
GAMMA-11
System Reference

Order No. AA-21868-TC

June 1978

This document describes the GAMMA-11 patient files, save area files, and
playback files. This document also describes the BASIC and FORTRAN
routines that access these files for user-written programs. See also the
GAMMA-11 Operator's Guide (AA-21858-TC).

SUPERSESSION/UPDATE INFORMATION: This document completely supersedes the
document of the same name, Order No.
DEC-11-MGRMA-A-D, published August
1976.

OPERATING SYSTEM AND VERSION: RT-11 V038

SOFTWARE VERSION: GAMMA-11 V2C

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

GAMMA-11
System Reference

Order No. AA-2186B-TC

digital equipment corporation · maynard. massachusetts

First Printing August 1976
Revision June 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation~ Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use" or reliability of software o,n
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1976, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
OECCOMM
ASSIST-II

DECsystem-IO
DEC tape
OIBOL
EOUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
OECSYSTEM-20
RTS-8

6/78-14

MASSBUS
OMNIBUS
OS/9
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-IO

CHAPTER 1

1.1
1.2
1.2.1
1.2.2

1.3
1.4
1.4.1
1.4.2
1.4.3
1.5

CaAPTER 2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.2
2.3
2.4

2.4.1
2.4.2

2.5
2.6
2.6.1
2.6.2
2.6.3
2.7
2.8
2.8.1

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4

CONTENTS

BUILDING A GAMMA-II SYSTEM DISK

INTRODUCTION
COPYING THE GAMMA-II DISTRIBUTION MEDIA

Copying a GAMMA-II Distribution Disk
Copying the GAMMA-II Distribution Magnetic
Tape

CONFIGURING A GAMMA-II SYSTEM DISK
BACKING UP A GAMMA-II SYSTEM DISK

Disk-to-Disk Copy
Disk-to-Magnetic-Tape
Magnetic-Tape-to-Disk Copy

UNSUPPORTED PROGRAMS ON THE GAMMA-II V2C MEDIA

PROGRAMMING SUPPORT INFORMATION

GAMMA-II PATIENT FILES
Dynamic Studies
Single Static Studies
Multiple Static Studies
List Mode Studies

Z-COUNT AREA
COMMENT AREA
LAYOUT AND DESCRIPTION OF THE ADMINISTRATIVE
DATA BLOCK

The Administrative Data Block Common Section
The Administrative Data Block Individual
Study Section

PATIENT FILENAMES
SAVE AREAS

Save Area Descriptor Block
Saving Matrix Data
Saving Dynamic Curves

INTERNAL GAMMA-II FILES
GAMMA-II MACRO AND PLAYBACK FILES

Playback Files

BASIC AND FORTRAN SUPPORT

BASIC AND FORTRAN SUPPORT FOR GAMMA-II F/S
Support Routine Notation
Patient Data File Subroutines
Save Area Subroutines
General Purpose Support Subroutines for
BASIC and FORTRAN

iii

Page

1-1

1-1
1-2
1-2

1-3
1-4
1-8
1-8
1-9
1-9
1-10

2-1

2-1
2-2
2-3
2-4
2-6
2-6
2-6

2-7
2-7

2-7
2-10
2-11
2-11
2-15
2-17
2-17
2-18
2-18

3-1

3-1
3-1
3-2
3-6

3-10

3.1.S

3.1.6
3.1.7
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.S

3.2.6

CHAPTER 4

4.1

4.2

APPENDIX A

APPENDIX

APPENDIX

A.l
A.2

A.3

A.4

B

B.l
B.2
B.3

C

C.l
C.2

APPENDIX D

INDEX

D.l
D.2
D.3

CONTENTS (CONT •)

Linking FORTRAN Subroutines with a User
Program
BASIC And FORTRAN Error Messages
BASIC and FORTRAN Examples

SUPPLEMENTAL FORTRAN SUPPORT
FORTRAN and GAMMA-II Variables
Arrays
Functions
Subroutines
Linking Supplemental FORTRAN Subroutines
with A User Program
FORTRAN Example

ASSEMBLING AND LINKING GAMMA-II

ASSEMBLING GAMMA-II USING INDIRECT COMMAND
FILES
LINKING GAMMA-II USING INDIRECT COMMAND FILES

BASIC/RT-II LANGUAGE SUMMARY

BASIC/RT-ll STATEMENTS
SUMMARY OF BASIC/RT-ll FUNCTIONS
Arithmetic Functions
String Functions
System Functions
SUMMARY OF BASIC/RT-ll COMMANDS
Key Commands
BASIC/RT-ll ERROR MESSAGES
Function Error Messages

FORTRAN/RT-ll LANGUAGE SUMMARY

EXPRESSION OPERATORS
STATEMENTS
FORTRAN LIBRARY FUNCTIONS

CAMERA ORIENTATION

TRANSFORMATION OPERATORS
CONVERSION TO OTHER CAMERAS

USING A NEW DISK

FORMATTING A NEW RKOS DISK ON AN 11/34
INITIALIZING AN RKOS RT-ll DISK DIRECTORY
INITIALIZING AN RK06 RT-ll DISK DIRECTORY

iv

Page

3-11
3-11
3-1S
3-19
3-19
3-19
3-20
3-20

3-22
3-22

4-1

4-1
4-S

A-I

A-I
A-S
A-S
A-6
A-7
A-8
A-9
A-IO
A-I7

B-1

8-1
8-2
B-ll

C-l

C-I
C-3

D-l

D-1
D-2
D-3

Index-1

FIGURE

TABLE

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

2-1
2-2
3-1
3-2

CONTENTS (CaNT.)

FIGURES

Dynamic Study Data File
Single Static Study Data File
Multiple Static Study Data File
List Mode Study Data File
Matrix Save Area
ROI Map and Cell Map
Word in ROI Map
Dynamic Curve Save Area

TABLES

Administrative Block
Save Area Descriptor Block
Administrative Data Block
Save Area Descriptor Block

v

Page

2-2
2-3
2-5
2-6
2-15
2-16
2-16
2-17

2-8
2-11
3-4
3-7

CHAPTER 1

BUILDING A GAMMA-II SYSTEM DISK

1.1 INTRODUCTION

This chapter describes the procedures that are required in order to
build a GAMMA-II system disk. GAMMA-II is distributed on the
following media.

• RK05 disks

• RK06 disks

• RLOI disks

• Magnetic tape

The disks are complete, runnable system disks that contain all the
GAMMA-II software and an executable subset of the RT-Il V3B software.
A special version of BASIC with GAMMA-II support subroutines and
binary files providing FORTRAN callable GAMMA-II support subroutines
are on the disks. The magnetic tape is a bootable tape that can
generate an RK05, RK06, RK07, or RLOI system disk.

NOTE

Although the GAMMA-II distribution disk
is a runnable system disk, it sho~ld not
be used as such. You should copy the
distribution disk, back it up, and then
store it in a safe place. In your daily
activities, you should use only the
copies that you make of the sysgened
disk.

The general procedure for building a GAMMA-II system disk is as
follows:

1. Copy the GAMMA-II distribution disk or magnetic tape to a
scratch disk. (See Section 1.2.)

2. Run the SYSGEN
procedure that
Section 1.3.>

program, which creates a configuration
will tailor the system to your needs. (See

3. (Optional) Add RT-ll FORTRAN to your system disk.

4. Backup your new system disk on another disk or magnetic tape.
(See Section 1.4.)

1-1

BUILDING A GAMMA-II SYSTEM DISK

The following sections give step by step instructions for performing
the above procedures.

The generic terms 'disk',
either the RK05, RK06,
procedures are the same
specifically noted.

'disk pack', 'disk drive', etc. refer to
RK07 or RLOI disks. The general build

for all of these disks, except where

1.2 COPYING THE GAMMA-II DISTRIBUTION MEDIA

GAMMA-II is distributed on RK05, RK06, and RLOI disks and 9-track
magnetic tape. This section gives the instructions for copying the
distribution disks or magnetic tape to a scratch disk. You will use
this copy of the GAMMA-II distribution when building your system.

The build procedures for the different disk types are the same, the
only difference being the 2-character device mnemonic used to identify
the various disks. In the sections below, you must replace any
occurrence of 'xx' with the 2-character device mnemonic that
identifies your type of system disk. The mnemonics are:

RK for the RK05 disk
OM for the RK06 or RK07 disk
DL for the RLOI disk

1.2.1 Copying a GAMMA-II Distribution Disk

Step 1: Mount the GAMMA-II distribution disk in unit 0 of the disk
drive. Write lock the disk by pressing the 'WTPROT' or
'WRITE PROT' switch. The corresponding light should come
on, indicating that the disk is indeed write protected.
Mount a formatted scratch disk in drive 1; this disk must
not be write protected.

Step 2: Bootstrap the distribution disk. See Chapter 3 of the
GAMMA-II Operator's Guide for bootstrap instructions. When
the disk has been bootstrapped, the following will be
printed.

Step 3:

RT-IIFB V03B-nn

.TYPE WARN.TXT

WARNING

You have just booted your MASTER copy of GAMMA-ll
FIB V02C. Please copy this disk according to the
instructions in Section 1.2.1 of the GAMMA-II System
Reference manual.

To copy the master disk (in drive 0) to the scratch disk (in
drive 1), type:

@MSTCOP

The initialization and copy procedure will take from 1 to 5
minutes depending on the disk type. During this time, the
system will print a few lines of commands on the DECwriter.

1-2

BUILDING A GAMMA-II SYSTEM DISK

When the copying has been completed, the system will print
the following message.

COpy COMPLETE

Step 4: The disk in drive 1 is now a copy of the disk in drive O.
Remove the distribution disk from drive 0 and store it in a
safe place. Remove the new system disk from drive 1 and
mount it on drive o. Proceed to Section 1.3 to configure
your new system disk.

1.2.2 Copying the GAMMA-II Distribution Magnetic Tape

Step 1: Mount the GAMMA-II distribution magnetic tape on the
magnetic tape unit. Mount a formatted scratch disk in drive
O. This disk must not be write protected.

Step 2: Bootstrap the magnetic tape. If your processor has a
hardware bootstrap, such as a PDP-ll/34, boot the prOcessor
and type:

Step 3:

Step 4:

Step 5:

MT

Otherwise, refer to Appendix C of
Generation manual for instructions
TMll magnetic tape unit.

the RT-ll System
on how to bootstrap a

When the tape has been successfully booted the system prints
the following message.

MSBOOT VOl-nn
*

Start the TMll magnetic tape build program by typing the
following line at the asterisk.

MDUP.MT

The program will respond with an '*'

Initialize and scan the scratch disk for bad blocks by
typing:

xxO:/Z/B

where xx is RK, DM, or OL.

The scan will take a few minutes. When the scan is complete
the system will print '*'.

Copy a minimal RT-ll system to the disk by typing:

xxO:A=MT:

where xx is RK, DM, or OL.

Then the disk will be booted. When it is booted, the· system
will print the following message.

RT-IISJ V03B-nn
?KMON-F-Command file not found

1-3

Step 6:

Step 7:

BUILDING A GAMMA-II SYSTEM DISK

Copy the GAMMA-II magnetic tape copy file from the magnetic
tape to the disk by typing:

COPY MT:MTTOxx MTCOPY

where xx is RK, DM or DL.

The system response is:

Files copied
MT:MTTOxx.COM to xx:MTCOPY.COM

Proceed with the magnetic tape copying procedure by typing:

@MTCOPY

The copy procedure will take a few minutes. The system will
print a few lines of commands during the copying. When the
copy is completed the system will reboot itself.

Proceed with step 2 of the next section.

1.3 CONFIGURING A GAMMA-ll SYSTEM DISK

After you have copied your GAMMA-II distribution medium, you must
configure it for your specific GAMMA-II system. You do this using a
program called SYSGEN, which asks you a series of questions concerning
your system and then generates ah RT-ll indirect command file and
BATCH file that do the actual configuring of your system disk.

Step 1:

Step 2:

Mount a disk copy of the GAMMA-II distribution medium in
drive 0 and boot it. The following message will be printed:

RT,...llFB V03B-nn

.TYPE GAMCOP.TXT

This is a copy of the GAMMA-II FIB V02C distribution
media. You should follow the configuration
instructions in Section 1.3 of the GAMMA-II System
Reference manual.

To configure your disk type:

R SYSGEN

An explanation of the system configuration will be printed.
You will be asked a series of questions concerning your
system. Each question is preceded by a short explanation
that will aid you in answering the question. The example
below was used to generate a standard RK05 system.

1-4

BUILDING A GAMMA-II SYSTEM DISK

.R SYSGEN

GAMMA-II V02C SYSTEM CONFIGURATION

This procedure will confisure ~our GAMMA-II V2C
disk to ~our hardware confi~uration. You will
be asked a series of auestions. All Questions
except the first two are to be answered with

Y for ~es
N for no

followed b~ a carria~e return. If ~ou t~pe
~ust a carria~e return, '~es' will be used.

After answerinS all the Questions, ~ou will be
~iven further instructions. If ~ou make a
mistake and wish to restart, t~pe a CTRL/C, and

R SYSGEN

GAMMA-II can use an~ of the followins disks as
s~ste~ devices. (RK05 is the default.)

RK05 RK06 RK07 RLOl

WHAT IS YOUR SYSTEM DISK? RK05

The GAMMA-II disk must be loaded in an RK05 drive, and
the disk unit must be UP to speed and not write protected
before ~ou answer the next auestion.

IN WHICH DISK UNIT DID YOU LOAD THE GAMMA-II DISK? 0

You have a choice between a fore~round/backsround

operatins s~stem, or a sinSle Job operatins s~stem.
The foreSround/backsround operatinS s~stem ~ill
allow ~ou to simultaneousl~ acauire and anal~ze data.
Host users will use this feature, the onl~ users
who can not use it are those with no foresround
ter~inal, or less than 28K words of memor~.

DO YOU WANT A FOR GROUND/BACKGROUND SYSTEM? Y

1-5

BUILDING A GAMMA-11 SYSTEM DISK

If wour PDP-II has the Extended Instruction Set (EIS)
~ou can use theEIS version of BASIC. EIS is
standard on a PDP-11/34.

IS YOUR SYSTEM A PDP-11/34 OR DOES IT HAVE EIS? Y

The RT-ll Monitors will have to be patched if
~our line fr~ouenc~ is 50 Hz instead of 60 Hz.

IS YOUR LINE FREOUENCY 60 HZ? Y

The standard displa~ for a GAMMA-II s~stem is the
USVOI color dis~la~. Some users ma~ have the older
VTOI stora~e scope displa~.

DOES YOUR SYSTEM HAVE A VSVOI COLOR DISPLAY? Y

fhe Gate S~nchronized ACGuisition (GSA) programs reGuire
an external gating signal. If ~our s~stem has the
new NCVII-A samma camera interface, the sate is
alwa~s interfaced through it. If ~ou have the NCII-A
interface, the gate is interfaced via the AR-l1.

DOES YOUR SYSTEM HAVE THE NEW NCVII GAMMA CAMERA INTERFACE? N

If ~our sate signal is a TTL low-to-hish signal,
it is interfaced thru AR-l1 ADe channel 3.
If your gate signal is a TTL hish-to-Iow signal~
it is interfaced thru the AR-ll 'EXT AID ST ' •

WILL YOU INPUT THE GATE SIGNAL THRU AR-l1 ADC CHANNEL 3? Y

The data aCGusition programs can store the date
in either the U.S. date format, month/da~/wear, or
the European date format, da~-month-~ear.

DO YOU WISH TO USE THE U.S. DATE FORMAT, MONTH-DAY-YEAR? Y

The magtape backup procedure can create boatable
or non-boatable mastapes+ Bootable magtapes reGuire
extra RT-l1 programs. Onl~ those users with a
magtape drive and onl~ one disk drive need the
boatable magtape backup procedure. All others
should delete this option.

DO YOU WISH TO DELETE· THE BOOTABlE MAGTAPE OPTION? Y

1-6

BUILDING A GAMMA-II SYSTEM DISK

The followins s~stem will be confiSured

A FIB RK05 s~stem with
VSVOl color displa~
EIS support
60 Hz line freouenc~
U. S. date format (month/da~/~ear)
GSA input AR-11 ADC Channel 3

IS THIS CORRECT? Y

The actual confisuration will take a few minutes.
When it is finished, the newlw confisured disk
will be booted. This disk should be backed-up
on another disk or mastape. Read section 1.3
of the GAMMA-II SYSTEM REFERENCE MANUAL AA-2186B-TC.

You are now readw to run the actual confiSuration
files. The disk loaded in RK05 drive 0 will
be the disk that will be confisured.
When the RT-l1 MONITOR prints a dot (.), t~pe

@RKO:GAMCNF (followed bw a return)

When BATCH prints an asterie (*), twpe

GAMBAT (followed b~ a return)

.@RKO:GAMCNF

.LQAD BA

.ASSIGN RKO LST

.ASSIGN RKO LOG

.ASSIGN RKO DK

.R BATCH
*GAMBAT

1-7

Step 3:

BUILDING A GAMMA-II SYSTEM DISK

Invoke the configuration procedure by typing:

@xxO:GAMCNF

where xx is RK, DM, or OL.

When the following is printed:

.R BATCH

*
type:

GAMBAT

The configuration will take a few minutes. The system will
reboot itself when the configuration is complete, and prints
the following:

RT-llFB V03B-nn (or RT~llSJ V03B-nn)

.RENAME/NOLOG START%.TMP *.COM

System configuration is now complete.

Users who have purchased FORTRAN Version 2 should install FORTRAN on·
their new system disk according to the instructions in the RT-ll/F4
Installation Guide, and then proceed with the back up procedure.

1.4 BACKING UP A GAMMA-II SYSTEM DISK

You should prepare a back-up copy of your new system disk on another
disk or magnetic tape. If anything should happen to your system disk,
the back-up copy can be used to quickly create a new system disk.

The configuration procedure leaves two RT-ll indirect command files on
your disk which you can use to quickly and easily back up your disks.
BACKUP is used for disk-to-disk copying, and MTBACK is used for
disk-to-magnetic tape copy. The following sections describe the
simple procedures required to back up your GAMMA-II system disk.

1.4.1 Oisk-to-Disk Copy

To back up your system on another disk, do the following:

Step 1:

Step 2:

Step 3:

If your system disk is not running in drive 0, mount it in
drive 0 and boot it. write protect the system disk.

Mount a scratch disk in drive 1. Do not write protect the
scratch disk:

Assign the scratch disk to device 'COP' by typing

ASSIGN xxI COP

where xx is RK, OM, or OL.

1-8

BUILDING A GAMMA-II SYSTEM DISK

Step 4: Initiate the copy by typing

@BACKUP

BACKUP will initialize the disk in drive 1 and scan it for bad blocks.
Then all files will be copied from the system disk, and finally the
bootstrap program will be copied. When this is finished (5-10
minutes), the disk in drive 1 will be an exact copy of the disk in
drive O. Simply repeat this section whenever a new copy of your
system disk is needed.

1.4.2 Disk-to-Magnetic-Tape

To copy your system disk to magnetic tape, do the following:

Step 1:

Step 2:

Step 3:

If it is not running, mount your system disk in drive 0 and
boot it, write protected.

Mount a scratch magnetic tape and place it on-line.

Initiate the copy by typing:

MTBACK

MTBACK will initiQlize the magnetic tape and copy all files
to it. If you did not request that the bootable magnetic
tape option be deleted during system configuration, the
magnetic tape will be a bootable magnetic tape.

1.4.3 Magnetic-Tape-to-Disk Copy

There are two methods by which a system disk can be generated from a
magnetic tape back-up. Method 1 is the simplest: it requires a dual
disk system and a running GAMMA-II system disk. Method 2 is more
complicated and is necessary only if your system has only one disk
drive, or if no GAMMA-II system disk is available.

METHOD 1 (non-bootable magnetic tape)

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Mount any GAMMA-II system disk in drive 0 and boot it.

Mount the magnetic tape and place it on-line.

Mount a formatted scratch disk in drive 1.

Assign the magnetic tape to device 'DK' and the scratch disk
to device 'COP' by typing:

ASSIGN MT OK
ASSIGN xxI COP

where xx is RK, DM, or DL.

Initiate the copying by typing:

@BACKUP

BACKUP will initialize the disk in drive 1 and scan it for bad blocks.
Then all files will be copied from the magnetic tape, and finally the
bootstrap program will be copied. The entire process will take 5-10
minutes.

1-9

BUILDING A GAMMA-II SYSTEM DISK

METHOD 2 (bootable magnetic tape)

Step 1:

Step 2:

Mount the magnetic tape on the tape drive and mount a
scratch disk in drive O.

Follow steps 2, 3, 4, 5, 7 of Section 1.2.2, copying a
GAMMA-II distribution tape.

Do not configure the disk, since it is a copy of a configured disk.

1.5 UNSUPPORTED PROGRAMS ON THE GAMMA-II V2C MEDIA

Four unsupported programs are distributed with GAMMA-II FIB V02C.
These programs are furnished as a convenience to the user. These
programs are NOT supported by DIGITAL.

VTECO and STECG are modified versions of the unsupported RT-ll text
editor TECO. VTECO uses the VSVOI color display, and STECO uses the
VTOI storage scope display in the same manner as TECO uses the VTll
graphics processor.

TTYI and TTYO allow the user to switch control of the RT-ll background
to and from the foreground VT52 terminal.

The file CLASSC.TXT on the distribution media contains more
information concerning these four programs. To print this file, mount
the distribution medium on a spare drive, write protected and type:

TYPE dev:CLASSC.TXT

TO copy any of these programs, type:

COpy dev:name DK:

where dev:
DKl:, MT:,
transferred.

is the device and unit of the distribution mediuml e.g.,
etc. The 'name' is the name of the program to be

1-10

CHAPTER 2

PROGRAM"ING SUPPORT INFORMATION

2.1 GAMMA-II PATIENT FILES

A GAMMA-II file is an RT-ll file produced by the GAMMA-II programs.
Consequently a GAMMA-II file can be treated like any RT-ll file and
can be read by BASIC, FORTRAN, or assembly language programs.

A different file structure represents each of the
p~tient study types. The four types of studies are:
static, multiple static, and list mode.

four GAMMA-II
dynamic, single

A description of each of the four file types follows. Along with each
description is a diagram of the file layout. The pointers labeled in
each diagram are not explained in the general file descriptions.
Instead they are explained in Section 2.4, and the whole file is laid
out in Tables 2-1 and 2-2.

2-1

PROGRAMMING SUPPORT INFORMATION

2.1.1 Dynamic Studies

A dynamic study consists
rates over designated
motion picture frames.
changed up to 12 times
consists of between one
only the frame rate,
varied.

of up to 512 frames collected at specified
periods of time, comparable to a sequence of

The specified rate of acquisition may be
during the acquisition. Thus, a dynamic study
and thirteen groups of frames. Between groups

number of frames, and the matrix size may be

Figure 2-1 shows the structure of a dynamic study file. The file
consists of three to ~ix blocks of gen~ral fil~ and specific patient
information followed by the gamma camera data.

The initial block (block 0) of a dynamic study file is called the
administrative data block. This block is filled by the collection
procedure program and contains all information entered by the user at
acquisition set' up time. It contains the 'patient name and number,
organ under st~dy, types of tests, dosage t and other statistical
information together withpoint~rs to various other blocks that make
up the data file.

The z-count area follows th~ administrati~e d~ta block and consists of
one to four disk blocks, depending on the number of groups within the
dynamic study. The z-count area contains statistics on the number of
events that occurred duri~g the study (see Section 2.2).

Following the z-count area is the comment block. The comment block
holds the user's comments about the study (see Section 2.3).

The rest of the study is composed of the matrix data.

