
IAS System Library Routinea Fleference
Manual

OtdM' NunriMr. ..u-s51GC-TC

OP91111tno System and V.,.,...: IAS Version 3.4

The lntdrinaliOn · m ~·CX»CUment is- subject to change without notfce and should not b• c:onstru41d as a
commitment by Olgitaj Equipment C«poradon. OlgkB' Equipment Corporadon ueumes no responsibility for
9tf1f ..-rars that may appear in this document.

'The ~-· ~Lia..Jttit..~S1Rl!",Slt i&Jt.irnisMd under a licenM .r1d may be used or ccpied onfy in
accardanca with ttte t•ms of such llcense.

Reetrtcted Rights: Use. dupffc:adon, or dlactosure by the U.S. Government is subj.ct to restrictions u set forth in
sua,.ragrapn (c)(1)(1i) al the Algh1s in T.ctmicm Data and Comput• Software c~au• at OFAAS 2!2.227·7013.

NO. ,...-~1tf"is •umtid for 'ttiii use or r4''naa1Hty of software on equ~ent that is not suppjied by Otgitaf
Equipment C«ponation ot its affiHa1:ed ccmP.,,in. · -

S· ~

c~-~990 by 01.~ Equipm.nt Corporaion

AH Algnti-RMetYed.
Print.a in U.S.A.

_ ... ,~

n.. tolaiiilo .. 1nld9m.u o1 ij1iQ1· ·~'~F '.:
.?. r

DCtt' IAS VAX C
oec MASSSUS VAXc!AJster
O&CICMS POP VAXanan ,. 01c!iww'1.f' .,. .,,,,: -~ , .. ·. F'OT . _ vMS . . ___ ..

1 ·-...tl:>ecn.t RSTS :.: . .::..:" '': VR1~1fftJ' ·;,.- . .;.. ,. ,: ; ..
oecus RSX VT

... , ._._ •.... ~ ·-·~· ·-··---.. tfl;l'FltX .. ----·------·--~···-··---·--···-~····--
.~ ···~- g~write ~:sos :_,,;:;r.:3., v,(•aia~~Jeur:-,1:

Contents

PREFACE vii

"UI

CHAPTER 1 INTRODUCTION

., ..

CHAPTER 2
.. . ,; ~. '!:: t; .. ~·1 ~iJ, .:t'.. ·,_ \ .. '~# :. .. , 'lC"' '!<t·<· •,.: .. ·;

REGISTER HANDLING ROUJJ~£$... 1.; r; 1,ttn••~1'~:;. :~; "!.,, M~l>!'it<"K~c.oc~· Jr\<''•m:;;,,:.,_-.,·£2-1
$SAVAL . 2-3
$SAVRG .. ----+-5-··-··.,,.~:
$SAVVR "'1t•r;r.: 11«r::"t(,..::) 'r"ll'1\!'t\:•qilJ:'.;:,Z ;;r:.-f~~c: vo Of~~ rz.:_lf~~.uv"€:1' i :;;·

.SAVR1 ·°""""'ttl'!'~~l-1·\'t~·~ '•i,t.,.

CHAPTER 3 ARITHMETIC ROOTl."ES1r1
1>, .• 1~ .,c ~ 1'·~ 1 {-'rvEiiJ.·ti..'.:~·!5 P:.-!.J§>"~:~;,. ~·:1.'llt:riv,\ ·1<:~ 3-1

. . .. "~~,:,;r.lltill:W'>-f~: .1.:, :~.•i~~b iii '"11..fi.J': {"""f''f·\•.11'*"'JC. ~' 11Ml'l!li'tt' £;,;· 'r.::ttiD.UiJ''l'ti,;,,i

CHAPTER 4

4.1

4.2

4.3

$MUL 3-2
~N 3~

DOUBLE-PRE9,i~\R~~~TI~t.Y .. ~OU!Jt:"'~: k <:r1A1•f11'Mtit~.:'(.vi~ ~~~:;:l\ ~~·!
$DDIV 3-5 i

·'.·~),' ~;t:! :: !

INPUT DATA CONVERSION ROUTINES
.~:J tj '~~ i' .+'f: ~

~· ~. l .• :

ASCII TO BINARY OOUBL~;~gmelt~ONVERStO~,Si:·:!''(,'
ir.ii.ft,i.l.,flfll!1\~fiJ~1!t '•ft I"

.~·: "':"/'". ~ _,~((; :4-1
t• :~~.~·: tO i

ASCII TO BINARY CONVERSIONS !4-1
; ~'...i"N>V :T ;£E1~ . .t:: '>: :: . .t~ i!A~t' .. ·~nw~ar"'":~ k.t1~'" ~rfl.'~1 it'ftl~ !

ASCII TO RADIX·SO CONVERSION~
.002CT
.002CT
$COTS
$COTS
$CATS
$CATSB

4-3
4-5
4-7
4-9

4-11
4-13

.4-1

Ill

CHAPTER 5 OUTPUl' DATA CONVERSION ROUTINES
SC BOAT
~>CBDMG

~;ceosa

~iCDDMG ·
~;ceOMG

~SCBOSG

:SCBTMG
,_..f;(:BTA·.

~SCSTA ,,~ ··

L' C.U.J&l .AISW:&LWl...tttmas:. MAQ.

CHAPTER 6 OUTPU1' FORMATIING:.BOUJINES.-. :
:tcVTUC
!SDAT

:mM
!SEO MSG

CHAPTER z. __ QY.HAMJC _MEMORV MANAGE~&NT~ ROUTINES
c-··S !SINIDM ,. ~ !·~. ~:·'ir 'c· ~-:t, -- -----.. -· - -:sfioce

---- -----~~~---·, .. !SRLCB

8.1 -· ___ U.S.IN.G_ TJ-J.e .. VIRTUAL~MEMORYt.MAHA6EMENT ROUTINES
... --~8.l~L.- _!U.s.er...Error~ldananng).~quirements

5-3
5-5
5-7
5-9

5-12
5-14
5-16
5-18
S-20

6-2
6-4
6-6
6-9

6-11

7-2
7-4
7-6

·-· ___ 8,.l,2.-~-- Iask:.Bulldlng·f-Reqllltem:eeta ,._,,.. _~_1 · _. --------

-~-··-·· ·--·- .. _.:H~IY~ ~11!luc-r:t ~(\.f· .. 1:n -9r't't to ~nr.- 8-6

-·---~··-··---- .. ~~~~~~ an:~uoR JF'.':J~ 91) to tn~
.S T OR~i1:' '')q -::·. ~-1n~' tt.,..'. H'. rn· .

-r«·,.,.- .. ~ -·-.. ·-·~SGTCOR'· .. -.-1.i-.. .• · ~ •.. ""··-· .. ~ .

-----·-··-······ -:SE>ffSK : .. ,oa.x1P.-· r:. ··f0Vr'"'1~ i;:.rt to r:--

8-11
8-14
8-17
8-20

·~·,- , __ ,, _____ :S.WRPAQnl l., :;;\ DqMFiW;.:-· '5!ri~ tci 0 8-23
- .. -·~--·--·---·--···-·-- 9-fltt.wo'l ~lq/:JJ?, 9J."•f I

::;;<>-~~ --·---.. - ... --····--'- !tl'Wt:n1· DG.il~~-·· .•.
8.2 VIRTUAL MEMORY ALLOCATION ROUTINES

:SALVRT 8-27
:SALSVB 8-30
:SRQVCB 8-34
:SCVLOK 8-37
:SCVRL 8-40
:SRDPAG 8-43
:$FNOPG 8-46

Iv~'

5-1

6-1

7-1

8-1

8-1
8-2
8-3

8-26

$WRMPG
$LCKPG
$UNLPG

8-48
8-5'1
8-54

Cont*mts.·:
• "": ~'~1

CHAPTER 9 SUMMARY PROCEDURES \9-1

::. j ~·

APPENDIX A SYSTEM REFERENCE BIBLIOGRAPHY A-1

APPENDIX B UNIVERS~L LIBRARVACcess. '.TT . '"'· .::·. : ·"; "; .~ ·::ri ~; c

INDEX

FIGURES
2-1
8-1
8-2
8-3

8-4

8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16

-, •• ' Al-~ '~

. ~ " ··~ .

Control Swapping of th•t F.eglstE:t; Handling Routines:· L ·'· \: .. ·1 ,i TStf-:2 ·.::·
General Block Diagram of the $1NIVM Routine i 8-8

!

General Block Diagram of the $ALBLK Routine ,-13
General Block Diagram of the $GTCOR Routine (Nonstatlstlcal .
Module GTCOR) S-15

General Block Dtagnaf~U?.!m~. $<:;,J~QB .. .BR.~UD!.{"$.t1.U1.tJ~!ll.MA"Mlfl~,,,._, .. ,.. _.,,,._.wi·:~1·
GTCOS) ·~·-. ,~.~·-·...._-a.~:.i--~-:. .• "'-.. ~--~-~-'-:-·T--;.;":;.;-..:..t-r,---t-i, ·, b.1 ~1 ::~;
General Block Diagram of the SEXTSK Routine·'·. " . . " ~ 8-21

General Block DlagrQtn.Jlf. Ole $Wl=tPAGJ:lo.uJloe.. --·-·-·-·,.-~-w,.-..~-····· .. 8-24
General Block Diagram af\tt'lf!· $AlVRT Routine . __;_ 8-28
General Block Dlagram··of the:·$Al.SVB Routing. ~ .. _._L-2;:..._ ~32

General Block Diagram .of ~he·$AQ1VCB Hcuitinei .~ .. · · ·:. ~ 8-35
General Block Diagram of the $CVLOK Routine 1.y; iv Vi S-38
General Block Diagram of the $CVRL Routine "~''::':;.: ~·: 8-41
General Block Diagram of the $RDPAG Routlne~;

1

"._;.~;_- $-44
General Block Diagram of the $FNDPG Routine .1.~~---· 8-47
General Block Diagram of the SYiRMPG Routine. ~· · 8-49
General Block Diagram of the $LCKPG Routine 8-52

i

General Block Diagram.of the $UNLPG .. R00Une .. -·-~;:.:.;;::.;.:;:.::::~;:~;..:;.:::::.::;,··~·---· ~-·55
, ~:, ;J1 ~·~· :~ .' ,o.· ·:)c~ .. , .. · ,. ': i""-\ c q:\;\~ ,

1
•• l~"t -:., '.l .t :~. '!~ I

v

Contents

TABLES

vf ·,;

1-1
6-1
8-1
9-1
9-2
9-3
9-4
9-5
9-6 --.
9-7

Program Section Names for SYSLIB Routines
$EDMsc; Routine Editing Directives
Contents of the Virtual Memory Management Library Fiie
Register Handling Routines Summary
ArlthmeUc Routlnos,Summary
Input DE1ta Conversion Routines Summary
Output IJata Conv1ersion Routines Summary
Output 1:ormatt1ng: Routines Summary
Dynamf(: Memory Management Routines Summary
Vlnual Memory Management Routines Summary

- -i ~: .\I " '· r•' :,

; "/ '

1-3
6-13

8-3
9-1
9-1
9-2
9-3
9-4
9-6
9-7

Preface

Manual Objectives
The !AS System Library Routines Reference Manual describes the use and function of the sy tern
library routines that may be called from MACR0-11 assembly language progTams.

----------------------------.-.. ~ • ..,..a.-____ --..j __

Intended Audience
This manual is intended for use by experienced MACR0-11 assembly languag·e programmers. iAS
system managers, and applications programmers.

Document Structure
i

Chapter 1 presents a general description of the services provided by the system library routih.es
and their functional relationships.

Chapter 2 describes the use and function of the register handling routines.

Chapter 3 describes the use and function of the arithmetic routines.

Chapter 4 describes the use and function of the input data conversion routines.

Chapter 5 describes the use and function of the output data conversion routines.

Chapter 6 describes the use and function of the output formatting routines.

Chapter 7 describes the use and function of the dynamic memory management routines.

Chapter 8 describes the use and function of the virtual memory management routines.

Chapter 9 summarizes the calling sequences of the system library routines.

Appendix A presents a cross-reference system bibliography of other manuals that describe routines
available to IAS system users. ·

Appendix B describes a routine that enables a program to access modules in a universal libraey as
if they were files.

Associated Documents
The foUowing manuals are prerequisite sources of information for readers of this manual:

• The PDP-11 MACR0-11 Language Reference Manual

• The IAS 1bsk Builder Manual

• The manuals refeITed to in Appendix A

Readers should also refer to the I.AS Documentation Directory and Master Index for descriptions of
other documents associated with this manual. !

vlJv

1 Introduction

The routines described in this manual were written to provide commonly needed capabilities for
DIGITAL-supplied utilities. We supply documentation for them because the routines are general
enough to be used regularly by most MACR0-11 programmers. Note, however, that the basic
functionality of the routines described in this manual cannot be changed because of the potentially
widespread effect it might have on our system utilities.

The system library routines can be called by MACR0-11 assembly language programs to perform
the following services:

• Save and restore register contents to enable transfers of control between the calling program

•
•
•
•

and called subroutines

Perform integer and double-precision multiplication and division

Convert ASCII input data to internal binary and Radix-50 format

Convert internal binary and Radix-50 data to ASCII output data

Convert and form.at output data to produce text for a readable printout or display

• Manage the dynamic memory space available to the task that requires a small-to--moderate
amount of resident memory for data

Manage memory and disk file storage to accommodate tasks that require large amorts of
memory for data that must be transferTed between memory and a disk work file ;

•

This manual describes the procedures for ca11ing the library routines from within the source
program, the output that is returned to the executing task, and the interaction between the library
routines and the executing task.

The system library routines interface with each other to perform their various services.\ For
example, the data conversion routines call the arithmetic routines to perform the requited
multiplication and division. All library routines preserve the contents of the calling task'~ registers,
generally by calling the appropriate register handling routine to do the following: ·

• Save register contents on the stack

• Subsequently restore the contents of the registers

• Return control to the calling task

The data conversion and format control functions perfonned by the Edit Mesaage Routine require
calls to the output data conversion routines, which in tum call other routines. ·

The virtual memory management routines function as an automatic cont.rot systern to alfocate and
deallocate memory, maintain page addresses and statue, and swap pages between memoey and disk
storage to accommodate large amounts of data in a limited amount of physical (dynamic) memory.

The system library routines communicate with the calling task by means of regiaters where output
is returned or by settings of the C bit in the Condition Code of the Processor Status Word. The

. calling task can usually determine whether a requested service was 11ucce15sfu)ly performed by
examining the output register or registers or ·by testing the C bit setting when control itneturned
from the library routine. Exceptions to this procedure are described in the detailed disctissions of
given routines.

1-1

Introduction

The system library routines are suppli1:!d to users as object code in the following files:

• The system library file (SYSLIB.OLB), which contains the following routines:

Register handling ro111tines (des1cribed in Chapter 2)

Arithmetic routines <.described in Chapter 3)

Input and output data conversion routines (described in Chapters 4 and 5)

Output formatting r<>utines (described in Chapter 6)

Dynamic memory aJlocation and release routines (described in Chapter 7)

Universal library acc:ess routin·es (described in Appendix B)

• The memory managemerit routines file (VMLIB.OLB), which contains the dynamic and virtual
memory management routines.

At task-build time, the Task Builder will automatically search the system library file for any
referenced routines. Howevt~r. the VM:LIB.OLB file must be specified at task-build time if a task
has referenced the dynamic memory initializatioq routine (described in Chapter 7) or any of the
virtual memory management routines (described in Chapter 8 of tltis manual).

A summary of each procedu·re for using the system library routines is given in Chapter 9. This
ie quick-reference material provided for the MACR0-11 assembly language programmer who has
become familiar with the de·tailed procedures that are explained in Chapters 2 through 8.

Additional Executive and 1/0 routines available to I.AS system users are described in other
manuals. See the I.AS DocuJnentation .Directory and Master Inda for more information.

If the task that includes system library 1"0utines also references a position-independent resident
library. it is possible that p1'0gram section names might conflict. Routines included in a task
cannot reside in the same program sedion as routines referenced in the position-independent
resident libl'Bry. Table 1-1 lists the program section names and the system library routines that
reside! in each program section. If you1r task includes a routine that uses a program section listed
in Table 1-1 and the task also referen1:es a position-independent resident libl'Bry routine that uses
the same program section, the Task B'llilder generates a fatal error. To determine how to include
the code in your task and a"oid a confllict of program section names, refer to the IAS 7bsk Builder
Manual.· ... -.,.·~· · ··-···- ·- ··· ·

1·-2 ·.'

lntroduct!lon ·-:f

Table 1-1 Program Section Names for SYSLIB Routines

SYSUB Routines

Program Section
Name Module Name Routine Name(s)

.BLK. CATS $COTS
$COTB

CATS $CATS
CBTA $C8DAT

$CBDMG
$CB DSG
$CBOMG
$CBOSG
$CBTA
$CBTMG

CODMG $CODMG
CVTUC $CVTUC_. t.
CSTA $CSTA
ED OAT $DAT

. $TIM
nr

002CT .DD2CT ;•"

.002CT ~ ;: ~

SAVAL $SAVAL ·-~
SAVVR $SAVVR

PUR$0 CATSB (data) $CAT5B "c:A.

EOTMG (data) $EDTMG ;..,1G

PUR$1 CATSB (instruction) $CATSB ~-;:

EDTMG (Instruction) $EOTMG

$$RESL SAVRG $SAVRG
SAVR1 .SAVR1 ',i' ·. -~~-~

$$RESM ARITH $DIV
·f 1ol'..tl·"i•

$MUL
DARITH $DDIV

$0MUL l,·"'

~-3 ,.

2 Register Handling Routines

The system library contains the following register handling routines:

• Save All Registers Routine ($SAVAL), which saves and subsequently restores Regist~rs 0
through 5 :

i

• Save Registers 3-5 Routine ($SAVRG), which saves and subsequently restores Registers 3
through 5

• Save Registers 0-2 Routine ($SAVVR), which saves and subsequently restores Regis~rs 0
through 2

• Save Registers 1-5 Routine (.SAVRl), which saves and subsequently restores Registers 1
through 5 i

i

The register handling routines function as coroutines to enable control swapping between
themselves. a subroutine, and the original caller of the subroutine. The register handling; routines
are also called by other routines in the system library, as noted throughout ~his manual. !

To illustrate the effect of using the register handling routines. assume the following situation:

1

2

3

4

An original caller calls a subroutine.
!

The subroutine calls a register handling coroutine.

The coroutine preserves (pushes onto the stack) the contents of the specified register~ and
issues a coroutine call back to the subroutine. i

i

The subroutine executes to completion, then a return instruction is executed to swap control
back to the coroutine.

5 The coroutine restores (pops from the stack) the initial contents of the registers and r.,turns to
the original caller. I

Figure 2-1 illustrates the control swapping function performed by the register handling r~utines.
The register handling routines are called by other routines in the system library, as noted in this
manual. !

2-1

Register Handling Routh1es

Figure 2-1 Control Swapping of the Register Handling Routines

2-·2

ORIGINAL CALLER

START

0
0
0
0

Legend
CALL (subroutine)= JSR PC, subroutine
RETURN = RTS PC

CALL (Subroutine) _ _..(Subroutine)

o JSl=i r,SSAVxx ----•• $SAVxx (save registers)

0
0
0

-------{ (Issue coroutine call
to subroutine)

---ai.
(restore registers)

0
0
0

RETURN (to orlgtnal caller)

I

$SAVAL
!

$SAVAL

The $SAVAL routine saves and subsequently restores Registers O through 5 for a subroutine. Th~
$SAVAL routine functions as a coroutine that swaps control between itself, a subroutine, and the
original caller.

To call the $SAVAL routine, include the following Jump to Subroutine instruction in your subroutine:,

JSR PC,$SAVAL

The subroutine must return control to the $SAVAL routine with a RETURN source statement.

On entry to the $SAVAL routine, the program stack contains the return address to the original caller: and
the return address of the subroutine. The $SAVAL routine pushes the contents of registers 4 through o
to the stack.

The $SAVAL routine moves the subroutine return address to the position following the contents of
Register O and moves the current contents of RS to the stack above the contents of R4.

The $SAVAL routine issues a coroutine call, in the form CALL @(SP)+, to swap control back to th~
subroutine. The coroutine caU replaces the subroutine return address with the return address to the
$SAVAL routine. When control returns to the subroutine the stack pointer points to $SAVAL's retun1
address. The stack contains the following:

2-3 '

$SAVAL

Return Address to Original Caller

Register 5

Register 4

Register 3

Register 2

Register 1

Register O

Return Address to $SAV~

The subroutine executes u1ntll a RETURN (RTS PC) instruction is executed, which swaps control back
to the $SAVAL routine. Th13 contents of RO through RS are restored (popped from the stack) and the
SSAVAL routine retums, by means of an RST PC instruction, to the original caller.

NOTE: For $SAVAL to ·work pro'.perly (that is, return control to the original caller), the
routine that calls $SAV.AL must fttself have been invoked by the CALL instruction (that
is, ciJSR PC, subroutine}.

.: -·::.. -...

2~

$SAVRG

$SAVRG-Save registers 3-5

The $SAVRG routine saves and subsequently restores Registers 3 through S for a subroutine. The
$SAVRG routine functions as a coroutine that swaps control between itself, a subroutine, and th$
original caller.

To call the $SAVRG routine, the subroutine must contain the following Jump to Subroutine Instruction:

JSR RS,$SAVRG

The subroutine must return control to the $SAVRG routine with a RETURN source statement.

On entry to the $SAVRG routine, the program stack contains the return address to the original caHer
and the contents of RS of the original caller. The $SAVRG routine pushes the contents of registets 4
and 3 to the stack, then pushes the current contents of RS (return address to the subroutine) to ·the
stack.

DESCRIPTION

The $SAVRG routine copies the original contents back into RS and issues a coroutine calI in
the form CALL @(SP)+, to swap control back to the subroutine. The coroutine call replaces the
subroutine's return address with the return address to the $SAVRG routine. When control returns
to the subroutine, the stack pointer points to $SAVRG's return address. The stack contains the
following:

Return Address to Original Caller

Register 5 contents of Original Caller

Register 4

Register 3

Return Address to $SA VRG
-

The subroutine executes until a RETURN (RTS PC) instruction is executed; this swaps control
back to the $SAVRG routine. The contents of Registers 3 through 5 are restored (popped &of11i the
stack) and the $SAVRG routine RETURNs via an RTS PC instruction to the original caller. :

2-5

$SAVRG

NOTE: For $SAVRG to ·work properly (that is, return control to the original caller), the
routine that calls $SAVRG must Uselt have been invoked by the CALL instruction (that
is, JSR PC, subroutine) ..

2-6

$SAVVR

$SAVVR-Save registers 0~2

i

The $SAVVR routine saves and subsequently restores Registers O through 2 for a subroutine. The
$SAVVR routine functions as a coroutine that swaps control between itself, a subroutine, and th•
original caller. ·

To call the $SAVVR routine, the subroutine must contain the following Jump to Subroutine instruction:

JSR R2,$SAVVR

DESCRIPTION

On entry to the $SAVVR routine, the program stack contains the return address to the original
caller and the contents of Register 2 of the original caller. The $SAVVR routine pushes the coqtents
of Registers 1 and 0 to the stack, then pushes the current contents of Register 2 (the return aqdress
to the subroutine) to the stack.

1

The $SAVVR routine copies the original contents back into Register 2 and issues a coroutine ban.
in the form CALL @(SP)+, to swap control back to the subroutine. The coroutine call replaces the
subroutine's return address with the return address to the $SAVVR routine. When control returns
to the subroutine, the stack pointer points to $SAVVR's return address. The stack contains the
following information:

Return Address to Original Caller

Register 2 contents of Original Caller

Register 1

Register O

Return Address to $SA VVR

The subroutine executes until a return instruction (RTS PC) is executed; this swaps control b~ck
to the $SAVVR routine. The contents of Registers 0 through 2 are restored (popped from the dtack)
and the $SAVVR routine returns, by means of the RTS PC instruction, to the original caller.

2-7

.SAVR1

.SAVR1-Save registers 1-5

The .SAVR1 routine saves and subsequently restores Registers 1 through 5 for a subroutine. The
.SAVR1 routine functions as a coroutine that swaps control between itself, a subroutine, and th~ original
caller.

To call the .SAVR1 routine, the subroutine must contain the following Jump to Subroutine instruction:

JSR RS,. SAVlU

The subroutine must return control to the .SAVR1 routine with a RETURN source statement.

DESCRIPTION

On entry to the .SAVRl routine, the program stack contains the return address to the original
caller and the contents of :Register 5 of the original caller. The .SAVRl routine pushes the contents
of Registers 4, 3, 2, and l, and the current contents of Register 5 (the return address to the
subroutine) to the stack.

