
DOS/BATCH

Assembler (MACRO)

Programmer's Manual

FOR THE DOS/BATCH OPERATING SYSTEM

Monitor Version V~9

August 1973

DEC-ll-LASMA-A-D

For additional copies, order No. DEC-ll-LASMA-A-D from Digital Equipment
Corporation, Software Distribution Center, Maynard, Massachusetts ~1754.

Your attention is invited to the last two pages of
this document. The "How to Obtain Software
Information" page tells you how to keep up-to-date
with DEC's software. The "Reader's Comments" page
when filled in and mailed, is beneficial to both
you and DEC; any comments received are
acknowledged and are considered when documenting
subsequent manuals.

Copyright (§)1973 by Digital Equipment Corporation

Associated Documents:

DOS/BATCH Monitor
Programmer's Manual, DEC-ll-OMPMA-A-D

DOS/BATCH User's Guide, DEC-ll-OBUGA-A-D

DOS/BATCH FORTRAN Compiler and Object Time System
Programmer's Manual, DEC-ll-LFRTA-A-D

DOS/BATCH System Manager's Guide, DEC-Il-OSMGA-A-D

DOS/BATCH File Utility Package (PIP)
Programmer's Manual, DEC-ll-UPPAA-A-D

DOS/BATCH Debugging Program (ODT-lIR)
Programmer's Manual, DEC-ll-UDEBA-A-D

DOS/BATCH Linker (LINK)
Programmer's Manual, DEC-ll-ULKAA-A-D

DOS/BATCH Librarian (LIBR)
Programmer's Manual, DEC-ll-ULBAA-A-D

I~S/BATCH Text Editor (EDIT-II)
Programmer's Manual, DEC-ll-UEDAA-A-D

I~S/BATCH File Compare Program (FILCOM)
Programmer's Manual, DEC-ll-UFCAA-A-D

DOS/BATCH File Dump Program (FILDMP)
Programmer's Manual, DEC-ll-UFLDA-A-D

DOS/BATCH Verification Program (VERIFY)
Programmer's Manual, DEC-ll-UVERA-A-D

DOS/BATCH Disk Initializer (DSKINT)
Programmer's Manual, DEC-ll-UDKIA-A-D

Trademarks of Digital Equipment Corporation include:

DEC
DIGITAL (logo)
DEC tape
UNIBUS

ii

PDP-II
COMTEX-ll
RSTS-ll
RSX-ll

PREFACE

This manual describes the PDP-II MACRO-II Assembler and Assembly
Language. It is recommended that the reader refer to the PDP-II
Processor Handbook and, optionally, the PDP-II Peripherals and
Interfacing Handbook. References are made to these handbooks
throughout this document (although this document is complete by
itself, the additional material provides further details). The user
is also advised to obtain a PDP-II Pocket Instruction List card for
easy reference. (These items can be obtained from the Software
Distribution Center.)

MACRO-II operates under the PDP-II DOS/BATCH Monitor.

Some notable features of MACRO-II are:

1. Program and command string control of assembly functions;

2. Device and filename specifications for input and output
files;

3. Error listing on command output device;

4. Alphabetized, formatted symbol table listing;

5. Relocatable object modules;

6. Global symbols for linking between object modules;

7. Conditional assembly directives;

8. Program sectioning directives;

9. User-defined macros:

10. Comprehensive set of system macros; and

11. Extensive listing control.

NOTE

The software described in this manual
is furnished to purchaser under a li
cense for use on a single computer
system and can be copied (with inclu
sion of DEC's copyright notice) only
for use in such system, except as may
otherwise be provided in writing by DEC.

This document is for information pur
poses and is subject to change without
notice.

DEC assumes no responsibility for the
use or reliability of its software on
equipment which is not supplied by DEC.

iii

f

".'

CONTENTS

CHAPTER 1 EFFECTIVE USE OF ASSEMBLY LANGUAGE PROGRAMMING

1. 1 STANDARDS AND CONVENTIONS
1.2 POSITION-INDEPENDENT CODE (PIC)

CHAPTER 2 SOURCE PROGRAM FORMAT

2.1 STATEMENT FORMAT
2.1.1 Label Field
2.1.2 Operator Field
2.1.3 Operand Field
2.1.4 Comment FiB1d

2.2 FORMAT CONTROL

CHAPTER 3 SYMBOLS AND EXPRESSIONS

3.1 CHARACTER SET
3.1.1 Separating and Delimiting Characters
3.1.2 Illegal Characters
3.1.3 Operator Characters

3.2 MACRO SYMBOLS
3.2.1 Permanent Symbols
3.2.2 User-Defined and Macro Symbols

3.3 DIRECT ASSIGNMENT
3.4 REGISTER SYMBOLS
3.5 LOCAL SYMBOLS
3.6 ASSEMBLY LOCATION COUNTER
3.7 NUMBERS
3.8 TERMS
3.9 EXPRESSIONS

CHAPTER 4

CHAPTER 5

RELOCATION AND LINKING

ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE
AUTOINCREMENT MODE

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.1.0
5.11
5.12
5.13
5.14

AUTO INCREMENT DEFERRED MODE
AUTODECREMENT MODE
AUTODECREMENT MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOLUTE MODE
RELATIVE MODE
RELATIVE DEFERRED MODE
TABLE OF MODE FORMS AND CODES
B~CH INSTRUCTION ADDRESSING

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES
6.1.1 .LIST and .NLIST
6.1.2 Page Headings
6.1.3 .TITLE

v

1-1

1-1
1-1

2-1

2-1
2-2
2-3
2-3
2-4
2-4

3-1

3-1
3-4
3-5
3-5
3-6
3-7
3-7
3-8
3-9

1-1.0
3-13
3-14
3-15
3-16

4-1

5-1

5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-6
5-7

6-1

6-1
6-1
6-8
6-8

CHAPTER 1

EFFECTIVE USE OF ASSEMBLY LANGUAGE PROGRAMMING

This Chapter presents a brief overview of some fundamental software
concepts essential to efficient assembly language programming of the
PDP-ll family of computers. A description of the hardware components
of the PDP-ll family can be found in the two DEC paperback handbooks:

PDP-ll Processor Handbook (11/40 or 11/45 edition)
PDP-ll Peripherals and Interfacing Handbook

No attempt is made in this document to describe the PDP-ll hardware or
the function of the various PDP-ll instructions. The reader is
advised to become familiar with this material before proceeding.

1.1 STANDARDS AND CONVENTIONS

Because assembly level programming deals directly with the host
hardware, greater care must be taken .in specifying programming
standards and conventions if code written by different groups is to be
easily interchanged. The payoff achievable from strict adherence to
standards can be considerable. When a set of standards guides the
entire programming process, the total programming effort becomes
easier to

plan:
comprehend:
test:
modify: and
convert.

Even though standards must take into consideration local installation
requirements, many components of the programming process have
universal applicability. Appendix E contains a set of recommended
programming standards. It is a minimal set found to be practical and
useful. Users adhering to these standards in coding their own
software will reap the, benefits of interchangeability, and tend to
develop work-sharing arrangements mutually rewarding to DIGITAL and
the user.

1.2 POSITION-INDEPENDENT CODE (PIC)

The output of a MACRO-ll assembly is a relocatable object module.
LINK can bind one or more modules together and create an executable
task.

Once built, a program can generally be loaded and executed only at the
address specified at LINK time. This is because LINK has had to make
adjustments in some codes to reflect the memory locations in which the
program is to run.

1-1

CHAPTER 2

SOURCE PROGRAM FORMAT

A source program is composed of a sequence of source lines, where each
line contains a single assembly language statement.

An assembly language line can contain up to 132 (decimal) characters.
Beyond this limit an I/O error is generated.

2.1 STATEMENT FORMAT

A statement can contain up to four fields which are identified by
order of appearance and by specified terminating characters. The
general format of a MACRO-ll assembly language statement is:

label: operator operand ; comments

The label and comment fields are optional. The operator and operand
fields are interdependent; either may be omitted depending upon the
contents of the other.

The Assembler interprets and processes these statements one by one,
generating one or more binary instructions or data words, or
performing an assembly process. A statement must contain one of these
fields and may contain all four types. (Blank lines are legal.)

Some statements have one operand, for example:

CLR RO

while others have two, for example:

MOV #344,R2

An assembly language statement must be complete on one source line.
No continuation lines are allowed.

MACRO-ll source statements may be formatted such that use of the TAB
character causes the statement fields to be aligned. The standards
used are:

2-1

Label - column 1;

Operator - column 9~

Operand(s) - column l7~

Comments - column 33.

For example:

REGTST: BIT #MASK,VALUE

2.1.1 Label Field

; 3 BITS?

A label is a user-defined symbol wh.ich is assigned the value of the
current location counter and entered into the user-defined symbol
table. The value of the label may be either absolute or relocatable,
depending on whether the location counter value is currently absolute
or relocatable. In the latter case, the absolute value of the symbol
is assigned by LINK; i.e., the stated relocatable value plus a the
relocation bias, calculated by LINK.

A label is a symbolic means of referring to a specific location within
a program. If present, a label always occurs first in a statement and
must be terminated by a colon. For example, if the current location
is absolute 100 (octal) , the statement:

ABeD: MOV A,B

assigns the value 100 (octal) to the label ABCD. Subsequent references
to ABeD reference location 100 (octal) • In this example if ,the
location counter were relocatable, the final value of ABCD would be
lOO(octal)+K, where K is the location of the beginning of the
relocatable section in which the label ABCD appears.

A double colon defines the label as global and is accessible to
independently assembled modules; thus:

ABeD:: MOV A,B

establishes ABCD as a global symbol.

More than one label may appear within a single label field; each label
within the field has the same value. For example, if the current
location counter is lOO(octal), the multiple labels in the statement:

ABC: $DD: A7.7: MOV A,B

cause each of the three labels ABC, $DD, and A7.7 to be equated to the
value lOO(octal). The legal label characters are:

A - Z
0-9 .

$

2-2

(By convention, $ and. characters are reserved for use in system
software symbols.)

The first six characters of a label are significant. An error message
is generated if two or more labels share the same first six
characters.

A symbol used as a label may not be redefined within the user program.
An attempt to redefine a label results in an error flag (M) in the
assembly listing.

2.1.2 Operator Field

An operator field follows the label field in a statement, and may
contain a macro call, an instruction mnemonic, or an assembler
directive. The operator may be preceded by none, one or more labels
and may be followed by one or more operands and/or a comment. Leading
and trailing spaces and tabs are ignored.

When the operator is a macro call, the Assembler inserts the
appropriate code to expand the macro. When the operator is an
instruction mnemonic, it specifies the intruction to be generated and
the action to be performed on any operand(s) which follow. When the
operator is an assembler directive, it specifies a certain function or
action to be performed during assembly.

An operator is legally terminated by a space,
non-alphanumeric character (symbol component).

Consider the following examples

MOV A,D ;space terminates the operator MOV
MOV @A,B ;@ terminates the operator MOV

tab, or any

A blank operator field is interpreted as a .WORD assembler directive
(See section 6.3.2).

2.1.3 Operand Field

An operand is that part of a statement which is manipulated by the
operator. Operands may be expressions, numbers, or symbolic or macro
arguments (within the context of the operation). When multiple
operands appear within a statement, each is separated from the next ,by
one of the following characters: comma, tab, space, or paired angle
brackets around one or more operands (see section 3.1.1). An operand
may be preceded by an operator, label, or other operand and followed
by another operand or a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a statement terminator when the operand completes the
statement. For example:

LABEL: MOV A,B iCOMMENT

2-3

The tab between 110V and A terminates the operator field and begins the
operand field; a comma separates the operands A and Bi a semicolon
terminates the operand field and begins the comment field.

2.1.4 Comment Field

The comment field is optional and may contain any ASCII characters
exc:ept null, rubout, carriage return, line feed, vertical tab or form
feE~d. All other characters, even special characters with a defined
use, are ignored by the Assembler when appearing in the comment field.

The comment field may be preceded by one, any, none or all of the
other three field types. Comments must begin with the semicolon
character.

Corr~ents do not affect assembly processing or program execution, but
are useful in source listings for later analysis, debugging, or
documentation purposes.

2.2 FORMAT CONTROL

Horizontal or line formatting of the source program is controlled by
the space and tab characters. These characters have no effect on the
assembly process unless they are embedded within a symbol, number, or
ASCII texti or unless they are used as the operator field terminator.
Thus, these characters can be used to provide an orderly source
program. A statement should be formatted to conform to the DOS/BATCH
standard,

LABEL: MOV (SP)+,TAGi POP VALUE OFF STACK*

LABEL: MOV (SP)+,TAG iPOP VALUE OFF STACK*

(See section 6.1.6 for a description of page formatting with respect
to macros, and section 6.1.3 for a description of assembly listing
output.)

*Appendix E details code formatting standards used in all DOS/BATCH
Monitor software.

2-4

CHAPTER 3

SYMBOLS AND EXPRESSIONS

This Chapter describes the various components of legal MACRO-ll
expressions; the Assembler character set, symbol construction,
numbers, operators, terms, and expressions.

3. 1 CHARACTER SET

The following characters are legal in MACRO-ll source programs:

1. The letters A through Z. Both upper and lower case letters
are acceptable, although, upon input, lower case letters are
converted to upper case letters. Lower case letters can only
be output by sending their ASCII values to the output device.
This conversion is not true for .ASCII, .ASCIZ, • (single
quote) or .. (double quote) statements if .ENABL LC is in
effect.

2. The digits 0 through 9.

3. The characters. (period or dot) and $ (dollar sign) which
are reserved for use in system program symbols.

4. The following special characters:

3-1

Character

.. . .

=
%

@

<

>

+

*

/

&

..

Designation

double colon
double equal sign

colon

equal sign

percent sign

tab

space

number sign

at sign

left parenthesis

right parenthesis

comma

semicolon

Function

Either the double colon or
double equal sign may be used
to define a symbol as a global
symbol (refer to section
6.10).

label terminator

direct assignment indicator

register term indicator

item or field terminator

item or field terminator

immediate expression indicator

deferred addressing indicator

initial register indicator

terminal register indicator

operand field separator

comment field indicator

left angle bracket initial argument or expression
indicator

right angle bracket terminal argument or

plus sign

minus sign

.asterisk

slash

ampersand

exclamation

double quote

single quote

3-2

expression indicator

arithmetic addition operator
or autoincrement indicator -

arithmetic
operator or
indicator

arithmetic
operator

subtraction
autodecrement

multiplication

arithmetic division operator

logical AND operator

logical inclusive OR operator

double ASCII character
indicator

single ASCII character
indicator

up arrow or
circumflex

backslash

3-3

universal unary operator,
argument indicator

macro numeric argument
indicator

3.,1.1 Separating and Delimiting Characters

RE!ference is made in the remainder of the manual to legal separating
characters and legal argument delimiters. These terms are defined
bEdow in Tables 3-1 and 3-2.

Character

space

Character

< ••• >

t \., •• \

Table 3-1
Legal Separating Characters

Definition

one or more spaces
and/or tabs

comma

Table 3-2

Usage

A space is a legal separator
only for argument operands.
Spaces within expressions are
ignored (see section 3.8).

A comma is a
for both
arguments.

legal separator
expressions and

Legal Delimiting Characters

Definition

paired angle brackets

Up arrow construction
where the up arro,.,
character is followed
by an argument
bracketed by any paired
printing characters.

Usage

Paired angle brackets are used
to enclose an argument,
particularly when that
argument contains separating
characters. Paired angle
brackets may be used ,anywhere
in a program to enclose an
expression for treatment as a
term.

This construction is
equivalent in function to
the paired angle brackets
and is generally used only
where the argument contains
angle brackets.

vlhere argument delimiting characters are used, they must bracket the
first (and, optionally, any following) argument{s). The character <
and the characters f· x, where x is any printing character, can be
considered unary operators which cannot be immediately preceded by
another argument. For example:

• MACRO TEM <AB>C

indicates a macro definition with two arguments, while

• MACRO TEL C<AB>

3-4

-----'"--------

has only one argument. The closing ,or matching character where the
up arrow construction is used, acts as a separator. The opening
argument delimiter does not act as an argument separator.

Angle brackets can be nested as follows:

<AC>

which reduces to:

AC

and which is considered to be one argument in both forms.

3.1.2 llleqal Characters

A character can be illegal in one of two ways:

1. A character which is not recognized
MACRO-II character set is always
causes imMediate terMination of the
point, plus the output of an error
listing. For example:

LABEL+-*A: MOV A,B

as an element of the
an illegal character and
current line at that

flag (I) in the assembly

Since the backarrow is not a recognized character, the entire
line is treated as a:

• WORD LABEL

state~ent and is flagged in the listinq.

2. A legal MACRO-II character may be illegal in context. Such a
character generates a Q error on the assembly listinq.

3.1.3 Operator Characters

Legal unary operators under HACRO-Il are as follo",s:

Unary
Operator Explanation Example

+

t

plus sign

minus sign

up arrow, universal
unary operator

+1\

-A

tF3.0

(positive value of
equivalent to A)

A,

(negative 2's complement
value of A)

(interprets 3.0 as a
I-word floating-point
number)

(this usage is descrihed in greater detail in sections 6.4.2
and 6.6.2).

3-5

tC24

tD127

t034

tBllOOOlll

(interprets the
complement value
24(octal); 18, not 24)

l's
of

(interprets 127 as a
decimal number)

(interprets 34 as an
octal number)

(interprets 11000111 as a
binary value)

The unary operators as described above can be used adjacent to each
o·ther in a term. For example:

-%5
tCto12

Legal binary operators under MACRO-II are as follows:

Binary
~)erator Explanation

+ addition
subtraction

A+B
A-B

Example

* multiplication
I division
& logical AND

A*B (16-bit product returned)
AlB (16-bit quotient returned)
A&B

logical inclusive OR AlB

All binary operators have the same priority. Items can be grouped for
evaluation within an expression by enclosure in angle brackets. Terms
in angle brackets are evaluated first, and remaining operations are
performed left to right. For example:

• WORD
• WORD

1+2*3
1+<2*3>

3.2 MACRO-II SYMBOLS

;IS 11 OCTAL
;IS 7 OCTAL

There are three types of symbols: permanent, user-defined and
MACRO-II maintains three types of symbol tables: the Permanent
Ta.ble (PST), the User Symbol Table (UST), and the Macro Symbol
(HST). The PST contains all the perJ'llanent symbols and is part
MACRO-ll Asembler load module. The UST and MST are constructed
source program is assembled; user-defined symbols are added
table as they are encountered.

3-6

macro.
Symbol
Table

of the
as the
to the

3.2.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics
directives (Chapter 6 and 7, Appendix B). These
permanent part of the Assembler and need not be defined
used in the source program.

3.2.2 User-Defined and Macro Symbols

and assembler
symbols are a
before being

User-defined symbols are those used as labels (section 2.1.1) or
defined by direct assignment (section 3.3). These symbols are added
to the User Symbol Table as they are encountered during the first pass
of the assembly. Macro symbols are those symbols used as macro names
(section 7.1). These symbols are added to the Macro Symbol Table as
they are encountered during the assembly.

User-defined
characters,
illegal.

and macro symbols
dollar signs, and

can be composed of alphanumeric
periods only; any other character is

The $ and. characters are reserved for system
should not

software symbols
be inserted as a (e.g., READ$, a system macro) and

user-defined or macro symbol.

The following rules apply to the creation! of user-defined and macro
symbols:

1. The first character must not be a number (except in the case
of local symbols, see section 3.5).

2. Each symbol must be unique within the first six characters.

3. A symbol can be written with more then six legal characters,
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the
Assembler.

4. Spaces, tabs, and illegal characters must not be e~edded

within a symbol.

The value of a symbol depends upon its use in the program. A symbol
in the operator field may be anyone of the three symbol types. To
determine the value of the symbol, the Assembler searches the three
symbol, tables in the following order:

1. Macro Symbol Table

2. Permanent Symbol Table

3. User-Defined Symbol Table

A symbol found in the operand field is sought in the

1. User-Defined Symbol Table

2. Permanent Symbol Table

3-7

in that order. The Assembler never expects to find a macro name in an
operand field.

ThE~se search orders allo\,1 redefini tion of
ent:ries as user-defined or macro symbols.
assigned to both a macro and a label.

Permanent Symbol Table
The same name can also be

User-defined symbols are either internal or external (global). All
uSE~r-defined symbols are internal unless they remain undefined
internally or unless explicitly defined as being global with the
.GI.OBL directive or by the douhle-colon, or double-equal sign (see
Section 6.10).

Global symbols provide links between object modules. A global symbol
which is defined as a label is generally called an entry point (to a
sec,tion of code). Such symbols are referenced from other object
modules to transfer control throughout the load Module (which may be
composed of a number of object modules).

Since MACRO-II provides prograM sectioning capabilities (section 6.9),
two types of internal symbols must be considered:

1. Symbols that belong to the current program section; and

2. SYMhols that belong to other program sections.

In both cases, the symbol must be defined within the current assembly:
the significance of the distinction is critical in evaluating
expressions involving type (2) above (see section 3.9).

3.3 DIRECT ASSIGNMENT

A direct assignment statement associates a symbol with
a direct assignment statement defines a symbol for
that symbol is entered into the user symbol table. A
redefined by assigning a new value to a previously
The latest assigned value replaces any previous value
symhol.

a value. When
the first time,
symbol may be
defined symbol.
assigned to a

The general format for a direct assiqnITlent statement is:

symbol = expression

or

symbol -- expression

which also defines symbol as a global definition.

Symbols take on the relocatable or absolute attribute of their
defining expression. Ho,..,ever, if the defining expression is global,
the symbol is not global unless explicitly defined as such in a .GLOBL
directive, by a label delimited by a double colon or by the double
equa,l sign (see section 6.10). Global references in an expression
assigned to a symbol are illegal, and are flagged with an A error
flag.

3-8

;I

~<

For

A =

B =

c:

E:

example:

1

'A-l&MASKLOW

o = 3

MOV #l,ABLE

1 THE SY~mOL A IS EQUATED TO THE
1VALUE 1.

:THE SYMBOL B IS EQUATED TO THE
:VALUE OF THE EXPRESSION

: THE SYMBOL 0 IS EQUATED TO 3.

:LABELS C AND E ARE EQUATED TO THE
:LOCATION OF THE MOV COMMAND

The following conventions apply to direct assignment statements:

1. An equal sign (=) or double equal (==) must separate the
symbol from the expression defining the symbol value.

2.

3.

4.

A direct assignment statement is usually placed in the label
field and may be followed by a comment.

Only one symbol can be defined in a single direct assignment
statement.

Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X = Y

Y = Z

Z = 1

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-II are numbered 0 through 7 and
can be expressed in the source program as:

%0
%1

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer use symbolic names for all
register references. Unless the .DSABL REG statement has been
encountered, the definitions as shown in the following example are
defined by default, or, a register symbol may be defined in ,a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute. For
example:

3-9'

Line Octal
Num~er Expansion Source Code Comments

1 - ,~BTTL S~eTCR TN'TTALI1ATI~N
2
~ "'0"~"1.?' .rSFCT I~F'l~r: JrM~U~E 5TO~A~E AR~A

., 0"0"2''' I~PIJRFI
E L'l0'2~2' ,rSFCT I~",r::A~ Jr.LFA~E~ F'r~ ~AS~
e 0C'eO!0C' !~PFA~I , (lIeC'l2'P'v' .rSpeT I~Pt I~ ,rLrA~E~ FAr~ LT~~
e 0'0l'!ep I ~ P I, I~: I ,
12 ~0"'~'H~ '. irSFC:T)(rT~QG ,~RrGRA~ 'NTTTAlT7~Trr.N C~DF.
11 V0,eli")(rT~R~1

12 f10"'0t' t'l~'t'e MCIV ~T~PU~E,R"

0!0"2'~e'
13 "0'04 "0~22e 1 ~ I CLR CP e,. ,rLFA~ ~~~URE A~EA

14 ~0I.'ef!; l'!2~'012 C~p N1~PTf'\P,R'"

0I""e 42'
15 "0P12 1'H3'4 A~I 1 ~

w 16
J l' L'l01"Q'''V' ,rSFCT)(rT"::A~ , Ii' A ~ S r~! I T r A L T Z A T TO"" r 0 " E I--'

l\J 18 "0"'0" XrTPA~1

19 '0P'0C11 t'l~'L'le Mt"IV *T~~PAS,R'"

P0"e"2'
2~ "0"'041 "0~22V. 1 , I CI. R (P2'. ,rLFA~ T~~UPE PART
21 '0"e~ CA2~'''rz C~P "'T~PTr'lP,R~

t'0P~de'
22 t'0"'1~ '01:!14 Bioi! 1 ~
23
24 "0P,,"e' ,rSFCT XI'" T L I"" 'Lr~F r~'rTtALrZ.ATTC"'! CO~E'
2!5 ""PfZt' xr T L I"" I
26 "0~e'" p1~7"e Mr'V ~T~FLTN,R'"

P0P0pe'
~, ,,~pe41 P0~~~~ 1" C:, R C~ e,.
~~ Co'Q!"'e~ "221P~ C~P NT~PTf'P,RrJI

t'!0p24e'
~9 V0Pl' HH3'4 B!-I! 1 ~
:,H'
~ 1 P'0(J1epe' .rSE'eT MT)(FD ,~r~fr ~O~f SFCTC~

Figure 3-3

Assembly Source Listing of MACRO-II Code Showing Local Symbol Blocks

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of t~e first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:

A: MOV #. ,RO

(# is explained in section 5.9.)

,. REFERS TO LOCATION A,
;I.E., THE ADDRESS OF THE
;MOV INSTRUCTION.

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter:

.=expression

Similar to other symbols, the location counter symbol has a mode
associated with it, either absolute or relocatable. However, the mode
cannot be external. The existing mode of the location counter cannot
be changed by using a defining expression of a different mode.

The mode of the location counter symbol can be changed by the use of
the .ASECT,.CSECT or .PSECT directives as explained in section 6.9.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

• ASECT

.=500

FIRST: MOV .+lO,COUNT

• =520

SECOND: MOV • ,INDEX

;SET LOCATION COUNTER TO
;ABSOLUTE 500

;THE LABEL FIRST HAS THE VALUE
; 500 (OCTAL)
;.+10 EQUALS 5l0(OCTAL). THE
;CONTENTS OF THE LOCATION
;510 (OCTAL) WILL BE DEPOSITED
;IN LOCATION COUNT •

;THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520(OCTAL) •

;THE LABEL SECOND HAS THE
;VALUE 520(OCTAL)
;THE CONTENTS OF LOCATION
;520 (OCrAL) , THAT IS, THE BINARY
;CODE FOR THE INSTRUCTION
;ITSELF, WILL BE DEPOSITED IN
;LOCATION INDEX.

3-13

3.9 EXPRESSIONS

Expressions are combinations of terms joined together by binary
operators and which reduce to a l6-bit value. The operands of a .BYTE
directive (see section 6.3.1) are evaluated as word expressions before
truncation to the low-order eight bits. Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated). The evaluation of an expression includes
the evaluation of the mode of the resultant expression; that is,
absolute, relocatable or external. Expression modes are further
defined below.

Expressions are evaluated left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follm.,s:

-+-A

is equivalent to:

-< +< -A»

A missing term, expl:"ession, or external symbol is interpreted as a
zero. A missing operator is interpreted as +. A Q error flag is
gE~nerated for each missing term or operator. For example (here TAG is
OR'ed with LA +177777):

TAG LA 177777

is evaluated as

TAG! LA+177777

with a Q error flag on the asseru)ly listing line.

The value of an external expression is the value of the absolute part
of the expression; e.q., EXTERrmL+A has a value of A. This is
modified by LINK to become EXTERNAL+A.

Expressions, when evaluated, are either absolute, relocatable, or
external. For the programmer writing position-independent code, the
distinction is important.

1. An expression is absolute if its value is fixed. An
expression whose terms are nuMbers and ASCII conversions will
have an absolute value. A relocatable expression minus a
relocatable term, where both iteMs belong to the sarne prograM
section, is also absolute.

2. An expression is relocatable if its value is fixed relative
to a base address but will have an offset value added at Task
Build time. Expressions whose terms contain labels defined
in relocatable sections and periods, (in relocatable
sections) will have a relocatable value.

3-16

3. An expression is external (or global) if its value is only
partially defined during assembly and its definition is
completed at LINK linking time. An expression whose terms
contain a global symbol not defined in the current program is
an external expression. External expressions have
re1ocatab1e values at execution time, if the global symbol is
defined as being re1ocatab1e; or absolute, if the global
symbol is defined as absolute.

