items in UNSTRING Statements . . . . . . . . . 2-29
2.7.9  Common UNSTRING Statement Errors . . . . . . . . . . . . .. 2-31
Examining and Replacing Characters Using the INSPECT Statement . . . . . . 2-31
2.8.1 Restricting Data Inspection Using the BEFORE/AFTER Phrase. . . . . 2-32
2.8.2  Implicit Redefinition . . . . . . . . . . .. ... 2-33
2.8.3  Examining the INSPECT Operation . . . . . . . . . . . . . ... 2-34
2.8.3.1  Setting the Scanner . . . . . . . . . . . . . ... .. 2-35
2.8.3.2  Active/lnactive Arguments . . . . . . . .. .. L L 2-35
2.8.3.3 Finding an ArgumentMatch . . . . . . . . . . . . .. 2-36
2.8.4  Subscripted Items in INSPECT Statements . . . . . . .. . . . .. 2-37
2.8.5 The TALLYING Phrase . . . . . . . . . . . . . . . ... ... 2-37
2.8.5.1 TheTallyCounter . . . . . . . . . . . .. ..... 2-38
2.8.5.2 TheTally Argument. . . . . . . . . . . . ... ... 2-38
2.8.5.3 The Tally Argument List. . . . . . . . . . ... ... 2-39
2.8.5.4 Interference in Tally Argument Lists. . . . . . . . . . . 2-40
2.8.6  Using the Replacing Phrase . . . . . . . . . . . .. ... ... 2-43
2.8.6.1 The Search Argument . . . . . . . . . . . ... ... 2-44
2.8.6.2 The ReplacementValue . . . . . . . . . . . .. ... 2-45
2.8.6.3 The Replacement Argument . . . . . . . . . . . . .. 2-45
2.8.6.4 The Replacement Argument List . . . . . . . . . . .. 2-45
2.8.6.5 Interference in Replacement Argument Lists . . . . . . . 2-46
2.8.7 Common INSPECT Statement Errors . . . . . . . . . . . . . .. 2-47



Chapter 3

Chapter 4

Examples

Table Handling

3.2.1 Defining Fixed-Length, One-Dimensional Tables . . . . . . . . . .
3.2.2  Defining Fixed-length, Multidimensional Tables . . . . . . . . . .
3.2.3  Defining Variable-length Tables . . . . . . . . . .. ... ...
3.2.4  Storage Allocationfor Tables . . . . . . . . . . . .. ... ..

3.2.4.1 Tables without COMP COMP SYNC, or USAGE INDEX

ltems . . . . oL L Lo

3.2.4.2 Tables with COMP or COMP SYNC Items . . . . . . . .

3.3 Initializing Values of Table Elements . . . . . . . ., . . . . .. .. ...
3.4  Accessing Table Elements . , . . . . . e e e e e e e e e

3.4.1 Subscripting. . . . . . . . . .. e e e e e e e e
3.4.2  Subscripting with Literals . . . . . . . . . . .. ... ... ..

3.4.3  Subscripting with Data-Names . . . . . . . . . . . e e .
3.4.4  Subscripting with Indexes . . . . . . . . . e e e e
3.45 RelativeIndexing. . . . . . . . . 0. . L0 L0
3.4.6 Index Dataltems. . ... ... . - .. L. e e e e e e e

3.4.7  Assigning Index Values Usmg the SET Statement . . . . . . . . . .

3.4.7.1  Assigning an Integer Index Value with a SET Statement ~ 7",

3.4.7.2  Incrementing an Index Value with the SET Statement . . .
3.4.8 Identifying Table Elements Using the SEARCH Statement ......

3.4.8.1 Implementing a Sequentlal Search .., . . . . . . . ..
3.4.8.2 Implementing a Nonsequential (Binary) Search . . . . . .

Data Handling Optimization

4.1 Numeric Data Representation . . . . .................

4.1.1 Scaling and Mixing Data Types . . . . . . . . . .« . . . . ..
4.1.2  Significant Digits. . . , . . .. . ., . . . .. De e e e e e e
4.1.3  Indexing Instead of Sybscripting . . . .. . . L L L. L L
4.1.4  Ayeid Using Decimal Trungation. . . . . . .« . . . . . . ...

4.2 Procedure Division Statements . . . . . T A

4.2.1  ADD, SUBTRACT, MULTIPLY and DIVIDE Instead of COMPUTE. . . .

4.2.2 GO TO DEPENDING ON Instead of IF, GOTO . . . . . . . . ..
4.2.3  SEARCH ALL Instead of SEARCH. . . . . . . ... . . ... ...

1 Sample Record Description . . . . .. e e e e e e
2 Sample Record Description . . . . . . . ... . ... ...
3 Sample Record Description . . . . . . . S
-4 Sample Record Description . . . . . . . .. L0 Lo
1 ltem Concatenation. . . . . . . . . . . . . . . ...
2 Sample Record Description Using the MOVE CORRESPONDING Statement . .
3 Sample Overflow Condition . . . . . . . . . . . . . . ... ... ...

Part It

i



Figures

iv. Part lll

3-1
3-2
3-3
3-4

3-6
3-7

39

3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22

NN = e e e e b
'

N
I N O - 2 I YU N

PRPPEPEEY
& USh b

w
'

3-10
3-11
3-12
3-13
3-14

One-Dimensional Table. . . . . . . . . . . . . . . . . . ... ... .. 3-2

Multiple Data Items in a One-Dimensional Table. . . . . . . K £
Defining a Table with an Index and an Ascending Search Key . . . . . . . . . 33
Defining a Two-Dimensional Table . . . . . . . . . . . . . ... . . ... 33
Defining a Three-Dimensional Table . . . . . . . . . . . ., ... .. .. 3-4
Defining a Variable-Length Table. . . . . . . . . . . . . ... ... ... 3-5
Sample Record Description Defininga Table. . . . . . . . . . . .. .. .. 3-5
Record Description Containinga COMP SYNC tem . . . . . . . . . . . .. 3-6
Adding an ltem Without Changing the Table Size. . . . . . . . . . . . . .. 3-7
Adding 3 Bytes That Adds 4 Bytes to the Element Length . . . . . . . . . .. 3-7
Initializing Tables. . . . . . . . . . . . ... 3-8
Initializing Mixed Usage ltems . . . . . . . . . . . . .. ... ... ... 3-9
Initializing Alphanumeric tems. . . . . . . . . . . .. ... 3-9
Using a Literal Subscriptto AccessaTable . . . . . . . ... ... ... 3-10
Subscripting a Multidimensional Table . . . . . . . .. . . . . .. ... 3-11
Subscripting with Index-Name ltems . . . . . . . . . .. . . ... ... 3-12
A Serial Search. . . . . . . .. . ... .. e e e 3-18
Using SEARCH and Varying an Index Other Than the First Index . . . . . . . 3-18
Using SEARCH and Varying an Index Data ftem . . . . . . . . . . . . .. 3-18
Using SEARCH and Varying an lndex Not Asseciated with the Target Table . . 3-19
Doing a Serial Search Without Using the Varying Phrase . . . . . . . . . . 3-19
A Multiple-Key Bina}ry Search . . . . . . . . . .. 3-20

Word and Byte Representation in Storage for Example 1-1. . . . . . . . . . . 1-2
Storage Allocation for COMP ltems for Example 1-2 . . . . . . . . . . . .. 1-3
Storage Allocation for Two-Word COMP SYNC ltems for Example 1-3. . . . . . 1-4
Storage Allocation for a Four-Word COMP SYNC lItem for Example 1-4 . . . . . 1-4
Storage of COMP-3 Dataltems. . . . . . . . . . . . . . . . . ... ... 1-5
Sign Storage in COMP-3 ltems . . . . . . . . . . . . .., e e e e 1-7
Results of the ROUNDED Phrase. . . . . . . . . . . . .. ... .... 1-16
Results of the ROUNDED Phrase. . . . . . . . . . . . . . . ... ... 1-17
Sequence of Subscript Evaluation. . . . . . . . . .. ..o L. 2-30
Sample INSPECT Statement . . . . . . . . . . . . . ... ....... 2-35
The Replacement Argument . . . . . . . . . . . . . . . . . ... ... 2-45
Organization of the One-Dimensional Table in Example 3-1 . . . . . . . . . . 3-2
Organization of Multiple Data ltems in a One-Dimensional Table . . . . . . . 3-2
Organization of a Table with an Index and an Ascending Search Key . . . . . . 3-3
Organization of a Two-Dimensional Table. . . . . . . . . . . . . ... .. 3-4
Organization of a Three-Dimensional Table . . . . . . . . . . .. .. ... 3-4
Memory Map for Example 3-7 . . . . . . . . . .. ... ... 3-6
Memory Map for Example 3-8 . . . . . . . . . .. ... L0 3-6
Memory Map for Example 3-9 . . . . . . . . . .. L. ... L. 3-7
Memory Map for Example 3-10 . . . . . . . . . . . ... .. e 3-8
Memory Map for Example 3-11 . . . . . . . . . . ..o 3-8
Memory Map for Example 3-12 . . . . . . . . . . .. .. .. e e 39
Memory Map for Example 3-13 . . . . . . . . . . ... ..o 3-10
Subscripting with Data-Names . . . . . . . . . . . ... ... ..... 3-12
Using SEARCH to Access This Sample Table. . . . . . . . . . . . .. .. 3-17



Tables

[\
1 ' | |

N N —m e e -
1
o= hbrn =

2-10
2-11
2-12
2-13
2-14
2-15

Memory Allocation for COMP Items . . . . . . . . . . . . . . .. . ... 1-2
Memory Storage of COMP ltems . . . . . . . . . . . . . . . . .. .. .. 1-5
Overpunched Character for Sign and Digit Combinations . . . . . . . . . . . 1-8
SignTests . . . . . . . L Lo e e e 1-10
Numeric Editing . . . . . . . . . . . . ..o 1-14
Maximum Values with Decimal and Binary Truncation . . . . . . . . . .. 1-16
Rules for Intermediate Result Size. . . . . . . . . . . . . . . . ... .. 1-22
Relational Operator Descriptions . . . . . . . . . . . . . . . .. .. ... 2-3
Nonnumeric Elementary Moves . . . . . . . . . . . . . . . ... .. .. 2-7
Data Movement with Editing Symbols. . . . . . . . . . . . .. ... 2-8
Data Movement with No Editing . . . . . . . . . . . . . . . ... .... 2-9
Results of Sample Overflow Statements . . . . . . . . . . . . . . . ... 2-15
Results of Sample Delimiter Subscripts . . . . . . . . . . . . . . . ... 2-17
Values Moved into the Receiving ltems Based on the Sending Item Value . . . 2-19
Handling a Short Sending ltem . . . . . . . . . . . . . .. ... .. .. 2-19
Results of Delimiting with an Asterisk . . . . . . . . . . . . . .. . ... 2-20
Results of Delimiting Multiple Receiving Items . . . . . . . . . . . . . .. 2-21
Results of Delimiting with Two Asterisks. . . . . . . . . . . . . . . ... 2-22
Results of Delimiting with ALL Asterisks . . . . . . . . . . . . . . . ... 2-22
Results of Delimiting with ALL Double Asterisks . . . . . . . . . . . . .. 2-23
Results of Multiple Delimiters . . . . . . . . . . . . . ... . ... .. 2-24
Matching Delimiter Characters to Charactersina Field . . . . . . . . . . . 2-33
Values Resulting from Implicit Redefinition . . . . . . . . . . . . . . .. 2-34
Relationship Between INSPECT Argument, Delimiter, ltem Value, and

Argument Active Position . . . . . . . . . . L .0 L L0000 2-36
LEADING Delimiter of the Inspection Operation . . . . . . . . . . . . .. 2-39
Results of the Scan with Separate Tallies. . . . . . . . . . .. ... ... 2-40
Subscripting Rules for a Multidimensional Table . . . . . . . . . . . . .. 3-11
Relative Efficiency of COBOL-81 Numeric Data Types . . . . . . . . . . .. 4-1

Part Il v






Chapter 1
Numeric Character Handling

This chapter describes how COBOL-81 stores, represents, moves, and manipulates numeric data.

1.1 How the Compiler Stores Numeric Data

Understanding how data is stored is particularly important when you are defining data items that will
participate in group moves or be the subject of a REDEFINES clause. When moving a complex record
consisting of several levels of subordination, you should be sure that the receiving item is large
enough to prevent data truncation. You can also use the concepts of data storage to your advantage to
minimize storage space, particularly when the data file is very large. The storage considerations
applicable to table handling are discussed in Chapter 3.

For each numeric data item, COBOL-81 stores the numeric value, a scaling factor (if a V or a P
appears in the PICTURE), and a sign (if an S appears in the PICTURE). Each of these subjects is
discussed separately in the following sections.

The USAGE clause of a numeric data item specifies the data’s internal format in storage. COBOL-81
has three formats for numeric data storage:

o COMPUTATIONAL (COMP)

o COMPUTATIONAL-3 (COMP-3)

e DISPLAY
When you do not specify a usage in a PICTURE clause, the default usage is DISPLAY. (The special
case of INDEX usage for tables is discussed in Chapter 3.)

The basic unit of data storage is the byte. Depending on the item usage, stored data is aligned on one-
byte, one-, two-, or four-word boundaries or on multiples of one-, two-, or four-word boundaries
when several items make up the record. A word is comprised of 2 bytes.

Alignment is always described in relation to the beginning of the record, which is always defined by
an 01 level number. All items subordinate to the 01 level are part of the record.

1-1 1



Example 1-1 and Figure 1-1 show the basic representation of words and bytes in storage.

Example 1-1: Sample Record Description

01 A,
0z B PIC 9,
0z C.
03 D PIC 99.
03 E  PIC 999,
02 F PIC 99.

02 Z PIC 98,

Figure 1-1: Word and Byte Representation in Storage for Example 1-1

Record Description
"~ Word no. 1 2 3 4 n
Byte no. 112|3|4]51]6
Level 01 AlA|A|A[AA|A
Level02 [B|C]|C]C|C]|C F
Level 03 DID|E|JE|E

C81ART-10014-20

1.1.1 COMP and COMP SYNC Usage

COMP and COMP SYNC data items are stored in standard binary format as a binary value and an
optional sign. Sign storage is discussed in Section 1.3.1. Depending on the size of the item defined by
the PICTURE clause, both COMP and COMP SYNC items are stored as one, two, or four words as
shown in Table 1-1.

Table 1-1: Memory Allocation for COMP Items

PICTURE Range | Storage Allocated

S9 to S9(4) 1 word (2 bytes)
$9(5) to S9(9) 2 words (4 bytes)
$9(10) to S9(18) | 4 words (8 bytes)

Although both COMP and COMP SYNC items require the same number of storage words, the storage
alignment in a record description for each item is quite different. This can lead to significant differ-
ences in the total amount of storage space required for a record description. COMP SYNC items are
aligned on a one-, two-, or four-word boundary depending on the number of decimal digits specified
in the PICTURE clause. The alignment boundary is the same as the number of words required for
storage. COMP items, however, are always aligned on a one-word boundary regardless of the item
size.

m 1-2 Numeric Character Handling



. Level 02 Blf|{C|C|C|C

Note

Data defined as COMP SYNC usage in COBOL-81 is compatible with data de-
fined as COMP SYNC usage in VAX-11 COBOL.

