
•
o system

CTS-300

System User's Guide

Order No. AA-C747C-TC

May 1980

This manual is a guide for users apply
ing the DIBOL language and the CTS-300
utility programs in the CTS-300 environ
ment.

SUPERSESSION/UPDATE INFORMATION: This document supercedes
CTS-300 User's Guide
(AA-C747B-TC) •

OPERATING SYSTEM AND VERSION: RT-ll V4

SOFTWARE VERSION: CTS-300 V6

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, September 1977
First Revision: October 1978
Second Revision: May 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1977, 1978, 1980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-ll

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8

8/80-14

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-ll
TMS-ll
ITPS-lO

CTS-300 REVISION HISTORY

With the release of the CTS-300 Version 6 software, this user's guide
has been revised to reflect changes resulting from the software
changes and to provide a more useful manual.

The primary software changes are the addition of CTSGEN which replaces
TSDGEN; the ability of XMTSD to be run in the foreground (and the re
sulting communications now possible between foreground and
background); the DIBOL keyboard editor, DKED; and the PRINTU report
generator utility.

The entire manual has been restructured for ease of use. The preface
explains the new organization and goals for the manual.

The highlights of the documentation changes are:

• The above software changes have been documented.

• The error messages are now listed in one place -- at the end
of the manual in Appendices A and B.

• Chapters on ISAM, DDT, and SORT have been extensively
reworked.

• Material has been added on CTS-300 file types.

PREFACE

SECTION I

.. CHAPTER 1

CHAPTER 2

1.1
1.2
1.2.1
1.2.2
1.2.3
1.3
1.3.1
1.3.2
1.3.3
1.4
1.4.1
1.4.2
1.5
1.5.1
1.5.2

2.1
2.2
2.2.1
2.2.2
2.2.2.1
2.2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.3.3.1

2.3.3.2
2.3.3.3

SECTION II

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.2.1
3.2.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3

CONTENTS

INTRODUCTION TO CTS-300

INTRODUCTION TO CTS-300

INTRODUCTION
MONITORS

SJ Monitor
FB Monitor
XM Monitor

RUN-TIME SYSTEMS
The Single-User System
The Time-Shared System
The Extended Memory Time-Shared System

DEVELOPMENT
Program Development
System Development

DIBOL UTILITIES AND PROGRAMS
Supplied Utilities
Other DIBOL Programs

BASIC COMMANDS AND FILE CONVENTIONS

INTRODUCTION
COMMANDS

Special Character Functions
Basic Command Rules

Commands to Allocate System Resources
Commands to Start a Program

Monitor Error Messages
FILE CONVENTIONS

File Naming
File Types
CTS-300 Data Files

Sequential and Random Access Sequential
Files
Multivolume Sequential Files
ISAM Files

DEVELOPMENT

DIBOL KEYBOARD EDITOR (DKED)

INTRODUCTION
USING DKED

page Format
Commands

New Commands
Command Response

File Extensions
Search
HELP
CTRL/Z

ERROR MESSAGES

iii

Messages

Page

xi

1-1

1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-5

2-1

2-1
2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5

2-5
2-5
2-7

3-1

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-5
3-7
3-9
3-9

CHAPTER 4

CHAPTER 5

4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.2.7
4.2.2.8
4.2.2.9
4.2.2.10
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.3

5.1
5.1.1
5.1.2
5.1.3
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.5.1
5.3.5.2
5.3.6
5.3.7
5.3.7.1
5.3.7.2

CONTENTS (Cont.)

DIBOL COMPILER (DICOMP)

INTRODUCTION
Characteristics
Chapter Organization

USING DICOMP
Running DICOMP
Options

/A
/B
/C
/D
/G
/L
/0
/P:N
/S
/W

Standard Listings
Program Listing
Symbol Table
Label Table

CREF Listing
Symbol Cross Reference Table
Label Cross Reference Table
External Subroutine Cross Reference
COMMON Cross Reference Table

ERROR MESSAGES

CTS-300 OPERATING SYSTEMS

INTRODUCTION
Operating Systems Characteristics
General System Requirements
Chapter Organization

THE SINGLE-USER ENVIRONMENT
System Requirements for SUD
Preparing Programs
Linking Programs
Running Programs
SUD Memory Allocation

THE TIME-SHARED ENVIRONMENT
System Requirements for Time-Sharing
Dynamic Memory Allocation
Scheduling
Detached Program Operation
Data File Management

F i 1 e Sh a ring
Device Sharing

Preparing Programs
Linking

Table

Linking to the Time-Shared DIBOL Library
Linking for DDT Use

iv

Page

4-1

4-1
4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-7
4-7
4-7

5-1

5-1
5-1
5-1
5-3
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-8
5-8
5-8
5-9

CHAPTER 6

5.3.8
5.3.9
5.3.9.1
5.3.9.2
5.3.10
5.3.10.1
5.3.10.2
5.3.10.3
5.3.11
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.5.2.1
5.5.2.2
5.5.2.3
5.5.2.4
5.5.2.5
5.5.2.6
5.5.2.7
5.5.2.8
5.5.3
5.5.3.1
5.5.3.2
5.5.3.3
5.6
5.6.1
5.6.2
5.0.3
5.7
5.8

6.1
6.1.1
6.1.2
6.2
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.2.5
6.3.2.6

CONTENTS (Cont.)

Creating Overlays
Commands

The RUN Command
The ATTACH Command
Programmed Startup
Forced Job Startup
Chain Mode Startup
Implicit Job Startup

Stopping Programs
TSD CHARACTERISTICS

System Requirements for TSD
Running the TSD System Program
TSD Memory Allocation

XMTSD CHARACTERISTICS
System Requirements for XMTSD
XMTSD in the Foreground

Foreground Queue Program
Background Listener Program
Communications Commands
BGMAN.TSD Operation
User-Created Commands
Running XMTSD in the Foreground
Memory Allocation
Applications

XMTSD in the Background
Running XMTSD in the Background
Memory Allocation
Applications

TERMINATING TIME-SHARED OPERATION (RTEXIT)
Running RTEXIT
Chaining to RTEXIT
RTEXIT for XMTSD in the Foreground

UTILIZING RESOURCES ON A SMALL SYSTEM
ERROR MESSAGES

SYSTEM DEVELOPMENT

INTRODUCTION
System Generation Programs
Chapter Organization

CTS-300/RT-ll SYSGEN
CTSGEN

Characteristics
Choices
Preliminary Requirements
Question Types

CTSGEN Dialog
Single-User or Time-Shared
Single-User System
Time-Shared System
Terminal Specification
Local DLll Terminals
Remote DLll Terminals

v

System

Page

5-9
5-9
5-10
5-11
5-11
5-12
5-12
5-13
5-14
5-14
5-14
5-15
5-15
5-16
5-16
5-16
5-17
5-17
5-18
5-21
5-24
5-26
5-27
5-28
5-29
5-29
5-30
5-30
5-31
5-31
5-31
5-32
5-32
5-33

6-1

6-1
6-1
6-1
6-2
6-4
6-4
6-4
6-5
6-6
6-6
6-8
6-8
6-9
6-10
6-10
6-12

CONTENTS (Cont.)

Page

6.3.2.7 Local DZll Terminals 6-13
6.3.2.8 Remote DZll Terminals 6-15
6.3.2.9 System Hardware/Software Configuration 6-16
6.3.2.10 Naming the Time-Shared Program 6-19
6.4 ERROR MESSAGES 6-20

SECTION III UTILITY PROGRAMS

CHAPTER 7

CHAPTER 8

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.4.1
7.2.4.2
7.2.4.3
7.3
7.3.1
7.3.1.1
7.3.1.2
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4

8.1
8.1.1
8.1.2
8.2
8.2.1
8.2.1.1
8.2.1.2
8.2.2
8.2.2.1
8.2.2.2
8.2.3
8.2.4
8.2.5
8.3
8.3.1
8.3.1.1

DIBOL DEBUGGING UTILITY (DDT)

INTRODUCTION
Features
Chapter Organization

PREPARING FOR DDT
CTSGEN
Compiling
Linking
DDT Operation

Running DDT
Failure to Properly Prepare for DDT
Error Messages

DDT COMMANDS
Program Execution Control

Program Execution
Single Step

Breakpoint Control
Setting Breakpoints
Clearing Breakpoints
Iteration of Breakpoints

Variable Manipulation
Examining Variables
Setting Variables
Extended Variable Manipulation

Subroutine Traceback

LINE PRINTER SPOOLERS

INTRODUCTION
Common Characteristics
Chapter Organization

LPTSPl.REL (SUD OPERATION)
Characteristics

Features
Requirements

Using LPTSP 1. RE L
Shared Line Printer Operation
Shared Terminal Operation

Starting
Run-Time Dialog
Error Messages

LPTSPL.TSD (TSD OPERATION)
Characteristics

Features

vi

7-1

7-1
7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-7
7-7
7-8
7-8
7-9
7-9
7-10

8-1

8-1
8-1
8-1
8-2
8-2
8-2
8-2
8-2
8-2
8-3
8-3
8-4
8-5
8-5
8-5
8-5

CHAPTER 9

8.3.1.2
8.3.2
8.3.2.1
8~3.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.3
8.3.3.1
8.3.3.2
8.3.4
8.3.5
8.3.6
8.4
8.4.1
8.4.1.1
8.4.1.2
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
9.3
9.4

CHAPTER 10

10.1
10.1.1
10.1.2
10.2
10.2.1
10.2.2
10.2.3
10.2.4

CONTENTS (Cont.)

Requirements
Using LPTSPL.TSD (TSD Operation)

Default Line Printers
File Recovery
Suspension of Spooling
Detached Mode Operation
The Queue File

Starting
Response with an Attached Terminal
Response with a Detached Program

Stopping
Run-Time Dialog
Error Messages

LPTSPL.TSD (XMTSD OPERATION)
Characteristics

Features
Requirements

Using LPTSPL.TSD (XMTSD Operation)
Starting
Stopping
Run-Time Dialog
Error Messages

PRINTU

INTRODUCTION
Features
Limitations
File Control Records
Chapter Organization

THE CONTROL FILE
IDENT
HEAD1 and HEAD2
EXECUTE
OUTPUT
INPUT
INDEX/LIST
COMPUTE
PRINT
END

USING PRINTU
ERROR MESSAGES

ISAM (ISMUTL)

INTRODUCTION
Features
Chapter Organization

ISAM BASICS
Data Section
Index Section
Handling Added Records
Summary of ISAM Basics

vii

Page

8-6
8-6
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-9
8-9
8-10
8-10
8-10
8-10
8-11
8-11
8-11
8-12
'8-12
8-12

9-1

9-1
9-1
9-1
9-2
9-2
9-2
9-4
9-5
9-6
9-6
9-7
9-10
9-12
9-13
9-15
9-15
9-17

10-1

10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-3

10.3
10.3.1
10.3.1.1
10.3.1.2
10.3.2
10.3.2.1
10.3.2.2
10.3.2.3
10.3.2.4
10.3.2.5
10.3.2.6
10.3.3
10.3.4
10.4
10.4.1
10.4.1.1
10.4.1.2
10.4.2
10.4.3
10.4.3.1
10.4.3.2
10.4.3.3
10.4.3.4
10.4.3.5
10.4.4

CONTENTS (Cont.)

ISAM INTERNALS
Detailed Structure

Data Files
Index File

Interrelationships and Tradeoffs
Key
Record
Changing Record and Key Sizes
Group
Overflow Area
Append Area

DISOL Statements
Data Storage

USING ISMUTL
ISMUTL Requirements

SUD Operation
TSD Operation

Running ISMUTL
Creating a File (CREATE)

Special CREATE Characteristics
Design/CREATE Process
CREATE Dialog
CREATE Example
Handling CREATE Problems

Determining the Status of an ISAM File
(STATUS)

10.4.4.1 STATUS Selection and Characteristics
10.4.4.2 STATUS Example
10.4.5 Reorganizing a File (REORG)
10.4.5.1 Special REORG Characteristics
10.4.5.2 REORG Process and Dialog
10.4.5.3 REORG Example
10.4.5.4 Handling REORG Problems
10.4.6 Exiting ISMUTL (EXIT)
10.4.7 Miscellaneous ISMUTL Capabilities
10.4.7.1 STATUS and REORG in Chain Mode
10.4.7.2 Auto-CREATE
10.5 ERROR MESSAGES

CHAPTER 11

11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.2.8

SORT/MERGE

INTRODUCTION
Characteristics
Chapter Organization

THE CONTROL FILE
INPUT
OUTPUT
RECORD
KEYS
DETACH
EXECUTE
SPACE
SU

viii

Page

10-4
10-4
10-4
10-6
10-9
10-9
10-9
10-10
10-11
10-12
10-12
10-13
10-16
10-21
10-21
10-21
10-21
10-22
10-22
10-23
10-25
10-26
10-30
10-32

10-32
10-32
10-33
10-33
10-34
10-35
10-36
10-37
10-38
10-38
10-38
10-40
10-42

11-1

11-1
11-1
11-2
11-2
11-3
11-5
11-5
11-6
11-7
11-8
11-8
11-9

11.2.9
11.2.10
11.2.11
11.2.12
11.3
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.4

CHAPTER 12

12.1
12.1.1
12.1.2
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.10
12.2.11
12.3
12.4

CHAPTER 13

TAGS
WORK
END

CONTENTS (Cont.)

Summary of Control File Statements
SORT/MERGE PROGRAM DEVELOPMENT AND USE

SORTG
Compiling with SORTM
Linking
Running the SORT or MERGE Program
Example
SORT/MERGE in Chain Mode

ERROR MESSAGES

STATUS

INTRODUCTION
Features
Chapter Organization

OPTIONS
STATUS Conventions
Option F
Option H
Option J
Option Jx
Option Kx
Option L
Option Lx
Option M
Option T
Option X

USING STATUS
ERROR MESSAGES

REDUCE

13.1 INTRODUCTION
13.1.1 Characteristics
13.1.2 Chapter Organization
13.2 REDUCE OPTIONS
13.2.1 Query Mode
13.2.2 /N Option (No Query)
13.2.3 /V Option (Version Number)
13.3 USING REDUCE
13.3.1 Conventions
13.3.2 Running REDUCE
13.3.3 REDUCE Examples
13.3.3.1 Query Mode
13.3.3.2 No Query Mode
13.3.3.3 Version Number Mode
13.4 ERROR MESSAGES

APPENDIX A CTS-300 RUN-TIME ERROR MESSAGES

ix

Page

11-10
11-11
11-13
11-13
11-14
11-14
11-14
11-15
11-15
11-15
11-16
11-18

12-1

12-1
12-1
12-2
12-2
12-2
12-2
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-6
12-6
12-6
12-7

13-1

13-1
13-1
13-1
13-1
13-2
13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-4
13-4
13-4

A-I

APPENDIX 8

Table 8-1
8-2
B-3
8-4

8-5
8-6
B-7
8-S
8-9
8-10
8-11
8-12
B-13·

3-1
5-1
5-2
5-3
5-4

5-5

6-1
10-1
10-2
lb-3
10-4
10-5
10-6

10-1
10-2

CONTENTS (Cont.)

ERROR MESSAGES

DKED Error Messages
DICOMP Error Messages
Time-Shared DI80L Error Messages
Foreground/8ackground Communication

Command Error Messages
DDT Error Messages
Spooler Error Messages (LPTSPl.REL)
Spooler Error Messages (LPTSPL.TSD)
PRINTU Error Messages
ISMUTL Error Messages
SORTG Error Messages
SORTM Error Messages
STATUS Error Messages
REDUCE Error Messages

FIGURES

DKED HELP Frame
SUD Memory Allocation
TSD Memory Allocation
8GMAN
Memory Allocation for XMTSD as a Foreground

Program
Memory Allocation for XMTSD as a Background

Program
CTS-300 Operating System Generator (CTSGEN)
ISAM File Overview
Data Group
Index Area
Data Storage (File Initially Empty)
Data Storage (Sequential File as Input)
ISAM CREATE Flowchart

File Control Group
ISMUTL CREATE Modes

TA8LES

x

Page

8-1

8-3
8-6
8-11

8-12
8-13
8-14
B-15
8-17
8-19
8-20
8-22
8-23
8-24

3-7
5-3
5-15
5-lS

5-27

5-30
6-7
10-3
10-5
10-S
10-lS
10-20
10-27

10-7
10-43

PREFACE

GOALS

This manual supplies information specific to users of a CTS-300 sys
tem. It is not a tutorial manual nor is it purely a reference manual.
However, one goal is to supply information so a new user can use the
system and another goal is to provide enough easy-to-find detail so
the experienced user can build and use a system for greater function
ality and efficiency.

ASSUMPTIONS

The ability to write simple DIBOL programs is assumed as is the abili
ty to perform basic RT-II operating system procedures. If you are a
new user of CTS-300 without this background, you should refer to the
related documentation listed at the end of this preface. Specifically
recommended is the Introduction to CTS-300 and DIBOL (AA-5519A-TC).

STRUCTURE

The body of the manual is divided into three sections:

SECTION I Introduction to CTS-300

This section will be of primary interest to the new user. It
discusses the general capabilities of the system and explains the
general system components. The kinds of files the system uses
are also covered.

SECTION II Development

Information you need to build both a working system and programs
to run under that system is in this section. This section covers
the relationship of the CTS-300 System to the RT-II SYSGEN and
details the CTSGEN procedure. The DKED editor is presented and
program compilation discussed in detail.

xi

SECTION III Utilities

All the CTS-300 utilities (except CTSGEN and DKED which are co
vered in Section II) are described in this section.

The remainder of the manual consists of two appendixes. Appendix
A contains the CTS-300 System error messages. Messages in this
appendix are listed in sequence by error number. Appendix B con
tains error messages for all the supplied utility programs.

DOCUMENTATION CONVENTIONS

The DIGITAL Command Language (DCL) format is used for the majority of
commands used in examples.

User input is shown printed in red.

The carriage return terminator is not shown at the end of command
lines; its use is assumed. It is shown, however, where confusion
might result if it were missing.

RELATED DOCUMENTATION

Document Title

Introduction to CTS-300 and DIBOL
CTS-300 Release Notes and Installation Guide
CTS-300 Concepts and Facilities
DIBOL-II Language Reference Manual
PDP-II MACRO-Il Languag,e Reference Manual
RT-II Documentation Directory
Introduction to RT-II
RT-Il System User's Guide
RT-II System Installation and System
Generation Guide
RT-II Software Support Manual
RT-Il Master Index
RT-II Keypad Editor User's Guide
RT-Il Programmer's Reference Manual
RT-II System Message Manual
RT-II Pocket Guide
RT-II System Release Notes
DECFORM User's Guide

xii

Order Number

AA-55l9A-TC
AA-5697E-TC
AA-5495A-TC
AA-1760F-TC
AA-5075B-TC
AA-5285E-TC
AA-528lB-TC
AA-5279B-TC

AA-H376A-TC
AA-H379A-TC
AA-H380A-TC
AA-H366B-TC
AA-H378A-TC
AA-5284C-TC
AA-5287C-TC
AA-5286C-TC
AA-5792D-TC

INTRODUCTION TO SECTION I

Section I contains material to aquaint the new user with CTS-300.
Chapter 1 explains the relationship of CTS-300 to RT-ll and briefly
highlights some of the major components of CTS-300 and how they relate
to one another. Chapter 2 lists some of the RT-ll monitor commands
more commonly required by the CTS-300 user. Also covered are file
conventions and CTS-300 data files.

INTRODUCTION TO SECTION I

Section I contains material to aquaint the new user with CTS-300.
Chapter 1 explains the relationship of CTS-300 to RT-ll and briefly
highlights some of the major components of CTS-300 and how they relate
to one another. Chapter 2 lists some of the RT-ll monitor commands
more commonly required by the CTS-300 user. Also covered are file
conventions and CTS-300 data files.

CHAPTER 1

INTRODUCTION TO CTS-300

1.1 INTRODUCTION

The Commercial Transaction System 300 (CTS-300) is an operating system
for the DIGITAL Datasystem 300 series of equipment.

CTS-300 consists of a group of programs, including an RT-ll monitor,
RT-ll utility programs, and CTS~300 programs. This group of programs
organize$ the processor and peripheral devices into a working unit for
the development and execution of DIBOL programs. DIBOL is DIGITAL's
business-oriented language and is designed for ease of use in the
business community. The result is an operating environment expressly
suited to business data processing needs.

The most visible parts of a CTS-300 Operating System are the RT-ll
monitor, if it is a single-user system, the CTS-300 Run-Time System
(RTS), if it is a time-shared system, and the CTS-300 utility
programs. All these are outlined in this chapter and explained later
in this manual.

This manual is directed toward CTS-300 related subjects. RT-Il
components are discussed in complete detail in the appropriate RT-II
documentation.

1.2 MONITORS

A monitor is a master control program that observes, supervises, con
trols, or verifies the operation of a computer system. It coordinates
all activities in a system, including I/O supervision, resource allo
cation, program execution, and operator communication. There are
three monitors associated with CTS-300. These three monitors are sup
plied by RT-Il and they are:

• Single-Job Monitor (SJ)

• Foreground/Background Monitor (FB)

• Extended Memory Monitor (XM)

1-1

1.2.1 SJ Monitor

The Single-Job (SJ) monitor runs in systems with up to 64 K bytes of
memory. This monitor has limited capability when compared with the
other two, but it has the advantage of being small.

1.2.2 FB Monitor

The Foreground/Background (FB) monitor runs in systems with 64 K bytes
of memory and allows access to both the foreground and the background
divisions of memory. Foreground/background operation provides a way
to share the processor between two programs; one in the foreground
and one in the bacKground. For example, during program execution, the
FB monitor could run the single-user line printer spooler program in
the foreground part of memory for output while it accepts keyboard
input in the background part of memory.

1.2.3 XM Monitor

The Extended Memory (XM) monitor supports the same capabilities as the
FB monitor and, in addition, this monitor will run in systems with up
to 256 K bytes of memory. With the XM monitor, it is also possible to
run the DrBOL extended memory time-shared RTS program in the fore
ground.

1.3 RUN-TIME SYSTEMS

Run-time systems are a function of CTS-300. The purpose of the
CTS-300 RTS is to provide facilities for interpreting DrBOL code.
Additionally, in a multiple-user system, a run-time system provides
executive control over the various programs that may be running.

There are three run-time systems:

• Single-User

• Time-Shared

• Extended Memory Time-Shared

1-2 INTRODUCTION TO CTS-300

1.3.1 The Single-User System

As its name implies, a Single-User DIBOL (SUD) RTS is for single-user,
single-program execution. Programs developed for single-user opera
tion automatically call the interpretive program from memory whenever
such a single-user program is run. Single-user programs operate under
the direct control of an RT-ll monitor.

1.3.2 The Time-Shared System

A Time-Shared DIBOL RTS (called TSD in the non-extended memory ver
sion) is for multiple-user, multiple-program execution. Application
programs developed for multiple-user operation run under the control
of a time-shared run-time program. This time-shared run-time program,
developed by the user with supplied CTS-300 resources, contains the
interpretive code that operates like the single-user system explained
above and, in addition, exercises control over the DIBOL programs
being run by the users. The time-shared run-time program, itself,
runs under the control of an RT-ll monitor.

Although it is recommended that the TSD program be run under the SJ
monitor, it can run under the FB or the XM monitor. In the latter
case, it must always run in the background; and, of course, the ex
tended memory capability is not available, even with the XM monitor.

1.3.3 The Extended Memory Time-Shared System

The Extended Memory Time-Shared System (XMTSD) is a special version of
the time-sharing program to allow programs to load and execute above
64 K bytes. To operate above 64 K bytes, XMTSD must be used with the
XM monitor.

When XMTSD is run under the XM monitor (as it should always be), it
can be run in the foreground and this gives it additional important
capabilities that are discussed in Chapter 5.

1.4 DEVELOPMENT

CTS-300 is supplied to users who are interested in developing
application programs to solve specific business problems. Development
is divided into two broad categories: program development and system
development. Both categories are explained primarily in Section II of
this manual.

INTRODUCTION TO CTS-300 1-3

1.4.1 Program Development

The resources provided for DIBOL program development are the DIBOL
editor, DKED, the debugging utility, DDT, the DIBOL compiler, DICOMP,
and" the object module linker, LINK.

DKED, which will operate under control of a time-sharing program,
allows. you to create and/or modify source files or data files.

DICOMP compiles source files and produces object files ready for
linking. DICOMP also provides listings and symbol tables.

DDT, the debugging utility, is documented in Section III of this
manual.

Linking is the final step in program development, and this is done
under the control of the RT-II linker utility. Specific examples of
linking are provided, where appropriate, throughout the manual.

1.4.2 System Development

Before program development can be accomplished, both the hardware and
software must be matched to the specific needs of the user. In this
manual, this is called system development. The RT-II and the CTS-300
systems must each undergo this process. For RT-ll, there is a special
RT-ll/CTS-300 SYSGEN, and for CTS-300, there is CTSGEN. Chapter 6,
System Development, describes the process.

1.5 DIBOL UTILITIES AND PROGRAMS

In addition to the resources already mentioned, there are several pro
grams that are useful, either by themselves or in conjunction with the
run-time system. Utilities are described in Section III of this manu
al.

1.5.1 Supplied Utilities

Line Printer Spoolers

LPTSPl and LPTSPL are the line printer spooler utility programs for
CTS-300. They are used to output a data file to one or more line
printers. These programs function similarly but are different in
loading and starting procedures, as well as in error messages. They
are documented in Chapter 8.

1-4 INTRODUCTION TO CTS-300

PRINTU

PRINTU is a utility that provides a means to generate a simple report
program to present information in a data file. PRINTU is documented
in Chapter 9.

ISAM (ISMUTL)

ISMUTL is a CTS-300 utility program that creates, reports the status
of, or reorganizes ISAM files. ISAM files are data files that are ac
cessed through the indexed sequential access method. ISAM files and
ISMUTL are documented in Chapter 10.

SORT/MERGE

The SORT/MERGE utility is supplied in the form of two files. SORTG,
along with a user-generated control file as input, generates the data
division of a DIBOL program which is then compiled with SORTM to pro
duce an object file. The object file is linked to produce the
SORT/MERGE program. SORT/MERGE is documented in Chapter 11.

STATUS

STATUS is a utility program that provides information on active
time-shared jobs and on the parameters of the time-shared RTS. In ad
dition, while running STATUS, there is an option which allows an ac
tive job to be terminated. STATUS is documented in Chapter 12.

REDUCE

REDUCE is a utility that is used to remove the unnecessary blocks from
DIBOL run-time programs that result from the way time-shared programs
are linked. REDUCE is documented in Chapter 13.

1.5.2 Other DIBOL Programs

There are other programs related to CTS-300 systems that could be use
ful in your application. Among these are DECFORM and RDCP. DECFORM
is an application package that is part of the CTS-300 distribution.
RDCP is a communications package.

INTRODUCTION TO CTS-300· 1-5

CHAPTER 2

BASIC COMMANDS AND FILE CONVENTIONS

2.1 INTRODUCTION

There are basic operating commands and file conventions that must be
understood and observed if efficient, trouble-free use of the CTS-300
system is to be obtained. It is not the intent of this chapter to ex
plain all the RT-II commands or to discuss files in detail, but rather
to make you aware of everyday requirements.

2.2 COMMANDS

Special function keys and keyboard commands provide communication with
the keyboard monitor (KMON). These keys and commands allocate system
resources, manipulate memory images, start programs and enable file
maintenance. After the RT-II Operating System has been brought up,
any RT-II keyboard command is legal provided the appropriate software
module{s) exists on your system. The readiness of KMON to receive a
command is indicated by its period (.) prompt character. For the sake
of convenience, this chapter contains some of the more commonly used
special keys and commands.

All the commands presented here are explained in detail in the RT-II
System User's Guide.

2.2.1 Special Character Functions

The special functions of some characters on the keyboard are noted
below. These special functions are obtained by simultaneously press
ing the key marked CTRL and the character noted (C, 0, S, Q, U, or Z).

CTRL/C If CTRL/C trap is not set (see the FLAGS external su
broutine in the DIBOL-l1 Language Reference Manual),
the following action occurs:

A single CTRL/C aborts the program or transaction,
clears task-oriented information, and returns control
to KMON.

A double CTRL/C operates the same as a single CTRL/C.