3-17

_ .. _----

CHAPTER 4

RELOCATION AND LINKING

The output of the MACRO-II Asembler is an object module which must be
processed by LINK before loading and execution. (See DOS/BATCH Linker
(LINK) Programmer's Manual for details.) LINK essentially fixes (i.e.,
makes absolute) the values of external or relocatable symbols and
turns the object module into a load module.

To enable the the Linker Program to fix the value of an expression,
the Assembler issues certain directives to LINK, together with
required parameters. In the case of relocatable expressions, LINK
adds the base of the associated relocatable section (the location in
memory of relocatable 0) to the value of the relocatable expression
provided by the Assembler. In the case of an external expression, the
value of the external term in the expression is determined by LINK
(since the external symbol must be defined in one of the other object
modules which are being linked together) and adds it to the value of
the external expression provided by the Assembler.

All instructions that are to be modified (as described in the previous
paragraph) are marked with an apostrophe in the assembly listing (see
also section 1.2). Thus, the binary text output looks like the
following:

005065 CLR
000000'

005065 CLR
000006'

005065 CLR

000040'

EXTERNAL (5)
,VALUE OF EXTERNAL SYMBOL
:ASSEMBLED ZERO, WILL BE
,MODIFIED BY LINK.

EXTERNAL+6(5) :THE ABSOLUTE PORTION OF THE
:EXPRESSION (000006) IS ADDED
,BY LINK TO THE VALUE
,OF THE EXTERNAL SYMBOL

RELOCATABLE(5) :ASSUMING WE ARE IN A
,RELOCATABLE
,SECTION AND THE VALUE OF
:RELOCATABLE SYMBOL IS RELOCATABLE 40
:LINK WILL ADD
,THE RELOCATION BIAS TO 40

4-1

CHAPTER 5

ADDRESSING MODES

The program counter (PC, register 7 of the eight general registers)
always contains the address of the next word to be fetched; i.e., the
address of the next instruction to be executed, or the second or third
word of the current instruction.

In order to understand "how the address modes operate and how
assemble, the action of the program counter must be understood.
key rule is:

Whenever the processor implicitly uses the program counter
to fetch a word from memory, the program counter is
automatically incremented by two after the fetch.

they
The

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an
instruction uses indexing (sections 5.7,5.9 and 5.11), the processor
uses the program counter to fetch the base from memory. Hence, using
the rule above, the PC increments by two, and now points to the next
word.

1. Let E be any expression as defined in Chapter 3.

2. Let R be a register expression.
containing a term preceded by
previously equated to such a term.

This is any expression
a % character or a symbol

Examples:

RO=%O
R1=RO+1
R2=1+%1

;GENERAL REGISTER 0
;GENERAL REGISTER 1
;GENERAL REGISTER 2

3. Let ER be a register expression or an expression in the range
o to 7 inclusive.

4. Let A be a general address specification which produces a
6-bit mode address field as described in sections 3.1 and 3.2
of the PDP-11 Processor Handbook (both 11/40 and 11/45
versions).

The addressing specification, A, can be explained in terms of
E, R, and ER as defined above. Each is illustrated with the
single operand instruction CLR or double operand instruction
MOV.

5.1 REGISTER MODE

The register contains the operand.

Format for A: R

Examples:

5-1

RO=%O
CLR RO

;DEFINE RO AS REGISTER 0
~CLEAR REGISTER 0

5.2 REGISTER DEFERRED MODE

The register contains the address of the operand.

Format for A: @R or (ER)

Examples:
CLR
CLR

@RI
(RI)

;BOTH INSTRUCTIONS CLEAR
;THE WORD AT THE ADDRESS
;CONTAINED IN REGISTER I

5.3 AUTO INCREMENT MODE

The c:::ontents of the register are incremented immediately after being
used as the address of the operand. (See note below.)

Format for A: (ER) +

Examples:
CLR
CLR
CLR

(RO)+
(RO+3) +
(R2)+

;EACH INSTRUCTION CLEARS
;THE WORD AT THE ADDRESS
;CONTAINED IN THE SPECIFIED
;REGIRTER AND INCREHENTS
; THAT REGISTER I S CONTENTS
;BY TWO

NOTE

Both JMP and JSR instructions using non-deferred
autoincrement mode, autoincrement the register
before its use on the PDP-II/20 (but not on the
PDP-ll/45 or 11/05). In double operand
instructions of the addressing form Rn or Rn,-(Rn)
where the source and destination reqisters are the
same, the source operand is evaiuated as the
autoincremented or autodecremented value; but the
destination register, at the time it is used,
still contains the originally intended effective
address. In the follm"ing two examples, as
executed on the PDP-ll/20, RO originally contains
100.

MOV RO, (RO) + ~THE QUANTITY 102 IS MOVED
;TO LOCATION 100

MOV RO ,- (RO) ;THE QUANTITY 76 IS MOVED
;TO LOCATION 76

The use of these forms should he avoided as they
are not compatible with the PDP-II/OS and 11/45.

S-2

A Z error code
compatible among
warning cA)de.

is printed with each instruction which is not
all members of the PDP-II family. This is merely a

5.4 AUTO INCREMENT DEFERRED MODE

The register contains the pointer to the address of the operand. The
contents of the,register are incremented after being used.

Format for A: @(ER)+

Example:
CLR @(R3)+

5.5 AUTODECREMENT MODE

:CONTENTS OF REGISTER 3 POINT
: TO ADDRESS OF WORD TO BE
:CLEARED BEFORE BEING
:INCREMENTED BY TWO

The contents of the register are decremented before being used as the
address of the operand (see note under autoincrement mode).

Format for A: - (ER)

Examples:
CLR - (RO) :DECREHENT CONTENTS OF

: REGISTERS
CLR - (RO+3) : 0, 3 AND 2 BY TWO BEFORE

:USING THEM
CLR - (R2) ;AS ADDRESSES OF A WORD TO BE

; CLEARED.

5.6 AUTODECREMENT DEFERRED HODE

The contents of the register are decremented before being used as the
pointer to the address of the operand.

Format for A:

Example:
CLR

5.7 INDEX MODE

@- (ER)

@- (R2) :DECREMENT CONTENTS OF
:REGISTER 2 BY TWO BEFORE
:USING AS POINTER
:TO ADDRESS OF WORD TO BE
: CLEARED.

The value of an expression E is stored as the second or third word of
the instruction. The effective address is calculated as the value of
E plus the contents of register ER. The value E is called the base.

5-3

Format for A:

E}!:amples :
CLR

CLR

E(BR)

X+2 (Rl)

-2 (R3)

5.8 INDEX DEFERRED MODE

,EFFECTIVE ADDRESS IS X+2 PLUS
,THE CONTENTS OF REGISTER 1.
,EFFECTIVE ADDRESS IS -2 PLUS
,THE CONTENTS OF REGISTER 3.

An expression plus the contents of a register gives the pointer to the
address of the operand.

Format for A: @E(ER)

Example:
CLR @114 (R4)

5.9 IMMEDIATE MODE

;IF REGISTER 4 HOLDS 100 AND
;LOCATION 214 HOLDS 2000,
;LOCATION 2000 IS CLEAREO.

ThE~ immediate mode allows the operand itself to be stored as the
second or third word of the instruction. It is assembled as an
aut~oincrement of register 7, the PC.

Format for A: #E

Exa.rnples:
MOV #lOO,RO

MOV #X, RO

,MOVE AN OCTAL 100 TO REGISTER
,0
,MOVE THE VALUE OF SYMBOL X TO
;REGISTER 0

The operation of this mode is explained as follows:

The statement MOV #100,R3 assembles as two words. These are:

012 703

o 0 010 0

Just before this instruction is fetchen and executed, the PC points to
the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27
(au1:oincrernent the PC). Thus, the PC is used a!=; a pointer to fetch
the operand (the second word of the instruction) before being
incremented by t,.,o, to point to the next instruction.

5-4

5.10 ABSOLUTE MODE

Absolute mode is the equivalent of immediate mode deferred. @#E
specifies an absolute address which is stored in the second or third
word of the instruction. Absolute mode is assembled as an
autoincrement deferred of register 7, the PC.

Format for A: @#E

ExaMples:
MOV @#lOO,RO

CLR @#X

5.11 RELATIVE HODE

iMOVE THE VALUE OF THE
; CONTENTS
;OF LOCATION 100 TO REGISTER RO.
;CLEAR THE CONTENTS OF THE
iLOCATION WHOSE ADDRESS IS X.

Relative mode is the norMal mode for meMory references.

Format for A: E

Examples:
CLR
MOV

100
X,Y

;CLEAR LOCATION 100.
iMOVE CONTENTS OF LOCATION X
iTO LOCATION Y.

Relative mode is assembled as index mode, using register 7, the PC, as
the index register. The base of the address calculation, which is
stored in the second or third word of the instruction, is not the
address of the operand (as in index mode), but the number which, when
added to the PC, becomes the address of the operand. Thus, the base
is X-PC, which is called an offset. The operation is explained as
follows:

If the statement MOV 100,R3 is assembled at absolute location 20, the
assembled code is:

Location 20: o 1 6 7 0 3
Location 22: o 0 005 4

The processor fetches the MOV instruction and adds two to the PC so
that it points to location 22. The source operand mode is 67; that
is, indexed by the PC. To pick up the base, the processor fetches the
word pointed to by the PC and adds two to the PC. The PC now points
to location 24. To calculate the address of the source operand, the
base is added to the desiqnated register. That is, BASE+PC=54+24=100,
the operand address.

Since the Assembler considers as the address of the first word of
the instruction, an equivalent index mode statement would be:

MOV 100-.-4(PC) ,R3

This mode is called relative because the operand address is calculated
relative to the current PC. The base is the distance or offset (in
bytes) between the operand and the current PC. If the operator and

5-5

its operand are moved in memory
operator and data remains constant,
correctly anywhere in core.

so that the distance between the
the instruction will operate

5.12 RELATIVE DEFERRED MODE

R(:!lative deferred mode is similar to relative mode, except that the
expression, E, is used as the pointer to the address of the operand.

Format for A: @E

Example:
MOV @X,RO :MOVE THE CONTENTS OF THE

:LOCATION WHOSE ADDRESS IS IN
:X INTO REGISTER O.

5.13 TABLE OF MODE FORMS AND CODES

Each instruction takes at least one word. Operands of the first six
forms listed below do not increase the length of an instruction. Each
operand in one of the other modes, however, increases the instruction
length by one word.

Form
R
@R or (ER)
(ER) +
@(ER)+
-(ER)
@- (ER)

Mode
On
In
2n
3n
4n
5n

where n is the register number.

Meaning
Register mode
Register deferred mode
Autoincrement mode
Autoincrement deferred mode
Autodecrement mode
Autodecrernent deferred mode

Any of the following forms adds one word to the instruction length:

Form
E (ER)
@E(ER)
#E
@#E
E
@E

Mode
6n
7n
27
37
67
77

Meaning
Index mode
Index deferred mode
Immediate mode
Absolute memory reference mode
Relative mode
Relative deferred reference mode

where n is the register number. Note that in the last four forms,
register 7 (the PC) is referenced.

5-6

.... ----------.-------------

NOTE

An alternate form for @R is (ER). However, the
form @(ER) is equivalent to @O(ER).

The form @#E differs from the for~ E in that the
second or third word of the instruction contains
the absolute address of the operand rather than
the relative distance between the operand and the
PC. Thus, the instruction CLR @#100 clears
absolute location 100 even if the instruction is
moved from the point at which it was assembled.
See the description of the .ENABLE AHA function in
section 6.2, which directs the asse~bly of all
relative mode addresses as absolute mode
addresses.

5.14 BRANCH INSTRUCTION ADDRESSING

The branch instructions are I-word instructions. The high byte
contains the op code and the low byte contains'an 8-bit signed offset
(seven bits plus sign) which specifies the branch address relati,re to
the PC. The hardware calculates the branch address as follows:

1. Extend the sign of the offset through bits 8-15.

2. Multiply the result by 2. This creates a word offset rather
than a byte offset.

3. Add the result to the PC to form the final branch address.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to
the PC, the PC is pointing to the word following the branch
instruction~ hence the factor -2 in the calculation.

Byte offset = (E-PC)/2 truncated to eight bits.

Since PC = .+2, we have

Byte offset = (E-.-2)/2 truncated to eight bits.

5-7

NOTE

It is illegal to branch to a location specified as
an external symbol, or to a relocatable symbol
from within an absolute section, or to an absolute
symbol or a relocatahle symbol or another program
section froM within a relocatable section.

The EHT and TRAP instructions do not use the lm,,,-order byte of the
word. This allows information to be transferred to the trap handlers
in. the low-order byte. If EMT or TRAP is followed by an expression,
the value is put into the low-order byte of the word. However, if the
expression is too big (377(octal» it is truncated to eight hits and
a T error flag is generated.

5-8

i

CHAPTER 6

GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DlRECTI'mS

6.1.1 .LIST and .NLIST

Listing options can be specified in the text of a rmCRO-ll program
through the .LIST and .NLIST directives. These are of the form:

.LIST arg

.NLIST arg

where: arg represents one or more optional arguments.

When used without arguments, the listing directives alter the listing
level count. The listing level count causes the listing to be
suppressed when it is negative. The count is initialized to' zero 1

incremented for each .LIST and decremented for each .NLIST. For
example:

• MACRO LTEST ; LIST TEST
A-THIS LINE SHOULD LIST

.NLIST
B-THIS LINE SHOULD NOT LIST

.NLIST
C-THIS LINE SHOULD NOT LIST

• LIST·
D-THIS LINE SHOULD NOT LIST (LEVEL NOT BACK TO ZERO)

.LIST
E-THIS LINE SHOULD LIST (LEVEL BACK TO ZERO)

.ENDM

LTEST

A-THIS LINE SHOULD LIST
.NLIST
• LIST

;CALL THE MACRO

E-THIS LIST SHOULD LIST (LEVEL BACK TO ZERO)

The primary purpose of the level count is to allow macro expansions to
be selectively listed and yet exit with the level returned to the
status current during the macro call.

6-1

The use of arguments with the listing directives does not affect the
level count; however, use of .LIST and .NLIST can be used to override
the current listing control. For example:

X:=.

·X::.

.MACRO XX

.LIST

.NLIST

.ENDM

.NLIST ME
XX
.LIST

;LIST NEXT LINE

;DO NOT LIST REHAINDER

;OF MACRO EXPANSION

;DO NOT LIST MACRO EXPANSIONS

;LIST NEXT LINE

Allowable arguments for use with the listing directives are as follows
(1:hese arguments can be used singly or in coMbination)

Argument Default

SEQ list

LOC list

Function

Controls the listing of source line
sequence numbers. Error flags are
norMally printed on the line preceding
the questionable source statement.

Controls the listinq of the location
counter (this fieln would not normally
be suppressen).

6-2

Argument Default

BIN list

BEX

SRC

COH

MD

HC

HE

MER

CND

TOC

TTM

SYH

list

list

list

list

list

no list

no list

list

no list

list

Console
mode

list

Function

Controls the listing of generated binary
code.

Controls listing of binary
that is, those locations
contents beyond the first
(per source statement).
suhset of the BIN argument.

extensions:
and binary

binary word
This is a

Controls the listing of the source code.

Controls the listing of comments. This
is a subset of the SRC argument and can
be used to reduce listing tiMe and/or
space where COMments are unnecessary.

Controls listing of macro definitions
and repeat range expansions.

Controls listina of macro calls and
repeat range expansions.

Controls listing of macro expansions.

Controls listing of macro expansion
binary code. A LIST rmB causes only
those macro expansion statements
producing binary code to be listed.
This is a subset of the HE arqument.

Controls the listing of unsatisfied
conditions and all .IF and • EN DC
statements. This argUMent permits
conditional asseJ"lhlies to he listed
without including unsatisfied code.

Control listing of all listing
directives having no argUMents (those
used to alter the listing level count).

Control listinq of tahle of contents on
pass 1 of the assembly (see section
6.1.4 describing the .SBTTL directive).
The full asseMbly listing is printed
during pass 1 of the asseMbly.

Control listing output forMat. The
TTH arqument (the default case) causes
output lines to be truncated to 72
characters. Binary code is printed with
the binary extensions below the first
binary word. The alternative (.NLIST
TTH) to Teletype mode is line printer
mode, which is sho\'m in Figure 6-1.

Controls the listing of the symbol table
for the assembly.

6-3

An example of an assembly listing as sent to a l32-column line printer
is shown in Figure 6-1. Notice that binary extensions for statements
generating more than one word are spread horizontally on the source
line. An example of an asseMbly listing as sent to a teleprinter is
shown in Figure 6-2. Notice that binary extensions for statements
generating more than one word are printed on subsequent lines.

The listing options can also be
listing file specification in
Assembler. These switches are

/LI:arg
/NL:arg

specified through switches on the
the command string to the MACRO-II

where: arg is anyone or more of the arguments defined
in the .LIST and .NLIST directive.

6-4

,
"

MACRO V~03A~~ 24-MAY-72 MA9 RO V~03'.1 26-MAV-72 ~~'~6 PA~E 2S
A~Se;;MBL.ER PRO ER

1 2101766 GETI.INI iG£T AN INPUT ~lNE
2 eJ~1766 SAVREG
3 21~17'2 04670~ 0~00201 1$1 MOV F"PCNT.R'" iANY R£SERVEO ~~'Sl
4 210t716 ~0142~ SEQ 31$,. NO
5 21rzJ20~1ZJ 06006; 000rll22' ADD R",PAGNUM jVE~, UPDA!E PAGE NUMBER
6 0020Q14 2112761 177717 0'HJ0~6 , MOV #-1,PAGEXT
, 2102012 005061 0~0012' CI.R I..%NNUM .lN1T NEW OR[P SEQUENCE
B ~02016 2105061 2100020' CL.R F"F'CNT
9 0~2022 0"5061 21"0fZ11~1 CI.R SEQENO

121 f21rzJ2026 005761 21""012101 T5T PASS
11 2102032 21"1402 BEQ 315
12 00212134 21"5061 21~0010' OI.R L.PPCNT
13 002r214~ 0~2721, 21~17121 31$. MOV #1.1NBUF",R2
14 12102044 010267 2100012' MOV R2.I.CBEGI. .StAT UP BtGINNING
15 ~0205" 012767 210211~1 210121014' MOV '1.INENO,l.crNOL. J' ANO ENO or ~lNE M.R~E~S
17 002iZJ56 2105767 IZlrZl0 2 " li.H TST SML.CNT (IN SVSTEM MACRO'

0\ 18 0212062 21211145 BNE 40$ • Y!:S. ~ta!CIA~
I 21 0022164 211,67211 21022141 MOV t~S8MRP. Ri tASSUMf MAQRO IN P~OO~!SI U1

22 0iZJ22170 2l0116~ BNE 1~5 JBRANC:~ X, SO
24 210221'2 21127211 12J012J75~' MOV #SRCBUF',Rl
25 02120'6 ,WAIT #SRCI.NK
26 21021~4 005267 212121012 1 INC L.'1 NNUM
27 0021121 11.67~0 ~01fl7531 Move SRCHOR.3,RI1J JG!:T cOeE BYTE
28 01fl211. 4 2132700 2100047 BIT #2147,RfZI .ANYTHING BAD?
29 e.212120 ~211403 BE:Q 32$.- ,NO .
321 2102122 ERROR L. '-V!$, !:RROR
31 0i2l213~ 12161021 32$, RO~B R0 H:O,'
32 0021~2 1021014 BPI. 2$ i NO
33 0212134 2156767 2102121061 21"12J2I~41 SIS CSlSAV,ENOrL.G
34 021214, "'eJ1003 BNE 345

Example of MACRO-II Line Printer Listing

(132 column line printer)

FIGURE 6-1

6.1.2 Page Headings

The MACRO-II Assembler outputs each page in the format shown in Figure
6-2 (Teletype listing). On the first line of each listing page the
Assembler prints (from left to right):

1. Title taken from .TITLE directive

2. Assembler version identification

3. Date

4. Time-of-day

5. Page number

The second line of each listing page contains the subtitle text
spE~cified in the last encountered .SBTTL directive.

6.1.3 .TITLE

The .TITLE directive is used to assign a na~e to the object module.
The name is the first symbol following the directive and must be six
Radix-50 characters or less (any characters beyond the first six are,
ignored). Non Radix-50 characters are not acceptable. For example:

.TITLE PROG TO PERFORM DAILY ACCOUNTING

causes the object module of the assembled program to be named PROG
(this name is distinguished from the filename of the object module
specified in the command string to the Assembler). The name of the
object module appears in the LINK load map and on the listing.

If there is no .TITLE statement, the default name assigned to the
object module is

.MAIN.

The first tab or space following the .TITLE directive is not
considered part of the object module name or header text, although
subsequent tabs and spaces are ~ignificant.

If there is more than one .TITLE directive, the last .TITLE directive
in the program conveys the name of the object module.

6.1.4 .SBTTL

The .SBTTL directive is used to provide the elements for a printed
table of contents of the assembly listing. The text following the
directive is printed as the second line of each of the following
assembly listing pages until the next occurrence of a .SBTTL
directive. For example:

.SBTTL CONDITIONAL ASSE~mLIES

6-8

The text:

CONDITIONAL ASSEMBLIES

is printed as the second line of each of the following assembly
listing pages.

During pass 1 of the assembly process, MACRO-ll automatically prints a
table of contents for the listing containing the line sequence number
and text of each .SBTTL directive in the program. Such a table of
contents is inhibited by specifying the /NL:TOC switch option to the
assembly listing file specification (or a .NLIST TOC directive within
the source). For example:

#OBJFIL,LISTM/NL:TOC=SRCFIL

In this case the table of contents normally generated prior to the
assembly listing is inhibited.

An example of the table of contents is shown in Figure 6-3. Note that
the first word of the subtitle heading is not limited to six
characters since it is not a module name.

6.1.5 .IDENT

The .IDENT directive provides another means of labeling the object
module produced as a result of a MACRO-ll assembly. In addition to
the name assigned to the ohject module with the .TITLE directive, a
character string (up to six characters, treaterl like a RAD50 string)
can be specified between paired delimiters. For example:

.IDENT /V005A/

6-9

Table 6-1

Functions: Symbolic Arguments

Argument Default

ABS disable

AMA disable

CDR disable

FPT disable

LC disable

LSB disable

PNC ,enable

Function

Enabling of this function produces
absolute binary output; i.e., input
to the Paper Tape Software System
Absolute Loader.

Enabling of this function directs
the assembly of all relative
addresses (address mode 67) as
absolute addresses (address mode
37) • This switch is useful during
the debugging
development.

The statement
source columns
treated as

phase of program

.ENABL CDR causes
73 and greater to be

comment. This
accommodates
card columns

sequence numbers in
72-80.

Enabling of this function causes
floating point truncation, rather
than rounding, as is otherwise
performed. .DSABL FPT returns to
floating point rounding mode.

Enabling of this function causes
the Assembler to accept lower case
ASCII input instead of converting
it to upper case.

Enable or disable a local symbol
block. While a local symbol block
is normally entered by encountering
a new symbolic label or .PSECT
directive, .ENABL LSB forces a
local symbol block which is not
terminated until a label or .PSECT
directive following the .DSABL LSB
statement is encountered. (Refer
to Figure 6-4.)

The statement .DSABL PNC inhibits
binary output until an .ENABL PNC
is encountered.

6-12

TABLE 6-1 (Cont'd)

Argument Default

REG enable

GBL enable

Function

The statement .DSABL REG inhibits
the default register definitions.
That is, until .DSABL REG is seen,
the following code is implied as
being present:

RO=%O
Rl=%l
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%7

The .ENABL
used to
definitions.
recommended.

REG statement
re-enable

Such use

may be
these

is not

The statement .DSABL GBL, inhibits
attempts to resolve references
which remain undefined at the end
of pass 1, as being global
references.

An incorrect argument causes the directive containing it to be flagged
as an error.

Once a program has been written using these functions, or not using
them, the functions can be controlled through switches specified in
the command string to the MACRO-ll Assembler. These switches are:

where:

/EN:arg
/DS:arg

arg is any of the arguments defined for the .ENABL and
.DSABL directives.

Use of these switches overrides the enabling or disabling of all
occurrences of that argument in the program. They are used in the
same manner as /Ll, /NL, but in general apply mainly to source files.

6-13

:lj7/.j~3? LABEL: ,lAREL PROCESSOR
2 • E ~,,~ B L LSf"'
3 ~;.146.3P 026767 II c,l 0 '~ r i?' ~. :,1 ~ ? 21.1 ' (~'r SYMHOL,RSrADOT :PfRIOD?
U 0""4,,36 {HHln;~ 8F'Q Li~ YES, ERROR
5 .TF NDF XFDLSR
6 l',)?l.It--ll? CAll LSBSET rFLAG START OF NEW LOCAL SYMBOL ALaCK
7 .n.~c
8 rIIr~4"'':Hj SSRCH JNOi SEARCH THE SYMBOL TARLE
9 ?,'wbSi,' r:RF["fF

1 ~ ~r~4bS£l LAElELF: S~TXPR ,SET EXPRESSION REGISTERS
'1 ~:' "f.6i.~ 0:;1~~4h CLf(-eSP) ,CLFAR GLOBAL FLAG
12 ~vHl,.,b2 r,FT ~:8 ,GET NEXT NON BLANK
1 ~ W>4 bbb v?(,527 ~) ;~0? 7.? C ~'p R~,tiC~.COL ,ANOTHER COLON?
ILl :?\?I.Ih72 ~~HI~,i.I HNE]'U rIF NE NO
15 ellilllb74 ('112716 0r:"~1 w,. Mnv #r;L'3FlG,(~P) ;SfT GLOBAL FLAG
16 ,1:,147~~r GEH'H ,GfT ~EXT ~ON ~LA~K

! 7 ~rU7,"£J P$: ,REF LABEL
18 f2! 01.17 ;~4 '132713 ;J!C'til~lC' oIT "DEFFLG,(R3) ,ALREADY DEFINED?
lq 0:"ll71:' V'VoP2Cl1 f ~~ E 1 ~ . YES ,
2~ ~0!471? ~! 1 b7nC'! ~P0~26" ~OV ClCFGS,RIi'I , NO, GET CURRENT LOCATION CHARACTERISTIC
£11 V'I:'~ 71 '" (HIi?7tr.(' ~P'0337 hIC ~377-<RELFLG>,Rr ,CLEAR ALL BUT RELOCATION FLAG
22 ~;>1J722 e.527~"" ~NH"1? ~IS #rfFFLGILALFLG,R0 ,FLAG AS LABEL
23 (""472b r?!Sl l,P'!i; BTS eSP),R~ :INCLUDE PREVIOUS FLAGS FRO~ ABOVE
?~ vH~tl7 3[' 032713 e~i?l02~ RTT IJDFGFlG, (R3) ,DEFAULTED GLOBAL FROM REFERENCE?
?5 0~iJ73u 0"' 1 LIP,? R~Q 2C"$,IF EGl NO

0'1 ?6 0~u73e ~1J2713 v\~~12:i' I3IC tlnFGFI.GlGLBFLG,(R3),CLEAR DEFAULT GLOBAL FLAGS
I

I-' ?7 ?!('Lj 742 2:;1$: :REF LABEL
~ 28 iW47!J2 0S0~13 815 P~,(R3) ,SET MODE

?9 ~r}lLl7iJLJ r?!1671tl z(JIe(ll:w' Mnv CLCLOC,(RIJ) , AND CURRENT LOCATION
3il ?r.£I 7 ':! 1", ~"'V1LJlf.- BR H :INSERT
31
"32 (J,f'47':l? ~32713 ~~~~;,'~2 1$: ~1T #LBLr;LG,(R3) rDEFINED, AS LABEL?
33 "Wll7Sh V'lel£1'-"b 8fQ ?'S , NO, INVALID
3Ll C')(! 4 7bV' ~2671Ll ~~~C"3r,' CMP CLCLOC,(RlJ) :HAS ANYBODY MOVED?
3~ C'I'~£J7bl.l ~O!l"'f) RN[2$, YES
36 0rl.l766 126712 ~1~0(l!27' CMP~ CLC~EC,(R?) :SAME SECTOR?
37 011",1:.772 ~Pq 4('~ ofQ 3~ : YES, 01(
38 0;;"1J771J 2$: ERR0R P ,NO, FLAG ERROR
3q ~t:\5::!:',2 r.5271~ ?,~r;,(.\~4 FH5 .~·DFFLG, (RJ) ,FLAG AS MULTIPLY DEFINED
£I ~~ ({Ir.5 " 06 3$: P!SERT ,INSERT/UPDATE
Lll 0::'5'112 SETPF~ ,BE SURE TO PRINT LOCATION FIELD
£l2 0"5C'lf" Cr"~4r.4 I:lR 5$
43
iJ4 V'~5r:'2~', la: Et?R('IR Q
£IS 0r5?2h 0t:'04C' 1 BIJ 6$:NO NEED TO POP STACK
4b !'!(i"5~3~ 0~5726 5$: TST (SP)+ rCLEAN STACK
ll7 ~~51i132 6$: SFT"IB ,SET NONBLANK
llR ~05r :';6 016767 0~"'~"'('I' 0?0!?'16' t-IOV CHRP~JT, LBLEND JMARK END OF LABEL
aq ¥'I7,5C""£l !:IRJ~P SH1NT rTRY FOR MORE
510
51 .DSABL LSB

Figure 6-4 Example of .ENABL, .DSABL Directives

"

6.3 DATA STORAGE DIRECTIVES

A wide range of data and data types can be generated with the
following directives and assembly characters:

• BYTE
• WORD
•
"
.ASCII
.ASCIZ
.RAD50
tB
tD
to

These facilities are explained in the following sections.