Figures 1-2, 1-3 and 1-4 show the difference in total storage space required to store a record defined
for COMP and COMP SYNC usage. In Figures 1-2 and 1-3 ITEM-C requires two words of storage
because the item is defined as containing seven decimal digits. For the record defined as COMP
usage, ITEM-C must start at a one-word boundary. Thus, the compiler adds one fill byte to the first
word. The total storage requirement is three words. The record defined as COMP SYNC usage,
however, requires a total of four words of storage because the SYNC clause requires that ITEM-C start
on a two-word boundary. (There would be no difference if ITEM-C required only one word of
storage.)

Figure 1-4 is similar to Figures 1-2 and 1-3; however, ITEM-C now defines 12 decimal digits. Because
of its increased size, ITEM-C requires four words of storage and must start on a four-word boundary.
Notice the seven implicit fill bytes added by the compiler to align ITEM-C on a four-word boundary.

Any item that is to be a receiving item for RECORD-A must be defined so that its size is large enough
to accommodate the subordinate items plus any fill bytes.

Example 1-2: Sample Record Description

01 RECORD-A,
02 ITEM-B PIC X.
02 ITEM-C PIC 9(7) COMP.

Figure 1-2: Storage Allocation for COMP ltems for Example 1-2

Record
Description

Word no. 1 2 3
Byte no. 1]12]13|4]5]6
Level 01 AlAlAJA|A]A

Legend: f = Fill byte added by the compiler for data-item alignment

C81ART-10015-18

Example 1-3: Sample Record Description

01 RECORD-A.
02 ITEM-B PIC X.
02 ITEM-C PIC 9(7) COMP SYNC.

Numeric Character Handling 1-3



Figure 1-3: Storage Allocation for Two-Word COMP SYNC Items for Example 1-3

Record
Description

Word no. 1 2 3 4

Byte no. 11213[4]15|6|7(8
Level 01 A|lAlA[A|A[A|A]A
Level 02 Blf|{f|lf|C{C|C|C

Legend: f = Fill bytes added by the compiler for data-item alignment

C81ART-10016-18

Example 1-4: Sample Record Descriptibn

01 RECORD-A.
02 ITEM-B PIC X.
02 ITEM-C PIC 9(12)
COMP SYNC.

Figure 1-4: Storage Allocation for a Four-Word COMP SYNC Item for Example 1-4

Record Description

Word no. 1 2 3 4 5 6 7 8
Byte no. 112(13|14]5]6]7]|8]|9}10§11/12]13]14]|15|16
Level 01 |A[AJA|A]A]JA]A]AJA|A|A|A]A]A|A]A
Level02 |B|f|f|fjf]lfjf]f]C|C|C|C|C|C|C|C

Legend: f = Fill bytes added by the compiler for data-item alignment

C81ART-10017-20

m 1-4 Numeric Character Handling



Table 1-2 shows the memory storage of COMP data items.

Table 1-2: Memory Storage of COMP Items

addressed
word

high low
byte byte
) (M

one-word COMP data item

addressed next
word word
high low high low
byte byte byte byte
(2) (1) (4) (3)

two-word COMP data item

addressed next next next
word word word word
high low high low high low high low
byte byte byte byte byte byte byte byte
(2) (1) 4) (3) (6) (5) (8) (7)

four-word COMP data item

1.1.2 COMPUTATIONAL-3 Usage

COMP-3 data items are stored in packed-decimal format with an optional sign. Sign storage is
discussed in Section 1.3.2. COMP-3 items are stored two decimal digits per byte. The 4 rightmost bits
of the rightmost byte are reserved for the sign. If there are an even number of digits in the item, the
leftmost 4 bits of the leftmost byte contain a zero.

Figure 1-5 represents the storage of COMP-3 items with one, two, and three digits. The blank portion
of the byte is reserved for the sign.

Figure 1-5: Storage of COMP-3 Data Items

1st byte 1st byte 2nd byte 1st byte 2nd byte

5 0 3 2 2 6 2
PICTURE 9 PICTURE 9(2) PICTURE 9(3)

value: 5 value: 32 value: 262

C81ART-10018-14

Numeric Character Handling 1-5 1l



1.1.3 DISPLAY Usage

A numeric item with DISPLAY usage is stored as an ASCIl character string with an optional sign.
DISPLAY items are stored one digit per byte. Sign storage is discussed in Section 1.3.3.

1.2 Decimal Scaling Position

The assumed decimal scaling position, or scaling factor, is not stored as part of an actual numeric
value. However, it is used to control operations on numeric data items.

The maximum size of all COBOL-81 numeric items is 18 decimal digits, regardless of the decimal
scaling position. In the following example, both NUM-1 and NUM-2 represent COMP-3 items of
maximum size:

03 NUM-1 PIC §8(18) USAGE IS5 COMP-3.
03 NUM-2 PIC S889(B)VO(12) USAGE IS COMP-3.

The following example shows how the scaling factor is used to control a numeric operation:

01 ORDER-PRICE PIC 989V899 COMP VALUE 12,34,

COBOL-81 stores this item as a one-word binary number. The word contains the integer value 1234
and another location contains the scaling factor, which is 2 in this example. The scaling factor
indicates that this integer has two decimal positions to the right of the implied decimal point. Thus,
the Object Time System (OTS) knows that the stored binary integer is 100 times larger than the
programmer intends it to be.

Suppose the compiler subsequently encounters this statement:

ADD 1 TO ORDER-PRICE.

It then adds 1 to the 1234 stored in ORDER-PRICE. The OTS, however, scales the literal 1 up by two
decimal places and adds the resultant literal, 100, to the number in ORDER-PRICE. Thus, after the
ADD operation, ORDER-PRICE contains the new value 1334, which is actually 13.34 with the stored
decimal scaling position. '

Thus, the COBOL-81 compiler and OTS manipulate the data in COMP-3 and DISPLAY data items in
much the same way. The usages have exactly the same accuracy and precision and can be freely
mixed in a program. The only advantage of specifying a binary (COMP) or packed-decimal (COMP-3)
usage over a DISPLAY usage is that they reduce the space required for most numbers and can speed
up the execution of arithmetic statements.

1.3 Sign Conventions

All COBOL-81 numeric items can be signed or unsigned. However, all COBOL-81 arithmetic opera-
tions yield signed results. If you store a signed result in an unsigned item, only the absolute value
is stored. Thus, unsigned items only contain the value zero or positive values. The way
COBOL-81 stores signed results in signed data items depends on the usage and the presence of the
SIGN clause. Each usage type is discussed in the following sections.

In general, do not use unsigned numeric items. They are usually a source of programming errors and
are handled less efficiently than signed numeric items.

m 1-6 Numeric Character Handling



1.3.1 Sign Storage for COMP and COMP SYNC Items

Both COMP types are stored in two’s complement format with the sign represented by the high-order

bit.

1.3.2 Sign Storage for COMP-3 ltems

The results of arithmetic operations are stored in COMP-3 usage items in packed decimal format. The

rightmost four bits of the last byte are reserved for the sign.

Signs resulting from operations in which the receiving item usage is COMP-3 are:

Positive sign:

Unsigned:

binary 1100, hexadecimal C
Negative sign: binary 1101, hexadecimal D

binary 1111, hexadecimal F

The following signs are recognized as being valid. However, they do not result from program

operations.

Positive signs:

binary 1010, hexadecimal A
binary 1110, hexadecimal E

Negative signs: binary 1011, hexadecimal B

Figure 1-6 represents the storage of COMP-3 signed items of one, two, and three digits.

Figure 1-6: Sign Storage in COMP-3 Items

1st byte 1st byte 2nd byte

5 C 0 3 2 D

PIC S9 PIC S9(2)
value: +5 value: =32

1.3.3 Sign Storage for DISPLAY Items

1st byte 2nd byte
2 6 2 C
PIC S9(3)
value: +262

C81ART-10019-12

The position and format of the sign storage for DISPLAY items depends on the contents of the SIGN
clause. SIGN LEADING and SIGN TRAILING clauses result respectively in left overpunched and right
overpunched formats. Overpunching is the result of the sign sharing a byte with a digit. For SIGN
LEADING, the sign and the most significant digit (leftmost digit) share a byte, while the sign and the
least significant digit (rightmost digit) share a byte for SIGN TRAILING. When a signed DISPLAY item
description contains no SIGN clause the default is SIGN TRAILING. Table 1-3 shows the over-
punched characters resulting from all combinations of signs and digit values. These are the actual
ASCIl characters that would be printed. Where more than one character appears, the first is the

character generated as the result of machine operations.

Numeric Character Handling

1-7



Table 1-3: Overpunched Character for Sign and Digit Combinations

Digit Value | 0 1 2 3 4 5 6 7 | 8 9
Sign + -1+l -1+1-1+]-1{+1 -+ -1+ -1+l -1+]1-]1+]-
Overpunched | {,[| }1|A| J| B] K| C]{L|D|M]E|N|]F|O PIH]IQ]I]R
Char 2,01 ;11 2 3 4 5 6 7 8 9

C81ART-10020-16

A byte containing a +0 stores as an octal 173, which prints as e|ther a { or a [ depending on the
printing device.

A byte containing a —0 stores as an octal 175, which prints as either a } or a ] depending on the
printing device.

The following program example shows the results obtained when you use the SIGN LEADING and
the SIGN TRAILING clauses and the default when you use no SIGN clause:

01 A PIC 5899 SIGN LEADING.
01 B PIC 5999 SIGN TRAILING.
01 C PIC 5989,

L3

MOVE +123 TO Ay By C.
DISPLAY A,

DISPLAY B.

DISPLAY C.
Statement Result
DISPLAY A AZ3
DISPLAY B 12C
DISPLAY C 12C

When you specify the SIGN LEADING SEPARATE or the SIGN TRAILING SEPARATE clause, the sign
is stored in a separate byte ahead of the most significant digit or after the least significant digit
respectively. The actual ASCII character stored is the ASCII plus sign (octal 053) or the ASCII minus
sign (octal 055).

The following program example shows the results when you specify the SIGN LEADING SEPARATE
and the SIGN TRAILING SEPARATE clauses.

01 A PIC 59989 SIGN LEADING SEPARATE.
01 B PIC 5998 SIGN TRAILING SEPARATE.

+

+
+

MOVE +123 TO A, B.

DISPLAY A,

DISPLAY B.
Statement Result
DISPLAY A +123
DISPLAY B 123+

n 1-8 Numeric Character Handling



1.4 lllegal Values in Numeric ltems

All COBOL-81 arithmetic operations store legal values in their result items. However, it is possible to
store data in numeric items that does not conform to the data definitions of those items. For example,
you can place signed values into unsigned items and place nonnumeric or improperly signed data
into signed numeric display items. This can happen when you use invalid input data, redefine items,
and perform group moves.

The results of arithmetic operations that use invalid data in numeric items are undefined.

1.5 Testing Numeric ltems

COBOL-81 provides three kinds of tests for evaluating numeric items:
1. Relation tests that compare the item’s contents to another numeric value
2. Sign tests that examine the item’s sign to see if it is positive or negative

3. Class tests that inspect the item’s digit positions for legal numeric values

The following sections explain these tests in detail.

1.5.1 Numeric Relation Tests

A relation test compares two numeric quantities and determines if the specified relation between
them is true. For example, the following statement compares item FIELD1 to item FIELD2 and deter-
mines if the numeric value of FIELD1 is greater than the numeric value of FIELD2:

IF FIELD1 » FIELDZ ...

If the relation condition is true, the program control takes the true path of the statement.

Either item in a relation test can be a numeric literal or the figurative constant ZERO. The numeric
literals 0, 00, 0.0, or ZERO are all equivalent, both in meaning and in execution speed.

The size of the items (including numeric literals) in a numeric relation test do not have to be the same.
The comparison operation aligns both items on their assumed decimal positions through scaling or
filling with leading or trailing zeros.

The comparison operation always compares the signs of nonzero items and considers positive items
to be greater than negative items. However, since it does not compare them, positive zeros and
negative zeros are equal. A negative zero could be placed in an item through redefinition of the item
or a move to a group item. The operation considers unsigned numeric items to be positive.

The form of representation of the number (COMP, COMP-3, or DISPLAY usage) and the various
methods of storing DISPLAY usage signs have no effect on numeric relation tests.

The results of relation tests involving illegal (nonnumeric) data in a numeric item are undefined.

Numeric Character Handling 1-9 1l



1.5.2 Numeric Sign Tests

The sign test compares a numeric quantity to zero and determines if it is greater (positive), less
(negative), or equal (zero). Both the relation test and the sign test can perform this function. For
example, consider the following relation test: :

IF FIELDL > 0O 4.4

Now consider the following sign test:

IF FIELD1 POSITIVE ..
Both of these tests accomplish the same thing and always arrive at the same result. The sign test,
however, shortens the statement and shows, at a glance, that it is testing the sign.

Table 1-4 shows the sign tests and their equivalent relation tests as applied to FIELD1.

Table 1-4: Sign Tests

Sign Test Equivalent Relation Test
IF FIELD1 POSITIVE +.. IF FIELD1L > O +..
IFFIELDI NOT POSITIVE +.4. IF FIELD1 NOT > O ..
IF FIELD1 NEGATIVE +.. IF FIELDL < O 4+
IFFIELD1 NOT NEGATIVE +.., IF FIELD1 NOT £ O ...
IF FIELD1 ZERO +.. IF FIELDL = 0O ..,
IF FIELD1 NOT ZERO ... IF FIELD1 NOT = 0O 4.,

Sign tests have no execution speed advantage over relation tests because the compiler substitutes the
equivalent relation test for every correctly written sign test. (Sections 1.3 and 1.4 discuss the accept-
able sign values and the treatment of illegal sign values.) :

1.5.3 Numeric Class Tests

The class test inspects an item to determine if it contains numeric or alphabetic data — and uses the
result to alter the program flow. control. For example, the following statement determines if FIELD1
contains numeric data: :

IF FIELD1 IS5 NUMERIC ...
If the item is numeric, the test condition is true, and program control takes the true path of the
statement.

Both relation and sign tests treat illegal characters in DISPLAY usage items as zeros. Both tests only
determine if an item’s contents are within a certain range. Therefore, certain items in newly prepared
data can pass both the relation and sign tests and still contain data preparation errors.

The NUMERIC class test checks numeric or alphanumeric DISPLAY usage items for valid numeric
digits.

i 1-10 Numeric Character Handling



If the item being tested contains a sign (whether carried as an overpunched character or as a separate
character), the test checks it for a valid sign value. If the character position carrying the sign contains
an illegal sign value, the NUMERIC class test rejects the item, and program control takes the false
path of the IF statement.