2-1

CTRL/O

CTRL/S

CTRL/Q

CTRL/U

CTRL/Z

~--a program is accepting input and CTRL/C trap is set,
then:

A single CTRL/C has no immediate effect but is stored
in the input buffer. If the program accepts input
later, the single CTRL/C aborts the program or transac
tion, clears task-oriented information, and returns
control to KMON.

A double CTRL/C aborts the program and returns control
to KMON.

A single CTRL/O suppresses terminal output while per
mitting program execution. A second CTRL/O reenables
terminal output. Terminal output is lost between the
first CTRL/O and the second.

A single CTRL/S suspends terminal output.

A single CTRL/Q continues terminal output after suspen
sion by CTRL/S. Terminal output resumes from the point
at which it was suspended. No output is lost.

A single CTRL/U erases the entire current line of ter
minal input. The current line is defined as being the
characters between the last line feed (or CTRL/C or
CTRL/Z) and the present cursor position.

Indicates end-of-file (EOF) when the terminal is used
as an input file device.

RUBOUT This key erases the character preceding the cursor.
This operation continues, right-to-Ieft, up to the be
ginning of the current line.

2.2.2 Basic Command Rules

The following are general rules that apply to all keyboard commands.

• Keyboard commands can be abbreviated as long as the command
remains unique. Throughout the manual optional characters in
each keyboard command are noted by brackets [].

• Keyboard command syntax requires a minimum of one space
between the command and the first argument.

• Each command line must be terminated by pressing the RETURN
key. The system accepts only one such command per line.

2-2 BASIC COMMANDS AND FILE CONVENTIONS

2.2.2.1 Commands to Allocate System Resources

The following are some of the more common commands used to
system resources. A brief explanation is given for each.
RT-11 System User's Guide for details.

allocate
See the

DATE

TIME

ASSIGN

DEASSIGN

LOAD

UNLOAD

SET

The DATE command enters the indicated date into the
system and allows you to determine what date (if any)
is presently in the system. The system date is
assigned to newly created files, new device directory
entries, and listing output.

The TIME command allows you to determine the current
time of day as kept by the system, or to enter a new
time of day. If the KWII-L clock option is not present
on the system or if the time is entered incorrectly, an
error message is generated.

The ASSIGN command assigns a user-defined logical name
as an alternate name for a physical device. Only one
logical name can be assigned per ASSIGN command, but
several ASSIGN commands can be used to assign different
names to the same physical device.

The DEASSIGN command removes the logical name(s) previ
ously assigned to a device.

The LOAD command makes a device handler resident.
Program execution is faster when a handler is resident,
even though memory area for the handler must be allo
cated.

The UNLOAD command makes previously loaded handlers
nonresident, thus freeing the memory they occupied.

The SET command changes device handler characteristics
and system configuration parameters.

2.2.2.2 Commands to Start a Program

The following two commands are used to start programs from the key
board. See the RT-II System User's Guide for details.

RUN

R

The RUN command loads the specified memory image file
into memory and starts execution.

This command is similar to the RUN command except that
the file specified must be on the system device (SY:).

BASIC COMMANDS AND FILE CONVENTIONS 2-3

2.2.3 Monitor Error Messages

Monitor error messages are produced by the RT-ll Operating System.
See the RT-ll System Message Manual for these messages.

2.3 FILE CONVENTIONS

2.3.1 File Naming

CTS-300 system conventions call for a standard two-character device
name. Devices may be assigned logical names which take precedence
over physical names. File names consist of one to six characters fol
lowed by an optional combination of a period with from one to three
characters. Those optional characters and period specify the file
name extension and usually indicate the format of the file. If an ex
tension is not specified, most system programs assign default exten
sions to identify that file. See the following section for common
file name extensions for the various types of files.

2.3.2 File Types

There are several kinds of files used in an RT-ll/CTS-300 system.
These fall into the general categories of: system files (monitors,
device handlers, command files, and other internal files), program
files (source, object, and executable files), and data files. Data
files are covered in Section 2.3.3.

As explained in the preceding section, files are assigned an extension
that usually indicates the file format and function. Below are listed
some of the more common RT-ll file extensions and some extensions
unique to CTS-300.

Extension

.BAD

.BAK

.BAT

.COM

.DDF
• DBL
.DIR
.ISM
• LOG
• LST
.MAC
.MAP
.OBJ
.REL
.SAV
.SYS
.TMP
.TSD

Meaning

file with unreadable blocks
edit (K52 and DKED) backup file
batch command file
indirect command file
DIBOL data file
DIBOL source file
directory listing file
ISAM file
log file
listing file
MACRO source files
output (linker) file
object code file
relocatable image file
memory image file
monitor or device handler file
temporary file
program file linked to run in a DIBOL
time-shared system

2-4 BASIC COMMANDS AND FILE CONVENTIONS

2.3.3 CTS-300 Data Files

There are three kinds of data files used in CTS-300:
files, random access sequential files, and ISAM files.

2.3.3.1 Sequential and Random Access Sequential Files

sequential

DIBOL sequential files are composed of fixed-length records containing
ASCII characters. As each record is stored, a carriage return / line
feed character is automatically appended. When the file is closed
(after being opened in output (0) mode) a CTRL/Z character (decimal
026) is written by CTS-300 following the last record. With the excep
tion of multivol~me files, discussed below, the CTRL/Z character is
required in any sequential file accessed by CTS-300.

2.3.3.2 Multivolume Sequential Files

The CTS-300 system can create a logical file that consists of one or
more volumes. Each volume is a single, separately named RT-ll file
that can reside on either the same or a different device unit or
device type. For example, a CTS-300 data file might consist of six
volumes: the first three residing on RKO as DATAl.DDF, DATA2.DDF, and
DATA3.DDF; the fourth residing on RKI as DATA4.DDF; the fifth,
DATA5.DDF, residing on a disk pack that is not presently mounted; and
the last on MTO as DATA6.DDF. This arrangement allows files to be
virtually unlimited in length.

As with single-volume sequential files, the last record in the last
volume of a file is always followed by a CTRL/Z character. And, as
with single-volume sequential files, the file must have been opened in
output mode for the CTRL/Z character to have been inserted upon execu
tion of the CLOSE statement. This CTRL/Z character is interpreted by
the CTS-300 RTS as a logical end-of-file (EOF).

However, by using one of the FLAGS options (see the DIBOL-ll Language
Reference Manual), multivolume files can be disabled. In this case,
for an input file, an EOF will be returned when the last block is read
or a CTRL/Z is detected; whichever is first. For an output file, an
error message indicating that the output file is full will appear if
the space allocated for the file is exceeded. When the output file is
closed, the unused portion of the final block is cleared to nulls, but
no CTRL/Z is appended.

It is the responsibility of any DIBOL-ll program and the user to dis
tinguish between the volumes of a multivolume sequential file, since
neither the CTS-300 RTS nor the RT-ll Operating System can do so.
Each volume is simply another file to RT-ll. Further, as far as the
run-time system is concerned, each volume is identical except for the
one that contains the CTRL/Z character which is detected as an EOF
condition. The RT-ll files which comprise the volumes of the logical
file may be located anywhere there is room on a disk.

BASIC COMMANDS AND FILE CONVENTIONS 2-5

During sequential output (FORMS, WRITES, or DISPLAY statements),
whenever RT-ll detects the physical EOF (that is, the last available
block is reached) before a CLOSE statement is issued, the run-time
system assumes that another volume of the logical file is to be
created. The run-time system displays the following message at the
console terminal and waits for a response:

MOUNT SUCCESSOR TO dev:filnam.ext FOR OUTPUT

where dev:filnam.ext is the file whose physical EOF was just found.
If another volume is being created, type in the new file specifica
tion. For example, if DATAl had been the file on the first volume,
you would type the following:

MOUNT SUCCESSOR TO DKI:DATAI.DDF FOR OUTPUT
DKI:DATA2.DDF

This new file becomes the next volume in the logical file; the old
output file is closed; and the processing continues until either the
last available block is used or a CLOSE is issued.

If there is to be no successor to this volume, or if a premature ter
mination is desired, you may respond to the message by typing a
CTRL/Z, which causes the OUTPUT FILE FULL error condition. The data
that caused the overflow will not be written.

During input (ACCEPT statement with alphanumeric argument ,or READS
statement), if a physical EOF is detected before a logical EOF
(CTRL/Z), it is assumed that the logical file continues elsewhere in
another volume (RT-II file). The run-time system displays the follow
ing message at the console terminal and waits for your response:

MOUNT SUCCESSOR TO dev:filnam.ext FOR INPUT

where the meaning and response are similar to the message for the out
put file above. That is, if another volume is available for input,
type in the new file specification, and program processing will con
tinue until a physical EOF is again detected or until programming
ends. If there is no successor to this volume, or if premature termi
nation is desired, you can respond to the message by typing CTRL/Z,
which causes an EOF error condition, or a branch to the EOF label
specified in the ACCEPT or READS statement.

When the next volume of the logical input or output file is to be con
tinued on the same device drive with a different disk or tape, the
CTS-300 system must wait while the old disk or tape is exchanged for
the new one. This is done by including a /W at the end of the file
specification which was given in response to the mount successor mes
sage. For example, using the above example for an output successor
(only this time with a new device) type:

MOUNT SUCCESSOR TO DKI:DATAI.DDF FOR OUTPUT
DK2:DATA2.DDF/W

CTS-300 closes the file on the old unit and displays the message:

WAITING FOR DK2:DATA2.DDF •••

2-6 BASIC COMMANDS AND FILE CONVENTIONS

You may now exchange the new disk for the old one. When the new disk
or tape is ready, type

<CR) or <LF)

to open the next volume of the logical file on the new disk or tape
and continue processing.

When performing input using the ACCEPT statement with a decimal argu
ment, the program operates as described above except that CTRL/Z is
treated as any other character, and termination of the file can be ac
complished only by a CTRL/Z response to the mount successor message.

When performing random access operations using READ and WRITE state
ments, the program must choose the correct volume to access. This is
because a record in a random access file is located in relation to the
beginning of the file on the current volume being accessed, not to the
entire logical file that comprises all volumes. In this mode of oper
ation, it is often useful for a number of volumes to be kept open sim
ultaneously, each on a separate channel, so the program can more easi
ly find the volume containing the desired record.

2.3.3.3 ISAM Files

An ISAM (Indexed Sequential Access Method) file is a multivolume file
in which the records are stored and accessed according to an index
file and a linking scheme that are a part of the ISAM file structure.
All volumes of an ISAM file are open simultaneously, so access to the
proper device is automatically maintained.

There are some differences between an ISAM file and a sequential file.
One difference is that in an ISAM file the EOF marker is not a CTRL/Z
but rather an entire record in which each bit is set to a one.
Another difference is that in a sequential file a carriage return/line
feed is appended to each record.

CTS-300 ISAM files are discussed in detail in Chapter 10.

BASIC COMMANDS AND FILE CONVENTIONS 2-7

INTRODUCTION TO SECTION II

Section II covers the CTS-300. facilities that are provided for system
and program development.

Program development begins with a source file consisting of DIBOL pro
gram statements. This file can be created with the DIBOL keyboard ed
itor, OKEO, described in Chapter 3. The source file is compiled with
the OIBOL compiler, OICOMP, described in Chapter 4. The final step in
producing an executable program is linking. Linking is illustrated
throughout the manual to show specific requirements and is documented
in the RT-II System User's Guide.

Before any program (RT-Il or CTS-300) can be run, however, the total
hardware/software system must be configured for its intended use.
This is accomplished via an RT-II SYSGEN and a CTS-300 CTSGEN, both
described in Chapter 6. In order to know what the CTS-300 system ca
pabilities are, both for the CTSGEN and for later day-to-day use, the
CTS-300 Run-Time Systems are discussed in Chapter 5.

CHAPTER 3

DIBOL KEYBOARD EDITOR (DKED)

3.1 INTRODUCTION

The DIBOL keyboard editor (DKED) is designed to emulate the RT-ll Key
board editor, K52. DKED is available for both Single-User Systems
(DKED.SAV) and Extended Memory Time-Shared Systems (DKED.TSD). This
makes it possible to create and edit source files under either SUD
(with EIS) or XMTSD.

The assumption is made that you know how to use K52 (if you do not,
see the RT-11 Keypad Editor User's Guide). This chapter simply
explains the areas where the operating characteristics of DKED are
different from those of K52.

3.2 USING DKED

Differences between DKED and K52 are discussed in this section.

The more minor differences are:

• DKED is designed for use with the VTS2. When a VT100 is
used, it is automatically set to the VT52 mode and remains in
this mode when you exit from DKED. The keypad functions of
the VT100 are similar to those of the VT52.

• If you are operating a single-user system, you must:

SET TT SCOPE
SET TT NOCRLF

• Messages appear at the top of the display.

• DEL WORD and UNDEL WORD are not implemented.

• CTRL/U operates the same as DELLIN.

• There is no displayed end-of-file (EOF) character.

• You can not open a file of zero length.

• The operator is queried for confirmation of a QUIT command or
a YANK command (YANK is a new command; see Section 3.2.2).

• Every command issued must be followed by the <RETURN> key.

3-1

Differences that are explained in more detail in the following sec
tions are:

• DKED is organized on a page basis.

• DKED has a new command: YANK.

• There are some new command response messages.

• Default file extensions are different.

• The search mode supports wildcards.

• The HELP command has been expanded.

• CTRL/Z is a valid character in DKED.

3.2.1 Page Format

The major difference between DKED and K52 is that DKED is organized on
a page basis. A page in DKED is defined as either the area between
two form-feed characters or as all the characters preceding a
form-feed character that can be contained in the text buffer.

The following messages do not indicate an error condition. They are
displayed simply to provide you with additional information. Any
valid function or command can be entered.

When a form feed is encountered in a file, the editor sounds the audi
ble alarm and informs you with the message:

Page (Ctrl/l) detected

If the text buffer should become filled before a CTRL/L is encoun
tered, the editor sounds the audible alarm and informs you with the
message:

EXCESSIVE PAGE LENGTH.

If the EOF is encountered, the editor sounds the audible alarm and in
forms you with the message:

EOF ends current page

The page organization has the following additional effects on data
insertion and manipulation:

• DKED allows you to finish the last line you are working on,
even if the text buffer is full. You must use the PAGE or
REOPN command to complete the editing. Maximum line size,
including continuation, is 130 characters~

3-2 DIBOL KEYBOARD EDITOR (DKED)

• You can not return to the previous page (or pages) within the
file. You must use the REOPN command to return to the begin
ning of the file.

• Because of the page format, you can not CUT an area that
spans a page break.

3.2.2 Commands

3.2.2.1 New Commands

YANK The YANK command results in deletion of the present page.

REOPN

When YANK is selected, the editor queries you for confirma
tion before doing the deletion with the message:

?DKED-W-Kill present page [Y,N] (Y)

The REOPN command closes a file, reopens it, and places the
cursor at the beginning of the file.

3.2.2.2 Command Response Messages

The following are the characteristics of the command response messages
for DKED.

• The QUIT command is unchanged from K52; however, the confir
mation message is now:

?DKED-W-Purge output file? [Y,N] (Y)

• If you have entered an improperly structured command, a mes
sage will appear:

?CSI-F-Illegal command

• If you have specified an input file that does not exist, a
message appears:

?DKED-F-Unable to open input file

• If there is an output file of the same name as the one you
specify, you will receive a message:

?DKED-W-Output file exists- continue? [y,N] (N)

DIeOL KEYBOARD EDITOR (DKED) 3-3

• In a time-shared system, if either the input or output file
is currently being used by another user, you will receive one
of the.following messages:

?DKED-W-Input file being edited by another user
or

?DKED-W-Output file being edited by another user

• When you attempt to open a file that already exists and then
respond in a manner that would cause destruction of that
file, a message appears:

?DKED-F-Illegal command sequence. Please start over.

The specific circumstances that will cause this message are:

a) You open (or REOPN) a file

OUTFIL=INFIL or OUTFIL=

and the output file already exists. Your response is
then Y (continue even though the file exists) followed
by a QUIT command.

b) You open (or REOPN) a file

INFIL or INFIL=INFIL

and INFIL.BAK exists and the QUIT command is used.

3.2.3 File Extensions

When you open a file under DKED, the default extension is .DDF.
is, if you opened a file as

A=

the file, after editing and exiting, would be

A.DDF

If, however, you opened the file as

A.DBL=

the resulting file would have a .DBL extension.

If the file were opened as:

A.=

the resulting file would have a null extension.

3-4 DIBOL KEYBOARD EDITOR (DKED)

That

3.2.4 Search

The search function under DRED operates somewhat differently from K52;
to some extent, this is due to the page construction. The following
explanations apply to searches using the FIND, FIND NEXT, REPLACE, and
SUBSTITUTE commands.

Model

The model is the search string specifier. It is supplied for the FIND
command and serves for the subsequent FIND NEXT, REPLACE, and SUBSTI
TUTE commands. The model must be changed by another FIND command.

If the first three characters of the model specification are \P\, the
search will page until the target is found, or an EOF is encountered.
This applies in the forward mode only; see Mode, below. As an exam
ple of a search, consider the following models:

Model

\P\ABC

ABC

Mode

Meaning

Searches for ABC in the present page and continues to suc
cessive pages until the search is successful or the EOF is
encountered.

Searches for ABC in the present page and stops when the
search is successful or the end of the page is reached.

If you are in advance mode, the search starts from the present
position and is done by line, from left to right, in a forward
direction. Whether you search beyond the present page depends on how
you specify the model (see above). If you are in backup mode, the
search is done by line, from right to left, from the present position,
in a backward direction. The backward search remains in the present
page; it is not possible to search past the beginning of the present
page in the backup mode.

SET WILDCARDS ON/OFF

If you select SET WILDCARDS ON, you indicate the presence of certain
characters in the target that need not be compared for a successful
match. There are two valid wildcard characters: a dot (.) and an as
ter i sk (*).

If you select SET WILDCARDS OFF (the default), wildcard characters are
treated like any other character, and there is no wildcard capability.

DIBOL KEYBOARD EDITOR (DKED) 3-5

The dot wildcard

The dot (.) indicates that any character in the dot's position will be
accepted for a match. That is:

A.B, matches AXB

The asterisk wildcard

AYB
AZB

The asterisk (*) is equivalent to an indeterminate number of dot wild
cards and indicates that a match will be made with any character
string (including a string of zero length) in the asterisk's position.
That is:

A*B, matches AB
AXB
AXXXXXXXXB

An asterisk wildcard is useful for finding a target when only the
first and last characters are known.

Additional wildcard rules:

• A model can not begin or end with a wildcard.

• Asterisks and dots can be combined to select a target in
which the number of characters in some positions is important
and in which the number of characters in other positions is
not important.

That is:

A.B*C, matches AXBC
AYBC
AXBXC
AYBXXXXC

• Adjacent asterisks are allowed;
equivalent to one asterisk.

however, the meaning is

• Adjacent asterisks and dots force the indeterminate asterisk
string to have a minimum length determined by the number of
dots.

• If wildcards are in use, a search can not be made for either
the asterisk (*) or dot (.) character.

3-6 DIBOL KEYBOARD EDITOR (DKED)

3.2.5 HELP

The HELP frame received in response to the HELP command has changed
slightly from the one provided by K52. See Figure 3-1 for the DKED
HELP frame. The YANK command is added, and there are two notes whose
meaning will be discussed.

DKED V06
Ke~pad La~out for VT52
Lower Function is GOLD

!--!
! ! ! IIELIN -> ! ,..

GOLD HELP! !!
UNDELIN REPLACE

!---
PAGE ! FIND NEXT !

! (Note 11)! BLANK! V
! COMMAND 7! * FIND 8! 9! SECTION
!---

ADVANCE BACKUP DELCHR -)! ----)
! !

BOTTOM 4! TOP 5! UNDLCH 6! YANK
!---

WORD ! EOL CUT (----
! !

CHNGCASE 1! DELEOL-) 2! * PASTE 3! APPEND
!---! ! BEGIN OF LINE SELECT ENTER

OPEN LINE RESET SUBS
!---!

Figure 3-1 DKED HELP Frame

Note 1.

DELETE RUB CHAR(-
CTRL/U RUB LINE-)
CTRL/W SCREEN
(GOLD)NNNN REPEAT

11) \P\model = paSed
search

* = Survives commands
set command list b~:
(GOLD>(COMAND> and
respond: ·HELPC·

This note in the FIND block reminds you that "\P\" must be specified
for a multiple page search (see Section 3.2.4).

DIBOL KEYBOARD EDITOR (DKED) 3-7

Asterisk (*)

The asterisk in the FIND and the PASTE blocks indicates that more
information pertaining to these two commands is made available by
selecting <GOLD><COMMAND> and responding HELPC. The statement
"survives command" means the PASTE buffer and search model will
survive even if you exit from the file and open another file. HELPC
lists a summary of the options and operations related to searching and
pasting. The response is a display:

1.) EXIT
2.) REOPN
3.) ·QUIT
4.} SET SEARCH BEGIN (default) or:SSB
5.} SET SEARCH END or:SSE
6.) CLEAR PASTE or:CP
7.) SET EXACT CASEFLAG or:SEC
8e) SET EXACT NONE (default) or:SEN
9.} SET WILDCARDS OFF (default) or:SWOFF
10.) SET WILDCARDS ON or:SWON
II.} HELP WILDCARDS or:HELPW
12.} HELP COMMANDS or:HELPC
13.} SEARCH RULES or:RULES
14.} MODEL (displays the current search model)

Type <return> to continue:

This display shows:

• Items 4 through 13 show the abbreviated commands available
with DKED.

• Items 1 and 3 through 8 above are exact duplicates of K52
commands.

• Item 2, the REOPN command (see Section 3.2.2), is useful to
place yourself at the beginning of the file.

• Item 12, HELP COMMANDS (or HELPC), is the command to display
this list.

• Item 13, the SEARCH RULES (or RULES) command, causes the fol
lowing display:

SET SEARCH BEGIN (or END)
SET EXACT NONE (or CASEFLAG)
SET WILDCARDS OFF (or ON)
ADVANCE (or BACKWARD)
Model: xxx
Paging: No(Yes}
Length: (n)

Type <return> to continue:

3-8 DIBOL KEYBOARD EDITOR (DKED)

This display summarizes for you the current search
model options (search begin/end, case exact/none, wild
cards on/off, advance/backward search, and paging
yes/no). The model you have selected for the search is
shown (xxx) and its length indicated by the value of n •

• Item 14, MODEL command, causes the following display:

xxx

Paging: No(Yes) Length: (n) Type <return> to continue:

This display is a summary of the current model parameters
showing: model (xxx), paging (yes/no), and model length (n) •

• Item 11, HELP WILDCARDS (or HELPW) command, causes a descrip
tion of the wildcard rules to be displayed. The display is
self-explanatory.

3.2.6 CTRL/Z

CTRL/Z is interpreted in either of two ways by DKED, depending on when
it is entered.

CTRL/Z in a Command String

If you enter a CTRL/Z when DKED is in the command string interpreter
mode (a command is being entered in response to DKED's asteri~k
prompt), CTRL/Z operates like a CTRL/C; that is, DKED operation is
terminated and control returns to the monitor.

CTRL/Z as a Character in a File

CTRL/Z can be entered like any other valid character in a file being
created with DKED. The response is a AZ. This allows you to insert
the required CTS-300 terminating character in files you create or to
add it to existing files. Once you have entered a CTRL/Z, the next
time it is encountered DKED will interpret it as the EOF of the file
being edited.

3.3 ERROR MESSAGES

DKED uses essentially the same error messages as K52. See Appendix B,
Table B-1, in this manual and the RT-ll Keypad Editor User's Guide for
an explanation of these messages.

DIBOL KEYBOARD EDITOR (DKED) 3-9

CHAPTER 4

DIeOL COMPILER (DICOMP)

4.1 INTRODUCTION

The DIBOL compiler (DICOMP.SAV) is a CTS-300 program that is run under
control of the RT-ll Operating System. It accepts source files that
may have been created by the user and creates object files (.OBJ
files) that are ready to be linked to produce an executable DIBOL pro
gram. This compiler may be invoked via DCL command (DIGITAL's Command
Language; see the RT-ll System User's Guide); however, that mode
does not support the /G, /P:N, and /S options (see Sections 4.2.2.5,
4.2.2.8, and 4.2.2.9).

4.1.1 Characteristics

Some DICOMP features:

• Can produce two output files: an object file and a listing
file.

• Outputs object code to the single object file.

• Accepts up to six DIBOL source code files.

• Accepts several options which govern the nature of the files
produced, the listings, and warning messages.

4.1.2 Chapter Organization

The remainder of this chapter is comprised of two sections:
4.2, Using DICOMP, and Section 4.3, Error Messages.

Section

4-1

4.2 USING DICOMP

4.2.1 Running DICOMP

DICOMP is executed with the RUN command, like any other program, in
response to the RT-ll monitor's prompt. DICOMP responds with an as
terisk prompt •

• R [U] DICOMP
*[outfil] [,listfil]=infill [,infi12, ••• infi16] [In] [In]

where:

outfil is the output of the compiler in the general form
dev:filnam.ext.

• If not specified, the default device is OK:.

• The default extension is .OBJ.

• If the output file is not specified, no object file
is generated.

,listfil is the listing file in the general form dev:filnam.ext.

• The default device is OK:. Most often
file is directed to either the terminal
line printer (LP:) by specifying just
This could also be used with just a
store the listing on a disk.

• The default extension is .LST.

the listing
(TT:) or the
the device.
file name to

• If no list file is specified, none is produced; if
an object file is specified, only that file is gener
ated.

• If only a listing file is desired with no object
file, specify only a listing file device and file
specification preceded by the comma. The comma indi
cates there is no object file.

infi11[infi12 ••• infi16]

/n

are the DIBOL source files supplied as input to the
compiler. These files are specified in the general
form dev:fi1nam.ext.

• The default device is the system device DK:.

• The default extension is .DBL.

is the compiler switch option. The options are dis
cussed in detail in the following section. More than
one option can be specified. They are separated by
slashes.

4-2 DIeOL COMPILER (DICOMP)

4.2.2 Options

The valid options for DICOMP are listed below in alphabetical order.

4.2.2.1 /A

The /A switch alphabetizes the symbol and label tables. Therefore,
symbols and labels do not appear in the order they are encountered by
the compiler.

4.2.2.2 /8

The /B switch selects single buffering for I/O. The compiler normally
uses two buffers to increase I/O speed. Single buffering slows down
I/O time but provides more space for compilation. This additional
space may be necessary during program development in an extended memo
ry time-shared environment (see Chapter 5).

4.2.2.3 /C

The /C switch causes a Cross Reference (CREF) listing to be generated.
This listing indicates, by line number, where symbols are used and de
fined. (See Section 4.2.4.)

4.2.2.4 /0

NOTE

The file CREF.SAV must be on the system
device in order to obtain a CREF list
ing.

The /0 switch causes a symbol table to be generated for use by the
DIBOL Debugging Program (DDT). This switch must be specified if you
intend to use DDT later.

4.2.2.5 /G

The /G switch creates a log file of the errors generated during
compilation. If there were no listing file selected, the log file
also contains the statements that are in error. The log file IS

placed on the system device and takes the name of the first module in
the compiler command line. This file always has an extension of .LOG.
The user is responsible for removing this file when it is no longer
needed.

DIBOL COMPILER (DICOMP) 4-3

The main purpose of the log file is to provide a place for error in
formation when a compilation is requested by an operator using XMTSD
in the foreground. (See Chapter 5)

4.2.2.6 /L

The /L switch suppresses a program listing if one has been specified
in the command string, but it does not suppress the symbol table.

4.2.2.7 /0

The /0 switch suppresses the generation of line numbers in the program
listing. This has the advantage of using less memory, increasing pro
gram speed, and reducing the program size. This switch should be used
only with debugged programs; otherwise, the line numbers in the error
messages will be meaningless.

4.2.2.8 /P:N

The /P switch allows you to override the default listing page length
of 66 lines. The number of lines is selected with the value of N
which may be either octal or decimal.

The value of N is interpreted as decimal if it is followed by a deci
mal point. Every page of a listing has two header lines followed by a
blank line. Therefore, a value of N of 16 (/P:16.) would result in a
listing page having two header lines, one blank line, and 13 lines of
source code.

4.2.2.9 /S

The /S switch suppresses the symbol table and label table listings if
a listing file were requested.