6.3.1 • BYTE

The .BYTE directive is used to generate successive bytes of data. The
directive is of the form:

• BYTE exp

• BYTE expl,exp2, •••

iWHICH STORES THE OCTAL
iEQUIVALENT OF THE EXPRESSION
iEXP IN THE NEXT BYTE •

iWHICH STORES THE OCTAL
iEQUIVALENTS OF THE LIST OF
,EXPRESSIONS IN SUCCESSIVE BYTES.

A legal expression must have an absolute value (or contain a reference
to an external symbol) and must result in eight bits or less of data.
The l6-bit value of the expression must have a high-order byte (which
is truncated) that is either all zeros or all ones. Each operand
expression is stored in a byte of the object program. Multiple
operands are separated by commas and stored in successive bytes. For
example:

SAM=5
.=410

.BYTE tD48,SAM ;060 (OCTAL EQUIVALENT OF 48
; DECIMAL) IS STORED IN LOCATION
;410, 005, IS STORED IN
iLOCATION 411.

If the high-order byte of. the expression equates to a value other than
o or -1, it is truncated to the low-order eight bits and flagged with
a T error code. If the expression is relocatable, an A-type warning
flag is given.

At Link time it is likely that relocation will result in an expression
of more than eight bits, in which case, LINK prints a truncation error
message. For exaMple:

6-15

• BYTE 23
A:

• BYTE A

• GLOBL X
X=3

• BYTE X

If an operand following the
as a zero. For example:

.BYTE "

6.3.2 • WORD

;STORES OCTAL 23 IN NEXT BYTE •

;RELOCATABLE VALUE CAUSES AN "A"
; ERROR FLAG •

;STORES 3 IN NEXT BYTE •

.BYTE directive is null, it is interpreted

;ZEROS ARE STORED IN BYTES 420, 421,
;AND 422.

ThE~ .WORD directive is used to generate successive words of data. The
directive is of the form:

• WORD EXP

• WORD expl,exp2, •••

;WHICH STORES THE OCTAL
;EQUIVALENT OF THE EXPRESSION
;EXP IN THE NEXT WORD •

;WHICH STORES THE OCTAL
;EQUIVALENTS OF THE LIST OF
;EXPRESSIONS IN SUCCESSIVE
;WORDS.

A legal expression must result in 16 bits or less
operand expression is stored in a word of the
Multiple operands are separated by commas and stored
words. For example:

of data. Each
object program.
in successive

SAL=O
.=500

• WORD l77535,.+4,SAL ,STORES 177535, 506 AND 0 IN
iWORDS 500, 502 AND 504.

If an expression equates to a va~ue of more than 16 bits, it is
truncated and flagged with a T error code.

If an operand following the .WORD directive is null, it is interpreted
as zero. For example:

.=500
• WORD ,5, ;STORES 0, 5, and 0 in LOCATIONS

i500, 502, and 504.

A blank operator field (any operator not recognized as a macro call,
op-code, directive or semicolon) is interpreted as an implicit .WORD
dirl3ctive. Use of this convention is discouraged because it may not
be the default case in future PDP-II Assemblers. The first term of
the first expression in the operand field must not be an instruction
mnemonic or assembler directive unless preceded by a + or - operator.
For example:

6-16

.=440 :THE OP-CODE FOR MOV, WHICH
;I8 010000, IS STORED ON

LABEL: +MOV,LABEL : LOCATION 440. 440 .IS
:STORED IN LOCATION 442.

Note that the default .WORD directive occurs whenever there is a
leading arithmetic or logical operator, or whenever a leading symbol
is encountered which is not recognized as a macro call, an instruction
mnemonic or assembler directive. Therefore, if an instruction
mnemonic, macro call or assembler directive is misspelled, the • WORD
directive is assumed and errors will result. Assume that MOV is
spelled incorrectly as MOR:

MOR A,B

~qO error codes result: Q occurs because an expression operator is
missing between MOR and A, and a U occurs if MOR is undefined. The U
error occurs only if GBL is disabled and MOR is undefined, else MOR is
classed as a global. Two words are then generated; one for MOR A and
one for B.

6.3.3 ASCII Conversion of One or Two Characters

The ' and " characters are used to generate text characters within the
source text. A single apostrophe followed by a character results in a
word in which the 7-bit ASCII representation of the character is
placed in the low-order byte and zero is placed in the high-order
byte. For example:

MOV #' A,RO

resul ts in the follo\-Ting 16 bits being moved into RO:

8THNT:
GBTSYM
BEQ
CHPB

BEQ
CMPB
BEQ

OOO! ·101!

octal ASCII value of A

4$
@CHRPNT, #' :

LABEL
@CHRPNT,#'=
ASGMT

:COLON DELIHITS LABEL FIELD.

;EQUAL DELIHITS
;ASSIGNHENT PARAHETER.

A double quote follov-Ted by t,vo characters results in a \-Tord in "Thich
the 7-bit ASCII representations of the two characters are placed in
the word. For example:

6-17

MOV #"AB,RO

rE~sul ts in the following word being moved into RO:

102 ! lOll
-----t--------1----

---octal ASCII of A
--octal ASCII of B

iDEVICE NAME TABLE

DEVNAM: • WORD "DF iRF DISK
• NORD "DK iRK DISK
• NORD "DP ;RP DISK

DEVNKB: • NORD "KS ;TTY KEYBOARD
• WORD "DT ;DECTAPE
.N()RD "LP ; LINE PRINTER
• ~10RD "PR ;PAPER TAPE READER
• WORD "PP iPAPER TAPE PUNCH
• NORD "CR iCARO READER
• N()RD "MT ; MAGTAPE
• l,oJORD 0 ;TABLE'S ENO

6 • 3 • 4 • ASC I I

The .ASCII directive translates character strings
ASCII equivalents for use in the source program •
• ASCII directive is as follows:

into their 7-bit
The format of the

.ASCII

character string

I I

As an example:

A: .AscrI IHELLOI

Icharacter stringl

is a strinq of any acceptable printable
ASCII characters. The string may not
include null (blank) characters, rubout,
return, line feed, vertical tah, or form
feed. Nonprintinq character.s can be
expressed in digits of the current radix
and delimited by angle brackets. (Any
legal, defined expression is allowed
between angle brackets.)

these are deli~itinq characters and may
be any printing characters other than i
< and = characters and any character
within the string.

iSTORES ASCII REPRESENTATION OF
:THE LETTRRS H.E.L.L.O IN
;CONSECUTIVE BYTES •

• ASCII IABC/<15><12>/DEFI
;STORES A,B,C,15,12,D,E,F IN
:CONSECUTIVE BYTES.

6-18

.ASCII / <AB>/ iSTORES <,A,B,> IN CONSECUTIVE
iBYTES.

The ; ~d = characters are not illegal delimiting characters, but are
preempted by their significance as a comment indicator and assignment
operator, respectively. For other than the first group, semicolons
are treated as beginning a comment field. For example:

.ASCII ;ABC;/DEF/

.ASCII /ABC/;DEFi

.ASCII /ABC/=DEF=

.ASCII =DEF=

;STORES A,B,C,D,E,F
;NOT RECOHMENDED PRACTICE

iSTORES A,B,C. DEF TREATED
;AS A COMMENT

;SAME AS CASE 1

;THE ASSIGNNENT
i .ASCII=DEF
;18 PERFORMED AND A Q ERROR GENERATED
;UPON ENCOUNTERING
iTHE SECOND -.

6. 3. 5 • ASC I Z

The .ASCIZ directive is equivalent to the .ASCII directive with a zero
byte automatically inserted as the final character of the string. For
example:

X:

When a list or text string has been created with a
.ASCIZ directive, a search for the null character
can determine the end of the list. For example:

MOV
MOV
MOVB
BNE

#HELLO,Rl
#LINBUF,R2
(Rl) +, (R2) +
X

HELLO: .ASCIZ < CR>< LF> /MACRO-ll VOOIA/<CR>< LF> ; INTRO MESSAGE

6.3.6 .RAD50

The .RAD50 directive allows the user the capability to handle symbols
in Radix-50 coded form (this form is sometimes referred to as MOD40
and is used in PDP-ll system programs). Radix-50 form allows three
characters to be packed into sixteen bits; therefore, any 6-character
symbol can be held in two words. The form of the directive is:

6-19

.RAD50

where: I I

string

Istringl

delimiters can be any printing
characters other than the =, <, and
characters.

is a list of the characters to be
converted (three characters per word)
and which may consist of the characters
A through Z, 0 through 9, dollar ($),
dot (.) and space (). If there are
fewer than three characters (or if the
last set is fewer than three characters)
they are considered to be left justified
and trailing spaces are assumed.
Illegal nonprinting characters are
replaced with a ? character and cause an
I error flag to be set. Illegal
printing characters set the Q error
flag.

The trailing delimiter may be a semicolon, or matching delimiter. For
example:

.RAD50
• RAD50
.RAD50

IABCI
IABI
IABCDI

;PACK ABC INTO ONE WORD.
;PACK AB (SPACE) INTO ONE WORD •
;PACK ABC INTO FIRST WORD AND
;D SPACE SPACE INTO SECOND WORD.

Each character is translated into its Radix-50 equivalent as indicated
in the following table:

Character

(space)
A-Z
$

0-9

Radix-50 Equivalent (octal)

o
1-32

33
34

36-47

The character code for 35 is currently undefined.

The Radix-50 equivalents for characters 1 through 3 (Cl,C2,C3) are
combined as follows:

Radix 50 value = «C*50) +c2) *50+C3

For example:

Radix-50 value of ABC is «1*50)+2)*50+3 or 3223

See Appendix A for a table of Radix-50 equivalents.

USE! of angle brackets is encouraged in the .ASCII, .ASCIZ, and • RAD50
statements whenever leaving the text string to insert special codes.
For example:

6-2!1

CHR1=1
CHR2=2
CHR3=3

.ASCII <101>

·RAD50 /AB/<35>

JEQUIVALENT TO .ASCII/A/

JSTORES 3255 IN NEXT WORD

• RAD50 <CHR1><CHR2><CHR3>
JEQUIVALENT TO .RAD50/ABC/

6.4 RADIX CONTROL

6.4.1 • RADIX

Numbers used in a MACRO-ll source program are initially considered to
be octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10

This is done via the .RADIX directive, of the form:

.RADIX n

where: n is one of the acceptable radices.

The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program,
assumed if none is specified, is 8 (i.e., octal).

and the argument
For example:

.RADIX 10

• RADIX

JBEGINS SECTION OF CODE WITH
J DEC I MAL
JRADIX

JREVERTS TO OCTAL RADIX

In general it is recommended that macro definitions not contain or
rely on radix settings from the .RADIX directive. Th~ temporary radix
control characters should be used within a macro definition. (to, to,
and tB are described in the following section.) A given radix is valid
5dughout a program until changed. Where a possible conflict exists
within a macro definition or in possible future uses of that code
module, it is suggested that the user specify values using the
~emporary radix controls (see below).

6-21

COUNT BUFF-2

BUFF

6.5.3 .BLKB and .BLKW

Blocks of
directives.
word blocks •

storage ca.n be reserved using the .BLKB and .BLKW
.BLKB is used to reserve byte blocks and .BLKW reserves
The two directives are of the form:

• BLKB exp
.BLKW exp

where: exp

}i'or example:

1 000000'
2
3 000000

is the number of bytes or words to reserve. If no
argument is present, 1 is the assumed default
value. Any legal expression which is completely
defined at assembly time and produces an absolute
number is legal. Using these directives without
argUMents is not recommended.

.CSECT IMPURF.

PAf'S: .BLKW
4 ;NEXT GROUP rrusT STAY TOGETHER
5 000002 SYMBOL: .BLKW 2 ;SYMBOL ACCUMULATOR
6 000006 MODE:
7 000006 FLAGS: .BLKB 1 ;FLAG BITS
8 000007 SECTOR:: .BLKB 1 ;SYMBOL/EXPRESSION TYPE
9 000010 VALUE: .BLKW 1 ;EXPRESSION VALUE
10 00012 RELLVL: .BLKN 1
11 .BLKW "2 ;END OF GROUPED DATA
12
13 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
14 00024 CLCFGS: .BLKB 1
15 00025 CLCSEC: .BLKB 1
16 00026 CLCLOC: .BLKW 1
17 00030 CLCMAX: .BLKW 1

The .BLKB directive has the same effect as:

.=.+exp

but is easier to interpre·t in the context of source code.

6-24

6.6 NUMERIC CONTROL

Several directives are available to simplify the, use of
the floating-point hardware on the PDP-ll.

A floating-point number is represented by a string of decimal
digits. The string (which can be a single digit in length)
may optionally contain a decimal point, and may be
followed by an optional exponent indicator
in the form
of the letter E and a signed decimal exponent. The list
of number representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0EO
3EO
.3El
300E-2

As can be quickly inferred, the list could be extended indefinitely
(e.g., 3000E-3, .03E2, etc.). A leading plus sign is ignored (e.g.,
+3.0 is considered to be 3.0). A leading minus sign complements the
sign bit. No other operators are allowed (e.g., 3.0+N is illegal).

Floating-point number representations are valid only in the contexts
described in the remainder of this section.

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to be stored, the high-order excess bit is added to the low-order
retained bit. For example, if the number is to be stored in a 2-word
field, but more than 32 bits are needed for its value, the highest bit
carried out of the field is added to the least significant position.
The .ENABL FPT directive is used to enable floating-point truncation,
and .DSABL FPT is used to return to floating-point rounding (see
section 6.2).

6.6.1 .FLT2 and .FLT4

Like the .WORD directive, the two floating-point storage directives
cause their arguments to be stored in-line with the source program.
These two directives are of the form:

where:

• FLT2
• FLT4

argl,arg2, •••
argl,arg2, •••

argl,arg2,... represent one or more floating point numbers
separated by commas •

• FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage.

6-25

6.9 PROGRAM SECTION DIRECTIVES

6.9.1 .PSECT Directive

Program sections are defined by the .PSECT directive, which is
formatted as:

.PSECT [NAME] [,RO/RW] [,I/O] [,GBL/LCL] [,ABS/REL] [,CON/OVR] [,HGH/LOW]

The brackets ([]) are for purposes of illustrating optional
parameters, and are not included in the parameter specifications. The
slash (/) indicates that a choice is to be made between the
parameters. The program section attribute parameters are summarized
in Table 6-2.

Parameter

NAME

RO/RN

I/O

GBL/LCL

ABS/REL

CON/OVR

Table 6-2

.PSECT Directive Parameters

Default

Blank

I

LCL

REL

OVR

Meaning

Program section naMe, in Radix-50
format, specified as one to six
characters. If omitted, a comma must
appear in the first parameters position.

Program section access mode~

RO=Read Only
RN=Read/Nrite

Program section type~

I=Instruction
D=Data

The scope of the program section, as
interpreted by LINK~

GBL=Global
LCL=Local

Defines relocation
section~

of the program

ABS=Absolute (no relocation)
REL=Relocatable (a relocation bias

is required)

PrograM section allocation~

CON=Concatenated
OVR=Overlaid

6-28

,t.

HGH/LOW LOW Program section memory type1

HGH=High-speed
LOW=Core .

NOTE
The HGH/LOW attribute is currently ignored by LINK.

The only parameter that is position-dependent is NAME.
omitted, a comma must be used in its place. For example,

If it is

.PSECT ,RO

This example shows a PSECT with a blank name and the Read Only access
parameter. Defaults are used for the remaining parameters.

LINK interprets the .PSECT directive's parameters as follows:

RO/RW Defines the type of access to the program section
permitted which iS1 Read Only, or Read/Write.

I/O Allows LINK to differentiate global symbols that are
entry points (I) from global symbols that are data
values (D).

I
GBL/LC~

j
ABS/REL

J
CON/OVR

Defines the scope of a program section. A global
program section's scope crosses segment (overlay)
boundaries; a local program section's scope is within a
single segment. In single-segment programs, the
GBL/LCL parameter is ignored.

When ABS is specified, the program section is absolute.
No relocation is necessary (i.e., the program section
is assembled starting at absolute virtual 0). When REL
is specified, a relocation bias is calculated by LINK,
and added to all references in the section.

CON causes LINK to collect all allocation references to
the program section from different modules and
concatenate them to form the total allocation for the
program section. OVR indicates that all allocation
references to the program section overlay one another.
Thus, the total allocation of the program section is
determined by the largest request made by a module that
references it.

Once the attributes of a named .PSECT are declared in a module, the
MACRO-II Assembler assumes that this .PSECT's attributes hold for all
subsequent declarations of the named .PSECT in the same module. Thus,
the attributes may be declared once, and later .PSECT's with the same
·name will have the same attributes, when specified within the same
module.

The Assembler provides for 255(10) program sections: One absolute
section, one blank relocatable section, and 253(10) named relocatable
sections are permitted. The .PSECT directive enables the user to:

6-29

location by LINK All other program sections (those with the attribute
CON) are concatenated.

NOote that there is no conflict bet"reen internal syP1bolic names and
program section names: that is, it is legal to use the same symbolic
name for both purposes. In fact, considering FORTRAN again, this is
necessary to accommodate the FORTRAN stateMent:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and
also the fourth element of this prograM section.

Program section naMes should not duplicate .GLOBL names. In FORTRAN
language, COMMON block names and SUBROUTINE naMes should not be the
same.

6.9.2 .ASECT and .CSECT Directives

DOS/BATCH assembly language programs use the .PSECT directive
exclusively, as it affords all the capabilities of the .ASECT and
.CSECT directives defined for other PDP-II assemblers. The Macro
Assembler ~~ill accept .ASECT and .CSECT but asseMbles them as if they
were .PSECT's with the default attrihutes listed below. Also,
co:mpatibility exists between non-DOS/BATCH f-.1ACRO-II programs and LINK,
because LINK recognizes .ASECT and .CSECT directives that appear in
such programs. LINK accepts these directives from non-DOS/BATCH
programs, and assigns default values as shown in Tahle 6-3.

Table 6-3

Non-DOS/BATCH Program Section Defaults

Attribute Default Value
.ASECT .CSECT (named) .CSECT

Name ABS name Blank

Access RH RT-7 RN

Type I I I

Scope GBL GBL LCL

Relocation ADS RF.L REL

Allocation OVR OVR CON

HeMory LOtV' LOt-! LOW

ThE~ allowable syntactical forms of .ASECT and .CSECT are:

.ASECT

.CSECT

.CSECT sYMbol

6-32

Note that

.CSECT JIH

is identical to

.PSECT JIM,GBL,OVR

6.10 SYHBOL CONTROL: .GLORL

The Assembler produces a re10catable object ~odule and a listing file
containing the assembly 1istinq and symbol table. LINK joins
separately assembled object modules into a single load module. Ohject
modules are relocated as a function of the specified base of the load
module. The object modules (where there are more than one) ar.e linked
via glohal symbols, such that a global sYMhol in one module (either
defined by direct assiqnment or as a label) can be referencecl. from
another module.

A glohal symbol may be specified in a .GLORL directive.

In addition, symbols referenced but not defined within a module are
assumed to he global references. The .GLOBL directive is provided to
reference (and provide linkage to) symhols not otherwise referenced
wi thin a module. For example, one might include a • GI,OBL directive to
cause linkage to a library. ~'7hen defining a glohal definition, the
.GLOBL A,B,C directive is equivalent to

A==value (or A::value)
B==value (or B: :value)
C==value (or C::value)

The form of the .GLODL directive is:

where:

• GLORL syml,syP1.2, •••

syml,sym2,... are 1e0al symholic naMes, separnted by comMas
or spaces where more than one symbol is
specified.

Symhols appearing in a .GLORI. directive are either defined "'Tithin the
current program or are external symhols, in which Cnse they are
de fined in another program '''hieh is to be linked ",i th the current
program by LINK prior to execution.

A .GLORL directive line may contain a lahel in the label fieln and
comments in the COMment field.

At the end of assembly pass 1, ~~CRO-ll has cl.eterMinecl. whether a given
global symho1 is defined within the program or is expected to be an
external s~)ol. All internal symbols to a given program, then, must
be defined by the end of pass 1 or they will be assumed to be global
references (see .ENABL, .DSABL of globals in section 6.1.6).

6-33

F()r example:

.IF DF SYMI & SYM2

• EN DC

assembleR if both SYMI and SYM2 are defined.

6.11.1 Subconditionals

Subconditionals may be placed within conditional blocks to indicate:

1. Assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
he assembled.

2. Assemhly of a non-contiguous body
conditional block depending upon
conditional test to enter the block.

of code within
the result of

the
the

3. Unconditional asseMbly of a body of code within a conditional
block.

There are three subconditional directiveR, as follows:

Suhconditional Function
Directives

.IFF The code folloHing this stateJ'l1ent up to t,he next
suhconditional or end of the conditional block is
included in the program providina the value of the
condition tested upon entering the conditional
block ,.,as false •

• IFT The code follo,,·ring this statement up to the next
suhconditional or end of the conditional block is
included in the proqram providing the value of the
condition teRted upon entering the conditional
block ,.,as true •

• IFTF The code following this stateMent up to the next
suhconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested upon entering the
conditional block. -

Th.3 implied argument of the suhconditionals is the value of the
condition upon entering the conditional block. Subconditionals are
used within outer level conditional blocks. Suhconditionals are
ignored within nested, unsatisfied conditional blocks.

6-36

For example:

However,

.IF DF SYM

.IFF

• IFT

• IFTF

• ENDC

.IF DF X

.IF DF Y

.IFF

.IFT

.ENDC
• EN DC

.IF DF X

.IF DF Y

.IFF

.IFT

.ENDC

.ENDC

6.11.2 Immediate Conditionals

;ASSEMBLE BLOCK IF SYM IS DEFINED

;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS UNDEFINED.

;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS DEFINED •

;ASSEMBLE THE FOLLOWING CODE
; UNCONDITIONALLY •

;ASSEMBLY TESTS FALSE
;TESTS FALSE
;NESTED CONDITIONAL
; IGNORED

;NOT SEEN

;TESTS TRUE
;TESTS FALSE
;I8 ASSEHBLED

;NOT ASSEHBLED

An immediate conditional directive is a means of writing a l-line
conditional block. In this form, no .ENDC statement is required and
the condition is completely expressed on the line containing the
conditional directive. Immediate conditions are of the form:

.IIF cond, arg, statement

6-37

.ENDM name

where:

name is an optional argument, being the name of the
macro terminated by the statement.

For example:

.ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)

If specified, the symbolic name in the .ENDM stateMent must correspond
to that in the matching .MACRO statement. Otherwise the statement is
flagged and processing continues. Specification of the macro name in
the~ .ENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The! .ENDM statement may contain a COMment field, but must not contain
a label.

An example of a macro definition is shown below:

• MACRO
JSR
• NORD
.ENDM

7.1.3 .MEXIT

TYPl-1SG l-mSSGF.
RS ,TYPMSG
MESSGE

;TYPE A MESSAGE

In order to implement alternate exit points from a macro (particularly
nested macros), the .~mXIT directive is provided. .MEXIT ter~inates
the current macro as though an .ENDM directive were encountered. Use
of .MEXIT bypasses the cOMplications of conditional nesting and
alternate paths. For example:

.MACRO ALTR N,A,B

.IF EQ,N

.MEXIT

.ENDC

.ENDM

;START CONDITIONAL BLOCK

;EXIT FROM MACRO DURING CONDITIONAL
; BLOCK
iEND CONDITIONAL BLOCK

iNOR~AL END OF MACRO

In an asseMbly where N=O, the .MEXIT directive terminates the macro
expansion.

7-2

Where macros are nested, a .MEXIT causes an exit to the next higher
level. A .MEXIT encountered outside a macro definition is flagged as
an error.

7.1.4 MACRO Definition Formatting

A form feed character used as the only character on a line causes a
page eject. Used within a macro definition, a form feed character
causes a page eject. A page eject is not performed when the macro is
invoked.

Used within a macro definition, the .PAGE directive is ignored, but a
page eject is performed at invocation of that macro.

7 • 2 MACRO CALLS

A macro must be defined prior to its first reference. Macro calls are
of the general form:

where:

In.bel:

label

name

name, real arguments

represents an optional stateMent label.

represents the name of the macro specified in the
.MACRO directive preceding the macro definition.

represents any legal separator (comma, space, or
tab). No separator is necessary where there are
no real arguMents.

real are those symbols, expressions, and values
arguments which replace the dummy arguments in the • MACRO

statement. Where more than one argument is used,
they are separated by any legal separator.

Where a macro name is the same as a user label, the appearance of the
symbol in. the operation field designates a macro call, and the
occurrence of the symbol in the operand field designates a label
reference. For example:

ABS: MOV @RO,Rl :ABS IS USED AS LABEL

BR ABS ;ABS IS CONSIDERED A LABEL

ABS #4,ENT,LAR ;CALL MACRO ABS WITH 3 ARGUMENTS·

Arguments to the macro call are treated as character strings whose
usage is determined by the macro definition.

7-3

7.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

Arguments ,.,.ithin a macro definition or macro call are separated from
other arguments by any of the separating characters described in
Section 3.1.1.

For example:

• MACRO REN A,B,C

REN ALPHA,BETA,<Cl,C2>

Arguments ,.,.hich contain separating characters are enclosed in paired
angle brackets. An up-arrow construction is provided to allow angle
brackets to be passed as arguments. Bracketed arguments are seldom
used in a macro definition, but are more likely in a macro call. For
example:

REN < MOV X, Y>, #44, NEV

This call would cause the entire statel"1ent:

MOV X,Y

to replace all occurrences of the symhol A in the macro definition.
Real arguments within a macro call are considered to be character
strings and are treated as a single entity until their use in the
macro expansion.

The up-arrow construction could have been used in the ahove macro call
as :follows:

REN t/MOV x,Y/,#44,WEV

which is equivalent to:

REN <MOV X, Y>, #44, WEV

Since spaces are ignored preceding an argument, they can be used to
increase legibility of bracketed contructions.

The form:

REN #44 ,WEVt /HOV X, Y/

however, contains only two arguments: #44 and WEVt/MOV X,Y/ (see
section 3.1.1) because t is a unary operator.

7.3.1 Macro Nesting

Macro nesting (nested macro calls), where the expansion of one macro
includes a call to another macro, causes one set of angle brackets to
be removed from an argument with each nesting level. The depth of
nesting allowed is dependent upon the amount of core space used by the
program being assembled. To pass an argument containing legal

7-4

argument delimiters to nested macros, the argument should be enclosed
in one set of angle brackets for each level of nesting, as shown
below:

• MACRO LEVELl DUM1,DUf';12
LEVEL2 DUBl
LEVEL2 DUM2
.ENDH

• MACRO LEVEL 2 DUH3
DUM3
ADD #lO,RO
MOV RO, (Rl)+
.ENDM

A call to the LEVELl macro:

LEVELl «MOV X,RO»,«CLR RO»

causes the follo,,"Ting expansion:

MOV X,RO
ADD #lO,RO
MOV R 0, (Rl) +
CLR RO
ADD #lO,RO
MOV RO, (Rl) +

where macro definitions are nested (that is, a macro definition is
entirely contained within the definition of another macro) the inner
definition is not defined as a callable macro until the outer macro
has been called and expanded. For example:

.MACRO LVl A,B

.MACRO LV2 A

.ENDM

.ENDM

The LV2 macro cannot be called by name until after the first call to
the LVl macro. Likewise, any macro defined within the LV2 macro
definition cannot be referenced directly until LV2 has been called.