The .SAVRl routine copie~• the original contents back into Register 5 and issues a coroutine call.
in the form CALL @(SP)+, to swap ci:>ntrol back to the subroutine. The coroutine call replaces the
subroutine return address with the l'eturn address to the .SAVRl routine. When control returns
to the subroutine, the stac:k pointer points to .SAVRl's return address. The stack contains the
following information:

2-8

.SAVR1

Return Address to Original Caller

Register 5 contents of Original Caller

Register 4

Register 3

Register 2

Register 1

Return Address to .SAVR1

i

The subroutine executes until a return instruction <RTS PC) is executed; this swaps control back
to the .SAVRl routine. The contents of Registers 1 through 5 are restored (popped from the stack)
and the .SAVRl routine returns, by means of the RTS PC instruction, to the original caller. I

I

NOTE: For .SAVRl to work properly (that is, return control to the original caller), ~e
routine that calls .SAVRl must itself have been invoked by the CALL instruction (that is,
JSR PC, subroutine). 1

I

2-9

3 Arithmetic Routines

The system library contains four arithmetic routines that perform unsigned integer mul~1p1ication
and division. This chapter describes the use and function of the following types of arithmetic
routines: 1

1

2

Integer Arithmetic Routines
I

The following routines perform arithmetic operations on 16-bit unsigned integer values:
I

• The Integer Multiply Routine ($MUL), which multiplies integer values !

• The Integer Divide Routine ($DIV), which divides integer values

Double-Precision Arithmetic Routines

The following routines perform double-precision arithmetic operations:

• The Double-Precision Multiply Routine ($DMUL), which multiplies an unsigned
double-precision value by a single-precision multiplier to produce a double-precisi~n product

• The Double·Precision Divide Routine ($DDIV), which divides an un~igned double~:precision
dividend by an unsigned single-precision divisor to produce a double-precision resWt

3-1

$MUL

$MUL-lnteger Multiply Routine

The SMUL routine multipliE~s two single-word unsigned integer input values to produce an unsigned
double-word product.

FORMAT

CALL$MUL

INPUT

multiplier
In Register 0: a single-weird unsignc!d integer

multiplicand
In Register 1: a single-weird unsigm!d integer

OUTPUT

product (high-ord•~r)
In Register 0: the high-order part of the result

product~ow-ordery
In Register 1: the low·ord,,r part of the result

DESCRIPTION

The $MUL routine preserves Registt!rs 2 through 5 of the calling task. It does not return any error
indications to the caller.

EXAMPLE

The following source· statE~ments calll the $MUL routine to perform multiplication and store the
results in the buffer WORK:

3-2

WORK: .BLKW 2

MOV
MOV
CALL
HOV
HOV

tl200, RC)
t36,Rl
$MOL
RO, WORK
Rl, WORK+2

OUTPUT BUFFER

PUTS MULTIPLIER IN REGISTER 0
PUTS THE MULTIPLICAND IN REGISTER 1
CALLS $MOL ROUTINE
SAVES HIGH-ORDER PART OF RESULT
SAVES LOW-ORDER PART OF RESULT

$DIV

$DIV-Integer divide routine

The $DIV routine per1orms unsigned integer division.

FORMAT

CALL $DIV

INPUT \'

dividend
In .Register 0: an unsigned integer

divisor
In Register 1: an wisigned in~ger

OUTPUT

quotient
In Register 0: the quo ti en t

remainder
In Register 1: the remainder

DESCRIPTION

The $DIV routine preserves Registers 2 through 5 of the calling task. It does not return any ;error
indications to the caller.

EXAMPLE

The fo1lowing source statements call the $DIV routine to perform division and store the res~ts in
Registers 0 and 1: - I

FRACTN: .WORD l BUFFER FOR REMAINDER

MOV #36., RO SET DIVIDEND
MOV #8., Rl SET DIVISOR
CALL $0IV DIVIDE
MOV Rl,FRACTN SAVE REMAINDER

3-3

Double-Precision Multiply Routine

Double-Precision Multiply Routine-$DMUL

The $0MUL routine multiplies an unsigned double-precision value by an unsigned single-precision
value to produce an unsigned double-precision product.

FORMAT

CALL$DMUL

INPUT

multiplier
In Register 0: an unsigned single-precision magnitude value

multiplicand (high··order)
In Register 2: the high-order part of an unsigned double-precision magnitude value

multiplicand (low-c,rder)
In Register 3: the low-ord·er part of the unsigned double-precision magnitude value

OUTPUT

product (high-order)
In Register 0: the high-order part of the product

product (low-order)
In Register 1: the low-ord1er part of the product

DESCRIPTION

The $DMUL routine prese1rves Registers 4 and 5 of the calling task, clears the C bit, and destroys
the contents of Registers ~~ and 3 up1:>n return to the caller. The $DMUL· routine does not return
any error indications to the caller.

EXAMPLE

The following source statements cal1 the $DMUL routine to multiply the number stored in
Registers 2 and 3 by 127 m and store the result in Registers 0 and 1:

3-4

MOV
MOV
MOV
CALL

RS,R2
R4,R3
1127., RO
$0MUL

HIGH-ORDER PART OF MULTIPLICAND
LOW-ORDER PART OF MULTIPLICAND
MULTIPLIER
MULTIPLY BY 127.

$DDIV-Double-precision divide routine

The $DDIV routine divides an unsigned double-precision integer dividend by an unsigned
single-precision (15-bit) divisor to produce an unsigned double-precision result.

FORMAT

CALL $DDIV

INPUT

divisor
In Register 0: an unsigned double-precision integer

dividend (high-order)
In Registet' 1: the high·order part of an unsigned single-precision integer

dividend (low-order)
In Register 2: the low-order part of an unsigned single-precision integer

OUTPUT

remainder
In Register 0: the remainder

quotient (high-order)
In Register 1: the high-order part of the quotient

quotient (low-order)
In Register 2: the low-order part of the quotient

DESCRIPTION

$pD1V

The $DDIV routine preserves the contents of Registers 3 through 5 of the calling task. The $DDIV
routine does not return any error conditions to the caller.

EXAMPLE

The following source statements call the $DDIV routine to perform division and store the results
in Registers 0, 1, and 2:. -

3-5

$DDIV

DVD: .BLKW .2 BUFFER TO STORE HIGH-ORDER OF DIVIDEND
QUOT: .BLKW 2 BUFFER TO STORE HIGH-ORDER OF QUOTIENT
RMAIN: .SLKW 1 BUFFER FOR REMAINDER

MOV USO, RO PUT DIVISOR IN REGISTER 0
MOV DVD,Rl SET UP HIGH-ORDER PART OF DIVIDEND
MOV DVD+2, R:? SET OP LOW-ORDER PART OF DIVIDEND
CALL $DDIV CALL SDDIV ROUTINE
MOV Rl,QUOT PUT HIGH-ORDER PART OF QUOTIENT IN BUFFER
MOV R2,QUOT+2 PUT LOW-ORDER PART OF QUOTIENT IN BUFFER
MOV RO,E™AIH PUT REMAINDER IN RMAIN

3-6

4 Input Data Conversion Routines

The input data conversion routines accept ASCII data as input and convert it to the specified
numeric representation. The following three types of routines perform input data conve119ion:

!

• ASCII to binary double-word conversion routines, which accept ASCII decimal or oc~l input
numbers and convert them to double-word binary numbers I

• ASCII to binary conversion routines, which accept ASCII decimal or octal input num~ers and
convert them to single-word binary numbers

• ASCII to Radix-50 conversion routines, which accept the Radix-50 set of ASCII characters as
input and convert them to Radix-50 internal format 1

4.1 ASCII to Binary Double-Word Conversions
The following system library routines convert ASCII input numbers to double-word binary
numbers:

• The Decimal to Binary Double-Word Routine (.DD2CT), which accepts ASCII decimal! numbers
as input and converts them to double-word binary format !

• The Octal to Binary Double-Word Routine (.OD2CT), which accepts ASCII octal numbers as
input and converts them to double-word binary format

4.2 ASCII to Binary Conversions
The following routines convert unsigned ASCII input numbers to single-word unsigned qinary
numb~: :

• The Decimal to Binary Conversion Routine ($CDTB), which accepts ASCII decimal niim.bers as
input and converts them to single-word binary format I

• The Octal to Binary Conversion Routine ($COTB), which accepts ASCII octal numbet1s as input
and converts them to single-word binary format 1

These routines call the Integer Multiply Routine ($MUL) to perform the multiplication required for
the conversion. ·

4.3 ASCII to Radix-50 Conversions
i

The following routines convert ASCII alphanumeric input characters to 16-bit Radix-50 ~alues:
I

• The ASCII to Radix-50 Conversion Routine ($CATS), which accepts input characters ~rom the
ASCII character Radix-50 subset and converts them to Radix-50 format1

I

1 See the PDP-11 MA.CR0-11 Language !WfennCf! Manual for a complete Ii.ting of the Radix-60 character .. ~ and ASCII
equivalenta. · '

4-1

Input Data Conversion RoutlnE~s

• 'rhe ASCII with Blanks to Radix-50 Conversion Routine ($CAT5B), which accepts input
charactel"S from the ASCII character Radix-50 subset and blank characters and converts
them to Radix·50 formatl

Both routines call the Integer Multiply Routine <.$MUL) to perform the multiplication required for
the conversion.

4-2

.DDi2CT

.DD2CT-Decimal to binary double-word routine

The .DD2CT routine converts a signed ASCII decimal number string to a double-length (2-word) ~ gned
binary number.

FORMAT

CALL .DD2CT

INPUT

output address
In Register 3: the address of the 2-word output field where the converted number is to be sto~ed

number input characters .
In Register 4: the number of characters in the string to be converted

input string address
In Register 5: the address of the character string to be converted

OUTPUT

binary result (high-order)
In word 1 of the output field: the high-order 16 bits of the converted number

binary result (low-order)
In word 2 of the output field: the low-order 16 bits of the converted number

Condition code
C bit • Clear if conversion was successful

C bit • Set if an illegal character was found and conversion was incomplete

DESCRIPTION

The .DD2CT routine accepts leading plus (+) or minus (-) signs and a trailing period (.) in ~he
string to be converted. A preceding pound sign (#) forces octal conversion; a pound sign and ~
period in the same input string is invalid. The numbers 0 to 9 are acceptable characters in the
decimal number string itself. Any other characters in the string will cause the .DD2CT routin~ to
terminate the conversion procedure. The value range of a decimal number to be converted is 231

to +.231 - 1.

The .DD2CT routine saves and restores all of the calling task's registers.

4-3

.DD2CT

EXAMPLE

The following source statements call the .DD2CT routine to convert an ASCII decimal number
string (pointed to by buffer ICHR), s.tore the binary result in the address pointed to by buffer
BOUT, and check the results upon return:

ICHR: .ASCII /l2345E7./
.EVEN

BOUT: .BL~' 2

MOV iBOOT,R3
MOV UO, R4
MOV UCHR,RS
CALL .OD2CT
BCS 100$

100$: CALL ERR

GET ADDRESS OF THE 2-WORO OUTPUT FIELD
GET THE NUMBER OF INPUT CHARACTERS
GET ADDRESS OF THE INPUT CHARACTER STRING
CONVERT THE STRING
BRANCH IF C BIT SET (CONVERSION WAS NOT SUCCESSFUL)

PROGRAM CONTINUES

CALL ROUTINE TO OUTPUT ERROR MESSAGE

.002CT

.OD2CT-Octal to binary double-word routine

The .002CT routine converts an ASCII octal number string to a double-length (2-word) binary nu~ber.
!

FORMAT

CALL .002CT

INPUT

output address
In Register 3: the address of the 2-word output field in which the converted number is to be tored

number input characters
In Register 4: the number of characters in the string to be converted

input string address
In Register 5: the address of the character string to be converted

OUTPUT

binary result (high-order)
In word 1 of the output field: the high-order 16 bits of the converted number

binary result (low-order)
In word 2 of the output field: the low-order 16 bits of the converted number

Condition Code
C bit • Clear if conversion was successful

C bit • Set if an illegal character was found and conversion was incomplete

DESCRIPTION

The .OD2CT routine accepts leading plus (+)or minus (-) signs and a trailing period (.) n
the string to be converted. A preceding pound sign (#) is accepted but unnecessary; a pound sign
and a period in the same input string is invalid. A trailing period forces decimal conversion. (This
is because the .OD2CT routine is an entry point in the .DD2CT routine, which converts decimal
number strings to binary double-word values.) Acceptable characters in the octal nwnber string
itself are the numbers 0 to 7. ·

The .OD2CT routine terminates the conversion process if you use any other characters in th~
ASCII octal nwnber string. i

The value range of an octal nwnber you can convert is -231 to +23 1 - 1.

4-5

.OD2CT

The .OD2CT routine saves and restores all of the calling task's registers.

EXAMPLE

The following source statements call the .OD2CT routine to convert an ASCII octal nwnber string
(pointed to by buffer ICHm. store the binary result in the address pointed to by buffer BOUT, and
check the results upon return:

ICHR: .ASCI! /2461.357 I
. E:VEN'

BOUT: .BLKW 2

MOV tBOUT,R3
MOV t7,R4
MOV UCHR,RS
CALL .002CT
BCS 100$

100$: CALL ERR

4-6

GET ADDRESS OF THE 2-WORD OUTPUT
GET THE NUMBER OF INPUT CHARACTERS
GET ADDRESS OF THE INPUT CHARACTER STRING
CONVERT THE STRING
BRANCH IF C BIT SET (INPUT STRING

CONVERSION WAS NOT SUCCESSFUL)
IF C BIT CLEAR, CONVERSION WAS SUCCESSFUL

AND THE PROGRAM CONTINUES
CALL ROUTINE TO OUTPUT ERROR MESSAGZ

$COTB
I

$CDTB-Decimal to binary conversion routine

The $COTS routine converts an unsigned ASCII decimal number to binary format.

FORMAT

CALL$CDT8

INPUT

input buffer address
1

In Register 0: the address of the first byte of the ASCII decimal character string to be conver~ed

OUTPUT

next byte address
In Register 0: the address of the next byte of the input buffer

binary number
In Register 1: the converted number

terminator
In Register 2: the terminating character of the input buffer

DESCRIPTION
I

The numbers 0 to 9 are valid characters in the input decimal number .. All other input characters
are invalid and are not converted by this routine. The end of a string of numbers must be !

marked by a terminating character, which can be any ASCII character except the numbers o:
to 9. Examples of terminating characters are a blank, tab character, alphabetic character, an;d
special symbol. Leading blanks and tab characters are ignored.

i

The maximum value of a decimal number that can be converted by the $CDTB routine is 65,$35.
Numbers of greater value will cause indeterminate results since the $CDTB routine does not ~heck
the value range of an input number. Also, the routine does not return a significant Condition 'Code
setting to the calling task. '

Because the $CDTB routine returns the address of the next byte in the input buffer to the caJling
task, you can convert successive strings by setting up a processing loop back to the CALL $Cit>TB
statement (see the example for this routine).

4-7

$CDTB

$CDTB calls the $SAVRG :routine to save and restore Registers 3 through 5 of the calling task.

NOTE: You can determline, in th•! task, whether an input string was successfully
converted by testing th•!! content1s of Register 2. If the contents are other than the
expected terminating character, the conversion was incomplete because the routine
fowid an invalid character in the, input string.

EXAMPLE

The following source statements define a processing loop, using the $CDTB routine, to convert a
series of ASCII decimal character strings to binary numbers. This example uses the tab character
as the terminating character of each string and the space character as the terminating character of
the input buffer. If converted successfully, the binary numbers will be stored in the buffer BNUM:

IBOF:

BNOM:

LOOP:

10$:

.ASCII /123/<ll>/4567/<ll>/89/<ll>/87654/<40>

.EVEN

.SLKW 4 : SOFFER FOR CONVERTED NUMBERS

MOV
MOV
CALL
MOV
CMP

BEQ

CMP

SEQ

JMP

iBNUM, R4
UBOF,RO
$COTS
Rl, (R4) +
Ill, R2

LOOP

t40,R2

10$

ERR

GET THE OUTPUT BUFFER ADDRESS
SET UP INPUT BUFFER ADDRESS
CONVERT THE STRING
SAVE: CONVERTED STRING
COMPARE ASCII TAB (HT) VALUE TO TERMINATING

CHARACTER RETURNED IN REGISTER 2
IF EQUAL, STRING SUCCESSFULLY CONVERTED,

GO BACK THROUGH LOOP TO CONVERT NEXT INPUT
STRING POINTED TO BY REGISTER 0

COMPARE SPACE VALUE (40) WITH TERMINATING
CHARACTER IN REGISTER 2

IF EQUAL, CONTINUE PROGRAM (ALL INPUT
HAS BEEN CONVERTED SUCCESSFULLY)

IF NOT EQUAL, ILLEGAL CHARACTER IN INPUT
STRING CAUSED CONVERSION TO TERMINATE; HENCE

INPUT IS ERRONEOUS; GO TO ERROR ROUTINE
PROGRAM CONTINUES

$COTS

$COTS-Octal To Binary Conversion Routine

The $COTS routine converts an unsigned ASCII octal number to binary format.

FORMAT

CALL$COTB

INPUT

input buffer address .
In Register 0: the address of the first byte of the ASCII octal character string to be converted

OUTPUT

next byte address
In Register 0: the address of the next byte of the input buffer

binary number
In Register 1: the converted number

terminator
In Register 2: the terminating character of the input buffer

DESCRIPTION
i

The characters 0 to 7 are valid in the input octal number. The maximum value of an octal number
that can be converted by the $COTB routine is 177777. The end of a string must be marked by
a terminating character, which can be any ASCII character except the numbers 0 to 7. Examples
of terminating characters are a blank, tab character, alphabetic character, and special symbol.
Leading blanks and tab characters are ignored. :

$COTB calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.
i

NOTE: You can determine, in the task, whether an input string was successfully I

converted by testing the contents of Register 2. If the contents are other than the !
expected terminating character, the conversion was incomplete because the routin~
found an invalid character in the input string. 1

! 4-9

$COTS

EXAMPLE

The following source statements define a processing loop, using the $COTB routine, to convert a
series of ASCII octal character strings to binary nwnbers. The example uses the tab character as
the terminating character 1of each string and the space character as the terminating character of
the input buffer. If converted successfully, the binary numbers will be stored in the buffer BNUM:

4-10

IBOF: .ASCII /012/<ll>/3456/<ll>/76/<ll>/54321/<40>
.EVEN

BNUM: .BLKW 4 ; BUFFER FOR CONVERTED STRINGS

LOOP:

10$:

HOV
MOV
CALL
MOV
CMP

SEQ

CMP

SEQ

tBNUM,R4
UBUF,RO
$COTS
Ell, (R4)+
Ul,R2

LOOP

#40,R2

10$

ERR

GET OUTPUT BUFFER ADDRESS
SET UP INPUT BUFFER ADDRESS
CONVERT THE STRING
SAVE CONVERTED STRING
COMPARE ASCII TAB (HT) VALUE TO TERMINATING

CHARACTER RETURNED IN REGISTER 2
IF EQUAL, STRING SUCCESSFULLY CONVERTED,

GOES BACK THROUGH LOOP TO CONVERT NEXT INPUT
STRING POINTED TO BY REGISTER O

COMPARES SPACE VALUE (40) WITH TERMINATING
CHARACTER IN REGISTER 2

IF EQUAL, CONTINUES PROGRAM (ALL INPUT
HAS BEEN CONVERTED SUCCESSFULLY)

IF NOT EQOAL, ILLEGAL CHARACTER IN INPUT
STRING CAUSED CONVERSION TO TERMINATE; HENCE

INPUT IS ERRONEOUS; GOES TO ERROR ROUTINE
PROGRAM CONTINUES

$CA1!5
!

$CATS-ASCII to Radix-50 Conversion Routine

The $CATS routine converts up to three ASCII characters to a 16-bit Radix-50 value.

FORMAT

CALL $CATS

INPUT

input buffer address
In Register 0: the address of the first character in the ASCII string you want to convert

period disposition flag
In Register 1, one of the following values:

R 1 • 0 if the period is a terminating character

R1 .. 1 to specify that the period is a valid character to be converted to Radix-SO

OUTPUT

next input character
In Register 0: the address of the next character of the input string

Radix-50 value
In Register 1: the converted Radix-50 value

terminator
In Register 2: the terminating character or the invalid character that caused termination

Condition Code
C bit • Clear if conversion was complete

C bit • Set if conversion was incomplete

DESCRIPTION

The following characters are valid in the ASCII string to be converted:

• The alphabetic characters A to Z

• The nwneric characters 0 to 9

• The dollar sign ($) and period (.)

4-11

$CATS

For complete conversion, the string must contain three valid characters. If the string cont.ains
fewer than three valid characters, the $CAT5 routine will convert them but will set the C bit
to indicate an incomplete conversion. Invalid characters cause the $CATS routine to terminate
conversion. In this case, thEi output will be the valid character or characters and trailing blank or
blanks, in binary format.

A blank character (space) in the ASCII character string causes the $CATS routine to terminate. If
you include blanks as valid characters in the string, call the $CATSB routine to do the conversion.

Since the address of the neJct characte~r in the input string is returned in Register 0, you can
convert successive strings by resetting Register 1 and setting up a processing loop back to the
CALL $CATS statement.

The $CAT5 routine calls th'~ $SAVRG routine to save and restore Registers 3 through 5 of the
calling task.

NOTE: You can determine, in the ·task, whether conversion was complete by testing the
C bit in the Condition Code or the contents of Register 2.

EXAMPLE

'lite following source statements defim! a subroutine that calls the $CATS routine to convert ASCII
input data to Radix-50 format:

ASOAT: .ASCII /ABC.OEF.HIJ./
.EVEN

RADS: .BLKW :3.
.EVEN
MOV tRAD5, R4
MOV t3, R5
MOV fASOAT,RO

1$: CLR lRl
CALL .$CATS
BCC :2$
JMP !NER

2$: MOV :R.l, (R4) +
DEC '.RS
BGT l$

4-12

; STRINGS TO BE CONVERTED

OUTPUT BUFFER

GET OUTPUT ADDRESS
SET LIMIT TO LOOP
SET OP THE ADDRESS OF THE FIRST ASCII CHARACTER
SPECIFY THAT PERIOD IS CONVERSION TERMINATOR
CONVERT ASCII RADIX-SO
BRANCH IF C BIT IS CLEAR (CONVERSION COMPLETE)
JUMP ~O INPUT ~RROR ROUTINE !F

C BIT IS SET (CONVERSION INCOMPLETE)
STORE CONVERTED CHARACTER

PROCESS NEXT STRING

$CAT5B

I

$CAT58-ASCll w'ith Blanks to Radix-50 Conversion
Routine

The $CAT5B routine converts an ASCII 3-character string, including blank characters, to a 16-bit
Radlxe50 value.

FORMAT

CALL$CAT58

INPUT

input buffer address
In Register 0: the address of the first character in the ASCII string you want to convert

period disposition flag
In Register 1, one of the following values:

R 1 • O If the period is a terminating character

R1 • 1 to specify that the period is a valid character to be converted to Radix-SO

OUTPUT

next input character
In Register 0: the next character of the input string

Radix-50 value
In Register 1: the converted Radix-50 value, one to three characters in length

terminator
In Register 2: the terminating character or the invalid character that caused termination

Condition Code
C bit • Clear if conversion was complete

C bit • Set if conversion was incomplete

DESCRIPTION

The following characters are valid in the ASCII string to be converted:

• The alphabetic characters A to Z

• The numeric characters 0 to 9

4-13

$CAT58

• The dollar sign ($), p1!riod (.), and blank (space)

For complete conversion, the string must contain three valid characters. If the string contains
fewer than three valid characters, the $CAT5B routine will convert them but will set the C bit
to indicate an incomplete conversion. Invalid characters cause the $CAT5B routine to terminate
conversion. In this case, t;he output will be the valid character or characters and trailing blank or
blanks, in binary format.

Since the address of the next charader in the input string is returned in Register O. you can
convert successive strings by resetting Register 1 and setting up a processing loop back to the
CALL $CAT5B statement.

$CAT5B calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task.

NOTE: You can deternlline, in the task. whether conversion was complete by testing the
C bit in the Condition Code or tJlie contents of Register 2.

EXAMPLE

The following source statements call the $CAT5B routine to convert a 3-character ASCII string to
Radix-50 format:

INSTR: .. ASCII /IND/ ASCII INPUT STRING
.BYTE 15 STRING TERMINATOR
.EVE'~

MOV INSTR, RO POINT TO THE ASCII INPUT STRING
MOV tl,Rl SPECIFY PERIOD IS VALID CHARACTER
CALL $CATS:B CONVERT IT TO RADIX-SO
sec 10$ WERE CHARACTERS CONVERTED?
CMPB t15,R2 NO -- WAS TERMINATOR A <CR> ?
SEQ 10$ EQ -- YES
CALL SERR NO, CALL SYNTAX ERROR ROUTINE

10$: PROGRAM CONTINUES

4-14

5 Output Data Conversion Routines

The output data conversion routines convert internally stored numeric data to ASCII chatacters.
The following four groups of routines convert output data: [

• Binary to decimal conversion routines, which convert binary data to one of the fo11ow:ing
formats:

2-digit day date, in the range 01 to 31

5-digit unsigned decimal magnitude number

5-digit signed decimai number

Decimal number up to nine digits in length
. i

• Binary to octal conversion routines, which convert binary numbers to one of the followiing octal
numbers: !

S..digit unsigned octal magnitude number

6-digit signed octal number

3-digit octal number

!