4.2.2.10 /W

The /W switch suppresses the warning messages. Since many of the
warning messages do not interfere with running the program, they are
not always needed.

4-4 DIBOL COMPILER (DICOMP)

4.2.3 Standard Listings

If a listing file is indicated in the command string, and if neither
the program nor the symbol table has been suppressed, the normal out
put consists of three segments. These are the program listing, it
self, the symbol table segment, and the label table segment with an
error report appended to the latter.

4.2.3.1 Program Listing

The compiler produces a
Sequential line numbers
The exceptions are:

complete listing of the source program.
are assigned to most lines in the program.

• START statements

• Compiler directive statements (for example, IFDEF)

• Continued lines

• Blank lines

• Comment lines

The line numbers are also referenced by the symbol table, the label
table segment, and the CREF listing (if selected). Line numbers are
especially useful in debugging DIBOL programs.

Errors in the source program also appear in the program listing (see
Section 4.3).

4.2.3.2 Symbol Table

The symbol table segment consists of a listing of all the data and
literals referenced in the program. The table contains four columns
which are entitled NAME, TYPE, DIMENSION, and SIZE. These titles are
explained below:

NAME

TYPE

Contains a list of all data field names and literals
referenced by the program.

Contains the field type of the data field and literals
found in the column entitled NAME. Field types are:
ALPHA, DECIMAL, RECORD, or IMDEF (Improper Definition).
Symbol table entries for COMMON variables have a C
preceding the type of symbol it is:

C- ALPHA
C- DECIMAL
C- RECORD

DIBOL COMPILER (DICOMP) 4-5

DIMENSION Contains the dimension of the data fields and literals
listed under the NAME column. This is the array ele
ment count defined for the field given under NAME. A
dimension of zero is always assigned to any data field
or literal which is improperly defined (that is,
IMDEF) •

SIZE Contains the size, in terms of 8-bit bytes, of the data
fields and literals given under NAME. For a field this
corresponds to the size of the field or array element.

4.2.3.3 Label Table

The label table segment contains a listing of all the labels and
external subroutines used within the program. The table contains five
columns which are entitled NAME, i, TYPE, LINE i, and ORIGIN. The
columns headed i and ORIGIN are of little importance to the DIBOL-ll
programmer and are not discussed. The headings used in the label
table listing are explained below:

NAME

TYPE

Contains the name of each label and external subroutine
referenced by the program.

Contains the type of name listed under NAME.
types are identified:

LABEL for labels

EXSUB for subroutines

Three

IMDEF for both improperly defined labels and im
properly defined subroutines.

LINE i Contains the line number on which a label is defined.
This line number is zero for each external subroutine
called, and it is also zero for each improperly defined
or improperly referenced label or external subroutine.

4.2.4 CREF Listing

When a listing file is specified with the /C switch in the compiler
string, a Cross Reference (CREF) listing is generated and appended to
the end of the compiler listing.

DICOMP normally places a CTRL/Z (A Z) at the end of a DIBOL listing;
however, it is not done when a CREF listing is appended. When CREF is
specified, a temporary file is opened on the system device.

The CREF listing adds as many as four separate sections to the listing
file. A discussion of sections and their functions follows.

4-6 DIBOL COMPILER (DICOMP)

4.2.4.1 Symbol Cross Reference Table

Lists, in alphabetical order, each of the user-defined symbols, fol
lowed by a series of numbers. The first number, followed by the #
symbol, indicates the line number in which the symbol is defined. All
other numbers indicate line numbers which reference the symbol. Each
page of this section is numbered S-n, where n is the page number in
the section.

4.2.4.2 Label Cross Reference Table

Lists, in alphabetical order, each of the program labels, followed by
a series of numbers. The first number, followed by the # symbol, in
dicates the line number in which the label is defined. All other
numbers indicate line numbers which reference the label. Each page of
this section is numbered L-n, where n is ·the page number in the sec
tion.

4.2.4.3 External Subroutine Cross Reference Table

Lists, in alphabetical order, each of the external subroutines that is
called, followed by a series of numbers. Each line number indicates a
line number in which that subroutine is called. Each page of this
section is numbered X-n, where n is the page number in the section.

4.2.4.4 COMMON Cross Reference Table

Lists, in alphabetical order, each of the user-defined COMMON symbols,
followed by a series of numbers. The first number, followed by the #
symbol, indicates the line number in which the symbol is defined. All
other numbers indicate line numbers which reference the symbol. Each
page of this section is numbered C-n, where n is the page number in
the section.

4.3 ERROR MESSAGES

DICOMP detects three classes of mistakes in the source language files.
A mistake is presented to the user as either a warning, an error, or a
fatal error.

A warning is issued by the compiler when a statement is potentially a
problem in the program. Otherwise, the statement is properly defined
and executable. Warning messages do not affect compilation. An error
usually indicates a mistake in definition or syntax. Fatal errors in
dicate that it is impossible to continue processing.

DIBOL COMPILER (DICOMP) 4-7

All fatal error messages are printed on the terminal. Two kinds of
fatal errors are possible: those which return to the DICOMP prompt
and those which return to the RT-ll monitor. A special case is that
in which th~ compiler detects no PROC statement. In this case, entry
for the binary output file is removed from the directory, and a mes
sage indicating that there is no PROC statement is displayed on the
terminal.

Error messages usually contain helpful information to find and correct
the problem. A pointer (circumflex or up arrow, depending on the ter
minal) is displayed which points to the approximate position of the
first error detected in the line. If the statement contains an error,
two asterisks are placed to the left of the assigned statement number.
If the statement contains only a warning, no asterisks appear. The
error message appears below the line containing the error.

Below is an example of error reporting for an error in the data por
tion of a source file:

1 RECORD A
2 Dl,D2,00
3 D2,D2,00
4 RECORD,X
5 ,A2,'AB'

INITIAL VALUE NOT ALLOWED

The circumflex under line five indicates the point at which the error
occurred; the text below the line in error specifies the nature of
the error.

Whenever a statement line contains an improperly defined symbol, the
error is flagged only on the line where it first occurs. Two aster
isks appear to the left of the assigned statement number, with the
error message below the line. All subsequent occurrences of the sym
bol are flagged by the two asterisks only, without the message.

As many as three error and/or warning messages are printed per line.
A total error and warning message count, which includes the printed
messages and any undefined labels, is printed on the terminal.

Appendix B, Table B-2, contains a complete list of the error messages
for DICOMP.

4-8 OIeOL COMPILER (DICOMP)

CHAPTER 5

CTS-300 OPERATING SYSTEMS

5.1 INTRODUCTION

This chapter describes both the single-user and the multi-user
(time-shared) environments and presents some of their system require
ments. It also contains information on preparing programs and expla
ins how to run programs in either of the two environments.

5.1.1 Operating Systems Characteristics

The function of any CTS-300 operating system is to allow you to run
DIBOL programs. It provides the interface between a DIBOL program and
the RT-ll Operating System. Although there are some special
time-shared related instructions, the run-time environment is not a
major consideration when writing a DIBOL program. A program becomes a
single-user or a mUlti-user program as a result of how it is linked.

5.1.2 General System Requirements

Whether yours is a single-user or a multi-user (time-shared) system,
there are preliminary requirements that must be met before programs
can be run. These requirements are satisfied by properly running the
RT-ll Operating System Generation program (SYSGEN) and the CTS-300 Op
erating System Generation program (CTSGEN). SYSGEN allows you to
build an RT-ll Operating System software environment that is compati
ble with your hardware configuration. CTSGEN allows you to build a
CTS-300 Operating System that is compatible with both the RT-ll system
as structured by SYSGEN and the intended DIBOL-II program require
ments. SYSGEN and CTSGEN are discussed briefly in this chapter and in
detail in Chapter 6.

5-1

5.1.3 Chapter Organization

The remainder of this chapter is comprised of six sections: Sections
5.2 through 5.7. Section 5.2, The Single-User Environment, describes
the operation of a single-user system. The remaining sections are de
voted to time-shared operation. Section 5.3, The Time-Shared Environ
ment, is general in its discussion of time-sharing requirements and
characteristics. The time-shared user without extended memory
hardware will be interested in Section 5.4, TSD Characteristics, which
covers the TSD system. The extended memory time-shared user will
find, in Section 5.5, XMTSD Characteristics, a discussion of the XMTSD
system and its variations. Section 5.6, Terminating Time-Shared Oper
ation (RTEXIT), will be of interest to all time-shared users. S~ction
5.7, Utilizing Resources on a Small System, is intended to provide
some useful guidelines for users with a floppy-based system. Section
5.8, Error Messages, is a reference to time-shared error messages.

5.2 THE SINGLE-USER ENVIRONMENT

5.2.1 System Requirements for SUD

For SUD programs you can SYSGEN for either the SJ, FB, or the XM moni
tor. The SJ monitor is recommended unless you intend to use the SUD
print spooler (LPTSPl.REL); then the FB or XM monitor must be used.

The DIBOL compiler produces interpretive code. Therefore, the re
quirement for DIBOL programs to run under the RT-ll Operating System
is that there be a run-time code interpreter available. This inter
preter which can be thought of as an executive or a run-time system is
produced as a result of the CTSGEN process. It is assigned the name
SUD.RTS by CTSGEN and must always reside on the system disk.

If you plan to use either ISAM or the DIBOL debugging program, DDT,
you must make an appropriate selection in CTSGEN.

The single-user run-time code interpreter requires approximately 12.4
KB of memory without ISAM or DDT.

5.2.2 Preparing Programs

Program editing and compilation of DIBOL-ll programs for SUD systems
are performed using any valid editor (EDIT, TECO, K52, DKED, etc.) and
theDIBOL compiler. DKED and the DIBOL compiler (DICOMP) programs are
described in Chapters 3 and 4 of this manual.

If you plan to use DDT, you must compile with the debugging option.

5-2 CTS-300 OPERATING SYSTEMS

5.2.3 Linking Programs

The object (OBJ) file resulting from compilation must be linked to the
DIBOL library (DIBOL.OBJ). The following command string could be used
to link the program TEST.OBJ and subroutines SUB.OBJ and SUB1.0BJ for
SUD 0 pe rat ion:

For programs without DDT:

.LINK TEST,SUB,SUB1,DIBOL

Results in a SUD program named TEST.SAV.

For programs with DDT:

The following command string illustrates linking for DDT:

.LINK TEST,SUB,SUB1,TSDDT,DIBOL

5.2.4 Running Programs

DIBOL programs in a SUD system are run like any other Save file:

.R PROG or .RU dev:PROG

The run-time interpreter SUD.RTS is automatically brought into memory
whenever a single-user DIBOL program is run.

5.2.5 SUD Memory Allocation

The allocation of memory for a SUD System is shown in Figure 5-1.

56 KB

52 KB

o

RMONSJ
and

System Handler

Device Handlers

buffers
free memory

SUD.RTS
(12.4 KB)

without ISAM or DDT

SUD
Application Program

(DIBOL code)

Figure 5-1 SUD Memory Allocation

CTS-300 OPERATING SYSTEMS 5-3

5.3 THE TIME-SHARED ENVIRONMENT

A DIBOL-ll Time-Shared RTS or executive, is a program that runs under
the control of the RT-ll monitor. Its purpose is to control
time-shared DIBOL user programs. There are two versions available:

• The normal version, identified as TSD, runs under the RT-ll
Single-Job (SJ) monitor, the Foreground/Background (FB)
monitor, or the Extended Memory (XM) monitor. Of course, TSD
can not access extended memory even with the Extended Memory
monitor. The SJ monitor is recommended because its small
size leaves more memory for user programs.

• The extended memory version, identified as XMTSD, runs under
the RT-ll Extended Memory monitor only.

A time-shared RTS permits properly compiled and linked DIBOL-Il
programs to be independently loaded and executed in a time-shared
environment. The time-shared system communicates with all active
terminals to provide interactive program control. Simple keyboard
commands, explained below, permit you to initiate and terminate
program operation. During execution, each program appears to have at
its disposal the full resources of the CTS-300 system. Further,
programs can share data files and I/O devices. The time-shared system
provides complete facilities for:

• Program loading and execution

• Allocation of memory resources

• Program scheduling

• Detached program operation

• Error detection and reporting

• Sending/Receiving messages between programs (see the DIBOL-Il
Language Reference Manual)

• Timed wait of program execution (SLEEP statement;
DIBOL-ll Language Reference Manual)

• Line printer spooling (see Chapter 8)

see the

The information in this section applies to both TSD and XMTSD systems.

5-4 CTS-300 OPERATING SYSTEMS

5.3.1 System Requirements for Time-Sharing

As with the single-user system, the DIBOL programs in a time-shared
environment require a run-time code interpreter, and, as with the sin
gle-user environment, CTSGEN produces this code. However, the CTSGEN
for a time-shared system also includes the specification (and result
ing construction) of the code to process the time-shared related
statements. If you plan to use either ISAM or the DIBOL debugging
program, DDT, you must make an appropriate selection in CTSGEN. In
addition, active terminals to be recognized by the run-time system are
selected in CTSGEN. Special SYSGEN requirements are presented under
the TSD and XMTSD sections.

The following table indicates the approximate memory requirements of
the two commonly used RT-II monitors and the two CTS-300 time-shared
run-time systems. The time-shared systems both have multiterminal
support. The sizes of ISAM and DDT are also shown.

Component

SJ Monitor
XM Monitor
SUD Interpreter (SUD.RTS)
TSD Run-Time System
XMTSD Run-Time System

ISAM
DDT

5.3.2 Dynamic Memory Allocation

Approximate Size

3.5 - 4.5 KW
7.0 - 9.0 KW
6.2 KW
9.0 KW
12.0 - 16.0 KW

2.1 KW
0.6 KW

The time-shared RTS dynamically manages the allocation of the free
memory used by DIBOL programs. This means that memory space is
allocated automatically on a demand basis. When you request that a
program be executed, the run-time system loads the program into the
first free area of memory that it finds large enough to contain the
program. When a program terminates execution, the memory space that
it occupied becomes available for reallocation to another program.
When free memory becomes fragmented to the extent that no contiguous
area of memory is large enough to contain the program to be loaded,
the run-time system attempts to relocate currently existing programs
to make the necessary room. The free memory spaces are concatenated
and, if there is then enough space, the program is loaded.

5.3.3 Scheduling

To effect time-sharing operation, the run-time system performs program
scheduling (time sharing) on both a DIBOL-1l interpretive instruction
basis and an I/O request basis. This means that a program will run
until a predetermined number (usually 64) of DIBOL-Il interpreter in
structions are executed or until an I/O statement (READ, WRITE, etc.)
is executed. When either of these conditions occurs, the run-time
system suspends execution of the current program and schedules another
program to run.

CTS-300 OPERATING SYSTEMS 5-5

Program scheduling on an instruction count basis can be controlled
within a DISOL program by means of the SLICE external subroutine. See
the DISOL-11 Language Reference Manual.

5.3.4 Detached Program Operation

A program that is running under the control of a time-sharing system
program, and that does not require the constant use of a terminal, can
disconnect itself from the terminal by using the DETACH statement.
Detached operation disconnects a program either from the terminal that
initiated the program's operation or from the terminal to which it was
last attached.

When a DETACH statement is executed by a program, the message shown
below is displayed:

DETACHING

TSD VERSION VBnn-nn (or XM-TSD VERSION VC nn-nn)

*
At this point you may issue either a RUN command or an ATTACH command.
See Section 5.3.9.

The detached program runs to completion as long as either no further
terminal I/O is required or no error condition occurs that requires a
displayed message. If terminal I/O is required, the program's opera
tion is suspended until an ATTACH command is issued from an active
terminal.

5.3.5 Data File Management

Files created in the time-shared environment are compatible with those
created in the single-user environment and conform to the file conven
tions discussed in Chapter 2 of this manual. Under the time-shared
RTS, these data files can also be shared by two or more programs, thus
providing the capability of creating a common data base. In addition,
programs can also share certain I/O devices with one another.

5.3.5.1 File Sharing

All programs that are to share a file must open the file with the OPEN
statement in either update (U) or in input (I) mode. When a program
opens a file for either update or input, the file can subsequently be
opened by other programs (in I or U modes). For example, one or more
programs can be reading a file sequentially (READS statement) while
other programs can be directly accessing the file (READ or WRITE
statement).

5-6 CTS-300 OPERATING SYSTEMS

When a record is read using the direct access READ statement in update
mode, the blocks within which the record wholly or partially resides
are automatically locked. This means that the record cannot be read
by another program until it is released. Also, other adjacent records
may be locked if they happen to reside wholly or partially within the
block(s) that contains the record being read. An attempt to access
(READ or WRITE statement) a locked record will cause an error message
to be displayed. The block(s) that contains the record is unlocked
when the program that originally read the record does one of the fol
lowing:

• Rewrites the record

• Reads another record from the same file

• Issues an UNLOCK statement (When a program that accesses a
file using two or more channels issues an UNLOCK, the lock
condition is cleared for all channels.)

• Issues a CLOSE to the channel

• Terminates operation

5.3.5.2 Device Sharing

Mass storage direct access devices, such as disks and DECtape, are
sharable. Sequential access devices (magtape) are nonsharable
devices. However, in the case of magtapes, different device unit
numbers are considered to be different devices. Line printers and
other non-mass storage devices are also nonsharable.

There is a restriction on the use of the ASSIGN command when devices
are being shared. If the ASSIGN command is used to assign a logical
name to a disk, then this assigned name must be unique throughout all
programs that refer to that device. That is, the device must be re
ferred to by its assigned name and that name only. To do otherwise
creates an ambiguous condition for the run-time system with the fol
lowing results:

• The run-time system will not perform I/O mode checking
correctly. If two programs attempt to open (OPEN statement)
the same file using different logical device designations,
the run-time system will not be able to detect the error
condition that should be detected if a file is opened
simultaneously for I mode and for 0 mode.

• The automatic lock feature will not be invoked to prevent
simultaneous reading or writing of the same record.

CTS-300 OPERATING SYSTEMS 5-7

5.3.6 Preparing Programs

A program that runs under a time-shared RTS is identical to a program
that runs in the single-user environment except that the time-sharing
capabilities of certain· language statements become operable.
Specifically these are: READ, WRITE, READS, WRITES, SEND, RECEIVE,
DETACH, and SLEEP. The SLEEP command, while it operates in a
single-user system, is primarily a time-sharing statement. Details on
the use of these statements are provided in the DIeOL-II Language
Reference Manual.

All program preparation operations, including compilation and linking,
are identical for the TSD or the XMTSD Run-Time Systems.

Program editing and compilation are performed using any valid editor
(EDIT, TECO, K52, DKED, etc.) and the DIeOL compiler (DICOMP). DKED
is the only editor you can use under a DIBOL time-sharing RTS. DKED
and DICOMP are described in Chapters 3 and 4 of this manual.

If you plan to use DDT, you must include the /D switch in your DICOMP
command string.

5.3.7 Linking

5.3.7.1 Linking to the Time-Shared DIeOL Library

The object (OBJ) file resulting from compilation must be linked with
the time-shared RTS library (TDIBOL.OBJ). The following command
string could be used to link, for time-shared operation, the program
TEST.OBJ and subroutines SUB.OBJ and SUB1.OBJ:

.LINK/EXE:TEST.TSD TEST,SUB,SUB1,TDIBOL/BOT:IOOOOO

It is recommended that the file name extension .TSD be used for the
program file output by the linker. This has two important benefits:

• A file linked for time-sharing operation can be easily dis
tinguished from a file linked for single-user operation.
This naming convention also prevents a .SAV file from being
overwritten if the time-sharing file has the same file name •

• No extension need be specified in the RUN command for a
time-shared program with the .TSD extension.

To save disk storage space, the utility program, REDUCE, should be
used to remove the unused blocks resulting from the linking process.
See Chapter 13.

5-8 CTS-300 OPERATING SYSTEMS

5.3.7.2 Linking for DDT Use

If the DDT utility program is to be used with a program running in the
time-shared environment, the file TSDDT.OBJ must be included in the
link command string. The following command string, assuming the pro
gram was compiled for DDT, could be used to link (for DDT operation)
the program and subroutines shown in the previous example:

.LINK/EXE:TEST.TSD TEST,SUB,SUB1,TSDDT,TDIBOL/BOT:100000

• The file TSDDT must precede the file TDIBOL in the linker's
command string; otherwise, a linker error will result •

• DDT operation requires the time-shared system to be a version
in which DDT was selected during CTSGEN. See Chapter 6 in
this manual.

In order to save disk storage space, the utility program, REDUCE,
should be used to remove the unused blocks resulting from the linking
process. See Chapter 13.

5.3.8 Creating Overlays

Programs and their subroutines that are to be run in a time-shared en
vironment can be formed into a series of overlays using the same pro
cedures used with any other program. See the RT-II System User's
Guide. The main object module, TDIBOL, and TSDDT (if used) must all
reside in the root segment of the overlay.

The example below illustrates linking for overlays using the same
modules as with linking for DDT, above. In this example, subroutines
SUB and SUBI are linked for non-simultaneous operation in overlay
region one. The remaining modules are in the root segment •

• LINK/PROMPT/EXE: TEST.TSD TEST,TSDDT,TDIBOL/BOT:100000
*SUB/0:1
*SUB1/0:1
*//

5.3.9 Commands

All time-shared run-time systems accept at least two commands: the
RUN command and the ATTACH command. Either of these commands can be
terminated by a carriage return. When XMTSD is run as a foreground
program, it supports additional commands. See Section 5.5.2. The
time-sharing program indicates its readiness to receive a command with
an asterisk prompt.

CTS-300 OPERATING SYSTEMS 5-9

5.3.9.1 The RUN Command

A RUN command issued from any active terminal loads and starts execu
tion of a OIBOL-ll progr~m.

The command has the form:

*R filnam[.ext] or *RU dev:filnam[.ext]

where:

dev: is the name of the device where
If not specified, the device OK:

the program
is assumed.

resides.

filnam[.ext]

Examples:

*R ACCTOl

is the name of the program that is to be run •

• If no extension is specified, the extension .TSO is
assumed •

• Programs with overlays must reside on the system
device.

Loads and executes program ACCTOl.TSO from the device OK:.

*RU RLl:LIST

Loads and executes program LIST.TSD from device RLl:.

Program execution continues until one of the following conditions oc
curs:

• The program issues a STOP or END statement.

• A trappable run-time error occurs that was not trapped by an
ONERROR statement.

• A fatal (nontrappable) run-time error occurs.

• A.detached program requires the use of a terminal. See
ATTACH command, described in the following section.

• The user types a CTRL/C command while the program is attached
to the terminal.

• The program is terminated via the kill command in the STATUS
program.

5-10 CTS-300 OPERATING SYSTEMS

5.3.9.2 The ATTACH Command

The ATTACH command connects a program running in the detached state to
the terminal from which the command was issued.

The command has the form:

*ATTACH [dev:] [filnam.ext]

or

*A [dev:] [filnam.ext] for XMTSD operation (See Section 5.5)

where:

dev:

filnam.ext

is the name of the device where
If not specified, the device DK:

the program
is assumed.

resides.

is the name and extension of the program that is to be
attached to the terminal from which the command is en
tered •

• If no extension is specified, the extension .TSD is
assumed .

• If no file name is specified, the ATTACH command
lists all the current detached jobs in the system.

Example:

.R TSD
TSD VERSION VBnn-nn
*ATTACH
NO DETACHED JOBS
*R LPTSPL
TIME SHARED DIBOL LINE PRINTER SPOOLER VBOX-OX
DO YOU WANT TO RUN DETACHED?
Y
DETACHING
TSD VERSION VBnn-nn
*ATTACH
JOBS RUNNING DETACHED

DK:LPTSPL.TSD

5.3.10 Programmed Startup

Time-shared programs can be executed with the RUN command discussed
above, or their execution can be initiated by a program which is run
ning under a time-shared system. There are three methods by which
this can be accomplished: forced job startup, chain mode startup, and
implicit job startup.

CTS-300 OPERATING SYSTEMS 5-11

5.3.10.1 Forced Job Startbp

A forced job startup occurs when the XCALL statement is used with the
RUNJB subroutine in the manner presented here. Forced job startup is
used to start up a program that is not already running.

The format is:

XCALL RUNJB ('fi1spec' ,n)

where:

fi1spec

n

is the CTS-300 file specification for the program to be
started up.

is a number with the following meaning:

• If n is positive (including 0), it is the number of
the terminal to which the program is to be attached •

• If n is ~1, it indicates that the program is to be
started up in a detached state.

If the program is started up detached and it requires a response, it
is necessary to supply this response with a SEND statement prior to
the XCALL for the forced startup. The general form is:

SEND ('msg' ,'fi1spec')

XCALL RUNJB ('fi1spec' ,-1)

where:

m~

fi1spec

is a message sent to the program before it is run.
This message is required for some DIBOL programs.

is, in both lines, the CTS-300 file specification for
the program to be started up. /~

-1 indicates the program is started in a detached state.

5.3.10.2 Chain Mode Startup

Chain mode is used when it is desired to execute a program following
the normal termination of a first program.

5-12 CTS-300 OPERATING SYSTEMS

The format is:

STOP 'filspec'

where:

filspec is the CTS-300 file specification for the desired next
program to run.

If the calling program were detached, the program started in chain
mode will also be detached. If this second program requires an opera
tor response, it is necessary to supply this response with a SEND
statement prior to chaining. The general form is:

SEND ('msg' ,'filspec')

.
STOP 'filspec'

where:

m~

filspec

is a message sent to the program before it is run.
This message is required for some DIBOL programs that
would normally query the operator.

is, in both cases, the CTS-300 file specification for
the program to be started up.

5.3.10.3 Implicit Job Startup

Implicit job startup is used to send a message to a program and to en
sure that the program will be automatically started up detached if not
already running.

The form is:

SEND ('msg' ,'filspec' ,n)

where:

msg

filspec

n

is the message to be sent.

is the CTS-300 file specification for the program to be
st9rted up.

has a value of -2 or -3:

• ~. -2 indicates that if the program is not currently
rUhning, the time-shared RTS will start up the job in
a detached state •

• A -3 indicates that a copy of the program will be
started up in a detached state. The copy started is
in addition to any others that may be currently run
ning.

CTS-300 OPERATING SYSTEMS 5-13

5.3.11 Stopping Programs

A program normally continues until it runs to completion and a STOP or
END statement is executed. You can prematurely terminate program op
eration by typing a CTRL/C at the keyboard of the terminal to which
the program is currently attached. The CTRL/C function can be dis
abled by the CTRL/C trap. It is wise to be certain that the trap is
not set if you are planning to use the CTRL/C to terminate program ex
ecution. If the program is running in a detached state, the ATTACH
command must first be used to connect the terminal to the program be
fore CTRL/C can be used to stop it. When the program stops, control
returns to the run-time system.

CTRL/C normally causes immediate program termination. If the program
is not waiting for keyboard input (that is, executing a READS state
ment to the terminal), two CTRL/Cs typed in succession are needed to
terminate program operation. Files opened for output (0) mode are
lost since they cannot be closed.

Following are some of the implications of the CTRL/C command:

• If keyboard input is pending, or if no I/O operation is in
process, CTRL/C stops the program immediately.

• If an I/O operation is in process, CTRL/C stops the program
only after the I/O operation is completed.

• Two CTRL/Cs
unconditional
be pending.

in succession will cause an immediate,
stop, regardless of any I/O operation that may

• CTRL/C has the following effect on files: Files opened in
the output (0) mode are lost, since they cannot be closed.
Files opened in the update (U) mode may not have all changes
incorporated in them.

• The CTRL/C command can be disabled from within a DIBOL pro
gram by means of the external subroutine FLAGS. See the
DIBOL-ll Language Reference Manual.

5.4 TSD CHARACTERISTICS

This section applies only to the nonextended memory time-sharing pro
gram identified as TSD.

5.4.1 System Requirements for TSD

For TSD, you must SYSGEN for either the SJ, FB, or the XM monitor.
However, even if you use TSD with the XM monitor, you will not be able
to access extended memory.

5-14 CTS-300 OPERATING SYSTEMS

5.4.2 Running the TSD System Program

Once the TSD program has been properly built via CTSGEN, time sharing
can begin. Load and execute the time-sharing program (TSD RTS) by
using the monitor's RUN command in the form:

.R fi1nam.ext or .RU dev:fi1nam.ext

where:

dev: is the name of the device where the TSD RTS program
resides. If not specified, the system device is as
sumed.

fi1nam.ext is the name and extension of the TSD RTS. The name is
the one specified in answer to the last question in
CTSGEN. See Chapter 6. Regardless of the file name
you choose, TSD will always identify itself as TSD.