The ALPHABETIC class test checks alphabetic or alphanumeric items for valid alphabetic characters
and the space character. If all the character positions of the item contain ASCIl characters A to Z
(upper or lower case) or the space character, the item passes the ALPHABETIC class test and causes
program control to take the true path of the IF statement. (For further information concerning the
ALPHABETIC class test, see Part |, Chapter 2, Creating and Entering a COBOL-81 Program.)

1.6 Using the MOVE Statement

The MOVE statement moves the contents of one item into another item. The following sample MOVE
statement moves the contents of item FIELD1 into item FIELD2:

MOVE FIELD1 TO FIELDZ.

This section considers MOVE statements as applied to numeric data items. These MOVE statements
can be grouped into the following categories:

® Group moves
® Elementary moves with numeric receiving items

® Elementary moves with numeric edited receiving items

The following sections discuss each of these categories separately.

1.6.1 Group Moves

The compiler considers a move to be a group move if either the sending item or the receiving item is a
group item. It treats both items in a group move as alphanumeric items and performs the move as an
alphanumeric to alphanumeric elementary move.

If either item in a group move is a numeric elementary item, the OTS treats the storage area occupied
by that item as alphanumeric bytes and ignores the usage, sign, and decimal point location of the
numeric item.

Only the item’s allocated size, in bytes, affects the move operation. The OTS considers a separate
sign character to be part of the item and moves it along with the numeric digits.

1.6.2 Elementary Numeric Moves

If both items of a MOVE statement are elementary items and the receiving item is numeric, the OTS
considers the move to be an elementary numeric move. The sending item can be either numeric or
alphanumeric. The numeric receiving item can be COMP, COMP-3 or DISPLAY usage. The elemen-
tary numeric move converts the data format of the sending item to the data format of the receiving
item.

Numeric Character Handling 1-11 1



An alphanumeric sending item can be either:
® An elementary data item

® Any alphanumeric literal other than the figurative constants SPACE, QUOTE, LOW-VALUE,
HIGH-VALUE, or ALL literal

The elementary numeric move accepts the figurative constant ZERO and considers it to be equivalent
to the numeric literal 0. It treats alphanumeric sending items as unsigned integers of DISPLAY usage.

If necessary, the numeric move operation converts the sending item to the data format of the receiv-
ing item and aligns the sending item’s decimal point on that of the receiving item. It then moves the
sending item’s digits to their corresponding receiving item’s digits.

If the sending item has more digit positions than the receiving item, the decimal point alignment
operation truncates the sending item, with resulting loss of digits. The end truncated (high-order or
low-order) depends upon the number of sending item digit positions that find matches on each side of
the receiving item’s decimal point. If the receiving item has fewer digit positions on both sides of the
"decimal point, the operation truncates both ends of the sending item. Thus, if an item described as
PIC 999V999 is moved to an item described as PIC 99V99, it loses one digit from the left end and one
from the right end. In the following example, the caret (") indicates the stored decimal scaling
position:

01 AMOUNT1 PIC 99V89 VALUE ZEROS.

L]

+

MOVE 123,321 TO AMOUNT1,

Before execution: 00700
After execution: 2332

If the sending item has fewer digit positions than the receiving item, the move operation supplies
zeros for all unfilled digit positions. The caret (") indicates the stored decimal scaling position:

01 TOTAL-AMT PIC 9898v89 VALUE ZEROS.

+

.

MOVE 1 TO TOTAL-AMT.

Before execution: 000700
After execution: 001700

The following statement produces the same results:

MOVE 001.00 TO TOTAL-AMT,.

Consider the following two MOVE statements and their resultant truncating and zero-filling effects:

Statement TOTAL-AMT After Execution
MOVE 00100 TO TOTAL-AMT 100700
MOVE "00100" TO TOTAL-AMT 100700

m 1-12 Numeric Character Handling



Literals with leading or insignificant trailing zeros have no significant advantage in space or execution
speed with COBOL-81, and the zeros are often lost by decimal point alignment.

The MOVE statement’s receiving item dictates how the sign will be moved. A signed DISPLAY usage
receiving item causes the sign to be moved as a separate quantity. An unsigned DISPLAY usage
receiving item causes no sign movement. A COMP usage receiving item; whether signed or unsigned,
causes the sign to be moved; however, if the receiving item is unsigned, the OTS takes the absolute
value of the sending item and stores it in the receiving item.

1.6.3 Elementary Numeric Edited Moves

The COBOL-81 OTS considers an elementary numeric move to a numeric edited receiving item to be
an elementary numeric edited move. The sending item of an elementary numeric edited move can be
either numeric or alphanumeric. If it is numeric, its usage can be COMP, COMP-3, or DISPLAY. The
OTS treats alphanumeric sending items in numeric edited moves as unsigned DISPLAY usage
integers.

The OTS considers the receiving item to be numeric edited if its PICTURE character-string contains
either a BLANK WHEN ZERO clause or a combination of the following symbols:

Space insertion character

Decimal scaling position character

Assumed decimal point location character

Leading zero suppression and space replacement character

Zero insertion character

© O N < 7TvW @

Numeral position character

Slash insertion character

~

, Comma insertion character
Decimal point insertion character
* Leading zero suppression and asterisk replacement character
+ Positive editing sign control symbol
- Negative editing sign control symbol
CR  Credit editing sign control symbol
DB  Debit editing sign control symbol
CS  Currency insertion symbol
A numeric edited item can contain 9, V, and P, but it also must contain one or more of the other
symbols to qualify as numeric edited.

The numeric edited move operation first converts the sending item to DISPLAY usage and aligns both
items on their decimal point locations. The sending item is truncated or zero filled until it has the
same number of digit positions on both sides of the decimal point as the receiving item. The operation
then moves the sending item to the receiving item, following the COBOL-81 editing rules.

Numeric Character Handling 1-13 1



The rules allow the numeric edited move operation to perform any of the following editing functions:
® Suppress leading zeros with either spaces or asterisks

® Float a currency sign and a plus or minus sign through suppressed zeros, inserting the sign at
either end of the item

® Insert zeros and spaces

® Insert commas and a decimal point
Table 1-5 illustrates several of these functions with the statement:

MOVE FLD-B TO TOTAL-AMT.

Assume that FLD-B is described as $9999V99.

Table 1-5: Numeric Editing

TOTAL-AMT
FLD-B PICTURE String Contents After MOVE

002300 7777.99 23.00
0085°9P ++++.99 -85.97
1234700 7,277.99 1,234.00
001234 $,$$$.99 $12.34
000034 $,$$9.99 $0.34
1234°00 $$,$$%$.99 $1,234.00
001234 $$9,999.99 $0,012.34
001234 $$%%,$$$.99 $12.34
000000 $$$,$95.$$

0012"3M ++++.99 ~12.34
0012"34 $***,*** 99 $*****12.34

The currency symbol ($ or other currency sign ) and the editing sign control symbols (+ —) are the
only floating symbols. To float them, enter a string of two or more occurrences of the symbol, one for
each character position over which you want the symbol to float.
1.6.4 Common Move Errors
The most common errors programmers make when writing MOVE statements are:

® Placing an incorrect number of replacement characters in a numeric edited item

® Moving nonnumeric data into numeric items with group moves

mnm 1-14 Numeric Character Handling



® Trying to float the $ or + insertion characters past the decimal point to force zero values to
appear as .00 instead of spaces. Use $$.99 or .99

® Forgetting that the $ or + insertion characters require an additional position on the leftmost
end that cannot be replaced by a digit, unlike the * insertion character that can be completely
replaced.

1.7 Using the Arithmetic Statements

The COBOL-81 arithmetic statements allow programs to perform arithmetic operations on numeric
data. The following sections explain how to use the COBOL-81 arithmetic statements.

1.7.1 Intermediate Results

Most forms of the arithmetic statements perform their operations in temporary work locations, then
move the results to the receiving items, aligning the decimal points and truncating or zero filling the
resultant values. This temporary work item, called the intermediate result item, has a maximum size
of 18 numeric digits. The actual size of the intermediate result varies for each statement and is
determined at compile time based on the sizes of the operands used by the statement.

When the compiler determines that the size of the intermediate result exceeds 18 digits, it goes to the
software floating point and keeps the most significant 18 digits, bypassing leading zeros.

When you are using large numbers or numbers with many decimal places that are close to 18 digits
long, examine all of the arithmetic operations that manipulate those numbers to determine if trunca-
tion will occur.

1.7.2 Binary Truncation of COMP SYNC and COMP Items

By default, COBOL-81 truncates values of COMP SYNC and COMP items according to the amount of
storage allocated for them. This is called binary (as opposed to decimal) truncation.

With binary truncation, the maximum value both COMP items can contain depends on its storage
allocation. With decimal truncation, the maximum value depends on the item’s PICTURE character-
string.

To understand the difference between binary and decimal truncation, consider the following data
descriptions:

01 ITEMA PIC 9 COMP.
01 ITEMB PIC 9(4) COMP,

The PICTURE character-string of ITEMA imposes a one-digit limit on the item’s value; therefore, the
maximum value of ITEMA is 9. Likewise, the maximum value of ITEMB is 9999.

The compiler allocates one word (2 bytes, 16 bits) of memory for each of the above items. Therefore,
both ITEMA and ITEMB can contain maximum values of (2 ** 15) — 1 or 32,767. Recall that the high
order bit is reserved for the sign. Table 1-6 shows maximum values with decimal and with binary
truncation.

Numeric Character Handling 1-15 1



Table 1-6: Maximum Values with Decimal and Binary Truncation

Maximum Values
With With
Decimal Truncation Binary Truncation
ITEMA 9 32,767
ITEMB 9,999 32,767

Binary truncation does not occur when either COMP item appears in an arithmetic statement that
uses the ON SIZE ERROR phrase. In this instance, COBOL-81 performs decimal truncation.

If you want COBOL-81 to perform decimal truncation in all numeric data manipulations, specify the
/TRUNCATE compiler qualifier.

1.7.3 Using the ROUNDED Phrase

Rounding off is an important tool with most arithmetic operations. The ROUNDED phrase causes the
OTS to round off the results of COBOL-81 arithmetic operations.

The phrase can be used with any COBOL-81 arithmetic statement. Rounding off takes place only
when the ROUNDED phrase requests it — and then only if the intermediate result has more low-order
digits than the result.

COBOL-81 rounds off by adding a 5 to the leftmost truncated digit of the absolute value of the
intermediate result before it stores that result.

Figure 1-7 shows the results of rounding off an intermediate value of 54321.2468.

Figure 1-7: Results of the ROUNDED Phrase

Coding:

01 FLD-A PIC S59(35)V9999,
01 FLD-B PIC §39(3)v39,.

+

ADD FLD-A TO FLD-B ROUNDED.

+

Intermediate Result:

PIC 59(6)Y9989,

The ROUNDED Operation:

truncated
; digits

Intermediate Result T 054321.24 68

L jeft-most
ROUNDED : L0050 truncated
FLD-B’s ROUNDED result : 034321.25 18 digit

C81ART-10021-30

I 1-16 Numeric Character Handling



Figure 1-8 rounds off to the decimal scaling position (P). Assume an intermediate result of 24680.
(Section 1.7.5 discusses the GIVING phrase in numeric operations.)

Figure 1-8: Results of the ROUNDED Phrase

Coding:

01 AMOUNT1 PIC 989899,
01 AMOUNTZ PIC 9889PP.

[}

MULTIPLY AMOUNT1 BY 10
GIVING AMOUNTZ2 ROUNDED.

.

Intermediate Result:

PIC 988999,

The ROUNDED Operation:

truncated
6 digits

Intermediate Result T 0246 8O,
ROUNDED : 50,
AMOUNT2's ROUNDED result : 0247 30,

C81ART-10022-30

1.7.4 Using the SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order nonzero digits in the results of COBOL-81
arithmetic operations.

The phrase can be used in any COBOL-81 arithmetic statement.

When the execution of a statement with no SIZE ERROR phrase results in a size error, the OTS
truncates the high-order digits and stores the result without notifying the user. When the same
statement includes a SIZE ERROR phrase, the OTS discards the entire result without altering the
receiving items in any way and executes the SIZE ERROR imperative phrase.

If the statement contains both ROUNDED and SIZE ERROR phrases, the OTS rounds the result before
it checks for a size error.

The SIZE ERROR phrase cannot be used with numeric MOVE statements. Thus, if a program moves a
numeric quantity to a smaller numeric item, it can inadvertently lose high-order digits. For example,
consider the following move of an item to a smaller item:

01  AMOUNT-A PIC 9(B)VES.
01 AMOUNT-B PIC 9(4)V38,

+

MOVE AMOUNT-A TO AMOUNT-B.

Numeric Character Handling ~ 1-17 1lI



This MOVE operation always loses four of AMOUNT-A's high-order digits. Either of the following two
statements could determine whether these digits are zero or nonzero and could be tailored to any size
item:

1. IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B

ELSE +.+

2. ADD ZERO AMOUNT-A GIVING AMOUNT-B

ON SIZE ERROR +4

Both alternatives allow the MOVE operation to occur only if AMOUNT-A loses no significant digits. If
the value in AMOUNT-A is too large, both avoid altering AMOUNT-B and take the alternate execu-
tion path.

1.7.5 Using the GIVING Phrase

The GIVING phrase moves the intermediate result of an arithmetic operation to a receiving item. The
phrase acts exactly like a MOVE statement in which the intermediate result serves as the sending
item, and the data item following the word GIVING serves as the receiving item.

The phrase can be used with the ADD, SUBTRACT, MULTIPLY, and DIVIDE statements.

If the data item following the word GIVING is a numeric edited item, the OTS performs the editing
the same way it does for MOVE statements.

1.7.6 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements can contain a string of operands preceding the word TO,
FROM, or GIVING.

Multiple operands in either of these statements cause the OTS to add the string of operands together
and use the intermediate result of that operation as a single operand to be added to, or subtracted
from, the receiving item. TEMP is an intermediate result item. Consider the following examples:

1. Statement: ADD A BCDTOETF G H,
Equivalent coding: ADD A B GIVING TEMP,
ADD TEMP, C» GIVING TEMP,
ADD TEMPs D GIVING TEMP,
ADD TEMP, E, GIVING E,
ADD TEMPs F GIVING F,
ADD TEMP, G GIVING G.
ADD TEMPs H GIVING H.
2. Statement: SUBTRACT A+ By C» FROM D.
Equivalent coding: ADD A B, GIVING TEMP.
ADD TEMP, C GIVING TEMP,

SUBTRACT TEMP FROM D GIVING D,

(continued on next page)

m 1-18 Numeric Character Handling



3. Statement: ADD A B C D GIVING E,
Equivalent coding: ADD A B GIVING TEMP.
ADD TEMP C  GIVING TEMP,
ADD TEMP D  GIVING E.
As in all COBOL-81 statements, any commas in these statements are optional.

