
lAS 1/0 ()perations
Referen'ce Manual

Order Number: AA-M'176B-TC

Operating System and Version: lAS Versicm 3.4

May 1990

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the !Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

No responsibility is assumed for the use or reliability of software on equipment that Is not supplied by Digital
Equipment Corporation or Its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document requests the user's critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DDIF
DEC
o EC/CMS
o ECIMMS
DECnet
DECUS
DECwindows
o ECwrite
DIBOL

lAS
MASS BUS
PDP
PDT
RSTS
RSX
ULTRIX
UNIBUS
VAX

VAXC
VAXcluster
VAXstation
VMS
VR150/160
VT

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

--PREFACE xvII

CHAPTER 1 FILE CONTROL SEFIVICES 1-1

---1.1 IKEY TERMS USED THBOUGHOUT THIS MANUAL 1-1

--1.2 ~MPORTANT FCS CHABACTERISTICS

1.3 FCS DATA STRUCTURIES
1.3.1 File Descriptor Block
1.3.2 Data-Set Descriptor and Default Filename Block
1.3.3 File Storage Rleglon

1-3

1-4
1-4
1-5
1-5

---1.4 FILE ACCESS METHODS 1-5

---1.5 DATA FORMATS FOR FILE-STRUCTURED DEVICES
1.5.1 Data Formats for ANSI Magnetic Tape

1-6
1-7

--1.6 BLOCK I/O OPERATIONS 1-7

-------,--1.7 RECORD I/O OPERATIONS
1.7.1 Record I/O Data-Transfer Modes
1.7.2 Multlbuffering for Record I/O

1.7.2.1 Multibuffering Performance • 1-10
1.7.3 Big Buffering for Record I/O

1-8
1-8

1-10

1-11

------,--1.8 SHARED ACCESS TO FILES 1-12

---1.9 FILE SPECIFICATION SYNTAX
1.9.1 Device
1.9.2 Directory
1.9.3 Name
1.9.4 Type

1-13
1-13
1-13
1-14
1-14

iii

Contents

1.10

1.11

1.12

1.9.5 Version

ANSI MAGNETIC TAPE FILE SPECIFICATION SYNTAX
1.10.1
1.10.2
1.10.3

Device
Directory
Quoted String

1-15

1-15
1-15
1-16
1-16

1.10.4 Version 1-16
1.10.4.1 Example Magnetic Tape File Specification • 1-16

GENERATION OF A FULL FILE SPECIFICATION 1-16

ROUTINES INCLUDED IN FCSRES 1-17

CHAPTER 2 PREPARING FOR 1/0 2-1

2.1

2.2

2.3

2.4

2.5

Iv

GENERAL INFORMATION

.MCALL DIRECTIVE-LISTING NAMES OF REQUIRED MACRO
DEFINITIONS

FILE DESCRIPTOR BLOCK

2-1

2-2

2-3
2.3.1 Assembly-Time FOB Initialization Macros 2-3

2.3.1.1 FDBDF$-Allocate File Descriptor Block • 2-4
2.3.1.2 FDAT$A-Initialize File Attribute Section of FDB • 2-4
2.3.1.3 FDRC$A-Initialize Record Access Section of FDB • 2-8
2.3.1 .4 FDBK$A-Initialize Block Access Section of FOB • 2-10
2.3.1.5 FDOP$A-Initialize File-Open Section of FOB • 2-11
2.3.1.6 FOBF$A-Initialize Block Buffer Section of FDB • 2-14

2.3.2 Run-Time FOB Initialization Macros 2-17
2.3.2.1 Run-Time FDB Macro Exceptions • 2-17
2.3.2.2 Specifying the FDB Address in Run-Time Macros • 2-19

GLOBAL VERSUS LOCAL DEFINITIONS FOR FOB OFFSETS
2.4.1
2.4.2

Specifying Global Symbols in the Source Code
Defining FOB Offsets and Bit Values Locally

CREATING FILE SPECIFICATIONS WITHIN YOUR PROGRAM
2.5.1 Data-Set Descriptor
2.5.2 Default Filename Block-NMBLK$ Macro

2-20
2-21
2-21

2-22
2-23
2-25

2.5.3 Dynamic Proclesslng of File Specifications

2.6 OPTIMIZING FILE ACCESS
2.6.1 Initializing the Filename Block as a Function of OPEN$x _
2.6.2 Manually Initializing the Filename Block

Contents

2-28

2-28
2-28
2-30

---2.7

2.8

2.9

INITIALIZING THE FILE STORAGE REGION
2.7.1 FSRSZ$-Initlcllize FSR at Assembly Time
2.7.2 FINIT$-Inltiallze FSR at Run Time

INCREASING THE SIZE OF THE FILE STORAGE REGION
2.8.1 FSR Extensionl Procedures for MACRO·11 Programs
2.8.2 FSR Extenslol1l Procedures for FORTRAN Programs

COORDINATING I/O OPERATIONS
2.9.1
2.9.2
2.9.3
2.9.4
2.9.5

Event Flags _, ______________ _

I/O Status Block
AST Service Routine
Block Locking
Error Codes Rlelated to Shared Flies and Block Locking

2-30
2-31
2-32

2-33
2-33
2-34

2-34
2-35
2-36
2-37
2-37
2-39

--------_----1--------------... ---------------------------------------CHAPTER:3 FILE-PROCESSING ~VlACROS

3.1 OPEN$X-GENERALlZE:D OPEN MACRO
3.1.1 Format of Gen,erallzed OPEN$x Macro
3.1.2 FOB Requirements for Generalized OPEN$x Macro

3.2 OPNS$X-OPEN FILE FOR SHARED ACCESS

3.3 OPNT$W-CREATE ANID OPEN TEMPORARY FILE

3-1

3-2
3-4
3-6

3-9

3-10

--------,--..... 3.4 OPNT$D-CREATE AN[) OPEN TEMPORARY FILE AND MARK FOR
[)ELETION 3-11

---------------------..... --------------------------------------3.5 OFID$X-OPEN FILE BY FILE 10 3-11

--3.6 OFNB$X-OPEN FILE SlY FILENAME BLOCK 3-12

v

Contents

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

vi

3.6.1 Data-Set Des,?rlptor or Default Filename Block
3.6.2 Default Filename Block Only

OPEN$-GENERALIZED OPEN FOR SPECIFYING FILE ACCESS

CLOSE$--CLOSE SPECIFIED FILE

GET$-READ LOGICAL RECORD
3.9.1 Format of GET$ Macro
3.9.2 The FOB Relevant to GET$ Operations

3.9.2.1 GET$ Operations in Move Mode • 3-18
3.9.2.2 GET$ Operations in Locate Mode • 3-18

GET$R-READ LOGICAL RECORD IN RANDOM MODE

GET$S-READ LOGICAL RECORD IN SEQUENTIAL MODE

PUT$-WRITE LOGICAL RECORD
3.12.1 Format of PUT$ Macro
3.12.2 The FOB Relevant to PUT$ Operations

3.12.2.1 PUT$ Operations in Move Mode • 3-22
3.12.2.2 PUT$ Operations In Locate Mode • 3-23

PUT$R-WRITE LOGICAL RECORD IN RANDOM MODE

PUT$S-WRITE LOGICAL RECORD IN SEQUENTIAL MODE

READ$-READ VIRTUAL BLOCK
3.15.1 Format of READ$ Macro
3.15.2 The FOB Relevant to READ$ Operations

WRITE$-WRITE VIRTUAL BLOCK
3.16.1 Format of WRITE$ Macro
3.16.2 The FOB Relevant to WRITE$ Operations

WAIT$-WAIT-FOR BLOCK 1/0 COMPLETION
3.17.1 Format of WAIT$ Macro

3-1
3-1

3-1·

3-1:

3-1!

3-2(

3-2t
3-2'
3-2:

3-2~

3-2!

3-2!
3-2t
3-21

3-21
3-2~

3-31

3-31
3-31

Contents

------,---3.18 DELET$-DELETE SF'ECIFIED FILE 3-33

CHAPTEFI 4 FILE CONTROL RC)UTINES 4-1

----------------------,---4.1 CALLING FILE CONTBOL ROUTINES 4-1

---4.2

4.3

DEFAULT DIRECTORY STRING ROUTINES
4.2.1 .RDFDR-Read $$FSR2 Default Directory String

Descriptor ________________ _

4.2.2 .WDFDR-Wrlte New $$FSR2 Default Directory String
Descriptor _, _______________ _

DEFAULT UIC ROUTINES
4.3.1
4.3.2

.RDFUI-Read Default UIC

.WDFUI-Wrlte Default UIC

4-2

4-2

4-3

4-3
4-4
4-4

---4.4 DEFAULT FILE PROTECTION WORD ROUTINES
4.4.1
4.4.2

.RDFFP-Read $$FSR2 Default File Protection Word

.WDFFP-Wrlte New $$FSR2 Default File Protection
Word

4-4
4-5

4-5

--4.5 FILE OWNER WORD FIOUTINES
4.5.1 .RFOWN-Read $$FSR2 File Owner Word
4.5.2 . WFOWN-Wrlte New $$FSR2 File Owner Word

4-5
4-6
4-6

-----------------------,---4.6 ASCII/BINARY UIC CONVERSION ROUTINES
4.6.1

4.6.2

.ASCPP-Conlvert ASCII Directory String to Equivalent
Binary UIC
.PPASC-Convert UIC to ASCII Directory String

4-6

4-7
4-7

---4.7 FILENAME BLOCK ROUTINES 4-7
4.7.1 .PARSE-Fill iin All File Name Information 4-7

4.7.1.1 Device and Unit Information • 4-8
4.7.1.2 Directory Identification Information • 4-9
4.7.1.3 Fih~ Name, File Type, and File Version Information • 4-10
4.7.1.4 Using the FOB Extension for Logical Names • 4-11
4.7.1.5 Other Filename Block Information • 4-11
4.7.1.6 .E)(PLG Module (Expand Logical) • 4-11

4.7.2 .PRSDV-Fill in Device and Unit Information Only 4-11

vII

Contents

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

vIII

4.7.3 .PRSDI-Flllin Directory Identification Information Only 4-12
4.7.4 .PRSFN-FIII In File Name, File Type, and File Version

Only 4-12
4.7.5 .ASLUN-Assign LUN 4-12

DIRECTORY ENTRY ROUTINES
4.8.1 .FIND-Locate Directory Entry
4.8.2 .ENTER-Insert Directory Entry
4.8.3 .REMOV-Delete Directory Entry

FILENAME BLOCK ROUTINES
4.9.1
4.9.2

.GTDIR-Insert Directory Information In Filename Block

.GTDID-Insert Default Directory Information In Filename
Block

FILE POINTER ROUTINES
4.10.1 .POINT-Posltlon File to Specified Byte
4.10.2 .POSRC-Posltlon File to Specified Record
4.10.3 .MARK-Save Position Information Context of File
4.10.4 .POSIT-Return Specified Record Position Information

.XQIO-QUEUE 1/0 FUNCTION ROUTINE

.RENAM-RENAME FILE ROUTINE

.EXTND-FILE EXTENSION ROUTINE

.TRNCL-FILE TRUNCATION ROUTINE

FILE DELETION ROUTINES
4.15.1 .MRKDL-Mark Temporary File for Deletion
4.15.2 .DLFNB-Delete File by Filename Block

.CTRL-DEVICE CONTROL ROUTINE

.FLUSH-BUFFER FLUSH ROUTINE
4.17.1 Purpose of the .FLUSH Routine
4.17.2 When .FLUSH Should Be Used

4-12
4-13
4-14
4-15

4-15
4-15

4-16

4-16
4-16
4-17
4-18
4-18

4-18

4-19

4-19

4-20

4-21
4-21
4-21

4-21

4-22
4-22
4-23

4.17.3
4.17.4

Performance Considerations Using .FLUSH
Using the .FLUSH Routine

Contents

4-23
4-23

CHAPTER 5 FILE STRUCTURES 5-1

5.1 DISK AND DECTAPE F'ILE STRUCTURE (FILES-11)
5.1.1 User File Structure
5.1.2 Directory File!!;
5.1.3 Index File
5.1.4 File Header Bllock

5-1
5-1
5-2
5-2
5-3

-----------------------,--5.2 MAGNETIC TAPE FILE PROCESSING 5-4
5.2.1 Access to Ma!gnetlc Tape Volumes 5-5
5.2.2 Rewinding Volume Sets 5-5
5.2.3 Positioning tOI the Next File Position 5-5
5.2.4 Single-File Opleratlons 5-6
5.2.5 Multifile Oper~itlons 5-6
5.2.6 Using .CTRL 5-7
5.2.7 Examples of Magnetic Tape Processing 5-7

5.2.7.1 Examples of OPEN$W Macro-11 Statements to Create a New
Fih~ • 5-8

5.2.7.2 Ex;amples of OPEN$R Macro-11 Statements to Read a
Fih~ • 5-8

5.2.7.3 Examples of CLOSE$ Macro-11 Statements • 5--9
5.2.7.4 Combined Examples of OPEN$ and CLOSE$ Macro-11

Statements • 5-9

--------1--------------------1--CHAPTER 6 COMMAND LINE PROCESSING 6-1

---6.1

6.2

GET COMMAND LINE ~:GCML) ROUTINE
6.1.1 GCMLB$-Alhlcate and Initialize GCML Control Block
6.1.2 GCMLD$-De1fine GCML Control Block Offsets and Bit

Values

6-1
6-2

6-5
6.1.3 GCML Routln.~ Runtime Macros 6-7

6.1.3.1 GCML$-Get Command Line Macro • 6-7
6.1.3.2 RCML$-Reset Indirect Command File Scan Macro • 6-9
6.1.3.3 CCML$-Close Current Command File Macro • 6-10

6.1.4 GCML Usage Considerations 6-11

COMMAND STRING INTERPRETER ROUTINE 6-11

Ix

Contents

6.2.1

6.2.2

CSI$-Define CSI Control Block Offsets and Bit Values
Macro
CSI$ Macro Control Block Offset and Bit Value
Definitions

6-12

6-12

6.2.3 CSI Runtime Macros 6-15
6.2.3.1 CSI$1-Command Syntax Analyzer • 6-15
6.2.3.2 CSI$2-Command Semantic Parser Macro • 6-16

6.2.4 CSI Switch Definition Macros 6-18
6.2.4.1 CSI$SW-Create Switch Descriptor Table Entry Macro • 6-18
6.2.4.2 CSI$SV-Create Switch Value Descriptor Table Entry

Macro • 6-23
6.2.4.3 CSI$ND-Define End of Descriptor Table • 6-25

CHAPTER 7 THE TABLE-DRIVEN PARSER (TPARS) 7-1

7.1

7.2

7.3

7.4

7.5

x

CODING TPARS SOURCE PROGRAMS 7-1
7.1.1 TPARS Mac ros-ISTAT$, STATE$, and TRAN$ 7-1

7.1.1.1 ISTAT$ Macro-Initialize the State Table • 7-1
7.1.1.2 STATE$ Macro-Defining a Syntax Element • 7-2
7.1.1.3 TRAN$ Macro-Defining a Transition • 7-2

7.1.2 Action Routines and Built-In Variables 7-4
7.1.2.1 TPARS Built-In Variables • 7-4
7.1.2.2 Calling Action Routines • 7-4
7.1.2.3 Using Action Routines to Reject a Transition • 7-5
7.1.2.4 Optional Debug Routine for lAS Users • 7-5

7.1.3 TPARS Subexpresslons 7-5

GENERAL CODING CONSIDERATIONS
7.2.1
7.2.2
7.2.3
7.2.4

Suggested Arrangement of Syntax Types In a State Table
Ignoring Blanks and Tabs In a Command Line
Entering Special Characters
Recognition of Keywords

PROGRAM SECTIONS GENERATED BY TPARS MACROS

INVOKING TPARS
7.4.1
7.4.2

Register Usage and Calling Conventions
Using the Options Word

HOW TO GENERATE A PARSER PROGRAM USING TPARS

7-6
7-6
7-6
'7-7
'7-7

7-8

7-9
7-10
7-10

7-10

7.6 PROGRAMMING EXAMPLES
7.6.1 Parsing a UF[) Command Line
7.6.2 Using Subexpresslons and Rejecting Transitions
7.6.3 Using Subexpresslons to Parse Complex Command

Lines

CHAPTER 8 SPOOLING

8.1 PRINT$ MACRO

8.2 "PRINT SUBROUTINE
8.2.1 Opening a FIIE~ on Disk and Using the PRINT Command
8.2.2 Opening a FIIE~ on LP

8.3 ERROR HANDLING

APPENDIX A FILE DESCRIPTOR BLOCK

APPENDIX B FILENAME BLOCK

APPENDIX C FILE HEADER BLOCK

Contents

7-11
7-11
7-17

7-17

8-1

8-1

8-1
8-2
8-2

8-2

A-1

B-1

C-1

--C.1 HEADER AREA C-2

---------------------------~-----------------------------C.2 IDENTIFICATION AREA C-3

C.3 MAP AREA C-4

APPENDIX D STATISTICS BLOCK 0-1

xl

Contents

APPENDIX E INDEX FILE FORMAT

E.1 BOOTSTRAP BLOCK

E.2 HOME BLOCK

E.3 INDEX FILE BIT MAP

E.4 PREDEFINED FILE HEADER BLOCKS

APPENDIX F SUMMARY OF I/O-RELATED SYSTEM DIRECTIVES

APPENDIX G SUPPORT OF ANSI MAGNETIC TAPE STANDARD

G.1 VOLUME AND FILE LABELS
G.1.1 Volume Label Format

G.1.1.1 Contents of Owner Identification Field • G-2
G.1.2 User Volume Labels
G .1.3 File Header Labels

G. 1.3. 1 File Identifier Processing by Files-11 • G-6
G.1.4 End-of-Volume Labels
G .1.5 File Trailer Labels
G.1.6 User File Labels

G.2 FILE STRUCTURES
G.2.1 File Structure Format

G.3 END-OF-TAPE HANDLING

G.4 ANSI MAGNETIC TAPE FILE HEADER BLOCK (FCS COMPATIBLE)

G.5 EXAMPLE USING AN INDIRECT COMMAND FILE TO READ A TAPE

xII

E-1

E-1

E-1

E-2

E-3

F-1

G-1

G-1
G-1

G-3
G-3

G-7
G-7
G-7

G-7
G-7

G-8

G-8

G-8

Contents

APPENDIJ(H QIO$ INTERFACE TO THE ACPS H-1

--
H.1 HOW TO USE THE ACP 010$ FUNCTIONS H-2

H.1.1 Creating a File H-2
H.1.2 Opening a File H-2
H.1.3 Closing a FilE! H-2
H.1.4 Extending a F~lIe H-2
H.1.S Deleting a Fille H-3

H.2 ERRORS RETURNED IBY THE FILE PROCESSORS H-3

--
H.3 010$ PARAMETER LIST FORMAT H-S

H.3.1 File Identification Block H-S
H.3.2 The Attribute List H-S

H.3.2.1 The Attribute Type • H-6
H.3.2.2 Attribute Size • H-7
H.3.2.3 Attribute Buffer Address • H-7

H.3.3 Size and Extend Control H-7
H.3.4 Window Size and Access Control H-8
H.3.S Filename Block Pointer H-9

--
H.4 PLACEMENT CONTROL H-9

--
H.S BLOCK LOCKING H-10

--
H.6 SUMMARY OF F11 ACP FUNCTIONS H-10

--
H.7 SUMMARY OF MTAACP FUNCTIONS H-12

APPENDI~: I FIELD SIZE SYMBOLS 1-1

--1.1 SYSTEM LIBRARY SYMBOLS 1-1

xIII

Contents

APPENDIX J SAMPLE PROGRAMS J-1

J.1 PROGRAM CRCOPY J-1

J.2 PROGRAM CRCOPA J-2

J.3 PROGRAM CRCOPB J-3

--APPENDIX K ERROR CODES K-1

APPENDIX LIAS FCS LIBRARY OPTIONS L-1

L.1 FCS LIBRARY OPTIONS L-1

L.2 .FCTYP L-1

INDEX

FIGURES
1-1 File Acess Operation 1-2
1-2 Sequenced Variable-Length Record 1-6
1-3 Nonsequenced Variable-Length Record 1-7
1-4 Record 1/0 Operations 1-9
1-5 Single Buffering Versus Multibufferlng 1-10
4-1 Default UIC Format 4-3
4-2 File Protection Word Format 4-4
4-3 File Protection Access Bits 4-5
4-4 File Owner Word Format 4-6
5-1 Directory Structure for Single-User Volumes 5-2
5-2 Directory Structure for Multiuser Volumes 5-3
5-3 File Header Block 5-4
6-1 Data Flow During Command Line Processing 6-2
6-2 Format of Switch Descriptor Table Entry 6-22
6-3 Format of Switch Value Descriptor Table Entry 6-24
7-1 Processing Steps Required to Generate a Parser Program Using

TPARS 7-12

xlv

Contents

7-'2: Flow of Control When TPARS Is Called from an Executing User
Program 7-13

A-11 File Descriptor Block Format A-2
A-:! File Descriptor Block Format (Continued) A-3
B-11 Filename Block Formi:lt B-1
B-~! ANSI Filename Block 1F0rmat B-3
C-11 Retrieval Pointer Format C-4
D-11 Statistics Block Formut D-1
G-11 ANSI Magnetic Tape File Header Block (FCS Compatible) G-9
H-11 File Identification Bloc:k H-5

TABLES
1-1 Shared File Access - 1-12

1-2 FCSRES Routines 1-17
2-1 Macro Calls Generating FDB Information 2-1
3-1 File-Processing Macrol Calls 3-1
3-2 File Access Privileges Resulting from OPEN$x Macro 3-3
4-1 R2 Control Bits for .E'(TND Routine 4-20
6-1 GCML Offsets and Bit Values 6-5
6-2 CSI$ Offsets and Bit Values 6-12
A-11 FDB Offset Definitions; A-4
B-11 Filename Block Offset Definitions B-2
B-~! Filename Block Status; Word (N.STAT) B-2
B-~~ Filename Block Offset Definitions for ANSI Magnetic Tape B-3
C-1 File Header Block Format C-1
C-~! File Header Block Contents C-2
C-~~ File Header Indentlficatlon Area Contents C-3
E-1 Index File Structure - E-1
E-'2: Home Block Format E-2
E-3 Predefined File Headelr Blocks E-3
F-1 Summary of I/O-RelatE'd System Directives F-1
G-11 Volume Label Format G-1
G-~~ File Header Label (HDI~1) G-3
G-~l File Header Label (HDH2) G-4
G-4 File Header Label (HDI~3) G-5
G-S File Structures G-8
H-1 File Processor Error Codes H-3
H-~! Maximum Size for Each File Attribute H-7
1-1 Field Size Symbols 1-1
L-1 FCS Library Descriptions L-1
L-2 .FCTYP Values L-1

xv

Prefac~e

Manual ()bjectives
The purpose of this manual is to familiarize the users of the lAS operating systems with the File
Control Services (FCS) facility provided with the system.

Intended Audience
Because the File Control Services described in this manual pertain to both MACRO-II and
FORTRAN programs, the reader is asswned to be familiar with these languages. Also, because the
development of programs in an lAS envi"ronment requires the use of the Task Builder (TKB), the
reader should be familiar with the contents of the lAS Task Builder Manual.

Document Structure
Chapter 1 describes the FCS features available for lAS users. It also defines some of the
terminology used throughout the manua]. This chapter is important to understanding the balance
of the manual.

Chapter 2 describes the actions you must take at assembly time to prepare adequately for all
intended file 1/0 processing through FCS. This chapter describes the data structures and working
storage area8 that you must define within a particular program to use any of the File Control
Services. Until you are thoroughly famiHar with this chapter, you are advised to postpone reading
subsequent chapters.

Chapter 3 describes the run-time macro (:alls that allow you to manipulate files and to perform 1/0
operations.

Chapter 4 describ(~s a set of run-time routines that perform 1/0 functions on files, such as reading
and writing directory entries and renamiJrlg or extending files.

Chapter 5 deiBcribes the structure of files for disk, DECtapes, and magnetic tapes supported by the
lAS operatin,~ systems.

Chapter 6 describes two collections of object library routines. The Get Command Line (GCML)
routine and the Command String Interpreter (CSI) routine may be linked with the user task to
perform operations that request command line input. Such input consists of file specifications that
identify and (:ontrol the files to be processed by your program.

Chapter 7 describes the table-driven parser (TPARS), which provides you with the means to define
and parse cornmand lines in a unique user-designed syntax.

Chapter 8 describes queuing files for printing. You can queue files for printing at both the MACRO
and subroutine levels.

Appendix A outlines the File Descriptor Block (FOB).

Appendix B outlim~s the filename block (F'NB).

Appendix C describes the fonnat and content of the file header block.

Appendix D describes the format and content of the statistics block.

Appendix E illustrates the structure of the index file of a Files-II volume.

xvII

Preface

Appendix F swnmarizes a number of I/O-related system directives that fonn a part of the total
resource management capabilities of the lAS Executive.

Appendix G describes the fonnat and content of the magnetic tape labels.

Appendix H describes the QIO$ level interface to the file Ancillary Control Processors (ACPs).

Appendix I lists lAS Fes library system generation options and provides a brief description of
each.

Appendix J illustrates the use of the macro calls that create and initialize the FDB. The appendix
presents sample programs that include some of the macro calls used for processing files.

Appendix K lists the error codes returned by the system.

Appendix L lists the field-size symbols.

Associated Documents
The following manuals provide additional infonnation and might be useful for understanding 1/0
operation logic:

• lAS Executive Facilities Reference Manual

• lAS 'lhsk Builder Reference Manual

• PDP-11 MACRO-11 Language Reference Manual

In addition, you might documentation for programming in any of the PDP-ll languages helpful.

Conventions
The following conventions are observed in this manual:

Convention

MeR>

PDS>

UPPERCASE

command
abbreviations

lowercase

xvIII

Meaning

This is the explicit prompt of the Monitor Console Routine (MCR).

This is the explicit prompt of the Program Development System (PDS).

Uppercase letters in a command line indicate letters that must be entered as they are shown.
For example, utility switches must always be entered as they are shown in format specifications.

Where short forms of commands are allowed, the shortest form acceptable is represented by
uppercase letters. The following example shows the minimum abbreviation allowed for the PDS
command DIRECTORY:

PDS> DIR

Any command in lowercase must be substituted for. Usually the lowercase word identifies the
kind of substitution expected, such as a filespec, which indicates that you should fill in a file
specification. For example:

filename.filetype;version

This command indicates the values that comprise a file specification; values are substituted for
each of these variables as appropriate.

Convention

Ikeyword,
Iqualifler,
or
Iswitch

parameter

[option]

[, ...]

{ }

:argument

()

[g,m]

[directory]

filespec

Preface

Meaning

A command element preceded by a slash (I) is an MCA keyword; a DCl qualifier; or a task,
utility, or prograffi'lswitch.

Keywords, qualifiers, and switches alter the action of the command they follow.

Required command fields are !~enerally called parameters. The most common parameters are
file specifications.

Square brackets indicate optional entries in a command line or a file specification. If the brackets
include syntactical elements, such as periods (.) or slashes (I), those elements are required
for the field. If the field appears in lowercase, you are to substitute a valid command element If
you include the field. Note tha1t when an option Is entered, the brackets are not Included In the
command line.

Square brackets around a comma and an ellipsis mark indicate that you can use a series of
optional elements separated by commas. For example, (argument [, ...]) means that you
can specify a series of optional arguments by enclosing the arguments In parentheses and by
separating them with commas.

Braces indicate a choice of required options. You are to choose from one of the options listed.

Some parameters and qualifiers can be altered by the Inclusion of arguments preceded by a
colon. An argument can be either numerical (COPIES:3) or alphabetical (NAME:QIX). In DCl,
the equal sign (-) can be SUbstituted for the colon to Introduce arguments. COPIES.3 and
COPIES:3 are the same.

Parentheses are used to enclose more than one argument In a command line. For example:

SET PROT = (S:RWED,O:RWgD)

Commas are used as separators for command line parameters and to Indicate positional entries
on a command line. Positional entries are those elements that must be In a certain place In the
command line. Although you might omit elements that come before the desired element, the
commas that separate them must still be included.

The convention [g,m] signifies a User Identification Code (UIC). The g Is a group number and the
m is a member number. The UIC identifies a user and Is used mainly for controlling access to
files and privileged system functions.

This might also signify a User File Directory (UFO), commonly called a directory. A directory Is
the location of files.

Other notations for directories me: [ggg,mmm], [ufd), [A], and [directory].

The convention [directory] signifies a directory in the same [g,m] form as the UIC.

Where a UIC, UFO, or directory is required, only one set of brackets Is shown (for example,
[g,m]). Where the Ule, UFO, or directory is optional, two sets of brackets are shown (for
example, [[g,m))).

A full file specification includes device, directory, file name, file type, and version number, as
shown in the following example,:

DL2: [46,63]INDIRECT.TXT~3

Full file specifications are rare III needed. If you do not provide a version number, the highest
numbered version is used. If ylJU do not provide a directory, the default directory is used. Some
system functions default to particular file types. Many commands accept a wildcard character (•)
in place of the file name, file tYlPe, or version number. Some commands accept a filespec with a
OEenet node name.

A period in a file specification sleparates the file name and file type. When the file type is not
specified, the period may be omitted from the file specification.

xix

Preface

Convention

@

KEYNAME

ICTRLJa)

n

§]

xx

Meaning

A semicolon in a file specification separates the file type from the file version. If the version Is not
specified, the semicolon may be omitted from the file specification.

The at sign invokes an indirect command file. The at sign immediately precedes the file
specification for the indirect command file, as follows:

@filename[.filetypeiversion]

A horizontal ellipsis indicates the following:

Additional, optional arguments in a statement have been omitted.
The preceding item or items can be repeated one or more times.
Additional parameters, values, or other information can be entered.

A vertical ellipsis shows where elements of command input or statements in an example or figure
have been omitted because they are irrelevant to the point being discussed.

This typeface denotes one of the keys on the terminal keyboard, for example, the RETURN key.

The symbol CTRUa means that you are to press the key marked CTRL while pressing another
key. Thus, CTRLJZ indicates that you are to press the CTRL key and the Z kEtY together in this
fashion. CTRUZ is echoed on some terminals as liZ. However, not all control characters echo.

A lowercase n indicates a variable for a number.

A symbol with a 1- to 3-character abbreviation, such as 8 or IR~ indicates that you press a key
on the terminal. For example, IRETI indicates the RETURN key, LF indicates the LINE FEED key,
and IDELI indicates the DELETE key.

1 File COlntrol Services

This chapter describes the file control services (FCS) features available for lAS users. It defines
some of the terminology used throughout the manual. FCS enables you to perform record-oriented
and block-oriented 1/0 operations, as well as additional operations required for file control. Open,
close, wait, and delete are some of these additional operations. The term FCS, as used in this
manual, is a substitute for FCSRES, a tnemory-resident library. This memory-resident library
contains commonly used routines that arce linked with your task at task-build time. These routines
may also be llinked with your task from Bt system object module library (SYSLIB.OLB). The three
kinds of FCS are us follows:

Library

ANSI

Non-ANSI

Multibuffered

Description

Supports American National Standards Institute (ANSI) format magnetic tape and big buffers.

Does not support ANSI tape o,r big buffers.

Supports ANSI tape, big buffelrs, and multiple buffers.

When your tusk uses functions such as OPEN$, which opens a file, and CLOSE$, which closes a
file, the task builder (TKB) resolves the Btddress of these routines in FCSRES, thereby eliminating
these routines from your task image. As a result, FCS routines do not significantly increase the
size of your task image. If you do not link your task with FCSRES at task-build time, the routines
must come from SYSLIB and are included in your task image, which increases its size. These
routines, cOD:sisting of pure, position-indE!pendent code, provide an interface to the file system,
enabling you to read and write files on fille-structured devices and to process files by using logical
records.

Your prograol regards logical records as data units that are structured in accordance with
application requirements, rather than as physical blocks of data on a particular storage medium.
To meet the application's requirements, F'CS allows a collection of data--distinct logical records-to
be written to a file in a way that enables you to retrieve the data from the file without having to
know the eXBtct format in which it was written to the file. FCS, therefore, is transparent to your
task; records can be read or written in logical units that are consistent with particular application
requirements:.

To invoke FeS fWlctions from your task or application, your task issues macro calls to specify
desired file control operations. The FCS macros are called at assembly time to generate code
for specified functions and operations. The macro calls provide the system-level, file control
primitives with the necessary parameterB to perform the file access operations that you request
(see Figure 1-1).

1.1 Key Terms Used Throughout This Manual
Following are terms used throughout thin manual; they have unique definitions in the context of
FCS operations.

1-1

File Control Services

Figure 1-1 File Acess Operation

User-Issued Macro Call

" File Control Services

,r

File Control Primitives

,r
Peripheral Device Hardware
(For Example, Disk, VT220)

File Descriptor Block

The File Descriptor Block (FDB) is the data structure that provides FCS with information needed
to perform 110 operations on a file. The space for this data structure is allocated in your program
by issuing the FDBDF$ macro call (see Chapter 2). Each file to be opened simultaneously by your
program must have an associated FDB. Portions of the FDB, which may be defined by you or the
system, are maintained by FCS. Assembly-time or run-time macro calls are provided for you to
initialize the FDB. The format and content of the FDB are detailed in Appendix A.

Filename Block

The filename block is the portion of the FDB that contains the various elements of a file
specification (see the File Specification entry in this section) that FCS uses. Initially, as a file
is opened, FCS fills in the filename block with information that you specify and that is taken from
the data-set descriptor or the default filename block (see the following subsections). Chapter 2
describes how FCS fills in the filename block from a file specification; the format and content of the
filename block are described in Appendix B.

1-2

File Control Services

Default Filename Block

The default filename block is an area you allocate within your program by issuing the NMBLK$
macro call (see Chapter 2) that contains tlile various elements of a file specification. You create
the default fih~name block; whereas, the filename block within the FDB is maintained by FCS.
You create thE! default filename block to supply file specifications to FCS that are not otherwise
available through the data-set descriptor (see the next entry). FeS takes these file specifications
and creates a parallel structure in the FDB that contains information that FCS requires during
execution timE! in opening and operating Oltl files.

Thus, the tenns "default filename block" and "filename block" refer to separate and distinct
data structures. These distinctions should be kept in mind whenever these terms appear in this
manual. Thesle areas are structurally identical, but they are created and used differently, and they
may contain different information at different times.

Data-Set Desc.rlptor

The data-set descriptor is a 6-word block in your program that contains the sizes and the addresses
of American Standard Code for Information Interchange (ASCII) data strings that together
constitute a file specification (see Section 1.9). This 6-word block, which you also create, is
described in detail in Chapter 2. Unless the filename block in the FDB has been initialized,
you must provide FICS with data-set descriptor or default filename block information before the
specified file c~an be opened.

Data-Set Desc.rlptor Pointer

The data-set descriptor pointer is an address value that points to the 6-word data-set descriptor
within your program. This address value is stored in the FDB, allowing FCS to access a file
specification that you created in the data-set descriptor.

File Specification

The file specifitcation is the unique file identification that names a file, specifies the location, and
allows the location to be explicitly refereneed by any task. The operating system, or your task,
must refer to jfiles by using a file specification. The file specification contains specific information
that must be rnade available to FCS beforE' that file can be opened. See Section 1.9 for a description
of a file specifi,catioltl.

File Storage Reglolll

The file storage region (FSR) is an area of memory that you reserve for use in 1/0 operations (see
Section 1.7.3). You can allocate this area hy issuing the FSRSZ$ macro call in your program (see
Chapter 2).

1.:2 Important FCS Characteristics;
You should be aware of the following FCS characteristics when using 1/0 facilities:

• 1/0 operations initiated by READ$ andl WRITE$ macros are asynchronous; you are responsible
for coordinating all block 1/0 activity.

• 1/0 operations initiated by GET$ and lPUT$ macros are synchronized entirely by FCS; control
is not returned to your program until the requested GET$ or PUT$ operation is complete.

• FCS macro calls save and restore all registers, with the following exceptions:

The file-processing macro cans (see Chapter 3) and the run-time FDB initialization macros
(see Chapter 2) place the File Descriptor Block (FDB) address in RO.

1-3

File Control Services

Many of the file control routines (see Chapter 4) return requested information in the
general registers.

• The macro that defines and allocates the space for the FDB is the FDBDF$ macro (see Chapter
2). Once the FDB is allocated, necessary information can be placed in this data construct
through any logical combination of assembly-time or run-time macro calls (see Chapter 2).
Certain information must be present in the FDB before FCS can open and operate on a
specified file.

• For each assembly-time FDB initialization macro call, a corresponding run-time macro call is
provided that supplies identical information. Although both sets of macro calls (see Chapter
2, Table 2-1) place the same information in the FDB, each set does so in a different way. The
assembly-time calls generate .BYTE or .WORD directives that create specific data, while the
run-time calls generate MOV or MOVB instructions that place desired information in the FDB
during program execution.

• If an error condition is detected during any of the file-processing operations described in
Chapter 3, or during the execution of several of the file control routines (see Chapter 4), the
Carry bit in the Processor Status Word (PSW) is set, and an error indicator is returned to FDB
offset location F.ERR.

NOTE: When you use the READ$ or WRITE$ macros to execute system 110, the 110 status
block (IOSH) parameter must be specified for F.ERR and the Carry bit to be properly
returned (see Chapter 3).

If the address of a user-defined error-handling routine is specified as a parameter in any of the
file-processing macro calls, a jump to subroutine program counter (JSR PC) instruction to that
error-handling routine is generated. The routine is then executed if the Carry bit in the PSW is
set.

1.3 FCS Data Structures
In addition to generating calls to FCS subroutines, FCS macros issued by your task create and
maintain certain data structures that file 1/0 operations require. These required data structures
include the following:

• A File Descriptor Block (FDB) that contains information necessary for processing the file.

• A data-set descriptor that FCS accesses to obtain ASCII file name information required to open
a specified file.

• A default filename block that FCS accesses to obtain default file name information to open a
specified file. FCS accesses the default filename block when complete file information is not
specified in the data-set descriptor.

• A file storage region (FSR) that FCS uses for working storage. The FSR is described in Section
1.3.3.

File Descriptor Block
The File Descriptor Block (FDB) contains information that FCS uses to open and process files. One
FDB is required for each file that your program opens simultaneously. You initialize some portions
of the FDB with assembly-time or run-time macro calls, and FCS maintains other portions. Each
FDB has the following five sections that contain information that your task or the system defines:

• File attribute section

1-4

1 .. 3.2

1.3.3

File Control Services

• RecO'rd O'r blO'ck access sectiO'n

• File O'pen section

• Block buffer sectiO'n

• Filename blO'ck PO'rtiO'n

The infO'rmatiO'n stO'red in the FDB depends UPO'n the characteristics O'f the file to' be prO'cessed. The
FDB and the macrO' calls that cause valuE~s to' be stO'red in this structure are described in detail in
Chapter 2. A1Ppendix A describes the fO'mlat and the cO'ntent O'f the FDB.

Data-Set Descriptor and Default Filename Block
YO'U must specify either a data-set descriptor O'r a default filename blO'ck fO'r each file that yO'U
intend to' O'pen. These data structures provide FCS with the file specificatiO'ns required fO'r O'pening
a file. AlthO'ugh either the data-set descriptO'r O'r the default filename block is usually specified, yO'U
may alsO' spec:ify both fO'r the same file. The data-set descriptO'r and the default filename block are
further described in detail in Chapter 2.

When a file iel being O'pened using infO'rmatiO'n already present in the filename blO'ck, neither the
data-set descliptO'r nO'r the default filenaule block is accessed by FCS fO'r required file infO'rmatiO'n.
This methO'd of file access, which is termEd "O'pening a file by file ID," is an efficient means O'f
O'pening files. Chapter 2 describes this process in detail.

File Storage Region
The file stO'rage regiO'n (FSR) is an area allO'cated in yO'ur prO'gram as wO'rking stO'rage fO'r recO'rd 1/0
O'peratiO'ns (see SectiO'n 1.7). The FSR cO'm~ists O'f fO'ur prO'gram sectiO'ns that are always cO'ntiguO'us.
These prO'gralD sectiO'ns exist fO'r the fO'llO'wing purpO'ses:

$$FSR1 This area of the FSR contains the block buffers and the block buffer headers for record 1/0
processing. You determine the SiZEI of this area at assembly time by issuing the FSRSZ$ macro
calli (see Chapter 2). The number Clf block buffers and associated headers is based on the number of
filels that you Intend to open simultalneously for record 110 operations.

$$FSR2 This area of the FSR contains Impure data that FCS uses and maintains when performing both record
and block 110 operations. Portions ,of this area are Initialized at task-build time, and other portions are
melintained by FCS.

The size O'f the FSR can be changed, if deBired, at task-build time. Chapter 2 shO'WS yO'U hO'W to' dO'
this.

1.4 File Acce!Js Methods
lAS systems siupport bO'th sequential and randO'm access to' data in files. Sequential access devices
include magnetic tapes and card readers. RandO'm access devices include disks. The sequential
access methO'd is device independent; that is, sequential access is usable O'n bO'th recO'rd-O'riented
and randO'm access devices (fO'r example, card readers and disks). YO'U can use the randO'm access
methO'd O'nly £or randO'm access devices.

1-5

File Control Services

1.5 Data Formats for File-Structured Devices
Data is transferred between peripheral devices and memory in blocks. A data file consists of
virtual blocks, each of which may contain one or more logical records created by your program" In
FCS terms, a virtual block in a file consists of 51210 bytes for random access devices. The size of
the logical records in the virtual blocks is under the control of the program that originally wrote
the records.

When creating a new file, your program can specify that the records in the file will differ in size.
Such records are known as variable-length records. Conversely, if your program indicates that all
recQrds in the new file will be equal in size, the records are known as fixed length.

There are two types of variable-length records: sequenced and nonsequenced. Both must be
word aligned; that is, each record must be stored as an even number of bytes. Sequenced
variable-length records are preceded by a 2-word record header. The first word contains the length
of the record (in bytes), and the second word contains the value of the sequence number as shown
in Figure 1-2. The record length information is used to determine the end of each record and the
beginning of its successor. Note that the word containing the sequence number is included in the
record length.

Figure 1-2 Sequenced Variable-Length Record

15 o
Record Length n (in Bytes)

Sequence Number

Byte 2 Byte 1

Byte 4 Byte 3

~ ~ ~ ~

Byte n-2 I Byte n-3

Nonsequenced variable-length records are preceded by a single-word record header containing the
length of the record as shown in Figure 1-3.

Both fixed- and variable-length records are aligned on a word boundary. Any extra byte that
results from an odd-length record is simply ignored. It is not included in the record length. (The
extra byte is not necessarily a 0 byte.)

1-6

1.5.1

File Control Services

Figure 1-3 Nonsequenced Varlable-Len'Jth Record

15 o
Record Length n (in Bytes)

Bytl92

I

Byte 1 -
8ytl94 Byte 3

~ ~ ~ ~

Byte n I Byte n-1

Virtual blocks and logical records within Sl file are numbered sequentially, each starting at 1. A
virtual block number is a file-relative valu.e; whereas, a logical block number is a volume-relative
value. Ordinarily, records may cross block boundaries. Crossing block boundaries means that
the beginning of a record can fill out the end of a block, while the rest of the record occupies the
beginning of the next block.

Data ForlTlats for ANSI Magnetic Tape
You can use both fixed- and variable-length. records on magnetic tape; their format conforms to the
ANSI standard.

On magnetic tape, a virtual block corresponds to a physical record. The default length of a block is
512 bytes. Its length can be changed to al1LY value from 8 to 819210 bytes (14 to 819210 bytes for a
write function) with the use of the FDBF$ macro (see Chapter 2). Records are not allowed to cross
block boundaries.

Fixed-length records are packed into a block with no control information and no padding for
alignment. The block is truncated so that it ends at the word boundary immediately following the
last record that will fit in the block buffer.

Variable-length records are preceded by a 4-byte count field, which is expressed in decimal in
ASCII charact.ers. The count includes the length of the record and the 4-byte count field. Mer the
last record in a block (if there is any space left in the block), a caret character (", ASCII code 136)
appears where the next byte count should be, signaling the end of data in that block.

1.6 Block 1/0 Operations
Block I/O operations provide an efficient Dleans of processing file data because such operations do
not involve the blocking and deblocking of records within the file. Also, block I/O operations permit
your task to read or write files in an asynchronous manner; that is, control may be returned to
your program before the requested I/O ope'ration is completed.

1-7

File Control Services

The read and write macro cal1s (READ$ and WRITE$) al10w your task to read and write virt.ual
blocks of data to and from a file without regard to logical records within the file. (See Chapter 3 for
a description of READ$ and WRITE$ macro calls.) When your task uses block 1/0, the nwnber of
the virtual block to be processed is specified as a parameter in the appropriate READ$ or WRITE$
macro call. The virtual blocks so specified are processed directly in a reserved buffer in your task's
memory space. Your task can use READ$ and WRITE$ only on block-structured devices.

You are responsible for synchronizing al1 block 1/0 operations. Such asynchronous operations can
be coordinated through an event flag (see Chapter 2) specified in the READ$IWRITE$ macro call.
The system uses the event flag to signal the completion of a specified block 1/0 transfer, enabling
you to coordinate those block 1/0 operations that are dependent on each other.

1,,7 Record 1/0 Operations

1,.7:1

Sequential access mode 1/0 operations can be performed for both fixed- and variable-length records.
Random access mode 110 operations can be performed only for fixed-length records. Your program
accesses records randomly by specifying a record number. This n~ber represents the position
of the desired record within the file (viewing the file as an array of fixed-sized records, with the
number 1 representing the first record physically present in the file and n the last).

The GET$ and PUT$ macro calls (see Chapter 3) are provided for processing individual records in
files. Using the FSR block buffers (see Section 1.3.3), the GET$ and PUT$ routines perform the
necessary blocking and deblocking of records within the virtual blocks of the file, allowing your
program to access logical records. Successive GET$ or PUT$ operations in random access mode
can access records anywhere within the file. To do so, your program need only modify the record
number specified as part of the random record operation. Mter each such random operation, FCS
increases by 1 the record number used in the operation. If your program does not again modify
this number prior to issuing another record operation, the record actually accessed is the next
sequential record in the file.

In contrast to block 1/0 operations, all record 1/0 operations are synchronous; that is, control is
returned to your program only after the requested 110 operation is completed.

Because GET$ or PUT$ operations process logical records within a virtual block, only a Hmited
nwnber of GET$ or PUT$ operations result in an actual 1/0 transfer (for example, when the end of
a data block is reached). Therefore, all GET$ or PUT$ 1/0 requests do not necessarily involve an
actual physical transfer of data.

The data flow during record 1/0 operations is shown in Figure 1-4. Note that blocks of data are
transferred directly between the FSR block buffer and the device containing the desired file. The
deblocking of records during input occurs in the FSR block buffer, and the blocking of records
occurs in the FSR block buffer during output. Note also that FCS serves as your task's interface to
the FSR block buffer pool. All record I/O operations, which are initiated through GET$ and PUT$
macro calls, are synchronized by FCS.

Record 1/0 Data-Transfer Modes
By using record 110, a program can gain access to a record in either of the fol1owing two ways after
the virtual block has been transferred into the FSR from a file:

• In move mode, by specifying that individual records are to be moved from the FSR block buffer
to a record buffer that you have defined (see Figure 1-4)

1-8

File Control Services

Figure 1-4 Record 1/0 Operations

Block Buffer Pool

:1 •..••••••.•••... ~~! .•••••••••••

$$FSR2
Impure Data

FCS -- .. User
Record
Buffer

• In locate lmode, by referencing a locatJion in the File Descriptor Block (see Section 1.3.1) that
contains l1l pointer to the desired record within the FSR block buffer

Move Mode

Move mode rE!quires that data be moved between the FSR block buffer and a record buffer that you
have defined. For input, data is first read into the FSR block buffer from a peripheral device and
then moved to your task's record buffer for processing. For output, your program builds a record
in your task's record buffer; FCS then moves the record to the FSR block buffer, from which it is
written to a peripheral device when the entire block is filled.

Move mode simulates the reading of a reeord directly into your task's record buffer; thus, the
blocking and deblocking of records is tran:sparent.

Locate Mode

Locate mode 4~nables your task to access records directly in the FSR block buffer. Consequently,
there is normally no need to transfer datsl from the FSR block buffer to your task's record buffer.
To access records directly in the FSR block buffer, refer to locations in the File Descriptor Block
(see Section 1.3.1 smd Appendix A) that contain values defining the length and the address of the
desired record within the FSR block buffer. These values are present in the FDB as a result of
FCS macro ca.lIs that you issued.

Program overhead is reduced in locate mode because records can be processed directly within the
FSR block buffer. Moving data to your task's record buffer in locate mode is required only when
the last record of a virtual block crosses hlock boundaries.

1-9

1 .. 7.2

File Control Services

Multibuffering for Record I/O
By supporting multiple buffers for record 1/0, FCS provides the ability in multibuffered FCS to
read data into buffers in anticipation of user program requirements and to write the contents
of buffers while your program is building records for output. (Multibuffered FCS is a SYSGEN
option.) You can thus overlap the internal processing of data with file 1/0 operations, as illustrated
in Figure 1-5.

When your task uses read-ahead multibuffering, the file must be sequentially accessed to derive
full benefit from multibuffering. For write-behind multibuffering, you can use any file access
methbd with full benefit.

When your task uses multibuffering, you must allocate sufficient space in the FSR for the total
number of block buffers in use at any given time. The FSRSZ$ macro call (see Chapter 2) allocates
space for FSR block buffers.

Figure 1-5 Single Buffering Versus Multlbufferlng

Time

Single
Buffer

Multiple
Buffer

Process Record Write Record

Process Record Write Record
Process Record

1.7.2.1 Multlbufferlng Performance

..
Process Record Write Record

Process Record Write Record
Write Record Process Record

Multibuffering can improve performance for I/O-bound tasks under certain circumstances.
However, multibuffer processing in random mode is not very efficient. Multibuffering in random
mode always requires a user record buffer. If one is not supplied, the task's low memory may be
overwritten and the task may abort. /

For example, consider an I/O-bound task running as the dedicated or highest priority application
on a system. For such a task, multibuffering can decrease overall processing time by enabling
overlap of 1/0 and task execution.

However, if other tasks run at the same priority as that of the application task described
previously, then an overlap of 1/0 and task execution is already achieved among these tasks
without multibuffering. In this case, multibuffering would use up address space and pool without
improving execution speed. If virtual and physical address space is available, big buffering would
improve performance (see Section 1.7.3). However, big buffer processing in random mode is not
very efficient.

1-10

1.7.3

File Control Services

Big BuffE!ring for Record I/O
If the task uses large records or operateEI on clusters of records, big buffering is advantageous. The
use of big buffering assumes that it is rE~asonable to use more task address space and physical
memory for lincreased buffer space, and it is reasonable to use more pool for the increased number
of outstanding 1/0 packets.

Big buffering reduces the number of disk accesses by allowing multiblock input and output.
Nonnally, the disk accesses for GET$ or PUT$ operations are perfonned one sector at a time.
Using FCS big buffers allows you to read or write a specified number of sectors in a single
operation.

When using big buffering in random mode, a user task record buffer is always required. If one
is not supplied, the task's low memory nlay be overwritten and the task may abort. Using big
buffering with random GET$ and PUT$ can cause data to be lost from the end of a file. In this
case, a directory of the file would indicat,e more blocks in use than it had allocated. '1b prevent this
condition from happening, follow these steps:

1 Preallocate enough space to make writing an extension unnecessary.

2 Execute a FLUSH operation after the highest-numbered record is written by a PUT$ macro.

3 Mter a PUT$ macro, arrange not to execute any GET$ macro that could cause the file to
extend.

To use big buffers, you must select the buffer size and specify that buffer size in the parameter
lists for each occurrence of both the FSRSZ$ macro and the FDBDF$ macro in your program.

You should choose a buffer size that is a 1nultiple of 51210 bytes, the size of one disk block. Because
the default a.mount allocated by a file extend is five blocks and disks often contain many 5-block
files or parts of files, a buffer size of five blocks is generally a good choice. Larger amounts may
increase perfbnnance, but note that you are trading large amounts of memory for speed.

You must reserve the buffer space in your program, and you must specify the buffer size to the
FDB. The FSRSZ$ macro allows you to specify the total buffer space needed. Specify 51210 bytes
for each nonnal disk file, plus the buffer size that you have selected for each big buffered file. For
example, assume that a program has three files: one nonnal file (51210-byte buffer); one file with
a big buffer size of three blocks; and one file with a big buffer size of five blocks. The following call
to the FSRSZ$ macro reserves the space properly:

FSRSZ$ 3,«1+3+5>*512.>

In the FDB of each file that has a big buffer, you must override the default buffer size by using
either the FDBF$A macro or the FDBF$R macro. For a file with five blocks as a big buffer, the
assembly-timle macro call is as follows:

FDBF$A ,<5*512.>

On lAS syst€!ms, the SYSLIB provided as the default library contains all the proper FCS modules
for big buffer support.

1-11

File Control Services

1118 Shared Access to Files
The Files-II disk architecture permits shared access to files according to established conventions.
You can issue one of two macro calls, among several available in FCS for opening files, to invoke
these conventions. The OPNS$x macro call (see Chapter 3) specifically opens a file for shared
access. The OPEN$x macro call (see Chapter 3), on the other hand, invokes generalized open
functions that have shared-access implications only in relation to other 1/0 requests subsequently
issued. Both macro calls take an alphabetic suffix that specifies the type of operation being
requested for the file, as follows:

R Read existing file.

W Write (create) a new file.

M Modify existing file without extending its length.

U Update existing file and extend its length, if necessary.

A Append data to end of existing file.

The suffix R applies to the reading of a file; whereas, the suffixes W, M, U, and A all apply to the
writing of a file. You can use the OPNS$x and OPEN$x macro calls as follows for shared access to
files:

1 When the OPNS$R macro call is issued, read access to the file is granted unconditionally,
regardless of the presence of one or more concurrent write-access requests to the file. (The
OPNS$R macro call permits concurrent write accesses to the file while it is being read.)
Subsequent write-access requests for this same file are honored. Thus, several active
read-access requests and one or more write-access requests may be present for the same
file. However, multiple tasks simultaneously accessing the file for write operations are subject
to certain restrictions, as detailed in number 2.

2 While FCS allows concurrent write-access requests through the use of the OPNS$W, OPNS$M,
OPNS$U, and OPNS$A macro, synchronizing access to the file is your task's responsibility~ 1b
avoid the retrieval or storage of inconsistent data, each task must implement and use some
mechanism, which you define, ensuring that the file is serially accessed.

3 When the OPEN$R macro call is issued, read access to the file is granted, provided that
no write-access requests for that file are active. (The OPEN$R macro call does not permit
concurrent write access to the file while it is being read.)

Note from the previous text that readers of a shared file should be aware that the file may yield
inconsistent data from request to request if that file is also being written.

Shared access during reading does not necessarily mean that the access requests are all from
separate tasks. A file could also be shared by a single task that has opened the file on several
different logical unit numbers (LUNs).

Table 1-1 shows the cirCUDlstances under which Files-II permits a second file access when the file
is opened for shared access.

Table 1-1 Shared File Access

First Access

Second Access Read Shared Read Write Shared Write

Read Yes Yes No No

1-12

File Control Services

Table 1-1 (Cont.) Shared File Access

First Access

Second Access Read Shared Read Write Shared Write

Shared Read Yes Yes Yes Yes

Write No Yes No No

Shared Write No Yes No Yes

11.9 File Spec:ification Syntax
A full file specification has the following elements, in the order listed:

device
directory
name
type
version

A file specifi1cation has the following format:

device:[directory]filEtname.filetype;verslon

An example of a full file specification follows:

lB:[1 ,*]SUPlIB.OllB;O is a full file specification .

. 9.1 Device

1.9.2

The device element of the file specification names the device on which the file resides. For
unit-record devices, such as terminals and line printers, this is the only significant element in
the file specification.

The device s]pecification consists of two alphabetic characters specifying the device name, followed
by a 0- to 2-lcharacter octal numeric string specifying _the device unit number, followed by a
colon (:). FCS converts lowercase alphabetic characters to uppercase before passing them to
the operatin,~ system. The device unit number must not exceed 778; if no unit number is given,
FCS assumes unit O.

For example::

db2 and OB02 Indicate equivalent device specifications.

SY and syOO Indicate equivalent device ~~pecifications.

login and lOGijN Indicate equivalent logical device specifications.

Directory
The directory element of the file specificBltion names the directory through which the file can be
found on the device. For ANSI magnetic tape files, this element is not significant (see Appendix A).

If you use numbered directories, the directory specification can take either of the following forms:

[9roup,member]

1-13

1.9.3

1.9.4

File Control Services

or:

<group,member>

Note that the delimiting characters ([] or <» and the comma (,) must appear as shown. The group
and member subelements each consist of a 1- to 3-digit octal number in the range of 08 to 3778. In
situations where wildcards are permitted, you can substitute a single asterisk (*) character for the
group or member subelement, or both, to indicate that all such elements are acceptable.

You can explicitly request the current default directory by specifying [] or <> as the directory
specification. For example, [27,36] and <027,036> are equivalent directory specifications.

The following list shows the use of various wildcard substitutions:

Directory
Specification

[27,*]

[*, *]

[*]

(]

Name

Meaning

Indicates all members in group 27.

Indicates all User File Directories (UFOs).

Indicates all UFOs (for named directories only).

Indicates the current default directory (named directories only).

The name element of the file specification is the name by which the file is known in the directory.
The name specification is a 0- to 9-character alphanumeric string. That is, the alphabetic
characters A to Z and the numbers 0 to 9 are allowed. FCS converts lowercase alphabetic
characters to uppercase before passing them to the operating system.

In situations where wildcards are permitted, you can substitute an asterisk (*) character in the
name string for any string including the null string.

For example, the following names are acceptable within a file specification:

MyFile.; Interpreted as MYFILE ..
* . . ,
N.;

Type

Matches file specifications with null types and versions .

Interpreted as the null name of 0 length.

The type element of the file specification is the type by which the file is known in the directory. The
type specification consists of a period (.) followed by a 0- to 3-character alphanumeric string. FeS
converts the lowercase alphabetic characters to uppercase before passing them to the operating
system. In situations where wildcards are permitted, you can substitute asterisks for any string
including the null string.

The following exainples show some of the conversions that FCS milkes:

File Type

.dat

1-14

FCS
Interpretation

Interpreted as . OAT.

1.9.5

1.10

1.10.1

File Control Services

File Type

Version

FCS
Interpretation

Interpreted as all types.

Interpreted as the null type.

The version element of the file specification provides the version number by which the file is known
in the directory. The version specification consists of a semicolon (;) followed by a 0- to 5-digit octal
number in the range of 0 to 77777.

In situations where wildcards are permitted, you can substitute a single asterisk for the octal
number to indicate that all versions are ,acceptable. In situations where you are specifying a file
that already exists, you can substitute the two characters "-1" for the octal number to specify the
lowest-numbered version of the file that is known to the directory.

You can specify a version number of 0 or the null version to indicate either of the following:

• The highest-numbered version of the file that is known to the directory, when the file already
exists

• A version number one greater than t1lle highest-numbered version of the file (if any) known to
the directory, when you are creating Ii new directory entry

The followin,~ show some conversions that FCS makes regarding version numbers:

;5 and ;0005

. * ,
;-1

Indicates equivalent versions.

Indicates all versions .

Indicates the lowest-numbered version.

Indicates the null version; this is equivalent to ;0.

For compatibility with other systems, FeB access methods can process version specifications
beginning with a period (.) instead of a I~emicolon (;) when the presence of a type specification
eliminates a1nbiguity.

ANSI Ma~~netic Tape File Spec:ification Syntax
The file specificatl"lon format specific to magnetic tapes consists of the following elements, in the
order listed:

device
directory
quoted string
version

Device
The device ellement is the same as that described in Section 1.9.1. The device must be a magnetic
tape device.

1-15

File Control Services

1.10.2 Directory
The directory element is the same as that described in Section 1.9.2. This element has no meanin~
for ANSI magnetic tape files, and it is ignored if present.

1.10.3 Quoted String
Fes treats a quoted string as a unit representing both the name and type elements of a standard
file specification. This mechanism allows expression of tape file names up to 17 characters in
length that include the full set of ANSI "a" characters (some of which would otherwise be ignored
or treated as element delimiters in a standard file specification).

You specify an ANSI name by including the name in quotation marks ("name"). If the name itself
contains full quotation marks ("), you must also precede each such character with an additional
full quotation character ("). Fes converts any lowercase alphabetic characters to uppercase"
strips the full-quotation marks that you have added, and passes the result to the operating system
without further modification (including ANSI "a" characters such as space).

The following examples show the results of FeS-processed quoted strings:

"My File"

''''Don't Panic""

1.10.4 Version

Interpreted as MY FILE.

Interpreted as "DON'T PANIC."

The version element of a magnetic tape file specification is the same as that for a conventional file
specification (see Section 1.9.5). A version specification of ;0, ;-1, or the null version is interpreted
as any version for magnetic tape files.

1.10.4.1 Example Magnetic Tape File Specification
An example of an ANSI magnetic tape file specification follows:

MUl:"KIM's file" specifies any version of KIM'S FILE on device MU1:

The standard file specification format described in Section 1.9 can also be used with magnetic
tapes; this permits file transport to non tape devices and file accessibility by the widest possible
range of software. See Appendix G for additional information concerning the use of names in ANSI
magnetic tape files.

1.11 Generation of a Full File Specification
When you specify the target file for an FeS operation, FeS generates a full file specification in the
following manner:

1 FeS parses the filename string to determine which elements are present. You need not
provide a full file specification in the filename string; however, any elements present
must be syntactically correct and in the proper order. FeS ignores any nun, space, or tab
characters that may be present in the string unless they occur within an ANSI magnetic tape
quoted-string name.

2 FeS processes the default filename block to determine which elements are present. You need
not provide a full file specification in the default filename block.

1-16

1.12

File Control Services

3 If the filEmame string does not provide a full file specification, FeS obtains missing el~ments
from the default filename block; if aIllY elements are missing after this merge, FeS provides
default values for them as follows:

Device Defaults to the device to which the specified logical unit Is currently assigned; If the specified
logical unit is not assigned to any device, defaults to SY.

Directory

Name, type,
and version

Defaults to the current directory.

Defaults to null.

Routines Included in FCSRE~)
Table 1-2 lists the routines contained in all forms of FCS. However, the routines included in the
overlaid version FCSRES are placed into two overlay segments. The first overlay segment includes
routines used for open, close, and associated user-accessible routines. The second overlay segment
includes routines used for get, put, read, write, and other user-accessible routines.

Table 1-2 F:CSRIES Routines

Routine Name!

First Overlay ~Segment

ASCII UIC to Binary Conversion

Assign logical Unit Number

Binary UIC to J\SCII Conversion

Close

Delete File

Delete File by lFilename Block

Directory Primitives

Extend File

Expand logical Name and Return
Pointer to Expanded String

File Storage R4~gion Initialization

Get Directory

Get Directory liD

Mark for Deletilon (Internal)

Mark for Deletilon (User Interface)

Octal to Decimal Conversion

Open

Parse

Parse Device

Parse Director),

Parse File Name

Print

Rename

Module Name

ASCPPN

ASSlUN

PPNASC

CLOSE

DElJMP, DELETE

DEL

DIRECT

EXTEND

.EXPlG

FINIT

GETDIR

GETDID

MKDl

MRKDl

.ODCVT

OPNJMP,OPENR

PARSE

PARSDV

PARSDI

PARSFN

$PRINT

RENAME

1-17

File Control Services

Table 1-2 (Cont.) FCSRES Routines

Routine Name

First Overlay Segment

Request Logical Core Block

Send Data to and Start a Subsidiary Task

Truncate and Close File

User Directive Primitives

Second Overlay Segment

Arithmetic Routines

ASCII to Binary Conversion

Binary to ASCII Conversion

Convert Double Precision to Decimal

Double Precision Arithmetic Routines

Edit Message

Edit lime and Date

Exit with Status

ReadlWrite File Storage Region 2

Flush

Get Record

Obtain Library Attributes

Octal to Binary Conversion

Parse Command Line

Point and Mark

Position Record

Put Record

010

Read Block

Return Position

User Device Control Function

Wait

Write Block

1-18

Module Name

ROLCB

OS PAT

TRNCLS

UDIREC

ARITH

CATB

CBTA

CODMG

DARITH

EDTMG

EDDAT

EXST

RWFSR2

FLUSH

GETJMP, GET

FCSTYP

.OD2CT

.CSI1, .CSI2,

.EXPLG

PNTMR~

POSREC

GETJMP, PUT

XOIOU

READ

POSIT

CONTRL

WAITU

WRITE

2 PreparirlQ for I/O

This chapter describes the macro calls that your task must invoke to provide the necessary
file-processing information for the File Deslcriptor Block (FDB).

2;1 General Information
The MACRO-ll programmer must establislh the proper database and working storage areas within
the particular program to perform 1/0 operations. You must do the following:

1 Define a F'ile Descriptor Block (FDB) t()r each file that your program is to open simultaneously
(see Section 2.2).

2 Define a data-set descriptor or a defauJt filename block, or both (see Sections 2.5.1 or 2.5.2,
respectivelly) if you intend to access these structures to provide file specifications that FCS
requires.

3 Establish a file storage region (FSR) y;rithin the program (see Section 2.6). (The initialization
procedurel~ for FORTRAN tasks are described in detail in the PDP-II MACRO-II Language
Reference Guide.)

Your task can place such information in the FDB in one of three ways:

• By the asslembly-time FDB initialization macro calls (see Section 2.3.1)

• By the run-time FDB initialization macro calls (see Section 2.3.2)

• By the fiIE!-processing macro calls (see Chapter 3)

Data supplied during the assembly of the source program establishes the initial values in the FDB.
Data supplied. at run time can either initialize additional portions of the FDB or change values
established at assembly time. Similarly, the data supplied through the file-processing macro calls
can either initialize portions of the FDB Olr change previously initialized values.

Table 2-1list:s the macro calls that generate FDB information.

Table 2-1 M,acro Calls Generating FOB Iinformation

Assembly-TimEt FOB Run-Time FOB File-Processing
Macro Calls Macro Calls Macro Calls

FDBDF$ (required) FDAT$R OPEN$ (all variations)

FDAT$A FDRC$R ClOSE$

FDRC$A FDBK$R GET$ (all variations)

FDBK$A FDOP$R PUT$ (all variations)

FDOP$A FDBF$R READ$

FDBF$A WRITE$

DElET$

WAIT$

2-1

Preparing for I/O

2112 .MCALL Directive-Listing Names of Required Macro Definitions
You must list as arguments in a .MCALL directive all the assembly-time, run-time, and
file-processing macro calls (see Table 2-1) that you intend to issue in a program. Doing so allows
the required macro definitions to be read in from the System Macro Library during assembly.

You must write the .MCALL directive and associated arguments in the program prior to writing
any macro call in the execution code of the program. If the list of macro names is lengthy in the
.MCALL statement, you must specify several .MCALL directives, each appearing on a separate
source Hne. The availability of space within an SO-byte line of source code limits the number of
such names that may appear in anyone .MCALL statement .

. MCALL arg1,arg2, ... ,argn

Argument

arg1,arg2, ... ,argn
Specifies a list of symbolic names that identify the macro definitions that you use in your program.
If more than one source line is required to list the names of all desired macros, each additional line
must begin with a .MCALL directive.

For clarity in your source code, you may list the assembly-time, run-time, and file-processing macro
names in each of three separate .MCALL statements; you may list the macro names alphabetically,
or you may mix them. None of these optional arrangements have any effect whatever on retrieving
macro definitions from the System Macro Library.

If you are planning to invoke the command line processing capabilities of the Get Command Line
(GCML) routine and the Command String Interpreter (CSI), you must list all the names of the
associated macros as arguments in a .MCALL directive. GCML and CSI, ordinarily employed in
system or application programs for convenience in dynamically processing file specifications, are
described in detail in Chapter 6.

The .MCALL directive is described in detail in the PDP-II MACRO-II Language Reference Guide.
The sample programs in Appendix J also illustrate the use of the .MCALL directive. Note
that these .MCALL directives appear as the first statements in the preparatory coding of these
programs.

The object routines described in Chapter 4 should not be confused with the macro definitions
available from the System Macro Library. The file control routines, constituting a body of
object modules, are linked into your program at task-build time from the system object library
([l,l]SYSLIB.OLB). Consult Chapter 4 for a description of these routines.

The following statements show sample uses of the .MCALL directive:

Note

.MCALL FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$,FINIT$

.MCALL OPEN$R,OPEN$W,GET$,PUT$,CLOSE$

You can use the macro FCSMC$ to declare the most commonly used FCS macros within the
.MCALL format as follows:

.MCALL FCSMC$
FCSMC$

FCS macros declared in this manner include: OPEN$x, OPNS$x, CLOSE$, READ$, WRITE$,
WAIT$, GET$, PUT$, DELET$, FINIT$, FSRSZ$, FDBDF$, FDAT$x, FDRC$x, FDOP$x, FDBF$x,
FDBK$x, and NMBLK$. If other macros are required, explicit .MCALL directives must be issued.
One disadvantage of using this method to declare .MCALL directives is that unused macros may
take up possibly critical assembler symbol table space, thus slowing down the assembly process.

2-2

" 3 •••

2.3.1

Preparing for 1/0

File Des(:riptor Block
The File Dencriptor Block (FDB) is the data structure that provides the infonnation FCS needs for
all file 1/0 operatnons. Two sets of macro calls are available for FDB initialization: you can use one
set for assenlbly-time initialization (see Section 2.3.1) and the other set for run-time initialization
(see Section 2.3.2). Use the run-time macros to supplement or override infonnation specified during
assembly. The FDB sections are describE!d in Appendixes A and B.

Assembly-Time FOB Initializcltion Macros
Assembly-tirne initialization requires thalt the FDBDF$ macro call be issued (see Section 2.3.1.1) to
allocate spac:e for and to define the beginning address of the FDB. Additional macro calls can then
be issued to establish other required infonnation in this structure. The assembly-time macros that
accomplish these functions are described in the following sections.

mcnam$A p 1,p2, ... ,pn

Macro Name!

mcnam$A
Specifies the symbolic name of the macro.

Parameter

p1,p2, ... ,pn
Specifies the string of initialization paralrneters associated with the specified macro. A parameter
may be omitted from the string by leaving its field between delimiting commas null. Assume, for
example, tha.t a macro call may take the following parameters:

FDOP$A 2,DSPT,DFNB

Assume further that the second parameter field is to be coded as a null specification. In this case,
the statemeIllt is coded as follows:

FDOP $J~ 2 , , DFNB

A trailing comma need not be inserted to reflect the omission of a parameter beyond the last
explicit specification. For example, the following macro call need not be specified as if the last
parameter (DFNB) is omitted:

FOOP$A 2,DSPT,DFNB

FIDOP$A 2,DSPT,

Rather, such a macro call is specified as iollows:

FIDOP$A 2,DSPT

If any param.eter is not specified, that is, if any field in the macro call contains a null specification,
the corresponding cell in the FDB is not initialized and thus remains O.

Multiple values may be specified in a parameter field of certain macro calls. Such values are
indicated by placing an exclamation poin1G (!) between the values, indicating a logical OR operation
to the MACRO-11 assembler. Specifying multiple values in this manner is mentioned throughout
this manual if applicable to the macro call.

2-3

Preparing for I/O

Throughout the descriptions of the assemhly-time macros in this secUon and elsewhere in this
manual, symbols of the form F.xxx or F.xxxx are referenced (for example, F.RTYP). These symbols
are defined as offsets from the beginning address of the FDB, allowing specific locations within
the FDB to be referenced. Thus, you can reference or modify information within the FDB without
having to calculate word or byte offsets to specific locations.