FI RST ADMINISTRATIVE
DATA BLOCK IS 0

ZCTOFF

COMPRS

MDOFF

ADMINISTRATI VE

DATA
BLOCK

Z-COUNT
BLOCKS

COMMENT
BLOCK

MATRIX

DATA

BLOCKS

I---

u..
u..
0
I-
U
N

~

-

(/)

c::
~

~
0
u

u..
u..
o
o
~

Figure 2-1 Dynamic Study Data File

2-2

PROGRAMMING SUPPORT INFORMATION

2.1.2 Single Stati~ Studies

A single static study isstructored similarly tb a' dtnamic study.
However, in a single st~tic study, the z-count area (see Section 2.2)
is contained within the administrative block and only one frame of
data follows the'comment block (see rigure 2-2).

FIRST ADMINISTRATIVE
DATA BLOCK IS 0 ADMINISTRATIVE

DATA
BLOCK

COMMENT
BLOCK

MATRIX
DATA

BLOCKS

........-
(/)

a:
Q.
:E
0 u

f4-

LL
u..
o
o
~

Figure 2-2 Single Static Study Data File

2-3

PROGRAMMING SUPPORT INFORMATION ':

2.1.3 Multiple Static Studies

A multiple static study file is a number of single static study files·
linked together. In a multiple static study~

• each data frame is preceded by an administrative block, but
only the first administrative block is followed by a comment
block,

• each administrative block is linked to the administrative
blocks that precede it and follow it,

• each data frame has ~ link to the comment block.

See Figure 2-3.

PROGRAMMING SUPPORT INFORMATION

FIRST ADMINISTRATI
DATA BLOCK ISO

CI)

a::
0..
:E
o u

VE

~

f.-

""--

ADMINISTRATJVE
DATA BLOCK

FRAME #1 t--

COMMENT
~ BLOCK

MATRIX
DATA BLOCKS

FRAME #1

ADMINISTRATIVE
DATA BLOCK

FRAME #2 r--

MATRIX
DATA BLOCKS ~

FRAME #2

ADMINISTRATIVE
DATA BLOCK

FRAME #3 r-

MATRIX
DATA BLOCKS 14-

FRAME #3

CI)

a::
c..
:E
0
u

u..
u..
0
0
:E

u..
u..
0
0
<t:
Z

~

u..
u..
0
0
:E

t
u.. u.. u.. u..
0 0
0 0
<t: <t:
Z 0..

+

u..
u..
0
0
:E

t
u..
u..
0
0
<t:
0..

-

--

t
u..
u..
o
o
<t:
u..

t
u..
u..
o
o
<t: u..

Figure 2~3 Multiple Static Study Data File

2-5

PROGRAMMING SUPPORT INFORMATION

2.1.4 List Mode Studies

A list mode study is structured like a static study except that the
data following the comment block is raw list data rather than a
matrix. See Figure 2-4.

FIRST ADMINISTRATIVE
DATA BLOCK IS 0 ADMINISTRATIVE

DATA
BLOCK

COMMENT
BLOCK

LIST
MODE
DATA

I---

(/)
a::
Cl..
~
0
u

.......

Figure 2-4 List Mode Study Data File

2.2 Z-COUNT AREA

IJ..
IJ..

o
o
~

The z-count area is contained in the administrative block for static
and list studies and follows the administrative block for dynamic
studies. The z-count area stores the number of events present on each
study frame as a 32-bit unsigned integer composed of two 16-bit words.
The first word is the high order 16 bits, and the second word is the
low order 16 bits. In a dynamic study, the z-count area is one to
four blocks of disk space.

2.3 COMMENT AREA

The comment block is available for the user's comments. The comment
block consists of ten lines of ASCII text with up to 51 characters per
line. The first character of each line is a non-printing character
which is either an octal 0 or an octal 1. If the first character is
an octal 1, the rest of the line contains up to 49 characters of valid
ASCII text which is terminated by an octal 200. The first line with a
o as the first character indicates the end of the comments.

2-6

PROGRAMMING SUPPORT INFORMATION

2.4 LAYOUT AND DESCRIPTION OF THE ADMINISTRATIVE DATA BLOCK

The administrative data block contains all the information needed to
reference the data in the study file. It is divided into two
sections~ the first section contains those variables and pointers
common to all types of studies, and the second section contains those
variables and pointers specific to each type of study.

Table 2-1 shows a complete layout of the administrative data block.
The decimal and octal positions of each variable are given along with
the variable type, its name, and its description.

2.4.1 The Administrative Data Block Common Section

The first section of the administrative data block, which occupies the
area from octal address 0 to octal address 332, is common to all the
study types. This section includes all offset pointers and the
information pertinent to the patient such as the patient name, number,
birth date, and doctor.

The offset pointers are the links from the administrative dat q block
to the other data blocks. The offset pointers are:

ZCTOFF
COMPRS
MOOFF

points to the z-count block (dynamic study only)
points to the comment block
points to the data block

Those pointers that are specific to multiple static studies are:

PAOOFF points to the previous administrative block
FAOOFF 'points to the first administrative block
NAOOFF points to the next administrative block

2.4.2 The Administrative Data Block Individual Study Section

The ,seconds~ction of the administrative data block, which occupies
octal positions 346 to 776, consists of collection parameters, number
of frames, number of groups, types of matrices, and general
administrative information pertaining to the immediate study.

The second section is an overlay area and is used for one type of
study at a time. Since static, dynamic, and list studies cannot be
combined in the same file, only the information applicable to the
specific study type is used in the overlay area.

In the following table, Table 2-1, the variable types are abbreviated.
ASCrepresents ASCII, INT represents integer, OPI represents double
precision iriteger, and SPE represents special;

2-7

Decimal

1
24
40
43

53

63
73
96

110
120
127

130
144
158
172
186
189

192
194
198

202
205
208
212
214

214
216

219
227

230
234
238

247

252

257

241

Octal

1
30
50
53

65

77
III
140
156
170
177

202
220
236
254
272
275

300
302
306

312
315
320
324
326

326
330

333
343

PROGRAMMING SUPPORT INFORMATION

Type

ASC
ASC
Ase
Ase

ASC

ASC
ASC
ASC
ASC
ASC
ASC

ASC
ASC
ASC
ASC
ASC
SPE
BYTE

INT
INT
INT

INT
ASC
ASC
INT
INT

INT
INT

ASC
ASC

Table 2-1
Administrative Block

Name

PATNAM
PATNUM
CAMID
A'rIME

ADATE

BIRTHD
DOC
ORGAN
VIEW
CMTRT
AQMODE

ISOTOP
DOSE
IS02
DOSE2
ISMODE
COLTYP
< 0
= 0
> 0
COMPRS
TOTBLK
FADOFF

DATTYP
ORIENT
POSSWT
MDOFF
PADOFF

ZCTOFF
NADOFF

AMACRO
AUTO

Description

Patient name
Patient number
Camera number (0-3) (NCVll only)
Acquisition time (supplied by
program)
Acquisition date (supplied by .
program) .
Patient birth date
Doctor's name
Organ being studied
View of picture
Collimator type
Acquisition
mode:l=special,2=normal
Isotope being used
Dosage
2nd isotope being used
2nd dosage (dual isotope study)
l=single isotope, 2=dual isotope
Collection type
List mode
Dynamic study
Static study
Offset to comment block
Total number of blocks in study
Offset to first admin block
(multiple static)
Data type:O=patient oata,l=flood
Orientation switch
position (rotation) switch
Offset to matrix data
Static: offset to previous
admin block (multiple static)
Dynamic: offset to z count block
Offset to next admin block
(multiple static)
Auto analysis macro name
Auto analysis switch (Y or N)

STATIC AND LIST COLLECTION PARAMETERS

346
352
356

367

374

401

361

DPI
DPI
ASC

ASC

ASC

ASC

ZCOUNT
OVFTIM
ENDFRA

MINUTE

SECOND

PSCNT

Z count, the number of events
Time of overflow clock counter
Method of ending study:l=time,
2=counts
The number of minutes in the
study
The number of seconds in the
study
The number of preset counts
chosen

STATIC MODE COLLECTION PARAMETERS

ASC SMTXSZ

2-8

The type of matrix
(1,2,3,4, or 5)

Decimal ; Octal

244 364

268 414
272 420

241

268

271

274

281

230
232
234
238
240
242
246

251

268

438

361

414

417

422

431

346
350
352
356
360
362
366

373

414.

666

PROGRAMMING SUPPORT INFORMATION

Type

ASC

ASC
INT

Table 2-1 (Cont.)
Administrative Block

Name

SMTXCS

MSFRM
CFRM

Description

Close on overflow: <SPACE>=do
not
close,<T>=close
The number of frames
Current frame number

LIST MODE COLLECTION PARAMETERS

ASC LDBLCK

ASC LDBPC

ASC LDELST

ASC LDELRT

ASC LGSA

The number of disk blocks of
data
Method of closing:l=by counts,
2=by number of blocks
Method of starting:Y=delayed
start,N=immediate start
Count rate for delayed start
(maximum of 20,000)
If 'Y', study is a gated list
mode

DYNAMIC MODE COLLECTION PARAMETERS

INT
INT
ASC
ASC
ASC
ASC
ASC

ASC

ASC

ASC

FRAMEN
GROUPN
GRPI

GRP2

GRP3

GRP13

Total number of frames
Total number of groups
The number of frames in group 1
The type of matrix(l,2,3 or 4)
The type of close
Frame rate: X frames
Per Y seconds (milliseconds for
gated studies)
Group 2 (same 5 parameters as
group 1)
Group 3

Group 13

GATE SYNCHRONIZED ACQUISITION (GSA) COLLECTION PARAMETERS
(Group 11 is set up as a dynamic study)

251 373 ASC GSAMTX GSA matrix type (lor 2)
254 376 ASC GSAFRM Number of frames
259 403 ASC GSADUR Frame duration in msec
265 411 ASC GSATOL Tolerance in msec
271 417 ASC GSAEFM End Frame (1, 2, or 3)

1 = Time
2 = Counts
3 = Cycles

274 422 ASC GSAPSC Preset Counts
285 435 ASC GSACYC Preset Cycles
291 443 ASC GSAMIN Preset Minutes

2-9

Decimal Octal

296 450
302 456
304 460

306 462

310 466
312 470
314 472

PROGRAMMING SUPPORT INFORMATION

Type

ASC
INT
INT

DPI

INT
INT
INT

Table 2-1 (Cont~)
Administrative Block

Name Description

GSASEC Preset Seconds
BINSEC Collection time in seconds
BINCYC # cycles collected (accepted

plus rejected)
BINZLO Total Counts Collected
BINZHI
BINDUR Frame duration in msec
BINTOL Tolerance in msec
BINBAO # rejected cycles

2.5 PATIENT FILENAMES

GAMMA-II identifies patient studies via an indexed line which c6ntains
up to 62 characters. For example,

I JOHN DOE, 370180, LIVER, 0, 6/3/74

is the way John Doe's file would appear on the GAMMA-II patient study
index. Internally, however, the patient files are referenced using
RT-Il filenames. The RT-il patient filenames have the form:

aaaaaa.Xnn where aaaaaa are the first six characters of the
name field of the patient's study. The nn is a
number between 00 and 99. This formula creates a
unique filename even when the name portion
(aaaaaa) of the file is duplicated. The system
assigns the number at the time of file creation.
The numbers are assigned in the order of
acquisition for each patient with the same name.
For example, JOHNDO.XOO and JOHNDO.XOI are two
filenames for two John Doe's (or two studies on
the same John Doe).

These filenames are created automatically by GAMMA-II at
acquisition setup time.

data

To reference GAMMA-II data files when using BASIC or FORTRAN, you must
know the RT-II filename for that data file. To obtain the RT-ll
filenames for all patients, type

when the patient index is displayed during the data analysis program.
The RT-Il filenames will be displayed at the end of each index line
instead of the date. For example,

1 JOHN DOE, 370180, LIVER, 0, JOHNDO.XOO

is displayed for the first John Doe.

2-10

.PROGRAMMING SUPPORT INFORMATION

2.6 SAVE AREAS

Save areas are disk files that are reserved for the user to store
single matrices or dynamic curves. Save areas 0 through 9 permanently
exist on the disk.

Save area 0 is used by the data analysis program for temporary storage
of new .study data in core. Because save area 0 contains the last
displayed matrix image other than a save area matrix, the user can
perform, save area manipulations, such as reading other save areas into
core arid performing save area algebra, and then return to the original
study in core by reading save area O. Fifty-five optional save areas
(10 through'~4) can be specified by the user. However,. these areas
are restricted to matrices and have no provision for dynamic curves.
When t~el user w~itesa matrix into a previously nonexistent optional
save a~~a;' GAMMA-II automatically produces the optional save area on
the disk.

Save areas 1 through 9 each, take up 53 blocks of the system disk.
Each optional save, area will reside on the system disk and take up 33
disk blocks each.

Save~area~ ~re RT-ll files. Their filenames are:

SVAROO.SYS
SVAROl.S¥,S
SVAR02.SYS
etc.

for save area 0
for save area 1
for save area 2

2.6.1 Save Area Descriptor Block

The first block (block 0) of the save area disk file is called the
save area des~riptor block. The save area descriptor block describes
the type,ofsave area (matrix or curve data) as well as the study with
which the' save ~rea is currently associated. It contains the matrix
type, number of frames, frame rate, pointers into the study, etc.
Table 2-2 ~howsthe ,layout of the save area descriptor block.

In Tabl~2-2, th~ variable types are abbreviated.
ASCII,' 'INT represen'ts integer, DPI represents
integer, and ~P xepresents floating point.

Table 2-2
Save Area Descriptor Block

ASC represents
double precision

De~.imal OctaL, Typ.e. Name [)esGf-i·pt·ion

0" 0 INT NDXDEV RAD50 device name of indexed
device

2., .4 INT FILNAM RAD50 file name and extension of
file

8 10 lNt,[' NPFILE Number of patient files found on
indexed device

2-11

Decimal

10

12

14

16
82

128

130

132

134
136

138

140

142
143
144

146

148
150

150

152

152

154

156
158

160

162
163
164

Octal

12

14

16

20
122

200

202

204

206
210

212

214

216
217
220

222

224
226

226

230

230

232

234
236

240

242
243
244

PROGRAMMING SUPPORT INFORMATION

Table 2-2 (Cont.)
Save Area Descriptor Block

Type

INT

INT

INT

ASC
ASC

INT

INT

INT

INT
INT

INT

INT

BYTE
BYTE
INT

INT

TNT
TNT

TNT

INT

INT

INT

TNT
INT

INT

BYTE
BYTE
BYTE

Name

XTRBYT

ST'lPE

SDTYP

SINDX
SGMDH

SXPND

SLADFG

SROTAT

SNESW
SSD

SDUAL

SORIG

SPOSOR

SAQM

SFLDN

SPDTA
SPPAD

SPZCT

SPNAD

SPTOV

SPADM

SPCOM
SDAD

SDMOD

STHSH

STHSL

Description

Number of extra bytes in dir~
ectory entr;-y
Data type indicator (in low
byte)
o = no data in save area
1 = matrix data
200 = dynamic curves
Save register number in low by~e
negative number~frame divide is
set
Index line (66 ASCII characters)
GAMMA-II command string (4~
ASCII characters)
Expand switch: 0 = no expansion,
non-zero = expanded matrix
Sliding add switch (the number
of frames to add)
Rotation factor: 0 = regular, 1,
2, or 3 to rotate axes
No enchancement switch
Static or dynamic:O=static,
non-zero=dynamic
Dual isotope switch:O=no dual
isotope
I = isotope A,
2 = isotope B
Original study type
(non-zero=list mode)
Po sit ion (r 0 tat ion) s wi tc h
Orientation switch
Acquisition mode:
1 = special, 2 ~ normal
Flood correction switch:
o = not done, 1 = flood cor.
done
Offset to data matrices
Offset to previous admin block
(multiple static only)
Offset to Z-count block (~ynamic
only)
Offset to next admin block
(multiple static only)
Offset to time of overflow block
(dynamic only)
Offset to administrative data
block
Offset to comment block
Relative block number of present
frame
Isometric switch:
o = intensity,
1 = isometrics
High threshold in %
Step size in %
Low threshold in %

2~12

Decimal

165
166

168

170
172
174
176
180

206

208

212
216
220
222

224

206
208
210

212
214
234
236

238

240
242

244

246

356

366

Octal

245
246

250

252
254
256
260
264

316

320

324
330
334
336

340

316
320
322

324
326
352
354

356

360
362

364

366

544

556

PROGRAMMING SUPPORT INFORMATION

Table 2-2 (Cont.)
Save Area Descriptor Block

Type

BYTE
INT

INT

INT
INT
INT
DPI
INT

INT

DPI

DPI
DPI
INT
INT

ASC

Name

SSIZE

SWDBYT

SDIM
SMAX
SMIN
SCOUNT
SMEAN

Description

Step size in %
Number of words in current
matrix
Word or byte switch: 0 = word,
1 = byte
Dimension size (32, 64, or 128)
Maximum cell count
Minimum cell count
Total number of counts
The average cell count

STATIC MODE PARAMETERS

SMSCFR

SSTM

SSVTM
SSZCT
SSMSZ
SSFAD

SVIEW

Current frame number of multiple
static study
Duration of collection in
seconds
Time of overflow in seconds
Z count, the number of events
Number of words in matrix
Offset to first administrative
data block
View of frame (10 ASCII
characters)

DYNAMIC MODE PARAMETERS

INT
INT
INT

INT
INT
INT
INT

INT

INT
INT

INT

INT

INT

SCRFRM
SCURGP
SCURGF

SCURFM
SN
SG
SGROUP
(1) :SGPF
SGPSZ

SGPCS
SGXTM
(SGX)
SGY

SGROUP
(2)

SGROUP
(13)

Cummulative frame number
Current group number
Current number of frames in
group
Current frame within group
Total number of frames
Total number of groups
Number of frames in group

Number of words of frames in the
group
The close on overflow flag
Exposure rate: X frames per

Y seconds (milliseconds for
gated studies)
Group 2

Group 13

ROI AND DYNAMIC CURVE PARAMETERS

INT NMROIS The number of regions of
interest (max of 12)

2-13

Decimal Octal

368 560

369 561

370 562
371 563
372 564

412 634

422 646

424 650

426 652

428 654

448 700

452 704

456 710

460 714

500 764

452 704
456 710

460 714

500 764

PROGRAMMING SUPPORT INFORMATION

Table 2-2 (Cont.)
Save Area Descriptor Block

Type Name Description

BYTE ROIXY Region of interest definition
(1) Xl table

If Xl and Yl are negative, the
region is undefined
Xl = x-position of

left ordinate
BYTE Yl Yl = y-position of lower

abscissa
BYTE X2 X2 = right ordinate
BYTE Y2 Y2 = upper abscissa
BYTE ROIXY ROI table number 2

(2) Xl

BYTE ROIXY Xl ROI table 13
(12)

INT IRM Irregular ROI switch:
0 = regular region,
non-zero = irregular

INT SCELLS The number of cells in the
matrix

INT NMCELLS Number of cells in
(1) region of interest 1

INT NMCELLS Number of cells in
(2) ROI 2

INT NMCELLS Cells in ROI number 12
(12)

FP MAXCCR Maximum cell count rate for the
matrix

FP MAXCCR Maximum cell count rate for
(1) region of interest 1

FP MAXCCR Maximum cell count rate for ROJ
(2) 2

FP MAXCCR Maximum for ROI 12
(13)

MATRIX SAVE AREA PARAMETERS

DPI
DPI

DPl

DPI

ROICNT
ROICNT
(1)
ROICNT
(2)

ROlCNT
(12)

Cell counts for matrix
Cell counts for each ROl (used
with matrix data)
Cell counts for ROI 2

Cell counts for ROI 12

2-14

PROGRAMMING SUPPORT INFORMATION

2.6.2 Saving Matrix Data

Matrix data starts at block one of the save area disk file. If a
specific save area contains matrix data, the data may use from 2 to 32
disk blocks, depending upon the size of the matrix.

Irregular region of interest (ROI) data is stored in the save area
along with the matrix. Irregular ROls are not applicable for l28x128
matrices. If the matrix size is l28x128, the matrix fills blocks 1
through 32. For 32x32 and 64x64 matrices, the matrix fills up to 16
blocks, and the irregular ROI information fills blocks 17 through 32.
The irregular ROI information always starts at block 17, even if the
matrix does not fill 16 blocks. Figure 2-5 shows the layout of a
matrix save area.

The ROI information is stored an ROI map. The map contains one word
per cell of the matrix; that is, each cell in the matrix is
represented by one word in the ROI map. Figure 2-6 shows the layout
of the ROI map compared to the cell map that shows on the display.

Each word in the ROI map defines, the ROI information for the
corresponding cell in the display matrix. Each word in the ROI map
contains one bit per ROI. Bits 0 through 11 represent ROls A through
L. If the corresponding cell is in ROI A, then bit 0 is set. If the
cell is also within ROI B, then bit 1 is set, and so forth. Bits 12
through 15 are used internally and should not be written by a program.
Figure 2-7 shows a word in The ROI map.

The ROI map is always a 64x64 matrix. Thus for a 32x32 matrix, four
cells of the map are marked for each cell of the 32x32 matrix. Note
on Figure 2-6, cells (1,1), (1,2), (2,1), and (2,2) would all be
marked for the first cell of the 32x32 matrix.

NOTE: In FORTRAN
tt'le descriptor block is
block 1 and the RO I
map starts at block 18.

o

16
17

32

SAVE AREA
DESCRIPTOR BLOCK

MATRIX

IRREGULAR
REGION OF INTEREST

MAP

Figure 2-5 Matrix Save Area

2-15

PROGRAMMING SUPPORT INFORMATION

CELL (1,1)

(1,2)

(1,3)

1(64,63) /164,(4)

(2,1) (2,2)

(, ,1) (1,2)

(64,63)

(64,64) CELL MAP ON DISPLAY

ROI MAP

Figure 2-6 ROI Map and Cell Map

L K J H G F E D C B A ROI

I I I
11 10 9 8 7 6 5 4 3 2 0 bit

number

used
internally

Figure 2-7 Word in ROI Map

2-16

PROGRAMMING SUPPORT INFORMATION

2.6.3 Saving Dynamic Curves

Each dynamic curve uses four disk blocks and consists of up to 512
floating point numbers. A save area may hold up t~ thirteen dynamic
curves, twelve representing the twelve possible regIons of interest
and the thirteenth representing the total count curve.

Blocks one through four of the dynamic curve data contain the total
count curve which represents the total number of elements present
within each frame of the study. Each following 4-block set contains
the dynamic curve data for each region of interest. Therefore a save
area containing twelve regions of interest uses all of the available
52 disk blocks. See Figure 2-8.

BLOCK 0

5

9

49

52

SAVE AREA
DESCRIPTOR

THIS AREA CONTAINS
THE TOTAL NUMBER OF
COUNTS WITHIN EACH
FRAME OF THE STUDY

~

REGION OF
INTEREST

'A'

REGION OF

INTEREST
'K'

REGION OF
INTEREST

'L'

-

Figure 2-8 Dynamic Curve Save Area

2.7 INTERNAL GAMMA-II FILES

GAMMA-II requires a number of internal files for use as work areas and
save areas. The naming conventions for these files are as follows:

SVARnn.SYS

GAMMAx.SYS

GAMMAD.SYS
GAMMAS.SYS
GAMMAI.SYS
GAMMAP .. SYS

is the name of a save area where nn is the number of
the save area (00 through 64).
names a work area where x is
character of the work area. This
of the following internal files.

the identification
is the general form

used to store dynamic curves.
a scratch file used to store intermediate values.
a scratch file used by indexed display routine.
the predefined study file.