• A general-purpose binary conversion routine that converts binary data to ASCII form~t. Note
that the preceding conversion routines form~t their output according to internally-defined
conversion parameters. The $CBTA routine allows you to determine the format of the' output
by specifying the conversion parameters. You can call this routine directly, or you can~ call it
indirectly when you use the binary to decimal or octal routines. These routines pass predefined
conversion parameters to the $CBTA routine. 1

!

• A Radix-50 to ASCII conversion routine, which converts a Radix-50 value to a 3-character
ASCII string

The output data routines described in this chapter are called by the Edit Message Routi~e
($EDMSG; described in Chapter 6) to convert data to be formatted for output to print.ers or display
~~ ~

The following four system library routines convert internally formatted binary numbers to! external
ASCII decimal format: :

i

• Binary Date Conversion Routine ($CBDAT}, which converts an internally stored binar)r date to
a 2-digit decimal number ·

• Convert Binary to Decimal Magnitude Routine <$CBDMG), which converts an intemallly stored
binary number to a 5-digit unsigned ASCII decimal magnitude value

• Convert Binary to Signed Decimal Routine ($CBDSG), which converts an internally s~red
binary number to a 5-digit signed ASCII decimal number

• Convert Doub1e-Precision Binary to Decimal Routine ($CDDMG), which converts a
double-precision, unsigned binary number to an ASCII decimal number of nine or fewer
digits

These routines use predefined conversion parameters that are passed to the general-pu~se
conversion routine ($CBTA), which performs the actual binary to ASCII conversion. ·

5-1

Output Data Conversion Routines

Note that these routines do not add an extra space for the minus sign (-) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the spaces
in the output area will be u~5ed for the minus sign.

S-2

$CBDAT

$CBDAT-Binary date conversion routine ,

The $CBDAT routine converts an internally stored binary date to a 2-digit unsigned decimal number.

FORMAT

CALL$C8DAT
The $CBDAT routine uses the following predefined conversion parameters:

Radix • 10

Field width • 2 characters

Sign flag UNSIGNED

INPUT

output address
In Register 0: the starting address of the output area that will store the converted 2-byte da~

!

input date
In Register 1: the date (a binary value in the range 01 to 31)

zero suppression indicator
In Register 2, one of the following values:

R2 • 0 to specify suppression of leading zeros in the converted date (the date will be left-justified)

R2 • Nonzero to specify no suppression of leading zeros

OUTPUT

converted date
In the specified output area: the converted day date (in ASCII decimal format)

next output address
In Register 0: the next available address (the pointer to the location following the last digit •tored)

!

DESCRIPTION

The $CBDAT routine pushes the predefined conversion parameters on the stack. It then passes the
conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion Routine
($CBTA), which performs the actual conversion of the binary number.

The $CBDAT routine calls the $SAVRG routine to save and restore Registers 3 through 5 ofi the
calling task, and destroys the contents of Registers 1 and 2. The $CBDAT routine does not ~tum
any e1TOr conditions to the caller.

5-3

$CBDAT

EXAMPLE

The following source statements cs11l the $CBDAT routine to convert a binary date in the buffer
BDAT and store the comrerted datE~ in the buffer ASDAT:

ASOAT: .BLKJ~ 2 OUTPUT BUFFER
.EV'El!l

BOAT: .WORD l ; INPUT -- BINARY DATE
MOV f:ASOAT,RO PUTS THE ADDRESS OF OUTPUT AREA IN REGISTER 0
MOV BOAT,Rl PUTS THE BINARY DATE, AT BOAT, IN REGISTER 1
CLR R2 CLEARS REGISTER 2 TO ZERO TO SPECIFY THAT LEADING

ZEROS ARE TO BE SUPPRESSED
CALL SCBOAT CALLS THE $CBOAT ROUTINE

$CBDMG-Convert binary to decimal magnitude
routine

i

The $CBDMG routine converts an internally stored binary number to a Sadlgit unsigned ASCII decdnal
magnitude number.

FORMAT

CALL$CBDMG
The $CBDMG routine uses the following predefined conversion parameters:

Radix • 10

Field width 5 characters

Sign flag • UNSIGNED

INPUT

output address
In Register 0: the starting address of the output area that will contain the converted 5-digit
number

input number
In Register 1: the unsigned binary number you want to convert

zero suppression indicator
In Register 2, one of the following values:

R2 • 0 to specify suppression of leading zeros in the converted number (the number will be left-justified)

R2 • Nonzero to specify no suppression of leading zeros

OUTPUT

result
In the specified output area: the converted nwnber, a maximum of five digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location following
the last digit stored) i

$CBDMG

DESCRIPTION

The $CBDMG routine ptitshes the piredefined conversion parameters on the stack. It then passes
the conversfon parameteil"s in Regis:ter 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary nwnber.

The $CBDMG routine calls the $8.AVRG routine to save and restore Registers 3 through 5 ol the
ca11ing task. It destroys 1the contents of Registers 1 and 2. The $CBDMG routine does not return
error conditions to the caller.

EXAMPLE

The following source statements ca]] the $CBDMG routine to convert a binary number stored in
the buffer $IEXT and store the converted 5-digit ASCII decimal magnitude number in the buffer
.TEXT:

.TEXT: .BL!<:B 5 OUTPUT BUFFER
.EVEN

SIEXT: . WO~D 2765 . INPUT VALUE
MOV t.TE:XT,RO GET OUTPUT BUFFER
MOV $IEXT,Rl GET BINARY VALU'E
CLR R2 SUPPRESS ZEROS
CALI,, $CBOMG CONVERT TO ASCII (DECIMAL)

CBDG

$CBDSG-Convert binary to signed decimal routine

The $CBOSG routine converts an internally stored binary number to a 5-dlgit signed ASCII decimal:
number.

FORMAT
CALL$CBDSG
The $CBDSG routine uses the following predefined conversion param~ters:

Radix • 10

Field width • 5 characters

Sign flag • SIGNED

INPUT

output address
In Register 0: the starting address of the output area that will store the converted 5-digit number

input number
In Register 1: the binary number to be converted

zero suppression indicator
In Register 2, one of the following values:

R2 n 0 to suppress leading zeros in the converted number (the output number will be left-justified)

R2 .. Nonzero to specify no suppression of leading zeros

OUTPUT

result
In the specified output area: the converted number, a maximum of five digits in length

next output address
In Register 0: the next available address in the output area (the pointer to the location followirig
the last digit stored) '

DESCRIPTION

The $CBDSG routine automatically pushes the predefined conversion parameters on the stack. 1

It then passes the conversion parameters in Register 2 to the General Purpose Binary to ASCit
Conversion Routine ($CBTA), which performs the actual conversion of the binary number.

5-7

$CB DSG

'rhe $CBDSG routine calls the $SAVHG routine t.o save and restore Registers 3 through 5 of the
calling task, and does not !1ave the co,ntents of Registers l or 2. The $CBDSG routine does not
return error conditions to the caller.

EXAMPLE

'rhe following source statements call ·the $CBDSG routine to convert a binary value stored in the
buffer F.ERR and store the converted 5-digit ASCII decimal number in the buffer ER2NUM:

ER2: .ASCII $I/0 ERROR CODE:$; ERROR MESSAGE
ER2NUM: .BLKB 5 OUTPUT BUF:E'ER

.EVEN
FILERR: MOVB F .ERR (P~O), Rl GET ERROR CODE TO CONVERT

HOV f ER2Nmil, RO POINT TO OUTPUT BUFFER
CLR R2 SUPPRESS LEADING ZEROS
CALL SC:SOSG CONVERT ERROR COOE
MOVB #' . I (RO)+ PUT IN DECIMAL POINT

$CDDMG

$CDDMG-Convert double-precision binary to
decimal routine

i

'

i

I

The $CDDMG routine converts a double-precision, unsigned binary number to an unsigned ASQll
decimal number, up to nine digits, less than or equal to 65.536x 104 . If the number contains mon~ than
nine digits, the routine inserts a string of five ASCII asterisk symbols In the output area. 1

FORMAT
CALL$CDDMG

INPUT

output address
In Register 0: the starting address of the output area

input address
In Register 1: the address of the 2-word input area containing the double-precision number

zero suppression indicator
In Register 2, one of the following values:

R2 • 0 to specify suppression of leading zeros in the converted date (the date will be left-justified)

R2 • Nonzero to specify no suppression of leading zeros

NOTE: If the five most significant digits are zeros, they will be suppressed automatfoally,
regardless of the setting of the suppression indicator.

OUTPUT

result
In the output area: the converted ASCII number

next output address
In Register 0: the pointer to the next available address in the output storage area

NOTE: If the number was converted successfully, the output area will contain from
four to nine digits. If the conversion attempt results in a decimal number greater than
66,536x104 or longer than nine digits, the $CDDMG routine prints a string of five A$Cll
asterisks in the output area. i

DESCRIPTION

The $CDDMG routine performs the following actions:

• Calls the $SAVRG routine to save and restore Registers 3 through 5 of the calling task

5-9

$CDDMG

• Calls the $DDIV routine to perform the double-precision division

• Calls the $CBTA routine to pertorm the actual ASCII conversion

• Destroys the contents of Register:s 1 and 2

EXAMPLE

The following source statements call the $CDDMG routine to convert a double-precision number,
pointed to by the buffer DPWRD, and store the converted ASCII decimal number in the buffer
ASDN:

ASON:

OPWRO:

10$:

. BLKB 9 •

.EVEN

.BLKW 2
MOV tASON,RO
MOV tDPWRO, EU

MOV -t4. ,R2

CALL SCODMG
CMPB t' "'I ASDN

BNE 10$

JMP ERR

OUTPUT BUFFER

INPUT BUFFER
PUTS ADDRESS OF OUTPUT AREA IN REGISTER 0
PUTS STARTING ADDRESS OF OOUBLE-

PRECIS!ON INPUT WORD IN REGISTER l
PUTS NONZERO IN REGISTER 2 (SETS THE ZERO

INDICATOR FLAG TO 1) TO SPECIFY
THAT LEADING ZEROS ~E NOT TO

SE SUPPRESSED
CALLS THE $COOMG ROUTINE .
COMPARES AN ASCII ASTERISK SYMBOL WITH

A BYTE OF THE CONVERTED NUMBER
IF NOT EQUAL, CONVERSION WAS SUCCESSFUL

AND PROGRAM CONTINUES
IF EQUAL, JUMP TO ERROR ROUTINE ERR (MORE

THAN NINE DIGITS WERE CONVERTED AND THE
OUTPUT DATA IS INVALID)

NOTE: The source stat•~ments also check the results and call an error routine if
$CDDMG was not succeHful.

5-10

Output Data Conversion Rout~nes

The following three routines convert internally formatted binary numbers to external ASCII obtal
format:

• Convert Binary to Octal Magnitude Routine ($CBOMG), which converts an internally sto~
binary number to a 6-digit unsigned ASCII octal magnitude number ·

:

• Convert Binary to Signed Octal Routine ($CBOSG), which converts an internally stored binary
number to a 6-digit signed ASCII octal number ·

i

• Convert Binary Byte to Octal Magnitude Routine ($CBTMG), which converts an internally
stored binary byte to a 3-digit unsigned .ASCII octal number

These routines pass predefined conversion parameters to the general-pw-pose conversion routine
($CBTA), which performs the actual binary to ASCII conversion. I

Note that these routines do not add an extra space for the minus sign (-)to the predefined i

field-width parameter. If you are converting a negative number, expect that one of the spacesi
in the output area will be used for the minus sign.

$-11

$CBOMG

$CBOMG-Convert binary to octal magnitude
routine

The $CBOMG routine convE~rts an Internally stored binary number to a 6-dlgit unsigned ASCII octal
magnitude number.

FORMAT

CALL$CBOMG
'The $CBOMG routine uses. the following predefined conversion parameters:

Radix • 8

Field width • 6 characteri:1

Sign flag • UNSIGNED

INPUT

output address
In Register 0: the starting address of the output area in which the converted 6-digit number is to
be stored

input number
In Register 1: the binary number you. want to convert

.zero suppression indicator
In Register 2, one of the fo1lowing values:

IA2 • 0 to specify suppression of leadir1g zeros in the converted number (the number will be left-justified)

R2 • Nonzero to specify nc> suppressici·n of leading zeros

OUTPUT

result
In the specified output areal: the converted number, a maximum of six digits in length

next output addres~'
In Register 0: the next available address in the output area (the pointer to the location following
t~he last digit stored)

~.rhe $CBOMG routine does not returnt any error conditions to the caller.

5-12

$CBOMG

DESCRIPTION

The $CBOMG routine pushes the predefined conversion parameters on the stack. It then passes
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary number.

The $CBOMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Registers 1 and 2.

EXAMPLE

The following source statements call the $CBOMG routine to convert a binary number stored in
the buffer BNUM and store the converted 6-digit ASCII octal magnitude number in the buffer
OCOUT:

OCOUT:

BNOM:

.BLKB 6

.EVEN
OUTPUT BUFFER

INPUT VALUE

·1

I .WORD 162710
MOV #OCOUT,RO
MOV BNUM,Rl
MOV U,R2

PUTS THE STARTING ADDRESS OF THE OUTPUT AREA IN REGIS'
PUTS THE BINA.RY NUMBER TO BE CONVERTED IN .REGISTER l
PUTS THE VALUE 1 IN REGISTER 2 (SETS THE ZERO I

INDICATOR FLAG TO l) TO SPECIFY THAT
LEADING ZEROS ARE NOT TO BE SUPPRESSED

CALL $CBOMG CALLS THE $CBOMG ROUTINE

5-13

$CBbSG

$CBOSG-Convert binary to signed octal routine

The $CBOSG routine converts an internally stored binary number to a 6-dlgit signed ASCII octal
number.

FORMAT

CALL$CBOSG
The $CBOSG routine uses the following predefined conversion parameters:

Radix • 8

Field width 6 characte1rs

Sign flag • SIGNED

INPUT

output address
In Register 0: the startin;g address of the output area in which the converted 6mdigit number will
be stored

input number
In Register 1: the binary number to be converted

zero suppression indicat•'r
In Register 2, one of the following values:

R2 • 0 to specify suppression of leading zeros in the converted number (the output number will be leftmjustified)

R2 • Nonzero to specify no suppres~sion of leading zeros

OUTPUT

result
In the specified output area: the co1~verted signed number, a maximum of six digits in length

next output addre.ss
In Register 0: the next a·vailable address in the output area (the pointer to the location following
the last digit stored)

The $CBOSG routine does not return e?Tor conditions to the caller.

5-14

$C80SG

DESCRIPTION

The $CBOSG routine pushes the predefined conversion parameters on the stack. It then pas~es the
conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion Routine
($CBTA), which performs the actual conversion of the binary number.

;

The $CBOSG routine calls the $SAVRG routine to save and restore Registers 3 through 5 o~ the
calling task, and destroys the contents of Registers 1 and 2. '

5-15

$CBTMG

$CBTMG-Convert binary byte to octal magnitude
routine

The $CBTMG routine conve11s an internally stored binary byte to a 3-digit ASCII unsigned octal number.

:FORMAT

CALL$CSTMG
'I'he $CBTMG routine uses the follow:ing predefined conversion parameters:

Radix • 8

Field width • 3 characters

Sign flag • UNSIGNED

INPUT

.output address
In Register 0: the starting address of the output area in which the converted 3-digit number will
be stored

input binary byte
In Register 1 (low-order byte): the binary byte to be converted

zero suppression indicator
In Register 2, one of the following values:

l=t2 • 0 to specify suppression of leading zeros in the converted number (the number wifl be left-justified)

R2 • Nonzero to specify no suppressicn of leading zeros

OUTPUT

result
In the specified output areal: the converted number, a maximum of three digits in length

next output addres~;
In Register 0: the next available address in the output area (the pointer to the location following
the last digit stored

The $CBTMG routine does not return error conditions to the caller.

5-16

$CBTMG

DESCRIPTION

The $CBTMG routine pushes the predefined conversion parameters on the stack. It then pass~s
the conversion parameters in Register 2 to the General Purpose Binary to ASCII Conversion
Routine ($CBTA), which performs the actual conversion of the binary byte.

The $CBTMG routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task, and destroys the contents of Register 2. In addition, $CBTMG clears the high-or~er
byte of Register 1 (the low-order byte is unchanged).

EXAMPLE
I

The following source statements call the $CBTMG routine to convert a binary number stored ~n
the buffer TBUF and store the converted 3-digit ASCII octal number in the buffer BOUT:

BOUT: .BLKB 3 OUTPUT BUFFER
.EVEN

TBUF: .BYTE 177 INPUT BUFFER
.EVEN
MOV tBOUT,RO ADDRESS OUTPUT BUFFER
MOVB TBUF,Rl GET BINARY CODE
MOVB tl,R2 SPECIFY NO ZERO SUPPRESSION
CALL $CBTMG CONVERT THE BINARY NUMBER TO OCT.AL

5-17

$CBTA

$CBTA-Gener'al pu1rpose binary to ASCII
conversion routine

The $CBTA routine converts internally stored binary numbers to ASCII decimal or octal numbers when
called by the binary·to-decimal and binary-to-octal conversion routines.

EQBM"18TA ,

INPUT

output address
In Register 0: the starting address of the output area in which the converted ASCII number wil1
be stored

input value
In Register 1: the binary value to be ·converted

conversion parame1ters
l[n Register 2, the following options:

Bits 0 - 7 (Low byte.) Must contain the conversion radix (2 to 16 decimal).

Bit 8 Must contain the unsigned flag (• 0) if unsigned value to be converted; or must contain the sign
flag (• 1) if signed value tc1 be converted.

(The minus sig1n is not cou11ted in the output field width when you convert a negative signed
number. The $CBTA routin•t will use a space in the output buffer for the minus sign.)

Bit 9 Zero suppressic:>n flag• O; 1:>r nonzero suppression flag• 1.

Bit 1 O Blank fill flag • 1 to specify replacement of leading zeros with blanks (only if nonzero suppression
flag• 1).

Blank fill flag • O to specify no replacement of leading zeros (If bit 9 • 1).

(When the zero suppression flag• 0, the blank fill flag is ignored.)

Bits 11 - 15 Must contain a numeric val1ue from 1 to 32 specifying the field width. If you convert a negative
signed number, remember to add a s_pace in the field width for the minus sign.

OUTPUT

result
In the specified output area: the converted number, from 1 to 32 digits in length

next output addres~;
J:n Register 0: the next available address in the output area (the pointer to the location following
the last digit stored)

The $CBTA routine does nc::1t return any error conditions to the caller.

5-18

CTA

DESCRIPTION

The $CBTA routine converts internally stored values according to the user-defined conversion
parameters, which the calling routine passes as an input argument in Register 2. .

i
Note that the $CBTA routine does not add an extra space for the minus sign(-) to the predefined
field-width parameter. If you are converting a negative number, expect that one of the characters
in the output area will be used for the minus sign. ·

The $CBTA routine ca11s the $SAVRG routine to save and restore Registers 3 through 5 of the
caller, and calls the $DIV routine to perform the required division. The $CBTA routine also
destroys the contents of Registers 1 and 2.

EXAMPLE

The following source statements set the conversion parameters, expressed in the number 150~28,
which will determine the format of the output by $CBTA. The statements call the $CBTA routine
to convert a binary value in Register 3 and store the ASCII result in buffer CASTR: .

CASTR: .BLKB 32.
.EVEN
MOV
MOV
MOV
MOV
MOV
MOV
CALL

RO,-(SP)
Rl,-(SP)
R2,-(SP)
tCASTR,RO
R3,Rl
US012,R2
SCBTA

OUTPUT BUFFER

SAVE REGS FOR CONVERT CALL

AOORESS TO CONVERT INTO
VALUE TO CONVERT
3-DIGIT, NO ZERO SUPPRESSION
CONVERT BINARY TO ASCII '

i
I

In this example, the binary expression of the value in Register 2 (0001101000001010) specifies 1that
the output will have the the following conversion parameters:

Conversion - 1010
radix

Sign flag - 0 (unsigned value)

NOSUP flag - 1 (no zero suppression)

Blank fill flag - 0 (no replacement of leading zeros with blanks)

Field width - 3

5-19

$C5TA

$C5TA-Radix-50 to ASCII conversion routine

The $CSTA routine converts an internally stored 16-bit Radix-SO value to an ASCII character string.

1=0RMAT

CALL$C5TA

INPUT

output address
In Register 0: the address t;hat will point to the first byte of the converted string

Radix-SO word
In Register i: the Radix-50 value you want to convert

OUTPUT

next output addres~;
In Register 0: the address of the next byte after the last character stored in the output area

result
In the specified output area.: the conv·erted ASCII 3-character string, stored in a maximum of three
consecutive bytes

The $C5TA routine does nc1t return error conditions to the caller. It destroys the contents of
Registers 1 and 2 and does not use RE!gisters 3 through 5.

EXAMPLE

'.t'he following source statements call the $CSTA routine to convert a Radix-50 number stored in the
buffer CRNTS and store th1e ASCII st'ring result in the buffer SCRPI'R:

CRNTS: .RADSO /GEN/ RADIX VALUE
SCRPTR: .BLKB 3 OUTPUT BUFFER

.EVEN

MOV tSCRPT:P., RO SET OUTPUT SOFFER ADDRESS
MOV CRNTS, F.1 GET RADIX VALUE
CALL $CSTA CONVERT IT

!5-20

6 Output Formatting Routines

The output formatting routines convert internally stored data to external ASCII chara~ters and
format the converted characters to produce readable output. The five output formatting routines
are as follows:

•

•

•

•

•

The Uppercase Thxt Conversion Routine ($CV'TUC), which converts lowercase ASCP text to
uppercase I

The Date String Conversion Routine ($DAT), which converts a 3-word binary datej to a
9-character ASCII output string r·

The Alternate Date String Conversion Routine <$DAT), which converts a date to a lliser-defined
ASCII format up to 25 characters Jong j

The Time Conversion Routine ($TIM), which converts the binary time to an ASCIIi output
string I

I

The Edit Message Routine ($EDMSG), which converts internally stor~ data to t~e
user-specified type of ASCII data (alphanumeric, octal, decimal) and formats the c:Qnverted
data to produce meaningful output for printing or display

6-1

$CVTUC

---------------------·--------·---
$CVTUC-Uppercase text conversion routine

The SCvrUC routine convert~~ lowercaso ASCII text to uppercase. The routine per1orms a byte-by-byte
transfer of the input ASCII character string, converting all lowercase alphabetic characters to uppercase,
and transferring all uppercase, charactem unchanged to the output string.

FORMAT

CALL$CVTUC

INPUT

input address
In Register 0: the address of the text !Jtring to be converted

output address
In Register 1: the address of the output area for the uppercase string

number input bytes
In Register 2: the number of bytes in 'the string to be converted

NOTE: The number of bytes cannt>t be etated as O. A statement of 0 will cause $CVTUC
to fail.

OUTPUT

result
In the output area: the converted string

next input address
In Register 0: a pointer to the next available address in the input area

next output address
In Register 1: a pointer to tltte next available address in the output area

DESCRIPTION

The $CVTUC routine conve1rts all ASCII alphabetic characters in the input string to uppercase.
Any other characters are m1oved from the input area to the output area in their sequential
positions. You can specify the input a·rea address as the output area address <RO• RU when
the $CVTUC routine is called. If you specify this at the out.set, Register 0 and Register 1 will
be left pointing to the character following the string. The $CVTUC routine converts lowercase
alphabetic characters to up1>ercase where they occur in the input area. The original lowercase
contents of the input area are destroyed.

6-2

$CVTUC

$CVTUC destroys the contents of Register 2 and does not use Registers 3 through 5 of the cklling
task. ·

EXAMPLE

The following source statements call the $CVTUC routine to convert an ASCII string to up~rcase:

MACNAM: .BLKW 3
MOV tMACNAM,RO
MOV t6,R2
MOV RO,Rl
CALL $CVTUC

WORK BUFFER
POINT TO WORK BUFFER
SAVE STRING COUNTER
POINT TO OUTPUT ADDRESS
00 THE CONVERSION

(In this example, the converted string will be stored in the buffer MACNAM because RO= Ri.)
!

6-3

$DAT

$DAT-Date string conversion routine

The $DAT routine converts the 3-word internal binary date to the standard 8- or 9-character ASCII
output format. $DAT formats the date 11or output as follows:

da~1-month-year

FORMAT

CALL$DAT

INPUT

output address
In Register 0: the address of the output area that will store the converted date

input address
In Register 1: the address of the 3-word input area that will store the binary date

date values
The input area must contain the following values:

Word 1 • Last two digits of year

Word 2 • A 2-digit number from 01 to 12 (month of year)

Word 3 • A 2-digit number from 01 to 31 (day of month)

OUTPUT

date
In the output area: the 8- or 9-charader date string in the following format:

dd-mmm-yy

dd Day (one character for 1 to 9 and two characters for 10 to 31)

mmm Month (first three lette·rs)

yy Year (last two digits)

next output addres~s
In Register 0: the address of the next available location in the output area

next input address
In Register 1: the next address (inp1.lLt Rl + 6) of the input area

6-4

$fPAT

DESCRIPTION

The $DAT routine uses and might destroy the contents of Register 2. The calling task should isave
any critical value contained in Register 2 before calling the $DAT routine. ·

$DAT calls the $SAVRG routine to save and restore the contents of Registers 3 through 5 oft.he
calling task.