Only statement 3 can have a numeric edited receiving item, because it is the only statement contain-
ing a GIVING phrase.

1.7.7 Common Errors in Arithmetic Statements

The most common errors programmers make when using arithmetic statements are:

e Using an alphanumeric item in an arithmetic statement. The MOVE statement allows data
movement between alphanumeric items and certain numeric items, but arithmetic statements
require that all items be numeric.

® Writing the ADD or SUBTRACT statements without the GIVING phrase, and attempting to put
the result into a numeric edited item.

® Using an ADD statement with both the words TO and GIVING as in the following example:

ADD A TO B GIVING C.

® Subtracting a 1 from a numeric counter that was described as an unsigned quantity and then
testing for a value of less than zero.

® Forgetting that the MULTIPLY statement, without the GIVING phrase, stores the result back
into the second operand (multiplier).

® Performing a series of calculations that generates an intermediate result larger than 18 digits
when the final result will be fewer digits. You can prevent this problem by interspersing
divisions with multiplications or by dropping nonsignificant digits after multiplying large num-
bers or numbers with many decimal places.

® Performing an operation on an item that contains a value greater than the precision of its data
description. This can happen only if the item was disarranged by a group move or redefinition.

® Forgetting that you must specify the ROUNDED phrase for each item in an arithmetic state-
ment containing multiple receiving items.

® Forgetting that the ON SIZE ERROR phrase applies to all receiving items in an arithmetic
statement containing multiple receiving items. Only those receiving items for which a size
error condition is raised are left unaltered. The ON SIZE ERROR imperative statement is
executed after all the receiving items are processed by the OTS.

Numeri¢c Character Handling 1-19 1



1.8 Arithmetic Expression Processing

COBOL-81 provides the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE and the
facilities of arithmetic expressions using the +, —, * /, and ** operators. You can perform a given
arithmetic computation in any of several ways. For example, if you want to compute a salesman’s
total yearly sales as the sum of the four individual sales quarters, you might use this sample code:

MOVE O TO TEMP.
ADD 1ST-SALES TO TEMP.
ADD ZND-SALES TO TEMP.

ADD 3RD-SALES TO TEMP.
ADD 4TH-SALES TEMP GIVING TOTAL-SALES.

4
4+

In this example, a series of single ADD statements compute the final value of TOTAL-SALES by
holding the partial sums in a temporary location called TEMP, which you defined in the Data
Division of the program. You specify the class, usage and number of integer and decimal places to be
maintained.

Another possible solution to the problem is:

+

+

ADD 15T-SALES, ZND-SALESs 3RD-SALES, 4TH-SALES
GIVING TOTAL-SALES.

+
3

+

In this example, the program computes TOTAL-SALES using a single ADD statement. As in the
previous example, an intermediate result is required to develop the partial sums of the four quarterly
sales quantities. However, in this example, the compiler defines the intermediate result in a manner
transparent to the source program. It allocates storage for and assigns various attributes to this result
according to the rules defined by COBOL-81. (Refer to the section on arithmetic operations in
Chapter 5 of the COBOL-81 Language Reference Manual.) In particular, the composite of the ADD
statement operands determines the number of integer and decimal places, and the usage assigned to
the intermediate result. (See the COBOL-81 Language Reference Manual for details of the composite
of operands for the arithmetic statements.) In the next example, consider another computational
method: '

+

4+

COMPUTE TOTAL-SALES = 18T-SALES + 2ND-SALES + 3RD-SALES + 4TH-SALES.

3
.

4+

1 1-20 Numeric Character Handling



This sample coding uses a single COMPUTE statement with an embedded arithmetic expression.
Again, an intermediate result is required and is defined by the compiler. The compiler generates the
intermediate result using the two following rules:

1. Arithmetic operations are combined without restrictions on the composite of operands
and/or receiving items.

2.  Each COBOL-81 compiler implementor indicates techniques used in handling arithmetic
expressions.

Thus, you can and should expect differences between various implementations of American National
Standard COBOL 1974. The rest of this section describes how the COBOL-81 compiler computes the
sizes of intermediate results.

The compiler computes the size of an intermediate result for each component operation of an arith-
metic expression. Each component operation can be stated as:

OP1 OPR OP2

where:

OP1 s the first operand.
OPR is an arithmetic operator.

OP2  is the second operand.

The compiler describes the size of an intermediate result in terms of the number of integer places (IP)
and the number of decimal places (DP), both of which are a function of the integer and decimal
places contained in the component operation. The symbol DPEXP represents the maximum number
of decimal places in the entire arithmetic expression. Table 1-7 gives the rules for determining the
intermediate result size for each of the arithmetic operators.

Note

If IP plus DP is greater than 18, arithmetic is done in a temporary work area
where only the 18 most significant digits are held.

Numeric Character Handling 1-21 1



Table 1-7: Rules for Intermediate Result Size

Arithmetic
Operator
(OPR)

Intermediate Result Size

+ and —

IP max(IP(OP1), IP(OP2)) + 1
DP = max(DP(OP1), DP(OP2))

IP = IP(OP1) + [IP(OP2)
DP = DP(OP1) + DP(OP2)

IP = IPOP1) + DP(OP2)
DP = max(DPEXP, max(DP(OP1), DP(OP2) +

M)

*k

For exponents that convert to one-word values:
a = OP2 ’
b = OP2 + DP(OP1)

Otherwise,

9, if IPOP2) = 1
otherwise, a = 19
b = DPEXP

and

P
DP

‘a

IP(OP1) * a
max(DPEXP, DP(OP1) * b)

m 1-22

Numeric Character Handling




Chapter 2
Nonnumeric Character Handling

COBOL programs hold their data in items whose sizes are described in their source programs. These
items are thus ““fixed”” during compilation to remain the same size throughout the lifespan of the
resulting object program.

Items in a COBOL program belong to any of three data classes — alphanumeric, alphabetic, or
numeric. Numeric items contain only numeric values. Alphabetic items contain only A to Z (upper-
case or lowercase) and space characters. Alphanumeric items can contain values that are:

® all alphabetic
® all numeric
® a mixture of alphabetic and numeric

® any character from the ASCIl character set

The item’s data description specifies which class the item belongs to.

Classes are further subdivided into categories. For alphanumeric and numeric data items, class and
category are synonymous. Alphanumeric items can be numeric edited, alphanumeric edited, or
alphanumeric. Every elementary item, except for an index data item, belongs to one of the classes
and its categories. The class of a group item is treated at run time as alphanumeric regardless of the
classes of subordinate elementary items.

If the data description of an alphanumeric item specifies that certain editing operations be performed
on any value that is moved into it, that item is called an alphanumeric or a numeric edited item.

When you are reading the following sections of this chapter, keep in mind the distinction between the
class or category of a data item and the actual value that the item contains.

Sometimes the text refers to alphabetic, alphanumeric, and alphanumeric edited data items as nonnu-
meric data items to distinguish them from items that are specifically described as numeric items.

Regardless of the class of an item, it is usually possible to store a value in the item, at run time, that is
“illegal”’. Thus, nonnumeric ASCII characters can be placed in an item described as numeric, and an
alphabetic item can be loaded with nonalphabetic characters.



2.1 Data Organization

A COBOL-81 record must have an 01 level number and consists of a set of data description entries
that describe record characteristics. A data description entry can be either a group item or an elemen-
tary item. A group item is a data item that is followed by one or more elementary items or other group
items, all of which have higher valued level numbers than the group to which they are subordinate.
An elementary item has no higher valued subordinate level number. The record must have an 01 or a
77 level number.

All of the records used by COBOL-81 programs (except for certain registers .and switches) must be
described in the Data Division of the source program. The compiler allocates memory space for these
items (except for Linkage Section items) and fixes them in size at compilation time.

The following sections explain how the compiler handles group and elementary data items.

2.1.1 Group ltems

The size of a group item is the sum of the sizes of its subordinate elementary items. The compiler
considers group items to be alphanumeric DISPLAY items, and it ignores the structure of the data
they contain.

2.1.2 Elementary items

The size of an elementary item is determined by the number of symbols that represent character
positions contained in the PICTURE character-string. For example, consider this record description:

01 TRANREC,
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S8(5)v89,

Both elementary items require seven bytes of memory; however, item FIELD-1 contains seven
alphanumeric bytes while item FIELD-2 contains seven decimal digits and an operational sign. Oper-
ations on such items are independent of the mapping of the item into memory words (16-bit words
that hold two 8-bit bytes). An item can begin in the leftmost or rightmost byte of a word with no effect
on the function of any operations that refer to that item.

In effect, the compiler sees memory as a continuous array of bytes, not words. This becomes particu-
larly important when you are defining a table using the OCCURS clause (see Chapter 3).

Records, items with a 77 level number, and all literal values given in the Procedure Division auto-
matically begin on even byte addresses.

2.2 Special Characters

COBOL-81 allows you to manipulate any of the 128 characters of the ASCII character set as alpha-
numeric data, even though many of the characters are control characters, which usually control
input/output devices. Generally, alphanumeric data manipulations attach no meaning to an 8-bit
byte. Thus, you can move and compare these control characters in the same manner as alphabetic
and numeric characters.

m 2-2 Nonnumeric Character Handling



Although the object program can manipulate all ASCII characters, certain control characters cannot
appear in nonnumeric literals since the compiler uses them to delimit the source text. Further, the
keyboards of the console and keypunch devices have no convenient input key for many of the special
characters, thus making it difficult to place them into nonnumeric literals.

Special characters can be placed into items of the object program by placing the binary value of the
special character into a numeric COMP item and redefining that item as alphanumeric DISPLAY.
Consider the following example of redefinition (keep in mind that the even byte of a word corre-
sponds to the low-order bits of a binary word):

01 LF-COMP PIC 999 COMP VALUE 10,
01 LF REDEFINES LF-COMP PIC X,

01 HT-COMP PIC 999 COMP VALUE 3.
01 TAB REDEFINES HT-COMP PIC X.
01 CR-COMP PIC 989 COMP VALUE 13.
01 CR REDEFINES CR-COMP PIC X.

The sample coding introduces each character as a one-word COMP item with a decimal value, then
redefines it as a single byte. (The second byte of the redefinition need not be described at the 01
level, since redefinition at this level does not require identically sized items.)

The ASCII character set listed in Appendix B of the COBOL-81 Language Reference Manual mdlcates
the decimal value for any ASCII character.

2.3 Testing Nonnumeric Items

The following sections describe the relation and class tests applicable to nonnumeric items.

2.3.1 Relation Tests of Nonnumeric ltems

An IF statement with a relation condition (greater than, less than, equal to) can compare the value in a
nonnumeric data item with another value and use the result to alter the flow of control in the
program.

An [F statement with a relation condition compares two operands, either of which can be an identifier
or a literal, except that both cannot be literals. If the stated relation exists between the two operands,
the relation condition is true.

When coding a relational operator, leave a space before and after each reserved word. When the
reserved word NOT is present, the compiler considers it and the next key word or relational character
to be one relational operator defining the comparison. Table 2-1 shows the meanings of the relational
operators.

Table 2-1: Relational Operator Descriptions

Operator Description
IS [NOT] GREATER THAN The first operand is greater than (or not greater than) the second operand.
IS [NOT] >
IS [NOT] LESS THAN The first operand is less than (or not less than) the second operand.
IS [NOT] <
IS [NOT] EQUAL TO The first operand is equal to (or not equal to) the second operand.
IS [NOT] =

Nonnumeric Character Handling 2-3 1



2.3.1.1 Classes of Data — COBOL-81 allows comparison of both numeric class operands and nonnu-
meric class operands; however, it handles each class of data differently. For example, it allows a
comparison of two numeric operands regardless of the formats specified in their respective USAGE
clauses, but it requires that all other comparisons (including comparisons of any group items) be
- between operands with the same usage. It compares numeric class operands with respect to their
algebraic values and nonnumeric (or a numeric and a nonnumeric) class operands with respect to a
specified collating sequence.

If only one of the operands is numeric, it must be an integer data item or an integer literal, and it must
be DISPLAY usage. The manner in which the compiler handles numeric operands depends on the
nonnumeric operand.

1. If the nonnumeric operand is an elementary item or a literal, the compiler treats the
numeric operand as if it had been moved into an alphanumeric data item the same size as
the numeric operand and then compared. This causes any operational sign, whether
carried as a separate character or as an overpunched character, to be stripped from the
numeric item so that it appears to be an unsigned quantity.

In addition, if the PICTURE character-string of the numeric item contains trailing P char-
acters indicating that there are assumed integer positions that are not actually present,
they are filled with zero digits. Thus, an item with a PICTURE character-string of
S9999PPP is moved to a temporary location where it is described as 9999999. If its value
is 432) (=4321), the value in the temporary location will be 4321000. The numeric digits,
stored as ASCII bytes, take part in the comparison.

2. If the nonnumeric operand is a group item, the compiler treats the numeric operand as if
it had been moved into a group item the same size as the numeric operand and then
compared. This is equivalent to a group move.

The compiler ignores the description of the numeric item (except for length) and, there-
fore, includes in its length any operational sign, whether carried as a separate character or
as an overpunched character. Overpunched characters are never ASCIl numeric digits.
They are characters ranging from A through R, {, or }. Thus, the sign and the digits, stored
as ASCII bytes, take part in the comparison, and zeros are not supplied for P characters in
the PICTURE character-string.

The compiler does not accept a comparison between a noninteger numeric operand and a nonnu-
meric operand. If you try to compare these two items, you receive a diagnostic message at compile.
time.

2.3.1.2 Comparison Operations — If the two operands are acceptable, the compiler compares them
byte for byte. The comparison starts at the first byte and compares the corresponding bytes until it
either encounters a pair of unequal bytes or reaches the last byte of the longer operand.

If the compiler encounters a pair of unequal characters, it considers their relative position in the
collating sequence. The operand with the character that is positioned higher in the collating sequence
is the greater operand.

If the operands have different lengths, the comparison proceeds as though the shorter operand were
extended on the right by sufficient ASCII spaces (octal 40) to make them both the same length.

If all the pairs of characters are equal, the operands are equal.

n 2-4 Nonnumeric Character Handling



2.3.2 Class Tests for Nonnumeric ltems

An IF statement with a class condition (NUMERIC or ALPHABETIC) tests the value in a nonnumeric
data item (USAGE DISPLAY only) to determine whether it contains numeric or alphabetic data and
uses the result to alter the flow of control in the program. For example:

IF ITEM-1 IS5 NUMERIC...
IF ITEM-2 IS5 ALPHABETIC...
IF ITEM-3 IS8 NOT NUMERIC...

If the data item consists entirely of the ASCII characters 0 through 9, with or without the operational
sign, the class condition is NUMERIC. If the item consists entirely of the ASCII characters A through Z
(upper or lower case) and spaces, the class condition is ALPHABETIC.

When the reserved word NOT is present, the compiler considers it and the next key word as one class
condition defining the class test to be executed. For example, NOT NUMERIC determines if an
operand contains at least one nonnumeric byte.