2-17

GAMMAM.SYS

GAMMAL.SYS
GAMMAC.SYS
GAMMAB.SYS

PROGRAMMING SUPPORT INFORMATION

temporary storage for the irregular regions mark matrix
(IR definition map). (Do not confuse this with the
save area ROI map.)
temporary storage for list mode parameters.
storage for the color tables.
dual display buffer

2.8 GAMMA-II MACRO AND PLAYBACK FILES

GAMMA-ll macro filenames are all of the form

filename.GMC

where filename is the·name given to the macro at its creation with the
MC or MS command.

GAMMA-ll playback filenames are all of the form

filename.GPB

where filename is the name given to the playback file at its
initialization with the PBI or PBM command.

2.8.1 Playback Files

A GAMMA-ll playback file (.GPB extension) consists of a one-block
header block followed by the playback image buffers.

The first word of the playback header block contains the number of
images stored in the playback file. To change the number of frames
(in BASIC), declare the file an integer virtual array and change
element 0 (zero).

The index line and comment line are stored as ASCII strings with
maximum length of 128 characters. To change either the index line or
comment line, declare the file a character virtual array of string
length 128 and change element 1 (the index line) or element 2 (the
comment line). You must make sure that the new string is less than
128 characters (0 to 127).

For example, the following BASIC program changes both the index line
and the comment line. Note that this example deletes the comment
line.

10 DIM #1, A$ (3) = 128
20 OPEN 'filename.GPB' AS FILE #1
30 A$(l} = 'NEW INDEX LINE'
40 A$ (2) = "
50 CLOSE #1
60 END

Do not change any other elements in the file.

2-18

CHAPTER 3

BASIC AND FORTRAN SUPPORT

3.1 BASIC AND FORTRAN SUPPORT FOR GAMMA-II FIB

The BASIC and FORTRAN support subroutines for GAMMA-II allow complete
access to the patient files and save areas (whether they hold matrix
data or dynamic curves). The BASIC routines are linked with the BASIC
interpreter and include a resident I.SK buffer for data. The FORTRAN
routines use the same resident I.SK buffer for the data and perform
the I/O similarly to BASIC. However, you have to link the object
files of the FORTRAN routines with your compiled FORTRAN program to
produce a running program.

Because the GAMMA-II data, the BASIC interpreter or FORTRAN compiler,
and a user-written program together need more memory than is
available, the BASIC and FORTRAN support routines contain an automatic
disk swapping routine. This swapping routine is transparent to the
user, who can write programs as if there were more than enough memory.

There are two kinds of FORTRAN support routines discussed in this
chapter. The first set of routines are called the FORTRAN support
routines. These routines are similar to the BASIC routines.

The second set of FORTRAN routines are called the supplemental FORTRAN
support routines. The supplemental routines do not perform input and
output operations on patient files and save areas. The supplemental
routines are not compatible with the FORTRAN support routines, and the
two sets of FORTRAN routines can not be used together.

3.1.1 Support Routine Notation

The following table lists the notation for the parameters of the BASIC
and FORTRAN support subroutines.

NOTE

Since BASIC numeric variables have no
type (e.g., integer or real number), the
last column of this table is applicable
to FORTRAN only.

3-1

Variable
Name

isanum

isatype

index

i,j

iframe

icurve

ipoint

value

string

dev:file.Xnn

[,len]

BASIC AND FORTRAN SUPPORT

Description

represents a save area

represents a save area type
(matrix or dynamic curves)

represents an index number
which refers to a specific
element of a save area or
patient file. For example,
the index number of the
patient name is 1 and of
the patient number is 2.

represent the row (i) and
column (j) indices of a
matrix. Note that row 1,
column 1 is the lower left
corner of the matrix.

represents a frame number

represents a dynamic
curve number

represents a point number
from a dynamic curve

represents the value in an
element of the data file
or save area

represents the equivalent of
value if the element is an
ASCII string

represents the RT-ll file
descriptor of a patient
file

represents the optional
length of the logical
array given by "string"
above. This parameter is
valid in FORTRAN only.

3.1.2 Patient Data File Subroutines

FORTRAN Variable Type

integer

integer

integer

integer,integer

integer

integer

integer

all value types
within administrative
and save area
descriptor blocks are
given in Tables 2-1
and 2-2. Points on a
dynamic curve are
floating point.

this variable should
be a logical array
in FORTRAN.

this descriptor
should be contained
in a logical array in
FORTRAN

integer

The following subroutines reference the patient data files. Table 3-1
shows the administrative data block layout with the indexes needed for
subroutines GPAR, GPAW, GPDR, and GPDW.

3-2

BASIC AND FORTRAN SUPPORT

Subroutine

GPFR('dev:file.Xnn')
or

GPFR(string)
or

GPFR(string[,len)

GPFW('dev:file.Xnn')

GPF ()

GPAR(index,string[,len)

GPAW(index,string[,len)

GPDR(index,value)

GPDW(index,value)

Explanation

Opens a patient file for read only processing.
When a file is opened with this subroutine
call, it cannot be modified.
BASIC examples:

CALL GPFR('RKI:NAME.XOO')
CALL GPFR (V$)

However, if an ASCII string V$ is used,
then V$='RKl:NAME.XOO' must be defined
before GPFR(V$) is called.

FORTRAN examples
CALL GPFR('RKl:JOHNDO.XOl')
CALL GPFR(VA)
CALL GPFR(VA,6)

In these examples, VA is a logical array,
and 6 is the length of the logical array.
The 6 is optional.

Opens a patient file for
processing. When a file is
subroutine call, it can be
alt~rnate forms of the call
similar to GPFR.

read or write
opened with this
modified. The

and examples are

Closes a patient file that is currently open.
This subroutine should be used to ensure that·
all modifications to a file have been made.

Returns in parameter string the ASCII string
in element(index) from the administrative data
block. The parameter [,len] is the optional
array length for the logical array in FORTRAN.

Stores the ASCII string in element(index) of
the administrative data block of the patient
file.

Returns in value the value of element(index)
in the administrative data block.

Stores value in the administrative data block
as element(index).

GPMR(iframe,i,j,value) Returns in value the value of element(i,j) of
frame iframe of a study. This subroutine may
only be used for static and dynamic studies.

GPMW(iframe,i,j,value) Stores value as the element(i,j) of frame
iframe. This subroutine may be used only for
static and dynamic studies.

GPLR(n,x,y,t,g) Returns from list mode element(n),
following values in the variables:

x = X-coordinate
y = Y-coordinate
t = 0, if there is no time mark

= I, if the time mark is set
g = 0, if there is no gate mark

= I, if the gate mark is set

3-3

the

Subroutine

GPLW(n,x,y,t,g)

BASIC AND FORTRAN SUPPORT

Explanation

Note that for GPLR and GPLW, x, y, t, and g
are integers (FORTRAN only).

Stores whatever is in x, y, t, and g into the
list mode element number (n).

Table 3-1
Administrative Data Block

Ascii String Variable Table (FORTRAN and BASIC)
Subroutines GPAR and GPAW

Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Name

PATNAM
PATNUM
ATIME
ADATE
BIRTHD
DOC
ORGAN
VIEW
CMTRT
AQMODE
ISOTOP
DOSE
IS02
DOSE2
ISMODE
ORIENT
POSSWT
AMACRO
AUTO

Description

Patient name
Patient number
Acquisition time (supplied by program)
Acquisition data (supplied by program)
Patient birth date
Doctors name
Organ being studied
View of picture
Collimator type
Acquisition mode: l=special, 2=normal
Isotope being used
Dosage
2nd isotope being used
2nd dosage (dual isotope study)
l=single isotope, 2=dual isotope
Orientation switch
position (rotation) switch
Auto analysis macro name
Auto analysis switch (y or n)

GATE-SYNCHRONIZED ACQUISITION (GSA) COLLECTION PARAMETERS

20
21
22
23
24
25

31
32
33
34

26
27
28
29

CAMID
GSAMTX
GSAFRM
GSADUR
GSATOL
GSAEFM

GSAPSC
GSACYC
GSAMIN
GSASEC

ENDFRA
MINUTE
SECOND
PSCNT

Camera number (0-3) (NeVIl only)
GSA matrix type (lor 2)
Number of frames
Frame duration in msec
Tolerance in msec
End Frame (1, 2, or 3)

1 = Time
2 = Counts
3 Cycles

Preset counts
Preset cycles
Preset minutes
Preset seconds

STATIC AND LIST COLLECTION PARAMETERS

Method of ending study: l=time, 2=counts
The number of minutes in the study
The number of seconds in the study
The number of preset counts chosen

3-4

Index

36
37

38

41
42

43

44

45

51
52
53
54
55
56
61

131

1

2
3
4

5
6
7

7
8

9 1

10 1

11
12
13

Name

SMTXSZ
SMTXCS

MSFRM

LDBLCK
LDBPC

LDELST

LDELRT

LGSA

GRPI

GRP2
GRP3

GRP13

COLTYP

COMPRS
TOTBLK
FADOFF

DATTYP
MDOFF
PADOFF

ZCTOFF
NADOFF

ZCOUNT

OVFTIM
CFRM
FRAMEN
GROUPN

BASIC AND FORTRAN SUPPORT

Table 3-1 (Cont.)
Administrative Data Block

Description

STATIC MODE COLLECTION PARAMETERS

The type of matrix (1, 2, 3, 4, or 5)
Close on overflow: <space>=do not close,
<t>=close
The number of frames

LIST MODE COLLECTION PARAMETERS

The number of disk blocks of data
Method of closing: l=by counts, 2=by number
of blocks
Method of starting: y=delayed start,
n=immediate start
Count rate for delayed start (maximum of
20,000)
If 'y', study in a gated list mode

DYNAMIC MODE COLLECTION PARAMETERS

The number of frames in group 1
The type of matrix(l, 2, 3 or 4)
The type of close
Frame rate: x frames
Per y seconds (milliseconds for gated)
Group 2 (same 5 paramenters as group 1)
Group 3

Group 13

Data Value Table (FORTRAN and BASIC)
Subroutines GPDR and GPDW ---

Collection type
Second byte < 0 list mode

= 0 dynamic study
> 0 static study

Offset to comment block
Total number of blocks in study
Offset to first admin block (multiple
static)
Data type: O=patient data, l=flood
Offset to matrix data
Offset to previous admin block (multiple
static)
Dynamic: offset to z count block
Offset to next admin block (multiple
static)
Z count, the number of events (double
precision integer)
Time of overflow clock counter
Current frame number
Total number of frames
Total number of groups

3-5

Index Name

14 BINSEC
15 BINCYC
16 BINZLO

BINZHI
17 BINDUR
18 BINTOL
19 BINBAD

BASIC AND FORTRAN SUPPORT

Table 3-1 (Cont.)
Administrative Data Block

Description

Collection time in seconds
cycles collected
Total counts collected

Frame duration in msec
Tolerance in msec
rejected cycles

Format of data i.s double precision integer (FORTRAN data type
REAL*4)

3.1.3 Save Area Subroutines

Only one save area can be opened for reading at a time with GSAR.
However, with GSAW, you can write to any of the save areas--opened or
unopened. The term current save area refers to the save area that is
currently open.

Table 3-2 shows the layout of the save area descriptor block and the
indexes into the block needed by the save area subroutines.

The following subroutines access the Save Areas.

Subroutine

GSAR(isanum,isatype)

GSvG(index,value)

GSVP(index,value)

GMXG(i,j,value)

GMXP(i,j,value)

GCVG(icurve,ipoint,value)

GCVP(icurve,ipoint,value)

GDIS(icurve)

Explanation

Opens save area isanum; The subroutine
returns the save area type in isatype.
isatype=l if the save area contains
matrix data; isatype = -1 if the save
area contains dynamic curves;
isatype = 0 if the save area contains
neither matrix data nor dynamic curves or
if the save area does not exist.

Returns the value of element(index) of
the save area descriptor block.

Stores value in element(index) of the
save area descriptor block.

Returns the value of element(i,j) of the
matrix.

Stores value as element(i,j) of
matrix.

the

Returns the value of point ipoint of
curve icurve.

Stores value as point ipoint of curve
icurve.

Plots curve icurve on the display.

3-6

Subroutine

GPOV(icurve)

GPKX(x) [BASIC ONLY]

GPKY(y) : [BASIC ONLY]

BASIC AND FORTRAN SUPPORT

Explanation

Plots curve
overlaying
curve.

icurve on the
the previously

display,
displayed

Displays a cursor above a point plotted
by GDIS or GPOV and waits for the user to
pick a point. If the user types an "L"
or an "R", the cursor moves to the left
or the right, respectively. If the user
types a "J", the cursor moves 10 spaces
in the direction last typed. When. the
user types an "M", the x v~lue (point
number) returns as x.

Same as subroutine GPKX except the y
value (count rate) is returned.

FGPICK (ix,y) [FORTRAN ONLY] Displays a cursor on the display above a
point plotted by GDIS or GPOV. If the
user types an "L" or an "R", the cursor
moves to the left or the right
respectively. If the user types a "J",
the cursor moves 10 spaces in the
direction last typed. When the user.
types an "M", FGPICK returns the position
of the cursor in ix (integer) and y
(real) •

GSAW(isanum) Writes the current save area into save
area number isanum.

GSAGlindex,string) Returns in string ASCII element(index) of
the save area descriptor block.

GASP (index; s't~'ing) Stores string as the ASCII element (index)
of the save area descriptor block.

Index

1
2

3

1

Table 3-2
Save Area Descriptor Block

.Save Area String Table (FORTRAN and BASIC)
Subroutines GSAG and GASP ---

Name

SINDX
SCMDH

SVIEW

Description

Index line (66 ASCII characters)
GAMMA-II command string (46 ASCII
characters)
View of frame (10 ASCII ch~racters)

Save Area Data Table (FORTRAN and BASIC)
Subroutines GSVG and GSVP (FORTRAN and BASIC)

NDXDEV RADSO device name of indexed device
2-4 FILNAM RADSO file name and extension
of file (3 integers)

3-7

Index

5

6
7

8

9

10

11

12
13

14

15
16 1
171
18
19

20
21

21
22
22

23
24
25
26

271
28 1
29 1

30 1

31
32
33
34
35
36 2

37

Name

NPFILE

XTRBYT
STYPE

SDTYP

SXPND

SLADFG

SROTAT

SNESW
SSD

SDUAL

SORIG
SPOSQR

SAQM
SFLDN

SPDTA
SPPAD

SPZCT
SPNAD
SPTOV

SPADM
SPCOM
SDAD
SDMOD

STHSH

STHSL

SSIZE
SWDBYT
SDIM
SMAX
SMIN
SCOUNT
SMEAN

BASIC AND FORTRAN SUPPORT

Table 3-2 (Cont.)
Save Area Descriptor Block

Description

Numbers of patient files found on
indexed device
Number of extra bytes in directory entry
Data type indicator (in low byte)

o = no data in save area
1 = matrix data
200 = dynamic curves

Save register number in low byte
negative number=frame divide is set
Expand switch: O=no expansion, non-zero~
expanded matrix
Sliding add switch (the number of frames
to add)
Rotation factor: Q=regular, 1, 2, or 3
to rotate axes
No enhancement switch
Static or dynamic: O=static,
non-zero=dynamic
Dual isotope switch: O=no dual isotope

1 = isotope A,
2 ::; isotope B

Original study type (non-zero=list mode)
position (rotation) switch
Orientation switch
Acquisition mode: l::;special, 2=normal
Flood correction switch: O=not done,
l=flood correction done
Offset to data matrixes
Offset to previous admin block (static
only)
Offset to z-count block (dynami~ only)
Offset to next admin block (static only)
Offset to time of overflow block
(dynamic only)
Offset to administrative data block
Offset to comment block
Relative block number of present frame
Isometric switch: O=intensity,
l=isometrics
High threshold in %
Step size in %
Low threshold in %
Step size in %
Number of words in current matrix
Word or byte switch: O=word, l=byte
Dimension size (32, 64, or 128)
Maximum cell count
Minimum cell count
Total number of counts
The average cell count

3-8

Index

121

1222
123 2

1242
125
126

41
42
43
44
45
50
51
52
53
54
55
56

III

130

131

132 1

133 1

134 1

135 1

175 1

183

186
187
188

BASIC AND FORTRAN SUPPORT

Table 3-2 (Cont.)
Save Area Descriptor Block

STATIC MODE PARAMETERS

Name

SMSCFR

SSTM
SSVTM
SSZCT
SSMSZ
SSFAD

Description

Current frame number of multiple static
study
Duration of collection in seconds
Time of overflow in seconds
Z count, the number of events
Number of words in matrix
Offset to first administration block

DYNAMIC MODE PARAMETERS

SCRFRM
SCURGP
SCURGF
SCURFM
SN
SG
SGROUP(l) :SGPF
SGPSZ
SGPCS
SGXTM (SGX)
SGY
SGROUP(2)

SGROUP(13)

Cumulative frame number
Current group number
Current number of frames in group
Current frame within group
Total number of frames
Total number of groups
Number of frames in group
Number of words of frames in the group
The close on overflow flag
Exposure rate: x frames per
Y seconds (milliseconds for gated)
Group 2

Group 13

ROI AND DYNAMIC CURVE PARAMETERS

NMROIS

ROIXY(l) Xl

Yl
X2
Y2
ROIXY(2) Xl

ROIXY(12) Xl
IRM

SCELLS
NMCELLS(l)
NMCELLS(2)

The number of regions of interest (max
of 12)
Region of interest definition table
If Xl and Yl are negative, the region is
undefined
Xl x-position of left ordinate
Yl = y-position of lower abscissa
X2 = right ordinate
Y2 = upper abscissa
ROI table number 2

ROI table 12
Irregular ROI switch: 0= regular region,
non-zero=irregular
The number of cells in the matrix
Number of cells in region of interest 1
Numbers of cells in ROI 2

3 ... 9

Index

201 2

201 2

203 2

213 2

BASIC AND FORTRAN SUPPORT

Table 3-2 (Cont.)
Save Area Descriptor Block

Name

NMCELLS(12)
MAXCCR
MAXCCR(l)
MAXCCR(2)

MAXCCR (12)

MATRIX

ROICNT
ROICNT(l)

ROICNT(2)

ROICNT(12)

Description

Cells in ROI number 12
Maximum cell count rate for the matrix
Max.cell count rate for ROIl
Max.cell count rate for ROI 2

Max.for ROI 12

$AVE AREA PARAMETERS

Cell counts for matrix
Cell counts for each ROI (used with
matrix data)
Cell counts for ROI 2

Cell counts for ROI 12

Byte data (FORTRAN uses INTEGER*2 format)
2 Double precision integer data (FORTRAN uses REALt4 format)

Floating point data (FORTRAN uses R~AL*4 format)

3.1.4 General Purpose Support Subroutines for BASIC and FORTRAN

GAM (string)

GCHR(string[,lineno,icolno])

Exits from BASIC or FORTRAN and loads the
background GAMMA-II program. BGAMMA is
executed, and it interprets the string as
the first command. If string is null, the
background command table is displayed. If
string is an illegal command, an error
message is displayed and typing a carriage
return will return GAMMA-II to the command
table.

Prints the character string (string)
starting at location (lineno,icolrio) on
the VSVOI. The parameters lineno and
icolno are optional. If lineno = negative
number or zero (0), the subroutine erases
the screen. If you call GCHAR with only
the string parameter (e.g.
GCHAR(string)), the string is printed
starting at the current cursor position.
(NOTE: This subroutine works for the
VSVOI display only.) You can reference
only line numbers 1 through 25, and
columns I through 64.

3-10

BASIC AND FORTRAN SU~PORT

3.1.5 Linking FORTRAN Subroutines with a User Program

For you to use the FORTRAN/GAMMA-II subroutines with your own program,
you must link four FORTRAN object modules to your program. The four
object modules are:

GMFORl.OBJ
GMFOR2.0BJ
GMFOR3.0BJ
GMFERR.OBJ

GMFORl.OBJ and GMFOR2.0BJ should always be linked with a user program
whenever any of the support routines are referenced in the user
program. You should link GMFOR3.0BJ when any curve 'plotting
subroutines are used. You should always link GMFERR.OBJ because it
contains the FORTRAN error messages~

NOTE

You can install the FORTRAN OTS library
in SYSLIB.OBJ or in FORLIB.ORJ. See
section 2.4.1 of the RT-ll FORTRAN IV
Installation Guide (DEC-II-LRSIA-A-D).
If you have installed the FORTRAN OTS
library in SYSLIB.OBJ, you do not need
the FORLIB or /F parameters when you
link your FORTRAN program.

If a program named PGM references only GAMMA-II patient files, type:

.LINK PGM,GMFORl,GMFOR2,GMFERR,FORLIB

If a program references save area data and plot curves, type:

.LINK PGM,GMFORl,GMFOR2,GMFOR3,GMFERR,FORLIB

If the overlay feature of the RT-ll Linker is used, GMFORI should be
linked to the root section of the program. GMFOR2, GMFOR3, and GMFERR
can be included in the overlays if desired. To use the overlay
feature, type:

.R LINK
*PGM=PGM,GMFORl,FORLIB/C
*GMFOR2/0:l/C
*GMFOR3/0:1/C
*GMFERR/O:l

3.1.6 BASIC And FORTRAN Error Messages

The error messages are the same for both the BASIC and FORTRAN support
subroutines. However, the format of the messages vary between BASIC
and FORTRAN.

The format for the BASIC error messages is:

?GAMMA-F-Save are numbers too large or negative AT LINE 20

The line number of the line where the error occurred is given. In
this example, the error occurred at line 20. In BASIC, the system
returns to a READY when an error occurs.

3-11

BASIC AND PORTRAN SUPPORT

The format for the FORTRAN error messages is:

?GAMMA-F-Save area number too large or negative
?Err o Non-FORTRAN error call
in routine ".MAIN." line 5

The first line of the message states the problem. The second and
third lines of the message state the routine name and line in which
the error occurred. In this example, the error occurred in line 5 of
the main program. In FORTRAN, the system returns to the RT-ll monitor
when an error occurs.

The error messages for the BASIC and FORTRAN support subroutines are
listed below.

Null file name

Routines GPFR, GPFW
A null string was given as the GAMMA patient file name.

Illegal device

Routines GPFR, GPFW
An illegal device name was given in the string while opening the
GAMMA patient file.

Illegal file name

Routines GPFR, GPFW
Illegal RAD50 character was given as part of the GAMMA-II patient
file name.

Non-file structured device

Routines GPFR, GPFW
A non-file structured device (e.g., paper tape, line printer) was
given in the string while opening the GAMMA patient file.

No device handler loaded

Routines GPFR, GPFW
The device handler is not in memory, and the GAMMA patient file
cannot be opened.

GAMMA file lookup error

Routines GPFR, GPFW, GSAR
A lookup error occurs trying to open a patient file or a save
area file. This error usually means that the file is not on the
device specified.

GAMMA file not open

All routines except GPFR, GPFW, GSAR
Subroutine tried to reference a GAMMA patient file or save area
file before it was opened.

GAMMA file savestatus error

Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR, GMXG,
GMXP, GCVG, GCVP, GSAW
Save status error occured during input/output operation (probable
hardware error).

3-12

BASIC AND· FORTRAN SUPPORT

GAMMA file reopen error

Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW,GSAR, GMXG,
GMXP, GCVG, GCVP, GSAW
Reopen error during an input/output operation (probable hardware
error) •

GAMMA file read error

Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR GMXG,
GMXP, GCVG, GCVP, GSAW
Read error during I/O (probable hardware error).

GAMMA file write error

Routines GPFR, GPFW, GPF, GPMR, GPMW, GPLR, GPLW, GSAR, GMXG,
GMXP, GCVG, GCVP, GSAW
write error during I/O (probable hardware error).

Frame number too large or negative

Routines GPMR, GPMW
The frame number (iframe) is not within the range of the number
of frames in the current patient file.

List element too large or negative

Routines GPLR, GPLW
The list mode element (n) is outside the boundaries of the number
of elements in the patient file.