EXAMPLE

The following source statements call the $DAT routine to convert the binary date stored in butfer
DATBUF and store the formatted ASCII output in the buffer EDTBUF:

OATBUF: .WORD 87. YEAR
.WORD ll. MONTH
.WORD 01. DAY

EOTBOF: .BLKB 9. OUTPUT BUFFER
.EVEN

START:
MOV HOTBUF,RO OUTPUT FROM CONVERSION
MOV tOATBUF,Rl GET INPUT BUFFER
CALL $OAT CONVERT DATE TO STANDARD

After execution, the output buffer contains the following.information:

l-NOV-87

ASCII FORMAT

$DAT'

$DAT-Alterna1te dat1e string conversion routine

The Alternate Date Routine ($DAT), accessed by the SYSLIB module INTDAS, converts the binary date
In a format not dependent upon the DIGITAL-standard date format (dd-mmm-yy). The calling sequence
is the same as for the standard format :&DAT routine.

FORMAT

CALL$DAT

INPUT

output address
In Register 0: the address of the output area that will store the converted date

input address
In Register 1: the address of the 3-wcird input area that will store the binary date

date values
In the input area, the following definitions:

Word 1 • Last two digits of year

Word 2 • A 2-digit number from 01 to ·12 (month of year)

Word 3 • A 2-digit number from 01 to :J1 (day of month)

OUTPUT

date
In the output buffer: the converted and formatted string (up to 25 characters), determined by your
definitions of the logical names SYS$DATE_FORMAT and SYS$MONTH_nn

next output addres~;
In Register 0: the address c>f the next available location in the output area

next input address
In Register 1: the next address (input Rl + 6) of the input area

DESCRIPTION

The alternate $DAT routince is contained in the module INTDAS, which has been inserted into
SYSLIB with entry points deleted. To include the INTDAS module in your task image, you must
oxplicitly request it in one of the following ways:

$OAT

I

• Before building the task, invoke the Librarian Utility (LBR) and enter the following command
line to include the module INTDAS in the task: '

LB: [l,l]SYSLIB/LB:INTDAS

• Insert the module EDDAT without entry points, and INTDAS with entry points, into SYSLIB
by entering the following command sequence:

> LBR
LBR>EDOAT•LB: [l,l]SYSLIB.OLB/EX:EDOAT
LBR> INTOAS•LB: (1, 1] SYSLIB .OLB/EX: INTOAS
LBR> LB: [l,l]SYSLIB.OLB/RP/-EP•EODAT
LBR> LB: (l,l]SYSLIB.OLB/RP•INTOAS
LBR> I cfRl1 i I
>!?IP INTDAS .OBJ; */OE, E:ODAT.OBJ; * ,

i

I

The alternate $DAT routine's calling sequence remains the same as for the standard $DAT rotj.tine,
but the logical name SYS$DATE_FORMAT contains the following character formats: ·

Argument

00
ZO

MM

ZM
yy

zv
MMM

Effect

Print 2-digit day of month with leading zero

Print 2-digit day of month with leading zero suppressed

Print 2-digit month number with leading :ero

Print 2-digit month number with leading zero suppressed

Print 2-dlgit year with leading zero

Print 2-digit year with leading zero suppressed

Print alphabetic month (not necessarily three characters long)

You can use additional characters (other than the uppercase letters D, Z, M, and Y) in
SYS$DATE_FORMAT as delimiters. If SYS$DATE_FORMAT is not denned, you get the
DIGITAL-standard date format (dd-mmm-yy) by default. SYS$DATE_FORMAT can have a
maximum length of 16 characters.

The logical SYS$MONTH_nn (where nn is 01 to 12) provides the alphabetic month to be I

printed when the mmm attribute is used. If SYS$MONTH_nn is not defined, you get the i

DIGITAL-standard 3-letter month abbreviations (mmm) by default. SYS$MONTH_nn can ha~e a
maximum length of 12 characters.

Logical translation is done in standard order. A local terminal assignment can override a
system-wide assignment, which permits the same program to produce output in the individua~
user's own language or preferred format. i

I

There are two limitations to the alternate date routine. First, using it necessitates more outpµt
buffer space than the traditional format because the output produced can be as long as 25 I

characters. The standard $DAT routine, however, produces eight or nine characters. Second, ~he
new module can be linked with many, but not all, existing programs. An example of a program! that
cannot use this routine is one that performs operations on the resulting output string, expecti~g it
to be in the format produced by the standard routine. ;

The .INTDAS module contains the routines $DAT and $TIM. The $TIM routine has not been
modified; it produces the standard time format, as described in Time Conversion Routine ($TI¥>·

The $DAT routine uses and might destroy the con.tents of Register 2. The calling task should 'ave
any critical value contained in Register 2 before calling the $DAT routine. '

6-7

$DAT

$DAT calls the $SAVRG routine to sa,1e and restore the contents of Registers 3 through 5 of the
calling task.

EXAMPLE

Assume that you have replaced the SYSLIB module INTDAS into your library with entry points
a.nd are ready to run a program that calls the $DAT routine. Your definition, at the system prompt~
of the logical names SYS$DATE_FORMAT and SYS$MONTH_nn will determine the output of the
$DAT routine when it execultes, as shown in the following examples:

6-8

DEFINE SYS$DATE FORMAT ,. "MMM ZD, l9YY 0

DEFINE SYS$MONTH_ll • "November"
Out;put: Nove1:nber l, 1987

DEFINE SYS$0ATE FORMAT• "00.MMM.YY"
DEFINE SYS$MONTH 11 • "XI"

Output: oI.xI.87

SYS$0ATE_FORMAT • "ZD/MM/YY"

Out:put: l/ll/87

$TIM

$TIM-Time conversion routine

The $TIM routine converts the binary time, in a standard format, to an ASCII output string in the form:

HH:MM:SS.S

The $TIM routine converts and fonnats the time for output in one of the following forms:

hour
hour:minute
hour:m inute:second
hour:m inute :second. fraction

FORMAT

CALL $TIM

INPUT

The standard format for $TIM input values is shown in the following table:

Output
Word Significance Format Value Range

WD1 Hour-of-Day HH Oto 23

WD2 Minute-of-Hour MM 0 to 59

WD3 Second-of-Minute SS 0 to 59

W04 Tick-of-Second .s Depends on clock frequency

wos Ticks-per-Second .s Depends on clock frequency

output address
In Register 0: the address of the output area that will store the converted time

input address
In Register 1: the starting address of the input area that stores the time values

parameter count
In Register 2, the parameter count, where:

R2 - 0 or 1 , to specify that the hour (word 1) is to be converted in the format HH

R2 - 2, to specify that the hour and minute (words 1 and 2) are to be converted in the format HH:MM

R2 - 3, to specify that the hour, minute, and second (words 1, 2, and 3) are to be converted in the format
HH:MM:SS

R2 - 4 or 5, to specify that the hour, minute, second, and tick are to be converted in the format HH:MM:SS.S
(where .S • tenth. of second) ·

NOTE: For HH, the $TIM routine always returns two characters for all values spec~ed.

6-9

$TIM

OUTPUT

next output address
In Register 0: the address of the next available location in the output area

next input addres~s
In Register 1: the address of the next word in the input area

time string
In the specified output area: the converted time string

DESCRIPTION

The $TIM routine calls the $SAVRG routine to preserve Registers 3 through 5 of the caUing task.
The contents of Registers 0 and 1 a1re updated and returned to the calling task. The $TIM routine
destroys the contents of Ftegister 2 (the parameter count). It also calls the following routines:

• The $DIV routine, which performs the division required to convert binary values to ASCII
format

e The $CBDAT routine, which actually performs the time conversion, two digits at a time

The $TIM routine does not check the validity of the input data.

EXAMPLE

The following source statt!ments call the $DAT and $TIM routines to convert time values to the
standard formats:

Assume a program contains an input block, an output block, and source statements. For example:

BDBLK: • WORJ) 87 •
. WOR1' 11 •
. WORI) 01.
• WORD 10 .
.WORD 15.
. WORI> 35 •
.WORI> xx
.WORD x

DTBLK: . BLKH 20 .
MOV iDTBLK,RO
MOV JBDBLK,Rl
CALL $DAT
MOVB Ul, (RO)+

MOV t3., R2
CALL $TIM

YEAR
MONTH
DAY
HOUR
MINUTES
SECONDS

PUTS ADDRESS OF OUTPUT AREA IN REGISTER 0
PUTS ADDRESS OF INPUT BINARY DATE AREA IN REGISTER
CALLS THE $DAT ROUTINE
PUTS TAB AFTER DATE IN OUTPUT BUFFER

REGISTER 0 NOW CONTAINS NEXT ADDRESS IN OTBLK ~RI

REGISTER 1 NOW CONTAINS ADDRESS OF NEXT WORD
HOUR 10) IN BDBLK FROM $OAT

SPECIFIES THE HH:MM:SS FORMAT FOR CONVERTED TIME
CALLS THE $TIM ROUTINE

After execution, the output buffer wi.11 contain the following information:

l-NOV-87 10:15:35

The time and date fields a.re left-jus1;ified.

6-10

$EDMSG

$EDMSG-Edit message routine

The $EDMSG routine converts internally stored data to ASCII decimal, octal, or alphanumeric
characters, and controls the layout of the converted characters. You can use the $EDMSG routine
to produce printed or displayed text In meaningful, readable formats.

FORMAT

CALL$EDMSG

INPUT

output address
In Register 0: the starting address of the output block

input address
In Register 1: the address of the in put string

argument block address
In Register 2: the starting address of the argument block

input string .
The input string contains the editing directives and ASCII text that determine data conversior and
format control for the $EDMSG routine. The directives must be in one of the following formats:

• %1

• %nl

• %VI

The directives have the following effects:

Directive

O/o

n

v

Effect

A delimiter that identifies an editing directive to the $EOMSG routine.

An optional repeat count (decimal number) specifying the number of times the editing openjltion
is to be repeated by the $EOMSG routine. ff n • 0 or is not specified, a repeat count of 1 :is
assumed.

Specifies that the repeat count is a value in the next word in the task's argument block. If the
value is 0, a repeat count of 1 is assumed. :

!

An alphabetic letter ·specifying one of the editing operations to be performed by the EDMG
routine, as shown in Table 6-1. ·

Input strings can contain ASCII text as well as editing directives. Any number of directives qan
appear in an input string. Input strings must be in ASCIZ format; :

t;-11

$ED MSG

argument block (APlGBLK)
'I'he argument block contains the binary data to be converted, the addresses of ASCII and extended
ASCII characters, or the address of a double-precision value.

Prior to calling the $EDMSG routine, set up the appropriate argument block, as follows:

• For $EDMSG to move .ASCII or e:dended ASCII characters to the output block, the argument
block must contain the address of the ASCII characters.

·• For $EDMSG to convert a binary byte to octal format, the argument block must contain the
address of the binary byte.

·• For $EDMSG to convert binary values. the argument block must contain the values.

·• For $EDMSG to perforrn filenamu string conversion, the argument block must contain the
following information:

Word 1 - Radix-50 file name

Word 2 - Radix-50 file name

Word 3 - Radix-SO file name

Word 4 - Radix-SO file type

Word 5 Binary version number

·• For $EDMSG to convert a binary date. the argwnent block must contain the following
information:

Word 1 •

Word 2 •

Word 3

Year (last two digits)

Number (01 to 12) of mc1nth

Day of mont:h (01 to 31)

NOTE: $EDMSG doe11 not che.t:k the validity of the date values. If you specify
erroneous date values, output results will be unpredictable.

1
• For $EDMSG to conver·t binary t~me, the argument block must contain the following

information:

Word 1 - Hour-of-day (0 to 23)

Word 2 - Minute-of-hour (0 to 59)

Word 3 - Second-of-minute (0 to 59)

Word4 - Tick-of-second (depends on clock frequency)

Word 5 - Ticks-per-sec:ond (depends on clock frequency)

output block (OUT£rLK)
The output block in which $EDMSG i:s to store output

OUTPUT

converted data
In the output block: the converted/formatted data

next byte
In Register 0: the address •lf the next available byte in the output block (the $EDMSG routine
clears this byte to provide a null-terminated (ASCIZ) string)

6-12

$E0MSG

output length ,
In Register 1: the number of bytes transferred to the output block (the count does not include the
null-terminating byte) 1

next argument address
In Register 2: the address of the next argument in the argument block

Table 6-1 describes the editing directives for the $EDMSG routine.

Table 6-1 seoMSG Routine Editing Directives

Directive

A (ASCll 1 string)

8 (binary byte to
octal conversion)

Form Operation

%A Move the ASCII character from address in AAGBLK to OUTBLK.

%nA Move the next n ASCII characters from address in AAGBLK to OUTBLKj

%VA Use the value in the next word in AAGBLK as repeat count and move the
specified number of ASCII characters from address in ARGBLK to OUTBLK.

%8 Convert the ne~ binary byte from address in ARGBLK to unsigned octal :number
and store result in OUTBLK. ;

%nB Convert the next n binary bytes from address in ARGBLK to octal numb~rs and

%VB

store results in OUTBLK; insert space between numbers. ·

Use the value in the next word in ARGBLK as the repeat count. convert! the
specified number of binary bytes from address in ARGBLK to octal numbiers, and
store results in OUTBLK; insert space between numbers.

D (binary to signed %0 Convert the binary value In the next word In ARGBLK to signed decimal;and
decimal conversion, O
suppress)

%n0

%VD

store result in OUTBLK. !

i

!

Convert the next n binary values in ARGBLK to signed decimal and stor
1

e
results in OUTBLK; insert tab between numbers. !

Use the value in the next word in ARGBLK as repeat count, convert the specified
number of binary values to signed decimal, and store results in OUTBLK; insert
tab between numbers. !

E (extended %E Move the extended ASCII character from the address in ARG8LK to th~
OUTBLK. I ASCII')

F ('form feed)

I (include ASCIZ
string)

%nE Move n extended ASCII characters from the address In AAGBLK to OUTaLK.
;

%VE Use the value in the next word in ARGBLK as repeat count and move t~e
specified number of ASCII characters from the address in ARGBLK to oyTBLK.

%F Insert a form 0 feed character in OUTBLK. :

o/onF Insert n form-feed characters in OUTBLK.

%VF Use the value in the next word in ARGBLK as repeat count and insert sp~eified
number of form-feed characters in OUTBLK. !

%1 Use the next value in ARGBLK as the address of an ASCIZ string to be logically
included in the format string at this point. I

1 Extended ASCII characters consist of the printable characters in the 7-bit ASCII code. If nonprintable cha~aeters
appear In an ASCII input string, the E directive replaces them with a space, while the A directive transfers [the
nonprlntable characters to the output block.

6-13

$ED MSG

Table 6-1 (Cont.) $EDMSG Routine Editing Directives

Directive

M (binary to
decimal magnitude
conversion,
0 suppress)

N (new line
carriage return'
line feed)

0 {binary to
signed octal
conversion)

P (binary to
unsigned octal
magnitude
conversion,
no O suppress)

a (binary to
octal
magnitude
conversion,
O suppress)

R (Radix-SO
to ASCII)

S (space)

6-·14

Form Operation

%M Convert the binary value in the next word in ARGBLK to decimal magnitude with
leadin1; zeros suppressed and store the result in OUTBLK.

Convert the next n binary values in ARGBLK to decimal magnitude with leading
o/onM zeros suppressed and store the results in OUTBLK; insert tab between numbers.

%VM Use the value in the next word in ARGBLK as repeat count, convert the specified
numbur of binary values to decimal magnitude with leading zeros suppressed,
and store the results in OUTBLK; insert tab between numbers.

%N Insert CR and LF characters in OUTBLK.

%nN Insert n CR and LF characters in OUTBLK.

%VN Use the value in the next word in ARGBLK as repeat count and insert the
specified number of CR and LF characters In OUTBLK.

%0 Convert the binary value in the next word in ARGBLK to signed octal and store
the re!sult in OUTBLK.

%n0 Conve·rt the next n binary vaiues in ARGBLK to signed octai and store the
results; in OUTBLK; insert tab between numbers.

%VO Use the value in the next word in ARGBLK as repeat count, convert the specified
numbur of binary values to signed octal, and store the results in OUTBLK; insert
tab between numbers.

%F1 Convert the binary value in the next word in ARGBLK to octal magnitude with no
leadint~ zeros suppressed and store the result in OUTBLK.

Convt rt the next n binary values in ARGBLK to octal magnitude with no leading
%n·P zeros suppressed and store the results in OUTBLK: insert tab between numbers.

%VP Use the value in the next word in ARGBLK as repeat count, convert the specified
numb€tr of binary values to octal magnitude with no leading zeros suppressed,
and store the results in OUTBLK: insert tab between numbers.

%Cl Convert the binary value in the next word in ARGBLK to octal magnitude with
leadin9 zeros suppressed and store the result in OUTBLK.

Convert the next n binary values in ARGBLK to octal magnitude with leading
%nQ zeros suppressed and store the results in OUTBLK; insert tab between numbers.

%VQ Use the value in the next word in ARGBLK as repeat count, convert the soecified
numbur of binary values to octal magnitude with leading zeros suppressed, and
store the results in OUTBLK: insert tab between numbers.

%Fl Convert the Radix-SO value in the next word in ARGBLK to ASCII and store the
result in OUTBLK.

%nR Convert the next n Radix-SO values in ARGBLK to ASCII and store the results in
OUTBLK.

%VR Use the value in the next word in ARGBLK as repeat count, convert the specified
numbur of Radix-SO values to ASCII, and store the results in OUTBLK.

Insert a space in OUTBLK.

%nS Insert n spaces in OUTBLK.

$EDMSG

Table 6-1 (Cont.) $EDMSG Routine Editing Directives

Directive

T (double
precision binary
to decimal
conversion)

U (binary to
decimal magnitude
conversion,
no 0 suppress)

X (filename
string conversion)

Y (date
conversion)

Z (binary time
conversion)

Form Operation

%VS Use the value in the next word in ARGBLK as repeat count and insert the
specified number of spaces in OUTBLK.

% T Convert the double-precision unsigned binary value at the address in AR~BLK
to decimal and store result in OUT8LK. ·

%nT Convert the next n double-precision binary values starting at the addresS! in
ARGSLK to decimal and store results in OUTBLK: insert tab between numbers.

%VT Use the value in the next word in ARGBLK as repeat count. convert the s~ecified
number of double-precision binary values starting at the address in ARG9LK to
decimal. and store the results in OUTBLK; insert tab between numbers.

%U Convert the binary value in ARGBLK to decimal magnitude with no leading zeros
suppressed and store result in OUTBLK. !

%nU Convert the next n binary values in ARGBLK to decimal magnitude with ro
leading zeros suppressed and store results in OUTBLK; insert tab betweien
number~. ·

%VU Use the value in the next word in AAGSLK as repeat count, convert the specified
number of binary values to decimal magnitude with no leading zeros sup~ressed
and store results in OUTBLK; insert tab between numbers. !

%X Convert Radix-SO filename string in ARGBLK to ASCII string in format name.typ;
convert octal version number, if present, to ASCII and store results in OUtBLK.

Convert next n Radix-SO filename strings in ARGBLK to ASCII strings in f pr mat
%nX name.typ; convert octal version numbers, if present, to ASCII and store re,sutts in

%VX

%Y

%OZ
or
%1Z

%2Z

OUT8LK; insert tab between strings. I

Use the value in the next word in ARGBLK as repeat count, convert spedified
number of Radix-SO filename strings to ASCII strings in format name.typ; bonvert
octal version numbers, if present, to ASCII and store results in OUTBLK; !nsert
tab between strings. I

!

Convert the next three binary words in ARGBLK to ASCII date in format i

dd-mmm-yy and store in OUTBLK. For this directive, a repeat is acceptat:>le
but will be ignored. :

Convert binary hour-of-day in the next word of ARGBLK to ASCII.and store in
OUT8LK in format HH. .

:

Convert the binary hour-of-day and minute-of-hour in the next two words bt
ARGBLK to ASCII and store in OUT8LK in format HH:MM. .

%3Z Convert the binary hour-of-day, minute-of-hour, and second-of-minute in the next
three words of ARGBLK to ASCII and store in OUT8LK in format HH:MM:SS.

%4Z
or
%5Z

Convert the binary hour-of-day, minute-of-hour, second-of-minute, and
ticks-of-second or ticks-per-second in the next five words of ARGBLK to ASCII
and store in OUTBLK in format HH:MM:SS.S, where .S • tenth of second~

< (define <stack> byte %n< Insert n ASCII spaces followed by a field mark (NUL) in OUTBLK to define a
fixed-length byte field. The output pointer will point to the first space. I field)

> (locate %n>
field mark)

Increment the OUTBLK pointer until a field mark (NUL) is located or the n ! repeat
count is exceeded. !

DESCRIPTION
6-15

$ED MSG

The $EDMSG routine com·erts intenaally formatted data, in an argument block, to external format
and stores it in the calling task's output block. The editing performed by the $EDMSG routine is
specified by user directives within an input string. Any nonediting directive characters are simply
copied into the output block. Output strings are in ASCIZ format.

The $EDMSG routine calfo the output data conversion routines (also described in Chapter 5) to
convert binary data to the specified Eixtemal format. See the detailed descriptions of individual
conversion routines for specific output formats.

The $EDMSG routine sca111s the input string. character-by-character. If it encounters nondirective
(or "unknown" directive) characters, it transmits them directly to the task's output block. When
the $EDMSG routine finds a percent sign (%)delimiter, it interprets the charactet1s) folJowing the
delimiter. If it encounters a data conversion directive, the $EDMSG routine accesses the argument
block, converts the specified data, and transmits it to the output block. If a format control directive
is encountered, the routinei generates: the specified control(s) and transmits the data to the output
block. If the percent sign delimiter i:3 not followed by a valid operator, or if multiple delimiters
are found. the $EDMSG routine transmits the first delimiter (and any subsequent delimiters not
followed by a valid directiv·e character) to the output block.

NOTE: You can call an .appropri.nte output routine to output the converted/formatted
data.

$EDMSG calls the $SAVRG routine t.o save and restore Registers 3 through 5 of the calling task.

EXAMPLE

1 The following source statements ca11 the $EDMSG routine to format the data stored in
ARGBLK, as specified by the diructives in buffer !STRING:

ISTRING:

ARGBLK:

OUTBLK:
START:

.ASCIZ /%F\12S***TEXT***%3N%8S%VD%2N,12S***ENO****/

.EVEN

.WORD 3.

.WORD 99.

.WORD -37.

.WORD 137.

.BLKB 100.
MOV tOUTBLK,RO
MOV USTRING, Rl
MOV #ARGBLK,R2
CALL $EDMSG

NUMBER OF VALUES TO CONVERT
VALUES

TO
FORMAT

OUTPUT BLOCK
SET UP ADDRESS OF OUTPUT
SET UP ADDRESS OF INPUT
SET OP ARGUMENT BLOCK
00 THE FORMATTING

The editing directives i~hown in this example have the following effects:

Directive

%F

%12$

o/o3N

%8$

6-16

Effect

Insert a forrn feed in OUTBLK (start a new page).

Insert 12 s1=1aces in OU'fBLK and move the ASCII string to OUTBLK (indent the first line 12
spaces and insert the header •••TeXT•••).

Insert three pairs of CA··LF characters in OUTBLK (generate two blank lines).

Insert eight spaces in OUTBLK (indent the next line eight spaces).

Directive

%VD

%2N

%12S

$ED MSG

Effect

Use the first value (3) in ARGSLK as the repeat count and convert the next three binary v•lues
in ARGSLK to signed decimal; store each value, followed by a tab, in OUTBLK (output three
signed decimal numbers set up in columns).

Insert two pairs of CR-LF characters In OUTBLK (generate one blank line).

Insert 12 spaces at the beginning of a llne in OUTBLK and move the ASCH string to OUTBLK
(indent 12 spaces and insert the text ***ENO****). '

The example produces the following output:

TEXT

99 -37 137

ENO*

2 The following example calls the $EDMSG routine to convert the data stored in IBLK, as
specified by the formatting directives in the buffer INSTR:

INSTR:

IBLK:

PRBLK:

BEGIN:

.ASCIZ /%F%5S***F. TREVISAN! WORK REPORT FROM iy TO %Y***/

.EVEN

.WORD 87.
• WORD 8.
.WORD 22.
~WORD. 87.
.WORD 9 •
• WORD 16.
.BLKB 100.