If the item being tested is described as a numeric data item, it can only be tested as NUMERIC or
NOT NUMERIC. The NUMERIC test cannot examine either of the following:

® An item described as alphabetic

® A group item containing elementary items whose data descriptions indicate the presence of
operational signs

For further information on using class conditions with numeric items, see the COBOL-81 Language
Reference Manual, Chapter 5.

2.4 Data Movement

Three COBOL-81 statements (MOVE,-STRING, and UNSTRING) perform most of the data movement
operations required by business-oriented programs. The MOVE statement simply moves data from
one item to another. The STRING statement concatenates a series of sending items into a single
receiving item. The UNSTRING statement disperses a single sending item into multiple receiving
items. Section 2.5 describes the MOVE statement, Section 2.6 describes STRING, and Section 2.7
describes UNSTRING.

The MOVE statement handles most data movement operations on character strings. However, it is
limited in its ability to handle multiple items. For example, it cannot, by itself, concatenate a series of
sending items into a single receiving item or disperse a single sending item into several receiving
items.

Two MOVE statements will, however, bring the contents of two items together into a third (receiving)
item if the receiving item has been subdivided with subordinate elementary items that match the two
sending items in size. If other items are to be concatenated into the third item, and they differ in
size from the first two items, then the receiving item requires additional subdivisions (through
-redefinition).

Nonnumeric Character Handling 2-5 1



Example 2-1 demonstrates item concatenation using two MOVE statements.

Example 2-1: Item Concatenation

01 SEND-1 PIC X{(3) VALUE "FIRST".
01 GSEND-Z PIC X(B) VALUE "SECOND".
01 RECEIVE-GROUP.

05 REC-1 PIC X(3).

05 REC-2 PIC X(B).

PROCEDURE DIVISION,.
AOO-BEGIN,

MOVE SEND-1 TO REC-1.
MOVE SEND-2Z TO REC-2Z.

DISPLAY RECEIVE-GROUP,
STOP RUN.

The result of the concatenation is:

FIRSTSECOND

Two MOVE statements can also disperse the contents of one sending item to several receiving items.
The first MOVE statement moves the left-most end of the sending item to a receiving item; then the
second MOVE statement moves the right-most end of the sending item to another receiving item. (The
second receiving item must first be described with the JUSTIFIED clause.) Characters from the middle
of the sending item cannot easily be moved to any receiving item without extensive redefinitions of
the sending item or a character-by-character movement loop (as with concatenation).

The STRING and UNSTRING statements handle concatenation and dispersion more easily.

2.5 Using the MOVE Statement

The MOVE statement moves the contents of one item into another. For example:

MOVE FIELD1 TO FIELDZ
MOVE CORRESPONDING FIELD1 TO FIELD2

FIELD1 is the sending item name, and FIELD2 is the receiving item name.

The first statement causes the compiler to move the contents of FIELD1 into FIELD2. The two items
need not be the same size, class, or usage; they can be either group or elementary items. If the two
items are not the same length, the compiler aligns them on one end or the other. It also truncates or
space-fills the other end. The movement of group items and nonnumeric elementary items is dis-
cussed in the next section.

The MOVE statement alters the contents of every character position in the receiving item.

n 2-6 Nonnumeric Character Handling



2.5.1 Group Moves

If either the sending or receiving item is a group item, the compiler considers the move to be a group
move. It treats both the sending and receiving items as if they were alphanumeric items.

If the sending item is a group item, and the receiving item is an elementary item, the compiler ignores
the receiving item description except for the size description, in bytes, and any JUSTIFIED clause. It
conducts no conversion or editing on the receiving item.

If a receiving item contains an OCCURS ... DEPENDING ON clause, you must either initialize the
item using the VALUE clause or move a value into depending-item anytime prior to the group move.

2.5.2 Elementary Moves

If both items of a MOVE statement are elementary items, their PICTURE character-strings control their
data movement. If the receiving item was described as numeric or numeric edited, the rules for
numeric moves control the data movement. (See Chapter 1, Numeric Character Handling.)

Table 2-2 shows the legal and illegal nonnumeric elementary moves.

Table 2-2: Nonnumeric Elementary Moves

Receiving Item Category
Sending Item Category Alphanumeric
Alphabetic Alphanumeric Edited

ALPHABETIC Legal Legal
ALPHANUMERIC Legal Legal
ALPHANUMERIC EDITED Legal Legal
NUMERIC INTEGER Illegal Legal
(DISPLAY ONLY)

NUMERIC EDITED Illegal Legal

In all legal moves, the compiler treats the sending item as though it had been described as PIC X(n). A
JUSTIFIED clause in the sending item’s description has no effect on the move. If the sending item’s
PICTURE character-string contains editing characters, the compiler uses them only to determine the
item’s size.

Numeric items must be in DISPLAY (byte) format and must be integers.

If the description of the numeric data item indicates the presence of an operational sign (either as a
character or an overpunched character) or if there are P characters in its character-string, the compiler
first moves the item to a temporary location. It removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value as the sending item as if it had been described as PIC
X(n). The temporary value can be shorter than the original if a separate sign was removed — or longer
if P character positions were filled in with zeros.

If the sending item is an unsigned numeric class item with no P characters in its character-string, the
compiler does not move the item to a temporary location.

Nonnumeric Character Handling 2-7 1



A numeric integer data item sending item has no effect on the justification of the receiving item. It
the numeric sending item is shorter than the receiving item, the compiler fills the receiving item
with spaces.

In legal, nonnumeric elementary moves, the receiving item controls the movement of data. All of the
following characteristics of the receiving item affect the move:

® [ts size
® Editing characters in its description

® The JUSTIFIED RIGHT clause in its description

The JUSTIFIED clause and editing characters are mutually exclusive.

When an item that contains no editing characters or JUSTIFIED clause in its description is used as the
receiving item of a nonnumeric elementary MOVE statement, the compiler moves the characters
starting at the leftmost position of the item and scans across, character-by-character, to the rightmost
position. If the sending item is shorter than the receiving item, the compiler fills the remaining
character positions with spaces. If the sending item is longer than the receiving item, truncation
occurs on the right.

2.5.2.1 Edited Moves — Alphabetic or alphanumeric items can contain editing characters. Consider
the following insertion editing characters:

B  Blank insertion position

0  Zero insertion position

/ Slash insertion position

When an item with an insertion editing character in its PICTURE character-string is the receiving item
of a nonnumeric elementary MOVE statement, each receiving character position corresponding to an
editing character receives the insertion byte value. Table 2-3 illustrates the use of such symbols with
the following statement, where FIELD1 is described as PIC X(7):

MOVE FIELD1 TO FIELDZ

Table 2-3: Data Movement with Editing Symbols

FIELD2
FIELD1
Character-String Contents After MOVE
070476 XX/799/XX 07/04/76
04JUL76 99BAAAB99 04 JUL 76
2351212 XXXBXXXX /XX / 2351212/ /
123456 0XBOXBOXBOX 01 02 03 04

1 2-8 Nonnumeric Character Handling



Data movement always begins at the left end of the sending item and moves only to the byte positions
described as A, 9, or X in the receiving item PICTURE character-string. When the sending item is
exhausted, the compiler supplies space characters to fill any remaining character positions (not
insertion positions) in the receiving item. If the receiving item is exhausted before the last character is
moved from the sending item, the compiler ignores the remaining sending item characters.

2.5.2.2 Justified Moves — A JUSTIFIED RIGHT clause in the receiving item’s data description causes
the compiler to reverse its usual data movement conventions. It starts with the rightmost characters of
both items and proceeds from right to left. If the sending item is shorter than the receiving item, the
compiler fills the remaining leftmost character positions with spaces. If the sending item is longer than
the receiving item, truncation occurs on the left. Table 2-4 illustrates various PICTURE character-
string situations for the following statement (with no editing):

MOVE FIELD1 TO FIELDZ2,

Table 2-4: Data Movement with No Editing

FIELD1 FIELD2
PICTURE
PICTURE Character-string
Character-string Contents (and JUST Clause) Contents After MOVE

XX AB
XXXXX ABC

XXX ABC XX JUST BC
XXXXX JUST ABC

2.5.3 Multiple Receiving ltems

If you write a MOVE statement containing more than one receiving item, the compiler moves the
same sending item value to each of the receiving items. It has essentially the same effect as a series of
separate MOVE statements, all with the same sending item. For information on subscripted items, see
Section 2.6.4.

The receiving items need have no relationship to each other. The compiler checks the legality of each
one independently and performs an independent move operation on each one.

Multiple receiving items on MOVE statements provide a convenient way to set many items equal to
the same value, such as during initialization code at the beginning of a section of processing. For
example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD,

MOVE ZEROS TO EOL-FLAG, EXCEPT-FLAG: NAME-FLAG.

MOVE 1 TO COUNT-1, CHAR-PTRs CURSOR.

Nonnumeric Character Handling 29 1l



2.5.4 Subscripted Moves

Any item of a MOVE statement can be subscripted, and the referenced item can be used to subscript
another name in the same statement.

When more than one receiving item is named in the same MOVE statement, the order in which the
compiler evaluates the subscripts affects the results of the move. Consider the following examples:

Example 1:

MOVE FIELDI(FIELDZ) TO FIELDZ FIELD3.

Example 2:

MOVE FIELD1 TO FIELDZ FIELD3(FIELDZ).

In Example 1, the compiler evaluates FIELD1(FIELD2) only once, before it moves any data to the
receiving items. It is as if the statement were replaced with the following statements:

MOVE FIELDI(FIELDZ) TO TEMP.

MOVE TEMP TO FIELDZ,
MOVE TEMP TO FIELD3.

In Example 2, the compiler evaluates FIELD3(FIELD2) immediately before moving the data into it but
after moving the data from FIELD1 to FIELD2. Thus, it uses the newly stored value of FIELD2 as the
subscript value. It is as if the statement were replaced with the following statements:

MOVE FIELD1 TO FIELDZ.
MOVE FIELD1 TO FIELD3(FIELDZ2).

2.5.5 Common Nonnumeric ltem MOVE Statement Errors

The compiler considers any MOVE statement that contains a group item to be a group move. If an
elementary item contains editing characters, or a numeric integer, these attributes of the receiving
item, which determine the action of an elementary move, have no effect on the action of a group
move.

2.5.6 Using the MOVE CORRESPONDING Statement for Nonnumeric Items

The MOVE CORRESPONDING statement allows you to move multiple items from one group item to
another group item using a single MOVE statement. See the COBOL-81 Language Reference Manual
for rules on the CORRESPONDING phrase. When you use the CORRESPONDING phrase, the com-
piler performs an independent move operation on each pair of corresponding items from the oper-
ands and checks the legality of each. Example 2-2 shows the use of the MOVE CORRESPONDING
statement.

n 2-10 Nonnumeric Character Handling



Example 2-2: Sample Record Description Using the MOVE CORRESPONDING Statement

01 A-GROUP. 01 B-GROUP.
02 FIELDIL, 02 FIELD1.
03 A PIC X. 03 A PIC X,
03 B PIC 9. 03 C PIC XX.
03 C PIC XX. 03 E PIC XXX,

03 D PIC 899.
03 E PIC XXX,

MOVE CORRESPONDING A-GROUP TO B-GROUP,

Because FIELD1 qualifies the elementary items for both the A-GROUP and B-GROUP items named in
the MOVE CORRESPONDING statement, the preceding example is equivalent to the following series
of MOVE statements:

MOVE A OF A-GROUP TO A OF B-GROUP.
MOVE C OF A-GROUP TO C OF B-GROUP.
MOVE E OF A-GROUP TO E OF B-GROUP.

2.6 Concatenating Data Using the STRING Statement

The STRING statement concatenates the contents of two or more sending items into a single receiving
item.

The statement has many forms; the simplest is equivalent in function to a nonnumeric MOVE state-
ment. Consider the following example:

STRING1 FIELD1 DELIMITED BY SIZE INTO FIELD2.

If the two items are the same size, or if the sending item (FIELDT1) is larger, the statement is equivalent
to the following statement:

MOVE FIELD1 TO FIELDZ.

If the sending item is shorter than the receiving item, the compiler does not replace unused positions
in the receiving item with spaces. Thus, the STRING statement can leave some portion of the receiv-
ing item unchanged.

The receiving item must be an elementary alphanumeric item with no JUSTIFIED clause or editing
characters in its description. Thus, the data movement of the STRING statement always fills the
receiving item from left to right with the sending item and with no editing insertions.

2.6.1 Multiple Sending Items

The STRING statement can concatenate a series of sending items into one receiving item. Consider
the following example of the STRING statement:

STRING FIELD1A FIELDIB FIELDIC DELIMITED BY SIZE
INTO FIELDZ,

Nonnumeric Character Handling 2-11 1



In this sample STRING statement, FIELD1A, FIELD1B, and FIELD1C are all sending items. The com-
piler moves them to the receiving item (FIELD2) in the order in which they appear in the statement,
from left to right, resulting in the concatenation of their values.

If FIELD2 is not large enough to hold all three items, the operation stops when it is full. If this occurs
while moving one of the sending items, the compiler ignores the remaining characters of that item
and any other sending items not yet processed. For example, if FIELD2 is filled while it is receiving
FIELD1B, the compiler ignores the rest of FIELD1B and all of FIELD1C.

If the sending items do not fill the receiving item, the operation stops when the last character of the
last sending item (FIELD1C) is moved. It does not alter the contents nor space-fill the remaining
character positions of the receiving item.

The sending items can be nonnumeric literals and figurative constants (except for ALL literal). For
example, the following statement sets up an address label with the literal period and space between
the STATE and ZIP items:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

2.6.2 Using the POINTER Phrase

Although the STRING statement normally starts scanning at the leftmost position of the receiving item,
the POINTER phrase makes it possible to start scanning at another point within the item. The scann-
ing, however, remains left-to-right. Consider the following example:

MOVE 5 TO P.
STRING FIELD1A FIELDIB DELIMITED BY SIZE
INTD FIELDZ WITH POINTER P.

The value of P determines the starting character position in the receiving item. In this example, the 5
in P causes the compiler to move the first character of FIELD1A into character position 5 of FIELD2
(the leftmost character position of the receiving item is character position 1) and leave positions 1
through 4 unchanged. ‘

When the STRING operation is complete, P points to one character position beyond the last character
replaced in the receiving item. If FIELD1A and FIELD1B are both four characters long, P will contain a
value of 13 (5+4+4) when the operation is complete (assuming that FIELD2 is at least 13 characters
long).