Index too large or negative

Routines GPAR, GPAW, GPDR, GPDW, GSVG, GSVP, GSAG, GSAP
The index number (index) exceeds the number of indices in the
table that is being referenced.

Curve number too large or negative

Routines GCVG, GCVP, GDIS, GPOV
The curve number (icurve) is greater than 12, the maximum number
of curves in a save area.

Point number too large or negative

Routines GCVG, GCVP
The point number (ipoint) is outside the boundaries of the number
of points in the save area curves.

Dimension too large or negative

Routines GPMR, GPMW, GMXG,
The element specified by (i,j) of the patient file or save area
is outside the boundaries of the matrix.

Save area number too large or negative

Routines GSAR, GSAW
The save area number (isanum) referenced exceeds 64, the maximum
number of save areas.

3-1J

BASIC AND FORTRAN SUPPORT

Curve save area number too large or negative

Routines GSAW
An attempt was made to write a dynamic curve Save Area in a save
area number (isanum) greater than 9.

Illegal parameter value

Routines All routines except GPFR, GPFW, GPF
An illegal value (less than or equal to zero) is set for a
subroutine parameter (e.g., index number (index), matrix
dimension (i,j), point number (ipoint), frame number (ifame».

3-14

BASIC AND FORTaAN SUPPORT

3.1.7 BASIC and FORTRAN Examples

BASIC Example 1

The following example reads a patient summary and then prints it out.
The important lines of this example are lines 20 and 30. In line 20,
the user enters the patient file name which is stored in variable AS.
In line 30, that file is opened for reading and writing.

10 REM -- READ IN PATIENT FILE --
20 PRINT 'INPUT PATIENT FILE NAME' \ INPUT A$
30 CALL GPFW(A$)
40 PRINT
50 REM -- OUTPUT FILE SUMMARY
60 FOR 1=1 TO 20
70 PRINT '*'; \ NEXT I
80 PRINT \ PRINT
90 PRINT 'PATIENT:'f \ FOR 1=1 TO 8
100 CALL GPARCI,B$) \ PRINT B$
110 NEXT I
120 CALL GPDR(12,B)
130 PRINT 'NUMBER OF FRAMES =';B
140 PRINT
150 FOR 1=1 TO 20
160 PRINT '*'f \ NEXT I
170 CALL GF'F()
180 END

READY

BASIC Example 2

The following example integrates a dynamic curve. The user picks the
save area where the curve is stored, the curve to be displayed, and
the left and right bounds of the integral. Since the raw counts are
stored with the curve data, the integral is merely a summation of the
counts between the boundaries chosen (using subroutine GCVG in line
110) •

20 REM -- READ DYNAMIC CURVE SAVE AREA
30 PRINT 'WHICH SAVE AREA'; \ INPUT A1
35 CALL GSARCA1,A)
40 REM -- READ CURVE INTO THE BUFFER --
50 PRINT 'WHICH CURVE TO BE DISPLAYED'f \ INPUT B1
55 CALL GDIS(Bl)
60 REM -- FIND THE NUMBER OF POINTS --
70 CALL GSVG(41,B)
80 REM -- FIND THE INTEGRAL OF THE CURVE
90 1=0
100 PRINT 'THERE ARE'fB;'POINTS'
102 PRINT 'PICK THE BOUNDS OF THE INTEGRAL'
104 CALL GPKX(D) \ CALL GPKX(E)
106 FOR ,J=D TO E
110 CALL GCVG(Bl,J,K)
120 O:=I+K
130 NEXT J
140 PRINT 'INTEGRAL OF CURVE'fBlf'=';I
:L50 END

READY

3-15

BASIC AND FORTRAN SUPPORT

BASIC Example 3

The following example initializes a save area to hold static matrix
data. The user picks the save area to be initialized. Then that save
area is opened as a virtual file (lines 40, 50, and 60) to allow the
program to zero the save area descriptor block (lines 80 and 90). The
user chooses the type of matrix and the subroutine initializes the
save area descriptor block. Finally, in lines 160 to 200, the matrix
is filled (with whatever you choose). In this example, an "X" is put
in the matrix. Then the BASIC program returns to the GAMMA-II data
analysis program to continue analysis.

10 REM -- ZERO SAVE AREA DESCRIPTOR BLOCK --
20 REM
30 PRINT \ PRINT 'SAVE AREA MATRIX INITIALIZATION'
40 PRINT \ PRINT 'WHICH SAVE AREA'; \ INPUT A3$ \ LET A3=VAL(A3$)
50 LET A$='SVARO'&A3$&'.SYS'
60 DIM tl,Fl(255)
70 OPEN AS AS FILE 1
80 FOR 1=0 TO 255 \ LET Fl(I)=O \ NEXT I
<70 CLOSE 1
100 REM
110 REM -- CHOOSE MATRIX TYPE, THEN INITIALIZE
120 REM
130 PRINT 'WHAT MATRIX SIZE:(32,64,128)'; \ INPUT A1
140 PRINT 'BYTE OR WORD:(l=BYTE,O=WORD)/'; \ INPUT A2
150 CALL GSAR(A3,Z) \ GOSUB 210
160 FOR 1=1 TO A1 \ LET J=Altl-I
170 CALL GMXP(I,I,I) \ CALL GMXP(I,J,J)
180 NEXT I
190 CALL GSAW(A3)
200 CALL GAM('CA')
210 REM
220 REM -- MATRIX INITIALIZATION SUBROUTINE
230 REM SET TO INIT A STATIC MATRIX
240 REM -- Al=SIZE(32,64,128) •• A2=BYTE(1) •• OR WORD (0)
250 REM
260 CALL GSVP(7,1) \ CALL GSVP(8,A3)
270 CALL GSVP(27,100) \ CALL GSVP(28,5)
280 CALL GSVP(29,0) \ CALL GSVP(30,5)
290 L.ET A4=512
300 IF Al=32 THEN 320 \ LET A4=A4*4
310 IF Al=64 THEN 320 \ LET A4=A4*4
320 IF A2=1 THEN 330 \ LET A4=A4*2
330 CALL GSVP(31,A4) \ CALL GSVP(125,A4)
340 CALL GSVP(32,A2) \ CALL GSVP(33,Al)
350 CALL GASP(1,'GAMMA-l1 SAVE AREA')
360 RETURN
370 END

READY

3-16

BASIC AND FORTRAN SUPPORT

BASIC Example 4

The following macro creates the playback file GSA.GPB, plays the
playback, calls the BASIC program NEWNME (line 4), and then plays the
playback file a second time. Program NEWNME changes the patient file
index line in the playback file called GSA.GPB. When the program is
finished, the macro will continue execution and replay the playback.

MACRO

1) PBI GSA,O,48,1
2) RSO:BE:LTIO
3) 48 : PBS; ! SK
4) PB GSAiBA NEWNME
5) PB GSA

BASIC PROGRAM NEWNME

10 DIM 11,A$(16)=64
20 OPEN 'GSA.GPB' AS FILE 11
30 PRINT 'OLD PATIENT INDEX:';AS(2)
40 PRINT 'INPUT NEW INDEX:'; \ INPUT BS
50 LET A$(2)=B$
60 CLOSE 11
70 CAL GAM (, CA')

FORTRAN Example 1

The following FORTRAN example is similar to BASIC Example 3. This
program initializes a save area to hold static matrix data. The main
program asks the user for the save area number, opens the save area,
initializes the save area descriptor block (subroutine INITMA), and
fills the matrix (subroutine FILLMA). Subroutine IALPH converts the
numeric save area number to ASCII data for the save area name.

INTEGER NAME(6),ADMIN(256)
1 FORMAT(I2)

NAME(1)='SV'
NAME(2)='AR'
NAME(4)='.S'
NAME(5)='YS'
NAME(6)=0
TYPE *, 'SAVE AREA MATRIX INITIALIZATION'
TYPE *, 'WHICH SAVE AREA?'
ACCEPT *, HUM
ENCODE(2,1,NAME(3» NUM
OPEN(UNIT=1,NAME=NAME,ACCESS='DIRECT',TYPE='UNKNOWN',

1RECORDSIZE=128,INITIALSIZE=33,ASSOCIATEVARIABLE=N1)
DO 100 1=1,256

100 ADMIN(I)=O
WRITE (1'1) A[aMIN
WRITE (1'33) A[aMIN
CLOSE(UNIT=1)
TYPE *, 'WHAT MATRIX SIZE:(32,64,128)'
ACCEPT *, NSIZE
TYPE *, 'BYTE OR WORD:(1=BYTE,0=WORD)'

3-17

C

c

BASIC. AND FORTRAN SUPPORT

ACCEPT *, NTYPE
CALL GSAR(NUH,H)
CALL INITSA(NSIZE,NTYPE,NUH)
CALL INITHA(NSIZE)
CALL GSAW(NUH)
CALL BGAHMA('CA')
STOP
END

SUBROUTINE INITSA(NSIZE,NTYPE,NUM)
CALL GSVP(7,1)
CALL GSVP(S,NUM)
CALL GSVP(27,100)
CALL GSVP(28,5)
CALL GSVP(29,0)
CALL GSVP(30,5)
1=512
IF(NSIZE.EQ.64)I=I*4
IF(NSIZE.EQ.12S)I=I*16
IF(NTYPE.EQ.O)I=I*2
CALL GSVP(31,I)
CALL GSVP(125,I)
CALL GSVP{32,NTYPE)
CALL GSVP(33,NSIZE)
CALL GASP(l,'GAMMA-ll SAVE AREA',22)
RETURN
END

SUBROUTINE INITMA(NSIZE)
DO 100 I=l,NSIZE
J=NSIZE+l-1
CALL GMXPCI,I,I)

100 CALL GMXP(I,~,J)
RETURN
END

3-18

BASIC AND FORTRAN SUPPORT

3.2 SUPPLEMENTAL FORTRAN SUPPORT

Besides the FORTRAN support routines listed in Section 3.1, other
FORTRAN routines exist to access patient files and save areas, and to
plot dynamic curves. The routines listed in this section do not
perform input and output operations on the patient files and save
areas. To use these supplemental routines, you must first assign and
define the input and output files as random access files and then read
the appropriate blocks into arrays before calling the routines. Refer
to Tables 3-1 and 3~2 fora description of the internal structure of
the patient files and save areas.

3.2.1 FORTRAN and GAMMA-II Variables

The variables used in the GAMMA-II files are not compatible with
FORTRAN IV. The GAMMA-II variables are unsigned (i.e., not 2's
complement) numbers. FORTRAN IV variables must be signed.

Below is the notation that is used to denote the GAMMA-II and FORTRAN
variable types.

GAMMA-II Variables

Name

g8

g16

g32

FORTRAN

integerf

realf

3~2.2 Arrays

Data Type

LOGICAL*1

INTEGER*2

REAL*4 or
INTEGER*4

Variables

INTEGER*2

REAL*4

Contents

Unsigned, 8-bit datum

Unsigned, l6-bit datum

Unsigned, 32-bit double precision
integer.

Signed integer

Real, floating point number

When you use this set of FORTRAN support routines, you must handle
inputting and outputting the files yourself. The following array
notation describes the format for handling these files.

Name

rawfile

patientinfo

ipointers

Description

A 5l2-byte array in which you
administrative data block of
(using a direct-access read).

load the
a patient

entire
study

A real array, dimensioned (3,42), which contains
ASCII data converted from rawfile. The
patientinfo array is obtained from the rawfile
array by using subroutine FGADMI.

A 75-word integer array which contains pointers
and parameters from the administrative data block
contained in array rawfile. The pointers array is
obtained from array rawfile by using subroutine
FGADMI.

3-19

Name

rawcomments

comments

savearea

curve

BASIC AND FORTRAN SUPPORT

Description

A 5l0-byte array which contains the comment block
of the patient study (read by a direct-access
read) •

A 5l0-byte logical array dimensioned (51,10) which
contains the ASCII text of the comment block. The
array comments is obtained from the array raw
comments using subroutine FGCOMl. Each position
of the array is one ASCII character.

A 256-word array containing the descriptor block
of a save area (read by a dirett-access ~ead).

A 5l2-real element
curve read from
direct-access read).

array containing a dynamic
a save area (read by a

3.2.3 Functions

The following functions convert unsigned integer data from GAMMA-li to
signed integer or floating point format of FORTRAN IV.

IBYTE(g8)

RSPI(g16)

RDPI(g32)

Returns the byte datum, g8, as a signed integer,
integerf.

Returns the l6-bit unsigned integer, g16, as a
floating point number, realf.

Returns the unsigned 32-bit integer, g32
floating point number, realf.

as

The following functions convert FORTRAN IV data to GAMMA-II format.

LBYTE (integerf) Returns the signed integer, integerf, as an
unsigned 8-bit integer, g8.

ISPR(realf) Returns the floating point number, realf, as an
unsigned l6-bit integer, g16.

RDPR (real f) Returns the floating point number, realf, as an
unsigned 32-bit integer, g32.

GAMMA-II word data does not have to be converted to real format unless
the number of cell counts exceeds 32767. In a typical study, such
large cell counts are extremely unlikely.

3.2.4 Subroutines

The following subroutines process GAMMA-II patient studies.

FGADMl(rawfile,pointers,patientinfo)
Converts the patient administrative data block in. array
rawfile into the ASCII array patientinfo and parameter
pointer block pointers. If patientinfo is not
specified, no ASCII data is converted. Rawfile and
patientinfo, or rawfile and pointers cannot be
equivalenced.

3-20

BASIC AND PORTRAN SUPPORT

FGADM2(rawfile,pointers,patientinfo)
The ASCII array patientinfo and parameter pointer block
pointers are converted into a patient administrative
data block in array rawfile. Rawfile and patientinfo
or rawfile and pointers cannot be equivalenced. '

FGCOMl(rawcomments,comments)
Converts the comment block (in rawcomments) into a
FORTRAN ASCII array comments.

FGCOM2(rawcomments,comments)
Converts the FORTRAN ASCII array comments into a
GAMMA-II comment block rawcomments. Rawcomments .and
comments can be equivalenced.

IFGFRM(ipointers,i)
A function which returns the record number of frame i.
The array ipointers is the pointer array set up by
FGADMI.

IGLSTR(n,x,y) Return the x and y coordinates of the list mode element
n. The function returns 1 of 4 possible values.

2 Time mark not set, gatemark set.
1 No time mark, no gatemark.

-1 Time mark set, gatemark not set.
-2 Time mark set, gatemark set.
Note that for IGLSTR and IGLSTW, x, y, t, and 9 are
integers.

IGLSTW(x,y,t,g)
A function which returns a list mode element number from
the four parameters, x, y, t, and g.

NOTE

FORTRAN record numbers are one greater
than RT-ll block numbers.

The following subroutines reference save area data.

FGPLOT(savearea,curve) Plots a dynamic curve on the display. The
array savearea contains the save area
descriptor block and curve is an array that
contains the floating point dynamic curve
data.

FGPICK(ix,y) Displays a cursor on the display above a point
already displayed by FGPLOT. The user can
move the cursor with the keyboard commands "R"
(right) and "L" (left). The keyboard command
"J" jumps 10 spaces in the direction last
typed by the user. When the user types "M",
the position of the cursor is returned in the
ix and y parameters.

FGPTOV(savearea,curve) Plots a dynamic curve on the display that
overlays the previously displayed curve.

BGAMMA(command) Exits from FORTRAN and loads the background
GAMMA-II program. BGAMMA is executed and it
interprets the ASCII characters in the real

3-21

BASIC AND FORTRAN SUPPORT

variable, command, as the first command. If
command is blank (i.e., contains ASCII
blanks) , the background command table is
displayed. If the characters form an illegal
command, an error message is displayed, and
typing a carriage return will return GAMMA-II
to the command table.

3.2.5 Linking Supplemental FORTRAN Subroutines with A User Program

There are three object files included in the supplemental FORTRAN
support package. These are:

F4ROOT.OBJ
F4PLOT.OBJ
F4ADMN.OBJ

F4ROOT.OBJ should always be linked with your program whenever any of
the supplemental support routines are referenced. F4PLOT.OBJ is
linked when any curve plotting subroutines are used. F4ADMN.OBJ must
be linked when any subroutines that reference GAMMA-II patient studies
are referenced within your program.

The following list shows subroutine calls that are referenced within
the three files of the supplemental support package.

Object File

F4ROOT

F4PLOT

F4ADMN

FORTRAN Supplemental Support Subroutines

IBYTE, LBYTE, RSPI, ISPR, RDPI, RDPR, BGAMMA

FGPLOT, FGPTOV, FGPICK

FGADMl, FGADM2, FGCOMl, FGCOM2, IFGFRM, IGLSTR,
IGLSTW

If the overlay feature of the RT-ll linker is used, F4ROOT should be
linked to the root section of the program. F4ADMN and F4PLOT can be
included in the overlays if desired (see following example).

1. If a program references only GAMMA-II patient files, type:

.LINK PGM,F4ROOT,F4ADMN,FORLIB

2. If a program references only save area data and curves, type:

.LINK PGM,F4ROOT,F4PLOT,FORLIB

3. If a program references both GAMMA-II patient files and save
area data and curves, type:

.R LINK
PGM=PGM,F4ROOT,FORLIB/C
F4ADMN/O:l/C
F4PLOT/O:l

3.2.6 FORTRAN Example

The following program is an example of a FORTRAN program using the
supplemental GAMMA-II FORTRAN support.

3-22

BASIC AND FORTRAN SUPPORT

c
C READ A FRAME INTO ARRAY MAT
C

DO 2 11=1,64,8
2 READ(l'Nl) «MAT(J,K),K=1,64),J=II,II+7)
C
C CONVERT THE GAMMA DATA INTO FORTRAN FORMAT.
C THEN CHECK EACH ELEMENT FOR NEW MAXIMUM
C

c

DO 1 1=1,64
DO 1 J=1,64
MX=IBYTE(MAX(I,J»
PT=IBYTECMATCI,J»
IF(MX-PT .GE. 0) GO TO 1

C IF NEW MAXIMUM, STORE COUNT AND TIME
C

MAX(I,J)=MATCI,J)
TIMCI,J)=LBYTECIJ)

1. CONTINUE
C
C ELIMINATE COUNTS UNDER 5
C

DO 12 1==1,64
DO 12 ..J=1,64
IF(IBYTE(MAX(I,J» .LT. 5) TIMCI,J)=O

12 CONTINUE
C
C RECONVERT INTO GAMMA FORMAT
C

CALL FGADM2(ADMIN,P,B)
N2::::l

C
C WRITE ALL BLOCKS PRECEDING DATA
C

WRITE(2'N2) ADMIN
PO 15 KK=2,MDOFF-l
READ (1 ' KI() ADM I N

15 WRITE(2'N2) ADMIN
C
C WRITE EITHER TIME OR COUNTS INTO FRAME
c

WRITE(S,444)
444 FORMAT(' I, 'DO YOU WANT TIME OR INTENSITY FOR THE MATRIX?')

WRITE (5,44~:;)

445 FORMATe' ',~TYPE 1 FOR TIME, 2 FOR MAX. INTENSITY'//)
READ(5,446) IF'

446 FORMAT(I!)
IF(IP-2 .GE. 0) GOTO 122
ltO 7 1:::;1.,64 d3

7 WRITE(2'N2)«TIM(..J,K),K=1,64),..J=I,I+7)
STOP

122 DO 8 1=1,64,8
8 WRITE(j'N2) «MAX(~,K),K=1,64),J=I,I+7)

STOP
END

3-23

BASIC AND FORTRAN SUPPORT

c
C FORTRAN SUPPORT EXAMPLE
C
C ** FUNCTIONAL IMAGING PROGRAM **
C
C THIS PROGRAM WILL STEP THROUGH A DYNAMIC STUDY LOOKING
C FOR MAXIMUM VALUES AT EVERY MATRIX POSITION (I,S).
C IT WILL RECORD THE TIME OF EAC~ MAXIMUM ALSO (TIM(64,64».
C

LOGICAL*l MAT(64,64),TIM(64,64),MAX(64,64),ADMIN(512)
INTEGER*2 Nl,N2,NAME,NAME2,P(75),MX,PT,IP
REAL*4 B(3,42),FM,IM

c
C ZERO VARIABLES IN ARRAYS
C

DATA FM/'FN 1'/
DATA IMI'MAGE'I
DATA ADMIN/512*OI
DATA P/7S*O/,B/126*O.1
DO 3~33 1::::1,64
DO 334 J::::l,64
MAT(I ,.J):::()

MAX (I , ,J) ~:()

334 TIM(I,J)=O
333 CONTINUE;:
C
C INPUT FILE NAMES FROM KEYBOARD
c

WRITE(!7;,222)
222 FORMAT(' ','INPUT PATIENT FILE AND NEW FILE NAME 'II)

CALL ASSIGN(l,NAME,-l,'RDO','NC')
CALL ASSIGN(2,NAME2,-1,/NEW/~iNC')

C
C DEFINE FILES FOR RANDO ACCESS 1/0
C

c

DEFINE FILE 1 (1000,256,U,Nl)
DEFINE FILE 2 (20,256,U,N2)
N1::::1.

C READ BLOCK 0 (RECORD 1) AND CONVERT FROM GAMMA FORMAT
C TO FORTRAN FORMAT
r

READ(l'Nl) ADMIN
CALL FGADM1(ADMIN,P,B)
MDOFF=IFGFRM(P~l)
N:I. ::::MDOFF

C CDNVE~:Tf:: PI:;:AMETEHS FF<OM D,(Ni~MIC TO ~:;T('\TIC
("

c

P(1)::::1.

P (1 4) :::: ~5
P (20 ;. :::: 1

c !:;TOI:~E 'FI.INCTIONAI... IM.!'.tGE" rlEbS(.\GE
C

B (:I. , 10) ::::FM
B(2"lO)::!!IM
NFF~MS::::P «?)
DO 1. I ".1:::::1. , NFF;:MS

3-24

CHAPTER 4

ASSEMBLING AND LINKING GAMMA-II

You can assemble and link GAMMA-II by using the RT-II MACRO and LINK
commands. Indirect command files which contain all the commands
required to assemble and link GAMMA-II are included on the GAMMA-II
source media (DEC-II-MGAMA-C-EC, ED or ET).

4.1 ASSEMBLING GAMMA-II USING INDIRECT COMMAND FILES

To assemble GAMMA-II, assign three logical devices and call two out of
three indirect command files. The three indirect command files for.
assembling GAMMA-II are

GMASMC.COM
GMASMV.COM
GMASMS.COM

Display-independent assemblies
VSVOI-dependent assemblies
VTOl-dependent assemblies

To assemble GAMMA-II for the VSVOI color display, use command files
GMASMC and GMASMV. To assemble GAMMA-II for the VTOI display storage
scope use command files GMASMC and GMASMS.

These indirect command files use three logical device assignments:

SRC for the source file device (MACRO-II input device)
OBJ for the object file device (MACRO-II output device)
LST for the listing device (MACRO-II listing device)

You must use the RT-II ASSIGN command to assign physical devices to
the logical devices before using the indirect command files. If you
do not want the object files or the listing files, assign the null
device handler (NL) to OBJ or LST.

NOTE

Each indirect command file generates
about 3000 blocks of listings. Thus, if
you assign an RKOS to LST, this disk
becomes full if other files are also on
it.