MOV IPRBLK,RO
MOV UNSTR, Rl
MOV UBLK,R2
CALL $EDMSG

YEAR
STH MONTH (AOG)
DAY
YEAR
9TH MONTH (SEP)
DAY
OUTPUT BLOCK

SET UP ADDRESS OF OUTPUT
SET UP ADDRESS OF INPUT
SET UP ARGUMENT BLOCK
DO THE CONVERSION

The editing directives in the example have the following effects:

Directive

%F

%5S

%Y

%Y

Effect

Insert a form feed In PRBLK (start a new page). :

Insert five spaces in PRSLK and move ASCII string to PRBLK (indent the line five spaces ~nd
output the header *"*F. TREVISANI WORK REPORT FROM). I

Convert the next three words in IBLK to formatted date and store in PRBLK followed by AS~ll
text (Insert 22-AUG-89 TO in header line). ·

Convert next three words in IBLK to formatted date and store in PRBLK followed by ASCII t~xt
(insert 18-SEP-89 .. * in header line). ·

The above example produces the following output:

F. TREVISAN! WORK REPORT FROM 22-AOG-89 TO 16-SEP-89

6~17

7 Dynamic Memory Management Routines

The dynamic memory management routines enable manual management of the space in a task's
free dynamic memory. The free dynamic memory consists. of all memory extending fro~ the
assembled code of the task to the highest virtual address owned by the task, excluding resident
libraries. j

Initially, these routines allocate free dynamic memory as one large block, from the highe~t available
memory address downward. Subsequent memory block allocations are made within the ;availabie
memory blocks. Available memory blocks are maintained as a linked list of blocke in a~ending
order, pointed to by a 2-word listhead. Each free memory block contains a 2-word contrbl fieldp
w~re: ,

• The first word contains the address of the next available block, or 0 if there is not ~nother
hl~ i

• The second word contains the size of the current block

Memory allocation is either on a first-At or best-fit basis. Allocation is always made fro1 the top
of the selected available dynamic memory block. The second word of the block is adjustep to reflect
the new size of the current block of available dynamic memory. As memory blocks are ~llocated
completely, they are removed from the free memory list. :

When memory blocks are deallocated (released), they are returned to the free memory l~st. The
released memory blocks are relinked to the free ·memory list in ascending address order. Jf possible,
released memory blocks are merged with adjacent memory blocks to form a single, larg. block of
free dynamic memory. :

The following three routines perform dynamic memory management functions:

• Initialize Dynamic Memory Routine ($1NIDM), which initializes the task's free dym~mic
memory !

• Request Core Block Routine ($RQCB), which allocates blocks of memory in the free!i ynamic
memory

• Release Core Block Routine ($RLCB), which releases (deallocates) previously alloca . d memory
blocks in the executing task~s free dynamic memory

To use the dynamic memory management routines, provide the following information in \the source
program:

• A 2-word free memory listhead in the following format:

FUEHO: .BLKW 2

• The appropriate call and argument(s) for the given routine.

Before building the task, invoke the Librarian Utility (LBR> and enter the following conimand line
to include the modules INIDM and EXTSK in the task:

LB: [1,l]VMLIB/LB:INIDM:EXTSK

7-1

$1NIDM·

$1NIDM-lnitialize dynamic memory routine

The SINIDM routine establishes the initial state of the free dynamic memory available to the executing
task. The free dynamic memory consists of all memory extending from the end of the task code to the
highest virtual address usecl by the task, excluding resident libraries.

FORMAT

CALL $1NIDM

INPUT

free memory listhead
In the program's data .section: a 2·wllrd memory listhead

free memory listhe,ad address
In Register 0: the address of the free memory listhead

OUTPUT

first address
In Register 0: the first a_ddress in the task

last address
In Register 1: the addresl!!1 following the task image (last available address in the free dynamic
memory)

memory size
In Register 2: the size of t.he free dynamic memory

DESCRIPTION

The $INIDM routine performs the following actions:

• Rounds the free dynamic memory base address to the next 4-byte boundary

• Initializes the free dyraamic memory as a single large block of memory

• Computes the total si2:e of the friee dynamic memory

• Sets the outputs in Retgisters 0 a,nd 1 and returns to the calling task

Registers 3 through 5 are not used.

7-2

I

$1NIDM
!

After initializing dynamic memory, your task can call the Request Core Block Routine ($RQCB) to
allocate memory blocks in the dynamic memory and the Release Core Block Routine ($RLCB) ~o
release the allocated blocks. ·

EXAMPLE

The following source statements call the $INIDM routine to initialize a block of free dynamic ·
memory and save the first address of the task in Register 0:

$FREEHO::

MOV
CALL

.BLKW 2

t$FREEHO,RO
$INIOM

; FREE MEMORY LISTHEAD

; SET ARG FOR FREE MEM HEAD
INITIALIZE MEMORY

7-3

$RQCB

$RQCB-Requiest cctre block routine

·rhe $RQCB system library routine detE1rmines whether there is enough space available in the free
dynamic memory to satisfy atn executln~g task's memory allocation request. If memory Is available, the
$ROCB routine allocates the requested memory block.

FORMAT

CALL$RQCB

INPUT

:free memory listhecld addr,~ss
In Register 0: the address of the free memory listhead

block size
In Register 1: the size (number of bytes> of the memory block to be allocated, where:

1~1 • A value greater than or equal to 0, to specify bestaflt allocation

R1 • A value less than 0, to specify fimt-fit allocation (the value is negated to determine block size)

OUTPUT

block address
In Register 0: the dynamic memory address of the allocated block

.block size
Xn Register 1: the actual s:ize of the allocated block (requested size rowided to next 2 .. word
boundary)

Condition Code
c bit

G bit
--

Clear if allocation iis successful

Set if allocation is not successful

The $RQCB routine calls the $SAVRG routine to save and restore Registers 3 through 5 of the
calling task. Register 2 is destroyed.

EXAMPLE

The following source statements call the $RQCB routine to allocate a block of dynamic memory
and store the memory address in Reg:ister 0:

7-4

$FREEHD::

MOV
MOV
NEG
CALL

.BLKW 2

UFREEHD,RO
tSl2.,Rl
R1
$RQCB

FREE MEMORY LISTHEAO

GET ADDRESS OF FREE CORE POOL
SIZE OF BLOCK TO BE ALLOCATED
NEGATE TO SPECIFY FIRST FIT
REQUEST CORE BLOCK

$RQC8

7-5

$RLCB

$RLCB-Releiase cc>re block routine
The $RLCB system libraty routine 1releases a block of previously allocated dynamic memory to the
free memory list. The memory addresses determine the order of the memory list.

FORMAT

CALL$RLCB

INPUT

free memory listht~ad add'ress
In Register 0: the addres:!I of the fre:e memory listhead

block size
In Register 1: the size (number of bytes) of the block to be released

output address
In Register 2: the memory address ·of the block to be released

OUTPUT

released block
In the free memory list: t.he released. dynamic memory block

DESCRIPTION

The $RLCB routine searches the frue memory list until it finds the proper address slot and then
merges the released block into the list. If possible, the released memory block is merged with
adjacent blocks already in the free memory list.

The $RLCB routine calls the $SAVUG routine to save and subsequently restore Registers 3
through 5 of the calling t:ask. Register 0 is unchanged, while the contents of Registers 1 and 2
are destroyed.

EXAMPLE

The following source stat«~ments call the $RLCB routine to release a block of memory, stored in
buffer FREEHD, to the free memory listhead:

7-6

FREEHO:: .BLKW
REFHD: .WORD

MOV
MOV
MOV
CALL

2
0

REFHD,R2
.f4,Rl
.fFREEHO,RO
$RLCB

FREE MEMORY LISTHEAD
REFERENCE LISTHEAD

GET ADDRESS OF ENTRY
GET SIZE OF ENTRY
SET ADDRESS OF LISTHEAD
RELEASE CORE BLOCK

$RLCB

I

1+-1
I

8 Virtual Memory Management Routines

The virtual memory management routines perform memory allocation and deallocation by paging
to and from disk file storage to accommodate tasks that require more memory than that ~vailable
in the task's free dynamic memory at any given time. That is, the routines allow you to !bring
pages into memory when they are needed, hold them there until they are no longer need~d, swap
the pages out, and reallocate their memory space to other pages. These routines do not r~uire the
memory management hardware and are not related to memory management directives.

The virtual memory management routines perform the following major functions:

• Virtual memory initialization

• Dynamic memory allocation

• Virtual memory allocation

• Page management

Although you can call the individual virtual memory management routines, it is more efficient to
use them as automatic control systems by calling only the following key routines:

• The Initialize Virtual Memory Routine ($1NIVM), which initializes the task's dynamic memory
and the disk work file

•

•

The virtual memory a11ocation routines Allocate Virtual Memory Routine ($ALVRT) tnd
Allocate Small Virtual Block Routine ($ALSVB), which manage the allocation of largt and
small page blocks to enable page swapping to and from dynamic memory '

!

The following page management routines: i

The Convert and Lock Page Routine ($CVLOK), which converts a virtual addres~ to a
dynamic memory address and sets a lock byte in the memory page to prevent itsjbeing
swapped out of memory until it is no longer needed 1

The Unlock Page Routine C$UNLPG), which clears the lock byte in a memory-resiaent page
IO that it can be released and its memory space reallocated to another page I

The Convert Virtual to Real Address Routine ($CVRL), which converts a virtual ~ddress to
a dynamic memory address •

i

The Write-Marked Page Routine ($WRMPG), which sets the "written into" flag oflmemory
pages !

I

!

8.1 Using the Virtual Memory Management Routines
To call the virtual memory management routines, provide the appropriate call argument4s and
statements in the source program. . I

I Your task should contain an en-or-handling routine and symbolic error codes.

At task-build time, specify the file and the virtual memory management modules required by the
task. I

I

8-1

Virtual Memory Manag•~ment Routines

User Error-Handling Requirements
Four virtual memory mana(~ement routines detect fatal error conditions. These routines require a
user-written err01;-handling routine, entitled $ERMSG. In conjunction with the $ERMSG routine,
you should include definitions of three global error codes and one global severity code in the task.
The symbolic errctr codes are as follows:

Global

ESR4

E$R73

E$R76

S$V2

Error

Used by the $ALBU< routine when there is no dynamic memory available for allocation

Used by the $ROPAG and SWRPAG routines when a work file 110 error occurs during an attempt to
swap pa.ges between resident memory and disk storage

Used by the $ALVR'r routine when there is no virtual storage available for allocation

(Severtt)r code) Used by the four routines cited above to denote a fatal error that must be corrected
before task execution can resume

When a fatal error occurs, t.he detecting routine sets up the following input_ arguments:

Register 1 • l.ow byte: error code
Higti byte: s11verity code (always S$V2)

Register 2 • Argument bh>ck address

and issues the foillowing can:

C:ALL $E~SG

Note that most of the virtual memory management routines interact, directly or indirectly, with
one of the four rc1utines tha.t call $ERMSG (see the General Block Diagram for each routine). The
only exceptions, ,which do not result in a call to $ERMSG, are the foJlowing routines:

$EXTSK
$FNDPG
$WRMPG
$LCKPG
$UNLPG

These five routiriles indicatie error conditions by setting the Condition Code C bit. Your
error .. handling 01>erations tbr these routines should respond to the Condition Code C bit. However9

these routines might have to link with the error routine $ERMSG. Therefore, you must define
the global symbols and an SERMSG routine in your task whenever you use a virtual memory
management rou.tine. If you have not defined the error-handling routine within the task, the
undefined global symbol diagnostic message wiJI be generated at task-build time.

A typical error-h.andling ro11tine would print a message to indicate the specific error condition,
close all tiles (inc:luding the· work tile), and exit.

Example

The following so11rce staten11ents illustrate a user-written error-handling routine that can be called
by a virtual memory mana1iement routine:

8-2

1.2

ER60:
ER6l:
FILOl?N:

GENFLG:
; l
; 2
$ERMSG::

ERM2:

ERM3:

EXIT:

10$:

15$:

ERROR:

.ASCIZ

.ASCIZ

.BYTE

.EVEN

.WORD
BIT 0
BIT 1
BIS
CMPB
BNE
MOV
BR
CMPB
BNE
MOV
.BR

TSTB
BLE
CALL

B!T
SEQ
CALL

Virtual Memory Management Rou~lnes
i

<lS>/ACNT--Workfile - dynamic memory exhausted/
<15>/ACNT--Workfile - IO error or ADOR past EOF/
0 ; FILE OPEN FLAG. 0 • NO, 1 • YES

0 ; GENERAL FLAG WORD
- VIRTUAL FILE OPEN. l • OPEN, 0 • CLOSED
-.ALLOCATE VIRTUAL BLOCK ERROR FLAG, 1 • ERROR

12,GENFLG SET ALLOCATE BLOCK ERROR
#:ESR4, Rl DYNAMIC MEMORY ERROR'?
ERM2 NO
tER60,RO YES, GET MESSAGE
ERROR
iESR73,Rl I/0 ERROR OR ADDRESS PAST EOF7
ERM3 NO
tER6l,RO YES, GET MESSAGE
ERROR

ERROR-HANDLING ROUTINE

FILOPN ., IS ACCOUNT FILE OPEN?
10$ NO
CLOSE ROUTINE TO CLOSE ACCOUNT FILE

tl,GENFLG WORK FILE OPEN?
15$ NO
CLOS EV ROUTINE TO CLOSE VIRTUAL FILE

; ERROR MESSAGE OUTPUT ROUTINE

NOTE: Generally, the error-handling routine should not attempt to return to the vir;tual
memory management routine that detected the fatal error because no meaningful oU:tput
would result. '

Task-Building Requirements
i

There are two versions of the virtual memory management routines: the statistica] version a~d
the nonstatistical version. Each version consists of 12 program modules, each containing one pr
more routines, and a data storage module. Individual routines in the virtual memory manage$tent
routines library can reference other routines. The relationship of the modules and routines in i the
library is shown in Table 8-1.

Table 8-1 Contents of the Vlnual Memory Management Library Fiie

Module Name

Routine
Statlstlcal Nonstatlsttcal Name Routines Referenced

ALBLK ALBLK $ALBLK $GTCOR. $EXTSK. $WRPAG
A LS VB A LS VB $ALSVB $ALVRT, $WRMPG, $CVRL, $ALBLK, $RQVCB, $FNOAG,

$ROPAG '
CVRS CVRL $CVRL $FNOPG.$ALBLK,$ROPAG
EXTSK EXT SK $EXTSK (none)

!B-3

Virtual Memory Manag•~ment Rc>utines

Table 8-1 (Cont.) Content:s of the Vl1rtual Memory Management Library Fiie

Module Name

Routine
Statlstlcaf Nonstatlstlcal Name Routines Referenced

FNOPG FNOPG $FNDPGr {none)

GT COS GTCOR $GTCOFt $EXTSK, 1 $WRPAG

INIDM2 INIDM2 $1NIOM $EXTSK

INIVS INIVM $1NIVM $AL8LK. $GTCOR, SEXTSK. $WRPAG

MRKPG MRKPG $LCKPG $FNDPG
$UN LPG $FNDPG
$WRMPG $FNDPG

FlOPAS ADPAG $ROPAGi (none)
$WRPAG

RQVCS RQVCB $RQVCEI {none)

VMUTL VMUTL $CVLOK $CVRL,$LCKPG,$FNDPG.$ALSLK,$RDPAG

VMOAS VMDAT Global d.ata storage module

1The Extend Task Routine ($EXTSK) is callEtd by the $GTCOR routine, but only if GTCOS, the statistical version of
$GTCOR, has been defined and initialized in your source program at task-build time.
2The INIDM module is a dynamic memory nrlanagement module (see Chapter 7) that Is normally used with the
virtual memory management routines.

Ji'our modules in the statistical version of the routines set up or maintain statistics of the use of
the work file and memory. 'rhese modules and their associated statistical data fields are as follows:

ti The INIVS module, which initiali2:es the following three double-word fields:

The total work file access field ($WRKAC)

The work file read count field ($WRK.RD)

The work file write COWlt field ($WRKWR)

Each of these fields is ~L double-word integer contained in the global data storage module
(VMDAS) for the statistical version of the routines.

" The CVRS module, which maintains the count of total work file accesses in the $WRKAC field.

• The RDPAS module. which maintains a total of the work file reads in the $WRKRD field and a
total of the work file writes in the $WRKWR field.

4' The GTCOS module, which maintains a count of the tota) amount of free dynamic memory in
the $FRSIZ single-word field. Thi:~ field must be defined and initialized in the source program.

The statistical ve'l"Sion of the virtual memory management routines does not automatically report
these statistics. It is your riesponsibility to provide for the output of the statistical data in the fields
described above if the statiEltical versfon of the routines is used.

To use the statistical routines, specify at task-build time the virtual memory management routines
library file, the names of all statistica1l modules whose routines will be used at task-execution
t.ime, and the name of the global data storage module. The only optional modules are ALSVB and
INID.M.

Virtual Memory Management Routines

The following specifications identify all modules of the statistical version of the routines:

LB:[l,lJVMLIB/LB:ALBLR:ALSVB:ALVR.T:CVRS:EXTSK:FNOPG:GTCOS
LB: [l,l]VMLIB/LB:INIVS:MRKPG:ROPAS:RQVCB:VMUTL:INIOM:VMDAS

The nonstatistical routines use the global data storage module VMDAT. 'l'b use the nonstatisti~l
routines, you specify at task-build time the virtual memory management routines library file, the
names of all nonstatistical modules whose routines will be used at task-execution time, and t~e
name of the global data storage module. The only optional modules are ALSVB and INIDM.

The following specifications identify all modules of the nonstatistical version of the routines:

LB: [1,l]VMLIB/LB:ALBLK:ALSVB:ALVR.T:CVRL:EXTSK:FNDPG:GTCOR
LB: (l,l)VMLIB/LB:INIVM:MRKPG:ROPAG:RQVCB:VMUTL:INIOM:VMOAT

is-s
i

$1NIVM

$1NIVM-Virtual mernory initialization routine

The $1N1VM routine initializes the task's free dynamic memory, sets up the page address control list,
and Initializes your disk wor!k file to enable memory-to-disk page swapping. Disk work file capacity Is
64K words.

FORMAT

CALL $1NIVM

INPUT

$FRHDblock
In your source program: define and initialize a 2-word field named $FRHD. To define the neld.
include the following code :in your source program:

$FRHD:: • JaLKW 2.

To initialize the field, store the starting address of the free dynamic memory in $FRHD.

globals
In your source program: four global s1ymbols as follows:

W$KlUN

W$KEXT

N$MPAG

$WRKPT

Logical unit number (LUN) to be used for the work file. You must assign this LUN to a disk device.

Work file extension size (In blocks). A negative number Indicates that the extend should first be
requested aa a cc1ntfguous alh:>eation of disk blocks. A positive number Indicates that the extend need
not be contiguous.

Fast page search page count. If there is sufficient dynamic memory to allocate the number of pages
specified, N$MPAG will set aside 512 words of dynamic memory to speed up the searching of
memory-resident pages.

Store the address of the FOB in the word $WRKPT before calling $JNIVM.

memory address
In Register 1: the highest address of the task's free dynamic memory

OUTPUT

Condition Code
Initialization succeeded if both of the following conditions exist:

c bit Clear

!Register O • O

$1NIVM

Initialization failed if the following conditions exist:

c bit

Register 0

Set

One of the following values:

-2 to indicate work file open failure

-1 to indicate work file mark-for-deletion failure
I

NOTE: Before calling the $INIVM routi.ne, the task can call the $INIDM routine (see
Chapter 7), which returns the last address of dynamic memory and the total size o(
dynamic memory. I

Also, you can examine the FCS error code at offset F.ERR in the work file FDB. Th~
address of the FDB is stored in the word $WRK.PT.

DESCRIPTION

Starting at the high address of the calling task's free dynamic memory, the $INIVM: routine cl"ars
control fields and the page address control listhead. The $INIVM routine then sets up the heading
for a new page address control list and calls the Allocate Block Routine ($ALBLK~ to allocate .a
memory page block for the control list. The $1NIVM routine calls the $ALBLK routine to allodate
a page block for the first memory page for the calling task, and links the first allocated page t,q the
page control list. I

The $INIVM routine initializes (opens) your disk work file. If the file is opened successfully, 1

the $INIVM routine attempts to mark it for deletion. This ensures that the file will be deleted
automatically when it is closed, or if the task terminates abnormally or exits. '

NOTE: The work :file can be closed by the operation CLOSE$ $WRKPT.

The $INIVM routine destroys the contents of Registers 0 through 2. Whether or not the ,
initialization is successful, it transfers control to the $SAVRG routine, which restores Registe~s
3 through 5 and returns to the calling task. !

The interaction of the $INIVM: routine with your task and the Allocate Block Routine ($ALBLK) is
shown in Figure 8-1. !

8-7

$1NIVM

Figure 8-1 General Block Diagram of the $1NIVM Routine

I

c3
CallSSAVROto s~
nave task:.__~~R.3--IU____ SSA VR1/

I•

[

Set ne~ high
syrumac memocy
~

Clear memory
control fields and
Usts: force old
pages out of
memory

~";~st~ call i----a• $Al.Bl~
Setupnewaddtes.'I ~

allocate control ~
Hst page block __J

CaUSALBLK to G0
...

_au_oc_•_te_b_loc_k_f°'_:----1.,,, SALB UC
first memory page

Link memory page
to control list

Open disk wc:--i
i-----1..a file _I ..

Clear RO: clear C
bit: tran!lfer to
SSAVROto
restore R3-IU
and return

Mark file for
deletion aft.er
c:lose

No

No

Set RO •-I

Set C bit: transfer
toSSAVROto
restore R3-IU
and retum

Set R0•-2

EXAMPLE

$1NIVM
I
I

I

The following source statements call the $INIVM routine to initialize free dynamic memory and;
then call $WRKPT to close the work file. In this example, the $INIDM routine provides the
required free memory address in Register 1:

E$R4
E$R73
E$R76
S$V2
W$KLUN
N$MPAG
W$KEXT
$WRKPT:
$FRHD::
$FRSIZ::
GENFLG:

.WORD
.BLKW
.BLKW
.WORD
; l

4
73
76
302
4
20
24
0
2
l
0
BIT 0 - VIRTUAL

MOV #$FRHO,RO
CALL $INIDM
MOV R2,$FRSIZ
CALL $INIVM

CLOSE$ $WRKPT
SIC U,GENFLG
RTS PC

INSUFFICIENT WORK FILE DYNAMIC MEMORY
WORK FILE I/0 ERROR
WORK FILE EXCEEDED
SEVERITY 2
WORK FILE LON
FAST PAGE SEARCH PAGE COUNT
WORK FILE EXTENSION SIZE (BLOCKS)
ADDRESS OF FOB
FREE MEMORY LISTHEAD
SIZE COUNT FOR FREE MEMORY
GENERAL WORD FLAG

FILE OPEN - l • OPEN, 0 • CLOSED

SET ARG FOR FREE MEMORY HEAD
INITIALIZE MEMORY
SET ARG FOR SIZE
INITIALIZE WORK FILE SUBSYSTEM

CLOSE VIRTUAL WORK FILE
CLEAR WORK FILE OPEN FLAG

i

8t-9

Virtual Memory Management Routines

The core allocation routines -manage the allocation and deallocation of space in the free dynamic
memory of the executing task. The coro allocation routines are as follows:

• The Allocate Block Routiin.e ($ALBLK), which provides the interface between the executing task
and the other core allocation routines. That is, the executing task is provided all the services of
the core allocation routines by simply calling the $ALBLK routine, or those routines that calJ
the $ALBLK routine.

• The Get Core Routine ($GTCOR), which is always called by the $ALBLK routine to perform the
necessary processing to allocate the requested memory space from the free dynamic memory.

• The Request Core Block Routine ($RQCB), which is called by the $GTCOR routine to allocate
the requested memory space if it is available in the free dynamic memory.

• The Write Page Routine ($WRPAG)., which is called by the $GTCOR routine to transfer memory
pages to your disk work file to free enough memory space to satisfy the memory allocation
request.

• The Release Core Block Houtine ($RLCB), which is caJled by the $GTCOR routine to release
space previously allocated to a memory page that has been transferred to the disk work file.

In addition to the five core aUocation routines mentioned above. there is a sixth routine called the
Extend Task Routine ($EXTSK), which is accessed by the statistical module GTCOS. The $EXTSK
routine is called by the $GTCOR routine to extend the size of the task region, thus making enough
memory available in the free dynamic memory to satisfy the allocation request.

Do not confuse the statistical module GTCOS with the nonstatistical module GTCOR. Both of these
modules are called by references to the entry point $GTCOR. $GTCOR calls $EXTSK only when
you include the statistical module GTCOS at task-build time. If you do not include GTCOS, the
$GTCOR routine uses the nonstatistical module GTCOR by default.