Once started, the TSD RTS identifies itself by displaying the follow
ing message at each of the terminals that it recognizes:

TSD VERSION VBnn-nn

*
where:

nn-nn

(*)

is the version number.

the prompting character, indicates readiness to accept
a command from the keyboard. At this point, any pro
gram linked for time-shared operation can be run.

5.4.3 TSD Memory Allocation

The allocation of memory for a TSD System is shown in Figure 5-2.

56 KB
RMONSJ

and
System Handler

48 KB ...------------
Device Handlers

free memory
(30 KB)

Used by TSD run-time
system for TSD user

programs or application

18KB ...------------

TSD
without ISAM or DDT

o

Figure 5-2 TSD Memory Allocation

CTS-300 OPERATING SYSTEMS 5-15

5.5 XMTSD CHARACTERISTICS

This section applies only to the extended memory time-sharing program
identified as XMTSD.

The use of virtual overlays supported in RT-II V4 makes it possible to
run a Save image program using virtual overlays as either a background
or as a foreground job. Because only XMTSD of the two time-shared
system programs uses virtual overlays, only XMTSD can be run as either
a foreground or as a background program. As will be seen, this re
sults in some unique capabilities.

As explained in Section 5.3.9, the RUN command can be used in any
time-shared RTS to execute a program. It is also possible under XMTSD
to execute a program simply by specifying the name of the program.
For example:

*PROG <CR)

will cause program PROG.TSD to be executed. Because of this, the com
mand to attach a program or to display detached programs must be is
sued as A and not as ATTACH under XMTSD because ATTACH would be inter
preted as a program.

5.5.1 System Requirements for XMTSD

XMTSD requires that the XM monitor be selected during SYSGEN. If you
intend to run XMTSD as a foreground program and plan to communicate
with the background (see Section 5.5.2), implicit job startup must be
selected during CTSGEN. There is no other special requirement, nor
are special questions asked, either for building the XMTSD system or
for the foreground / background run capability.

5.5.2 XMTSD in the Foreground

If you choose to run XMTSD as a foreground job, the time-shared pro
grams are restricted to running in the extended memory region. This
frees a part of lower memory for use by other programs. These other
programs could be Save image programs such as PIP, DUP, DIR, DICOMP,
LINK, or SUD programs.

When XMTSD is running as a foreground program, it is possible for
XMTSD to communicate with a special program (supplied with CTS-300)
running in the background. XMTSD has, as part of its system, a queu
ing routine for directing requests to this special background program.
The next several subsections explain the communication process.

5-16 CTS-300 OPERATING SYSTEMS

5.5.2.1 Foreground Queue Program

Foreground communication with the background is initiated via a spe
cial series of commands which are similar to DCL commands. It is im
portant to note that these commands are, in reality, TSD programs con
structed to implement the communications capability. The function of
each is covered in detail in Section 5.5.2.3. A time-shared queue
manager program, BGMAN.TSD, a part of XMTSD, is automatically invoked
whenever one of these commands is issued. If BGMAN.TSD is not already
running, it is started up in a detached state to respond to the com
mand request (hence the need for implicit job startup). The request
is queued (16' requests maximum) by BGMAN.TSD and if the request re
quires it, the information is sent to the special background program.

BGMAN.TSD will also accept input from a user-written program. The
same rules and limitations, covered in detail in Section 5.5.2.3 for
the SUBMIT, CANCEL, and SHOW commands apply to input from a
user-written program. See Section 5.5.2.5 for more information on
user-written programs.

BGMAN.TSD has, as part of its code, a timing facility to allocate pro
cessor time between the foreground and the background. When BGMAN.TSD
is started up, it automatically assigns a value of one to this timer.
A value of one allocates 1/60th (or 1/50th - depending on the system
clock) of a second to background operation for each XMTSD scheduler
cycle. This allocation can be changed when the job is submitted to
BGMAN (see SUBMIT, Section 5.5.2.3). The value is returned to one
once the submitted request has been carried out. The advantage of in
creasing this value is to allocate a greater proportion of time to the
submitted background job. This allows the job to execute faster;
however, foreground programs will slow down proportionately.

If BGMAN.TSD has no pending requests in its queue, it will terminate
itself. It is started (implicitly) later if there is a need for it to
be involved.

5.5.2.2 Background Listener Program

The background program supplied by CTS-300 to receive the requests
(indirect files) from the foreground is called LISTNR.SAV. This pro
gram is run at the console terminal by the user once XMTSD is running
in the foreground. The command and response are:

.R LISTNR
CTS300 V6 LISTENER

When the indirect file from the foreground is received by the listener
program in the background, the listener program displays the following
message:

BYE

CTS-300 OPERATING SYSTEMS 5-17

and then builds a one-block system indirect file called SYSTEM.BRG.
which contains:

@FILE.COM

.R LISTNR

iUSER PASSED INDIRECT FILE
iRECONSTRUCTED FOR THE RT-ll SYSTEM
iRESTART LISTENER

The listener submits the user request to RT-ll by chaining to
SYSTEM.BRG. After the commands within the indirect file are pro
cessed, the listener is again started up. The listener displays the
version message and informs XMTSD (BGMAN.TSD) that the job is done and
that it is ready to receive the next command with its associated in
structions in the form of another indirect file. At this time
BGMAN.TSD also resets the background time allocation value to one.

5.5.2.3 Communications Commands

The special DCL-like communication commands provide the interface
between the keyboard and the foreground queue manager (BGMAN). These
commands are described in this section. The function of both the
foreground queue manager and the background listener programs in
response to each command is illustrated in Figure 5-3. Reference to
this figure may help clarify the commands which follow.

SUBMIT.TSD

BGMAN.TSD

• communicates with
foreground request
programs

• manages request
'queue

• communicates with
background

h~~
~0 CD

SHOW. TSD ... /..~0 q,Ci) C) ~_~ __________ ~. 0 ~ ~

<i 0~·0~ ~
~
;;::::

foreground

~~... :!:
~0 0

c:
.:J!.
(.)

...
(.)

~
:s
c:

~ YURPRG.TSD
/

'--------- CANC EL. TSD

-------------------------------- ~ .- .-----------------------------_.-
background

I LlSTNR.SAV I
Figure 5-3 BGMAN

5-18 CTS-300 OPERATING SYSTEMS

Error messages associated with the foreground / background communica
tions commands are listed in Appendix B, Table B-4.

SUBMIT

This command is used to present a previously constructed indirect file
to the background listener program. The response to the command is a
request to the user for an indirect file name. The indirect file pre
viously constructed by the user is typically a list of instructions to
be perf~rmid in the background. After receiving the indirect file
name, the command-processing program (SUBMIT.TSD) issues a SEND to
BGMAN.TSD. The SUBMIT program recelves a response indicating the
status of the request and passes it to the user. The command process
ing program then terminates. To run SUBMIT, the DCL-like command is
entered in response to XMTSD's asterisk prompt:

*SUBMIT <RET>

SUBMIT prompts for identification of the indirect file:

_FILE/[n] :filspec/n

where:

filspec

n

is the file specification of the desired indirect file.
The default file extension is .COM. More than one file
may be specified, if so, they are separated by commas.

is an optional number specified by the user to allocate
the time available for background processing. It
allocates 1/60th (or 1/50th) of a second to background
operation for each XMTSD scheduler cycle (see Section
5.5.2.1). The usable range is from 1 to an upper limit
determined by the particular application parameters.
Two digits are allowed but anything greater than a
single number usually has an unacceptable effect on the
foreground. The default value of n is 3.

SUBMIT.TSD returns a message indicating the status of your request:

Assume that jobs A.COM and C.COM, requested from terminal 1, are alre
ady in queue with the default time allocation of three and that a sub
mission request is made for a job B.COM from terminal 2 as follows:

_FILE/[n] :B/5

CTS-300 OPERATING SYSTEMS 5-19

The response is:

BACKGROUND QUEUE STATUS

ENTRIES: 3
CURRENT JOB: DK:X.COM

TERMINAL

I
I
2

*** END ***

FILENAME

DK:A.COM
DK:C.COM
DK:B.COM

TIME ALLOC

3
3
5

The current job listed above is the file being processed at the time
the command was issued.

SHOW

The SHOW command allows you to determine the status of your request at
some time after a request was submitted. SHOW does not communicate
with the background. It simply receives a response from BGMAN.TSD re
garding the contents of the queue file. The command is entered in
response to XMTSD's asterisk prompt:

*SHOW <RET)

The response format is identical to that illustrated in the SUBMIT
command above.

The SHOW command can be used to determine if the background listener
program is running. If the listener is not running, an error message
appears informing you of this fact.

CANCEL

The CANCEL command is issued whenever you want to retract a request
while it is still in the BGMAN processing queue. The command is en
tered in response to XMTSD's asterisk prompt:

*CANCEL <RET)

CANCEL prompts for identification of the indirect file(s):

_FILES:filspec

where:

filespec is the file specification of a previously submitted in
direct file. All files with the same file specifica
tion are canceled. The default extension is .COM.
More than one file may be specified, if so, they are
separated by commas.

5-20 CTS~300 OPERATING SYSTEMS

CANCEL returns the status of the queue thereby showing the file del~t~\
ed. For example, a CANCEL request sequence for job A.COM (assuming \
A.COM, B.COM, and C.COM are in queue), would be:

FILES:A

The response is:

BACKGROUND QUEUE STATUS

ENTRIES: 2
CURRENT JOB: DK:X.COM

TERMINAL

1
2

*** END ***

FILENAME

DK:C.COM
DK:B.COM

TIME ALLOC

3
5

The current job listed above is the file being processed at the time
the command was issued.

5.5.2.4 BGMAN.TSD Operation

An understanding of the operation of BGMAN.TSD in relation to both the
requests submitted to it and the responses it returns is essential to
anyone writing a program to be used as a special DCL-like command in
the same way that SUBMIT and CANCEL are used. BGMAN.TSD interfaces
with such a program via a message record. The details of this record
and its use in communicating with BGMAN are the subject of this sec
tion.

The message record is structured identically for both requests and
responsesi however, some fields are used differently. For this
reason the record is shown and discussed from both viewpoints.

The format of the message record for requests is:

RECORD CDMESS

Fl, D2 iREQUEST CODE DEPENDENT (SEE
iREQUEST CODE 01 BELOW)

F2, A2 iREQUEST CODE (SEE BELOW)
F3, D2 iTERMINAL NUMBER
F4, AlO iORIGINATING PROGRAM NAME
F 5, A14 iINDIRECT FILE SPECIFICATION

CTS-300 OPERATING SYSTEMS 5-21

Request Codes

There are five request codes (field F2) recognized as input by
BGMAN.TSD. They are listed with their function below:

Request Code

01

02

03

04

05

Function

Enters the information specified in fields F3, F4, and
F5 into the BGMAN queue. If a background time alloca
tion other than three is desired, it is specified in
Fl.

Requests a response from BGMAN showing the queue
status. The other fields are unused.

Requests that the file (if still in the queue) speci
fied in F3, F4, and F5 not be processed when it is en
countered in the queue.

Same as 01 except for the expected response (see
responses for request code 04).

Same as 01 except for the expected response (see
responses for request code 05).

The format of the message record for receiving responses is:

Fl,

F2,
F3,
F4,
F5,

RECORD CDMESS

02

A2
02
AI0
A14

;RESPONSE CODE DEPENDENT (SEE
iRESPONSE CODE 12, BELOW)
iRESPONSE CODE (SEE BELOW)
iUNUSED
iUNUSED
iRESPONSE CODE DEPENDENT (SEE
;RESPONSE CODES 13 AND 14, BELOW)

5-22 CTS-300 OPERATING SYSTEMS

Response Codes

The possible response code(s) (field F2) received by a program from
BGMAN.TSD depends on the original request.

Request
Code

01

02

Response
Code

10

Meaning

The entry has been accepted,

or one of the following:

20

22

23

30

50

The queue is full and the request has
been rejected.

The indirect file was not found.

A device handler required by an element
of the indirect file is not available.

The special background listener program
is not running.

The queue is empty,

or the following series:

The following responses to 02 occur as a series of messages with the
codes appearing sequentially in the order shown. Therefore, you will
have to do successive receives and process each message as it is re
ceived. The codes received will be 12, 13, 14 (possibly multiple) ,
and finally 19.

03

12

13

14

19

50

The number of jobs in queue is contained
in Fl.

The current job name is contained in F5.

A queue entry is contained in F5.
Repeated messages with this code will
probably be sent by BGMAN until all
queue entries are sent.

Signals
BGMAN.
passed.

the
All

end of the report
queue entries have

The queue is empty,

from
been

or the following series:

12, 13, 14, 19 A cancel request (03) automatically in
cludes a request for a queue status re
port (see responses to request code 02).

CTS-300 OPERATING SYSTEMS 5-23

04

05

10 Entry accepted,

followed by:

40 Job completed,

or the response if there is an error is one of the
following codes:

20, 22, 23, 30 Same as for request 01.

10 Entry Accepted,

followed by the series:

12, 13, 14, 19 An 05 submission request automatically
includes a request for a queue status
report (see responses to request code
02). The SUBMIT.TSD program supplied
with CTS-300 uses this code.

or the response if there is an error is one of the
following codes:

20, 22, 23, 30 Same as for request 01.

5.5.2.5 User-Created Commands

The ability to execute a program under XMTSD by simply entering its
name, the capabilities of XMTSD running in the foreground, and the
special background program (LISTNR), enable you, the user, to create
your own programs to be executed as commands.

Several unsupported utilities have been included in the V6 distribu
tion of CTS-300. These are designed as examples to illustrate how
utilities can be created to perform various functions. They are fur
nished in both DIBOL source code and as XMTSD executable programs.
These utilities present messages based on the following codes:

Code

10
20
22
23
24
25
26
30

40
90

Message

ENTRY ACCEPTED
QUEUE FULL-ENTRY REJECTED
FILE NOT FOUND
HANDLER NOT FOUND
I/O ERROR
DEVICE IN USE
DIRECTORY I/O ERROR
BACKGROUND LISTENER NOT RUNNING

REQUEST DISCARDED
JOB COMPLETED
ILLEGAL BACKGROUND OPERATION

5-24 CTS-300 OPERATING SYSTEMS

A short description of each utility follows:

CREATE.TSD

COPY. TSD

DELETE.TSD

RENAME.TSD

TYPE.TSD

PRINT.TSD

This program asks for an output file name and transfers
keyboard input into that field. It is suitable for
creating short indirect command files for submission to
the background. It produces the following prompt line:

-FILE:

The default extension is .COM. Errors are reported
for: 22 and 23. CREATE.TSD is terminated with a CTRL/Z.

This program ask for the standard command string input
without wild card features. It copies an ASCII text
file from the input to output. The prompt character is
an asterisk. It is of the form:

DEV:FILEOUT.EXT=DEV:FILEIN.EXT

Err 0 r s are r e po r ted for: 22, 23, 24, 25, and 26.

This program is used to delete a file from a TSD key
board. It accepts multiple file specifications separ
ated by commas. There may be up to eight files. The
prompt is:

-FILES:

Errors are reported for: 22,23, and 26.

This program is used to rename a file from a TSD key
board. The prompt character is an asterisk and it ex
pects a standard command string input without wild card
features. The output is the new filename and the input
is the old filename.

DEV:NEWNAME.EXT=DEV:OLDNAME.EXT

Errors are reported for: 22, 23, and 26.

This program asks for a file name without wildcard fea
tures, reads the file, and writes it to the terminal.
It reads ASCII text files only. The default extension
is .DBL. It is suitable for examining DIBOL program
source code without having to use an editor. The
prompt is:

-FILE:

Errors are reported for: 22, 23, 24, and 26.

This program accepts multiple file specifications with
out the wild card feature and submits them to the line
printer spooler. The prompt is:

-FILES:

Errors are reported for: 22,23,24, and 26.

eTS-300 OPERATING SYSTEMS 5-25

VIEW.TSD

SUBMIW.TSD

This program is a modified version of RTEXIT and is
used for system monitoring, or for getting job reports
without having to run STATUS. There is no input.

This program is an example of how to communicate with
the background manager. It is a
submit-and-wait-for-completion command. It takes mul
tiple file specifications for each request submitted.
The prompt is:

-FILES:

Codes received are: 10, 20, 22, 23, 24, 26, 30, 40,
and 90.

5.5.2.6 Running XMTSD in the Foreground

Once the XMTSD program has been properly built via CTSGEN, time shar
ing can begin. Assume you have four terminals, including the console
terminal, and that four terminals were selected in both the RT-ll SyS
GEN and the CTS-300 CTSGEN. It is recommended that you use the fol
lowing procedure to execute the time-sharing program and the back
ground listener program.

Load and execute the time-sharing program (XMTSD RTS) by using the
foreground RUN command in the form:

.FRUN filnam.SAV

where:

filnam is the name and extension of the XMTSD RTS as specified
in answer to the last question in CTSGEN (see Chapter
6). Regardless of the file name you choose for your
XMTSD RTS, XMTSD will always identify itself as XM-TSD •

• The extension .SAV must be specified •

• The program must be run from the system device.

Once started, the XMTSD RTS identifies itself by displaying the fol
lowing message at each of the terminals that it recognizes (in this
case, terminals 1, 2, and 3):

XM-TSD VERSION VCnn-nn
*

where:

nn-nn is the version number.

5-26 CTS-300 OPERATING SYSTEMS

(*) the prompting character, indicates readiness to accept
a command from the keyboard. At this point, you may
set terminal characteristics but do not run any program
unless you do not intend to run the listener.

If you want XMTSD to have access to the background, run the listener
program at terminal 0, the background console. The command and
response are:

• R LISTNR
CTS300 V6 LISTENER

Enter the following to return to the foreground to run time-sharing
programs:

CTRL/F

5.5.2.7 Memory Allocation

The allocation of memory for an XMTSD RTS in which XMTSD is run as a
foreground program is shown in Figure 5-4.

248 KB
Free memory

Used by XMTSD for
~ TSD programs

80 KB .--------------------------------.

XMTSD (Part 2)

56KB ~-----------------------------------

XM Monitor
and

Device Handlers

40KB ~-------------------------
XMTSD (Part 1)

32KB ~-------------------------USR

28KB ~--------------------------------

o

free memory

• Useable for a background Job
• Not useable for DIBOL

Programs under XMTSD's
control

Figure 5-4 Memory Allocation for XMTSD as a Foreground Program

CTS-300 OPERATING SYSTEMS 5-27

5.5.2.8 Applications

When XMTSD is run in the foreground, the system can be thought of as
running in what is primarily a development mode, because in this mode
many activities normally associated with development are efficiently
handled. Among these are concurrent development and remote patching.
Possible operation as a production system is also discussed.

Concurrent Development

The entire process of application program development can be
undertaken by several users of a time-shared DIBOL system. Any user
at a foreground terminal can edit and debug under XMTSD. The DIBOL
editor DKED.TSD (see Chapter 3 in this manual) can be used to create
and edit source files. These files can be DIBOL programs or indirect
files consisting of commands to be sent to the background.
Furthermore, by communicating with the background program, LISTNR,
programs can be compiled and linked.

Note that when compiling programs in this mode you must use the /G op
tion to create an error log file which will contain possible errors.
See Chapter 4, DICOMP, for more information.

Remote Patching

Since it is possible for a remote terminal to communicate with the
foreground program XMTSD and, through it, with the background, any re
mote terminal can be used to perform system maintenance, including
patching.

Production Mode

While running XMTSD in the background l is considered the conventional
production mode (see Section 5.5.3), it is possible that running XMTSD
in the foreground could be useful in some production environments.
This would be an application that could make use of the background
processing capability.

In such a situation, you would probably want all terminals,
the console terminal, to be available for production use.
plish this you must:

including
To accom-

• Suppress the CTS300 V6 LISTENER and BYE commands generated by
the listener. This is done by running RT-ll PATCH and set
ting location 1000 in LISTNR.SAV to a one.

• Set TT:QUIET for the console terminal.
I

" • Ensure that the background o~eration you are performing does
not output to the terminal.

• Be sure not to enter a CTRL/B which would attach the terminal
to the background.

5-28 CTS-300 OPERATING SYSTEMS

5.5.3 XMTSD in the Background

This is the conventional mode of operation in which XMTSD has the same
capabilities and limitations (except, of course, for the greater memo
ry capacity) as TSD running with the non-extended memory monitor.

5.5.3.1 Running XMTSD in the Background

Once the XMTSD program has been properly built via CTSGEN, time shar
ing can begin. Load and execute the time-sharing program (XMTSD RTS)
which must be on the system device by using the monitor's RUN command
in the form:

.R filnam.ext

where:

filnam.ext
is the name and extension of the XMTSD RTS as specified
in answer to the last question in CTSGEN. See Chapter
6.

Once started, the XMTSD RTS identifies itself by displaying the fol
lowing message at each of the terminals that it recognizes:

XM-TSD VERSION VCnn-nn
*

where:

nn-nn

(*)

is the version number.

the prompting character, indicates readiness to accept
a command from the keyboard. At this point, any pro
gram linked for time-shared operation can be run.

CTS-300 OPERATING SYSTEMS 5-29

5.5.3.2 Memory Allocation

The allocation of memory for an XMTSD System in which XMTSD is running
as a background program is shown in Figure 5-5.

248 KB

free memory
Used by XMTSD for

" TSD programs

80KB ~---------------------------------

XMTSD (Part2)

56KB~------------------____ _

XM Monitor
and

Device Handlers

40 KB ~-----------------------
USR

36 KB t----------------------

free memory
Used by XMTSD for

TSD programs

8 KB t-------------
XMTSD (Part 1)

o

Figure 5-5 Memory Allocation for XMTSD as a Background Program

5.5.3.3 Applications

When XMTSD is run in the background (as contrasted with running in the
foreground), the system can be thought of as running in a production
mode. All the system resources, including lower memory and console
terminal, are available for the day-to-day needs of application pro
grams under the control of the run-time system.

5-30 CTS-300 OPERATING SYSTEMS

5.6 TERMINATING TIME-SHARED OPERATION (RTEXIT)

5.6.1 Running RTEXIT

The RTEXIT program is used to terminate the operation of the
time-shared system and the programs operating under its control. The
procedure is the same for both TSD and for XMTSD when run in the back
ground. For XMTSD in the foreground, see Section 5.6.3. For TSD and
XMTSD (background) the following command is entered while the
time-shared system is operating:

* R RTEXIT

If no jobs are running, control returns immediately to the RT-ll moni
tor. If other jobs are running, the response is:

DO YOU WISH AN ABSOLUTE SHUTDOWN? (Y-N) (N)

An answer of Y causes any job currently running to be unconditionally
terminated with unpredictable results for that job. If you answer N
(or CR), RTEXIT will display the current status of jobs every 20 sec-
onds until such time as~all jobs are done. At this time, control re
turns to the RT-ll monitor. You may cancel the current status display
by entering a CTRL/C at any time. This will allow you to run RTEXIT
again and to select the absolute shutdown.

5.6.2 Chaining to RTEXIT

RTEXIT may be automated by having the preceding program chain to it
with the SEND statement. This operation is essentially the same as
the situation where RTEXIT is run manually; it has the same restric
tions as XMTSD when it is run in the foreground. The sequence for a
program running under a time-shared operating system program (except
XMTSD in the foreground) could be:

SEND ('MSG','RTEXIT.TSD ')

STOP 'RTEXIT.TSD '

The message 'MSG ' is optional. When used with RTEXIT, it contains a
file name and, separated by a space, an optional alpha character. The
file name is that of a file to be executed once the time-shared pro
gram is terminated and could be a Save image program (.SAV) or an in
direct file. The alpha character is the response to the absolute
sh~tdown question. An absolute shutdown occurs if the character is
absent. If the program preceding the running of RTEXIT is detached,
the shutdown is always absolute regardless of the presence of the N
alpha character in the message.

CTS-300 OPERATING SYSTEMS 5-31

5.6.3 RTEXIT for XMTSD in the Foreground

When XMTSD is operating in the foreground, the selection of RTEXIT is
somewhat more involved, because of possible interaction between fore
ground and background at the time RTEXIT is run. See below for an ex
ample of the steps that may be required.

To start time-sharing XMTSD in the foreground:

.FRUN XMTSD.SAV

at the background terminal:

.R LISTNR

To terminate the listener which is running in the background, enter:

CTRL/C

to terminate XMTSD which is running in the foreground, enter:

*R RTEXIT
DO YOU WISH AN ABSOLUTE SHUTDOWN? (Y-N) (N) <CR>

When all the jobs are complete and XMTSD terminates, at the consol~
terminal, enter:

UN F

This unloads the foreground job which is XMTSD.

5.7 UTILIZING RESOURCES ON A SMALL SYSTEM

The relatively limited capacity and access speed of a diskette,
especially when used as the system device, make careful planning
necessary if you want to make the best use of your system. The
following guidelines are presented to make you aware of what may be
done:

• Include only the essential programs, data files, utilities,
and options •

• Use the SEGMENT:l option when initializing diskettes prior to
building your system. The result is a two-block directory on
each diskette. This gives you a directory with a 72-file
capacity and saves six blocks (two blocks per segment) of
diskette space.

5-32 eTS-300 OPERATING SYSTEMS

• If you have an application'program that uses overlays, con
sider reI inking your overlayed routines, where possible, to
make them a part of the root section of your program. This
reduces disk access time. Programs that use overlays heavily
are slower on a diskette system than when run in a system
with faster disks. The elimination of overlays will, there
fore, increase performance.

• If you set USR to NOSWAP, you reduce the time to open and
close files by 90 percent. This is recommended as a standard
procedure if you plan to be manipulating files extensively
and if you have the space in memory (the USR requires 4 KB).

• Depending on the size of your application and the functions
you wish to support, you might segregate programs to be used
together and place them on a single diskette. That is, not
all the capabilities need be placed on the system disk but
could be grouped by logical use onto individual diskettes.
If you swap disks in this way to perform various functions,
you also have to set USR to SWAP so the directory lookups for
program name will work correctly.

5.8 ERROR MESSAGES

The operating system error messages are listed in Appendix A. Special
error messages generated by the time-shared system program (TSD or
XMTSD) are listed in Appendix B, Table B-3. The error messages for
the foreground / background communication commands are listed in Ap
pendix B, Table B-4.

CTS-300 OPERATING SYSTEMS 5-33

CHAPTER 6

SYSTEM DEVELOPMENT

6.1 INTRODUCTION

A CTS-300 System is comprised of two major software packages: RT-ll
and CTS-300. Both of these are furnished in a form that has the po
tential for many capabilities but which is probably not immediately or
directly usable by any CTS-300 user. Each software package should be
tailored to match the hardware and to provide the specific software
capabilities needed for a given user. In this manual, this process is
called system development. Both RT-ll and CTS-300 have their own pro
grams and procedures to facilitate developing an optimal system with
minimal memory requirement.

6.1.1 System Generation Programs

RT-ll software is adapted to the hardware and user requirements using
the RT-ll SYSGEN program documented in the RT-ll System Generation
User's Guide. The RT-ll SYSGEN program is modified slightly for
CTS-300 users, and these modifications are explained in this chapter.
CTS-300 software (both single-user and multi-user) is adapted to the
user's requirements with a program called CTSGEN. CTSGEN is des
cribed, in detail, in this chapter.

6.1.2 Chapter Organization

The remainder of this chapter is comprised of three major sections.
The first, Section 6.2, CTS-300/RT-ll SYSGEN, describes RT-ll SYSGEN
as it applies to CTS-300. The second, Section 6.3, CTSGEN, provides
detailed information on theCTSGEN program. This includes the actual
CTSGEN dialog and information to help you make choices. The third,
and last, section, Section 6.4, Error Messages, is a discussion of
errors that may be encountered during a CTSGEN.

6-1

6.2 CTS-300/RT-ll SYSGEN

The first step in developing a working system is to build an
appropriate RT-ll Operating System. You must run SYSGEN to select the
RT-ll monitor services and device handlers you require. Since the
RT-ll dialog is long and repetitive, an optional, shorter list is
provided for CTS-300 users. This shorter version is known as
CTS-300/RT-ll SYSGEN.