4-1

ASSEMBtING AND LINKING GAMMA-ll

For example, the following RT-ll commands would be used to assemble
GAMMA-II for the VSVOI display with the source files on RK05 drive 0,
the object files on RK05 drive 1, an~ the listing on the line printer:

.ASSIGN RKO SRC

.ASSIGN RKI OBJ

.ASSIGN LP LST

.@GMASMC

.@GMASMV

! ••••••••••••• G~AS~:.:O~ •••••••••••••••••••••••

!GAM~A·ll V2: D~VICE INOEPEN)ENT ASSEMBLIES

! •••••• ~lSC, sYsr~~ SU~~ARY, TRANSFER, JELEfE •••

~A:RJ/LISr:LSr:DArTIM/OBJ:ORJ:DAfrlM/ALL:20. SR::DATTIM
~A:RJ/LIST:LST:A:QOEVIOHJ:JBJ:A:~DEV/ALL:20. SR::A:ODEV
~A:RJ/Llsr:LST:GA~FIL/OBJ:OBJ:GA~FlL/ALL:20. SR::GAMFIL
~A:RJ/LlSr:LST:ME~MNG/OBJ:OBJ:~E~~NG/ALL:20. SR::ME~~~G
~A:RJ/LlST:LST:SY5SUM/ORJ:OBJ:SYSSUM/ALL:20. SR::(SYSSUM+GAMLIB/LIB)
~A:RJ/LlST:Lsr:DELETE/JBJ:OBJ:DELErE/ALL:20. SR::(DELETE+GA~LIB/Lld)
~A:RJ/LIST:LST:TRNfE~/OBJ:OBJ:rRNFER/ALL:40. SR::(r~~FER+GAMLIB/Llrl)

! ••••••••••• DATA ACQUISITI0~ •••••••••••••••••••

~A:RJ/LlST:LST:BA:OC~/OBJ:OBJ:BA:QCM/ALL:20. SR::(A:~:MN+APSE:T+GAMLIB/LIB)
~A:RJ/LIsr:LsT:fA:QC~/OBJ:OBJ:FA:QCM/ALL:20. SR::(FJJ~+A:Q:MN+APSE:T+GA~LIB/LIB)
~A:RO/LISr:LST:EA:QCM/OBJ:OBJ:EA:OCM/ALL:20. SR::(EFJJB+A:Q:~N+APSE:T+GAMLIB/LIB)
~A:RJ/Llsr:LST:DYNACO/OBJ:OBJ DY~ACQ/ALL:20. SR::(~Y~ACO+APs~:r+GAMLIB/LIB)
~A:RJ/Llsr:LST:EDYNAO/OBJ:OAJ EDY~AO/ALL:20. SR::(EFJJB+DY~ACQ+APSE:T+GA~LIB/LrB)
~A:RJ/LIsr:LST:sr:ACO/OBJ:OBJ sr:ACQ/ALL:20. SR::(Sr:ACQ+APS~CT+GA~LI8/LI8)
~ACRJ/LlST:Lsr:E5rCAO/OBJ:08J Esr:AQ/ALL:20. SR::(EFJJA+5r:A:Q+APSE:T+GA~LIB/LI8)
~A:RJ/LISI:Lsr:LSTACQ/JBJ:OBJ LSflCQ/ALL:20. SR::(LSTA:O+APs~cr+~AML1B/LIB)
~A:RO/LIST:Lsr:fLsrAO/OBJ:OBJ FLSrAQ/ALL:20. SR::(fJOB+LsrACQ+APSE:T+GAMLIB/LI8)
~A:RJ/LIsr:Lsr:ELsrAO/OBJ:J8J ELSrAQ/ALL:20. SR::(~FJJti+LSJACO+APSEtf+~A~LIB/LIB)
~A:RO/LIST:LST:BACQSB/OHJ:OBJ 8A:OS8/ALL:20. SR::(ACQSB+APSECT+GAMLIB/LIB)
~A:RJ/LIsr:Lsr:fA:QSB/OBJ:OBJ FA:OSB/ALL:20. SR::(fJJa+A:~S~+APSE:T+GAMLIB/LIB}
~A:RJ/Llsr:Lsr:~A:QSB/OBJ:OBJ EA:OSB/ALL:20. SRC:(EfJJB+A:OSB+APSE:T+GA~LIB/LIB)
~A:RJ/LlST:LST:BA:Q5T/OBJ:OBJ BA:~ST/ALL:20. SR::(A:05T~+APSE:T+~A~LIB/LIB}
~A:RO/LIsT:Lsr:fACQST/OBJ:OBJ:fA:OST/ALL:20. SR::(FJJB+A:OSTR+APSECT+GAMLIB/LIB)
~A:RJ/LIsr:Lsr:EA:osr/OHJ:08J:EA:QST/ALL:20. SR::(EFJ18+A:QSTR+APSE:T+GA~LIB/LIB)
~A:RJ/Ll~r:Lsr:BAos~r/OBJ~OBJ:BAJSEr/ALL:90. SR::(AOS1+AQS2.GSASEr+A~SE:r+GA~LIB/LIB)
~A:RJ/LJST:LST:fAQSET/OHJ:JKJ:FAOSEr/ALL:90. SR::(FJJB+AOS1+AQS2+APSECT+~A~LI8/LIB)
~A:RO/LIsr:LST:~Aos~r/08J:bBJ:EAOS~'f/ALL:90. SR::(EfJJB+AQS1+AQS2+APSEcr+GAMLIB/LI8)
~A:RJ/Llsr:Lsr:PREDEf/OBJ:08J:PREDEF/ALL:20. SR::(PRE)EF+APSECT+~A~LIB/LI8)
~A:RJ/LIST:LST:GSAACQ/OHJ:OBJ:GSAACO/ALL:20. SRC:(~SAACQ+APSECT+~AMLIH/LI8)
~A:RJ/Llsr:LST:PArMON/OBJ:OBJ:PAr~ON/ALL:20. SR::(?Ar~ON+APSEcr+GAMLIB/LIB)
~A:RO/L1ST:LST:PADMIN/OBJ:JBJ:PA~~lN/ALL:20. SR::(SB+APSECT)
~A:RO/LlST:LST:R~AVE/OBJ:OBJ:~~AVE/ALL:2J. SR::~~AVE

4-2

ASSEMBLING AND LINKING GAMMA-II

! ••••••••••• DATA ANALYSIS ••••••••••••••••••••••

~A:RJ/LIST:L5T:f·R~STI/0ijJ:OBJ:fR~STI/ALL:20. SR::(fH~STl+:5~CT+GA~LIH/LI8)
~A:RJ/L15T:Lsr:FR~sr2/~8J:OijJ:fR~ST2/ALL:20. SR::(fH~ST2+:S[:r+GA~L18/LI~)
~A:R8/LISr:LsT:Av~lN/OBJ:JHJ:AD~I~/ALL:20. SR::(AD~r~+:sE:r+GA~LJB/LIB)
~A:RJ/Llsr:LsT:fLJOD/OBJ:J8J:FLJJD/ALL:2a. ~~::(fLJJD+:SE:r+GA~Lla/LrB)
~A:RD/LlSr:LsT:I~DEX/OBJ:OBJ:rNDEx/ALL:20. 5R::(1~DEX+:SE:T+GA~LIB/Llij)
~A:RJ/~a5T:LsT:DX/O~J:06J:DX/ALL:20. SRC:(Dx+:sE~r+GA~LIB/LI~)
~A:RJ/LIsr:Lsr:ERRQR/OeJ:OBJ:EHRJR/ALL:20. SR::(ERRJR+:S[:r+GA~LIB/LIH)
~A:RJ/Llsr:LST:CJ~~A:RO/JijJ:)BJ::J~MACRO/ALI,:20. SR::(:O~~AC+:SE:r+GA~LI8/Lla)
~A:RD/Llsr:LST:FLDLV2/0dJ:OBJ:fL)LV2/ALL:2D. SR::(fL)LV2+:SE:r+GAMLI~/LIR)
~A:Ra/Llsr:Lsr:V~ARK2/0HJ:n6JJV~ARK2/ALL:20. SR::(V~~RK2.:SE:T+GA~Ll~/LI3)
~A:Ra/Llsr:LST:RJILV2/0BJ:08J:ROlLV2/ALL:20. SR::(RJILV2.:s~:r+GAMLIB/LIa)
~A:RJ/LIsr:Lsr:ppPLV2/0UJ:08J:PPPLV2/ALL:20. SR::(PPPLv2+:SE:T+GA~LIB/11B)
~A:RJ/LIST:Lsr:DATARI/0AJ:OBJ:DArA~1/ALL:20. SR::(JArAR1.:S~:T.G~~LIH/LIB)
~A:RJ/Llsr:LST:JJ~/ORJ:JdJ:J)Y/ALL:20. SR::(J)V.:SE:r+GA~LIB/LrB)
~~:RJ/LIsr:Lsr:LlST/OBJ:JHJ:LIST/ALL:20. SRC:(Llsr.:SECT+~A~LlH/L[H)
~A:RJ/LIsr:Lsr:f?~PEX/n~J:OBJ:fP~P~X/ALL:20. SR::fP~PEX
~A:RJ/LIST:LST:~UfS~T/OBJ:O~J:~UfSEr/~LL:20. SR::~JfS~T

! ••••••••••• ~ASI: SUPPORT ••••••••••••••••••••••

~A:RJ/LIsr:Lsr:G~~ERR/J~J:G~3ERR/ALL:20. SPC:(EHR~4~)

! ••••••••••• fORTRAN SUPPJRT ••••••••••••••••••••

~A:R~/LIST:LST:G~fERH/l~J:G~~ERR/ALL:20. SR::(fJRr+~RRGA~)

! •••••••••••••• E~O •••••••••••••••••••••••••••••

•••••••••••• G~AS~V.:O~ •••••••••••••••••••••••

~A~~A-l1 ~2: VSVOI DE~ENDENr ASS~~BLIES

••••••••••• BGA~~A ••••••••••••••••••••••••••••

~A:RJ/L[Sr:LsT:G~~RU~/08J:GA~RU~ SPC:(GA~LIB/LIB+GA~RJ~)
~A:RJ/LIsT:LSr:B;:uMD/OHJ:BG:J~D SRC:(GA~LIH/LIH.B~:J~D)

! ••••••••••• DAfA A~ALYSI~ •••••••••••••••••••••

~A:RJ/Llsr:LSr:D~rARN/JBJ:OBJ:DArAR~/ALL:20. SR::()ArAR.:sE:r+GA~LIB/Llb)
~A:RJ/LIsr:LSr:GSAfR~/OBJ:OHJ:GSAfRM/ALL:20. SR::(~SAfRM+:sE:r+GA~LIH/LJH)

~A:RJ/LI51:Lsr:vrDIsp/O~J:JBJ:vr)lsp/ALL:20. SR::(vrDISP+:sE:r+GA~Ll~/Llij)
~A:RJ/Llsr:Lsr:vrrEXr/uBJ:aBJ:VTrEXT/ALL:20. sR::(vrrEXT+:sECT.GA~LIH/Lld)

~A:RJ/LlSr:Lsr::JL£UT/OBJ:OBJ::JLEDT/ALL:20. sR::(:JLEDT+:S~:T+GA~LIB/L18)
4A:RJ/LIsr:LsT::J~ND1/JrlJ:OijJ::J~~DI/ALL:20. SR::(:J~~Dl+:sE:r+GA~LI~/LlH)

~A:RJ/Llsr:LsT:l:/UBJ:O~J:I:/'LL:20. SRC:(l:.:SE:T+GA~LIB/[,IH)
~.:RJ/Llsr:LSr:pasTOR/O~J:J6J:PBSTOR/ALL:20. SR::(PBSrQR+:sE:T+GA~LI~/Ll~)
~A:R~/Llsr:Lsr:Pd~ERG/J~J:OBJ:PR~EHG/ALL:20. SR::(PB~ERG.:S~:T+GAMLIR/Lla)

~':RJ/Llsr:Lsr:P3A:K/03J:JBJ:PBA:K/ALL:20. SR::(PB~:~+:S~:r+~A~LIB/LIB)
~~:RJ/Llsr:Lsr:~JI/OdJ:JijJ:RJI/ALL:20. SR::(RJI+:sE:r+GA~LIH/Ll~)

~':RJ/LlSl:Lsr:p?P/OHJ:JBJ:PPP/ALL:20. SR::(~PP.:sE:r+GA~LIH/LIH)
~A:RJ/L15r:Lsr:l~lr/ORJ:JBJ:1~IT/'LL:20. SR::(lNlr+:SE:T+GA~LIB/LIB)
~A:RJ/LIsr:Lsr:sLIcE/OBJ:OBJ:SLI:E/ALL:20. S~::(SLI:E+csE:r+GA~LIB/Ll~)
~A:RO/LIsT:Lsr:GSArOL/OBJ:OBJ:GSArOL/ALL:20. SR::(~SAruL+:s~::r+G~~LIB/LIB)
~A:RJ/LISr:Lsr:I~ITRI/OBJ:OBJ:INlrRI/ALL:20. SR::(I~lrRl+:5E:T+GA~LlB/LIH)
~':RO/Llsr:Lsr:CJ~ND2/0BJ:OBJ::J~~D2/ALL:20. SR::(:J~~D2+:SE:T+GA~LI6/LIB)
~A:RJ/LISr:LsT:DUAL/QBJ:J~J:)UAL/ALL:20. SR::(JUAL+:SECT+~A~Lla/Lla)
~A:RJ/LlST:LST:DISCMD/OHJ:OBJ:DIS:MO/ALL 20. SR::(DlS:MD.:S~CT+GA~LlB/LIA)

~A:RJ/LIsr:Lsr:DATAR1/JAJ:uBJ:DArARl/ALL 20. SR::(JArAHl+:sECT+GA~LlB/LIB)
~.:RJ/Llsr:LsT:OIsPAr/()HJ:OBJ:DISPAT/ALL 20. SR::(~ISPAT+:SE:T.GA~LIB/LIn)
~A:RJ/LISr:Lsr:VT~Plr/OBJ:JBJ:vr~RIT/ALL 20. sR::(Vr~RIT+:SECT+GA~LI3/Ll~)

~A:RJ/LlsT:Lsr:NR:TBL/ORJ:OBJ:~R:rBL/ALL 20. SR::(~R:rBL+:sECT+GA~LI8/LI~)

4-3

ASSEMBLING AND LINKING GAMMA-II

1 ••••••••••• HASl: SUPPORr ••••••••••••••••••••••

~A:RJ/LlSr:LsT:G~BASl/ORJ:G~~ASl/ALL:20. SRC:(F4~AS.RrfB.IOT~L.:SE:rl)
~A:RO/LlSt:LST:G~BAS~/O~J:GM~AS2/ALL:20. SRC:(F4BAS2.:S~:Tl)
~A:RJ/LISr:LST:G~BAS3/0BJ:G~~AS1/ALL:20. SRC:(PLOr.:SECTt)
~A:RJ/LlSr:LST:GA~CLl/0BJ:GA~:LI/ALL:20. SR=:GA~:Ll

1 ••••••••••• FOHTRAN SUPPORT ••••••••••••••••••••

~A:RO/LIsr:LsT:G~FO~1/0SJ:GMPaRI/ALL:20. SRC:(fORTtf4BAStRTFStiOrBL+:SECT1)
~A:RJ/LlST:LST:G~fOR2/0~J:G~PJR2/ALL:20. SRC:(fORT+f4BAS2.:SE:rl)
~A:Ra/LlST:LST:G~fOR3/08J:GMfOR3/ALL:20. SRC:(fORrtPLJT.:SECT1)
~A:RO/LlST:LST:f4ADMN/08J:F4AD~N/ALL:20. SRC:(:OLORtf4ADM)
~A:RJ/LIST:Lsr:f4ROOr/08J:F4RJJT/ALL:20. SRC:(:OLJRtRJOrt:SCTV1)
~A:RJ/Llsr:Lsr:f4PLor/OBJ:f4PLOT/ALL:20. SRC:(:OLORtPLOTV1.CSCTV1)

1 ••••••••••••••••• END ••••••••••••••••••••••••••

••••••••••••• G~ASMS.CO~ •••••••••••••••••••••••

GAMMA-It V2: VTOI DEPENDENT ASSE~BLIES

••••••••••• BGA~~A •••••••••••••••••••••••••••••

~A:RO/LlST:LST:GA~R~S/UHJ:GA~RMS SRC:(Vr~t+GA~RU~+~A~Ll~/LI~)

~A:RO/LlST:LST:B~:MDS/OBJ:HG:~DS SRC:(V401+~~:J~D+~A·~LIH/Lr~)

1 ••••••••••• DATA ANALYSIS •••••••••••••••••••••

~A:RO/LIsT:LSr:DArAHs/OtiJ:OtiJ:DArARS/ALL:20. SR::(VT01.DArAH.:s~:r+GA~Ll~/Lt~)

~A:RO/LIST:LST:MDIs/aBJ:J~J:~DlS/~LL:20. SRC:(~vTS.:SECT+~A~LIK/LIB)
~A:RO/LIsr:LST:c~N01S/0BJ:OBJ::~~D1S/ALL:20. SR::(VrOl+CJ~N[)l+:S~:T+GA~LIH/LI,)

~ACRO/LlST:LST:l:S/U~J~OBJ:I:S/ALL:20. s~::(VrOl+I:+:s~cr+GAMLIB/LIH)
~A:RO/LIsT:Lsr:PJIS/OBJ:J~J:RJIS/ALL:20. SRC:(VT01.~JI+cs~:r+GA~LIH/Llt;)

~A:RO/~Isr:Lsr:PpPS/OtiJ:JBJ:PPPS/ALL:20. sRc:{ppp+:SE:T+~A~LI~/LId)

~A:RO/LIST:LSt:1~ITS/OHJ:OBJ:INlrS/ALL:20. S~::(VTal+I~JlT+:S~:T+~A~LlH/Ll~)

~A:RJ/~lsT:Lsr:sLIcE/OBJ:JBJ:SLl:ES/ALL:20. sR::(VrOl+sLl:E+:s~cr+GA~LlB/LI8)
~ACRO/Llsr:LsT:I~rRIS/OBJ:ORJ:lNrRIS/ALL:20. sR::(VrOl+1~lrKI+:sE:r+GA~LlH/Lld)

~A:RJ/Llsr:LsT:c~~D2S/0HJ:JHJ::~~02S/ALL:20. sR::(VrOl+CJ~~D2.:SE:T+GA~LlB/LI~)

~A:RD/LIST:Lsr:DuALS/OBJ:O~J:~UALS/ALL:2J. sR::(Vr)l.DuAl.+:S~:T+~A~LIB/LTR)

~A:RO/Llsr~Lsr:Os:~DS/OBJ:JRJ:DS:~DS/ALL:20. sR::(vrOl.nls:~O+:SE:T+GA~Llri/LI~)

~A:RJ/LIsr:Lsr:DsPArS/OHJ:OHJ:DsPArs/ALL:20. SR::(VTOl.DlSPAT.:SE:T.GA~LIB/Ll~)
~A:RO/LIST:LST:vrwRTSlaRJ:OBJ:vrNRTS/ALL:20. SH::(VTOl.vrNHlr+:SE:r+~A~LIH/LlB)

~A:RJ/LIST:LST:NRtHLS/O~J:UBJ:~:r8LS/ALL:20. SR::(VTOl+~R:rBL+:SE:T+GA~LIB/Lld)

1 ••••••••••• BAst: SUPPORT ••••••••••••••••••••••

~A:R8/LlST:LST:G~AVTl/0HJ:GM9ASl.JVT/ALL:20. sR::(vrOl.f4~As.Rrfd.lJrBL+:s~:rl)

~A:RO/blsT:Lsr:G~BVT2/0BJ:GM9As2.JVr/ALb:2Gi SR::(VrOl+f4RoS2+:s~:rl)
~A:RO/LIsr:LST:G~BVT3/0BJ:G~3AS3.JVr/ALL:20. SR::(Vr01+PLJr.:SiCrl)
~A:RO/LISt:Lsr:GA~CVr/ORJ:GA~:LI.JVT/ALL:20. SR::(VrOl+GA~:I.l)

1 ••••••••••• FORr~AN SUPPORT ••••••••••••••••••••

~A:RO/LlST:Lsr:G~fVTl/OHJ:GMFJR1.JVT/ALL:20. SRC;(VrOl+~JRr.f4BAS+RrfA.lorBL.:SE:Tl)

~ACRJ/LIST:LST:G~fVT2/0~J:GMf3R2.JVT/ALL:20. SR::(VrOl+F1Rr+~·4~AS2.CSE:tl)
~A:RO/LlST:LST:G~fVT3/08J:G~fJR3.JVT/ALL:20. sR::(VrOl+f~RT.PLQT+:S£CT1)
~A:RO/LIST:LST:r4ADVT/OBJ:F4~~~~.JVT/ALL:20. SR::(VT01.F4AO~)
~A:RO/LIST:Lsr:f4RTvr/O~J:F4~JOr.JVr/ALL:20. sR::(VrOl.RJJT.:SCTVl)
~A:RO/LIsr:LST:f4PLvr/OHJ:F4PLJr.JVT/ALL:2~. sR::(VrOl+~LJrVl.cs:rVl)

1 •••••••••••••••• ENO ••••••••••••••••••••••••••

4-4

ASSEMBLING AND LINKING GAMMA-II

4.2 LINKING GAMMA-II USING INDIRECT COMMAND FILES

There are four indirect command files for linking GAMMA-II:

GMLNKC.COM
GMLNKV.COM
GMLNKS.COM
GMLNKB.COM

Display-independent links
VSVOI-dependent links
VTOI-dependent links
BASIC/RT-II links (with GAMMA-II subroutines)

To link GAMMA-II for "the VSVOI color display, use indirect command
files GMLNKC and GMLNKV. To link GAMMA-II for the VTOI display
storage scope use indirect command files GMLNKC and GMLNKS.

These command files use four logical device assignments:

OBJ for the object file device (LINK-II input device)
EXE for the .SAV and .REL files (LINK-II output device)
MAP for the link map device (LINK-II map device)
BAS for BASIC/RT-II object files

BAS is used only by GMLNKB.COM.

Use the RT-II ASSIGN command to assign physical devices to the logical
devices. If you do not want output files or maps, assign the null
device handler (NL) to EXE or MAP.