2.6.3 Using the DELIMITED BY Phrase

Although the sending items of the STRING statement are fixed in size at compile time, the sending
items are frequently filled with spaces. For example, a 20-character city item can contain only the
word MAYNARD followed by 13 spaces. The STRING statement using the DELIMITED BY SIZE
phrase would move the word “MAYNARD”' and the unwanted 13 spaces, assuming the receiving
item is at least 20 characters long. The DELIMITED BY phrase, written with a data-name or literal,
eliminates this type of problem.

n 2-12 Nonnumeric Character Handling



The delimiter can be a literal, a data item, a figurative constant, or the word SIZE. It cannot be ALL
literal since ALL literal has an indefinite length. When the phrase contains the word SIZE, the com-
piler moves each sending item in total, until it either exhausts the sending item or fills the receiving
item.

Consider the following example:

STRING CITY SPACE STATE ". " ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

If CITY is a 20-character item, the result of the STRING operation might look like the following:

AYER MA, 01432
{ |

16 spaces

C81ART-10023-6

A far more attractive and functional report can be produced by having the STRING operation produce
this line:

AYER» MA., 01432

To accomplish this, use the figurative constant SPACE as a delimiter on the sending item:

MOVE 1 TO P, ,
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P,
STRING ", " STATE ", " ZIP

DELIMITED BY SIZE

INTO ADDRESS-LINE WITH PODINTER P,

This example uses the pointer’s characteristic of pointing to one character position beyond the last
character replaced in the receiving item to enable the second STRING statement to begin at a position
one character past where the first STRING statement stopped. The first STRING statement moves data
characters until it encounters a space character — a match of the delimiter SPACE. The second
STRING statement adds the literal, the 2-character STATE item, another literal, and the 5-character
ZIP item.

The delimiter can be varied for each item within a single STRING statement by repeating the DELIM-
ITED BY phrase after the sending item names to which it applies. Thus, the following shorter state-
ment has the same effect as the preceding example. Placing the operands on separate source lines, as
shown in the following example, has no effect on the operation of the statement, but it improves
program readability and simplifies debugging.

STRING CITY DELIMITED BY SPACE
" 3 " STATE n N "
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.,

Nonnumeric Character Handling 2-13 1l



The sample STRING statement cannot handle two-word city names, such as New York, since the
compiler considers the space between the two words as a match for the delimiter SPACE. A longer
delimiter, such as two or three spaces (nonnumeric literal), can solve this problem. Only when a
sequence of characters matches the delimiter does the movement stop for that data item. With a two-
character delimiter, the same statement can be rewritten in a simpler form:

STRING CITY "» " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Since only the CITY item contains two consecutive spaces (the entire STATE item is only two charac-
ters long), the delimiter’s search of the other items will always be unsuccessful, and the effect is the
same as moving the full item (delimiting by SIZE).

Data movement under control of a data-name or literal is generally slower in execution speed than
movement delimited by SIZE.

‘Remember the remainder of the receiving item is not space-filled as with a MOVE statement. If
ADDRESS-LINE is to be printed on a mailing label, for example, the STRING statement should be
preceded by the statement:

MOVE SPACES TO ADDRESS-LINE.

This guarantees a space-fill to the right of the concatenated result. Alternatively, the last item conca-
tenated by the STRING statement can be an item previously set to SPACES. This sending item must be
moved under control of a delimiter other than SPACE.

2.6.4 Using the OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING operation, and the pointer
value is either known or the POINTER phrase is not used, you can add the sending items together to
see if the receiving item is large enough to hold the sending items. However, if the DELIMITED BY
phrase contains a literal or an identifier, or if the pointer value is not predictable, it can be difficult to
tell whether or not the size of the receiving item is large enough. An overflow can occur if this is
the case.

An overflow occurs when the receiving item is full and the compiler is either about to move a
character from a sending item or is considering a new sending item. Overflow can also occur if,
during the initialization of the statement, the pointer contains a value that is either less than 1 or
greater than the length of the receiving item. In this case, the compller moves no data to the receiving
item and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an overflow condition:

STRING FIELD1A FIELDIB DELIMITED BY "C"
INTO FIELDZ WITH POINTER PNTR
ON OVERFLOW GO TO PN37.

‘The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad initial value in pointer
PNTR from the overflow caused by a receiving item that is too short. Only a separate test, preceding
the STRING statement, can distinguish between the two.

i 2-14 Nonnumeric Character Handling



Example 2-3 illustrates the overflow condition.

Example 2-3: Sample Overflow Condition

DATA DIVISION,

01 FIELD1A PIC XXX VALUE "ABC".
01 FIELDZ PIC XXXX.

PROCEDURE DIVISION.

+

+

STRING FIELD1IA QUOTE DELIMITED BY SIZE INTO FIELDZ.

1.
2. STRING FIELD1iA FIELDIA DELIMITED BY SIZE INTO FIELDZ.
3. STRING FIELD1iA FIELD1A DELIMITED BY "C" INTO FIELD2,
4, STRING FIELD1A FIELD1A FIELD1A FIELDI1A

DELIMITED BY "B" INTO FIELDZ.
5. STRING FIELD1A FIELDLIA "C" DELIMITED BY "C"

INTO FIELDZ.
6. MOVE 2 TO P.
STRING FIELD1A "AC" DELIMITED BY "C"
INTO FIELDZ WITH POINTER P.

The STRING statement numbers in the example point to corresponding results shown in Table 2-8.

Table 2-5: Results of Sample Overflow Statements

Value of FIELD2 After
the STRING Operation Overflow?

1.  ABC” NO
2. ABCA YES
3. ABAB NO
4. AAAA NO
5. ABAB YES
6. AABA NO

2.6.5 Subscripted Items in STRING Statements

All STRING statement data-names can be subscripted, and the pointer value can be used as a
subscript.

Since you can use the pointer value as a subscript on one or more items in the statement, it is
important to understand the order in which the compiler evaluates the subscripts and exactly when it
updates the pointer.

Nonnumeric Character Handling ~ 2-15 Il



Note

The rules in this section concerning subscripts in the STRING statement are not
specified by 1974 American National Standard COBOL. Therefore, dependence
on these rules, particularly those involving the use of the pointer item as a
subscript, can produce programs that will not perform the same way on other
COBOL compilers.

The compiler updates the pointer after it moves the last character out of each sending item. Consider
the following example:

MOVE 1 TO P.

STRING "ABC"
SPACE
"DEF" DELIMITED BY SIZE
INTO R WITH POINTER P.

During the movement of “ABC"’ into the receiving item (R), the pointer value remains at 1. After the
move, the compiler increases the pointer value by 3 (the size of the sending item literal “ABC"’) and
assumes the value 4. The compiler then moves the figurative constant SPACE and increases the
pointer value by 1, making it 5. “DEF” is then moved, and, on completion of the move, the compiler
increases the pointer to its final value of 8.

Now, consider the updating characteristics of the pointer when applied to subscripting:

MOVE 1 TO P.
STRING CHAR(P)
CHAR(P)
CHAR(P)
CHAR(P) DELIMITED BY SIZE
INTO R WITH POINTER P.

If CHAR is a one-character item in a table, the pointer increases by one after each item has been
moved and the compiler will move them into R as if they had been subscripted as CHAR(1),
CHAR(2), CHAR(3), and CHAR(4). If CHAR is a two-character item, the pointer increases by two after
each item has been moved and the items will move into R as if they had been subscripted as
CHAR(1), CHAR(3), CHAR(5), and CHAR(?7).

Thus, the compiler evaluates the subscript of a sending item once, immediately before it considers the
item as a sending item.

The compiler evaluates the subscript of a receiving item only once — at the start of the STRING
operation. Therefore, if you use the pointer as a subscript on the receiving items, changes made to the
pointer during execution of the STRING statement do not change the choice of which receiving string
is altered.

1 2-16 Nonnumeric Character Handling



You can subscript the delimiter field using a data-name or the pointer. The compiler reevaluates the
delimiter subscript once for each sending item, immediately before it compares the delimiter to the
item. Thus, by subscripting it with the pointer value, the delimiter can be changed for each sending
item. This has the peculiar effect of choosing the next sending item’s delimiter based on the position
(in the receiving item) into which its first character will fall. Consider the following example:

01 DTABLE.
03 D PIC X OCCURS 7 TIMES.

MOVE 1 TO P,

STRING "ABC"
IIABC"
"ABC" DELIMITED BY D(P)
INTO R WITH POINTER P.

Table 2-6 shows the values moved from the three “ABC"’ literals to receiving item (R) for the DTABLE
values shown in the left column:

Table 2-6: Results of Sample Delimiter Subscripts

DTABLE Value R Value
ABCDEFG (Unchanged)
BCDEFGH AABABC
CDEFGHI ABABCABC

CCCCcCccCC ABABAB

However, if the pointer item is not used as a subscript on any of the items in the statement, the point
at which the compiler evaluates the subscripts is immaterial to the execution of the statement.

Note

By avoiding the use of the pointer as a subscript, you can expect uniform results
from all COBOL compilers that adhere to 1974 ANSI COBOL.

2.6.6 Common STRING Statement Errors

The most common errors you are likely to make when writing STRING statements are:
® Using the word “TO” instead of “INTO”
® Forgetting to write 'DELIMITED BY SIZE”
. Forgetting to initialize the pointer
® Initializing the pointer to O instead of 1

® Forgetting to provide for space-filling of the receiving item when it is desirable

Nonnumeric Character Handling ~ 2-17 1l



2.7 Separating Data Using the UNSTRING Statement

The UNSTRING statement disperses the contents of a single sending item into multiple receiving
items. \

The statement has many forms; the simplest is equivalent in function to a nonnumeric MOVE state-
ment. Consider the following example:

UNSTRING FIELD1 INTO FIELDZ.

The sample statement is equivalent to MOVE FIELD1 TO FIELD?2, regardless of the relative sizes of the
two items.

The sending item (FIELD1) can be either (1) a group item or (2) an alphanumeric or alphanumeric
edited elementary item. The receiving item (FIELD2) can be alphabetic, alphanumeric, or numeric,
but it cannot specify any type of editing.

If the receiving item is numeric, it must be DISPLAY usage. The PICTURE character-string of a
numeric receiving item can contain any of the legal numeric description characters except for P and
the editing characters. The UNSTRING statement moves the sending item to the numeric receiving
item as if the sending item had been described as an unsigned integer. It automatically truncates or
zero-fills as required.

If the receiving item is not numeric, the compiler follows the rules for elementary nonnumeric MOVE
statements. It left-justifies the data in the receiving item, truncating or space-filling as required. If the
data description of the receiving item contains a JUSTIFIED clause, the compiler right-justifies the
data, truncating or space-filling to the left as required.

2.7.1 Multiple Receiving ltems

The UNSTRING statement can disperse one sending item into several receiving items. Consider the
following example of the UNSTRING statement written with multiple receiving items:

UNSTRING FIELD! INTO FIELDZ2A FIELDZ2B FIELDZ2C.

The compiler performs the UNSTRING operation by scanning across FIELD1, the sending item, from
left to right. When the number of characters scanned equals the number of characters in the receiving
item, the compiler moves the scanned characters into that item and begins scanning the next group of
characters for the next receiving item.

If each of the receiving items in the preceding example (FIELD2A, FIELD2B, and FIELD2C) is five
characters long, and FIELD1 is 15 characters long, the compiler scans across FIELD1 until the number
of characters scanned equals the size of FIELD2A (five). It then moves those first five characters to
FIELD2A, and it sets the scanner to the sixth character position in FIELD1. Next, the compiler scans
across FIELD1 from character position six, until the number of scanned characters equals the size of
FIELD2B (five). The compiler then moves the sixth through the tenth characters to FIELD2B, and it sets
the scanner to the next (eleventh) character position in FIELD1. For the last move in this example, it
moves characters 11 through 15 of FIELD1 into FIELD2C.

Each data movement acts as an individual MOVE statement, the sending item of which is an alphanu-
meric item equal in size to the receiving item. If the receiving item is numeric, the move operation
converts the data to numeric form. For example, consider what would happen if the items under
discussion had the data descriptions and were manipulating the values shown in Table 2-7.

i 2-18 Nonnumeric Character Handling



Table 2-7: Values Moved into the Receiving Items Based on the Sending Item Value

FIELD1 FIELD2B
PIC X(15) FIELD2A PIC S9(5) FIELD2C
VALUE IS: PIC X(5) LEADING SEPARATE PIC S999V99
ABCDE1234512345 ABCDE +12345 3450{
XXXXX0000100123 XXXXX + 00001 1230{

FIELD2A is an alphanumeric item. Therefore, the compiler simply conducts an elementary non-
numeric move with the first five characters.

FIELD2B, however, has a leading separate sign that is not included in its size. Thus, the compiler
moves only five numeric characters and generates a positive sign in the separate sign position.

FIELD2C has an implied decimal point with two character positions to the right of it, plus an over-
punched sign on the low-order digit. The sending item should supply five numeric digits. However,
since the sending item is alphanumeric, the compiler treats it as an unsigned integer; it truncates the
two high-order digits and supplies two zero digits for the decimal positions. Further, it supplies a
positive overpunch sign, making the low-order digit a +0 (ASCII {). There is no simple way to have
the UNSTRING statement recognize a sign character or a decimal point in the sending item.

If the sending item is shorter than the sum of the sizes of the receiving items, the compiler ignores the
remaining receiving items. If it reaches the end of the sending item before it reaches the end of one of
the receiving items, the compiler moves the scanned characters into that receiving item. It left-justifies
and fills the remaining character positions with spaces for alphanumeric data, or it decimal point
aligns and zero fills the remaining character positions for numeric data.

Consider the following statement with reference to the corresponding PICTURE character-strings and
values in Table 2-8.

UNSTRING FIELD! INTO FIELDZA FIELDZB.

FIELD2A is a three-character alphanumeric item. It receives the first three characters of FIELD1 (ABC)
in every operation. FIELD2B, however, runs out of characters every time before filling, as Table 2-8
illustrates.

Table 2-8: Handling a Short Sending Item

FIELD1 FIELD2B
PIC X(6) FIELD2B Value After
VALUE IS: PICTURE IS: UNSTRING Operation

ABCDEF XXXXX DEF

$99999 0024F
ABC246 S9V999 600{

59999 +0246

LEADING SEPARATE

Nonnumeric Character Handling

2-19



2.7.2 Controlling Moved Data Using the DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter, rather than by the size of the
receiving item. The DELIMITED BY phrase supplies the delimiter characters.

UNSTRING delimiters can be literals, figurative constants (including ALL literal), or identifiers (identi-
fiers can even be subscripted data-names). This section discusses the use of these three types of
delimiters. Subsequent sections cover multiple delimiters, the COUNT phrase, and the DELIMITER
phrase. Subscripting delimiters is discussed at the end of this section.

Consider the following sample UNSTRING statement with the figurative constant, SPACE, as a
delimiter:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELDZ.

In this example, the compiler scans the sending item (FIELD1), searching for a space character. If it
encounters a space, it moves all of the scanned (nonspace) characters that precede that space to the
receiving item (FIELD2). If it finds no space character, it moves the entire sending item. When it has
determined the size of the sending item, the compiler moves the contents of that item following the
rules for the MOVE statement, truncating or zero-filling as required.