The first question asked in the CTS-300/RT-ll SYSGEN allows you to
choose either the CTS-300/RT-ll version or the full RT-ll SYSGEN as
described in the RT-ll documentation. The CTS-300/RT-ll version is
different in that it rephrases some questions and provides a pro
grammed selecti~n of certain routinely chosen answers to selected
questions. Users for whom the programmed answers are valid (most
CTS-300 users) can save time and prevent errors by selecting
CTS-300/RT-ll SYSGEN.

The questions that have been rephrased are:

Question Change

Q5 Asks: Do you want the extended memory (XM) monitor?
Default answer has been changed to a Y.

Q12 Was: Do you want multiterminal support?
Now: Are you going to use TSD with this monitor?

RT-ll's Q89 to Q93: Line printer support questions have been
removed and replaced in CTS-300/RT-ll by Q152
through Q164. The TSD multiterminal support handles
a maximum of four line printers in any combination
of parallel and/or serial.

Q152 Asks: How many line printers in all?
!

Q153 Asks: Is the first line printer (LP) parallel? (the de-
fa u 1 tis a Y; jan s we r wit han N i f s e ria 1)

Q154 and Q155: ask for CSR and vector addresses.

Q156 through Q158 Ask: as in Q153, 154, and 155, the same ques-
tions for the second line printer (LQ) .- "

Q159 through Q16l Ask: as in Q153, 154, and 155, the same ques-
tions for the third line printer (LR).

Q162 through Q164 Ask: as in Q153, 154, an~, 155, the same ques-
tions for the fourth line printer (LS) •

RT-ll's Q152 through Q155 have been renumbered in CTS-300/RT-ll
to Q165, Q166, Q167, and Q168.

6-2 SYSTEM DEVELOPMENT

The answers automatically provided with CTS-300/RT-11 SYSGEN are:

Question

Q2 Baseline single-job monitor

Q6 SJ timer support

Q8 Error message to replace system halt
upon receipt of a system I/O error
for the single-job monitor

QlO .SPCPS request

Q11 Idle loop light pattern

Q13 Asynchronous terminal status

Q23 KWll-P clock as the system clock

Q25 Floating point support

Q5l TCl1 DECtape support

Q52 RF-l1 fixed head disk support

Q54 RJS03 or RJS04 disk support

Q88 TA-ll cassette support

Q96 PC-II high speed paper tape reader/punch

Q97 PR-ll high speed paper tape reader

Q100 VTll or VS60 graphics support

Q168 Retention of system OBJ's

Answer

No

Yes

Yes

No

No

Yes *
No

No

No

No

No

No

No

No

No

No

* Answered as a YES only if you have answered YES to Q12 for
TSD; otherwise, it is not preanswered.

If you wish to change any of the automatic selections, answer NO to
the first question in CTS-300/RT-ll SYSGEN. By responding NO, you
will have entered the full RT-1l SYSGEN, and you will then be asked
the first question in the RT-l1 SYSGEN. If you choose RT-1l SYSGEN,
and you plan to run a time-shared DIBOL program, you must choose
mu1titermina1 support (Q12) and answer YES to asynchronous terminal
status (Q13). Whether you choose CTS-300/RT-ll SYSGEN or RT-ll
SYSGEN, you should refer to the RT-ll System Generation Manual before
you start.

When you have completed your CTS-300/RT-l1 SYSGEN (or RT-ll SYSGEN),
you will have to run CTSGEN.

SYSTEM DEVELOPMENT 6-3

6.3 CTSGEN

The CTSGEN program is the CTS-300 Operating System Program generator.
It is an interactive program that is used to select the parameters as
sociated with a CTS-300 system. It can create a run-time code inter
preter for a Single-User DIBOL (SUD) program, or it can create both a
code interpretor and run-time system executive for a time-shared (TSD
or XMTSD). As with the RT-ll SYSGEN, it is wise to plan ahead exactly
what your requirements are before building the CTS-300 system. It may
help if you read Chapter 5, CTS-300 Operating Systems, before initiat
ing any CTSGEN activity.

6.3.1 Characteristics

6.3.1.1 Choices

CTSGEN allows you to build either a Single-User DIBOL RTS program or a
Time-Shared DIBOL RTS program.

Single-User System

If you are building a SUD system, the choices are limited to the se
lection of two system services. You may select:

support for ISAM files
support for DDT

Time-Shared System

If you are building a time~shared RTS, there are two basic types of
support services you may select:

Run-time system services you may select are:

number of programs
number of messages stored
number of channels opened per program
support for ISAM files
support for the XM monitor (and residency of USR)
support for DDT
support for implicit or forced-job startup
auto job startup upon completion of the time-shared RTS load

Peripheral device support you may select:

standard (or non-standard) terminals
local or remote terminal use
DLll or DZll terminal interface
mechanical operating characteristics of each terminal
total number of different peripheral devices

6-4 SYSTEM DEVELOPMENT

6.3.1.2 Preliminary Requirements

As you did with SYSGEN, you must plan ahead for your CTSGEN session.
Acquaint yourself with the flow of CTSGEN by using the chart, Figure
6-1, in Section 6.3.2 and by reading the dialog and responses in the
following sections for the system you intend to build. It is impor
tant to remember your SYSGEN responses dealing with terminals, because
they affect your answers in CTSGEN.

Single-User System

The following modules are necessary for building a single-user RTS.
They must be on the system disk.

CTSGEN.SAV
LINK.SAV
MACRO.SAV
SUD.RTS

Time-Shared System

ELONG.OBJ
DDT.OBJ
DDTX.OBJ
SDIRT.OBJ

ISAM.OBJ
ISAMX.OBJ
MATH.OBJ
IO.OBJ
JOB.OBJ

Use the lists in Section 6.3.1.1 and note the peripheral devices on
your system and the run-time system services you require for your ap
plication.

The following modules are necessary for building a time-shared RTS
(TSD and XMTSD). They must be on the system disk.

CTSGEN.SAV
LINK.SAV
MACRO.SAV
SUD.RTS
SYSMAC.SML
QC.MAC
ST.MAC
TO. MAC
TSDTBL.MAC
DEFS.MAC
TSDDFN.MAC

DMESS.OBJ
DJOB.OBJ
DISAM.OBJ
DISAMX.OBJ
DESHRT.OBJ
DELONG.OBJ
FRUNIT.OBJ
FRUNXX.OBJ
DDDT.OBJ
DDDTX.OBJ
DMATH.OBJ
DDIRT.OBJ
DTO.OBJ
DIO.OBJ
DTOINI.OBJ

KDMESS.OBJ
KDJOB.OBJ
KISAM.OBJ
KISAMX.OBJ
KESHRT.OBJ
KELONG.OBJ
KFRUN.OBJ
KFRUNX.OBJ
KDDT.OBJ
KDDTX.OBJ
KMATH.OBJ
KDIRT.OBJ
KDTO.OBJ
KDIO.OBJ
KTOINI.OBJ
KCORE.OBJ

SYSTEM DEVELOPMENT 6-5

6.3.1.3 Question Types

Each CTSGEN question has a default answer. That default is noted im
mediately after the question and is placed within parentheses. After
each question is displayed, you respond by typing the desired entry or
by typing a carriage return (CR) to select the default.

There are two kinds of questions in CTSGEN:

• Questions that require a Y or an N response •

• Questions that require a numeric response.

Unlike SYSGEN, there is no need to specify numbers in octal.
Questions that require a numeric response accept only decimal numbers.
The default value is contained in parentheses immediately following
the question.

If you need to change your response to a previous question, you may
return to that question by entering Q followed by the question number.
Take special care when responding to questions that require other than
Y, N, or a default value.

6.3.2 CTSGEN Dialog

This section describes the dialog in detail. All text~ questions, and
responses displayed during the dialog are described. However, during
any run of CTSGEN some of these questions and comments will not ap
pear, since their occurrence may depend on the answers to previous
questions.

Like SYSGEN, CTSGEN dialog has two forms. There is a short form with
the question and the default answer only and a longer form which pre
sents the question and explanatory comment. The short form is the de
fault; however, when you enter a question mark (or an invalid res
ponse) in response to a CTSGEN question, the program repeats the ques
tion (and default) along with explanatory comments on the question
displayed. Those comments can guide you through a CTSGEN session, and
if you are not experienced with CTSGEN, this longer session will help
you to be sure of the implications of your answers and to avoid inac
curate responses. If you are familiar with CTSGEN, use the short
form.

Figure 6-1 illustrates the flow of questions in CTSGEN.

6-6 SYSTEM DEVELOPMENT

SYSTEM SELECTION .R CTSGEN

1. CHOOSE SUDGEN [SI OR TSDGEN m: (T)
I I

TERMINAL SELECTION ~ T IS
4. ARE ALL TERMINALS STANDARD? (Y)

~N I~Y ____________ ~
6. HOW MANY LOCAL (DLlIl TERMINALS TO BE USED

other related questions

7. HOW MANY REMOTE (DLIIl TERMINALS TO BE USED
other related questions

8. HOW MANY LOCAL (DZIIl TERMINALS TO BE USED
other related questions

5. HOW MANY TERMINALS TO BE USED

9. HOW MANY RE~OTE (DZI!) TERMINALS TO BE USED

HARDWARE
SOFTWARE
CHARACTERISTICS

10. HOW MANY PROGRAMS TO RUN (4)

11. HOW MANY TOTAL MESSAGES TO BE STORED IN
MEMORY (8)

12. HOW MANY KINDS OF DEVICES TO BE USED (4)

13. HOW MANY TOTAL CHANNELS TO BE USED (12)

USR TO BE L~]~:::::R:E,:SEI ~NI
I HOW MANY TOTAL]ILES OPEN FOR UPDATE (6)

ISAM FILES

15. ARE ISAM FiES TO BE USED (N)

I Y
if XMTSD if not 'XMTSD

t !
HOW MANY TOTAL ISAM 2. ARE ISAM FILES TO BE USED: (N)

DDT

FILES TO BE USED (3)

HOW MAN~ ISAM
VOLUMES/FILE: (2)

16. IS DDT TO BE USED: (N)

BRIEF ERROR M~:S I y
L..----r-----'

PROGRAMMED
START UP ~

17. IS IMPLICIT JOB START UP TO BE USED (N)

t N I Y
IS FORCED JOB ~TART UP TO BE USED (N) J

RUN TIME SYSTEM
NAME

I
18. IS AUTO JOB START TO BE USED (N)

N ~Y
PROGRAM NAME

J

19. DO YOU NEED TO CHANGE AN ANSWER (N)

3. IS DDT TO BE USED (N)

!N + Y
REENTER AT QUESTION:

if TSD: ENTER THE NAME OF THE SAVE FILE

if SUD: file is assigned name SUD:RTS

Figure 6-1 CTS-300 Operating System Generator (CTSGEN)

SYSTEM DEVELOPMENT 6-7

The following is the actual CTSGEN dialog and explanatory text. It is
broken into sections in this manual to identify more clearly the ac
tivity taking place. The dialog is shown in upper case only. The ex
planatory material is shown in both uppercase and lowercase.

CTSGEN is executed with the following command; it responds as shown:

.R CTSGEN

CTSGEN Vnn-nn

EACH OF THE FOLLOWING QUESTIONS IS FOLLOWED BY A DEFAULT
RESPONSE IN PARENTHESES. THIS RESPONSE WILL BE USED
IF A <CR) IS TYPED IN ANSWER TO THE QUESTION. IF A
QUESTION MARK OR ANY ILLEGAL RESPONSE IS TYPED, FURTHER
INFORMATION CONCERNING THE CURRENT QUESTION WILL BE PRINTED
AT THE TERMINAL. IN GENERAL YOU MAY RETURN TO ANY OF THE
QUESTIONS THAT ARE MARKED WITH A LINE NUMBER. SIMPLY TYPE
THE LETTER Q FOLLOWED BY THE LINE NUMBER. (I.E. Ql, Q3, QlO)

6.3.2.1 Single-User or Time-Shared System

The first question in CTSGEN:

1. CHOOSE - SUDGEN [S] OR TSDGEN [T]: (T)

Respond with S if you are going to build a single-user system or with
T (or CR) if you are going to build a time-shared system. If you
answer T, Q4 will appear. See Section 6.3.2.3.

6.3.2.2 Single-User System

There are only two questions asked for a single-user system:

2. ARE ISAM FILES TO BE USED: (N)

Choosing ISAM costs approximately 4.2 K bytes.

Respond with N (or CR) if you do not plan to use ISAMfiles.
with Y if you do plan to use ISAM files. The next question:

3. IS DDT TO BE USED: (N)

Choosing DDT costs approximately 1100 bytes.

Respond

Respond with N (or CR) if you do not plan to use the DIBOL debugging
program, DDT. Respond with Y if you do plan to debug.

6-8 SYSTEM DEVELOPMENT

With your answer to this last question, CTSGEN proceeds to automati
cally build a run-time code interpreter for Single-User DIBOL (SUD)
programs. The name of the interpreter is assigned by CTSGEN to be
SUD.RTS. This file must always be on the system disk for your SUD
system. In addition, a link map (SUD.MAP) is generated which may help
identify problems with the interpreter.

It is advised that you rename CTSGEN.COM to SUDGEN.COM using the com
mand string:

• RENAME CTSGEN.COM SUDGEN.COM

You can not run any Single-User DIBOL program, not even CTSGEN, with
out SUD.RTS. The SUDGEN.COM that you just made is a backup you can
use to recreate the same SUD.RTS selected by questions 2 and 3 above.
All you have to do is type @SUDGEN. This can be very helpful if you
should accidently destroy your SUD.RTS. Every time you run a CTSGEN,
a new CTSGEN.COM is generated. For this reason, you must rename the
CTSGEN.COM to SUDGEN.COM after this CTSGEN and before another.

It is permissible, and often useful, to create several versions of
SUD.RTS and store them for later use. There-are four possibilities by
choosing to support (or not support) ISAM and/or DDT. The distribu
tion version is without ISAM or DDT support. However, other versions
must be stored with names other than SUD.RTS, since SUD programs auto
matically look for SUD.RTS when the RUN command is issued. Whenever a
particular version is needed, you simply rename it to SUD.RTS (after
storing its predecessor under its storage name) and run your SUD pro
grams.

6.3.2.3 Time-Shared System

The first question related to a time-shared system:

4. ARE ALL THE TERMINALS STANDARD: (Y)

"Standard" is a term used here solely in regard to the CTSGEN dialog.
A standard terminal is defined as being either a VT100, VT52, or a
VT50H, each of which has the following attributes:

• Local DLll interface only

• Master terminal

You cannot initiate a time-shared program at a slave termi
nal.

• Line width of 80 characters

• No CTRL/C trap support

CTRL/C trap prevents a CTRL/C from terminating a time-shared
program. Such abnormal termination could result in loss or
corruption of data files.

SYSTEM DEVELOPMENT 6-9

If your answer is N, Q6 will be displayed. Q6 is discussed in Section
6.3.2.5; but, first, see Section 6.3.2.4.

If your answer is Y or <CR):

5. HOW MANY TERMINALS TO BE USED: (2)

You may select up to the number
of 8 is recommended for systems
CTSGEN will permit up to 12. A
played. See Section 6.3.2.9
parameters.

6.3.2.4 Terminal Specification

chosen in the RT-ll SYSGEN. A limit
in which terminal input will be heavy;
valid response prompts QIO to be dis-

to continue selection of other system

Since your response to question 4 was N (your terminals are not all
standard), more information is needed. Terminal information to be
specified in the following sections of this chapter (CTSGEN questions
6 through 9) depends on the following factors.

Your answers in SYSGEN set the limits for your answers in CTSGEN.
SYSGEN used your answers to assign hardware interfaces to support the
terminals. CTSGEN asks you which of these terminals you want your
time-shared program to recogn-ize.

CTSGEN terminal questions are presented in the same four categories as
in SYSGEN: DZll local, DLll remote, DZll local, and DZll remote. In
each category you are asked how many terminals are to be used and how
many are to be unused. The total (used and unused) must equal the
SYSGEN assignment for that category.

Additional information pertaining to these terminals is also asked in
each of the four categories.

6.3.2.5 Local DLll Terminals

This series of questions pertains to local terminals on the DLll in
terface.

6. HOW MANY LOCAL (DLll) TERMINALS TO BE USED: (4)

Respond with the number of terminals that are connected to DLll
hardware and that are to be used locally. This question was asked in
SYSGEN; your response may be the same or less than your response in
SYSGEN. You must specify at least one for your console terminal.

HOW MANY LOCAL (DLll) TERMINALS LEFT UNUSED: (0)

Respond with the number of terminals that are not to be used. Your
response to the preceding question and the number that you specified
in SYSGEN for local use are important here. Your answer must be the
difference between those two responses.

6-10 SYSTEM DEVELOPMENT

You have specified how many local DLll terminals are to be recognized
by the time-shared RTS. Now you must enter the operating characteris
tics of each one. A series of five questions follows for each termi
nal noted in the first part of Q6.

TERMINAL n
S TERMINAL n A SCOPE: (Y)

Respond Y or <CR) if this terminal has a display (video) screen.
Respond N if this terminal is a teleprinter (prints out hard copy).
From within a DIBOL program, terminal 1 would be referred to as
terminal o.

IS TERMINAL n A SLAVE: (N)

Respond N or <CR) if this terminal is to be a master terminal.
Respond Y if you do not want this terminal to be able to start jobs
with keyboard commands. A Y response means that jobs at this terminal
must be started by forced-job startup. Remember, if this is terminal
1 (the console terminal), it must be a master terminal.

IS CTRL/C TRAP TO BE USED: (N)

Respond N or <CR) if you want a CTRL/C to be recognized by the
time-shared RTS. Respond Y if you want a CTRL/C to be ignored by the
time-shared RTS. This CTRL/C is not passed to the DIBOL program.

HOW MANY FILL CHARACTERS TO BE USED: (0)

Respond with a decimal number according to your terminal model as
noted in the following chart. The chart notes the number of fill
characters required for each terminal model set for the baud rate
shown. This number provides a delay time to allow completion of the
carriage return/line feed.

VT100 (set for 9600 baud) 0
VT50H (set for 9600 baud) 0
VT52 (set for 9600 baud) 0
LA36 (set for 300 baud) 0
LA30 (set for 300 baud) 10
LA30 (set for 150 baud) 4
LA30 (set for 110 baud) 2
VT05 (set for 2400 baud) 2
VT05 (set for 1200 baud) 2
VT05 (set for 600 baud) 1

The next question:

WHAT IS THE LINE WIDTH TO BE USED: (80)

Respond with a decimal number in the range of 1 through 132 according
to your terminal model. This number is usually 80.

These preceding five questions appear for each local DLll terminal you
specified in question Q6 until operating characteristics are detailed
for all local DLll terminals to be supported at run time. Now you
must consider DLll terminals for remote use.

SYSTEM DEVELOPMENT 6-11

6.3.2.6 Remote DLll Terminals

This series of questions pertains to remote terminals on the DLII in
terface.

7. HOW MANY REMOTE (DLII) TERMINALS TO BE USED: (0)

Respond with the number of terminals to be used that are connected to
DLII hardware and that will Qe used in a remote mode. This question
was asked in SYSGEN; your response may be the same or less than your
response in SYSGEN.

HOW MANY REMOTE (DLII) TERMINALS LEFT UNUSED: (0)

Respond with the number of terminals that will not be used. Your res
ponse to the preceding question and the number that you specified in
SYSGEN for remote use are important here. Your answer must be the
difference between those two responses.

You have specified how many remote DLII terminals are to be recognized
by the time-shared RTS. Now you must enter the operating characteris
tics of each one. A series of five questions follows for each termi
nal noted in the first part of Q7.

TERMINAL n
IS TERMINAL n A SCOPE: (Y)

Respond Y or <CR) if this terminal has a display screen (a video
screen). Respond N if this terminal is a teleprinter (prints out hard
copy) •

IS TERMINAL n A SLAVE: (N)

Respond N or <CR) if this terminal is to be a master terminal.
Respond Y if you do not want this terminal to be able to start jobs
with keyboard commands. A Y response means that jobs at this terminal
must be started by forced-job startup.

IS CTRL/C TRAP TO BE USED: (N)

Respond N or <CR) if you want a CTRL/C to be recognized by the
time-shared RTS. Respond Y if you want a CTRL/C to be ignored by the
time-shared RTS. This CTRL/C is not passed to the DIBOL program.

HOW MANY FILL CHARACTERS TO BE USED: (0)

6-12 SYSTEM DEVELOPMENT

Respond with a decimal number according to your terminal model. The
chart notes the number of fill characters required for each terminal
model at the baud rate shown. This number provides a delay time to
allow completion of the carriage return/line feed.

VT100 (set for 9600 baud) 0
VT50H (set for 9600 baud) 0
VT52 (set for 9600 baud) 0
LA36 (set for 300 baud) 0
LA30 (set for 300 baud) 10
LA30 (set for 150 baud) 4
LA30 (set for 110 baud) 2
VT05 (set for 2400 baud) 2
VT05 (set for 1200 baud) 2
VT05 (set for 600 baud) 1

The next question:

WHAT IS THE LINE WIDTH TO BE USED: (80)

Respond with a decimal number in the range of 1 through 132, according
to your terminal model. This number is usually 80 and may be thought
of as setting the margins.

The preceding five questions appear for each remote DL11 terminal you
specified in Q7 until operating characteristics are detailed for all
remote DL11 terminals to be supported at run time.

Now you must consider terminals that interface with DZ1l hardware.

6.3.2.7 Local DZ11 Terminals

This series of questions pertains to local terminals on the DZll in
terface.

8. HOW MANY LOCAL (DZ1l) TERMINALS TO BE USED: (0)

Respond with the number of terminals to be used that are connected to
DZ11 hardware and used locally. This question was asked in SYSGEN;
your response may be the same or less than your response in SYSGEN.

HOW MANY LOCAL (DZll) TERMINALS LEFT UNUSED: (0)

Respond with the number of terminals that are not to be used. Your
response to the preceding question and the number that you specified
in SYSGEN for remote use are important here. Your answer must be the
difference between those two responses.

You have specified how many local DZ11 terminals are to be recognized
by the time-shared RTS. Now you must enter the operating characteris
tics of each one. A series of six questions follows for each terminal
noted in the first part of Q8.

TERMINAL n
IS TERMINAL n A SCOPE: (Y)

SYSTEM DEVELOPMENT 6-13

Respond Y or <CR> if this terminal has a display (video) screen.
Respond N if this terminal is a teleprinter (prints out hard copy).

IS TERMINAL n A SLAVE: (N)

Respond N or <CR> if this terminal is to be a master terminal.
Respond Y if you do not want this terminal to be able to start jobs
with keyboard commands. A Y response means that jobs at this terminal
must be started by forced-job startup.

IS CTRL/C TRAP TO BE USED: (N)

Respond N or <CR> if you want a CTRL/C to be recognized by the
time-shared RTS. Respond Y if you want a CTRL/C to be ignored by the
time-shared RTS. This CTRL/C is not passed to the DIBOL program.

HOW MANY FILL CHARACTERS TO BE USED: CO)

Respond with a decimal number according to your terminal model. The
chart notes the number of fill characters required for each terminal
model at the baud rate shown. This number provides a delay time to
allow completion of the carriage return/line feed.

VT100 (set for 9600 baud) 0
VTSOH (set for 9600 baud) 0
VTS2 (set for 9600 baud) 0
LA36 (set for 300 baud) 0
LA30 (set for 300 baud) 10
LA30 (set for ISO baud) 4
LA30 (set for 110 baud) 2
VTOS (set for 2400 baud) 2
VTOS (set for 1200 baud) 2
VTOS (set for 600 baud) 1

The next question:

WHAT IS THE LINE WIDTH TO BE USED: (80)

Respond with a decimal number in the range of 1 through 132 according
to your terminal. model. This number is usually 80 and may be thought
of as setting the margins.

WHAT IS THE LOCAL TERMINAL BAUD RATE: (9600)

Respond with a decimal number according to your terminal model type
and the speed that is appropriate for it. Baud rates are:

110,
1800,
7200,

ISO,
2000,
9600.

300,
2400,

600,
3600,

1200,
4800,

These preceding six questions appear for each local DZll terminal you
specified in Q8 until operating characteristics are detailed for all
local DZll terminals to be supported at run time.

Now it is time to consider your DZll terminals for remote use.

6-14 SYSTEM DEVELOPMENT

6.3.2.8 Remote DZll Terminals

These questions pertain to remote terminals on the DZll interface.

9. HOW MANY REMOTE (DZll) TERMINALS TO BE USED: (0)

Respond with the number of terminals to be used that are connected to
DZll hardware and that will be used in a remote mode. This question
was asked in SYSGEN; your response may be the same or less than your
response in SYSGEN.

You have specified how many remote DZll terminals are to be recognized
by the time-shared RTS. There is no need to specify remote DZll ter
minals left unused. Now you must enter the operating characteristics
of each terminal noted in Q9. A series of six questions follows for
each terminal noted in the first part of Q9.

TERMINAL n
IS TERMINAL n A SCOPE: (Y)

Respond Y or <CR) if this terminal has a display screen (a video
screen). Respond N if this terminal is a teleprinter.

IS TERMINAL n A SLAVE: (N)

Respond Y or <CR) if this terminal is to be a master terminal.
Respond Y if you do not want this terminal to be able to start jobs
with keyboard commands. A Y response means that jobs at this terminal
must be started by forced-job startup.

IS CTRL/C TRAP TO BE USED: (N)

Respond N or <CR) if you want a CTRL/C to be recognized by the
time-shared RTS. Respond Y if you want a CTRL/C to be ignored by the
time-shared RTS. This CTRL/C is not passed to the DIBOL program.

HOW MANY FILL CHARACTERS TO BE USED: (0)

Respond with a decimal number according to your terminal model. The
chart notes the number of fill characters required for each terminal
model at the baud rate shown. This number provides a delay time to
allow completion of the carriage return/line feed.

VT100
VT50H
VT52
LA36
LA30
LA30
LA30
VT05
VT05
VT05

(set for 9600 baud)
(set for 9600 baud)
(set for 9600 baud)
(set for 300 baud)
(set for 300 baud)
(set for 150 baud)
(set for 110 baud)
(set for 2400 baud)
(set for 1200 baud)
(set for 600 baud)

The next question:

o
o
o
o

10
4
2
2
2
1

WHAT IS THE LINE WIDTH TO BE USED: (80)

SYSTEM DEVELOPMENT 6-15

Respond with a decimal number in the range of 1 through 132, according
to your terminal model. This number is usually 80 and may be thought
of as setting the margins.

WHAT IS THE REMOTE TERMINAL BAUD RATE: (300)

Respond with a decimal number according to your terminal model type
and the speed that is appropriate for it. The baud rate must be the
same as that chosen in the RT-ll SYSGEN question for 0211 support.
Baud rates are:

110,
1800,
7200,

150,
2000,
9600.

300,
2400,

600,
3600,

1200,
4800,

These preceding six questions appear for each remote 0211 terminal you
specified in Q9 until operating characteristics are detailed for all
remote 0211 terminals to be supported at run time.

You have completed the entry of details for all your terminals; QlO
now appears (see the next section).

6.3.2.9 System Hardware/Software Configuration

The first of the system-related questions:

10. HOW MANY PROGRAMS TO BE RUN: (4)

The cost is approximately 60 bytes per program selected.

Respond with the decimal number of programs or jobs that you plan to
run at anyone time. The range is from 1 through 16.

11. HOW MANY TOTAL MESSAGES TO BE STORED IN MEMORY: (8)

The cost is approximately 14 bytes per message.

Respond with the decimal number of messages that can be stored in
memory at anyone time. This number depends on your programming
needs. Consider which of your programs use SEND or RECEIVE statements
and how many messages are generated (LPTSPL.TSD and BGMAN.TSD use this
facility). The range is from 1 through 50.

12. HOW MANY KINDS OF DEVICES TO BE USED: (4)

The cost is approximately 10 bytes per device selected.

Respond with the decimal number
categories of devices with the
printer requires a separate device
through 10.

of devices. This number notes
exception of printers. Each line
handler. The range is from 1

13. HOW MANY TOTAL CHANNELS TO BE USED: (12)

The cost is approximately 55 bytes per channel selected.