For example, the following RT-II commands would be used to link
GAMMA-II for the VSVOI display with the object files on RK05 drive 1,
the .SAV and .REL files on RK05 drive 1, and no link map •

• ASSIGN RKI OBJ
.ASSIGN RKI EXE
.ASSIGN NL MAP
.@GMLNKC
.@GMLNKV

1
lGAMMA-ll V2: DISPLAY INDEPE~DENr LINKS

LINK/MAP:MAP:DATTIM/wIDE/EXE:SAV:DATTIM JBJ:DArrIM
LINK/MAP:MAP:SYSSUM/wIDE/EXE:SAV:SYSSUM JBJ:S'(SSLJ'-1
LINK/MAP:MAP:DELETE/wIDE/EXE:SAV:JELET~ JBJ:(DELErE,l~D~X)
LINK/MAP:MAP:rRNFER/wlDE/gXE:SAV:rRNFER/PRO~pr

J8J:TR~F"ER
J8J:GA'4F'lL/O:l
J8J:INDEX/O:1
II
LINK/MAP:MAP:DATA:O/~IDE/EXE:DATA:O/PROMpr

J6~ (BA:OCM,GAMDEV)
JBJ DY~ACO/O:l
JBJ ST:ACO,LSTAC~/U:l
J8J PAT'40N/O:2
J6J BA:OSB/O:2
J8J GA\fFIL/O:2
J6J BA:OST/O:3
JBJ PRE)EF/O:3
J8J 8A:lSe:T/O:3
JBJ PA:>'4IN/U:4
J8J GSAACQ,RNAVE/J:5
II

4-5

ASSEMBLING AND LINKING GAMMA-II

LI~K/M'P:MAP:rGA~~A/~IDE/EX~:SAV:FGAMMA/?QnMPT/fJHE -
J6J (F':QC~,~AMDEV)
J8J DY~'CO/O:l
JBJ ST:ACO/O:l
JdJ FLSrAQ/O:l
JSJ fA:;OSB/O:2
JBJ GA"FIL/O:2
J8J FA:OSf/O:]
JSJ PR~JEF/U:]
JSJ FA~SET/O:l
J6.J PA')'.1IN/O:4
II
1I~K/M'P:MA~:EGA'.1~A/~lD~/EX~:SAV:gGAMMA/PROM?r/FJR~ -
J6J (E~:OCM,GA~OEV)
JBJ EA:~SB/O:l
JBJ GA~F'IL/O:l
JBJ EA:JST/O:2
JdJ PRE:JF.:F/O:l
JBJ EAOSET/O:2
J8J EOY'JAQIO:3
J6J ESr:AQ/O:3
J8J ELSTAO,R~AVE/J:3
JBJ PAJ~lN,MEMMNG/O:4
II

!~AM~A-ll V2: VSVOI DEPENDENT LI'JKS

LINK/MAP:MAP:BGA\1~A/WIOE/EXE:SAV:BGAMMA/PROMpr -
JSJ:(G,\1RUM,GAMDEV,MEM\1NG)
JSJ: 8G: Jro10/0: 1
II
LINK/MAP:MAP:OATANL/~lDE/EXE:SAV:DATANL/?ROMpr -
JSJ DATI\RN
JaJ FR\1ST1/0:1/C
J8J FR\1ST2/0:1/C
J8J GSAfRM/O:1/C
JSJ VTllSP/O:1/C
JBJ VTTEXT/O:I/C
JSJ :OLEDT/O:I/C
JSJ AO..,IN/O:l/C
JSJ :O"''JOI/O:l/C
JaJ IC/J:I/C
JaJ PB~ERG/O:I/C
J8J paSTOR/O:l/C
JaJ pa':K/O:l/C
JSJ ROI/O:1/:
J8J FLJJD/O: 1/:
J8J PPP/O:1/:
J8J INJ~X,INIT,DX/O:I/C
JaJ ERRJR/O:I/C
J8J :O,,\1AC/O:I/C
JaJ SLI:E/O:I/C
JSJ GS,rOL/O:2/C
J8J FLJLV2/0:2/C
J8J INITRI/O:2/C
J8~ VMARK2/0:2/C
JBJ PP?LV2/0:2/C
JBJ ROILV2/0:2/C
J8J CO"''J02/0:2/C

4-6

ASSEMBLING AND LINKING GAMMA-lI

J8J:DUAL/O:J./:
JSJ:DIS:MO/O:2/C
JBJ:BurSEf/O:2/C'
JBJ OArI\R1/O:1/C
JBJ DISPAIIO:J/C
JBJ JO¥/O:3/:
JBJ Vr~~II/O:l/C
J8J FP~PEX/O:1/C
JBJ NR:rBL/O:3/C
J 8-J LIS r / 0: 3
//

lGAMMA-l1 V2: VTOl DEPENDE~T LINKS

LINK/MAP:MAP:8GA~~S.MAP/~lDE/EXE:SAV:BGA~~A.vrl/PRJMpr -
J8J:(GA~RMS,GAMDEV)

J8J:8G:~OS/O:1
//
LI~K/M'P:MAP:OAT~LS.~AP/wIOE/EXE:SAV:OATNLS/PRJ~pr -
J8J OArl\RS
JBJ rR~Srl/0:1/C
JBJ FR~ST2/U:l/C
J8J A0'41N/O:l/C
J8J :M~OlS/O:l/C
J8J lCS/0:1/:
J8J ROlS/O:1/:
JBJ FLJJO/O:1/C
JSJ PP?S/O:l/:
JBJ INJEX,lNITS,OX/U:l/C
J8J ERRJR/O:1/:
J8J :O~'4AC/O:l/C
J8J SLl:ES/0:1/C
J8J FLJLV2/0:2/C
JSJ INr~lS/O:2/C
JBJ VMARK2/0:2IC
J6J.PPPLV2/0:2/C
J8J ROILV2/0:2/C
J8J :M~i)2S/0:2/C
JSJ DUALS/O:2/:

_ JBJ OS:~DS/O:2/:
JBJ 8UrSET/0:2/C
J6J DArR1S/0:3/C
J8J DSPATS/O:3/C
JBJ.JO'{/O:3/:
J8J:VTNRrS/u:3/C
J8J:FP~PEX/O:3/C

J8J:NRraLS/O:l/C
)8J:LlSr/0:3
//

4-7

ASSEMBLING AND LINKING GAMMA-II

1 •••••• LINK VSVOl BASIC wID EIS •••••

R LINK
SAV:8ASIC,MAP:BASIC/w:/8:70011
BAS:8SprRS,BSPAT,BSROS
J BJ : G A '4: L 1
JB'J: GMBAS 1
BAS:BS:LLB
BAS:SUIJPR
BAS:$UJIID,BSOrOS,BSJrlS/O:l
BAS:SlJIJID,SUIOPJ.,BSPRO,SURl to,8SR1S/O: 1
aAS:SUXID,BSXOA,BSX08/0:2
aAS:SUX2ID,BSX2/~:2
BAS:SUEID,BSEO/O:2
BAS:SUE1ID,BSE1,dS5UB,8SRSQ/J:2
BAs:su~r:M/O:2

BAS:BSERR,BSERML/J:2
BAS:BSX1A/O:3
3AS:BSX1B/O:3
SAS: BS?IH 10: 3
3AS:t3S:LS/O:3
dAS:BSO(E'tS/O:3
BAS:BS:\1P/O:3
J6J:GM6AS2/0:4
Jt3J:GMBAS1/O:4
JBJ:GM3€RR/O:4
BAS:SUI\1P,BSfUNC,SUOPT/O:5
II

1 •••••• LINK VSVOl BASIC ~ITH ~IS •••••

SAY BASICE,~AP:HASIC£/w=/~:70011
BAS BSprRS,BSPAT,BSROS
JBJ GA'4:Ll
JBJ GMBASl
SAS BS:LLB
BAS SUIJPR
3AS SUJIID,BSOTOS.EIS,BSOT1S.EIS/G:1
BAS SUIJID,SUIOPJ.d~SPRO,SURl I!),~SR1S/O: 1
SAS SUXID,BSXOA,BSXOB/O:2
BAS SUX21D,eSX2/J:2
BAS SUEID,BSEO/O:2
3~S·SU~11D,BSE1,BSSU~,RSRSQ/J:2
B·AS SUOrCM/O:2
BAS BSERR,BSERML/O:2
BAS BSXIA/0:3
BAS BSX1B/0:3
BAS BSPRI/0:3
345 BS:LS/O:3
BAS BSKEYS/O:l
B'AS BS: '4P 10: 3
JB'J GMBAS2/0: 4
JBJ GMB·AS3/0: 4
JBJ GMBERR/O:4
BAS SUI'4P,BSrUNC,SUOPT/O:5
II

4-8

ASSEMBLING AND LINKING GAMMA-II

1
1 •••••• LINK VTOI BASIC W/O EIS •••••

SAV:BASI:avrl,MAP;BASICS/W=/8:70011
BAS:BSprRS,BSPAT,8SROS
JBJ:GA"':Ll.DVT
JB'J: GM3l1\Sl.0Vr
BtAS:BS:LLB
B·AS SUI JPR
BAS SUJIID,BSOrOS,BSOT1S/0:1
6tAS SUIJID,SUIOP~,BSPRO,SUR11D,8SRlS/0:1
BAS SUXIO,BSXOA,BSXOB/O:2
B'AS SUX210,BSX2/J.:2
BAS SUEID,BSEO/O:2
dtAS SU~lIO,BSE1,6SSUB,8SRSQ/J:2
BAS SUDfCM/O:2
BAS BSERR,BSERML/J:2
BAS BSXIA/0:3
S'A 5 B S Xl B 10: 3
BAS BSPRI/0:3
-3tAS BS:LS/J:l
BAS BSKE¥S/O:3
a'AS as:..,p 10: 3
JBJ GMBAS2.0VT/U:4
JBJ GMB~S3.0VT/0:4
JBJ GMBERR/O:4
BAS SUI~P,8SfUNc,suopr/D:5
II

1 •••••• LINK vrOl HASle NITH EIS .* •••
SAV:BASICE.VTl,MAP:BASCES/W:/8:70011
d.S:BsprRS,BSPAr,8SROS
J 8J : G A ~:: L I • 0 V T
J B·J : G M dtA S 1 • U V T
BAS:BS:LLB
dAS:SUIJPR
BAS:SUJIID,BSOTOS.ElS,BSOTlS.EIS/~:l
S'AS: SU 1 J I 0, SU lOP J., BSPRO , SUR II 0, B SR 1 &10: 1
BAS:SUXID,BSXOA,3sxoa/O:2
8AS:SUX2ID,BSX2/J:2
BAS:SUEID,BSEO/O:2
3~S:SU~11D,BSEl,aSSUB,BSRSO/J:2
dAS:SUDrCM/O:2
BAS:BSERR,BSERML/O:2
BAs:aSXIA/O:3
BAS:8SXIB/O:3
BAS:8SPRI/O:3
3'AS:BS:LS/O:3
o'AS:BSKEYS/O: 3
3AS:8S:~P/O;3
JBJ:GMB~S2.0VT/O:4
JB1:GM9AS3.0VT/0:4
J8J:GM6ERR/O:4
3AS:SUI~P,BSfUNC,SUDPT/O:5
II

4-9

APPENDIX A

BASIC/RT-II LANGUAGE SUMMARY

This appendi~ lists the BASIC/RT-II commands, functions, statements,
and error messages. For more detail, see the BASIC-II Language
Reference Manual,; (DEC-Il-LIBBB-A-D) and the BASIC-II/RT-Il User I s
Guide (OEC-II-LIBUA-A-D).

For the differences between version lB and Version 2 of BASIC, see the
SASIC-II/RT-Il Installation Guide (DEC-ll-LIBTA-A-D).

A.I BASIC/RT-II STATEMENTS

CALL routine name ~ argument I istill

Calls assembly language routines from a BASIC program.

CHAIN string [LINE expreSSion]]

Terminates execution of the program, loads the program specified
by string, and begins execution at the lowest line number or at
the line number specified by expression. The string is a file
specification.

CLOSE[[.]exPCl ,[*]exPC2, [t]expr3 , •..]

Closes the file(s) associated with the channel number(s) and
virtual file channel number (s) specified. If no channel 'number
is specified, closep all open files.

COMMON list

Preserves values and names of specified variables and arrays when
the CHAIN statement is executed. Both string and arithmetic
variables and arrays can be passed. The statement also
dimensions the specified arrays. List is in the general format:

varl ~expc~exp~~ [vaC2 [expc ~exp~~ , ••]

DATA list

used in conjunction with READ to input listed
executing program. Can contain any mixture
numbers~ Items must be separated by commas.

A-l

data into an
of strings and

BASIC/RT-ll LANGUAGE SUMMARY

DEF FNletter[{:}](V~r 1 [var2, ••. ,var~) 8expression

Defines a user function. Letter may be any single letter A
through z.

DIM list

Reserves space in memory for arrays according to the subscript(s)
specified after the va~iable name. List is in the general
format:

varl (expr [exp~) [var2 (expr [exp~) , ..]

DIM #integerl,variable(integer2 ,integer3) =integer4

END

Dimensions the virtual array file associated with the channel
number specified by integerl. Integer4 specifies the string size
for string virtual arrays.

Optional. Placed at the physical end of the program to terminate
execution.

FOR var=exprl TO expr2 ~TEP expr3]

Sets up a loop to be executed the specified number of times.

GOSUB line number

Unconditionally transfers
subroutine.

GO TO line number

control to specified line

Uncon~itionally transfers control to specified line number.

{

THEN statement }
IF relational expression THEN line number

GO TO line number

of

Conditionally executes the specified statement or transfers
control to specified line number. When the condition is not true
and a statement is specified, execution continues at the next
sequential statement. The expressions and the relational
operator must all be string or all be numeric~

{

THEN statement }
IF END #expr THEN line number

GO TO line number

Tests for end-of-file condition of input sequential file
associated with channel number specified by expression.

A-2

BASIC/RT-ll LANGUAGE SUMMARY

INPUT ~expr ~ var iablel ~ var iable2, ••]

Inputs data from your terminal or from the file
the channel number specified by expression.
arithmetic or string.

KILL string

Deletes file specified by string.

LINPUT [#expr] str ing var I ~ str ing var 2, ••]

associated with
Variables may be

Inputs string data from the terminal or from the file associated
with channel number specified by expression. Variables can only
be string variables.

NAME stringl TO string2

Renames file specified by stringl to name specified by string2.

NEXT variable

Placed at end of FOR loop to return control to FOR statement.

ON expression GOSUB line numberl~line number2,line number3, •• :]

conditionally transfers control to subroutine at one line number
specified in list. Value of expression determines the line
number to which control is transferred.

ON expression GO TO line numberl[line number2,line number3, •••]

Conditionally transfers control to one line number in the list.
Value of expression determines the line number to which control
is transferred.

ON expression TaEN line numberl ~line number2, •• :ll
Equivalent to ON GO TO.

Opens a file specified by string for input or output as specified
(assumes input if neither specified) and associates file with the
channel number specified by exprl. String is a file
specification.

A-3

BASIC/RT-ll LANGUAGE SUMMARY

OVERLAY string ~INE expresSion]

Overlays or merges the program currently in memory with the
program in the file specified by string, and when overlay is
completed, transfers control to either the next sequential BASIC
line number or the line number specified by expression. String
is a file specification.

PRINT lTItexpr ~ [1 ist]

Prints items in list on the terminal or to . the file associated
with channel number specified by expression. List can consist of
string and arithmetic expressions and the TAB function. Items
can be separated by either commas or semicolons.

PRINT ~expr~USING string, list

Prints items in list on the terminal or to the file associated
with channel number specified by expr in the format determined by
string. List can consist of string and arithmetic expressions.
Items can be separated by either commas or semicolons.

RA.NDOMIZ~

Causes the random number generator (RND function) to produce
different random numbers.

READ var iablel ~var iable2, •..]

Assigns values listed in DATA statements to specified variables.
Variables may be string or numeric.

REM comment

No effect on execution of program. Contains explanatory comments
about the BASIC program.

RESETll!expr]

Equivalent to RESTORE.

RESTORE ~exp:]
Resets either the data pointer or, when specified, the input file
associated with the specified channel number to the beginning.

RETURN

STOP

Terminates a subroutine and returns control to the statem~nt
following the last executed GOSUB statement.

Terminates execution of the program. Placed at logical end(s) of
the program.

A-4

BASIC/RT-II LANGUAGE SUMMARY

A.2 SUMMARY OF BASIC/RT-Il FUNCT~ONS

Arithm~tic Functions

ABS(expr)

Returns the absolute value of the expression.

ATN(expr)

Returns the arctangent of the expression as an angle in radians
in the range + or - pi/2.

COS(expr)

Returns the cosine of the angle specified by the expression in
radians.

EXI;»(expr)

Returns the value of e raised to the power (expr) where e is
(approximately) 2.71828.

INT(expr)

Returns th~ greatest integer less than or equal to the expression
(expr). ('rruncation of decimal values.)

LOG (expr)

Returns the natural logarithm of the expression (expr).

LOGIO(expr)

Returns the base 10 logarithm of the expression (expr).

PI

Returns the value of pi (3.141593).

RND ~expr)]

Returns a random number between 0 and 1.

SGN(expr)

Returns a value indicating the sign of expression (expr).

SIN(expr)

Returns the sine of the angle specified by expression (expr) in
radians~

A-S

BASIC/RT-IILANGUAGE SUMMARY

SQR(expr)

Returns the square root of the expression (expr).

TAB (expr)

Causes the terminal to tab to column number specified by the
expression (expr) (valid only in PRINT statements).

string Functions

ASC(string)

Returns as a decimal number the 8-bit internal code (ASCII value)
for the I-character string e~presston (string).

BIN (string)

Converts a string expression (string) containing a binary number
to a decimal value. Blanks are ignored.

CHR$(expr)

CLK$

DAT$

Generates a l~character string whose ASCII value is the low-order
8 bits of the integer value of the expression (expr).

Returns the time as a string in the form hh:mm:ss (for example
12:30:15) •

Returns the date as a string in the form dd-mon-yr (for example
07-FEB-75).

LEN (string)

Returns the number of characters -in the string (string).

OCT (string)

Converts a string expression (string) containing an octal number
to a decimal value. Blanks are ignored.

POS(stringl,string2,expr)

Searches for and returns the position of the first occurrehce of
string2 in stringl. The search starts at the character position
specified by expression (expr).

A-6

BASIC/RT-ll LANGUAGE SUMMARY

SEG$(string,exprl,expr2)

R~turns the string of characters in position specified by
expressionl through the position specified by expression2.

STR$(expr)

Returns the string which represents the numeric value of the
expression.

TRM$(string)

Returns string without trailing blanks.

VAL (string)

Returns the value of the decimal number contained in the string.

System Functions

ABORT (expr)

CTRLe

Deletes the program and changes the program name to NONAME if the
expression is equal to 1. The ABORT function is equivalent to an
END statement if the expression is equal to O.

Enables the BASIC program to be interrupted with a CTRL/C.

RCTRLe

Disables the CTRL/C interrupt. While the RCTRLC function is in
effect, the BASIC program cannot be interrupted.

RCTRLO

Ensures that BASIC program output is printed even if a CTRL/O is
in effect.

SYS(exprl[,expr2])

Performs system dependent functions determined by exprl and
expr2. See the BASIC-II/RT-II User's Guide (DEC-II-LIBTA-A-D).

TTYSET (255%,expr)

Specifies the right margin
expr-l. If expr equals
margin.

of the terminal as the value of
0, BASIC does not change the previous

A-7

BASIC/RT~ll LANGUAGE' SUMMARY

A.3 SUMMARY OF BASIC/RT-ll COMMANDS

APPEND lI!ile specificatio~

CLEAR

Merges the program in your area in memory with the program
specified by the file specification.

Initializes all variables to 0 and all string variables to nulls
and deletes arrays.

COMPlf"E [file speCificatio~

Saves a compiled version of the program.

DEL line specification ~line specification, •.]

Deletes specified lines.

LENGTH

Prints on your terminal the size of the program in memory and the
size of the remaining free memory.

LIST[N~ [E. ine spec i fica t ionl , I ine spec i fica t ion2, .•]

Prints on the terminal the specified line(s) of the program
currently in memory. NH suppresses the printing of the header
line and is optional.

NEW [!?rogram name]

Erases your storage area and sets the current program name to the
one specified.

OLD ~ile specification]

Erases your storage area and inputs the program from the
specified file.

RENAME program name

Changes the current program name to the one specified~

REPLACE ~ile specificatio~

Replaces the specified file with the current program.

RESEQinew line numbe~ ,lfld line numberm fOld line number~ ,!rrncremen~
Resequences program as specified.

A-a

BASIC/RT ... ll LANGUAGE SUMMARY

RUN[NH]

Executes the program in memory. NH suppresses the printing of
the header line and is optional.

RUN[N~file specification

Erases your storage area, inputs the program from the specified
file, and then executes the program. ooes not print header line
in any case.

SAVE ~ile specificatio~

Outputs the program in memory to the specified file.

SCR

Erases your storage area and changes the program name to NONAME.

SUB line numberxstringlxstring2[xinteger]

Substitutes the integer bccurrence of stringl with string2 on
line specified. x is a delimiter and can be any character such
as @.

UNSAVE file specification

Deletes specified file.

Key Commands

CTRL/C

Interrupts execution of a command or program and causes BASIC to
print the READY message. See your BASIC-II User's Guide for more
information about CTRL/C.

CTRL/O

Causes all further terminal output to be discarded. Printing
resumes if an INPUT statement is encountered, another CTRL/O is
typed, or the program is terminated.

CTRL/Q

Continues output to the terminal; cancels effect of CTRL/S.

CTRL/S

Temporarily suspends all output to terminal until
typed; allows alphanumeric display terminals to
photographed before data is moved off screen.

A-9

CTRL/Q is
be read or

BASIC/~T-ll "AHGUAGE SUMMARY

CTRL/U

Deletes the entire current input line (provided the RETURN key
has not been typed).

DELETE

Deletes the last character typed.

A.4 BASIC/RT-ll ERROR MESSAGES

?ARGUMENT ERROR (?ARG)

Arguments in a function do not match the arguments defined for
the function, in number, range, or type. Ensure that there are
the correct number of arguments, that their values are in the
correct range, and that they are the correct type.

?ARRAYS TOO LARGE (?ATL)

Not enough memory is available for the arrays specified in the
DIM statements. Reduce the size of the arrays or reduce the size
of the program.

?BAD DATA READ (?BDR)

Data item input from a DATA statement or from a file is the wrong
data type. Ensure that the DATA statement or the file contains
the same data type as specified in the READ or INPUT # statement.

?BAD DATA - RETYPE FROM ERROR (?BRT)

Nonfatal. Item entered in response
statement is the wrong data type.
continue.

?BAD LOG (?BLG)

to an INPUT or INPUT #0
Retype item and program will

Nonfatal. Expression in LOG or LOGlO function is 0 or negative.
The function returns 0 and BASIC continues execution of the
program.

?BUFFER STORAGE OVERFLOW (?BSO)

Not enough room available for file buffer in your area.
program size.

?CHANNEL ALREADY OPEN (?CAO)

Reduce

OPEN statement specifies a channel that is already associated
with an open file. Ensure that OPEN statements specify correct
channel numbers and that files .that should be closed are closed.

A-lO

BASIC/RT-ll LANGUAGE SUMMARY

?CHANNEL I/O ERROR (?CIE)

Accessing data in a file produces an error. Ensure that your
peripheral devices and their storage media are working correctly.
One possible cause is that the file accessed has 0 length.

?CHANNEL NOT OPEN (?CNO)

A PRINT #, PRINT # USING, INPUT #, IF END #, or CLOSE statement,
or a reference to a virtual array file specifies a channel number
not associated with an open file. Check that the OPEN statement
has been executed and that it specifies the same channel nu~ber
as the program line with the error.

?CHECKSUM ERROR IN COMPILED PROGRAM (?CCP)

File produced by the COMPILE command contains a format error.
Use a copy of the program created by a SAVE or REPLACE command.

?COMMON OUT OF ORDER (?COO)

Variables and arrays in a COMMON statement are not listed in the
same order as those in a previous segment. Ensure that all
segments have equivalent COMMON statements.

?CONTROL VARIABLE OUT OF RANGE (?CVO)

Expression in an ON GOTO or ON GOSUB statement is 0 or negative
or has a value greater than the number of line numbers listed.
Ensure that expression has a value in the correct range.

?DIVISION BY ZERO (?DVO)

Nonfatal. An expression
substitutes a value of
execution of the program.

?END NOT LAST (?ENL)

includes a
o for that

division
operation

by O. BASIC
and continues

END statement is not the highest numbered program line. This
error message is printed when the END statement is executed.
Ensure that there is only one END statement in program and that
it has the highest line number.

?EXCESS INPUT IGNORED (?EII)

Nonfatal. There are more data items than required by an INPUT or
INPUT #0 statement. BASIC ignores the excess items and continues
execution of the program. Ensure that data items did not contain
an unintended comma (e.g., 1,430 instead of 1.430).

?EXPONENTIATION ERROR (?ERR)

Nonfatal. An expression includes the operation of raising a
negative value to a nonintegral power (e.g., (_I)A. 5). This
would produce a complex number, which cannot be represented in

A-Il

BASIC/RT-ll LANGUAGE SUMMARY

BASIC. This message is also produced when a negative value is
raised to an integral value that has an absolute value greater
than 255 (e.g., (-1)A256)~ In both cases, BASIC substitutes a
value of 0 for the operation and continues execution.

?EXPRESSION TOO COMPLEX (?ETC)

An expression is too complex for BASIC to evaluate in the area it
uses for calculations (called the stack). This condition is
usually caused by including user-defined functions or nested
functions in an expression. The degree of complexity that causes
this error varies according to the amount of space available. in
the stack at the time. Breaking the statement up into several
statements containing simpler expressions may eliminate the
error.