8-10

;

$ALaLK

$ALBLK-Allocate block routine

The $ALBLK routine detennines whether a block of memory storage can be allocated from the fr~e
dynamic memory. If so, the $ALBLK routine clears (zeros) the allocated block and returns the resident
memory address of the block to the calling task. If there Is insufficient space in the free dynamic;
memory, the requested block cannot be allocated. :

FORMAT

CALL$ALBLK

INPUT

block size
In Register 1: the size (number of bytes less than or equal to 51210) of the memory storage block
~~~~~ l 
error code 
In the task: the definitions for the following global symbols: 

E$R4 
S$V2 

OUTPUT 

block address 
In Register 0: the dynamic memory address of the allocated, cleared block 

error response 
If allocation is unsuccessful, $ALBLK produces the following output: 

In Register 1: sets the error/severity codes E$R4 and S$V2 
In Register 2: saves the address of the argument block $FRHD (free memory header) 

The $ALBLK routine then calls the user $ERMSG routine. 

DESCRIPTION 

The $ALBLK routine calls the Get Core Routine ($GTCOR) to allocate the requested memory 
block, as follows: 

• Request allocation from the free dynamic memory 

• If the request is not met, attempt to extend the task region to increase the size of the free 
dynamic memory 

!8-11 



$ALBLK 

• If the task cannot be E~xtended, siwap unlocked pages from memory storage to disk to deallocate 
memory space for reallocation 

In addition to being called by the user task, the $ALBLK routine is called by the following virtual 
memory management rou1tines: 

• Initialize Virtual Memory Routine ($INIV.l\il), which calls $ALBLK to a11ocate initial blocks of 
dynamic memory to enable page swapping between disk and memory storage 

• Convert Virtual to Real Address Routine ($CVRL), which calls $ALBLK to allocate a block of 
dynamic memory for al virtual page block 

• Allocate Virtual Memory Routin•! ($ALVRT), which calls $ALBLK to allocate a memory page 
block for a virtual page block that is to be swapped from memory to disk storage 

Figure 8-2 shows the int•,raction of the $ALBLK routine with a user task and other virtual 
memory management routines. 

8-12 



$ALBl-K 
! 

Figure 8-2 General Block Diagram of the $ALBLK Routine 

Clear block: Yes 
set block address 
in RO: return 

EXAMPLE 

Get SOTCOR to 
ftlquest memory 
block 

Call user's 
SERMSO 
routine 

{

Task 
SINIVM routine 
SCVRL routine 
SAL VRT routine 

The following source statements call the $ALBLK routine to allocate a 4-byte block of memory and 
store the address of the block in buffer REFHD: ! 

E$R4 ·-E$R73 --E$R76 
S$V2 --REFHD: .BLKW 

MOV 
MOV 
CALL 
MOV 
MOV 
HOV 

4 
73 
76 
2 
2 

Rl,-(SP) 
14, Rl 
$ALBLK 
RO,@REFHD+2 
RO,REFHD+2 
(SP)+,2(RO) 

INSUFFICIENT WORK FILE DYNAMIC MEMORY 
WORK FILE I/O ERROR 
WORK FILE EXCEEDED 
SEVERITY 2 
REFERENCE LISTHEAO 

SAVE VIRTUAL ADDRESS OF REFERENCE 
GET SIZE OF BLOCK 
ALLOCATE CORE BLOCK 
LINK REAL ADDRESS TO OLD.LAST BLOCK 
SET NEW LAST BLOCK ADDRESS 
RECORD VIRTUAL ADDRESS OF REFERENCE 

AOqRESS 
! 

$-13 



$GTCOR 

$GTCOR-Get core routine-nonstatistical module 
GTC:OR 

The $GTCOR routine (defined in the nonstatistlcal module GTCOR) attempts to allocate requested 
dynamic memory blocks In the followin1~ ways: 

• Allocate memory from the currently available space in the free dynamic memory 

Swap unlocked page blc:>cks from dynamic memory to disk, freeing previously allocated memory 
space for reanocation 

FORMAT 

CALL$GTCOR 

INPUT 

block size 
In Register 1: the size (nu:mber of bytes less than or equal to 51210) of the dynamic memory block 
to be allocated 

OUTPUT 

block address 
In Register 0: the memory address of the dynamic memory block, if allocated 

Condition Code 
C bit • Clear if the allocation was suc:cessful 

C bit Set if the allocatictn failed 

-------·;---·---·-----------------------DESCRIPTION 

$GTCOR calls the Request Core Bloc:k Routine ($RQCB; described in Chapter 7) to determine 
whether enough free dynamic memo1y space is currently available to satisfy the allocation request. 
If so, the $GTCOR routine returns the memory address of the resident block to the caller. 

If the $RQCB routine cannot allocatei the requested block from the current free dynamic memory, 
the $GTCOR routine searc:hes for tbe unlocked pages currently resident in memory. If any 
unlocked pages are found, the least recently used (LRU) page is released and its memory space is 
allocated to the new page. If an wtlocked page cannot be found, $GTCOR sets the C bit, indicating 
that it failed to find an unlocked pag•!, and returns control to the caller. 

8-14 



$GTCOR 
I 
I 

When an LRU page is found, the $GTCOR routine checks the page to see if it has been writ~n 
into. If so, the Write Page Routine ($WRPAG) is called to write the page to the disk work file. i The 
Release Core Block Routine ($RLCB; described in Chapter 7) is called to release the page and; the 
Request Core Block Routine ($RQCB) is called to allocate the page. The memory address of tl-ie 
allocated page returns in Register 0 to the caller. If the $GTCOR routine does not obtain suffipent 
memory for the requested block, it sets the C bit in the Condition Code and returns control toi the 
caller. $GTCOR calls the $SAVRG routine to save and restore Registers 3 through 5 of the cal)er. 

The $GTCOR routine is always called by the Allocate Block Routine ($ALBLK). 
I 

Figure 8-3 shows the interaction of the $GTCOR routine with other system library and virtul,ll 
memory management routines. ! 

Figure 8-3 General Block Diagram of the SGTCOR Routine (Nonstatlstlcaf Module GTCOR): 

Tmik } 
$ALSLK 

$WRPAG 

$SAVRG 

Caller $GTCOR 

$SAVRG 

ClearCbit; 
set memory 
address in AO; 
retum 

SetC bit; 
retum 

Call$WRPAG 
to write pages 
out to disk 

Oetete pages trom 
list; link remaining 
pages; eaA $RLCB 
to release page 
blocks 

No 

Yes 

Call$AOCSto 
request 
memort blod< 

Chet'k for 
unlocked 
pages 

$RLCS 

$ROCB 

I 

I 

8-15 
\ 



$GTCOR 

EXAMPLE 

The following source statE~ments can the $GTCOR routine to allocate a memory block of one byte 
plus the length of the header: 

E$R4 -- 4 INSUFFICIENT WORK FILE DYNAMIC MEMORY 
E$R73 73 WORK FILE I/O ERROR 
E$R76 76 WORK FILE EXCEEDED 
S$V2 302 SEVERITY 2 
LENGTH: .BLKW l LENGTH OF RECORD JUST READ 
HDSZ: .BLKW 1 LENGTH OF HEADER 

.EVEH 

MOV tl,RO SET LENGTH TO ONE BYTE 
MOV RO,LEHGTH REMEMBER THE LENGTH 
ADO tHDSZ,. Rl ADO HEADER LENGTH 
ADD RO,Rl ADD ALLOWANCE FOR MODIFICATIONS 
CALL $GTCOH ALLOCATE SPACE 

8-16 



$GTCOR 

$GTCOR-Get core routine-statistical module 
GT COS 

The $GTCOR routine (accessed by the statistical module GTCOS) attempts to allocate requestQ,d 
dynamic memory blocks in one of the following ways: i 

• Allocate memory from the currently available space In the free dynamic memory 

Extend the task region, increasing the size ot the free dynamic memory to accommodate th• 
atlocatJon request · 

Swap unlocked page blocks from dynamic memory to disk, which frees previously allocated memory 
space for reallocation · 

FORMAT 

CALL$GTCOR 

INPUT 

block size 
In Register 1: the size (number of bytes less than· or equal to 51210) of the dynamic block mebory 
to be allocated 

OUTPUT 

address 
In Register 0: the memory address of the dynamic block. if allocated 

Condition Code 

C bit • Clear if the allocation was successful 

C bit • Set if the allocation failed 

I 

DESCRIPTION I . 

The Request Core Block Routine ($RQCB; described in Chapter 7) is called to determine whelher 
enough free dynamic memory space is ClllTentJy available to satisfy the allocation request. lfi SO, 

the $GTCOR routine returns the memory address of the resident block to the caller. 
1 

If the requested block cannot be allocated from the current free dynamic memory, the $GTCJR 
routine calls the Extend Task Routine ($EXTSK) to determine whether the task region can~ 
extended to make available the requested space in the free dynamic memory. If so, the $GTdOR 
routine returns the memory address to the caller. 

i8-17 



$GTCOR 

If the task region cannot be extended, the $GTCOR routine searches for unlocked pages currently 
resident in memory. If any unlocked pages are found, the least recently used (LRU) page is • 
released and its memory s1pace is allocated to the new page. 

When an LRU page is found, the $GTCOR routine checks the page to see if it has been written 
into. If so, the Write Page Routine (~IWRPAG) is called to write the page to the disk work file. The 
Release Core Block Routine ($RLCB; described in Chapter 7) is called to release the page and the 
Request Core Block Routine ( $RQCB.) is called to allocate the page. The memory address of the 
allocated. page is returned in Register 0 to the caller. If the $GTCOR routine is not able to obtain 
sufficient memory for the :requested block, it sets the C bit in the Condition Code and returns 
control to the caller. The ~&GTCOR l"lr.mtine calls the $SAVRG routine to save and subsequently 
restore Registers 3 through 5 of the caller. 

The $GTCOR routine is always called by the Allocate Block Routine ($ALBLK). 

Figure 8-4 shows the inte:raction of :the $GTCOR routine with other system library and virtual 
memory management routines. 

8-18 



$GTCiOR 
I 

Figure 8-4 General Block Diagram of the $GTCOR Routine (Statlstlcal Module GTCOS) 

Caller 

$SAVRG 

Task } 
$ALBLK 

$WRPAG 

SetC bit; 
retum 

Call$WRPAG 
to write pages 
out to disk 

Oetete pages from 
list; link remaining 
pages; call $RLCS t 
retease page blocks 

$SAVRG 

$GTCOR 

Cleare bit; 
set memory 
address in RO; 
return 

Inhibit 
further 
extensions 

Check for 
unlocked pages 

Call$ROC8to 
request 
memory blod< 

See if task can 
be extended 

Ca11$EXTSK 
to extend 
task 

Update free mem
ory: update top of 
memory; call $RLCS 
to release block 

$RLCS 

$ROCB 

$EXTSK 

J-19 



$EXTSK 

$EXTSK-Extend task routine 

The $EXTSK routine extends the current region of the task to increase the amount of available memory 
for allocation. It extends the task region by the specified size rounded to the next 32-word boundary. 

FORMAT 

CALL$EXTSK 

INPUT 

block size 
In Register 1: the size (number of bytes less than or equal to 51210) of the memory storage block 
to bE~ allocated 

OUTPUT 

extension size 
In Register 1: the actual e:dension size (requested size rounded to next 32-word boundary) 

Condition Code 

C bit • Clear if extension was successful 

C bit • Set if extension faiiled 

DESCRIPTION 

The $EXTSK routine is caJled by the Get Core Routine ($GTCOR> when there is insufficient space 
in the cWTent free dynamic memory to satisfy a memory block allocation request. The $EXTSK 
routine rounds the requested extension size to the next 32-word boundary. If there is enough 
memory space available, $:EXTSK extends the task region, returning the total amount of the 
extension. in Register 1, to1 the $GTCOR routine. It preserves all other registers of the caller. If 
it cannot extend the task 1·egion, the $EXTSK routine sets the C bit in the Condition Code and 
returns to the $GTCOR routine. 

While you can call the $EXTSK routine directly, the routine is also called by the Initialize Dynamic 
Memory Routine ($INIDM), described in Chapter 7. 

Figure ~5 shows the interaction of the $EXTSK routine with the $GTCOR routine (in statistical 
module GTCOS). 

8-20 



Figure 8-5 General Block Diagram of the $EXTSK Routine 

Ts ] 
SOTCOR 

Round extemion 
to 32-word 
boundary 

Set Cbit: 
return to caller 

Yes 

Conven to 
32-word blocks: 
set extension 
sim in RI: 
return to caller 

$EXT SK 

8-21 



$EXTSK 

EXAMPLE 

The following source statements call the $EXTSK routine to extend the amount of memory 
available to the task: 

8-22 

T$KINC •• 
TSKMAX •• 
P$TAOOR: • WOP.D 
FRHO: .BLKW 

10$: 

li$: 

47$: 

60$: 

CALL 

MOV 
MOV 
CALL 
BCC 
MOV 
MOV 
CMP 
BHIS 
MOV 
CALL 
BCS 
ADO 
ADD 
BR 

MOV 

MOV 
CALL 
MOV 
BR 

INC 
RTS 

256. 
0 
0 
2 

$SAVRG 

Rl,-(SP) 
#FRHD, RO 
$RQCB 
60$ 
tP$TAOOR,R3 
CR.:3), R2 
R2,IT$KMAX 
17$ 
iTSKINC,Rl 
$EXTSK 
ERRS 
Rl,FRHO 
EU, (R3) 
47$ 

#-1, (R3) 

tFRHD,RO 
$RLCB 
(SP)+, .EU 
10$ 

(SP)+ 
PC 

TASK INCREMENT 
MAXIMUM SIZE OF TASK 
NEXT FREE ADDRESS 
FREE MEMORY LISTHEAD 

SAVE NONVOLATILE REGISTERS 

SAVE BYTE COUNT 
GET ADDRESS OF FREE CORE POOL 
REQUEST CORE BLOCK 
IF C BIT CLEAR, SPACE IS ALLOCATED 
GET POINTER TO NEXT FREE ADDRESS 
GET NEXT FREE ADDRESS 
IS TASK AT MAXIMUM ALLOWABLE SIZE? 
IF TASK HIGHER OR SAME, YES 
GET TASK INCREMENT (IN BYTES) 
EXTEND THE TASK 
IF C BIT SET, EXTENSION FAILED 
ADO INCREMENT TO POOL 
UPDATE TOP OF MEMORY 
RELEASE BLOCK TO POOL 

BLOCK FURTHER ATTEMPTS TO EXTEND TASK 

GET ADDRESS OF FREE CORE POOL 
RELEASE MEMORY 
RESTORE BYTE COUNT 
BEGIN AGAIN 

CLEAN STACK, LEAVE C BITS INTACT 



$WRfAG 
I 

$WRPAG-Write page routine 

The $WRPAG routine transfers a memory page to the disk work file. 

FORMAT 

CALL$WRPAG 

INPUT 

page address 
In Register 2: the dynamic memory address of the page to be transferred to disk 

error code 
In the task: the definitions for the following global symbols: 

E$R73 
S$V2 

OUTPUT 

Condition Code 
C bit • Clear if transfer succeeded 

C bit • Set if transfer failed . 

error response 
If transfer is not successful, $WRPAG produces the following output: 

In Register 1: sets the error/severity codes E$R73 and S$V2 

The $WRPAG routine then calls the user $ERMSG routine. 

DESCRIPTION i 

I 

The $WRPAG routine is called by the Get Core Routine ($GTCOR) to transfer to your disk work 
file a resident memory page that has been written into. I 

The $WRPAG routine calls the $SAVVR routine to save and subsequently restore Registers o! 
through 2 6f the caller. The routine then performs the following actions: 

• Sets up the disk work file address of the page to be transferred 

• Initiates the page-writing operation 

• Checks the status of the write operation 

~23 
I 



$WRPAG 

• Indicates a successful transfer (dears the C bit in the Condition Code) and returns cont.rol to 
the $SAVVR routine, or calls your $ERMSG routine if a fatal work file 110 error prevented the 
page transfer 

Figure 8-6 shows the interaction of the $WRPAG routine with the $GTCOR routine. 

Figure 8-6 General Blc)Ck Diagram of the $WRPAG Routine 

Tadt ] 
SGTCOR 

8-24 

)~~---------------
---~ 

Se1updi:i1k J 
address for oage 
to be transfemedl 

Initiate page J writing 
operation 

J Check status 
of write 
operation 

-_i_Wi_
11_use_s_~,--l___.r~ 

routine ~~ 



$WAPAG 

EXAMPLE 

The following source statements call the $WRPAG routine to transfer a memory page from buffer 
P$GNXT to the disk work file: · 

E$R4 -- 4 INSUFFICIENT WORK FILE DYNAMIC MEMORY 
E$R73 -- 73 WORK FILE I/O ERROR 
E$R76 -- 76 WORK FILE EXCEEDED 
S$V2 -- 302 SEVERITY 2 
P$GNXT: .WORD 0 NEXT PAGE WORK FILE 

MOV R4,RS SAVE PREDECESSOR 
MOV P$GNXT,R4 GET NEXT PAGE 

MOV R4,R2 SET UP BUFFER FOR TRANSFER 
CALL $WRPAG WRITE OUT PAGE INTO DISK WORK FILE 

i 

8-25 



Virtual Mem4Jry Mans1gement Ro.utines 

8.2 Virtual Mernory Allocation Routines 
Virtual memory allocation routines manage the allocation of disk and memory storage to enable 
page swapping from the free dynamic memory to your disk work file. The three virtual memory 
allocation routines are as follows: 

• Allocate Virtual Memory Routine ($ALVRT), which allocates disk and memory page blocks, 
maintains :page contr.ol and address tables, and interfaces with the executing task and the cori 
allocation and page management routines. 

• Allocate Small VirtuaLl Block Routine ($ALSVB), which allocates small page blocks of disk 
and memory storage within large page blocks to enable efficient use of storage. The $ALSV"B 
routine int1erfaces wit.h the $ALVRT routine and page management routines to ensure address 
and status control of small pages in memory and disk storage. 

• Request Virtual Core Block Routine ($RQVCB), which manages page-block allocation on· yoW" 
disk work file when His called by the $ALVRT routine. 

8-26 



$AL'JRT 
I 

$ALVRT-Allocate virtual memory routine 

The $ALVRT routine determines whether a page block of virtual storage can be allocated on your\ 
disk work file. If so, the $ALVRT routine allocates an equal amount of memory storage~ updates p~ge 
control and address tables, and returns the disk and memory addresses of the allocated page blo~s 
to the caller. If the $ALVRT routine cannot allocate the requested storage, the error and severity codes 
E$R76 and S$V2 are stored in Register 1 and the user's $ERMSG routine is called; \ 

FORMAT 

CAll$ALVRT 

INPUT 

block size 
In Register 1: the number of bytes to be allocated 

NOTE: The maximum size of a page block is 51210 bytes. 

OUTPUT 

memory address 
In Register 0: the memory address of the allocated page block 
In Register 1: the virtual address of the allocated page block 

DESCRIPTION 

I 
! 

The $ALVRT routine calls the Request Virtual Core Block Routine ($RQVCB) to determine whe~her 
the requested storage can be allocated on the disk work file. If not. a fatal error is signalled a'd 
the $.ALVRT routine calls your $ERMSG routine. If it can allocate the disk storage, the $RQV~B 
routine returns the disk page block address to the $ALVRT routine, which determines whethe~ a 
page block of space is available in memory. If not, the Allocate Block Routine ($ALBLK) is call~d to 
allocate a page block. The $ALVRT routine then calls the Convert Virtual to Real Address Routine 
($CVRL) to convert the virtual address to a memory address. I 

The $ALVRT routine calls the Write-Marked Page Routine ($WRMPG) to set the "written into~ 
flag of the memory page. It also calls the $SAVRG routine to save and restore Registers 3 ! 

through 5 of the calling routine. Although you can call the $ALVRT routine directly, it is also: 
called automatically by the Allocate Small Virtual Block Routine ($ALSVB). Figure S-7 showsi 
the interaction of the $ALVRT routine with your ta~k and other virtual memory management\ 
routines. 

8;-27 



$ALVRT 

1Flgure 8-7 General Block Diagram of the $ALVRT Routine 

8-28 

Tmk ) 
SALSVB 

Setmcm10ry 
address of page in 
RO; set disk 
address of page in 
RI: trlutser to 
SSAVRGto 
"'SlOl'll R3 - R.5 

C:a11$WRMPO 
co na~: pages as 
written into 

CallSSAVRG 
to :save R3 - R.S 

Call SRQVCB to 
reque:ttd"k 
,tnrage block 

Save diilk page 
addres. .. : ~ if 
core page block 
available 

Call SCVRL to 
convert virtUal 
accn:!'lzs to real 
~ .. 

Call utter':t 
SERMSO 
ROUTINE 

No Call :SALBLK to 
allocate core 
page block 

Update 
J-ging/ldcftm 
tab lea 



$ALVRT 

EXAMPLE 

The following source statements call the $ALVRT routine to allocate a page block of virtual memory 
on a disk file. In this example, the statements save the contents of Registers 0 and 2 before ca11ing 
$ALVRT: 

E$R4 -- 4 
E$R73 -- 73 
E$R76 -- 76 
S$V2 -- 302 
TEMPl: .WORD 0 
TEMP2: .WORD 0 
A.LEN: .SLKW l 

MOV RO, TEMPl 
MOV R2,TEMP2 
MOV A.LEN,Rl 
CALL $ALVRT 

INSUFFICIENT WORK FILE DYNAMIC MEMORY 
WORK FILE I/O ERROR 
WORK FILE EXCEEDED 
SEVERITY 2 
TEMPORARY BUFFER FOR VIRTUAL MEMORY 
TEMPORARY BUFFER FOR VIRTUAL MEMORY 
LENGTH OF VIRTUAL ELEMENT 

SAVE POINTER IN INPUT BUFFER 
SAVE NUMBER OF BYTES IN BUFFER 
LENGTH OF VIRTUAL ELEMENT TO REGISTER 
ALLOCATE VIRTUAL BLOCK 

8~29 
! 
i 



.$A LS VB 

$ALSVB-Allocate small virtual block routine 

'The $ALSVB routine allocat•:ts small pa.ge blocks within large page blocks of disk and memory storage. 
'Thus, the routine accommodates variable user allocation size requirements and minimizes wasted 
:storage space. 

·rhe $ALSVB routine initially allocates a large page block, then perlorms suballocation of requested 
:smaH blocks within the large· block. When the space within a large block is exhausted, a new large 
block is allocated by the $ALSVB routine. 

FORMAT 

CALLSALSVB 

JN PUT 

me.mory block 
In the source program: a large memory block defined as follows: 

N$DLGH •• ~112. 

NOTE: Normally, 512 is the size a1f a large memory block. In any case, it must be less 
than or equal to 51210" 

page block size 
In Register 1: the size of the page block to be allocated, where: 

IR 1 • Zero ( 0 ) to force the allocation o·f a large virtual page block on the first call to $ALSVB 

R1 • A value less than or itqual to 51210 specifying the size, in bytes, of the small page to be allocated 

OUTPUT 
In Register 0: the dynamic memory address of the allocated page block 

virtual address 
In Register 1: the virtual address of the allocated block 

DESCRIPTION 

When a small page block is to be allocated within an existing large page block, the $ALSVB routine 
calls the Convert Virtual to Real Address Routine ($CVRL) to do the following: 

4
• Locate the allocated lal'ge page, if it is memory-resident (if it is not resident, read the page 

fro~ disk to memory) 

·~ Convert the virtual page address to a memory page address 

8-30 



• Transfer the large page block from disk into the large memory page block I 
i 

The $ALSVB routine calls the Write-Marked Page Routine ($WRMPG) to set the "written int~,. flag 
of the allocated memory page. 

When a large page block is to be allocated, the Allocate Virtual Memory Routine ($.ALVRT) is balled 
to do the following: 

• 
• 
• 
• 

Allocate the disk and dynamic memory of the requested large page block 

Convert the virtual address to a memory address 

Transfer the large block, if necessary, from disk to dynamic memory 

Set the "written into'' flag of the allocated page block 

The $.ALSVB routine destroys the contents of Register 2 and preserves the contents of Registers 3 
through 5. ! 

Figure~ shows the interaction of the $.ALSVB routine with other virtual memory management 
routines. : 

I 

8-31 
! 



$A LS VB 

Figure 8-8 General Block Diagram of the $ALSVB Routine 

Round req~ted 
block sit..e to 
word boundary: 
check to see if 
this is first call 

Oet virtual 
xldre.uof 
available small 
block 

Call SCVRL to 