6-16 SYSTEM DEVELOPMENT

Respond with a decimal number in the range of 1 through 50. This
refers to I/O channels (referenced by the DIBOL OPEN statement) that
are needed for devices or files at anyone time across all programs.
In addition, your number sets the limit for questions prompted in Q14
(files opened for update) and in Q15 (total ISAM files).

14. IS EXTENDED MEMORY TSD TO BE USED: (N)

Respond Y if you intend to run XMTSD. An answer of Y automatically
implies that the User Service Routine (USR) will be locked in memory
so the USR question, below, does not appear. Respond N or <CR) if you
do not need DIBOL support for extended memory. If you answer N or
<CR) the following question is asked:

IS USR TO BE LOCKED IN MEMORY: (N)

Choosing USR to be locked in memory costs approximately 4.2 K bytes.

Respond N or <CR) if you want the USR to be swapped out during program
execution. You will want the USR to be swapped out if memory space is
too small to permit program execution. Respond with Y if you want the
USR to remain in memory permanently. With the USR locked in memory,
files OPEN and CLOSE much faster.

Any response to the previous question, or an answer of Y to Q14, will
prompt:

HOW MANY TOTAL FILES OPENED FOR UPDATE: (6)

The cost (in bytes) is approximately:

4 X [number of jobs] X [number of files opened for update].

Respond with a decimal number in the range of 0 through 25. This
number, which is the total number open at anyone time, cannot exceed
your response to Q13 (total channels to be used). Your response
prompts:

15. ARE ISAM FILES TO BE USED: (N)

Choosing ISAM costs approximately 4.2 K bytes.

Respond N or <CR) if ISAM files are not to be accessed in this version
of the time-shared RTS. Respond Y if ISAM files are to be created or
accessed in this version of the time-shared RTS. If you answer Y now,
and you have answered Y to Q14 concerning extended-memory time shar
ing, two additional questions appear:

HOW MANY TOTAL ISAM FILES TO BE USED: (3)

The cost is a function of both this question and the next; therefore,
see the discussion of the next question before answering this.

SYSTEM DEVELOPMENT 6-17

This is the maximum number of ISAM files to be open at anyone time
across all jobs. Respond with a decimal number in the range of 1 up
to the number you specified in answer to Q13 (but not to exceed 25).
A second question appears:

HOW MANY ISAM VOLUMES/FILE: (2)

The cost (in bytes) is approximately:

the number of files X [20 + [10 X the number of volumes per file]].

Respond with a decimal number in the range of 2 through 8. The ISAM
file that occupies the largest number of volumes will determine your
response. If you have prompted CTSGEN for explanatory remarks with
either of the two preceding questions, or if you have exceeded limits
set for these questions, the questions will be asked again;
otherwise, your response prompts:

16. IS DDT TO BE USED: (N)

The cost is approximately 600 bytes.

Respond N or <CR) if you will not require the use of DDT in this
time-shared RTS. Respond Y if you require the use of DDT in this
time-shared RTS. The Y response indicates that you also will get
brief error messages that are listed by number only. If you answer N:

DO YOU WANT BRIEF ERROR MESSAGES: (Y)

The cost of selecting expanded error messages is approximately 1300
bytes.

Respond N if you want the run-time error message text to be displayed
when an error is detected. Respond Y or <CR) if you want only the
number of a run-time error message to be printed when an error is de
tected.

17. IS IMPLICIT JOB STARTUP TO BE USED: (N)

Implicit job startup costs approximately 100 bytes.

Respond Y if you want the capability of implicit job startup. This
will allow a job to start in response to a SEND statement. Selecting
implicit job startup automatically selects forced job startup, below;
and that question is therefore not asked. Implicit job startup must
be selected if you intend to run XMTSD as a foreground program. If
you do not want the capability of implicit job startup, respond N or
<CR).

If you answer N to the preceding question:

IS FORCED JOB STARTUP TO BE USED: (N)

Forced job startup costs approximately 280 bytes.

6-18 SYSTEM DEVELOPMENT

Respond Y if you want the capability for forced job startup. This en
ables you to start a job on another terminal with an XCALL to RUNJB.
Respond with N or <CR> if you do not want to use this capability. You
must respond with Y if the line printer spooler LPTSPL.TSD is to be
used.

18. IS AUTO JOB STARTUP TO BE USED: (N)

Auto job startup costs approximately 30 bytes.

Respond N or <CR> if you do not want to specify a DIBOL program to be
started after the time-shared RTS is loaded. Respond with Y if you
want to automatically start a DIBOL program upon completion of the
time-shared RTS load. If you answer Y, you are prompted for the name
of the program to be automatically started:

ENTER PROGRAM NAME [DEV:FILNAM.EXT]:

At this point you have selected all the system parameters, and you are
asked whether you wish to change any of your answers.

19. DO YOU NEED TO CHANGE AN ANSWER: (N)

If you are satisfied that your
software needs, respond with
next section.

answers reflect your hardware and
N or (CR); Q19 will appear. See the

If you wish to change an answer, respond with a Y:

REENTER AT QUESTION:

Respond with Q followed by the question number.
begin again at the question you select.

Questioning will

6.3.2.10 Naming the Time-Shared Program

The final question:

ENTER THE NAME OF THE SAVE FILE:

The file name
time-shared RTS.

entered represents your customized
The default extension is .SAV.

version of a

Your final carriage return begins a process of assembling and linking
files that will produce your customized time-shared RTS. Your answers
create the file TSDPAR.MAC and the indirect file CTSGEN.COM which con
tains the commands for assembling and linking the time-shared RTS.
After the final carriage return is entered, CTSGEN chains to
CTSGEN.COM to complete the creation of your customized run-time sys
tem. The system is identified by the file name you specified in the
last question of the CTSGEN dialogue. In addition, the linker creates
a link map with this same file name and a default extension of .MAP.
This link map may help identify problems with a time-shared RTS.

SYSTEM DEVELOPMENT 6-19

6.4 ERROR MESSAGES

CTSGEN checks your responses to verify that they are within the range
of permissible answers. If an error is detected, you are advised that
your answer exceeds the possibilities and you are prompted with the
question again. CTSGEN does not detect logical errors (such as speci
fying more terminals than exist). However, in the assembling process
after CTSGEN execution, MACRO assembly errors can occur. If a message
indicating that a file was not found appears during the assembling or
linking process, one of the files specified in Section 6.3.1.2 is not
present on the system device.

If you continue to receive errors, consult your DIGITAL software spe
cialist.

6-20 SYSTEM DEVELOPMENT

INTRODUCTION TO SECTION III

Section III contains the system utilities provided with CTS-300.
These utilities assist you in maintaining your system, in monitoring
its operation, and in providing a convenient way to present data.
Each utility is discussed in its own chapter. There is no particular
order of presentation. Some of the utilities are usable in all sys
tems and some are applicable to TSD systems only.

The utilities and their major functions are:

DDT (Chapter 7)

A run-time debugging program for DIBOL programs.

Spoolers (Chapter 8)

There are two line printer spoolers. One for SUD systems and one
for TSD systems. These programs implement the DIBOL LPQUE state
ment to print data.

PRINTU (Chapter 9)

A program that allows you to quickly develop and organize simple
reports from a known data base structure.

ISMUTL (Chapter 10)

A program that permits you to develop an ISAM file that is tail
ored to your specific needs and to monitor this file and reorgan
ize it as it grows.

SORT/MERGE (Chapter 11)

A program that allows you to sort or merge files using up to
~ight keys.

STATUS (Chapter 12)

A TSD utility that shows the current system operation parameters
such as numbers and names of jobs and terminals.

REDUCE (Chapter 13)

A TSD utility used to eliminate unused blocks of a DIBOL program
file resulting from the TSD linking process.

CHAPTER 7

DIBOL DEBUGGING UTILITY (DDT)

7.1 INTRODUCTION

DDT (DIBOL Debugging Technique) is a system utility that allows you to
interact with your DIBOL program while it is executing.

7.1.1 Features

The features of DDT are intended to aid the DIBOL programmer in locat
ing problems; correcting data values; and testing programming errors
directly without having to edit, compile, and link again.
Specifically, you may:

• Set predetermined stopping points.

• Examine and/or alter the contents of variables.

• Single step through lines of a DIBOL program.

• Trace through sequences of XCALL nestings.

7.1.2 Chapter Organization

The remainder of this chapter is arranged in two major sections.
Section 7.2, Preparing for DDT, discusses the procedures required to
prepare your system and program for DDT operation. Section 7.3, DDT
Commands, describes the various DDT commands and their use.

7.2 PREPARING FOR DDT

This section details the procedures required to compile, link, and run
with DDT.

7-1

7.2.1 CTSGEN

You must first request DDT during the CTSGEN in addition to compiling
and linking individual routines for use with DDT.

7.2.2 Compiling

The main program, as well as all subroutines which are to be debugged,
must first be compiled for use with DDT by specifying the DDT option
in the DIBOL compiler command. This option generates a symbol table
used by DDT. A typical command line might be:

• DIBOL/ONDEBUG PROG,SUBl, SUB2, SUB3

which generates PROG.OBJ, SUBI.OBJ, SUB2.0BJ, and SUB3.0BJ and the
necessary symbol tables for DDT.

If certain subroutines are known to be already debugged, you may
compile your program specifying only those modules you intend to
further debug. The following command line illustrates this:

.DIBOL PROG/ONDEBUG,SUBI/ONDEBUG,SUB2,SUB3

With the above compiler command structure, only the main program and
SUBI are compiled for DDT.

7.2.3 Linking

The compiled main program and all subroutines must be linked with a
special DDT module in order for it to be available at run time.
Notice that both the SUD and TSD are linked to the same DDT module
(TSDDT). The basic command for the main program and subroutines used
in compiling would be:

For SUD operation:

.LINK PROG,SUBI,SUB2,SUB3,TSDDT,DIBOL

which would create PROG.SAV.

For TSD operation:

• LINK/EXE:PROG.TSD PROG,SUBI,SUB2,SUB3,TSDDT,TDIBOL/BOT:IOOOOO

which would create PROG.TSD.

7-2 DIBOL DEBUGGING UTILITY (DDT)

7.2.4 DDT Operation

7.2.4.1 Running DDT

DDT is initialized whenever a program compiled and linked for DDT
operation is run under a run-time system which includes DDT. DDT
outputs its version number and, on the next line, the hyphen prompt.
In the following program,PROG which has been compiled and linked for
DDT, is executed for manipulation with DDT commands:

.R PROG or .RU dev:PROG
DIBOL DDT VAnn-nn

where the A in the version identifier indicates a SUD system. It
would be B for a TSD system and C for an XMTSD system.

At this point any valid command discussed in Section 7.3 can be
entered.

7.2.4.2 Failure to Properly Prepare for DDT

If you forget to perform one of the required steps in sections 7.2.1
through 7.2.3, the program will exhibit the following characteristics:

• If no DDT were requested at CTSGEN time:

The program will run as though no DDT were requested.

• If no DDT were requested during compilation:

The program will respond to DDT except for those commands
that examine and/or alter the contents of variables.

• If no DDT were requested during linking:

The program will run as though no DDT were requested.

7.2.4.3 Error Messages

See Appendix B, Table B-5, for a list of DDT error messages.

DIBOL DEBUGGING UTILITY (DDT) 7-3

7.3 DDT COMMANDS

This section discusses the commands that are valid for DDT. In the
following text, when the term routine is used it refers to a specific
program module; either the main program or an external DIBOL subrou
tine.

For future reference, the DDT commands and command formats are listed
below in the order they appear in this section.

Command

Start or resume execution

Single step

Setting breakpoints

Clearing breakpoints

Iteration of breakpoints

Examining variables

Setting variables

Extended variable manipulation

Subroutine traceback

Format

CTRL/Z

CTRL/G

$[name:]nnn

$ [name]

>n

vvv=

vvv=nnn

++vvv= or ++vvv=nnn

DDT commands, like other commands, require a carriage return termina
tion to enter the command.

7.3.1 Program Execution Control

Program execution control has two functions: It allows you to resume
execution after a breakpoint has been encountered; and it allows you
to single step through individual DIBOL statements to see if they are
being properly executed.

7.3.1.1 Program Execution

To start or resume execution of the DIBOL routine from a DDT
breakpoint, enter the following command in response to the DDT prompt:

CTRL/Z

There are no arguments. The current routine simply starts or resumes
execution.

Example:

-CTRL/Z

resumes execution of the current routine.

7-4 DIBOL DEBUGGING UTILITY (DDT)

7.3.1.2 Single Step

It is frequently desirable to know which branch of a computed GOTO, or
of a complicated IF statement the program will take. The single step
command executes the next instruction in the routine and halts. To
single step, enter the following command in response to the DDT
prompt:

-CTRL/G

There are no arguments. The routine executes the present instruction
and returns the following message:

AT LINE xxxx IN ROUTINE yyyy

where:

xxxx is the line number of the instruction after execution
of the single step.

yyyy is the name of the routine in which line xxxx resides.

You may now enter any DDT command you wish, as indicated by the DDT
prompt.

Example:

Assume there is a conditional jump statement in routine SUB3 at line
47, and you wish to find the next instruction to be executed. First,
while in subroutine SUB3, set a breakpoint (see Section 7.3.2.1) at
line 47:

$47

Start execution of the routine by issuing a CTRL/Z, and when (and if)
line 47 is reached the display will be:

DDT BREAK AT LINE 47 IN ROUTINE SUB3

Respond to the prompt with CTRL/G which will, in turn, display:

AT LINE NN IN ROUTINE ABC

which is the next instruction location.
subroutine including SUB3.

7.3.2 Breakpoint Control

Routine ABC could be any

A breakpoint is a user-determined stopping point within a routine.
Breakpoints are used to position yourself in a routine so you can ex
ercise other DDT capabilities.

DIBOL DEBUGGING UTILITY (DDT) 7-5

7.3.2.1 Setting Breakpoints

You set a breakpoint in a routine by typing the following command in
response to the DDT prompt:

$[name:]nnn

where:

name

nnn

Example:
;

is the name of the routine in which the breakpoint is
to be set. If a breakpoint is to be set in the main
program, the name of the first routine specified in the
link command (by convention, the root segment) should
be used. Otherwise, the name of the routine should
match the name given in the subroutine statement. If
the name argument is omitted, the current routine is
assumed.

is the line number at which the routine is to halt.

• The line at which the routine is halted has not yet
been executed.

• A maximum of eight breakpoints may be set at anyone
time.

• Only one breakpoint is allowed in any main program or
subroutine.

• A breakpoint in the data section has no meaning.

-$8U81:50

sets a breakpoint at line 50 in subroutine SUBI.

-$21

sets a breakpoint at line 21 in the current routine.

7-6 DIeOL DEBUGGING UTILITY (DDT)

7.3.2.2 Clearing Breakpoints

Pr~viously set breakpoints may be cleared by typing the following com
mand in response to the DDT prompt:

$ [name]

where:

name

Example:

is the name of the routine in which the breakpoint is
to be deleted. If name is omitted, the breakpoint in
the current routine is cleared.

• The breakpoint in a
before a breakpoint
routine.

routine
is set

need not be deleted
at a new line in that

• Setting a new breakpoint automatically deletes any
other breakpoint in that routine.

-$8U82

-$56

clears the breakpoint in subroutine SUB2.

sets a breakpoint at line 56 in the current routine and
clears any prior breakpoint in that routine.

7.3.2.3 Iteration of Breakpoints

To test the effects resulting from iterative procedures, it is some
times useful to set a breakpoint in a loop and pass through it several
times before allowing execution to halt. This is accomplished with
the following command in response to the DDT prompt:

>n

where:

n is the iteration count. This is the number of times
the breakpoint is to be encountered before execution is
halted.

• The iteration count can be set only in the current
routine.

• You must be at the breakpoint before issuing the
iteration command.

• Execution is halted the nth time the breakpoint is
encountered.

DIBOL DEBUGGING UTILITY (DDT) 7-7

Example:

Assuming that a breakpoint is set in a loop at line 25 of the current
routine, and the program executes until reaching this point, the res
ponse will be:

DDT BREAK AT LINE 25 IN ROUTINE XXX

where:

XXX is the name of the current routine.

You might respond with an iteration count and execution command:

>8
-CTRL/Z

The routine then loops through this location; stopping the eighth
time it reaches line 25 without executing the instruction there. The
response is:

DDT BREAK AT LINE 25 IN ROUTINE XXX

7.3.3 Variable Manipulation

Variable manipulation allows you to examine or change variables in a
routine to determine whether or not they are being correctly handled.

7.3.3.1 Examining Variables

Variables may be examined to verify their contents with the following
command in response to the DDT prompt:

vvv=

where:

vvv is the variable name. Subscripts, either single or
double, may be used with the variable name to access a
part of a field or data in an unlabeled field.

Example:

Assume you have stopped at a breakpoint; then:

-VARl=

results in a display of the present contents of this variable.

7-8 DlBOL DEBUGGING UTILITY (DDT)

7.3.3.2 Setting Variables

Variables may be set (loaded) with any desired value by using the fol
lowing command in response to the DDT prompt:

vvv=nnn

where:

vvv

nnn

Examples:

-VARl=ABCD

is the variable name.

is the value you wish to assign to the variable.

• If the length of nnn is too long to store in vvv, the
data is left justified in the field and the excess
right-hand characters are truncated. This is true
for both alpha and decimal fields.

• Do not use single quotes when specifying alpha data.

• A field, alpha or decimal, can be cleared by entering
a space for an assigned value.

• Subscripts, single or double, can also be used to set
variables.

Assigns the value of ABCD to VAR1.

-VARl='ABCD'

Assigns the value of 'ABC to VAR1.

7.3.3.3 Extended Variable Manipulation

ex
This

which
in the

It is possible under the specific circumstances explained here to
amine, or to set, a variable used outside the current routine.
may be done only when the variable is defined in the routine
called the current routine or is defined in one of the routines
chain of calls which led to the current routine. For example:

-++VAR2=

will return the current value of VAR2 located in the chain of routines
which called the current routine. The two plus signs indicate that
the variable was defined in a routine located two calls back (two lev
els of nesting) in the chain which led to the current routine. Also:

-++VAR2=EFGH

will set VAR2 to the value EFGH.

DIBOL DEBUGGING UTILITY (DDT) 7-9

7.3.4 Subroutine Traceback

The subroutine traceback feature allows you to determine whether or
not the calling sequences (XCALL statements) are executing in the ex
pected manner. The outp~t is a list of the routines and the line
numbers in those routines of all the related preceding XCALL state
ments back to the main program. To obtain this list, enter the fol
lowing command (a caret, up arrow, or circumflex) in response to the
DDT prompt:

There are no arguments. The circumflex (A) causes the list to be gen
erated.

Example:

Assume you have halted in a subroutine at a DDT breakpoint, or you
have single stepped to the current position, and you need to know how
you arrived at this point from the main program. The command and
traceback list might look like the following:

AT LINE 37 IN ROUTINE SUB3
AT LINE 192 IN ROUTINE SUB2
AT LINE 21 IN ROUTINE MAIN

(current location)
(SUB3 called from SUB2, line 192)
(SUB2 called from MAIN, line 21)

You are still in routine SUB3 and may enter any DDT command.

7-10 OIBOL DEBUGGING UTILITY (DDT)

CHAPTER 8

LINE PRINTER SPOOLERS

8.1 INTRODUCTION

The two line printer spoolers, LPTSPl.REL and LPTSPL.TSD, are utility
programs used to print data and program source files. LPTSPl.REL is
used with SUD systems, and LPTSPL.TSD is used with TSD and XMTSD sys
tems.

8.1.1 Common Characteristics

Both spoolers operate in response to the DrBOL LPQUE statement. The
function of the spooler, regardless of run-time system, is to queue
files to be printed, and to issue print commands to the printer. The
DrBOL OPEN statement is not used by a DrBOL program that uses a line
printer spooler.

8.1.2 Chapter Organization

The remainder of this chapter is comprised of three sections: Section
8.2, SUD; Section 8.3, TSD; Section 8.4, XMTSD. Each section is
organized the same way: first, the characteristics of the particular
spooler are covered; then the details associated with using the
spooler are presented.

8-1

8.2 LPTSP1.REL (SUD OPERATION)

8.2.1 Characteristics

8.2.1.1 Features

The SUD spooler has the following features:

• The SUO spooler is a queue manager program written in assem
bly language.

• Sharea operation of the line printer (between the spooler and
a OIBOL program) is not supported. See Section 8.2.2.1 for
further information.

• The SUD spooler operates as a foreground job. Other programs
run concurrently in the background. See Section 8.2.2.2 for
further information.

• Output is to one line printer only.

• LPTSPl.REL can queue up to ten print jobs.

8.2.1.2 Requirements

The SUD spooler requires the following system supports:

• LPTSPl.REL requires 4 K bytes of memory.

• A handler, LP.SYS, must be resident (via the RT-ll LOAD com
mand) in memory.

• LPTSPl.REL must be on the system device.

• LPTSPl.REL requires either the FB or the XM monitor.

8.2.2 Using LPTSP1.REL

8.2.2.1 Shared Line Printer Operation

The line printer can not be shared between the line
and a OIBOL program or a CTS-300 system program.
the line printer while LPTSPI is running will
device-in-use error message.

8-2 LINE PRINTER SPOOLERS

printer spooler
An attempt to use

result in a

8.2.2~2 Shared Terminal Operation

Both the line printer spooler and a DIBOL program running concurrently
under the FB monitor can make use of the same terminal. As stated
above, the spooler runs in the foreground, and the DIBOL program runs
in the background.

I/O operations at the terminal are independent functions for the two
programs. The line printer can display a message at any time by as
suming control of the terminal. Data that is input at the terminal
while the spooler is using the terminal is stored in a 40-character
terminal buffer. When the spooler releases control, the stored input
data is displayed. A symbol is displayed with each message to the
terminal to identify the message source; likewise, an indicator must
be provided by the operator to identify the program being addressed.
These symbols are shown below:

Program Input Output
Indicator Indicator

Spooler program
(foreground job) CTRL/F F)

DIBOL program
(background job) CTRL/B B)

If both the spooler and the DIBOL program require the terminal simul
taneously, the spooler has priority because it is a foreground job and
the foreground always has priority. Under these conditions, data out
put from the spooler continues to the end of the display line, and
then control passes to the DIBOL program which, in turn, outputs a
line.

8.2.3 Starting

Before running the spooler, the printer handler must be loaded. The
handler is loaded for the exclusive use of the foreground program (the
spooler). This avoids mixing output from the spooler with output from
a DIBOL program. The command is:

• LOAD LP=F

If you want to print a file that is not on the system device, you must
also load the handler for that device, to make it available for the
spooler. Use the following command:

• LOAD dev=F

where:

dev is the name of the device where the file to be printed
resides.

LINE PRINTER SPOOLERS 8-3

The spooler is started by entering the following command:

.FRUN LPTSPI

The response is:

F)
SINGLE-USER DIBOL LINE PRINTER SPOOLER VAnn-nn
B)

where:

nn-nn is the version number for the spooler program.

When the monitor's prompt (.) appears, any runnable DIBOL program or
CTS-300 program can be executed. An LPQUE statement within that pro
gram will then cause the spooler to queue and print the specified
file.

8.2.4 Run-Time Dialog

If either the FORM or ALIGN argument were included in the LPQUE state
ment, the spooler will output an appropriate message to the terminal.
The message is preceded by F) to indicate that it has been issued by
the foreground job (LPTSPl). The messages and appropriate responses
are listed below:

Message

F)
LOAD xxxxxx IN LP

F)
IS ALIGNMENT OK ?

Response

The operator must load the specified form
(xxxxxx), that is, invoices, payroll checks,
etc., into the line printer. Operation is
continued by typing CTRL/F <CR).

The operator must ensure that the two rows of
alignment characters are properly positioned
on the form in the line printer. If the form
is correctly positioned, the response is
CTRL/F Y <CR). If the alignment is not cor
rect, the operator must realign the form and
request another group of alignment characters
by typing CTRL/F <CR).

8-4 LINE PRINTER SPOOLERS

8.2.5 Error Messages

When an error condition occurs, LPTSPl.REL displays one of the error
messages listed in Appendix B, Table 8-6. All errors for the spooler
are fatal errors. Any queued file(s) is lost, and the operator must
take the following steps:

1. Enter at the terminal:

• UNLOAD F

2. Correct the condition that caused the error.

3. Restart the spooler, as described in Section 8.2.3.

4. Request a print again.

8.3 LPTSPL.TSD (TSD OPERATION)

8.3.1 Characteristics

8.3.1.1 Features

The TSD spooler has the following features:

• LPTSPL.TSD is a DIBOL program that operates under the control
of the TSD RTS.

• LPTSPL.TSD consists of a queue manager and four satellite
programs: LPSAT.TSD, LQSAT.TSD, LRSAT.TSD, and LSSAT.TSD.
Each satellite program is active only as long as there are
files to be printed on its associated printer.

• Each satellite automatically opens its line printer and loads
its handler if not already loaded.

• A maximum of four line printers is supported.

• LPTSPL.TSD supports assignment of default line printers. See
Section 8 .• 3. 2~_J for more information.

• If spooler execution is terminated before completion of all
print requests, the remaining requests are stored for later
recovery. The current print job is not lost. See Section
8.3.2.2 for more information.

• Spooler operation is suspended for printers being used by
another program. See Section 8.3.2.3 for more information.

• LPTSPL.TSD can be run detached. See Section 8.3.2.4 for more
information.

• LPTSPL.TSD can queue up to fifty files per printer. See Sec
tion 8.3.2.5 for more information.

LINE PRINTER SPOOLERS 8-5

8.3.1.2 Requirements

The TSD spooler requires the following system supports:

• The LPTSPL.TSD queue manager requires 4 K bytes of memory;
each satellite requires an additional 2 K bytes.

• The number of line printers must be specified during RT-ll
SYSGEN.

• Forced job star~up must be requested during CTSGEN in order
to utilize LPTSPL.TSD.

8.3.2 Using LPTSPL.TSD (TSD Operation)

8.3.2.1 Default Line Printers

Ordinarily, a specific line printer is assigned by line printer number
to a print job from within a DISOL ~rogram. For example, the follow
ing LPQUE statement assigns the second line printer as the printer to
print the file named XXX.YYY:

LPQUE{'RKl:XXX.YYY',LPNUM:2)

This however, is not a requirement, since the spooler accepts the as
signment of a default line printer. (See Section 8.3.3.1 for assign
ment.) If more than one default printer is assigned, the default line
printer for a given job is defined by LPTSPL.TSD as being the printer
having the least number of print requests queued.

8.3.2.2 File Recovery

If spooler execution is terminated before the completion of all print
requests, the remaining requests are stored in file LPTSPL.LPQ. After
reinitialization, the spooler checks this file and prints the remain
ing requests. Partially completed print jobs can be reprinted in
full. See Section 8.3.4.

8.3.2.3 Suspension of Spooling

When the spooler is started, it opens an I/O channel to the line
printer(s). If the printer(s) is being used by another program, an
error message indicating the printer is not free is displayed and
spooler operation is suspended until that program releases the busy
printer.

8-6 LINE PRINTER SPOOLERS

8.3.2.4 Detached Mode Operation

You may select detached program operation for LPTSPL. (See Section
8.3.3). LPTSPL runs independently of the terminal, as long as it is
not required by the spooler. During this time the terminal is avail
able for other DIBOL-II programs. When'LPTSPL requires the terminal
for information or error messages, the execution of LPTSPL is suspend
ed until an ATTACH command is issued. Then, LPTSPL displays the mes
sage; waits for user response, if any; and resumes operation in de
tached mode. Once detached operation is selected, it remains in ef
fect until LPTSPL.TSD is attached by the user and terminated with a
CTRL/C, an S, or killed via STATUS.

8.3.2.5 The Queue File

LPTSPL maintains a list of files to be printed in file LPQFIL.LPQ on
the system device. LPQFIL has four sections, one for each possible
line printer. Each section has fifty slots. If the queue section is
full when a print request is received from LPQUE, the spooler attempts
to display a message to a terminal indicating that the queue is full,
and that the file was not accepted for printing. If the spooler is
running detached, see Section 8.3.2.4.

8.3.3 Starting

Line printer spooler, LPTSPL.TSD, may be started by anyone of four
methods. In methods 2, 3, and 4, '?YNNY' refers to answers to the de
fault printer selection. The questions are discussed in Section
8.3.3.1 and the SEND statement is discussed in Section 8e3.3.2 and in
the DIBOL-II Language Reference Manual.