?FILE NOT FOUND (?FNF)

BASIC cannot find the specified file. Ensure that the file
specification was typed correctly and that the file exists.

?FILE TOO SHORT (?FTS)

The file is too small to contain the output.
in a data file, specify a larger FILESIZE.
in a program file, delete unused files with
and then retry.

?FLOATING OVERFLOW (?FOV)

If the error occurs
If the error occurs

the UNSAVE command

Nonfatal. The absolute value of the result of a computation is
greater than the largest number that can be stored by BASIC
(approximately lOA 38). BASIC substitutes a value of 0 for the
operation and continues execution of the program.

?FLOATING UNDERFLOW (?FUN)

Nonfatal. The absolute value of the result of a computation is
smaller than the smallest number that BASIC can store
(approximately lOA(-38) • BASIC substitutes a value of 0 for
operation and continues execution of the program.

?FOR WITHOUT NEXT (?FWN)

The program contains a FOR statement without a corresponding NEXT
statement to terminate the loop. Ensure that each loop in the
program is terminated with a NEXT statement.

?FUNCTION ALREADY DEFINED (?FAD)

The user-defined function is previously defined. Ensur~ that
each function is defined only once and has a unique name.

A-12

BASIC/RT-ll LANGUAGE SUMMARY

?ILLEGAL CHANNEL NUMBER (?ICN)

The channel specified is not in the range allowed or the IF END
statement specifies a file on a terminal. See your BASIC-II
user's guide for information about the range of valid channel
numbers.

?ILLEGAL DIM (?IDM)

A subscript in a DIM or COMMON statement is not an integer, an
array is dimensioned more than once, or an array has more than
two dimensions. Ensure that an array specification is in ,the
correct format and appears only once in the COMMON and DIM
statements in the program.

?ILLEGAL END OF FILE IN COMPILED PROGRAM (?IEF)

File produced by the COMPILE command contains a format error.
Use a copy of the program created by a SAVE or REPLACE command.

?ILLEGAL FILE LENGTH (?IFL)

The FILESIZE specified was less than -1.

?ILLEGAL FILE SPECIFICATION (?IFS)

The file specification is invalid. See your BASIC-II user's
guide for information on the format of a file specification.

?ILLEGAL IN IMMEDIATE MODE (?IIM)

The INPUT or INPUT # statement cannot be entered in immediate
mode. Enter the statement in a program line (followed with a
STOP statement) and execute the statement with an immediate mode
GO TO statement.

?ILLEGAL I/O DIRECTION (?IID)

Statement attempts to write to an input file or read an output
file. Ensure that the channel number specified specifies the
correct file. If the statement assigns a value to an element of
a virtual array file, ensure that the file's OPEN statement does
not specify "FOR INPUT."

?INCONSISTENT NUMBER OF SUBSCRIPTS (?INS)

The array is dimensioned with one subscript and referenced by
two, or vice versa. Ensure that the DIM statement and array
references are consistent.

?INPUT STRING ERROR (1ISE)

Nonfatal. A string entered in response to an INPUT statement
begins with a quotation mark but is not terminated by the
appropriate end quotation mark. BASIC assigns to the string all
the characters between the initial quote and the line terminator
and continues execution of the program.

A-13

BASIC/RT-ll LANGUAGE SUMMARY

?INTEGER OVERFLOW (?IOV)

An integer variable is assigned a value greater than 32767 or
less than -32768 or an integer expression produces a result which
exceeds this range. Change the variable or expression to a
floating point format.

?LINE TOO LONG (?LTL)

The line entered is longer than BASIC allows; the line is
ignored. If this message occurs when BASIC is reading a program
from a file, BASIC stops reading the file. A possible cause is
that you entered a line near the maximum size with no ~paces, but
when you save the program, BASIC adds spaces making the line too
long. Split the line into several smaller lines.

?LINE TOO LONG TO TRANSLATE (?TLT)

Lines are translated as they are entered; the line just entered
exceeds the area reserved for translating. The line is ignored.
If this message is produced while BASIC is reading a program from
a file, BASIC stops reading the file. Split the line into
several smaller lines.

?MISSING SUBPROGRAM (?MSP)

The CALL statement specifies a nonexistent routine name. Ensure
that the name is typed correctly (it must consist of upper case
letters) •

?NEGATIVE SQUARE ROOT (?NGS)

Nonfatal. The expression in the SQR (square root) function has a
negative value. The function returns a value of O. BASIC
continues execution of the program.

?NESTED FOR STATEMENTS WITH SAME CONTROL VARIABLE (?FSV)

A FOR statement specifies the same control variable as that
specified by a FOR NEXT loop that the FOR statement is inside.
Change one of the control variables to a different variable name
(in both the FOR and the corresponding NEXT statement).

?NEXT WITHOUT FOR (?NWF)

A NEXT statement is without a corresponding FOR statement.
Ensure that each loop starts with a FOR statement and ends with a
NEXT statement which specifies the same variable. This error
message is also produced if control is transferred into the
middle of a loop. FOR NEXT loops should only be entered by
executing the FOR statement.

A-14

BASIC/RT-ll LANGUAGE SUMMARY

?NOT ENOUGH ROOM (?NER)

There is not enough room for the FILESIZE specified.
unused files with the UNSAVE command.

?NUMBERS AND STRINGS (?NSM)

Delete

String and numeric values appear in the same expression or they
are set equal to each other: for example, A$=2. Change either
the data type of the variable (e.g., A=2) or the expression
(e.g., A$="2") so that they are consistent.

?OUT OF DATA (?OOD)

The data list is exhausted and a READ statement requests
additional data or the end of a file is reached and the INPUT #
statement requests additional data. Ensure that there is
sufficient data or test for the end-of-file condition with the IF
END statement.

?PRINT USING ERROR' '(?PRU)

There is an error in the PRINT USING statement caused when the
format specification is not a valid string, or is null, or does
riot contain one valid field. The error is also caused when an
attempt is made to print a numeric value in a string field, a
string value in a numeric field, or a negative number in a
floating asterisk or floating dollar sign field that does not
also specify a trailing minus sign. The message is also printed
if the items in the list are not separated by commas or
semicolons.

?PROGRAM TOO BIG (?PTB)

The line just entered causes the program to exceed the user area
in memory: the line is ignored. Reduce program size. If this
error occurs when BASIC is reading a program from a file, BASIC
stops reading the file.

?RESEQUENCE ERROR (?RES)

Resequencing the program would cause lines to overlap or existing
lines to be deleted, or would create an illegal line number.
Reenter the command with different arguments.

?RETURN WITHOUT GOSUB (?RWG)

A RETURN is encountered before execution of a GOSUB statement.
Do not transfer control to a subroutine except by executing a
GOSUB or an ON GOSUB statement.

?STRING STORAGE OVERFLOW (?SSO)

Not enough memory is available to store all the strings used in
the program. Reduce program size.

BASIC/RT-ll LAMGUAGB SUMMARY

?STRING TOO LONG (?STL)

The maximum length of a string in a BASIC statement is 255
characters. split string into several smaller st(ings.

?SUBSCRIPT OUT OF BOUNDS (?SOB)

The subscript computed is less than zero or is outside the bounds
defined in the DIM statement. Ensure that expression specifying
the subscript is in the correct range.

?SUBSTITUTE ERROR (?SUB)

There was no separator between the strings in the SUB command or
the command would create an immediate mode statement. Retype SUB
command.

?SYNTAX ERROR (?SYN)

BASIC has encountered an unrecognizable element. Common examples
of syntax errors are misspelled commands, unmatched parentheses,
and other typographical errors. This message can also be
produced by attempting to read in a program from a file
containing illegal characters, in which Case BASIC stops (eading
the file. Retype program line or ensure that file contains a
valid BASIC program.

?TOO MANY GOSUBS (?TMG)

More than 20 GOSUBS have been executed without a corresponding
RETURN statement. Change the program logic so that less GOSUB
statements are executed.

?TOO MANY ITEMS IN COMMON (?TIC)

There are more than 2~5 variable and array names
A(lOO), A%, A%(lO, 10), A$, and A$(5) are
different names). Reduce the number of items
converting individual variables to elements of
passing fewer items to the next program segment.

?UNDEFINED FUNCTIONS (?UFN)

in COMMON (A,
all considered

in COMMON by
an array or by

A user-defined function has been used and not defined. Define
the function. A function is defined only after the RUN command
or CHAIN statement is executed.

?UNDEFINED LINE NUMBER (?ULN)

The line number specified in an IF, GO TO, GOSUB, ON GO TO, 1N
GOSUB, or CHAIN statement does not exist anywhere in the program.
Ensure that the line number specified exists in the program.

A-16

>8ASIC/RT-llLAIIGUAGB SUMMARY

?UNDIMENSIONED ARRAY IN CALL (?UAC)

The first'reference to an undimensioned array appears in a CALL
statement. Oimension the array with the DIM statement.

?USE REPLACE

Saving the program would have caused
deleted. Use either a different
REPLACE command.

an existing file
file specification

?VIRTUAL ARRAY CHANNEL ALREADY IN USE (?VCU)

to be
or the

The DIM' # statement specifies a channel number which has already
appeared in a DIM # statement. Specify another channel number.

FunctioncError Messages

Using BASIC functions improperly causes error messages to be printed.
The following list names the functions and describes under which
conditions BASIC functions produce errors.

All functions

The argument used is the wrong type. For example, the argument
is numeric and the function expects a string expression. This
condition produces ?ARGUMENT ERROR (?ARG).

All functions

The wrong number of arguments is used in a function, or the wrong
character is used to separate them. For example, PRINT SIN (X,Y)
produces a syntax error because the SIN function has only one
argument. This condition produces, ?SYNTAX ERROR (?SYN).

ASC(string)

String is hot a . I-character string.
? ARGUMENT EHROR (? ARG) •

This condition produces

BIN (string)

Character other than blank,O, or1 in string or value is greater
than 2-16. This condition produces ?ARGUMENT ERROR (?ARG).

CHR$(expr)

Expres:Sion- is not in the range 0 to 32767.
produces ?ARGUMENT ERROR (?ARG).

A-l7

This condition

BASIC/RT-ll LPGUAGB $UMMARY

EXP(expr)

Va~ue of expression is greater than 87. This condition produces
?EXPONENTIATION ERROR (?EER).

FNletter

The function FNletter is not defined (function cannot be
by an immediate mode statement). This conqition
?UNDEFINED FUNCTION (?UFN).

defined
produces

LOG (expr)

Expression is negative or 0. The function returns a value of O.
This condition produces ?BAD LOG (?BLG).

LOGlO (expr)

Expression is negative or O. The function returns a value of O.
This condition produces ?BAD LOG (?BLG).

OCT (string)

PI

Character other than blank or digits 0
string, or value is greater than 2"16.
ARGUMENT ERROR (?ARG).

through 7 appears in
These conditions produce

An argument is included. This condition produces ?SYNTAX ERROR
(?SYN) •

SEG$(string,exprl,expr2)

No additional error conditions.

SQR (expr)

Expression is negative. The function returns a value of O. This
condition produces ?NEGATIVE SQUARE ROOT (?NGS).

TAB (expr)

Expression is not in the range 0 to 32767.
produces ?ARGUMENT ERROR (?ARG).

VAL (string)

This condition

String is not a numeric constant.
?ARGUMENT ERROR (?ARG).

This condition produces

A-l8

APPENDIX B

FORTRAN/RT-II LANGUAGE SUMMARY

B.l EXPRESSION OPERATORS

Operators in each type are shown in order of descending precedence.

Type Operator Operates Upon

1---------4---------------------~------ ----------------1
Arithmetic ** exponentiation

multiplication,
division

Relational

Logical

*,/

I +,-

.GT.

.GE.

.LT.

.LE.

.EQ.

.NE.

.NOT.

.AND.

.OR.

addition, subtraction
unary plus and minus

greater than
greater than or equal

less than
less than or equal to

equal to
not equal to

• NO'f.A is true if and
only if A is false

A.AND.B is true if
and only if A and a
are both true

A.OR.B is true if and
only if either A or
B or both are true

.EQV. A.EQV.B is true if and
only if A and B
are both true or A
and B are both false

.XOR. A.XOR.B is true if and
only if A is true and
B is false or B is
true and A is false

B-1

arithmetic or logical
constants,
variables, and
expressions

arithmetic or logical
to constants, variables,

and expressions
(all
relational operators
have equal priority)

logical or integer
constants, variables,
and expressions

(precedence same
as .XOR.)

(precedence same
as • EQV.)

FORTRAN/RT-ll LANGUAGE SUMMARY

B.2 STATEMENTS

The following summary of statements available in the PDP-II
language defines the general format for the statement.
detailed information is needed, refer to the PDP-II FORTRAN
Reference Manual (DEC-II-LFLRA-C-DNI).

FORTRAN
If more

Language

Statement Formats Effect

ACCEPT See READi Formatted Sequential
See READ, List-Directed

Arithmetic/Logical Assignment

v=e

v

e

is a variable name or an array element name.

is an expression.

The value of the arithmetic or logical expression is
assigned to the variable.

Arithmetic Statement Function

f([p[,p] •••])=e

f

p

e

ASSIGN s TO v

s

v

BACKSPACE u

u

is a symbolic name.

is a symbolic name.

is an expression.

Creates a user-defined function having the variables p
as dummy arguments. When referenced, the expression is
evaluated using the actual arguments in the function
call.

is an executable statement label.

is an integer variable name.

Associate the statement
variable v for later
statement.

number s with the
use in an assigned

is an integer variabl~ or constant.

integer
GO TO

The currently open file on logical unit u is backspaced
one record.

B-2

FORTRAN/RT-ll LANGUAGE SUMMARY

BLOCK DATA [nam]

nam is a symbolic name.

Specifies the subprogram which follows as a BLOCK DATA
subprogram.

CALL s [([a] [, [a)] •••)]

s

a

is a subprogram name.

is an expression, a procedure name, or an array name.

Calls the SUBROUTINE subprogram with the name specified
by s, passing the actual arguments a to replace the
dummy arguments in the SUBROUTINE definition.

CLOSE (p[,p] •••)

p is one of the following forms:

UNIT =e
DISPOSE = 'SAVE' or DISP = 'SAVE'
DISPOSE = 'KEEP' or DISP 'KEEP'
DISPOSE = 'DELETE' or DISP = 'DELETE'
DISPOSE = 'PRINT' or DISP = 'PRINT'
ERR = s

e is a numeric expression.
s is an executable statement label.

Closes the specified file.

COMMON [/[cb]/) nlist [[,)/[cb)/nlist] •••

cb is a common block name.

nlist

CONTINUE

is a list of one or more variable names, array names, or
array declarators separated by commas.

Reserves one or more blocks of storage space under the
name specified to contain the variables associated with
that block name.

Causes no processing.

DATA nlist/clist/[[,) nlist/clist/] .••

nlist

clist

is a list of one or more variable names, array names, or
array element names separated by commas. Subscript
expressions must be constant.

is a list of one or more constants separated by commas,
each optionally preceded by j*, where j is a nonzero,
unsigned integer constant.

B-3

FORTRAN/RT-II LANGUAGE SUMMARY

Causes elements in the list of values to be initially
stored in the corresponding elements of the list of
variable names.

DECODE (c,f,b[,ERR=s]) [list]

c

f

b

s

list

DEFINE FILE

u

m

n

v

is an integer expression.

is a FORMAT statement label or array name.

is a variable name, array name, or array element name.

is an executable statement label.

is an I/O list.

Changes the elements in the I/O list from character
into internal format; c specifies the number of
characters, f specifies the format, and b is the name
of the entity containing the characters to be
converted.

u(m,n,U,v) [,u(m,n,U,v)] •••

is

is

is

is

an integer variable name or integer constant.

an integer variable name or integer constant.

an integer variable name or integer constant.

an integer variable name.

Defines the record structure of a direct access file
where u is the logical unit number, m is the number of
fixed length records in the file, n is the length in
words of a single record, U is a fixed argument, and v
is the associated variable.

DIMENSION a (d) [, a (d)] .••

a(d) is an array declarator.

Specifies storage space requirements for arrays.

DO s [,] i el,e2[,e3]

s is the label of an executable statement.

i is a variable name.

ei are integer expressions.

To execute the DO loop:

1. Set i = el

2. Execute statements through statement number s

3. Evaluate i = i+e3

8-4

FORTRAN/RT-ll LANGUAGE SUMMARY

4. Repeat 2 through 3 for

MAX (1, INT«e2 - el)/e3) + 1)

iterations

ENCODE (c,f ,b[,ERR=s]) [list]

END

c

f

b

s

list

END FILE u

u

END=s,ERR=s

s

is an integer expression.

is a FORMAT statement label or an array name.

is a variable name, array name, or array element name.

is an executable statement label.

is an I/O list.

Changes the elements in the list of variables into
characters: c specifies the number of characters in
the buffer, f specifies the format statement number,
and b is the name of the entity to be used as a buffer.

Delimits a program unit.

is an integer variable or constant.

An end-file record is written on logical unit u.

is an executable statement label.

(Transfer of Control) on end-of-file or error condition
is an optional element in each type of I/O statement
allowing the program to transfer to statement number s
on an end-of-file (END=) or error (ERR=) condition.

EQUIVALENCE (nl ist) [, (nl ist)] •••

nlist is a list of two or more variable names, array names, or
array element names separated by commas. Subscript
expressions must be constant.

Each of the names (nlist) within a set of parentheses
is assigned the same storage location.

EXTERNAL v[,v] •••

v is a subprogram name.

Defines the names specified as FUNCTION or SUBROUTINE
subprograms.

B-5

FIND (u'r)

u

r

FORTRAN/RT-II LANGUAGE SUMMARY

is an integer variable name or integer constant.

is an integer expression.

positions the file on logical unit u to record rand
sets associated variable to record number r.

FORMAT (field specification, •••)

Describes the format in which one or more records are
to be transmitted: a statement label must b~ present.

[typ] FUNCTION nam[*n][([p[,p] •••])]

typ is a data type specifier.

nam is a symbolic name.

*n is a data type length specifier.

p is a symbolic name.

GO TO s

s

Begins a FUNCTION subprogram, indicating the program
name and any dummy argument names, p. An optional type
specification can be included.

is an executable statement label.

(Unconditional GO TO) Transfers control to statement
number s.

GO TO (s 1 is t) [,] e

slist

e

is a list of one or more executable statement labels
separated by commas.

is an integer expression.

(Computed GO TO) Transfers control to the statement
label specified by the value of expression e. (If e=l
control transfers to the first statement labelw If e=2
it transfers to the second statement label. etc.) If e
is less than lor greater than the number of statement
labels present, no transfer takes place.

GO TO v [[,] (s 1 is t)]

v

slist

is an integer variable rtame.

is a list of one or more executable statement' labels
separated by commas.

(Assigned GO TO) Transfers control to the statement
most retently ~~iociated with v by an ASSIGN statement.

8-6

PORTRAN/RT-ll LANGUAGE SUMMARY

IF (e) sl,s2,s3

e is an expression.

si are executable statement labels.

IF (e) st

e

(Arithmetic IF) Transfers control to statement number
si depending upon the value of the expression. If the
value of the expression is less than zero, transfer to
sl~ if the value of the expression is equal to zero,
transfer to s2; if the value of the expression is
greater than zero, transfer to s3.

is an expression.

st is any executable statement except a DO or logical IF
statement.

(Logical IF) Executes the statement if the logical
expression is true.

IMPLICIT typ (a[,a] .•.) [,typ(a[,a] .••)] •••

typ is a data type specifier.

a is either a single letter, or two letters in alphabetical
order separated by a dash (i.e., x-y).

The elements a represent single (or a range of)
letter(s) whose presence as the initial letter of a
variable specifies the variable to be of that type.

OPEN (p [, p] •..)

p is one of the following forms:

UNIT = e
NAME = n
TYPE = 'OLD'
TYPE = 'NEW'
TYPE = 'SCRATCH'
TYPE = 'UNKNOWN'
ACCESS 'SEQUENTIAL'
ACCESS = 'DIRECT'
ACCESS = 'APPEND'
READONLY
FORM = 'FORMATTED'
FORM = 'UNFORMATTED'
RECORDSIZE = e
ERR = s
BUFFERCOUNT = e
INITIALSIZE = e
E;XTENDSIZE = e
NOSPANBLOCKS
SHARED
DISPOSE = 'SAVE' or DISP = 'SAVE'
DISPOSE 'KEEP' or DISP = 'KEEP'
DISPOSE = 'DELETE' or DISP = 'DELETE'
DISPOSE = 'PRINT' or DISP = 'PRINT'

8-7

PAUSE [disp]

disp

PRINT

PROGRAM nam

FORTRAN/RT-II LANGUAGE SUMMARY

ASSOCIATEVARIABLE = v
CARRIAGECONTROL = 'FORTRAN'
CARRIAGECONTROL = 'LIST'
CARRIAGECONTROL = 'NONE'
MAXREC = e
BLOCKSIZE = e

e is an integer expression.
s is an executable statement label.
v is an integer variable name.
n is an array name, variable name, array element name, or
alphanumeric literal.

Opens a file on the specified logical unit according to
the parameters specified by the keywords.

is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant.

Suspends program execution and prints the display, if
one is specified.

See WRITE, Formatted Sequential
See WRITE, Listed-Directed

nam is a symbolic name.

Specifies a name for the main program.

READ (u,f[,END=s] [,ERR=s]) [list]

READ f [,Ii s t]

ACCEPT f [, list]

u is an integer variable or constant.

f is a FORMAT statement label or an array name.

s is an executable statement label.

list is an I/O list.

(Formatted Sequential) Reads one or more logical
records from unit u and assigns values to the elements
in the list, converted according to format
specification f.

READ(u[,END=s] [,ERR=s]) [list]

u is an integer variable or constant.

s is an executable statement label.

list is an I/O list.

B-8

FORTRAN/RT-ll LANGUAGE SUMMARY

(Unformatted Sequential) Reads one unformatted record
from unit u, and assigns values to the elements in the
list.

READ (u' r [,ERR=S]) [list]

u is an integer variable or constant.

r is an integer expression.

s is an executable statement label.

list is an I/O list.

(Unformatted Direct Access) Reads record r from unit u,
and assigns values to the elements in the list.

READ (u, * [,END=S] [,ERR=s]) list

READ *,list

ACCEPT *,list

u is an integer variable or constant.

* denotes list-directed formatting.

s is an executable statement label.

list is an I/O list.

RETURN

REWIND u

u

STOP [disp]

disp

(List-Directed) Reads one or more logical records from
unit u and assigns values to the elements in the list,
converted according to the data type of the list
element.

Returns control to the calling program from the current
subprogram.

is an integer variable or constant.

Repositions logical unit u to the beginning of the
currently opened file.

is a decimal digit string containing one to five digits,
an alphanumeric literal, or an octal constant.

Terminate program execution and print the display, if
one is specified.

8-9

FORTRAN/RT-ll LANGUAGE SUMMARY

SUBROUTINE nam[([p[,p] •••])]

TYPE

nam is a symbolic name.

P is a symbolic name.

Begins a SUBROUTINE subprogram, indicating the program
name and any dummy argument names, p.

See WRITE, Formatted Sequential
See WRITE, List-Directed

Type Declaration

typv[,v] ...

typ is a data type specifier.

v is a variable name, array name, function or function
entry name, or an array declarator. The name can
optionally be fOllowed by a data type length specifier
(*n) •

The symbolic names, v, are assigned the specified data
type in the program unit.

typ is one of:

DOUBLE PRECISION
COMPLEX
COMPLEX*8
REAL
REAL*4
REAL*8
INTEGER
INTEGER*2
INTEGER*4
BYTE
LOGICAL
LOGICAL*l
LOGICAL*4

VIRTUAL a(d) [,a(d)] •••

a(d) is an array declarator that specifies storage space for a
VIRTUAL array.