Using such symbols in either system software or your software also permits the relative position of
cells within the FDB to be changed (in a subsequent release, for example) without affecting your
current programs or the coding style employed in developing new programs. As a result, we highly
recommend that you use them.

2.3.1.1 FDBDF$-Allocate File Descriptor Block
The FDBDF$ macro call is specified in a MACRO-II program to allocate space within the program
for an FDB. This macro call must be specified in the source program once for each input or output
file that your program simultaneously opens during execution. Any associated assembly-time
macro calls (see Sections 2.3.1.2 to 2.3.1.6) must then be specified immediately following the
FDBDF$ macro if you want to initialize certain portions of this FDB during assembly.

Macro Name and Label

label: FDBDF$

label
Specifies a symbol, which you specify, that names this particular FDB and defines its beginning
address. This label is particularly significant in all 1/0 operations that require access to the data
structure allocated through this macro call. FCS accesses the fields within the FDB relative to the
address represented by this symbol.

The following examples show how the FDBDF$ macro calls might appear in your source progr'am:

FDBOUT: FDBDF$

FDBIN: FDBDF$

iALLOCATES SPACE FOR AN FDB NAMED
i"FDBOUT" AND ESTABLISHES THE
iBEGINNING ADDRESS OF THE FDB.

iALLOCATES SPACE FOR AN FDB NAMED
i"FDBIN" AND ESTABLISHES THE
iBEGINNING ADDRESS OF THE FDB.

As noted earlier, the source program must embody one FDBDF$ macro call logically similar to
these example macro calls for your program to access each file simultaneously. FDBs can be reused
for many different files, as long as the file currently using the FDB is closed before the next file
is opened. The only requirement is that an FDB must be defined for every simultaneously opened
file.

2.3.1.2 FDAT$A-Inltlallze File Attribute Section of FOB
The FDAT$A macro call initializes the file attribute section of the FDB when a new output file is
to be created. If the file to be processed already exists, the first four parameters of the FDAT$A
initialization macro need not be specified because FCS obtains the necessary information from the
first 14 bytes of the file attribute section. The file attribute section is in the header block of the
specified file. (See Appendix C.)

FDAT$A rtyp,ratt,rsiz,cntg,aloc

2-4

Preparing for 1/0

Parameters

rtyp
Specifies a symbolic value that defines the type of records to be built as the new file is created.
One of three values must be specified, as follows:

R.FIX Indlcl:ttes that fixed-length records are to be written in creating the file.

R.VAR Indicates that variable-length records .are to be written in creating the file.

R.SEQ Indiclates variable-length sequenced n~cords are to be written In creating the fHe.

The rtyp parameter initializes FDB offset location F.RTYP. The symbols R.FIX, R.VAR, and R.SEQ
initialize the same location in the FDB and are mutually exclusive.

ratt
Specifies symbolic values that may be spE,cified to define the attributes of the records as the new
file is created.

The following parameters initialize the rElcord attribute byte (offset location F.RATr) in the FDB.
The values FD.FTN and FD.CR are mUh1811y exclusive and must not be specified together. Apart
from this res1~riction, the combination (l0iPcal OR) of multiple parameters specified in this field
must be sepa'rated by an exclamation point (for example, FD.CR!FD.BLK).

Specify the following symbolic values, as appropriate, to define the desired record attributes:

FO.FTN Indiciates that the first byte In each reGord is to contain a FORTRAN carriage control character.

FD.CR Indiclates that the record is to be prec'9ded by a <LF> character and followed by a <CR> character when
the r4:.cord is written to a carriage con1trol device (for example, a line printer or a terminal).

FD.BLK Indicates that records cannot cross bllock boundaries.

FD.PRN Indicates that the record is preceded Iby a word containing carriage control Information; this value Is the
print file format attribute. Rles that have this attribute set must also be sequenced fHes; that Is, fHes that
have the bit R.SEQ set in byte F.RTYI? in the FOB.

In a file with attribute FD.PRN, each rl9cord is associated with its own print format word, which describes
the carriage control for that record, if 1the record is output to a unit record device such as a terminal or
line printer. A program using FCS can read or write a file with attribute FD.PRN, but FCS Ignores and
does not interpret the format word. Thus, the Peripheral Interchange Program (PIP) correctly copies
such a file from disk to disk, but a copy to TI may not achieve the desired carriage control. Note that
FCS does not interpret the FD.PRN fClrmat word.

Files with the print file format attribute are a subset of sequenced files. 'Sequenced flies are IdentHled by
record type R.SEQ in FOB field R.RTVP. Sequenced files have records of variable length; each record
is aSisociated with a 1-word sequence number. (Note that sequential Is not the same as sequenced.
Sequential means that the file Is not St Record Management Services (RMS) Indexed or relative file. All
sequl9nced files are also sequential.)

2-5

Preparing for 1/0

rslz

When a program is reading a sequenced file with FCS in record mode, FCS returns the record in the
normal manner on a GET$; the sequence number is returned in FOB field F.SEQN. Conversely, when
writing a sequenced file with FCS in record mode, FCS writes the record In the normal manner and
writes the associated sequence number from F.SEQN.

The sequence number field can contain any pattern of bits. A frequent application of this field Is Its use
as a line number for text files.

The difference between a file with attribute FO.PRN and any other sequenced file Is that the sequence
number Is considered to be the carriage control format word. This word has a particular meaning In a
file with attribute FO.PRN. Each byte of the format word describes the carriage control for the assoclatec
record. The low byte describes carriage control action that should occur before the record Is printed; the
high byte describes carriage control action that should occur after the record Is printed.

FCS operates on files with attribute FO. PRN in the same way that it operates on any other seque'nced
file. FCS uses the FOB field F.SEQN for the format word. Each byte of the format word Is defined as
follows:

Bits 0-6

o
1-127

Bits 0-4

1-31 10

o

Bit 5 Bit 6

o o

o

Bit 7

o
o

Bit 7

Meaning

No carriage control.

Bits 0-6 are a count of
line records.

Meaning

Bits 0-4 define a 7 -bit
ASCII control character to be output.

Bits "0-4 are translated
as an 8-bit ASCII control
character ranging from
12810 to 15910 to be output.

Reserved for future use.

Because print format files must be sequenced files, FCS allows FD.PRN as an attribute of a new file
only if record type R.SEQ Is also specified. For example:

FDBDF$
FDAT$A

;Allocate space for FDB
;Print file format

FCS does not create a file with attribute FD.PRN that has a record type other than R.SEQ. In this case,
FCS returns an error -4510 • IE.RAT, "illegal attribute bits set."

Specifies a numeric value that defines the size (in bytes) of fixed-length records to be written to
the file. This value, which initializes FDB offset location F.RSIZ, need not be specified if R.VAR
has been specified as the record type parameter (for variable-length records). If R.VAR or R.SEQ
is specified, FeS maintains a value in FDB offset location F.RSIZ that defines the size (in bytes)
of the largest record currently written to the file. Thus, whenever an existing file containing
variable-length records is opened, the value in F.RSIZ defines the size of the largest record within
that file. By examining the value in this cell, a program can dynamically allocate record buffers fo
its open files.

cntg
Specifies a signed numeric value that defines the number of blocks that are allocated for the file a:
it is created. The signed values have the following significance:

2-6

Preparing for 1/0

Positive Value Indicates that the specified number of blocks is to be allocated contiguously when the file is
created; It also Indicates the,t the file Is to be contiguous.

Negative Value Indicates that the two's complement of the specified number of blocks Is to be allocated when
the file is created, though m)t necessarily contiguously; it also Indicates that the file Is to be
noncontiguous.

The cntg parSlmeter, which has 15 bits of 1:Jlagnitude (plus a sign bit), initializes FDB offset location
F.CNTG.

(You can specify an allocation of up to 24 lbits by using the .EXTND routine.)

If you can estimate how long the file might be, it is more efficient to allocate the required number
of blocks through t.his parameter when the file is created than to require FCS to extend the file
when the file is written. (See the aloc parameter in the following text.)

If this parameter is not specified, an empty file is created; that is, no space is allocated within the
file as it is created.

Issuing the CLOSE$ macro call at the cornpletion of file processing resets the value in F.CNTG to
O. Thus, the ll1Sual procedure is to initialize this location at run time just before opening the file.
Reinitialization is necessary if the FDB is reused.

aloe
Specifies a siirned numeric value that defines the number of blocks by which the file is extended,
if FCS detemlines that file extension is necessary as records are written to the file. When the
end of allocatled space in the file is reached during writing, the signed value provided through this
parameter causes file extension to occur, as follows:

Positive Value

Negative Value

Indicates that the specified number of blocks is to be allocated contiguously as additional
space within the file; it also indicates that the file is to be contiguous.

Indicates that the two's complement of the specified number of blocks is to be allocated
noncontiguously as additional space within the file; it also indicates that the file Is to be
noncontiguous.

NOTE: Once a file has had blocks allocated, all future file extensions cause the file to
become non1contilguous, even when aloc is a positive value.

This paramet,er, which also has 15 bits of :magnitude (plus a sign bit), initializes FDB offset location
F.ALOC. If this optional parameter is not specified, file extension occurs as follows:

• If the nwnber of virtual blocks yet to be written is greater than 1, the file is extended by the
exact nuolber of blocks required to cOlnplete the writing of the file.

• If only one additional block is required to complete the writing of the file, the file is extended
in accordance with the volume's default extend' value.

The volume default extend size is established through the INITIALIZE or MOUNT command. The
volume defau'lt extend size cannot be established at the FeS level; this value must be established
when the volume is initially mounted.

The following example statement shows a sample of an FDAT$A macro can. This statement
initializes thE! FDB in preparation for creating a new file containing fixed-length, SO-byte records
that will be aHowed to cross block boundaries. For example:

FDAT$A R.FIX"BO.

2-7

Preparing for 1/0

In the previous example statement, the record attribute (ratt) parameter has been omitted, as
indicated by the second comma (,) in the parameter string. Also, the cntg and aloe parameters
have been omitted. Their omission, however, follows the last explicit specification, and their
absence need not be indicated by trailing commas in the parameter string. Because the aloe
parameter has been omitted, file extension (if it becomes necessary) is accomplished in accordance
with the current default extend size in effect for the associated volume.

If more than one record attribute is specified in the ratt parameter field, such specifications must
be separated by an exclamation point (I), as shown in the following macro:

FDAT$A R.VAR,FD.FTN!FD.BLK

The previous macro call enables a file of variable-length records to be created. The records will
contain FORTRAN vertical-formatting information for carriage control devices; the records will not
be allowed to cross block boundaries.

2.3.1.3 FDRC$A-Inltlallze Record Access Section of FOB
The FDRC$A macro call initializes the record access section of the FDB, and the macro indicates
whether to use record or block 110 operations in processing the associated file.

If you want to use record 1/0 operations (GET$ and PUT$ macro, the FDRC$A or the FDRC$R
macro call (see Section 2.3.2) establishes the FDB information necessary for record-oriented 1/0.
However, if you want to use block 1/0 operations (READ$ and WRITE$ macro calls), the FDBK$A
macro call (see Section 2.3.1.4) or the FDBK$R macro call (see Section 2.3.2) must also be specified
to establish other values in the FDB required for block 1/0. In this case, portions of the record
access section of the FDB are physically overlaid with parameters from the FDBK$AlFDBK$R
macro call.

You must appropriately initialize the FDB to indicate whether record or block 1/0 operations are tc
process the associated file prior to issuing the OPEN$ macro call to initialize file operations.

FDRC$A racc,urba,urbs

Parameters

racc
Specifies which variation of block or record 1/0 is to process the file. This parameter initializes
the record access byte (offset location F.RACC) in the FDB. The first value shown next, FD.RWM,
applies only for block 1/0 (READ$ or WRITE$) operations; all remaining values are specific to the
following record 1/0 (GET$ or PUT$) operations:

FD.RWM Indicates that READ$ or WRITE$ (block 1/0) operations are to process the file. If this value Is not
specified, GET$ or PUT$ (record 1/0) operations process the file by default.

Specifying FD.RWM necessitates issuing an FDBK$A or an FDBK$R macro call in the program to
initialize other offsets in the block access section of the FOB. Note also that the READ$ or WRITE$
macro call allows the complete specification of all the parameters required for block 1/0 operations.

FD.RAN Indicates that random access mode is to process the file. If this value is not specified, sequential
access mode processes the file by default. See Chapter 1 for a description of random access mode.

2-8

The following statement shows a sam pie FDRC$A macro call issued for a file that may be accessed in
random mode:

FDRC$A FD.RAN,BUF1,160.

You specify the address of the task's record buffer through the symbol BUF1, and you specify the size
of the buffer (in bytes) by the numeric value 16010 •

Preparing for 1/0

FD.PLC Indicates that locate mode is to pmcess the file. If this value is not specified, move mode processes
the file.

FD.lNS Indicates that a PUT$ operation p-Hformed within the body of the file shall not truncate the file. This
value applies only for sequential files and therefore cannot be specified jointly with the FD.RAN
pllrameter.

If you specify more than one valuo in the record access (racc) field, an exclamation point (') must
s4~parate the multiple values, as follows:

FDRC$A FD.RAN!FD.PLC,BUF1,160.

In addition to the functions described for the previous example, this example specifies that locate
'mode is to process the associated file. Note that the multiple parameters specified in the first field
are separated by an exclamation point.

If you want your task to perform a PUT$ operation within the body of a file, the .POINT routine
described in Chapter 4 may be called. 1rhis routine positions the file to a byte you specify within
a virtual block in preparation for the PUT$ operation. The .POINT routine also permits a limited
degree of nllndom access to a file.

If FD.INS is not specified, a PUT$ opel'ation within the file truncates the file at the point of
insertion; that is, the PUT$ operation rrlOves the logical end-of-file (EOF) to a point just beyond the
inserted record. However, no deallocation of blocks within the file occurs.

Regardless of the setting of the FD.INS bit, a PUT$ operation that is in fact beyond the current
logical end-of-file resets the logical end of the file to a point just beyond the inserted record.

urba
Specifies the symbolic address of your task's record buffer used for GET$ operations in move and
locate modE~s; it is also used for PUT$ operations in locate mode. This parameter initializes FDB
offset location F.URBD+2, and urba is specified only for record 1/0 operations.

urbs
Specifies a numeric value that defines the size (in bytes) of your task's record buffer used for
GET$ operations in move and locate modes; it is also used for PUT$ operations in locate mode.
This paralneter initializes FDB offset location F.URBD, and urbs is specified only for record 1/0
operations.

You allocate and label a record buffer in a program by issuing a .BLKB or .BLKW directive. The
address and the size of this area are then passed to FCS as the urba and the urbs parameters
shown previously. For example, a task'EI record buffer may be defined through a statement that is
logically equivalent to the following:

RECBUF: .BLKB 82.

RECBUF iEI the address of the buffer and 8210 is its size (in bytes).

Beginning a task's record buffers on a word boundary can improve performance by allowing FCS to
move the data with MOV instructions rather than MOVB instructions.

Under certain conditions, you need not allocate a record buffer or specify the buffer descriptors
(urba and urbs) for GET$ or PUT$ oper'ations. These conditions are described in detail in Chapter
3.

2-9

Preparing for 1/0

2.3.1.4 FOBK$A-Inltlallze Block Access Section of FOB
The FDBK$A macro call initializes the block access section of the FDB when block 1/0 operations
(READ$ and WRITE$ macro calls) are used for file processing. Initializing the FDB with this
macro call allows you to read or write virtual blocks of data within a file.

Use of the FDBK$A macro call implies that the FDRC$A macro call has also been specified,
because the FD.RWM parameter of the FDRC$A macro call initially declares block 1/0 operations.
Thus, for block 110 operations, the FDRC$A macro call must be specified, as well as anyone of
the following macro calls, to appropriately initialize the block access section of the FDB: FDBK$A,
FDBK$R, READ$, or WRITE$.

Issuing the FDBK$A macro call causes certain portions of the record access section of the FDB
to be overlaid with parameters necessary for block 1/0 operations. Thus, the terms "record access
section" and "block access section" refer to a shared physical area of the FDB that is functional for
either record or block 1/0 operations.

The block 1/0 and record 1/0 FDB-initialization macros use the same area of the FDB for different
data. Therefore, if record 1/0 operations are to be employed, neither the FDBK$A nor the FDBK$R
macro call must be issued.

FOBK$A bkda,bkds,bkvb,bkef,bkst,bkdn

Parameters

bkda
Specifies the symbolic address of an area in your task's memory space to be employed as a buffer
for block 1/0 operations. This parameter initializes FDB offset location F.BKDS+2.

bkds
Indicates a nwneric value that specifies the size (in bytes) of the b10ck to be read or written when a
block 1/0 request (READ$ or WRlTE$ macro call) is issued. This parameter initializes FDB offset
location F.BKDS. The size specified must be an even, positive (the sign bit must not be set) value;
the maximum nwnber of bytes that can be specified is 32,766. If an integral nwnber of blocks is
to be specified, the practical maximwn nwnber of bytes that can be specified is equal to 63 virtual
blocks, or 32,25610 bytes.

bkvb
Specifies a dwnmy parameter for compatibility with the FDBK$R macro call. The bkvb parameter
is not specified in the FDBK$A macro call for the reasons stated in item 4 of Section 2.3.2.1. In
short, assembly-time initialization of FDB offset locations F.BKVB+2 and F.BKVB with a virtual
block nwnber is meaningless, because any version of the generalized OPEN$x macro call resets the
virtual block number to 1 as the file is opened. Therefore, these cells can be initialized only at run
time through either the FDBK$R macro call (see Section 2.3.2) or the I/O-initiating READ$ and
WRITE$ macro calls (see Chapter 3).

This dwnmy parameter should be reflected as a null specification (with a comma) in the parameter
string only in the event that an explicit parameter follows. This null specification is required to
maintain the proper position of any remaining field or fields in the parameter string.

bkef
Specifies a numeric value that specifies an event flag to be used during READ$ or WRITE$
operations to indicate the completion of a block 1/0 transfer. This parameter initializes FDB offset
location F.BKEF; if not specified, event flag 3210 is used by default.

The function of an event flag is described in further detail in Section 2.9.1.

2-10

Preparing for 1/0

bkst
Specifies the symbolic address of a 2-word 1/0 status block (IOSB) in your program. If specified,
this optional parameter initializes FDB offset location F.BKST.

The 10SB, if it is to be used, must be defined and appropriately labeled at assembly time. Then,
if you specify the bkst parameter, inforrnation is returned by the system to the 10SB at the
completion of the block 1/0 transfer. This information reflects the status of the requested operation.
If this pararneter is not specified, no information is returned to the 10SB.

NOTE: If an error occurs during a HEAD$ or WRITE$ operation that would normally
be reported as a negative value in the first byte of the IOSB, the error is not reported
unless you specify an IOSB address. You are advised to specify this parameter, which
allows the :return of block 110 status information and permits normal error reporting.

The creation and function of the 10SB are described in detail in Section 2.9.2.

bkdn
Specifies thEl symbolic address of an optional asynchronous system trap (AST) service routine,
which you code. If present, this parame1ter causes the AST service routine to be initiated at the
specified address upon completion of blo(:k 1/0; if not specified, no AST trap occurs. This parameter
initializes File Descriptor Block (FDB) offset location F.BKDN.

Considerations relevant to the use of an AST service routine are presented in Section 2.9.3.

The following example shows an FDBK$A macro call that uses all available parameter fields for
initializing the block access section of the FDB:

FDBK$A BKBUF, 240., ,20., I:;TAT, ASTADR

In this macro call, the symbol BKBUF identifies a block 1/0 buffer reserved in your program
that will accommodate a 240lO-byte block. The virtual block number is null (for the reasons
stated previously in the description of this parameter), and the event flag to be set upon block 1/0
completion il3 2010' Finally, the symbol ISTAT specifies the address of the 10SB, and the symbol
ASTADR specifies the entry point addres:s of the AST service routine.

2.:1.1.5 FDOP$A-Inltlallize File-Open Section of FOB
The FDOP$A macro call initializes the file-open section of the FDB. In addition to a logical unit
number (LUJN), you would normally specify a data-set descriptor pointer, a default filename block
address, or both, for each file that is to be opened. The latter two parameters provide FCS with
the linkage necessary to retrieve file speeifications from these data structures that you created in
the program.

Although both a data-set descriptor pointer (dspt) and the address of a default filename block
(dfnb) may be specified for a given file, one or the other must be present in the FDB before that
file can be opened. If, however, certain information is already present in the filename block as the
result of prior program action, neither the data-set descriptor nor the default filename block is
accessed by l:rCS, and you can open the fHe using a procesE' called "opening a file by file ID." This
process, which is an efficient method of opening a file, is described in detail in Section 2.6.

The dspt and dfnb parameters represent address values that point to data structures that you
created in the program. These data structures, which are described in detail in Section 2.5, provide
file specifications to the File Control Services (FCS) file-processing routines.

FDOP$A lutl,dspt,dfnb,facc,actl

2-11

Preparing for 1/0

Parameter

lun
Specifies a numeric value that specifies a logical unit number (LUN). This parameter initializes
FOB offset location F.LUN. All 110 operations perlorrned with this FOB are done through the
specified LUN. Every active FOB must have a unique LUN.

The LUN specified through this parameter may be any value from 1 through the largest value
specified to the Task Builder through the UNITS option. This option specifies the number of logical
units that the task is to use (see the lAS Thsk Builder Reference Manual.)

dspt
Specifies the symbolic address of a 6-word block in your task containing the data-set descriptor.
This data structure, which you created, consists of a 2-word device descriptor, a 2-word directory
descriptor, and a.2-word file name descriptor, as outlined in Section 2.5.1.

The dspt parameter initializes FOB offset location F.OSPT. This address value, called the data-set
descriptor pointer, is the linkage address through which FCS accesses the fields in the data-set
descriptor.

When the Command String Interpreter (CSI) processes command string input, a file specification
is returned to the calling program in a format identical to that of the manually created data-set
descriptor. The use of CSI as a dynamic command line processor is described in detail in Chapter
6.

dfnb
Specifies the symbolic address of the default filename block. This structure is allocated within
your task through the NMBLK$ macro call (see Section 2.5.2). When specified, the dfnb parameter
initializes FOB offset location F.OFNB, allowing FCS to access the fields of the default filename
block in building the filename block in the FOB.

Specifying the dfnb parameter in the FOOP$A (or the FOOP$R) macro call assumes that the
NMBLK$ macro call has been issued in the program. Furthermore, the symbol specified as the
dfnb parameter in the FOOP$A (or the FOOP$R) macro call must correspond exactly to the symbol
specified in the label field of the NMBLK$ macro call.

face
Specifies anyone, or any appropriate combination, of the following symbolic values indicating how
the specified file is to be accessed:

FO.RD

FO.WRT

FO.APD

FO.MFY

FO.UPD

FA.NSP

FA.TMP

FA.SHR

Indicates that an existing file is to be opened for reading only.

Indicates that a new file is to be created and opened for writing.

Indicates that an existing file is to be opened and appended.

Indicates that an existing file is to be opened and modified.

Indicates that an existing file is to be opened, updated, and, if necessary, extended.

Indicates, in combination with FO.WRT, that an old file having the same file specification is not to be
superseded by the new file. Rather, an error code is to be returned if a file of the same file name, type,
and version exists.

Indicates, in combination with FO.WRT, that the created file is to be a temporary file.

Indicates that the file is to be opened for shared access. Shared access is also a precondition for block
locking.

The facc parameter initializes FOB offset location F.FACC. The symbolic values FO.xxx, described
previously, represent the logical OR of bits in FOB location F.FACC.

The information specified by this parameter can be overridden by an OPEN$ macro call, as
described in Section 3.7. It is overridden by an OPEN$x macro call.

2-12

Preparing for 1/0

aetl
Specifies a s~nnbolic value that specifies the following control information in FDB location F.ACTL:

• Magnetic: tape position.

• Whether a disk file that is opened for write is to be locked if it is not properly closed; for
example, the file may not be properly closed if the task terminates abnormally.

• Number of retrieval pointers to allocate for a disk file window.

• Whether to enable block locking .

. Normally, FeS supplies default values fOl!' F.ACTL. However, if FA.ENB is specified in combination
with any of t.he symbolic values described in the following text, FCS uses the information in
F.ACTL. The FA.ENB location must be specified with the desired values to override the defaults.
The following are the defaults for location F.ACTL:

• For file creation, magnetic tapes are positioned to the end of the volume set.

• At file open and close, tapes are not rewound.

• A disk fil,e that is opened for write is locked if it is not properly closed.

• The volume default is used for the file window.

The following values can be used with FA.ENB:

FA.POS

FA.RWO

FA.OlK

FA.lKLlFA.EXl

Is meaningful only for output files and is specified to cause a magnetic tape to be positioned
just after the most recently closed file for creating a new file. Any flies that exist after that
point are lost. If rewind is s:pecified, it takes precedence over FA.POS, thus causing the tape
to be positioned just after the VOL 1 label for file creation. See Chapter 5 for more information
on tape positioning.

Is specified to cause a magnetic tape to be rewound when the file is opened or closed.

Examples of using FA.ENB with FA.POS and FA.RWO are provided in Chapter 5.

Is specified to cause a disk file not to be locked if it is not properly closed.

The number of retrieval pointers for a file window can be specified in the low-order byte of
F.ACTL. The default numbe,r of retrieval pointers Is the file-window mapping pointer count
parameter (/WIN) included in the Monitor Console Routine (MCR) commands INI or MOUNT
(DIGITAL Command langUi:tge (DCl) commands, INITIALIZE and MOUNT); the default value
for this parameter is 7. Retrieval pointers point to contiguous blocks of the file on disk. Access
to fragmented files may be optimized by increasing the number of retrieval pointers, that is,
by increasing the size of tho window. Similarly, because retrieval pointers use up pool space,
additional memory can be freed up by reducing the number of pointers for flies with little or no
fragmentation-for example, contiguous files.

Is specified to lock all acce~~sed blocks. FCS permits limited block locking to coordinate the
access of the same file by two or more tasks. All tasks accessing the file must open the file
for shared access by settin~J bit FA.SHR in FOB field F.FACC (the field access byte).

See the lAS Device Handlers Reference Manual for further information on block locking. Also,
see Section 2.9.4.

As noted, if neither the dspt nor the dfnb parameter is specified, the corresponding offset locations
F.DSPT and]f'.DFNB contain O. In this case, no file is currently associated with this FDB. Any
attempt to open a file with this FDB results in an open failure. Either offset location F.DSPT or
F.DFNB must be initialized with an appropriate address value before a file can be opened using
this FDB. Normally, these cells are initialized at assembly time through the FDOP$A macro call;
but they may also be initialized at run tilne through the FDOP$R or the generalized OPEN$x
macro call (see Chapter 3).

2-13

Preparing for 1/0

The examples at the end of this section show how the FDOP$A macro call may be used in your
source program.

Examples

FDOP$A 1"DFNB

Indicates that the data-set descriptor pointer parameter (dspt) is null, requiring that FCS rely on
the run-time specification of the data-set descriptor pointer for the FDB or the use of the default
filename block for required file information.

FDOP$A 2,OFDSPT

Specifies a data-set descriptor pointer (named OFDSPT), which allows FCS to access the fields in
the data-set descriptor for required file information.

FDOP$A 2,OFDSPT,DFNB

Specifies both a data-set descriptor pointer and a default filename block address, which causes
FDB offset locations F.DSPT and F.DFNB, respectively, to be initialized with the appropriate
values. In this case, FCB can access the data-set descriptor and the default filename block, or
both, for required file information. By convention, FCB first seeks such information in the data-se1
descriptor; if all the required information is not present in this data structure, FCS attempts to
obtain the missing information from the default filename block.

FDOP$A 1,CSIBLK+C.DSDS

Shows a macro call that takes as its second parameter a symbolic value that causes FDB offset
location F.DSPT to be initialized with the address of the CSI data-set descriptor. This structure is
created in the CSI control block by invoking the CSI$ macro call. All considerations relevant to thl
use of CSI as a dynamic command line processor are presented in Chapter 6.

FDOP$A 1"DFNB"FA.ENB!16.

Shows the use of the act1 parameter to increase the number of retrieval pointers in the file windov
to 16. FA.ENB causes the contents of F.ACTL, rather than the defaults, to be used.

In all the examples previously shown, the value specified as the first parameter supplies the logics
unit number (LUN) used for all I/O operations involving the associated file.

2.3.1.6 FOBF$A-Inltlallze Block Buffer Section of FOB
The FDBF$A macro call initializes the block buffer section of the FDB when record I/O operations
(GET$ and PUT$ macro calls) process files. Initializing the FDB with this macro call allows FCS
to control the necessary blocking and deblocking of individual records within a virtual block as an
integral function of processing the file.

FDBF$A efn,ovbs,mbct,mbfg

efn
Indicates a numeric value that specifies the event flag that FCS uses to synchronize record I/O
operations. This numeric value initializes FDB offset location F.EFN. FCS uses this event flag
internally; you must not set, clear, or test it.

If this parameter is not specified, FeB uses event flag 3210, A nun specification in this field is
indicated by inserting a leading comma in the parameter string.

ovbs
Indicates a numeric value that specifies a file storage region (FSR) block buffer size, in bytes, thai
overrides the standard block size for the particular device associated with the file. This parametel
initializes FDB offset location F.OVBS with the specified block buffer size.

2-14

Preparing for 1/0

When you UfJe ovbs to specify an FSR block buffer size for disks, specify the desired numher
of bytes in integral multiples of 51210 bytes, overriding the one-sector, standard 51210-byte block
buffer size. You cun specify block buffer elizes up to 63 sectors (32,25610 bytes) for disks. Increasing
the block buffer size in this manner greHtly reduces average disk access time because several
contiguous sectors are generally read or written during a typical disk access operation. An override
block size of 204810 bytes (4 sectors) or ~~5601O bytes (5 sectors) is recommended because 204810
bytes also provides American National S1tandards Institute (ANSI) magnetic tape buffer capability,
and 256010 bytes is the Files-II default extend size. Note that once the file has been opened, FCS
uses the ovbl3 field for other purposes. Thus, if your task uses the FDB for additional disk I/O
operations, the ovbs parameter must be issued in an FDBF$R macro prior to accessing the disk.

NOTE: Wlu~n you specify block buffE,r sizes greater than one sector (51210 bytes), you
must increillse accordingly the size of $$FSRI. This is done by specifying an appropriate
value for the bufsiz parameter in the! FSRSZ$ macro call (see Section 2.7.1).

Routines that read ANSI-standard magnetic tape without prior knowledge of the format of the
files to be read must specify an override]block size of 819210 bytes. This value is sufficient for the
largest ANSI-standard tape blocks.

Issuing the CLOSE$ macro call (see Chapter 3) resets offset location F.OVBS in the associated
FDB to O. Therefore, this location should typically be initialized at run time, just before opening
the file, particularly if an OPEN$xlCLOSE$ sequence for the file is performed more than once.

On certain devices, such as line printers and terminals, the block size should not exceed the
device's line 1width. The task can obtain the proper block size for these devices by issuing the
Get LUN Infi()rmation system directive for each device. (See the description for the Get LUN
Information directive in the lAS Executive Facilities Reference Manual. The standard block size for
each device is established at system gene"ration time or by the MCR command SETIBUF.

mbct
Indicates a numeric value that specifies the multiple buffer count, that is, the number of buffers
FCS uses in processing the associated filei. This parameter initializes FDB offset location F.MBCT.
If this value is greater than 1, multibuffelring is effectively declared for file processing. In this case,
FCS employs either read-ahead or write-behind operations, depending on which of two symbolic
values is specified as the mbfg parameter (see the following entry).

If the mbct parameter is specified as nun or 0, FCS uses the default buffer count contained in
symbolic location A.DFBC in $$FSR2 (the program section in the FSR containing impure data).
This cell norrnally contains a default buffer count of 1. If desired, this value can be modified, as
noted in the discussion of the mbfg paratneter in the following entry.

If, in specifying the FSRSZ$ macro call (s:ee Section 2.7.1), sufficient memory space has not been
allocated to accommodate the number of buffers established by the mbct parameter, FCS allocates
as many buffers as can fit in the available space. Insufficient space for at least one buffer causes
FCS to return an error code to FDB offset. location F.ERR.

You can inithlllize the buffer count in F.M1BCT through either the FDBF$A or the FDBF$R macro
call. The buffer count so established is not altered by FCS and, once set, need not be of further
concern to you.

When input i!J from record devices (for example, a card reader), F.MBCT should not be greater than
2.

mbfg
Specifies a symbolic value that specifies the type of multibuffering to be employed in processing the
file. Either of the following two values mSty be specified to initialize FDB offset location F.MBFG:

FD.RAH Indicates that read-ahead operations are to be used in processing the file

2-15

Preparing for 1/0

FD.WBH Indicates that write-behind operations are to be used in processing the file

These parameters are mutually exclusive; that is, one or the other, but not both, may be speci,fied.

Specifying this parameter assumes that the buffer count established in the mbct parameter
shown previously is greater than 1. If multibuffering has thus been declared, omitting the mbfg
parameter causes FCS to use read-ahead operations by default for all files opened using the
OPEN$R macro call; similarly, FCS uses write-behind operations by default for all files opened
using other forms of the OPEN$x macro call.

If these default buffering conventions are not desired, you can alter the value in the F.MBFG
dynamically at run time. This is done by issuing the FDBF$R macro call, which takes as the mbfg
parameter the appropriate control flag (FD.RAH or FD. WBH). This action must be taken, however,
before opening the file.

Offset location F.MBFG in the FDB is reset to 0 each time the associated file is closed.

NOTE: When using write-behind multibuffering, there is no gain in efficiency if the size
of the file must be increased to make room for the data to be written. If a file is being
written at the end, using default extension, there will be one extend operation for each
five write operations; thus, only 80% of the write-behind operations will actually be
overlapped with processing. This percentage can be increased as follows:

• To preallocate space for the file completely, use either the entg parameter in the
FDAT$A macro or the .EXTND subroutine.

• To increase the default extension amount from five blocks, use the aloe parameter
of the FDAT$A macro call. For example, if you specify an aloe parameter of 1010, the
number of write-behind operations that will be overlapped increases to 90%.

• You can access the file by using random 110. Because issuing PUT$K macros
to access random preexisting locations in the file does not require extends, the
percentage of overlapped operations is increased.

You can change the default buffer count, if desired, by modifying a location in $$FSR2, which is
the second of two program sections comprising the FSR. A location defined as .MBFCT in $$FSR2
normally contains a default buffer count of 1. This default value may be changed, as follows:

• Apply a global patch to A.DFBC at task-build time to specify the desired number of buffers.

• For MACRO-II programs, use the EXTSCT option of the Task Builder (see Section 2.8.1) to
allocate more space for the FSR block buffers; for FORTRAN programs, use the ACTFIL option
of the Task Builder (see Section 2.8.2) to allocate more space for the FSR block buffers.

Because the previous procedure alters the default buffer count for all files to be processed by your
program, it may be desirable to force single buffering for any specific file or files that would not
benefit from multibuffering. In such a case, you can set the buffer count in F.MBCT for a specific
file to 1 by issuing the following example macro call for the applicable FDB:

FDBF$A ,,1

The value 1 specifies the buffer count (mbct) for the desired file and i~ entered into offset location
F.MBCT in the applicable FDB. Note in the previous example that the event flag (efn) and the
override block buffer size (ovbs) parameters are null; these null values are for illustrative purposes
only and should not be interpreted as conditional specifications for establishing single-buffered
operations.

The following examples show how the FDBF$A macro call may be used in a program.

2-16

2.3.2

Preparing for I/O

Examples

FDBF$A 25.,,1

Specifies that event flag 2510 synchronize::; record 1/0 operations and that single buffering is used
in processing the file.

FDBF$A 25.,,2,FD.RAH

Specifies event flag 2510 for synchronizing record 1/0 operations and, in addition, establishes 2 as
the multiple buffer count. The buffers so specified are for read-ahead operations, as indicated by
the final parameter.

FDBF$A ,,2,FD.WBH

Allows event jt}ag 3210 to be used by default for synchronizing record 1/0 operations, and the two
buffers specified in this case are for write-behind operations.

Note in all three examples that the second parameter, that is, the override block size parameter
(ovbs), is null;; thuEI, the standard block sil1:e in effect for the device in question is used for all file
1/0 operationEI.

Run-Time FOB Initialization M.acros
Although the FDB is allocated and can be initialized during program assembly, the contents of
specific sections of the FDB can also be initialized or changed at run time by issuing any of the
following macro calls:

FDAT$R

FDRC$R

FDBK$R

FDOP$R

FDBF$R

Initializes or alters the file attribute section of the FOB.

Initializes or alters the record access section of the FOB.

Initializes; or alters the block access section of the FOB (see item 4 in Section 2.3.2.1 following).

Initializes or alters the file-open sec1tion of the FOB.

Initializes or alters the block buffer section of the FOB.

There are no default values for run-time FDB macros (except for the FDB address). At run time,
the values cWTently in the FDB are used unless they are explicitly overridden. For example,
values stored in the FDB at assembly time are used at run time unless they are overridden. The
run-time FDB maClros place the FDB addrless in RO.

2.3.:2.1 Run-Time FOB Melcro Exceptions
The format and the parameters of the run-time FDB initialization macros are identical to the
assembly-timEl macros described earlier, except as noted here:

• An R rather than an A must appear as the last character in the run-time symbolic macro
name.

• The first parameter in all run-time macro cans must be the address of the FDB associated with
the file to be processed. All other parameters in the run-time macro calls are identical to those
described :in Sections 2.3.1.2 to 2.3.1.6 for the assembly-time macro calls, except as noted in
items 3 and 4 in this section.

• The parameters in the run-time macro cans must be valid MACRO-II source operand
expressions. These parameters may be address values or literal values; they may also
represent the contents of registers or memory locations. In short, any value that is a valid

2-17

Preparing for 1/0

source operand in a MOV or MOVB instruction may be specified in a run-time macro call. In
this regard, the following conventions apply:

If the parameter is an address value or a literal value that is to be placed in the FDB, that
is, if the parameter itself is to be taken as an argument, it must be preceded by the number
sign (#). This symbol is the immediate expression indicator for MACRO-II programs,
causing the associated argwnent to be taken literally in initializing the appropriate cell in
the FDB. Such literal values may be specified as follows:

FDOP$R fFDBADR,fl,fDSPT,fDFNB

If the parameter is the address of a location containing an argwnent that is to be placed in
the FDB, the parameter must not be preceded by the number sign. Such a parameter may
be specified as follows:

ONE: . WORD 1

FDOP$R fFDBADR,ONE,fDSPT,fDFNB

ONE represents the symbolic address of a location containing the desired initializing value.

If the parameter is a register specifier (for example, R4), the parameter must not be
preceded by the nwnber sign. Register specifiers are defined MACRO-II symbols and are
valid expressions in any context.

NOTE: RO can only be specified in the first parameter (FDB address). Any other
use of RO will fail. (See Section 2.3.2.2.)

Thus, in contrast, parameters specified in assembly-time macro calls are used as arguments in
generating data in .WORD or .BYTE directives, while parameters specified in run-time macro
calls are used as arguments in MOV and MOVB machine instructions.

• As noted in the description of the FDBK$A macro call in Section 2.3.1.4, assembly-time
initialization of the FDB with the virtual block nwnber is meaningless because issuing the
OPEN$x macro call to prepare a file for processing resets the virtual block number in the FDB
to 1. For this reason, the virtual block number can be specified only at run time after the
file has been opened. Do this by issuing either the FDBK$R macro call or the I/O-initiating
READ$ or WRITE$ macro call. In all three cases, the relevant field for defining the virtual
block nwnber is the bkvb parameter. The READ$ and WRITE$ macro calls are described in
detail in Chapter 3.

At assembly time, you must reserve and label a 2-word block in the program to temporarily
store the virtual block number appropriate for intended block I/O operations. Because your
task is free to manipulate the contents of these two locations at will, any virtual block number
consistent with intended block I/O operations may be defined. By specifying the symbolic
address (that is, the label) of this field as the bkvb parameter in the selected run-time macro
call, you can make the virtual block number available to FCS.

In preparing for block I/O operations, you must follow these procedures:

1 At assembly time, reserve a 2-word block in your program through a statement that is
logically equivalent to the following:

2-18

VBNADR: .BLKW 2

The label VBNADR names this 2-word block and defines its address. This symbol is used
subsequently as the bkvb parameter in the selected run-time macro call for initializing the
FDB.

Preparing for 1/0

2 At run time, load this field with the desired virtual block number. This operation may be
accoulplished through statements logically equivalent to the following:

CLR VBNADR
MOV #10400,VBNADlR+2

Note that the first word of the block is cleared. The MOV instruction then loads the second
(low-order) word of the block with a numeric value. This value constitutes the 16 least
significant bits of the virtual block number.

If the desired virtual block numher cannot be completely expressed within 16 bits, the
remaining portion of the virtual block number must be stored in the first (high-order) word
of the block. This may be accomplished through statements logically equivalent to the
following:

MOV #l,VBNADR
MOV #10400,VBNADR+2

As a result. of these two instructions, 31 bits of value are defined in this 2-word block. The
first word contains the 15 most siignificant bits of the virtual block number, and the second
word contains the 16 least signifi(:ant bits. Thus, the virtual block number is an unsigned
value having 31 bits of magnitud.~. You must ensure that the sign bit in the high-order
word is not set.

3 Open the desired file for processing by issuing the appropriate version of the generalized
OPEN$x macro call (see Chapter .3).

4 Issue either the FDBK$R macro call or the READ$ or WRITE$ macro call, as appropriate,
to iniUalize the relevant FDB with the desired virtual block number.

If the FDBK$R macro call is elected, the following is a representative example:

FDBK$R tFDBIN", #VlmADR

Regardless of the particular macro call that supplies the virtual block number, the two
words at VBNADR are loaded into F.BKVB and F.BKVB+2. The first of these words
(F.BKVB) is 0 if 16 bits are sufficilent to express the desired virtual block number. The
I/O-initiating READ$ or WRITE$ macro call may then be issued.

Should you choose, however, to initialize the FDB directly through either the READ$ or
WRIT'E$ macro call, the virtual block number may be made available to FCS through a
staternent such as the following:

READ$ #FDBIN,#INBtJF,#BUFSIZ,#VBNADR

The symbol VBNADR represents the address of the 2-word block in your program
containing the virtual block number.

2.3"2.2 Specifying the F[)B Address In Run-Time Macros
In relation to the second item of exceptions noted previously, the address of the File Descriptor
Block (FDB) associated with the file to be processed corresponds to the address value of the symbol
that you defined appearing in the label field of the FDBDF$ macro call (see Section 2.3.1.1). For
example, the following statement not only allocates space for an FDB at assembly time, but it also
binds the label FDBOUT to the beginning address of the FDB associated with this file:

FDBOUT: FDBDF$

2-19

Preparing for 1/0

The address value so established can then be specified as the initial parameter in a run-time macro
call in anyone of the following three ways:

1 The address of the appropriate FDB may be specified as an explicit parameter in a run-time
macro call, as indicated in the following example statement:

FDAT$R #FDBOUT,#R.VAR,#FD.CR

The argument FDBOUT is taken literally by File Control Services (FCS) as the address of
an FDB; furthermore, this address value, by convention, is stored in general register 0 (RO).
Whenever this method of specifying the FDB address is employed, the previous contents of RO
·are overwritten (and thus destroyed). Therefore, you must exercise care in issuing subsequent
run-time macro calls to ensure that the present value of RO is suitable to current purposes.

2 You may use a genera] register specifier as the initial parameter in a run-time macro call.
When you use a register other than RO, the contents of the specified register are moved to RO.
The previous contents of RO are overwritten (and thus destroyed).

The following statement reflects the use of a general register to specify the FDB address:

FDAT$R RO,#R.VAR,#FD.CR

In this case, the current contents of RO are taken by FCS as the address of the appropriate
FDB. This method assumes that the address of the FDB has been previously loaded into RO
through some overt action. Note, when using this method to specify the FDB address, that the
immediate expression indicator (#) must not precede the register specifier (RO).

3 A null specification may be used as the initial parameter in a run-time macro call, as shown in
the following statement:

FDAT$R ,#R.VAR,#FD.CR

In this case, the current contents of RO are taken by default as the address of the associated
FDB. As shown previously, RO is assumed to contain the address of the desired FDB. Although
the comma in this instance constitutes a valid specification, you are advised to employ methods
1 and 2 for consistency and clarity of purpose.

These three methods of specifying the FDB address also apply to all the FCS file-processing macro
calls described in Chapter 3.

:~.4 Global Versus Local Definitions for FOB Offsets
Although the FDB offsets can be defined either locally or globally, the design of FCS does not
require that you be concerned with the definition of FDB offsets locally. To some extent, this design
consideration is based on the manner in which MACRO-11 handles symbols.

Whenever a symbol appears in the source program, MACRO-11 assumes that it is a global symbol
unless it is presently defined within the current assembly. Such a symbol must be defined further
on in the program; otherwise, it will be treated by MACRO-11 as a default global reference,
requiring that it be resolved by the Task Builder.

Thus, the question of global versus local symbols may simply be a matter of the programmer's not
defining the FDB offsets and bit values locally in coding the program. Such undefined symbols
thus become global references, which are reduced to absolute definitions at task-build time.

It should be noted that global symbols may be used as operands and macro-call parameters, or
both, anywhere in the source program coding, as described in the following section.

2-20

2:.4.1

2~.4.2

Preparing for 110

Specifying Global Symbols in the Source Code
Throughout 1the descriptions of the assenlbly-time macros (see Sections 2.3.1.2 to 2.3.1.6), global
symbols are specified as parameters in the macro calls. As noted earlier, such symbols are treated
by MACRO-JL1 as default global referenc€is.

For example!t the global symbol FD.RAN may be specified as the initial parameter in the FDRC$A
macro call (see Section 2.3.1.3). At task-build time, this parameter is reduced to an absolute
symbol definition, causing a prescribed bit to be set in the record access byte (offset location
F.RACC) of the FDB.

Global symbols may also be used as operands in your task's instructions to accomplish operations
associated with FDB offset locations. FOlr example, global offsets such as F.RACC, F.RSIZ, and
F.RTYP may be specified as operands in the source coding. Assume, for example, that an FDBDF$
macro call (see Section 2.3.1.1) has been ilssued in the source program to allocate space for an FDB,
as follows:

FDB IN :: FDBDF $

The coding sequence shown in the following text may then appear in the source program,
illustrating the use of the global offset F.:RACC:

MOV #FDBIN,RO
MOVB tFD.RAN, F.RACC (RO)

Note that the beginning address of the FJDB is first moved into general register zero (RO). However,
if the desired value already exists in RO as the result of previous action in the program, you need
issue only the second MOV instruction (which appropriately references RO). As a consequence of
this instructilon, the value FD.RAN initializes FDB offset location F.RACC.

The following statement is an equivalent instruction, which similarly initializes offset location
F.RACC in the FDB with the value of FD.RAN:

MOVB tFD. RAN, FDBIN+F. ru.cc

Global symbols may be used anywhere in. the program in this manner to effect the dynamic storage
of values within the FDB.

Defining FOB Offsets and Bit Values Locally
If you want your task to declare explicitly that all FDB offsets and bit values are to be defined
locally, there are two macro calls in the source program you can invoke. The first of these,
FDOF$L, causes the offsets for FDBs to be defined within your program. Similarly, bit values
for all FDB paranleters may be defined locally by invoking the FCSBT$ macro call. You can invoke
these macro calls anywhere in your progll"am.

When issued, the FDOF$L and FCSBT$ ~macro calls define symbols in a manner roughly equivalent
to the following:

F.RTYP:= xxxx
F.RACC= xxxx
F.RSIZ = xxxx

2-21

Preparing for 1/0

Parameter

xxxx
Represents the value assigned to the corresponding symbol.

In other words, the macros for defining FDB offsets and bit values locally do not generate any code
Their function is simply to create absolute symbol definitions within the program at assembly time
The symbols so defined, however, appear in the MACRO-II symbol table, rather than in the sourCE
program listing. Such local symbol definitions are thereby made available to MACRO-II during
assembly, rather than forcing them to be resolved by the Task Builder.

Whether the FDOF$L and FCSBT$ macros are invoked shou1d not in any way affect the coding
style or the manner in which the FDB offsets and bit values are used.

Note, however, that if the FDOF$L macro is issued, the NBOF$L macro for the local definition
of the filename block need not be issued (see Section 2.5.2). The FDOF$L macro defines all FDB
offsets locally, including those for the filename block.

If any of the previously named macros is to be issued in your program, it must first be listed as an
argwnent in a .MCALL directive (see Section 2.2).

2.5 Creating File Specifications Within Your Program
Certain information describing the file must be present in the FOB before the file can be opened.
The file is located using a file specification that contains the following:

• A device name and unit nwnber.

• A directory string consisting of a group number and a member nwnber that specify the User
File Directory (UFD) to be used for the file. The term "UFD" is synonymous with the term "file
directory string," which appears throughout this manual.

• A file name.

• A file type.

• A file version number.

A file specification describing the file to be processed is communicated to FCS through the following
two data structures that you create:

• The data-set descriptor. This tabu1ar structure may be created and initialized manually
through the use of .WORD directives. Section 2.5.1 describes this data structure in detail.

• The default filename block. In contrast to the manually created data-set descriptor, the default
filename block is created by issuing the NMBLK$ macro call. This macro call allocates a block
of storage in your program at assembly time and initializes this structure with parameters
supplied in the call. This structure is described in detail in Section 2.5.2.

As noted in Section 2.3.1.5, the FOOP$A or the FOOP$R macro call is issued to initialize the FOB
with the addresses of these data structures. These address values are supplied to FCS through the
dspt and dfnb parameters of the selected macro can. FCS uses these addresses to access the fields
of the data-set descriptor and the default filename block, or both, for the file specification required
in opening a specified file.

By convention, a required file specification is first sought by FCS in the d'ata-set descriptor.
Any nonnull data contained therein is translated from American Standard Code for Information
Interchange (ASCII) to Radix-50 format and is stored in the appropriate offsets of the filename
block. This area of the FDB then serves as the execution time repository for the information

2-22

~~.5.1

Preparing for 1/0

describing the file to be opened and processed. If t.he data-set descriptor does not contain the
required infonnation, FCS attempts to obtain the missing infonnation from the default filename
block. If nei1ther of these structures contains the required infonnation, an open failure occurs.

Note, however, that the device name and the unit number need not be specified in either the
data-set deseriptor or the default filenanle block, because these values are defaulted to the device
and unit assigned to the logical unit nunlber (LUN) at task-build time if not explicitly specified.

The FCS file!-processing macro calls usedl in opening files are described in Chapter 3, beginning
with the generalized OPEN$x macro call.

For a detailed description of the fonnat and content of the filename block, refer to Appendix B.

Data-Set Descriptor
The data-set. descriptor is often oriented toward the use of a fixed (built-in) file name in your
program. A given. application program, for example, may require access only to a limited and
nonvariable number of files throughout its execution. By defining the names of these files at
assembly tinle through the data-set descriptor mechanism, such a program, once initiated, executes
to completion without requiring additional file specifications.

This structure, a 6-word block of storage that you can create manually within your program by
using .WORD directives, contains infonnation describing a file that you intend to open during
the course of program execution. In creating this structure, you can define anyone or all of three
possible string descriptors for a particular file, as follows:

• A two-word descriptor for an ASCII dlevice name string. To allocate this data structure, use the
following' fonna t:

WORD
1

WORD
2

Contains the length (in bytes) clf the ASCII device name string.

This string consists of a two-character alphabetic device name, followed by an optional octal
unit number and an optiomll colon or a logical name. You can create these strings by issuing
statements such as the following:

OEVNM: .ASCII /ouo:/

OEVNM: .ASCII /TT10:/

Contains the address of the ASCII device name string.

. • A two-word descriptor for an ASCII file directory string. To allocate this data structure, use
the following fonnat:

WORD
3

WORD
4

Contains the length (in bytes) o,f the ASCII file directory string.

This string consists of a group number and a member number, separated by a comma (,).
The entire string is enclosed in brackets. For example, [200,200] is a directory string. You can
create a directory string by issuing statements such as the following:

OIRNM: .ASCII /[200,200]/

DIRNM: .ASCII /[40,100]/

If you want your task to specify an explicit file directory different from the UFO under which
you are currently running. the data-set descriptor mechanism permits that flexibility.

Contains the address of the ASCII file directory string.

2-23

Preparing for 1/0

• A two-word descriptor for an ASCII filename string. 1b allocate this data structure, use the
following format:

WORD
5

WORD
6

Contains the length (in bytes) of the ASCII filename string.

This string contains the following:
A filename up to nine characters in length.
An optional three-character file type designator.

An optional file version number.

The filename and file type must be separated by a period (.), and the file version number
must be preceded by a semicolon. A filename string can be created as shown in the following
statement:

FILNM: .ASCII /PROG1.OBJ;7/

For FllES-11, only the characters A to Z and 0 to 9 can be used in an ASCII filename
string. In addition, an ANSI magnetic tape filename string can contain the following special
characters:

SP I n % & ' () * + , _ . / : ; < _> ?

A name that contains any of these characters must be enclosed in quotation marks (" "'). If
a quotation mark is part of the name, the string must contain two quotation marks. An ANSI
filename string can be created as shown in the following example:

FILNM: .ASCII / "PROG" "2""; %&;"; 7 /

The filename created in the previous example is as follows:

PROG"2";%&; ;7

NOTE: The semicolon is a legal character in the name string. To delimit
a version number, the semicolon must be outside the quoted string.

Contains the address of the ASCII filename string.

A length specification of 0 in Word 1, 3, or 5 of the data-set descriptor indicates that the
corresponding device name, directory, or filename string is not present in your program. For
example, the following code creates a data-set descriptor containing only a 2-word ASCII filename
string descriptor:

2-24

FDBOUT: FDBDF$
FDAT$A
FDRC$A
FDOP$A

;CREATES FDB.
R.VAR,FD.CR ;INITIALIZES FILE-ATTRIBUTE SECTION.
,RECBUF,BO. ;INITIALIZES RECORD-ACCESS SECTION.
OUTLUN,OFDSPT iINITIALIZES FILE-OPEN SECTION.

OFDSPT: .WORD 0,0 ;NULL DEVICE-NAME DESCRIPTOR .
. WORD 0,0 iNULL DIRECTORY DESCRIPTOR .
. WORD ONAMSZ,ONAM ;FILENAME DESCRIPTOR.

ONAM: .ASCII /OUTPUT.DAT/ ;DEFINES FILENAME STRING.
ONAMSZ=.-ONAM ;DEFINES LENGTH OF FILENAME STRING.

Preparing for 1/0

Note first that an FDB labeled FDBOUT is created. Observe furt.her that the FDOP$A macro
call takes as its second parameter the syrJrlbol OFDSPT. This symbol represents the address value
stored in FDH offset location F.DSPT. This value enables the .PARSE routine (see Chapter 4) to
access the fields of the data-set descriptor in building the filename block.

The symbol OFDSPT also appears in the label field of the first .WORD directive, defining the
address of the data-set descriptor for the .PARSE routine. The .WORD directives each allocate
two words of storage for the device name descriptor, the file directory descriptor, and the filename
descriptor, rel3pectively.

In the preceding example, however, note that the first two descriptor fields are fined with zeros,
'indicating nun specifications. The last .WORD directive allocates two words that contain the size
and the address of the filename string, respectively. The filename string itself is explicitly defined
in the .ASCII directive that follows.

Note that the statements defining the filename string need not be physically contiguous to the
data-set descriptor. For each such ASCII string referenced in the data-set descriptor, however,
corresponding statements must appear el!;ewhere in the source program to define the appropriate
ASCII data string or data strings.

A data-set descriptor for each of several files to be accessed by your program can be defined in this
manner.

Default Filename Block-NMEILK$ Macro
As noted earlier, you can also define a default filename block in the program as a means of
providing required file information to File Control Services (FCS). For this purpose, you can
issue the NMBLK$ macro call in connection with each FDB for which a default filename block is to
be defined. When this macro call is issued, space is allocated within your program for the default
filename block, and the appropriate locations within this data structure are initialized according to
the parameters supplied in the can.

Note in the parameter descriptions in the following text that symbols of the form N.xxxx are used
to represent the offset locations within the filename block. These symbols are differentiated from
those that apply to the other sections of the FDB by the beginning character N. AIl versions of the
generalized OPEN$x macro call (see Chapter 3) use these symbols to identify offsets in storing file
information illl the filename block.

label: NMBL.K$ fnam,ftyp,fver,dvnm,unit

Parameters

label
Specifies a symbol? which you define, that names the default filename block and defines its address.
This label is the symbolic value normally specified as the dfnb parameter when the FDOP$A or the
FDOP$R macro call is issued. This causes FDB offset location F.DFNB to be initialized with the
address of the default filename block.

fnam
Specifies the default filename. This parameter can consist of up to nine ASCII characters. The
character string is stored as 6 bytes in Radix-50 format, starting at offset location N.FNAM of the
default filename bllock.

2-25

Preparing for 1/0

ftyp
Specifies the default file type. This parameter can consist of up to three ASCII characters. The
character string is stored as 2 bytes in Radix-50 format in offset location N.FTYP of the default
filename block.

fver
Specifies the default file version number (binary). When specified, this binary value identifies a
particular version of a file. This value is stored in offset location N .FVER of the default filename
block.

dvnm
Specifies the default name of the device upon which the volume containing the desired file is
mounted. This parameter consists of two ASCII characters that are stored in offset location
N.DVNM of the default filename block.

unit
Specifies a binary value identifying which unit (among several like units) is to be used in
processing the file. If specified, this numeric value is stored in offset location N.UNIT of the
default filename block.

Only the alphanumeric characters A to Z and 0 to 9 can be used in composing the filename and file
type strings discussed previously. Although the file version number and the unit number discussed
previously are binary values, these numbers are normally represented in octal form when printed,
when input by a command string, or when supplied through a data-set descriptor string.

As evident from the preceding text, all the default information supplied in the NMBLK$ macro call
is stored in the default filename block at offset locations that correspond to identical fields in the
filename block within the FOB. This default information is moved into the corresponding offsets of
the filename block when any version of the generalized OPEN$x macro call is issued under any of
the following conditions:

• All the file infonnation required by FCS to open the file is not present in the data-set
descriptor. Missing information is then sought in the default filename block by the .PARSE
routine (see Chapter 4), which is invoked as a result of issuing any version of the generalized
OPEN$x macro call.

• A data-set descriptor has not been created in your program.

• A data-set descriptor is present in your program, but the address of this structure has not been
made available to FCS through any of the assembly-time or run-time macro calls that initialize
FOB offset location F.OSPI'.

The following code illustrates the general method of specifying the NMBLK$ macro call:

FDBOUT: FDBDF$
FDAT$A
FDRC$A
FDOP$A

FDBIN: FDBDF$
FDRC$A
FDOP$A

OFNAM: NMBLK$
IFNAM: NMBLK$

2-26

R.VAR,FD.CR
,RECBUF,80.
OUTLUN"OFNAM

,RECBUF,80.
INLUN"IFNAM

OUTPUT,DAT
INPUT,DAT"DT,l

iALLOCATES SPACE FOR AN FDB.
iINITIALIZES FILE-ATTRIBUTE SECTION.
iINITIALIZES RECORD-ACCESS SECTION.
iINITIALIZES FILE-OPEN SECTION.

iALLOCATES SPACE FOR AN FDB.
iINITIALIZES RECORD-ATTRIBUTE SECTION.
;INITIALIZES FILE-OPEN SECTION.

;ESTABLISHES filename AND FILE TYPE.
iESTABLISHES filename, FILE TYPE,
;DEVICE NAME, AND UNIT NUMBER.

Preparing for 1/0

The first NMBLK$ macro call in the previous coding sequence creates a defau1t fi1ename h10ck to
establish defa.ult information for the FDB, named FDBOUT. The label OFNAM in this macro
defines the bE~ginnling address of the default filename block allocated within your program.
Note that thin symbol is specified as the <ffnb parameter in the FDOP$A macro call associated
with this default filename block to initialize the file open section of the corresponding FDB. The
accompanying parameters in the first NM:BLK$ macro call define the filename and the file type,
respectively, of the file to be opened; all remaining parameter fields in this call are null.

The second NMBLK$ macro call accompli:shes essentially the same operations in connection with
the FDB, natllled FDBIN. Note in this mac:ro call that the third parameter (the file version number)
is null, as reflected by the extra comma. 'Ibis null specification indicates that the latest version
of the file is dlesired. All other parameter fields contain explicit declarations defining default
information for the applicable FDB.

You can define the offsets for a filename block locally in your program by issuing the following
macro call:

NBOF$L

This macro can does not generate any code. Its function is merely to define the filename block
offsets locally, presumably to conserve synlbol table space at task-build time. The NBOF$L macro
call need not lbe issued if the FDOF$L m8icro call has been invoked because the filename block
offsets are defined locally as a result of iss:uing the FDOF$L macro call.

If you want, you can initialize fields in thE! default filename block directly with appropriate values.
You can do thiis by placing inline statemer.lts in the program. For example, a specific offset in the
default filename block can be initialized tbrough coding that is logically equivalent to the following
coding:

DF1~B: NMBLK$ IASLIB,OBJ

NU~rYp: .RADSO /DAT/

MOV NUTYP,DFNB+N.FTYP

The symbol NUTYP in the MOV instruction represents the address of the newly defined Radix-50
file type DAT, which is to be moved into dC9stination offset N.FTYP of the default filename block
labeled DFNB. .

You can manually initialize any of the offsets within the default filename block in this manner to
establish desired values or to override previously initialized values.

Note

The NMBLK$ macro cannot be used to create a filename containing non-Radix-50 characters or a
filename that is not in the normal filenam.typ format. A program that uses the filename format
permitted for ANSI magnetic tape must set up the filename in a data-set descriptor.

2-27

2.5.3

Preparing for 1/0

Dynamic Processing of File Specifications
If you want your task to make use of routines available from the system object library
([1,l]SYSLIB.OLB) for processing command line input dynamically, consult Chapter 6. Chapter
6 describes the Get Command Line (GCML) routine and the Command String Interpreter (CSI)
routine, both of which can be linked with your program to provide all the logical capabilities
required in processing dynamic terminal input or indirect command file input.

2.6 Optimizing File Access

2.6.1

When certain information is present in the filename block beginning at the symbolic F.FNB of an
File Descriptor Block (FDB), a file can be opened in a manner referred to throughout this manual
as "opening a file by file ID." This type of open requires a minimum of system overhead, resulting
in a significant increase in the speed of preparing a file for access by your program. If files are
frequently opened and closed during program execution, opening files by file ID accomplishes
substantial savings in overall execution time.

To open a file by file ID, the minimum information that must be present in the filename block of
the associated FDB consists of the following: .

File identification field

Device name field

Unit number field

A 3-word field beginning at the filename block offset location N.FID that
contains a file number in the first word and a file sequence number in
the second word; the third word is reserved. The file identification field is
maintained by the system and ordinarily need not be of concern to you.

A 1-word field at the filename block offset location N.DVNM that contains
the 2-character ASCII name of the device on which the volume containing
the desired file is mounted.

A 1-word field at the filename block offset location N.UNIT that contains
a binary value identifying the particular unit (among several like units) on
which the volume containing the desired file is mounted.

These three fields are written into the filename block in one of the following three ways:

• By issuing any version of the generalized OPEN$x macro call for a file associated with the FDB
in question

• By initializing the filename block manually by using the .PARSE routine and the .FIND routine
(see Chapter 4)

• By moving the necessary values into the filename block

Initializing the Filename Block as a Function of OPEN$x
To understand how to effect the process of opening a file by file ID, note that the initial issuance
of the generalized OPEN$x macro can (see Chapter 3) for a given file first invokes the .PARSE
routine (see Chapter 4). The .PARSE routine is linked into your program, along with the code for
OPEN$x. This routine first zeros the filename block and then fills it in with information taken
from the data-set descriptor and the default filename block.

Thus, issuing the generalized OPEN$x macro can invokes the ,PARSE routine each time a file is
opened. The .PARSE function, however, can be bypassed altogether in subsequent OPEN$x calls
by saving and restoring the filename block before attempting to reopen that same file.

2-28

Preparing for 1/0

This is made possible because of the logic of the OPEN$x macro can. Specifically, after t.he initial
OPEN$x for a file has been completed, the necessary context for reopening that file exists within
the filename block. Therefore, before closllng that file, the entire filename block can be copied into
your task's memory space and later restoJred to the FDB at the desired point in program flow for
use in reopening that same file.

Your task can reopen files in this manner because FCS is sensitive to the presence of any nonzero
value in the 'first word of the file identification field of the filename block. When your task invokes
the OPEN$x function, FCS first examines offset location N.FID of the filename block. If the first
word of this field contains a value other than 0, FCS logically assumes that the remaining context
necessary for opening that file is present in the filename block, and therefore unconditionally opens
that file by file ID.

To ensure that an undesired value does not remain in the first word of the N.FID field from a
previous OPEN$x or CLOSE$ sequence, the first word of this field is zeroed as the file is closed.

In opening files by file ID, you need only ensure that manual saving and restoring of the filename
block are accomplished with inline MOV instructions that are consistent with the desired sequence
of processing files. This process should proceed as follows:

1 Open the file in the usual manner by issuing the OPEN$x macro call.

2 Save the :filename block by copying it into your task's memory space with appropriate MOV
instructions. The filename block begins at offset location F.FNB in the FDB.

The value of the symbol S.FNB is the size of the filename block in bytes, and the value of the
symbol S.FNBW is the size of the filename block in words. If desired, the NBOF$L macro
call (see Section 2.5.2) can be invoked in your program to define these symbols locally. These
symbolic values can be used in appropriate MOV instructions to accomplish the saving and
restoring of thH filename block. Moreover, you must reserve sufficient space in the program for
saving th4~ filename block.

3 At the end of current file operations, dose the file in the usual manner by issuing the CLOSE$
macro call.

4 When, in the normal flow of program logic, that same file is about to be reopened, restore the
filename block to the FDB by reversing step 2.

5 Reopen the file by issuing anyone of the macro calls available in FCS for opening an existing
file. Because the first word of offset location N.FID of the filename block now contains a
nonzero value, FCS unconditionally opens the file by file ID, regardless of the specific type of
open maClro call issued.

Although you must save only the file identification, device name, and unit number fields of the
filename block in anticipation of reopening a file by file ID, you are advised to save the entire
filename block. The filename, file type, file version, and directory-ID fields, and so forth, might also
be relevant. l~or example, an OPEN$x, save, CLOSE$, restore, OPEN$x, and DELET$ sequence
would require saving and restoring the entire filename block.

Though you might be logically finished wilth file processing and might want to delete the file,
the delete operation will not work properly unless the entire filename block has been saved and
restored.

2-29

Preparing for 1/0

Manually Initializing the Filename Block
In addition to saving and restoring the filename block in anticipation of reopening a file by file
ID, you can also initialize the filename block manually. You can invoke the .PARSE and .FIND
routines (see Chapter 4) at appropriate points to build the required fields of the filename block.
After the .PARSE and .FIND logic is completed, all the information required for opening the file
exists within the filename block. When anyone of the available FCS macro calls that open existin
files is then issued, FCS unconditionally opens that file by file ID.

Occasionally, such manual operations are desirable, especially if your program is operating in an
overlaid environment. In this case, it is highly desirable that the code for opening a file be broker
into small segments in the interest of conserving memory space. Because the body of code for
the OPEN$x and .PARSE functions is sizable, two other types of macro calls for opening files are
provided for use with overlaid p~ograms. The OFID$ and OFNB$ macro calls (see Chapter 3) are
specifically designed for this purpose.

The structure recommended for an overlaid environment is to have either the OFID$ or the OFNB
code on one branch of the overlay and the .PARSE and .FIND code on another branch. Then, if yo
want your task to open a file by file ID, the .PARSE and .FIND routines can be invoked at will to
insert required information in the filename block before opening the file.

The OFID$ macro call can be issued only in connection with an existing file. The OFNB$ macro
call, on the other hand, can be used for opening either an existing file or for creating and opening
a new file. In addition, the OFNB$ macro call requires only the manual invocation of the .P.ARSE
routine to build the filename block before opening the file.

If conservation of memory is an objective, and if your program will be opening both new and
existing files, it is recommended that only the OFNB$ routine be included in one branch of the
overlay; including the OFID$ routine would needlessly consume memory space.

In all cases, however, it is important to note that all the macro calls for opening existing files are
sensitive to the presence of any nonzero value in the first word (N.FID) of the filename block. If
this field contains any value other than 0, the file is unconditionally opened by file ID. This does
not imply, however, that only the file identification field (N.FID) is required to open the file in
this manner. The device name field (N.DVNM) and the unit number field (N.UNIT) must also be
appropriately initialized. The logic of the FCS macro calls for opening existing files assumes that
these other required fields are present in the filename block if the file identification field contains
nonzero value.

Because many programs continually reuse FOBs, the CLOSE$ function (see Chapter 3) puts zerOE
in the file identification field (N.FIO) of the filename block. This action prevents the field (which
pertains to a previous operation) from being used mistakenly to open a file for a current operation
Thus, if your task later intends to open a file by file 10 using information presently in the filenam
block, the entire filename block (not just N.FIO) must be saved before closing the file. Then, at th
appropriate point in program flow, the filename block can be restored to open the desired file by fil
ID.

2.7 Initializing the File Storage Region
The file storage region (FSR) is an area allocated in your program as a buffer pool to accommodat
the program's block buffer requirements in performing record 110 (GET$ and PUT$) operations.
Although the FSR is not applicable to block 110 (READ$ and WRITE$) operations, you must
issue the FSRSZ$ macro once in every program that uses FeS, regardless of the type of I/O to be
performed.

The macro calls associated with the initialization of the FSR are described next.

2-30

2,,7.1

Preparing for 1/0

FSRSZ$--Initialize FSR at Assembly Time
The MACRO·,ll programmer establishes the size of the FSR at assembly time by issuing an
FSRSZ$ macro call. This macro call does not generate any executable code. It merely allocates
space for a block-buffer pool in a program, section named $$FSRl. The amount of space allocated
depends on information provided by you, or defaulted, during the macro call.

NOTE: The FSRSZ$ macro allocates ,the FeS impure area that is pointed to by a fixed
location in your task's virtual memory. This pointer is not altered when overlays are
loaded; ther'efore, the FSRSZ$ macro must be invoked in the root segment of a task.
Unpredictable results might occur if the FSRSZ$ macro is invoked in more than one
parallel ovelrlay.

FSRSZ$ fbufs,bufsiz,psect

Parameters

fbufs
Specifies a numeric value that you establish as follows:

• If no record 1/0 processing is to be done, fbufs equals O. A value of 0 indicates that an
unspecified number of files can be ope'n simultaneously for block 1/0 processing. For example,
if you intend to access three files for block 1/0 operations and no files for record 1/0 operations,
the FSRSZ$ macro call takes 0 as an argument as follows:

FSRSZ$ 0

No other parameters need be specified unless the function of the psect parameter is required.

• If record][/0, using a single buffer for each file, is to be done, thufs represents the maximum
number of files that can be open simultaneously for record 1/0 processing. For example, you
might want to access simultaneously three files for block 1/0 and two files for record 1/0. You
would specify the following FSRSZ$ macro call:

FSRSZ$ 2

Additional parameters, bufsiz and psect (described subsequently) could also be specified as
required.