7.3.2 Special Characters

Arguments may include special characters without enclosing the
argument in a bracket construction if that argument does not contain
spaces, tabs, semicolons, or commas. For example:

• MACRO
MOV
.ENDM

PUSH ARG
ARG,-(SP)

7-5

PUSH X+3 (%2)

generates the following code:

MOV X+3(%2),-(SP)

7.3.3 Numeric Arguments Passed as Symbols

WhE~n passing macro arguments, a useful capability is to pass a symbol
which can be treated by the macro as a numeric string. An argument
preceded by the unary operator backslash (\) is treated as a number in
thE! current radix. The ASCII characters representing the number are
inserted in the macro expansion: their function is defined in context.
For example:

AlB

B=O
• MACRO
CNT
N=N+I
.ENDM
• MACRO
.WORD
.ENDM

INC A,B
A, \B

CON A,B

INC X,C

The macro call would expand to:

XO: • WORD 4

A subsequent identical call to the same macro would generate:

Xl: • WORD 4

and so on for later calls. The two macro~ are necessary because the
duru~y value of B cannot be . updated in the CNT macro. In the CNT
macro, the number passed is treated as a string argument. (~fuere the
value of the real argt~ent is 0, a single 0 character is passed to the
macro expansion.)

The numher being passed can also be used to make source listings
somewhat clearer. For exaMple, versions of programs created ,through
conditional assembly of a single source can identify themselves as
follows:

7-6

""

• MACRO
.IDENT
.ENDM
• MACRO
IDT
.ENDM

OUT

IDT SYM
/SYM/

OUT ARG
005A 'ARG

\ID

The above Macro call expands to

.IDENT /005AXX/

iASSUME THAT THE SYMBOL ID TAKES
iON A UNIQUE 2-DIGIT VALUE FOR
iEACH POSSIBLE CONDITIONAL ASSEMBLY
iOF THE PROGRAM

iWHERE 005A IS THE UPDATE
iVERSION OF THE PROGRAH
~AND ARG INDICATES THE
iCONDITIONAL ASSE~mLY VERSION.

where XX is the conditional value of ID.

Two macros are necessary since the text deli~iting characters in the
.IDENT statement would inhibit the concatenation of a dummy argument.

7.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments 'are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IF Band .IF NB can be used within the ~acro to detect
unnecessary arguments.

A macro can be defined with no arg~ents.

7.3.5 Auto~atioa11y Created Symbols

MACRO-l1 can create symbols of the forM n$ where n is a decimal
integer number such that 64<n<127. Created symbols are always local
symbols between 64$ and 127$. (For a description of local symbols,
see Section 3.5.) Such local symbols are created by the Assembler in
numerical order, i.e.:

64$
65$

126$
127$

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must o'the~.,ise be explicitly stated
as an argument with each macro call or the same label is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label.

7-7

The symbol is separated from the character string
argument by any legal separator.

<character string> is a string of printing characters which should
only be enclosed in angle brackets if it contains
a legal separator. A semicolon also terminates
the character string.

Th.e .NCHR directive can occur anywhere in a MACRO-ll program.

Th.e .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the form:

label: .NTYPE symbol, arg

where: label is an optional statement label

symbol is any legal symbol, the value of which is equated
to the 6-bit addressing mode of the argument. The
symbol is separated from the argument by a legal
separator, This symbol can be used by itself or
in expressions.

arg is any legal macro argument (dummy argument) as
defined in section 7.3.

The .NTYPE directive can occur only within a macro definition. An
example of .NTYPE usage in a macro definition is shown below:

• MACRO
.NTYPE
.IF
MOV
.IFF
MOV
.ENDC
.ENDM

SAVE ARG
SYM,ARG
EQ,SYM&70
ARG,TEMP

#ARG,TEMP

,REGISTER MODE

:NON-REGISTER MODE

7.:5 .ERROR and .PRINT

The .ERROR directive is used to 9utput messages to the command output
dev'ice during assembly pass 2. A common use is to provide diagnostic
announcements of a rejected or erroneous macro call. The form of the
.ERROR directive is as follows:

label: .ERROR expr,text

whcere label

expr

is an optional statement label

is an optional legal expression whose value is
output to the command device when the .ERROR
directive is encountered. Where expr is not
specified, the text only is output to the command
device.

denotes the beginning of the text string to be
output.

7-1il

text is the string to be output to the command device.

Upon encountering an .ERROR directive anywhere in a MACRO-II program,
the Assembler outputs a single line containing:

1. The sequence number of the .ERROR directive line7

2. The current value of the location counter7

3. The value of the expression if one is specified7 and,

4. The text string specified.

For example:

• ERROR A7UNACCEPTABLE MACRO ARGUMENT

causes a line similar to the follo,.,ing to be output:

Seq# l.c. A value Text

512 5642 000076 7UNACCEPTABLE MACRO ARGUMENT

This message is being used to indicate an inability of the subject
macro to cope with the argument A which is detected as being indexed
deferred addressing mode (mode 7) with the stack pointer (%6) used as
the index register.

The line is flagged on the assembly listing with a P error code.

The .PRINT directive is identical to .ERROR except that it is not
flagged with a P error code.

7.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC

An indefinite repeat block is a structure very similar to a macro
definition. An indefinite repeat is essentially a macro definition
which has only one dummy argument and is expanded once for every real
argument supplied. An indefinite repeat block is coded in-line with
its expansion rather than being referenced by name as a macro is
referenced. An indefinite repeat block is of the form:

7-11

label:

where:

.IRP arg,<real arguments>

.
(range of the indefinite repeat)

.ENDM

label

arg

is an optional statement label. A label may not
appear on any .IRP statement within another macro
definition, repeat range or indefinite repeat
range, or on any .ENDM statement.

is a dummy argument which is succes~ively replaced
ttli th the real arguments in the • IRP statement.

<real argument> is a list of arguments to be used in the expansion
of the indefinite repeat range and enclosed in
angle-hrackets. Each real argument is a string of
zero or more characters or a list of real
arguments (enclosed in angle brackets). The real
arguments are separated by COmMas.

range is the block of code to he repeated once for each
real arguMent in the list. The range may contain
macro definitions, repeat ranges, or other
indefinite repeat ranges. Note that only created
symbols should be used as labels within an
indefinite repeat range.

An indefinite repeat block can occur either within or outside macro
definitions, repeat ranges, or indefinite repeat ranges. The rules
for creating an indefinite repeat block are the same as for the
creation of a macro definition (for example, the .MEXIT statement is
allowed in an indefinite repeat block). Indefinite repeat arguments
follow the same rules that apply to macro arguments.

7-12

1 .TITl.E 1~PT5T

{
2- .1.18T MO,M"',ME
3 • MeA!..1. .PARAM

• 0000lD0 .PARA'"
',H"It1"'0~ Re l XA00
0kH'IVJ~ 1 Rl"I"Ul
1li"'~1l02 M2 I X"02
~Wl0~"'~ R3 I X"03
00010134 tl.'X"U4
"'1c'J01h'lt) RelXAOe
1a0ft)",~e R8 1 XAOe
000"H~1 R1·XA07
1O~lcH106 5p.,,"06
rtl0~HH~1 PC 1 XA07
171776 PSWI"017777e
177f)716 8~H'A0177570

5 "'00000 0127~0 MOV .r"SI..E,RIc'J
",Ic1v;llaed t

e
7 • H~P X,CAd"~,O,E,, ..
8
g t'10V X, CR~)'"
1i1
11 .I!.NOM

IiHHo0. ~16720 MOv A,O~Ia).

fO\jH.lItJ;'2

0~010 01672~ 1-10\1 a, (RIO).
0~0k)3"

00014 k31672~ MOV C, (RID).
"0~026

00020 01672~ MOV D,CR~).
0~~!r:l24

00024 ~1672~ MuV E. (R~)+
~0~11.122

0100J", ~lbl~1O MOIf F, (W~).
00~1a~'"

Figure 7-1

.IRP and • IRPC Example

7-13

A second type of indefinite repeat block is available which handles
character sUbstitution rather than argument substitution. The .IRPC
directive is used as follows:

label: • IRPC arg, string

· (range of indefinite repeat)

· .ENDM

On each iteration of the indefinite repeat range, the dummy argument
(arg) assumes the value of each successive character in the string.

7.7 REPEAT BLOCK: .REPT

Occasionally it is useful to duplicate a block of code a number of
times in line with other source code. This is performed by creating a
repeat block of the form:

.label: .REPT expr

· (range of repeat block)

.ENDM

where: label

expr

range

;OR .ENDR

is an optional statement label. The .ENDR or
.ENDM directive may not have a label. A .REPT
statement occurring within another repeat block,
indefinite repeat block, or macro definition may
not have a label associated with it.

is any legal expression controlling the number of
-times the block of code is assembled. Where
f3xpr =0, the - range of the repeat block is not
assembled.

is the block of code to be repeated expr number of
ti.mes. The range may contain macro definitions,
indefinite repeat ranges, or other repeat ranges.
Note that no statements within a repeat range can
have a label.

The last statement in a
statement. The .ENDR
previous assemblers.

repeat
statement

block can be an .ENDM or .ENDR
is provided for compatibility with

The .~mXIT statement is also legal within the range of a repeat block.

7-14

--,------

7.8 MACRO LIBRARIES: .MCALL

All macro definitions must occur prior to their referencing within the
user program. MACRO-II provides a selection mechanism for the
programmer to indicate in advance those system macro definitions
required by his program.

The .MCALL directive is used to specify the names of all syste~ macro
definitions not defined in the current program but required by the
program. The .MCALL directive must appear before the first occurrence
of a macro call for an externally defined macro. The .MCALL directive
is of the form:

where

.MCALL argl,arg2, •••

argl,arg2, ••• are the names of the macro definitions
required in the current program.

When this directive is encountered, MACRO-II searches the system
library SYSMAC.S~ffi to find the requested definition(s).

7-15

"

CHAPTER 8

OPERATING PROCEDURES

The MACRO-II Asembler assembles one or more ASCII source files
containing MACRO-II statements into a single relocatable binary object
file. The output of the Assembler consists of a binary object file
and an assembly listing followed by the symbol table listing. A CREF
(cross reference) listing can be specified as part of the assembly
output by means of a switch option.

8.1 LOADING ~mCRO-ll

MACRO-II is loaded with the Disk Monitor RUN cOJl1Mand as follow~:

$RUN MACRO

(Characters printed by the systeM are underlined to differentiate them
from characters typed by the user.) The Assembler responds by
identifying itself and its version number, followed by a # character
to indicate readiness to accept a command input string:

MACRO Vxxx

8.2 COMMAND INPUT STRING

In response to the # printed by the Assembler,
output file specification(s), followed by a
followed by the input file specification(s):

the user types the
left angle bracket,

#object,listing<sourcel,source2, ••• ,sourceN

where:

object

listing

sourcel,source2,
••• ,sourceN

is the binary ohject file

is the assembly listing file containing the
assembly listing and symbol table and,
optionally, a separate CRF listing file can be
appended to the assembly listing or output as
a separate file.

are the ASCII source files containing the
MACRO-II source program(s). No limit is set
on the number of source input files, except as
the Assemhler is limited by the size of the
user-defined and macro symbol tables.

If an error is made in typing the command string, typing the RUBOUT
key erases the immediately preceding character. Repeated typing of
the RUBOUT key erases one character for each RUBOUT up to the
beginning of the line. Typing CTRL/U erases the entire line.

8-1

A null specification in any of the file fields signifies that
associated input or output file is not desired. Each
spE!cification contains the follo,"Ting information (and follows
standara DOS conventions for file specifications):

dev:filnam.ext[uic]/option:arg

the
file
the

OnE! or more switch options can be specified with each file
specification to provide the Assembler with information about that
file. The switch options are descrihed in Section 8.3.

A syntactical error detected in the co~and string causes the
Assembler to output the command string up to and including the point
whE!re the error was detected, followed by a ? character. The
Assembler then reprints the # character and waits for a new command
string to be entered. The follo,"7ing command string errors are
de1:ected:

Error

Illegal switch
Too many switches
Illegal 8\"i tch value
Too many switch values

Too many output file specifications

No input file specification

Error Message

ILLEGAL SWITCH

TOO MANY OUTPUT FILES

INPUT FILE MISSING

The default value for each file specification is noted below:

object

listing

CREF
interJllediate

sourcel

source2

sourceN

system
macro

file

dev filnaJ11.

system
device

device used
for ohject
output

systeJll
device

system
device

last
file

last
file

last
file

device used
for sourcel
(last source
file specified)

source
name

source
name

source
name

systeJ11.
device

SYSMAC

8-2

ext uic

.OBJ current

.LST current

.CRF current

.Ml\C

.PAL current

.null

• MAC current
• PAL
.null

.SHL current
[1,1]

8.3 SWITCH OPTIONS

There are four types of switch options: listing options, functions,
CREF specifications, and pass assembly controls. The listing options
are described in detail in Section 6.1.1. The function options are
described in detail in Section 6.2. Rather than repeat this
information here, the reader is advised to turn to these sections or
the summary contained in Appendix B. The switch options are specified
in the form:

Specification

/LI
/LI:arg
/NL:
/NL:arg

/EN:arg
/DS:arg

/CRF
/CRF:arg

/PA:l
/PA:2

Function

Listing Control

Function Control

Produce cross reference table

Assemble file during Pass 1 only
Assemble file during Pass 2 only

Switch options specified on the output side apply to both the object
and listing files. Switch options specified on the input side apply
to the particular file which the s'olitch follo~Ts and all subsequent
files.

8.4 CREF, CROSS-REFERENCE TABLE GENERATION

A cross-reference listing of all or a suhset of all symbols used in
the source program can be obtained by a call to the CREF routine.
CREF can be used in two ways:

a. CREF can be called automatically following an assembly. In order
to do this, the /CRF switch is specified follmoling the assembly
listing file specification. For example:

,LP: /CRF< FILEI ,FILE2

This co~and string sends the assemhly listing (FILE2.LRT) to the
line printer. An intermediate CREF file is created and
temporarily stored on the system device (FILE2.CRF) under the
current UIC. The CREF routine takes this intermediate file,
generates a CREF listing and routes that listing to the line
printer. (The CREF listing is appended to the file FILF,2.LST.)
The CREF intermediate file is then deleted; there is no 'olay to
preserve this file when CREF is being called automatically.

b. If no CREF listing is desired immediately, the intermediate CREF
file can be saved on the system device; the CREF listing can be
generated at a later date. In order to preserve the intermediate
CREF file, the f..m.CRO command string is given as follm",s:

8-3

#,LP:/CRF:NG<FILEI,FILE2

This command string sends the assembly listing (FILE2.LST) to the
line printer. The CREF intermediate file (FILE2.CRF) is sent to
the system device under the current UIC. (The :NG argument is a
mnemonic for "No Go" to CREF; i.e., no automatic transfer to the
CREF routine following the output of the assemhly listing.)

In order to generate the CREFlisting, the CREF routine is
and given a command string indicating the input
specification{s) and a single output file specification.
exarrtple:

$RU CREF
CREF VOOIA
#LP:<FILE2.CRF

run
file
For

In this case the interrrtediate file created autoMatically in the
example above is processed to obtain a CREF listing which is then
sent to the line printer. The CREF intermediate file is then
automatically deleted. If it is desired to preserve the
interrrtediate file, the corrtmand string should be given as:

#LP : < FILE 2., CRF /SA

Unless the /SA switch is specified, the default case is always to
delete the CREF interMediate file.

The CREF listing is organized into one to five sections, each listing
a different type of symbol. The sections are as follows:

Section Type
user-defined symbols

macro symbolic names

permanent symbols (instructions,
directives)

.CSECT symbolic names

error codes

Argument
:S

:M

:P

:C

:E

Where no arguments are specified follo,.,ing the /CRF switch, all of the
above sections except the permanent symbols are cross referenced.
However, then anyone argument is specified (other than :NG), no other
default sections are assumed or provided. For exaMple, in order to
obtain a CREF listing for all five section types, the following switch
option specification is used:

/CRF:S:M:P:C:E

The! order in which the agruments are specified does not affect the
order of their output, which is as listed above.

Figure 8-1 contains a segment of source code and Figure 8-2 contains a
segMent of a CREF listing with some references to the code in Figure
8-1.

8-4

In the CREF listing, each cross-referenced symhol is printed in the
left-hand column, followed by a list of the page-line numbers of the
locations in which that symbol appears. A # character following a
page-line number indicates the point at which the associated symbol is
defined. An @ character disignates a page-line number at which the
contents of that symbol are altered.

8-5

MACRO Vxxx 17-JUL-73
OB~rECT CODE HANDLERS

1
2
3 012026 ENDP:
4 012026

012026 004767
174240

5 012032 005767
000000'

6 012036 001142
7 012040
8 012040 005767

001416'
9 012044 001517
10 12046 012767

000001
000542'

11 12054
12054 004767

001542
12 12060 012701

000050'
13 12064 016702

000 540'
14 12070

12070 004767
000660

15 12074 005046
16 12076 012667 10$:

000006'
17 12102

12102 012700
000010

12106 004767
005400

18 12112 001450
19 12114 016746

000006'
20 12120 012701

000006'
21 12124 011105
22 12126 042705

000377
23 12132 000305
24 12134 042711

177737
25 12140 052721

000410
26 12144 010521
27 12146 001401
28 12150 011141
29 12152 005067 11$:

000006'
30 12156 012701 12$:

000002'
31 12162

12162 004767

.SBTTL

CALL
JSR

TST

BNE
ENTOVR
TST

BEO
MOV

CALL
JSR

MOV

HOV

CALL
JSR

CLR
NOV

NEXT
HOV

JSR

REQ
MOV

MOV

MOV
BIC

BIS

HOV
BEQ
MOV
CLR

MOV

CALL
JSR

MACRO Vxxx 17-JUL-73 19:09 PAGE72

OBJECT CODE HANDLERS

SET1-1AX
PC,SETMAX

;END OF PASS HANDLER

PASS ;PASS ONE?

ENDP2 ;BRANCH IF PASS 2
4
OBJLNK ;PASS ONE, ANY OBJECT?

30$; NO
#BLKT01,BLKTYP ;SET BLOCK TYPI 1

OBJINI
PC,OBJINI

#PRGTTL,R1

RLDPNT,R2

GSDDMP
PC,GSDDHP

-(SP)
(SP)+,ROLUPD

SECROL
#SECROL,RO

PC,NEXT

20$
ROLUPD,-(SP)

#MODE,R1

(R1) ,R5
#377,R5

;INIT THE POINTERS

;SET "FROM" INDEX

AND "TO" INDEX

;OUTPUT GSD BLOCK

;INIT FOR SECTOR SCAN
;SET SCAN MARKER

;GET THE NEXT SECTOR

;BRANCH IF THROUGH
;SAVR MARKER

:SAVE SECTOR
;ISOLATE IT

R5 : AND PLACE IN RIGHT
#-1-<RELFLG>,(R1) ;CLEAR ALL BUT REL BIT

#<GSDT01>+DEFFLG.(R1)+ :SET TO TYPE 1, DEFINED

R5,(R1)+
11$
(R1) ,- (R1)
ROLUPD

#SYMBOL,R1

GSDDMP
PC,GSDDMP

8-6

iASSURE ARS
OOPS!

i REL, SET MAX
;SET FOR INNER SCAN

iOUTPUT THIS BLOCK

32

33
34

35
36

37
38

39

40

000566
12166 13$: NEXT SYMBOL ,FETCH THE NEXT SYMBOL
12166 012700 MOV #SYMBOL.RO

000000
12172 004767 JSR PC,NEXT

005314
12176 001737 BEQ 10$, FINISHED WITH THIS GUY
12200 032767 BIT #GLBFLG,MODE ,GLOBAL?

000100
000006'

12206 0017'67 BEQ 13$ J NO
12210 126705 CMPB SECTOR,R5 ,~YES , PROPER SECTOR?

000007 '
12214 001364 BNE 13$. NO ,
12216 042767 BIC #-l-<DEFFLGIRBLFLG!GLBFLG>,MODE ,CLEAR MOST

177627

12224

12232

ENDMAC
ENDP
ENDP1M
ENDP2

MDFFLG
MEXIT
MODE

MOVBYT
MPDP
MPUSH
MSBARG
MSBBLK
MSBCNT
MSBEND
MSBMRP

000006'
052767
002000
000006'
000751

27-40
23-23
73-16
72- 6

12- 7#
116- 1#

14- 6#
45- 6@
72-38@

116-34@
18- 5

109-42
109-26

27- 9
121- 4

27-15
121- 9

25-19

BIS

BR

109-33#
72- 3#
72-22#
74- 1#

35-28
116-41#

22-29@
48-16@
72-39@

18- 9
121-17#
110-48
121-18
121-28
109-33
121-28

27-25@

#G~DT04,MODE ,SET TYPE 4

12$,OUTPUT IT

Figure 8-1

Assembly Listing

92- 8 92-24

34-12 35-17@ 36-12 37- 4
58-38@ 64-23 70-10 72-20
74-34 75-37 86- 8 91-20@

28-44 74-41 83-11 83-20

121- 1#
121-40#
121-36#
116- 6 121-41#
121-43#
110-49@ 121-42#

Figure 8-2

Excerpts from CREF Listing to Accompany Figure 8-1.
Note particularly the CREF references for ENDP,

ENDP 2, and MOOR.

8-7

40-43
72-34

106-27

108-19#

8. S ERROR l1ESSAGES

The MACRO-II Assembler outputs the following messages when one of the
related errors is detected.

COMMAND I/O ERROR
ILLEGAL SWITCH
INPUT FILE r.lISSING
INSUFFICIENT MEMORY TO COMPLETE ASSEMBLY
I/O ERROR ON OUTPUT FILE
OPEN FAILURE ON INPUT FILE
OPEN FAILURE ON OUTPUT FILE
OUTPUT DEVICE FULL
TOO MANY OUTPUT FILES

The error messages are self-explanatory.

8-8

f

APPENDIX A

MACRO-II Character Sets

A.l ASCII Character Set

EVEN
PARITY
BIT

o
1

1

o

1

o

o
1
1

o
o

1
o

1

1

o

1
o

o

1

o

1

1

o

7-BIT
OCTAL
CODE

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020
021

022

023

024

025

026

027

CHARACTER REMARKS

NUL Null, tape feed, CONTROL/SHIFT/P.
SOH Start of heading: also SOM, start

of message, CONTROL/A.
STX Start of text: also EOA, end of

address, CONTROL/B.
ETX End of text: also EOM, end of

message, CONTROL/C.
EOT End of transmission (END): shuts

off TWX machines, CONTROL/D.
ENQ Enquiry (ENQRY) : also WRU,

CONTROL/E.
ACK Acknowledge: also RU, CONTROL/F.
BEI. Rings the bell. CONTROL/G.
BS Backspace: also FEO, format

effector. backspaces some
machines, CONTROL/H.

HT Horizontal tab. CONTROL/I.
LF Line feed or Line space (new line):

advances paper to next line,
duplicated by CONTROL/J.

VT Vertical tab (VTAB). CONTROL/K.
FF Form Feed to top of next page

(PAGE). CONTROL/L.
CR Carriage return to beginning of

line. duplicated by CONTROL/M.
SO Shift out: changes ribbon color to

red. CONTROL/N.
8I Shift in: changes ribbon color to

black. CONTROL/O.
OLE Data link escape. CONTROL/B (OCO).
OCI Device control 1, turns transmitter

(READER) on, CONTROL/Q (X ON) •
DC2 Device control 2, turns punch or

auxiliary on. CONTROL/R (TAPE, AUX
ON) •

DC3 Device control 3, turns transmitter
(READER) off, CONTROL/S (X OFF).

DC4 Device control 4, turns punch or
auxiliary off. CONTROL/T (AUX
OFF) •

NAK Negative acknowledge: also ERR,
ERROR. CONTROL/U.

SYN Synchronous file (SYNC).
CONTROT.J/V •

ETB End of transmission block: also

A-I

A.2 RADIX-50 CHARACTER SET

Character

space

A-Z

$

unused

0-9

ASCII Octal Equivalent

40

101-132

44

56

60-71

The maximum Radix-50 value is, thus,

47*50**2+47*50+47=174777

Radix-50 Equivalent

o

1-32

33

34

35

36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002

X2B=11S402

A-4

Sing1e'Char.
or Second Third

First Char. Character Character

A 003100 A 000050 A 000001
B 006200 B 000120 B 00000 2
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
0 056700 0 001130 0 000017
p 062000 p 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
y 116100 y 001750 y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033 . 127400 . 002140 . 000034

unused 132500 unused 002210 unused 000035
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

A-5

-----------,---------

APPENDIX B

~ MACRO-ll ASSEMBLY LANGUAGE AND ASSEMBLER

B.l SPECIAL CHARACTERS

Character

vertical tab

=
%
tab

space

i
@
(
)
, (conuna) . ,
+

*
/
&

"
• (apostrophe)

<
>
+
\

Function

Source line terminator
Label terminator
Direct assignment indicator

'Register term indicator
Item terminator
Field terminator
Item terminator
Field terminator
lnunediate expression indicator
Deferred addressing indicator
Initial register indicator
Terminal register indicator
Operand field separator
Conunent field indicator
Arithmetic addition operator or auto
increment indicator
Arithmetic subtraction operator or auto
decrement indicator
Arithmetic multiplication operator
Arithmetic division operator .
Logical AND operator
Logical OR operator
Double ASCII character indicator
Single ASCII character indicator
Assembly location counter
Initial argument indicator
Terminal argument indicator
universal unary operator
Argument indicator
MACRO numeric argument indicator

B-1

B.2 ADDRESS MODE SYNTAX

n is an integer between 0 and 7 representing a register. R is a
register expression, E is an expression, ER is either a register
expression or an expression in the range 0 to 7.

Format

@R or
(ER)

(ER) +

@ (ER) +

- (ER)

@- (ER)

E(ER)

#I~

@#E

E

@l~

Address
Mode
Name

Register

Deferred Register

Autoincrement

Deferred Auto
increment

Autodecrement

Deferred Auto
decrement

Index

Immediate

Absolute

Relative

Deferred Relative

Address
Mode
Number

On

In

2n

3n

4n

Sn

6n

27

37

67

77

B-2

Meaning

'Register R
operand. R

contains the
is a register

expression.

Register R contains the
operand address.

The contents of the register
specified by ER are
incremented after being used
as the address of the operand.

ER contains the pointer to
the address of the operand.
ER is incremented after use.

The contents of register ER
are decremented before being
used as the address of the
operand.

The contents of register
ER are decremented before
being used as the pointer to
the address of the operand.

E plus the contents of the
register specified, ER, is the
address of the operand.

E is the operand.

E is the address of the
operand.

E is the address of the
operand.

E is the pointer to the
address of the operand.

B.3 ASSEMBLER DIRECTIVES

Form

"

tBn

tCn

tDn

tOn

• ASCII string

• ASCIZ string

• ASECT

.BLKB exp

.BLKW exp

Described in
Manual Section

6.3.3

6.3.3

6.4.2

6.6.2

6.4.2

6.6.2

6.4.2

6.3.4

6.3.5

6.9

6.5.3

6.5.3

Operation

A single quote character
(apostrophe) followed by one ASCII
character generates a word
containing the 7-bit ASCII
representation of the character in
the low-order byte and zero in the
high-order byte.

A double quote character followed
by two ASCII characters generates a
word containing the 7-bit ASCII
representation of the two
characters.

Temporary radix control; causes the
number n to be treated as a binary
number.

Creates a word containing the one's
complement of n.

Temporary radix control; causes the
number n to be treated as a decimal
number.

Creates a one-word floating point
quantity to represent n.

Temporary radix control; causes the
number n to be treated as an octal
number •

Generates a block of data
containing the ASCII equivalent of
the character string (enclosed in
delimiting characters) one
character per byte •

Generates a block of data
containing the ASCII'equivalent of
the character string (enclosed in
delimiting characters) one
character per byte with a zero byte
following the specified string.

Begin or resume absolute section.

Reserves a block of storage space
exp bytes long.

Reserves a block of storage space
exp words long.

B-3

.BYTE expl,exp2, ••

.CSECT symbol

.DSABL arg

.F:NABL arg

.END

.E:ND exp

.ENDC

.ENDM

.ENDM symbol

.EOT

• ERROR exp,string

• EVEN

• FLT2 argl,arg2, ••

.FLT4 argl,arg2, ••

.G:LOBL syml,sym2, ••

• IDENT symbol

6.3.1

6.9

6.2

6.2

6.7.1

6.11

7.1.2

6.7.2

7.5

6.5.1

6.6.1

6.6.1

6.10

6.1.5

Generates successive bytes of data
containing the octal equivalent of
the expression(s) specified.