Table 2-9 shows the results of the following UNSTRING operation that uses a literal asterisk
delimiter:

UNSTRING FIELD1 DELIMITED BY "#*"
INTO FIELDZ.

Table 2-9: Results of Delimiting with an Asterisk

FIELD1 FIELD2
PIC X(6) FIELD2 Value After
VALUE IS: PICTURE IS: UNSTRING
XXX ABC
ABCDEF X(7) ABCDEF
XXX JUSTIFIED DEF
ok ok Kok ok XXX AAA
*ABCDE XXX AAA
AXHREX XXX JUSTIFIED AANA
246*** $9999 024F
12345* $9999 TRAILING 2345+
SEPARATE
2468** S999V9 LEADING +4680
SEPARATE
*246%* 9999 0000

Legend: A = space

n 2-20 Nonnumeric Character Handling



If the delimiter matches the first character in the sending item, the compiler considers the size of the
sending item to be zero. The operation still takes place, however, and fills the receiving item with
spaces if it is nonnumeric or zeros if it is numeric.

A delimiter can also be applied to an UNSTRING statement that has multiple receiving items:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2A FIELDZB.

The compiler scans FIELD1 searching for a character that matches the delimiter. If it finds a match, it
moves the scanned characters to FIELD2A and sets the scanner to the next character position to the
right of the character that matched. It then resumes scanning FIELD1 for a character that matches the
delimiter. If the compiler finds a match, it moves all of the characters between the character that first
matched the delimiter and the character that matched on the second scan, and it sets the scanner to
the next character position to the right of the character that matched.

The DELIMITED BY phrase handles additional items in the same manner as it handled FIELD2B.

Table 2-10 illustrates the results of a delimited UNSTRING operation into multiple receiving items:

UNSTRING FIELD1 DELIMITED BY "»"
INTOD FIELDZ2A FIELDZB.

Table 2-10: Results of Delimiting Multiple Receiving ltems

Values After UNSTRING Operation
FIELD1
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
ABC*DEF* ABC DEF
ABCDE*FG ABC FGA
AXBFH**x AAA BAA
*AB*CD** AAA ABA
*ABCDEF AAA JAVAVAN
A*BCDEFG AAA BCD
ABC**DEF ABC AAA
A¥¥*xEB AAA AAA

Legend: A = space

The last two examples illustrate the limitations of a single-character delimiter. Accordingly, the
delimiter can be longer than one character, and it can be preceded by the word ALL.

Table 2-11 shows the results of an UNSTRING operation using a two-character delimiter:

UNSTRING FIELD1 DELIMITED BY "**"
INTO FIELDZA FIELDZB.

Nonnumeric Character Handling 2-21 1



Table 2-11: Results of Delimiting with Two Asterisks.

Values After UNSTRING Operation
FIELD1 : FIELD2B
PIC X(8) i FIELD2A PIC XXX
VALUE IS: PIC XXX JUSTIFIED

ABC**DEF ABC DEF
A*B*C*D* A*B AAA
AB***C*D ABA cD
AB**C*D* ABA *D*
AB**CD** ABA ACD
AB***CD* ABA CD*
AB*****CD ABA AAA

Legend: A = space

Unlike the STRING statement, the UNSTRING statement accepts the ALL literal as a delimiter. When
the word ALL precedes the delimiter, the action of the UNSTRING statement remains essentially the
same as with one delimiter until the scanning operation finds a match. At this point, the compiler
scans farther, looking for additional consecutive strings of characters that also match the delimiter
item. It considers the “ALL delimiter’” to be one, two, three, or more adjacent repetitions of the
delimiter item.

Table 2-12 shows the results of an UNSTRING operation using an ALL delimiter:

UNSTRING FIELD1 DELIMITED BY ALL "*"
INTO FIELDZA FIELDZB.

Table 2-12: Results of Delimiting with ALL Asterisks.

Values After UNSTRING Operation
FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX
VALUE IS: PIC XXX JUSTIFIED

ABC*DEF* ABC DEF
ABC**DEF ABC DEF
ARRRARAE AAA ANAF
AXFrxExk AAA ANAF
A*CDEFG AAA EFG

Legend: A = space

m 2-22 Nonnumeric Character Handling

PN



Table 2-13 shows the results of an UNSTRING operation that combines ALL with a two-character
delimiter:

UNSTRING FIELD1 DELIMITED BY ALL "**"
INTO FIELDZA FIELDZ2B.

Table 2-13: Results of Delimiting with ALL Double Asterisks.

Values After UNSTRING Operation

FIELD1

PIC X(8) PIC XXX
VALUE IS: PIC XXX JUSTIFIED
ABC**DEF ABC DEF
AB**DE** ABA ADE
Ar**D* AAA A*D
A******* AAA AA*

Legend: A = space

In addition to unchangeable delimiters, such as literals and figurative constants, delimiters can be
designated by identifiers. Identifiers (which can even be subscripted data-names) permit variable
delimiting. Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY DEL1
INTO FIELDZA FIELDZB.

The data-name DEL1, must be alphanumeric. It can be a group or elementary item. If the delimiter
contains a subscript, the subscript can be varied as a side effect of the UNSTRING operation. The
evaluation of subscripts is discussed later in this section.

2.7.2.1 Multiple Delimiters — The UNSTRING statement scans a sending item, searching for a match
from a list of delimiters. This list can contain ALL delimiters and delimiters of various sizes. The only
requirement of the list is that delimiters must be connected by the word OR.

The following sample statement unstrings a sending item into three receiving items. The sending item
consists of three strings separated by one of the following: (1) any number of spaces, (2) a comma
followed by a single space, (3) a single comma, (4) a tab character, or (5) a carriage-return character.
The comma and space must precede the single comma in the list if the comma and space are to be
recognized.

UNSTRING FIELD1 DELIMITED BY ALL SPACE
DR " s H
Dr " 'II
OR TAB
OR CR
INTD FIELDZA FIELDZB FIELDZC.

Nonnumeric Character Handling 2-23 1l



Table 2-14 shows the potential of this statement. The tab and carriage-return characters represent
single-character items containing the ASCII horizontal tab and carriage-return characters.

Table 2-14: Results of Multiple Delimiters

FIELD1 FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A,0,CEED AAA 0000 CAA
A[8456, E AAA 0456 EAA
A3 9 AAA 0003 9IAA
AABTABBEED AAA 0000 BAA
A,,C AAA 0000 CAA
ABCD, 4321,Z ABC 4321 ZAN
Legend: = carriage-return character
8 = tab character
A= space

2.7.3 Counting UNSTRING Characters Using the COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and stores the length in a user-
supplied data area. .

The length of a delimited sending item can vary from zero to the full length of the item. Some
programs require knowledge of this length. For example, some data is truncated if it exceeds the size
of the receiving item, so the program’s logic requires this information.

To use the phrase, follow the receiving item name with the words COUNT IN and an identifier.
Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY ALL "#*"
INTO FIELDZ2A COUNT IN COUNTZA
FIELDZ2B COUNT IN COUNTZB
FIELDZ2C.

The compiler counts the number of characters between the leftmost position of FIELD1 and the first
asterisk in FIELD1 and places the count into COUNT2A. The compiler does not include the delimiter
in the count because it is not a part of the string. The data preceeding the first asterisk is then moved
into FIELD2A.

The compiler then counts the number of characters between the last contiguous asterisk in the first
scan and the next asterisk in the second scan and places the count in COUNT2B. The data between
the delimiters of the second scan is moved into FIELD2B.

The third scan begins at the first character after the last contiguous asterisk in the second scan. Any
data between the delimiters of this scan is moved to FIELD2C.

The phrase should be used only where needed. In this example, the length of the string moved to
FIELD2C is not needed, so no COUNT phrase follows it.

n 2-24 Nonnumeric Character Handling



If the receiving item is shorter than the value placed in the count item, the compiler truncates the
sending string. If the number of integer positions in a numeric item is smaller than the value placed
into the count item, high-order numeric digits have been lost. If the compiler finds a delimiter match
on the first character it examines, it places a zero in the count item.

The COUNT phrase can be used only in conjunction with the DELIMITED BY phrase.

2.7.4 Saving UNSTRING Delimiters Using the DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that delimited the sending item to be
stored in a user-supplied data area. This phrase is most useful when:

e The UNSTRING statement contains a delimiter list
® Any one of the delimiters in the list might have delimited the item

® Program logic flow depends on the delimiter match found

By using the DELIMITER and COUNT phrases, you can make program logic flow dependent on both
the size of the sending string and the delimiter terminating the string.

To use the DELIMITER phrase, follow the receiving item name with the words DELIMITER IN and an
identifier. The compiler places the delimiter character in the area named by the identifier. Consider
the following sample UNSTRING statement:

UNSTRING FIELD1 DELIMITED BY ","
OR TAB
OR ALL SPACE
OR CR '
INTO FIELDZA DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELDZC.

After moving the first sending string to FIELD2A, the compiler takes the character (or characters) that
delimited that string and places it in DELIMA. In this example, DELIMA contains either a comma, a
tab, a carriage return, or any number of spaces. Because the delimiter string is moved under the rules
of the elementary nonnumeric MOVE statement, the compiler truncates or space-fills with left- or
right-justification.

The compiler then moves the second sending string to FIELD2B and places its delimiting character
into DELIMB.

When a sending string is delimited by the end of the sending item rather than a match on a delimiter,
the delimiter string is of zero length and the DELIMITER item is space-filled. The phrase should be
used only where needed. In this example, the character that delimits the last sending string is not
needed, so no DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an alphanumeric item. It can
contain editing characters, and it can also be a group item.

When you use both DELIMITER and COUNT phrases, the DELIMITER phrase must precede the
COUNT phrase. Both of the data items named in these phrases can be subscripted or indexed. If they
are subscripted, the subscript can be varied as a side effect of the UNSTRING operation. The evalua-
tion of subscripts is discussed in Section 2.7.8.

Nonnumeric Character Handling 2-25 1l



2.7.5 Controlling UNSTRING Scanning Using the POINTER Phrase

Although the UNSTRING statement scan usually starts at the leftmost position of the sending item, the
POINTER phrase lets you control the character position where the scan starts. Scanning, however,
remains left-to-right.

When a sending item is to be unstrung into multiple receiving items, the choice of delimiters and/or
the size of subsequent receiving items can depend on the size of the first sending string and/or the
character that delimited that string. Thus, the program needs to move the first sending item, hold its
scanning position in the sending item, and examine the results of the operation to determine how to
handle the sending items that follow.

This is done by using an UNSTRING statement with a POINTER phrase that fills only the first
receiving item. When the first string has been moved to a receiving item, the compiler begins the next
scanning operation one character beyond the delimiter that caused the interruption. The program
examines the new position, the receiving item, the delimiter value, and the sending string size. It
resumes the scanning operation by executing another UNSTRING statement with the same sending
item and pointer data item. In this way, the UNSTRING statement moves one sending string at a time,
with the form of each succeeding move depending on the context of the preceding string of data.

The POINTER phrase must follow the last receiving item in the UNSTRING statement. You are
responsible for initializing the pointer before the UNSTRING statement executes. Consider the follow-
ing two UNSTRING statements with their accompanying POINTER phrases and tests:

MOVE 1 TO PNTR.
UNSTRING FIELD1 DELIMITED BY ":"
OR TAB
OR CR
OR ALL SPACE
INTO FIELDZA DELIMITER IN DELIMA COUNT IN LSIZEA
WITH POINTER PNTR.
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA =-":"
IF PNTR > 8 GD TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

+

UNSTRING FIELD1 DELIMITED BY ... WITH POINTER PNTR.

PNTR contains the current position of the scanner in the sending item. The second UNSTRING
statement uses PNTR to begin scanning the additional sending strings in FIELD1.

Because the compiler considers the leftmost character to be character position 1, the value of PNTR
can be used to examine the next character. To do this, describe the sending item as a table of
characters and use PNTR as a sending item subscript. This is shown in the following example:

01 FIELDIL.
02 FIELD1-CHAR OCCURS 40 TIMES.

+

UNSTRING FIELDI1

+

+

WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" +..

n 2-26 Nonnumeric Character Handling



Another way to examine the next character of the sending item is to use the UNSTRING statement to
move it to a one-character receiving item:

UNSTRING FIELD1

+

+

WITH POINTER PNTR. ‘
UNSTRING FIELD1 INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHAR1 = "X" ...

The program must decrement PNTR in order to work, because the second UNSTRING statement
increments the pointer by 1.

The program must initialize the POINTER phrase data item before the UNSTRING statement uses it.
The compiler will terminate the UNSTRING operation if the initial value of the pointer is less than one
or greater than the length of the sending item. Such a pointer value causes an overflow condition.
Overflow conditions are discussed in Section 2.7.7.

Sending items can also be subscripted. For example, the following statement uses subscripts to
concatenate the elements of a table (A-TABLE) into a single item (A-FOUR). SUB1 can be either a
subscript or an index-name.

STRING A-TABLE(SUB1) A-TABLE(SUB1+1) A-TABLE(SUB1+2) A-TABLE(SUB1+3)
DELIMITED BY SIZE INTO A-FOUR.

2.7.6 Counting UNSTRING Receiving Items Using the TALLYING Phrase

The TALLYING phrase counts the number of receiving items that received data from the sending item.

When an UNSTRING statement contains several receiving items, there are not always as many
sending strings as there are receiving items. The TALLYING phrase provides a convenient method for
keeping a count of how many receiving items actually received strings. The following example shows
how to use the TALLYING phrase.

MOVE O TO RCOUNT.
UNSTRING FIELD! DELIMITED BY ","
OR ALL SPACE
INTO FIELDZA
FIELDZB
FIELDZC
FIELDZD
FIELDZE
TALLYING IN RCOUNT.

If the compiler has moved only three sending strings when it reaches the end of FIELD1, it adds 3 to
RCOUNT. The first three receiving items (FIELD2A, FIELD2B, and FIELD2C) contain data from the
UNSTRING operation, but the last two (FIELD2D and FIELD2E) do not.

The TALLYING data item always contains the sum of its initial contents plus the number of receiving
items receiving data. Thus, you might want to initialize the tally count before each use.

Nonnumeric Character Handling 2-27 1l



You can use the POINTER and TALLYING phrases together in the same UNSTRING statement, but
the POINTER phrase must precede the TALLYING phrase. Both phrases must follow all of the item
names, the DELIMITER phrase, and the COUNT phrase. The data items for both phrases must contain
numeric integers without editing characters or the symbol P in their PICTURE character-strings; both
data items can be either COMP or DISPLAY usage. They can be signed or unsigned and, if they are
DISPLAY usage, they can contain any desired sign option.