• If record][10 with multibuffering is to be done, fbufs represents the maximum number of
buffers ever in use simultaneously among all files open concurrently for record 1/0. Assume, for
example, that your program will simultaneously access four disk files for record 1/0 operations.
Assume further that you want double buffering for three of the disk files and have, therefore,
specified a multibuffer count of 2 in the FDBF$A macro calls (refer to Section 2.3.1.6) for the
associated files. You would then issue the following FSRSZ$ macro call:

FSRSZ$ 7

This macro call indicates that a maximum of seven buffers will be in use simultaneously. This
total is calculated as follows: one buffer for the single-buffered file and two buffers for each of
the three double-buffered files. Additional parameters, bufsiz and psect (described next), could
also be specified as required.

bufslz
Specifies a numeric value defining the total block buffer pool space (in bytes) needed to support the
maximum number bytes\ master) of files that can be open simultaneously for record 1/0. If this
parameter is omitted, FeS obtains a total block buffer pool requirement by multiplying the value
specified in the fuufs parameter with a default buffer size of 512 bytes. If, for example, a maximum
of two single-buffered disk files will be open simultaneously for record 110, either of the following
FSRSZ$ macro calls cou1d be issued:

2-31

2.7.:2

Preparing for 1/0

FSRSZ$ 2

FSRSZ$ 2,1024.

If you want your task to explicitly specify block buffer pool requirements, the following formula
must be applied:

bufsiz= (bsize1 *mbc1) [+ (bsize2*mbc2) . .. + (bsizen*mbcn)]

bslze1,bslze2, . . . ,bslzen
Indicates the sizes, in bytes, of the buffers to support each file. The size of a buffer for a particula1
file depends on the device supporting the file if the standard block buffer size is used. Standard
block sizes for devices are established at system generation time. The override block buffer size
(ovbs) parameter can be used in the FDBF$x macro call to increase buffer size, as described in
Section 2.3.1.6; these increases must be considered when you explicitly specify block buffer pool
requirements.

mbc1,mbc2, ... ,mbcn
Indicates the multiple buffer counts (refer to Section 2.3.1.6) specified for the respective files.

The total value expressed by the bufsiz parameters must always represent the worst case buffer
pool requirements among all combinations of simultaneously open record 1/0 files. The number of
files (or buffers) representing the worst case is expressed as the first parameter of the macro call.

psect
Specifies the name of the program section (PSECT) to which control returns after FSRSZ$
completes processing. If no name is specified, control returns to the blank PSECT.

FINIT$-Initialize FSR at Run Time
In addition to the FSRSZ$ macro call described in the preceding section, the FINIT$ macro c:all
must also be issued in a MACRO-ll program to call initialization coding to set up the FSR.

label: FINIT$

Parameter

label
Indicates an optional symbol, which you specify, that allows control to be transferred to this
location during program execution. Other instructions in the program might reference this la.bel,
as in the case of a program that has been written so that it can be restarted.

The FINIT$ macro call should be issued in the program's initialization code. The first FCS call
issued for opening a file performs the FSR initialization implicitly (if it has not already been
accomplished through an explicit invocation of the FINIT$ macro call). However, it is necessary, in
the case of a program that is written so that it can be restarted, to issue the FINIT$ macro call in
the program's initialization code, as shown in the next example. This requirement derives from the
fact that such a program performs all its initialization at run time, rather than at assembly time.

For example, a program that is not written so that it can be restarted might accomplish the
initialization of the FSR implicitly through the following macro call:

START: OPEN$R #FDBIN iIMPLICITLY INITIALIZES THE FSR
iAND OPENS THE FILE.

In this case, although transparent to you, the OPEN$R macro call invokes the FINIT$ operation.
The label START is the transfer address of the program.

2-32

Preparing for 1/0

In contrast, a program that embodies the capability to be restarted must issue the FINIT$ macro
call explicitly at program initialization a,B shown here:

START: FINIT$
OPEN$R #FDBIN

;EXPLICITLY INITIALIZES THE FSR AND
;OPENS THE FILE.

In this case, the FINIT$ macro call cannot be invoked arbitrarily elsewhere in the program; it
must be issued at program initialization. Doing so forces the reinitialization of the FSR, whether
or not it has been done in a previous execution of the program through an OPEN$x macro call.

It is important to realize that calling any of the file control routines described in Chapter 4, such
as .PARSE, first requires the initialization of the FSR. However, the FINIT$ operation must be
perfonned only once each program execution. Note also that FORTRAN programs issue a FINIT$
macro call at the beginning of the program execution; therefore, MACRO-11 routines used with the
FORTRAN Object Time System (OTS) must not issue a FINIT$ macro call.

2~.8 Increasing the Size of the Filel Storage Region

2:.8.1

Procedures fhr increasing the size of the FSR for either MACRO-11 or FORTRAN programs are
presented in Sections 2.8.1 and 2.8.2.

FSR Extension Procedures fctr MACRO-11 Programs
Increase the size of the FSR for a MACHO-11 program by following either of the following
procedures:

• Modify the paJrameters in the FSRSZ$ macro call to redefine the buffer pool requirement of
files open simultaneously for record I/O processing. Reassemble the program.

• Use the I~XTSCT (extend program se4C:tion) command at task-build time to define the new size
of the FSR. To invoke this option, specify the command in the following form:

EXTSCT = $$FSRl:1ength

ParametElr

$$FSR1
Specifies the symbolic name of the program section within the FSR that is reserved as the
block buffer pool length. A numeric value defining the total required size of the buffer pool in
bytes.

The size of the FSR cannot be reduced at task-build time.

In calculatin~~ the total length of the FSR, you can use either of the following formulas:

• Length = (S.Blf'HD*tbufs)+bufsiz

• Length = tbufs*(S.BFHD+5121O)

Length Alrgument

S.BFHD
Specifies a symbol that defines the number of bytes required for each block buffer header. You
can define this syrnbollocal1y in your program by issuing the following macro call:

BDOFF$ DEF$L

2-33

2.8.2

Preparing for I/O

fbufs
Specifies a nwneric value representing either the maximwn nwnber of files open
simultaneously for record I/O (when single buffering only is used) or the maximum number
of buffers ever in use simultaneously among all files open concurrently for record I/O (when
multibuffering is used). Refer also to the description of this parameter in the FSRSZ$ macro
call in Section 2.7.1.

bufslz
Specifies a nwneric value defining the total block buffer pool space (in bytes) needed to support
the maximwn nwnber of files that can be open simultaneously for record I/O. Refer to the
description of this parameter in the FSRSZ$ macro call in Section 2.7.1.

51210
Specifies the standard default buffer size.

The EXTSCT option is described in detail in the lAS Thsk Builder Reference Manual.

FSR Extension Procedures for FORTRAN Programs
For a FORTRAN program, if an explicit ACTFIL option is not issued to the Task Builder, an
ACTFIL statement with a default value of 4 is generated during task build. You can extend the
size of the FSR at task-build time by issuing the following command:

Parameter

files

ACTFIL := files

Specifies a decimal value defining the maximwn number of files that can be open simultaneously
for record 110 processing.

This command, like the EXTSCT command described previously, causes program section $$FSR1
to be extended by an amount sufficient to accommodate the nwnber of active files anticipated for
simultaneous use by the program.

The size of the FSR for a FORTRAN program can also be decreased at task-build time. As noted
previously, the default value for the ACTFIL command is 4. Thus, if 0, 1, 2, or 3 is specified as the
"files" parameter, the size of $$FSR1 (the FSR block buffer pool) is reduced accordingly.

The ACTFIL option is described in detail in the lAS Thsk Builder Reference Manual.

2.9 Coordinating 1/0 Operations
Your programs perform all I/O operations by issuing GET$ or PUT$ and READ$ or WRITE$ macro
calls. (See Chapter 3 for a complete discussion of these file-processing macro calls.) These cans
do not access the physical devices in the system directly. Rather, when anyone of these calls is
issued, an I/O-related system macro called Queue 110 (QIO$, QIO$C, or QIO$S) is invoked as the
interface between the File Control Services (FCS) file-processing routines at the user level and
the system 110 handlers at the device level. Device handlers are included for all the standard 110
devices supported by lAS systems. Although transparent to your task, the QUEUE 110 directive is
used for all FCS file access operations.

When invoked, the QIO$ macro instructs the system to place an 110 request for the associated
physical device unit into a queue of priority-ordered requests for that unit. This request is placed
according to the priority of the issuing task. As required system resources become available, the
requested I/O transfer takes place.

2-34

2.9.1

Preparing for 1/0

As implied p'reviously, the fol1owing two separate and distinct processes are involved in
accomplishing a specified 110 transfer:

1 The successful queuing of the GET$ or PUT$ or READ$ or WRITE$ I/O request

2 The succE~ssful completion of the requested data transfer operation

These processes, both of which yield succc~sS/failure indications that can be tested by your program,
must be performed successfully for the specified I/O operation to be completed. It is important to
note that FC13 totally synchronizes recordl I/O operations for you, even in the case of multibuffered
operations. I:n the case of block I/O operations, the flexibility of FCS allows you to synchronize
all block I/O activities, thus enabling you. to satisfy logical processing dependencies within the
program.

Event Flags
110 operations proceed concurrently with other system activity. Mer an 110 request has been
queued, the system does not force an imp1lied wait for the issuing task until the requested operation
is completed. Rather, the operation proce1eds in parallel with the execution of the issuing task, and
it is the task's responsibility to synchroni:ze the execution of I/O requests. Tasks use event flags in
synchronizini~ these activities. The systeln executes operations that manipulate, test, and wait for
these indicators of internal task activity.

The completion of an 110 transfer, for example, is recognized by the system as a significant event.
If you have s1pecified a particular event flag to be used by the task in coordinating IIO-completion
processing, that event flag is set, causing the system to evaluate the eligibility of other tasks to
run. Any event flag from 1 to 3210 can be defined for local use by the task. If you have not specified
an event flag" FCS uses event flag 3210 by default to signal the completion of 110 transfers.

Specific FDB·,initialization and I/O-initiating macro calls in FCS enable you to specify event flags,
if desired, that are unique to a particular task and that are set and reset only as a result of that
task's operation.

For record I/O operations, such an event flag can be defined through the efn parameter of the
FDBF$A or the FDBF$R macro call (see Section 2.3.1.6 or 2.3.2, respectively).

For block I/O operations, an event flag can be declared through the bkef parameter of the FDBK$A
or the FDBID~R macro call (see Section 2.3.1.4 or 2.3.2, respectively); alternatively, a block event
flag can be declared through the corresponding parameter of the I/O-initiating READ$ or WRITE$
macro call (se:e Chapter 3).

In both record and block I/O operations, the event flag is cleared when the I/O request is queued
and is set when the I/O operation is completed. In the case of record I/O operations, only FCS
manipulates the event flag. Additionally, the event flag's state is transparent to your task, which
must not issu.e a WAITFOR system directive predicated on the event flag used for coordinating
record I/O operations. A record I/O operation, for example, might not even involve an I/O transfer;
rather, it might only involve the blocking or deblocking of a record within the file storage region
(FSR) block buffer. On the other hand, the event flag defined for synchronizing block I/O operations
is totally under your control.

Also, a code indicating the success or failure of the QIO$ macro request resulting from the READ$
or WRITE$ mlacro call is returned to the Directive Status Word (DSW). If desired, you can test the
symbolic location DSW to determine the status of the I/O request. The success/failure codes for the
QIO$ macros are listed in the lAS Device Handlers Reference Manual.

2-35

2.9.2

Preparing for I/O

Event flag directives are described in the lAS Executive Facilities Reference Manual. The
relationship of event flags to specific devices is described in the lAS Device Handlers Reference
Manual.

1/0 Status Block
Because of the comparative complexity of block 1/0 operations, an optional parameter is provided
in the FDBK$A and the FDBK$R macro calls, as well as in the READ$ and WRITE$ macro calls,
that enables the system to return status information to your task for block 1/0 operations. The 1/0
status block (IOSB) is not applicable to record 1/0 (GET$ or PUT$) operations.

This optional parameter, called the 10SB address, is made available to FeS through any of the
macro calls identified previously. When this parameter is supplied, the system returns status
information to a 2-word block reserved in your program. Although the 10SB is used principally as
a QIO$ macro housekeeping mechanism for containing certain device-dependent information, this
area also contains information of particular interest to you.

Specifically, the second word of the 10SB is filled in with the number of bytes transferred during
a READ$ or WRITE$ operation. When you are performing READ$ operations, it is good practice
to use the value returned to the second word of the 10SB as the number of bytes actually read,
rather than to assume that the requested number of bytes was transferred. Employing this
technique allows the program to properly read virtual blocks of varying length from a device
such as a magnetic tape unit, provided that the requested byte count is at least as large as the
largest virtual block. For WRITE$ operations, the specified number of bytes is always transferred;
otherwise, an error condition exists.

Also, the low-order byte of the first word of the 10SB contains a code that reflects the final status
of the READ$ or WRITE$ operation. The codes returned to this byte can be tested to determine
the status of any given block 1/0 transfer. The binary values of these status codes always have the
following significance:

Code Value

+ (plus sign)

o
- (minus sign)

Meaning

I/O transfer completed.

I/O transfer still pending.

I/O error condition exists.

The format of the 10SB and the error codes returned to the low-order byte of its first word are
described in detail in the lAS Device Handlers Reference Manual.

If the address of the 10SB is not made available to FeS (and hence to the QIO$ macro) through
any of the macro calls noted previously, no status information is returned to the 10SB. In this case,
the fact that an error condition might have occurred during a READ$ or WRITE$ operation is
sirnply lost. Thus, supplying the address of the IOSB to the associated File Descriptor Block (FOB)
is highly desirable and makes normal error reporting easier.

You can define an IOSB in your task at assembly time through any storage directive logically
equivalent to the following:

IOSTAT: .BLKW 2

IOSTAT is a symbol, which you define, naming the IOSB and defining its address. This symbo1ic
value is specified as the bkst parameter in the FDBK$A or the FDBK$R macro call to initialize
FDB offset location F.BKST; it can also he specified as the corresponding parameter in the READ$

2-36

2.9.3

2.9.4

Preparing for 1/0

or the WRrrE$ macro call. Initializing this ce]] in the FDB is an integral part of issuing the
desired I/O request.

AST Service Routine
An asynchronous system trap (AST) is a software-generated interrupt that causes the sequence
of instructions currently being executed 1GO be interrupted and control to be transferred to another
instruction sequence elsewhere in the program. If desired, you can specify the address of an AST
service routine that is to be entered upon completion of a block I/O transfer. Because an AST is a
trap action,]tt constitutes an indication of block I/O completion.

You can spec:ify the address of an AST service routine as an optional parameter (bkdn) in the
FDBK$A or the FDBK$R macro call (see Section 2.3.1.4 or 2.3.2, respectively); this parameter may
also be speci:fied in the READ$ or the WRITE$ macro call, initializing the FDB at the time the I/O
request is issued (see Chapter 3).

Usually, you specify an AST address to enable a running task to be interrupted to execute special
code upon completion of a block I/O reqUlest. If the address of an AST service routine is not
specified, the transfer of control does not occur, and normal task execution continues.

The main purpose of an AST service routine is to inform your task that a block I/O operation has
been complet.ed, thus enabling the program to continue immediately with some other desired (and
perhaps logic:ally dependent) operation (£4)r ,example, another I/O transfer).

If an AST service routine is not provided by you, some other mechanism, such as event flags or
the 10SB, mlllst be used as a means of d€~termining block I/O completion. In the absence of such a
routine, for example, you can test the low-order byte of the first word in the 10SB to determine if
the block I/O transfer has been completed. A WAIT$ macro call (see Chapter 3) can also be issued
in connection with a READ$ or WRITE$ operation to suspend task execution until a specified event
flag is set to indicate the completion of block I/O.

Implementinlg an AST service routine in your program is application dependent and must be coded
specifically to meet your task's particular I/O-processing requirements. A detailed discussion of
ASTs is beyond the scope of this document. Refer to the lAS Executive Facilities Reference Manual
for discussions of trap-associated system directives.

CAUTION: no not execute any FCS lroutines while in an AST service routine. FCS
maintains an impure data area that it uses as a Directive Parameter Block (DPB) and as
a scratch area for directives. An AS1' could interrupt an FCS operation that is altering
this impure area. Executing an FCS routine in AST state could alter the impure area
and cause unpredictable results Wheltl task execution resumes.

Block Lo(:king
Block locking seledively controls access to blocks within a file while that file is being read from or
written to by one or more users. Block loeking is a system generation option that can be used from
FCS or RMS-ll or by issuing QIO$ macros.

You can enable block locking only when the file is opened. Once block locking is enabled, you can
establish "locks," which are structures allocated from system dynamic storage that control access
to specific blocks in the file.

2-37

Preparing for 1/0

When your task reads or writes a block, the Executive creates a lock that subsequently restricts
other users from writing to or reading from that block. When your task has a file open on a),ogica:
unit number (LUN) with block locking enabled and locks are created, your locks do not restrict yoUl
task from reading or writing blocks if you use the same LUN. Locks can be selectively eliminated
by issuing a QIO$ macro with the IO.ULK (unlock) function code. You can only eliminate those
locks that you have created. When your task closes the file, all your locks on that file are released
to system dynamic storage.

Block locking operates in the following ways when using FCS:

1 Opens the file.

'1b enable block locking when opening a file from FCS, you must change two fields in the
FDB. The value FA.SHR in byte F.FACC must be set to allow shared write access to the file.
Additionally, the values FA.LKL, FA.EXL, and FA.ENB must be set in word F.ACTL. Setting
FA.SHR causes FCS to clear AC.LCK in the DPB. For example:

FDOP$R iFDB""iFA.SHR,iFA.LKL!FA.EXL!FA.ENB
OPEN$R RO""""ERRSUB ;OPEN SHARED FOR READ WITH LOCKS

2 Writes or reads blocks.

A one-block read or write operation locks a block for exclusive access. A write or read operatiOl
of more than one block similarly locks all blocks operated on in this QIO$ macro. A file open
for block mode might invoke READ$ and WRITE$ macros in the usual manner.

Note that, in general, FCS operates as follows on sequential read access:

a. OPEN$R positions the file to record 1.

b. GET$ returns record 1 and positions the file to record 2.

c. GET$ returns record 2 and positions the file to record 3.

d. GET$ returns record 3 and positions the file to record 4.

Be aware that successive GET$ macros scan across the file sequentially.

However, if you have files open for record mode operations, the following special consideratiom
might exist:

• A number of tasks are updating records in a single file.

• One of these tasks is reading records sequentially.

For example, if the GET$ macro for record 2 in the task that reads blocks sequentially fails
because record 2 is contained in a block previously locked by another task, FCS loses its
position in the file. The next GET$ macro yields undefined results; it obtains neither record 2
nor record 3.

Mter this kind of error occurs, FCS must re-position its pointer to the records in the file. This
can happen in one of the following ways:

• Operating in random mode on fixed-length records, FCS re-positions its record pointer to
the first record for each GET$ or PUT$ operation.

• FCS re-positions the FCS pointer in a file of variable-length records by calling the FeS
.POINT routine. You can re-position the pointer either to a location noted by a previous
.MARK can or to the beginning of the file.

• FCS closes and reopens the file to re-position the pointer to the beginning.

3 Unlocks blocks.

2-38

2.9.5

4

Preparing for 1/0

1b unlock blocks without closing the file, you must execute a QIO$ macro with the funct.ion
code IO.ULK. You can use IO.ULK to unlock one block, a series of blocks, or all the blocks in
an open jfile.

1b unlock one or more blocks in a series, specify the block count in device-dependent parameter
Word 2, EJpecify the high 8 bits of the starting virtual block number (VBN) in the low byte of
parametElr Word 4, and specify the low 16 bits of the starting VBN in parameter Word 5. For
example, to unlock previously locked VBNs 5, 6, and 7, use the following code:

MOV
MOV
OIOW$S

#3, RO ; UNLOCK 3 BLOCKS
#5,Rl ;STARTING AT VBN 5
#IO.ULK,#MYLUN,#1"#IOSB,,<,RO,,,R1>

1b unlock all blocks you have locked on this LUN, issue the QIO$ macro with no parameters
beyond the device-independent part of the DPB, as follows:

QIOW$S #IO.ULK, #MYLUN,. #1" #IOSB ;UNLOCK ALL BLOCKS

Also, you can use FCS to execute the QIO$ macros for you by calling the .XQIO routine.

1b use the .XQIO routine to unlock a'll blocks that you have locked on this LUN and file, call
.XQIO wi.th no option parameters, that is, with R2=O as follows:

MOV
MOV
CLR
CALL
BCS

#FDB,RO
#IO.ULK,R1
R2
.XOIO
ERROUT

iGET FDB ADDRESS
iUNLOCK BLOCK FUNCTION
iUNLOCK ALL BLOCKS
iEXECUTE 010
;IF CS ERROR IS IN F.ERR(RO)

1b use .X.QIO to unlock one or more blocks in a series, you must set up a 5-word parameter
block. Specify the count of blocks in 'Nord 2, specify the high 8 bits of the starting VBN in the
low byte of parameter Word 4, and specify the low 16 bits of the starting VBN in parameter
Word 5.][4'or example, to unlock the previously locked VBNs 5, 6, and 7, use the following code:

PRMBK: . WORD 0 iPARAMETER BLOCK FOR UNLOCK 010
. WORD 0 ;COUNT OF BLOCKS TO UNLOCK
. WORD 0
. WORD 0 iHIGH 8 BITS OF START VBN
. WORD 0 iLOW 16 BITS OF START VBN

MOV iFDB,RO ;GET FDB ADDRESS
MOV #IO.ULK,R1 ;UNLOCK BLOCK FUNCTION
MOV #5,R2 iFIVE PARAMETERS
MOV iPRMBK,Ft3 iADDRESS OF PARAMETER BLOCK
MOV #3,2(R3) iUNLOCK 3 BLOCKS
MOV #5,8. (R.3) ;STARTING AT VBN 5
CALL .XQIO iEXECUTE QIO
BCS ERROUT iIF CS ERROR IS IN F.ERR(RO)

Closes the file.

Closing the file in the ordinary manner will release all blocks that have been established on
that file for the specific task and LUN.

Error Codes IRelated to Shared Files and Block Locking
Error codes I'elating to file sharing and block locking might be returned in the following
circumstances.

2-39

Preparing for 1/0

Error Codes

1 Opening the file

The following error codes might occur when you attempt to open the file:

IE.WAC,

Explanation: Indicates that you have requested that other users be denied write access (no FCS
FA.SHR or AC.LCK=l), but someone else has already opened the file to write to it.

User Action: Do not attempt to open the file until all others writing to the file have closed it.

IE.LCK,

Explanation: Indicates that one of the following conditions is true:

• You want to write to the file and have allowed shared write access (set FCS FA.SHR or
AC.LCK=O), but someone else has already opened the file, denying others write access.

User Action: Do not attempt to open the file until all accessors without shared write access have
closed the file.

• You want to write to the file and have allowed shared write access (set FCS FA.SHR or
AC.LCK=O) without enabling block locking but someone else has already opened the file
with block locking enabled.

User Action: Open the file with block locking enabled.

• FIIACP cannot perform a directory operation because the directory is locked or being
written to.

User Action: The solution depends on what you anticipate as nonnal activity on your system. If
it is legitimate for a task to access a directory, then consider attempting the operation again.

IE.ULK,

Explanation: Indicates that the Executive does not support block locking. This error can only be
returned on an lAS system that has been generated without block locking support.

User Action: Open the file without enabling block locking.

2 Writing or reading blocks

The following error codes might occur when you attempt to write or read blocks:

IE.ULK,

Explanation: Returned by the Executive when any read or write error occurs that relates to blocl
locking. It generally means that another task has locked the block.

User Action: The solution depends on the application. Wait and retry the operation or report the
error and stop processing.

3 Unlocking blocks

The following error codes might occur when you attempt to unlock blocks:

IE.IFC,

Explanation: Returned when the Executive does not support block locking.

User Action: Do not attempt to unlock blocks on a system that does not support block locking.

2-40

Preparing for 110

IE.LCK,

Explanation: Returned upon the OCCUlTence of any other error. For example, IE.LCK is returned
if another ta:sk has locked the blocks.

User Actiol1l: Unlock only those blocks that you have previously locked for that file.

4 Closing the file.

No block locking elTor can occur when closing a file.

2-41

~I File-Prc)cessing Macro~;

You can manipulate files through a set of file-processing macro calls. The assembler invokes and
expands thes~e macros at assembly time and the operating system executes the resulting code at
run time. This chapter describes these run-time macro calls, which allow you to manipu1ate files
and to perfol1tn the following 1/0 operations. Table 3-1 provides a brief description of each macro.

Table 3-1

Macro
Call

OPEN$

OPNS$

OPNT$

OFID$

OFNB$

CLOSE$

GET$

GET$R

GET$S

PUT$

PUT$R

PUT$S

READ$

WRITE$

WAIT$

DELET$

FUe-Processlng Macro Calls

I=unctlon

Opens and prepares a file for processing.

Opens and prepares a file for pmcessing and allows shared access to that file (depending on the
mode of access.)

Greates and opens a temporary fiile for processing.

Opens an existing file by using fil~~ identification information in the filename block.

Opens a file by using file name information in the filename block.

l~rminates file processing in an orderly manner.

neads logical data records from al file.

neads fixed-length records from El file in random mode.

neads records from a file in sequ1sntial mode.

'Nrites logical data records to a file.

'JVrites fixed-length records to a file in random mode.

Writes records to a file in sequential mode.

Heads virtual data blocks from a file.

'JVrites virtual data blocks to a file.

Suspends program execution until a requested block 1/0 operation Is completed.

Ftemoves a named file from the associated volume directory and deallocates the space occupied by
the file.

Most of the parameters associated with the file-processing macro calls supply information to the
File Descriptor Block (FDB). Such paramE~ters cause MOV or MOVB instructions to be generated
in the object (:ode, which results in the initialization of specific locations within the FDB.

The final parameter in all file-processing macros is the symbolic address of an optional,
user-defined E!rror-handling routine. This routine is entered upon detection of an error condition
during the file-processing operation. Whelll this optional parameter is specified, the following code
is generated:

Co,de for macro

BCC .+6
CA.LL ERRLOC

;TESTS CARRY BIT IN PROCESSOR STATUS WORD.
; INITIA~~ES ERROR-HANDLING ROUTINE
;AT "ERRLOC" ADDRESS.

3-1

File-Processing Macros

If the operation is completed successfully, the Carry bit in the Processor Status Word (PSW) is not
set, and FDB offset location F.ERR contains a positive value. The BCC instruction then results in
a branch around the CALL instruction and normal program execution continues.

However, if an error condition is detected during the execution of the file-processing routine, the
Carry bit in the PSW is set, FDB offset location F.ERR contains a negative value (indicating an
error condition), and the branch around the CALL instruction does not occur. Instead, the CALL
instruction is executed, loading the program counter (PC) with the symbolic address (ERRLOC) of
the error-handling routine and initiating its execution.

If this optional parameter is not specified, the error-processing routine is not called, and you must
explicitly test the Carry bit in the PSW to ascertain the status of the requested operation.

Note that executing the File Control Services (FCS) file-processing routines causes all your task's
general registers, except RO, to be saved. FCS uses RO by convention to contain the address of the
FDB associated with the file being processed.

:~.1 OPEN$x-Generalized Open Macro
Before any file can be processed by your task or system program, it must first be opened. An
alphabetic suffix accompanying the macro name indicates to FCS the action you intend to perform
on a file. For example, you might issue a generalized macro.

OPEN$x

Parameter

x
Represents anyone of the following alphabetic suffixes, each of which denotes a specific type of file
processing:

R Read an existing file.

W Write (create) a new file.

M Modify an existing file without changing its length.

U Update an existing file and extend its length, if necessary.

A Append (add) data to the end of an existing file.

NOTE: You can issue the generalized OPEN$x macro without an alphabetic suffix.
In this case, the action to be performed on the file is indicated to FCS through an
additional parameter in the macro. This value, called the file access (face) parameter,
causes offset location F.FACC in the associated FDB to be initialized. Section 3.'7
describes this macro in detail.

Depending on the alphabetic suffix supplied in the OPEN$x macro call, certain other types of
operations might or might not be allowed, as follows:

• If R is specified (for reading an existing file), that file cannot also be written; that is, a PUT$ or
WRITE$ operation cannot be performed on that file.

•

•
•

3-2

If M or U is specified (for modifying or updating an existing file), that file can be both read
and written; that is, concurrent GET$ and PUT$ or READ$ and WRITE$ operations can be
performed on that file.

If M is specified (for modifying an existing file), that file cannot be extended.

If W or A is specified (for creating a new file or for appending data to an existing file), that file
can be read, written, or extended.

File-Processing Macros

The program that issues the OPEN$x macro must. have appropriate access privileges for t.he
specified action. Table 3-2 summarizes the access privileges for the various forms of the OPEN$x
macro. This table also shows where the next record or block will be read or written in the file after
it is opened.

Table 3-2 File Access Privileges Resultling from OPEN$x Macro

Macro ~,ccess Privileges

OPEN$R

OPEN$W

OPEN$M

OPEN$U

OPEN$A

Flead

Flead, write, extend

Flead, write

Flead, write, extend

Flead, write, extend

Position of File After OPEN$x

First record of existing file

First record of new file

First record of existing file

First record of existing file

End of existing file (For special PUT$R considerations, see
Section 3.13.)

When your task issues any form of the OPEN$x macro, FCS first fills in the filename block with
file name information retrieved from the data-set descriptor (see Chapter 2). FCS gains access to
this data structure through the address value stored in FDB offset location F.DSPT.

If any required data has been omitted fro'm the data-set descriptor, FCS attempts to obtain the
missing infonnation from the default filename block. This data structure, which can also contain
file name information specified in your taBk, is created in the program by issuing the NMBLK$
macro (see Chapter 2). FCS gains access to this structure through the address value stored in FDB
offset location F.DFNB.

The address values in offset locations F.DSPT and F.DFNB can be supplied to FCS through
the FDOP$Amacro, the FDOP$R macro eall, or the OPEN$x macro. FCS requires access to
the data-set d.escrilPtor or the default filename block in retrieving file name information used in
opening files.

If a new file is to be created, the OPEN$W macro is issued. FCS then performs the following
operations:

1 Creates a new file and obtains file identification information for the file. FCS maintains the
file identification information in offset location N.FID of the filename block. The filename block
in the FDB begins at the FDB offset location F.FNB.

2 Initializes the file attribute section of the file header block. The file header block is a file
system structmre maintained on the volume containing the file. Each file on a volume has an
associated file header block that describes the attributes of that file. FCS obtains attribute
information for a neW file from the FDB associated with the file. The format and content of a
file header block are presented in deta.il in Appendix C.

3 Places an entry for the file in the User File Directory (UFD). If, however, an entry for a file
having the same name, type, and version number already exists in the UFD, the old file is
deleted. If your task explicitly issues a particular type of macro that specifies that the file not
be superseded, the old file is not deleted and an error code-is returned. This type of OPEN$
operation is described in Section 3.7.

4 As socia teSI the assigned logical unit number (LUN) with the file to be created.

5 Allocates a buffer for the file from the file storage region (FSR) block buffer pool if record I/O
(GET$ or PUT$) operations are processing the file.

3-3

3.1.1

File-Processing Macros·

If an existing file is to he opened, anyone of the following macros can be issued: OPEN$R,
OPEN$M, OPEN$U, or OPEN$A. FCS then performs the following operations:

1 If file identification information is not present in the filename block, FCS constructs
the filename block from information taken from the data-set descriptor and the default
filename block, or both. FCS then searches the UFD by file name to obtain the required
file identification information. When found, this information is stored in the filename block,
beginning at offset location N.FID.

2 Associates the assigned LUN with the file.

3

4

Reads the file header block and initializes the file attribute section of the FDB associated with
the file being opened.

Allocates a buffer for the file from the FSR block buffer pool if record I/O (GET$ or PUT$)
operations are processing the file.

NOTE: As described in Chapter 2, you allocate buffers through the FSRSZ$ macro. The
number of buffers allocated is dependent upon the number of flIes that you intend to
open simultaneously fo'r record 110 operations.

If your task uses block I/O operations, FDB offset location F.RACC must be initialized with the
FD.RWM parameter by the FDRC$A, the FDRC$R, or the generalized OPEN$x macro. This
parameter inhibits the allocation of a buffer when the file is opened.

Format of Generalized OPEN$x Macro
The OPEN$x macro takes the general form shown next.

OPEN$x fdb,lun,dspt,racc,urba,urbs,8"

Parameters

x
Represents the alphabetic suffix specified as part of the macro name, which indicates the desired
type of operation to be performed on the file. The possible values for this parameter are: R, W, M,
U, A, or no value at all (see Section 3.1).

fdb
Specifies a symbolic value of the address of the associated FDB.

lun
Specifies the LUN associated with the desired file. This parameter identifies the device on which
the volume containing the desired file is mounted. Normally, the LUN associated with the file
is specified through the corresponding parameter of the FDOP$A or the FDOP$R macro. If so
specified, the lun parameter need not be present in the OPEN$x macro. Each FDB must have a
unique LUN.

dspt
Specifies the symbolic address of the data-set descriptor. Normal1y, this address value is specified
through the corresponding parameter of the FDOP$A or the FDOP$R macro. If so specified, this
parameter need not be present in the OPEN$x macro.

This parameter specifies the address of the manual1y created data-set descriptor (see Chapt.er 2).
If the Command String Interpreter (CSI) interprets command lines dynamically, this parameter
specifies the address of the data-set descriptor within the CSI control block (see offset location
C.DSDS in Chapter 6).

3-4

File-Processing Macros

race
Specifies the :record access byte. One or rnore symbolic values can be specified in this field to
initialize the :record access byte (F.RACC) in the associated FDB. You can specify any combination
of the following pa:rameters by separating them with exclamation points:

FD.RWM

FD.RAN

FD.PLC

RElquests that block 110 (READ$ or WRITE$) operations are to process the file. If you do not specify
this parameter, FCS assumes by default that record I/O (GET$ or PUT$) operations are to process
tht~ file.

RElquests random access to the filEI for record I/O (GET$ or PUT$) operations. The file is opened
and the first record is pointed to. 'Nith this parameter, a PUT$ operation in the file, without exception,
does not truncate the file. If this pSlrameter is not specified, FCS uses sequential access by default.
RElfer to Chapter 1 for a description of random access mode.

RElquests locate mode (see Chapter 1) for record I/O (GET$ or PUT$) operations. If this parameter is
not specified, FCS uses move mode (see Chapter 1) by default.

FD.lNS Requests that a PUT$ operation in sequential mode in the body of a file does not truncate the file.
This parameter prevents the logical end of the file from being reset to a point just beyond the Inserted
record. If this parameter is not specified, a PUT$ operation in sequential mode truncates the file to a
point just beyond the inserted record, but no deallocation of file blocks occurs.

Specifying this parameter allows a data rl9cord in the body of the file to be overwritten. Care must
be exercised, however, to ensure that the record being written is the same length as that of the
record being replaced.

If the record access· byte in the FDB has a1ready been initialized through the corresponding
parameters of the FDRC$A or the FDRC$;R macro, the racc parameters need not be present in the
OPEN$x macro.

urba
Specifies the i3ymbolic address of your task's record buffer. This parameter initializes FDB offset
location F. URBD+2.

If your task's record buffer address has already been supplied to the FDB through the
correspondin~~ parameter of the FDRC$A or the FDRC$R macro, this parameter need not be
present in the OPEN$x macro.

urbs
Specifies a numeric value that defines the size of your task's record buffer (in bytes). This
parameter initializes FDB offset location F. URBD.

If the size of your task's record buffer has already been supplied to the FDB through the
correspondin~~ parameter of the FDRC$A or the FDRC$R macro, this parameter need not be
present in tht~ OP}I~N$x macro.

err
Specifies the symbolic address of an optional, user-coded error-handling routine.

Specific FDB requirements for record I/O operations (GET$ and PUT$ macros) are detailed in
Sections 3.9.2 and 3.12.2.

The examples listed at the end of this section show sample uses of the OPEN$x macro.

Note

You can use no only to pass the FDB address parameter. Any other use of RO when you issue the
OPEN$A macro will fail.

3-5

3.1.2

File-Processing Macros

Examples

OPEN$M RO,#INLUN,,#FD.RAN!FD.PLC

Opens and modifies an existing file.

Note in this macro that the FOB address is assumed to be present in RO. The third parameter,
that is, the data-set descriptor pointer, is not specified; this null specification (indicated by the
extra comma) assumes that FOB offset location F.OSPT (if required) has already been initialized.
The last parameter, consisting of two values separated by an exclamation point, establishes random
access and locate modes for GET$ or PUT$ operations.

OPEN$U RO,#INLUN",#RECBUF,#BO.

Updates an existing file.

This macro also assumes that the FOB address is in RO. Note also that the dspt and racc
parameter fields are null, based on the premise that the data-set descriptor pointer (F.DSPT)
has been provided previously to the FOB and that the record access byte (F.RACe) has also
been previously initialized. Finally, the last two parameters establish the address and the size,
respectively, of your task's record buffer.

OPEN$A #OUTFDB

ShOWR a macro that might be issued to allow data to be appended to the end of a file.

This macro specifies the address of an FOB as the only parameter. In this case, it is assumed that
all other parameters required by FCS in opening and operating on the file have heen previously
supplied to the FOB through the appropriate assembly-time or run-time macro.

Note in all three preceding examples that the error parameter is not specified, requiring that you
explicitly test the Carry hit in the PSW to ascertain the success of the specified operation.

FOB Requirements for Generalized OPEN$x Macro
The information required for opening a file can be supplied to the File Descriptor Block (FDB)
through the following macros:

• The assembly-time macros described in Chapter 2

• The NMBLK$ macro described in Chapter 2

• The run-time macros described in Chapter 2

• The various macros described in this chapter for opening files

The use of any particular combination of macros to define and initialize the FDB is a matter of
choice, as indicated previously. Of far greater significance is the fact that certain information must
be pres~nt in the FOB before you can open the associated file. In this regard, the following rules
apply for creating and opening new files, for opening existing files, and for specifying desired file
options:

1 To create a new file

3-6

If a new file is to be created through the OPEN$W macro, the following information must first
be supplied to the FDB. You can specify this information through the FDAT$A macro or the
FDAT$R macro (see Chapter 2):

a. The record type must be established for record I/O operations.

File-Processing Macros

The record type cannot be supplied to the FOB through any of the various macros used
to create 011' open files (for example, OPEN$W, OPEN$R, and so forth). Furthermore,
this information is not required when opening an existing file because FCS obtains such
infornlation from the first 14 bytes of your task's file attribute section of the file header
block (see Appendix C).

'1b establish the record type, you lmust initialize byte offset location F.RTYP with the
following symbolic values:

R.FIX Requests that fixed-length records are to be written into the file.

R.VAR REtquests that variable-length records are to be written into the file.

R.SEQ Requests that sequenced records are to be written into the file.

b. The desired record attributes must be specified for record I/O operations.

The record attributes cannot be supplied to the FOB through any of the various macros
used to create or open files (for example, OPEN$W, OPEN$R, and so forth). Furthermore,
the record attributes are not reqruired when opening an existing file because FCS obtains
such information from the first 14~ bytes of your task's file-attribute section of the file
header blo(~k (see Appendix C).

The record attributes are defined by initializing byte offset location F.RATT with the
appropriate value or values, as follows:

FO.FTN Requests that the first byte o!f each record contain a FORTRAN carriage-control character.

FO.CR Requests that a line-feed «l.F» character precede each record and that a carriage-return
«CR» character follow the record when that record is output to a device requiring carriage
control information (for example, to a terminal). The <IF> and <CR> characters are not actually
embedded within the record. Their presence is merely implied through the file attribute FD.CR.

FO.BlI< Requests that records be prevented from crossing block boundaries.

FO.PRN Requests that the record be preceded by a word containing carriage-control Information. Flies
with this attribute must also be sequenced files; that is, files with the bit R.SEQ set In the byte
F.RTYP in the FOB. For morE' information about FO.PRN as a record attribute, see Chapter 2.

c. If fixed-length records are to be written to the file, you must specify the record size (in
bytes) for record 110 operations to appropriately initialize FOB offset location F.RSIZ.

The record size cannot be supplied to the FOB through any of the various macros used
to create and open files, (for example, OPEN$W, OPEN$R, and so forth). Furthermore,
the record size is not required when opening an existing file, because FCS obtains such
infornlation from the first 14 bytes of your task's file-attribute section of the file header
block (see Appendix C).

2 To open leither a new file or an existing file

Regardless of whether the file being opened is yet to be created or already exists, the following
information must be present in the FDB before that file can be opened:

a. The record access byte must be in'itialized for record or block I/O operations. The symbolic
valueB following can be specified in the FORC$A macro (see Chapter 2), the FORC$R
macro caB (see Chapter 2), or the generalized OPEN$x macro to initialize FOB offset
location F.RACC:

FO.RWM Requests that READ$ or WRITE$ (block I/O) operations process the file. If this parameter is
not specified, GET$ or PUT$ (record I/O) operations result by default.

3-7

File-Processing Macros

FD.RAN

FD.PLC

FD.lNS

Requests that random access mode (GET$ or PUT$ record I/O) process the file. The file is
opened and the first record pointed to. If this parameter is not specified, sequential access
mode results by default. Refer to Chapter 1 for a description of random access mode.

Requests that locate mode (GET$ or PUT$ record I/O) process the file. If this parameter is
not specified, move mode results by default.

Requests that a PUT$ operation in sequential mode in the body of a file shall not truncate the
file. If this parameter is not specified, a PUT$ operation truncates the file. In this case, the
logical end of the file is reset to a point just beyond the inserted record, but no deallocation
of file blocks occurs.

b. Your task's record buffer descriptors (that is, the urba and urbs parameters) and urbs
parameters\ master) must be specified for record 1/0 operations. To accomplish this, the
FDRC$A, the FDRC$R, or the generalized OPEN$x macro can be used. The selected macro
call defines the address and the size of the area reserved in the program for use as a buffer
during record 1/0 operations. The urba and urbs parameters initialize FDB offset locations
F. URBD+2 and F. URBD, respectively.

FDB requirements specific to GET$ and PUT$ operations in move and locate mode are
presented in detail in Sections 3.9.2 and 3.12.2, respectively.

C. You must specify the logical unit number (LUN) to initialize FDB offset location F.LUN.
Initialization of this cell can be accomplished with the lun parameter of the FDOP$A, the
FDOP$R, or the generalized OPEN$x macro. Each FDB must have a unique LUN.

d. If file identification information is not already present in the FDB, either the data-set
descriptor pointer (F.DSPT) or the default filename block address (F.DFNB) must be
specified to enable File Control Services (FCS) to obtain required file name information for
use in opening the file. These address values can be specified in either the FDOP$A macro
(see Chapter 2) or the FDOP$R macro (see Chapter 2). The generalized OPEN$x macro
(see Section 3.1) can also be used to specify the data-set descriptor pointer.

e. If desired, an event flag number for synchronizing record 1/0 operations must be specified
to initialize FDB offset location F.EFN. This optional parameter may be specified in either
the FDBF$A macro (see Chapter 2) or the FDBF$R macro (see Chapter 2). If not specified,
FCS uses event flag number 3210 by default to synchronize all record 1/0 activity.

3 To specify desired file options

3-8

If certain options are desired for a given file, they must be specified before that file is opened.
Because this information is needed only in opening the file, it is zeroed when the file is closed,
thus ensuring that the FDB is properly reinitialized for subsequent use. The options that may
be specified for a given file are as follows:

a. The override block size (ovbs parameter) must be specified in either the FDBF$A or the
FDBF$R macro to initialize FDB offset location F.OVBS. This parameter need be specified
only if the standard default block size in effect for the associated device is to be overridden
or if the big-buffering or multibuffering versions of FCS are in use. The override block size
is specified to improve 1/0 system performance with record 1/0 and with record-oriented
devices (such as line printers) and sequential devices (such as magnetic tape units). (See
Chapter 2.)

b. The multiple buffer count (mbct parameter) must be specified in either the FDBF$A or
the FDBF$R macro to initialize FDB offset location F.MBCT. If multibuffered record 1/0
operations are to be used, this parameter must be greater than 1, and it must agree with
the desired number of buffers to be used. This parameter is neither overlaid nor zeroed
when the file is closed.

File-Processing Macros

If thE' multiple buffer count is not established as described previou~ly, multihuffered
operations can still be invoked by changing the default buffer count in the file storage
region (FSR). A default buffer count of 1 is stored in symbolic location .MBFCT of $$FSR2.
This default value can be altered to reflect the number of buffers intended for use during
record 1/0 operations. The procedure for modifying this cell in $$FSR2 is described in
Chapter 2.

In addition, if your task uses mulltibuffering, you must specify the appropriate control
flag as the mbfg parameter in either the FDBF$A or the FDBF$R macro to appropriately
initialize FDB offset location F.MlBFG. Either of two symbolic values can be specified for
this purpose, as follows:

FD.RAH Requests that read-ahead operations are to process the file.

FD.WBH Requests that write-behind operations are to process the file.

Offset location F.MBFG need be initialized only if the standard default buffering
assUtnptions are inappropriate. ~rhen a file is opened for reading (OPEN$R), read-ahead
operations are assumed by default; for all other forms of OPEN$x, write-behind operations
are assumed. It may be useful, ~()r example, to override the write-behind default
asswllPtion for a file opened through the OPEN$M or the OPEN$U macro when that
file is being used basically for sequential read operations, but scattered updating is also
being performed.

c. 1b allocate required file space at the time a file is created, the cntg parameter must be
specified in either the FDAT$A or the FDAT$R macro. This parameter initializes FDB
offset location F.CNTG. A positive value specifies results in the allocation of a contiguous
file having the specified number of blocks; a negative value, on the other hand, results in
the allocation of a noncontiguous j5le having the specified number of blocks.

d. The address of the 5-word statistks block in your program must be moved manually into
FDB offset location F.STBK. This .address value specifies an area in your task to which FCS
returns certain statistical information about a file when it is opened. If this parameter is
not specified, no return of such information occurs.

The format and content of the sta1tistics block are presented in Appendix D. You can define
such an area in a program with coding logically equivalent to the following:

STBLK: .BLKW 5

Offset locat.ion F.STBK may then be initialized manually, as follows:

MOV #STBLK,FOBADR+F.STBK

STBLK is the symbolic address of the statistics block, which you define. The destination
operand of this instruction defines the appropriate offset location within the desired FDB.

3.2 OPNS$x--Open File for Shared Access
The OPNS$x macro opens a file for shared access. This macro has the same format; that is, it
takes the sam.e alphabetic suffixes and run-time parameters as the generalized OPEN$x macro.
The shared access conditions that result from the use of this macro are summarized in Chapter 1.

3-9

File-Processing Macros

3.3 OPNT$W-Create and Open Temporary File
The OPNT$W macro creates and opens a temporary file for some special purpose of limited
duration. If a temporary file is to be used only once, it is best created through the OPNT$D macro
described in Section 3.4.

The OPNT$W macro creates a file but does not enter a file name for that file into any associated
User File Directory (UFD).

In using the OPNT$W macro, you bear the responsibility for marking the temporary file for
deletion, as described in the procedure in the following text. Then, after all operations associated
with that file are completed, closing the file results in its deallocation. All space formerly occupied
by the file is then returned for reallocation to the pool of available storage on the volume.

Although the OPNT$W macro takes the same format and parameters as those of the generalized
OPEN$x macro, the former executes faster because no directory entries are made for a temporary
file.

Creating a temporary file is usually done when a program requires a file only for the duration
of its execution (for example, for use as a work file). The general sequence of operations in such
instances proceeds as follows:

1 Open a temporary file by issuing the OPNT$W macro. Perform any desired operations on
that file. If the file is to be used only for a single OPNT$W/CLOSE$ sequence, go to step 6;
otherwise, continue with step 2.

2 Before closing the file for processing, save the filename block in the associated FDB. The
general procedure for saving (and restoring) the filename block is discussed in Chapter 2.

3 Close the file by issuing the CLOSE$ macro (see Section 3.8). Continue other processing in the
program, as desired.

4 In anticipation of reopening the temporary file, restore the filename block to the FDB by
reversing step 2.

5 Reopen the file by issuing any of the FCS macros that open existing files. Resume operations
on the file; repeat the save, CLOSE$, restore, open sequence any desired number of times.

6 Before closing the file for the last time, can the .MRKDL routine, to mark the file for deletion
as follows:

CALL .MRKDL

The .MRKDL routine is described in Chapter 4.

7 Close the file by issuing the CLOSE$ macro.

If the filename block is not saved, the file identification field therein is destroyed because this field
is reset to 0 when the file is closed.

Thus, if you do not save the filename block before closing a temporary file, a ''lost'' file results
because no directory entry is made for a temporary file. Therefore, the usual procedure of listing
the volume's directory is inapplicable. The only way such a file can be recovered is to use the File
Structure Verification Utility program (VFY) to search the volume's index file. The VFY program
has the capability to compare the files listed in a11 the directories on the volume with those listed
in the index file. If a file appears in the index file, but not in a directory, VFY identifies that file
for you. This program is described in detail in the RSX-IIM! M-PLUS Utilities Manual.

3-10

File-Processing Macros

3.4 OPNT$D--Create and Open T1emporary File and Mark for Deletion
The OPNT$D macro creates and opens a temporary file. This macro is a convenient way to perform
steps 1 and Ei shown in Section 3.3. A file marked for deletion cannot be opened by another
program. Furthermore, when the file is dosed, it is deleted from the volume, which returns its
space to the pool of available storage on the volume for reallocation.

The presumption in issuing the OPNT$D macro is that the created file is to be used only once.
This is a desirable way to open a temporary file because the file will be deleted even if the program
terminates abnormally without closing the file.

The following OPNT$D macro takes the Elame format and parameters as those of the generalized
OPEN$x mac:ro (as described in Section 3.1.1):

OPNT$D fdb,lun,dspt,racc,urba,urbs,err

Note

If the OPNT$D macro is used for a temporary file containing sensitive information, it is
recommended that you zero the file before closing it, or reformat the disk to destroy the sensitive
information. (Although a temporary file is deleted after use, the information physically remains on
the volume until written over with another file, and it could be analyzed by unauthorized users.)

3.5 OFID$x-,Open File by File 10
You issue the OFID$x macro to open an 4existing file that uses information stored in the file
identification field (offset location N.FID) of the filename block in the FDB (not in your default
filename block). TlI1us, when you issue this macro, it invokes an FCS routine that opens a file only
by file ID (see Chapter 2). The following OFID$x macro, which has the same format and takes
the same parameters as those of the generalized OPEN$x macro (see Section 3.1), is for use with
overlaid programs:

OE'ID$x fdb, lun, dspt, race, urba, urbs, err

In describing the functions of the OFID$x: macro, either one of the following two assumptions may
apply:

• The necessary context for opening the file has been saved from a previous OPEN$x operation
and has been restored to the filename block in anticipation of opening that file by file ID.
Saving and restoring the filename bl04ck are discussed in detail in Chapter 2.

• The desir,ed file is to be opened for the first time. In that case, the necessary context for
opening the file must first be stored in the filename block before the OFID$ macro can be
issued.

In most cases, the latter assumption appUes, requiring that the following procedures be performed:

1 Call the .PARSE routine (see Chapter 4). This routine takes information from a specified
data-set descriptor or default filenamE~ block, or both, and initializes and fills in the specified
filename block.

2 Call the .ltrIND routine (see Chapter 4). This routine locates an appropriate directory entry for
the file (by file name) and stores the file identification information found there in the 6-byte file
identification field of the filename block, starting at offset location N.FID. (As a result of steps
1 and 2, the necessary context then exists in the associated filename block for opening the file
by file ID.)

3-11

File-Processing Macros .

3 Issue the OFID$x macro.

The advantage of using the .PARSE and .FIND routines with the OFID$x macro is that you can
overlay the program, placing .PARSE and .FIND on one branch, and the code for OFID$x on
another branch. This overlay structure reduces the program's overall memory requirements.

Unlike the other FCS macros for opening files, the OFID$x macro requires a nonzero value in
the first word of the file identification field (N.FID) to work properly. When this field contains a
nonzero value, FCS assumes that the remaining context necessary for opening that file is present
and, accordingly, opens the file by file ID.

Opening an existing file by file ID for write access is a special case. Because you are intending to
rewrite the existing file, the following occur:

• Any initial allocation (F.CNTG) is ignored.

• File access byte (F.FACC) value NA.NSP (do not supersede file) is ignored.

• File access byte (F.FACC) value FA.CRE (create new file) is set even though the file is being
rewritten rather than created.

• This operation may not be performed on American National Standards Institute (ANSI)
magnetic tape. The data in the file header labels is not changed when the file is Written. See
Chapter 5 for information on positioning file on tape to rewrite a file in a particular position.

The OFID$W macro is equivalent to the OFID$U macro. Invoking either OFID$W or OFID$U
opens an existing file by file ID number for update and extension.

3.6 OFNB$x-Open File by Filename Block
The OFNB$x macro either opens an existing file or creates and opens a new file by using file namE
information in the filename block. Like the OFID$x macro previously described, the OFNB$x call
is for use with overlaid programs. However, the OFNB$x macro differs in two important respects:
it can be issued to create a new file, and it can be issued to open a file by filename block.

The following OFNB$x call has the same format and takes the same parameters as those of the
generalized OPEN$x macro (as described in Section 3.1.1):

OFNB$x fdb,lun,dspt,racc,urba,urbs,err

The OFNB$x macro also uses the same suffixes that are available to the OPEN$x macro: OFNB$R
OFNB$W, OFNB$M, OFNB$U, OFNB$A. The suffixes have the same meaning as they do for
OPEN$x (see Table 3-2).

The same assumptions outlined for OFID$x apply to the functions of the OFNB$x macro; namely,
that the filename block has been saved and restored in anticipation of issuing the OFNB$x macro,
or that the file is being opened for the first time. Because the procedures for saving and restoring
the filename block are detailed in Chapter 2, the following discussion assumes that the desired file
is being opened for the first time. In this case, the filename block in the FDB must be initialized.

To open a file by filename block, the following information must be present in the filename block oi
the associated FDB:

• The file name (offset location N.FNAM)

• The file type or extension (offset location N.FTYP)

• The file version number (offset location N.FVER)

• The directory ID (offset location N.DID)

3-12

3.6.1

3.6.2

File-Processing Macros

• The devke name (offset location N.D'VNM)

• The unit number (offset location N.UJNIT)

In providing the infonnation to the filenalme block, you can use either of two general procedures,
which are described in Sections 3.6.1 and 3.6.2.

Data-Set IDescriptor or Default Filename Block
If the data-sE,t descriptor contains al1 the required infonnation listed previously, perform the
following pro,cedure:

1 Call the .PARSE routine (see Chapter 4). This routine takes infonnation from a specified
data-set descriptor and default filenalne block, and the routine fills in the appropriate offsets of
a specified filename block.

2 Issue the OFNB$x macro.

Default Filename Block Only
If a default filename block is to be used in providing the required information to FCS, perform the
following procedure:

1 Issue the NMBLK$ macro (see Chapt.er 2) to create and initialize a default filename block.
With the exception of the directory ID, this structure provides all the requisite infonnation to
FCS.

2 Call either of the following routines to provide the directory ID:

Call the .GTDIR routine (see Chapter 4) to retrieve the directory ID from the specified
data-set descriptor and to store the directory ID in the default filename block.

Call the .GTDID routine (see Chapter 4) to retrieve the default User Identification Code
(UIC) from $$FSR2 and to store th.e directory ID in the default filename block.

3 Move the entire default filename block manually into the filename block associated with the
file being opened.

4 Issue the OFNB$x macro.

Note that thE! coding for OFNB$x operations normally resides in an overlay apart from that
containing the other Fi1e Control Services (FCS) routines identified previously.

Issuing the OFNB$x macro is usually done under the premise that the filename block contains
the requisite infonnation, as described previously. However, if the file identification field (offset
location N.FIlD) in the filename block contains a nonzero value when the call to OFNB$x is issued,
the file is unconditionally opened by file ID.

If you expect to open both new and existitng files, and memory conservation is an objective,
the OFNB$x macro is most suitable for opening such files. The OFID$x coding should not be
included in the same overlay with OFNB*x, because OFID$x overlaps the function of OFNB$x
and, therefore, needlessly consumes memory space.

3-13

File-Processing Macros

3.7 OPEN$-Generalized Open for Specifying File Access
Usually, when you want to create a file, the file name and the file type are specified, and FCS is
allowed to assign the next higher file version number. However, if the OPEN$W macro is issued fOl
a file having an explicit file name, file type, and file version number, and a file of that description
already exists in the specified User File Directory (UFD), the old file is superseded.

By issuing the OPEN$ macro without an alphabetic suffix, and by specifying two additional
parameters, you can inhibit the superseding of a file when a duplicate file specification is
encountered in the UFD. Rather than deleting the old version of the file, an error indication
(IE.DUP) is returned to offset location F.ERR of the applicable File Descriptor Block (FOB).

All parameters of this macro are identical to those specified for the generalized OPEN$x macro (SeE

Section 3.1), with the exception of the facc parameter and the dfnb parameter. These additional
parameters are described in this section.

OPEN$ fdb,facc,/un,dspt,dfnb,racc,urba,urbs,err

Parameters

face
Specifies anyone or an appropriate combination of the following symbolic values, which indicate
how the specified file is to be accessed:

FO.RD Requests that an existing file is to be opened for reading only.

FO.WRT Requests that a new file is to be created and opened for writing.

FO.APD Requests that an existing file is to be opened and appended.

FO.MFY Requests that an existing file is to be opened and modified.

FO.UPD Requests that an existing file is to be opened, updated, and, if necessary, extended.

FA.NSP Requests, in combination with FO.WRT, that the old file having the same file specification is not to be
superseded by the new file.

FA.TMP Requests, in combination with FO.WRT, that the file is to be a temporary file.

FA.SHR Requests that the file is to be opened for shared access.

dfnb
Specifies the symbolic address of the default filename block. This parameter is the same as t.hat
described in connection with the FDOP$AIFDOP$R macro.

The previously described parameters initialize FDB offset locations F.FACC and F.DFNB with the
appropriate value.

Any logically consistent combination of the previously described file access symbols is permissible.
The particular combination required to create and write a new file without superseding an existinJ;!
file follows:

OPENS #OUTFDB,#FO.WRT!FA.NSP

The following macro creates a temporary file for shared access:

OPENS #OUTFDB,#FO.WRT!FA.TMP!FA.SHR

Note

You can use RO only to pass the FDB address parameter. Any other use of RO when you issue the
OPEN$ macro will fail.

3-14

File-Processing Macros

3.8 CLOSE$-Close Specified Fiile
When the processing of a file is completed, you must close the file by issuing the CLOSE$ macro.
The CLOSE:$ operation performs the following housekeeping functions:

1 Waits for all 110 operations in progress for the file to be completed (multibuffered record 1/0
only)

2 Ensuresl that the FSR block buffer, which contains data for an output file, is completely written
if it is partially filled (record 1/0 only)

.3 By default, truncates the file being dosed

4 Deaccesses the file

5 Release~J the FSR block buffer or buffers allocated for the file (record 1/0 only)

6 Prepares the FDB for subsequent UB,e by clearing appropriate FDB offset locations

7 Calls ant optional user-coded and user-specified error-handling routine if an error condition is
detected during the CLOSE$ operation

Note that 1/0 does occur in items 1 and .2. Therefore, your program should include error processing
for CLOSE$, calls as it would for calls to PUT$.

If you issue a Cl.OSE$ when a file is already closed, a success status code results. It is not an
error if you close a file that is already closed. The format of the CLOSE$ macro is shown next.

CLOSE$ fdb,err

Parameters

fdb
Specifies a Elymbolic value of the address of the associated FDB.

err
Specifies the symbolic address of a user-coded, optional error-handling routine.

Examples

CLOSES tFDBIN,CLSERR

Shows an e:1tpIicit declaration for the relevant FDB, and the symbolic address of a user-coded
error-handling routine to be entered if the CLOSE$ operation is not completed successfully.

CLOSES ,CLSERR

CLOSES RO

Assume that RO currently contains the a.ddress of the appropriate FDB.

3.9 GET$-Flead Logical Record
The GET$ nlacro reads logical records from a file. After a GET$ operation, the next record buffer
descriptors in the FDB always identify the record just read; that is, offset location F.NRBD+2
contains the address of the record just read, and offset location F.NRBD contains the size of that
record (in bytes). This is true of GET$ operations in both move and locate mode.

In move mode, a GET$ operation moves a record to your task's record buffer (as defined by the
current contents of F.URBD+2 and F.URBD), and the address and size of that record are then
returned to the next record buffer descriptors in the FDB (F.NRBD+2 and F.NRBD).

3-15

3.9.1

File-Processing Macros

In locate mode, if the entire record resides within the file storage region (FSR) block buffer. then
the address and the size of the record just read are returned to the next record buffer descriptors
(F.NRBD+2 and F.NRBD). If, on the other hand, the entire record does not reside within the FSR
block buffer, then that record is moved piecemeal into your task's record buffer, and the address of
your task's record buffer and the size of the record are returned to offset locations F.NRBD+2 and
F.NRBD, respectively.

After returning from a GET$ operation in locate mode, regardless of whether moving the record
was necessary, F.NRBD+2 always contains the address of the record just read, and F.NRBD always
contains the size of that record.

If the record read was a sequenced record, the sequence number is stored in F.SEQN regardless of
whether the GET$ was in move mode or locate mode.

GET$ operations are fully synchronous; that is, record I/O operations are completed before control
is returned to your program.

Specific FDB requirements for GET$ operations are presented in Section 3.9.2.

Format of GET$ Macro
The format of the GET$ macro is shown next.

GET$ fdb,urba,urbs,err

Parameters

fdb
Specifies a symbolic value of the address of the associated FDB.

urba
Specifies the symbolic address of your task's record buffer that is to be used for record I/O
operations in move or locate mode. When specified, this parameter initializes FDB offset location
F.URBD+2.

urbs
Specifies a nwneric value that defines the size (in bytes) of your task's record buffer. This
parameter determines the largest record that can be placed in your task's record buffer in move or
locate mode. When specified, this parameter initializes offset location F.URBD in the associated
FDB.

err
Specifies the symbolic address of an optional error-handling routine, which you coded.

If neither the urba nor the urbs parameter is specified in the GET$ macro, FCS assumes that
these requisite values have been supplied previously through the FDRC$A, the FDRC$R, or the
generalized OPEN$x macro. Any resulting nonzero values in offset locations F.URBD+2 and
F.URBD are used as the address and the length, respectively, of your task's record buffer.

If either of the following conditions occurs during record 1/0 operations, FCS returns an error
indication (IE.RBG) to offset location F.ERR of the FDB, which indicates an illegal record size:

• In move mode, the record size exceeds the limit specified in offset location F.URBD.

• In locate mode, the record size exceeds the limit specified in offset location F.URBD, and the
record must be moved because it crosses block boundaries.

3-16

3.9.2

File-Processing Macros

In both mOV4e and locate mode, only data. up to the amount specified in F. URBD is placed in your
task's buffer., The next GET$ begins reading at the beginning of the next record.

The statements listed in the examples at. the end of this section show how the GET$ macro may be
used in a program.

Note

You can use RO only to pass the FDB address. Any other use of RO when you issue the GET$
macro will fail.

Examples

GET$ RO",ERROR

Assumes the address of the desired FDB is present in RO. Note that the next two parameters,
that is, your task's record buffer address: (urba) and your task's record buffer size (urbs), are
null. In this case, FCS assumes that the appropriate values for FDB offset locations F.URBD+2
and F. URBD, respectively, have been spE!cified previously in the FDRC$A, the FDRC$R, or the
generalized OPEN$x macro. The final parameter in the string is the symbolic address of a
user-coded error-handling routine.

GET$, IRECBUF, 125 ., ERROR

Assumes that RO coritains the address of the desired FDB. Explicit parameters then define the
address and the size, respectively, of your task's record buffer and an error handler, which you
coded.

G:ET$ IINFDB

Shows a GE~r$ macro in which only the address of the FDB is specified.

The FOB Relevant to GET$ Operations
The following sections summarize the eSBential aspects of GET$ operations in move and locate
mode with rE!Spect to the associated FDB.

The followin~r text focuses on whether your task's record buffer is required under certain conditions.
In this regard, you should recall that your task's record buffer descriptors, that is, the urba and
the urbs par~lmeters, may be specified in the FDRC$A, the FDRC$R, or the generalized OPEN$x
macro, as well as the I/O-initiating GET~; macro. These parameters must be present in the GET$
macro (to appropriately initialize the FDlB) only if they were not previously supplied through other
available means.

If operating i.n random access mode, the number of the record to be read is maintained by FCS in
offset locations F.RCNM and F.RCNM+2 of the associated FDB. FeS increments this value after
each GET$ or GE~r$R operation to point to the next record in the FSR block buffer.

Thus, unless your task alters the values ltn locations F.RCNM and F.RCNM+2 before each issuance
of the GET$ or GET$R macro call, the next record in sequence is read. Your specified record buffer
size (that is, the urbs parameter) always determines the largest record that can be read during a
GET$ operation.

3-17

File-Processing Macros

3.9.2.1 GET$ Operations In Move Mode
With respect to GET$ operations in move mode (refer to Chapter 1 for information on move mode),
the following generalization applies. If records are always moved to the same record buffer in your
task, the urba and urbs parameters need be specified only in the initial GET$ macro. Alternatively,
these values may be specified beforehand through any available means identified previously, for
initializing your task's record buffer descriptor cells in the FDB. In any case, offset locations
F.URBD+2 and F.URBD remain appropriately initialized for all subsequent GET$ operations in
move inode that involve the same record buffer in your task.

. 3.9.2.2 GET$ Operations In Locate Mode
In performing GET$ operations in locate mode (refer to Chapter 1 for information on locate mode),
you should take the following information into account:

NOTE: In the following text, reference is made to the FSR block buffer. By default, the
block size that FCS uses is equivalent to the buffer size of the device on which the file is
opened. If big buffering is enabled (that is, an ovbs parameter value is specified in the
FDBF$x macro, as described in Chapter 2) the FSR block buffer will be more than one
block long. As a result, it may not be necessary to move a record even though it crosses
block bOWldaries because both blocks are currently within the FSR block buffer space.
Thus, moves are .only necessary when the record crosses a buffer bOWldary, which is not
necessarily the same as a block bOWldary in a big-buffered file.

• If fixed-length records are to be processed, and if they fit evenly within the FSR block buffer,
your task's record buffer descriptors need not be present in the associated FDB.

• If fixed-length records that do not fit evenly within the FSR block buffer are to be processed, or
if variable-length records are to be processed, your task's record buffer descriptors need not be
present in the FDB, provided that the file being processed exhibits the attribute of records not
being allowed to cross block boundaries (FD.BLK).

The property of records not crossing block boundaries is established as the file is created.
Specifically, if offset location F.RATT in the FDB is initialized with FD.BLK prior to the time
the file is created, the records in the resulting file are not aHowed to cross buffer boundaries.

For an existing file, the file-attribute section of the file header block is read when the file is
opened; thus, all attributes of that file are made known to FCS, including whether records
within that file are allowed to cross block boundaries.

The design of FeS requires you to use your task's record buffer only in the event that records
(either fixed or variable in length) cross buffer boundaries.

• If a GET$ operation is performed in locate mode, and the record is ~ontained entirely within
the FSR block buffer, the address of the record within the FSR block buffer and the size of
that record are returned to the associated FDB in offset locations F.NRBD+2 and F.NRBD,
respectively. However, if that record crosses buffer boundaries, it is moved to your task's record
buffer. In this case, the address of your task's record buffer and the size of the record are
returned to offset locations F.NRBD+2 and F.NRBD, respectively.

In summary, if the potential exists for crossing buffer boundaries during GET$ operations in locate
mode, then your task's record buffer descriptors must be supplied through any available means to
appropriately initialize offset locations F.URBD+2 and F.URBD in the associated FDB.

3-18

File-Processing Macros

GET$R-,Read Logical Record in Random Mode
The GET$R :macro reads fixed-length records from a file in random mode. Thus, by definition,
issuing this macro requires that you be iamiliar with the structure of the file to be read and,
furthermore, that you be able to specify precisely the number of the record to be read.

The GET$ and GET$R macros are identical, except that the parameter list of GET$R includes
the specification of the desired record nwmber. If the desired record number is already present in
the FDB (at offset, locations F.RCNM andl F.RCNM+2), then GET$ may be used. If, however, the
record accessl byte in the FDB (offset 10cBltion F.RACC) has not be'en initialized for random access
operations with FD.RAN in the FDRC$A, the FDRC$R, or the generalized OPEN$x macro, then
neither GET$ nor GET$R will read the desired record.

The GET$R lmacro takes two more paraDleters in addition to those specified in the GET$ macro.

GET$R fdb,urba,urbs, Ircnm, hrcnm, err

Parameters

Ircnm
Specifies the low-order 16 bits of the nurnber of the record to be read. This value, which must
be specified, is stored in offset location F.RCNM+2 in the FDB. The GET$R macro call seldom
requires more than 16 bits to express thE~ record number. A logical record number up to 65,53610
may be specified through this parameter. If this parameter is not sufficient to completely express
the magnitude of the record number, the hrcnm parameter must also be specified.

hrcnm
Specifies the high-order 15 bits of the nu'mber of the record to be read. This value is stored in FDB
offset location F.RCNM. If specified, the combination of this parameter and the lrcnm parameter
determines the number of the desired rec~ord. Thus, an unsigned value having a total of 31 bits of
magnitude Dlay be used in defining the record number.

If this paraDleter is not specified, offset location F.RCNM retains its initialized value of O.

If you use F.RCNM to specify a desired record number for any given GET$R operation, this cell
must be cleared before issuing a subsequent GET$R macro that tequires 16 bits or less to express
the desired record number; otherwise, any residual value In F.RCNM yields an incorrect record
number.

If the lrcnm and hrcnm parameters are not specified in a subsequent GET$R macro, the next
sequential rE,cord is read because the record number in offset locations F.RCNM+2 and F.RCNM
is increased by 1 with each GET$ operation. In the case of the first GET$R, after opening the
file, record number 1 is read because thE! record number has been initialized to 0 by the OPEN
macro. If a record other than the next sequential record is to be read, you must explicitly specify
the number of the desired record.

The statements listed at the end of this Election represent the use of the GET$R macro.

Note

RO can be uned only to pass the FDB address parameter. Any other use of RO when issuing the
GET$R macro will fail.

3-19

File-Processing Macros

Examples

GET$R iINFDB,iRECBUF,i160.,il040."ERROR

Expresses, through the first of two available fields for this purpose, the desired number to be read,
that is, 104010. The second field is not required and is therefore reflected as a null specification.
The number of the desired record to be read, that is, 104010, is expressed through the first of two
available fields; the second field is not required and is therefore refle cted as a null specification.

GET$R iFDBADR,iRECBUF,i160.,R3

Reflects the use of general register 3 in specifying the logical record number. This register, Of' any
other location so used, must be preset with the desired record number before issuing the GET$R
macro ..

3,,11 GET$S-Read Logical Record in Sequential Mode

3,,12

The GET$S macro reads logical records from a file in sequential mode. Although the routine
invoked by the GET$S macro requires less memory than that invoked by GET$ (see Section 3.9),
GET$S has the same format and takes the same parameters. The GET$S macro is specifically for
use in an overlaid environment in which the amount of memory available to the program is limited
and files are to be read in strictly sequential mode.

If both GET$S and PUT$S are to be used by the program, note that the savings in memory usage
over GET$ and PUT$ can be realized only if GET$S and PUT$S are placed on different branches
of the overlay structure.

PUTS-Write Logical Record
The PUT$ macro writes logical records to a file. If operating in random access mode, the number
of the record to be written is maintained by FCS in offset locations F.RCNM and F.RCNM+2 of
the associated File Descriptor Block (FDB). File Control Services (FCS) increases this value by 1
after each PUT$ or PUT$R operation to point to the next sequential record position. Thus, unless
your program alters this value before issuing another PUT$ or PUT$R operation, the next record
in sequence is written.