Method 1, Direct startup:

*R LPTSPL

Method 2, Forced job startup:

XCALL RUNJB ('LPTSPL.TSD',term#)

or, if a -1 is specified as the terminal number (indicating a detached
job), the spooler must be supplied with the default printer selection
information as follows:

SEND ('?YNNY','LPTSPL.TSD')
XCALL RUNJB ('LPTSPL.TSD' ,-1)

LINE PRINTER SPOOLERS 8-7

Method 3, Chain mode startup:

STOP 'LPTSPL.TSD'

or, if the chaining job is detached, the spooler must be supplied with
the default printer selection information as follows:

SEND ('?YNNY','LPTSPL.T~D')

STOP 'LPTSPL.TSD'

Method 4, Implicit job startup:

SEND ('?YNNY','LPTSPL',-2)

8.3.3.1 Response with an Attached Terminal

When LPTSPL.TSD is started, the following message is displayed:

TIME-SHARED DIBOL LINE PRINTER SPOOLER - VBnn-nn

where:

nn-nn is the version number.

The spooler then asks for default printer identification:

DEFAULT PRINTERS?
LINEPRINTER 1

If line printer 1 is to be a default printer, enter Y. If this
printer is not to be a default printer, enter N. The remaining
printers are then similarly presented for default selection.

One last question is asked:

DO YOU WANT TO RUN DETACHED?

If detached operation is desired, enter Y. The spooler then proceeds
to print or wait for a file to be queued. Terminal control returns to
the run-time system which displays the asterisk prompt.

If detached operation is not desired, enter an N.
can then be executed from that terminal.

8.3.3.2 Response with a Detached Program

No other program

If LPTSPL.TSD were started as a detached program, the version number
message would not be displayed, so default printer selection could not
be asked. The default printer selection information must be supplied
via a DIBOL SEND statement from the DIBOL-ll program which is
initiating startup of LPTSPL.TSD. This is illustrated above, in
Section 8.3.3, in examples 2 through 4. In these examples, the
question mark in the SEND statement message SEND('?YNNY', •••)
indicates to the spooler that the information defines default line

8-8 LINE PRINTER SPOOLERS

printers. Each character after the question mark is a response to a
default printer selection question (yes, no, no, yes; in the
examples) •

8.3.4 Stopping

LPTSPL.TSD can be stopped, and the memory it used made available to
the system, only if it is attached to a terminal. The spooler is
stopped with either a CTRL/C or an S entered at the keyboard, or it
can be stopped with the kill option in STATUS; see Chapter 12.

8.3.5 Run-Time Dialog

During runtime, LPTSPL.TSD may display messages as a result of inter
rupted or terminated printing, or as a result of the FORM or ALIGN ar
guments in the DI80L LPQUE statement.

Interrupted or Terminated Print

If printing is interrupted or terminated, the print job can be re
sumed. When LPTSPL.TSD is started again, the LPQFIL.LPQ file is
checked for incomplete jobs. If such a job is found, the following
message is displayed:

CONTINUE PRINTING
fi1enam?

If you wish to continue printing from the begin
ning of the file, respond with Y. If you wish to
ignore the file, respond with a <CR).

FORM or ALIGN Arguments

If the FORM or ALIGN argument(s) were included in the LPQUE statement,
the spooler will output the message(s) these arguments imply. If
FORMS or ALIGN are used, you should run LPTSPL as an attached job
since, without a terminal, LPTSPL will be suspended until it is at
tached whenever the terminal message is output. The messages with ap
propriate responses are listed below:

Message

LOAD xxx xxx IN LINE PRINTER n
where: n is 1,2,3, or 4

ALIGNMENT OKAY FOR
PRINTER n?
where: n is 1,2,3, or 4

Response

The operator must load the specified
form (xxxxxx), that is, invoices, pay
roll checks, etc., into the printer.
Operation is continued by typing <CR).

The operator must ensure that the two
rows of alignment characters are proper
ly positioned on the form in the
printer. If the form is correctly posi
tioned, the response is Y. If the al
ignment is not correct, the operator
must realign the form and must request
another group of alignment characters by
typing <CR).

LINE PRINTER SPOOLERS 8-9

8.3.6 Error Messages

Error messages for LPTSPL.TSD are listed in Appendix B, Table B-7.

If an error occurs while the spooler is running detached from the
terminal, spooler operation is suspended until the operator issues an
ATTACH LPTSPL command, at which time the error message will be
displayed.

8.4 LPTSPL.TSD (XMTSD OPERATION)

8.4.1 Characteristics

The operation of LPTSPL.TSD in an XMTSD system is the same as in a TSD
system, except that the handlers for the printers must be loaded be
fore the spooler can be run. See Sections 8.4.1.1 and 8.4.3.

8.4.1.1 Features

The XMTSD spooler has the following features:

• LPTSPL.TSD is a DIBOL program that operates under the control
of the XMTSD RTS.

• LPTSPL.TSD consists of a queue manager and four satellite
programs: LPSAT.TSD, LQSAT.TSD, LRSAT.TSD, and LSSAT.TSD.
The satellite programs are running only as long as there is a
file to be printed.

• A maximum of four line printers is supported.

• LPTSPL.TSD supports assignment of default line printers. See
Section 8.3.2.1 for mpre information.

• If spooler execution is terminated before completion of all
print requests, the remaining requests are stored for later
recovery. See Section 8.3~2.2 for more information.

• Spooler operation is suspended for printers being used by
another program. See Section 8.3.2.3 for more information.

• Detached terminal operation is supported.
8.3.2.4 for more information.

See Section

• LPTSPL.TSD can queue up to fifty files per printer. See Sec
tion 8.3.2.5 for more information.

8-10 LINE PRINTER SPOOLERS

8.4.1.2 Requirements

The XMTSD spooler requires the following system support:

• LPTSPL.TSD requires 4 K bytes of memory; each satellite re
quires an additional 2 K bytes.

• Appropriate printer handlers must be resident in memory.
They are: LPX.SYS, LQX.SYS, LRX.SYS, or LSX.SYS.

• The number of line printers must be specified during RT-II
SYSGEN.

• Forced job startup must be requested during CTSGEN in order
to utilize LPTSPL.TSD.

8.4.2 Using LPTSPL.TSD (XMTSD Operation)

See Section 8.3.2. The information for TSD operation is valid for
XMTSD operation except for the ATTACH commond which becomes A under
XMTSD (see Chapter 5, Section 5.5).

8.4.3 Starting

Before execution of LPTSPL.TSD in the XMTSD environment, the appropri
ate handler(s) must be loaded. If all four handlers are required, the
procedure is:

.LOAD LP

.LOAD LQ

.LOAD LR

.LOAD LS

or you may issue a single line command:

.LOAD LP,LQ,LR,LS

Handlers LP, LQ, LR, and LS correspond to line printers 1, 2, 3, and
4, respectively.

Under the XMTSD monitor, the correct handler is loaded with the above
commands. This is done despite the fact that the XM handler name has
a third character (X). After the handlers are loaded, proceed as in
Section 8.3.3 to run the spooler.

LINE PRINTER SPOOLERS 8-11

8.4.4 Stopping

See Section 8.3.4

8.4.5 Run-Time Dialog

See Section 8.3.5.

8.4.6 Error Messages

Error messages for LPTSPL.TSD are listed in Appendix B, Table B-7.

If an error occurs while the spooler is running detached from the
terminal, spooler operation is suspended until the operator issues an
ATTACH LPTSPL command, at which time the error message will be
displayed.

8-12 LINE PRINTER SPOOLERS

CHAPTER 9

PRINTU

9.1 INTRODUCTION

PRINTU is a utility program for the creation of simple report programs
using data from either a sorted sequential file or from an ISAM file.
PRINTU utilizes a user-written control file that describes the
parameters of the desired report. Given the control file, PRINTU
generates a nISOL program that is compiled and linked like any other
nISOL program. The resulting program, when run, produces the report.

9.1.1 Features

PRINTU has a number of features that makes it particularly useful:

• PRINTU has the ability to process data files without physi
cally reordering them by using a sorted tag file generated by
the SORT utility.

• Once a report program is created, it can be stored for later
use.

• Since PRINTU generates a nISOL program, extra features or
capabilities can be added by simply modifying the program to
achieve your needs. These needs could be special output
print lines, more header lines, output based on logical test
results, operation with packed records as input, or any other
feature you wish to develop.

9.1.2 Limitations

There are limitations that require foresight when you are using PRIN
TU. These concern the way you handle file control records (explained
in the next subsection) and the nISOL requirement for an end-of-file
(EOF) marker (a CTRL/Z) in all data files. Potential problems in both
of these areas are easily avoided, however, as you will see in the
next two subsections.

9-1

9.1.3 File Control Records

Some application system files are designed to contain a control record
as the first record. More than likely this will produce meaningless
output on the first report page printed. There are two ways to
prevent this from happening: the first way is to do a tag sort on the
file and ensure that the control record sorts out as the first record
in the tag sort file. You can then use an editor to delete this
record. PRINTU will then begin with the second record in the file.
The second way to prevent a control record from interfering with a
print report is to place the control record at the end of the file.
To prevent PRINTU from accessing this record you can precede this
record with another record containing an EOF marker as the first
character. These two records can be inserted using direct access.
The EOF character is obtained by using the decimal equivalent of
CTRL/Z (026) and an XCALL to ASCII. The control record is then not
accessible by PRINTU.

9.1.4 Chapter Organization

The remainder of this chapter is comprised of two sections. Section
9.2, The Control File, is a detailed discussion of the PRINTU control
file and how the individual control statements relate to each other
and to the desired printed report. Section 9.3, Using PRINTU, illus
trates the manner in which the control file is used with the PRINTU
program to produce a DIBOL file, and how this DIBOL file is compiled
and linked.

9.2 THE CONTROL FILE

PRINTU depends on information supplied by the user to describe the
input file{s), output file, and other parameters of the report. This
information is given to PRINTU via a control file containing control
statements. The control file is created using an editor. The control
file is the heart of PRINTU. It is here that you provide the
parameters that determine the appearance of the report.

The control file has its own terminology and, at times, this can be
confusing. For this reason, the following essential terms are intro
duced. Many of them are further defined in context.

accumulation field A user-identified field whose value from record to
record is accumulated to produce a total.

break field When the data in a break field changes, a print
occurs. The break field is covered in detail in
Section 9.2.5.

9-2 PRINTU

detail print

input data file

report file

report program

summary print

tag file

The normal print mode (as opposed to a summary
print - see below). Individual values are print
ed, as well as the totals.

The file containing the data which is to be used
as the source for your report.

The output of the report program when that program
is run.

The program generated by running PRINTU and then
compiling and linking the resulting DIBOL source
file.

A printout that includes only the totals from each
accumulation field whenever a new value occurs in
a break field.

The file produced by the SORT utility when its TAG
option is selected. Used by PRINTU to access the
input data file.

There are nine possible control statements in the control file, of
which only four are required. The other five control statements sup
ply optional capabilities that you mayor may not need. The control
file structure, format, content, individual control statement descrip
tions, and other characteristics are explained below and in subsequent
sections.

Before we discuss the control file, briefly consider what your goals
for the report are. You begin with a file whose record structure is
known to you, and your major goal is to produce a printed report that
shows the data in this file in some desired order in relationship to
the data in each record field or fields. Additionally, there may be
some data in each record that you wish to ignore, and there are prob
ably one or more fields in related records which contain numeric data
that you would like to have totaled.

How these and other requirements are achieved is covered in detail in
the individual control statement descriptions. However, the following
gives you an idea where, in the context of a simple control file,
these requirements are specified.

You will find PRINTU easy to understand and use if for the first few
times you use it you confine yourself to the four required control
statements. A useful report can be generated with these four alone.
The four control statements and their characteristics are:

IDENT

OUTPUT

This statement provides a means of assigning a name to
the control file. It has no effect on input data se
lecti on, fo rmat, or content, of the pr i nted repo rt.

This statement serves only to assign a unique name to
the resulting print report. This statement is optional
in the sense that, if not included, a prompt will re
quest the name at program run time.

PRINTU 9-3

INPUT

PRINT

INPUT is one of the two most important field definition
statements. It is here that you:

• Select the input data file.

If this statement is omitted, this information will
be requested via a prompt at run time.

• Describe the fields that you need from within the
input data record.

• Select break fields.

• Request a new printed page concurrent with a break
field change.

• Select whether you print only totals or intermediate
values, as well.

• Request to read an ISAM input file sequentially.

PRINT is the other field definition statement that is
of prime importance. It is here that you:

• Make the logical connection between fields identified
in the input statement and fields to be printed.

• Assign column headings for each field printed.

• Select numeric fields that are to be accumulated.

• Format the numeric data to be printed.

• Assign column spacing.

All nine control file statements are discussed in the following sub
sections. Optional input for each statement is shown in brackets.
Comment lines are allowed only as shown for each entry. An example is
given for each statement as it is presented. Each example is part of
an overall exercise to build a usable control file, so, therefore,
some examples build on previous concepts. The completed control file
is shown as part of the example in Section 9.3.1.

9.2.1 IDENT

IDENT is the first entry in the control file. It provides the control
file title and appears on the first line of the DIBOL listing of the
report program and at the top of each printed report page. Its most
important use is to identify your control file when you run PRINTU.

9-4 PRINTU

It is of the form:

IDENT program, author [;comment]

where:

program is the identifier you wish to assign to the report. It
can be up to 22 characters long with a slash (/) used
as a word separator.

author is any text up to 24 characters long.

Example:

IDENT PAY/ANALYSIS, Your name

The START line of the DIBOL listing would look like the following:

START ;PAY ANALYSIS -YOUR NAME

9.2.2 HEADl and HEAD2 (Optional)

HEAD1 defines the first heading line appearing on each page of the re
port and HEAD2 defines the second. Both are optional, and headings
are centered on the page. The form is:

HEAD1 'text' [;comment]

HEAD2 'text' [;comment]

where:

text is a string of characters from the DIBOL set, exclusive
of quotes, up to 132 characters long.

There may be more than one HEAD1 or HEAD2 line. If so, the individual
text lines for given HEADn statements are concatenated. This is
necessary for long titles. If HEAD1 is less than 67 characters, the
line will be expanded by inserting a space between each character.
The total number of characters for either line is limited to 132.

Example:

HEAD1 'PAY ,
HEAD1 'ACCOUNTABILITY'
HEAD2 'BY EMPLOYEE AND TASK CODE'

The heading on each page would then appear as follows:

PAY A C C 0 U N TAB I LIT Y

BY EMPLOYEE AND TASK CODE

PRINTU 9-5

9.2.3 EXECUTE (Optional)

EXECUTE creates the OIeOL stop and chain exit in the report program.
The format is:

EXECUTE filespec [;comment]

where:

filespec is a CTS-300 OIeOL file specification.

Example:

EXECUTE OLl:STATUS.TSO

Upon completion of the report, the report program would chain to a
program called STATUS.TSO on device OLI.

9.2.4 OUTPUT

HaTE

The EXECUTE statement must appear after
IOENT and before the INPUT statements.

OUTPUT identifies, by nature of your response, either a printer or a
report file that is the destination of the output that results from
running the report program. Its form is:

OUTPUT filespec

where:

filespec is a CTS-300 OIeOL file specification.

No comment line is allowed with this statement.

Example:

OUTPUT RKl:PAYACC.DDF

When the report program is run, the resulting report is placed on RKl
and is named PAYACC.OOF.

9-6 PRINTU

HaTE

The OUTPUT statement must appear after
IOENT and before the INPUT statement.

If the OUTPUT statement is omitted from the control file,
program will request the file specification at run time.
will be:

OUTFILE NAME:

the report
The message

The ability to supply the output file specification at run time per
mits you to use the same report program on the same data file to pro
duce a file with a different name and/or device destination.

9.2.5 INPUT

INPUT is a multiline control statement. It specifies the data source
for the report program (Input Statement Line) and describes the input
data file's record structure (Field Description Lines).

HOTE

The input file must be sorted in rela
tion to the break field(s) before it is
supplied to the report program. This
requirement becomes obvious when you be
come familiar with the function of a
break field.

The multiline format is:

INPUT [filespec] [/SU] [/IS]
[; comment]

A
[name], n [. m] [, Lr [P]]

D

[; comment]

The Input Statement Line and Field Description Lines are discussed
sepa ratel y.

PRINTU 9-7

Input Statement Line

Taking the INPUT statement by itself, the form is:

INPUT [filespec] [/SU] [/IS]
[; comment]

where:

filespec is the CTS-300 DIBOL file specification for the input
data file from which the report is generated.

/SU is the summary switch. When included, it causes sup
pression (during print) of individual values being ac
cumulated. See PRINT, Section 9.2.8.

/IS indicates that the input data file is an ISAM file to
be read sequentially. IS must be used when you wish to
generate a report directly from an ISAM file without
using the INDEX statement. See Section 9.2.6.

NOTE

The default condition assumes that the input
data file is a sequential file. If the input
data file is an ISAM file, either the IS option
or the INDEX statement must be used.

Comments are on a separate line as shown.

If the file specification alone is omitted, the report program will
request it at run time. The message will be:

INFILE:

The options SU and IS may not be supplied at run time, but can be se
lected in the control file, with a file specification to be supplied
at run time, by using the form:

INPUT /SU

The ability to supply the input data file specification at run time,
combined with the same ability for the output file, makes it possible
to use a given report program with any number of input data files and
to produce a separate output for each. Of course, the record struc
ture must be the same in all such input files.

Field Description Lines

Before analyzing a field description line, it is necessary to under
stand exactly what a field description line does.

One function of a field descripti9n line is to describe the input data
file's record structure. The data record is partitioned into fields,
and the nature of each field is d~scribed in detail. These' details
include name, data type, size, and, for decimal fields, number of
decimal places.

9-8 PRINTU

The field description line is also used to identify break fields. The
break field contains data that is constant over a series of records.
However, for each break field there are corresponding fields which may
contain data which can vary from record to record. It is this rela
tionship that is the basis for reports. And, in PRINTU, it also con
trols when data is printed.

An example may help to clarify this concept:

A record might contain an employee's name, the date, a task code, and
the hours worked for this task code. For a given employee, there will
exist at least one record for every task code for which time was
charged. In the simplest case, you may want a report showing the
hours worked by each employee. Here the field containing the
employee's name would be identified as the break field. The report
would then print all the hours worked by each employee. Note that it
may also be desirable to show, for a given employee, the total hours
worked in a given day or on a given task.

More than one break field can be identified. For example, it may also
be desirable to report hours worked for each task code, as well as for
each employee. In this case, task code would also have to be identi
fied as a break field. With more than one break field, a way to show
this relative importance is necessary. PRINTU allows you to identify
both break fields within the control file INPUT statement and to show
their relative importance. In this second case, task code hours would
appear as subtotals every time the task code changed, and a total of
hours by each employee's name would appear as each name changed.

From the preceding paragraphs, it can be seen that a break field con
trols the printing of data. Whether it is a summary print or a detail
print is also determined by the INPUT statement. Since the file is
read sequentially, the input file must, in the first case above, be
sorted by employee name. If other break fields of lesser importance
were identified, they also would have had to have been identified as
minor keys (in the correct order) in the sort. Task code as a break
field would be identified as a minor key in the sort.

Again, the format for a field description line is:

[n am e], A J n [. m] [, L r [P]]

[; commen~
where:

name

A

D

is the symbolic name of the field to be used for refer
ence by the COMPUTE and PRINT statements. See Sections
9.2.7 and 9.2.8. It can contain up to six alphanumeric
characters.

indicates alpha or decimal field type.

PRINTU 9-9

n

m

Lr

P

is the size of the field expressed in decimal char
acters.

is the number of decimal places in the field and is
valid only for decimal fields.

indicates a break field in which the r is a single
decimal digit, which expresses the relative importance
of the break field compared to other break fields (1 is
the least important and 9 is the most important). When
a "break" occurs, the total is printed for fields being
accumulated. This total also includes all other fields
of lower break level. See PRINT, Section 9.2.8. All
accumulated values are then cleared to zero.

indicates that the report will start a new page after
the totals for this break are printed.

Comments are on a separate line as shown.

Twenty is the maximum number of labeled fields allowable within the
INPUT control statement.

Example (INPUT statement and field definition lines):

INPUT EXAMPI
;comment line
NAME, A15,L2P
,
DATE,
TCODE,
CRATE,
HOURS,

A7
D6
A4,Ll
D3.2
D2.l

Five fields have been identified for the data contained in each record
of file EXAMPI. Data areas within the record that are not of interest
can be ignored by using an unnamed alpha field of appropriate size.
In this example, there is one such area seven characters long. The
two fields, NAME and TCODE, are identified as break fields and NAME is
of greater importance. Whenever the data in TCODE changes, the output
lists specified totals (and individual values, unless a summary is re
quested) • The exact format of the data to be printed will be defined
in the PRINT statement (see Section 9.2.8). When NAME changes, the
totals printed include the totals from intermediate TCODE lines. A
new page is started after each NAME change. HOURS is a two-character
field with one decimal place. CRATE is a three-character field with
two decimal places.

9.2.6 INDEX/LIST (Optional)

INDEX and LIST are statements that enable PRINTU to utilize a tag file
generated by the SORT utility. See Chapter 11, SORT/MERGE, and the
TAGS:LIST and TAGS: INDEX options. The usefulness of such a tag file
becomes apparent when you consider that it is unlikely that the input
data file will be arranged in the order that you wish for your report.

9-10 PRINTU

There are two solutions to this problem. You can either reorder
input data file, which is especially time-consuming if you
several kinds of reports from the same data, or you can use
SORT-generated tag file. The tag file allows access to the input

the
wish

the
data

to file in its original form. Consequently, it is not necessary
reorder the entire input file when a different sort sequence is
desired. All you have to do is generate a new tag file.

A tag sort is first carried out on the input data file. The output is
a file of records containing only the relative record number, or if it
is an ISAM input file, the file contains the SORT keys also.

The tag file is specified for use in PRINTU by either the INDEX or
LIST statement. When INDEX is used, it implies that the input data
file (as defined by the INPUT statement) is an ISAM file. When LIST
is used, it implies that the input data file (as defined by the INPUT
statement) is a sequential file.

The format, if the input file is a sequential file, is:

LIST filespec [;comment]

where:

filespec is a CTS-300 DISOL file specification of the tag file
generated by the SORT utility.

There are no qualifiers with LIST. The tag file is assumed to consist
of records which are seven-digit decimal numbers.

Example:

LIST DKl:SORTO.DDF

This statement line specifies tag file SORTO.DDF on DKI. SORTO.DDF is
a result of previously having run SORT with the TAGS:LIST option on
the sequential file defined in the PRINTU control file INPUT state
ment. This tag file is a file of seven-digit numbers.

The format, if the input file is an ISAM file, is:

INDEX filespec/recl,key,length [;comment]

where:

filespec is a CTS-300 DISOL file specification of the tag file
generated by the SORT utility.

recl is an integer defining the record length of the tag
file as generated by the SORT utility.

key is an integer defining the starting position of the
ISAM key within a tag file record.

length is an integer defining the length of the ISAM key with
in a tag file record.

PRINTU 9-11

Example:

INDEX RK1:SRTOUT.DDF/12,8,5

This statement line specifies a secondary input file SRTOUT.DDF on
RKI. SRTOUT.DDF is the result of previously having run SORT with the
TAGS: INDEX option on the ISAM file defined in the PRINTU control file
INPUT statement. This example indicates that the secondary input file
record length is twelve characters long, and that the ISAM key is five
characters long, beginning at character position eight. The
seven-character relative record number is not used.

If neither the INDEX nor LIST statement is included in the control
file, the input file is processed as a sequential file.

9.2.7 COMPUTE (Optional)

COMPUTE is a multiline control statement that allows you to include
data in your report that does not exist in the input data file. This
new data is a result of a mathematical process performed on the input
data. The COMPUTE line is followed by one or more additional lines
describing the mathematical process. There can be up to eight of
these additional lines. The multiline format is:

COMPUTE
[icomment]
name=expression[in]

where:

name

expression

in

is the symbolic name given to the computation re
sult and is used for reference by the PRINT state
ment (see Section 9.2.8). It must neither dupli
cate any input field name nor any previous compu
tation result name.

is any valid DIBOL expression. It may be an alpha
or decimal field or a literal. See SPECIAL RULES
below.

is an integer specifying the number of decimal
places the resulting computation will have. See
SPECIAL RULES below.

The comment line is a separate line as shown.

SPECIAL RULES FOR COMPUTE:

These special rules concern the number of decimal places for operands
within a mathmatical operation. The PRINT control statement, unlike
the DIBOL-il language, maintains the number of decimal places. In all
arithmetic operations, the operands must have an equal number of

9-12 PRINTU

decimal places. Operands can be either constants or variables. The
following rules determine the resulting decimal places:

addition (+) no change in decimal places

subtraction (-) no change in decimal places

multiplication (*) the sum of decimal places

division (/) the difference in decimal places

To adjust the number of decimal places of any operand, multiply by a
suitable decimal representation for the constant 1. For example, if
operand 1 has two places, and operand 2 has no places; then operand 1
* operand 2 * 1.00 will be acceptable and will result in a product
which will have four decimal places. For example:

COMPUTE
;compute total pay
TPAY=CRATE*HOURS*1.OO#2

Total pay (TPAY) is equal to compensation rate (CRATE) multiplied by
hours worked (HOURS). TPAY is to have two decimal places.

9.2.8 PRINT

PRINT is a multiline control statement that defines the format of the
final print report and identifies the variable fields that are to be
accumulated (added) and printed as totals for a given break field.
The PRINT control statement is followed by one or more additional
statements describing the overall print format and accumulation
fie~ds. The multiline format is:

PRINT
[; comment]
name,'text' [,A] [,picture]

or
,An

where:

name

text

is the name of a field from an INPUT field description
line (see Section 9.2.5) or the name assigned to a
mathmatical result within a COMPUTE statement (see Sec
tion 9.2.7).

is a string of characters from the DISOL character set
(excluding single quotes). This text is used as the
heading for the individual columns for the data fields
identified by name as well as in the line printed for
totals for each break field. An asterisk in the text
string will cause the remaining text to be printed on
the next line. Text is automatically centered. An as
terisk is treated as a space when the text is printed.

PRINTU 9-13

A

picture

indicates that the field is to be accumulated and the
sum is to be printed as a total for a break field.
This field must be decimal. If the ISU option Were se
lected in the INPUT statement, only the total would be
printed (summary print), not the intermediate values.

is a string of text in the form of a DIBOL data format
field. Here it is valid only for decimal fields. If a
picture is not included, PRINT will create one using
the description of the field. If it is an accumulated
field, two extra places will be assumed. The form is:

xx,xxx.xx-

,An is an alternate format line that will produce blank
column separators of n characters in width between
printed output columns· (where n is an integer from 1 to
9). If not included, two blank columns will be
assumed.

The comment line is a separate line as shown.

Example:

PRINT
icomment
NAME, 'EMPLOYEE'
,A4
TCODE, 'TASK*CODE'
,A4
HOURS, 'HOURS*WORKED' ,A,ZZ.Z
,A3
TPAY, 'TOTAL*PAY',A,ZZZZ.XX

Assuming that INPUT and COMPUTE statements remain as previously illus
trated, in this example the print output would be:

EMPLOYEE TASK HOURS TOTAL
CODE WORKED PAY

namel codel Zz.z ZZZZ.XX
ZZ.Z ZZZZ.XX

TASK CODE TOTAL ZZZZ.Z ZZZZZZ.XX

namel code2 ZZ.Z ZZZZ.XX
ZZ.Z ZZZZ.XX
ZZ.Z ZZZZ.XX

TASK CODE TOTAL ZZZZ.Z ZZZZZZ.XX
EMPLOYEE TOTAL ZZZZ.Z ZZZZZZ.XX

name2 codel ZZ.Z ZZZZ.XX (New Page)
(and so forth)

9-14 PRINTU

9.2.9 END (Optional)

The END statement is optional and consists of a line containing only
the word:

END

9.3 USING PRINTU

9.3.1 producing the Report Program

Once the control file is written, using PRINTU is a straightforward
process. The control file is created manually by the user with the
aid of an edit program. The file simply consists of the required
PRINTU statements from Section 9.2 plus any optional statements de
sired. Regardless of which editor you use to create your PRINTU con
trol file, you will be required to specify a name for the file result
ing from your edit session. Specify this name as input to the PRINTU
program. The resulting DIBOL program source file is compiled and
linked just like any other such program. The following dialog illus
trates in detail the steps required. The same control file statements
developed for the examples in Section 9.2 are used.