The data items for both phrases can be subscripted or indexed, or they can be used as subscripts on
other items in the statement. The evaluation of subscripts is discussed in Section 2.8.8. A convenient
use of the TALLYING phrase data item is as a subscript of a receiving item. The following example
causes program control to execute the UNSTRING statement repeatedly until it exhausts the sending
item: S

MOVE 1 TO PNTR, TLY,
PAR1., UNSTRING FIELD1 DELIMITED BY ","
OR CR
INTO FIELD2(TLY) DELIMITER IN DEL2
WITH POINTER PNTR
IF DELZ = "," GO TO PARIL,

Program control loops through the UNSTRING statement, using pointer PNTR to scan FIELD1 with
successive executions. Each comma isolates a sending string until the scan reaches either a carriage
return or the end of FIELD1. If the scan reaches the end of the item without encountering a carriage
return, the compiler places a space into delimiter item DEL2, and control falls through the IF state-
ment and out of the loop.

Because TALLYING item TLY is incremented by 1 after each string movement, TLY serves as a
subscript on the receiving item. In effect, this causes the compiler to unpack the value in FIELD1 into
an array of fixed-size items.

An array of COUNT data items can be supplied and loaded using the UNSTRING /TALLYING state-
ment by adding the COUNT IN phrase. For example:

COUNT IN C(TLY)

The TALLYING data item, in the previous example, is one greater than the number of receiving items
acted upon by the UNSTRING operation because the data item must be initialized to a value of one
in order to be used as a subscript for the first receiving item.

2.7.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and causes an imperative statement to be
executed when it detects the condition. An overflow condition exists:

1. When the UNSTRING statement is about to execute and its pointer data item contains a
value less than one or greater than the size of the sending item. The compiler executes the
OVERFLOW phrase before it moves any data, and the values of all the receiving items
remain unchanged.

' 2-28  Nonnumeric Character Handling



2. When data still remains in the sending item after the UNSTRING statement has filled all
the receiving items. The compiler executes the OVERFLOW phrase after it has executed
the UNSTRING statement. The value of each receiving item is updated, but some data is
still unmoved.

If the UNSTRING operation causes the scan to move past the rightmost position of the sending item
(thus exhausting it), the compiler does not execute the OVERFLOW phrase.

The following set of instructions causes program control to execute the UNSTRING statement repeat-
edly until it exhausts the sending item. The TALLYING data item is a subscript that indexes the
receiving item. Compare this loop with the previous loop, which accomplishes the same thing.

MOVE 1 TO TLY PNTR.
PAR1., UNSTRING FIELD1 DELIMITED BY "."
OR CR
INTO FIELDZ(TLY) WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARIL.

Note

The overflow condition also occurs if the value of a pointer data item lies outside
the sending item at the start of execution of the UNSTRING statement (the value
is less than one or greater than the length of the sending item). This type of
overflow is not distinguishable from the overflow condition described at the start
of this section, except that this condition causes the UNSTRING statement to
terminate before any data movement takes place. Then, the values of all receiv-
ing items remain unchanged.

2.7.8 Using Subscripted Items in UNSTRING Statements

Because the flexibility of the UNSTRING statement is enhanced by subscripting and indexing, it is
important to understand how often and exactly when the compiler evaluates these subscripts and
indexes. This section discusses the frequency and timing of subscript evaluation.

The compiler evaluates the subscripts and indexes of some data items only once before the
UNSTRING statement executes. Any changes to the subscripts and indexes during execution of the
UNSTRING statement have no effect on the data items. These data items are as follows:

® Sending item
® POINTER data item
® TALLYING data item

Nonnumeric Character Handling 2-29 11l



The compiler evaluates subscripts and indexes of some data items immediately before moving data
into them and moves data into these items in the order that they are listed in the UNSTRING
statement — the same order as the following:

1. Receiving item
2. DELIMITER data-item
3. COUNT data-item
The compiler evaluates any subscripts and indexes on the delimiter data-names in the DELIMITED BY

phrase immediately before it scans each sending string looking for a delimiter match. Thus, it reevalu-
ates these subscripts and indexes once for each receiving item in the UNSTRING statement.

If any of the following items are used as subscripts on any receiving ltems you must be aware of the
point at which these items are updated:

® POINTER data-item
® TALLYING data-item
o COUNT data-item

® Another receiving item

Figure 2-1 shows a flow chart of the sequence of evaluation operations:

Figure 2-1: Sequence of Subscript Evaluation

& 0

Evaluate Continue € Evaluate It Store
all Scanning for 3 Delimiter POINTER Scanner in
Delimiter Repetitive g He;:gi;/ing Phrase Pointer
Subscripts Matches 2 leld Present Data Item
] Subscript
£
o
0 . £ |
E Store
Scan = - If
= Delimiter Add 1 to
p )
Sending Update ] String in TALLVING Tallying
Field for Scanner e Receivin Phrase Data Item
Delimiter = Field 9 Present
- Evaluate - Evaluate Sendin
Delimiter Receiving g Count Feld Exhausted >—YeS
Match Field g Field 2
! Subscript @ Subscript
[
£
£
; 5
Al M°;° Sending o) Store Count More
Delimiter tring to ° Value in Receiving
Receiving = Count Field Fields
Field
L

End

C81ART-10046-30

i 2-30 Nonnumeric Character Handling



Note

The rules concerning the exact point at which the compiler evaluates DELIMITED
BY phrase identifiers, and the point at which it updates the POINTER and
TALLYING data items, are specified by 1974 American National Standard
COBOL. There are no such rules for the STRING statement.

2.7.9 Common UNSTRING Statement Errors

The most common errors made when writing UNSTRING statements are:
® |eaving the OR connector out of a delimiter list
® Misspelling or interchanging the words DELIMITED and DELIMITER

e Writing the DELIMITER and COUNT phrases in the wrong order when both are present
(DELIMITER must precede COUNT)

® Omitting the word INTO (or writing it as TO) ahead of the receiving item list

® Repeating the word INTO in the receiving item list as shown in this example:

UNSTRING FIELD1 DELIMITED BY SPACE
OrR TAB
INTO FIELDZA DELIMITER IN DELIMA
INTO FIELDZB DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

e Writing the POINTER and TALLYING phrases in the wrong order (POINTER must precede
TALLYING)

2.8 Examining and Replacing Characters Using the INSPECT
Statement

The INSPECT statement examines the character positions in an item and counts or replaces certain
characters (or groups of characters) in that item.

Like the STRING and UNSTRING operations, INSPECT operations scan across the item from left to
right. Included in the INSPECT statement is an optional phrase that allows scanning to begin or
terminate upon detection of a delimiter match. This feature allows scanning to begin within the item
as well as at the leftmost position.

The TALLYING operation, which counts certain characters in the item, and the REPLACING opera-
tion, which replaces certain characters in the item, can be applied to all of the characters in the

Nonnumeric Character Handling 2-31 1



delimited area of the item being inspected, or to only those characters that match a given character
string under stated conditions. Consider the following sample statements, both of which cause a scan
of the complete item: ’

INSPECT FIELD1 TALLYING TLY FOR ALL "B".

INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

The first statement causes the compiler to scan FIELD1 looking for the character B. Each time a B is
found, TLY is incremented by 1.

The second statement causes the compiler to scan FIELD1 looking for spaces. Each space found is
replaced with a zero.

You can use both the TALLYING and REPLACING phrases in the same INSPECT statement. However,
when used together, the TALLYING phrase must precede the REPLACING phrase. An INSPECT
statement with both phrases is equivalent to two separate INSPECT statements. In fact, the compiler
compiles such a statement into two distinct INSPECT statements. To simplify debugging, it is best to
initially write the two phrases in separate INSPECT statements.

2.8.1 Restricting Data Inspection Using the BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and can restrict the area of the item being inspected.

The following sample statement counts only the zeros that precede the percent sign (%) in FIELD1:

INSPECT FIELD1 TALLYING TLY
FOR ALL ZEROS BEFORE "%".

The delimiter (the percent sign in the preceding sample statement) can be a single character, a string
of characters, or any figurative constant. Further, it can be either an identifier or a literal.

o If the delimiter is an identifier, it must be an elementary data item of DISPLAY usage. It can be
alphabetic, alphanumeric, or numeric, and it can contain editing characters. The compiler
always treats the item as if it had been described as an alphanumeric string. It does this by
implicit redefinition of the item, as described in Section 2.8.2.

e |f the delimiter is a literal, it must be nonnumeric.

The compiler repeatedly compares the delimiter characters against an equal number of characters in
the item being inspected. If none of the characters matches the delimiter, or if insufficient characters
remain in the rightmost position of the item for a full comparison, the compiler considers the compar-
ison to be unequal.

The examples of the INSPECT statement in Table 2-15 illustrate the way the delimiter character finds
a match in the item being inspected. The portion of the item the statement ignores as a result of
the BEFORE/AFTER phrase delimiters is crossed out with a slash, and the portion it inspects is
underlined.

i 2-32 Nonnumeric Character Handling



Table 2-15: Matching Delimiter Characters to Characters in a Field

Instruction FIELD1 Value
INSPECT FIELD1...BEFORE "E". ABCDRF@EA
INSPECT FIELD1...AFTER "E", FBEPRFGHI
INSPECT FIELD1...BEFORE "K". ABCDEFGHI
INSPECT FIELD1...AFTER "K", FBEDEVFERAI
INSPECT FIELD!...BEFORE "AB". ABCDRFGA
INSPECT FIELD1...AFTER "AB". ABCDEFGHI
INSPECT FIELD1...BEFORE "HI". ABCDEFGH/
INSPECT FIELD1...AFTER "HI". FBEPEFGIA
INSPECT FIELD1...BEFORE "I ", ABCDEFGHI
INSPECT FIELD1...AFTER "I ", FPCPEFEA

The ellipses represent the position of the TALLYING or REPLACING phrase. The compiler scans the
item for a delimiter match before it scans for the inspection operation (TALLYING or REPLACING),
thus establishing the limits of the operation before beginning the actual inspection. Section 2.8.3
further discusses the importance of the separate scan.

2.8.2 Implicit Redefinition

The compiler requires that certain items referred to by the INSPECT statement be alphanumeric items.
If one of these items is described as another data class, the compiler redefines that item so the
INSPECT statement can handle it as an alphanumeric string. This implicit redefinition is conducted as
follows: ‘

e |f the item is alphabetic, alphanumeric edited, or unsigned numeric, the compiler redefines it
as alphanumeric. This is a compile-time operation; no data movement occurs at run time.

e If the item is signed numeric, the compiler first removes the sign and then redefines the item as
alphanumeric. If the sign is a separate character, the compiler ignores that character, essen-
tially shortening the item, and that character does not participate in the implicit redefinition. If
the sign is an ““overpunch’’ on the leading or trailing digit, the compiler actually removes the
sign value and leaves the character with only the numeric value that was stored in it.

The compiler alters the digit position containing the sign before beginning the INSPECT operation and
restores it to its former value after the operation. If the sign’s digit position does not contain a valid
ASCII signed numeric digit, the action of the redefinition causes the value to change.

Table 2-16 shows these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage position. All redefinition
occurs in place.

The position of an implied decimal point on numeric quantities does not affect implicit redefinition.

Nonnumeric Character Handling 2-33 1l



Table 2-16: Values Resulting from Implicit Redefinition

Original Value Altered Value Restored Value
} (173) 0 (60) } (173)
A (101) 1 (61) A (101)
B (102) 2 (62) B (102)
C (103) 3 (63) C (103)
D (104) 4 (64) D (104)
E (105) 5 (65) E (105)
F (106) 6 (66) F (106)
G (107) 7 (67) G (107)
H (110) 8 (70) H (110)
1 (111) 9 (71) I (111)
{ (175) 0 (60) { (175)
J (112) 1 (61) ] (112)
K (113) 2 (62) K (113)
L (114) 3 (63) L (114)
M (115) 4 (64) M (115)
N (116) 5 (65) N (116)
O (117) 6 (66) O (117)
P (120) 7 (67) P (120)
Q (121) 8 (70) Q (121)
R (122) 9 (71) R (122)
0 (60) 0 (60) } (173)
1 (61) 1 (61) A (101)
2 (62) 2 (62) B (102)
3 (63) 3 (63) C (103)
4 (64) 4 (64) D (104)
5 (65) 5 (65) E (105)
6 (66) 6 (66) F (106)
7 (67) 7 (67) G (107)
8 (70) 8 (70) H (110)
9 (71) 9 (71) I (111)

All other values 0 (60) } (173)

2.8.3 Examining the INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the INSPECT statement has only one
method for inspecting the characters in the item. This section analyzes the INSPECT statement and
describes this method.

Figure 2-2 shows an example of the INSPECT statement. The item to be inspected must be named
(FIELD1), and the item name must be followed by an operation phrase (TALLYING TLY). The opera-
tion phrase must be followed by one or more identifiers or literals (B). These identifiers or literals
comprise the ““arguments’” (items to be compared to the item being inspected). More than one
argument makes up the “‘argument list.” '

i 2-34 Nonnumeric Character Handling



Figure 2-2: Sample INSPECT Statement

INSPECT FIELD1 TALLYING TLY FOR ALL "B" BEFORE "A".
L JL )l Il )

item being Operation Argument Delimiter
inspected phrase phrase

C81ART-10024-10

Each argument in an argument list can have other items associated with it. Thus, each argument that
is used in a TALLYING operation must have a tally counter (TLY) associated with it. The compiler
increments the tally counter each time it matches the argument with a character or group of charac-
ters in the item being inspected.

Each argument in an argument list used in a REPLACING operation must have a replacement item
associated with it. The compiler uses the replacement item to replace each string of characters in the
item that matches the argument. A typical REPLACING phrase is shown in the following example
(with $ as the replacement item):

INSPECT FIELD1 REPLACING ALL "O" BY "&",
L |

Replacing argument
C81ART-10025-4

Each argument in an argument list used with either a TALLYING or REPLACING operation can have a
delimiter item (BEFORE/AFTER phrase) associated with it. If the delimiter item is not present, the
compiler applies the argument to the entire item. If the delimiter item is present, the compiler applies
the argument only to that portion of the item specified by the BEFORE/AFTER phrase.

2.8.3.1 Setting the Scanner — The INSPECT operation begins by setting the scanner to the leftmost
character position of the item being inspected. It remains on this character until an argument has
been matched with a character (or characters) or until all arguments have failed to find a match at that
position.

2.8.3.2 Active/lnactive Arguments — When an argument has a BEFORE/AFTER phrase associated
with it, that argument has a delimiter and might not be eligible to participate in a comparison at every
position of the scanner. Thus, each argument in the argument list has an active/inactive status at any
given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it starts the INSPECT operation in
an inactive state. The delimiter of the AFTER phrase must find a match before the argument can
participate in the comparison. When the delimiter finds a match, the compiler retains the character
position beyond the matched character string; then, when the scanner reaches or passes this position,
the argument becomes active. This is shown in the following example:

INSPECT FIELD1 TALLYING TLY
FOR ALL "B" AFTER "X".

Nonnumeric Character Handling 2-35 1



If FIELD1 has a value of “ABABXZBA,” the argument B remains inactive until the scanner finds a
match for delimiter X. Thus, argument B remains inactive while the compiler sc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>