For PUT$ operations, offset locations F.NRBD+2 and F.NRBD in the associated FDB must contain
the address and the size, respectively, of the record to be written. The distinction between move
mode and locate mode for PUT$ operations relates to the building or the assembling of the data
into a record. Specifically, in move mode the record is built in a buffer of your choice. This
buffer is not necessarily your task's record buffer previously described in the context of record
1/0 operations. In other words, you can build records in an area of a program apart from that
normally defined by your task's record buffer descriptors in the FDB (F.URBD+2 and F.URBD).
In this case, you specify the address of the record buffer so used and the size of the record in the
PUT$ macro, and the record thus built is then moved into the FSR block buffer.

In locate mode, however, the record is built at the address specified by the contents of offset
location F.NRBD+2, and only the record size need be specified in the PUT$ macro. Then, if the
record so built is not already in the FSR block buffer, it is moved there as the PUT$ operation is
performed.

If the records in the file are sequenced records, the field F.SEQN in the FDB contains the sequence
value, which you can modify.

PUT$ operations are fully synchronous; that is, record 110 operations are completed before control
is returned to your task's program.

3-20

3.12.1

File-Processing Macros

A random PUT$ operation in locate mod~~ requires the use of the .POSRC routine. This operation
is described in detail in Chapter 4. Specific FDB requirements for PUT$ operations are presented
in Section 3.12.2.

Format 0" PUT$ Macro
The format of the PUT$ macro is shown next.

PUT$ fdb,nrba,nrbs,err

·Parameters

fdb
Specifies a symbolic value of the address of the associated FDB ..

nrba
Specifies the symbolic address of the next record buffer, that is, the address of the record to be
PUT$. This parameter initializes FDB offset location F.NRBD+2.

nrbs
Specifies the size of the next record buffE~r, that is, the length of the record to be PUT$. This
parameter illlitializes FDB offset location F.NRBD.

err
Specifies the symbolic address of an optional error-handling routine, which you coded.

The examples listed at the end of this SE!ction show how the PUT$ macro may be used in a
program.

Note

RO can only be used to pass the FDB addlress parameter as shown in the third example; it cannot
be used to PBlSS any other parameter in the PUT$ macro.

Examples

PUTS iFDBADR",ERRRT

Shows the next record buffer address (nrba parameter) and the next record buffer size (nrbs
parameter) are null. These null specifications imply that the current values in offset locations
F.NRBD+2 and F.NRBD of the associated! FDB are suitable to the current operation. Note also
that fixed-length records could also be written in locate mode by issuing this macro.

PUTS "i160.,ERRRT

Contains nuli specifications in the first two parameter fie1ds, assuming that RO currently contains
the address of the associated FDB and that variable-length records are to be written to the file.

PUTS RO

Specifies only the address of the FDB; al1 other parameter fields are nul1.

3-21

File-Processing Macros

3.12.2 The FOB Relevant to PUTS Operations
This subsection highlights aspects of PUT$ operations in move and locate mode that have a bearing
on the associated FDB.

The conditions under which your task's record buffer is or is not used are summarized. As is
the case for GET$ operations, if your task's record buffer is required for PUT$ operations, the
buffer descriptors (that is, the urba and urbs parameters) may be supplied to the associated
FDB through the FDRC$A, the FDRC$R, or the generalized OPEN$x macro. In any case, offset
locations F.URBD+2 and F.URBD must be appropriately initialized if PUT$ operations require the
utilization of your task's record buffer. Note, however, that PUT$ operations in move mode never
require a record buffer.

If your task's record buffer is required, the specified size of that buffer (that is, the urbs parameter)
always detennines the size of the largest record that can be written to the specified file.

Whether in move or locate mode, a PUT$ operation uses the infonnation in offset locations
F.NRBD+2 and F.NRBD, that is, the next record buffer descriptors, to detennine whether the
record must be moved into the FSR block buffer. In the event that the record does have to be
moved, and the size of that record is such that it cannot fit in the space remaining in the FSR
block buffer, one of the following two possible operations is perfonned:

• If records are allowed to cross block boundaries, then the first part of the record is moved into
the FSR block buffer, thereby completing a virtual block. That block buffer is then written out
to the volume, and the remaining portion of the record is moved into the beginning of the next
FSR block buffer.

• If records are not allowed to cross block boundaries (because of the file attribute FD.BLK
specified in the associated FDB), then the FSR block buffer is written out to the volume, 8S is,
and the entire record is moved into the beginning of the next FSR block buffer.

3.12.2.1 PUT$ Operations In Move Mode .
A PUT$ operation in move mode (see Chapter 2) is driven by specifying in each PUT$ macro the
address and the size of the record to be written. Then, as the PUT$ operation is perfonned, FCS
moves the record into the appropriate area of the FSR block buffer.

In summary, the following generalizations apply for PUT$ operations in move mode:

• Your task's record buffer descriptors need not be present in the FDB because the programmer is
dynamically specifying the address and the length of the record to be written at each issuance
of a PUT$ macro. The values specified dynamically update offset locations F.NRBD+2 and
F.NRBD in the associated FDB.

• If the file consists of fixed-length records, then the generalized OPEN$x macro (see Section 3.1)
initializes offset location F.NRBD with the appropriate. record size, as defined by the contents of
offset location F.RBIZ. Thus, the size of the record need not be specified as the nrbs parameter
in any PUT$ macro involving this file.

• If the variable-length records are being used during a PUT$ operation, the size of each record
must be specified as the nrbs parameter in each PUT$ macro call involving this file, thus
setting offset location F.NRBD to the appropriate record size.

3-22

File-Processing Macros

3:12.2.2 PUT$ Operations In Locate Mode
Your task's record buffer is required for PUT$ operations in locate mode (see Chapter 2) only when
the potentiall exists for records to cross buffer boundaries. If there is insufficient space in the FSR
block buffer to accommodate the buildinlg of the next record, you must provide a buffer in your
task's memory space to build that record.

When a file is initially opened for PUT$ operations in locate mode, Fes sets up offset location
F.NRBD+2 to point to the area in the FSR block buffer where the next record is to be built. Then,
each PUT$ operation thereafter in locate mode updates the address value in this cell to point
to the area in the FSR block buffer where the next record is to be built. Thus, after each PUT$
'operation in locate mode, F.NRBD+2 points to the area where the next record is to be built. This
logic dictates whether your record buffer is required in locate mode.

The following generalizations apply:

NOTE: In the following discussion, reference is made to the FSR block buffer. By
default, thf:' block size that FCS use~; is equivalent to the buffer size of the device on
which the file is opened. If big buffe!ring is enabled (that is, an ovbs parameter value is
specified ill the FDBF$x macro, as dlescribed in Chapter 2) the FSR block buffer will be
more than one block long. As a result, it may not be necessary to move a record even
though it crosses block boundaries because both blocks are currently within the FSR
block buffeir space. Thus, moves are only necessary when the record crosses a buffer
boundary, which is not necessarily the same as a block boundary in a big-buffered file.

• If your task is performing a PUT$ operation for fixed-length records and they fit evenly within
the FSR block buffer, your task's record buffer is not required.

• If a fixed-length record crosses block boundaries, your task's record buffer descriptors must be
present itn offset locations F.URBD+~~ and F.URBD of the associated FDB. In this case, after
FeS deb~rmines that the record cannot fit in the FSR block buffer, FeS sets offset location
F.NRBD+2 to point to your task's reeord buffer. Then, when the record is processed with the
PUT$ operation, it is moved from your record buffer to the FSR block buffer.

• If a variable-length record is procesE:ed with the PUT$ operation, the potential exists for
crossing block boundaries. In this case, your task's record buffer descriptors must be present
in offset locations F. URBD+2 and F. URBD of the associated FDB. Moreover, the size of each
variable .. length record must be specified as the nrbs parameter in each PUT$ macro.

Determining if FeS points offset location F.NRBD+2 to the FSR block buffer for the PUT$
operation or to your task's record buffer is based on whether there is enough room in the FSR
block buffer to accommodate the record.

Because the records are variable in length, you can assume that the largest possible record
is PUT$:, as defined by the size of your task's record (F. URBD). Thus, if a record of this
defined Bize cannot fit in the space remaining in the FSR block buffer, FeS sets offset location
F.NRBD+2 to point to your task's record buffer.

Each PUT$ operation in locate mode set:;; up the FDB for the next PUT$ operation. The specified
record size is used by FeS as the worst-case condition in determining whether sufficient space
exists in the FSR to build the next record.

If variable-length records are being processed that are shorter than the largest defined record
size, FeS may move records unnecessarily from your task's record buffer to the FSR block buffer.
For example, assume that your task haEl allocated a 132-byte record buffer and further, that
the available remaining space in the FSR block buffer is less than 132 bytes. In this case, FeS
continues to point to your task's record buffer for PUT$ operations, even if you continue to perform

3-23

:t13

File-Processing Macros

PUT$ operations with short (10- or 20-byte) records. Thus, some unavoidable movement of records
takes place in locate mode.

If the largest record that you intend to process with the PUT$ operation is 80 bytes, for example,
then the largest defined record size should not be specified as 132 bytes (or any length larger than
that intended to be processed with the PUT$ operation). Aside from having to allocate a smaller
record buffer in your task, PUT$ operations in locate mode are more efficient if this precaution
is observed. Exercising care in this regard reduces the tendency to move records from your task's
record buffer to the FSR block buffer when they might otherwise be built directly in the FSR block
buffer.

PUT$R-Write Logical Record in Random Mode
The PUT$R macro writes fixed-length records to a file in random mode. As noted in Section 3.10,
the GET$R macro, operations in random access mode require you to be very familiar with the
contents of such files. The PUT$R macro also relies entirely on you to specify the number of the
record before a specified PUT$ operation can be performed. Because the usual purpose of a PUT$R
operation is to update known records in a file, it is assumed that you also know the number of such
records within the file.

The PUT$ and PUT$R macros are identical, except that PUT$R allows the specification of the
desired record number. If the desired record number is already present in the FDB (at offset
locations F.RCNM and F.RCNM+2), then PUT$ and PUT$R may be used interchangeably.
However, if the record access byte in the FDB (offset location F.RACC) has not been initialized
for random access operations with FD.RAN in the FDRC$A, the FDRC$R, or the generalized
OPEN$x macros, then neither PUT$ nor PUT$R will write the desired record.

The PUT$R macro takes two more parameters in addition to those specified in the PUT$ macro.

PUT$R fdb, nrba, nrbs,'rcnm,hrcnm, err

Parameters

Ircnm
Specifies the low-order 16 bits of the number of the record to be processed. This parameter serves
the same purpose as the corresponding parameter in the GET$R macro (see Section 3.10), except
that it identifies the record to be written.

hrcnm
Specifies the high-order 15 bits of the number of the record to be processed. This parameter serves
the same purpose as the corresponding parameter in the GET$R macro, except· that it identifies
the record to be written.

If this parameter is not specified, offset location F.RCNM retains its initialized value of O.

If F.RCNM is used in expressing a desired record number for any given PUT$R operation, you
must clear this cell before issuing a subsequent PUT$R macro that requires 16 bits or less in
expressing the desired record number; otherwise, any residual value in F.RCNM results in an
incorrect record number.

The lrcnm and hrcnm parameters initialize offset locations F.RCNM+2 and F.RCNM, respectively,
in the associated FDB. If these values are not specified in a subsequent PUT$R macro, the next
sequential record is written because FCS increases the record number by 1 in these cells after
each PUT$ operation. In the case of the first PUT$R after opening the file, record number 1 :is
written. Note that this is true even if the file has been opened for an append operation (OPEN$A
If a record other than the next sequential record is to be written, you must explicitly specify the
number of the desired record.

3-24

3.14

3.15

File-Processing Macros

Examples listed at the end of this section show how the PUT$R macro may be used in a program.

Notes

1 A random mode PUT$R operation executed in locate mode must be preceded by a call to
.POSRC. Because locate mode allows you to store data directly into the block buffer, the
file must be positioned so that the desired record position is in fact in the block buffer. See
Chapter 4 for further details.

2 You can llse RO only to pass the FDB address. Any other use of RO when you issue the PUT$R
macro will fail.

Examples
PUT$R tOUTFDB,#RECBUF"#12040.,,ERRLOC

Indicates that you. are specifying the address of the record. You can determine this by the presence
of RECBUF as the next record buffer address (nrba). Although specifying this address repeatedly
is unnecessary, it is not invalid. Normally, a buffer address is specified dynamically because other
PUT$ macro calls may be referencing different areas in memory; thus, the address of the record
must be explicitly specified in each PUT $; macro. Note also that the next record buffer size (nrbs)
parameter is null, because this parameter is required only in the case of writing variable-length
records. Also, the second of the two available parameters for defining the record number is null.

PUT$R

PUT$R

tFDBADR,#RECBUF"R4

#FDBADR,#RECBUF"LRN

Indicates that R4 and a memory location (LRN) are used to specify the logical record number. Such
a specification assumes that you have preset the desired record number in the referenced location.

PUT$S-~Write Logical Record in Sequential Mode
The PUT$S roacro writes logical records to a file in sequ.ential mode. Although the routine invoked
by the PUT$S macro requires less memory than that invoked by PUT$ (see Section 3.12), PUT$S
has the same: format and takes the same parameters. The PUT$S macro is specifically for use in
an overlaid environment in which the amlount of memory available to the program is limited and
files are to bE~ written in strictly sequential mode.

If both GET$S and PUT$S are to be usedl by the program, the savings in memory utilization over
GET$ and PUT$ are realized only if GET$S and PUT$S are placed on different branches of the
overlay structure.

READ$-Read Virtual Block
The READ$ lmacro reads a virtual block of data from a block-oriented device (for example, a
magnetic tap1e, a disk, or DECtape). In addition, if certain optional parameters are specified in the
READ$ macro, status information is returned to the I/O status block (lOSB) (see Chapter 2) or
the program traps to an asynchronous system trap (AST) service routine, which you coded, at the
completion of block I/O operations (see Chapter 2).

In issuing the READ$ (or WRITE$) macro, you are responsible for synchronizing all block 110
operations. Flor this reason, the WAIT$ nlacro is provided (see Section 3.17), which enables you
to suspend program execution until a specified READ$ or WRITE$ operation has been completed.
It is important, however, that you test the contents of F.ERR in the File Descriptor Block (FDB)
for error codes immediately after issuing the READ$ or WRITE$ call as well as on return from
the WAIT$ call. When errors occur during multiple-block transfers, the second word of the 10SB

3-25

3.15.1

File-Processing Macros

win contain the number of bytes transferred before the error occurred. The READ$ or WRITE
operations can return error codes distinct from those that can be present on completing a WAIT$
operation. For example, IE.EOF will be returned upon completion of the READ$ operation but not
upon completion of the WAIT$ operation.

When your task issues the WAIT$ macro with a READ$ (or WRITE$) macro, you must ensure that
the event flag number and the IOSB address specified in both macro calls are the same.

When the WTSE$ macro waits for I/O completion, the issuing task must check I/O errors by
examining the 10SB (defined by the task). (The 10SB is described in Chapter 2.) When WTSE$ is
used, File Control Services (FCS) will not return a completion code to offset F.ERR in the FDB.

Format of READ$ Macro
Note in the following format that the parameters of the READ$ macro are identical to those of
the FDBK$A or the FDBK$R macro, with the exception of the fdb and err parameters. Certa.in
FDB parameters may be set at assembly time (FDBK$A), initialized at run time (FDBK$R), or
set dynamically by the READ$ macro. Certain information must be present in the FDB before
the specified READ$ (or WRITE$) operation can be performed. These requirements are noted in
Section 3.15.2.

R EAD$ fdb, bkda,bkds,bkvb,bkef,bkst,bkdn,err

Parameters

fdb
Specifies a symbolic value of the address of the associated FDB.

bkda
Specifies the symbolic address of the block I/O buffer in your program. This parameter need not be
specified if offset location F.BKDS+2 has been previously initialized through either the FDBK$A or
the FDBK$R macro.

bkds
Specifies the size (in bytes) of the virtual block to be read. This parameter need not be specified if
offset location F.BKDS has been previously initialized through either the FDBK$A or the FDBK$R
macro. The maximum block size that may be specified for file-structured devices is 32,256 bytes.

bkvb
Specifies the symbolic address of a two-word block in your program containing the number of the
virtual block to be read. This parameter causes offset locations F.BKVB and F.BKVB+2 to be
initialized with the virtual block number; F.BKVB+2 contains the low-order 16 bits of the virtual
block number, and F.BKVB contains the high-order 15 bits.

As noted in connection with the FDBK$A macro described in Chapter 2, assembly-time
initialization of the virtual block number in the FDB is ineffective because the generalized OPEN$x
macro sets the virtual block number in the FDB to 1.

The virtual block number can be made available to FCS only through the FDBK$R macro or the
I/O-initiating READ$ (or WRITE$) macro after the file has been opened. The virtual block number
is created as described in Chapter 2 .

. The READ$ function checks the specified virtual block number to ensure that it does not reference
a nonexistent block, that is, a block beyond the end of the file. If the virtual block number
references nonexistent data, an end-of-file (IE.EOF) error indication is returned to offset location
F.ERR of the associated FDB; otherwise, the READ$ operation proceeds normally. If the total
number of bytes goes beyond the end of the file, then as many blocks as exist are read and the byte

3-26

File-Processing Macros

count of the shortened transfer is returned in I/O STATUS+2. No error condition occurs, so you
must check the count on each READ. An -end-of-file indication is returned only if no blocks can be
read.

If the virtual block number is not specified through any of the available means identified already,
sequential operation results by default, bE!ginning with virtual block number 1. The virtual block
number is incremented by the number of blocks read after each READ$ operation is performed.

bkef
Specifies the event flag number to be used for synchronizing block I/O operations. This event flag
number is used by FCS to signal the completion of the specified block I/O operation. The event
flag number, which may also be specified in either the FDBK$A or the FDBK$R macro, initializes
FDB offset lo(!ation F.BKEF; if specified, this parameter need not be included in the READ$ (or
WRITE$) ma(:ro.

If this optional parameter is not specified through any available means, event flag 3210 is used by
default. The function of an event flag is djlscussed in further detail in Chapter 2.

bkst
Specifies the nymbolic address of the 10SH in your task (see Chapter 2). This parameter, which
initializes offslet location F.BKST, is optional. The 10SB is filled in by the system when the
requested block 1/0 transfer is completed, indicating the success or failure of the requested
operation.

The address of the 10SB may also be specified in either the FDBK$A or the FDBK$R macro. If the
address of thi:B 2-word structure is not supplied to FCS through any of the available means, status
information cannot be returned to your program. Regardless, the event flag specified through the
bkef parameter is set to indicate block I/O completion, but, without an 10SB, your program must
assume that the operation (for example, READ$ or WRITE$) was successful.

bkdn
Specifies the nymbolic entry point address: of an AST service routine (see Chapter 2). If this
parameter is specified, a trap occurs upon completion of the specified READ$ (or WRITE$)
operation. This optional parameter initialiizes offset location F.BKDN. This address value may also
be made available to FCS through either 1~he FDBK$A or the FDBK$R macro, and, if specified,
need not be present in the READ$ (or WRITE$) macro call.

If the address of an AST service routine is not specified through any available means, no AST trap
occurs at the eompletion of block 110 opersltions.

err
Specifies the slymbolic address of an optional error-handling routine, which you coded.

The examples listed at the end of this section represent READ$ macros that may be issued to
accomplish a variety of operations.

Note

You can use H.O only to pass the FDB address. Any other use of RO when you issue the READ$
macro will faill.

Examples

RE;~D$ RO

Assumes that RO contains the address of the associated FDB. Also, all other required FDB
initialization has been accomplished through either the FDBK$A or the FDBK$R macro call.

RE~~$ #INFDB""",ERRLOC

3-27

File-Processing Macros

Shows an explicit declaration of the associate FDB and includes the symbolic address of an
error-handling routine, which you coded.

READ $ RO,tINBUF,tBUFSIZ"i22.,iIOSADR,iASTADR,ERRLOC

Shows that RO again contains the address of the associated FDB. The block buffer address and
the size of the block are specified next in symbolic form. The address of the 2-word block in your
program containing the virtual block number is not specified, as indicated by the additional comma
in the parameter string. The event flag number, the address of the 10SB, and the address of the
AST service routine then follow in order. Finally, the symbolic address of an optional error routine
is specified.

READ$ tINFDB,tINBUF,tBUFSIZ,tVBNADR

Reflects, as the last parameter in the string, the symbolic address of the 2-word block in your
program containing the virtual block number.

3.15,,2 The FOB Relevant to READ$ Operations

3.16

The READ$ macro requires that the associated FDB be initialized with certain values before it
can be issued. You can specify these values through either the FDBK$A or the FDBK$R macro, or
they may be made available to the FDB through the various parameters of the READ$ macro. The
following values must be present in the FDB to enable READ$ operations to be performed:

• The block buffer address (in offset location F.BKDS+2)

• The block byte count (in offset location F.BKDS)

• The virtual block number (in offset locations F.BKVB+2 and F.BKVB)

NOTE: When either READ$ or WRITE$ operations are performed, FCS maintains the
end-of-file (EOF) block number field (F.EFBK) and clears the first free byte in the last
block field (F.FFBY) in the FDB. During a READ$ operation, EOF is determined by the
EOF block number field in F.EFBK. If desired, you can modify F.FFBY before closing the
file by using the CLOSE$ macro call.

WRITE$-Write Virtual Block
The WRITE$ macro is issued to write a virtual block of data to a block-oriented device (for
example, magnetic tape, disk, DECtape, or DECtape II). Like the READ$ macro, if certain optional
parameters are specified in the WRITE$ macro, status information is returned to the 10SB (see
Chapter 2), and, at the completion of the 110 transfer, the program traps to an AST service routine
that is supplied to coordinate asynchronous block I/O operations (see Chapter 2).

Whether or not you supply the address of an AST service routine and an event flag number, you
are responsible for synchronizing all block 110 processing. The WAIT$ macro can be issued with
the WRITE$ macro to suspend program execution until a program-dependent 110 transfer has been
completed. When the WAIT$ macro is used for this purpose, the event flag number and the IOSB
address in both macros must be the same. Again, as with READ$ operations, you should check
for an error code immediately following the WRITE$ macro as well as on return from the WAIT$
macro.

3-28

3.16.1

File-Processing Macros

Format ~of WRITE$ Macro
The WRITI~$ macro takes the same parameters as the READ$ macro. The bkvb parameter
represents the symbolic address of a 2-word block containing the number of the virtual block to be
written. The virtual block number is incremented after each WRITE$ operation is performed.

WRITE$ fc1b,bkda,bkds,bkvb,bkef,bkst,bkdn,err

Parameters;

fdb
Specifies a ,symbolic value of the address of the associated FDB.

bkda
Specifies the symbolic address of the block 1/0 buffer in your program. This parameter need not be
specified if offset location F.BKDS+2 has been previously initialized through either the FDBK$A or
the FDBK$R macro.

bkds
Specifies the size (in bytes) of the virtual block to be written. This parameter need not be specified
if offset location F.BKDS has been previously initialized through either the FDBK$A or the
FDBK$R macro. The maximum block sitze for file-structured devices is 32,256 bytes.

bkvb
Specifies the synlbolic address of a two-word block in your program containing the number of the
virtual block to be written. This parameter causes offset locations F.BKVB and F.BKVB+2 to be
initialized with the virtual block number; F.BKVB+2 contains the low-order 16 bits of the virtual
block number, and F.BKVB contains the! high-order 15 bits.

As noted in connection with the FDBK:$A macro described in Chapter 2, assembly-time
initialization of the virtual block numbelr in the FDB is ineffective because the generalized OPEN$x
macro sets the virtual block number in 1~he FDB to 1.

The virtual block number can be made available to FCS only through the FDBK$R macro or the
I/O-initiating WRITE$ (or READ$) macro after the file has been opened. The virtual block number
is created as described in Chapter 2.

If the virtual block number is not specified through any of the available means identified already,
sequential operation results by default, beginning with virtual block number 1. The virtual block
number is incremented by the number of blocks written after each WRITE$ operation is performed.

bkef
Specifies the event flag number to be used for synchronizing block I/O operations. This event flag
number is used by FCS to signal the completion of the specified block I/O operation. The event flag
number, which mlay also be specified in either the FDBK$A or the FDBK$R macro, initializes FDB
offset location F.BKEF; if specified, this parameter need not be included in the WRITE$ macro.

If this optional parameter is not specified through any available means, event flag 3210 is used by
default. The function of an event flag is discussed in further detail in Chapter 2.

bkst
Specifies the symbolic address of the IOSB in your task (see Chapter 2). This parameter, which
initializes offset location F.BKST, is optional. The IOSB is filled in by the system when the
requested bllock I/O transfer is completed, indicating the success or failur~ of the requested
operation.

3-29

File-Processing Macros

The address of the 10SB may also be specified in either the FDBK$A or the FDBK$R macro. If the
address of this 2-word structure is not supplied to FCS through any of the available means, status
information cannot be returned to your program. Regardless, the event flag specified through the
bkef parameter is set to indicate block 1/0 completion, but, without an 10SB, your program must
assume that the WRITE$ operation was successful.

bkdn
Specifies the symbolic entry point address of an AST service routine (see Chapter 2). If this
parameter is specified, a trap occurs upon completion of the specified WRITE$ operation. This
parameter, which is optional, initializes offset location F.BKDN. This address value may also be
made available to FCS through either the FDBK$A or the FDBK$R macro, and, if specified, need
not be present in the WRITE$ macro call.

If the address of an AST service routine is not specified through any available means, no AST trap
occurs at the completion of block 110 operations.

err
Specifies the symbolic address of an optional error-handling routine, which you coded.

When this macro is issued, the virtual block number (that is, the bkvb parameter) is checked to
ensure that it references a block within the file's allocated space; if it does, the block is written. If
the specified block is not within the file's allocated space, FCS attempts to extend the file. If this
attempt is successful, the block is written; if the attempt is unsuccessful, an error code indicating
the reason for the failure of the extend operation is returned to the 10SB and to offset location
F.ERR of the associated FDB.

If FCS determines that the file must be extended, the actual extend operation is performed
synchronously. Mter the extend operation has been successfully completed, the WRITE$ operation
is queued, and only then is control returned to the instruction immediately following the WRITE$
macro.

The examples listed at the end of this section show how the WRITE$ macro may be used in a
program.

Note

You can use RO only to pass the FDB address. Any other use of RO when you issue the WRITE$
macro will fail.

Examples

WRITE$ RO

Specifies only the FDB address and assumes that all other required values are present in the FDB.

WRITE$ tOUTFDB,tOUTBUF,#BUFSIZ,#VBNADR,t22.

Reflects explicit declarations for the FDB, the block buffer address, the block buffer size, the virtual
block number address, and the event flag number for signaling block 1/0 completion.

WRITE$ RO",,#22.,#IOSADR,#ASTADR,ERRLOC

Shows null specifications for three parameter fields, then continues with the event flag number, the
address of the 10SB, and the address of the AST service routine. Finally, it specifies the address of
an error-handling routine, which you coded.

3-30

File-Processing Macros

=t1S.2 The FOB Relevant to WRITE$: Operations

=1.17

~1.17.1

WRITE$ opE~rations require the pret:lenCEl of the same information in the FDB as READ$ operations
(see Section 3.15.2).

WAIT$-Wait-For Block 1/0 Completion
The WAIT$macro, which is issued only with READ$ and WRITE$ operations, suspends program
execution witil the requested block I/O transfer is completed. This macro may be used to
synchronize a block I/O operation that depends on the successful completion of a previous block I/O
transfer.

As noted in Section 3.15, the READ$ macro, you can specify an event flag number through the bkef
parameter. ~rhis event flag number is used during READ$ (or WRITE$) operations to indicate the
completion of the requested transfer. If desired, you can issue a WAIT$ macro (specifying the same
event flag number and 10SB address) folllowing the READ$ (or WRlTE$) macro.

The READ$ (or WRITE$) operation is initiated in the usual manner, but the Executive suspends
program execution until the specified event flag is set, indicating that the I/O transfer has been
completed. ~rhe system then returns information to the 10SB, indicating the success or failure of
the operation. FHe Control Services (FCS) then moves the 10SB success or failure indicator into
offset location F.ERR of the associated File Descriptor Block (FDB). FCS returns with the carry
condition code in the Processor Status '\Vord (PSW) cleared if the operation is successful, or set if
the operation is not successful. Task eXElcution then continues with the instruction immediately
following th~~ WAIT$ macro.

The system returns the final status of the I/O operation to the 10SB (see Chapter 2) upon
completion of the requested operation. A positive value (+) indicates successful completion, and a
negative value (-) indicates unsuccessful completion.

Event flags lare dllscussed in further detail in Chapter 2.

Format of WAIT$ Macro
The format of the WAIT$ macro follows.

WAIT$ fdb,bkef,bkst,err

Parameter

fdb
Specifies a symbolic value of the address of the associated FDB.

bkef
Specifies thE! event flag number to be uSled for synchronizing block I/O operations. The WAIT$
macro causes task execution to be suspended by invoking the WTSE$ (Wait-for Single Event Flag)
system directive. This parameter must agree with the corresponding (bkeO parameter in the
associated READ$ or WRITE$ macro.

If this parameter is not specified, either in the WAlT$ macro can or the associated READ$ or
WRITE macro, FDB offset location F.BKEF is assumed to contain the desired event flag number,
as previously initialized through the bkef parameter of the FDBK$A or the FDBK$R macro.

3-31

File-Processing Macros

bkst
Specifies the symbolic address of the 10SB in your program (see Chapter 2). Although this
parameter is optional, if it is specified, it must agree with the corresponding (bkst) parameter
in the associated READ$ or WRITE$ macro.

If this parameter is not specified, either in the WAlT$ macro call or the associated READ$ or
WRITE$ macro, FDB offset location F.BKST is assumed to contain the address of the 10SB,
as previously initialized through the bkst parameter of the FDBK$A or the FDBK$R macro. If
F.BKST has not been initialized, no information is returned to the IOSB.

err
Specifies the symbolic address of an optional error-handling routine, which you coded.

The examples listed at the end of this section show how the WAlT$ macro can be used in a
program.

Note

You can use RO only to pass the FDB address. Any other use of RO when you issue the WAlT$
macro fails.

Examples

WAIT$ RO

Assumes that RO contains the address of the associated FDB; furthermore, because no flag number
(bkef parameter) is specified, offset location F.BKEF is assumed to contain the desired event flag
nmnber. If this cell in the FDB contains 0, event flag nmnber 3210 is used by default.

WAIT$ tINFDB,t25.

Shows an explicit specification of the File Descriptor Block (FDB) address and specifies 2510 as
the event flag number. Again, in this example, the FDB is assumed to contain the address of the
10SB.

WAIT$ RO,t25.,tIOSTAT

Shows an explicit specification for the address of the IOSB, which is in contrast to the second
example.

WAIT$ RO"tIOSTAT,ERRLOC

Contains a null specification for the event flag nmnber, and, in addition, specifies the address of an
error-handling routine, which you coded.

Please note that the WAlT$ macro associated with a given READ$ or WRlTE$ operation need not
be issued immediately following the macro to which it applies. For example, the following sequence
is typical:

1 Issue the desired READ$ or WRITE$ macro.

2 Perform other processing that is not dependent on the completion of the requested block I/O
transfer.

3 Issue the WAlT$ macro.

4 Perform the processing that is dependent on the completion of the requested block 1/0 transfer.

When you perform several asynchronous transfers in the same general sequence described
previously, you must maintain a separate buffer, 10SB, and event flag for each operation. If
you intend to wait for the completion of a given transfer, the appropriate event flag nmnber and
10SB address must be specified in the associated WAlT$ macro.

3-32

3.18

File-Processing Macros

DELET$--Delete Specified File
The DELETl~ mac:ro causes the directory information for the file associated with the specified FDB
to be deletedl from the appropriate User File Directory (UFO). The space occupied by the file is
then deallocuted and returned for realloc:ation to the pool of available storage on the volume.

This macro can be issued for a file that is either open or closed. If issued for an open file, that file
is then closed. and deleted; if issued for a. closed file, that file is deleted only if the filename string
specified in the associated data-set descriptor or default filename block contains an explicit file
version number (including 0 and -1).

DELET$ fdb,err

Parameters

fdb
Specifies a symbolic value of the address of the associated FDB.

err
Specifies the symbolic address of an optional error-handling routine, which you coded.

Note

If the DELET$ macro is issued for use ,Nith a file containing sensitive information, it is
recommended. that you zero the file befolre closing it. (Although DELET$ logically removes a
file, the information physically remains on the volume until written over with another file, and
could be analyzed by unauthorized user tasks.)

Examples

DELET$ RO

DELET$ #OUTFDB,ERRLOC

D'.E:LET$ RO,ERRLOC

Shows how the DELET$ macro may be used in a program.

3-33

4 File COlntrol Routines

This chapter describes a set of file con troll routines that you can invoke in MACRO-ll programs to
perform the following functions:

• Read or write default directory string descriptors in program section $$FSR2.

• Read or write the default User Identification Code (UIC) word in program section $$FSR2.

• Read or write the default file protection word in program section $$FSR2.

• Read or write the file owner word in lprogram section $$FSR2.

• Convert n directory string from American Standard Code for Information Interchange (ASCII)
to binary or from binary to ASCII.

• Fill in all or part of a filename block from a data-set descriptor or default filename block.

• Find, ins1ert, o:r delete a directory enby.

• Set a pointer to a byte within a virtual block or to a record within a file.

• Mark a place in a file for a subsequent OPEN$x operation.

• Issue an 1/0 command and wait for its completion.

• Rename a file.

• Extend a file.

• ~cate a file.

• Mark a t1emporary file for deletion.

• Delete a 'file by filename block.

• Perform device-specific control functions.

4.1 Calling FOie Control Routines
The CALL m.acro invokes file control routines (JSR PC, dst). The Task Builder (TKB) includes
these routinE~s from the system object library ([l,l]SYSLIB.OLB) at task-build time and
incorporates them into your task. Your tusk calls the following file control routines:

C;~LL • RDFDR

CALL • EXTND

Before your task issues the CALL macro, certain file control routines require that specific registers
be preset with requisite information. Th4~ descriptions of the respective routines identify these
requirementEI. Upon return to your task, all task registers are preserved except for those that have
been explicitlly specified as changed.

If a file control routine detects an error, :it sets the Carry bit indication to FDB offset location
F.ERR. However, certain file control routi nes do not return error indications even if one is present.
The followinl~ file control routines are listed according to whether they return error indications.

4-1

File Control Routines

Normal Error Return
(Carry Bit and F.ERR)

.ASCPP

.PARSE

.PRSOV

.PRSOI

.PRSDV

.ASLUN

.FIND

.ENTER

.REMOV

.GTDIR

.GTDID

.POINT

.POSRC

.POSIT

.XQIO

.RENAM

.EXTND

.TRNCL

.MRKDL

.DLFNB

.CTRL

No Error Return

.RDFDR

.WDFDR

.ROFUI

.WDFUI

.RDFFP

.WDFFP

.RFOWN

.WFOWN

.PPASC

.MARK

Appendix K lists the error codes that the routines return in a File Descriptor Block (FDB) offset
location F.ERR.

4.2 Default Directory String Routines

4.2.'1

The .RDFDR and .WDFDR routines read and write directory string descriptors .

. RDFDR-Read $$FSR2 Default Directory String Descriptor
Your task calls the .RDFDR routine to read default directory string descriptor words previously
wlitten by the .WDFDR routine into program section $$FSR2 of the file storage region (FSR).
These descriptor words define the address and the length of an ASCII string that contains the
default directory string. This directory string is the default directory that File Control Services
(FeS) uses when a directory is not specified in a data-set descriptor.

If you have not established default directory string descriptor words in program section $$FSR2 by
using the .WDFDR routine described in the following text, the descriptor words in program section
$$FSR2 are null. FCS uses a default directory (when one is not specified in a data-set descriptor)
corresponding to the UIC under which the task is running.

4-2

4.2.2

File Control Routines

When called, the .RDFDR routine retunlS values in the following registers:

R1 Contains the size (In bytes) of the default directory string In program section $$FSR2.

R2 Contains the address of the default directory string In program section $$FSR2. If no default directory string
descriptor words have been written by . WDFDR, R2 equals O .

. WDFDR·-Write New $$FSR~~ Default Directory String Descriptor
Your task calls the .WDFDR routine to create default directory string descriptor words in program
section $$FSR2. For example, if your program is to operate on files in the directory [220,220],
regardless of the UIC under which the program runs, you can establish default directory string
descriptor cE,lls in program section $$FSR2 to point to this alternate directory string [220,220]
created elsewhere in the program. To do this, first create the desired directory string through an
.ASCII directive. Then, by calling the .V~DFDR routine, you can initialize the default directory
string descriptor cells in program section $$FSR2 to point to the new directory string.

Assume that the task is currently running under default UIC [200,200]. You define a new directory
string by issuing the following MACRO-Jll directive:

NEWDDS: .ASCII /[220,220]/

By calling the .WDFDR routine, you initialize string descriptor cells in program section $$FSR2 to
point to the new directory string.

You must pr1eset the following registers before your task calls the . WDFDR routine:

R1 Must cc)ntain the size (in bytes) of the new directory string.

R2 Must cc)ntain the address of the new directory string.

Note

Establishing default directory string deseriptor words in program section $$FSR2 does not change
the default UIC in program section $$FSR2 or the task's privileges.

4.3 Default UIIC Routines
The .RDFUI and ,WDFUI routines read and write the default UIC maintained in program section
$$FSR2 of the FSR. Unlike the defau.lt directory string descriptor that describes an ASCII string,
the default UIC is maintained as a binary value with the fonnat shown in Figure 4-1.

Figure 4-1 Default UIC Format

Bit 15 8 7 0

C Grou_p __ ----LI __ M_e_m~

4-3

4.3.1

4.3.2

File Control Routines

The default UIC in program section $$FSR2 provides directory ident.ification information for a file
being accessed. FCS uses the default UIC only when all other sources of such information have
failed to specify a directory (refer to Section 4.7.1.2). FCS never uses the default UIC to establish
file ownership or file access privileges.

Unless you change the default UIC through the .WDFUI routine described in the following text,
the default UIC in prograln section $$FSR2 always corresponds to the UIC under which the task
is running .

. RDFUI-Read Default UIC
Your task calls the .RDFUI routine to return the default UIC as follows:

R1 Contains the binary-encoded default UIC maintained in program section $$FSR2 .

. WDFUI-Write Default UIC
Your task calls the .WDFUI routine to create a new default UIC in program section $$FSR2.

You must preset the following register before calling the . WDFUI routine:

R 1 Must contain the binary representation of a UIC.

Note

The .WDFUI routine overrides any default UIC descriptor in program section $$FSR2 that was
previously created by the .WDFDR routine.

4.4 Default File Protection Word Routines
The .RDFFP and .WDFFP routines described in the following text read and write the default file
protection word in a location in program section $$FSR2 of the FSR. FCS uses this word only when
a file is created (for example, by the OPEN$W macro call) to establish the default file protection
values for the new file. Unless altered, this value constitutes the default file protection word for
that file. If the value is -1, it indicates that the volume default file protection value is to be used
for the new file.

The default file protection word has four file protection categories: world, group, owner, and
system. The format of the default file protection is shown in Figure 4-2.

Figure 4-2 File Protection Word Format

Bit 15 12 11 8 7 4 3 0

World I Group Owner system]

4-4

4.4.1

4.4.2

Figure 4-3 File Protection Access Bits

Bit 3 2

[Delete I Extend I Read

o

Write I

File Control Routines

"Each of these four file protection catego"ries has four bits; each bit represents the kind of access
allowed to at :file, as shown in Figure 4-8.

A bit value of 0 indicates that the corre'sponding file access is to be allowed; a bit value of 1
indicates that the access is to be denied.

------------------.RDFFP--Read $$FSR2 Default File Protection Word
You call the .RDli'FP routine to read the default file protection word in program section $$FSR2 of
the FSR. No registers need be set before calling this routine.

When called, the .RDFFP routine returns the following information:

R1 Contains the default file protection word from program section $$FSR2 .

. WDFFP--Write New $$FSR2 Default File Protection Word
You use the .WDFFP routine to write a new default file protection word into program section
$$FSR2.

You must preset the following register before calling the .WDFFP routine:

R1 Must contain the new default file protec1tion word to be written Into program section $$FSR2. If this register
is set tlO -1, the default file protection vallues established through the appropriate operating system command
will be used in creating all subsequent new files.

4.5 File Owner Word Routines
The file owner word, like the default file protection word, is a location in program section $$FSR2
of the FSR. Hs contents are specified by the current program through the .WFOWN routine. If not
so specified, the file owner word contains: O.

For nonprivileged users, the owner of a new file corresponds to the default UIe specification, as
follows:

• If the volume on which the new file is created is private (allocated), the owner UIe is the same
as the UIe of the task creating the file.

• If the volume on which the new file is created is a system volume, the owner UIe is the same
as the task's login UIe.

For privileged users, the owner UIe is always the same as the UIe of the task creating the file.

Note that for files created by privileged or non privileged tasks that are started by a time-scheduled
request, the owner UIe is set to the UIe specified at task-build time.

4-5

4.5.1

4.5.2

File Control Routines

A specific UIC value can be stored in the file owner word by the .WFOWN routine (see Section
4.5.2). All new files then created and closed by your task will contain the specified UIC value.

The format of the file owner word is shown in Figure 4-4.

Figure 4-4 File Owner Word Format

Bit 15 8 7 0
-�----G-r-ou-p----~I-----M-e-m-b-e-r----I

The routines for reading and writing the file owner word are described in Sections 4.5.1. and 4.5.2.

NOTE: The UIC and the file protection word for the file (see Section 4.4) must not be set
such that the UIC under which the task is running does not have access to the file. This
condition results in a privilege violation.

When a file is created, the owner UIC is always set to either the mc of the task creating the file
or the task's login UIC, as previously described. However, when closing the file, you can change
the owner UIC by using the .WFOWN routine. If the file is not closed properly, the owner UIC will
not change .

. RFOWN-Read $$FSR2 File Owner Word
You use the .RFOWN routine to read the contents of the file owner word in program section
$$FSR2. No registers need be preset before calling this routine.

When called, the .RFOWN routine returns the following information:

R 1 Contains the file owner word (UIC). If the current program has not previously established the contents of
the file owner word through the .WFOWN routine, R1 contains O .

. WFOWN-Write New $$FSR2 File Owner Word
You use the .WFOWN routine to initialize the file owner word in program section $$FSR2.

You must preset the following register before calling this routine:

R 1 Must contain a file owner word to be written into $$FSR2.

4.6 ASCII/Binary UIC Conversion Routines
Your task calls the .ASCPP and .PPASC routines to convert a directory string from ASCII to binary
or from binary to ASCII.

4-6

4.6.1

4.6.2

File Control Routines

.ASCPP--Convert ASCII Directory String to Equivalent Binary UIC
Your task calls the .ASCPP routine to convert an ASCII directory string to its corresponding binary
UIC.

You must preset the following registers before calling this routine:

R2 Must c~:mtain the address of the directory string descriptor in your program (see Chapter 2) for the string to
be converted.

R3 Must contain the address of a word loc.ation in your program to which the binary UIC is to be returned.
The member number is stored in the low-order byte of the word, and the group number Is stored In the
high-order byte .

. PPASC--Convert UIC to ASC:II Directory String
Your task calls the .PPASC routine to convert a binary UIC to its corresponding ASCII directory
string.

You must pr1eset the following registers before calling this routine:

R2 Must c4,ntain the address of a storage airea within your program Into which you place the ASCII string. The
resultant string can be up to 9 bytes in length, for example, [200,200].

R3 Must c4,ntain the binary UIC value to be converted. The low-order byte of the register contains the member
number, and the high-order byte of the register contains the group number.

R4 Must cc)ntaln a control code. Bits 0 and 1 of this register indicate the following:
Bit 0 Is set to 0 to suppress leading zeros (for example, 001 is returned as 1). Bit 0 Is set to 1 to

indicate that leading zeros am not to be suppressed.

Bit 1 Is set to 0 to place separators; (square brackets and commas) in the directory string (for example,
[10,20)). Bit 1 is set to 1 to suppress separators (for example, 1020).

The .PPASC routine adds to the content::; of R2, allowing R2 to point to the byte immediately
following the last byte in the converted d.irectory string.

4.7 Filename Block Routines

4.7.1

FCS provides the . PARSE , .PRSDV, .PRSDI, .PRSFN, and .ASLUN routines, which perform
functions related to a specified filename block. These routines are described in the following
sections .

. PARSE--FiU in All File Name Information
When called" the .PARSE routine first zeros the filename block pointed to by Rl and then stores
the following information in the filename block:

• The ASCII device name (N.DVNM)

• The binary unit number (N.UNIT)

• The directory ID (N.DID)

• The Radix-50 file name (N.FNAM)

• The Radix-50 file type or extension (N.FTYP)

• The binary file version number (N.FVER)

4-7

File Control Routines

For American National Standards Institute (ANSI) magnetic tape file names, the following
information is stored in the filename block:

• The ASCII device name (N.DVNM)

• The binary unit number (N.UNIT)

• The file name as 17 ASCII bytes (N.ANMI and N.ANM2)

• The binary file version number (N.FVER)

In addition, the .PARSE routine calls the .ASLUN routine to assign the logical unit number (LUN)
associated with the FDB to the device and unit currently specified in the filename block.

Both formats for filename blocks are shown in detail in Appendix B.

Before the .PARSE routine can be called, the FINIT$ macro (see Chapter 2) must be invoked
explicitly in your program, or it must be invoked implicitly through a prior OPEN$x macro call.
Note, however, that your task can issue the FINIT$ call only once in the initialization section
of the program; that is, the FINIT$ operation must be performed only once per task execution.
Furthermore, FORTRAN programs issue a FINIT$ call at the beginning of task execution;
therefore, MACRO-II routines used with the FORTRAN object time system must not issue a
FINIT$ macro.

You must preset the following registers before calling the .PARSE routine:

RO Must contain the address of the desired FOB.

R1 Must contain the address of the filename block to be filled in. This filename block is usually, but not
necessarily, the filename block within the FOB specified in RO (that is, RO + F.FNB).

R2 Must contain the address of the desired data-set descriptor if .PARSE is to access a data-set descriptor
in filling in the specified filename block. This structure is usually, but not necessarily, the same as that
associated with the FOB specified in RO (that is, the data-set descriptor pointed to by the address value in
F.OSPT).

If R2 contains 0, a data-set descriptor has not been defined; therefore, the data-set descriptor logic of the
. PARSE routine is bypassed.

R3 Must contain the address of the desired default filename block for the .PARSE routine to access a default
filename block in filling in the specified filename block. This default filename block is usually, but not
necessarily, the same as the one associated with the FOB specified in RO (that is, the default filename
block pointed to by the address value in F.OFNB).

If R3 contains 0, a default filename block has not been defined; therefore, the default filename block logic
of the .PARSE routine is bypassed.

Thus, RO and Rl each must contain the address of the appropriate data structure, while either
R2 or R3 must contain the address of the desired filename information. Both R2 and R3, however,
may contain address values if the referenced structures both contain information required in fining
in the specified filename block.

The .PARSE routine fills in the specified filename block in the order described in the following
sections.

4.7.1.1 Device and Unit Information
The .PARSE routine first tries to fill in the filename block with device (N.DVNM) and unit
(N.UNIT) information. The following operations are performed until the required information
is obtained from the specified data structures:

1 If the address of a data-set descriptor is specified in R2 and the data-set descriptor contains
a device string, the .PARSE routine moves the device and unit information from the data-set
descriptor into the specified filename block.

4-8

File Control Routines

2 If step 1 fails, and if the address of a default. filename block is specified in R3, and the defau1t
filename block contains a nonzero value in the device name field, the .PARSE routine moves
the deviCE! and unit information from 1~he device name field into the specified filename block.

3 If step 2 fails, the .PARSE routine USE~S the device and unit currently assigned to the LUN in
offset location :F.LUN of the specified]li'ile Descriptor Block (FDB) to fill in the filename block.

This feature allows a program to use preassigned logical units that are assigned through
either thEl device assignment (ASG) option of the Task Builder (TKB) or one of the following
commands: ASSIGN in the DIGITAL Command Language (DCL) or ASN in the Monitor
Console Routine (MCR). In this case, you simply avoid specifying the device string in the
data-set descriptor and the device nat1tle in the default filename block.

4 If the LUN in :F.LUN is currently un8.ssigned, the .PARSE routine assigns this number to the
system dElvice (SYO).

The .PARSE routine first determines the device and unit, assigns the LUN, and then invokes the
GLUN$ directive to obtain necessary devJlce information. The required information obtained by
GLUN$ is pluced by the .PARSE routine 1[nto the following offsets in the filename block pointed to
byRl:

N.OVNM

N.UNIT

Device Name Field. This field contains the redirected device name.

Unit Number Field. This field contains the redirected unit number.

Additionally, the .PARSE routine places the information returned by GLUN$ into the following
offsets in the FDB, which RO points to:

F.RCTL Device Characteristics Byte. This. cell contains device-dependent Information from the first byte
of the third word returned by the GLUN$ directive. The bit definitions pertaining to the device
(}haracteristics byte are described in detail in Appendix A. If desired, you can examine this cell In the
FOB to determine the characteristics of the device associated with the assigned LUN.

F. VBSZ Device Buffer Size Word. This location contains the information from the sixth word returned by
the GL.UN$ directive. The value in this cell defines the device buffer size (In bytes) of the device
associated with the assigned LUN.

The GLUN$ directive is described in detail in the lAS Executive Reference Guide.

4.7.1.2 Directory IdentlUcation Information
The N.DID fi,eld in the filename block con.tains the following information:

Word Melcmlng

File,IO

2 Filel sequence num ber

3 Re~3erved

The .PARSE routine moves these three words from the Master File Directory (MFD) to the N.DID
field in the filename block. The file ID is the header number of the header (in the index file) for
a User File Directory (UFD). The .FIND :routine uses the file ID to locate and search a UFD and
to fill in the N.FID field in the filename block. The N.FID has the same format as the N.DID field
except that i1~ identifies the header number of the header for a user data file. The file sequence
number is inlcremented each time a file header is reused for a new file.

4-9

File Control Routines

Following the operations described in the preceding section, .PARSE attempts to fill in the fi1ename
block with directory identification (N.DID) information. The methods for obtaining this information
are as follows:

1 If your task specifies the address of a data-set descriptor in R2 and the data-set descriptor
contains a directory string, File Control Services (FCS) uses that directory string to find the
associated UFD in the MFD. The resulting file ID is then moved into the directory-ID field of
the specified filename block.

2 If step 1 fails, and your task specifies the address of a default filename block in R3, and the
default filename block contains a nonzero directory ID, the contents of the default filename
block are moved into the specified filename block.

Because none of the parameters of the NMBLK$ macro call (see Chapter 2) initialize the
three words starting at offset location N.DID in the default filename block, your task must
initialize these cells manually. Or your task can call the .GTDIR routine (see Section 4.9.1) or
the .GTDID routine (see Section 4.9.2). Note that these routines can also initialize a specified
filename block directly with required directory information.

3 If neither step 1 nor step 2 yields the required directory string, the .PARSE routine examines
the default directory string words in program section $$FSR2. If your program has previously
initialized these words through use of the .WDFDR routine, FCS uses the string described as
the default directory.

4 If steps 1 to 3 fail to produce directory information, FCS uses the binary value stored in the
default UIC word in program section $$FSR2 as the directory identifier. Unless changed by
you through the .WDFUI routine, this word contains the UIC under which the task is running.

NOTE: The .PARSE routine does not accept UICs that contain wildcards. Additionally,
the .PARSE routine does not set filename block status word (N.STAT) bits NB.SDI or
NB.SD2 (group and owner wildcard specifications, respectively).

4.7.1.3 File Name, File Type, and File Version Information
After completing the operations described in the preceding section, the .PARSE routine attempts to
obtain file name information (N.FNAM, N.FTYP, and N.FVER), as follows:

1 If your task specifies the address of a data-set descriptor in R2 and this structure contains a
filename string, the file name information therein is moved into the specified filename block.

2 If your task specifies the address of a default filename block in R3, and one or more of the file
name, file type, and file version number fields of the data-set descriptor that you specified in
R2 are null, the corresponding fields of the default filename block fill in the specified filename
block.

3 If neither step 1 nor step 2 yields the requisite file name information, any specific fields not
available from either source remain null.

NOTE: If a period (.) appears in the filename string without an accompanying file
type designation (for example, TEST. or TEST.;3), FCS interprets the file type as being
explicitly null. In this case, the default file type is not used.

Similarly, if a semicolon (j) appears in the filename string without an accompanying file
version number (for example, TEST.DATj), FCS also interprets the file version number
as being null; again, the default file version number is not used. This information
concerning semicolons in filename strings does not apply to the 17-byte ASCII filename
strings supported for ANSI magnetic tape.

4-10

4.7.2

File Control Routines

4.7.1.4 Using the FOB EKtenslon for Logical Names
FCS uses the FDB extension to obtain th4e correct directory string. The extension has the following
format:

. BYTE

. BYTE

. BYTE

. BYTE

Extension length

Unused

Length of the directory string buffer

Length of the directory string (filled in by . PRSOI)

.WORO Address c)f the directory string buffer

The ·FDB extension block and the directory string buffer are allocated in your task's address space.
You fill in thE~ address, the length of the buffer, and the length of the extension into the appropriate
locations in the FDB extension block. You then place the address of the extension block in the
offset F.EXT in the FDB. When the directory parsing code detects that F.EXT has a value, it uses
the value as an address and moves the directory string into the buffer. It also puts the length
of the actual directory string into the appropriate byte of the extension. This directory string is
always filled in, unless FCS obtains the dlirectory from the default name block, because the default
name block does not contain the directory string. If FCS obtains the directory from the default
name block,]li'CS sets the directory length to zero.

4.7.1.5 Other Filename Block Information
After perfonning all the previously described operations, the .PARSE routine also fills in the status
word (offset location N.STAT) of the N.STAT\ master) filename block specified in Rl.

The bit definitions for this word are presfmted in Appendix B. Note that in Appendix B, Table B-2
the directory, device, file name, file type, or file version number specification pertains to ASCII data
supplied through the data-set descriptor pointed to by R2.

In addition, the .PARSE routine zeros offset location N.NEXT in the filename block pointed to by
R1. This action has implications for wildc~ard operations, as described in Section 4.8.1.

4.7.1.6 .EXPLG Module (Expand Logical)
The .EXPLG module expands a logical name and returns a pointer to the task that points to the
expanded string. The module has the following inputs and outputs:

Inputs R2-Pointer to the data-set dElscriptor of the string to be expanded.

Outputs R2·-Pointer to the data-set dElscriptor of the expanded string. All other registers are preserved.

This routine expands the string into the same buffer that the .PARSE routine and CSI$4 use for
input files; therefore, caution is advised if you use this method. In addition, the can only accepts
logical namel~ that expand into a correct :FCS file specification. The inclusion of a node specifier or
other non-FCS characters results in an elrror being returned .

. PRSDV--Fill in Device and Unit Information Only
The .PRSDV routine is identical to the .PARSE routine, except that it performs only those
operations associated with requisite device and unit information (see Section 4.7.1.1). The .PRSDV
routine zeros the filename block pointed to by Rl, cans the .PARSE routine to operate on the device
and unit fields in the specified data-set descriptor or default filename block, and assigns the LUN
contained in offset location F.LUN of the specified FDB.

4-11

4:1.3

4.7.5

File Control Routines

After the logical device translation is perfonned, .PRSDV fins the filename block with the required
device and unit information. If the device is LB, the actual physical device name and unit are
placed in the filename block. If the logical device expands to contain anything other than a device
specification, for example, a directory or a filename, the remainder is ignored. Setting the FL.AEX
bit (see Chapter 6) disables logical expansion for the device and unit information .

. PRSDI-Fill in Directory Identification Information Only
The .PRSDI routine is identical to the .PARSE routine, except that it performs only those
operations associated with requisite directory identification information (see Section 4.7.1.2). The
.PRSDI routine performs a .PARSE operation on the directory identification information (N.DID)
field in the specified data-set descriptor or default filename block. The .PRSDI routine does not
perform any logical name expansion .

. PRSFN-Fill in File Name, File Type, and File Version Only
The .PRSFN routine is identical to the .PARSE routine, except that it performs only those
operations associated with requisite file name, file type, and file version information (see Section
4.7.2.3). This routine performs a .PARSE operation on the file name, file type, and file version
information fields (N.FNAM, N.FTYP, N.FVER) in the specified data-set descriptor or default
filename block. The .PRSFN routine does not perform any logical name expansion .

. ASLUN-Assign LUN
The .ASLUN routine assigns a logical unit number (LUN) to a specified device and unit and
returns the device information to a specified FDB and filename block.

You must preset the following registers before calling this routine:

RO Must contain the address of the desired FOB.

R1 Must contain the address of the filename block where the desired device and unit information are located.
This filename block is usually. but not necessarily. within the FOB specified by the address in RO.

If the device name field (offset location N.DVNM) of the filename block pointed to by R1 contains
a nonzero value, the specified device and unit are assigned to the LUN contained in offset location
F.LUN in the FDB pointed to by RO.

lf offset location N.DVNM in the filename block contains 0, then the device and unit currently
assigned to the specified LUNare returned to the a ppropria te fields of the filename block.

Finally, if the specified LUN is not assigned to a specific device, the .ASLUN routine assigns it to
the system device (SYO) by default.

The information returned to the specified filename block and the specified FDB is identical to that
returned by the device and unit logic of the .PARSE routine (see Section 4.7.1.1).

4~8 Directory Entry Routines
The .FIND, .ENTER, and .REMOV routines find, insert, and delete directory entries. The term
"directory entry" refers to entries in both the MFD and the UFD.

4-12

4.8.1

File Control Routines

.FIND-L.ocate Directory Entry
You call the .FIND routine to locate a dlirectory entry by file name and to fill in the file
identification field (N.FID) of a specified filename block.

You must preset the following registers before calling this routine:

RO Must contain the address of the desired FOB.

R 1 Must contain the address of a filename block. This filename block is usually, but not necessarily, within the
FOB specified by the address in RO.

-When invokled, the .FIND routine searches the directory file specified by the directory-ID field of
the filename block. This file is searched for an entry that matches the specified file name, file type,
and file vers:ion number. Two special file versions are defined as follows:

• Version 0 is matched by the latest (largest) version number encountered in the directory file.

• Version ·-1 is matched by the oldest (smallest) version number encountered in the directory file.

If either of t.hese special versions is specified in the filename block, the matching version number
is returned to the filename block. In this way, the actual version number is made available to the
program.

Certain wildcard operations require the use of the .FIND routine. Three bits in the filename block
status word (see N.STAT in Appendix B, Table B-2) indicate whether a wildcard (*) was specified
for a file name, a file type, or a file version number field. If the wildcard bit in N.STAT is set for
a given field, any directory entry matches that corresponding field. Thus, if the file name and file
version nwnber fields contain wildcard specifications (*), and the file type field is specified as.OBJ
(that is, *.OBJ;*), the first directory entry encountered that contains .OBJ in the file type field
matches.

When a wildcard match is found, the cotnplete file name, file type, and file version number fields of
the matching entry are returned to the iUename block, along with the file-ID field (N.FID). Thus,
the programl can determine the actual name of the file just found. Offset location N.NEXT in the
filename block is also set to indicate where that directory entry was found in the directory file.
FCS uses this information in subsequent .FIND operations to locate the next matching entry in the
directory file.

For examplE~, the .FIND routine often opens a series of files when wildcard specifications are used.
The following operations are typical:

1 Call the .PARSE routine. This routine zeros offset location N.NEXT in the filename block in
preparation for the iterative .FIND operations described in step 3.

2 Check for wildcard bits set by the .PARSE routine in the filename block status word (see
N.STAT in Appendix B, Table B-2). An instruction sequence such as that shown in the
following text; tests for the setting of wildcard bits in N.STAT:

BIT iNB.SVR!NB.STP!NB.SNM,N.STAT(Rl)

BEQ NOWILD ;BRANCH IF NOT SET.

3 If wildcard specifications are present in the filename block status word, repeat the following
sequencle until all the desired wildcard files have been processed:

CJU.L .FIND

Bes DONE

OPENS RO

;ERROR CODE IE.NSF INDICATES
;NORMAL TERMINATION.

4-13

4.8.2:

File Control Routines

Wildcard .FIND operations update offset locat.ion N.NEXT in the filename block. In essence,
the contents of this cell provide the necessary information for continuing the directory file
search for a matching entry.

4 Perform the desired operations on the file.

NOTE: This procedure applies only to the following types of wildcard file specifications:

TEST.DAT;*
TEST.*;*
.DAT;
TEST.*;5
*.DAT;3

This procedure does not work for the following types of wildcard file specifications:

*.DAT
TEST.*

In summary, if a wildcard file specification is present in either the file name field or the file type
field, the file version number field must also contain either an explicit wildcard specification (*) or
a specific file version number. In the latter case, however, the version number cannot be 0, for the
latest version of the file, or -1, for the oldest version of the file.

When your task sets NB.ANS, the .FIND operation compares the file name against the full
17-character ANSI filename string that is stored in the filename block (see Appendix B). When
NB.ANS is clear, the file name is converted to Radix-50 format, as described in Appendix C.

ANSI magnetic tape file names in the following formats can be converted to Radix-50 format:

• Up to nine Radix-50 characters followed by spaces

• Up to nine Radix-50 characters followed by a period, followed by spaces, or followed by a
3-character file type

Note that unless NB.ANS is set before the call to .FIND, some file names may be incorrectly
matched. For example, the names "ABC" and "ABC." are considered the same when compared with
the name ABC in Radix-50 format.

When a wildcard operation is performed, the name returned in the filename block is normally
converted to Radix-50 format. However, if NB.ANS is set, the ANSI filename string is returned
as up-to-17 ASCII bytes. The first 12 bytes are returned at offset N.ANM1 in the ANSI filename
block. The remainder are returned at offset N.ANM2.

It is incorrect to set NB.ANS before a wildcard .FINO operation unless both file name and file type
are wild, or neither file name nor file type are wild.

To delete a file whose file descriptor entry in the FOB contains wildcards, you must save the values
in the fields N.STAT and N.NEXT in the FOB, and then zero these fields in the FOB. A DELETE
call then uses the information returned from the last .FIND to delete the file. Once the file is
deleted, the saved values ofN.STAT and N.NEXT must be restored in the FOB.

.ENTER-Insert Directory Entry
You use the .ENTER routine to insert an entry by file name into a directory.

4-14

4.8.3

File Control Routines

You must preset the following registers before calling this routine:

RO Must c:ontain the address of the desired FOB.

R1 Must contain the address of a filename. block. This filename block is usually, but not necessarily, the
filename block within the FOB specified! in RO.

If the file version number field of the fil!ename block contains 0, indicating a default version
number, the! .ENTER routine scans the entire directory file to determine the current highest
version numlber for the file. If a version number for the file is found, this entry is incremented to
the next higher version number; otherwiise, it is set to 1. The resulting version number is returned
to the filename block, making this number known to the program.

Note

Wildcard sp4~cifications cannot be used in connection with .ENTER operations .

. REMOV--Delete Directory Entry
You use the .REMOV routine to delete an entry from a directory by file name. This routine deletes
only a specified directory entry; it does not delete the associated file.

You must pr1eset t.he following registers before calling this routine:

RO Must contain the address of the desired FOB.

R 1 Must contain the address of a filename block. This filename block is usually, but not necessarily. the
filename block within the FOB specified in RO.

Wildcard spE~cifications operate in the same manner as those defined for the .FIND routine
described in Section 4.8.1. The file version number for .REMOV operations must be an explicit
number (including 0 and -1) or a wildcard. Each .REMOV operation deletes the next directory
entry that has thE~ specified file name, fille type, and file version number.

4.9 Filename Block Routines

4.9.1

The .GTDIR and .GTDID routines insert directory information in a specified filename block.
Sections 4.9.:1 and 4.9.2 describe the use and operation of these routines .

. GTDIR-·lnsert Directory Information in Filename Block
You call the .,GTDIR routine to insert dir1ectory information from a directory string descriptor into
a specified filenatrte block.

You must preset tlhe following registers before calling this routine:

RO Must cClntain the address of the desired FOB.

R1 Must cClntain the address of the filenam.~ block in which the directory information is to be placed. This
filenamE~ blocl< is usually. but not necessarily. within the FOB specified by the address in RO.

R2 Must co'ntain the address of the 2-word directory string descriptor in your program. This string descriptor
defines the size and the address of the desired directory string.

This routine performs a .FIND operation for the specified UFD in the MFD and returns the
resulting dirE~ctory ID to the three words of the specified filename block, starting at offset location
N.DID. The .GTDIR routine preserves the information in offset locations N.FNAM, N.FYTP,
N.FVER, N.DVNM, and N.UNIT of the fHename block, but the routine clears the rest of the
filename block.

4-15

4.9.2

4.10

4.10,,1

File Control Routines

You can also use the .GTDIR routine with the NMBLK$ macro call (see Chapter 2) to insert
directory information into a specified default filename block .

. GTDID-Insert Default Directory Information in Filename Block
The .GTDID routine provides an alternative means for inserting directory information into a
specified filename block. Instead of allowing the specification of the directory string, as does the
.GTDIR routine, this routine uses the binary value found in the default UIC word maintained in
program section $$FSR2 as the desired UFD.

You' must preset the following registers before calling the .GTDID routine:

RO Must contain the address of the desired FOB.

R 1 Must contain the address of a filename block in which the directory information is to be placed. This
filename block is usually. but not necessarily. within the FOB specified by the address in RO.

When called, the .GTDID routine takes the default UIC from its I-word location in program
section $$FSR2 and performs a .FIND operation for the associated UFD in the MFD. The resulting
directory ID is returned to the three words of the specified filename block, starting at offset location
N.DID. As does the .GTDIR routine, .GTDID preserves offset locations N.FNAM, N.FTYP, N.FVER,
N.DVNM, and N.UNIT in the filename block, but .GTDID clears the rest of the filename block.

The .GTDID routine uses considerably less code than the .GTDIR routine. Its input is the binary
representation of a UIC rather than an ASCII string descriptor. Therefore, it does not invoke the
.PARSE logic; furthermore, .GTDID is specifically for use in programs that open files by using the
OFNB$ macro call (see Chapter 3). Such a program does not invoke the .PARSE logic because all
necessary file name information is provided to the program in filename block format.

Like the .GTDIR routine described in Section 4.9.1, the .GTDID routine can be used with the
NMBLK$ macro call (see Chapter 2) to insert directory information (N.DID) into a specified default
filename block. You also have the option to initialize offset location N.DID manually with the
required directory information.

The .GTDID routine returns file-ID 177777,177777,0 for nondirectory devices such as terminals.

File Pointer Routines
The .POINT, .POSRC, .MARK, and .POSIT routines point to a byte or a record within a specified
file. Sections 4.10.1 to 4.10.4 briefly describe the use of these routines and their operation .

. POINT-Position File to Specified Byte
You call the .POINT routine to position a file pointer to a specified byte in a specified virtual block.
If locate mode is in effect for record 1/0 operations, the .POINT routine also updates the value
in offset location F.NRBD+2 in the associated FDB in preparation for a PUT$ operation in locate
mode.

You must preset the following registers before calling this routine:

RO Must contain the address of the desired FOB.

R1 Must contain the high-order bits of the virtual block number.

R2 Must contain the low-order bits of the virtual block number.

4-16

File Control Routines

R3 Must cc)ntain the desired byte number within the specified virtual block.

For a description of virtual block numbers and how these 2-word values are formed, refer to
Chapter 2.

NOTE: Use of the .POINT routine is restricted to files accessed with GET$ or PUT$
macros. For files accessed with READ$ or WRITE$ macros, use the FDBK$R macro to
initialize the block access section of the FDB.

The .POINT routine is used often with the .MARK routine and achieves a limited degree of random
access with variable-length records. The .MARK routine saves the positional information of a
file, permitting you to temporarily close 1~hat file and to reopen it later at the same position; this
procedure is outlined in the following steps:

1 Call the .MARK routine to save the current positional context of the file.

2 Close thE~ file.

3 Reopen the file when desired.

4 Load the information returned by thE~ .MARK routine into Rl, R2, and R3.

5 Call the .POINT routine. The .POINT routine may be called to rewind a file on disk or ANSI
magnetic: tape to its start. For this case, Rl and R3 must be set to 0, and R2 must be set to l.
The .POINT routine may also be called to rewind a file that is open on a terminal. Doing so
clears the tenninal end-of-file condition.

6 Resume processing of the file.

4.10.2 .POSRC--Position File to Specified Record
The .POSRC routine sets up the position information for a file to a specified fixed-length record
within a file. If locate mode is in effect for record 1/0 operations, the .POSRC routine also updates
the value in offset location F.NRBD+2 in the associated FDB in preparation for a PUT$ operation
in locate mode.

Before callin,g this routine, you must set offset locations F.RCNM+2 and F.RCNM in the FDB to the
desired record nwmber and ensure that the correct record size is reflected in offset location F.RSIZ
of the FDB.

The following register must be preset before calling the .POSRC routine:

RO Must c(>ntain the address of the associated FOB.

You use the .POSRC routine when performing random access PUT$ operations in locate mode.
Normally, PUT$ operations in locate mode are sequential; however, when you use random access
mode, you must follow the next procedur1e to ensure that the record is built at the desired location:

1 Set offse1t locations F.RCNM+2 and F'.RCNM in the associated File Descriptor Block (FDB) to
the desired record number.

2 Call the .POSRC routine.

3 Build tht~ new record at the address returned (by the .POSRe call) in offset location F.NRBD+2
of the aSiBociated FOB.

4 Perform the PUT$ operation.

4-17

File Control Routines

4.10.3 .MARK-Save Position Information Context of File
The .MARK routine allows you to save the current position information of a file for later use; you
can save the current position information of a file, close that file, and later reopen the file to the
same position. The .MARK routine also allows you to alter records within a file; you can save the
file position, retrieve information elsewhere in that file, and return to the saved position of the
file to alter the desired record. This sequence may be repeated to update any number of desired
records in the file.

You must preset the following register before calling the .MARK routine:

RO Must contain the address of the associated FOB before calling this routine.

When called, the .MARK routine returns information to the following registers:

R 1 Contains the high-order bits of the virtual block number.

R2 Contains the low-order bits of the virtual block number.

R3 Contains the number of the next byte within the virtual block.

R3 points to the next byte in the block. For example, if four GET$ operations are performed,
followed by a call to the .MARK routine, R3 points to the first byte in the fifth record in the file.

4u·10.4 .POSIT-Return Specified Record Position Information

4.11

The .POSIT routine calculates the virtual block number and the byte number locating the
beginning of a specified record.

The following register must be preset before calling this routine:

RO Must contain the address of the associated FOB.

In addition, offset locations F.RCNM and F.RCNM+2 in the associated FDB must contain the
desired record number.

Unlike the .POSRC routine, which sets up the position information of the file to the specified
record, .POSIT calculates the positional information of a specified record so that a .POINT
operation can be performed later to position to the desired record.

The .POSIT routine returns register values identical to those described previously for the .MARK
routine .

. XQIO-Queue I/O Function Routine
The Queue 1/0 Function Routine (.XQIO) executes a specified QIO$ function and waits for its
completion.

You must preset the following registers before caning this routine:

RO Must contain the address of the desired FOB.

R1 Must contain the desired 010$ macro function code. Refer to the lAS Device Handlers Manual for the
desired 010$ macro function codes.

R2 Must contain the number of optional parameters, if any, to be included in the 010$ directive.

R3 Must contain the beginning address of the list of optional 010$ directive para.meters, if R2 contains a
nonzero value. Refer to the lAS Device Handlers Reference Manual for the parameter list.

4-18

4.12

4.13

File Control Routines

.RENAM--Rename File Routine
The .RENAl\! routine is called to change the name of a file in its associated directory. 'Ib rename
a file, you must specify the address of an FDB containing file name information, a LUN, and an
event flag number.