convert virtual 
adcbas co memory 
3dc:ftss and read 
incopage 

8-32 

C:all SAL VRT tci• 
allocate large 
di!lk page block 

CallSWRMPO 
~I) nuric pctge u 
written into 



$ALSVB 

EXAMPLE 

The following source statements call the $Al.SVB routine to allocate a block of memory with~n a 
larger block: 

E$R4 ·- 4 INSUFFICIENT WORK FILE DYNAMIC MEMORY 
E$R73 -- 73 WORK FILE I/O ERROR 
E$R76 76 WORK FILE EXCEEDED 
S$V2 -- 302 SEVERITY 2 
N$0LGH 512. LARGE BLOCK SIZE 
P$GSIZ -- 24 SIZE OF CURRENT PAGE 

MOV #P$GSIZ,R5 GET PAGE SIZE 
MOV RS,·Rl COPY SIZE OF TABLE 
ASL EU CONVERT TO BYTES 
CALL $ALSVB ALLOCATE VIRTUAL MEMORY 
MOV Rl, (R4) + SAVE VIRTUAL ADDRESS 

~-33 



$RQVCB 

$RQVCB-Request virtual core block routine 

The $ROVCB routine man;ages page-block allocation on your disk work file. The $ROVCB routine is 
called by the Allocate Virtual Memory Routine ($ALVRT) when your task has requested allocation of a 
page block of a maximum of 51210 b~rtes in length. 

The $RQVCB routine is no1t a user-called routine. 

DESCRIPTION 

The $RQVCB routine rounds the requested nwnber of bytes up to the nearest word. If the rounded 
value crosses a disk block bowidary, the $RQVCB routine allocates the page block beginning at the 
next disk block. 

If allocation is successful, the $RQVCB routine clears the C bit in the Condition Code and returns 
the disk address of the allocated page to the $ALVRT routine. 

If allocation is not successful, the $RQVCB routine sets the C bit in the Condition Code and 
returns control to the $ALVRT routine. The following conditions can prevent allocation: 

• There is no more disk storage space available. 

• A page block size greater than 51 1210 bytes has been requested. 

8-34 



Figure 8-9 General Block Diagram of the $ROVCB Routine 

Cleek available 
disk storage 

CJearCbi1: 
round request: 
check size 

Allocate page 
~ace within 
disk block 
bound:uv 

Set Cbit: 
return to caller 

Putd"'k page 
addre~" in RI: 
clear Cbit: 
re tum 

$ROVC8 



Vlrtu.al Memory ·Mana~~ement Floutines 

The page management routines perform the processing required to control page swapping between 
dynamic memory and disk. file storage. This processing includes address conversion; page location; 
page transfer from disk to memory; and page status handling such as timestamping, flagging as 
"written into." and locking and unlocking memory pages. 

The page management routines are as follows: 

• The Convert and Lock Page Routine ($CVLOK), which converts a virtual address to a dynamic 
memory address and focks the page in memory when called by your task 

• The Convert Virtual to Real Address Routine <$CVRL), which converts a virtual address to a 
dynamic memory address when c:alled by one of the following: 

User task 

Allocate Virtual Memory Routine ($ALVRT) when a new disk page has been allocated 

Convert and Lock Page Rout~ne ($CVLOK) when a page address is to be converted and the 
page is to be locked in memo·ry 

• Read Page Routine ($HDPAG), which is called by the $CVRL routine to transfer a page from 
your disk work file to dynamic memory 

• Find Page Routine <$FNDPG), which determines whether a virtual page is resident in dynamic 
memory when called by one of the following: 

$CVRL routine 

Lock Page Routine· ($LCKPG) 

Unlock Page Routine ($UNLl?G) 

Write-Marked Pag·e Routine ($WRMPG) 

• Write-Marked Page Routine ($WRMPG), which sets the "written into" flag of memory pages 
when called by a user or by the ~;ALVRT and $ALSVB virtual memory allocation routines 

• Lock Page Routine ($LCKPG). which is called by the $CVLOK routine and a user task to set a 
lock byte in a memory page to pt'event its being swapped from memory to the disk file 

• Unlock Page Routine ($UNLPG). which is called by a user task to clear a lock byte in a memory 
page to allow it to be s1wapped to disk storage to free memory space for reallocation 

8-36 



$CVLOK-Convert and lock page routine 

The $CVLOK routine performs the following functions: 

• Converts a virtual address to a memory address 

Locks the page in memory 

FORMAT 

CALL$CVLOK 

INPUT 

virtual address 
In Register 1: the virtual address you want to convert 

OUTPUT 

converted memory address 
In Register 0 

virtual address 
In Register 1 

Condition Code 
C bit • Clear if the address was converted and the page locked 

C bit • Set if address conversion or page locking failed 

DESCRIPTION 

The $CVLOK routine calls the following routines: 

$CVLOK 

• The Convert Virtual to Real Address Routine ($CVRL) to convert the virtual address to a 
memory address 

• $CVRL to preserve the contents of Registers 3 through 5 

• The Lock Page Routine ($LCKPG) to lock the page in memory 

$CVLOK also preserves the contents of Register 2. 

8-+37 



:SCVLOK 

Figure 8-10 General Bloc:k Diagram of the $CVLOK Routine 

8-38 

Call SCVRLto ~~ 

~~irt~u-al _______ ,~~ 

Call SLCKPG s~ 
to lock p.___age __ , SLCKPG 
; ..... -

Clear C bit: set 
RO•memory 
3ddre.1S: 9et 
RI •virtual 
address; retunt 

No SetCbit:I 
re tum __J 



$CVLQK 

EXAMPLE 
I 

I 

The following source statements call the $CVLOK routine to convert a virtual address from th~ 
listhead to a dynamic memory address in TEMPl and then an error routine in case the conver$ion 
fails: 

E$R4 -- 4 INSUFFICIENT WORK FILE DYNAMIC MEMORY 
E$R73 -- 73 WORK FILE I/O ERROR 
E$R76 76 WORK FILE EXCEEDED 

' S$V2 302 SEVERITY 2 
TEMPl: .WORD 0 ;'TEMPORARY STORAGE FOR VIRTUAL MEMORY 
LISTHO: .BLKW 1 LISTHEAD LOCATION 

MOV LISTHD,Rl MOVE VIRTUAL ADDRESS 
CALL $CVLOK CONVERT, STORE REAL ADDRESS IN REGISTER. 0 
BCS LCKERR ERROR 

I MOV RO, TEMPl SAVE IN TEMPORARY BUFFER 

LCKERR: MOV JERRSS, RO GET ERROR MESSAGE 
SR ERROR GET ERROR ROUTINE 

8..+39 



~;CVRL 

$CVRL-Convert virtual to real address routine 

The $CVRL routine converts a virtual address to a dynamic memory address. Virtual address units are 
words and dynamic memory addresses are bytes. 

F=ORMAT 

CALL$CVRL 
.1 ............................ 1 ........................................................................... ... 

INPUT 

11irtual address 
In Register 1: the virtual address you want to convert 

............................ 1 ......... - ......................................................... ... 

OUTPUT 

memory address 
In Register 0: the converted memory address 

DESCRIPTION 

The $CVRL routine can be 1called diredly in the task or indirectly by the following routines: 

•
1 Allocate Virtual Memory Routine ($ALVRT) when a new disk page has been allocated 

•
1 Convert and Lock Page Routine ($CVLOK) when the executing task has specified that a virtual 

address is to be convert1ed to a memory address and the page is to be locked in memory 

The $CVRL routine calls the Find Pa1ie Routine ($FNDPG) to determine whether the specified 
page is resident in memory. If so, the virtual address is converted to a memory address, which 
is returned to the caller. If the page is not in memory, $CVRL calls the Allocate Block Routine 
($ALBLK) to allocate a memory page block. The $CVRL routine then caJls the Read Page Routine 
($RDPAG) to transfer the d;isk page inito dynamic memory. The page address is then converted to a 
memory address. The memc:>ry addres:s of the specified word in the page is stored in Register 0, and 
control is transferred to the $SAVRG :routine, which restores Registers 3 through 5 and returns to 
the caller. 

The $CVRL routine leaves Register 1 unchanged. It destroys the contents of Register 2. 

8-40 



. Figure 8-11 General Block Diagram of the $CVRL Routine 

CallSFNDPO 
tofand page 

Convert address: 
set RO• memory 
addn:ss: "'tum 

No 

[
Tu 
SALVRT 
SCVLOK 

CallSALBLK 
to allocate 
memory page 
block 

Call SRDPAO 
toreaddi.<sk 
page into 

$<CVRL 
! 

8-41 



$CVRL 

EXAMPLE 

The following source statements call the $CVRL routine to convert a virtual address in Register 1 
to a dynamic memory addr·ess and sti:>re the result in Register 0: 

E$R4 -- 4 INSUFFICIENT WORK FILE DYNAMIC MEMORY 
E$R73 -- i3 WORK FILE I/O ERROR 
E$R76 -- 76 WORK FILE EXCEEDED 
S$V2 302 SEVERITY 2 
P$GSIZ -- 24 SIZE OF CURRENT PAGE 
P$GAOR: .BLKW l ADDRESS OF CURRENT PAGE 

MOV JPSGADR,Rl GET PAGE ADDRESS 
MOV Rl,RS SAVE VIRTUAL ADDRESS 
TST Rl IS REQUEST ON BLOCK BOUNDARY? 
BNE 20$ IF NO, BLOCK ALREADY EXISTS 
MOV tP$GSU, Rl CREATE A PAGE BUFFER 
CALL $ALBLK ALLOCATE STORAGE SPACE 
MOV RS,Rl RESTORE VIRTUAL ADDRESS 

20$: CALL SCV'RL CONVERT TO REAL ADDRESS 

8-42 



$RDPAG 

$RDPAG-Read page routine 

The $RDPAG routine transfers a disk page from the work file to the dynamic memory. 

FORMAT 

CALLSRDPAG 

INPUT 

page address 
In Register 0: the disk address of the page you want to transfer 

OUTPUT 

Condition Code 
C bit • Clear if transfer succeeds 

C bit • Set if transfer fails 

DESCRIPTION 

The $RDPAG routine is called bv the Convert Virtual to Real Address Routine <$CVRL) when .a 
disk page is to be transfen-ed to wdynamic memory. The $RDPAG routine then does the followiqg: 

• Sets up the address of the page to be transferred 

• Initiates the page-reading operation 

• Checks the status of the read operation 

• Calls the $SAVVR routine to save and subsequently restore the caller's Registers 0 through 2 

The interaction of the $RDPAG routine with the task and the $CVRL routine is shown in 
Figure 8-12. 

~-43 



$RDPAG 

F'lgure 8-12 General Bloct< Diagram of the $RDPAG Routine 

Initiate read 
operation 

Cbec:k status 
of read 

CJearCbit: 
tl'anafer to 
SSAVVRto 
restore RO - R2 
and rerum 

[
Tadt 
SCVRL 

Set C bit: 
!'lo c:all user's 

SERMSO 
routine 



$RD;PAG 

EXAMPLE 
I 

The following source statements allocate a page in buffer P$GSIZ and call the $RDPAG rout~ne to 
read the virtual page address into core memory: 

ESR4 
E$R73 
E$R76 
S$V2 
P$GSIZ 
P$GBLK: 
LISTHD: 
PAGLS: 

$CVRT: 

5$: 

--------
.BLKW 
. SLKW 
.BLKW 

SAVRG 
MOV 
SWAB 
CALL 
BCC 
MOV 
CALL 
MOV 
BEQ 
CLR 
BISS 
ASL 
ADO 
MOV 

MOVB 
CALL 

4 
7.3 
76 
302 

24 
100 . 
l. 
l. 

Rl,RS 
RS 
$FNOPG 
10$ 
tPSGSIZ,Rl 
$ALBLK 
PAGLS,R4 
5$ 
R2 
R5,R2 
R2 
R2,R4 
RO, (R4) 

RS, P$GBLK (RO) 
$RDPAG 

INSUFFICIENT WORK FILE DYNAMIC MEMOR~ 
WORK FILE I/O ERROR 
WORK FILE EXCEEDED 
SEVERITY 2 
SIZE OF PAGE 
RELATIVE BLOCK NUMBER 
LISTHEAO LOCATION 
ADDRESS OF PAGE LIST 

SAVE NONVOLATILE REGISTERS 
COPY VIRTUAL ADDRESS 
POSITION BLOCK NUMBER TO LOW BYTE 
SEARCH FOR PAGE 
IF C BIT CLEAR, PAGZ IN CORE . 
GET SIZE OF PAGE SUFFER 
ALLOCATE MEMORY 
GET ADDRESS OF PAGE LIST 
IF EQ NONE 
SET FOR MOVB WITH NO EXTEND 
GET RELATIVE BLOCK NUMBER 
CONVERT TO WORD OFFSET 
COMPUTE LIST ADDRESS 
STORE ADDRESS OF PAGE 

SET RELATI'VE BLOCK NUMBER 
READ PAGE INTO CORE 

•8-45 



$FNDPG 

$FNDPG-Fincl pagE! routine 

The $FNDPG routine searches an internal page address list to determine whether a virtual page has 
already been transferred Into an allocated memory page block. 

FORMAT 

CALL$FNDPG 

INPUT 

virtual page address 
In Register 1: the address of the pa@;e being searched for 

OUTPUT 

block address 
In Register 0: the memory page bloc:k address where the page is resident 

Condition Code 
C bit • Clear if page is resident 

C bit • Set if page was 1iot found 

DESCRIPTION 

The $FNDPG routine is c:alled by the following virtual memory management routines: 

• Convert Virtual to Real Address Routine ($CVRL) when a virtual address is to be converted to 
a memory address 

• Lock Page Routine ($T~CKPG) when a memory page is to be locked in core memory 

• Unlock Page Routine ($UNLPG)i when a locked memory page is to be wtlocked 

• Write-Marked Page Routine ($WRMPG) when the "written into" flag is to be set in a memory 
page 

The $FNDPG routine determines whether the specified page is resident in the task's dynamic 
memory. If so, the page i:s timestamped, its page block address is set in Register 0, the C bit in 
the Condition Code is cleared, and 1control returns to the caller. If the page is not resident in 
memory, the $FNDPG routine sets the C bit in the Condition Code and returns control to the 
caller. $FNDPG does not change th1e contents of Register 1. 

8-46 



$FNDPG 

The interaction of the $FNDPG routine with a user task and the page management routines is 
shown in Figure S-13. 

Figure 8-13 Generat Block Diagram of the $FNDPG Routine 

Check page 
addn:1111 li11t to 
~ifpage 
in core 

Time-stamp 
page: clear C bit: 
set RO•page 
addn:ss: return 

EXAMPLE 

[

Task 
SCVRL 
SLCKPG 
SUNLPG 
SWRMPG 

Set Cbit: 
re tum 

The following source statements call the $FNDPG routine to verify that a page address, stored 1
1
n 

buffer P$GADR, exists in core memory. The example then calls $.ALBLK to allocate the page bloFk: 

P$GAOR: .WORD 0 VIRTUAL PAGE AOORESS 
P$GSIZ -- 24 SIZE OF PAGE 

CALL $SAVRG SAVE NONVOLATILE REGISTERS 
MOV P$GAOR,Rl GET PAGE ADDRESS 
CALL $FNDPG SEARCH FOR PAGE 
ace 10$ IF CLEAR, PAGE IN CORE 
MOV tP$GSIZ,Rl GET SIZE OF PAGE BUFFER 
CALL $ALBLK ALLOCATE MEMORY 

10$: 

a-41 



$WR MPG 

$WRMPG-Write-marked page routine 

The $WRMPG routine sets the "written ilnto" flag of the specified page In dynamic memory. 

FORMAT 

CALLSWRMPG 

INPUT 

virtual page addres~; 
In Register 1: the address of the page for which the flag is being set 

OUTPUT 

Condition Code 
C bit • Clear if the page W'as write·ma1rked successfully 

C bit • Set if the specified memory paige was not resident in the task's free dynamic memory 

DESCRIPTION 

The $WRMPG routine is called by the' following virtual memory management routines: 

0 Allocate Virtual Memory Routine {$ALVRT) when a disk page has been allocated in dynamic 
niemory 

1
• Allocate Small Virtual Block Routine ($ALSVB) when a small page block has been allocated 

within a large page bloc:k 

$WRMPG calls the Find Page Routine ($FNDPG) to determine whether the specified page is 
resident in the task's memory. If not., the C bit in the Condition Code is set and control is 
transferred to the $SA VVR routine to restore Registers 0 through 2 and return to the caller. If 
the page is resident in memory, its "written into" flag is set, the C bit in the Condition Code is 
deared, and control is transferred to the $SAVVR routine to restore Registers 0 through 2 and 
return to the caller. 

'rhe interaction of the $WRMPG routine with the caller and virtual memory management routines 
is shown in Figure 8-14. 

18-48 



Figure 8-14 General Block Diagram of the ~iWRMPG Routine 

CallSFNDPO 
to find page 

Set write-mark 
flag: clear C bit: 
return to 
SSAVVR 

[
TR 
SALVRT 
SAlSVB 

No Set C bit: return 
toSSAVVR 

' 

$WR MPG 

8-49 



.... 1 ................................................................................... .. 

EXAMPLE 

The fo11owing source statements call the $WRMPG routine to mark a page and then call an etTor 
routine in case $WRMPG is nc>t successful: 

8-·50 

TEMP l : • WORD 
FREECT: .BLKW 
ERS8: .ASCIZ 

.EVEN 

MOV 
MOV 
MOV 
INC 
CALL 
BCS 

WRMERR: MOV 
BR 

0 ; TEMPORARY STORAGE FOR VIRTUAL MEMORY 
l : NUMBER OF AVAILABLE PAGE ENTRIES 

<15>/ACNT--Work file - page mark I 

TEMPl,Rl 
R.5, TEMPl 
@R0,@R3 
FREE CT 
$WRMPG 
WRMERR 

HR58, RO 
ERROR 

SET SWRMPG ARGUMENT 
MOVE PREV PAGE ADDRESS TO VIRTUAL MEMORY 
UPDATE PREV VIRTUAL ADDRESS PAGE POINTER 
INCREMENT NUMBER OF PAGES AVAILABLE 
MARK PAGE "WRITTEN INTO" 
ERROR 

GET ERROR MESSAGE 
GET ERROR ROUTINE 



$LCKPG 

$LCKPG-Lock page routine 

The $LCKPG routine sets a lock byte in a memory-resident page to prevent its being swapped from 
dynamic memory to the disk work file. 

FORMAT 

CALL$LCKPG 

INPUT 

virtual page address 
In Register 1: a virtual address in the page to be locked in dynamic memory 

OUTPUT 

Condition Code 
C bit Clear if the page was locked in memory 

C bit • Set if the page was not found 

DESCRIPTION 

The $LCKPG routine can be called by a user task or by the Convert and Lock Page Routine I 
($CVLOK). . I 

I 

$LCKPG calls the Find Page Routine ($FNDPG) to determine whether the memory page is I 

resident. If so, the page lock byte is set, the C bit in the Condition Code is cleared, and contr~l is 
transferred to the $SAVVR routine to restore Registers 0 through 2 and retum to the caller. ! 

If the specified page is not in memory, the $LCKPG routine sets the C bit in the Condition Cil de 
and returns control, by means of the $SAVVR routine, to the caller. 

The interaction of the $LCKPG routine with the task and page management routines is ehowr in 
Figure 8-15. 

I 

8-51 



$LCKPG 

Figure 8-15 General Bloc~: Diagram of the $LCKPG Routine 

8-52 

CallSFNDPG 
to find page 

Lock it: clear 
C bit: transfer 
to SSA VVR to 
restore RO - R2 
and exi1t to caller 

{ Ta 
SCVLOK 

Set C hit: transfer 
to$SAVVRto 
re11tore RO - R2 
and exit to caller 



$LCKPG 
i 

EXAMPLE 
! 

The following source statements cal1 the $LCKPG routine to lock a page in dynamic memory if the 
listhead contains more than one element: 

TEMP l : . WORD 
LI STHD : • BLKW 
ERSS: .ASCIZ 

'40$: 

.EVEN 

MOV 
CALL 
BCS 
TST 
BNE 
CALL 

MOV 
CALL 
CALL 
BCS 

LCURR: MOV 
BR 

O TEMPORARY STORAGE FOR VIRTUAL MEMORY 
l LISTHEAD LOCATION 
<15>/ACNT --Work file - page look I 

LISTHO,Rl 
$CVLOK 
LCKERR 
(RO) 
40$ 
$0NLPG 

MOVE lST VIRTUAL ADDRESS 
lST PAGE REAL ADDRESS IN REGISTER O 
ERROR 
ONLY l ELEMENT'? 
NO, MORE THAN ONE 
YES, ONLY ONE, UNLOCK IT 

TEMPl,Rl 
SCVRL 
SLCKPG 
LC KERR 

SET UP VIRTUAL ADDRESS FOR $LCKPG 
SAVE REAL ADDRESS OF NEXT PAGE IN REGISTE/R O 
LOCK 

tERRSS,RO 
ERROR 

ERROR 

GET ERROR MESSAGE 
ERROR ROUTINE 

8-53 



$UN LPG 

$UNLPG-Unlc)ck page routine 

The $UNLPG routine clears a lock byte in a memory-resident page to allow the page to be swapped 
from dynamic memory to thie disk work file. 

FORMAT 

CALL$UNLPG 

INPUT 

virtual page addre~~s 
In Register 1: the virtual address of the page you want to unlock 

OUTPUT 

Condition Code 
C bit • Clear If the page 111Yas unlocked 

C bit • Set if the page WElS not found 

DESCRIPTION 

$UNLPG calls the Find Page Routin~e ($FNDPG) to determine whether the memory page is 
resident. If so, the page loi::k byte and the C bit in the Condition Code are cleared and control is 
transfetTed to the $SA VVR routine to restore Registers 0 through 2 and return to the caller. 

If the specified page is not in memory, the C bit in the Condition Code is set and control is 
·retmned, by means of the !&$AVVR rc1utine, to the caller. 

'l'he interaction of the $UNLPG routi:ne with the task is shown in Figure 8-16. 

U-54 



Figure 8-16 General Block Diagram of the $UNLPG Routine 

CallSFNDPO 
to find page 

Lock it: clear 
C bit: tran:tfer 
toSSAVVRto 
restore RO - R2 
and exit to caller 

Set C bit: tran~fer 
toSSAVVR.to 
re:ttore RO - R2 
and exit to caller 

S-55 



$UNlPG 

EXAMPLE 

The following source statenrients call the $UNLPG routine to allow pages to be swapped from real 
memory to virtual memory: 

8-56 

TEMP l : • WORD 
TEMP 2 : • WORD 
FREECT: .SLKW 
LISTHO: .SLKW 
ER56: .ASCI,; 

10$: 

20$: 

.EVEN 

MOV 
MOV 
MOV 
CLR 
CALL 
BCS 
TST 
BNE 
CALL 
BCS 

O TEMPORARY STORAGE FOR VIRTUAL MEMORY 
0 TEMPORARY STORAGE FOR VIRTUAL MEMORY 
l NUMBER OF AVAILABLE PAGE ENTRIES 
l LISTHEAD LOCATION 
<15>/ACNT --Work file - page unlock I 

:#LISTHD,TEMf2 
LISTHD,Rl 
Rl, TEMPl 
FREECT 
CVLOK 
LCKERR 
(RO) 
20S 
$UNLPG 
ONLERR 

GET FIRST REAL ADDRESS POINTER 
MOVE FIRST VIRTUAL ADDRESS 
SAVE IN SECOND VIRTUAL ADDRESS BUFFER 
CLEAR NUMBER OF SWAPS PER PASS 
POT REAL ADDRESS IN REGISTER 0 
ERROR, PAGE LOCK FAILED 
LINK • 0, ONLY ONE ELEMENT? 
NO, MORE THAN ONE 
YES, ONLY ONE, UNLOCK IT 
ERROR 



g Summary Procedures 

The procedures for using the system library routines are summarized in the tables in this chapter. 
These summaries are presented as quick reference guides for users who are familiar with :the 
detailed procedures and requirements for using individual routines, as described in the preceding 
chapters of this manual. ' 

Table 9-1 Register Handling Routines Summary 

Routine Name/ 
Mnemonic 

Save All Registers 
$SAVAL 

Save Registers 3-5 
$SAVRG 

Save Registers 0-2 
SSAVVR 

Save Registers 1-5 
.SAVR1 

Function 

Saves/restores RO-RS 

Saves/restores R3-R5 

Saves/restores RO-R2 

Saves/restores R1-R5 

Table 9-2 Arithmetic Routines Summary 

Routine Name/ 
Mnemonic 

Integer Multiply 
$MUL 

Integer Divide 
$DIV 

Double-Precision Multiply 
$0MUL 

Double-Precision Divide 
SDDIV 

Input Arguments and 
Call Statement 

RO • Multiplier 
R1 • Multiplicand 
CALL$MUL 

RO • Dividend 
R1 •Divisor 
CALL $DIV 

RO • Multiplier 
Multiplicand: 

R2 • High-order part 
R3 • Low-order part 

CALL $0MUL 

RO • Unsigned divisor 
Dividend: 

R1 • High-order part 
R2 • Low-order part 

CALL $001V 

Call Statement 

CALL $SAVAL 

JSR R5,$SAVRG 

JSR R2,$SAVVR 

JSR R5,.SAVR1 

output 

RO • Product (high-order part) 
R1 •Product (low-order part) 
R2-R5 preserved 

RO • Quotient 
R1 • Remainder 
R2-R5 pre .. rved 

RO • Product (high-order part) 
R1 •Product (low·order part) 
R4-R5 preserved 
R2-R3 destroyed 
C ·Clear 

RO • Remainder 
R1 • Quotient (high-order part) 
R2 •quotient (low-order part) 
R3 preserved 

9-1 



Summary Procedures 

Table 9-3 Input Data ConvE!rslon Routines Summary 

Routine Name/ 
Mnemonic 

Decimal to 
Blnary Double 
Word 
.002CT 

Octal to 
Binary Double 
Word 
.002CT 

Decimal to 
Binary 
$COTS 

Octal to 
Binary 
$COTS 

ASCII to 
Radix-50 
SCATS 

ASCII with 
Blanks to 
Radix-SO 
$CATSB 

9-2 

Input Arguments and 
Call Statement 

R3 • Output address 
R4 • Num.ber input characters 
RS • Input string address 
CALL.DC2CT 

R3 • Output address 
R4 • Nurr1ber Input characters 
RS • Input string address 
CALL .0Ct2CT 

RO • Addtress first input byte 
CALL $C[)TB 

RO • Address first input byte 
CALL $CC::>TB 

RO • Address first Input 
character 

R1 • 0 (period Is terminating 
character) 

R1 • 1 (period is valid character) 
CALL$CAT5 

RO • Address first input 
character 

R1 • 0 (p•riod is terminating 
character) 

R1 • 1 (period is valid character) 
CALL sc,,TSB 

Output 

Successful: 