Begin or resume named or unnamed
relocatable section.

Disables the assembler function
specified by the argument.

Provides the assembler function
specified by the rgument.

Indicates the physical end of
source program. An optional
argument specifies the transfer
address.

Indicates the end of a condition
block.

Indicates the end of the
current repeat block, indefinite
repeat block, or macro. The
optional symbol, if used, must be
identical to the macro name.

Ignored. Indicates End-of-Tape
which is detected automatically by
the hardware •

Causes a text string to be output
to the command device containing
the optional expression specified
and the indicated text string.

Ensures that the assembly location
counter contains an even address by
adding 1 if it is odd •

Generates successive two-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Generates successive four-word
floating-point equivalents for the
floating-point numbers specified as
arguments.

Defines the symbol(s) specified as
global syrnbol(s) •

Provides a means of labeling the
object module with the program
version number. The symbol is the
version number between paired
delimiting characters.

B-4

.IF cond,arg1,
arg2, •••

• IFF

.IFT

.IFTF

.IFF cond,ary,
statement "

.IRP sym,
< arg1, arg2 , ••• >

.IRPC sym, string

• LIMIT

.LIST

.LIST arg

.MACRO sym,argl,
arg2, •••

6.11

6.11.1

6.11.1

6.l1~1

6.11.2

7.6

7.6

6.8

6.1.1

7.1.1

Begins a conditional block
of source code which is included in
the assembly only if the stated
condition is met with respect to
the argument(s) specified.

Appears only within a conditional
block and indicates the beginning
of a section of code to be
assembled if the condition tested
false.

Appears only within a conditional
block and indicates the beginning
of a section of code to be
assembled if the condition tested
true.

Appears only within a conditional
block and indicates the beginning
of a section of code to be
unconditionally assembled.

Acts as a one-line conditional
block where the condition is tested
for the argument specified. The
statement is assembled only if the
condition tests true.

Indicates the beginning of an
indefinite repeat block in which
the symbol specified is replaced
with successive elements of the
real argument list (which is
enclosed in angle brackets).

Indicates the beginning of an
indefinite repeat block in which
the symbol specified takes on the
value of successive characters in
the character string.

Reserves two words into which the
Task Builder inserts thehwand
high addresses of the relocated
code.

Without an argument, .LIST
increments the listing level count
by 1. With an argument, .LIST does
not alter the listing level count
but formats the assembly listing
according to the argument
specified.

Indicates the start of a
macro named sym containing
dummy arguments specified.

B-5

the

.lMEXIT

.NARG symbol

.NCHR sym,string

.NLIST

.NLIST arg

.NTYPE sym,arg

• ODD

• PAGE

.PSECT

.PRINT exp,string

.RADIX n

.NAD50 string

.REPT exp

7.1.3

7.4

7.4

6.1.1

7.4

6.5.1

6.1.6

6.9

7.5

6.4.1

6.3.6

7.7

Causes an exit from the current
macro or indefinite repeatOLock.

Appears only within a macro
definition and equates the
specified symbol to the number of
arguments in the macro call
currently being expanded.

Can appear anywhere in a source
program; equates the symbol
specified to the number of
characters in the string (enclosed
in delimiting characters).

without an argument, .NLIST
decrements the listing level count
by 1. With an argument, .NLIST
deletes the portion of the listing
indicated by the argument.

Appears only in a macro definition
and equates the low-order six bits
of the symbol specified to the
six-bit addressing mode of the
argument.

Ensures that the assembly location
counter contains an odd address by
adding 1 if it is even.

Causes the assembly listing to skip
to the top of the next page.

Begin or resume a program section.

Causes a text string to be output
to the command device containing
the optional expression specified
and the indicated text string.

Alters the current program radix to
n, where n can be 2, 4, 8, or 10.

Generates a block of data
containing the Radix~50 equivalent
of the character string (enclosed
in delimiting characters).

Begins a repeat block.
section of code up
.ENDM or .ENDR to be
times.

B-6

Causes the
to the next

repeated exp

.SBTTL string 6.1.4

• TITLE string 6.1.3

.WORD expl,exp2, •• 6.3.1

Causes the string to be printed as
part of the assembly listing page
header. The string part of each
.SBTTL directive is collected into
a table of -contents at the
beginning of the assembly listing •

Assigns the first symbolic name in
the string to the object module and
causes the string to appear on each
page of the assembly listing. One
• TITLE directive should be issued
per program.

Generates successive words of data
containing the octal equivalent of
the expression(s) specified.

B-7

-----------,----------------------------

APPENDIX C

PERMANENT SYMBOL TABLE (PST)

The Permanent Symbol Table (PST) defines values for each symbol that
is automatically recognized by MACRO. The symbols defined include
op-codes and macro-calls. A listing of the Permanent Symbol Table
forms the balance of this Appendix.

C-l

......... -...... ----... --------------,

APPENDIX D

ERROR MESSAGE SUMMARY

D.l MACRO-II ERROR CODES

MACRO-II error codes are printed following a field of six asterisk
characters and on the line preceding the source line containing the
error. For example:

******A
26 00236 000002' • WORD RELl+REL2

The addition of two relocatable symbols is flagged as an A error.

Error Code

A

B

D

E

I

L

M

N

o

P

Q

Meaning

Addressing error. An
instruction is incorrect.
relocation error.

address
Also

within the
may indicate a

Bounding error. Instructions or word data are
being assembled at an odd address in memory. The
location counter is updated by +1.

Doubly-defined symbol referenced. Reference was
made to a symbol which is defined more than once.

End directive
generated.)

not found. (A listing is

Illegal character detected. Illegal characters
which are also non-printing are replaced by a ? on
the listing. The character is then ignored.

Line buffer overflow, i.e., input line greater
than 132 characters. Extra characters on a line,
(more than 72(10» are ignored.

Multiple definition of a label. A label was
encountered which was equivalent (in the first six
characters) to a previously encountered label.

Number containing 8 or 9 has decimal
missing.

Opcode error. Directive out of context.

point

Phase error. A label's definition of value~ries
from one pass to another. A P error code also
appears if a .ERROR directive is assembled.

Questional syntax. There are missing arguments or
the instruction scan was not completed or a
carriage return was not immediately followed by a
line feed or form feed.

D-l

R

T

U

z

Register-type error. An invalid use
reference to a register has been made.

of or

Truncation error. A number generated more than 16
bits of significance or an expression generated
more than 8 bits of significance during the use of
the .BYTE directive.

Undefined symbol. An undefined symbol was
encountered during the evaluation of an
expression. Relative to the expression, the
undefined symbol-is assigned a value of zero.

Instruction which
members of the
11/45).

D-2

is not compatible among all
PDP-II family (11/15, 11/20,

APPENDIX E

RECOMMENDED PROGRAMMING STANDARDS

INTRODUCTION

Standards eliminate variablility and the requirement to make a
decision, they need not be optimal. Much of the difficulty in
establishing standards stems from the notion that they should be
optimal (but everyone has differing opinions regarding the optimality
criteria). For the DOS/BATCH group, standards represent an agreement
on certain aspects' of the programming process.

This Appendix represents a minimal beginning, pointing toward an
engineering discipline for software development. All DIGITAL and user
programmers are encouraged to participate actively in its continuing
evolution through suggestions for improvement.

E-l

E.I LINE FORMAT

All source lines shall
characters. Assembly
format:

consist
language

of from one to a maxiMum of 80
code lines shall have the following

1. Label Field - if present the label shall start at tab stop 0
(coltnnn 1).

2. Operation field - the operation field shall start at tab stop
1 (column 9).

3. Operand field - the operand field shall start at tab stop 2
(column 17).

4. Comments field - the comments field shall start at tab stop 4
(column 33) and may continue to column 80.

Comment lines that are included in the code body shall be delimited by
a line containing only a leading semicolon. The comment itself
contains a leading semicolon and starts in column 3. Indents shall be
1 -tab.

If the operand field extends beyond Tab Stop 4 (column 33) simply
leave a space and start the comment. Comments which apply to an
instruction but require continuation should always line up with the
character position which started the comment.

E-2

;

E. 2 COMMENTS

Comment all coding to convey the global role of an instruction and not
simply a literal translation of the instruction into English. In
gerieral this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments shall immediately precede that section
of code.

Preface text describing formats, algorithms, program-local variables,
etc. will be delimited by the character sequence :+ at the start of
the text and :- at the end. The comment will start in column 3.

For example:

:+

i-

The invert routine accepts

a list of random numbers and

applies the Kolmogorov algorithm

to alphabetize them.

Target labels for branches that exist solely for positional reference
\'1'111 use local labels of the form

< nurn> $:

Use of non-local labels is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-labeling is formatted such that the numbers proceed sequentially
down the page and from page to page.

E.4 PROGRAM MODULES

E.4.l General Comments on PrograMs

In noS/BATCH, a program provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than lK a rarity. Since DOS/BATCH may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
proMiscuously branch over page boundaries or over a large ahsolute
address distance).

All code is read-only.
contains explanatory
read-write data.

Code and data areas are distinct and each
text. Read-only data should be segregated from

E.4.2 The Module Preface

Program modules adhere to a strict format. This format
readability and understandability of the module.
sections are included in each module:

For the Code Section:

adds to the
The following

1. A .TITLE statement that specifies the name of the module.

2. A. PSECT s'tatement that defines the program section in which
the module resides. If a module contains more than one
routine, subtitles may be used.

3. A copyright stateMent, and the disclaimer.

"Dig'ital Equipment Corporation assumes no
responsiblility for the use or reliability of its
software on equipment which is not supplied by
Digital Equipment Corporation."

4. The version number of the file.
Note: Items 1-5 must appear on the same page. The PDP-II
version number standard is described in section 9.0.

E-6

i

5. The name of the principal authpr and the date on which the
module was first created.

'6. The name of each modifying author and the date of
modification, name and modification dates appear one per line
and in chronological order.

7. A brief statement of the function of the module.

8. A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

9. All local Macro definitions, preferably in alphabetical order
by name.

10. All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

11. A list of the inputs expected by the module. This includes
the calling sequence, condition code settings, and global
data settings.

12. A list of the outputs produced as a result of entering this
module. These include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

13. A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

14. A more detailed definition of the function of the module.

15. The module code.

E.4.3 Formatting the Hodule Preface

Rules

1. The first five items appear on the same page and will not
have explicit headings.

2. Titles start at the left margin*; descriptive text is
indented 1 tab position.

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by blank lines. Items which do not

*The left margin consists of a ; a space then the heading, so the
text of the heading begins in column 3.

E-7

E.5.0 FORMATTING STANDARDS

E.5.l Program Flow

Programs will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

!
! process !
! !

,
i\

/ \
----------- /TEST ':::-----------
! \ / !

---------- \ / ----------
BBD

\/

---------! COr-1MO!'-l! ----------
!

shall appear on the listing as:

TST
BNE BBB

AAA.: •••••••

B CMN

BBB: •••••••

Cl\1N: •••••••

E-l.0

,;

Rather than:

TST
BE BBB

AA.A.: •••••••

C~: •••••••

BBB: •••.•••

B CHN

E.5.2 Common Exits

A common exit appears as the last code sequence on the listing. The
flow chart

1 2 3 4

!
-------------->! EXIT !<---------------

!

will appear on the listing as:

E-ll

PRl: •••••••
B EXIT

PR2: •••••••

B EXIT

PR3: •••••••

·
B EXIT

PR4: ••••••• · ·
EXI~r :

And not as

PRI :: •••••••

EXI'J~: •••••••

·
PR2 :: •••••••

·
B ,EXIT

PR3: ••••••• · ·
B EXIT

PR4: •••••••

·
B EXIT

E-12

.... -------------------------,

E.5.3 Code with Interrupts Inhibited

Code that is executed with interrupts inhibited shall be flagged by a
three semi-colon (;;;) comment delimiter.

EXEC INTERRUPT

•• ERTZ: ENABLF. BY RETURNING
BY SYSTEM SUBROUTINES,

BIS #000340,PSEXP · .. INHIBIT INTERRUPTS , , ,
BIT #000340,+2(SP) · .. C , , ,
BEQ 10$ · .. 0 , , ,
RTT · .. M , , , · .. M , , , · .. E , , , · .. N , , , · .. T , , , · .. S , , ,

E-13

Ell 6 PROGRAM SOURCE FILES

Source creation and maintenance shall be done in base levels. A base
lHvel is defined as a point at which the program source files have
bE!en frozen. From the freeze point to the next base level,
corrections will not be made directly to the base level itself.
Rather a file of corrections shall be accumulated for each file in the
base level. Whenever an updated source file is desired, the
correction file will be applied to the base file.

The accumulation of corrections shall proceed until a logical breaking
point has occurred (i.e. a milestone or significant implementation
point has been reached). At this time all accumulated corrections
shall be applied to the previous base level to create a new base
lE!vel. Correction files will then be started anew for the new base
lE!vel.

E .. 7 FORBIDDEN INSTRUCTION USAGE

1. The use of instructions or index words as literals of the
previous instruction. For example:

2.

MOV @PC,Register

BIC Src,Dst

uses the bit clear instruction as a literal. This may seem
to be a very "neat" way to save a word but what about
maintaining a program using this trick? To compound the
pathology, it will not execute properly if I/D space is
enabled on the 11/45. In this case @PC is a D bank
reference.

The use of the MOV instruction instead of a
to transfer program control to another
example:

MOV #ALPHA,PC

JMP instruction
location. For

transfers control to location ALPHA. Besides taking longer
to execute (2.3 microseconds for MOV vs. 1.2 for JMP) the
use of MOV instead of JMP makes it nearly impossible to pick
up someone else's program and tell where transfers of control
take place. What if one would like to get a jump trace of
the execution of a program (anybody every hear of a move
trace?)? As a more general issue, perhaps even other
operations such as ADD and SUB from PC should be discouraged.
Possibly one or two words can be saved by using these
operations but how many occurrences are there?

3. The seemingly "neat" use of all single word instructions
where a one double-word instruction could be used and would
execute faster. Consider the following instruction sequence:

E-14

CMP -(Rl),{-Rl)

CMP -(Rl), -(Rl)

The intent of this instruction sequence is to subtract 8 from
register Rl (not to set condition codes). This can be
accoMplished in approximately 1/3 the time via a SUB
instruction (9.4 vs. 3.8 microseconds) at no additional cost
in memory space. Another question here is also, what if Rl
is odd? SUB always wins since it will always execute properly
and is always faster!

E.8 RECOMMENDED CODING PRACTICE

E.8.l Conditional Branches

When using the PDP-II conditional branch instructions, it is
imperative that the correct choice be made between the signed and the
unsigned branches.

Signed Unsigned

BGE BIllS (BCC)
BLT BLO
BGT Bill
BLE BLOS (BCS)

A common pitfall is to use a signed branch (e.g. BGT) when comparing
two meMory addresses. All goes weil until the two addresses have
opposite signs; that is, one of them goes across the 16K (lOOOOO(8»
bound. This type of coding error usually shows itself as a result of
re-linking at different addresses and/or a change in size of the
prograM.

E.9 PDP-II VERSION NUMBER STANDARD

This is the PDP-II Version Number Standard. It applies to all
modules, parameter files, complete programs, and libraries which are
written or caused to be written, as part of the PDP-II Soft,',rare
Development effort. It is used to provide unique identification of
all released, pre-released, and in-house software.

It is limited in that, as currently specified, only six characters of
identification are used. Future iMplementations of the Macro
Assembler, Task Builder, and Librarian should provide for at least
nine characters, and possibly t,.,elve. It is expected that this
standard will be enhanced as the need arises.

Version Identifier = <form> <version> <edit> <patch>

< form> Used to identify a particular form of a module or
program, where applicable, as in the case of

E-15

<version>

<edit>

<patch>

LINK-II. One alphabetic character, if used, and
null (i.e., a binary 0) if not used.

Used to identify the release, or generation, of a
program. Two decimal digits, starting at 00, and
incremented at the discretion of the project in
order to reflect what, in their opinion, is a
major change.

Used to identify the level to which a particular
release, or generation, of a program or module has
been edited. An edit is defined to be an
alteration to the source form. Two decimal
digits, beginning at 01, and incremented with each
edit; null if no edits.

Used to identify the level to which a
release, or generation, of a program or
been patched. A patch is defined as an
to a binary form. One alphabetic
starting at B, and running sequentially
each time a set of patches is released;
patches.

particular
module has
alteration
character,
toward Z,
null if no

These fields are interrelated. When <version> is changed, then
<patch> and <edit> must be reset to nulls. It is intended that when
<edit> is incremented, then <patch> will be re-set to null, because
the various bugs have been fixed.

E.9.1 Displaying the Version Identifier

The visible output of the version identifier should appear as:

Key <letter> <form> <version> - <edit> <patch>,

where the following Key Letters have been identified:

V released or frozen version
X in-house experimental version
Y field test, pre-release, or in-house release version

Note that 'X, corresponds roughly to individual support, 'Y' to group
support, and 'V' to company support.

The dash which separates <version> from <edit> is used only if <edit>
and/or <patch> is not null. When a version identifier is displayed as
part of prograPl identification, then the format is:

Program

Name

Examples:
PIP X03
LINK VB04-C
HACRO Y05-01

.... , --------------------------

E-16

E.9.2 Use of the Version Number in the Program

All sources must contain the version number in an .IDENT directive.
For programs (or libraries) which consist of more than one module,
each individual module will follow this version number standard. The
version number of the program or library is not necessarily related to
the version numbers of the constituent modules; it is perfectly
reasonable, for example, that the first version of a new FORTRAN
library, VOO, contain an existing SIN routine, say VOS-Ol.

Parameter files are also required to contain the version number in an
.IDENT directive. Because the assembler records the last .IDENT seen,
parameter files must precede the program.

Entities which consist of a collection of modules or programs, e.g.,
the FORTRAN Library, will have an identification module in the first
position. An identification module exists solely to provide
identification, and normally consists of something like:

iOTS IDENTIFICATION
.TITLE FTNLIB
.IDENT /003010/
.END

E-17

APPENDIX F

WRITING POSITION-INDEPENDENT CODE - A TUTORIAL

It is possible to write a source program that can be loaded and run in
any section of virtual memory. Such a program is said to consist of
position-independent code. The construction of position independent
code is dependent upon the proper usage of PDP-Il addressing modes.
(Addressing modes are described in detail in Chapter 5. The remainder
of this Appendix assumes the reader is familiar with the various
addressing modes.)

All addressing modes involving only register
position-independent. These modes are as follows:

R
@R
(R)+

@ (R) +
- (R)

@- (R)

register mode
deferred register mode
autoincrement mode
deferred autoincrernent mode
autodecrement mode
deferred autodecrernent mode

references are

When using these addressing modes, position-innependence is guaranteed
providing the contents of the registers have been supplied such that
they are not dependent upon a particular core location.

The relative addressing modes are generally position independent.
These modes are as follows:

A
@A

relative 1"'\ode
relative deferred mode

Relative modes are not position-independent when A is an ahsolute
address (that is, a non-relocatahle address) which is referenced from
a relocatable module.

Index modes can be either position-independent or
nonposition-independent, according to their use in the program. These
modes are:

X(R)
@X(R)

index mode
index deferred mode

If the base, X, is
position-independent.

position-independent,
For example:

the reference

MOV
N=4
MOV
CLR

2 (SP) , RO

N (SP) , RO
ADDR(Rl)

iPOSITION-INDEPENDENT

iPOSITION-INDEPENDENT
iNONPOSITION-INDEPENDENT

is also

Caution must be exercised in the use of index modes in position
independent code.

IJTlIt\ediate
according

mode can also
to its usage.

be either position-independent or not,
Immediate mode references are formatted as

F-l

If the symbol is absolute, the reference is flagged and is
not position-independent.

4. Immediate mode references to symbolic labels are always
flagged with an ' character.

l-10V #3,RO
MOV #ADDR,Rl

Examples of assembly

iALNAYS POSITION-INDEPENDENT.
;NON-PIC WHEN ADDR IS RELOCATABLE.

listings contining the I character are

shown below:

e11'44 E~'DP2 t ,FN~ rr: PAS~ ,
~ .fF ~nF xrRFF
~ Q" 17.1.d P1~'P::t MI"V C':;FP~T,~2 ,ANY r~FF I ~' PRrC;~E~5'

C"0"1.d~' ., Q'!l'~O'I C'0,41P2 BFQ 8~ , ~'o

~ ~I' 1'5' CALL C':;Fr"I-'~ 'YE~, r: l! ~" AN,.. rLrSF Rl!FFFR
e e! 1'~~ 8"
7 .FNrH':
e ~117!;~ C'0~711i7 T~T FH I<TYP ,ANY reJfrT Ol TPL T1

P0PS42' , e11,tHt ~01~'~ 8FQ 1·4J , ~'('I

1(')' ! 1'64 CALI OPJr"~P .YE~, C l.IMP 1T
11 '1"'" "'U~'1S7 Mr'lV .!Dl.,ItT"6,Br KTYF' '~ET F~r"

P~C"~"6
1')10~5.d2'

12 1177F- CALL RlOr~" Jru~p JT
13 .rF ~rF)CFOAB~

14 12C'0' (')'J~7fF\' BTT ~"O·.A~5,EF'I~ASI(,AB~ rL TF'lIT?
p00'~0'2

P00'124'
1!5 12~IP P0~e1e B ~IE' lJ ~O

U5 12"'12 f}1~,pe Mr'lV OPJPNT,R('I
C'l0P5~6'

! ,. !2"'1~ (')'1~''-4?J ~I"V E~O"Ee+~,rRf}'", '~ET F~'" vf"rT~R

P!00'~44'
18 12P22 "'10'~~' Mt"lV RP,rBJPNT

"'PJP5~el
19 !2~21'i CALL OPJr~p

~~ ,F~JnC

~ 1 121'32 '0~'6' l' I T~TA LLTFll., ... 2 ,~NY Lr~TT~r; rUTPUT?
p""e4e'

22 12~3~ ~014'4 RFQ IE! , ~o

2:! 12"'''P' "'J2'~' BTT ~tC·.5Y~,LrMASI(,~y~e~L TAFH E srpFRF.5~J~~'
t'l4"e~e
P0"lt2'

F-4

INDEX

Absolute expression, 3-16
Absolute mode, 5-5, F-l
Addressing branch instructions, 5-7
Addressing modes, 5-1, 7-9
Address mode syntax, B-2
Angle brackets «», 6-21, 6-26

in arguments, 7-4
nesting, 3-5

Apostrophe character ('), 4-1,
6-17, 7-8

Arguments, dummy, 7-9
Arguments in macro call, 7-4, 7-9

number of, 7-7
Arguments to macro definitions, 7-4
ASCII character set, A-l
ASCII conversion of one or two

characters, 6-17
.ASCII directive, 6-18
ASCII input, lower case, 6-13
.ASCIZ directive, 6-19
.ASECT directive, 6-31,' 6-32
Assembler directives, 2-3, 6-1

summary, B-3
Assembly listing example, 8-5

line printer example, 6-4
Teletype example, 6-5

Assembly listing table of contents,
6-9, 6-11

Autodecrement deferred mode, 5-3
Autodecrement mode, 5-3
Autoincrement deferred mode, 5-3
Autoincrement mode, 5-2
Automatically created symbols, 7-7

tB (binary radix), 6-22·
Blank operator field, 2-3, 6-16
.BLKB directive, 6-24
.BLKW-directive, 6-24
Branch instruction addressing, 5-7
.BYTE directive, 6-15

tc operator, 6-26
Calls, macro, 7-3
Character conversion, ASCII, 6-17
Character sets, 3-1, 3-2

ASCII, A-l
RADIX-50, A-4

Characters
delimiting, 3-4, 6-18
illegal, 3-5
in arguments, 7-5
operator, 3-5
separating, 3-4
special MACRO-ll, B-1

Code sharing, 6-32
Codes, table of mode forms and

codes, 5-6
Coding practice recommended in

programming, E-14
Co lon (:), 6 - 6

double (::), 2-2

Command input string, 8-1
Comment field, 2-4, E-3
Comments, programming standard

for, E-3
Compatibility, 5-2, 6-32, 6-38, 7-15
Concatenation, 7-8
Conditional assembly directives, 6-34
Conditional nesting, 7-2
Continuation lines, 2-1
Creating program sections, 6-30
.CSECT directive, 6-31, 6-32

tD (decimal radix), 6-22
Data sharing, 6-32
Data storage directives, 6-15
Decimal point, 6-22
Decimal radix, 6-22
Default value for file

specifications, 8-1
Delimiting characters, 3-4, 6-18,

6-20
Direct assignment statement, 3-8
Directives

assembler, 2-3
assembler, summary, B-3
conditional assembly, 6-34
data storage, 6-15
error, 7-10
function, 6-12
general assembler, 6-1
immediate conditional, 6-37
indefinite repeat block, 7-11
listing control, 6-1
location counter control, 6-22
macro, 7-1
MACRO libraries, 7-15
numeric control, 6-25
PAL-llR conditional assembly, 6-38
print, 7-11
program boundaries, 6-27
program section, 6-28
radix control, 6-21
repeat block, 6-15
subconditional control, 6-36
symbol control, 6-33
terminating, 6-27

Directives summary, B-3
Dollar character ($), 2-3, 3-7
Dot character (.), 2-3, 3-7, 3-13
Double colon (::), 2-2
Double equal sign (==) , 3-9
.DSABL directive, 6-12

example, 6-14
Dummy arguments, 7-9

.ENABL directive,
example, 6-14

.ENDC directive,

.END directive,

.ENDM directive,

.ENDM statement,

X-l

6-12

6-34
6-27
7-1
7-14

.ENOR statement, 7-14

.EOT directive, 6-27
Equal sign (=), 3-9

double equal sign (==), 3-9
.ERROR directive, 7-10
Error in command syntax, 8-1
Error messages, assembler, 8-7
Error message summary, 0-1
.EVEN directive, 6-23
Exiting (programming standards

for), E-9
Expressions, 3-15
External expression, 3-16
External symbols, 3-18

tF operator, 6-26
Fields

comment, 2-4
label, 2-2
operand, 2-3
operator, 2-3
programming standards for, E-3

Floating point numbers, 6-25
Floating point storage directives,

6-25
Floating point truncation, 6-13
.FLT2 directive, 6-25
.FLT4 directive, 6-25
Format control, 2-4
Formatting standards in

programming, E-IO
FORTRAN language names, 6-32
Forward referencing, 3-8
Functions, enable/disable, 6-12,

6-13

.GLOBL directive, 6-32
Global expression, 3-16
Global symbols, 2-2, 3-8

.IOENT directive, 6-10

.IF directive, 6-34

.IFF directive, 6-36

.IFT directive, 6-36

.IFTF directive, 6-36
Immediate mode, 5-4, F-l
Indefinite r~peat block directive,

7-11
example, 7-13

Index mode, 5-3, F-l
Index mode deferred, 5-4
Instructions forbidden in

programming, E-13
Instruction mnemonic, 2-3
Internal symbols, 3-8
.IRPC directive, 7-14

example" 7-13
.IRP directive, 7-11

example, 7-13

Label field, 2-2, E-3

Labels, 3-7
in expanded macro, 7-7
programming standards for, E-5

.LIMIT directive, 6-26
Line formatting, 2-4

programming standard for, E-3
Line printer listing example, 6-5
Linking, 4-1
Listing control directives, 6-1

arguments, 6-2
Listing

example of line printer, 6-4
example of Teletype, 6-5
suppression of, 6-1

Listing level count, 6-1
Listing switches, 6-3, 6-6
Loading MACRO-II, 8-1
Local symbols, 3-10
Location counter, 3-13, 6-22

MACRO-II symbols, 3-6
Macro calls, 2-3, 7-3

arguments, 7-4
Macro definition formatting, 7-3
Macro definitions, nested, 7-9
Macro definitions, separating

characters, 7-8
.MACRO directive, 7-1
Macro directives, 7-1
MACRO libraries, 7-15
Macro nesting, 7-3, 7-4
.t-1CALL directive, 7-15
.MEXIT directive, 7-2
.MEXIT statement, 7-14
Mnemonic, instruction, 2·-3
MOD40, ... 6-19
Mode forms and codes, table of, 5-6
Modes of address, 5-1, F-l

absolute, 5-5
autodecrement, 5-3
autodecrement deferred, 5-3
autoincrement, 5-2
autoincrement deferred, 5-3
examples, F-4
immediate, 5-4
index, 5-3
index deferred, 5-4
register, 5-1
register deferred, 5-2
relative, 5-5
relative deferred, 5-6