If the file to be renamed is open when the call to .RENAM is issued, that file is closed before the
renaming operation is attempted.

You must preset the following registers before calling this routine:

RO Must c()ntain the address of the FOB associated with the file with the original name.

R1 Must c(>ntaln the address of the FOB cc,ntaining the desired file name Information, the LUN assignment,
and the- event flag.

If the renaming operation is successful, a new directory entry is created and the original entry
is deleted. If the operation is unsuccessfW, the file is closed under its original name, and the
associated directory is not affected.

The .RENMI routine uses the absence of a value in location F.FNB + N.FID to indicate that
.PARSE must be called to parse a file splecification (an open file always has a nonzero value in
F.FNB + N.FtID). If neither a data-set de:scriptor nor a default filename block is present, .PARSE
returns a null file name. The rename operation then produces a new file name of version ".;1." If
a wildcard (*) is part of the input file splecification, wildcard processing like that described for the
.FIND routine occurs. Wildcards are not allowed in an output file specification.

Note

The renaming process is merely a directory operation that replaces an old entry with a new entry.
The file nam4e stored in the file header block is not altered .

. EXTND--File Extension Routine
The .EXTND routine extends either contiguous or noncontiguous files. The file to be extended can
be either open or closed. A call to the .EXTND routine disables file truncation. You must explicitly
call .TRNCL to tnmcate a file after you call .EXTND.

You must preset the following registers hefore calling the .EXTEND routine:

RO Must contain the address of the associated FOB.

R1 Must contain a numeric value specifying the number of blocks to be added to the file.

R2 Must cOlntain the extension control bits, as appropriate. The possible bit configurations for controlling
file-extend operations are detailed in Table 4-1. This table defines the bits in the low-order byte of R2. The
high-order 8 bits of R2 (bits 8 to 15) are used with the 16 bits of R1 to define the number of blocks to be
added to the file (see Note 1, which follows).

NOTE: (Notes)

1 FCS uSles the contents of Rl and the high-order byte of R2 (bits 8 to 15) to perform
the specified .EXTND operation. 'Thus, 24 bits of magnitude are available for
specifying the number of blocks by which the file is to be extended.

2 If a file previously had space allocated to it, a contiguous file extension by the
.EXTND routine cannot be done. You can create a contiguous file by opening a new
file with a zero allocation and by calling .EXTND to allocate the desired number of
blocks.

4-19

4.14

File Control Routines

3 When writing a new file using QIO$ macros, the task must expJicitly issue .EXTND
calls, as necessary, to reserve enough blocks for the file, or the file must be initially
created with sufficient blocks. In addition, the task must put an appropriate value
in the FDB for the end-of-file block number (F.EFBK) before closing the file or
rewinding and reading it.

4 If R2 contains 0, FeS defaults to noncontiguous allocation.

In general, when FCS implicitly extends a file, it activates file truncation. See Section 4.14 for
information on how to tum off file truncation. When your program explicitly allocates space to a
file, either with an OPEN$ or .EXTND, FCS turns off truncation. 1b turn off file truncation and
close the file, call the following routines:

1 Call the .EXTND routine. Set both R1 and R2 to O.

2 Issue the CLOSE$ macro.

Table 4-1 R2 Control Bits for .EXTND Routine

Value In Low-Order
Byte of R2

o
200

201

203

205

207

210

211

Meaning

Indicates that the file extent is to be noncontiguous.

Indicates that the file extent is to be noncontiguous. This clears the contiguous file
attribute.

Indicates that the contiguous area is to be added to the file. This clears the
contiguous file attribute.

Indicates that the largest available contiguous area is to be added to the file if the
desired file extent space is not available. This clears the contiguous file attribute.

Indicates that this is the initial extent of the file. The file is to be contiguous.

Indicates that the largest contiguous area up to the specified extend size is to be
added to the file. The file is to be contiguous.

Indicates that the file is to be extended by the default extend size for the volume.
The extend is to be noncontiguous.

Indicates that the file is to be extended by the default extend size for the volume.
The extend is to be contiguous; whereas, the file is to be noncontiguous .

. TRNel-File Truncation Routine
The .TRNCL routine truncates a file to the logical end of the file, deallocates any space beyond this
point, and closes the file.

The following register must be preset before calling this routine:

RO Must contain the address of the associated FOB.

The file must have been opened with both write and extend access privileges. Otherwise, the
truncation will fail.

The close operation will be attempted even if the truncatjon operation fails. If errors occur in both
operations, the error code from the close operation will be returned.

FCS turns on truncation when it extends a file. However, when your program explicitly calls the
.EXTND routine, FCS turns off truncation.

4-20

4.15

File Control Routines

File Deletion Routines
FCS providE~s the .MRKDL and .DLFNB routines for deleting files.

NOTE: If you ULse the .MRKDL or .ULFNB routine to delete a file containing sensitive
information, you should clear the fille before closing it or reformat the disk to destroy
the sensitive information. (Although the file is marked for deletion, the information
physically remains on the volume until written over with another file, and this
informatio:n could be analyzed by wtauthorized users.)

4.15.1 .MRKDL·-Mark Temporary File for Deletion
You use the .MRKDL routine to mark a temporary file for deletion-that is, a file created through
the OPNT$1iV macro call (see Chapter 3). Such a file has no associated directory entry.

A call to the .MRKDL routine is issued prior to closing a temporary file. The file so marked is then
deleted when the file is closed.

You must preset the following register bcefore calling the .MRKDL routine:

RO Must contain the address of the associ,ated FOB. This FOB is assumed to contain the file Identification,
device name, and unit information of thc~ file to be deleted.

If the .MRKDL routine is invoked while the temporary file is open, as is normally done, the
file is deleted uneonditionally when it is closed. This occurs even if the calling task terminates
abnormally without closing the file.

------------------4.15.2 .DLFNB--Delete File by Filename Block

4.16

You use this routine to delete a file by fltlename block. The .DLFNB routine assumes that the
filename block is completely filled; when called, it closes the file, if necessary, and then deletes the
file.

You must preset the following register before calling the .DLFNB routine:

RO Must contain the address of the associelted FOB.

The .DLFNB routine operates in the same manner as the DELET$ macro call (see Chapter 3), but
.DLFNB dOEls not require any of the .PARSE logic and thus requires less memory than the normal
DELET$ fWlction.

Like the DE:LET$ operation, however, the .DLFNB operation fails if the file to be deleted is not
open, and if an explicit file version number is missing from offset location N.FVER of the associated
filename block .

. CTRL-IDevice Control Routiine
You call the .CTRL routine to perform device-specific control functions. The following are examples
of .CTRL device-specific functions:

• Rewind a magnetic tape volume set.

• Position to the logical end of a magn1etic tape volume set.

• Close the current magnetic tape volume and continue file operations on the next volume.

• Space forward or backward n blocks on a magnetic tape.

4-21

4.17

4.17 .. 1

File Control Routines

• Rewind a file on a magnetic tape or a terminal (record-oriented device).

• Clear the terminal end-of-file.

You must preset the following registers before calling this routine to perform the first three bulleted
i terns listed previously in this section.

RO Must contain the address of the associated FOB.

R1 Must contain one of the following function codes:

FF.RWO rewinds a magnetic tape volume set.
FF.POE positions to the logical end of a magnetic tape volume set.
FF.NV closes the current volume and continues file operations on the next volume of a magnetic tape
volume set.

R2 Must be set to O.

R3 Must be set to O.

When using .CTRL to space forward or backward, you must ensure that registers RO, Rl, R2, and
R3 contain the following values:

RO Must contain the address of the associated FOB.

R1 Must contain the value FF.SPC.

R2 Must contain the number of blocks to space forward or backward. A positive number means space forward;
a negative number means space backward.

R3 Must contain O.

When using .CTRL to rewind a file, you must ensure that register Rl contains the value FF.RWF
and that registers R2 and R3 contain O.

See Chapter 5 for an explanation of using .CTRL to accomplish magnetic tape device-specific
functions .

. FLUSH-Buffer Flush Routine
The buffer flush routine (.FLUSH) writes the block buffer to the file being written in record mode.
The .FLUSH routine also writes file attributes (including F.EFBK and F.HIBK, the end-of-file and
high-allocation block numbers) each time the routine is called.

Closing the file guarantees that the block buffer is flushed and that the file attributes will be
written back to the file header. However, closing and opening a file frequently, solely to write the
block buffer, causes high system overhead and unnecessary disk accesses.

Purpose of the .FLUSH Routine
When FCS executes a PUT$ macro to a disk file, the PUT$ macro puts a record into the block
buffer. When the block buffer is full, or the file is closed, FCS writes the block buffer to the file.
You cannot predict when FCS will actually write the block buffer to the file.

Some applications may require that a record be written to a file immediately. As an example,
a task that handles a laboratory device may write small amounts of data to a file every few
minutes. If the system crashes, the contents of the block buffer may not have been written to
the file. This data may be lost unless a PUT$ is immediately followed by a call to the .FLUSH
routine. As another example, the .FLUSH routine should be called by an originating task to write
data immediately if another task must then read data written by that originating task. In these
examples, the tasks need not close the file to ensure that the data is written to the file.

4-22

File Control Routines

4.17.2 When .FILUSH Should Be Us~:!d
Your task should call .FLUSH whenever' data should be immediately written to a file.

You need not call the .FLUSH routine f4Jr block mode (WRITE$) or record mode (PUT$) write
operations to a record-oriented device; the block buffer is always written in these cases. Nothing
happens if you CBlll .FLUSH when a file is open under these circumstances except the return of a
cleared Can~y bit and status +1 (success) in FDB byte F.ERR.

4.17.3 Performance Considerations; Using .FLUSH
Calling the "FLUSH routine after every PUT$ macro can greatly increase 1/0 activity compared to
using solely the PUT$ macro. One alternative is to call the .FLUSH routine after certain intervals
have passed or after a certain number of calls to PUT$.

4.17.4 Using th~e .FlUSH Routine
You must preset the following register before calling this routine:

RO Must clontain the address of the associalted FOB.

During output, all registers are preserved, the Carry bit is clear or set to indicate success or
failure, and the FDB F.ERR byte contains the success or failure code.

4-23

5 File Stl-uctures

fi.1.1

This chapte]~ describes the structure of £lles supported by the lAS system. Specifically, this chapter
covers the identical file structure that e~rists on disk, DECtape, and DEC tape II. In addition, it
also describ,~s the American National Standards Institute (ANSI) file structure on magnetic tape
supported by lAS.

The disk, D1IDCtape, and DECtape II file structure is called FILES-II; the magnetic tape file
structure is ANSI standard.

The FILES-II structure is a file-organization system, which primarily determines the way that
files and thElir associated control files ar,e arranged on a disk or DECtape. FILES-II structure
includes not only the physical file and itl:J associated control files, but it also includes the necessary
information in these files that determine:s the file's size, location, content, and various attributes.

The ANSI standard describes a way of organizing sequential files on a magnetic tape that allows
the tape to he used on any computer system. The standard includes file structure, labeling, and
physical characteristics such as end-of-tape length.

Disk and DECtape File Structure (FILES-11)
Disk and DI~Ctape volumes (defined by ,Clnd associated with a VCB) contain both user files and
system files. Disks and DECtapes initiallized to FILES-II structure have the standard FILES-II
structure built for them. The standard Bystem files created by these commands include the
following:

• Index fil~e

• Storage lallocation file

• Bad block file

• Master :Erile Directory (MFD)

• Checkpoint file

Each FILES-II volume has all of these files. A volume can have more than one directory
file; the system uses these files, created by the MCR command UFD or the DCL command
CREATEIDIlRECTORY for lAS, to locate user files on the volume.

User File Structure
Data files on disk and DECtape consist of ordered sets of virtual blocks; these blocks constitute the
virtual structure of the data files as they appear to you. Virtual blocks can be read and written
directly by issuing READ$ and WRITE$ macro calls (see Chapter 3). The first block in the file is
virtual block. 1; subsequent virtual block~; are numbered in ascending order.

The virtual blocks of a file are stored on the volume as logical blocks. Because virtual blocks and
logical block:!!! are equal in size, and the logical block size of all volumes is 256 words, each virtual
block is also 256 words. When access to a virtual block is requested, the virtual block number
is Dlapped into a logical block number. The logical block number is then mapped to the physical
address on the associated volume.

5-1

5.1.2

5.1.3

File Structures

Directory Files
A directory file contains directory entries. Each entry consists of a file name and its associated file
nwnber and file sequence number. The number of required directory files depends on the number
of users of the volume. For single-user volumes, only an MFD is needed; for multiuser volumes, an
MFD is required, and one User File Directory (UFD) is required for each user of the volwne.

The MFD contains a list of all the UFDs on the volume, and each UFD contains a list of all that
user's files. UFDs are identified by User Identification Codes (UICs). You can create a UFD by
using either MCR or DCL. The following example shows how to create a UFD by using the MCR
command UFD:

MCR>UFD DL1: [10,5]

The next example shows how to create a UFD by using the DCL command CREATEIDIRECTORY.

PDS>CREATE/DIRECTORY DU2: [LINDSEY]

These commands are described in detail in the lAS MCR User's Guide and the lAS Command
Language Reference Manual.

Figures 5-1 and 5-2 illustrate the directory structure for single-user and multiuser volumes,
respectively.

Index File
You create the index file for the operating system to use when you initialize a volume. During
initialization, the information required by the system to manage the file is placed in the index
file. The index file contains volume information and user file header blocks, which the system file
control primitives use to manage the file. The file header blocks (see Section 5.1.4) are stored in
the index file so that they can be located quickly. Furthermore, because a file header block is 256
words in length, it can be read into memory with a single access. Appendix E contains a detailed
description of the format and content of an index file.

Figure 5-1 Directory Structure for Single-User Volumes

MFD

I I

File A File B File C

5-2

5.1.4

File Structures

Figure 5-2 Directory Structure for Multiuser Volumes

[MFD

I
I I

UFD UFD
[100,100] [200,200]

I I
I J I I

A] File B File A File B File C

File Header Block
Each file has a file header block that contains a description of the file. File header blocks are
stored in the! index file. Each file header block is 256 words long and contains the header area,
the identification area, and the map area. Figure 5-3 illustrates the file header block and its
contents.

The header area identifies the block as a file header block. Each file is uniquely identified by a
file ID consiElting of two words. FILES-l1 ACP (FIIACP) uses the first word of the file ID (that
is, the file number) to calculate the virtual block number of that file's header block in the index
file. (This calculation is done as follows: the virtual block number is the file number plus 2 plus
the number of index file bit map blocks.) FIIACP uses the second word (that is, the file sequence
number) to verify that the header block is really the header for the desired file.

When you request file access, both the file number and the file sequence number are specified. The
system denies a request for access if the file sequence number does not match the corresponding
field in the file header block that is associated with the specified file number.

When you delete a file, its file header block space becomes available for storing a newly created
file's sequenc:e number. If you attempt to access a file by file ID or by referencing an obsolete
directory entry, this updated file sequenc1e number ensures the rejection of the request for access.

The identifi1cation area specifies the file's creation name and identifies the file owner's UIC. This
area also specifies the creation date and time, the revision number, the date and time of the last
revision, and the expiration date.

The map ar~ea provides the infonnation needed by the system to map virtual block numbers to
logical block numbers.

5-3

File Structures

Figure 5-3 File Header Block

File Header
Block

(256 Words)

Offsets to Identification Area and Map Area
~ - - - - - - - - -

File 10
~ - - - - - - - - -

File Ownership and Protection Information - - - - - - - - - -
File Characteristics - - - - - - - - - -
Size (Bytes) of Header Area

File Name, File Type, and Version Number
~ - - - - - - - - -

Dates of Creation and Revision
~ - - - - - - - - -

Size (Bytes) of Identification Area

Mapping Information
r-- - - - - - - - - -

Retrieval Pointers
~ - -- - - - - - - -

Checksum Word

- -
- -
- -
- -

- -
- -

- -
- -

-
-
-
-

-
-

-
-

Header
Area

Identification
Area

Map
Area

A checksum value is computed each time the file header block is read from or written to the
volume, thus ensuring that the file header block is transferred correctly. Appendix C contains a
detailed description of the format and content of the file header block.

5.2 Magnetic Tape File Processing
lAS supports the standard American National Standards Institute (ANSI) magnetic tape structure
as described in "Magnetic Tape Labels and File Structure for Information Interchange," ANSI
X3.27-1978. Any of the following file/volume combinations can be used:

• Single file on a single volume

• Single file on more than one volume

• Multiple files on a single volume

• Multiple files on more than one volume

In the preceding list, the second and fourth file and volume combinations constitute a volume set.

The record format on magnetic tape differs from that on disk. When a file containing
variable-length records or fixed-length records that cross block boundaries is copied to magnetic
tape, it occupies more blocks on the magnetic tape than it did on the disk. This is so because
magnetic tape record counts are larger than disk record counts, and there is unused space at the
end of the blocks. In addition, a bit is set in the file's File Descriptor Block (FDB) that indicates
the file cannot cross block boundaries.

5-4

5>.2.1

5.2.2

5 .. 2.3

File Structures

Appendix G defines the sequence in whkh volume and file labels are used and the format of each
label type.

NOTE: The ANSI file header label contains no place for the creation time or the length
of the file. Consequently, the creation time of a file on ANSI magnetic tape is listed as
O. If a contiiguous file is copied to ArtlSI magnetic tape and is then transferred back to
disk, the resulti:ng disk file is not ma.rked as contiguous even if you use the ICO switch,
because thE~ system cannot know h01V much space to allocate for the output file when it
reads from magnetic tape.

Access tel Magnetic Tape Volumes
Magnetic tape is a sequential access, sinJgle-directory storage medium. Only one user can have
access to a gltven volume set at a time. Only one file in a volume set can be open at a time. The
system prote1cts access by volume set rather than by file. On volumes produced by DIGITAL
systems, the contents of the owner identification file determine user access rights as described in
Appendix G. Volwnes produced by non-Dl[GITAL systems are restricted to read-only access unless
the access is overridden explicitly at MOUNT time.

Rewinding Volume Sets
You can rewind a magnetic tape volume e:et either by using the FDOP$R macro before an OPEN$
or CLOSE$ macro or by using the .CTRL file control routine. Regardless of the method you use,
FCS performl3 the following procedures:

1 All mounted volumes are rewound to the beginning-of-tape (BOT).

2 If the first volume in the set is not mounted, the device unit to be used is placed off line.

3 If the volume is not already mounted and if the rewind was requested with an OPEN$ macro
or by a .CTRL routine call, a request to mount the first volume appears on the operator's
console.

4 If the rewind was requested with a CLOSE$ macro, no mount message is issued until the next
volume is needed.

Positioning to the Next File Pc~sition
The standard procedure for writing a new file onto a magnetic tape is to begin writing the file
following the end of the volume set's last HIe. However, you can use the FDOP$R macro to indicate
that the new file is to be written immediately after the labels at the end of the most recently closed
file.

NOTE: The :next file position option causes the loss of any files physically following this
most recently closed file in the volum1e set.

If, in addition to the next file position option, the rewind option also is specified, the
file is created after the VOLt label onl the first volume of the set. All files previously
contained in the entire volume set ar.~ lost.

To create a fille in the next file position, FA.POS must be set in FDB location F.ACTL. The default
value for this FDB position is 0 (not FA.POS). The default indicates that the file system is to
position itself at the logical end of the volume set to create the file.

5-5

5.2.4

5.2.5

File Structures

When you use the default, the file system makes no check for the existence of a file with the same
name in the volume set. Therefore, a program written to use magnetic tape normally should
specify FA.POS.

Directory device file processors ignore the next file position option. However, programs written
mainly for directory devices can specify the next file position option in open commands for output
and, therefore, override a process of positioning the file system to the logical end-of-file normally
used with ANSI magnetic tape.

Single-File Operations
You perform single-file operations by specifying the rewind option with the FDOP$R macro before
the open and before the close. Using this approach, you can perform operations on temporary tapes
or work tapes (scratch tapes) as follows:

1 Open the first file with the rewind option specified.

2 Write the data records and close the file with rewind.

3 Open the first file again for input (rewinding is optional).

4 Read and process the data.

5 Open the second file with rewind specified.

6 Write the data records.

7 Close the file with rewind and perform any additional processing.

Multifile Operations
You create a multifile volume by first opening and writing and then closing a series of files withou1
specifying the rewind option. You can process files sequentially on the volume by closing without
rewind and by opening the next file without rewind.

Opening a file for extend with the OPEN$A macro is legal only for the last file on the volume set.

Perform the following tape operations to create a multifile tape volume:

1 Open a file for output with the rewind option.

2 Write data records and close the file.

3 Open the next file without rewinding.

4 Write the data records and close the file.

5 Repeat for as many files as desired.

You can open files on tape in a nonsequential order, but doing so increases processing and
tape-positioning time. Nonsequential access of files in a multifile volume set is not recommended.

5-6

5.2.6

5.2.7

File Structures

Using .ClrRL
You can call1the .CTRL file control routine to override normal FCS defaults for magnetic tape. This
routine might be used to perform the following tasks:

• Continue processing a file on the next volume of a volume set before the end of the current
volume is! reached.

• Position to the logical end-of-volume Bet.

• Rewind a volume at other times than when opening or closing the file.

• Space forward or backward any number of records.

• Rewind a file.

When FCS unes the .CTRL routine to continue processing a file on the next volume, the first file
section on the next volume is opened. FiJ,e sections occur when a file is written on more than one
volume. The portion of the file on each of'these volumes constitutes a file section. For input files,
the following .CTRL routine processing oc:curs:

1 If the current volume is the last volulme in the set (that is, there is no next volume), the
end-of-file is reported to you.

2 If anothet' file section exists, the currEmt volume is rewound and the next volume is mounted.
A request to mount the next volume appears on the operator's console.

3 The header label (HDRl) of the next file section is read and checked.

4 If all required fields check, the operation continues.

5 If any check faJils, the operator is requested to mount the correct volume.

For output fil.~s, the following .CTRL routine processing occurs:

1 The current file section is closed with EOVI and EOV2labels and the volume is rewound.

2 The next ,rolume is mounted.

3 A file with the same name and the ne,c:t higher section number is opened for a write operation.
The file SElt identifier is identical with the volume identifier of the first volume in the volume
set.

NOTE: 110 buffers that are currently :in memory are written on the next file section.

When the .CTRL routine positions the tape to the logical end of the volume, the file system
positions the tape between the two tape marks at the logical end of the last volume in the set.

When the .CTRL routine spaces forward or backward across blocks on magnetic tape, spacing
crosses volumes for multivolume files.

Examples of Magnetic Tape Processing
The following sections contain examples of FCS statements that process magnetic tape. Macro
parameters not related to magnetic tape handling are omitted from these statements.

5-7

File Structures

5.2.7.1 Examples of OPEN$W Macro-11 Statements to Create a New File
All routines expect RO to contain the FDB address. For example:

OPRWDO:

OPEN WITH REWIND

FDOP$R RO"",#FA.ENB!FA.RWD
BR OPNOUT

OPNXTO:

OPEN FOR NEXT FILE POSITION

FDOP$R RO"",#FA.ENB!FA.POS
BR OPNOUT

OPROYK:

iSET REWIND AND ENABLE USE
iOF F.ACTL

iSET POSITION TO NEXT
iAND ENABLE USE OF F.ACTL

OPEN FILE AT END OF VOLUME KEEPING CURRENT USER
ACCESS CONTROL BITS

OPROVO:

BIC
BR

#FA.ENB,F.ACTL(RO)
OPNOUT

iDISABLE USE OF F.ACTL

OPEN FILE AT END OF VOLUME - SELECT SYSTEM DEFAULT FOR
USER ACCESS CONTROL BITS

FDOP$R RO"",#o
BR OPNOUT

iDISABLE USE OF AND RESET
iF.ACTL TO ZERO

OPEN FILE WITH CURRENT USER ACCESS CONTROL

OPOURO:
BIS

OPNOUT: FDBF$R
OPEN$W
RETURN

#FA.ENB,F.ACTL(RO)
RO,,#B192.
RO

iENABLE USE OF F.ACTL
iOVERRIDE BLOCK SIZE FOR TAPE

5.2.7.2 Examples of OPEN$R Macro-11 Statements to Read a File
All routines expect RO to contain the FDB address. For example:

5·-8

OPRWDI:

OPEN WITH REWIND

FDOP$R RO" ",#FA.ENB!FA.RWD
BR OPNIN

OPCURI:

OPEN STARTING SEARCH AT CURRENT TAPE POSITION KEEPING USER
ACCESS CONTROL BITS

BIC
BR

#FA.ENB,F.ACTL(RO)
OPNIN

OPEN USING USER ACCESS CONTROL

OPDFLI: BIS
OPNIN: FDBF$R

OPEN$R
RETURN

#FA.ENB,F.ACTL(RO)
RO,,#2048.
RO

;DISABLE USE OF F.ACTL

;ENABLE USE OF F.ACTL
;OVERRIDE BLOCK SIZE FOR TAPE

File Structures

5.2.'7.3 Examples of CLOSES Macro-11 Statements
All routines e~tpect RO to contain the FDB address. For example:

CLSCUR:

CLOSF~ LEAVING TAPE AT CURRENT POSITION AND KEEPING
USER ACCESS CONTROL BITS

CLSRWD:

BIC
BR

#FA.ENB,F.ACTL(RO)
CLOSE

CLOSF: REWIND ING THE VOLU~[E

FDOP$R RO"",#FA.ENB!FA.RWD
BR CLOSE

CLOSE: WITH USER ACCESS CONTROL BITS

CLSDFL: BIS #FA.ENB, F .1I.CTL (RO)
CLOSE: CLOSES RO

RETURN

;DISABLE USE OF F.ACTL
;DEFAULT IS LEAVING AT CURRENT
;POSITION

;SET REWIND AND ENABLE USE OF
;F.ACTL

;ENABLE USE OF F.ACTL

5.2.'7.4 Combined Examples of OPENS and CLOSES Macro-11 Statements
The following examples call routines shown in previous examples in Section 5.2.7.1. By combining
various magn4~tic tape operations, you can process tape volumes in the following ways:

; SCRATCH TAPE OPERATIONS--SINGLE FILE VOLUME--

SCIROUT: MOV #FDBOUT,RO ; SELECT FOB AND OPEN
CALL OPRWDO ; OUTPUT FILE WITH REWIND
RETURN

SCIRIN: MOV #FDBIN,RO ;SELECT FDB AND OPEN FOR
CALL OPRWDI ; INPUT WITH REWIND
RETURN

CLSCRO: MOV #FDBOUT,RO ;CLOSE SCRATCH FILE
BR CLSVOL ;REWINDING VOLUME

CL:SCRI: MOV FDBIN,RO
CLSVOL: CALL CLSRWD

RETURN

IMULTI-FILE VOLUME OPERATIONS

OPNXTI:

OPEN FILE FOR READING WHEN FILE IS NEXT OR FURTHER UP THE VOLUME

MOV #FDBIN,RO
CALL OPCURI
RETURN

OPgNIN:

;SELECT FDB
;OPEN FILE

OPEN FILE FOR READING WHEN POSITIONED PAST IT

MOV
CALL
RETURN

#FDBIN,RO
OPRWDI

II1ULTI-FILE OUTPUT OPERATIONS

;SELECT FDB

5-9

File Structures

5-10

OPNINT:

START NEW VOLUME DESTROYING ALL PAST FILES ON IT

MOV
CALL
RETURN

iFDBOUT,RO
OPRWDO

;SELECT OUTPUT FOB
;OPEN WITH REWIND

OPNEXT:

OPEN OUTPUT FILE AT NEXT FILE POSITION DESTROYING ANY FILE
THAT MIGHT BE AT OR PAST THAT POSITION

MOV iFDBOUT,RO ;SELECT OUTPUT FDB
CALL OPNXTO
RETURN

OPENDT:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME SET KEEPING USER
ACCESS CONTROL BITS

MOV iFDBOUT,RO ;SELECT OUTPUT FDB
CALL OPROVK
RETURN

OPNEOV:

OPEN OUTPUT FILE AT CURRENT END OF VOLUME AND MAKE THAT THE USER
ACCESS CONTROL

MOV iFDBOUT,RO ;SELECT OUTPUT FOB
CALL OPROVO
RETURN

NOT LAST FILE IN FILE SET CLOSE ROUTINE

CLSFLO: MOV iFDBOUT,RO ; SELECT OUTPUT FOB
BR CLSXX

CLSFLI: MOV iFDBIN,RO ; SELECT INPUT FOB
CLSXX: CALL CLSCUR
5 RETURN

TO APPEND TO LAST FILE

OPEN$A iFDBOUT

6 Commc:lnd Line Processing

This chapter describes two object library routines that are available from the system object library,
[1,I]SYSLIB.OLB. These routines may be linked with your task to provide the logical capabilities
necessary to process terminal command line input as follows:

Get Command Une (GCMl)

Command String Interpreter (CSI)

Accomplishes all the logical functions associated with the entry of
comm~!lnd lines from a terminal, an Indirect command file, or an online
storagEI medium. Using GCMl relieves you of the burden of manually
coding command line input operations.

Takes command lines from the GCMl command line Input buffer and
parses them into the appropriate data-set descriptors that FCS requires
for opening files.

The Task Builder (TKB) links these routines with your program when the task is being built.
GCML and CSI are often used together in system or application programs as a standardized
interface for obtaining and interpreting dynamic command line input. Figure 6-1 shows the flow
of data during command line processing.

Although this chapter assumes the joint use of these routines to process command line input,
GCML and CSI may be used independently. Using one without the other, however, requires that
you manually code the functions normally performed by the missing component.

Invoking GCI\,fL and CSI functions requires that certain initialization be done when you write
the source code. This initialization sets up the GCML command line input buffer, defines and
initializes control blocks for both GCML and CSI, and establishes the necessary working storage
and communh~ation areas for these routines. Also, the appropriate macro calls that invoke GCML
and CSI execution-time functions must be included in the source code at appropriate logical points
to effect the dynamic processing of command lines.

GCML and CSI macro calls observe the SBlme register conventions as File Control Services (FCS).
All registers except RO are preserved exactly as those in FCS macro calls. RO contains the address
of the GCML ~~ontrol block or the CSI control block, as appropriate.

As with all FeS macro calls, the GCML and CSI macro calls must be listed as an argument in a
.MCALL directive (see Chapter 2) before you insert them in your program.

6.1 Get Comnland Line (GCML) R()utine
The Get Comrnand Line (GCML) routine (:ontains all the logical capabilities necessary to enter
command line:s dynamically during program execution. GCML accepts input from a terminal or an
indirect command file that contains predefined command lines. If your program allocates sufficient
buffer space in the file storage region (FSR) (see Chapter 2), GCML accepts commands that are
longer than one line of terminal input. The appearance of a hyphen (-) as the last printing
character of a command line permits the continuation of commands from one line to the next.

All GCML functions require you to create and initialize a GCML control block. See Section 6.1.1
for a description of this macro call. The GCML runtime macro calls that your task may issue
dynamically are described in Section 6.1.3.

6-1

6.1.1

Command Line Processing

Figure 6-1 Data Flow During Command Line Processing

Data-Set

Descriptor

ASCII Data

GCML

CSI

FCS
(.PARSE)

RIenCJ1le

Block

Default

Filename
Block

GCMLB$-Allocate and Initialize GCML Control Block
This section describes the GCMLB$ macro. This macro is a necessary part of the code needed
to dynamically obtain and execute command lines. During the assembly of your program the
GCMLB$ macro performs the following tasks:

• Reserves storage for and initializes a GCML control block within your program.

• Creates and initializes an File Descriptor Block (FDB) for the indirect command file in the fir
part of the GCML control block.

6-2

Command Line Processing

• Creates ElLDd initializes a default filename block within the GCML control block.

• Defines the symbolic offsets for the GCML control block and initializes certain offsets to
required values by invoking the GCN,[LD$ macro. These offsets are described in detail in
Section 6.1.2.

FCS uses the FDB to open an indirect cOlnmand file. Your program may open and read a command
file, which can use a terminal or a file-structured device such as a disk. GMCL and FCS initialize
and maintain this FDB.

FCS uses the default filename block for an indirect command file. If you do not specify an explicit
filename string for an indirect command lfile, the values CMI for the file name and .CMD for the
file type are assumed by default. There is no default designation for the device name.

label: GCMLB$ maxd,prmpt,ubuf,lun,pdl,size

Parameters

label
Specifies a symbol that names the GCML control block and defines its address. This label permits
the GCML control block to be referenced directly by all the GCML runtime routines that require
access to this structure (see Section 6.1.3.

maxd
Specifies a numeric value that specifies tlfle maximum nesting depth permitted for indirect
command files. This parameter determines the number of nested indirect command files that
GCML can access when obtaining command line input.

An indirect command file, which often resides on disk, contains well-defined, nonvarying command
sequences, which may be read directly by GCML to control such highly repetitive operations as
TKB activities.

If you do not specify this parameter, the default nesting level depth is 0, which effectively
eliminates an indil'ect command file as a Elource of command line input.

prmpt
Specifies a 3-<!haracter American Standard Code for Information Interchange (ASCII) prompting
sequence that you specify. The GCML routine displays this default prompt string at your terminal
to solicit command line input.

The ASCII prompting sequence is construded as the following 6-byte string:

• A carriagE! return «CR» and a line fe!ed «KEY>(LF\ TEXT»

• The three ASCn characters that you specify

• A right angle bracket (»

The ASCII prompting sequence initializes GCML control block offset location G.DPRM (see
Section 6.1.2.

If you do not specify this parameter, GCML uses the right angle bracket preceded by three blanks
as the default prompting sequence.

ubuf
Specifies the Ellddress of a buffer that the GCML routine uses for temporary storage of command
line input. If you do not specify this parameter, a buffer is reserved in the GCML control block for
command line input. The size parameter determines the length of the buffer. If you specify neither
this parameter nor the size parameter, a 41-word buffer is reserved by default in the GCML control
block.

6-3

Command Line Processing

lun
Specifies a logical unit number (LUN). The GCML routine uses the device assigned to this LUN as
the command input device. If you do not specify this parameter, GMCL uses a LUN of 1 by default.

pdl
Specifies the address of an area reserved in your program as a push-down list. Indirect command
file processing uses this area for working storage. Normally, you do not specify the pdl parameter
unless you want to increase the storage for the push-down list.

Statements logically equivalent to the following create the push-down list:

. EVEN
label: .BLKB G.LPDL

The label that you supply specifies the push-down list and defines its address. G.LPDL, which is
defined by the GCMLB$ macro, is the length (in bytes) of the push-down list.

The length of the push-down list is a function of the maximum number of nested indirect command
files that may be accessed by GCML in obtaining command line input. You can increase the storage
in the control block for the push-down list by calculating the value according to the following
algorithm:

1 Add 1 to the maximum nesting level depth declared with the maxd parameter described
previously.

2 Multiply the sum of step 1 by 1610 to find the number of bytes that must be reserved for the
push-down list.

For example, if you specify 4 as the maxd parameter, you determine the length of the push-down
list as follows:

(4+1)*16. = BOlO bytes

From the previous mathematical statement, note that 1610 bytes of storage are required for each
indirect command file (4), plus another 1610 bytes as general overhead.

size
Specifies the size, in bytes, of the buffer reserved for command line input. The size must always
include two extra bytes that are used internally by GCML. The default size value is 82 (that is, 80
bytes for command line input and 2 bytes GCML overhead).

If you want GCML to accept continuation lines, the specified value for the size parameter must be
greater than 82. When the size is greater than 82, the bit value GE.CON is set in the status and
mode control byte (offset G.MODE) of the GCML command block. This value indicates that the
continuation mechanism is in effect.

Example

GCLBLK: GCMLB$
GCLBLK: GCMLB$
GCLBLK: GCMLB$

4., GCM, BUFADR, 1.
" BUFADR
DEPTH,GCM,BUFADR,CMILUN,PDLIST,BUFSIZ

Illustrates how a GCMLB$ macro call may be used in a program.

6-4

Command Line Processing

GCMLD$--Define GCML Con1:rol Block Offsets and Bit Values
The GCMLD~~ macro, which the GCMLB~~ macro call invokes, locally defines the GCML control
block offsets and bit values within the cwrrent module. Table 6-1 describes these offsets and their
bit values.

Table 6-1 GCML Offsets and Bit Values

Symbolic
Offset
Name [)escrlptlon

--G.ERR E~rror return code byte

G.MODE

This field initially contains o. If any error conditions that GCML recognizes occur during the
processing of a command line, an appropriate error code Is returned to offset location G.ERR
In the control block. Descriptions of these error bits follow:

C~E.lOR-I/O error occurred durin!9 the input of a command line.

CaE.OPR-GCML unable to open or reopen the specified command file.

CaE.BIF-Syntax error detected in the name of the indirect command file.

CaE.MOE-Attempt made to exceEtd the maximum permissible nesting-level depth for an Indirect
oommand file (see the description of the maxd parameter in Section 6.1.1).

C;aE.RBG-Command line input buffer was too small for the total command. This condition can occur
when multiple lines have been entered using the continuation mechanism. The input buffer contains
as much of the command as possible.

GE.EOF-End-of-file (EOF) on thE~ top-level command file detected.

r-lOTE: For GE.IOR and GE.OPR, additional information concerning the
error is available by examining the FCS error code at offset F.ERR from the
s'tart of the GCML block.
The error code is set along with cflmmand file input. When the first call is issued for input, GCML
alttempts to retrieve a Monitor' Console Routine (MCR) command line. Command level 0 is set
fm the first line obtained, whether it is an MCR command or a terminal command. If the name of
al1 indirect command file is then entered, the command input level is increased to 1. Therafter,
ejach Indirect command file name entry increments the command input level. When the EOF is
el,countered on any given Indirect command file, the command input level Is decremented by 1,
rElstoring the count to the previous: level and reopening the associated command file. The next
c()mmalrld line from that file is thenl read.

If an MeR command has already been read at level 0, entering another MCR command when level
o Is again reached causes the ermr code GE.EOF to be returned to offset location F.ERR of the
GCML control block. Hence, only one MCR command line can be read at level o. If input falls at
MCR level 0, then GCML continues to prompt for input until you press CTRLlZ to Indicate terminal
EOF.

In summary, the first line of input is always read at level o. This initial input may be an MCR
cc)mmand; if the MCR command hlils or is nUll, the command input file (normally a terminal) is then
opened at level o. Multiple inputs iat level 0 are permissible only in the latter case, that is, from the
cc)mmand input file.

Sltatus and mode control byte

This field is initialized at assembly time with bit definitions to specify certain default actions for
GCML during the retrieval of a command line.

6-5

Command Line Processing

Table 6-1 (Cont.) GCML Offsets and Bit Values

Symbolic
Offset
Name

G.PSDS

G.CMLD

6-6

Description

At run time, you can reset default status and mode control bits by issuing a bit clear byte (BICB)
instruction that takes the symbolic name of the bit to be cleared as the source operand. In the case
of the GE.LC value (see the following text), the BICB instruction can override the default action.

Descriptions of the symbolic names of the bits defined in the status and mode control byte follow:

GE.lND-(Oefault) A command line that begins with a leading at sign (@) Is an explicit indirect
command file specification. If you reset the GE.lND bit to 0, a command line beginning with an at
sign is returned to the calling program.

GE.CLO-(Default) The command file currently being read is closed after each GCML$ macro call
is issued. If you reset the GE.CLO bit to 0, GCML keeps the current command file open between
calls for input. In this case, the file storage region (FSR) described in Chapter 2 must include one
additional 5121o-byte buffer for command line input. This requirement adds to the total FSR block
buffer space normally reserved for the maximum number of files that may be open simultaneously
for record 110 processing.

Clearing the GE.CLO bit in the status and mode control byte renders 51210 bytes of FSR block
buffer space unavailable for other purposes because the command file remains open between calls
for command line input.

GE.COM-(Default) A command line that begins with a leading semicolon (;) is a comment. Such
lines are not returned to the calling program. If you reset this bit to 0, a command line beginning
with a leading semicolon is returned to the calling program.

GE.CON-If the value of the size parameter of the GCMLB$ macro is greater than 82, the
continuation mechanism is in effect by default. You must not attempt to set this bit in the mode
byte without providing a buffer larger than 82 bytes.

GE.LC-If this bit is set to 1 in the GCML control block at run time, lowercase characters in the
command line are passed unaltered to your program. If this bit is not set, lowercase characters are
changed to upppercase before being passed to your program.

Prompt string descriptor

Initialize this 2-word field to ° at assembly time by issuing the GCMLB$ macro call (see
Section 6.1.1).

When you issue the GCML$ macro call to request command line input (see Section 6.1.3.1), the
address and the length of a prompting sequence are usually not specified. In this case, the prompt
string descriptor words in the GCML control block are cleared, causing GCML to type out the
default prompt string contained in offset location G.OPRM to solicit command line input. (See the
description of G.DPRM in the following text.)

If you want to define an alternate prompt string elsewhere in the program, you may do so through
the .ASCII directive. The address and length of this alternate prompt string may then be specified
as the adpr and Inpr parameters in subsequent GCML$ macro calls. (See the description of these
parameters and how they affect alternate prompt strings in the following text.) These parameters
cause offset locations G.PSOS+2 and G.PSDS to be initialized with the address and the length,
respectively, of the alternate prompt string. GCML then types out the alternate prompt string to
solicit command line input, thereby overriding the default prompt string previously established
through the GCMLB$ macro call.

If you do not specify the adpr and Inpr parameters in a subsequent GCML$ macro call, offset
location G.PSDS in the control block is reset to 0, causing GCML to revert to the use of the default
prompt string contained in offset location G.DPRM.

Command line descriptor

6 .. 1.3

Command Line Processing

Table 6-1 (Cont.) GCML Offsets and Blit Values

Symbolic
Offset
Name

G.lSIZ

G.DPRM

Description

GCMl. initializes this 2-word field after retrieving a command line. The address of this command line
is returned to offset location G.CMLD+2, and the length (in bytes) of the command line Is returned
to offset location G.CMLO.

The contents of these word locations in the GCML control block may be passed to the Command
String Interpreter (CSI) as the buff and len parameters In the CSI$1 macro call (see Section 6.2.3.1).
The combination of these param1eters constitutes the command line descriptors that enable CSI to
retrieve file specifications from the GCML command line Input buffer.

Impure area size Indicator

This symbol is defined at assembly time, indicating the size of an Impure area within the GCML
'control block to be used as working storage for pointers, flags, counters, and so forth. along with
iinput from an indirect command iile. In normal usage, you need not be concerned with this symbol.

The space between the FOB and the default prompt string (see G.OPRM in the following text) Is
1the impure area of the GCML control block. The value of the symbol S.FOB defines the size of the
IFOB. "rhus, the size of the impur4~ area is equal to G.OPRM minus S.FOB (G.OPRM-S.FOB).

IDefault prompt string

This 6-byte field is initialized at assembly time with the default prompt string created through the
I)rmpt parameter of the GCMLB$ macro call (see Section 6.1.1). In the absence of the adpr and
Inpr parameters In the GCML$ miacro call (see Section 6.1.3.1). GMCL types out this default prompt
~3trlng to solicit terminal Input.

You can reference the GCML control block offsets and bit values in another module by establishing
the approprislte symbolic definitions within that module through one of the following statements:

GCMLD$

GCMLD$ DEF$L
GCMLD$ DEF$G

iDEFAULT LOCAL DEFINITION

i :LOCAL DEFINITION
iGLOBAL DEFINITION

GCML Routine Runtime Macr()s
GCML provides the following three runtinle macro calls to perform specific functions:

GCML$

RCML$

CCML$

Retl'ieves a command line.

Resets the indirect command file scaln to the first (unnested) level.

Cloues the current command file.

These routines are described in the following sections.

6.1.3.1 GCML$-Get Command Line Macro

GCML$ serves as your program interface for retrieving command lines from a terminal or an
indirect commland file. You can issue this macro call at any logical point in the program to solicit
command line input.

GCML$ gclblk,adpr,lnpr

6-7

Command Line Processing

Parameters

gclblk
Specifies the address of the GCML control block. This symbol must be the same as the symbol
specified at assembly time in the label field of the GCMLB$ macro call (see Section 6.1.1). If you
do not specify this parameter, RO is assumed to contain the address of the GCML control block.

adpr
Specifies the address of your program location containing an alternate prompt string. When this
optional parameter and the lnpr parameter are present in the GCML$ macro call, the alternate
prompt string appears on your terminal to solicit command line input. The normal default prompt
string, as contained in offset location G.DPRM of the GCML control block (see Section 6.1.2), is
thereby overridden.

Inpr
Specifies the length (in bytes) of the optional, alternate prompt string. If you do not specify this
parameter, offset location G.PSDS in the GCML control block (see Section 6.1.2) is cleared.

If you specify this parameter, but do not specify the adpr parameter described previously, an
.ERROR directive is generated during assembly that causes the error message "Prompt string
missing" to be printed in the assembly listing. This message is a diagnostic announcement of an
incomplete prompt string descriptor in the GCML$ macro call. If you specify this parameter, as
well as the adpr parameter, the default prompt string is overridden.

If you do not specify the adpr and Inpr parameters in a subsequent GCML$ macro call, offset
location G.PSDS in the GCML control block is reset to O. Consequently, GCML reverts to using the
default prompt string contained in offset location G.DPRM (see Section 6.1.2).

When you issue the GCML$ macro call, the following occurs:

1 RO is loaded with the address of the GCML control block. If you do not specify the gc1blk
parameter, RO is assumed to contain the address of the GCML control block. If it does not
contain that address, you must first manually initialize RO with the address of the control
block before you issue the GCML$ macro call.

2 The address and the length of the alternate prompt string, if specified, are stored in control
block offset locations G.PSDS+2 and G.PSDS, respectively. These two words constitute the
alternate prompt string descriptor.

3 Code is generated that calls GCML to transfer a command line to the command line input
buffer. If the last character of an input line is a hyphen (-), and if the value GE.CON is
present in the status and mode control byte, GCML transfers commands that are longer
than one line. The continuation lines obtained are concatenated in the input buffer with the
continuation hyphen or hyphens removed.

When your task first issues the GCML$ macro call, GCML$ tries to retrieve an MCR command
line. If this attempt fails, or if the MCR command line is nun, GCML uses the FDB within the
GCML control block to open a file for command line input. If the command input device is a
terminal, a prompt string appears on your terminal to solicit input. Any appropriate command
input may then be entered. If the continuation mechanism is in effect, the prompt string reappears
to solicit subsequent portions of the continued command line.

If appropriate, you may enter an at sign (@) as the first character in the command line, followed
by the name of an indirect command file. This file name identifies an explicit indirect command
file from which input is to be read. GCML then opens this file and retrieves the first command
line. On successive GCML calls, this file is read until one of the following occurs:

6-8

Command Line Processing

• The end··of-file (EOF) is detected on the current indirect command file. In this case, the
current indirect file is closed, the conLlmand input level count is reduced by 1, and the previous
command file is reopened. If the command input level count is already 0 when EOF is detected,
the errOl' code GE.EOF is returned to offset location G.ERR of the GCML control block (see
Section E).1.2).

• An indirlect command file specification is encountered in a command line. In this case, the
current indirect command file is closed (if not already closed), the new indirect command file is
opened, and the first command line i:s read.

• An RCML$ macro call is issued in the program (see Section 6.1.3.2). In this case, the cutTent
indirect command file is closed, and the command input count reverts to level 0; that is, the
top-level command file is again used for input.

You may also enter a semicolon (;) as the first character in the command line. If GE.COM is set,
such a line is treated as a comment and is not returned to the calling program. If GE.COM is
clear, the line is returned to the calling program.

Whether a command line is entered manually or retrieved from an indirect command file, the
address and the length of the command lline are returned to GCML control block offset locations
G.CMLD+2 and G.CMLD, respectively. 1lbgether, these two words constitute the command line
descriptors. These descriptors may be specified as the buff and len parameters in the CSI$1 macro
(see Section ~B.2.3.1).

Successful re:trieval of a command line CBLUses the CatTy bit in the Processor Status Word (PSW) to
be cleared. Any elTor condition that occurs during the retrieval of a command line, however, causes
the Carry bit to be set. In addition, a neigative error code is returned to offset location G.ERR of
the GCML control block. These error codes are described in detail in Section 6.1.2.

Examples of how you may use the GCMl,$ macro in a program follow.

Examples

GCML$ tGCLBLK

Specifies the symbolic address of the GC~~L control block.

GCML$

Assumes thalt RO contains the address of the GCML control block. The preceding examples both
employ the dlefault prompt string contained in offset location G.DPRM of the control block to solicit
command liDie input.

GCML$ iGCLBLK,iADPR,iLNPR

Specifies the address and the length of an alternate prompt string that you have defined within
the program. GCML uses this alternate prompt string to prompt for terminal input, rather than
using the default prompt string contained! in the GCML control block.

6.1.3.2 RCMl$-Reset Indirect Command File Scan Macro

If you must close the current indirect command file and return to the top-level file, that is, to the
top-level (unnested) file, you may do so by issuing the RCML$ macro.

RCMl$ gclblk

6-9

Command Line Processing

Parameter

gclblk
Specifies the address of the GCML control block. If you do not specify this parameter, RO is
assumed to contain the address of the GCML control block.

When you issue this macro, the current indirect command file is closed, returning control to the
top-level (unnested) file. A subsequent GCML$ macro then retrieves the next command line from
the O-level command file. Note, however, that a second MCR command at level 0 cannot be read
(see GE.EOF error code in offset location G.ERR of GCML control block, Section 6.1.2).

Example

RCML$ iGCLBLK

RCML$ RO

Illustrates how you may use the RCML$ macro in a program. This macro call requires only the
address of the GCML control block.

6.1.3.3 CCML$-Close Current Command File Macro

You may want to close the current command file between calls for input to free FSR block buffer
space for some other use. File Control Services (FCS) normally closes the command file after the
retrieval of a command line, provided that the GE.CLO bit in the status and mode control byte
remains appropriately initialized (see Section 6.1.2). This bit is set to 1 at assembly time. If you
reset this bit to 0, the current command file remains open between calls for input.

For a program that frequently reads command files, this may be a desirable operational mode,
because keeping the file open between calls for input reduces total file access time. However,
should you want to close such a file to free FSR block buffer space, you may do so by issuing the
CCML$ macro call.

CCML$ gclblk

Parameter

gclblk
Specifies the address of the GCML control block. If you do not specify this parameter, RO is
assumed to contain the address of the GCML control block.

Issuing this statement closes the current command file, effectively releasing 51210 bytes of FSR
block buffer space for some other use between calls for input. If the command file is already closed
when your task issues the CCML$ macro call, control is returned to your task. A subsequent
GCML$ macro call then causes the command file to be reopened and the next command line in the
file to be returned to the calling program.

Example

CCML$ #GCLBLK

CCML$ RO

Illustrates how the CCML$ macro may be used in a program. As in the RCML$ macro call
described previously, this macro call takes a single parameter, specifically, the address of the
GCML control block.

6-10

6.1.4

Command Line Processing

GCML Usage Considerations
As noted in Section 6.1.1, the GCMLB$ mlacro can creates a File Descriptor Block (FDB) in the first
part of the GCML control block. Although ordinarily you need not manipulate this FDB (because
it is under GCML and FCS control), you ean perform the following operations on this FDB:

1 In an unrecovc~rable error situation, you can issue a CLOSE$ macro call (see Chapter 3) with
the address of this FDB before issuing' the system EXIT$ macro call.

2 You can t.est the FD.TTY bit in the device characteristics byte (offset location F.RCTL) of the
FDB to d,etennine whether the command line just obtained was retrieved from a terminal.

3 In the eVlent that error code GE.lOR or GE.OPR is returned to control block offset location
G.ERR (indicating that an I/O error has occurred during the retrieval of a command line), you
can test offset location F.ERR of the Blssociated FDB for a more complete error analysis. This
FDB cell also contains an error code that may be helpful in determining the nature of the error
condition,.

At task-build time, the Task Builder (TKlB) device assignment (ASG) option should be issued to
assign the appropriate physical device unit to the desired logical unit number (LUN). For example,
to assign the LUN (lun parameter) in the GCMLB$ macro call (see Section 6.1.1) to a terminal, the
following TKJB option should be issued:

ASG = TI:l

The designatiion TI is a pseudo-device naJne that is redirected to the command input device. Note
that the numeric value following the colon (:) must agree with the numeric value specified as the
lun parameter in the GCMLB$ macro call

The ASG optllon is described in further d€~tail in the lAS Task Builder Reference Manual.

As covered in the discussion on FSRSZ$ (see Chapter 2), at any given time there must be an FSR
block buffer available for each file currently open for record I/O operations. You must consider
the buffer requirelnents of the command :file when issuing the FSRSZ$ macro. (FSRSZ$ must be
issued with a nonzero first parameter.)

6,.2 Command String Interpreter Floutine
The Command String Interpreter (CSI) routine analyzes command lines and parses them into their
component dE~vice name, directory, and filename strings. You should be aware that CSI processes
command lines in the following formats only:

• dev:[g,m]outputfilespec/switch

More thaltl one file specification can be specified by separating the file specifications with
commas.

• dev:[g,m]outputfilespec/switch, ... = dey: [g, mli nputfilespec/switch, ...

A file specification may be either of the fol1owing:

filename.type;version

or

"Jl~NSI name string"; version

CSI maintains a data-set descriptor within the CSI control block (see Section 6.2.1), which FCS
can use when opening files. The runtime routines that analyze and parse command lines for your
calling program are described in Section (j.2.3.

6-11

6.2.1

E).2.2

Command Line Processing

Using CSI requ.ires that the CSI control block offsets and hit values he defined and t.hat a cont.rol
block be allocated within the program. The macro described in the following section accomplishes
these requisite actions.

CSI$-Define CSI Control Block Offsets and Bit Values Macro
Following is the only initialization coding required for CSI at assembly time:

CSI$

. EVEN
CSIBLK: .BLKB C.SIZE

iDEFINES CSI CONTROL BLOCK OFFSETS
iAND BIT VALUES LOCALLY

iWORD ALIGNS CSI CONTROL BLOCK
iNAMES CSI CONTROL BLOCK AND
iALLOCATES REQUIRED STORAGE

The CSI$ macro does not generate any executable code. The CSI control block resulting from the
.BLKB directive allows communication between CSI and the calling program. The symbol C.SIZE
specifies the length of the control block. C.SIZE is defined during the expansion of the CSI$ macro.
Expanding this macro also causes a local definition of the symbolic offsets and bit values within
the CSI control block.

You can cause the control block offsets to be defined globally within the current module. This is
done by specifying DEF$G as an argument in the CSI$ initialization macro call, as follows:

CSI$ DEF$G

CSI$ Macro Control Block Offset and Bit Value Definitions
The CSI$ macro locally defines the symbolic offsets and bit values shown in Table 6-2 within the
CSI control block.

Table 6-2 CSI$ Offsets and Bit Values

Symbolic
Offset
Name

C.TVPR

C.STAT

6-12

Description

Command string request type

This byte field indicates which type of file specification is being requested. Depending on whether
an input or output file specification is being requested (see the io parameter in the CSI$2 macro cal
described in Section 6.2.3.2), the corresponding bit in this byte Is set. The bit definitions for this bytE
are as follows:

CS.lNP-lndicates that an input file specification is being requested.

CS.OUT-Indicates that an output file specification is being requested.

Command string request status

This byte field reflects the status of the current command line request. The bits in this field are
initialized according to the following bit definitions:

CS.EQU-Indicates that an equal sign (=) has been detected in the current command line,
signifying that the command line contains both output and input file specifications. Once CS.EQU i~
set, CSI1 and CSI2 processing preserves the value of CS.EQU.

Command Line Processing

Table 6-2 (C~()nt.) CSI$ Offsets and Bit 'Values

Symbolic
Offset
Name IOescrlption
-----------, --

C.CMLD

C.DSDS

CS.NMF-Indicates that the curmnt file specification contains a filename string. Accordingly, control
block offset locations C.FllD+2 Elnd C.FllD (see the entry for C.FllD) are initialized with the
address and the length (in bytes}, respectively, of the command line segment that contains the
filename string. If no filename string is present, this bit is not set, and the filename string descriptors
in the control block are cleared.

CS.Dlf-lndicates that the current file specification contains a directory string. Thus, control block
offset locations C.DIRD+2 and C.DIRD (see the description following for C.DIRD) are initialized with
the address and the length (in bytes), respectively, of the command line segment that contains the
directory string. If no directory string is present, this bit is not set. In this case, any residual nonzero
"alues In the directory string des(:riptor cells that pertain to a previous command string request of
fJimilar type are used by default (lsee the description of C.TYPR). Thus, FCS uses the last directory
fJtring encountered in a file specification.

C::S.DVF-Indicates that the current file specification contains a device name string. Similarly, control
block offset locations C.DEVD+2 and C.DEVD (see the description of C.DEVD) are initialized with
the address and the length (in bytes), respectively, of the device name string. If no device name
!Itring is present, this bit is not selt. like CS.DIF (see the previous description of CS.DIF), any
residual nonzero values in the device name descriptor cells that pertain to a previous command
string request of similar type are used by default. Thus, the last device name string encountered in
el file specification is used.

(:S.WLD--Indicates that the currEmt file specification contains an asterisk (.), which signals the
presence of a wildcard specificatic)n.

CS.MOR-Indicates that the currEmt file specification is terminated by a comma (,), which indicates
that more file specifications are tOI follow. If this bit is not set, it signifies that the end of the input or
CIUtPUt file specification has been reached.

Command line descriptor

This 2-word field is initialized with the length (in bytes) and the address, respectively, of the
compressed command line. In other words, the values returned to these cells are the CSI output
sifter it scans a file specification and removes all nonsignificant characters from the string (that is,
nulls, unquoted blanks and tabs, nnd RUBOUTs).

GSI uses the values contained in these cells as the descriptors of the compressed command line to
be parsed (see CSI$2 macro call in Section 6.2.3.2).

[.ata-set descriptor pointer

lhis pointer defines the address of the 6-word data-set descriptor in the CSI control block. This
structure is functionally identical tC) the manually created data-set descriptor detailed in Chapter 2.

'tau can use this symbol to initiali:i~e offset location F.DSPT in the FOB associated with the file to be
processed. Thus, FCS is able to retrieve the American Standard Code for Information Interchange
(ASCII) information from this structure that it needs to open files.

Assembly-time initialization of F.DSPT in the associated FOB may be accomplished as follows:

FDOP$A 1,CSIBLK+C.DSDS

In this example, CSIBlK is the address of the CSI control block and C.DSDS represents the
beginning address of the descriptor strings in the CSI control block (see the following entries for
o'ffset names) identifying the requi:site ASCII file name information.

6-13

Command Line Processing

Table 6-2 (Cont.) CSI$ Offsets and Bit Values

Symbolic
Offset
Name

C.DEVD

C.DIRD

C.FILD

C.SWAD

C.MKW1

C.MKW2

C.SIZE

6-14

Description

Runtime Initialization of F.DSPT in the associated FOB may also be accomplished by using the dspt
parameter of the FDOP$R macro call (see Chapter 2) or the generalized OPEN$x macro call (see
Chapter 3).

Device name string descriptor

This 2-word field contains the address (C.DEVD+2) and the length in bytes (C.DEVD) of the most
recent device name string (of those with the same request type) encountered in a file specification.
Note that the colon that follows the device name is not included in the device name string.

Directory string descriptor

This 2-word field contains the address (C.DtRD+2) and the length in bytes (C.DIRD) of the most
recent directory string (of those with the same request type) encountered in a file specification. Note
that the brackets are included as part of the directory string

Filename String Descriptor

This 2-word field contains the address (C.FILD+2) and the length in bytes (C.FILD) of the filename
string in the current file specification.

If an error condition is detected by the command syntax analyzer during the syntactical analysis of
a command line (see Section 6.2.3.1), a segment descriptor is returned to this field, defining the
address and the length of the command line segment in error.

Current switch table address

This word location contains the address of the switch descriptor table specified in the current CSt$2
macro call (see Section 6.2.3.2).

CSt mask word 1

This word indicates the particular switches present in the current file specification after each
invocation of the CSI$2 macro call. The switch mask for each of the defined switches encountered
in a file specification between delimiting commas is inserted into this location by a logical OR
operation. This word is reset with each call to CSt$2

The mask for a switch is specified in the CSI$SW macro call (see Section 6.2.4.1). When a switch
is encountered in a file specification for which a defined mask exists, the corresponding bits in
C.MKW1 are set. By testing C.MKW1, you can determine the particular combination of defined
switches present in the current file specification.

CSt mask word 2

This word provides you with an indication of switch polarity.

When a switch is present in a file specification and you do not negate that switch, the defined mas~
for that switch is inserted into C.MKW2 by a logical OR operation in the same manner as described
previously for C.MKW1. Conversely, when a switch is present in a file specifier and you do negate
that switch, the corresponding bits in C.MKW2 are cleared. Thus, you can check the polarity of
each switch that C.MKW1 indicates is present by examining the corresponding bits in C.MKW2.
This word is reset with each call to CSI$2

Control block size Indicator

6,,2.3

Command Line Processing

Table 6-2 (Cont.) CSI$ Offsets and Bit Values

Symbolic
Offset
Name [)escr Ipt Ion
----------- --

C.EXPS

This symbol, which is defined duri'ng the expansion of the CSI$ macro, represents the size In bytes
elf the CSI control block.

lIser task expansion buffer size

This symbol is the constant for your task's expansion buffer size (for logical name expansion). It Is
currently set to 4810•

CSI Runtime Macros
Three runtime macro calls in CSI invoke lroutines that perform the following functions:

CSI$1

CSI$2

Initializes the CSI control block, analyzes the command line (normally contained In the GCML
command line Input buffer), remOVE~S nonsignificant characters from the line, and checks the line
fOI' syntactic validity. This macro also Initializes certain cells in the CSI control block with the address
and the length, respectively, of the validated and compressed command line.

PEllrses a file specification In the va'iidated and compressed command line Into its component device
name, directory, and filename strin!~s, and processes any associated switches and accompanying
switch values. In addition, certain cells in. the CSI control block are Initialized with the appropriate
str'ing descriptors for subsequent w;e by FCS In opening the specified file.

6.2 .. 3.1 CSI$1-Command Syntax Analyzer

The CSI$l macro invokes a routine called the command syntax analyzer. This routine analyzes a
command linE~, which is normally read into the GCML command line input buffer, and checks it for
cotTect synta:,,:. In addition, it compresses the file specifications in the command line by removing
all nonsignific!ant characters (that is, null, RUB OUT, and unquoted tabs and blanks). Finally, the
command syntax analyzer initializes offset locations C.CMLD+2 and C.CMLD in the CSI control
block (see Sedion 6.2.2) with the address and the length (in bytes), respectively, of the validated
and compressed command line. Each file specification in the command line is then parsed into
its component device name, directory, and filename strings during each successive time the CSI$2
macro call is issued (see Section 6.2.3.2),

CSI$1 cSiblk,buff,len

Parameters

cslblk
Specifies the address of the CSI control block. If you do not specify this parameter, RO is assumed
to contain thE! address of the CSI control block.

buff
Specifies the address of a command line input buffer. This parameter initializes CSI control block
offset location C.CMLD+2, enabling CSI to retrieve the current command line from a command
line input buffer.

6-15

Command Line Processing

If you do not specify this parameter, you must manually initialize CSI control block offset location
C.CMLD+2 with the address of a command line input buffer before issuing the CSI$l macro call.
The following statement shows one way to manually initialize this location:

MOV GCLBLK+G.CMLO+2,CSIBLK+C.CMLO+2

len
Specifies the length of the command line input buffer. Similarly, this parameter initializes CSI
control block offset location C.CMLD, thus completing the 2-word descriptor that enables CSI to
retrieve the current command line from the input buffer.

As with the buff parameter described previously, if you do not specify this parameter, you must
manually initialize CSI control block offset location C.CMLD with the length of the command
line input buffer before issuing the CSI$l macro call. The following statement shows one way to
manually initialize this location:

MOV GCLBLK+G.CMLO,CSIBLK+C.CMLD

The combination of the buff and len parameters described previously enables CSI to analyze the
current command line. Following the analysis of the command line, CSI updates offset locat.ion
C.CMLD with the length of the validated and compressed command line.

If a syntactical error is detected during the validation of the command line, the Carry bit in the
Processor Status Word (PSW) is set, and offset locations C.FILD+2 and C.FILD in the CSI control
block (see Section 6.2.2) are set to values that define the address and the length, respectively, of
the command line segment in error.

Examples of how the CSI$l macro call may be used in a program follow.

Examples

CSI$l tCSIBLK,tBUFF,tLEN

Shows symbols that represent the address and the length of a command line to be analyzed (not
necessarily the line contained in the GCML command line input buffer).

CSI$l RO, GCLBLK+G.CMLO+2, GCLBLK+G.CMLO

Assumes that RO has been preset with the address of the CSI control block; the next two
parameters are direct references to the command line descriptor words in the GCML control
block. .

CSI$l tCSIBLK

Assumes that the required descriptor values are already present in offset locations C.CMLD+2 am
C.CMLD of the control block (CSIBLK) as the result of prior action.

6.2.3.2 CSI$2-Command Semantic Parser Macro

The CSI$2 macro invokes the command semantic parser. This routine uses the values in CSI
control block offset locations C.CMLD+2 and C.CMLD as the address and the length, respectively,
of the command line to be parsed. The routine then parses the referenced line into its component
device name, directory, and filename strings. The equal sign in the command line indicates that
the string that follows is an input file specification. In addition, 2-word descriptors for these
strings are stored in a 6-word data-set descriptor in the CSI control block, beginning at offset
location C.DSDS (see Section 6.2.2). This field is functionally equivalent to the data-set descriptor
created manually in your program (see Chapter 2).

6-16

Command Line Processing

The parser also decodes any switches and associat.ed switch values present in a file specification,
provided that the address of the appropriate switch descriptor table has been specified in the CSI$2
macro call (sEle the following text). The CSI switch definition macro calls are described in detail in
Section 6.2.4.

CSI$2 csiblk.~/o,swtab

Parameters

cslblk
Specifies the address of the CSI control block. If you do not specify this parameter, RO is assumed
to contain thEl address of the CSI control block.

10
Specifies a sYJmbol that identifies the type of file specification to be parsed. You may specify either
of the following two symbolic arguments in this parameter field:

INPUT

OUTPUT

The next input file specification in the command line is to be parsed.

The next output file specification in the command line is to be parsed.

You must initialize offset location C.TYPR in the CSI control block (see Section 6.2.2), either
manually or through the CSI$2 macro call, with the type of file specification being requested. If
arguments other than the symbolic argum.ents defined previously are specified in the CSI$2 macro
call, an .ERROR directive is generated during assembly that causes the error message "Incorrect
request to .CSI2" to be printed in the assE~mbly listing. This diagnostic message alerts you to the
presence of an invalid io parameter in the CSI$2 macro call.

swtab
Specifies the ~lddress of the associated switch descriptor table. You specify this optional parameter
only if you suspect that the file specification contains a switch to be decoded. For you to specify
this paramete'r, the program must already contain a switch descriptor table, which you created
with the CSI$SW macro (see Section 6.2.4:.1). In addition, if the switch to be decoded has any
associated switch values, the program mUl~t already contain an associated switch value descriptor
table, which you create with the CSI$SV rJrlacro caIl (see Section 6.2.4.2).

This parametElr initializes offset location C.SWAD in the CSI control block (see Section 6.2.2). If
you do not spElcify this parameter, FCS uSles any residual nonzero value in this cell by default as
the switch descriptor table address.

You can also irutiaHze offset location C.SWW manually prior to issuing the CSI$2 macro call, as
shown in the foIlowing statement:

MOV 'SWTAB,CSIBLK+C.SWAD

SWTAB is the symbolic address of the associated switch descriptor table. (The switch table must
be aligned on an even address.)

If an error condition occurs during the parsing of the file specification, the Carry bit in the PSW is
set, and control is returned to the calling program. The possible error conditions that may occur
during command line parsing include the following:

• The reque~Jt type is invalid; that is, offset location C.TYPR in the CSI control block (see
Section 6.2.2) is incorrectly initialized.

•

•

The file specification contains a switch, but the address of the switch descriptor table is
not specified in the CSI$2 macro call, or the switch descriptor table does not contain a
corresponding entry for the switch.

The file specification contains an invalid switch value .

6-17

Ei.2,,4

Command Line Processing

• The number of values accompanying a given switch in the file specification is great.er than the
number of corresponding entries in the switch value descriptor table for decoding those values.

• The file specification contains a negative switch, but the corresponding entry in the switch
descriptor table prevents you from negating the switch (see the nflag parameter of the CSI$SW
macro call in Section 6.2.4.1).

Examples of how the CSI$2 macro may be used in a prowam follow.

Examples

CSI$2 iCSIBLK,INPUT,iSWTBL

Shows a request to parse an input file specification, which may include an associated switch.

CSI$2 RO,OUTPUT,iSWTBL

Assumes that RO presently contains the address of the CSI control block and parses an output file
specification, which also may include a switch.

CSI$2 iCSIBLK,INPUT

Requests to parse an input file specification and to disallow any accompanying switches.

CSI Switch Definition Macros
The following macro calls create the requisite switch descriptor tables in your program for
processing switches that appear in a file specification:

CSI$SW

CSI$SV

Creates an entry in the switch descriptor table for a particular switch that you expect to encounter h
a file specification.

Creates a matching entry In the switch value descriptor table for the switch defined through the
CSI$SW macro.

CSI$ND Terminates a switch descriptor table or a switch value descriptor table created through the CSI$SW
or the CSI$SV macro call, respectively.

These macro calls are described in the following sections.

6.2.4.1 CSI$SW-Create Switch Descriptor Table Entry Macro

You must define a matching entry in the switch descriptor table for each switch that you expect
your task to encounter in a file specification. If no switch descriptor table is specified or no
corresponding entry exists, the presence of a switch in the command line causes an error. When
your task issues a CSI$2 macro (see Section 6.2.3.2) and the address of a switch descriptor table i
specified, the following processing occurs:

1 For each switch encountered in a file specification, CSI searches the switch descriptor table fo
a matching entry. If either the switch descriptor table address is not specified, or a matching
switch entry is not found in the table, that switch is considered invalid. As a result, the Carr:

. bit in the PSW is set, any remaining switches in the file specification are bypassed, and contr4
is returned to the calling program.

2 If a matching entry is found in the switch descriptor table, mask word 1 in the CSI control
block is set according to the defined mask for that switch (see C.MKW1, Section 6.2.2).

6-18

Command Line Processing

3 The negaltion status of the switch is determined. If you do not negate the switch, the
corresponding bits in mask word 2 (C.MKW2) in the CSI control block are set according to
the defin~ed mask for that switch. If you negate the switch but negation is not allowed, the
switch is considered invalid. In this <:ase, the error sequence described in step 1 would occur.
However, if you negate the switch, and negation is allowed, the corresponding bits in C.MKW2
are cleared.

The negation flag for a switch is established through the nflag parameter of the CSI$SW macro
(described in the following text).

4 If the optional mask word address is not present in the corresponding switch descriptor table
entry, thut is, if you did not specify the mkw parameter in the associated CSI$SW macro,
switch processing continues with step 7. If, however, you did specify the optional mask word
address, Il'witch processing continues with step 5.

5 If SET hus been specified as the clealr/set flag in the corresponding switch descriptor table
entry, and the switch is not negated, then the corresponding bits in the optional mask word
are set a(!cording to the defined mask for that switch. If, however, you negate the switch, the
corresponding bits in the optional ma:sk word are cleared.

You specify the clear/set flag as the csflg parameter in the CSI$SW macro.

6 If CLEAH has been specified as the dear/set flag in the corresponding switch descriptor table
entry, and the switch is not negated, the corresponding bits in the optional mask word are
cleared. Conversely, if you negate the switch, the corresponding bits in the optional mask word
are set.