Converted number at output 
address: 

Word 1 •High-order part 
Word 2 •Low order part 

C •Clear 
Unsuccessful: 

C •Set 
All registers preserved 

Successful: 
Converted number at output 
address: 

Word 1 • High-order part 
Word 2 •Low-order part 

C •Clear 
Unsuccessful: 

c -set 
All registers preserved 

RO• Address first byte of next string 
R1 •Convened number 
R2 • T•rminadng character 
R3-R5 preserved 

RO • Address first byte of next string 
R1 •Converted number 
R2 -Terminating character 
R3-RS preserved 

Successful: 
RO • Address next input character 
R1 • Convened Radlx-50 value 
R2 • Terminating character 
C •Clear 

Unsuccessful: 
R2 • Illegal character 
c. set 

R3-RS preserved 

Suceesslul: 
RO • Address next input charactel' 
R 1 • Converted Radix-SO value 
R2 ·Terminating character 
C •Clear 

Unsuccessful: 
R2 • Illegal character 
C •Set 

R3-R5 preserved 



Table 9-4 Output Data Conversion Routines Summary 

Routine Name/ 
Mnemonic 

Binary Date 
Conversion 
$CB DAT 

Corivert Binary 
to Decimal 
Magnitude 
$CBOMG 

Convert Binary 
to Signed 
Decimal 
$CB DSG 

Convert Double
Precision 
Binary to 
Decimal 
$COO MG 

Convert Binary 
to Octal 
Magnitude 
$CBOMG 

Convert Binary 
to Signed 
Octal 
$CBOSG 

Convert Binary 
Byte to Octal 
Magnitude 
$CBTMG 

Input Arguments and 
Call Statement 

RO • Output address 
R1 •Binary date 
R2 • 0 (zero suppress) 
R2 •Nonzero (no zero suppress) 
CALL $CBOAT 

RO • Output address 
R1 •Binary number 
R2 • 0 (zero suppress} 
R2 •Nonzero (no zero suppress} 
CALL $CBOMG 

RO • Output address 
R1 • Binary number 
R2 • O (zero suppress) 
R2 •Nonzero (no zero suppress) 
CALL $CBDSG 

RO • Output address 
R 1 • Input address 
R2 • 0 (zero suppress) 
R2 •Nonzero (no zero suppress) 
CALL $COCMG 

RO • Output address 
R1 • Binary number 
R2 • O (zero suppress) 
R2 •Nonzero (no zero suppress) 
CALL $C80MG 

RO • Output address 
R1 • Binary number 
R2 • 0 (zero suppress) 
R2 •Nonzero (no zero suppress) 
CALL $CBOSG 

RO • Output address 
R 1 • Binary byte 
R2 • O (zero suppress) 
R2 •Nonzero (no zero suppress) 
CALL $CBTMG 

Summary Proce¢1ures 

Output 

Converted date at output address 
RO • Next available output address 
R3-R5 preserved 
R1-R2 destroyed 

Converted number at output address 
RO • Next available output address 
R3-R5 preserved 
R1-R2 destroyed 

Converted number at output address 
RO • Next available output address 
R3-RS preserved 
R1-R2 destroyed 

Successful: 
Converted number at output 
address 

Unsuccessful: 
String of ASCU asterisks at 
output address 

RO • Next available output address 
R3-R5 preserved 
R1-R2 destroyed 

Converted number at output address 
RO • Next available output address 
R3-R5 preserved 
R1-R2 destroyed 

Converted number at output address 
RO - Next available output address 
R3-R5 preserved 
R1-R2 destroyed 

Converted byte at output address 
RO • Next available output address 
R3-RS preserved 
R1-R2 destroyed 

9-3 



Summary Procedures 

Table 9-4 (Cont.) Output Data Conversion Routines Summary 

Routine Name/ 
Mnemonic 

General Purpose 
Binary to 
ASCII 
$CBTA 

Radix0 SO to 
ASCII 
$CSTA 

Input Arguments and 
Call Statement 

RO - 01utput address 
R1 •Binary value 
R2 • C1:>nversion parameters: 

Bits 0-7: • Radix (2 to 1610) 
Bit 8: • 0 •Unsigned value 

• 1 • Signed value 
Bit 9: • 0 • Zero suppress 

• 1 •No zero 
suppress 

Bit 1 O: • 1 , replace leading 
zeros with blanks 
• 0, do not replace 
leading zeros with 
blanks 

Bits 11-15: •Field width 
(value 1---'32) 

CALL $CBTA 

RO - Output address 
R1 • R.adix-50 word 
CALL $CSTA 

Table 9-5 Output FormHttlng Routines Summary 

Routine Name/ 
Mnemonic 

Uppercase 
Text 
$CVTUC 

Date String 
Conversion 
$DAT 

9-4 

Input A,rguments and 
Call St;atement 

RO • Input address 
R 1 • Output address 
R2 • Number input bytes 

(cannot be zero) 
CALL $.CVTUC 

RO • Output address 
R1 •Input address 
CALL $·DAT 

Output 

Converted number at output address 
RO • Next available output address 
R3-R5 preserved 
R1-R2 destroyed 

Converted number at output address 
RO • Next available output address 
R3-R5 not used 
R1-R2 destroyed 

Output 

Converted text at output address 
R3-R5 not used 
R2 destroyed 
RO-R1 left pointing to the character following the 
string 

Converted date string at output address 
RO • Next available output address 
R1 •Address of next input word 
R3-R5 preserved 
R2 destroyed 



Summary Procedures 

Table 9-5 (Cont.) Output Formatting Routines Summary 

Routine Name/ 
Mnemonic 

Time Conversion 
$TIM 

Edit Message 
$EDMSG 

Input Arguments and 
Call Statement 

RO • Output address 
R1 •Input address 
R2 • Parameter count: 

• 0 or 1 , hour (HH) 
• 2, hour:minute 

(HH:MM) 
• 3, hour:minute:second 

(HH:MM:SS) 
• 4 or 5, 

hour:minute :second. 
tenth of second 
(HH:MM:SS.S) 

CALL $TIM 

Define ASCIZ input string 
directives in the form: 

%1 
o/onl 
%VI 

where n •Optional decimal 
repeat count; V specifies an 
optional value to be used 
as a repeat count; and 
I • One of the following 

characters: 

Output 

Converted time string at output address 
RO• Next available output address 
R1 •Address of next input word 
R3-R5 preserved 
. .RO-R1 updated 
R2 destroyed 

Converted/formatted data in output block 
RO • Address of last zero byte in output 

block 
R1 •Number of bytes In output block 
R2 • Address of next argument in 

argument block 
R3-R5 preserved 

9-5 



Summary Procedures 

Table 9-5 (Cont.) Output Formatting Routines Summary 

Routine Name1 
Mnemonic 

Input Ar·guments and 
Call Statement Output 

-------------------------------~------~~--~~---------------------------------------
A • ASCII string transfer 
B •Binary byte to octal conversion 
0 • Binary to signed decimal conversion 
E • Extended ASCII string transfer 
F • Form control insertion • 
I• ASCl:Z address 
M • Bina.ry to decimal magnitude conversion. zero suppression 
N • New line insertion 
0 • Binary to signed octal conversion 
P •Binary to octal magnitude conversion, no zero suppression 
a• Binary to octal magnitude conversion, zero suppression 
R • Radix-SO to ASCtl conversion 
S • Spac:e insertion 
T • Double-precision binary to decimal conversion 
U • Binary to double-precision decimal conversion, no zero suppression 
X • Fileniame conversion 
Y • Date conversion 
Z .• lime· conversion 
< • Oefirte fixed-length byte field 
> • Locate field mark 

Set up a1rgument and output block: 
RO • Output address 
R·1 •Input string address 
R:? • Argument block address 

CALL $EDMSG 

Table 9-6 Dynamic Mem«)ry Management Routines Summary 

Routine Name/ 
Mnemonic 

Initialize 
Dynamic 
Memory 
SINIDM 

Request Core 
Block 
$ROCB 

Release Core 
Block 
$RLCB 

9-6 

Input Ar·guments and 
Call Statement 

Include FREEHO: .BLKW 2 
in data s,ection 
RO • Free memory listhead 

address 
CALL $1NIOM 

RO• Free memory listhead 
address 

R 1 • Byte size of block 
CALL $~l0CB 

RO - Free memory listhead 
address 

R 1 ~ Byte size of block 
R2 • Block memory address 

Output 

RO• Task's first address 
R1 - Free pool first address 
R2 • Size memory pool 
R3-R5 not used 

Successful: 
RO • Block memory address 
R 1 • Actual size of block 
C •Clear 

Unsuccessful: 
c. Set 

R3-R5 preserved 
R2 destroyed 

Released block 
R3-R5 preserved 
RO unchanged 
R1-R2 destroyed 



Summary Procedures 

Table 9-7 Vlrtual Memory Management Routines Summary 

Routine Name/ 
Mnemonic 

Initialize 
Virtual 
Memory 
$1NIVM 

Allocate 
Block 
$ALBLK 

Get Core 
$GTCOA 

Extend 
Task 
$EXTSK 

Write 
Page 
$WRPAG 

Allocate 
Virtual 
Memory 
$AL VAT 

Input Arguments and 
Call Statement 

Define $FAHD block with 
first address of free memory 
Define 4 global symbols: 

W$KLUN (work file LUN) 
W$KEXT (work file 

extension size) 
N$MPAG (fast page search 

page count) 
$WRKPT (address of FOB) 

R 1 • Free memory highest 
address 

CALL $1NIVM 

A 1 • Byte size of requested 
block 

CALL $ALBLK 

R1 •Byte size of requested 
block 

CALL $GTCOR 

R 1 • Byte size of requested 
block 

CALL $EXTSK 

A2 • Memory address of page 
CALL $WRPAG 

R1 •Byte size of requested 
block 

CALL $ALVAT 

Output 

Successful: 
AO· O 
C •Clear 

Unsuccessful: 
RO• -2, file not opened 
RO • -1 , file not marked 
C •Set 

R3- AS preserved 
Original contents AO-R2 destroyed 

Successful: 
AO • Block memory address 

Unsuccessful: 
User's $ERMSG routine is called 

R3-RS preserved 
RO-R2 destroyed 

Successful: 
RO • Block memory address 
C •Clear 

Unsuccessful: 
C •Set 

R3-R5 preserved 

Successful: 
A1 •Actual extension size 
C •Clear 

Unsuccessful: 
c. Set 

R2-R5 preserved 

Successful: 
C •Clear 

Unsuccessful: 
User's $ERMSG routine Is called 

RO-R2 preserved 

Successful: 
AO• Allocated block memory address 
R1 •Allocated block disk address 

Unsuccessful: 
User's $ERMSG routine Is called 

R3-RS preserved 
R2 destroyed 

9-7 



Summary Procedure's 

Table 9-7 (Cont.) Virtual Memory Management Routines Summary 

Routine Name/ 
MnemonJc 

Allocate 
Small 
Virtual 
Block 
$ALSVB 

Convert and 
Lock Page 
$CVLOK 

Convert Virtual 
to Real 
Address 
$CVRL 

Read Page 
$RDPAG 

Find Page 
$FNOPG 

Write-Marked 
Page 
$WR MPG 

Lock Page 
$LCKPG 

Unlock Page 
$UNLPG 

9-8 

Input .tuguments and 
Call Statement 

Define N$DLGH • • 51210 
R 1 • Size of requested page 

block: 
• 0, for large block 

allocation on first 
call to $ALSVB 

• A value less than or 
equal to 5121 o bytes 
for small page 
allocation 

CALL $ALSVB 

R 1 • Virtual address 
CALL $CVLOK 

R1 •Virtual address. 
CALL $CVRL 

RO • Page disk address 
CALL $RDPAG 

R 1 • Page virtual address 
CALL $FNOPG 

R 1 • Virtual address in page 
CALL :SWRMPG 

R 1 • Virtual address in page 
CALL :$LCKPG 

R1 •Virtual address in page 
CALL :SUNLPG 

Output 

AO • Block memory address 
R1 •Block virtual address 
R3-R5 preserved 
R2 destroyed 

Successful: 
RO • Memory address 
A 1 • Virtual address 
C •Clear 

Unsuccessful: 
C •Set 

R2-R5 preserved 

RO • Memory address 
R3-R5 preserved 
R 1 unchanged 
R2 destroyed 

Successful: 
C •Clear 

Unsuccessful: 
User's $ERMSG routine is called 

RO-R2 preserved 

Page found: 
RO • Block memory address 
C •Clear 

Page not found: 
C •Set 

C • Clear, page write-marked 
C • Set, page not found 
RO-R2 preserved 

C • Clear, page locked 
C • Set, page not found 
RO-R2 preserved 

C • Clear, page unlocked 
C •Set. page not found 
RO-R2 preserved 



A System Reference Bibliography 

This bibliography identifies manuals that contain descriptions of additional routines available to 
lAS system library users. 

First level entries are manual titles. Second level entries are functional headings that indicate the 
types of services described in the respective manuals. 

• 1AS Executive Facilities Reference Manual 

Task execution control directives 

Informational directives 

Event-associated directives 

Trap-associated directives 

1/0 related directives 

Task status control directives 

• 1AS Device Handlers Reference Manual 

Laboratory and industrial 110 routines 

• 1AS 110 Operations Reference Manual 

110 preparation services 

File processing services 

File control routines 

File structuring services 

Command line processing services 

Parsing services 

Spooling services 

A-1 



B Universal Library Access 

On most IAS systems, you can create a universal library to store related groups of files. The LBR 
utility creates the universal library file with a file type ULB. By means of the LBR utility. you can 
subsequently insert files as modules in the library.1 ' 

To access a module of a universal library, a program can call the $ULA routine, which establishes 
the necessary conditions for access (read only). The $ULA routine first calls an initializi*1g 
routine, $ULAIN, to validate that the library file is in the correct format and to obtain th, needed 
information from the library header. $ULA then calls a second routine, $ULAFD, to reaq the 
module header, to position libary file pointers to the beginning of the module, and to estaqlish the 
necessary FDB locations for the File Control System (FCS).2 Once the necessary FDB locations are 
established, the program can access the module as if it were a separate file. That is, the program 
can perform GET$ operations in move mode for each record in the module. · 

To call the $ULA routine, supply the foJlowing data: 

" In Register 0, the address of the universal library FDB. The library file must already be open 
for read access. 

" In Register 1, the address of a 42a-word buffer. The first two words of the buffer musti contain 
the name (in Radix-50 format) of the module to be accessed. $ULA will put a copy of[ the 
module header from the library into the remaining lOOs (6410) bytes. Initialize the Fll>RC$A 
arguments urba and urbs (FDB offsets F. URBD and F. URBD+2) in the FDB for the liqrary file. 
The $ULA routine saves the arguments, uses the space for storing module header information, 
and restores the values before returning control to the calling program. 

The $ULA routine produces the following data: 

• Register 0 is unchanged. 

• Register 1 is unchanged. The $ULA routine fills in the 40-word buffer with a copy of the 
header for the module accessed. 

41 The first seven words of the library file FDB contain the first seven words of the FDB ·of the 
module's associated input file (as if it were a separate input file). · 

• The offset F.EFBK+2 of the library file FDB contains the last block number of the module. 

• The offset F.FFBY of the library file FDB contains the number of the next available byte past 
the end of the module. 

• The offset F.ERR of the library file FDB has the standard interpretations except for the 
following special meanings: ' 

The symbol IE.BHD means either 41File not a universal library" or "Bad library header." 

The symbol IE.NSF means "No such module." 

• The C bit is set to indicate an error. 

1 See the deec:ription of the LBR utility in the /AS Utilities Manual, or 11ee the deec:ription of the DCL comman~ LIBRARY 
in the JAS Command La,nguage Manual. · 

2 See the /AS 1/0 O~rations Reference Manual for information on FCS and the use of FDB locationa. 



Universal Library AccEtss 

To use the $ULA routine p1roperly, use the. following coding sequence: 

OPENS RO OPEN UNIVERSAL LIB FILE 

STORE FIRST SEVEN WORDS OF ~!BR.ARY FOB 

CALL $ULA 

GETS RO ACCESS MODULE IN MO'VE MOOE ONLY 

RESTORE FIRST SEVEN WORDS OF LIBRARY FOB 

CLOSE$ RO or :Lnvoke $ULA a9ain 

NOTE: Note that the pr•:>gram. must open the library file for read-only access. (To change 
a module in the univers;al library, use the LBR utility.) The program must save the first 
seven words of the libralry file FDB before calling the $ULA routine for the first time. 
The $ULA routine modi~3.es these words during processing, but their original values are 
necessary either to access another module or to ensure that the library file is closed 
properly. The program must restore the seven words after accessing a module and 
before acceHing another module or before closing the library file. 

B-2 



Index 

A 
$Al8LK (Allocate block) • 8-11 
$ALSVB (Allocate small virtual block) • 8-30 
$ALVRT (Allocate vinual memory)• 8-27 
ASCII number conversion 

ASCII to Radix-SO ($CATS)• 4-11 
ASCII with blanks to Radix-SO ($CAT58) "4-13 
decimal to binary 

•4-7 
double-word ( .DD2CT) • 4-3 

octal to binary 
double-word (.002CT) •4-5 

octal to binary {$COTS) • 4-9 

B 
Binary conversion 

•S-16 
binary date to decimal ($CBOA1) • 5-3 
binary to signed decimal ($CBDSG) • S-7 
binary to signed octal ($CBOSG) • 5-14 
binary to unsigned decimal $CBOMG • S-5 
binary to unsigned octal ($CBOMG) • 5-12 
double-precision binary to decimal ($COOMG) • 

5-9 
general purpose binary to ASCII ($CBTA) • S-18 

c 
$CSTA (Radix-SO to ASCII) • 5-20 
$CATS (ASCII to Radix-50) • 4-11 
$CAT58 (ASCII with blanks to Radix-50) • 4-13 
$CBDAT (Binary date to decimal) • 5-3 
$CBDMG (Binary to unsigned decimal) • S-5 
$CBOSG (Binary to signed decimal) • S-7 
$CBOMG (Binary to unsigned octal) • 5-12 
$CBOSG (Binary to signed octal)• S-14 
$CBTA (Generai purpose binary to ASCII) • S-18 
$CBTMG (Binary byte to octal)• 5-16 
$CDDMG (Double-precision binary to decimal)• 5-9 
$COTS (Decimal to binary) • 4-7 

Conversion 
See ASCII number conversion 
See Binary conversion 

See Date conversion 
See Decimal conversion 
See Octal conversion 
See Radix-SO conversion 
See Time conversion 

$COTS (Octal to binary) 0 4-9 
$CVLOK (Page lock) • 8-37 
$CVRL (Virtual to real address)• S-40 
$CVTUC {Uppercase text) • 6-2 

D 
$DAT (Date conversion) 

alternate format • 6-6 
standard format • 6-4 

Date conversion 
alternate format date ($DAT) • 6-6 
standard format date ($DAT) • 6-4 

Dates, specifying • 6-8 
$DDIV (Doubfe .. pr~cision divide)• 3-5 
Decimal conversion 

decimal to binary 
•4-7 
double-word (.002CT) • 4-3 

$DIV (Integer divide)• 3-3 
Divide routine 

divide ($DIV) .. 3-3 
double-precision divide ($001V) • 3-5 

$DMUL (Double-precision multiply)• 3-4. 
Double-precision divide ($0DIV) • 3-5 
Double-precision multiply ($DMUL) • 3-4. 
Double-precision routine• 3-1 

E 
$EDMSG (Edit message)• 6-11 
$EXTSK (Extend task) • 8-20 

ln~ex-1 



Index 

F 
$FNOPG (Find page) • 8-46 

G 
$GTCOR (Getcore) • a-1.1 

I 
$1NIDM (Initialize memory) • 7--2 
$1NIVM (Initialize virtual memc1ry) • 8-6 
Integer routine 

divide ($DIV) • 3-3 
multipiy ($MUL) • 3-2 

L 
$LCKPG (Lock page)• er-51 
Library routine 

communicating between• 1-1 
placing • 1-2 
searching • 1-2 
storing ~ 1-2 

M 
Memory management• 7-1 

See also Virtual memory management 
core blocks release ($RLCI~) • 7-8 
core blocks request ($RQCB) • 7-4 
initialize ($1NIDM) • 7-2 

Message formatting • 6-1 
carriage return/line feed in!l.ertion • 6-14 
date conversion ($DAn 

altemate format • 6-6 
standard format • 6-4 

edit directive ($EDMSG) • 6-11 
extended ASCII• 6-13 
field mark • 6-15 
filename string • 6-15 
form-feed insertion • 6-13 

lndex-2 

Message formatting (Cont.) 

general• 6-11 
space insertion• 6-14 
time conversion ($TIM) • 6-9 
uppercase text ($CVTUC) • 6-2 

$MUL (Integer multiply)• 3-2 
Multiply routine 

double-precision multiply ($0MUL) " 3-4 
multiply ($MUL) • 3-2 

N 
Numeric to ASCII• 5-1 

See also ASCII number conversion 
binary byte to octal 

•5-16 
binary date to decimal 

·5-3 
binary to signed decimal 

•5-7 
binary to signed octal 

•5-14 
binary to unsigned decimal 

•5-5 
binary to un·signed octal 

•S-12 
doubleGprecision binary to decimal 

•S-9 
general purpose binary to ASCII ($CBTA) • S-18 
Radix-SO to ASCII ($CSTA) • 5-20 

0 
Octal conversion 

octal to binary 
double-word (.002cn •4-5 

octal to binary($COTB) • 4-9 
.002CT 

Octal to binary, double-word • 4-5 

p 
Paging, memory 

See Virtual memory management 
Programming conventions 

general • 1-1 



R 
Radix-SO conversion 

ASCII to Radix-SO ($CATS)• 4-11 
ASCII with blanks to Radix-50 ($CAT58) • 4-13 
Radlx-50 to ASCII ($CSTA) • 5-20 

$ROPAG (Read page)• 8-43 
Register handling 

of control swapping function· 2-1 
save all Registers ($$AVAL)• 2-3 
save Registers 0-2 ($SAVVR) • 2-7 
save Registers 1-5 (.SAVR1) • 2-8 
save Registers 3-5 ($SAVRG) • 2-5 

$ALCB (Release core block)• 7-S 
$ROCB (Request core blocks) • 7-4 
$ROVCS (Request virtual core block)• 8-34 

s 
$SAVAL (Save all Registers) • 2-3 
.SAVR1 (Save Registers 1-5) • 2-8 
$SAVRG (Save Registers 3-5) • 2-5 
$SAVVR (Save Registers 0-2) • 2-7 
Single-precision routine 

See Integer routine 

T 
$1'1M (11me conversion) • 6-9 
11me conversion 

time ($TIM) • 6-9 

u 
$ULA (Universal library)• 8-1 
Universal library 

creating • 8-1 
$UNLPG (Unlock page) • 8-54 

v 
Virtual memory management • 8-1 

Virtual memory management (Cont.) 

See also Memory management 
address conversion ($CVRL) • 8-40 
allocate ($ALVRn • 8-27 

Index 

allocate small virtual block ($ALSV8) • 8-30 : 
core blocks request ($ROVC8) • 8-34 
$CVRL routine • 8-40 
error-handling • 8-2 
find page ($FNDPG) • 8-46 
initialize ($1NIVM) • 8-6 
lock page ($LCKPG) • 8-51 
memory storage 

allocate block ($ALBLK) • 8-11 
extend task ($EXTSK) • 8-20 
get core ($GTCOR) • 8-14, 8-17 

page lock ($CVLOK) • 8-37 
read page ($ROPAG) • 8-43 
task building requirements • 8-3 
unlock page ($UNLPG) • 6-54 
write-marked page {$WRMPG) • 8-48 
write page ($WRPAG) • 8-23 

w 
$WR MPG (Write-marked page) • 8-48 
$WRPAG (Write page)• 8-23 

ln~ex-3 



IAS:· 
System Library Routines Reference Manual 

AA-5580C-TC 

Reader's 
Comments 

This form is for document comments only. Digital will use comments submitted on 
this form at the company's discretion. If you require a written reply and are eligible 
to receive one under Software Performance Report (SPA) service, submit your 
comments on an SPA form. 

Did you find this manual understandable, usable, and well organized? Please make suggestions for 

improvement. 

Did you find errors in this manual? If so, specify the error and the page number. 

Please indicate the type of user/reader that you most nearly represent: 

0 Assembly language programmer 
0 Higher-level language programmer 
0 Occasional programmer (experienced) 
0 User with little programming experience 
0 Student programmer 
0 Other (please specify) _____________________ _ 

Name ______________________________________________________ Oate ____________ _ 

Organization __________________________________________ _ 

Stree.__ _________________________________________________________ ___ 

City _________________ State ______ Zip Code _____ _ 

or Country 



I 

--~D~DDmD ~:-----· ... '"' ..... "''" ·~ ..... ~ ···~ --------n------~~~~----I 
11 ,, Ma,,ea on tne 

United States 

POSTAGE WILL BE ?AID BY ADDRESSEE 

IAS Engineering/Oocumentat1on 
C>igital Equipment Corporation 
S Wentworth Drive GSF/L20 
Hudson, NH 03051 ·4929 

111 ... " 11.11 .... 1.1 .... 111.1 •• 1.1 ... 1 .. 11.1 •• 11 ••• 1 
i 
I 

I 
I 

·---------------·-----· l>t• '''' l't•;ar t11l'1 llrrt· ---------------------1 I 
I 
I 
I 
I 
I 