Modularity (standards for
programming), E-6

Naming standards, E-4
.NARG directive, 7-9
.NCHAR directive, 7-10
Negative numbers, 3-14
Nested

X-2

angle brackets, 3-5
conditional blocks, 6-36

........ ' 11 1 ... 61$ _____________________________ ---

Nested (cont.)
macros, 7-3
macro calls, 7-4
macro definitions, 7-9

Nesting, conditional,
Nesting under PAL-llR,
Number of arguments in

7-9

7-2
6-38

macro call,

Number of characters in argument, 7-9
Numbers, 3-14
Numeric arguments as symbols, 7-6
Numeric control, 6-25

temporary, 6-26
.NTYPE directive, 7-10
Null operand, 6-16

to (octal radix), 6-22
Octal numbers, 3-14
.000 directive, 6-23
Operand field, 2-3, E-3
Operand, null, 6-16
Operating procedures, 8-1
Operation field, E-3
Operator chara~ters, 3-5
Operator field, 2-3

blank, 6-16
Operator priority, 3-6
Operators

binary, 3-6
unary, 3-5

.PAGE directive, 6-12, 7-3
Page ejection, 6-12, 7-3
Page headings, 6-9
PAL-llR conditional assembly

directives, 6-38
assembly switch options, 8-3

PDP-ll Version number standard, E-15
Percent character (%), 3-10
Period character (.), 2-3, ~-7, 3-12
Permanent Symbol Table (PST), 3-7,

C-l
Position-independent code (PIC), 1-1

writing of, F-l
.PRINT directive, 7-11
Processor priority (programming

standards for), E-4
Program boundaries directive, 6-27
Program counter, 5-1
Programming standards, E-l
Program modules (standards for

programming), E-6
Program section creation, 6-10
Program source files (programming

standards), E-13
.PSECT directive, 6-28
PST see ~ermanent symbol table

Question mark character (?), 7-8
Quote characters

double ("), 6-17
single (I), 6-17, 7-8

Radix control, 6-21
temporary, 6-22

.RAD50 directive, 6-19

.RADIX directive, 6-21
RADIX-50 character set, A-4
Radix of source program numbers, 3-14
Register deferred mode, 5-2
Register mode, 5-1
Register names (programming

standards for), E-4
Register symbols, 3-9
Relative addressing modes, F-l
Relative deferred mode, 5-5
Relative mode, 5-5
Relocatable expression, 3-16
Relocation, 2-2, 4-1
Repeat block directive, 7-14
.REPT directive, 7-14
Rounding of numbers, 6-13, 6-25

Separating characters, 3-4
in macro definitions, 7-8

Sharing, code or data, 6-32
Single quote character, 7-8
Single-word floating-point numbers,

3-14
Space character, 2-4, 7-4
Special characters in arguments,

7-5
Stack overflow, 8-8
Standards, RSX-llD, E-l
Standard symbolics in programming,

E-5
Statement format, 2-1
Subconditional directives, 6-36
Summary of assembler directives,B-3
Summary of error messages, 0-1
Suppression of listing, 6-1
Switches

enable/disable, 6-14
listing, 6-3

Switch options, 8-3
Symbol control directive, 6-33
Symbolic function arguments, 6-13
Symbols, 3-2

external, 3-8
global, 3-8
local, 3-10
internal, 3-8
macro-defined, 3-7
permanent, 3-7
register, 3-9
undefined, 3-15
user, 3-7

Symbols created automatically, 7-7
Symbol table, 3-7
Syntax, address mode, B-2
Syntax error, 8-3
System software symbols, 3-7

X-3

Tab character, 2-1, 2-4
Table of contents of assembly

listing, 6-9, 6-11
Teletype listing example, 6-5
Tem.porary numeric control, 6-26
Tem.porary radix control, 6-22
Terminating directives, 6-27
Terminator, 2-3
Terms, 3-15
.TITLE directive, 6-9
Truncation of floating point

numbers, 3-14, 6-13, 6-25

X-4

Unary operators, 3-5
Undefined symbol, 3-15
Up-arrow

construction, 7-4
operators, 6-26
specification characters,

User-defined Symbol Table,

Version numbers in programs,

.WORD directive, 2-3, 6-17

.............. I.UI I ---------------------------------

6-22
3-7

E-16

HOW TO OBTA.IN SOFTWARE INFORHATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters •.

DIGITAL Software Ne"-ls for the PDP-8 and PDP-12
DIGITAL Software News for the PDP-II
DIGITAL Software News for 18-bit Computers

These newsletters contain information applicable to software available
from DIGITAL'S Software Distribution Center. Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers.
To assure that the monthly DIGITAL Software News is sent to the
appropriate software contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
office.

Questions or problems concerning DIGITAL'S software should be reported
to the Software Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully
completed and accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter.

Orders for new and revised software manuals, additional Software
Performance Report forms, and software price lists should be directed
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
When ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it. For further
information, please write to:

Digital Equipment Corporation
DECUS
Software Engineering and Services
Maynard, Massachusetts 01754

............... ~ ... lm.ml ~ lr •.• IIu ~ -----------------------------

READER'S COMMENTS

DOS/BATCH
Assembler (MACRO)
Programmer's Manual
DEC-ll-LASMA-A-D

Digi tal Equipment Corporation maintains a continuous eff'ort to improve
the quality and usefulness of its publications. To do this effectivelY
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title ___ Date: __________________ __

Name: Organization: --------------------------------- -----------------------
Street: _______________________________ Department: ________________________ _

City: State: zip or Country ----------------------- ------------ -------------

---------------.-- Fold Here --

-----------------,--------------------------.------ Do Not Tear - Fold Here and Staple ---

-
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Softwaf(~ Engineering and Services
Maynard, M~lssachusetts 01754

......... ~ II._ ------------------------

FIRST CLASS

I>ERMIT NO. 33

MA YNARD, MASS.

.,

CONTENTS

CHAPTER 1 EFFECTIVE USE OF ASSEMBLY LANGUAGE PROGRAMMING

1.1 STANDARDS AND CONVENTIONS
1.2 POSITION-INDEPENDENT CODE (PIC)

CHAPTER 2 SOURCE PROGRAM FORMAT

2.1 STATEMENT FORMAT
2.1.1 Label Field
2.1.2 Operator Field
2.1.3 Operand Field
2.1.4 Comment FiBld

2.2 FORMAT CONTROL

CHAPTER 3 SYMBOLS AND EXPRESSIONS

3.1 CHARACTER SET
3.1.1 Separating and Delimiting Characters
3.1.2 Illegal Characters
3.1.3 Operator Characters

3.2 MACRO SYMBOLS
3.2.1 Permanent Symbols
3.2.2 User-Defined and Macro Symbols

3.3 DIRECT ASSIGNMENT
3.4 REGISTER SYMBOLS
3.5 LOCAL SYMBOLS
3.6 ASSEMBLY LOCATION COUNTER
3.7 NUMBERS
3.8 TERMS
3. 9 EXPRESSIONS

CHAPTER 4 RELOCATION AND LINKING

CHAPTER 5 ADDRESSING MODES

REGISTER MODE
REGISTER DEFERRED MODE

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.1~
5.11
5.12
5.13
5.14

AUTO INCREMENT MODE
AUTOINCREMENT DEFERRED MODE
AUTO DECREMENT MODE
AUTODECREMENT MODE
INDEX MODE
INDEX DEFERRED MODE
IMMEDIATE MODE
ABSOL UTE MODE
RELATIVE MODE
RELATIVE DEFERRED MODE
TABLE OF MODE FORMS AND CODES
BRANCH INSTRUCTION ADDRESSING

CHAPTER 6 GENERAL ASSEMBLER DIRECTIVES

6.1 LISTING CONTROL DIRECTIVES
6.1.1 .LIST and .NLIST
6.1.2 Page Headings
6.1.3 .TITLE

v

1-1

1-1
1-1

2-1

2-1
2-2
2-3
2-3
2-4
2-4

3-1

3-1
3-4
3-5
3-5
3-6
3-7
3-7
3-8
3-9

3-1~
3-13
3-14
3-15
3-16

4-1

5-1

5-1
5-2
5-2
5-3
5-3
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-6
5-7

6-1

6-1
6-1
6-8
6-8

6.1.4 .SBTTL
6 • 1 • 5 • I DENT
6.1.6 Page Ejection

6.2 FUNCTIONS: . ENABL AND • DSABL DIRECTIVES
6.3 DATA STORAGE DIRECTIVES

6.3.1 . BYTE
6.3.2 • WORD
6.3.3 AS:CII Conversion of One or Two Characters
6. 3. 4 • AS CI I
6.3.5 . ASCI Z
6.3.6 .RAD5~

6.4 RADIX CONTROL
6.4.1 . RADIX
6.4.2 Temporary Radix Contro1:fD, to, and tB

6.5 LOCATION COUNTER CONTROL
6.5.1 . EVEN
6.5.2 .ODD
6.5.3 .BLKB and .BLKW

6.6 NUMERIC CONTROL
6.6.1 .FLT2 and .FLT4
6.6.2 Temporary Numeric Control: tF and tC

6.7 TERMINATING DIRECTIVES
6.7.1 . END
6.7.2 .EOT

6.S PROGRAM BOUNDARIES DIRECTIVES: .LIMIT
6.9 PROGRAM SECTION DIRECTIVES

6.9.1 .PSECT Directives
6.9.1.1 Creating Program Sections

6.9.2 .ASECT and .CSECT Directives
6.1~ SYMBOL CONTROL: .GLOBL
6.11 CONDITIONAL ASSEMBLY DIRECTIVES

6.11.1 Subconditionals
6.11.2 Immediate Conditionals
6.11.3 PAL-11R Conditional Assembly Directives

CHAPTER 7 MACRO DIRECTIVES

7.1 MACRO DEFINITION
7.1.1 • MACRO
7.1.2 .ENDM
7 • 1. 3 • ME XI T
7.1.4 MACRO Definition Format

7.2 MACRO CALLS .
7.3 ARGUMENTS TO MACRO CALLS AND DEFINITIONS

7.3.1 Macro Nesting
7.3.2 Special Characters
7.3.3 Numeric Arguments Passed as Symbols
7.3.4 Number of Arguments
7.3.5 Automatically Created Symbols
7.3.6 Concatenation

7.4 .NARG, .NCHR, AND .NTYPE
7.5 .ERROR AND .PRINT
7.6 INDEFINITE REPEAT BLOCK: .IRP AND .IRPC
7.7 REPEAT BLOCK: .REPT
7.8 MACRO LIBRARIES: .MCALL

vi

6-S
6-9

6-11 ..4
6-11
6-15
6-15
6-16
6-17
6-18
6-19
6-19
6-21
6-21
6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-26
6-27
6-27
6-27
6-27
6-28
6-28
6-3~
6-32
6-33
6-34
6-36
6-37
6-38

7-1

7-1
7-1
7-1
7-2
7-3
7-3
7-4
7-4
7-5
7-6
7-7
7-7
7-8
7-9

7-1~
7-11
7-14
7-15

-.= -

CHAPTER 8 OPERATING PROCEDURES

8.1 LOADING MACRO-II
8.2 COMMAND INPUT STRING
"8.3 SWITCH OPTIONS
8.4 CREF, CROSS-REFERENCE TABLE GENERATION
8.5 ERROR MESSAGES

APPENDIX A MACRO-II CHARACTER SETS

APPENDIX B MACRO-II ASSEMBLY LANGUAGE AND ASSEMBLER

APPENDIX C PERMANENT SYMBOL TABLE

APPENDIX D ERROR MESSAGE SUMMARY

APPENDIX ERECOMMENDED PROGRAMMING STANDARDS

APPENDIX F WRITING POSITION-INDEPENDENT CODE -
A TUTORIAL

INDEX

vii

8-1

8-1
8-1
8-3
8-3
8-8

A-I

B-1

C-l

D-l

E-l

F-l

For example:

A = 1 ~THE SY~IDOL A IS EQUATED TO THE
;VALUE 1.

B = 'A-l&MASKLOW ~THE SY~IDOL B IS EQUATED TO THE
~VALUE OF THE EXPRESSION

C: D = 3

E: MOV #l,ABLE

; THE SY~OL D IS EQUATED TO 3.

~LABELS C AND E ARE EQUATED TO THE
;LOCATION OF THE MOV COMMAND

The following conventions apply to direct assignment statements:

1. An equal sign (=) or double equal (==) must separate the
symbol from the expression defining the symbol value.

2.

3.

4.

A direct assignment statement is usually placed in the label
field and may be followed by a comment.

Only one symbol can be defined in a single direct assignment
statement.

Only one level of forward referencing is allowed.

Example of two levels of forward referencing (illegal):

X = Y

Y = Z

Z = 1

3.4 REGISTER SYMBOLS

The eight general registers of the PDP-II are numbered 0 through 7 and
can be expressed in the source program as:

%0
%1

%7

where the digit indicating the specific register can be replaced by
any legal term which can be evaluated during the first assembly pass.

It is recommended that the programmer use symbolic names for all
register references. Unless the .DSABL REG statement has been
encountered, the definitions as shown in the following example are
defined by default, or, a register symbol may be defined in ,a direct
assignment statement, among the first statements in the program. The
defining expression of a register symbol must be absolute. For
example:

3-9

RO::%O
RI==%1
R2==%2
R3=%3
R4=:%2
R5=%5
SP=%6
PC=:%7

;REGISTER DEFINITION

The user can reassign the register expressions, if he wishes.

The symbolic names assigned to the registers in the example above are
the. conventional names used in all PDP~ll system programs. Since
these names are mnemonic, it is suggested the user follow this
convention. Note that reqisters 6 and 7 are given special names
because of their special functions.

All register symbols must be defined before they are referenced. A
forward reference to a register symbol is flagged as an error.

The % character may be used with any terM or expression to specify a
register. (A register expression less than 0 or greater than 7 is
flagged with an R error code.) For example:

CLR %3+1

is equivalent to

CLR %4

and clears the contents of register 4, while

CLR 4

clears the contents of memory address 4.

3.5 LOCAL SYHBOLS

Local symbols are specially formatted symbols used as labels within a
given range.

labels for
reduces the
program and

Local symbols
from outside

a local symbol

Loectl symbols provide a convenient means of generating
branch instructions, etc. Use of local symbols
possibility of multiply-defined syMbols within a user
separates entry point symbols from local references.
may not be referenced from other object modules or even
their local symbol block. The rules for delimiting
block appear shortly.

Local symbols are of the form n$ where n is a decimal integer from 1
to 65535, inclusive, and can only be used on word boundaries (i.e., at
even addresses). Local symbols include:

1$
27$
59$

104$

3-1.0'

__ illi_IIIIiI_~_"'I111 ••• _ •• i!iIII.1 ¢-._ .. !111111 ..•.. 1111111111111.11 ________________ ~

Within a local symbol block, local symbols can be defined and
referenced. However, a local symbol cannot be referenced outside the
block in which it is defined. There is no conflict with labels of the
same name in other local symbol blocks.

Local symbols 64$ throgh 127$ can be generated automatically as a
feature of the macro processor (see section 7.3.5 for further
details). When using local symbols the user is advised to first use
the range from 1$ to 63$, or the range from 128$ to 65535$.

A local symhol block is delimited in one of the following ways:

1. The range of a single local symbol block can consist of those
statements between two normally constructed symbolic labels.
(Note that a statement of the form

LABEL=.

is a direct assignment, does not create a label in the strict
sense, and does not delimit a local range.)

2. The range of a local symbol block is always terminated upon
encountering a .PSECT, .CSECT, or .ASECT directive.

3. The range of a single local symbol block can be delimited
with .ENABL LSB and the first symbolic label or .PSECT,
.CSECT, or .ASECT directive following .DSABL LSB directive.
The default for LSB is off.

For examples of local symbols and local symbol blocks, see Figure 3-3.

3-11

I

I Line Octal
Nump_eJ: Expansion Source Code Comments

1 .~8"fTL SFCrOR rNTTTALIZATt~N
;C

~ ",rae-e'e' .rSFrT I~Pt'~F: J!MPU~E STO~A~E A~fA
4 0PfZJC"0l1 !~PURFI
lit "'0t"e~2t .rSFcr !~Pt:A~ JrL~A~E~ F'r~ ~'!~ ~

e E'tJ0[:110P !~PI='A~1 , t"0pepe' .rSFCT l~Pt I'" ,rL'APE~ FAr~ LT~~
e 0"0",eC" I'" P I, I'~ I
~
1~ "'QH'~"e t .rSFCT xr'T~RG ,~RrG~A~ 'NJTTAlTl'TT~N C~CE
11 ~0~0ea)(rT~Rr,i

12 "0~~<" p1~1~e MCiV ~T"'PURE,R"
I [:110"0<"2'

I
13 '0~041 "~~22e 1" ClR (1= 2'. ,rLFA~ T~PU~E AwEA
14 ~0"'0'; "'2~'[:II2 C~P "'T~PTrp,R'"

0I0pe 4e'
15 '0P.l~ 1013'.4 AIJI 1 ~

w 16
I l' "'0 0' Q! "'V , .CSFCT)(rT~A~ II='A~~ r~ITIALTZAT'O~ rO~f I-'

N 18 ~0(110C" XrTPA~1

19 C'0t"0C1' "1~'t"e Mt'W 4IY~PPAS,P"

Cl'0C1'e"e'
e0 ~0"'04 C"0~e2V 1~1 CI R (1=2,. ,r.LFA~ T"'~UPE PA~T
:21 '0pe~ p'2~,"e C~P NT~PTI"P,R'"

Cl'0P~4~'
22 ~0"'1:! 101~'.d H~I 1 ~
~3
~4 "0Pppe' .rSFCT X"'TtI~ .LI~f. !"!T!ALTZ6TrO~i COr'lF
2!S '21Cl!21' Xr:TL!~il

26 V21~eO' "1~1t'e M("'V --TIw!FlTN,Pl'
fl'0t"0"e'

~, P2peA "0~22e If, CI R C r;(e , ...
2~ I'e~elli C'l227t'le C~p NT~PT"P,R~

OI017'24e'
~9 P00'U' 101374 BIo4! 1 ~
~~
~1 t'l0t."e!,(?1 .rSE'er MI)(FD ,~rYfr ~C~~ SFCTC~

Figure 3-3

Assembly Source Listing of MACRO-II Code Showing Local Symbol Blocks

!t '~

3.6 ASSEMBLY LOCATION COUNTER

The period (.) is the symbol for the assembly location counter. When
used in the operand field of an instruction, it represents the address
of t~e first word of the instruction. When used in the operand field
of an assembler directive, it represents the address of the current
byte or word. For example:

A: MOV #. ,RO

(# is explained in section 5.9.)

,. REFERS TO LOCATION A,
:I.E., THE ADDRESS OF THE
:MOV INSTRUCTION.

At the beginning of each assembly pass, the Assembler clears the
location counter. Normally, consecutive memory locations are assigned
to each byte of object data generated. However, the location where
the object data is stored may be changed by a direct assignment
altering the location counter:

.=expression

Similar to other symbols, the location counter symbol has a mode
associated with it, either absolute or relocatab1e. However, the mode
cannot be external. The existing mode of the location counter cannot
be changed by using a defining expression of a different mode.

The mode of the location counter symbol can be changed by the use of
the .ASECT,.CSECT or .PSECT directives as explained in section 6.9.

The expression defining the location counter must not contain forward
references or symbols that vary from one pass to another.

Examples:

• ASECT

.=500

FIRST: MOV .+lO,COUNT

.=520

SECOND: MOV .,INDEX

:SET LOCATION COUNTER TO
:ABSOLUTE 500

:THE LABEL FIRST HAS THE VALUE
: 500 (OCTAL)
:.+10 EQUALS 5l0(OCTAL). THE
~CONTENTS OF THE LOCATION
:510(OCTAL) WILL BE DEPOSITED
;IN LOCATION COUNT.

~THE ASSEMBLY LOCATION COUNTER
;NOW HAS A VALUE OF
;ABSOLUTE 520(OCTAL).

:THE LABEL SECOND HAS THE
;VALUE 520(OCTAL)
;THE CONTENTS OF LOCATION
:520 (OCTAL) , THAT IS, THE BINARY
:CODE FOR THE INSTRUCTION
:ITSELF, WILL BE DEPOSITED IN
;LOCATION INDEX.

3-13

.PSECT

.=.+20

THIRD: .WORD o

;SET LOCATION COUNTER TO
;RELOCATABLE 20 OF THE
;UNNAMED PROGRAM SECTION.

;THE LABEL THIRD HAS THE
;VALUE OF RELOCATABLE 20.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the
direct assignment statements:

.=.+40

or
.BLKB 40

; or
.BLKW 20

reserve 40(octal) bytes of storage space in the program. The next
instruction is stored at 1100. (The .BLKB and .BLKW directives are
recommended as the preferred ways to reserve space. Refer to section
6.5.3.)

3.7 NUMBERS

The MACRO-II Assembler assumes all numbers in the source program are
to be interpreted .in octal radix unless otherwise specified. The
assumed radix can be altered with the .RADIX directive (see section
6.4.1) or individual numbers can be treated as being of decimal,
binary, or octal radix (see section 6.4.2).

Octal numbers consist of the digits 0 through 7 only. A number not
specified as a deciMal number and containing an 8 or 9 is flagged with
an N error code and treated as a decimal number.

Negative numbers are preceded by a minus sign (the Assembler
translates them into t~.,o·s complement form). Positive numbers may be
preceded by a plus sign, although this is not required.

A number which is too
truncated from the
assembly listing.

large
left and

to fit into 16
flagged with a

bits (l77777<n) is
T error code in the

Numbers are always considered absolute quantities (that is, not
relocatable) •

Single-word floating-point numbers may be generated with the tF
operator (see section 6.6.2) and are stored in the following format:

3-14

Refer to PDP-ll/45 Processor
floating-point format.

3.8 TERMS

Handbook for details of the

A term is a component of an expression. A term may be one of the
following:

1. A number, as defined in section 3.7, whose l6-bit value is
used.

2. A symbol, as defined earlier in the Chapter. Symbols are
interpreted according to the following hierarchy:

a. A period causes the value of the current location counter
to be used.

b. A permanent symbol's basic value is used but its
arguments (if any) are ignored~

c. An undefined symbol is assigned a value of zero and
inserted in the user-defined symbol table as an undefined
global reference. If the .DSABL GBL directive is in
effect, the automatic global reference default function
is inhibited, in which case the symbol is not· defined as
a global reference. It is simply undefined. Refer to
section 6.2.

3. An ASCII conversion using either an apostrophe followed by a
single ASCII character, or a double quote followed by two
ASCII characters, which results in a word containing the
7-bit ASCII value of the character(s). (This construction is
explained in greater detail in section 6.3.3.)

4. A term may also be an expression or term enclosed in angle
brackets. Any quantity enclosed in angle brackets is
evaluated before the remainder of the expression in which it
is found. Angle brackets are used to alter the left-to-right
evaluation of expressions (to differentiate between A*B+C and
A* B+C) or to apply a unary operator to an entire expression
(- A+B , for example).

3-15

3.9 EXPRESSIONS

E}(:pressions are combinations of terms joined together by binary
operators and which reduce to a l6-bit value. The operands of a .BYTE
directive (see section 6.3.1) are evaluated as word expressions before
truncation to the low-order eight bits. Prior to truncation, the
high-order byte must be zero or all ones (when byte value is negative,
the sign bit is propagated). The evaluation of an expression includes
the evaluation of the mode of the resultant expression: that is,
absolute, relocatable or external. Expression modes are further
defined below.

E}(pressions are evaluated left to right with no operator hierarchy
rules except that unary operators take precedence over binary
operators. A term preceded by a unary operator can be considered as
containing that unary operator. (Terms are evaluated, where
necessary, before their use in expressions.) Multiple unary operators
are valid and are treated as follows:

-+-A

is equivalent to:

-< +< -A»

A missing term, expression, or external symbol is interpreted as a
zero. A missing operator is interpreted as +. A Q error flag is
generated for each missing term or operator. For example (here TAG is
ORled with LA +177777):

TAG LA 177777

is evaluated as

TAG! LA+177777

with a Q error flag on the asseMbly listing line.

The value of an external expression is the value of the absolute part
of the expression: e.q., EXTERNAL+A has a value of A. This is
modified by LINK to become EXTERNAL+A.

Expressions, when evaluated, are either absolute, relocatable, or
ex'ternal. For the programmer writing position-independent code, the
distinction is important.

1. An expression is absolute if its value is fixed. An
expression whose terms are nuMbers and ASCII conversions will
have an absolute value. A relocatable expression minus a
relocatable term, where both iteMs belong to the same prograM
section, is also absolute.

2. An expression is relocatable if its value is fixed relative
to a base address but will have an offset value added at Task
Build time. Expressions whose terms contain labels defined
in reloca1:able sections and perioos, (in relocatable
sections) will have a relocatable value.

3-16

............................... ' ________ 1 ____________________________________ _

CHRl=l
CHR2=2
CHR3=3

·ASCII <101>

.RAD50 /AB/<35>

;EQUIVALENT TO .ASCII/A/

;STORES 3255 IN NEXT WORD

.RAD50 <CHRl><CHR2><CHR3>
;EQUIVALENT TO .RAD50/ABC/

6.4 RADIX CONTROL

6.4.1 • RADIX

Numbers used in a MACRO-II source program are initially considered to
be octal numbers. However, the programmer has the option of declaring
the following radices:

2, 4, 8, 10

This is done via the .RADIX directive, of the form:

.RADIX n

where: n is one of the acceptable radices.

The argument to the .RADIX directive is always interpreted in decimal
radix. Following any radix directive, that radix is the assumed base
for any number specified until the following .RADIX directive.

The default radix at the start of each program,
assumed if none is specified, is 8 (i.e., octal).

and the argument
For example:

.RADIX 10

.• RADIX

;BEGINS SECTION OF CODE WITH
; DEC IMAL
iRADIX

iREVERTS TO OCTAL RADIX

In general it is recommended that macro definitions not contain or
rely on radix settings from the .RADIX directive. Th~ temporary radix
control characters should be used within a macro definition. (to, to,
and tB are described in the following section.) A given radix is valid
Sdughout a program until changed. Where a possible conflict exists
within a macro definition or ~in possible future uses of that code
module, it is suggested that the user specify values using the
~emporary radix controls (see below).

6-21

6.4.2 Temporary Radix Control: to, to, and tB

Once the user has specified a radix for a section of code, or has
determined to use the default octal radix, he may discover a number of
cases where an alternate radix is more convenient (particularly within,
macro definitions). For example, the creation of a mask word might
best be done in the binary radix.

MACRO-II has three unary operators to provide a single interpretation
in a given radix within another radix as follows:

tox (x is treated as being in decimal radix)
tOx (x is treated as being in octal radix)
tBx (x is treated as being in binary radix)

For example:

t0123
to 47
tB 00001101
t 0<A+3>

Notice that while the up arrow and radix specification characters may
not be separated, the radix operator can be physically separated from
thE~ number by spaces or tabs for forMatting purpOl=;es. T-Jhere a term or
expression is to be interpreted in another radix, it should be
enclosed in angle brackets.

These nUMeric quantities may be used any place where a numeric value
is legal.

PAI,-llR contains a feature, which is maintained for compatibility in
MACRO-II, allowing a teMporary radix change from octal to decimal by
spE~cifying a decimal radix number with a "decimal point". For
example:

100.
1376.
128.

(144(8»
(2540 (8))
(200{8»

6.S LOCATION COUNTER CONTROL

ThE~ four directives \11hich control moveMent of the locntion counter are
.EVEN and .ODD, which move the counter a maxiTl'lurn of one byte, and
.BLKB and .BLKW, which allow the user to specify blocks of a given
nmnber of bytes or words to be skipped in the asseMbly.

6-22

-------------------------,-----------------,------------------------------.-------

6.5.1 • EVEN

The .EVEN directive ensures that the assembly location counter
contain~ an even memory address by adding one if the current address
is odd. If the assembly location counter is even, no action is taken.
Any operands follo,"Ting an .EVEN directive are ignored.