7 If a switch value accompanies a swit<:h in a file specification, File Control Services (FCS)
uses the associated switch value desclriptor table created through the CSI$SV macro call (see
Section 6.2.4.2) to decode the value. 1rhe switch value descriptor table must have at least as
many entries as there are such values accompanying the switch in the file specification. If the
switch value descriptor table is incomplete, or an invalid switch value is encountered, or the
address of the switch value descriptor table is not present in the associated switch descriptor
table, the switch is invalid, and the elTor sequence described in step 1 would occur.

You specify the address of the switch value descriptor table as the vtab parameter in the
CSI$SW 1rnacro call.

label: CSI$S'N SIN, mk, mkw, csflg, nflg, vtab,compflg

Parameters

label
Specifies an optional symbol that names the resulting switch descriptor table entry and defines
its address. 1lb establish the address of a switch descriptor table, the first CSI$SW macro call
issued in the program must include a label. This label allows the table to be referenced by other
instructions in the program.

sw
Specifies the iswitch name to be stored as an entry in the switch descriptor table. This name may
comprise any number of alphabetic characters. CSI compares the name entered on the command
line with this switch name as entered in t.he switch descriptor table. This is a required parameter;
if you omit it, the assembler generates an .ERROR directive during assembly that causes the error
message ''Missing switch name" to be printed in the assembly listing.

6-19

Command Line Processing

mk
Specifies a mask that you define for the switch specified through the sw parameter. 1b enable CSI
to indicate the presence of a given switch in a file specification, you must define a mask value for
the switch, as follows:

ASMSK = 1
NUMSK = 2

VWMSK = 40000
XYMSK = 100000

The octal value that you assign to each symbol defines a unique bit configuration. This
configuration is to be set in CSI mask word 1 (C.MKWl) of the control block when a defined
switch is encountered in a file specification.

When you specify the appropriate symbol as the mk parameter in the CSI$SW macro call,
the corresponding mask value is stored in the resulting switch descriptor table entry. Thus, a
mechanism is established through which you can determine the particular combination of switches
present in a file specification. For every matching entry found in the switch descriptor table, the
corresponding bits are set in C.MKWI.

mkw
Specifies the address in your program storage of a mask word that CSI changes each time it
changes C.MKWl. CSI stores the same value into this mask word that it stores into C.MKWl.
This mask word can be manipulated, that is, changed or tested by the SET and CLEAR functions
or by instructions in your program. You set the SET and CLEAR functions by using the csflg
parameter.

Such an optional word may be reserved through a statement logically equivalent to the following:

MASKX: . WORD 0

csflg
Specifies a symbolic argument that specifies the clear/set flag for a given switch. This parameter
is optional; if you do not specify it, SET is assumed. You may specify either one of two symbolic
arguments for this parameter, as follows:

CLEAR Indicates that the bits in the optional mask word corresponding to the switch mask are to be cleared,
provided that you did not negate the switch. (If you negate the switch, the bits are set.)

SET Indicates, conversely, that the bits in the optional mask word in your task corresponding to the switch
mask are to be set, provided that you did not negate the switch. (If you negate the switch, the bits are
cleared.)

If you specify other than SET or CLEAR, the assembler generates a .ERROR directive that causes
the error message "Invalid set/clear spec" to be printed in the assembly listing.

nflg
Specifies an optional negation flag for the switch. If you specify this parameter, it indicates that
the switch can be negated, for example, /-LI or !NOLI.

If you specify this parameter as other than NEG, the assembler generates an .ERROR directive
that causes the error message "Invalid negate spec" to be printed in the assembly listing. If you d(
not specify this parameter, the assumption is that switch negation is not allowed.

6-20

Command Line Processing

vtab
Specifies the address of the switch value descriptor table associated with this switch. If you specify
this optional parameter, it allows CSI to decode any switch values accompanying the switch,
provided that you have defined an associated switch value descriptor table entry for that switch.
The CSI$SVrnacro defines the switch value descriptor table. (If you specify the vtab parameter in
the CSI$SV Tnacro, you need not specify it in the CSI$SW macro call.)

compflg
Defines the nlethod CSI uses to compare the switch name entered on the command line with the
value entered! in the switch descriptor table by the sw parameter. Either LONG or EXACT may be
specified. The default value is entered if you do not specify a value.

Following is a desc~ription of each value:

Default

LONG

EXACT

If yC)U do not code the parameter, only the first two characters of the switch name (specified by sw)
are entered into the switch descriptclr table and only these two characters are compared when the
command line is parsed. Additional characters in the command line switch name are Ignored.

All characters specified by the sw pa.rameter are entered in the switch descriptor table. During compare
processing, the first characters of thc~ switch name on the command line must exactly match the value
for 1the switch in the switch descriptolr table. Additional characters in the command line switch name are
ignc)red.

All characters specified by the sw parameter are entered in the switch descriptor table. During compare
processing, all the characters of the switch name on the command line must exactly match the value In
the switch descriptor table. Extra chiaracters in either the command line or the table are treated as an
ermr.

The switch ta.ble Blust be aligned on an even address. The format of the switch descriptor table
entry created by the CSI$SW macro is shown in Figure 6-2.

The switch name characters precede the control information in the table. The sign bit of each word
indicates whether the following word contains more switch name characters. A sign bit set to 1
indicates that the next word contains more switch name characters; whereas, a sign bit set to 0
indicates that. this is the last word containing switch name characters.

If the number of characters in the switch name is odd, the high-order byte of the last word contains
zeros, and CSI ignores it.

The sign bit of the first byte of the last word of the switch name is the EXACT match bit. If this
bit is set to It additional characters in the switch name on the command line are treated as an
error by CSI; if this bit is set to 0, additional characters are ignored.

The switch nBlme characters are followed 1by entry control information consisting of the CSI mask
word, the address of the area task of a mask word corresponding to the CSI mask word, and the
address of the switch value table.

A bit setting of 1 in the low-order bit of the address of your mask word indicates the CLEAR
function; a bit. setting of 0 indicates the S]~T function.

The last word of the switch descriptor tablle entry contains the address of the switch value table. A
bit setting of 1 in the low-order bit of this word indicates that the switch may be negated.

6-21

Command Line Processing

Figure 6-2 Format of Switch Descriptor Table Entry

15

Example

o

char2 char1

char4 char3

lastchar EX nextlast

Mask Word for this Switch

Address of Optional User Mask Word

Address of Switch Value Descriptor Table

ASSWT: CSI$SW AS,ASMSK,MASKX,SET"ASVTBL

CSI$SW NU,NUMSK,MASKX,CLEAR,NEG,NUVTBL

CSI$ND iEND OF SWITCH DESCRIPTOR TABLE.

Shows a 2-word entry switch descriptor table created through successive CSI$SW macro calls.

The first parameter in the first statement creates an entry in the switch descriptor table for the IN.
switch. The second parameter is an equated symbol that defines the switch mask, and the third
parameter (MASKX) is the address of an optional mask word in your task (see the description of
the mkw parameter). The fourth parameter indicates that the bits in MASKX that correspond to
the switch mask are to be set. The fifth parameter (the negation flag) is null. The last parameter
is the address of the associated switch value descriptor table.

The second statement creates a switch descriptor table entry for the INU switch. In contrast to th
first statement, the fourth parameter (CLEAR) indicates that the bits in the optional mask word
(MASKX) in your task that correspond to the switch mask are to be cleared. The fifth parameter
(NEG) allows the switch to be negated, and the last parameter is the address of the switch value
descriptor table associated with this switch.

Note that the switch descriptor table entry macros are terminated with the CSI$ND macro (see
Section 6.2.4.3).

6-22

Command Line Processing

6.~~.4.2 CSI$SV-Create Switch Value Descriptor Table Entry Macro

CSI$SV defines a switch value descriptor table entry. For every switch value that you expect your
task to find with a given switch in a file specification, a corresponding switch value descriptor
table entry Dlust be defined in your program so that the switch value can be decoded. This macro
creates a 2-~rord entry in the switch value descriptor table. The format of this table is shown in
Figure 6-3.

CSI$SV tYPj9,adr,len

Parameters

type
Specifies the conversion type for the switch value. Anyone of four symbolic values may be
specified. The possible conversion types include the following:

ASCII Indicates that the switch value is to be treated as an ASCII string. If you quote the string, the
quotes are returned In the butt"er as part of the string. If a quote appears anywhere In the switch
value, all characters following it, up to the end of the line or another quote, are included in the
string.

NUMERIC

OCTAL

DECIMAL

Indicates a numeric switch vahue is to be converted to binary, using octal as a default conversion
radix.

Indicates a numeric switch value is to be converted to binary, using octal as a default conversion
radix.

Indicates a numeric switch value is to be converted to binary, using decimal as a default
conversion radix.

If any param1eter is specified other than these, a .ERROR directive is generated during assembly
that causes the error message "Invalid conversion type" to be printed in the assembly listing. If
you do not specify any of the previously die scribed parameters, ASCII is assumed by default.

adr
Specifies the ,addrE!ss of your program location that is to receive the resultant switch value at the
conclusion of switch processing. This parameter is required; if not specified, a .ERROR directive is
generated dwring assembly that causes the error message "Value address missing" to be printed in
the assembly listing.

len
Specifies a numeric value that defines the length (in bytes) of the area that is to receive the switch
value that refJults from switch processing. This parameter is also required; if not specified, a
.ERROR dire(!tive is generated during assembly that causes the error message "Length Missing" to
be printed in the assembly listing.

The format of a switch value descriptor table entry created by a CSI$SV macro is shown in
Figure 6-3.

The low-order byte of the first word in the switch value descriptor table indicates whether the
conversion type is ASCII or numeric. ThE! low-order byte of this word is set to 1 if ASCII is
specified; it iSI set to 2 if NUMERIC or OCTAL is specified; and it is set to 3 if DECIMAL is

. specified. The high-order byte of this word indicates the maximum allowable length (in bytes) of
the switch value.

6-23

Command Line Processing

If the conversion type is ASCII, the len parameter reflects the maximum number of ASCII
characters that can be deposited in the area defined through the adr parameter. The high-order
byte of the first word in the switch value table then reflects the maximum length of the ASCII
string. If the number of characters in the switch value exceeds the specified length, the extra
characters are ignored. If, however, the actual number of ASCII characters present in the switch
value falls short of the specified length, the remaining portion of the area receiving the resultant
value is padded with nulls.

If the conversion type is numeric, the length of the resulting binary value is either 2 bytes or 4
bytes. If the size field is less than 4 bytes, 2 bytes are stored. If the size field is greater than 4
bytes, 4 bytes are stored. You must align the buffer on a word boundary.

If you specify the default conversion type for a switch value on numeric conversions, you can
override it with a number sign (#) or a period (.). Preceding a numeric value with a number sign
(for example, #10) forces the conversion type to octal; a numeric value followed by a period (for
example, 10.) forces the conversion type to decimal. Note also that you may precede a numeric
switch value with a plus sign (+) or a minus sign (-). The plus sign is the default assumption.
If you specify an explicit octal switch value by using the number sign (#), the arithmetic sign
indicator (+ or -), if included, must precede the number sign (for example, -#10).

If the conversion type is decimal, the switch value is evaluated as a single number; an overflow
into the high-order bit (bit 15) causes an error condition. However, if the conversion type is octal, ~
full 16-bit value may be specified.

Figure 6-3 Format of Switch Value Descriptor Table Entry

16 0
r-------------------------~~--------------------~

Switch Value Length Conversion Type

Address of Location Receiving Switch Result

Examples of how the CSI$SV macro call may appear in a program follow.

Examples

ASVTBL: CSI$SV ASCII,ASVAL,3

CSI$SV ASCII,ASVAL+4,3

CSI$ND ;END OF SWITCH VALUE TABLE

NUVTBL: CSI$SV OCTAL, NUVAL,2

CSI$SV DECIMAL, NUVAL+2,2
CSI$ND ;END OF SWITCH VALUE TABLE

In these examples, the first parameter in the CSI$SV macro defines the conversion type. The nex
two parameters, in all cases, define the address and the length of the program location that is to
receive the resultant switch value.

6-24

Command Line Processing

You may reserve the required storage for the first switch value table ASVTBL: as follows:

A~;VAL: • BLKW 4 ;ASCII VALUE STORAGE

You can similarly reserve the required storage for the second switch value table NUVAL: through
the following statement:

NtJVAL: • BLKW 2 ;NUMERIC VALUE STORAGE

Note again that switch value tables are t«~nninated with the CSI$ND macro call.

6.2,.4.3 CSI$ND-DeflneEnd of Descriptor Table

CSI$ND terminates descriptor tables wit]~ a I-word entry. Switch descriptor tables and switch
value descriptor tables must be terminatE~d with a I-word end-of-table entry. You can create this
word, which (:ontains 0, with the CSI$ND macro call.

This macro cull takes no arguments. The examples in 6.2.4.1 and 6.2.4.2 illustrate the use of this
macro call.

6-25

7 The Tab~le-Driven Parser (TPARS)

This chapter describes the table-driven parser (TPARS), which parses command lines. TPARS
permits you to define and parse command lines in a unique syntax by using TPARS-supplied
macros, built-in variables, and your own cOode.

·TPARS parsel3 cOommand lines accOording to syntax and semantics Oor meaning. The cOommand line
is made up of syntax elements. TPARS evaluates each syntax element Oof the command line based
on a predefin«~d arrangement of thOose elernents. TPARS parses command lines by referencing a
table that you define. You can build a state table, which contains states and transitions, by using
the TPARS S1rATE$ and TRAN$ macros. A state delimits and represents a single syntax element
on a commanclline. A transition is a statement that defines the processing required for parsing a
given syntax c~lement and contains instru(~tions for further parsing at another state. TPARS uses
subexpressions to resolve complex syntax elements. On the semantic level, TPARS also resolves
the semantics or meaning of each element based on definitions supplied within action routines
of your program. 'rhese action routines u~!e TPARS macrOoS, built-in variables, and your code to
permit you to define and parse command Jines.

The parser routine that you write is included in yOour programs that parse command lines.
TPARS is invoked from within an executing prOogram by means of a CALL instruction. The
CALL invokeEI the parser routine as well as the TPARS prOocessor. For further information on
the interrelationships amOong the calling prOogram, the user-defined parser routine, and the TPARS
prOoceSSOor, refer to Section 7.5.

7.1 Coding TPARS Source Programs

7.1.1

This sectiOon describes the three TPARS macrOoS required to initialize and define the state table.
Also included in this sectiOon is informatiOon describing action routines, TPARS built-in variables,
and TPARS subexpressions.

TPARS MclCrOs-ISTAT$, STA1"E$, and TRAN$
TPARS provides macrOoS that enable yOoU to write a state table for parsing a unique command line.
The ISTAT$ lnacrOo initializes a state table, the STATE$ macrOo defines a state (a particular syntax
element) in your state table, and the TRA1~$ macrOo defines the conditions for transition to another
state.

7.1:1.1 ISTAT$ Macro-Iniitlalize the State Table
ISTAT$ initializes the state table. The state table is built using two macros: STATE$ and TRAN$,
which are deseribed in sections 7.1.1.2 and 7.1.1.3, respectively. This state table is built into a
program section. Keyword strings that yOoU define fOor parsing command lines are also accumulated
in a prOogram EJectiOon. A third program section is a]sOo prOovided for a keyword POointer table used to
enter the list of keyword strings. The ISTAT$ macrOo initializes these program sections.

A blank STAT:E$ macrOo must fOollow the TPARS state table.

ISTAT$ statetable,keytable,$DEBUG

7-1

The Table-Driven Parser (TPARS)

Parameters

statetable
Specifies the label that you assign to the state table. TPARS recognizes this label as the start of
the state table.

key table
Specifies the label that you assign to the keyword table. TPARS recognizes this label as the start
of the keyword table.

$DEBUG
Directs the assembler to list addresses of the state transition table in the assembly listing. These
addresses are useful for tracing TPARS operation, using a debug routine that you supply (see
Section 7.1.2.4). When you do not include $DEBUG, state transition table addresses are not listed.

The state table is built in a program section named $STATE, the keyword strings are accumulated
in a program section named $KSTR, and the keyword pointer table is built in a program section
named $KTAB.

If you define the symbol $RONLY, each of these program sections is generated as read-only. You
generate a read-only state table by specifying the symbol $RONLY before the ISTAT$ macro in the
following form:

$RONLY = 1
ISTAT$ statetable,keytable,$DEBUG

STATE$

7.1.1.2 S'TATE$ Macro-Defining a Syntax Element
STATE$ declares the beginning of a state. This macro delimits one command line syntax element
from another. A blank STATE$ macro must follow the TPARS state table.

STATE$ {label]

Parameter

label
Specifies an alphanumeric symbol that defines the address of the state.

Each state defined by a STATE$ macro consists of any number of transitions defined by TRAN$
macros. The TRAN$ macros parse each syntax element.

7.1.1.3 TRAN$ Macro-Defining a Transition
The TRAN$ macro enables you to match each syntax element in a command line to a given type,
to supply a symbolic address to the next TRAN$ macro, to supply an address of an action routine
that might be required to process the syntax element further and to supply a mask that you can
use as a flag in the parsing process.

TRANS type { r.~~;rT] }f,aC/iOn]l.maskll.maskaddr]

7-2

Parameters

type

The Table-Driven Parser (TPARS)

Specifies the type of command line syntax: element being parsed. You code the type parameter by
using one of the following types of command line elements:

Element Type

$ANY

$ALPHA

$OIOIT

$LAMOA

$NUMBR

$ONUMB

$STRNO

$RAOSO

$BLANK

$EOS

char

"keyword"

Uabel

[label]
[$EXIT]

Description

Matches any single character.

Matches any single alphabetic character (A-Z).

Matches any single digit (0-9).

Matches an empty strin'J. This transition Is always successful. LAMDA transitions are
useful for getting action Iroutines called without passing any of the input string.

Matches any number. A, number consists of a string of digits; a concluding period Is
optional. Numbers not f4)IIowed by a period are interpreted as octal. Numbers followed
by a period are interpreted as decimal and the decimal point is included in the matching
string. A number is terminated by any nonnumeric character. Values through 2**32-1 are
converted to 32-bit unsiglned integers.

Matches a decimal number. The string of digits is interpreted as decimal. With the
exception that the matched string does not include the trailing decimal point, TPARS
treats $DNUMB the same way it treats $NUMBR.

Matches any alphanumeric character string. The string will not be null.

Matches any legal Radix-SO string, that is, any string containing alphanumeric characters,
or the period (.), or dollar sign ($) characters. If you require Radix-50 conversion, the
action routine in your code must convert this number.

Matches a string of blan.~ and/or tab characters.

Indicates the position of the end of an input string. Once TPARS has reached the end
of the input string, $EOS: is the equivalent of that position as many times as $EOS is
encountered in the state table.

Matches a single characjter in the syntax element whose American Standard Code for
Information Interchange (ASCII) code corresponds to the value of char. The value of char
must be a 7-bit ASCII code; that is, the value must be in the range 0-1778. Specify a single
quote (') before char, su,ch as 'A or 'X.

Matches a specified keyword. Keywords can be any length, can contain only alphanumeric
characters, must be in uppercase, and are terminated by the first nonalphanumerlc
character encountered in parsing the keyword. The maximum number of keywords allowed
in a state table is 64.

Matches the string proce:ssed by passing control to and executing the state table section
that starts with a STATE~) macro that has the label parameter specified here as lIabel.
In effect, this type of parameter passes control to a STATE$ macro subroutine or
subexpression. For inforrnation on TPARS subexpresslons, see Section 7.1.3.

Specifies the label associated with a STATE$ macro to which execution control will pass after the
code for this ,]~RAN$ transition is executed. If the label parameter is omitted, execution control
passes on to the next sequential STATE$ rnacro. A null label parameter is allowed only for the last
transition in at state; a TRAN$ macro with. a null label field must follow a TRAN$ macro.

Specifying $EXIT in the label field terminates TPARS execution and returns control to the calling
program. $EX1T also terminates a TPARS subexpression.

7-3

The Table-Driven Parser (TPARS)

action
Specifies the label of an action routine that you include in the parser routine of your code. This
routine can include TPARS built-in variables, described in Section 7.1.2.1.

mask
Specifies a mask word to be stored in a location pointed to by the mask-word address whenever
the TRAN$ macro is executed. If you specify mask, you must specify the maskaddr parameter as
well (see the following parameter). This mask word is ORed into maskaddr when the transition is
taken (after the action routine is caned).

maskaddr
Sp~ifies the label for an address into which TPARS stores the value specified by the mask
parameter. You must specify the maskaddr parameter if you specify mask.

The mask and maskaddr parameters provide a convenient means for flagging the execution of a
particular transition.

Action Routines and Built-In Variables
Action routines process command line elements at the semantic level. That is, a given syntax
element can have more than one meaning. Action routines determine and validate the meaning of
the syntax elements.

You write action routines in your parsing program to perform unique functions related to your
program's requirements.

7.1.2.1 TPARS Built-In Variables
TPARS provides the following built-in variables for action routines:

.PSTCN

.PSTPT

.PNUMH

.PNUMB

. PCHAR

.PFLAG

.TPDEB

R3

R4

Returns the character count of the portion of the input string matched by this transition. This
character count is valid for all syntax types recognized by TPARS, including subexpressions.

Returns the address of the portion of the input string matched by this transition. This address is
valid for all syntactical types recognized by TPARS, including subexpressions.

Returns the high-order binary value of the number returned by a $NUMBR or $DNUMB syntax type
specification.

Returns the low-order binary value of the number returned by a $NUMBR or $DNUMB syntax type
specification.

Returns the character found by the $ANY, $ALPHA, $DIGIT, or char syntax type specifications .

Returns the value of the flag word passed to TPARS by register 1 (R1). Action routines can modify
this word to change options dynamically. .

Contains the entry address of the optional debug routine that you write.

Returns the byte count of the remainder of the input string. When the action routine is called, the
string does not include the characters matched by the current transition.

Returns the address of the remainder of the input string. When the action routine is called, the strin
does not include the characters matched by the current transition.

7.1.2.2 Calling Action Routines
Action routines are called by a JSR PC (jump to subroutine program counter) instruction. Action
routines can modify registers RO, Rl, and R2; all other registers must be preserved.

7-4

7.1.3

The Table-Driven Parser (TPARS)

7.1.2.3 Using Action Routines to Reject a Transition
Action routines can reject a transition by returning to CALL+4 rather than to CALL+2. That is,
the action routine performs the same fundion as an ADD #2,(SP) before returning to the caller.
This techniqu.e enables additional processing of syntax types and extending of the syntax types
beyond the set provided by TPARS.

When an action routine rejects a transition, that transition has no effect. TPARS continues to
attempt to mntch the remaining transitions in the state.

7.1.2.4 Optional Debug Boutlne for lAS Users
.A debug routine that you supply can be called by TPARS at each state transition, enabling the
TPARS operation to be traced. For example, the routine can be written to .display the contents
of R5 each time the routine is called; R5 <:ontains the current transition table address. You can
monitor the T1PARS operation by comparing the addresses displayed in the TPARS assembly
listing, which shows the state transition table addresses.

If a debug routine that you supply is to bE! called by TPARS, your task must first specify the entry
point address for the debug routine in TPARS location .TPDEB, as follows:

MOV tDENTER, .TPDEB

Then, invoke 'fPARS with the .TPARD entry point (rather than with . TPARS). TPARS is invoked
as described in Section 7.4.

Upon entry to' the debug program, central processing unit (CPU) registers contain the following:

R3 Length of remainder of input string

R4 Address of remainder of input string

RS Current ~lddress of transition table

The debug routine :must save and restore all registers prior to returning to TPARS.

For addresses displayed by the debug routine to be useful, you must obtain an assembly listing
showing the addresses of the state transition tables. These addresses are listed by the assembler if
the optional $DEBUG parameter is provided in the ISTAT$ macro call (see Section 7.1.1.1).

TPARS Subexpressions
A TPARS subE~xpression is a series of statE!S and transitions analogous to a subroutine. In general,
such a series of states and transitions is uiSed more than once during the parsing process.

Subexpressions begin with a STATE$ maClro specifying the label of the subexpression. You follow
this macro by the states and transitions that comprise the body of the subexpression. 'Ib terminate
the subexpression, specify a TRAN$ macro with the $EXIT keyword specified in the label field.
The general form of a subexpression is shown in the example that follows.

In this examp]e, control is directed to the Bubexpression by a TRAN$ macro that specifies a !label
syntax element as the type parameter, as 1011ows: .

TR1\N$! ure, NEXT

·TPARS then directs control to the STATE$ macro with the label UIC, as follows:

7-5

The Table-Driven Parser (TPARS)

STATE$ Ule
TRAN$, [
STATE$
TRAN$ $NUMBR"SETGN

STATE$
TRAN$ <',>

STATE$
TRAN$ $NUMBR"SETPN

STATE$
TRAN$ '],$EXIT

When the User Identification Code (UIC) subexpression completes processing, control passes to th
state labeled NEXT.

·'.2 General Coding Considerations

~7 .2.1

7.2.2

This section contains information on how to arrange syntax types in a state table and how to direc
TPARS to ignore blanks and table characters in a command line, and it provides rules for enterin.
special characters (commas and angle brackets).

Suggested Arrangement of Syntax Types in a State Table
The transitions in a state might represent several syntax types; a portion of a string being scanne
often matches more than one syntax type. Therefore, the order in which you enter the types in
the state table is critical. Transitions are always scanned in the order in which they are entered,
and the first transition matching a string being scanned is the transition taken. Therefore, the
following order is recommended for states containing more than one syntax type:

char
keyword
$EOS
$ALPHA
$DIGIT
$BLANK
$NUMBR
$DNUMB
$STRNG
$RAD50
$ANY
$LAMDA

Placement of !label transitions in a state depends on the types and positions of other syntax: type!
in the state, as well as on the syntax types in the starting state of the subexpression.

Ignoring Blanks and Tabs in a Command Line
Bit Oof the low byte of register 1 (Rl) controls processing of blanks and tab characters. If this
bit is 1 when TPARS is invoked, blanks and tab characters are processed in the same way any
other ASCII character is processed; they are treated as syntax elements that require validation b
TPARS. If this bit is set to 0, blanks and tab characters are interpreted as delimiter characters;
they are ignored as syntax elements. In neither case does TPARS modify the command line ..

7-6

7.2.3

7.2.4

The Table-Driven Parser (TPARS)

When blanks are being ignored, the $BLANK syntax type never matches an element on the
command line.. Also, when this option is ilrl effect, values returned to the nabel syntax type by
.PSTCN or .PSTPT can contain blanks or tabs, even though none were requested. The examples
that follow show how TPARS parses the following string:

ABC DEF

The parsing might occur with and without the blank-suppress option.

In the following example, an extra state is required to parse the blank:

ST1~TE$

TR1\N$ $STRNG

ST1~TE$

TR1\N$ $ BLANK

STATE$
TR1\N$ $STRNG

When TPARS is directed to ignore blanks and tab characters, the same string can be parsed using
only two statel3, as follows:

ST1~TE$

TR1\N$

STATE$
TR1lli$

$STRNG

$STRNG

Entering Special Characters
In char syntax elements, MACRO-11 interprets commas (,), semicolons (;), and angle brackets
«» as special characters. The comma is interpreted as an argument separator and angle brackets
are used to enclose special characters in parentheses.

To include a comma or a semicolon in a char syntax element string, use angle brackets as follows:

TRAN$ <',>

Angle bracketl!! cannot be passed as string elements in macro arguments. If required in a "char"
expression, they must be expressed symbollically. For example:

LA = ,<
TRJW$ I,A

Recognition of Keywords
When TPARS encounters a transition table entry that specifies a keyword, it first scans from
the current point in the input string in search of a delimiter (nonalphanumeric) character. The
characters between the current input point and the next delimiter are then assumed to be a
possible keyword and are matched against the entries in the keyword table. For this reason, the
following exanlple will not work as expectE~d:

STj!\TE$
TRjr.\N$ "NO", STATE1, SETNEG
TRjr.\N$ $LAMDA, , SETPOS

STATE$ STATE!
TRAN$ "AA", •••
TRAN$ "BB", •••

7-7

The Table-Driven Parser (TPARS)

When TPARS encounters the keyword NO, it. scans and attempts to mat.ch the string "NOAA" or
"NOBB". If exact matching is requested, neither the "NO" transition nor the "AA" transition will
match. In addition, if keyword matching is limited to two characters, the "NO" transition will
match but TPARS will skip past ''NOAA'' so that the "AA" transition can be taken. You can use th«
following example to achieve the desired operation:

STATE$
TRAN$!NONO,STATE1,SETNEG
TRAN$ $LAMDA"SETPOS

STATE$ STATE
TRAN$ "AA", ...
TRAN$ "BB", .•.

STATE$ NONO
TRAN$ 'N
STATE$
TRAN$ 'O,$EXIT

In this example, TPARS attempts to match the subexpression NONa to the ''NO'' prefix one
character at a time. This attempt bypasses the keyword scanning of TPARS, enabling the input
pointer to be left pointing at "AA" or "BB". If NONa fails, the input pointer will not be changed
and the scan can continue by looking for "AA" or "BB".

~7.3 Program Sections Generated by TPARS Macros
TPARS macros generate three program sections. Data for the STATE$ macro are stored in the
program section $STATE; whereas, data for the TRAN$ macro are stored in program sections
$KSTR and $KTAB. The program section $KTAB contains addresses for each of the entries of the
keyword syntax type. $KSTR contains the keyword entries separated by character code 3778.

Each state consists of its transition entries concatenated in the order in which you specify them.
The state label, if specified, is equated to the address of the first transition in the state. Each
transition consists of from one to six words, as follows:

Flags Type

Type Extension

Action Return Address

Mask Word

Mask-Word Address

Target State Label

The type byte of the first word can contain the following values:

7-8

The Table-Driven Parser (TPARS)

Type
Byte Value

$lAMDA 300

$NUMBR 302

$STRNG 304

$BlANK 306

$SUBXP 310 (Used in the IIabel type.)

$EOS 312

$DNUMB 314

$RAD50 316

$ANY 320

$AlPHA 322

$DIGIT 324

char ASCII code for the specified character

keyword 200+n (See the explanation that follows.)

The value of keyword is 200+n, where n hI an index into the keyword table. The keyword table is
an array of pointers to keyword strings, which are stored in the program section $KSTR. Keyword
strings in $KSTR are separated from each other by 3778.

Bits in the flags byte indicate whether paI'ameters for the TRAN$ macro are specified as follows:

Bit Meaning

o Type 19xtension is specified.

1 Action routine label is specified.

2 Targefi state label is specified.

3 Mask word is specified.

4 Mask-word address is specified.

7 Indicates last transition in the current state.

7.4 Invoking lrPARS
You control execution of TPARS by using the calling conventions and options described in this
section. You invoke TPARS from within an executing program by using the following instruction:

CAJLL • TP ARS

When a debug routine that you specify traces a TPARS operation (see Section 7.1.2.4), a special
entry point is called, as follows:

CAlLL • TPARD

When your task calls TPARS in this manner, TPARS calls the debug routine at each state
transition. If your task invokes TPARS by the .TPARS entry point, the debug routine entry
point address in .TPDEB is cleared and the debug routine is not called.

7-9

7.4.1

7.4.2

The Table-Driven Parser (TPARS)

Register Usage and Calling Conventions
When TPARS is invoked, registers in the calling program must contain the following information:

R 1 Options word

R2 Pointer to the keyword table

R3 Length of the string to be parsed

R4 Address of the string to be parsed

R5 Label of the starting state in the state table

On return from TPARS processing, registers contain the following information:

R3 length of the unscanned portion of the string

R4 Address of the unscanned portion of the string

The values of all other registers are preserved.

The Carry bit in the Processor Status Word (PSW) returns 0 for a successful parse; the Carry bit is
set when TPARS finds a syntax error.

For an example of a calling sequence for TPARS, refer to Section 7.6.1.

Using the Options Word
The low byte of the options word contains flag bits. The only flag bit defined is bit 0, which controle
processing of blanks. If bit 0 is set to 1, blanks are interpreted as syntax elements. If bit ° is set
to 0, blanks are ignored as syntax elements but are still processed as delimiters.

The high byte of the options word controls abbreviation of keywords. If the high byte is set to
0, keywords being parsed must exactly match their corresponding entries in the state table. If
the high byte is set to a number, keywords being parsed can be abbreviated to that number of
characters.

TPARS clears the Carry bit in the PSW when it completes processing successfully. This occurs
when a transition is made to $EXIT that is not within a subexpression.

If a syntax error occurs, TPARS sets the Carry bit in the PSW and terminates.

A syntax error occurs when there are no syntax elements in the current state that match the
portion of the string being scanned. Illegal type codes and errors in the state table can also cause
a syntax error.

TPARS processing requires that the addresses in the state table and the keyword tables be reliable
bad addresses might cause program termination.

The only syntax types that can match the end of the string are $EOS and $LAMDA.

7.5 How to Generate a Parser Program Using TPARS
Three processing steps generate a parser program using TPARS, as shown in Figure 7-1. The
source program must contain .MCALL statements for three macros: ISTAT$, STATE$, and TRAN~
These three .MCALL statements must precede the statements that comprise the state table and
action routines.

7·-10

The Table-Driven Parser (TPARS)

Assembling "the source module produces an object module composed of three program sections.
The assembly listing showing the code produced by the state table macros is not straightforward.
The binary output of the macros is delayed by one statement. Thus, if you enable the listing of
macro-generated binary code during assembly of the code, the binary code appearing after a macro
call is, in fac:t, the result of the preceding macro call. Error messages generated by macro calls
are similarly delayed. This is the reason an additional STATE$ macro is required to terminate the
state table.

When the pSlrser program is linked and :is in task image form, it can be invoked from within your
executing talsk, as shown in Figure 7-1.

Figure 7-2 s,hows the CALL .TPARS statement that invokes the parser program and the TPARS
processor. As the parser executes the state table, it calls action routines. These action routines
access code i.n the TPARS processor to perform such functions as returning the values of the
built-in variables. When the state table completes execution, TPARS receives control and passes
control back to the calling program.

7'.6 Programlming Examples

7.6.1

This section includes three programmin~~ examples of how TPARS can be used in your program.
The first eX8,mple shows the code requirE~d to parse a User File Directory (UFO) command line for
lAS. The second example shows the use of subexpressions and how to reject transitions. The third
example shows how to use subexpressions to parse complex command lines.

Parsing ~l UFO Command Lin1e
This example shows the code required to parse a UFO command line. It includes a state table and
action routines. The general form of the UFO command line is as follows:

UFO DUO: LABEL [201, 202] / AL1~OC=1 00 • /PRO= [RWED, RWED, RWE, R]

The action routines in this parser program return the following values:

7-11

The Table-Driven Parser (TPARS)

Figure 7-1 Processing Steps Required to Generate a Parser Program Using TPARS

PARSER.SRC

EDI ___ ... that includes the G 1. Write a source program

required MCALL
statements. ~

MCALL ISTAT$
MCALL STATE$
MCALLTRANS
STATE$

MACRO-111---..,

PARSER.SRC

E
TKB

PARSER.OBJ

7-12

V

2. Assemble the
source program to
produce an object
module.

======~ V

3. Execute the Tapk
Builder to produce
a task image
including the parser.

======:::::'" V

PARSER.OBJ

MYFILE.TSK

F
~

The Table-Driven Parser (TPARS)

Figure 7-2 Flow of Control When TPARS Is Called from an Executing User Program

Executing U~;er-Defined TPARS
User Program Parser Program Processor

STATE$ 1--

STATE$

--~-

CALL.TPARS Action 1
Routines -.J

7-13

The Table-Driven Parser (TPARS)

Action Routine

$UDEV

$UUNIT

$UVNML

$UVNAM

$UUIC

$UALL

$UPRO

$FLAGS

Value

Device name (two ASCII characters)

Unit number (binary)

Byte count of the volume label string

Address of the volume label string

Binary UIC for which to create a directory

Number of directory entries to preallocate

Binary protection word for UFO

Flags word containing the following bits:

UF.ALL Set if allocation was specified.

UF.PRO Set if protection was specified.

The label and the IALLOC and !PRO switches are optional. The calling sequence for this routine if
as follows:

CLR Ri

MOV #UFDKTB,R2

MOV COUNT,R3

MOV ADDR,R4

MOV #START,RS

CALL .TPARS

BCS ERROR

The following is an example of the parser routine that you write:

.TITLE STATE TABLE FOR UFO COMMAND LINE

. MCALL ISTAT$,STATE$,TRAN$

TO BE USED WITH BLANK SUPPRESS OPTION

ISTAT$ UFDSTB,UFDKTB

READ OVER COMMAND NAME
.GLOBL START

STATE$ START
TRAN$ "UFO"

READ DEVICE AND UNIT NUMBER

STATE$
TRAN$ $ALPHA"SETDVI

STATE$
TRAN$ $ALPHA"SETDV2

STATE$
TRAN$ $NUMBR,DEVl,SETUNT
TRAN$ $LAMDA

STATE$ DEVI
TRAN$, :

READ VOLUME LABEL

7-14

The Table-Driven Parser (TPARS)

READ UIC

STATE$
TRAN$
TRAN$

$STRNG,RUIC,SETLAB
$T .. AMDA

STATE$ RUIC
TRAN$!tHC

SCAN FOR OPTIONS AND END OF LINE

STATE$ OI?TS
TRAN$ $BOS,$EXIT
TRAN$, /

STATE$
TRAN$ "lU,LOC", ALC" UF .ALL, $FLAGS
TRAN$ "PRO",PRO"UF.PRO,$FLAGS

SET ALLOCATION

STATE$ AJ~C

TRAN$, ==

STATE$
TRAN$ $NUMBR, OPTS, SETALC

PROTECTION

STATE$ PRO
TRAN$, =:

STATE$
TRAN$, [" IGROUP

STATE$ SPRO
TRAN$,] , OPTS, ENDGRP
TRAN$ <, ,>,SPRO,NXGRP
TRAN$, Ft, SPRO, SETRP
TRAN$, ~l, SPRO, SETWP
TRAN$, E:, SPRO, SETEP
TRAN$ 'D,SPRO,SETDP

SUBEXPRESSION TO READ AN[) STORE UIC

STATE$ UlC
TRAN$, I

STATE$
TRAN$ $NUMBR"SETGN

STATE$
TRAN$ <',>

STATE$
TRAN$ $NUMBR"SETPN

STATE$
TRAN$ '],$EXIT

STATE$
STAT~: TABLE SIZE: 60 WORDS
:KEYWORD TABLE SIZE: 8 WORDS
:KEYWORD POINTER SPACE: .3 WORDS

.S:BTTL ACTION ROUTINES FOR THE COMMAND LTNE PARSER
; IDEVI CE NAME CHAR 1

SE'TDVI : : MOVB .PCHAR,$UDEV
RETURN

; IDEVI CE NAME CHAR 2

SE'TDV2: :MOVB .PCHAR,$UDEV+l
RETURN

7-15

The Table-Driven Parser (TPARS)

7-16

: UNIT NUMBER

SETUNT: : MOV

: VOLUME LABEL
SETLAB: : MOV

.PNUMB,$UUNIT
RETURN

.PSTCN,$UVNML
MOV .PSTPT,$UVNAM
RETURN

; PPN - GROUP NUMBER

SETGN: : MOVB
BR

; PPN - PROGRAMMER NUMBER
SETPN: : MOVB

.PNUMB,$UUIC+l
TSTPPN

TSTPPN: TST
.PNUMB,$UUIC
.PNUMH CHECK FOR 0 HIGH ORDER

BNE 10$
TSTB
BEQ

.PNUMB+l
20$

CHECK FOR BYTE VALUE

10$: ADD #2, (SP) BAD VALUE - REJECT TRANSITION
20$: RETURN
: NUMBER OF ENTRIES TO ALLOCATE
SETALC::MOV .PNUMB,$UALL

; SET PERMISSIONS
: INITIALIZE

RETURN

IGROUP::MOV #4,GRCNT
; MOVE TO NEXT PERMISSIONS CATEGORY

NXGRP: : SEC
ROR $UPRO
ASR $UPRO
ASR $UPRO
ASR $UPRO
DEC GRCNT
BGE 30$

FORCE ONES

SHIFT TO NEXT GROUP

COUNT GROUPS
TOO MANY IS AN ERROR

BADGRP: ADD #2, (SP) IF SO, REJECT TRANSITION
30$:
; SET READ PERMIT

SETRP: :

; SET WRITE PERMIT

SETWP: :

RETURN

BIC
RETURN

BIC
RETURN

#FP.RDV*lOOOO,$UPRO

#FP.WRV*lOOOO,$UPRO

; SET EXTEND PERMIT

SETEP: : BIC
RETURN

#FP.EXT*lOOOO,$UPRO

; SET DELETE PERMIT

SETDP: : BIC #FP.DEL*lOOOO,$UPRO·
RETURN

; END OF PROTECTION SPEC
ENDGRP::TST GRCNT; CHECK THE GROUP COUNT

BNE BADGRP ; MUST HAVE 4
RETURN

.END UFD

7.6.2

7,,6.3

The Table-Driven Parser (TPARS)

Using Sulbexpressions and Rejecting Transitions
The followin~~ example is an excerpt froml a state table that parses a string in which the first
character is interpreted as a quote chara(~ter. This typical construction occurs in many editors and
programming languages. The action routines associated with the state table return the byte count
and address of the string in the locations QSTC and QSTP. The quoting character is returned in
location QCElAR.

MAIN LEVEL STATE TABLE

PI CR: UP THE QUOTE CHARACTER

STATE$ STRING
TRAN$ $ANY"SETQ

ACCEPT THE QUOTED STRING

STATE$
TRAN$!QSTRG"SETST

GOBBLE UP THE TRAILING QUOTE CHARACTER
STATE$
TRAN$ $ANY, NEXT, RESET

SUBEXPRESSION TO SCAN THE QUOTED STRING
THE FIRST TRANSITION WILL MATCH UNTIL IT IS REJECTED
BY THE ACTION ROUTINE

ACTION ROUTINES

STATE$
TRAN$
TRAN$
STATE$

I::2STRG
$ANY,QSTRG,TESTQ
$LAMDA,$EXIT

STORE THE QUOTING CHARAC'TER

SETQ: MOVB
INCB
RETURN

.PCHAR, QCHAR

.PFLAG ; TURN OFF SPACE FLUSH

; TEST FOR QUOTING CHARACTER IN THE STRING
TESTQ: CMPB .PCHAR, QCHAR

BNE 10$
ADD :t2, (SP) REJECT TRANSITION ON MATCH

10$: RETURN

; STORE THE STRING DESCRIPTOR
SE:TST: MOV. PSTPT, QSTP

MOV .PSTCN,QSTC
RETURN

; RESET THE SPACE FLUSH FLJ\.G
RE:SET: DECB. PFLAG

RETURN

Using Subexpressions to Parse Complex Command Lines
The following excerpt from a state tahle 8hows how subexpressions are used to parse comp1ex
command lines .

. The state table accepts a number followed hy a keyword qualifier. Depending on the keyword, the
number is interpreted as eit.her octal or d("cimal. The binary va1ue of the number is returned in
the tagged NUMBER. The following typf'S of strings are accepted:

7-17

The Table-Driven Parser (TPARS)

lO/OCTAL
359/DECIMAL
77777/0CTAL

MAIN STATE TABLE ENTRY - ACCEPT THE EXPRESSION AND
; STORE ITS VALUE

STATE$
TRAN$!ONUMB,NEXT,SETNUM
TRAN$!DNUMB,NEXT,SETNUM

SUBEXPRESSION TO ACCEPT OCTAL NUMBER
STATE$ ONUMB
TRAN$ $NUMBR

STATE$
TRAN$ 'I

STATE$
TRAN$ "OCTAL",$EXIT

SUBEXPRESSION TO ACCEPT DECIMAL NUMBER
STATE$ DNUMB
TRAN$ $DNUMB

STATE$
TRAN$ 'I

STATE$
TRAN$ "DECIMAL",$EXIT
STATE$

; ACTION ROUTINE TO STORE THE NUMBER
SETNUM: MOV .PNUMB,NUMBER

MOV .PNUMH,NUMBER+2
RETURN

The contents of .PNUMB and .PNUMH remain undisturbed by all state transitions except the
$NUMBR and $DNUMB types.

Because of the way in which subexpressions are processed, calls to action routines from within
subexpressions must be handled with care.

When a subexpression is encountered in a transition, TPARS saves its current context and calls
itself, using the label of the subexpression as the starting state. If the subexpression parses
successfully and returns by means of $EXIT, the transition is taken and control passes to the next
state. If the subexpression encounters a syntax error, TPARS restores the saved context and tries
to take the next transition in the state.

However, TPARS provides no means for resetting original values changed by action routines that
were called by subexpressions. Therefore, action routines called from subexpressions should store
results in an intermediate area. Data in this intermediate area can then be accessed by an action
routine called from the primary level of the state table.

7-18

8 SpoOlil1lg

File Control Services (FeS) provides facilities at both the macro and subroutine level to queue
files for subsequent printing. As a result, your task can queue a print job. Your task can spool to
output for printing in several ways; however, you cannot control the printing from within your task
as you can with the Digital Command Language (DCL) command PRINT. You can, however, use
the DCL comlmand SET QUEUE (Monitor Console Routine (MCR) command QUE !MOD) to alter
the attributes of the print job once the job appears in the queue.

8 .. 1 PRINTS Macro
A task issues the PRINT$ macro to queue a file for printing on a specified device. The specified
device must be a u.nit record, carriage-con.trolled device such as a line printer or terminal. The file
is placed in the default queue PRINT. If the device is not specified, LP is used.

The file to be spoo~ed must be open when the PRINT$ macro is issued. Once the file is queued,
PRINT$ close,s the file. Error returns diffier from normal FCS conventions. Refer to Section 8.3 for
more information.

PRINT$ fdb,I9rr

Parameters

fdb
Specifies the laddress of the associated File Descriptor Block (FDB). This parameter need not be
present if the address of the associated FDB is already in RO.

err
Specifies the address of an optional, error··handling routine that you code. See Section 8.3 for more
information.

8.,2 .PRINT Subroutine
Your task can open a file on disk, send output to the disk, and close the file either by using
the PRINT$ tnacro call or by calling the .PRINT subroutine to spool the output. The .PRINT
subroutine is called to queue a file for printing. Before your task can call .PRINT, RO must contain
the address of the associated FDB and the file must be open. Next, the file is placed in the default
queue PRINT and the .PRINT routine closes the file. One copy of the file is printed on the LP
device. In your task, it may be preferable to call the .PRINT subroutine if the routine resides in
FCSRES. Using the PRINT$ macro cause:s all the code of .PRINT to appear in your task each time
it is used.

Section 8.3 dElscribes error handling for the .PRINT file control routine.

8-1

8.2.1

Spooling

Opening a File on Disk and Using the PRINT Command
As stated in the opening of this section, your task can open a file on disk, send output to that disk,
and close the file. When the task exits, the PRINT command can print the file. This is the only
method that gives you access to the PRINT command qualifier.

If you run your task from an indirect command file or batch job that includes a PRINT command
after the task exits, the difference between spooling from within a task or from outside it is
negligible.

Note that you can use the SPWN$ directive in the task to issue the PRINT command. (Refer to
the·1AS Executive Facilities Reference Manual.)

Opening a File on LP
Your task can use the OPEN$ macro to name the output device. FeS opens the file on pseudo
device SPO:. The file is placed in the device-specific queue for the device you named. When your
task has finished writing to this file, close it with a CLOSE$ macro. The file is deleted after it is
printed.

8,.3 Error Handling
The error returns provided with PRINT$ and .PRINT differ from the standard FCS error returns.
Unlike FCS error returns, PRINT$ and .PRINT error codes are placed in F.ERR or in the Directive
Status Word (DSW), depending on when the failure occurred.

If the failure is FCS related (for example, the PRINT$ macro cannot close the file), the Carry hit is
set and F.ERR contains the error code. If the failure is related to the SENDIREQUEST directive
that queues the file, the Carry hit is set and the DSW contains an error code. DSW error codes are
listed in the lAS Executive Facilities Reference Manual.

Normally, once you determine that the Carry hit is set, any error routine that you code should first
test F.ERR and then test the DSW error code.

8-2

A File De!;criptor Block

A File Descriptor Block (FDB) contains file information that is used by File Control Services (FCB)
and the file control primitives. Figure A-I and Figure A-2 display the layout of the FDB.

Note that eaeh section within the FDB contains symbolic offset names and each offset's location.
,You can defil1le an FDB offset name locally or globally. Th define an offset locally, use either of the
following maK:ro calls:

FDOF$I,

FDOFF$ DEF$L

;DEFINE OFFSETS LOCALLY.

;DEFINE OFFSETS LOCALLY.

To define an FDB offset name globally, use the following macro call:

FIDOFF$ DEF$G ;DEFINE OFFSETS GLOBALLY.

NOTE: Wh.~n you refer to FDB locations, it is essential to use the symbolic offset names
rather than the actual address of su(:h locations. The position of information within the
FDB may be subject to change from ,rersion to version; whereas, the offset names remain
constant.

Table A-l d€!scribes the offset locations within the FDB.

A-1

File Descriptor Block

Figure A-1 File Descriptor Block Format

File-Attribute Section

F.RATT 1 Record Attributes I Record Type

Record Size

Highest Virtual Block Number Allocated
---------- - - -----

End-of-File Block Number
~--------- - - -----

First Free Byte in Last Block

Record- or Block-Access Section

F.RCTL 1 7 Record Control I Record Access

Block I/O Buffer Descriptor
t- ----------------

I--
_ _ User's Becor<!~uffe!.Pescr~o~ ____

I--
_ _ _ Next.Becord~uffe~escr!.E!0~ ____

Block I/O Status Block Address

Block I/O Done AST Address

Override Block Buffer Size

Next Record Address in Block Buffer

End-of-Block Buffer

Record Number for Random Records
- ----------------

Size in Blocks of Contiguous File

Address to Read in Statistics Block

A-2

o F.RTYP

2 F.RSIZ

4 F.HIBK

10 F.EFBK

14 F.FFBY

16 F.RACC

20 F.BKDS

2OF.URBD

24 F.NRBD

24 F.BKST

26 F.BKDN

30 F.OVBS

30 F.NREC

32 F.EOBB

34 F.RCNM

34 F.CNTG

36 F.STBK

File Descriptor Block

Figure A-2 File Descriptor Block Form,at (Continued)

File-Open Section

Amount of Space AI!located When Needed

F.FACC 4:3 File Access I Logical Unit Number

File Descriptor Pointer

Default Filenalme Block Address

Block-Buffer Section

1 Bookkee~in9 Bits 010 Event Flag

3 2d Byte Error Return Code

F.BKP1 5

5
F.MBC1 5

F.BGBC fi

1 st Byte Error Return Code

6 Number of Buffers in Use Number of Buffers Desired

7 Big Buffer Block Count (bll<s) Multiple Buffer Control Flags

Virtual BI()ck Size (Bytes)

Block Buffer Size

Block lID Virtual Block Number
I"'- - -- --------- -----

Virtual Block Number
1-0--- ---_._---- -----

Block Buffer Descriptor Block

FOB ExtHnsion Address
F.CHR75 ACP Volume Character Byte I Flag Byte

Access Control Word

Sequence Number for Sequenced Files

Beginning of Filename Block

40 F.ALOC

42 F.LUN

44 F.DSPT

46 F.DFNB

50 F.EFN or F.BKEF

52F.ERR
54 F.MBCT

56 F.MBFG

64 F.BKVB

64 F.VBN

70 F.BDB

72 F.EXT

74 F.FLG

76G.ACTL

100 F.SEON

102 F.FNB

A-3

File Descriptor Block

Table A-1 FOB Offset Definitions

Symbolic
Offset
Name

F.RTYP

F.RATT

F.RSIZ

F.HIBK

F.EFBK

F.FFBY

F.RACe

A-4

Size
(Bytes)

2

4

4

2

Contents

This byte is set, as follows, to indicate the type of records for the file:
F.RTYP == 1 Indicates fixed-length records (R.FIX).

F.RTYP = 2 Indicates variable-length records (R.VAR).

F.RTYP = 3 Indicates sequenced records (R.SEQ).

Bits 0 to 3 are set to indicate record attributes, as follows:

Bit 0 = 1 Indicates that the first byte of a record is to contain a FORTRAN carriage
control character (FD.FTN); otherwise, it is o.

Bit 1 == 1 Indicates, for a carriage control device, that a line feed is to be performed
before the line is printed and a carriage return is to be performed after
the line is printed (FD.CR); otherwise, it is o.

Bit 2 .. 1 Indicates the "print file format" (FD.PRN). FCS allows this attribute but
does not interpret the format word.

Bit 3 == 1 Indicates that records cannot cross block boundaries (FD.BLK);
otherwise, it is o.

This location contains the size of fixed-length records or indicates the size of the largest
record that currently exists in a file of variable-length records.

Indicates the highest virtual block number allocated.

Contains the end-of-file (EOF) block number.

The format of the block number is high-order word followed by low-order word.

Indicates the first free byte in the last block or the maximum block size for magnetic
tape.

Bits 0 to 3 of this byte define the record access modes, as follows:

Bit 0 = 1 Indicates READ$IWRITE$ mode (FD.RWM); otherwise, it is 0 to indicate
GET$/PUT$ mode.

Bit 1 == 1

Bit 2 - 1

Bit 3 == 1

Indicates random access mode (FD.RAN) for GET$/PUT$ record 1/0;
otherwise, it is 0 to indicate sequential access mode.

Indicates locate mode (FD.PLC) for GET$/PUT$ record 1/0; otherwise, it
is 0 to indicate move mode.

Indicates that PUT$ operation in sequential mode does not truncate
the file (FD.lNS); otherwise, it is 0 to indicate that PUT$ operation in
sequential mode truncates the file.

File Descriptor Block

Table A-1 (eelnt.) FOB Offset Definitions

Symbolic
Offset Size
Name

F.RCTL

F.BKDS
or

EURBD

F.NRBD

or

EBKST

and

F.BKDN

F.OVBS

or

ENREC

F.EOBB

F.RCNM

or

F.CNTG

and

F.STBK

F.ALOC

F.LUN

(Bytes)

') .-

') .-

2

2

4

2

:2

Contents

Bits 0 to 5 define the characteristics of the device associated with the file, as follows:

Bit 0 - 1 Indicatj~s a record-oriented device (FD.REC), for example, a
teletypt~writer or line printer; a value of 0 indicates a block-oriented
device, for example, a disk or DECtape.

Bit 1 - 1

Bit 2 - 1

Bit 3 - 1

Bit4-1

Indicat4~s a carriage control device (FD.CCL); otherwise, it is O.

Indicatl9s a teleprinter device (FD.TTY); otherwise, it Is O.

Indicatc9s a directory device (FD.DIR); otherwise, It is O.

Indicatl9s a single directory device (FD.SDI). A Master File Directory
(MFD) is used, but no User File Directories (UFOs) are present.

Bit 5 - 1 Indicat'9s a block-oriented device that Is inherently sequential In nature
(FD.S()D), such as magnetic tape. A record-oriented device is assumed
to be s,equential in nature; therefore, this bit is not set for such devices.

Contains the block 1/0 buffer descriptor.

Contains the user record buffer descriptor.

Contains the next record buffer descriptor. The record buffer descriptor contains the size
of the buffer in the first word and the address of the buffer in the second word.

Contains the address of the 1/0 status block (IOSB) for block 1/0.

Contains the address of the asynchronous system trap (AST) service routine for block
1/0.

This field has meaning only before the file is opened.

Contains the address of the next record in the block.

Contains a value defining the end-of-block buffer.

Contains the number of the record for random access operations. The format of the
record number is the high-order word followed by the low-order word.

Contains a numeric value defining the number of blocks to be allocated in creating a
new file. This cell has meaning only before the file is opened. A value of 0 means
leave the file empty; a positive value means allocate the specified number of blocks as
a contiguous area and make the file contiguous; a negative value means allocate the
specified number of blocks as a noncontiguous area and make the file noncontiguous.

Contains the address of the statistics block in your program.

Contains the nurn ber of blocks to be allocated when the file must be extended. A
positive (+) value indicates contiguous extend, and a negative (-) value indicates
noncontiguous extend.

Contains the logical unit number associated with the FOB.

A-5

File Descriptor Block

Table A-1 (Cont.) FOB Offset Definitions

Symbolic
Offset
Name

F.FACC

F.DSPT

F.DFNB

F.BKEF
or

F.EFN

F.BKP1

F.ERR

F.ERR+1

F.MBCT

F.MBC1

F.MBFG

F.BGBC

F.VBSZ

F.BBFS

F.BKVB

or

A-6

Size
(Bytes)

2

2

1

1

2

2

4

Contents

This byte indicates the access privileges for a file, as follows:

Bit 0 - 1 If the file is accessed for reading only (FA.RD).

Bit 1 - 1

Bit 2 - 1

Bit 3 - 1

Bit 4 - 1

Bit 5 - 1

If the file is accessed for writing (FA.WRT).

If the file is accessed for extending (FA.EXT).

If a new file is being created (FA.CRE); otherwise, i Is 0 to Indicate an
existing file.

If the file is a temporary file (FA.TMP).

If the file is opened for shared access (FA.SHR).

If Bit 3 equals 0, then the following is true:

Bit 6 - 1 If an existing file is being appended (FA.APD).

If Bit 3 equals 1, then the following is true:

Bit 6 - 1 If not superseding an existing file at file-create time (FA.NSP).

Contains the data-set descriptor pointer.

Contains the default filename block pointer.

Contains the block I/O event flag.

Contains the record I/O event flag.

Contains bookkeeping bits for FCS internal control.

A negative value indicates an error condition.

Used In conjunction with F.ERR. If F.ERR Is negative, the following applies:

F.EIRR+1 - 0 Indicates that the error code is an I/O error code (see
error codes in Appendix K).

F.ERR+ 1 - negative value Indicates that the error code is a Directive Status
Word (OSW) error code (see DRERR$ error codes in
Appendix K).

Indicates the number of buffers to be used for multibufferlng.

Indicates the actual number of buffers currently In use if the multlbuffering version of
FCS is in use.

Contains either one of the multibuffering flags, as follows:

Bit 0 - 1 Indicates read-ahead (FO.RAH).

Bit 1 - 1 Indicates write-behind (FO.WBH).

Indicates big-buffer block count in number of blocks if the big-buffer version of FCS is in
use.

Buffer offset for reading ANSI magnetic tape in record mode.

Contains the virtual block size (in bytes).

Indicates the block buffer size.

Contains the virtual block number in the user program for block 110.

File Descriptor Block

Table A-1 (C()nt.) FOB Offset Oefinltlon~9

Symbolic
Offset
Name

Size
(IBytes) Contents ----------- -------------------,---

F.VBN

F.BDB

F.EXT

EFLG

F.CHR

F.ACTL

F.SEQN

F.FNB

Contains the virtual bllock number. The format of the virtual block number Is the
high-order word followed by the low-order word.

Contains the address of the block buffer descriptor block. This location always contains
a nonzero value if the file is open and a zero value If the file Is closed.

Address of FOB extension.

Flag byte.

The control bit is defined as follows:
Bit 0 - 1 Indicat4:'s ANSI magnetic tape formats 0 or E

The low-order byte of this word indicates the number of retrieval pointers to be used for
the file. The control bits are in the high-order byte and are defined as follows:
Bit 15 - 1 Specifies that control information is to be taken from F.ACTL (FA.ENB).

Bit12-0

Bit 12 - 1

Bit 11 - 1

Bit9-1

Causes positioning to the end of a magnetic tape volume set upon open
or clolse.

Causles positioning of a magnetic tape volume set to Just past the most
recently closed file when the next file is opened (FA.POS).

Causes a magnetic tape volume set to be rewound upon open or close
(FA. RtWD).

Causes a file to be unlocked if it is not properly closed when accessed
for write (FA.DLK).

Contains the sequence number for sequenced records.

The sym bollc offset 01f the beginning of the filename block portion of the FOB.

A-7

B Filenal11e Block

A filename block is the portion of the FHe Descriptor Block (FDB) that contains the various
elements of a file specification used by Fille Control Services (FCS). The format of a filename block
is illustrated in Figure B-1.

'Figure B-1 Filename Block Format

0

2
N.FID

4

6

N.FNAM 10

12
N.FTYP 14 Cumulative
N.FVER
N.STAT
N.NEXT

16 LBngth in
Bytes

20 (()etal)

22

24
N.DID 26

30 -
N .. DVNM 32
N.UNIT 34

Offset name~J in a filename block can be defined either locally or globally. You can define an offset
name locally by using either of the folloV\ring macro calls:

NBOF$L
NBOFF$ DEF$L

;DEFINE OFFSETS LOCALLY.
;DEFINE OFFSETS LOCALLY.

B-1

Filename Block

To define an offset name globally, use the following macro call:

NBOFF$ DEF$G ;DEFINE OFFSETS GLOBALLY.

NOTE: When you refer to filename block locations, it is essential to use the symbolic
offset names rather than the actual addresses of such locations. The position of
information within the filename block might change from release to release, whereas
the offset names remain constant.

The offset names in a filename block are described in Table B-1.

Table B-1 Filename Block Offset Definitions

Symbolic
Offset
Name

N.FID

N.FNAM

N.FTYP

N.FVER

N.STAT

N.NEXT

N.DID

N.DVNM

N.UNIT

Size
(Bytes)

6

6

2

2

2

2

6

2

2

Contents

File identification field

File name field; specified as nine characters that are stored in Radix-50 format

File type field; specified as three characters that are stored in Radix-50 format

File version number field (binary)

Filename block status word (See bit definitions In Table B-2.)

Context for next .FIND operation

Directory identification field

ASCII device name field

Unit number field (binary)

The bit definitions of the filename block status word (N.STAT) in the FDB and their significance
are described in Table B-2. (Other bits are set as required by FeB and the Peripheral Interchange
Program (PIP) for processing.)

Table B-2 Filename Block Status Word (N.STAT)

Symbolic
Offset
Name

NB.VER1

NB.TYp1

NB.NAM1

NB.SVR

NB.STP

NB.SNM

NB.DIR1

NB.DEV1

NB.SD12

NB.SD22

Value
(Octal)

1

2

4

10

20

40

100

200

400

1000

Meaning

Set if explicit file version number is specified.

Set if explicit file type is specified.

Set if explicit file name is specified.

Set if wildcard file version number is specified.

Set if wildcard file type is specified.

Set if wildcard file name is specified.

Set if explicit directory string User Identification Code (Ule) is specified.

Set if explicit device name string is specified.

Set if group portion of UIC contains wildcard specification.

Set if owner portion of UIC contains wildcard specification.

1 Indicates bits that are set if the associated information is supplied through an ASCII data-set descriptor.

2Although NB.SD1 and NB.SD2 are defined, they are neither set nor supported by FCS.

B-2

Filename Block

Table B-2 (C()nt.) Filename Block Status Word (N.STAT)

Symbolic
Offset
Name

NB.ANS

NB.WCH

Value
(Octal)

2000

4000

Meaning

Set if file name I~s in ANSI format.

Set if wildcard clharacter processing is required.

The filename block fonnat for ANSI magnetic tape file names is shown in Figure B-2.

Figure B-2 J"NSI Filename Block Format

o
N.FID

2

N.ANM1

14
N.FVER

16
N.STAT

20
N.NEXT

22
N.ANM2

30
N .. DVNM

N.UNIT
34

The filename lblock offset definitions for ANSI magnetic tape are shown in Table B-3.

Table B-3 Filename Block Offset Definitions for ANSI Magnetic Tape

Symbolic
Offset
Name

N.FID

N.ANM1

N.FVER
N.STAT

Size
(l3ytes)

2

1:2

2

2

Definition

File identification field

First 12 bytes of ANSI filename string

File version number field (binary)

Filename block status word (See bit definitions in Table B-2.)

8-3

Filename Block

Table B-3 (Cont.)

Symbolic
Offset Size
Name (Bytes)

N.NEXT 2

N.ANM2 6

N.DVNM 2

N.UNIT 2

B-4

Filename Block Offset Definitions for ANSI Magnetic Tape

Definition

Context for next .FIND operation

Remainder of the ANSI filename string

ASCII device name field

Unit number field (binary)

C File Header Block
."

Table C-l shows the format of the file hender block. The various areas within the file header block
are described in detail in the following sections. The offset names in the file header block may be
defined either locally or globally, as shown in the following statements:

FHDOF$ DEF$L

FHDOF$ DEF$G

iDl!:FINE OFFSETS LOCALLY.

;OBFINE OFFSETS GLOBALLY.

Table C-1 File Header Block Format

Area

Header Area

Identification
Area

Size
(Bytes)

2

2

2

1

2

6

2

2

2

7

6

7

6

7

1

Content

Identification area offset in words

Map area offset in words

File number

File sequence number

Structure lev,el and system number

Offset to file owner information,
consisting of member number and
group numbEtr

Member number

Group number

File protection code

User-controlled file characteristics

System-controlled file characteristics

User file attributes

Size in bytes; of header area of file
header block.

File name (Radix-50)

File type (Radix-50)

File version number (binary)

Revision number

Revision dat1e

Revision tim43

Creation dat43

Creation timf~

Expiration dElte

To round up to word boundary

Offset

H.lDOF

H.MPOF

H.FNUM

H.FSEQ

H.FLEV

H.FOWN

H.PROG

H.PROJ

H.FPRO

H.UCHA

H.SCHA

H.UFAT

S.HOHO

I.FNAM

I.FTYP

tFVER

tRVNO

I.RVOT

I.RVTI

I.CROT

tCRTI

I.EXOT

C-1

File Header Block

Table C-1 (Cont.) File Header Block Format

Size
Area (Bytes) Content Offset

Size (in bytes) of identification area of S.lDHD
file header block

Map Area Extension segment number M.ESQN

Extension relative volume number (not M.ERVN
implemented)

2 Extension file number M.EFNU

2 Extension file sequence number M.EFSQ

Size (in bytes) of the block count field M.CTSZ
of a retrieval pointer (1 or 2); only 1 is
used

Size (in bytes) of the logical block M.LBSZ
number field of a retrieval pointer (2,
3, or 4); only 3 is used

Words of retrieval pointers in use in M.USE
the map area

Maximum number of words of retrieval M.MAX
pointers available in the map area

Start of retrieval pointers M.RTRV

Size in bytes of map area of file S.MPHD
header block

Checksum 2 Checksum of words 0-255 H.CKSM
Word

NOTE: The checksum word is the last word of the file header block. Retrieval pointers
occupy the space from the end of the map area to the checksum word.

(:.1 Header Area
The infonnation in the header area of the file header block is described in Table C-2.

Table C-2 File Header Block Contents

Word Area

Identification area offset

Map area offset

File number

File sequence number

C-2

Contents

Word 0, bits 0-7. This byte locates the start of the Identification area relative to the
start of the file header block. This offset contains the number of words from the start
of the header to the identification area.

Word 0, bits 8-15. This byte locates the start of the map area relative to the start of
the file header block. This offset contains the number of words from the start of the
header area to the map area.

The file number defines the position this file header block occupies in the Index file; for
example, the index file is number 1, the storage bit map Is file number 2, and so forth.

The file number and the file sequence number constitute the file Identification number
used by the system. This number Is different each time a header Is reused.

File Header Block

Table C-2 (Clont.) File Header Block Contents

Word Area

Structure level

File owner information

File protection code

File characteris'tics

User file attributes

Contents

This word identifies the system that created the file and indicates the file structure. A
value of [1,1] is ass4)ciated with all current Files-11 volumes.

This word contains the group number and owner number constituting the User
Identification Code (UIC) for the file. Legal UICs are within the range [1,1] to [377,377].
However, UIC [1,1] iis reserved for the system.

This word specifies the manner in which the file can be used and who can use it.
When creating the fUe, you specify the extent of protection desired for the file.

This word, consisting of two bytes, defines the status of the file. Following Is a
description of each Ibyte:

Byte 0 defines the Ulser-controlled characteristics. They are as follows:
UC.CON - 200 Logically contiguous file. When the file is extended (for example,

by a WRITE$ or PUT$ macro), bit UC.CON is cleared whether or
not the extension requests contiguous blocks.

UC.OLK - 100 File improperly closed.

Byte 1 defines systElm-controlied characteristics. They are as follows:
SC.MOL - 200 Rile marked for deletion.

SC.BAO = 100 Bc:ld data block in file.

This area consists Clf 16 words. The first seven words of this area are a direct image
of the first seven weIrds of the FOB when the file is opened. The other nine words of
the record I/O control area are not used by FCS, although RMS does use them.

C:.2 Identification Area
Information in the identification area of the file header block is detailed in Table C-3.

Table C-3 File Header Indentlficatlon Area Contents

Word Area

File name

File type

File version number

Revision numb4Jr

Revision date

Revision time

Contents

The file's creator specifies a file name of up to nine Radix-50 characters in length.
This name is placed in the name field. The unused portion of the field (if any) is
zero-filled.

This word contelins the file type in Radix-50 format.

This word contelins the file version number, in binary, as specified by the creator of
the file.

This word is initialized to 0 when the file is created; it is incremented each time a
file is closed after being updated or modified.

Seven bytes anJ used to maintain the date on which the file was last revised. The
revision date is kept in ASCII form in the format day, month, year (two bytes, three
bytes, and two bytes, respectively). This date is meaningful only if the revision
number is a nonzero value.

Six bytes are u:sed to record the time at which the file was last revised. This
information is rE~corded in ASCII form in the format hour, minute, and second (two
bytes each).

C-3

File Header Block

Table C-3 (Cont.) File Header Indentlficatlon Area Contents

Word Area

Creation date

Creation time

Expiration date

C.3 Map Area

Contents

The date on which the file was created is kept in a 7 -byte field having the same
format as that of the revision date (see above).

The time of the file's creation is maintained in a 6-byte field having the same
format as that of the revision time (see above).

The date on which the file becomes eligible to be deleted is kept In a 7 -byte field
having the same format as that of the revision date (see above). Use of expiration
is not implemented.

The map area contains the information necessary to map virtual block numbers to logical block
numbers. This is done by means of retrieval pointers, each of which points to an area of contiguous
blocks. A retrieval pointer consists of a count field and a number field. The count field defines the
number of blocks contained in the contiguous area pointed to while the logical block number (LBN)
field defines the block number of the first logical block in the area.

A value of n in the count field (see Figure C-1) means that n+l blocks are allocated, starting at the
specified block number.

Figure C-l shows the retrieval pointer format used in the Files-II file structure.

Figure C-1 Retrieval Pointer Format

15 0

[Count-1=N High LBN I
Count Field Number Field

31 16

[Low LBN

The map area normally has space for 102 retrieval pointers. It can map from 102 to 26,112 blocks.
If more retrieval pointers are required, extension headers are allocated to hold additional retrieval
pointers. Extension headers are allocated within the index file. They are identified by a file
number and a file sequence as are other file headers; however, extension file headers do not appear
in any directory.

A nonzero value in the extension file number field of the map area indicates that an extension
header exists. The extension header is identified by the extension file number and the extension
file sequence number. The extension segment number numbers the headers of the file sequentially,
starting with a 0 for the initial header.

C-4

File Header Block

Extension headers of a file contain a header area and identification area that are a copy of the first
header as it appeared when the first extE!nsion was created. Extension headers are not updated
when the first header of the file is modified.

Extension headers are created and handled by the file control primitives as needed; their use is
transparent to you.

C-5

D Statistiics Block

The format of the statistics block is shown in Figure 0-1. The statistics block is allocated manually
in your program as described in Chapter 3.

Figure 0-1 StaUstics Block Format

Word 0
High Logical Block Number
(0 If file Is Noncontiguous)

Word 1 Low Logical Block Number
(0 If File Is Noncontiguous)

Word 2 Size (High)

Word 3 Size (Low)

Word 4 Lock Account Access Accoun1

0-1

E Index File Format

The index filE~ ([O,O]lNDEXF.SYS) of a Files-II volume consists of virtual blocks, starting with
virtual block 1, the bootstrap block. Virtual block 2 is the home block. Table E-l describes the
structure and contents of an index file.