WRITE (u,f[,ERR=s]) [list]

PRINT f[,list]

TYPE f[,list]

u is an integer variable or constant.

f is a FORMAT statement label or an array name.

s is an executable statement label.

list is an I/O list.

8-10

FORTRAN/RT-ll LANGUAGE SUMMARY

(Formatted Sequential) writes one or more logical
records to unit u containing the values of the elements
in the list, converted according to format
specification f.

WRITE (u[,ERR=s]) [list]

u is an integer variable or constant.

s is an executable statement label.

list is an I/O list.

(Unformatted Sequential) Writes one unformatted record
to unit u containing the values of the elements in the
list.

WRITE (u'r[,ERR=s]) [list]

u is an integer variable or constant.

r is an integer expression.

s is an executable statement label.

list is an I/O list.

(Unformatted Direct Access) writes record r to unit u
containing the values of the elements in the list.

WRITE(u,*[,ERR=s])list

PRINT *,list

TYPE *,list

u is an integer variable or constant.

* denotes list-directed formatting.

s is an executable statement label.

list is an I/O list.

B.3 FORTRAN

FORM

ABS(X)
IABS(I)
DABS (X)

(List-Directed) writes one or more logical records to
unit u containing the values of the elements in the
list, converted according to the data type of the list
element.

LIBRARY FUNCTIONS

ARGUMENT
TYPE

Real
Integer
Double

RESULT
TYPE

Real
Integer
Double

B-ll

DEFINITION

Real absolute value
Integer absolute value
Double precision absolute
value

FORM

CABS(Z)

FLOAT(I)
IFIX(X)

SNGL (X)
DBLE(X)
REAL(Z)

AIMAG(Z)

CMPLX(X,Y)

AINT(X)
INT(X)
IDINT(X)

AMOD(X,Y)
MOD(I,J)
DMOD(X,Y)

AMAX 0 (I , J • • •)

AMAX 1 (X , Y , . • •)
MAXO (I,J , •••)

MAX1(X,y, •••)

DMAX1 (X, Y , •••)

AM I NO (I , J , • • •)
AM I N 1 (X , Y , •••)
MINO (I , J , •••)

MIN1(X,y, •••)
DMIN1(X,Y •••)

FORTRAN/RT-ll LANGUAGE SUMMARY

ARGUMENT
TYPE

Complex

Integer

Real

Double
Real

Complex

Complex

Real

RESULT
TYPE

Real

Real

Integer

Real
Double

Real

Real

Complex

DEFINITION

Complex to Real, absolute
value

where z=(x,y)
CABS (Z) = (X 2 +y2) Y2

Integer to Real conversion
Real to Integer conversion

IFIX(X) is equivalent to
INT (X)

Double to Real conversion
Real to Double conversion !
Complex to Real conversion,

obtain real part
Complex to Real conversion,

obtain imaginary part
Real to Complex conversion

CMPLX(X,Y)=X+i*Y

Truncation functions return the sign of
the argument * largest integer ~ largl

Real
Real
Double

Real
Integer
Integer

Real to Real truncation
Real to Integer truncation
Double to Integer truncation

Remainder functions return the remainder
when the first argument is divided by
the second.

Real remainder
Integer remainder

Real
Integer
Double

Real
Integer
Double Double precision remainder

Maximum value functions return the
largest value from among the argument
list; > 2 arguments.

Integer Real Real maximum
list

from

Real Real Real maximum from Real
Integer Integer Integer maximum from

list
Real Integer Integer maximum

list
Double Double Double maximum

list

Minimum value functions return the
smallest value from among the argument
list; > 2 arguments.

from

from

Integer

list
Integer

Real

Double

Integer Real Real minimum of Integer list
Real Real Real minimum of Real list
Integer Integer Integer minimum of Integer

list
Real Integer Integer minimum of Real list
Double Double Double minimum of Double list

8-12

I

I
I

FORM

SIGN(X,Y)
ISIGN(I,J)
DSIGN(X,Y)

DIM(X,Y)
IDIM(I,J)

EXP(X)
DEXP(X)
CEXP(Z)

ALOG(X)
ALOGlO(X)
DLOG(X)
DLOG10(X)
CLOG(Z)

SQRT (X)
DSQRT(X)

CSQRT(Z)

SIN(X)
DSIN(X)
CSIN(Z)

COS (X)
DCOS(X)
CCOS(Z)

TANH (X)

ATAN(X)
DATAN(X)
ATAN2(X,Y)
DATAN2(X,Y)

CONJG(Z)

FORTRAN/RT-ll LANGUAGE SUMMARY

ARGUMENT
TYPE

RESULT
TYPE DEFINITION

The transfer of sign functions return
(sign of the second argument) *
(absolute value of first argument).

Real
Integer
Double

Real
Integer
Double

Real transfer of sign
lnteger transfer of sign
Double precision transfer of
sign

positive difference functions return the
first argument minus the minimum of the
two arguments.

Real
Integer

Real
Integer

Real positive difference
Integer positive difference

Exponential functions return the value
of e raised to the argument power.

Real
Double
Complex

Real
Real
Double
Double
Complex

Real
Double

Complex

Real
Double
Complex

Real
Double
Complex

Real

Real
Double
Real
Double

Complex

Real
Double
Complex

Real
Real
Double
Double
Complex

Real
Double

Complex

Real
Double
Complex

Real
Double
Complex

Real

Real
Double
Real
Double

Complex

B-13

Returns log (e) (X)
Returns 10glO(X)
Returns log (e) (X)
Returns 10glO(X)
Returns log (e) of
argument

complex

Square root of Real argument
Square root of Double
precision argument
Square root of Complex
argument

Real sine
Double precision sine
Complex sine

Real cosine
Double precision cosine
Complex cosine

Hyperbolic tangent

Real arc tangent
Double precision arc tangent
Real arc tangent of (X/Y)
Double precision arc tangent
of (X/Y)

Complex conjugate, if z=x+i*Y
CONJG(Z)=X-i*Y

FORTRAN/RT-ll LANGUAGE SUMMARY

.....----------...:-....---------'--.-------.

FORM
ARGUMENT

TYPE
RESULT

TYPE
t-------~------.----------.

RAN(I,J) Intege~ Real

B-14

DEFINITION

Returns a random number of
uniform distribution over the
range 0 to 1. I and J must
be integer variables and
should be set initially to O.
Resetting I and J to 0
regenerates the random number
sequence. Alternate starting
values for I and J ~ill
generate different random
number sequences.

APPENDIX C

CAMERA ORIENTATION

Two entries in the Patient Study Plan (see Chapter 4) call for switch
settings on the scintillation camera. These entries refer to the
orientation and rotation switches on cameras manufactured by Searle
Radiographies, Inc. (formerly Nuclear-Chicago) •

On the Searle cameras, the 4-position Orientation switch and the
2-position Rotation switch combine to produce the eight possible
coordinate relations according to the following table, in which X and
Y represent the camera's field coordinates, and X' and y' represent
the coordinates of the matrix displayed on the screen.

Orientation Rotation Switch position
Switch POSe 1 (HORIZONTAL) 2 (UPRIGHT)

1 X'=-y X'=X
Y'=X y'=-y

2 X'=-y X'=X
Y'=-X Y'=y

3 X'=Y X'=-X
Y'=-X y'=Y

4 X'=Y X'=-X
Y'=X Y'=-y

The camera's coordinates are oriented as shown below, with the viewer
standing above the camera, and the camera rotated 180 so that it is
face upwards toward the viewer.

C.l TRANSFORMATION OPERATORS

The transformations tabulated above can be written in terms of matrix
operators, thus

Z' = 0 R Z

C-I

where

CAMERA ORIENTATION

Z' = (X',Y') is the display cQordinate operator

Z = (X,Y) is the camera coordinate operator

(R [m=l or 2) is the Rotation Switch Setting

(0 [n=1,2,3, or 4] is the Orientation Switch Setting

The matrix operators for each value of m and n are as follows:

(0) ~~ -:J (O).~ J (0) .1-1 ~ (0) .1-1 01
~o ~ ~o -:J

(R) =f 0 -~ (R ~~ ol
l:l ~ ~ :J

Note that the op~rator (0) is cyclically permutable, so that an
absolute definition of the camera's coordinate system is not
necessary.

Exampl~:

For n=4, m=l

Z I =[x 'J = 0 R Z = [-1 ol 10.0 . -ll
yl 0 -~ L:l ~ [:]

:;: ~l -J [~:J [:]

C-2

CAMERA ORIENTATION

C.2 CONVERSION TO OTHER CAMERAS

The two switches of the Searle cameras produce any of the eight
possible coordinate orientations. Corresponding functions of other
camera types can be matched to the settings of these two switches.
For example, given a camera that can only rotate the image clockwise,
the corresponding switch settings would be as follows:

Searle
Camera X Switch Settings

y Rotation Orientation

L
Switch Switch

X 2 2
Upright

j
y 1 3

Horizontal

X

Xl 2 4
Upright

y

X 1 1

y~
Horizontal

C-3

APPENDIX D

USING A NEW DISK

Before using a new RK05 disk cartridge, you must:

1. Format the cartridge.

2. Initialize the directory (required for RT-ll).

Before using a new RK06, RK07, or RLOI disk, you need only initialize
the directory.

D.l FORMATTING A NEW RK05 DISK ON AN 11/34

The following instructions detail the procedure for formatting an RK05
disk~

1. Mount the disk to be formatted in Unit O. The following
formatting procedure will work only on Unit O.

2. Begin the boot procedure.
The four numbers will
dollar sign ($).

Press CNTRL/HALT, then CNTRL/BOOT.
appear on the console followed by a

3. At the $, type:

L SP 1000G1!)

where ~ represents a space and
The L stands for Load address.

4. At the next $ prompt type:

D~
O~
DC!:)
oG:)
o~
oGD
o c::L)
o C2D

l2737G!D
6003GiD
l77404G!D
105737G!D
l77404@)
100375 G!D
l37G!D
lOOOQ!!)

represents RETURN.

Each line will be preceded by the $ prompt. The D stands for
Deposit (at the address).

5. To check that you have entered the correct numbers, type:

LC!:) 1000G!!)
E

0-1

USING A NEW DISK

After you type E ~, the system will type the input number
that is deposited at location 1000.

E ~ 001000 012737

If 012737 does not appear for location 1000, correct the
location by typing the following at the $ prompt:

D CD l2737G!!)

Proceed to check each location and number in sequence by
typing the following for each number you entered in step 4.

The locations and numbers should appear.

6. Afte~ you have verified that you typed in the numbers
correctly, type:

L G) 1000~
sGE)

Wait 60 seconds while the disk is formatted. When the disk
light stops flashing, the disk is formatted and ready for
use.

D.2 INITIALIZING AN RK05 RT-ll DISK DIRECTORY

Initializing a disk sets up and completely clears its file directory.
A new (unused) disk must always be inittallzed before it is first
used. The effect of an INITIALIZE operation is to remove all
filenames from the directory. Thus, before you initialize any disk,
be sure that there are no files on it that you might later want.

After formatting an RK05 disk, reload the GAMMA-II system disk in unit
O,write protected and load the RK05 disk to be ihit:lalized in unit 1.
Type:

CRTL/C
INIT G) RKl:G!)

The system will respond with:

RKl:/Init are you sure?

Th~ system prompt RKl:/Init are you sure? is always printed to provide
an opportunity for you to verify the command. Typing a Y followed by
RETURN initiates the operation, while N followed by RETURN ignores the
operation and returns control to ~he monitor command mode. Check your
command line, make sure you ~reinitializing the cor~ect disk, and
then type a Y followed by RETURN.

D-2

USING A NEW DISK

0.3 INITIALIZING AN RK06 RT-ll DISK DIRBCTORY

As with RK05 disks, initializing an RK06 disk sets up and completely
clears its file directory. A new (unused) disk must always be
initialized before it is first used. The effect of an INITIALIZE
operation is to remove all filenames from the directory. Thus, before
you initialize any disk, be sure that there are no files on it that
you might later want.

To initialize an RK06 disk, load the GAMMA-II system disk, write
protected and type:

CTRL/C
INIT/BAD ~ DMI:~

The system will respond with:

DMI:/Init are you sure?

The system prompt DMI:/Init are you sure? is always printed to provide
an opportunity for you to verify the command. Typing a Y followed by
RETURN initiates the operation, while N followed by RETURN ignores the
operation and returns control to the monitor command mode. Check your
command line, make sure you are initializing the correct disk, and
then type a Y followed by RETURN.

The /BAD option on the IN IT command makes sure that any bad blocks on
the disk are designated in the directory as FILE.BAD. In this way,
the bad blocks are removed from the available disk blocks, thus
minimizing disk errors.

0-3

Administrative data block,
2-2 to 2-4, 2-7

Assembling GAMMA-II, 4-1

Backing up disks, l-S, 1-9
BACKUP, l-S, 1-9
BASIC commands,

APPEND, A-S
CLEAR, A-S
COMPILE, A-S
DEL, A-S
LENGTH, A-S
LIST, A-a
NEW, A-8
OLD, A-S
RENAME, A-S
REPLACE, A-S
RESEO, A-8
RUN, A-9
SAVE, A-9
SCR, A-9
SUB, A-9
UNSAVE, A-9

BASIC error messages,
3-11 to 3-14,
A-lO to A-IS

BASIC functions,
ABORT, A-7
ABS, A-5
ASC, A-6
ATN, A-5
BIN, A-6
CHR$, A-6

·CLK$, A-6
COS, A-5
CTRLC, A-7
CTRLO, A-7
DAT$, A-6
EXP, A-5
INT, A-S
LEN, A-6
LOG, A-5
LOG10, A-5
OCT, A-6
PI, A-S
POS, A-6
RCTRLC, A-7
RND, A-5
SEG$, A-7
SGN, A-5
SIN, A-5
SOR, A-6
STR$, A-7

INDEX

BASIC functions (Cont.)
SYS, A-7
TAB, A-6
TRM$, A-7
TTYSET, A-7
VAL, A-7

BASIC statements,
CALL, A-I
CHAIN, A-I
CLOSE, A-I
COMMON, A-I
DATA, A-I
DEF, A-2
DIM, A-2
END, A-2
FOR, A-2
GO TO, A-2
GOSUB, A-2
IF, A-2
IF TO, A-2
INPUT, A-3
KILL, A-3
LET, A-3
LINPUT, A-3
NAME, A-3
NEXT, A-3
ON, A-3
OPEN, A-3
OVERLAY, A-4
PRINT, A-4
RANDOMIZE, A-4
READ, A-4
REM, A-4
RESET, A-4
RESTORE, A-4
RETURN, A-4
STOP, A-4

BASIC support routines, 3-1
BGAMMA routines, 3·21
Building GAMMA-II, 1-1

Camera switch settings, C-l
Comment block, 2-2 to 2-4,

2-6
COMPRS, 2-7
Configuring disks, 1-4
CTRL/C, A-9
CTRL/O, A-9
CTRL/O; A-9
CTRL/S, A-9
CTRL/U, A-lO
Curve,

dynamic, 2-17

Index-l

DELETE, A-10
Disk formatting, 0-1
Disks,

backing up, 1-8~ 1-9
configuring, 1-4 ,
initializing, D-2, 0-3
RK05, 1-1, 1-2, D-l, D-2
RK06, 1-1, 1-2, D-3
RK07, 1-1, 1-2
RL01, 1-1, 1-2

Distribution media, 1-1,
1-2

DL, 1-2
OM, 1-2
Dynamic curve, 2-17
Dynamic study, 2-2, 2-17

Error messages,
BASIC, 3-11 to 3-14,

A-I0 to A-18
FORTRAN, 3-11 to 3-14

FAOOFF, 2-7
FGADM1 routines, 3-20
FGADM2 routines, 3-21
FGCDM1 routines, 3-21
FGCOM2 routines, 3-21
FGPICK routines, 3-7, 3-21
FGPLOT routines, 3-21
FGPTOV routines, 3-21
File,

dynamic patient, 2-2
patient, ,2-1, 2-10, 3-2

File names,
patient, 2-10

File type, 2-1
Files,

internal, : 2-:17
mac ro, 2-1'8
playback, 2-18

Formatting,
disk; D-1

FORTRAN arithmetic
operators, B-1

FORTRAN error messages,
3-11 to 3-14

FORTRAN library functions,
ABS, B-11
AIMAG, 8-12
AINT, 8-12
ALOG, 8-13
ALOGID, B-13
AMAXO, 8-12

INDEX (CONT •)

FORTRAN library functions
(Cont.)

AMAX1, B-12
AMINO,B-12
AMINI, B-12
AMOD, B-12
ATAN, 8-13
ATAN2, B-13
CABS, B-12
CCOS, B-13
CEXP, 8-13
CLOG, 8-13
CMPLX, B-12
CONJG, B-13
COS, 8-13
CSIN, 8-13
CSQRT, 8-13
DA8S, 8-11
DATAN,B-13
OATAN2, B-13
D8LE, B-12
DCOS, 8-13
OEXP, 8-13
DIM, 8-13
DLOG, 8-13
DLOG10, 8-13
DMAX1, 8-12
OMIN1, 8-12
OMOD, 8-12
DSIGN, 8-13
DSIN, 8-13
OSQRT, B-13
EXP, 8-13
FLOAT, B-12
FORM, 8-12, 8-13
IA8S, 8-11
IDIM, 8-13
IDINT, 8-12
IFIX, 8-12
INT, B-12
ISIGN, 8-13
MAXO, 8-12
MAXI, 8-12
MINO, 8-12
MINI, 8-12
MOD, 8-12
RAN, 8-14
REAL, B-12
SIGN, 8-13
SIN, 8-13
SNGL, 8-12
SQRT, 8-13
TANH, 8-13

FORTRAN logical operators,
B-1

FORTRAN relational
operators, 8-1

Index-2

FORTRAN statements,
ACCEPT, 8-2, 8-8, 8-9
ASSIGN, 8-2
assignment, 8-2
8ACKSPACE, 8-2
8LOCK DATA, 8 3
CALL, 8-3
CLOSE, 8-3
COMMON, 8-3
CONTINUE, 8-3
DATA, 8-3
DECODE, 8-4
DEFINE FILE, 8-4
DIMENSION, 8-4
DO, 8-4
ENCODE, 8-5
END, 8-5
END FILE, 8-5
END=, 8-5
EQUIVALENCE, 8-5
ERR=, 8-5
EXTERNAL, 8-5
FIND, 8-6
FORMAT, 8-6
FUNCTION, 8-6
GO TO, 8-6
IF, B-7
IMPLICIT, 8-7
OPEN, 8-7
PAUSE, 8-8
PRINT, 8-8, 8-10, 8-11
PROGRAM, 8-8
READ, 8-8, 8-9
RETURN, 8-9
REWIND, 8-9
STOP, B-9
SUBROUTINE, 8-10
TYPE, 8-10, 8-11
VIRTUAL, 8-10
WRITE, 8-10, 8-11

FORTRAN support routines,
3-1, 3-10

supplemental, 3-19
Functions,

I8YTE; 3-20
ISPR, 3-20
L8YTE, 3-20
RDPI, 3-20
RDPR, 3-20
RSPI, .3-20

GAM routines, 3-10
GASP routines, 3-7
GCHR routines, 3-10
GCVG routines, 3-6
GCVP routines, 3-6

INDEX (CONT •)

GDIS routines, 3-6
GMXG routines, 3-6
GMXP routines, 3-6
GPAR routines, 3-3
GPAW routines, 3-3
GPDR routines, 3-3
GPDW routines, 3-3
GPF routines, 3-3
GPFR routines, 3-3
GPFW routines, 3-3
GPKX routines, 3-7
GPKY routines, 3-7
GPLR routines,,3-3
GPLW routines, 3-4
GPMR routines, 3-3
GPMW routines, 3-3
GPOV routines, 3-7
GSAG routines, 3-7
GSAR routines, 3-6
GSAW routines, 3-7
GSVG routines, 3-6
GSVP routines, 3-6

I8YTE functions, 3-20
IFGFRM routines, 3-21
IGLSTR routines, 3-21
IGLSTW routines, 3-21
Indirect command files, 4-1,

4-5
Initializing disks, D-2,

D-3
Internal files, 2-17
ISPR functions, 3-20

L8YTE functions, 3-20
Linking FORTRAN routines,

3-11
Linking GAMMA-II, 4-1, 4-5
List mode study, 2-6

Macro files, 2-18
Magnetic tape, 1-1, 1-3
Matrix data, 2-2, 2-15
MDOFF, 2-7
Messages,

BASIC error, 3-14
FORTRAN error, 3-14

Multiple static study, 2-4

NADOFF, 2-7

Index-3

PADOFF, 2-7
Patient file, 2-1, 2-10,

3-2
dynamic, 2-2

Patient file names, 2-10
Playback files, 2-18

RDPI functions, 3-20
RDPR functions, 3-20
Region of interest, 2-15,

2-16
RK, 1-2
RK05 disks, 1-1, 1-2, 0-1,

0-2
RK06 disks, 1-1, 1-2, 0-3
RK07 disks, 1-1, 1-2
RL01 disks, 1-1, 1-2
Routines,

BASIC support, 3-1
BGAt-'IMA, 3-21
FGADM1, 3-20
FGADM2, 3-21
FGCDM1, 3-21
FGCOM2, 3-21
FGPICK, 3-7, 3-21
FGPLOT, 3-21
FGPTOV, 3-21
FORTRAN support, 3-1,

3-10
GAM, 3-10
GASP, 3-7
GCHR, 3-10
GCVG, 3-6
GCVP, 3-6
GDIS, 3-6
GMXG; 3-6
GMXP, 3-6
GPAR, 3-3
GPAW, 3-3
GPOR, 3-3
GPOW, 3-3

INDEX (CONT ,)

Routines (Cont.)
GPF, 3-3
GPFR, 3-3
GPFW, 3-3
GPKX, 3-7
GPKY, 3-7
GPLR, 3-3
GPLW, 3-4
GPMR, 3-3
GPMW, 3-3
GPOV, 3-7
GSAG, 3-7
GSAR, 3-6
GSAW, 3-7
GSVG, 3-6
GSVP, 3-6
IFGFRM, 3-21
IGLSTR, 3-21
IGLSTW, 3-21
supplemental FORTRAN

support, 3-19
RSPI functions, 3-20

Save area, 2-11, 2-15, 2-17,
3-6

Save area descriptor block,
2-11, 3-6

Single static study, 2-3
Study,

dynamic, 2-2, 2-17
list mode, 2-6
multiple static, 2-4
single static, 2-3

Supplemental FORTRAN
support routines, 3-19

Switch settings,
camera, C-l

SYSGEN, 1-1, 1-4

Z-count area, 2-3, 2-2, 2-6
ZCTOFF, 2-7

Index-4

· 4)

.:

READER'S COMMENTS

GAMMA-II
System Reference
AA-2186B-TC

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

---~------

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[J Assembly language programmer

[J Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

[J Student programmer
[] Other (please specify) ________________________ ----________ __

Name Date ______________________ ___

Organization __ __

Street __ __

Ci ty _________ ----------__ S ta te ________ Zip Code ________ _
or

Country

... ---------,.-... --- Fold Here -----------... --... ---'---.-------------.------... -----------------

..... -----------... ------------------------------...... Do Not Tear. Fold Here and Staple ------------.. - .. -----.-----.. --------------------

aUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

mamaoma
Softwar~ Documentation
200 Forest Street MRl-2/E37
Marlborough. Massachusett , 01752

FIRST CLASS
PERMIT NO. 152

MARLBOROUGH, MA
01752

EJ 05726 77 05AjS20 23 075 Printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	Index-1
	Index-2
	Index-3
	Index-4
	replyA
	replyB
	xBack