The .EVEN directive is used as follows:

.ASCIZ ITHIS IS A TESTI
• EVEN

• WORD XYZ

6.5.2 .000

;ASSURES NEXT STATEMENT
;BEGINS ON A WORD BOUNDARY •

The .000 directive ensures that the assembly location counter is odd
by adding one if it is even. For example:

; CODE TO MOVE DATA FROM AN INPUT LINE
; TO A BUFFER

N=5

BUFF:

.000
• BYTE
.BLK~l

MOV
MOV
MOVB

AGAIN: MOVB

DONE:

BEQ
DEC
BNE

CLRB

N*2
N

#BUFF,R2
#LINE,Rl
-l(R2) ,RO
(Rl) +, (R2) +

DONE
RO
AGAIN

- (R2)

LINE: .ASCIZ ITEXT/

;BUFFER HAS 5 WORDS

;COUNT=2N BYTES
;RESERVE BUFFER OF N WORDS

; ADDRESS OF Er1PTY BUFFER IN R2
;ADDRESS OF INPUT LINE IS IN Rl
;GET COUNT STORED IN BUFF-l IN RO
;MOVE BYTE FROM LINE INTO BUFFER
;WAS NULL CHARACTER SEEN?
;DECREMENT COUNT
;NO = 0, GET NEXT CHARACTER

; OUT OF ROOr-·'[IN BUFFER, CLEAR LAST
; WORD

In this case, .000 is used to place the buffer byte count in the byte
preceding the buffer, as follows:

6-23

COUNT BUFF-2

BUFF

6.5.3 .BLKB and .BLKW

Blocks of
directives.
word blocks •

storage can be reserved using the .BLKB and .BLKW
.BLKB is used to reserve byte blocks and .BLKW reserves
The two di.rectives are of the form:

• BLKB exp
.BLKW exp

where: exp

For example:

1 000000'
2
3 000000

is the nuru)er of bytes or words to reserve. If no
argument is present, 1 is the assumed default
value. Any legal expression which is completely
defined at asseMbly time and produces an absolute
number is legal. Using these directives without
arguMents is not recommended.

.CSECT IMPURF.

PASS: .BLKW
4 ;NEXT GROUP MUST STAY TOGETHER
5 000002 SYMBOL: .BLKW 2 ;SYMBOL ACCUMULATOR
6 000006 MODE:
7 000006 FLAGS: .BLKB 1 ;FLAG BITS
8 000007 SECTOR: .BLKB 1 ;SYMBOL/EXPRESSION TYPE
9 000010 VALUE: .BLKW 1 ;EXPRESSION VALUE
10 00012 RELLVL: .BLKN 1
11 .BLKW '2 ;END OF GROUPED DATA
12
13 00020 CLCNAM: .BLKW 2 ;CURRENT LOCATION COUNTER SYMBOL
14 00024 CLCFGS: .BLKB 1
15 00025 CLCSEC: .BLKB 1
16 00026 CLCLOC: .BLKl~ 1
17 00030 CLCMAX: .BLKW 1

The .BLKB directive has the same effect as:

.=.+exp

but is easier to interpret in the context of source code.

6-24

,---------,--,--------------

6.6 NUMERIC CONTROL

Several directives are available to simplify the use of
the floating-point hardware on the PDP-II.

A floating-point number is represented by a string of decimal
digits. The string (which can be a single digit in length)
may optionally contain a decimal point, and may be
followed by an optional exponent indicator
in the form
of the letter E and a signed decimal exponent. The list
of number representations below contains seven distinct,
valid representations of the same floating-point number:

3
3.
3.0
3.0EO
~O

.3El
300E-2

As can be quickly inferred, the list could be extended indefinitely
(e.g., 3000E-3, .03E2, etc.). A leading plus sign is ignored (e.g.,
+3.0 is considered to be 3.0). A leading minus sign cOMplements the
sign bit. No other operators are allowed (e.g., 3.0+N is illegal).

Floating-point number representations are valid only in the contexts
described in the remainder of this section.

Floating-point numbers are normally rounded. That is, when a
floating-point number exceeds the limits of the field in which it is
to he stored, the high-order excess bit is added to the low-order
retained bit. For example, if the number is to be stored in a 2-word
field, but more than 32 bits are needed for its value, the highest bit
carried out of the field is added to the least significant position.
The .ENABL FPT directive is used to enable floating-point truncation,
and .DSABL FPT is used to return to floating-point rounding (see
section 6.2).

6.6.1 .FLT2 and .FLT4

Like the .WORD directive, the two floating-point storage directives
cause their arguments to be stored in-line with the source program.
These two directives are of the form:

where:

• FLT2
• FLT4

argl,arg2, •••
argl,arg2, •••

argl,arg2,... represent one or more floating point numbers
separated by commas •

• FLT2 causes two words of storage to be generated for each argument,
while .FLT4 generates four words of storage.

6-25

6.6.2 Temporary Numeric Control: tF and tC

Like the temporary radix control operators, operators are available to
specify either a l-word floating-point number (tF) or the l's
complement of a l-word number (tC). The tF operator can only be used
within an instruction operand expression. tC can be used in any
expression. For example:

FL3.7: MOV #tF3.7,RO

crelates a l-word floating-point nUMber at location FL3. 7+2 containing
thE! value 3.7 formatted as follows:

15 6 0

! SEEEEEEEE1·'lMMMMMMl
-l----l------t----

!
---Mantissa (bits 0-6)

!
---Exponent (bits 7-14)

---Sign (bit 15)

This l-word floating-point number is the first word of the 2- or
4-word floating-point number format shmm in the PDP-ll Processor
Handbook, and the statement:

CMP1Sl: .WORD tC1Sl

stores the l's complement of 151 in the current radix (assume current
radix is octal) as follows (177626 shown in binary)

!1111lllll00l0l10!

1 7 762 6

Since these control operators are unary operators, their arguments may
be terms, and the operators may be expressed recursively. For
example:

tF< 1.2E3>
tC<D2S> or tC3l or 177746

The term created by t,he unary operator and its argument is then a term
't..rhich can be used by itself or in an expression. For example:

t C2+6

is equivalent to:

<tC2>+6 or 177775+6 or 000003

For this reason, the use of angle brackets is advised. Expressions
used as terms or arguments of a unary operator must be explicitly
grouped.

6-26

An example of the importance of ordering with respect to unary
operators is shown below:

tFl.O
tF-l.O

-tFl.O
-tF-l.O

- 020400
- 120400

= 157400
= 057400

The argument of the tF operator must not be an expression and must be
of the same for~at as arguments to the .FLT2 and .FLT4 directives (see
section 6.6.1).

,
6.7 TERMINATING DIRECTIVES

6.7.1 • END

The .END directive indicates the physical end of the source program.
The .END directive is of the form:

.END exp

where: exp is an optional argument which, if present,
indicates the progr~ entry point, i.e., the
transfer address.

tfuen the load module is loaded, program execution begins at the
transfer address indicated by the .END exp directive. In a runtime
system (the load module output of LINK) an .END exp statement should
ter~inate the first object module and .END statements should terminate
any other object modules.

6.7.2 .EOT

Under the DOS/BATCH Honitor, the .EOT directive is ignored.

6.8 PROGRAM BOUNDARIES DIRECTIVE: .LIMIT

It is often important to kno"T the boundaries of the load module's
relocatable code. The .LIMIT directive reserves two words into which
LINK puts the 10'" and high addresses of the relocated code. The low
address (inserted into the first word) is the address of the first
byte of code. The high address is the address of the first free byte
following the relocated code. These addresses are always even since
all relocatable sections are loaded at even addresses. (If a
relocatable section consists of an odd number of bytes, LINK adds one
to the size to make it even.)

6-27

6.9 PROGRAM SECTION DIRECTIVES

6.9.1 .PSECT Directive

Program sections are defined by the .PSECT directive, which is
formatted as:

.PSECT [NAME] [,RO/RW] [,I/O] [,GBL/LCL] [,ABS/REL] [,CON/OVR] [,HGH/LOW]

The brackets ([]) are for purposes of illustrating optional
parameters, and are not included in the parameter specifications. The
slash (/) indicates that a choice is to be made between the
parameters. The program section attribute parameters are summarized
in Table 6-2.

Table 6-2

.PSECT Directive Parameters

Parameter Default

NAME Blank

RO/Rl"7 Rl'1

I/O I

GBL/LCL LCL

ABS/REL REL

CON/OVR OVR

------------------,-----,

Meaning

Program section naMe, in Radix-50
format, specified as one to six
characters. If omitted, a comma must
appear in the first parameters position.

Program section access mode;

RO=Read Only
m'l=Read/Wri te

Program section type;

I=Instruction
D=Data

The scope of the program section, as
interpreted by LINK;

GBL=Global
LCL=Local

Defines relocation
se-ction;

of the program

ABS=Absolute (no relocation)
REL=Relocatable (a relocation bias

is required)

Program section allocation;

CON=Concatenated
OVR=Overlaid

6-28

----------_.-_-.,-----,---------------------,._--------------

HGH/LOW LOW Program section memory type:

HGH=High-speed
LOW=Core

NOTE
The HGH/LOW attribute is currently ignored by LINK.

The only parameter that is position-dependent is NAME.
omitted, a comma must be used in its place. For example,

If it is

.PSECT ,RO

This example shows a PSECT with a blank name and the Read Only access
parameter. Defaults are used for the remaining parameters.

LINK interprets the .PSECT directive's parameters as follows:

RO/R~ Defines the type of access to the program section
permitted which is: Read Only, or Read/Write.

I/O Allows. LINK to differentiate global symbols that are
entry points (I) from global symbols that are data
values (D).

I

GBL/LC~

j'
ABS/REL

J
CON/OVR

Defines the scope of a program section. A global
program section's scope crosses segment (overlay)
boundaries: a local program section's scope is within a
single segment. In single-segment programs, the
GnL/LCL parameter is ignored.

When ABS is specified, the program section is absolute.
No relocation is necessary (i.e., the program section
is assembled starting at absolute virtual 0). When REL
is specified, a relocation bias is calculated by LINK,
and added to all references in the section.

CON causes LINK to collect all allocation references to
the program section from different modules and
concatenate them to form the total allocation for the
program section. OVR indicates that all allocation
references to the program section overlay one another.
Thus, the total allocation of the program section is
determined by the largest request made by a module that
references it.

Once the attributes of a named .PSECT are declared in a module, the
MACRO-11 Assembler assumes that this .PSECT's attributes hold for all
subsequent declarations of the named .PSECT in the same module. Thus,
the attributes may be declared once, and later .PSECT's ,~ith the same
'name will have the same attributes, when specified within the same
module.

The Assembler provides for 255(10) program sections: One absolute
section, one blank relocatab1e section, and 253(10) named relocatable
sections are permitted. The .PSECT directive enables the user to:

6-29

1. Create his program (object module) in sectionsi and,

2. Share code and data.

For each program section specified or implied, the Assembler maintains
the following information:

1. Section namei

2. Contents of the program counteri

3. Maximum program counter value encounteredi and,

4. Section attributes, (the six .PSECT attributes).

6.9.1.1 Creating Program Sections

A given program section is defined completely upon its first
reference. Thereafter, the section can be referenced by completely
specifying the section attributes or by specifying the name only. For
example, a section can be specified as:

.PSECT ALPHA, ABS ,OVR

and later referenced as:

.PSECT ALPHA

By maintaining separate location counters for each section, the
Assembler allows the user to write statements which are not physically
contiguous but are loaded contiguously, as shown in the following
example:

A:
B:
C:
ST:

.=4

.PSECT
• WORD
• WORD
• WORD
CLR A
CLR B
CLR C
.PSECT

• WORD
.PSECT
INC A
BR ST
.END

SEC1,REL
o
o
o

SECA,ABS

.+2,HALT
SECl

iSTART A RELOCATADLE SECTION NAMED
iSECl ASSEMBLED AT RELOCATABLE 0,
iRELOCATABLE 2 AND
i RELOCAT ABLE 4,
iASSEMBLE CODE AT
:RELOCATABLE ADDRESSES
i6 THROUGH 21
iSTART AN ABSOLUTE SECTION NAMED SECA
i ASSEHBLE CODE AT
iABSOLUTE 4 THROUGH 7,
iRESUME THE RELOCATABLE SECTION
iASSEMBLE CODE AT
iRELOCATABLE 22 THROUGH 27

The first appearance of a .PSECT directive with a given name assumes
the location counter is at relocatable or absolute zero. The scope of
each. directive extends until a directive beginning a different section
is given. Further occurrences of a section name in a subsequent
.PSECT statement resume assembling where the section previously ended.

6-3~

----------.--------.......... _, _---

"

.PSECT COMI,REL ,DECLARE RELOCATABLE SECTION COMI
A: • WORD 0 ,ASSEMBLED AT RELOCATABLE 0,
B: • WORD 0 ;ASSEMBLED AT RELOCATABLE 2,
C: • WORD 0 ;ASSEMBLED AT RELOCATABLE 4,

.PSECT COM2,REL ,DECLARE RELOCATABLE SECTION COM2
X: • WORD 0 ;ASSEMBLED AT RELOCATABLE 0
Y: • WORD 0 ;ASSEMBLED AT RELOCATABLE 2,

.PSECT COMI ; RETURN TO COMI
D: • WORD 0 ;ASSEMBLED AT RELOCATABLE 6,

.END

All labels in an absolute section are absolute; all labels in a
relocatable section are relocatable. The location counter symbol,
".", is relocatable or absolute when referenced in a relocatable or
absolute section, respectively. An undefined internal symbol is a
global reference. It essentially has no attributes except global
reference. Any labels appearing on a .PSECT (or .ASECT or .CSECT)
statement are assigned the value of the location counter before the
.PSECT (or other) directive takes effect. Thus, if the first
statement of a program is:

A: .PSECT ALT,REL

then A is assigned to relocatable zero and is associated with the
relocatable section ALT.

since it is not known at assembly time where the program sections are
to be loaded, all references between sections in a single assembly are
translated by the Assembler to references relative to the base of that
section. The Assembler provides LINK with the necessary information
to resolve the linkage.

Note that this is not necessary when making a reference to an absolute
section (the Assembler knows all load addresses of an absolute
section).

In the following example, references to X and Yare translated into
references relative to the base of the relocatable section SEN •

• PSECT ENT,ABS
.=1000
A: CLR X ,ASSEMBLED AS CLR BASE OF

;RELOCATABLE SECTION + 10
JMP Y ;ASSEMBLED AS JMP BASE OF

;RELOCATABLE SECTION + 6
.PSECT SEN,REL
MOV RO,Rl
JMP A ;ASSEMBLED AS JMP 1000

Y: HALT
X: WORD 0

.END

Code or Data Sharing

Named relocatable program sections with the attribute OVR operate as
FORTRAN labeled COMMON, that is, sections of the same name with the
attribute OVR from different assemblies are all loaded at the same

6-31

location by LINK All other program sections (those with the attribute
CON) are concatenated.

Note that there is no conflict bet"reen internal sYMbolic names and
program section names; that is, it is legal to use the same symbolic
name for both purposes. In fact, considering FORTRAN again, this is
nec::essary to accommodate the FORTRAN stateMent:

COMMON /X/A,B,C,X

where the symbol X represents the base of this program section and
al:so the fourth element of this prograM section.

Prngram section naJ'l'les should not duplicate .GLOBL names. In FORTRAN
language, COMMON block names and SUBROUTINE naMes should not be the
same.

6.9.2 .ASECT and .CSECT Directives

DOS/BATCH assembly language prograJ'l'ls use the .PSECT directive
exc::lusively, as it affords all the capabilities of the .ASECT and
.CSECT directives defined for other PDP-II asseJ'l'lhlers. The Macro
Assembler Nill accept .ASECT and .CSECT hut asseMbles them as if they
were .PSECT's with the default attrihutes listed below. Also,
compatibility exists between non-DOS/BATCH ~CRO-II programs and LINK,
bec:ause LINK recognizes .ASECT and .CSECT directives that appear in
such programs. LINK accepts these directives from non-DOS/BATCH
programs, and assigns default values as shown in Tahle 6-3.

Table 6-3

Non-DOS/BATCH Program section Defaults

Attribute Default Value
.ASECT .CSECT (named)

Name ARS name

Access RH RN

Type I I

Scope GEL GBL

Relocation ABS REL

Allocation OVR OVR

HeJ'l'lory LON LOH

The allowable syntactical forms of .ASECT and .CSECT are:

.ASECT

.CSECT

.CSECT sYMhol

6-32

.CSECT

Blank

RN

I

LCL

REL

CON

LOW

.................................. .. ---... • •••• - __ ________ ... '._0 __ 1 __________ __

Note that

.CSECT JIH

is identical to

.PSECT JIH,GBL,OVR

6.10 SYMBOL CONTROL: .GLOBL

The Assembler produces a relocatable object module and a listing file
containing the assembly listinq and symbol table. LINK joins
separately assembled object modules into a single load module. Object
modules are relocated as a function of the specified base of the load
module. The object modules (where there are more than one) are linked
via global symbols, such that a global sYMbol in one Module (either
defined by direct assignment or as a label) can be referenced from
another module.

A global symbol may be specified in a .GLORL directive.

In addition, symbols referenced but not defined within a module are
assumed to be global references. The .GLOBL directive is provided to
reference (and provide linkage to) symbols not otherwise referenced
within a module. For exaMple, one might include a .GI.JOBL directive to
cause linkage to a lihrary. When defininq a glohal definition, the
.GLOBL A,B,C directive is equivalent to

A==value (or A::value)
B==value (or B::value)
C==value (or C::value)

The forM of the .GLODL directive is:

,,,here:

• GLOBL syml,syr1.2, •••

syrnl,sym2,... are le0al s lm*)olic naMes, separated by commas
or spaces where more than one symbol is
specified.

Symhols appearing in a .GLOBL directive are either defined within the
current program or are external symhols, in ~lhich case they are
de fined in another program '''hich is to be linked "7i th the current
program by LINK prior to execution.

A .GLOBL directive line may contain a label in the label field and
comments in the COMment field.

At the end of assembly pass 1, ~~CRO-ll has deterMined whether a given
global symbol is defined ,·lithin the program or is expected to be an
external symbol. All internal symbols to a given program, then, must
be defined by the end of pass 1 or they will be assumed to be global
references (see .ENABL, .DSABL of globals in section 6.1.6).

6-33

DEFINE A SUBROUTINE WITH 2
EXTERNAL SUBROUTINE
.PSECT

ENTRY POINTS WHICH CALLS AN

iDECLARE THE PROGRAH SECTION
iDEFINE A,C AS GLOBALS
iENTRY A DEFINED A· •

X:

B· •

.GLOBL
HOV
HOV
JSR
RTS
MOV
CLR
BR

A,C
@(R5)+,RO
#X,Rl
PC,C
R5
+(R5)+,Rl
Rl
X

iCALL EXTERNAL SUBROUTINE C
iEXIT
;DEFINE ENTRY B

In the example above, A and B are entry symhol~ (B is defined as
global via double colon convention), C is an external symbol and X is
an internal symbol.

References to external sYMbols can appear in the operand field of an
instruction or assembler directive in the form of a direct reference,
i. e. :

CLR
.l'10RD
CLR

EXT
EXT
@EXT

or a direct reference plus or minus a constant, i.e.:

A=6
CLR
• t'rORD
CLR

EX'I'+A
EX'I'-2
@EXT+A

An external sYMbol cannot be u~ed in the evaluation of a direct
assignment expression. A global symbol defined within the program can
be used in the evaluation of a direct assignrn.ent statement.

6.11 CONDITIONAL ASSEHBLY DlRECTPlES

Conditional assemhly directives provide the programmer \'lTith the
capability to conditionally include or ignorp. hlocks or source code in
the assembly process. This technique is used to allm.." several
variations of a proqram to be generated fron the source program.

The general form of a conditional block is as follO\-7s:

.IF

.ENDC

\vhere cond

argurnent(s)

cond,argument(s) ;START CONDITIONAL BLOCK
:RANGE OF CONDITIONAL

iBLOCK
iEND CONDITIONAL BLOCK

is a condition which must be met if the block is
to be included in the assembly. These conditions
are de fined be lo~v •

are a function of the condition to be te~ted.

6-34

range is the body of code
asse~hly or iqnored
condition is met.

which is
depenninq

included in the
upon whether the

The following are the allowahle conditions:

Conditions

POSITIVE COMPLEHENT

EQ NE

GT LE

LT GE

OF NOF

B NB

ION OIF

Z NZ

G L

For example:

ARGUMENTS ASSErmLE BLOCK IF

expression e:x:pression=O (or O)

expression expression>: (or < O)

expression expression<O (or > O)

symbolic symhol is defined
argument (or undefined)

macro-type argument is blank
arguMent (or nonblank)

two macro-type arguments identical
arguments separated (or different)
by a comma

expression saMe as EQ/NE

expression saMe as GT/LE

NOTE

A macro-type argument is
enclosed in angle brackets or
wi thin an up-arro,·,
construction (as described in
Section 7.3.l). For example:

<A,B,C>
t /124/

.IF EQ ALPHA+l ;ASSEHBLE IF ALPHA+l=O

.ENDC

Within the conditions OF and NOF the folloHinq two operators are
allo""cd to group syrn.holic arquMents:

& logical AND operator

logical inclusive OR operator

6-35

For example:

.IF DF SYMI & SYM2

• EN DC

assembles if both SYHI and SYH2 are defined.

6.11.1 Subconditionals

Subconditionals may be placed within conditional blocks to indicate:

1. Assembly of an alternate body of code when the condition of
the block indicates that the code within the block is not to
he assembled.

2. Assemhly of a non-contiguous body
conditional block depending upon
conditional test to enter the block.

of code within
the result of

the
the

3. Unconditional asseMhly of a body of code within a conditional
hlock.

There are three subconditional directives, as follows:

Subconditional Function
Directives

.IFF The code following this stateMent up to the next
suhconditional or end of the conditional block is
included in the program providino the value of the
condition tested upon entering the conditional
block ,.,as false •

• IFT The code follo\,Ting this stateMent up to the next
suhconc1itional or end of the conditional hlock is
included in the program providing the value of the
condition teRted upon entering the conditional
block was true •

• IFTF The code follO'\.,ring this stateMent up to the next
suhconditional or the end of the conditional block
is included in the program regardless of the value
of the condition tested upon entering the
conditional block.

Th4~ implied argument of the subconditionals is the value of the
condition upon entering the conditional block. Rubconditionals are
used within outer level conditional blocks. Subconditionals are
ignored within nested, unsatisfied conditional blocks.

6-36

For example:

However,

.IF DF SYM

.IFF

• IFT

.IFTF

• ENDC

.IF DF X

.IF DF Y

.IFF

.IFT

.ENDC

.F.NDC

.IF DF X

.IF DF Y

.IFF

.IFT

.ENDC

.ENDC

6.11.2 Immediate Conditionals

;ASSEMBLE BLOCK IF SYM IS DEFINED

;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS UNDEFINED •

;ASSEMBLE THE FOLLOWING CODE ONLY IF
;SYM IS DEFINED.

;ASSEMBLE THE FOLLOWING CODE
; UNCONDITIONALLY •

;ASSEMRLY TESTS FALSE
;TESTS FALSE
~NESTED CONDITIONAL
~ IGNORED

~NOT SEEN

;TESTS TRUE
;TESTS FALSE
;I8 ASSEHBLED

;NOT ASSEHRLED

An immediate conditional directive is a means of writing a l-line
conditional block. In this form, no .ENDC statement is required and
the condition is completely expressed on the line containing the
conditional directive. Immediate conditions are of the forro:

.IIF cond, arg, statement

6-37

where: cond

arg

statement

For example:

.IIF

is one of the legal conditions defined
conditional blocks in section 6.11.

for

is the arqurnent associated with the conditional
specified~ that is, either an expression, symbol,
or macro-type argument, as described in section
6 .. 11.

is the statement to be assemhled if the condition
i!j met.

DF FOO BF!O ALPHA

thi:s stateMent generates the corle

BEQ ALPHA

if the symbol Foa is defined.

A label must not be placed in the lahel field of the .IIF stateMent.
Any necessary lahels may be placed on the previous line:

LABEL:
.IIF DF FOO,BEQ ALPHA

.IIF DF Foa, LABEL: BEQ ALPHA

6.11.3 PAL-llR Conditional Assembly Directives

In order to maintain cOMpatihility with proqrams developed under
PAL-llR, the following conditionals remain permissihle under ~mCRO-ll.
It is advisable that future proqrarns be developed using the format for
BACRO-ll conditional assemhly directi~res.

Directive

.IFZ or .IFEQ

.IFNZ or.IFNE

.IF:L or .IFLT

.IFG or .IFGT
• IF:LE
.IFDF
.IFNDF

Arguments

expression
expression
expression
expr.ession
expression

loqical ex~ression
logical expression

Assemhle Block if

expression=O
expression not equal 0

expressinn< 0
expression> 0

ex~r.essinn is < or =0
expression is true (defined)
expression is false (undefined)

The rules governing the usage of these directives are nmv the same as
for the r.mCRO-ll conrlitional asseMbly directives previously described.
Conditional assemhly blocks must end with the .ENDC directive and are
limiterl to a nesting depth of 16(10) levels (instearl of the 1~7(lO)
levels allmverl under PAL-llR).

6-38

CHAPTER 7

MACRO DIRECTIVES

7.1 HACRO DEFINITION

It is often convenient in assemhly language proqraJYU11ing to generate a
recurring coding sequence "lith a single stateMent. In order to do
this, the desired codin<J sequence is first defined with duI".my
arguments as a macro. Once a macro has been defined, a single
statement calling the macro by naMe with a list of real arguments
(replacing the corresponding dUMMY -arguments in the definition)
generates the correct sequence or expansion.

7 .1.1 • MACRO

The first stateMent of a macro definition must be a .~mCRO directive.
The .HACRO directive is of the form:

where:

.MACRO name, dummy argument list

naMe

dummy
argument
list

is the name of the macro. This name is any legal
symbol. The naMe chosen may be used as a label
else1;.,here in the prograM.

represents any legal separator (generally a COMma
or space).

zero, one, or more legal symbols which may
appear any\'lhere in the body of the macro
definition, even as a label. These symbols can be
used elsewhere in the user program with no
conflicts of definition. Nhere more than one
dummy argument is used, they are separated by any
legal separ~tor (generally a comma).

A comment may follovl the dUMmy arguMent list in a statement containing
a .MACRO directive. For example:

• MACRO ABS ,A,B iDEFINE MACRO ABS WITH TNO ARGUMENTS

A label must not appear on a .f.1ACRO statement. Labels are sOMetimes
used on macro calls, but serve no function when attached to .MACRO
statements.

7.1.2 .ENDH

The final statement of every macro definition must be an .ENDM
directive of the form:

7-1

.ENDM name

where:

name is an optional argument, being the name of the
macro terminated by the statement.

For example:

.ENDM (terminates the current macro definition)

.ENDM ABS (terminates the definition of the macro ABS)

If specified, the symbolic name in the .ENDM statement must correspond
to that in the matching .MACRO statement. Otherwise the statement is
flagged and processing continues. Specification of the macro name in
the .ENDM statement permits the Assembler to detect missing .ENDM
statements or improperly nested macro definitions.

The .ENDM statement may contain a comment field, but must not contain
a label.

An example of a macro definition is shown below:

.MACRO TYPMSG MESSGF.
JSR RS,TYPMSG
• NORD MESSGE
.ENDM

7 • 1. 3 • MEXIT

;TYPE A MESSAGE

In order to implement alternate exit points from a macro (particularly
nested macros), the .UEXIT directi"Te is provided. .MEXIT terminates
the current macro as though an .ENDM directive were encountered. Use
of .MEXIT bypasses the complications of conditional nesting and
altE:!rnate paths. For example:

.MACRO ALTR N,A,B

.IF EQ,N

.MEXIT

.ENOC

.ENDM

;START CONDITIONAL BLOCK

;EXIT FROM MACRO DURING CONDITIONAL
; BLOCK
:END CONDITIONAL BLOCK

;NOR~AL END OF MACRO

In an assembly where N=O, the .MEXIT directive terminates the macro
expansion.

7-2

• MACRO
.IDENT
.ENDM
• MACRO
IDT
.ENDM

OUT

IDT SYM
/SYM/

OUT ARG
005A'ARG

\ID

The above Macro call expands to

.IDENT /005AXX/

iASSUME THAT THE SYHBOL ID TAKES
iON A UNIQUE 2-DIGIT VALUE FOR
iEACH POSSIBLE CONDITIONAL ASSEMBLY
iOF THE PROGRAM

iWHERE 005A IS THE UPDATE
iVERSION OF THE PROGRAM
;AND ARG INDICATES THE
iCONDITIONAL ASSE~mLY VERSION.

where XX is the conditional value of ID.

Two macros are necessary since the text deli~iting characters in the
.IDENT statement would inhibit the concatenation of a dummy argument.