Table E-1

Virtual Block
Number

1

2

3

3+n

3+n+1

3+n+2

3+n+3

3+n+4

3+n+5

3+n+6

Irtdex File Structure

Index File Element

Bootstrap block

Home block

Index file bit map (n block~:;); the value of n is In the home block

Index file header

Storage map header

Bad block file header

Master File Directory (MFD) header

Checkpoint file header

User file header 1

User file header 2

User file header n

E.1 Bootstrap Block
A disk that is structured for Files-II has Ii 256-word block, starting at physical block O. This block
contains either a bootstrap routine or a message to the operator stating that the volume does
not contain a bootable system. The bootstrap routine brings a core image into memory from a
predefined location on the disk.

E.2 Home Block
The home block contains volume identificBltion information that is fonnated as shown in Table E-2.
This block is located either in logical block 12 or at any even multiple of 256 blocks. In addition,
you can defin~e offset names in the home block locally or globally by using the foHowing commands:

llliIBOF$ DEF$L ; DEFINES OFFSETS LOCALLY.
llliIBOF$ DEF$G; DEFINES OFFSETS GLOBALLY.

E-1

Index File Format

Table E-2 Home Block Format

Size
(Bytes) Content Offset

2 Index bit map size H.lBSZ

4 Location of index bit map H.lBLB

2 Maximum files allowed H.FMAX

2 Storage bit map cluster factor H.SBCL

2 Disk device type H.DVTY

2 Structure level H.VLEV

1210 Volume name (12 ASCII characters) H.VNAM

4 Reserved

2 Volume owner's UIC H.VOWN

2 Volume protection code H.VPRO

2 Volume characteristics V.VCHA

2 Default file protection word H.DFPR

6 Reserved

Default number of retrieval pointers H.WISZ
in a window

Default number of blocks to extend files H.FIEX

Number of entries in directory least H.LRUC
recently used (LRU)

1110 Available space

2 Checksum of words 0-28 H.CHK1

1410 Creation date and time H.VDAT

10010 Volume header label (not used)

82,0 System-specific information (not used)

25410 Relative volume table (not used)

210 Checksum of home block H.CHK2
(words 0-255)

E.3 Index File Bit Map
The index file bit map controls the use of file header blocks in the index file. The bit map contains
a bit for each file header block contained in the index file. The bit for a file header block is located
by means of the file number of the file with which it is associated. The values of the bit map are as
follows:

o Indicates that the file header block is available.
The file control primitives can use this block to create a file.

Indicates that the file header block is in use.
This block has already been used to create a file.

E-2

Index File Format

E,.4 Predefined File Header Blocks
The first five file header blocks of an index file are predefined. Table E-3 describes the contents of
the predefined blocks.

Table E-3 Predefined File Header Blocks

File Header Block

Index File Header

Storage Map Fi~e
Header

Bad Block File Header

Master File Diredory
Header

Checkpoint Rle Header

Description

This is the standard header associated with the index file.

The storage map is a file that is used to control the assignment of disk blocks to
files.

The bad block fiile is a file that consists of unusable blocks (bad sectors) on the
disk.

This header block is associated with the Master File Directory (MFo) for the disk.
This directory cc)ntains entries for the index file, the storage map file, the bad block
file, the MFD, the checkpoint file, and all User File Directories (UFOs).

This block identifies the file that is used for the checkpoint areas for all
checkpointable 1tasks. A task can also have checkpoint space In the task image
itself.

E-3

F Summary of IlO-Related System Directives

Table F-l contains a summary of the I/O-related system directives in alphabetical order. The
parameters you can specify with a directive are also described in the order of their appearance
in the directive. TIltese directives are desc:ribed in detail in the lAS Executive Facilities Reference
Manual.

Table F-1 Summary of I/O-Related Syst1em Directives

Directive Function and Parameters

ALUN$ Assign Logical Unit Number

GLUN$

GMCR$

QIO$

Assigns a logical unit number (LUN) to a physical device.

Format

ALUN$ lun,dev,unt

lun Specifies the 10gicallJlnit number (LUN).

dev Specifies the physical device name (two ASCII characters).

unt Specifies the physical device unit number.

Get Logical Unit Number Infor'matlon

Fills a 6-word buffer with informl:ltion about a physical unit to which the LUN Is assigned.

Format

GLUN$ lun,buf

lun Specifies the logical 1..1 nit number (LUN).

buf Specifies the address of a 6-word buffer in which the LUN information Is to be stored.

Get MCR Command Line

Trannfers an SO-byte Monitor Cc)nsole Routine (MCR) command line to the task issuing GMCR$.
No parameters are required in this directive.

Queue 1/0 Request

Places an 110 request in the device queue associated with the specified LUN.

Format

QIO$ fnc,lun,efn,pri,isb,ast,prl

fnc Specifies the 1/0 function code.

lun Specifies the logical unit number (LUN).

efn Specifies the event fll:1g number.

pri Specifies the priority lof the request (ignored but must be present.)

isb Specifies the address. of the 1/0 status block (IOSB).

ast Specifies the entry-pc)int address of the asynchronous system trap (AST) service routine.

prl Specifies the parameter list in the form <P1, ... ,P6>.

F-1

Summary of I/O-Related System Directives

Table F-1 (Cont.) Summary of I/O-Related System Directives

Directive

QIOW$

RCST$

RCVD$

RCVX$

F-2

Function and Parameters

Queue 1/0 Request and Walt

Places an I/O request in the device queue associated with the specified LUN. The Executive
suspends the task until the specified event flag is set.

Format

QIOW$ fnc,lun,efn,pri,isb,ast,prl

fnc Specifies the I/O function code.

lun Specifies the logical unit number (LUN).

efn Specifies the event flag number (EFN).

pri Specifies the priority of the request (ignored but must be present.)

isb Specifies the address of the I/O status block (IOS8).

ast Specifies the entry-point address of the AST service routine.

prl Specifies the parameter list in the form <P1, ... ,P6>.

Receive Data or Stop

Instructs the system to dequeue a 13-word data block for the task issuing RCST$.

Format

RCST$ tname,buf

tname Specifies the name of the sending task (if not specified, data can be received from any
task.)

buf Specifies the address of a 15-word buffer to receive the sender task name and data.

Receive Data

Receives a 13-word data block that has been queued (FIFO).

Format

RCVD$ tsk,buf

tsk Specifies the name of the sending task.

buf Specifies the address of the 15-word data buffer (2-word sending task name and
13-word data block.)

Receive Data or Exit

Receives a 13-word data block if queued.

Format

RCVX$ tsk,buf

tsk Specifies the name of the sending task (if not specified, data can be received from any
task.)

buf Specifies the address of the 15-word data buffer (2-word sending task name and
13-word data block.)

Summary of I/O-Related System Directives

Table F-1 (Cont.) Summary of I/O-Relat.~d System Directives

Directive

VRCD$

VRCS$

VRCX$

Func'tlon and Parameters

Variable Receive Data

Instructs the system to dequeue a variable length data block for the task issuing VRCD$. The
block was queued by the Variable Send Data directive. If you specify the sending task, only data
sent by that task is received.

Format

VRCD$ task,bufadr,buflen

task Specifies the sender task name.

bufadr Specifies the buffer address.

buflen Specifies the buffer size in words (25610 words maximum). The default is 1310 words.
The first two words are the sender task name. The data block follows.

Variable Receive Data or Stop

Instructs the system to dequeue! a variable-length data block for the task issuing VRCS$. The
block was queued by a Variable Send Data directive. If there is no packet, the task issuing VRCS$
is stopped. The sending task is expected to issue an Unstop directive after sending the data.
When you specify a sender task., only data sent by that task is received.

Format

VRCS$ task,bufadr,buflen

task

bufadr

buflen

Specifies the sender task name.

Specifies the buffer address.

Specifies the buffer siize in words (25610 words maximum). The default is 1310 words.
The first two words are the sender task name. The data block follows.

Variable Receive Data or Exit

Instructs the system to dequeuEt a variable-length data block for the issuing task. The data block
was queued for the task by a Variable Send Data directive. If you specify a sender task, only data
sent by that task is received. If no data has been sent to the task issuing VRCX$, the task exits.

Format

VRCX$ task,bufadr,buflen

task

bufadr

buflen

Specifies the name of the sending task.

Specifies the buffer address.

Specifies the buffer longth (a maximum of 25610 words). The default is a minimum of
1310 words. The first two words are the sender task name.

F-3

Summary of I/O-Related System Directives

Table F-1 (Cont.) Summary of IIO-Related System Directives

Directive

VSDA$

F-4

Function and Parameters

Variable Send Data

Instructs the system to queue a variable-length data block for the specified task to receive. If you
specify an event flag, a significant event Is declared when the directive executes successfully.

Format

VSDA$ task,bufadr,buflen

task

bufadr

buflen

Specifies the receiving task name.

Specifies the buffer address.

Specifies the buffer size In words (a maximum of 25610 words). The default Is 1310

words.

G Support of ANSI Magnetic Tape Standard

This appendix defines the American National Standards Institute (ANSI) magnetic tape labeling
standard, which is a level three implementation of the ANSI standard, Magnetic Tape Labels and
File Structur4;' for Information Interchang:e (X3.27-1978). The exceptions are that ANSI does not
support spanned records and that Digital's tape system does not support user-supplied labels.
User-supplied labels might appear on a tnpe; however, they are accessible to application programs
only through the unlabeled tape feature.

G.1 Volume and File Labels

G.1.1

Tables G-1, G-2, 0-3, and G-4 present the format of volume labels and file header labels.

Volume Liabel Format
Table G-1 describes the volume label format for ANSI magnetic tape.

Table G-1 Volume Label Format

Character
Position

1-3

4

5-10

11

12-37

38-51

52-79

80

Field Name

Label identifier

Label number

Volume identifier

Accessibility

Beserved

Owner
identification

l=teserved

Label standard
version

Length
(Bytes)

3

6

26

14

28

Contents

VOL

Contains the volume label and any ANSI "a" character. An
"a" character is defined by the ANSI standard as any of
the uppercase letters A-Z, the digits 0-9, and the following
special characters:

space ! " % & ' () * + , - /:; <=> ?)

Contains any ANSI "a" character. A space indicates no
restriction. You can specify the "a" character with the
/VOlUME_ACCESSIBILlTY:"c" qualifier in the DCl command
INITIALIZE. Any ANSI "a" character is allowed. The default
character is a space. Refer to the lAS MCR User's Guide
or the lAS Command Language Reference Manual for more
information on INITIALIZE.

Spaces

The contents of this field are system dependent and are used
for volume protection purposes. See Section G.1.1.1.

Spaces

3

G-1

Support of ANSI Magnetic Tape Standard

G.1.1.1 Contents of Owner Identification Field
The owner identification field is divided into the following three subfields and a single pad
character:

1 System identification (positions 38 to 40)

2 Volume protection code (positions 41 to 44)

3 User Identification Code (UIC) (positions 45 to 50)

4 A numeric 1 (position 51)

The system identification consists of the following character sequence:

D%x

The machine code is indicated by x, which can be one of the following:

S-PDP-8
A-DECsystem-10
B-PDP-11
F-PDP-15

The D%x characters provide an identification method so that the remaining data in the owner
identification field can be interpreted. The fOWNER switch to the MCR command INI allows you
to overwrite these characters. The fOWNER="owner" qualifier to the DCL command INITIALIZE
allows you to overwrite these characters. (Refer to the lAS MCR User's Guide and the lAS
Command Language Reference Manual for more infonnation. In the case of tapes produced on
PDP-11 systems, the default system identification is D%B and the volume protection code and mc
are interpreted as described in the list that follows.

The volume protection code in positions 41 to 44 defines access protection for the volume for four
classes of users. Each class of user has access privileges specified in one of the four columns, as
follows:

Position

41

42

43

44

Class

System (Ule no greater than [7,255]10)

Owner (group and member numbers match)

Group (group number matches)

World (any user not in one of the above)

One of the following access codes can be specified for each character position:

Code Privilege

0 No access

1 Read access only

2 Extend (append) access

3 Read/extend access

4 Total' access

The UIC is specified in character positions 45 to 50. The first three characters are the group code
in decimal. The next three are the user code in decimal.

The last character in the owner identification field is a numeric 1.

G-2

G.1.2

G.1.3

Support of ANSI Magnetic Tape Standard

The following is an example of the owner identification field:

Owner identifier - 0%B14100631461

1 The file was created on a PDP-11.

2 System and group have read access.
Owner hals total access.
All otherEI are denied access.

3 The UIC is [063,146].

User Volume Labels
User volume labels are never written or passed back to you. If present, they are skipped.

File Headier Labels
You should consider the following informaltion before creating file header labels:

• The Files-11 naming convention uses a subset (Radix-50) of the available ANSI character set
for file id~entifiers.

• One character in the file identifier, the period (.), is fixed by Files-1l.

• A maximum of 13 of the 17 bytes in th.e file identifier are processed by Files-1l.

• It is strongly recommended that all fille identifiers be limited to the Radix-50 PDP-11 character
set, and that no character other than the period (.) be used in the file type delimiter position
for data interchange between PDP-11 and DECsystem-10 systems.

• For data interchange between DIGITAL and non-DIGITAL systems, the preceding conventions
should be: followed. If they are not, refer to Section G.l.3.l.

Tables 0-2, G-3, and G-4 describe the HDR1, HDR2, and HDR3 labels, respectively.

Table G-2

Character
Position

1-3

4

5-21

22-27

28-31

32-35

36-39

40-41

File Header Label (HDR1)

length
IFleld Name (Bytes)

label identifier 3

label number

IFile identifier 17

IFile set 6
identifier

IFile section 4
number

IFile sequence 4
!number

Generation number 4

Generation version 2

Contents

HDR

Contains any ANSI "a" character. See Table G-1.

Contains the volume identifier of the first volume in the set of
volumes.

Contains numeric character'3. This field starts at 0001 and is
increased by 1 for each additional volume used by the file.

Contains the file number within the volume set for this file.
This number starts at 0001.

Contains numeric characters.

Contains numeric characters.

G-3

Support of ANSI Magnetic Tape Standard

Table G-2 (Cont.) File Header Label (HDR1)

Character
Position

42-47

48-53

54

55--60

61-73

74-80

Field Name

Creation date

Expiration date

Accessibility

Block count

System code

Reserved

Length
(Bytes)

6

6

6

13

7

Table G-3 File Header Label (HDR2)

Character
Position

1-3

4

5

6-10

11-15

16-50

51-52

53--80

G-4

Field Name

Label Identifier

Label number

Record format

Block length

Record length

System-dependent
Information

Buffer offset

Reserved

Length
(Bytes)

3

5

5

35

2

28

Contents

_yyddd L indicates space)
or

_00000 if no date

Same format as creation date.

Space

000000

Contains the three letters DEC, followed by the name of the
system that produced the volume. See Section G.1.1.1 .

Examples: DECFILE11 A DECSYSTEM10

Pad name with spaces.

Spaces

Contents

HDR

2

F indicates fixed length.
o indicates variable length.
S indicates spanned.
U indicates undefined.

Contains numeric characters.

Contains numeric characters.

Positions 16 to 36 are spaces.

Position 37 defines carriage control and can contain one of
the following:

A Indicates first byte of record contains FORTRAN
control characters.

space Indicates line feed/carriage return is to be inserted
between records.

M Indicates the record contains all form control
information.

If DEC appears In positions 61 to 63 of HDR1, position 37
must be as previously specified.

Positions 38 to 50 contain spaces.

Contains numeric characters; 00 on tapes produced by
Files-11. Supported only on Input to Files-11.

Spaces

Support of ANSI Magnetic Tape Standard

Table G-4 File Header Label (HDR3)

Character Length
Position Field Name (Bytes) Contents

1-3 ILabel Identifier 3 HDR

4 ILabel number 1 3

5-68 :System-dependent 64 Contains file attributes specified at creation time. Each of
the 32 bytes of user file attributes Is expanded Into two
hexadecimal characters. The first seven words of this
area are a direct image of the first seven words of the File
Descriptor Block (FOB) when the file is opened. These are
the same words in the file-attribute section of the FOB given
in Appendix A. The other nine words are not used by Ale
Control Services (FCS) though they are used by Record
Management Services (RMS).

The following list translates the user file attribute bytes to the
corresponding hexadecimal character pair:

Byte Pair Byte Pair

4 17 20

2 3 18 19

3 2 19 18

4 20 17

5 8 21 24

6 7 22 23

7 6 23 22

8 5 24 21

9 12 25 28

10 11 26 27

11 10 27 26

12 9 28 25

13 16 29 32

14 15 30 31

15 14 31 30

16 13 32 29

Using the list, the eighth hexadecimal character pair Is
the expansion of the fifth user file attribute byte, and the
fourth user file attribute byte Is expanded Into the first
hexadecimal character pair. The hexadecimal pair Is the
normal representation of the contents of the byte; that Is, If
the byte contains a 1510, the hexadecimal representation of It
is OF.

69-80 Resenfed 10 Spaces

G-5

Support of ANSI Magnetic Tape Standard

G .1.3.1 File Identifier Processing by Flles-11
The magnetic tape Ancilliary Control Processor (ACP) processes Files-11 type file identifiers.
However, if the file name is enclosed in quotes, it is processed as an ANSI file name, all "a"
characters are legal, all 17 positions can be used, and the only conversion that takes place is
making all lowercase characters into uppercase characters and converting all characters that are
not "a" characters to question marks.

At file input, the file identifier is handled as follows:

1 The first nine characters at a maximum are processed by an ASCII-to-Radix-50 converter. The
~onversion continues until one of the following occurs:

a. A conversion failure occurs.

b. Nine characters are converted.

c. A period (.) is encountered.

2 If the period is encountered, the next three characters after the period are converted and
treated as the file type. If a failure occurs or all nine characters are converted, the next
character is examined for a period. If it is a period, it is skipped and the next three characters
are converted and treated as the file type.

3 The version number is derived from the generation number and the generation version number
is as follows:

(generation number - 1)*100 + generation version + 1

If an invalid version number is computed, it will be changed to 1.

At file output, the file identifier is handled as follows:

1 The file name is placed in the first positions in the file identifier field. It can occupy up to nine
positions and is followed by a period.

2 The file type of up to three characters is placed after the period. The remaining positions are
padded with spaces.

3 The version number is then placed in the generation and generation version number fields, as
described in the following formulas:

a. Generation number = (vertoo- 1) + 1

b. Generation version # = version # -1 Modulo 100

(Note that, in both calculations, remainders are ignored.)

The following are examples of Files-11 versions and their generation version numbers.

Flles-11
Version No.

50

100

101

1010

G-6

Generation No.

2

11

Generation
Version No.

o
49

99

o
9

G.1.4

G.1.5

G.1.6

Support of ANSI Magnetic Tape Standard

End-of-V~olume Labels
End-of-volunle labels are identical to the file header labels, with the following exceptions:

• Character positions 1 to 3 contain EOV instead of HDR.

• The block count field contains the number of records in the last file section on the volwne.

File Trailer Labels
End-of-file labels (file trailer labels) are identical with file header labels, with the following
exceptions:

• Columns 1 to 3 contain EOF instead of HDR.

• The block count contains the nwnber of data blocks in the file.

User File Labels
User file labels are never written or passed back to you. If present, they are skipped.

G.2 File Structures

c; .2.1

The file structures illustrated below are the types of file and volwne combinations that the file
processor produces. The file processor can read and process additional sequences.

The minimum block size and fixed-length record size is 18 bytes. The maximum block size is 8192
bytes. FCS adapts to input files of varying block size.

If HDR2 is not present, the data type is assumed to be fixed (F), and the block size and record size
are assumed to be the default value for t.he file processor. The default for both block and record
size is 51210 bytes. You can override these block and record sizes with the MAG command (see
Section G.5)~ and the MOUNT command. The MAG command controls block and record size on
unlabeled tapes and on ANSI levelland 2 tapes.

The meaning of the symbols used in the :file structure illustrations is as follows:

1 The asterisk (*) indicates a tape mark. As defined by ANSI, a tape mark is a special control
block rec:orded on magnetic tape to sE~rve as a separator between files and file labels.

2 BOT indicateEI beginning of tape.

3 EOT indicateEI end of tape.

4 The comlma (,) indicates the physical record delimiter.

File Struc:tu re Format
Table G-5 lists the various file structures and their format.

G-7

Support of ANSI Magnetic Tape Standard

Table G-5 File Structures

File/Volume
Combinations

Single File
Single

Volume

Single File
Multivolume

Multifile
Single

Volume

Multifile
Multivolume

Structure Format

BOT,VOL 1 ,HDR1 ,HDR2,HDR3*-DATA-*EOF1 ,EOF2,EOF3**

BOT,VOL 1 ,HDR1 ,HDR2,HDR3*-DATA-*EOV1 ,EOV2,EOV3**
BOT,VOL 1 ,HDR1 ,HDR2,HDR3*-DATA-*EOF1 ,EOF2,EOF3**

BOT,VOL 1 ,HDR1 ,HDR2,HDR3*-DATA-*EOF1 ,EOF2,EOF3*HDR1,
HDR2,HDR3*-DATA-*EOF1,EOF2,EOF3**

BOT,VOL 1 ,HDR1 ,HDR2,HDR3*-DATA-*EOF1 ,EOF2,EOF3*HDR1 ,HDR2,
HDR3*-DATA-*EOV1 ,EO V2,EOV3**
BOT,VOL1 ,HDR1 ,HDR2,HDR3*-DATA-*EOF1 ,EOF2,EOF3*HDR1 ,HDR2,
HDR3*-DATA-* EOF1,EOF2,EOF3**

G.3 End-of-Tape Handling
End-of-tape is handled by the magnetic tape file processor. Files are continued on the next volwne
provided that the volwne is already mounted or mounted upon request. A request for the next
volume is printed on CO (console output pseudo device).

G.4 ANSI Magnetic Tape File Header Block (FCS Compatible)
Figure 0-1 illustrates the fonnat of a file header block that is returned by the file header READ
ATTRIBUTE command for ANSI magnetic tape. The header block is constructed by the magnetic
tape primitive from data within the tape labels.

Gi.5 Example USing an Indirect Command File to Read a Tape
The following example shows how to read a tape by using an indirect command file:

G-8

Support of ANSI Magnetic Tape Standard

Figure G-1 ANS~ Magnetic Tape File HE~ader Block (FCS Compatible)

H.MPOF

Header Area

Identification
Area

Map Area

MaD Offset I IDENT Offset
File SeQuence Number

File Section Number
Structure Level = 4018

UIC (For Volume)

Protection Code (For Volume)
Record Attributes I Record Type Code

Record Size in Bytes

n Words of Zeros

File Name R/\D50

File T~pe RADSO
File Version Number

Zeros (Revision Dat,e and Time)

Creation Date and Time (000000)

Ex~lration lDate

Pad B~e of Zero

Copy of the'
HDR1 Labell

Copy of the HDB2 Label

(if byte 1 of label = 0,
label is not pre!sent).

Null Map, That Is, Zeros
(10 Bytes Long)

.ENABLE QUIET

.ENABLE SUBSTITUTION

H.lDOF

H.FNUM

H.FSeQ

H.FLEV

H. FOWN-H. PROO

H.FPRO
. H.UFAT

X+I.FNAM
(IDENT Offset *2)-X
I.FTYP

X+I.FVER

X+I.RVNO
X+I.CRDT
X+I.EXDT

X+471 0

X+5010

X+2101O=

(Map of Offset 2)

., This command file is invoked with the command
@MTA outspec=:Mx: infile

., and searches a tape mounted unlabeled (which has an ANSI-like structure)

., for the file "infile" and copies it to outspec .

.. , Parse the command line; OUTSPC gets outspec,
DEV gets Mx,
INFILE gets the filename to find on tape .

. PARSE COMMAN " " OUTSPC COMMAN
.PARSE COMMAN "=" OUTSPC INSPEC
.. PARSE INSPEC ":" DEV INFILE
.. IF INFILE EQ "" .GOTO NOTMT
"SETS INFILE INFILE+"
"SETS INFILE INFILE[1:17.)
"SETS JUNK DEV[l:l)
"IF JUNK NE "M" .GOTe> NOTMT

G-9

Support of ANSI Magnetic Tape Standard

G-10

.i Make a name for the temp file .

. TESTFILE TI:

.PARSE <FILSPC> ":" TMP JUNK

.SETS TMP TMP+".TMP"

., Always start at the beginning of the tape.
MAG SET 'DEV' :/REWIND

., Labels have a block and record size of 80.
MAG SET 'DEV' :/BS:80./RS:80 •
. LOOK:

.i Put the labels in a temp file so Indirect can look at them
PIP 'TMP'='DEV' : DUMMY.NAM
.OPENR 'TMP'
.READLB:
.READ LABEL
.IFT <EOF> .GOTO NOSUCH
.SETS LABELT LABEL[l:3]

.; S~ip any Volume header labels
.IF LABELT = "VOL" .GOTO READLB

.IF LABELT NE "HDR" .GOTO ILLFMT

.SETS LABELT LABEL[4:4]

.IF LABELT NE "1" .GOTO ILLFMT

.SETS LABELT LABEL[5:21.]

.; If the names do not match, go get the next set of labels .

. IF LABELT NE INFILE .GOTO TRYNXT

.i We have found the file, see if there is a HDR2 with size info •

. READ LABEL

.IFT <EOF> .GOTO READFL

.SETS LABELT LABEL[1:4]

.IF LABELT NE "HDR2" .GOTO READFL

.; Yes, we have a HDR2 label .

. SETS LABELT LABEL[37.:37.]

.SETS CC "LI"

.IF LABELT = "A" .SETS CC "FO"

.IF LABELT = "M" .SETS CC "NO"

.SETS BS LABEL[6:10.]

.SETS RS LABEL[ll.:15.]

.i Set up the block size, record size, and carriage control

.i based on what was in HDR2.
MAG SET 'DEV' :/BS:'BS' ./RS:'RS' ./CC:'CC'
.SETS LABELT LABEL[5:5]
.IF LABELT EQ "F" .GOTO READFL
.DISABLE QUIET
!MTA - Warning, Record Format is 'LABELT'; only F Format is fully SUppOl
.ENABLE QUIET
.READFL:
. CLOSE

.i Transfer the file.
PIP 'OUTSPC'='DEV' :"POS=l"
.GOTO ENDIT
.TRYNXT:
. CLOSE
MAG SET 'DEV' :/POS=3
.GOTO LOOK

Support of ANSI Magnetic Tape Standard

.ILLFMT:

.DISABLE QUIET

.DISABLE MCR
MTA - Tape is not. in a format that I understand .

. GOTO ENDIT

.NOTMT:

.DISABLE QUIET

.DISABLE MCR

MTA - Input file spec must specify a magnetic tape device and a file name •
. EXIT
.NOSUCH:
.DISABLE QUIET
.DISABLE MCR

MTA - No such file -- 'INSPEC'
.ENDIT:
.ENABLE MCR
.ENABLE QUIET
PIP'TMP'i_/DE/NM
.EXIT

G-11

H QIO$ Inter'face to the A(~Ps

This appendbr describes the QIO$ level interface to the file Ancillary Control Processors (ACPs).
These includ~~ FIIACP for Files-II disks and MTAACP for American National Standards Institute
(ANSI) magnetic tape. Because ACPs work in direct relation with the Executive, they are very
effective and are able to perform operations that device drivers cannot. In addition, all lAS
directives can be issued by ACPs.

FIIACP supports the following QIO func1tions:

Function CodEt Meaning

IO.CRE Create file

IO.DEL Delete file

IO.ACR Access file for read only

IO.ACW Access file for read/write

IO.ACE Access file for read/write/e)ctend

IO.DAC Deaccess file

IO.EXT Extend file

IO.RAT Read file attributes

IO.WAT Write file attributes

IO.FNA Find file name in directory

IO.RNA Remove file name from dimctory

IO.ENA Enter file name in directory

IO.ULK Unlock block

MTAACP supportn the following QIO functions:

Function Cod ••

IO.FNA

IO.ENA

IO.ACR

IO.ACW

IO.ACE

IO.DAC

IO.RVB

IO.WVB

IO.EXT

Meaning

Find file by name

Enter name in directory (nc,noperational)

Access for read only

Access for read/write

Access for read/write/extend

Deaccess file

Read virtual block

Write virtual block

Extend file

H-1

QIO$ Interface to the ACPs

Function Code

IO.CRE

IO.RAT

IO.APC

IO.APV

Meaning

Create file

Read attributes

ACP control

Privileged ACP control

H .. 1 How to Use the ACP 010$ Functions

H,,1.1

H1I1.2

H,.1.4

Although the operations described in this appendix are normally performed by the file-access
methods Record Management Services (RMS) and FHe Control Services (FCS), your application can
issue the ACP QIO$s. Using ACPs allows you the opportunity to speed up processing time with
device 1/0 because ACPs already contain device-specific structure.

The required parameters for each QIO$ are described in the preceding section. The necessary steps
for common operations are described in the following section.

NOTE: The file identifier is the only way to refer to a file.

Creating a File
To create a file, perform the following tasks:

1 Use 10.CRE to create the file.

2 Enter the file in the Master File Directory (MFD) or a User File Directory (UFD) with 10.ENA.

Opening a File
To open a file, perform the following tasks:

1 Use 10.FNA to find the file identifier of the directory in the MFD.

2 Use 10.FNA to find the file identifier of the file in the directory.

3 Access the file with 10.ACR, 10.ACW, or 10.ACE.

Closing a File
To close a file, deaccess the file with IO.DAC.

Extending a File
To extend a file, perform the following tasks:

1 Use 10.FNA to find the file identifier if the file is not accessed.

2 Use 10.EXT to extend the file.

H-2

H.1.5 Deleting a File
To delete a file, perfonn the following taskB:

1 Use 10 .FNA to find the file identifier.

2 Use IO.RNA to remove the directory name.

3 Use IO.DE:L to delete the file.

QIO$ Interface to the ACPs

H.2 Errors Returned by the File PrC)CeSSOrs
The error codes returned by FIIACP and ~~TAACP are shown in Table H-l.

Table H-1 FUe Processor Error Codes

Error
Code Oper'8tlons

IE.ABO 10.RVBII0.WVB

IE.ALC Extend or create operation

IE.ALN An attempt to access a file

IE.BAD Any 1/unction

IE.BDR Direc:tory operations

IE.BHD Any c)peration

IE.BVR Directory operations

IE.BYT Any function

IE.BTP Unlabeled Magtape Create

IE.CKS Any c)peration

IE.CLO File ~lccess operations

IE.DFU An allocation request

IE.DUP An enter name operation

IE.EOF 10. RVB/IO. WVB/IO.DEL

Explanation

Indicates that not all requested data was transferred by the
device.

Indicates that the operation failed to allocate the file because of
placement control or because of other related problems.

Indicates that a file is already accessed on that logical unit
number (LUN).

Indicates that a required parameter is missing, that a parameter
that should not be present is present, that a parameter that must
be disabled is enabled, or that a parameter value is invalid.

Indicates that you attempted a directory operation on a file that
is not a directory, or that the specified directory is corrupted.
This is usually caused by a 0 version number field.

Indicates that a corrupt file header was encountered, or that the
operation required a feature not supported by the file control
processor (FCP) (such as multiheader support or support for
unimplemented features).

Indicates that you attempted to enter a name in a directory with
a negative or 0 version number.

This error is returned if the buffer specified is on an odd-byte
boundary or is not a multiple of 4 bytes.

Indicates an attempt was made to create an unlabeled tape file
with a record type other than fixed.

Indicates that the checksum of a file header is incorrect.

Indicates that the file was locked against access by the
"deaccess lock bit."

Indicates that there is insufficient free disk space for the
requested allocation.

Indicates that the name and version already exist.

On read operations, this indicates an attempt to read beyond
end-of-file. On truncate operations, it indicates an attempt to
truncate a file to a length longer than that allocated or that the
file was already at EOF.

H-3

010$ Interface to the ACPs

Table H-1 (Cont.) File Processor Error Codes

Error
Code

IE.HFU

IE.lFC

IE.lFU

IE.LCK

IE.LUN

IE.NOO

IE.NSF

IE.OFL

IE.PRI

IE.RER

IE.SNC

IE.SPC

IE.SaC

IE.WAC

IE.WAT

IE.WER

IE.WLK

H-4

Operations

An extended operation

Returned by exec

Create or extend operation

Returned on file access, directory
operations, and on truncate

Any operation requiring a file 10

All file operations that require pool

All file operations

Returned by exec

Any operation

Any operation

Any operation

Returned by exec

Any operation

File access operations

Write attributes and deaccess

Any operation

Any operation requiring write
access

Explanation

Indicates that the file header Is full and cannot contain any more
retrieval pointers and that adding an extension header Is not
allowed. When this error code Is returned on a create operation,
it indicates that the Index file could not be extended to allow a
file header to be allocated.

Indicates Illegal function code.

Indicates that there are no file headers available based on the
parameters specified when the volume was Initialized.

Indicates that the file Is already accessed by a writer and that
shared write has not been requested or Is not allowed.

Indicates that file 10 has not been supplied and that the file Is
not accessed on the LUN.

Indicates that an 1/0 request failed because of IE.UPN, and that
the FCP was unable to allocate required space from OSR or
from secondary pool for data structures.

Indicates that the specified directory entry does not exist, that a
file corresponding to the file 10 does not exist, or that the file Is
marked for deletion.

Indicates that the device Is off line.

Indicates that the user does not have the required privilege for
the requested operation, or that the user has not requested
the proper access to the file If the file Is already accessed (for
example, In an attempt to write to a file that Is accessed for
read). This error code also Indicates an attempt to do file I/O to
a device that Is not mounted.

Indicates that the FCP encountered a fatal device read error
during an operation; the operation has been aborted.

Indicates that the file number and the value contained In the
header do not agree. This generally means that the header has
gone bad because of a crash or a hardware error.

Indicates an illegal buffer.

Indicates that the file sequence number does not agree with the
file header; usually Indicates that the file has been deleted and
the header has been reused.

Indicates that the file Is already write accessed and that lock
against writers Is requested.

Indicates that the FCP encountered an Invalid attribute.

Indicates that the FCP encountered a fatal device write error
during an operation. The operation has been aborted, but the
disk structure might have been corrupted.

Indicates that the volume Is software write-locked.

QIO$ Interface to the ACPs

HII3 QIO$ Par~lmeter List Format

H.3.1

H.3.2

The device-independent part of a file procl~ssing QIO$ parameter list is identical to all other QIO$
lists. The gen.eral QIO parameter list is dlescribed in detail in the lAS Device Handler Ma'nual.
The file processor QIO$s require the following six additional words in the parameter lists:

Parameter word 1

Parameter word 2

Parameter words 3
and 4

Parameter word 5

Parameter word 6

Specifies the addre'ss of a 3-word block containing the file identifier.

Specifies the addre'ss of the attribute list.

Specifies the size Elnd extend control information.

Specifies the windclw size information and access control.

Specifies the addrelss of the filename block.

File Identification Block
The File Identification Block is a 3-word block containing the file number and the file sequence
number. The format of the File Identification Block is shown in Figure H-l.

Figure H-1 IFlle Identification Block

Filel Number

File Sequence Number

Reserved

FIIACP uses the file number as an index to the file header in the index file. Each time a header
block is used for a new file, the file sequence number is incremented. This ensures that the file
header is always unique. The third word is not currently used but is reserved for the future.

The Attribute List
The file attribute list controls FIIACP reads or writes. File attributes are fields in the file header.
These fields are described in detail in Chapter 2.

The attribute list contains a variable nurnlber of entries terminated by an all-0 byte. The maximum
number of entries in the attribute list is six.

An entry in the attribute list has the following fonnat:

.BYTE <Attribute type>. Attribute size

.WORD Pointer to' the attribute buffer

H-5

QIO$ Interface to the ACPs

H.3.2.1 The Attribute Type
This field identifies the individual attribute to be read or written. The sign of the attribute type
code determines whether the transfer is a read or write operation. If the type code is negative, tht
ACP reads the attribute into the buffer. If the type code is positive, the ACP writes the attribute
to the file header. Note that the sign of the type code must agree with the direction implied by thE
operation. For example, if the type code is positive, the operation must be an 10.WAT or 10.DAC
function code.

The attribute type is one of the following:

• File owner (H.FOWN)

The file owner User Identification Code (UIC) is a binary word. The low byte is the owner
number and the high byte is the group number.

• File protection (H.FPRO)

The file protection word is a bit mask with the following format:

Each of the fields contains four bits, as follows:

Bit 1 Read access

Bit 2 Write access

Bit 3 Extend access

Bit 4 Delete access

• File characteristics (H. UCHA)

The following user characteristics are currently contained in the I-byte H. UCHA field:

UC.CON - 200

UC.DLK -100

Logically contiguous file

File improperly closed

• Record I/O Area (U.UFAT)

This field contains a copy of the first seven words of the File Descriptor Block (FDB). (RMS
uses 32 bytes. The first seven are compatible with FCS for sequential files.) See Appendix A
for a description of the FDB.

• File name (I.FNAM)

The file name is stored as nine Radix-50 characters. The fourth word of this block contains the
file type and the fifth word contains the version number.

• File type (I.FTYP)

The file type is stored as three Radix-50 characters.

• Version number (I.FVER)

The version number is stored as a binary number.

• Expiration date (I.EXDT), creation date (I.CRDT), revision date (I.RVDT)

The expiration date is currently unused. When the file is created, the ACP initializes the
creation date to the current date and time. It initializes the expiration and revision dates to O.
The ACP sets the revision date to the current date and time each time the file is deaccessed by
a write access routi ne.

• Statistics block

This block is described in Appendix D.

H-6

H,,3.3

QIO$ Interface to the ACPs

• Read entire file header·

This buff43r is assumed to be lOOOs bytes long. You cannot write this attribute.

• Revision number (I.RVNO)

The ACP sets the revision number to 0, and the ACP increments it every time the file is
deaccessed by a write access routine.

• Placement control

Placement control is described in Sect.ion H.4.

H.3.2.2 Attribute Size
This byte specifies the number of bytes of'the attribute to be transferred. Legal values are from
1 to the maximum size of the particular Blttribute. Table H-2 shows the maximum size for each
attribute tYPE!.

Table H-2 Maximum Size for Each File Attribute

Maximum
Attribute Attribute TYpe
Type Code Attribute Type (Octal Bytes)

1 File owner 6

2 Protection 4

3 File characteristics 2

4 Record I/O area 40

5 File name, type, and version nurnber 12

6 File type 4

7 Versi()n number 2

10 Expiration date 7

11 Statistics block 12

12 Entire file header 0

13 Block size (magnetic tape only)

15 Revision number and creation/revision/expiration 43
dates

16 Placement control 16

H.3.,2.3 Attribute Buffer Address
The attribute buffer address field contains: the address of the buffer in the user's task space to or
from which the attribute is to be transferred.

Size and Extend Control
The size and E~xtend control parameters specify how many blocks the file processor al10cates to a
-new file or adds to an existing file. These parameters also control the type of block allocation.

The format is as fonows:

.BYTE <High 8 bits of size>, <extend control>

.WORD <Low 16 bits of size>

H-7

1-1.3.4

QIO$ Interface to the ACPs

The size field specifies the number of blocks to be allocated to a file on IO.CRE and IO.Exrr
operations, and the field specifies the final file size on IO.DEL operations.

The extend control field controls the manner in which an extend operation is to be executed. The
following bits are defined:

Bit

EX.AC1-1

EX.AC2-2

EX.FCO-4

EX.ADF-10

EX.ALL-20

EX.ENA-200

Definition

The extend size is to be added as a contiguous block.

Extend by the largest available contiguous piece up to the specified size.

The file must end up contiguous.

Use the de'fault rather than the specified size. The default extend size Is the size that was
specified when the volume was mounted.

Placement control (see Section H.4).

Enable extend.

Window Size and Access Control
The window and access control parameter specifies the window size and access control informatio:
in the following format:

.BYTE <window size>, <access control>

This word is only processed jf the high bit of the access control byte (AC.ENB) is set.

Window size is the number of mapping entries. Specifying a negative window size minimizes
window turns. If this byte is zero, the file processor uses the volume default. The ,size of the
window allocated in the pool is 6 times the number of mapping entries (each mapping entry is 3
words), plus 10 bytes for the window control block.

The following access control bits are defined:

Bit

AC.LCK-1

AC.DLK-2

AC.LKL-4

AC.EXL-10

AC.ENB-200

AC.RWD-10

AC.UPD-100

H-8

Definition

Lock out further accesses for Write or Extend

Enable deaccess lock

The deaccess lock sets the lock bit in the file header if the file is deaccessed as the result of a
task exit without explicitly deaccessing the file. The lock bit is set by the Executive. The lock bi'
is not set when the system crashes.

Enable block locking

Enable explicit block unlocking

Enable access

Rewind the volume (labeled and unlabeled magnetic tape only)

Update mode (labeled magnetic tape only)

H.3.5

QIO$ Interface to the ACPs

Bit Definition

AC.POS-20

AC.WCK-40

Do not position to end-of-volume (labeled magnetic tape only)

Initiate driver write-checking

NOTE: Both AC.LKL alnd AC.EXL must be set if you want block locking.
If you do not want block locking, both bits must be clear. Any other
combination is an errOlr.

Filename Block Pointer
The filename block pointer contains the address of a 15-word block in the issuing task's space. This
block is called the filename block. The filename block is described in detail in Appendix B.

The fields of the filename block that are JParticularly important in file-processing operations are as
follows:

• Directory identification (N.DID)

This fieldl is required for all disk operations. It specifies the directory to which the operation
applies. This field is not used for tap4e operations.

• File iden1tification (N.FID)

This field is required as input for entler operations. This field is returned as output by find and
remove operations.

• File namiB (N.FNAM), file type (N.FTYJ», and file version nwnber (N.FVER)

These fields are required as input to lenter, find, and remove operations. For find and remove
operation.s, the file processor locates the appropriate entry by matching the information in
these fields with the directory entries.

• Status word (N.STAT)

• Wildcard context (N .NEXT)

This field is required as input for wildcard operations. It specifies the point at which to reswne
processing. It is updated for the next operation. It must initially be set to O.

H.4 Placement Control
The placement control attribute list entry controls the placement of a file in a particular place
on the disk. You can specify either exact or approximate placement on IO.eRE and IO.EXT
operations.

The placement control entry must be the first entry in the attribute list.

The format of the placement control attribute list entry is as follows:

.BYTE placement control,O

.WORD high-ordelr bits of VBN or LBN

.WORK low-order bits of VBN or LBN

.BLKW 4 ;Eluffer to receive starting and ending LBN if AL.LBN is set.

H-9

010 Interface to the ACPs

The following bits are defined for the placement control field:

Bit

Al.VBN-1

Al.APX.2

ALLBN-4

Definition

Set if block specified is a virtual block number (VBN); otherwise, the block is the logical block
number (LBN).

Set if you want approximate placement: otherwise, placement is exact.

Set if you want starting and ending LBN information.

1-1.5 Block Locking
Block locking only occurs when the user accesses a file with AC.LKL and AC.EXL set in the acceSl
control byte of the parameter list. Any read or write operation causes a check to see if the block ie
locked.

A write access locks a block for exclusive access. A write operation can only access a block that
is not locked by any accessor. The only exception to this is an exact match with a previous lock
owned by the same accessor.

A read access locks a block for shared access. A read operation can access any block locked for
shared access.

The user must unlock a block with the explicit unlock request, IO.ULK. You can use IO.ULK to
unlock one or all locked blocks.

If all accessors to a file have not requested block locking, the F11ACP returns an error (see
Table H-1).

When the file is deaccessed, all locks owned by the accessor are released.

Each active lock requires 8 bytes from the system primary pool storage region. This storage is
deallocated when the file is deaccessed.

H.6 Summary of F11ACP Functions
The following is a summary of the functions implemented in F11ACP. A list of accepted parameter
follows each function. All parameters are required unless specified as optional. Parameters other
than those listed are illegal for that function and must be O.

Function Parameter

IO.CRE

#1

#2

#3 & #4

#5

IO.DEL

H-10

Meaning

Create file

Indicates the file identifier block is filled in with the file identifier and sequence
number of the created file.

Indicates write attribute and/or placement control list (optional).

Indicates extend control (optional).

The amount allocated to the file is returned in the high byte of IOST(1) plus IOST(2

Might be nonzero but must be disabled.

Delete or truncate file

Function

to.ACR

IO.ACW

, to.ACE

IO.DAC

IO.EXT

IO.RAT

IO.FNA

IO.RNA

IO.ENA

IO.ULK

IO.Rve

lo.wve

Parameter

N1

N3 & ##4

N1

N2
N5

N1

#2

#5

#1

#2

#3

#1

#2

N5

#6

#2

#4

#1

#2

#4 & #5

QIO$ Interface to the ACPs

Meaning

Optional if the file is accessed.

Indicates size to truncate the file to. If not enabled, the file is deleted. If enabled,
the remaining 311 bits specify the size the file is to be after truncation. The change
in file allocation is returned in the high byte of 108T(1) plus 108T(2). This amount
will be zero or n,egative.

Access file for read only

Access file for read/write

Access file for read/write/extend

Indicates file identifier pointer.

Indicates read a1ttributes control (optional).

Indicates access control must be enabled.

Deaccess file

Indicates file identifier pointer (optional).

Indicates write attributes control list.

Might be nonzem but must be disabled.

Extend file

Optional if file is accessed.

Indicates placement control attribute list (optional).

Indicates extend control.

The amount allocated to the file is returned in the high byte of 108T(1) plus 108T(2).

Read attributes

Optional if file is accessed.

Indicates read attributes control list.

Find name In directory

Remove name from directory

Enter name In dllrectory

Might be nonzero but must be disabled.

Indicates filename block pointer.

Unlock block

Indicates 0 or count of blocks to unlock.

Indicates starting virtual block number (VBN) to unlock or 0 to unlock all blocks.

Read virtual block

Write virtual block

Indicates user buffer.

Indicates buffer hmgth.

Indicates virtual block number (VBN).

H-11

QIO Interface to the ACPs

H.7 Summary of MTAACP Functions
The following is a summary of the functions implemented in MTAACP. A list of accepted
parameters follows each function. All parameters are required unless specified as optional.
Parameters other than those listed are illegal for that function and must be O.

Function Parameter

IO.FNA

#5

#6

IO.ENA

IO.ACR

#1

#2

#5

IO.ACW

IO.ACE

#1

#2

#5

IO.OAC

#1

#5

IO.RVa

#1

#2

#4

#5

IO.CRE

H-12

Meaning

Find file by name

Indicates that the volume is to be rewound prior to the search when AC.RWD Is set
in the access control byte.

Indicates pointer to filename block.

The following fields are used as input: N.FNAM, N.FTYP, N.FVER, and N.STAT.

The following fields are returned by MTAACP: N.FID, N.FNAM, N.FTYP, N.FVER,
and N.STAT.

Enter name In directory - nonoperatlonal for magnetic tape

Access for read only

Indicates file identifier pointer. Used to position a tape by file identifier.

Indicates read attribute list (optional).

Ignored.

Access for read/write

This function will be rejected with the error code IE.PRI. (Extend access is required.)

Access for read/write/extend

Indicates file identifier pointer. Used to position tape by file identifier.

Indicates read attribute list (optional).

Indicates AC.UPD (update mode). If AC.UPD is set, the tape will be positioned to
overwrite the file and all files beyond the current file will be lost. If AC.UPD is not
set, the tape will be positioned for append. If the file is not the last file, MTAACP
returns the error code IE.ISQ.

Oeaccess file

Indicates file identif.ier pointer is ignored.

Indicates that the volume is to be rewound after the file is closed when AC.RWD is
set.

Read virtual block

Indicates buffer address.

Indicates buffer size. The buffer size must be greater than 18 bytes and less than
the declared block length for the entire file.

Indicates a high virtual block number (VBN).

Indicates a low VBN.

NOTE: The virtual block number must be either zero or exactly
1 greater than the previous block number.
Create File

Function

IO.RAT

IO.APe

Parameter

#1

#2

#5

#6

#1

#2

QIO Interface to the ACPs

Meaning

Indicates the filEI identifier pointer. The file sequence and section number will be
returned to the user's file identifier block.

Indicates attribute list pointer. Used to write the attributes for the newly created file.
Attribute type cede must be positive.

If AC.RWD is SElt, the volume will be positioned at the beginning and will overwrite
the first file. Thi:s effectively reinitializes the volume.

If AC.RWD is not set and AC.POS is set, the volume set will be positioned to the
next file position beyond the current file and will overwrite that file. All flies beyond
that on the volume will be destroyed.

If neither AC.RVVD nor AC.POS is set, the volume set will be positioned at Its end
and the new file will be appended to the set.

For unlabeled tapes, MTAACP only checks AC.RWD.

Rlename block pointer.

Read Attrlbute!:1

Indicates the file identifier pointer. Used to position the tape by the file Identifier.

Indicates attribute list pointer (see Section H.3.2).

The following att.ribute list entries are meaningful for magnetic tape:

1,2 UIC
1 ,4 UIC and protection
1,5 UIC, protection, and characteristics
2,2 Protection
2,3 Protection and characteristics
3,1 Cha.racteristics
4,32 User file attributes
5,6 File name
5,8 File name and type
5,10 File name and type
6,2 File type
6,4 File type and version number
7,2 Ven;ion number
8,7 Expiration date
-9,10 Statistics block (read only)
-10,0 Entire header (read only)
11 ,2 Block size

ACP Control

H-13

QIO$ Interface to the ACPs

Function Parameter

#3

IO.APV

H--14

Meaning

Indicates one of the following user control function codes:

1 Rewind volume set.
2 Position to end of volume set.
3 Close current volume and continue processing the next

section of the same file on the next volume of the volume
set.

4 Space physical records in currently accessed file.
5 Get ACP characteristics.
6 Rewind current file.

Privileged ACP Control

This function is used only by the MOUNT and DISMOUNT commands. This
interface is subject to change and, therefore, will not be documented until a future
release.

I Field Size Symbols

1.'1 System Liibrary Symbols
Table 1-1 describes the field size symbols that reside in the System Library (SYSLIB). These
,symbols are global symbols that are resolved at task-build time through SYSLIB.

Table 1-1 FI~eld Size Symbols

Symbol

S.BFHD

S.FATT

F.FDB

F.FNAM

S.FNB

S.FNBW

S.FNTY

S.FSR2

S.FTYP

F.NFEN

I)escrlptlon

Indicates the size of the file stora!~e region (FSR) block buffer header In bytes.

Indicates the size of the File Des(:riptor Block (FOB) file attribute area In bytes.

Iindicates the size of the FOB in bytes (Including the name block).

Indicates the size of the file name in bytes (stored in Radix-50 format).

Indicates the size of the filename block (FNB) in bytes.

Indicates the size of the filename block in words.

Iindicates the size of the file name and file type in words (stored in Radix-50 format).

Iindicates the size of the FSR2 (bnsic impure area).

Indicates the size of the file type in bytes (stored in Radix-50 format).

Iindicates the size of a complete file name in bytes-file 10, name, type, and version.

1-1

J Sample Programs

The sample programs that follow read re(:ords from an input device, strip off any blanks to the
right of the data portion of the record, and write the data record on an output device. While the
programs are intended primarily for card reader input and printer output, device independence is
maintained.

J.1 Program CReOpy
The following example is the main program and is entitled CRCOPY. Sections J.2 and J.3 contain
programs tha1t are variations of CRCOPY (CRCOPA and CRCOPB).

.TITLE CRCOPY iCard reader copy routine

.MCALL FDBDF~~, FDAT$A, FDRC$A, FDOP$A, NMBLK$, FSRSZ$

.MCALL OPEN$R,OPEN$W,GET$,PUT$,CLOSE$,EXIT$S

.MCALL FINIT$

FDBOUT:

FDBIN:

RECBUF:
OI!"'NAM:
Ili'NAM:
START:

GTREC:

10$:

INLUN=3
OUTLUN=4
FSRSZ$
FDBDF$
FDAT$A
FDRC$A
FDOP$A
FDBDF$
FDRC$A
FDOP$A
. BLKB
NMBLK$
NMBLK$
FINIT$
OPEN$R
BCS
OPEN$W
BCS
GET$
BCS

2

R.VAR,FD.CR
,RECBUF,80.
OUTLUN"OFNAM

,RECBUF,80.
INLUN, ,IFNAM
80 .
OUTPU~~, OAT
INPUT, OAT

#FDBIN
ERROR
#FDBOUT
ERROR
#FDBIN
CKEOF

MOV F.NRBD(RO),R1
MOV #RECBUF,R2
ADD R1,R2
CMPB #40,-(R2)
BNE PTREC
SOB R1, 10~;

iAssign CR or file device
iAssign to output device

iAllocate space for output FOB
iInit file attributes
iInit record attributes
iInit file open section
iAllocate space for input FOB
iInit record attributes
iInit file open section
iRecord buffer
iOutput filename
;Input filename
iInit file storage region
iOpen the input file
;Branch if error
iOpen the output file
iBranch if error
iNote - URBD is all set up
;Error should be EOF indication
;R1=size of record read

;R2=address of last byte+1
;Strip trailing blanks

;At this point, R1 contains the stripped size of the
;record to be written. If the card is blank,
;a zero-length record is written.

PTREC: PUT$
BCC

ERROR: NOP

#FDBOtJT"R1
GTREC

;R1 is needed to specify
;the record size.
;Error code goes here

J-1

Sample Programs

CKEOF: CMPB #IE.EOF,F.ERR(RO) iEnd of file?
BNE ERROR iBranch if other error
CLOSES RO iClose the input file
BCS ERROR
CLOSES #FDBOUT iClose the output file
BCS ERROR
EXIT$S iIssue exit directive
.END START

J.2 Program CRCOPA
The following sample program is entitled, CRCOPA. The CRCOPA program uses a data-set
descriptor instead of the default filename block used in CRCOPY.

J-2

.TITLE CRCOPA iCard reader copy routine

. MCALL FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$

.MCALL OPEN$R,OPEN$W,GET$,PUT$,CLOSE$,EXIT$S

.MCALL FINIT$

INLUN=3
OUTLUN=4
FSRSZ$ 2

FDBOUT: FDBDF$
FDAT$A R.VAR,FD.CR
FDRC$A ,RECBUF,80.
FDOP$A OUTLUN,OFDSPT

FDBIN: FDBDF$
FDRC$A ,RECBUF,80.
FDOP$A INLUN,IFDSPT

RECBUF: .BLKB 80.
CFDSPT: .WORD 0,0

. WORD 0,0

. WORD ONAM$Z,ONAM
IFDSPT: .WORD 0,0

. WORD 0,0

. WORD INAMSZ,INAM
ONAM: .ASCII /OUTPUT.DAT/

ONAMSZ=.-ONAM
. EVEN

INAM: .ASCII /INPUT.DAT/
INAMSZ=.-INAM
. EVEN

;Assign CR or file device
;Assign to output device

;Device descriptor
;Directory descriptor
;Filename descriptor
;Device descriptor
;Directory descriptor
;Filename descriptor

FINIT$ START: ;Init file storage region
OPEN$R
BCS
OPEN$W
BCS

#FDBIN
ERROR
#FDBOUT
ERROR

iOpen tne input file
;Branch if error
;Open the output file
iBranch if error

GET$ #FDBIN GTREC: ;Note - URBD is all set up
BCS
MOV
MOV
ADD

10$: CMPB
ENE
SOB

CKEOF
F.NRBD(RO),R1
#RECBUF,R2
R1, R2
#40,-(R2)
PTREC
R1,10$

;Error should be EOF indication
;R1=size of record read

;R2=address of last byte+1
;Strip trailing blanks

;At this point, R1 contains the stripped size of the
irecord to be written. If the card is blank,
;a zero-length record is written.

Sample Programs

P'X'REC: PUTS #FDBOtrT"R1 ;R1 is needed to specify
BCC GTREC ;the record size.

ERROR: NOP ;Error code goes here
CKEOF: CMPB iIE.EOF,F.ERR(RO) ;End of file?

BNE ERROR ;Branch if other error
CLOSES RO ;Close the input file
BCS ERROR
CLOSES #FDBOtrT ;Close the output file
BCS ERROR
EXIT$S ;Issue exit directive
• END START

J.3 Program (:RCOPB
The following program is entitled CRCOP]B. The CRCOPB program uses run-time initialization of
the File Descriptor Block (FDB).

FDBOUT:
FDBIN:
RECBUF:
CE'DSPT:

U'DSPT:

ONAM:

INAM:

S'l~ART:

G'l'REC:

10$:

• TITLE CRCOPE, iCard reader copy routine

.MCALL FDBDF$,FDAT$A,FDRC$A,FDOP$A,NMBLK$,FSRSZ$

.MCALL OPEN$R,OPEN$W,GET$,PUT$,CLOSE$,EXIT$S

.MCALL FINIT$,FDAT$R

INLUN=3
OUTLUN=4
FSRSZ$
FDBDF$
FDBDF$
. BLKB
• WORD
. WORD
• WORD
• WORD
. WORD
• WORD
.ASCII

2

80 .
0,0
0,0
ONAM$Z,ONAM
0,0
0,0
INAMSZ,INAM
/OUTPUT.DAT/

;Assign CR or file device
;Assign to output device

;Device descriptor
;Directory descriptor
;Filename descriptor
;Device descriptor
;Directory descriptor
;Filename descriptor

ONAMSZ=.-ONAM
• EVEN
.ASCII /INPUT.DAT/
INAMSZ=.-INAM
. EVEN
FINIT$
OPEN$R

BCS
FDAT$R
OPEN$W
BCS
GET$
BCS
MOV
MOV
ADD
CMPB
BNE

;Init file storage region
tFDBIN,#INLUN,tIFDSPT"tRECBUF,#80.

;Runtime initialization
ERROR ;Branch if error
tFDBOUT,#R.VAR,#FD.CR ;Runtime initialization
RO,#OUTLUN,#OFDSPT"tRECBUF,#80.
ERROR ;Branch if error
tFDBIN iNote - URBD is all set up
CKEOF ;Error should be EOF indication
F.NRBD(RO),R1
iRECBUF,R2
Rl,R2
i40,-(R2)
PTREC

iR1=size of record read

iR2=address of last byte+1
;Strip trailing blanks

SOB R1,10$
;At this point, R1 contains the stripped size of the
;record to be written. If the card is blank,
;a zero-length record is written.

J-3

Sample Programs

PTREC: PUTS #FDBOUT"Rl ;Rl is needed to specify
BCC GTREC ;the record size.

ERROR: NOP ;Error code goes here
CKEOF: CMPB tIE.EOF,F.ERR(RO) ;End of file?

BNE ERROR ;Branch if other error
CLOSES RO ;Close the input file
BCS ERROR
CLOSES #FDBOUT ;Close the output file
BCS ERROR
EXIT$S ;Issue exit directive
.END START

J-4

K Error Codes

This appendix includes the source code for the following:

• 110 elTor codes

• Directive Stat1l1S Word (DSW) elTor codes

• 110 functiion codes

This source code is located in [61,10]QI01MAC.MAC and is listed as follows:

;+

.TIT1:'E QIOMAC - QIOSYM MACRO DEFINITION

DATE OF LAST MODIFICATION:

RYAN CHR.ISTOPHER 16-Nov-1984

***** ALWJ~YS UPDATE THE FOLLOWING TWO LINES TOGETHER
.IDENT /0375/
QI. VI:R=0375

COPYRIGHT (C) 1983, 1984
DIGITAL E()UIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A
SINGLE COMPUTER SYSTEM AND CAN BE COPIED ONLY WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR
ANY OTHER COPIES THEREOF, CAN NOT BE PROVIDED OR OTHERWISE
MADE AVAII~LE TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH
SYSTEM AND TO ONE WHO AGREES TO TH~SE LICENSE TERMS. TITLE
TO AND O~'ERSHIP OF THE SOFTWARE SRALL AT ALL TIMES REMAIN
IN DEC.

THE INFO~IATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT
NOTICE ANtI SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUME:S NO RESPONSIBILITY FOR 'rHE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

SHANE MICHAEL 1-0CT-73

MACRO TO DEFINE STANDARD QUEUE I/O DIRECTIVE FUNCTION VALUES
AND IOSB RETURN VALUES. TO INVOKE AT ASSEMBLY TIME (WITH LOCAL
DEFINITION) USE:

QIOSY$;DEFINE SYMBOLS

K-1

Error Codes

TO OBTAIN GLOBAL DEFINITION OF THESE SYMBOLS USE:

QIOSY$ DEF$G iSYMBOLS DEFINED GLOBALLY

'I'HE MACRO CAN BE CALLED ONCE ONLY AND THEN
REDEFINES ITSELF AS NULL .

. MACRO QIOSY$ $$$GBL,$$$MSG

.IIF IDN,<$$$GBL>,<DEF$G>, .GLOBL QI.VER

.IF IDN,<$$$MSG>,<DEF$S>
$$$MAX=O
$$MSG=l
.IFF
$$MSG=O
.ENDC
. MCALL
IOERR$
. MCALL
DRERR$
.IF
. MCALL
FILIO$
. MCALL
SPCIO$
. MACRO
.ENDM
.ENDC
.ENDM

IOERR$
$$$GBL
DRERR$
$$$GBL
DIF,<$$$MSG>,<DEF$S>
FILIO$
$$$GBL
SPCIO$

iI/O ERROR CODES FROM HANDLERS, FCP, FCS

iDIRECTlVE STATUS WORD ERROR CODES

iDEFINE GENERAL I/O FUNCTION CODES

;DEVICE-DEPENDENT I/O FUNCTION CODES $$$GBL
QIOSY$
QIOSY$

ARG,ARG1,ARG2 ;RECLAIM MACRO STORAGE

QIOSY$

DEFINE THE ERROR CODES RETURNED BY DEVICE HANDLER AND FILE PRIMITIVES
IN THE FIRST WORD OF THE I/O STATUS BLOCK
THESE CODES ARE ALSO RETURNED BY FILE CONTROL SERVICES (FCS) IN THE
BYTE F.ERR IN THE FILE DESCRIPTOR BLOCK (FDB)

THE BYTE F.ERR+l IS 0 IF F.ERR CONTAINS A HANDLER OR FCP ERROR CODE •

. ENABL LC

. MACRO IOERR$ $$$GBL

. MCALL .IOER.,DEFIN$

.IF IDN, <$$$GBL>, <DEF$G>

... GBL=l

.IFF

... GBL=O

.ENDC

.IIF NDF,$$MSG,$$MSG=O

K-2

Error Codes

SYSTEM STJ\NDARD CODES, USED BY EXECUTIVE AND DRIVERS

• IOER.
.IOER.
.IOER.
.lOER.
.IOER.
.IOER.
• IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
. IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.
.IOER.

IE.BAD,-Ol.,<Bad parameters>
IE.IFC,-02.,<Invalid function code>
IE.DNR,-03.,<Device not ready>
IE. VER, -04., <Parity E~rror on device>
IE.ONP,-05.,<Hardwaro option not present>
IE.SPC,-06.,<111egal user buffer>
IE.DNA,-07.,<Device not attached>
IE.DAA,-08.,<Device already attached>
IE.DUN,-09.,<Device not attachable>
IE.EOF,-10.,<End of file detected>
IE.EOV,-ll.,<End of volume detected>
IE. WLK, -12., <Write a1:tempted to locked unit>
IE .DAO, -13., <Data OVE~rrun>
IE.SRE,-14.,<Send/receive failure>
IE.ABO,-15.,<Request terminated>
IE.PRI,-16.,<Privilege violation>
IE.RSU,-17.,<Shareable resource in use>
IE.OVR,-18.,<111egal overlay request>
IE .BYT, -19., <Odd bytE~ count (or virtual address) >
IE.BLK,-20.,<Logical block number too large>
IE.MOD,-21.,<lnvalid UDC module t>
IE.CON,-22.,<UDC connect error>
IE.BBE,-56.,<Bad block on device>
IE.STK,-58.,<Not enough stack space (FCS or FCP»
IE .FHE, -59., <Fatal hctrdware error on device>
IE.EOT,-62.,<End of t:ape detected>
IE.OFL,-65.,<Device off line>
IE.BCC,-66.,<Block check, CRC, or framing error>
IE.NFW,-69.,<Path lost to partner> ;THIS CODE MUST BE ODD
IE.DIS,-69.,<Path lost to partner> ;DISCONNECTED (SAME AS NFW)
IE.PNT,-71.,<Partition/Region not in system>
IE.NDR,-72.,<No dynamic space available> ; SEE ALSO IE.UPN
IE.TMO,-95.,<Timeout on request> see also IS.TMO
IE.CNR,-96.,<Connection rejected>
IE.MII,-99.,<Media inserted incorrectly>
IE. SPI, -100., <Spindot-Tn ignored>
IE.FER,-101.,<Forced error mark encountered>

FILE PRIMITIVE CODES

.lOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.IOER.

.lOER.

.IOER.

.IOER .

. IOER.

.lOER .

. IOER.

.IOER.

.IOER.

.IOER .

. IOER.

IE.NOD,-23.,<Caller's nodes exhausted>
IE.DFU,-24.,<Device full>
IE.IFU,-25.,<Index file full>
IE.NSF,-26.,<No such file>
IE.LCK,-27.,<Locked from read/write access>
IE.HFU,-28.,<File header full>
IE.WAC,-29.,<Accessed for write>
IE.CKS,-30.,<File header checksum failure>
IE. WAT, -31., <Attribut:e control list format error>
IE.RER,-32.,<File processor device read error>
IE.WER,-33.,<File pr<:>cessor device write error>
IE.ALN,-34.,<File already accessed on LUN>
IE.SNC,-35.,<File 10, file number check>
IE.SQC,-36.,<File 10, sequence number check>
IE.NLN,-37.,<No file accessed on LUN>
IE.CLO,-38.,<File was not properly closed>
IE.OUP,-57.,<ENTER - duplicate entry in directory>
IE .BVR, -63., <Bad versdon number>
IE.BHO,-64.,<Bad file header>
IE.EXP,-75.,<File expiration date not reached>

K-3

Error Codes

. IOER.

.IOER.

.IOER.

. IOER.

.IOER.

.IOER.

IE.BTF,-76.,<Bad tape format>
IE.ALC,-94.,<Allocation failure>
IE.ULK,-95.,<Unlock error>
IE.WCK,-96.,<Write check failure>
IE.DSQ,-90.,<Disk quota exceeded>
IE.PIO,-104.,<Deacess failed due to pending I/O>

FILE CONTROL SERVICES CODES

.IOER.

. IOER.
• IOER.
. IOER.
.IOER.
. IOER.
. IOER.
• IOER.
.IOER.
.10ER.
.10ER.
.10ER.
.10ER.
.10ER.
.10ER.
.10ER.
.10ER.
.10ER.
.10ER.

IE.NBF,-39.,<REFERENCE>(symbol) (OPEN - no buffer space available for j

IE.RBG,-40.,<REFERENCE>(symbol) (Illegal record size)
IE.NBK,-41.,<REFERENCE>(symbol) (File exceeds space allocated, no bloc)
IE.ILL,-42.,<REFERENCE>(symbol) (Illegal operation on file descriptor t
IE.BTP,-43.,<REFERENCE>(symbol) (Bad record type)
IE.RAC,-44.,<REFERENCE>(symbol) (Illegal record access bits set)
IE.RAT,-45.,<REFERENCE>(symbol) (Illegal record attributes bits set)
IE.RCN,-46.,<REFERENCE>(symbol) (Illegal record number - too large)
IE.2DV,-48.,<REFERENCE>(symbol) (Rename - 2 different devices)
IE.FEX,-49.,<REFERENCE>(symbol) (Rename - new file name already in use)
IE.BDR,-50.,<REFERENCE>(symbol) (Bad directory file)
IE.RNM,-51.,<REFERENCE>(symbol) (Can't rename old file system)
IE.BDI,-52.,<REFERENCE>(symbol) (Bad directory syntax)
IE.FOP,-53.,<REFERENCE>(symbol) (File already open)
IE.BNM,-54.,<REFERENCE>(symbol) (Bad file name)
IE.BDV,-55.,<REFERENCE>(symbol) (Bad device name)
IE.NFI,-60.,<REFERENCE>(symbol) (File ID was not specified)
IE.ISQ,-61.,<REFERENCE>(symbol) (Illegal sequential operation)
IE.NNC,-77.,<REFERENCE>(symbol) (Not ANSI 'D' format byte count)

NETWORK ACP, PSI, AND DECDATAWAY CODES

.IOER.

.10ER.

.10ER.

.10ER.

.10ER.

.10ER.

.10ER.

.10ER.

.10ER.

.10ER.

.10ER.

.IOER.

IE.NNN,-69.,<No such node>
IE.BLB,-70.,<Bad logical buffer>
IE.URJ,-73.,<Connection rejected by user>
IE.NRJ,-74.,<Connection rejected by network>
IE.NDA,-7B.,<No data available>
IE.IQU,-91.,<Inconsistent qualifier usage>
IE.RES,-92.,<Circuit reset during operation>
IE.TML,-93.,<Too many links to task>
IE.NNT,-94.,<Not a network task>
IE.UKN,-97.,<Unknown name>
IE.IRR,-102.,<Insufficient resources at remote node>
IE.SIU,-103.,<Service in use>

ICS/ICR ERROR CODES

.10ER.

.10ER.

.10ER.

IE.NLK,-79.,<Task not linked to specified ICS/ICR interrupts>
IE.NST,-BO.,<Specified task not installed>
IE.FLN,-Bl.,<Device offline when offline request was issued>

TTY ERROR CODES

. IOER.

.IOER.
IE.IES,-82.,<Invalid escape sequence>
IE.PES,-83.,<Partial escape sequence>

RECONFIGURATION CODES

. IOER.

.IOER.

.IOER.

IE.ICE,-47.,<Internal consistancy error>
IE.ONL,-67.,<Device online>
IE.SZE,-98.,<Unable to size device>

PCL ERROR CODES

K-·4

;

Error Codes

.IOER.
• IOER.
.IOEJR.

IE .NTR, -87 ., <Task nc)t triggered>
IE.REJ,-88.,<Transfer rejected by rece1v1ng CPU>
IE.FLG,-89.,<Event flag already specified>

SUCCESSFU:L RETURN CODES---

DEFIJ~$
DEFIN$
DEFIN$

DEFll~$

DEFIN$

DEFIN$

DEFI1~$

IS.PND,+OO.
IS.SUC,+Ol.
IS.RDD,+02.

IS.TNC,+02.

IS.CHW,+04.

IS.BV,+OS.

IS.DAO,+02.

;OPERATION PENDING
;C~PERATION COMPLETE, SUCCESS
;F'LOPPY DISK SUCCESSFUL COMPLETION
iOF A READ PHYSICAL, AND DELETED
iDATA MARK WAS SEEN IN SECTOR HEADER
; (PCL) SUCCESSFUL TRANSFER BUT MESSAGE
i1'RUNCATED (RECEIVE BUFFER TOO SMALL) .
i(IBM COMM) DATA READ WAS RESULT OF
iIBM HOST CHAINED WRITE OPERATION
i(A/D READ) AT LEAST ONE BAD VALUE
i~'AS READ (REMAINDER MIGHT BE GOOD).
;E,AD CHANNEL IS INDICATED BY A
;N'EGATIVE VALUE IN THE BUFFER.
;SUCCESSFUL BUT WITH DATA OVERRUN
; (NOT TO BE CONFUSED WITH IE.DAO)

TTY SUCCESS CODES

DEFIN$
DEFIN$
DEFIN$
DEFIN$
DEFIN$
DEFIN$
DEFIt~$

DEFIN$
DEFIN$
DEFIN$

IS.CR,<lS*400+1>
IS.ESC,<33*400+1>
IS.CC,<3*400+1>
IS.ESQ,<233*400+1>
IS.PES,<200*400+1>
IS.EOT,<4*400+1>
IS.TAB,<11*400+1>
IS.TMO,+2.
IS.00B,+3.
IS.TMM,+4.

iCARRIAGE RETURN WAS TERMINATOR
iESCAPE (ALTMODE) WAS TERMINATOR
;CONTROL-C WAS TERMINATOR
iESCAPE SEQUENCE WAS TERMINATOR
iPARTIAL ESCAPE SEQUENCE WAS TERMINATOR
iEOT WAS TERMINATOR (BLOCK MODE INPUT)
iTAB WAS TERMINATOR (FORMS MODE INPUT)
;REQUEST TIMED OUT
iOUT OF BAND TERMINATOR (TERM IN HIGH BYTE)
;READ COMPLETED, MANAGEMENT MODE SEQ RCVD

Professional Bisync Success Codes

DEFItf$
DEFIN$
DEFIN$

IS.RVI,+2.
IS.CNV,+3.
IS.XPT,+S.