7.3.4 Number of Arguments

If more arguments appear in the macro call than in the macro
definition, the excess arguments 'are ignored. If fewer arguments
appear in the macro call than in the definition, missing arguments are
assumed to be null (consist of no characters). The conditional
directives .IF Band .IF NB can be used within the macro to detect
unnecessary arguments.

A macro can be defined with no arg~ents.

7.3.5 Automatioally Created Symbols

MACRO-II can create symbols of the forM n$ where n is a decimal
integer number such that 64<n<127. Created symbols are always local
symbols between 64$ and 127$. (For a description of local sYMbols,
see Section 3.5.) Such local symbols are created by the Assembler in
numerical order, i.e.:

64$
65$

126$
127$

Created symbols are particularly useful where a label is required in
the expanded macro. Such a label must othen~ise be explicitly stated
as an argument with each macro call or the same label is generated
with each expansion (resulting in a multiply-defined label). Unless a
label is referenced from outside the macro, there is no reason for the
programmer to be concerned with that label.

7-7

The: range of these local symhols extends between two explicit labels.
Each new explicit label causes a new local symbol block to be
ini.tialized.

The macro processor creates a local symhol on each call of a macro
whose definition contains a dummy argUMent preceded by the ? (question
mark) character. For example:

• MACRO ALPHA, 3A,?B
TST A
BEQ B
ADD #5,A

B:
.ENDM

Local symbols are generated only where the real argument of the macro
call is either null or missing. If a real argument is specified in
the macro call, the generation of a local symbol is inhibited and
normal replacement is performed. Consider the following expansions of
the macro ALPHA above.

Generate a local symbol for missing argument:

ALPHA %1
TST %1
REQ 64$
ADD #5,%1

64$:

do not generate a local symbol:

ALPHA %2,XYZ
TST %2
REQ XYZ
ADD #5,%2

XYZ:

These Asserrtbler-generated symbols are restricted to the first 16
(decimal) arguments of a macro definition.

7.3.6 Concatenation

The apostrophe or single quote character (I) operates as a legal
separating character in macro definitions. An I character which
precedes and/or follows a dummy argument in a macro definition is
removed and the substitution of the real argument occurs at that
point. For example:

AlB:
• MACRO
.ASCIZ
• WORD
.ENDM

DEF A,B,C
/C/
"AI lIB

When this macro is called:

DEF X,Y,<MACRO-ll>

--------,--------------------------

7-8

it expands as follows:

XY: .ASCIZ
• WORD

/MACRO-II/
'X'Y

In the macro definition, the scan terMinates upon finding the first
character. Since A is a dummy argument, the ' is removed. The scan
resumes with B, notes B as another dummy argument and concatenates the
two dummy arguments. The third dummy argument is noted as going into
the operand of the .ASCIZ directive. On the next line (this is not a
useful example, but one for purely illustrative purposes) the argument
to .WORD is seen as follows: The scan begins with a ' character.
Since it is neither preceded nor followed by a dummy argument, the '
character remains in the macro definition. The scan then encounters
the second character which is follo~.,ed by a dummy argument and is
discarded. The scan of the argument A terminated upon encountering
the second ' which is also discarded since it follows a dummy
argument. The next ' character is neither preceded nor followed by a
dummy argument and remains in the macro expansion. The last •
character is follo'Vled by another dummy argument and is discarded.
(Note that the five ' characters were necessary to generate two •
characters in the macro expansion.)

Within nested macro definitions, multiple single quotes can be used,
with one quote removed at each level of macro nesting.

7.4 .NARG, .NCHR, AND .NTYPE

These three directives allow the user to obtain the number of
arguments in a macro call (.NARG), the numher of characters in an
argument (.NCHR), or the addressing mode of an argument (.NTYPE). Use
of these directives permits selective modifications of a macro
depending upon the nature of the arguments passed.

The .NARG directive enables the macro being expanded to determine the
number of arguments supplied in the macro call, and is of the form:

label: .NARG symbol

\'lhere: label is an optional stateJl1.ent label

symbol is any legal symbol whose value is equated to the
number of arguments in the macro call currently
being expanded. The symbol can be used by itself
or in expressions.

The .NARG directive can occur only within a macro definition.

The .NCHR directive enables a program to determine the number of
characters in a character string, and is of the form:

label: .NCHR symbol, <character string>

\'lhere: label is an optional statement label

symbol is any legal symbol ,.,hich is equated to the number
of characters in the specified character string.

7-9

The symbol is separated from the character string
argument by any legal separator.

<character string> is a string of printing characters which should
only be enclosed in angle brackets if it contains
.a legal separator. A semicolon also terminates
the character string.

The .NCHR directive can occur anywhere in a MACRO-II program.

The .NTYPE directive enables the macro being expanded to determine the
addressing mode of any argument, and is of the form:

label: .NTYPE symbol, arg

where: label is an optional statement label

symbol is any legal symbol, the value of which is equated
-to the 6-bi t addressing mode of the argument. The
symbol is separated from the argument by a legal
separator. This symbol can be used by itself or
:in expressions.

arg is any legal macro argument (dummy argument) as
defined in section 7.3.

The .NTYPE directive can occur only within a macro definition. An
example of .NTYPE usage in a macro definition is shown below:

• MACRO
.NTYPE
.IF
MOV
.IFF
MOV
.ENDC
.ENDM

SAVE ARG
SYM,ARG
EQ,SYM&70
ARG,TEMP

#ARG,TEMP

1REGISTER MODE

1NON-REGISTER MODE

7.:5 .ERROR and .PRINT

The .ERROR directive is used to 9utput messages to the command output
de'vice during assembly pass 2. A common use is to provide diagnostic
announcements of a rejected or erroneOUR macro call. The form of the
.ERROR directive is as follows:

label: .ERROR expr1text

where label

expr

is an optional statement label

is an optional legal expression whose value is
output to the command device when the .ERROR
directive is encountered. Where expr is not
specified, the text only is output to the command
device.

denotes the beginning of the text string to be
output.

7-1[1

APPENDIX A

MACRO-II Character Sets

A.l ASCII Character Set

EVEN
PARITY
BIT

o
1

1

o

1

o

o
1
1

o
o

1
o

1

1

o

1
o

o

1

o

1

1

o

7-BIT
OCTAL
CODE

000
001

002

003

004

005

006
007
010

011
012

013
014

015

016

017

020
021

022

023

024

025

026

027

CHARACTER

NUL
SOH

STX

ETX

EOT

ENQ

ACK
BE!.,
BS

HT
LF

VT
FF

CR

SO

SI

DLE
DCl

DC2

DC3

DC4

NAK

SYN

ETB

REMARKS

Null, tape feed, CONTROL/SHIFT/P.
Start of heading: also SOM, start
of message, CONTROL/A.
Start of text; also EOA, end of
address, CONTROL/B.
End of text; also EOM, end of
message, CONTROL/C.
End of transmission (END); shuts
off TWX machines, CONTROL/D.
Enquiry (ENQRY) ; also WRU,
CONTROL/E.
Acknowledge; also RU, CONTROL/F.
Rings the bell. CONTROL/G.
Backspace; also FEO, format
effector. backspaces some
machines, CONTROL/H.
Horizontal tab. CONTROL/I.
Line feed or Line space (new line);
advances paper to next line,
duplicated by CONTROL/J.
Vertical tab (VTAB). CONTROL/K.
Form Feed to top of next page
(PAGE). CONTROL/L.
Carriage return to beginning of
line. duplicated by CONTROL/M.
Shift out: changes ribbon color to
red. CONTROL/N.
Shift in; changes ribbon color to
black. CONTROL/O.
Data link escape. CONTROL/B (DCO).
Device control 1, turns transmitter
(READER) on, CONTROL/Q (X ON) •
Device control 2, turns punch or
auxiliary on. CONTROL/R (TAPE, AUX
ON) •
Device control 3, turns transmitter
(READER) off, CONTROL/S (X OFF).
Device control 4, turns punch or
auxiliary off. CONTROL/T (AUX
OFF).
Negative acknowledge; also ERR,
ERROR. CONTROL/U.
Synchronous file (SYNC).
CONTROr.,/V •
End of transmission block; also

A-l

LEM, logical end of medium.
CONTROL/W.

0 030 CAN Cancel (CANCL) • CONTROL/X.
1 031 Er1 End of medium. CONTROLIY.
1 032 SUB Substitute. CONTROL/Z.
0 033 ESC Escape. CONTROL/SHIFT/K.
1 034 FS File separator. CONTROL/SHIFT/L.
0 035 GS Group separator. CONTROL/SHIFT/M.
0 036 RS Record separator. CONTROL/SHIFT/N.
1 037 US Unit separator. CONTROL/SHIFT/O.
1 040 SP Space.
0 041 I
0 042 "
1 043 #
0 044 $
1 045 %
1 046 &
0 047 t Accent acute or apostrophe.
0 050 (
1 051)
1 052 *
0 053 +
1 054
0 055
0 056 .
1 057 /
0 060 0
1 061 1
1 062 2
0 063 3
1 064 4
0 065 5
0 066 6
1 067 7
1 070 8
0 071 9
0 072
1 073
0 074 <
1 075 =
1 076 >
0 077 ?
1 100 @
0 101 A
0 102 B
1 103 C
0 104 D
1 105 E
1 106 F
0 107 G
0 110 H
1 111 I
1 112 J
0 113 K
1 114 L
0 115 M
0 116 N
1 117 0
0 120 P

A-2

------------... ----------------_._--------... --

•

1 121 0
", 1 122 R

0 123 S
1 124 T
0 125 U
0 126 V
1 127 W
1 130 X
0 131 Y
0 132 Z
1 133 [SHIFT/K.
0 134 \ SHIFT/L.
1 135] SHIFT/M.
1 136 t *
0 137 -+- **
0 140

,
Accent grave.

1 141 a
1 142 b
0 143 c
1 144 d
0 145 e
0 146 f
1 147 g
1 150 h
0 151 i
0 152 j
1 153 k
0 154 1
1 155 m
1 156 n

"
0 157 0

1 160 P
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 x
1 171 y
1 172 z
0 173
1 174
0 175 This code generated by ALTMODE.
0 176 THIS CODE GENERATED BY PREFIX KEY

(IF PRESENT)
1 177 DEL Delete, Rubout.

* t appears as ~ on some machines.

** -+- appears as (underscore) on some machines.

A-3

A.2 RADIX-50 CHARACTER SET

Character

space

A-Z

$

unused

0-9

ASCII Octal Equivalent

40

101-132

44

56

60-71

The maximum Radix-50 value is, thus,

47*50**2+47*50+47=174777

Radix-50 Equivalent

o

1-32

33

34

35

36-47

The following table provides a convenient means of translating between
the ASCII character set and its Radix-50 equivalents. For example,
given the ASCII string X2B, the Radix-50 equivalent is (arithmetic is
performed in octal):

X=113000
2=002400
B=000002

X2B=115402

A-4

E. 2 COMMENTS

Comment all coding to convey the global role of an instruction and not
simply a literal translation of the instruction into English. In
gerieral this will consist of a comment per line of code. If a
particularly difficult, obscure, or elegant instruction sequence is
used, a paragraph of comments shall immediately precede that section
of code.

Preface text describing formats, algorithms, program-local variables,
etc. will be delimited by the character sequence :+ at the start of
the text and :- at the end. The comment will start in column 3.

For example:

e_ ,

The invert routine accepts

a list of random numbers and

applies the Kolmogorov algorithm

to alphabetize them.

E.3 NAMING STANDARDS

E.3.l Register Standards

E.3.l.l General Purpose Registers

Only the following names are permitted as register nameSi and may not
be used for any other purpose:

RO=:%O
Rl=%l
R2=%2
R3=%3
R4=:%4
R5=%5
SP=:%6
PC=:%7

E.3.l.2 Hardware Registers

iREG 0
iREG 1
iREG2
iREG 3
iREG 4
iREG 5
iSTACK POINTER (REG 6)
iPROGRAM COUNTER (REG 7)

These registers must be named identically
definition. For eXclmple, PS and SWR.

with the hardware

E.3.l.3 Device Registers

The:se are symbolically named identically to the hardware notation.
For example, the control status register for the RK disk is RKCS.
Only this symbolic names may be used to refer to this register.

E.3.2 Processor Priority

Testing or altering the processor priority is done using the symbols

PRO, PRl, PR2, •••••• PR7

which are equated to their corresponding priority bit pattern.

Use of SPL is permitted only by showing cause and then its generation
occurs via a macro call.

E.3.3 Other Symbols

Frequently-used bit patterns such as CR and LF will be
conventional symbolics on an as-needed basis.

E-4

--------,------.----..... ------------

made

E.3.4 Using the Standard Symbolics

The register standards will be defined within the assembler. All
other standard symbols will appear in a file and will be linked prior
to program execution.

E.3.5 Labels

E.3.5.l Global Labels

Global labels should
following standards
DOS/BATCH.

< letter>
<digit>
< alpha-num>
< doll-or-dot>
<char>
<number>
<non-glbl-sym>
<glbl-lbl>
<glbl-offset>
<glbl-bit-ptrn>
< local-sym>

where

non-glbl-sym
glbl-lbl
glbl-offset
glbl-bit-ptrn

be easily recognized by their format. The
apply and completely define symbol standards for

::=A/B/C/ ••• /Y/Z
: :=0/1/ ••• /8/9
::=<letter>/<digit>
: :=$/.
::=<alpha-num>/<doll-or-dot>
::= [1-5] <digit> *
::=<letter> [0-5] <char>
::=<doll-or-dot> [0-5] <char>
::=<letter><doll-or-dot> [1-4] <char>
::=<letter><alpha-num><doll-or-dot> [l-3] <char>
::=<number>$**

are non-global symbols.
are global labels (addresses).
are global offsets (absolute quantities).
are global bit patterns.

*The notation [n-m] indicates the number. of repetitions permitted for
the immediately following non-terminal.

**number is in the range 0<number<6553S.

E.3.5.2 Program-local Labels

Self-relative address arithmetic (.+n) is ahsolutely forbidden in
branch instructions, and should be used only where absolutely
essential elsewhere. Indeed no implication of adjacency is permitted
without showing cause. Non-symbolic absolute references are also
forbidden.

E-5

Target labels for branches that exist solely for positional reference
will use local labels of the form

<nUM> $:

Use of non-local labels is restricted, within reason, to those cases
where reference to the code occurs external to the code.
Local-labeling is fonnatted such that the numbers proceed sequentially
down the page and from page to page.

E~4 PROGRAM MODULES

E .. 4.l General Comments on PrograMs

In noS/BATCH, a prograITl provides a single distinct function. No
limits exist on size, but the single function limitation should make
modules larger than lK a rarity. Since DOS/BATCH may eventually
exploit the virtual memory capacity of the 11/40 and 11/45, programs
should make every attempt to maintain a dense reference locus (don't
proMiscuously branch over page boundaries or over a large ahsolute
address distance).

All code is read-only.
contains explanatory
read-write data.

Code and data areas are distinct and each
text. Read-only data should be segregated from

E.4.2 The Module Preface

Program modules adhere to a strict format. This format
readability and understandability of the module.
sections are included in each module:

For the Code Section:

adds to the
The following

1. 1\ .TITLE statement that specifies the name of the module.

2. A .PSECT statement that defines the program section in which
the module resides. If a module contains more than one
routine, subtitles may be used.

3. A copyright stateMent, and the disclaimer.

"Digital Equipment Corporation assumes no
responsiblility for the use or reliability of its
software on equipMent which is not supplied by
Digi.tal Equipment Corporation."

4. The versi.on number of the file.
Note: Items 1-5 must appear on the SaITle page. The PDP-II
version number standard is described in Section 9.0.

E-6

"

5. The name of the principal authDr and the date on which the
module was first created.

·6. The name of each modifying author and the date of
modification, name and modification dates appear one per line
and in chronological order.

7. A brief statement of the function of the module.

8. A list of the definitions of all equated local symbols used
in the module. These definitions appear one per line and in
alphabetical order.

9. All local Macro definitions, preferably in alphabetical order
by name.

10. All local data. The data should indicate

a. Description of each element (type, size, etc.)
b. Organization (functional, alpha, adjacent, etc.)
c. Adjacency requirements

11. A list of the inputs expected by the module. This includes
the calling sequence, condition code settings, and global
data settings.

12. A list of the outputs produced as a result of entering this
module. These include delivered results, condition code
settings, but not side effects. (All these outputs are
visible to the caller.)

13. A list of all effects (including side effects) produced as a
result of entering this module. Effects include alterations
in the state of the system not explicitly expected in the
calling sequence, or those not visible to the caller.

14. Amore detailed definition of the function of the module.

15. The module code.

E.4.3 Formatting the l-1odule Preface

Rules

1. The first five items appear on the same page and will not
have explicit headings.

2. Titles start at the left margin*; descriptive text is
indented 1 tab position.

3. Items 7-14 will have headings which start at the left margin,
preceded and followed by blank lines. Items which do not

*The left margin consists of a ; a space then the heading, so the
text of the heading begins in column 3.

E-7

apply may be omitted.

A template for the module preface follows.

Template.

FILE-EXAMPL.S01
• TITLE
• PSECT KERNEL

COPYRIGHT 1972, DIGITAL

VERSION V001A

JOE PASCUSNIK 1/1/72

MODIFICATIONS
RICHARD DOE

FIX SPR 3477 1/21/72

ADD PAGE CHANGE LOGIC 1/22/72

MODULE FUNCTION

EQUATED SYMBOLS

LOCAL MACROS

LOCAL DATA

INPUTS

OUTPUTS

EFFECTS

MODULE FUNCTION-DETAILS

MODULE CODE

E.4.3 Modularity

E.4.3.1 Introduction

No other characteristic has more impact on the ultimate engineering
success of a system than does modularity. Modularity for DOS/BATCH

E-8

consists of the application of the uni-function philosophy described
in section 4.1 and a set of calling and return conventions universally
adhered to.

E.4.3.2 Calling Conventions (Inter-Module)

Transfer of Control

Macros will exist for call and return. The actual
via a JSR PC instruction. For the register
JSR Rn,SAVE will be permitted.

Register Conventions

transfer will
save routine,

be
a

On entry, except for result registers, a subroutine, rnimimally, saves
all registers it intends to alter, and on exit it restores these
registers. (State preservation is assumed across calls.)

Argument Passing

Any registers may be used, but their use should follm., a coherent
pattern. For example, if passing three arguments pass them in RO, Rl
and R2 rather than RO, R2, R5. Saving and restoring occurs in one
place.

E.4.3.3 Exiting

All subroutine exits occur through a single RTS PC.

E.4.3.4 Intra Module Calling Conventions

Designer optional, but consistency favors a calling sequence identical
to that of the inter module sequence.

E.4.3.5 Success/Failure Indication

The C bit will be used to return success/failure indicator, where
success equals 0, and failure equals 1. The volatile registers can be
used to return values or additional success/failure data.

E. 4.3.6 Module Checking Routines

Modules have the responsiblity of verifying the validity of arguments
passed to them. The design of a module's calling sequence should aim
at minimizing the validity checks by minimizing invalid comhinations.
Programmers can add test code to perform additional checks during
shakedown. All code should aim at discovering an error as close (in
terms of instruction executions) to its occurrence as possible.

E-9

E.S.O FORMATTING STANDARDS

E.S .. 1 PrograIYl Flow

Proqrams will be organized on the listing such that they flow down the
page, even at the cost of an extra branch or jump.

! !
! process !
! !

r

i\
/ \

----------- /TEST~-----------
! \ / !

---------- \ / ----------
BBD

\/
AM

.---------! COf·1MON! ----------
!

shall appear on the listing as:

TST
BNE BBB

AM: •••••••

B CMN

BBB:: •••••••

C~:: •••••••

E-l.0'

APPENDIX F

WRITING POSITION-INDEPENDENT CODE - A TUTORIAL

It is possible to write a source program that can be loaded and run in
any section of virtual memory. Such a program is said to consist of
position-independent code. The construction of position independent
code is dependent upon the proper usage of PDP-ll addressing modes.
(Addressing modes are described in detail in Chapter 5. The remainder
of this Appendix assumes the reader is familiar with the various
addressing modes.)

All addressing modes involving only register
position-independent. These modes are as follows:

R
@R
(R)+

@ (R) +
- (R)

@- (R)

register mode
deferred register mode
autoincrement mode
deferred autoincrement mode
autodecrement mode
deferred autodecrement mode

references are

When using these addressing modes, position-innependence is guaranteed
providing the contents of the registers have been supplied such that
they are not dependent upon a particular core location.

The relative addressing modes are generally position independent.
These modes are as follows:

A
@A

relative mode
relative deferred mode

Relative modes are not position-independent when A is an ahsolute
address (that is, a non-relocatahle address) which is referenced from
a relocatable module.

Index modes can be either position-independent or
nonposition-independent, according to their use in the program. These
modes are:

x (R)
@X(R)

index mode
index deferred mode

If the base, X, is
position-independent.

position-independent,
For example:

the reference

MOV
N=4
MOV
CLR

2 (SP) ,RO

N (SP) ,RO
ADDR(Rl)

; POSITION-INDEPENDENT

; POSITION-INDEPENDENT
; NONPOSITION-INDEPENDENT

is also

Caution must be exercised in the use of index modes in position
independent code.

IJ'TUUediate
according

mode can also
to its usage.

be either position-independent or not,
Immediate mode references are formatted as

F-l

follows:

#N irrunediate mode

WhE~re an absolute number or a symbol defined by an absolute direct
assignment replaces N, the code is position independent. Where a
label replaces N, the code is nonposition-independent. (That is,
immediate mode references are position-independent only where N is an
absolute value.)

Absolute mode addressing is unlikely to be position-independent and
should be avoided when coding position-independently. Absolute mode
addressing references are formatted as follows:

@#A absolute mode

Since this mode is used to obtain the contents of a specific core
address, it violates the intentions of position-independent code.

Such a reference is position-independent if A is an absolute address.

Position-independent code is used in writing programs such as device
drivers and utility routines which are most useful when they can be
brought into any available core space. Figure F-l and Figure F-2 show
pie~ces of device driver code: one of which is position-independent and
one of which is not.

DVRINT
VECTOR
DRIVER

MOVB
MOV

CLRB

MOV
ADD
HOV
CLR
HOVB
ADD
CLR
HOVB

ADDRESS OF DEVICE DRIVER INTERRUPT SERVICE
ABSOLUTE ADDRESS OF DEVICE INTERRUPT VECTOR
START ADDRESS OF DEVICE DRIVER

#DVRINT , VECTOR : SET INTERRUPT ADDRESS
DRIVER+6,VRCTOR+2 :SET PRIORITY
VECTOR+ 3 : CLEAR UPPF.R STATUS BYTF.

Figure F-l Non-Position Independent Code

PC,RI
#DRlVER-. ,Rl
#VECTOR,R2
@R2
5 (RI) , @R2
Rl, (R2) +
@R2
6 (RI) ,@R2

:GET DRIVF.R START

i ••• & VECTOR ADDRESSES
:SET INTERRUPT ADDRESS
i ••• AS START ADDRESS+OFFSET

: SET PRIORITY

Figure F-2 position Independent Code

In both examples it is assumed that the program calling the device
driver has correctly initialized its interrupt vector (VECTOR) within
absolute memory locations 0-377. The interrupt entry point offset is
in byte DRIVER+5. (The contents of the Driver Table shows at
DRlVER+S: • BYTE DVRINT , DRIVER.) The priority level is a1: byte
DRlVER+6.

In the first example, the interrupt address is directly inserted into
the absolute address of VECTOR. Neither of these addressing modes is
position-independent.

F-2

............... -........ --

The instruction to initialize the driver priority level uses an offset
from the beginning of the driver code to the priority value and places
that value into the absolute address VECTOR+2 (which is not
position-independent). The final operation clearing the absolute
address VECTOR+3 is also not position-independent.

In the position-independent code, operations are performed in
registers wherever possible. The process of initializing registers is
carefully planned to be position-independent. For example: the first
two instructions obtain the starting address of the driver. The
current PC value is loaded into Rl, and the offset from the start of
the driver to the current location is added to that value. Each of
these operations is position-independent. The immediate mode value of
VECTOR is loaded into R2; which places the absolute address of the
transfer vector into a register for later use. The transfer vector is
then cleared, and the offset for the driver starting address is loaded
into the vector. The starting address of the driver is then added
into the vector, giving the desired entry point to the driver. (This
is equivalent to the first statement in Figure F-I.) Since R2 has been
updated to point to VECTOR+2, that location is then cleared and the
priority level inserted into the appropriate byte.

The position-independent code demonstrates a principle of PDP-II
coding practice, which was discussed earlier; that is, the programmer
is advised to work primarily with register addressing modes wherever
possible, relying on the setup mechanism to determine
position-independence.

The MACRO-II Assembler provides the user with a way of checking the
position-independence of the code. In an assembly listing, MACRO-II
inserts a' character following the contents of any word which
requires the Task Builder to perform a operation. In some cases this
character indicates a nonposition-independent instruction, in other
cases, it merely draws the user's attention to the use of a symbol
which mayor may not be position-independent. The cases which cause a
, character in the assembly listing are as follows:

1. Absolute mode symbolic references are flagged with an
character when the reference is not position-independent.
References are not flagged when they are position-independent
(i.e., absolute). For example:

MOV @#ADDR,Rl ;PIC ONLY IF ADDR IS ABSOLUTE.

2. Index mode and index deferred mode references are flagged
with an ' character when the base is a symbolic label address
(relocatable rather than an absolute value). For example:

MOV ADDR{RI) ,RS
MOV @ADDR{Rl) ,RS

;NON-PIC IF ADDR IS RELOCATABLE.
;NON-PIC IF ADDR IS RELOCATABLE.

3. Relative mode and relative deferred mode are flagged with an
character when the address specified is a global symbol.

For example:

MOV GLBl,Rl
MOV @GLBl,Rl

;PIC WHEN GLBI IS A GLOBAL SyrmOL.
;PIC MIEN GLBI IS A GLOBAL SYMBOL.

F-3

If the symbol is absolute, the reference is flagged and is
not position-independent.

4. Innnediate mode references to symbolic labels are always
flagged with an I character.

1'10V #3,RO
MOV #ADDR,Rl

Examples of assembly

iALWAYS POSITION-INDEPENDENT.
iNON-PIC WHEN ADDR IS RELOCATABLE.

listings contining the , character are

shown below:

211744 E"'OP2 f tFN~ rF PAS~ ,
~ .TF' ,d., F Xr~FF
:3 '" 1744 P1~'P~ Mr'lV C"FPt\T,~2 ,ANV rRFF p.' PRrC;RE~!'

~0t714~'
~ e~ 17et'! P014P2 8FQ 8J , ~'O

E e1175' CALL c"Frr-'~ ,vE~. r: l i ~" ANr rLrSF ~UFFFI(

t e~ 17~~ 8"
7 .FNnr.
e "117~~ Pe~7~' T~T FH I<'T",(P ,ANV reJfrT Ol!TPL T1

P0t:'542,
S 2111tH' P014'~ BFQ 1· J ~I("J

1'" ! 1164 CALI OPJrMP ,VE~, r: I'MI' TT
11 11 "'" Pl~7~'

Mr'lV .PlLItTI?6,BI KTVF' J~~T F~r

"fl!p~!i'e

"01"5412'
12 1177 ~ CALL RLOrMP l~lJ~P IT
13 .IF ~rF)cFOAB~
14 1.2pe, PJ"~' BTT .~O·.A~S,EF'lMASI(JAB~ rL TPl'T?

P0pep2
"01"124'

15 12"'IP P012U! B!lJE 1 J ~O

16 12tJ112 pl~7t'e Mr'lV OPJPNT,R,
"'0V5~e'

! 7 !2p1~ Pl~''-~ Mr'lV E"O"E~+~,rRt". '~ET F~I"I vfrTf'lR
P0t7~441

18 121"22 Pll"~~7 Mt"lV FH?, rBJPNT
('Ip,'53e'

19 '2t"21'i CALL OFJr'MP
~~ .FNnC
~ 1 121"32 '0~'~' I" T~T~ LLTPL·2 ,ANV LI~TT~G rUTPUT?

~0'546'
22 12P13t1 "'014'4 efG 1 E S , ~o

:c:! '2"'~~ PJ'7t" eTT 4H C '. 5 V ~ , L r ~ A ~ I('~V~eeL TA~lE SI'PPRF.5~If"I~'
Pl4,~",e

",,,vlte'

F-4

.............. , ------------... _----------------------------------.--------