DATA SUCC. XMITTEDi HOST ACKED W/RVI
DATA SUCC. XMITTEDi HOST ACKED WICONVERSATION
DATA SUCC. RECVD IN TRANSPARENT MODE

Professional Bisync Abort Codes

These codE~s are returned in the high byte of the first word of the IOSB
when the low byte contains IE.ABO.

DEFIlII$ SB .KIL,-l. ABORTED BY IO.KIL
DEFIlII$ SB.ACK,-2. ABORTED BECAUSE TOO MANY ACKS RECD OUT OF SEQ
DEFIlII$ SB.NAK,-3. ABORTED BECAUSE NAK THRESHOLD EXCEEDED
DEFIlII$ SB.ENQ,-4. ABORTED BECAUSE ENQ THRESHOLD EXCEEDED
DEFIlII$ SB.BOF,-S. ABORTED BECAUSE OF IO.RLB BUFFER OVERFLOW
DEFIlII$ SB.TMO,-6. ABORTED BECAUSE OF TIMEOUT
DEFIN$ SB.DIS,-7. ABORTED BECAUSE HOST DISCONNECTED WI OLE, EOT

THE NEXT JlVAILABLE ERROR NUMBER IS: -101.

.IF
. MACRO
.ENDM
.ENDC
. EN OM

EQ,$$MSG
IOERR$ A
IOERR$

IOERR$

K-5

Error Codes

DEFINE THE DIRECTIVE ERROR CODES RETURNED IN THE DIRECTIVE STATUS WORD

FILE CONTROL SERVICES (FCS) RETURNS THESE CODES IN THE BYTE F.ERR
OF THE FILE DESCRIPTOR BLOCK (FOB). TO DISTINGUISH THEM FROM THE
OVERLAPPING CODES FROM HANDLER AND FILE PRIMITIVES, THE BYTE
F.ERR+l IN THE FOB WILL BE NEGATIVE FOR A DIRECTIVE ERROR CODE.

. MACRO

. MCALL

.IF

... GBL=l

.IFF

... GBL=O

.ENDC

.IIF

DRERR$ $$$GBL
.QIOE.,DEFIN$
IDN,<$$$GBL>,<DEF$G>

NDF,$$MSG,$$MSG=O

STANDARD ERROR CODES RETURNED BY DIRECTIVES IN THE DIRECTIVE STATUS WORD

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE .

. QIOE.

.QIOE.

.QIOE .

. QIOE.

.QIOE.

.QIOE.

.QIOE .

. QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE.

.QIOE .

. QIOE.

.QIOE .

. QIOE.

.QIOE.

.QIOE .

. QIOE.

.QIOE.

IE.UPN,-Ol.,<Insufficient dynamic storage> ; SEE ALSO IE.NDR
IE.INS,-02.,<Specified task not installed>
IE.PTS,-03.,<Partition too small for task>
IE.UNS,-04.,<Insufficient dynamic storage for send>
IE.ULN,-05.,<Un-assigned LUN>
IE.HWR,-06.,<Device handler not resident>
IE.ACT,-07.,<Task not active>
IE.ITS,-08.,<Directive inconsistent with task state>
IE.FIX,-09.,<Task already fixed/unfixed>
I&.CKP,-lO.,<Issuing task not checkpointable>
IE.TCH,-ll.,<Task is checkpointable>
IE.RBS,-l5.,<Receive buffer is too small>
IE.PRI,-l6.,<Privilege violation>
IE.RSU,-l7.,<Resource in use>
IE.NSW,-l8.,<No swap space available>
IE.ILV,-l9.,<Illegal vector specified>
IE.ITN,-20.,<Invalid table number>
IE.LNF,-2l.,<Logical name not found>

IE.AST,-80.,<Directive issued/not issued from AST>
IE.MAP,-81.,<Illegal mapping specified>
IE.IOP,-83.,<Window has I/O in progress>
IE.ALG,-84.,<Alignment error>
IE.WOV,-85.,<Address window allocation overflow>
IE.NVR,-86.,<Invalid region 10>
IE.NVW,-87.,<Invalid address window 10>
IE.ITP,-88.,<Invalid TI parameter>
IE.IBS,-89.,<Invalid send buffer size (.GT. 255.»
IE.LNL,-90.,<LUN locked in use>
IE.IUI,-91.,<Invalid UIC>
IE.IDU,-92.,<Invalid device or unit>
IE.ITI,-93.,<Invalid time parameters>
IE.PNS,-94.,<Partition/region not in system>
IE.IPR,-95.,<Invalid priority (.GT. 250.»
IE.ILU,-96.,<Invalid LUN>
IE.IEF,-97.,<Invalid event flag (.GT. 64.»
IE.ADP,-98.,<Part of DPB out of user's space>
IE.SDP,-99.,<DIC or DPB size invalid>

SUCCESS CODES FROM DIRECTIVES - PLACED IN THE DIRECTIVE STATUS WORD

K-6

DEFIN$

DEFIN$

DEFIN$

DEFINI$

DEFIN$

.IF
• MACRO
.END~(

.ENDC:

.ENDH

IS.CLR,O

IS.SET,2

IS.SPD,2

IS.SUP,3

IS.WAT,4

JE:Q, $$MSG
DRERR$ A
DRERR$

DRERR$

: EVEN~~ FLAG WAS CLEAR
:FROM CLEAR EVENT FLAG DIRECTIVE
: EVEN~r FLAG WAS SET
:FROM SET EVENT FLAG DIRECTIVE
:TASK WAS SUSPENDED

:LOGICAL NAME SUPERSEDED

:OPEru\TION INITIATED, WAIT FOR COMPLETION
:FROM "VAX-ll lAS" RMS-21 ELEP$ DIRECTIVE

DEFINE THE: GENERAL I/O FUNCTION CODES - DEVICE INDEPENDENT

• MACRO
. MCAI.L
.IF
.IFF

:FILIO$ $$$GBL
.WORD.,DEFIN$
IDN,<$$$GBL>,<DEF$G>

••. GElL=O
.ENDC

GENERAL I/O QU,ALIFIER BYTE DEFINITIONS

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IQ.X,OOl,OOO
IQ.Q,002,OOO
IQ.S,004,OOO
IQ.UMD,004,OOO
IQ.LCK,200,OOO

EXPRESS QUEUE COMMANDS

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.KIL,012,OOO
IO.RDN,022,OOO
IO.UNL,042,OOO
IO.LTK,050,OOO
IO.RTK,060,OOO
IO.SET,030,000

GENERAL DI~VICE DRIVER CODES

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.WLB,OOO,OOl
IO.RLB,000,002
IO.LOV,010,002
IO.LDO,110,002
IO.ATT,000,003
IO.DET,000,004

DIRECTORY PRIMITIVE CODES

.WORD.

.WORD.

.WORD.

IO.FNA,OOO,Oll
IO.RNA,000,013
IO.ENA,000,014

:NO ERROR RECOVERY
:QUgUE REQUEST IN EXPRESS QUEUE
;S~~ONYM FOR IQ.UMD
:USlgR MODE DIAGNOSTIC STATUS REQUIRED
:MODIFY IMPLIED LOCK FUNCTION

:KILL CURRENT REQUEST
:1/0 RUNDOWN
:UNLOAD I/O HANDLER TASK
: LO,r>.D A TASK IMAGE FILE
;RECORD A TASK IMAGE FILE
; SE'T CHARACTERISTICS FUNCTION

;WRITE LOGICAL BLOCK
;READ LOGICAL BLOCK
;LOAD OVERLAY (DISK DRIVER)
;LOAD D-SPACE OVERLAY (DISK)
;ATTACH A DEVICE TO A TASK
;DETACH A DEVICE FROM A TASK

;FIND FILE NAME IN DIRECTORY
;REMOVE FILE NAME FROM DIRECTORY
;ENTER FILE NAME IN DIRECTORY

Error Codes

K-7

Error Codes

FILE PRIMITIVE CODES

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

• MACRO
.ENDM
.ENDM

IO.CLN,000,007
IO.ULK,OOO,012
IO.ACR,000,015
IO.ACW,OOO,016
IO.ACE,000,017
IO.DAC,000,020
IO.RVB,000,021
IO.WVB,000,022
IO.EXT,OOO,023
IO.CRE,000,024
IO.DEL,000,025
IO.RAT,000,026
IO.WAT,000,027
IO.APV,010,030
IO.APC,000,030

FILIO$ A
FILIO$
FILIO$

:CLOSE OUT LUN
: UNLOCK BLOCK
:ACCESS FOR READ
:ACCESS FOR WRITE
:ACCESS FOR EXTEND
:DE-ACCESS FILE
:READ VIRITUAL BLOCK
:WRITE VIRITUAL BLOCK
:EXTEND FILE
:CREATE FILE
:DELETE FILE
:READ FILE ATTRIBUTES
:WRITE FILE ATTRIBUTES
:PRIVILEGED ACP CONTROL
:ACP CONTROL

DEFINE THE I/O FUNCTION CODES THAT ARE SPECIFIC TO INDIVIDUAL DEVICES

. MACRO

. MCALL

.IF

..• GBL==l

.IFF

..• GBL==O

.ENDC

SPCIO$ $$$GBL
.WORD.,DEFIN$
IDN,<$$$GBL>,<DEF$G>

I/O FUNCTION CODES FOR SPECIFIC DEVICE-DEPENDENT FUNCTIONS

.WORD. IO.WLV, 100,001 : (DECTAPE) WRITE LOGICAL REVERSE

.WORD. IO.WLS,OlO,OOl : (COMM.) WRITE PRECEDED BY SYNC TRAIN

.WORD. IO.WNS,020,001 : (COMM.) WRITE, NO SYNC TRAIN

.WORD. IO.WAL,OlO,OOl : (TTY) WRITE PASSING ALL CHARACTERS

.WORD. IO.WMS,020,001 : (TTY) WRITE SUPPRESSIBLE MESSAGE

.WORD. IO.CCO,040,001 : (TTY) WRITE WITH CANCEL CONTROL-O

.WORD. IO.WBT,lOO,OOl : (TTY) WRITE WITH BREAKTHROUGH

.WORD. IO.WLT,OlO,OOl : (DISK) WRITE LAST TRACK

.WORD. IO.WLC,020,001 : (DISK) WRITE LOGICAL W/ WRITECHECK

.WORD. IO.WPB,040,001 : (DISK) WRITE PHYSICAL BLOCK

.WORD. IO.WDD,140,001 : (FLOPPY DISK) WRITE PHYSICAL W/ DELETED

.WORD. IO.RSN,140,002 : (MSCP DISK) READ VOLUME SERIAL NUMBER

.WORD. IO.RLV, 100,002 : (MAGTAPE,DECTAPE) READ REVERSE

.WORD. IO.RST,001,002 : (TTY) READ WITH SPECIAL TERMINATOR

.WORD. IO.RAL,010,002 : (TTY) READ PASSING ALL CHARACTERS

.WORD. IO.RNE,020,002 : (TTY) READ WITHOUT ECHO

.WORD. IO.RNC,040,002 : (TTY) READ - NO LOWERCASE CONVERT

.WORD. IO.RTM,200,002 : (TTY) READ WITH TIME-OUT

.WORD. IO.RDB,200,002 : (CARD READER) READ BINARY MODE

.WORD. IO.SCF,200,002 : (DISK) SHADOW COpy FUNCTION

.WORD. IO.RHD,010,002 ; (COMM.) READ, STRIP SYNC

K-8

DATA

.WORD.
• WOE~D.
.WORD.
.WORD.
.WORD.
.WORD.
.WO~D.

• WO~.D.
.WO~D.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORID.
• WORlD.
.WORID.
• WORlD •
.WORID.
.WORID.
.WORD.
.WOR!).
.WORD.
.WORD.
.WOR!).
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WORD.
.WOR[).
.WOR[).
.WOR[).
.WOR[).
.WOR[).
.WORD.

IO.RNS,020,002
IO.CRC,040,002
IO.RPB,040,002
IO.RDF,240,002
IO.RLC,020,002
IO.ATA,010,003
IO.GTS,000,005
IO.R1C,000,005
IO.INL,000,005
IO.TRM,010,005
IO.RWD,000,005
IO.SPB,020,005
IO.RPL,020,005
IO.SPF,040,005
IO.STC,100,005
IO.SMD,110,005
IO.SEC,120,005
IO.RWU,140,005
IO.SMO,160,005
IO.HNG,000,006
IO.HLD,100,006
IO.BRK,200,006
IO.RBC,000,006
IO.MOD,000,006
IO.HDX,010,006
IO.FDX,020,006
IO.SYN,040,006
IO.EOF,000,006
IO.ERS,020,006
IO.DSE,040,006
IO.RTC,000,007
IO.SAO,000,010
IO.SSO,000,011
IO.RPR,OOO,011
IO.MSO,000,012
IO.RTT,001,012
IO.SLO,000,013
IO.MLO,OOO,014
IO.LED,OOO,024
IO.SDO,OOO,025
IO.SDI,OOO,026
IO.SCS,OOO,026
IO.REL,OOO,027
IO.MCS,OOO,027
IO.ADS,OOO,030
IO.CCI,OOO,030
IO.LOD,OOO,030
IO.MDI,OOO,031
IO.DCI,OOO,031
IO.PAD,OOO,031
HT.RPP,OlO,OOO

Error Codes

; (COMM.) READ, DON'T STRIP SYNC
; (COMM.) READ, DON'T CLEAR CRC
; (DISK) READ PHYSICAL BLOCK
; (DISK) READ DISK FORMAT
; (DISK, MAGTAPE) READ LOGICAL W/ READCHECK
; (T'rY) ATTACH WITH ASTS
; (T~rY) GET TERMINAL SUPPORT CHARACTERISTICS
; (AE'C,AD01, UDC) READ SINGLE CHANNEL
; (COMM.) INITIALIZATION FUNCTION
; (COMM.) TERMINATION FUNCTION
; (~\GTAPE,DECTAPE) REWIND
; (~\GTAPE) SPACE "N" BLOCKS
; (DISK) REPLACE LOGICAL BLOCK (RESECTOR)
; (~\.GTAPE) SPACE "N" EOF MARKS
; SE~r CHARACTERISTIC
; (F]~OPPY DISK) SET MEDIA DENSITY
;SEUSE CHARACTERISTIC
; (MJ~GTAPE, DECTAPE) REWIND AND UNLOAD
; (MJ~GTAPE) MOUNT & SET CHARACTERISTICS
; (T~rY) HANGUP DIAL-UP LINE
; (T~1S) HANGUP BUT LEAVE LINE ON HOLD
; (PIlO/TTY) SEND SHORT OR LONG BREAK
;REJ~ MULTICH~NELS (BUFFER DEFINES CHANNELS)
; (COMM.) SETMODE FUNCTION FAMILY
; (COMM.) SET UNIT HALF DUPLEX
; (COMM.) SET UNIT FULL DUPLEX
; (COMM.) SPECIFY SYNC CHARACTER
; (MJI.GTAPE) WRITE EOF
; (MJI.GTAPE) ERASE TAPE
; (MJ~GTAPE) DATA SECURITY ERASE
;RE~~ CHANNEL - TIME BASED
; (UDC) SINGLE CHANNEL ANALOG OUTPUT
; (UDC) SINGLE SHOT, SINGLE POINT
; (T'I'Y) READ WITH PROMPT
; (UDC) SINGLE SHOT, MULTI-POINT
; (T'I'Y) READ WITH TERMINATOR TABLE
; (UDC) LATCHING, SINGLE POINT
; (UDC) LATCHING, MULTI-POINT
; (LPS11) WRITE LED DISPLAY LIGHTS
; (LPS11) WRITE DIGITAL OUTPUT REGISTER
; (LPS11) READ DIGITAL INPUT REGISTER
; (UDC) CONTACT SENSE, SINGLE POINT
; (LPS11) WRITE RELAY
; (UDC) CONTACT SENSE, MULTI-POINT
; (LPS11) SYNCHRONOUS A/D SAMPLING
; (UDC) CONTACT INT - CONNECT
; (LPA11) LOAD MICROCODE
; (LPS11) SYNCHRONOUS DIGITAL INPUT
; (UDC) CONTACT INT - DISCONNECT
; (PSI) DIRECT CONTROL OF X.29 PAD
; (PSI) RESET PAD PARAMETERS SUBFUNCTION

K-9

Error Codes

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

. WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.XMT,000,031
IO.XNA,010,031
IO.INI,000,031
IO.HIS,000,032
IO.RCI,000,032
IO.RCV,000,032
IO.CLK,000,032
IO.CSR,000,032
IO.MDO,000,033
IO.CTI,000,033
IO.CON,000,033

IO.ORG,010,033
IO.ANS,020,033
IO.STA,000,033

IO.DTI,000,034
IO.DIS,000,034

IO.MDA,000,034
IO.DPT,010,034
IO.RTI,000,035
IO.CTL,000,035
IO.STP,000,035

IO.SWI,000,035
IO.CNT,000,036

IO.ITI,000,036

EXTENDED I/O FUNCTION

; (COMM.) TRANSMIT SPECIFIED BLOCK WITH ACK
; (COMM.) TRANSMIT WITHOUT ACK
; (LPAll) INITIALIZE
; (LPSll) SYNCHRONOUS HISTOGRAM SAMPLING
; (UDC) CONTACT INT - READ
; (COMM.) RECEIVE DATA IN BUFFER SPECIFIED
; (LPAll) START CLOCK
; (BUS SWITCH) READ CSR REGISTER
; (LPSll) SYNCHRONOUS DIGITAL OUTPUT
; (UDC) TIMER - CONNECT
; (COMM.) CONNECT FUNCTION
; (VTll) - CONNECT TASK TO DISPLAY PROCESSOR
; (BUS SWITCH) CONNECT TO SPECIFIED BUS
;(COMM./PRO) DIAL TELEPHONE AND ORIGINATE
; (COMM.) INITIATE CONNECTION IN ORIGINATE MODE
; (COMM.) INITIATE CONNECTION IN ANSWER MODE
; (LPAll) START DATA TRANSFER
; (XJDRV) - SHOW STATE
; (UDC) TIMER - DISCONNECT
; (COMM.) DISCONNECT FUNCTION
; (VTll) - DISCONNECT TASK FROM DISPLAY PROCESSOR
; (BUS SWITCH) SWITCHED BUS DISCONNECT
; (LPSll) SYNCHRONOUS D/A OUTPUT
; (BUS SWITCH) DISCONNECT TO SPECIF PORT NO .
; (UDC) TIMER - READ
; (COMM.) NETWORK CONTROL FUNCTION
; (LPSll,LPAll) STOP IN PROGRESS FUNCTION
; (VTll) - STOP DISPLAY PROCESSOR
; (BUS SWITCH) SWITCH BUSSES
; (VTll) - CONTINUE DISPLAY PROCESSOR
; (XJDRV) - SHOW COUNTERS
; (UDC) TIMER - INITIALIZE

.WORD. IO.EIO,000,037 ; (TTY) TSA EXTENDED I/O

PRO 300 SERIES BITMAP FUNCTIONS

NOTE: THESE FUNCTIONS ARE FOR DEC USE ONLY AND ARE SUBJECT TO CHANGE

.WORD.

.WORD.
DEFIN$
DEFIN$

IO.RSD,030,014
IO.WSD,010,013
SD.TXT,O
SD.GDS,l

READ SPECIAL DATA
WRITE SPECIAL DATA
TEXT DATA TYPE FOR SPECIAL DATA
GIDIS DATA TYPE FOR SPECIAL DATA

PROFESSIONAL 300 BISYNC DRIVER (XJDRV) FUNCTIONS

K-10

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

SB.PRT,020,003
SB.CLR,010,036
SB.RDY,010,033
SB.NRD,020,033
IO.LBK,000,035
SB.CBL,010,035
SB.CLK,020,035

ATTACH AS A PRINTER
CLEAR COUNTERS (IO.CNT SUBFUNCTION)
SET DEVICE STATE READY (IO.STA SUBFUNC)
SET DEVICE STATE NOT READY
PERFORM LOOPBACK TEST
PERFORM CABLE LOOPBACK TEST
DEVICE PERFORMS LINE CLOCKING

COMMUNICA'l~IONS FUNCTIONS

.WOR[). IO.CPR,010,033

.WORt). IO.CAS,020,033

.WOR[). IO.CRJ,040,033

.WOR[). IO.CBO,110,033

.WORD. IO.CTR,210,033

.WOR[) • IO.GNI,010,035

.WORD. IO.GLI,020,035

.WORD. IO.GLC,030,035

.WORD. IO.GRI,040,035

.WORD. IO.GRC,050,035

.WORD. IO.GRN,060,035

.WORD. IO.CSM,070,035

.WORD. IO.CIN,100,035

.WORD. IO.SPW,110,035

.WORD. IO.CPW,120,035

.WORD. IO.NLB,130,035

.WORD. IO.DLB,140,035

ICS/ICR I/O FUNCTIONS

.WORD. IO.CTY,000,007

.WORD. IO.DTY,000,015

.WORD. IO.LDI,000,016

.WORD. IO.UDI,010,023

.WORD. IO.LTI,000,017

.WORD. IO.UTI,020,023

.WORD. IO.LTY,000,020

.WORD. IO.UTY,030,023

.WORD. IO.LKE,000,024

.WORD. IO.UER,040,023

.WORD. IO.NLK,000,023

.WORD. IO.ONL,000,037

.WORD. IO.FLN,000,025

.WORD. IO.RAD,000,021

IP11 I/O]!'UNCTIONS

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

IO.MAO,010,007
IO.LEI,010,017
IO.RDD,010,020
IO.RMT,020,020
IO.LSI,000,022
IO.UEI,050,023
IO.USI,060,023
IO.CSI,000,026
IO.DSI,000,027
IO.RAM,000,032
IO.RLK,000,013
IO.EBT,000,011

;CONNECT NO TIME-OUTS
;COffi~ECT WITH AST
;CONNECT REJECT
; BOO'r CONNECT
;TR~~SPARENT CONNECT
;GET NODE INFORMATION
;GET LINK INFORMATION
;GET LINK INFO CLEAR COUNTERS
;GET REMOTE NODE INFORMATION
;GET REMOTE NODE ERROR COUNTS
;GET REMOTE NODE NAME
;CH~~GE SOLO MODE
;CH~~GE CONNECTION INHIBIT
;SPECIFY NETWORK PASSWORD
;CHECK NETWORK PASSWORD
;NSP LOOPBACK
;DDCIMP LOOPBACK

;CONNECT TO TERMINAL INTERRUPTS
;DISCONNECT FROM TERMINAL INTERRUPTS
;LINK TO DIGITAL INTERRUPTS
;UNLINK FROM DIGITAL INTERRUPTS
;LINK TO COUNTER MODULE INTERRUPTS
;UNLINK FROM COUNTER MODULE INTERRUPTS
;LINK TO REMOTE TERMINAL INTERRUPTS
;UNLINK FROM REMOTE TERMINAL INTERRUPTS
;LINK TO ERROR INTERRUPTS
;UNLINK FROM ERROR INTERRUPTS
;UNLINK FROM ALL INTERRUPTS
;UNIT ONLINE
;UNIT OFFLINE
;READ ACTIVATING DATA

;MULTIPLE ANALOG OUTPUTS
;LINK EVENT FLAGS TO INTERRUPT
;READ DIGITAL DATA
;READ ~PING TABLE
;LINK TO DSI INTERRUPTS
;UNLINK EVENT FLAGS
;UNLINK FROM DSI INTERRUPTS
;CONNECT TO DSI INTERRUPTS
;DISCONNECT FROM DSI INTERRUPTS
;READ ANALOG MAPPING TABLES
;READ RESOURCE LINKAGES
;CHECK EBIT STATUS

Error Codes

K-11

Error Codes

PCLll I/O FUNCTIONS

.WORD.

.WORD.

.WORD.

.WORD.

.WORD.

. MACRO

.ENDM

.ENDM

IO.ATX,OOO,OOI
IO.ATF,000,002
IO.CRX,000,03l
IO.DRX,000,032
IO.RTF,000,033
SPCIO$ A
SPCIO$
SPCIO$

;ATTEMPT TRANSMISSION
;ACCEPT TRANSFER
;CONNECT FOR RECEPTION
;DISCONNECT FROM RECEPTION
;REJECT TRANSFER

DEFINE THE I/O CODES FOR USER-MODE DIAGNOSTICS. ALL DIAGNOSTIC
FUNCTIONS ARE IMPLEMENTED AS A SUBFUNCTION OF I/O CODE 10 (OCTAL) .

. MACRO UMDIO$ $$$GBL

. MCALL .WORD.,DEFIN$

.IF IDN <$$$GBL>,<DEF$G>
... GBL=l

.IFF
... GBL=O

.ENDC

DEFINE THE GENERAL USER-MODE I/O QUALIFIER BIT.

.WORD. IQ.UMD,004,000 ;USER-MODE DIAGNOSTIC REQUEST

DEFINE USER-MODE DIAGNOSTIC FUNCTIONS.

.WORD. IO.HMS,OOO,OlO

.WORD. IO.BLS,OlO,OlO

.WORD. IO.OFF,020,010

.WORD. IO.RDH,030,010

.WORD. IO.WDH,040,010

.WORD. IO.WCK,050,010

.WORD. IO.RNF,060,010

.WORD. IO.RNR,070,010

.WORD. IO.LPC,lOO,OlO

.WORD. IO.RTD,120,010

.WORD. IO.WTD,130,010

.WORD. IO.TDD,140,010

.WORD. IO.DGN,150,010

.WORD. IO.WPD,160,010

.WORD. IO.RPD,170,010

.WORD. IO.CER,200,010

.WORD. IO.CEW,210,010

MACRO REDEFINITION TO NULL

K-12

• MACRO
.ENDM

UMDIO$ A

; (DISK) HOME SEEK OR RECALIBRATE
; (DISK) BLOCK SEEK
; (DISK) OFFSET POSITION
; (DISK) READ DISK HEADER
; (DISK) WRITE DISK HEADER
; (DISK) WRITECHECK (NONTRANSFER)
; (DECTAPE) READ BLOCK NUMBER FORWARD
; (DECTAPE) READ BLOCK NUMBER REVERSE
; (MAGTAPE) READ LONGITUDINAL PARITY CHAR
i (DISK) READ TRACK DESCRIPTOR
i (DISK) WRITE TRACK DESCRIPTOR
; (DISK) WRITE TRACK DESCRIPTOR DISPLACED
iDIAGNOSE MICRO PROCESSOR FIRMWARE
; (DISK) WRITE PHYSICAL BLOCK
i (DISK) READ PHYSICAL BLOCK
i (DISK) READ CE BLOCK
; (DISK) WRITE CE BLOCK

;

Error Codes

·ENDkI.! UMDIO$

HANDLER E:RROR CODES RETURNED IN I/O STATUS BLOCK ARE DEFINED THROUGH THIS
MACRO, WHICH THEN CONDITIONALLY INVOKES THE MESSAGE-GENERATING MACRO
FOR THE QIOSYM.MSG FILE

.MACIEW
DEFIJN$
.IF
• MCALL
• IOMG •
• ENDC
• ENDM

.IOER. SYM,LO,MSG
SYM,LO
GT,$$MSG
• IOMG •
SYM, LO, <REFERENCE> (1!Iyrnbol) (MSG)

• IOER •

I/O ERROR CODES ARE DEFINED THROUGH THIS MACRO, walCH THEN INVOKES THE
ERROR MESSAGE-GENERATING MACRO; ERROR CODES -129 THROUGH -256
ARE USED IN THE QIOSYM.MSG FILE

.MACIRO
DEFI1~$
.IF

.QIOE.
SYM,LO
GT, $$MSG)
• IOMG •

SYM,LO,MSG

• MCALL
.IOMIG.
.ENDC
.ENDI~

SYM, <LO-128. >, <REFEFtENCE> (symbol) (MSG)

.QIOE.

CONDITION.U,LY GENERATE DATA FOR mUTING A MESSAGE FILE

• MACRO . IOMG. SYM,LO,MSG
• WORlD -"'O<REFERENCE> (symbol) (LO)
.ENABL LC
.ASCIZ "'MSG'"
• DSABL LC
.EVEJ~

.IIF LT,"'O<REFERENCE>(syn~ol) ($$$MAX+<REFERENCE> (syrnbol) (LO»,$$$MAX--"'O<REFEREl
• END1~ • IOMG •

DEFINE THE SYMBOL SYM WHERE LO IS THE LOW-ORDER BYTE, HI IS THE HIGH BYTE

. MACRO
DEFIlN$
. END1~
. DSABL

.WORD. SYM,LO,HI
SYM,<REFERENCE>(symbol) (HI*400+LO)
.WORD .
LC

K-13

LIAS FCS Library Optionls

1..1 FCS Libn3ry Options
During system generation, the system manager has the option of selecting one of several File
,Control Serviices (FCS) libraries as the default FCS library. You can replace the default library in
SYSLIB with one of the other libraries shown in Table L-I by using the IRP switch to the Librarian
Utility Program (LBR). Refer to the lAS Utilities Manual for more information. Table L-I contains
a brief description of the FCS libraries that are available with each lAS system.

Table L-1 FCS Library Descriptions

FCS Library Option Description

[1 ,1]FCS.OBJ Includes standaJd FCS routines. Distributed and Included in SYSUB.OLB as the

[1,1]FCSMTA.OBJ

[1,1]FCSMBF.OBJ

L.2 .FCTYP

default FCS library.

Includes standa.rd FCS routines, plus American National Standards Institute
(ANSI) magnetk~ tape support and "big buffering" (see Chapter 2 for block buffer
size override specification). Distributed and included as the default FCS library
routines for lAS.

Provides multibuffering support, big buffering support, and ANSI magnetic tape
support in additiion to the standard FCS routines.

The FCS routine .FCTYP returns a descriiption of the FCS conditional assembly parameters that
were set when FCS was built.

CALL .FCTYP

There are no input parameters.

The information is returned in RI. The bits set in the mask word returned in RI correspond to the
conditional aElsembly parameters shown in Table L-2.

Table L-2 .FCTYP Values

Conditional
Assembly Symbol

R$$ANI

R$$BBF

R$$MBF

R1 Bit Mask Symbol

FT.ANI

FT.BBF

FT.MBF

Meaning

ANSI magnetic tape support

Big buffer support

Multibuffer support

L-1

Index

A
Access control parameter

F11ACP -H-8
Access sharEtd function - 2-12
Access shared read function -1-12
Access shared write function - 1-12
ACP

error return - H-3
IE.ABO - H--3
IE.ALC-H-3
IE.ALN-H-3
IE.BAD - H--3
IE.BDR - H--3
IE.BTP- H-3
IE.BVR - H--3
IE.BYT-H-3
IE.CKS - H--3
IE.CLO - H--3
IE.DFU - H--3
IE.DUP - H--3
IE.EOF - H--3
IE.HFU- H-4
IE.lFG - H-4
IE.lFLJ - H-4
IE.LCK-H-4
IE.LUN - H-4
IE.NOD - H--4
IE.NSF- H-4
IE.OFL- H-4
IE.PRI-H-4
IE.RER-H-4
IE.SNC - H-4
IE.SPC-H-4
IE.SaC-H-4
IE.WAC-H-4
IE.WAT-H-4
IE.WE:R - H--4
IE.WL.K - H-4

010$ function
closing a file - H-2
creating a file - H-2
deleting a file - H-3
extending a file - H-2
opening a file - H-2
using - H-2

ACP (Cont.)

010$ interface - H-1
Action routine - 7-4

calling - 7-4
using -7-5

ALUN$ directive summary - F-1
Ancillary control processor

See ACP
ANSI tape standard - G-1
Append file open function· 2-12
.ASCPP routine

converting UIC to binary - 4-7
.ASLUN routine

assigning LUN - 4-8, 4-12
AST

service routine • 2--37
AST service routine • 2--37
Asynchronous system trap

See AST
Attribute buffer

F11ACP
address - H-7

Attribute list
F11ACP-H-5

Attribute size - H-7
Attribute type

F11ACP-H-6

B

file characteristic - H-6
file name - H-6
file owner - H-6
file protection - H-6
file type - H-6
placement control - H-7
read file header - H-7
record I/O area -H~
revision number - H-7
statistics block - H-6
version number - H-6

Binary to ASCII conversion
UIC -4-7

Blank
ignoring in command line -7~

Block

Index-1

Index

Block (Cont.)

locking • 2-13, 2-37, 2-38
enable • 2-13
F11 ACP • H-9, H-10

logical • 5-1
unlocking • 2-38
virtual • 5-1

Block access
initialization • 2-10
REAO$ macro· 2-10
WRITE$ macro· 2-10

Block boundary • 2-5
crossing

record attribute • 3-7
fixed-length record

PUT$ macro • 3-23
FSR block buffer· 3-22
variable-length record

PUT$ macro • 3-23
Block buffer

initializing FOB· 2-14
pool space

FSR· 2-31
Block I/O· 2-8

block size • 2-10
buffer·2-10
completion event flag • 2-10
I/O status block • 2-11
operation ·1-7

FD.RWM parameter· ~
request

record attribute • 3-7
Block size

block I/O • 2-10
override • 3-8
resetting

CLOSE$ macro • 2-15
Block tape

override size • 2-15
Buffer

attribute
address • H-7

count
multiple· 2-15

mUltiple • 2-15
count· 3-8
type· 2-15

pool space
FSR· 2-31

specifying number • 2-16
task record • 3-1 7

locate mode • 3-23

Index-2

Buffer
task record (Cont.)

PUT$ macro • 3-22
Buffer boundary

locate mode • 3-18
Buffer count

default • 2-16
Buffer descriptor

task· 3-8
Buffer flush routine • 4-22
Buffer FSR block

locate mode • 3-18
space allocation • 2-16

Buffering
big ·1-11
multiple

c

performance • 1-10
record I/O ·1-10

Carriage control • 2-5, 2-6
record attribute • 3-7
word

record attribute • 3-7
CCML$ macro • 6-10
Checksum value • 5-4
CLOSE$

example of CLOSE$ macro • 5-9
CLOSE$ example • 5-9
CLOSE$ macro • 3-1

file processing • 3-15
completion • 2-7

format
file processing • 3-15

resetting
block size • 2-15

Command file
closing • 6-10
resetting scan macro· 6-9

Command line
ignoring blanks and tabs· 7-6
parsing • 7-1
processing • 6-1

Command String Interpreter

See CSI
Conversion

UIC
ASCII/binary • 4-7

Conversion (Cont.)

UIC, ASCII/binary· 4-6
CSI· 6-1

initializing control block· 6-15
parsing file speci'fication • 6-15

CSI$1 macro
command !~yntax analyzer • 6-15

CSI$2 macro
command !~emantic parser • 6-16
initializing (:ontrol block· 6-15
parsing file specification· 6-15

CSI$ macro -l5-12
CSI$ND macro • 6-18

defining end of descriptor table • 6-25
CSI$SV macro·6-18

creating switch value descriptor table entry" 6-23
CSI$SW macro • 6-18

creating switch descriptor table entry • 6-18
CSI control bllock

bit values definition • 6-12
offsets definition • 6-12

CSI macro
switch definition 0 6-18

CSI routine • E)""11
CSI runtime macros • 6-15
. CTRL routine

control device· 4-21
tape· ~7

--------.... ---------------------------
D
Data format

ANSI tape ·1-7
file device 'I 1-6

Data-set descriptor • 2-23
address

initialization • 2-12
as data structure • 1-4
definition • 1-3
general description • 1-5
OFNB$x lTlacro· 3-13
pointer

definitnon • 1·-3
pointer file .. open • 2-11
pointer init~alization • 2-12
specifying> 2-22

Deaccess lock
F11ACp· H-8

$DEBUG • 7-.2
Debug routinE~ • 7-5

DECtape file structure· ~1
Default Filename Block

See DFNB
DELET$ macro • 3-1 , 3-33
Device control routine· 4-21
Device information

.PRSDV routine ·4-11
Device name

string descriptor· 2-23
Device name field • 2-28
DFNB· 2-25, 3-13

as data structure • 1-4
definition • 1-3
FNBLK$ macro • 2-25
OFNB$x macro· 3-13
specifying • 2-22

Directive summary
I/O related • F-1

Directory
file ·~2
identification information

. PARSE routine • 4-9

.PRSDI routine ·4-12
structure • ~2

Directory entry
deleting

.REMOV routine • 4-15
inserting

.ENTER routine ·4-14
locating

.FIND routine • 4-13
routine· 4-12

Directory identification
FNB (F11ACP)· H-9

Directory string
default

read ·4-2
write .4-3

routine
default • 4-2

Directory string descriptor • 2-23
Disk file structure • ~1
.DLFNB routine

deleting file by filename block· 4-21

E
End-of-file label

tape· G-7

Index

Index-3

Index

End-of-file READ$ macro • 3-28
End-of-tape handling • ~
End-of-volume label

tape· G-7
. ENTER routine

inserting directory entry ·4-14
Error code

block locking • 2-39
file operations • K-1
shared file • 2-39

Error return
ACp·H-3
GCMLD$ macro • ~5

Error return IE.IFC· 2-40
Error return IE.LCK • 2-40, 2-41
Error return IE.ULK • 2-40
Error return IE. WAC • 2-40
Error routine

file macro· 3-1
Event flag

110 coordination • 2-35
I/O synchronization • 3-8

.EXPLG module
logical name expansion • 4-11

Extend control parameter
F11ACp· H-7

Extension default • 2-16
.EXTND routine

extending file • 4-19

F
EACTL field

number of retrieval pointers· A-7
F.ALOC field

number of blocks allocated for extend· A-5
F.BBFS field

block buffer size • A-6
F.BDB field

block buffer descriptor block address • A-7
EBGBC field

big-buffer block count· A-6
EBKDN field

AST service routine address • A-5
EBKDS field

block I/O buffer descriptor • A-5
F.BKEF field

block I/O event flag • A-6
F.BKP1 field

Index-4

F.BKP1 field (Cont.)

FCS internal control bits • A-6
EBKST field

I/O status block address • A-5
F.BKVD field

user virtual block number • A-6
F.CHR field

volume characteristics byte • A-7
ECNTG field

number of blocks to be allocated· A-5
F.DFNB field

default filename block pointer • A-6
F.DSPT field

data-set descriptor pointer • A-6
F.EFBK field

end-of-file block number • A-4
F.EFN field

record I/O event flag • A-6
EEOBB field

end-of-block buffer • A-5
F.ERR1 field

EERR extension· A-6
F.ERR field

error return code byte • A-6
EEXT field

FOB extension address • A-7
F.FACC field

file access byte • A-6
F.FFBK field

first free byte in last block • A-4
F.FLG field

flag byte • A-7
EFNB field

filename block offset • A-7
F.HIBK field

highest allocated virtual block number • A-4
ELUN field

FOB· 4-12
LUN for FOB • A-5

F.MBC1 field
number of buffers in use • A-6

F.MBCT field
number of multiple buffers • A-6

F.MBFG field
multibuffer flag word • A-6

F.NRBD field
next record buffer descriptor • A-5

ENREC field
address of next record in block· A-5

EOVBS field
override block buffer size • A-5

ERACC field

F.RACC field (Cont.)

record access byte • A-4
ERATT field

record attribute byte • A-4
ERCNM field

random ac:cess record number • A-5
ERCTl

device chetracteristic byte
. PARSE routine • 4-9

E RCTl field
device chslracteristics byte • A-5

ERSIZ field
record-sizEt word • A-4

F. RTYP field
record-typ4:t byte • A-4

ESEQN field
sequence number· A-7

ESTBK field
statistics block address • A-5

EURBD field
user record buffer descriptor • A-5

EVBN field
virtual block number· A-7

EVBSZ
device buffer size word

. PARSE routine • 4-9
E VBSZ field

device buffer size word • A-6
FA.DlK value

not lock filEt • 2-13
FA.EXl value

block locking • 2-13
FA.lKl value

block locking • 2-13
FA.NSP value

opening filEt no superseding· 3-14
FA.POS value'

file position on close • 2-13
FA.RWD valw:t

rewinding em close or open • 2-13
FA.SHR value

opening filEI shared access • 3-14
FA.TMP value

opening temporary file· 3-14
FCS ·1-1

data structure
general • 1-4

file access method • 1-5
I/O macro· 2-1
important characteristic· 1-3
library opticlns • L-1

FCS (Cont.)

library symbols ·1-1
macro

FOB information· 2-1
.MCAll directive • 2-2

term definitions· 1-1
with task builder • 1-1

FCS.OBJ FCS library ·l-1
FCS impure area • 2-31
FCSMBEOBJ FCS library • l-1
FCSMTA.OBJ FCS library • L-1
FCSRES routines ·1-17
.FCTYP routine

assembly parameters· L-1
FD .BlK parameter

record attribute • 2-5
block boundary crossing • 3-7

FD.CR parameter
record attribute • 2-5

line-feed character • 3-7
FD.FTN parameter· 3-7
FD.lNS parameter

sequential file • 2-9
sequential mode • 3-5, 3-8

FD.PlC parameter
locate mode • 2-9, 3-5
move mode • 2-9

FD.PlC parameter locate mode • 3-8
FD.PRN parameter

record attribute • 2-5

Index

FD.PRN parameter record attribute carrlage-control
word· 3-7

FD.RAH parameter
read-ahead operation • 3-9

FD.RAH value
read-ahead • 2-15

FD.RAN parameter
random access • 2~, 3-8
random record I/O· 3-5

FD.RTN
record attribute • 2-5

FO.RWM parameter
block I/O operation • 3-5
record access • 2~
record attribute process with block I/O • 3-7

FO.WBH parameter
write-behind operation • 3-9

FD.WBH value, write behind· 2-16
FOAT$A macro • 2-4
FOAT$R macro • 2-17
FOB ·2-3

address

Index-5

Index

FOB
address (Cont.)

run-time macro • 2-19
allocating file block· 2-6
as data structure • 1-4
block I/O - 2--8
block locking • 2-13
block size

resetting - 2-15
carriage control • 2-6
definition • 1-2
description • 1-4
extension

logical name translation • 4-11
F.LUN field· 4-12
F.xxxx field • A-4
file identification • 3--8
GET$ macro· 3-17
initialization • 2-3
initializing block access • 2-17
initializing block buffer • 2-14, 2-17
initializing block buffer size • 2-14
initializing file attribute • 2-4, 2-17
initializing file-open section • 2-11, 2-17
initializing record access· 2--8, 2-17
initial values • 2-1
largest record size • 2-6
LUN specification • 3--8
macro global symbol- 2-21
macro local symbol· 2-21
macro run-time exceptions· 2-17
macro run-time initialization - 2-17
multi-buffering • 2-15
multi-buffering type • 2-15
offset

global/local • 2-20
OPEN$x macro requirement - 3-6
PUT$ macro operation - 3-22
record I/O • 2--8
record size· 3-7
sequence number field • 2-6
space allocation • 2-4
WRITE$ macro· 3-31

FDBOF$ macro
FOB space allocation • 2-4

FDBF$A macro • 2-14
example of FOBF$A macro • 2-16

FDBF$R macro· 2-17
FDBK$A

example of FOBK$A macro • 2-11
FOBK$A macro

block access initialization • 2-10

Index-6

FOBK$A macro (Cont.)

record access
block I/O • 2-10

FOBK$R macro
initializing block access • 2-17

FOOP$A macro· 2-11
example of FOOP$A macro • 2-14

FOOP$R macro, initialize file-open section· 2-17
FORC$A macro • 2--8

example of FORC$A macro • 2--8
FORC$R macro

initializing record access • 2-17
File

access method
FCS ·1-5

attribute size (F11 ACP) • H-7
closing • 3-15

current command • 6-10
indirect command • 6-9
temporary· 3-10

creating
FO.WRT value • 3-14
temporary· 3-10
temporary mark for deletion· 3-11

delete routine • 4-21
deleting • 3-33
deleting routine • 4-21
device

data format • 1-6
directory· 5-2
extending, routine • 4-19
extending WRITE$ macro • 3-30
extension

default • 2-16
default size • 2-7
size· 2-7
virtual block· 2-7

110 coordination • 2-34
110 status block • 2-36
identification in FNB (F11 ACP) • H-9
index· 5-2
intializing

record access • 2-17
locking • 2-13
marking

for deletion • 3-11
name block

See FNB
name block pointer· H-9
name in FNB (F11 ACP) • H-9
no locking on close • 2-13

File (Cont.)

opening
append • 2-12
by filename block· 3-12
by 10·3-11
for append FO.APD value· 3-14
for file access • 3-14
for mc)dify • 3-14
for re~ld • 3-·14
for shared access FA.SHR value • 3-14
for update and extend • 3-14
for write FO.WRT value • 3-14
lock on close • 2-13
modif)f • 2-12
no supersede· 2-12, 3--14
on LP for printing • 8-2
proce!3sing • 3-3
read elccess • 2-12
shared access • 2-12
tape position • 2-13
temporary· 2-12,3-10
temporary FA.TMP value· 3-14
tempolrary mark for deletion· 3--11
updatc~ • 2-12
write access· 2-12

opening b)f 10· 2-28
operation

multiple • 5-6
single· 5-6

position
by byte ·2-9
on closing • 2-13

random 110· 2-16
renaming • 4-19
sequenced • 2-5

reading • 2-6
writin~, • 2-6

sequence number • 2-6
shared access· 1-12
space preallocation • 2-16
specificati()n

definition • 1-3
specifying

within program • 2-22
truncating routine • 4-20
truncation • 2-9
type FNB t(F11ACP)· H-9
version number in FNB (F11 ACP) • H-9
window po,inter number • 2-13

File access
optimizing· 2-28

File attribute

File attribute (Cont.)

Initializing • 2-4
initializing run-time • 2-17

File block
access initialization • 2-10
access initializing run-time· 2-17
allocation • 2-6
buffer initialization· 2-14

run time • 2-17
locking ·2-13

File characteristic
system-controlled characteristic

SC.BAD·C-3
system-controlled characterlstis

SC.MDL·C-3
user-controlled

UC.CON
contiguous file • C-3

UC.DLK
file improperly closed • C-3

File control routine • 4-1
File Control Services

See FCS
File Descriptor Block

See FOB
File header block • 5-3

format· C-1
H.XXXX field· C-1
header area

file characteristics • C-3
file owner information· C-3
file protection code • C-3

I.XXXX field • C-1, C-2
identification area· C-3

creation date • C-4
creation time • C-4
expiration date • C-4
filename • C-3
filetype • C-3
file version number • C-3
revision date • C-3
revision number • C-3
revision time • C-3

M.XXXX field • C-2
map area • C-4
tape· G-8

File header label
ANSI· 5-5
tape· G-3

HDR1 • G-3
HDR2·G-4

Index

Index-7

Index

File header label
tape (Cont.)

HOR3-G-4
File identification • 5-3

FOB -3-8
field -2-28

File Identification Block
F11ACP .H-5

File Identifier processing
by Files-11

tape .G-6
File label

tape - G-1
File macro - 3-1

access privileges • 3-3
error routine - 3-1

File name
. PARSE routine • 4-1 0
.PRSFN routine· 4-12
tape

Radix-50 conversion - 4-14
Filename block

See also FNB
default· 2-25, 3-13

Initialization - 2-12
default directory information

.GTOIO routine - 4-16
default file-open • 2-11
default OFNB$x macro· 3--13
deleting file - 4-21
directory Information

.GTOIR routine - 4-15
initializing - 2-28

manually - 2-30
local offset definition - 2-27
N.OIO field

.PARSE routine -4-9
N.DVNM field -4-12
N.NEXTword

.PARSE routine - 4-11
N.STATword

.PARSE routine· 4-11
NBOF$L macro - 2-27
NMBLK$ macro - 2-25
OPEN$x macro· 2-28
opening

file by· 3-12
.PARSE routine

disk ·4-7
N.OIO field -4-9
N.FIO field • 4-9

Index-8

Filename block
.PARSE routine (Cont.)

tape .4-8
routine • 4-7, 4-15
specifying

default • 2-22
Filename string descriptor • 2-24
File number - 5-3
File operation

error codes • K-1
File owner word - 4-5

reading • 4-6
writing • 4-6

File pointer routine • 4-16
File position

save· 4-18
to byte

.POINT routine • 4-16
to record

.POSRC routine • 4-17
File processing

completion CLOSE$ macro - 2-7
File protection word • 4-4, 4-5
File read-ahead FO.RAH parameter • 3-9
File record

attribute • 2-5
File rename routine • 4-19
FILES-11 structure· ~1
File sequence number • 5-3
File specification

device • 1-13
magnetic tape - 1-15
.PRSOV routine - 4-11

directory ·1-13
magnetic tape ·1-16
.PRSOI routine -4-12

dynamic processing
SYSLIB • 2-28

generation • 1-16
magnetic tape • 1-15
name -1-14
quoted string

magnetic tape - 1-16
syntax description - 1-13
type • 1-14
unit

.PRSOV routine • 4-11
version • 1-15

magnetic tape • 1-16
File Storage Region

See FSR

File structurE' • 5-1
tape· G-~r
user· 5-1
virtual blocks - !;""1

File trailer label
tape ·G-~r

File type
.PARSE routine ·4-10
.PRSFN routine· 4-12

File version
. PARSE routine • 4-10
.PRSFN routine· 4-12

.FIND routint9
locating directory entry· 4-13

FINIT$ macro
FSR Initialization run-time • 2-32

.FINIT routine
initializing before .PARSE routine • 4-8

Fixed-length record
PUT$ macro block buffer • 3-23

Fixed-length record PUT$ macro block boundary •
3-23

Flush buffer routine • 4-22
. FLUSH routine

flushing buffer • 4-22
FNB

definition- 1-2
F11ACP ·H-9

directory identification • H-9
file identification - H-9
file name • H-9
file ty'pe • H-9
file vtusion number· H-9
pointer • H-9
status word • H-9
wildciard context • H-9

N.XXXX field • B-2
FO.APD value

opening file for appending· 3-14
FO.MFY value

opening file for modifying • 3-14
FO.RD valuEI, open file for read· 3-14
FO.UPD value

opening file for updating and extending· 3--14
FO.WRT value open file for write and create '03-14
FORTRAN carriage-control

record attribute • 3-7
FSR

as data s1tructure • 1-4
block buffer

block boundary. 3-22

FSR
block buffer (Cont.)

locate mode • 3-18, 3-23
pool space • 2-31
space allocation - 2-16

definition • 1-3
general description • 1-5
increasing size

FORTRAN • 2-34
MACRO-11 - 2-33

initalization FINIT$ macro • 2-32
initialization FSRSZ$ macro • 2-31
initializing • 2-30
record 1/0· 2-31
record 1/0 multibuffering • 2-31

$$FSR1 -1-5
$$FSR2 program section

default UIC • 4-4
file owner word • 4-5
file protection word - 4-4
general description • 1-5

FSRSZ$ macro
FSR initialization • 2-31

G
GCML·6-1

control block
allocating • 6-2
defining bit values • 6-5
defining offsets • 6-5
initializing • 6-2

routine
runtime error • 6-7

use· 6-11
GCML$ macro • 6-7
GCMLB$ macro • 6-2
GCMLD$ macro· 6-5
GET$ macro ·1-8,3-1

example of GET$ macro • 3-17
FD.RWM parameter

record I/O· 2-8
FOB

file processing • 3-17
file processing • 3-15

locate mode • 3-18
move mode· 3-18

format
file processing • 3-16

GET$R macro· 3-1

Index

Index-9

Index

GET$R macro (Cont.)

file processing
read logical record random mode • 3-19

GET$S macro II 3-1
file processing

read logical record sequential mode • 3-20
Get command line macro

See GCML
Global symbol

FOB macro· 2-21
GLUN$ directive summary • F-1
GMCR$ directive summary • F-1
.GTDID routine • 4-15

default directory information • 4-16
. GTDI R routine • 4-15

inserting directory information • 4-15

H
H.CKSM offset

checksum word • C-2
H.FLEV offset

structure level • C-1
H.FNUM offset

file num ber • C-1
H . FOWN offset

offset to file owner· C-1
H.FPRO offset

file protection code • C-1
H.FSEQ offset

file sequence number· C-1
H.lDOF offset

header area· C-1
H .MPOF offset

map area offset • C-1
H.PROG offset

member number • C-1
H.PROJ offset

group number- C-1
H.SCHA offset

system-controlled file characteristics • C-1
H.UCHA offset

user-controlled file characteristics· C-1
H.UFAT offset

user file attributes· C-1
Header area • 5-3

file header block • C-2
file characteristics - C-3
file number • C-2
file owner information - C-3

Index-10

Header area
file header block (Cont.)

file protection code • C-3
file sequence number· C-2
Identification area • C-2
map area offset· C-2
structure level • C-3

user file attributes
file characteristics· C-3

Header block
file· 5-3

I
tCRDT offset

creation date • C-1
tCRTloffset

creation time • C-1
tEXDT offset

expiration date • C-1
I. FNAM offset

identification area • C-1
I.FTYP offset

file type • C-1
I.FVER offset

file version number • C-1
I. RVDT offset

revision date • C-1
I.RVNO offset

revision number • C-1
I. RVTI offset

revision time • C-1
110

block operation • 1-7
data-transfer mode • 1-8
directive summary· F-1
function support

F11ACp· H-1
MTAACp· H-1

locate mode • 1-9
move mode • 1-8, 1-9
preparation

FCS macro • 2-1
record

big buffering -1-11
multibuffering ·1-10

record operation • 1-8
synchronization • 1-8

I/O coordination
event flag • 2-35

I/O coordination (Cont.)

file operation • 2-34
I/O function

summary
F11ACp· H-10
MTAACP· H-12

I/O macro
AST serviice routine • 2-37
FCS ·2-1
FOB ·2-1

I/O macro AST seNice routine • 2-37
I/O program example· J-1
I/O status block

block I/O • 2-11
defined In task" 2-36
file I/O· 2,-36

I/O synchronization event flag • 2-14, 3-8
I/O wait for c:ompletion block I/O· 3-31
Identification area ,. 5-3

file header block • C-3
creation date • C-4
creation time • C-4
expiration date • C-4
filename • (:-3
filetype • C--3
file vE.rsion number· C-3
revisi,on date • C-3
revision number· C-3
revision time • C-3

IE.ABO error return
ACP·~J

IE.ALC error return
ACP • H--:;.

IE.ALN error return
ACP·~J

IE.BAO error return
ACp· H--:;.

IE.BOR error return
ACP·~J

IE.BTP error return
ACP • H--:;.

IE.BVR error return
ACP·~I

IE.BYT error return
ACP·~I

IE.CKS error return
ACP·~I

IE.CLO error return
ACp·H-31

IE.OFU error return
ACP .H-3i

IE.OUP error return

IE.OUP error return (Cont.)

ACp·H-3
IE.EOF error return

ACp·H-3
IE.HFU error return

ACp·H-4
IE.lFC error return

ACp·H-4
IE.lFU error return

ACp·H-4
IE.LCK error return

ACp·H-4
IE.LUN error return

ACp·H-4
IE. NOD error return

ACp·H-4
IE.NSF error return

ACp·H-4
IE.OFL error return

ACp·H-4
IE.PRI error return

ACp·H-4
IE.RER error return

ACp·H-4
IE.SNC error return

ACP·H-4
IE.SPC error return

ACp·H-4
IE.Sac error return

ACp·H-4
IE.WAC error return

ACp·H-4
IE.WAT error return

ACp·H-4
IE. WER error return

ACp·H-4
IE. WLK error return

ACp·H-4
Index file • 5-2

format ·'E-1
10.ACE function

F11ACp· H-11
MTAACp· H-12

10.ACP function
MTAACp· H-13

10.ACR function
F11ACP· H-11
MTAACp· H-12

10.ACW function
F11ACp· H-11
MTAACP • H-12

10.APV function

Index

Index-11

Index

IO.APV function (Cont.)

MTAACp· H-14
IO.CRE function

F11ACP· H-10
MTAACp· H-12

IO.DAC function
F11 ACp· H-11
MTAACp· H-12

IO.DEL function
F11ACP ·H-10

IO.ENA function
F11ACp· H-11
MTAACp· H-12

IO.EXT function F11ACp· H-11
IO.FNA function

F11ACp· H-11
MTAACP • H-12

IO.RAT function
F11ACp· H-11
MTAACP • H-13

IO.RNA function
F11ACP· H-11

IO.RVB function
F11ACp· H-11
MTAACP • H-12

IO.ULK function
F11ACp· H-11

IO.WVB function
F11ACP ·H-11

ISTAT$ macro· 7-1

K
Keyword recognition

transition table· 7-7

L
Line-feed character

record attribute • 3-7
Local symbol

FOB macro • 2-21
Locate mode • 1-9, 2-9

file processing • 3-23
FSR block buffer • 3-23
GET$ macro - 3-16,3-18
PUT$ macro - 3-20,3-23
record attribute • 3-8

Index-12

Locate mode (Cont.)

task record buffer· 3-23
Logical block· 5-1

file device -1-7
Logical name

translation
FOB extension • 4-11
name expansion

.EXPLG module· 4-11
.PARSE routine

device and unit • 4-8
.PRSDV routine • 4-11

Logical unit number

See LUN
LUN

assigning with .ASLUN routine • 4-12

M
M.CTSZ offset

retrieval pointer block count field size • C-2
M.EFNU offset

extension file number • C-2
M.EFSQ offset

extension file sequence number • C-2
M.ERVN offset

extension relative volume number • C-2
M~ESQN offset

map area • C-2
M.LBSZ offset

retrieval pointer logical block number field size •
C-2

M.MAX offset
available retrieval pointer words • C-2

M.RTRVoffset
retrieval pointer start • C-2

M.USE offset
retrieval pointer word count • C-2

Macro global symbol- 2-21
Macro local symbol· 2-21
Macro run time

exceptions - 2-17
FOB address - 2-19
initialization - 2-17

Map area • 5-3
file header block - C-4

.MARK routine
save file position - 4-18

Master File Directory

See MFO

.MCALL directive • 2-2
MFO·5-2
Move mode I. 1-8, 1-9

GET$ macro· 3-15,3-18
PUT$ macro· 3-20, 3-22

.MRKOL routine
marking temporary file for deletion • 4-21

Mutifile openltion • 5-6

N
N.ANM1 field

ANSI filename string • B-3
N.ANM2 field

remalndel' of ANSI filename string • B-4
N.OIO field

directory Identification • B-2
.PARSE rloutine • 4-9

N.OVNM field ·4-12
ASCII device name • B-2
ASCII tap,e device name • B-4

N.FIO field
file Identifiicatlon· B-2, B-3
.FINO routine • 4-13
.PARSE routine • 4-9

N.FNAM field, file name • B-2
N.FTYP field

file type ·1B-2
N.FVER field

file version number • B-2
tape file version number· B-3

N.NEXT field
context for next .FIND· B-2
tape cont~~xt for next .FIND· B-4

N.STAT field
filename block status word • B-2
tape filennme block status word • B-3

N.UNIT field
FNB (tape) • B-4
unit number field • B-2

NBOF$L macro • 2-27
NMBLK$ macro

default filename block· 2-25
example ()f NMBLK$ macro· 2-26

o
OFIO$ macro· 3-1

OFIO$x macro
file processing· 3-11

OFNB$ macro • 3-1
OFNB$x macro

data-set descriptor • 3-13
default filename block· 3-13
file processing • 3-12

OPEN$ macro • 3-1
example of OPEN$ macro • 5-9
file processing • 3-14

OPEN$R macro
example of OPEN$R macro • 5-8

OPEN$R macro, shared access ·1-12
OPEN$x macro

file processing • 3-2, 3-6
format

file operations • 3-4
Open file processing • 3-3
Open file routine

by filename block· 3-12
by 10· 3-11
existing • 3-7
for access • 3-14
for modify· 3-14
for read • 3-14
for update and extend· 3-14
new ·3-7
no supersede • 3-14

OPNS$ macro • 3-1
OPNS$R macro

shared access • 1-12
OPNS$x macro

file processing • 3-9
OPNT$O macro· 3-11
OPNT$ macro • 3-1
OPNT$W macro

file processing· 3-10
Owner 10 field tape • G-2

p
.PARSE routine

device and unit translation • 4-8
logical name translation • 4-7

Parser program
TPARS· 7-10

processing steps· 7-11
Placement control F11 ACP • H-9
.POINT routine

Index

Index-13

Index

.POINT routine (Cont.)

file byte position • 2-9
positioning file to byte • 4-16

.POSIT routine
returning record position • 4-18

.POSRC routine
positioning file to record • 4-17

.PPASC routine
converting UIC to ASCII • 4-7

PRINT$ macro· 8-1
error handling • 8-2

PRINT command • 8-2
Print function

opening file on LP • 8-2
.PRINT routine

error handling • 8-2
.PRINT subroutine· 8-1
Program example I/O· J-1
Program section

TPARS·7-8
.PRSDI routine

filling in directory information· 4-12
.PRSDV routine

filling in device/unit information • 4-11
.PRSFN routine

filling in file name, type, version ·4-12
PUT$ macro • 1-8, 3-1, 3-22

FD.RWM parameter
record I/O· 2-8

FDB
file processing • 3-22

file processing
locate mode • 3-23
write logical record • 3-20

file truncate • 2-9
fixed-length record • 3-22

block boundary • 3-23
block buffer • 3-23

locate mode • 3-20, 3-23
move mode • 3-20, 3-22
no truncate function· 2-9
sequenced record • 3-20
task record buffer • 3-22
variable-length record • 3-22

block boundary· 3-23
PUT$R macro • 3-1

example of PUT$R macro • 3-25
file processing

write logical record random mode • 3-24
random mode

locate mode execution .. 3-25

Index-14

PUT$S macro • 3-1
PUT$S macro file processing write logical record,

sequential mode· 3-25

Q
010$

ACP interface • H-1
parameter list (F11ACP)· H-5

010$ directive summary· F-1
010$ function

ACP
closing a file • H-2
creating a file • H-2
deleting a file • H-3
extending a file • H-2
opening a file • H-2
using· H-2

010 execution routine • 4-18
OIOW$ directive summary • F-2

R
R.FIX

file attribute • 2-5
parameter

fixed-length records • 3-7
R.SEO

file attribute • 2-5
parameter

sequenced records • 3-7
R.VAR

file attribute • 2-5
parameter

variable-length records· 3-.7
Random access • 2-8
Random access mode· 3-17

record attribute • 3-8
Random I/O· 2-16
Random mode

PUT$R macro
locating mode execution • 3-25

writing logical record • 3-24
RCML$ macro • 6-9
RCST$ directive summary • F-2
RCVD$ directive summary • F-2
RCVX$ directive summary • F-2
.RDFDR routine

.RDFDR routine (Ccmt.)

reading $$FSR2 default directory string - 4-12
.RDFPP routine

reading $$FSR2 default file protection word • 4-5
.RDFUI routine

reading default UIC -4-3,4-4
Read $$FSR~~

default dirElctory string - 4-2
READ$ macro -1-8,3-1

block access - 2-10
end-of-file II 3-28
example of READ$ macro - 3-27
FD.RWM p1arameter

block I/O - 2-8
FOB

file op~9ration - 3-28
file processing

reading virtual block - 3-25
format file Iprocessing - 3-26
virtual block nurn ber • 3-26

Read access function
F11ACP - H-10
file open - ~~-12
shared· 1-·12

Read-ahead file processing • 2-15
Read function

default UIC - 4-4
file protection word

default • 4-5
logical recc)rd file processing • 3-15
logical recc)rd random mode file processing • 3-19
logical recmd sequential mode - 3-20
virtual block file processing - 3-25

Record
fixed-length

RFIX parameter· 3-7
sequenced

RSEO parameter - 3-7
variable-length • '1-6

R VAR parameter - 3-7
Record access initialization - 2-8
Record attribute· 2-5,3-7

FD.BLK parameter
block boundary crossing· 3-7

FD.CR paroameter • 2-5
line-fe~:td character • 3-7

FD.FTN pa.rameter· 2-5
FORTBAN carriage-control • 3-7

FD.RAN parameter
random access mode - 3-8

FD.RPN pmameter

Record attribute
FD.RPN parameter (Cont.)

carriage-control word - 3-7
locate mode - 3-8
sequential mode - 3-8

FD.RWM parameter
process with block 1/0 - 3-7

Record buffer task
locate mode - 3-23

Record fixed-length PUT$ macro - 3-22
Record format

tape -5-4
Record I/O - 2-8

FSR -2-31
FSRZ

multi-buffering· 2-31
locate mode

FD.PLC parameter - 3-5
macro calls - 2-8
mode -1-8
multibuffering - 1-10
operation· 1-8
random

FD.RAN parameter - 3-5
synchronization, event flag - 2-14

Record sequenced PUT$ macro - 3-20
Record size

FDB-3-7
fixed-length - 2-6
largest - 2-6

Record variable-length PUT$ macro - 3-22
.REMOVE routine

deleting directory entry - 4-15
.RENAME routine

renaming file - 4-19
.RFOWN routine

reading $$FSR2 file owner word - 4-6
$RONL Y macro

state table • 7-2
Run-time initialization

FSR FINIT$ macro - 2-32

s
S.HDHD offset

header area size • C-1
S.lDHD

identification area size - C-2
S.MPHD offset

map area size • C-2

Index

Index-15

Index

SC.MDL
bad data block

user-controlled file characteristic - C-3
file marked for deletion

user-controlled file characteristic - C-3
Security Information DELET$ macro - 3-33
Sequenced mode GET$ operation - 3-16
Sequential file - 2-9
Sequential mode

FD.lNS parameter - 3-5
record attribute - 3-8
write logical record - 3-25

Shared access
file open - 2-12,3-9

Shared access file - 1-12
Single file operation - 5-6
Size parameter

F11ACP -H-7
Special character state table - 7-7
Spooling - 8-1

.PRINT subroutine - 8-1
STATE$ macro - 7-1, 7-2
$STATE program section - 7-2
State table - 7-1

arrangement of syntax types - 7-6
Initializing - 7-1
rejecting transitions - 7-17
special character - 7-7
using subexpressions - 7-17

Statistics block - 0-1
address - 3-9

Status word
F11ACP

FNB-H-9
Subexpression, parsing complex command lines -

7-17
Syntax element

defining - 7 2
Syntax state table - 7-6

T
Tab

ignoring In command line - 7-6
Table Driven Parse

See TPARS
Tape

ANSI file structure - 5-1
data format - 1-7
end-of-file label • G-7

Index-16

Tape (Cont.)

end-of-volume label - G-7
file header block - G-8
file processing - 5-4
file structure - G-7
fixed-length records • 1-7
handling end-of-tape - G-8
owner 10 field - G-2
position to next file - 5-5
processing example - 5-7
record format - 5-4
user file label - G-7
user volume label - G-3
variable-length record - 1-7
volume access - 5-5
volume label- G-1

Tape file
header label - G-3

HDR1-G-3
HDR2-G-4
HDR3-G-4

identifier processing - G-G
label-G-1

Tape position
file open - 2-13

Tape read function
indirect command file - G-8

Tape standard
ANSI· G-1

Task
spooling print job - 8-1

Task buffer descriptor - 3-8
Task record buffer - 3-17
TPARS

built-in variable - 7-4
coding-7-1,7-6
command line parsing - 7-1
creating parser program - 7-10
invoking • 7-9
macro· 7-1
options word • 7-10
programming examples· 7-11
program section - 7-8
register usage • 7-10
state table • 7-1
subexpression • 7-5
transition • 7-1

TRAN$ macro - 7-1,7-2
Transition table

recognition of keyword· 7-7
.TRNCL routine

·TRNCL routine (Cont.)

truncating file • 4--20

----------.--------------------------u
UC.CON

contiguous file
user-controlled file characteristic • C-3

UC.OLK
file ImpropElrly closed

user-controlled file characteristic • C-3
UFO·5-2
UIC·5-2

ASCII-binal)' conversion • 4-6, 4-7
read/write defaults • 4-3, 4-4.

Unit informaticln
. PRSOV routine • 4-11

Unit number field • 2-28
User file attributes

header are;a
file chmacterlstics • C-3

User File Olre1ctory

See UFO
User file label

tape ·G-7
User IdentificBltlon Code

See UIC
User volume I,abel tape • G-3

----------.----------------------,----v
Variable-length record block boundary PUT$ macro •

3-23
Virtual block

file device "1-7
file extension • 2-7

Virtual block number
REAO$ mSlcro· 3-26
WRITE$ macro • 3-29

Volume default extend size • 2-7
Volume label

tape· G-1
Volume label tape user • G-3
Volume sets

rewinding • 5-5
VRCO$ directive summary· F-3
VRCS$ directiive summary • F-3
VRCX$ directiive summary· F-3

VSOA$ directive summary • F-4

w
WAIT$ macro

file processing· 3-1
block I/O completion • 3-31

format file operations· 3-31
with REAO$ and WRITE$ • 3-31
with REAO$ or WRITE$·3-26

.WOFPP routine

Index

writing $$FSR2 default file protection word • 4-5
.WOFR routine

writing $$FSR2 default directory string • 4-3
.WOFUI routine

writing default UIC • 4-3, 4-4
.WFOWN routine, write $$FSR2 file owner word • 4-6
Wildcard

context (F11 ACP)
FNB·H-9

file name· 4-14
file type· 4-14

Window pointer number· 2-13
Window size parameter

F11ACP·H-8
Write $$FSR2 macro

default directory string • 4-3
WRITE$ macro ·1-8,3-1

block access • 2-10
example of WRITE$ macro· 3-30
extending file • 3-30
FO.RWM parameter

block I/O • 2-8
FOB ·3-31
file processing • 3-28

writing virtual block· 3-28
format • 3-29
virtual block number • 3-29

Write access
F11ACp· H-10
file open· 2-12
shared· 1-12

Write-behind file processing • 2-16
Write-behind operation

FO. WBH parameter· 3-9
Write default UIC function • 4-4
Write file protection word function

default • 4-5
Write function

Index-17

Index

Write function (Cont.)

file owner word • 4-6
Write logical record function

file processing· 3-20
random mode· 3-24
sequential mode • 3-25

Write virtual block file processing • 3-28

Index-18

x
.XOIO routine

executing 010· 4-18

Reader's
Commenlts

lAS
I/O Operations Reference Manual

AA-M 1768-TC

This form is for docume~nt comments only. Digital will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible
to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for

improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent:

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experiencecl)
D User with little programming experience
D Student programmer
D Ofum(p~~e~e~~~~~~~ __ ~~~~~~~~~~~~~~~~~~

Name~ __ ~

Organization

Street_~~~.

City _____ .

___ Date~~~~_~_

State~~~~~_,Zip Code~~~~~ ___
or Country

____ . ______________ Dc. Nc.' Tear· fold Ilere: and Tape: ----------~---,.-'".-"-----------I

I
I
I
I
I
I

mDmDD!D™

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

lAS Engineering/Documentation
Digital Equipment Corporation
5 Wentworth Drive GSF /L20
Hudson, NH 03051-4929

111111111111111111111 1111111111 111111111111111 111111

No Postage

Necessary

if Mailed in the

United States

---------------------, 1>C. :"ie.' l'e:ar - h.ld lIt'rt' --------------------.-

I
I
I
I
I