There are five steps:

1. Create the control file:

• R DKED
*PTSAMP.TXT=
IDENT PAY/ANALYSIS, YOUR NAME
HEADl'PAY ACCOUNTABILITY'
HEAD2'BY EMPLOYEE AND TASK CODE'
EXECUTE URPROG.TSD

;return to your
;program when
;finished

OUTPUT RKl:PAYACC.DDF
INPUT EXAMPI. DDF
;input file is a sequential file on the default device, no
;summary wanted
NAME, AlS,L2P

A7
DATE, D6
TCODE, A4,Ll
CRATE, 03.2
HOURS, D2~1
COMPUTE·
;compute total pay
TPAY=CRATE*HOURS*l.OO 2
PRINT
;comment

PRINTU 9-15

NAME, 'EMPLOYEE'
,A4
TCODE, 'TASK*CODE'
,A4
HOURS, 'HOURS*WORKED' ,A,ZZ.Z
,A3
TPAY, 'TOTAL*PAY',A,$$$$.XX
END
<GOLD/COMMAND)
EXIT

2. Run PRINTU:

Enter the following command:

• R (RU) PRINTU

The general form for entry of arguments in PRINTU in response to the
asterisk prompt is:

*outfil,lstfil=txtfil

where:

fl, outfil

lstfil

txtf il

is the CTS-300 DIBOL file specification for the name
assigned to the output of PRINTU. It consists of the
appropriate device, the name of the text file
containing the PRINTU control file. Since the output
of PRINTU is supplied to the compiler, an extension of
.DBL should be chosen.

is the CTS-300 DIBOL file specification for the PRINTU
list file.

is the name given to the PRINTU control file in the
edit session.

For the example being developed here the entry is:

*PTSAMP.DBL,LP:=PTSAMP.TXT

which produces the DIBOL source file PTSAMP.DBL on the default device
and a listing of this program on the line printer.

It might be useful to first find the syntax errors, using the follow
ing command:

*PTSAMP.DBL,TT:=PTSAMP.TXT

edit out the errors, and (assuming you do not need a listing) enter:

*PTSAMP=PTSAMP.TXT

3. Compile:

.DIBOL PTSAMP

9-16 PRINTU

4. Link:

.LINK PTSAMP,DIBOL

5. Run the report program:

.R PTSAMP

NOTE

Ensure that the input file is sorted in relation to the
chosen break fields before the report program is run. See
Section 9.2.5, INPUT.

PTSAMP is the report program, and the result of running it will be
file PAYACC.DDF which is written to RK1 in the format specified in the
PRINT statement.

9.4 ERROR MESSAGES

See Appendix B, Table B-8, for a list of error messages for PRINTU.

PRINTU 9-17

CHAPTER 10

ISAM (ISMUTL)

10.1 INTRODUCTION

ISMUTL is the DIBOL utility program used to build and reorganize
CTS-300 ISAM (Indexed Sequential Access Method) files. This chapter
introduces CTS-300 ISAM and its terminology and then explains the
internal structure in the detail necessary for you to be able to build
and use an ISAM file. Each of the various functions of ISMUTL are
discussed separately, using flowcharts (where appropriate), actual
program dialog, and examples.

10.1.1 Features

ISAM files offer several advantages over random or sequential files:

• Simplified record storage and retrieval

• Greater file access speed

• Ability to delete records

• More easily designed and modified to fit the growth require
ments of the application.

10.1.2 Chapter Organization

The remainder of this chapter is comprised of three major sections.
First is Section 10.2, ISAM Basics, for users who are not familiar
with ISAM concepts and terminology. Section 10.3, ISAM Internals,
discusses the internal structure of an ISAM file and explains the re
lationships that exist within the file as well as the factors that
must be considered when designing an ISAM file. ISAM-related DIBOL
statements are also covered, along with data storage and access.
Section 10.4, Using ISMUTL, describes the use of the ISAM utility to
create or reorganize your particular ISAM file.

10-1

10.2 ISAM BASICS

The basic concepts and terminology of ISAM are presented in this sec
tion. It is a brief, overall description of an ISAM file. The pur
pose is to provide backgr6und for detailed discussions in the follow
ing sections. The indexed sequential access method (ISAM) is a means
of organizing data for storage and subsequent access. An ISAM file is
composed of two major sections: the data section and the index sec
tion.

10.2.1 Data Section

Records are assigned, in ascending order, to a specific location in an
ISAM file, called the data section, which is comprised of data files.
A user-identified field within the record determines where that record
is stored in a data file within the data section. This field is
called the record key. In CTS-300 ISAM, there is only one such key
field per record. Records are sequentially stored by this key in data
groups of constant size. These data groups are organized to form as
many as seven data files. These data files constitute the data sec
tion.

10.2.2 Index Section

The greatest record key within each data group is entered, along with
the address of its associated data group, into an index. The index is
contained in the index section, often called the index file. This
index section (index file) is the second major division of an ISAM
file. By searching this index for a key match, the group which con
tains the desired record may be quickly accessed. Each record in the
group is then searched sequentially for a key match, and the desired
record is obtained.

10.2.3 Handling Added Records

Suppose you wish to store a record that, because of its key value,
belongs in a given group but which cannot be placed there because the
group is full. One solution would be to leave a few empty record
spaces in each group when the file is first constructed and the
initial data is loaded. When this is done, the number of spaces left
empty is called the load exclusion factor. But what happens when even
these spaces in a given group are filled? A way to handle this is to
set aside an area somewhere within the total ISAM file to place the
new records. This is called the overflow area, and it physically
precedes the index in the index section. This overflow area is
organized in groups identical to data file groups but, as will be
explained later, access is different.

10-2 ISAM (ISMUTL)

There is one remaining question: How do you add records which have
greater key values than those of any existing group? These new
greater key records cannot go into overflow, because they do not
logically belong in any existing group. There is no such group,
because when an ISAM file is created from a given input file, the ISAM
file size is determined by the initial space requirements of the input
file. The solution is to provide space at the end of the data area,
in addition to the known initial space requirement. This area is
known as the append area.

10.2.4 Summary of ISAM Basics

In summary, there are two basic parts to an ISAM file: the index sec
tion and the data section. The index section is by far the smaller of
the two and contains the overflow record groups and the index to the
data portion of the file. A search for data is made via the index
which points to a data group which is, upon access, searched sequen
tially for the desired record. Added records of intermediate key
value go into open record spaces, load exclusion record spaces or, if
the group is full, into the overflow area. Records with keys greater
than the current key range are placed in the append area. The struc
ture of an ISAM file is illustrated in Figure 10-1.

Index File
File 0

r-~-~r-----I~~ 'l.....r-
s
~~~~~~..Lln_de_XA+rea_ -_ --< -~ -_ -~ -_ ~---I 

~~11 I I I~ I .~ Index 
Section 

Data File 1 I FCG ~Gr~upi 

Data File2 I FCG ~Gr~upi 

• 
• 

Data File7 

Data Record 

Exclusion 
Records 

I ~ ~ I I 

I ~ ~ I I 
• 
• 

~ I I I I I 

Possible wasted space 

I 

I 
• 
• 
• 

I 
Append Area 

I I 

I I 
____ ---J! 

I I 

Data 
Section 

Figure 10-1 ISAM File Overview 

ISAM (ISMUTL) 10-3 



10.3 ISAM INTERNALS 

The previous section presented a simplified picture of an ISAM file. 
However, a more detailed understanding is necessary for the ISAM user 
in order to respond to questions asked by a utility (ISMUTL) that will 
direct that utility to' construct the index, overflow, and append 
areas. To build a file that provides maximum efficiency in terms of 
access speed and storage requirements, requires a thorough and com
plete understanding of both the ISAM file, itself, and the particular 
requirements dictated by the data. This section, then, discusses the 
file structure in detail; the interrelationships between the various 
parts of the file; and, as an aid to more efficient use, the DISOL 
statements used to access ISAM files. Section 10.3.4 illustrates how 
data is handled in an ISAM file. 

10.3.1 Detailed Structure 

10.3.1.1 Data Files 

Data flIes are discussed first, because the overflow area is con
structed like a data file, and also because the index and overflow 
area are more meaningful after the data file is understood. 

As stated before, there may be up to seven data files (or logical 
volumes) in an ISAM file. These are labeled 1 through 7. Logical 
volumes are RT-I1 files whi.ch may be located on the same physical 
volume (a disk, for example) or on different physical volumes. All 
access to the file is done using the name assigned to the index file. 
The main reason for multiple data files is to allow division of the 
total ISAM data file over the system resources. 

Each of the data files in an ISAM file may be a different size but all 
are constructed the same. Each file is segmented into sequentially 
numbered groups of equal size. The first group (group 0) of each data 
file is reserved for system use and contains only 132 bytes of data 
that are meaningful, regardless of group size. This first group is 
called the File Control Group (FeG). FCGs are created at the begin
ning of each data file and at the beginning of the index file when the 
ISAM file is created. As the ISAM file changes, only the FCG in the 
index file is updated. More information about the FCG is contained in 
the index file discussion. All remaining groups in the data file are 
data groups. 

Each data group consists of a record area and, at. the end of the 
group, an area containing linking information to the next logical data 
group. Within the record area are the data records which are of equal 
length. Data groups eventually become filled as records are stored. 

When each group is filled, the records are ordered so that the last 
record in the group has the greatest key. This key is then inserted 
in a preassigned position in the index file. Thus each data group has 
a corresponding index entry. Index space is set aside when the ISAM 
file is originally built, with one index entry being allocated per 
data group. 

10-4 ISAM (ISMUTL) 



The last four bytes of each group are reserved for linking and are not 
accessible to the user. The link information consists of one byte in
dicating the number of presently valid records in the group; one byte 
for the file number of the next logical data file; and two bytes for 
the number of the next logical data group within that next logical 
data file. Until overflow occurs, a link will always point to the 
next data group in the present file or to the first data group in the 
next data file. When overflow~occurs, the link points to a group in 
the overflow area. The groups in overflow are identical in structure, 
including link structure, to those in the data file. The link in the 
overflow group points back to the original data file if the number of 
records requires only one overflow group; or if more than one over
flow group were required to contain the overflowed records, the link 
in the last overflow group would point back to the original data file. 

The append area is simply an extension of the data section, resulting 
from the need for more storage area than is indicated by the input 
file size. Since the append area is a part of the data section, added 
records in the append area may also cause overflow. 

The choice of group size depends on many factors and these are dis
cussed in Section 10.3.2. 

Figure 10-2 illustrates the concepts o~ data group organization dis
cussed above using a group that IS 512 bytes in size with five 
100-byte records, two of which are identified as load exclusion. 

FCG 
132 

bytes 

GroupO 

Data File N (Logical Volume N) 

Group 1 Group 2 Group 3 

~ ..........---------Group Size 512 bytes --------..... 
,.-

I 
Record Record Record Two records allocated 

1 2 3 for load exclusion 
I 

141----------- Record Area, 500 bytes ------------1*= 
Fill Area (Unused), 8 bytes I 

Link, 4 bytes r---

Figure 10-2 Data Group 

ISAM (ISMUTL) 10-5 



10.3.1.2 Index File 

An ISAM file contains one, and only one, index section (file). This 
is defined as file O. File 0 is always examined first to determine 
the status of the entire ISAM file and also to determine the group lo
cation of a desired'record, or the location of the group in which to 
store a record. 

The entire index file is divided into groups which are the same size 
I 

as the data file groups. The first group, group 0, as in the data 
file, is an FCG. The first 132 bytes of this group contain a descrip
tion of the ISAM file structure, file status, and data file alloca
tions in terms of number of groups. Unlike the data file FCGs, the 
FCG for the Index File is updated as the ISAM file grows and changes. 
Because CTS-300 ISAM files are designed to be compatible with CTS-500 
ISAM files, the FCG contains some information not used by CTS-300. 
Table 10-1 shows the contents of the index file FCG. 

Following the FCG group in the index file is the overflow area (if se
lected) of a size determined by the user. No index entries were set 
aside for the overflow groups, as there were for the data section gro
ups. All records in overflow are accessed via the linking information 
in each data file group. Once a group is accessed, whether a data 
file group or an overflow group, the records in that group are ac
cessed sequentially. 

The last part of the index section is the index. Since the group size 
is the same as in the data file; and since the key is smaller than 
its corresponding record, there are many more index key entries per 
group than records per group. Each index entry consists of the record 
key and associated link to its data group or, as you will see, to 
another index entry. If the keys and their links do not fit exactly 
into the space available in the group, the unused space is ignored. 

To speed access, the index, itself, can be indexed. The resulting 
levels of indexing are determined by an algorithm based on the total 
number of data file groups. In fact, all index entry spaces are pre
assigned, and links are preconstructed, based on this total number of 
data file groups. The highest (coarsest) level of indexing appears 
first in the file and the lowest (finest) level of the index (the 
largest part) is at the end of the file. The higher index entries 
point, via index entry links, to lower levels until, at the lowest 
level, the index entry points to a specific group in a data file. 

The organization of the index area of the index section is shown in 
Figure 10-3. This is a hypothetical index for an ISAM file of approx
imately 8000 records with five data records per group and 20 index en
tries per group. There are seven data files with approximately 1200 
records (240 groups) per data file. Keys are numeric, starting with 
one. The illustration is of a search for a record whose key is 5877. 
The search is started in the highest (coarsest) level of the index. 
In this example this level consists of four entries in group 101. The 
search is for a key of equal or greater value than 5877. The index 
entry link for index key 5998 points to group 104. The search of this 
group stops at key 5887, whose associated link points to group 157 in 
the lowest (finest) section of the index area. The search of the 
group ends at key 5879 which points, via the link, to data file five, 
group 257. Group 257 is searched sequentially for the desired record. 

10-6 ISAM (ISMUTL) 



Table 10-1 
File Control Group 

No. 
Bytes Description 

2 --No~of data groups in this file 
2 No. of records per group 
2 Record length in bytes 
2 Key length (l-n) 
2 Key location in record (l-n) 
2 Allow duplicate keys 

2 No. retries for locked block 
2 No. levels of indexing 
2 Group No. of first group in 

primary index 
2 No. index entries per group 
2 No. data records per group 
2 Current No. groups in overflow 
2 Maximum No. groups in overflow 
2 Load exclusion factor (O-n) 
2 File protection code 
2 Group length 
2 Last file in use (0-7) 
2 File 0 clustersize (2-256) 
2 File 1 clustersize (2-256) 
2 File 2 clustersize (2-256) 
2 File 3 clustersize (2-256) 
2 File 4 clustersize (2-256) 
2 File 5 clustersize (2-256) 
2 File 6 clustersize (2-256) 
2 File 7 clustersize (2-256) 
2 Data file 0 allocation 
2 Data file 1 allocation 
2 Data file 2 allocation 
2 Data file 3 allocation 
2 Data file 4 allocation 
2 Data file 5 allocation 
2 Data file 6 allocation 
2 Data file 7 allocation 
18 [proj,prog]filnam.ex 
6 Data file 1 device 
6 Data file 2 device 
6 Data file 3 device 
6 Data file 4 device 
6 Data file 5 device 
6 Data file 6 device 
6 Data file 7 device 
2 Total No. records (low order) 
2 Total No. records (high order) 
2 Multikey ISAM 

132 Total bytes 

Comment 

O=no,-l=add at 
beginning,+l=add at end 

Not used in CTS-300 ISAM (O) 

1 
1 
1 
1 Not used in CTS-300 
1 ISAM 
1 
1 
1 

(No. groups per 
file, -65535) 

Not used in CTS-300 ISAM 

No colon, right space fill 

Valid only in index file 
Valid only in index file 
Always 0 (no mu1tikey for 

CTS-300) 

ISAM (ISMUTL) 10-7 



..... 
o , 
00 

~ Overflow 
...... 1---- Area 

..... 
o 
I 

w 

Data File 
5 

~------------------------- IndexArea--------------------_______________ ~ 

Group 
1 

,......------ Mid Level------""'\ 

I } 

Records 
(Key Shown) 

J---- Low Level----S \-oS ---------~ 

desired 
record 

Index 
Section 

Data 
Section 



10.3.2 Interrelationships and Tradeoffs 

There is no file organization that is best for all applications, but 
there is one that is better suited to your application. This section 
discusses choices and decisions for each file component on an indivi
dual basis, starting with the key. Physical limits imposed by CTS-300 
ISAM are also given. Some of these limits may seem impractically 
large and should certainly present no problem, but all limits must be 
observed. 

10.3.2.1 Key 

Size: 1 to 100 characters (to change limits, see Section 10.3.2.3). 

The key is an ordinary data field, defined within a DISOL record 
statement, which contains alphabetic or numeric information. 

CTS-300 ISAM can, optionally, accept duplicate keys. That is, more 
than one record with the same key may be stored. Within the CREATE 
dialog, you are asked whether the more recent record is to be stored 
before or a~ter other such records with this key. It is the storage 
placement that determines the access order. If placed before, it will 
be accessed first with a READS (sequential read) statement; if after, 
it will be accessed last after all other records with that key. 

If you elect to allow duplicate keys, it is wise to provide sufficient 
overflow area, because duplicate keys have the potential for unlimited 
overflow. 

10.3.2.2 Record 

Size: 2 to 16,383 bytes (to change limit, see Section 10.3.2.3). 

The most important consideration concerning record size is its rela
tion to group size; therefore, record size cannot be selected without 
also considering group size. A major design goal for an ISAM file is 
to fit as many records as possible in a group with little or no wasted 
space. If the record can be designed so that a multiple will fit the 
chosen group size, the file will operate at maximum efficiency. 

Too many records in a group could cause a performance degradation, be
cause records are always searched sequentially after the group is ac
cessed. 

Too few records per group could limit load exclusion availability, and 
the addition of many records in any such group can result in heavy 
overflow usage. 

ISAM (ISMUTL) 10-9 



10.3.2.3 Changing Record and Key Sizes 

The standard record length buffer is 1500 characters, and the standard 
key length buffer is 100 characters. However, it is possible to cre
ate a file with a record or key length that exceeds these limits by 
changing the limits in the UTL2.DBL, RORG3.DBL, and CRETl.DBL subrou
tines used by the ISMUTL program. Insert the following decimal values 
as shown below: 

@@@@ = NEW RECORD LENGTH 
%%%% = NEW RECORD LENGTH MINUS 132 
+++ = NEW KEY LENGTH 

Using EDIT: 

• R EDIT 
*EBUTL 2. DBL$$ 
*FBUFLN,$5J$4C@@@@$$ 
*FKEYLN,$5J$3C+++$$ 
*EX$$ 

• R EDIT 
*EBRORG3.DBL$$ 
*FRECBUF$lA$FA$4C@@@@$$ 
*6A$FA$4C%%%%$$ 
*5A$FA$4C%%%%$$ 
* 3A$FA$3C+++$$ 
*EX$$ 

• R EDIT 
*EBCRETl.DBL$$ 
*FRECBUF$lA$FA$4C@@@@$$ 
*6A$FA$4C %%%%$$ 
*4A$FA$4C %%%%$$ 
*EX$$ 

After you have modified these routines, you must recompile and reI ink 
them as shown below for ISMUTL.SAV (SUD system): 

.DIBOL/NOLINE UTL2,FCGFX,RORGl,RORG2 
no-error response 

.DIBOL/NOLINE RORG3,RORG4,STAT,CRETI 
no-error response 

.DIBOL/NOLINE CRET2,CRET3,NUMQ 
no-error response 

.LINK/PROMPT/EXE:ISMUTL.SAV UTL2,FCGFX,DATE,DIBOL 
RORGl/O:l 
RORG2/0:l 
RORG3/0:l 
RORG4/0:l 
STAT/O:l 
CRETl/O:l 
CRET 2, NUMQ/O: 1 
CRET3/0:1// 

10-10 ISAM (ISMUTL) 



10.3.2.4 Group 

Size: 132 to 16,383 bytes (additionally the size can not exceed 127 
records) • 

The first consideration in determining group size is related to ma
chine I/O. For efficiency, it is best if the ISAM group size is equal 
to the machine I/O block size. Data is normally read by the hardware 
in blocks of 512 bytes. Therefore, a group size smaller than the 
hardware block size would not use part of the data obtained with each 
read. If the group size is made larger, that is, if a group crosses a 
block boundary, the cost may be extra I/O for a given record access. 
Another consideration with groups that cross block boundaries is that 
it requires additional processing by the run-time system. 

In TSD operation, when a record is opened in update mode, the record 
is locked. Its entire group, and all blocks associated with that 
group, are also locked and can not be accessed by another user. 

However, I/O byte block size can be changed in whole multiples of 512 
bytes with the DIBOL PROC(n) statement. When using the PROC statement 
you must remember that it affects all files opened on the system. 
Regardless of group size, however, the link area still requires only 4 
bytes. Therefore, the record space available would be 508, 1020, 
1532, etc. bytes for values of n (in PROC(n» of 1, 2, 3, etc. 

The second consideration is to design records to be placed in this 
group, or to make the group fit a multiple of existing records. If 
you are free to design the record, this fit can usually be achieved 
with little waste. On the other hand, if for example you are creating 
an ISAM file from an existing sequential file, this can not be done. 
In either case, you will likely have to make a decision whether or not 
to artificially fill any remaining space in the group. This is done 
at the expense of losing some storage space. However, it avoids the 
performance degradation caused by mismatching the group and block 
size. The amount of space wasted by filling has to be balanced on an 
individual basis by evaluating the increased access efficiency. 
·Ideally, the amount of fill is small, and the decision to fill is then 
the logical one. 

The number of load exclusion records chosen for the group has no ef
fect on the total number of records. The purpose of load exclusion 
records is to reserve one or more open record spaces within each 
group. It is selected when you expect to add a random distribution of 
relatively few records, thus lowering the likelihood of group over
flow. 

ISAM (ISMUTL) 10-11· 



10.3.2.5 Overflow Area 

Size: 0 to 16,383 groups 

Allocation of overflow area depends on the nature of expected file 
growth. Overflow is required when new records are likely to be dis
tributed unevenly throughout the file. That is, where the likelihood 
is great that there will be many records that logically fall under 
one, or a few, keys. The problem with overflow, as mentioned~ before, 
is that access within the overflow area must be accomplished via links 
and sequential search which involves multiple reads. Within overflow, 
the advantages of ISAM are lost, except that storage is still sequen
tial. Overflow should be used only as a temporary solution to accom
modate a particular class of added records. As the overflow area be
comes filled, the need to reorganize the file to increase access effi
ciency becomes greater. See Section 10.4.5. The manipulation of re
cords by ISAM when overflow occurs is illustrated in Section 10.3.4. 

10.3.2.6 Append Area 

Size: 0 to number of records determined by system storage limitations 

The append area, since it is indexed, does not have the drawbacks as
sociated with the overflow area. Index entries are created for each 
append area group as it is filled. Efficient use of an append area is 
achieved whenever records are added in ascending order by key value. 
If a record with a high key value is prematurely stored, this could 
eventually cause records with lower key values to be placed in over
flow. 

If it is the nature of the application that new data records being 
added to an existing ISAM file will always or usually have a key with 
a greater value than those records already in the ISAM file, then a 
large append area would be required. In this case, little or no load 
exclusion area or overflow area would be necessary since we are not 
expecting new data records to have to be inserted between existing 
records. 

Append area is assigned in whole groups, even though it is specified 
in records. ·Thus, if you had previously chosen four records per group 
for group size, and specified six records for append, the append area 
would be eight records (two groups) in size. Also, ISMUTL always ap
pends a minimum of one group. So, even if you requested no append 
area, in this example there would be space for four records in the ap
pend area. 

If no input file is specified when creating the ISAM file, the amount 
of space allocated in the append area becomes the entire data area of 
the file. 

10-12 ISAM (ISMUTL) 



10.3.3 DIeOL Statements 

ISAM file access and data manipulation is accomplished with both stan
dard DIeOL statements and special ISAM DIBOL statements. All book
keeping and updating involved are handled by the run-time system. A 
complete description of these statements is found in the DIBOL-ll 
Language Reference Manual. This section discusses their specific re
lationship to ISAM files. 

NOTE: All media containing any part of the ISAM file must be on-line 
for any 1SAM DIBOL statement operation. 

The following are D1BOL statements used with 1SAM files: 

OPEN 

This statement for an 1SAM file is in the form: 

S1 
OPEN (ch, ,filespec) 

SU 

where: 

ch is the channel to be opened. 

S1 indicates input from an 1SAM file; no change to the 
file is allowed, and no records are locked. The fol
lowing statements may be used with a file opened in SI 
mode: READ, READS, and CLOSE. 

SU indicates update of an ISAM file. When specified in a 
TSD environment, the record accessed is locked (no 
other user may access the record). The ISAM groUp, of 
which the 1SAM record is a part, is also locked, as is 
any block which is a part of the group. Any ISAM 
statement may be used with a file opened in SU mode. 

filespec is an alphanumeric literal, field, or record that con
tains the file specification of the file to be opened 
in the form dev:filnam.ext. 

• The 1SAM file must be opened before any operation is 
performed. 

• The two modes SI and SU are exclusively for ISAM use. 

• The OPEN statement opens all volumes of an ISAM file 
on a single RT-ll channel. 

• The following statements will unlock a record locked 
in update mode: UNLOCK, DELETE, WRITE, STORE, CLOSE, 
or a READ of a record in another group. 

ISAM (ISMUTL) 10-13 



READ 

This statement for an ISAM file is in the form: 

READ (ch,record,keyf1d) 

where: 

ch 

record 

keyf1d 

READS 

is the channel opened for the file. 

is the destination of the retrieved data. 

is the ISAM key for the desired record. 

• The first record with a key match is the record re
turned. 

• If there are duplicate keys, successive records must 
be accessed with the READS statement. 

• If the key is not found, the record with the next 
greater key is returned, along with an error message 
indicating that the requested key was not found. If 
the key size is less than the size of the data file 
key, it is interpreted as a partial key. In this 
case the first record retrieved is the one whose 
initial characters match the characters of the 
specified key field. If the characters do not match, 
the record with the next greater partial key is 
returned along with the error message. 

• If a READ of a locked record is attempted, the key 
remains intact. 

This statement for an ISAM file is in the form: 

READS (ch,record(,label]) 

where: 

ch 

record 

label 

is the channel opened for the file. 

is the destination of the retrieved data. 

is the label of the statement where control is trans
ferred when the ISAM end-of-file is detected. 

• The READS statement is normally issued after a READ; 
in which case the next logical block is returned. 

• If the statement first issued after an OPEN is a 
READS, the first logical record is returned. 

10-14 ISAM (ISMUTL) 



WRITE 

• If a READS of a locked block is attempted, you will 
receive an error message indicating the locked block 
condition • 

• A READS is accomplished using a key value of zero and 
there is no erro~ message because of the failure to 
find a key match. 

This statement for an ISAM file is in the form: 

WRITE (ch,record,keyfld) 

where: 

ch is the channel opened for the file. 

record is the source of the output data. 

keyfld is the ISAM key for the desired record. 

A WRITE may be performed only if the record is the one most recently 
retrieved by a READ or READS. It is a read-modify-write operation. 

STORE 

This is an ISAM statement of the form; 

STORE (ch,record,keyfld) 

where: 

ch 

record 

keyfld 

is the channel opened for the file. 

is the record to be written. 

is the field containing the key of the record to be 
stored • 

• This statement places the record in the ISAM file ac
cording to its key value • 

• If a record with the same key already exists, and du
plicate keys are not allowed, an error is generated. 

NOTE: Do not use the STATUS program (see STATUS 
utility) kill option or a CTRL/C to terminate a pro
gram doing STORES to an ISAM file opened in SU mode. 
Such a termination of the program (or the last pro
gram, if more than one) will prevent updating of the 
index file FCG. An attempt to REORG this file will 
then result in an error message indicating that more 
input records were found than were specified. See 
the error message table for further information. 

ISAM (ISMUTL) 10-15 



DELETE 

This is an ISAM statement of the form: 

DELETE (ch,keyfld) 

where: 

ch 

keyfld 

UNLOCK 

is the channel opened for the file. 

is the field containing a value equal to the key of the 
record to be deleted. 

The keyfield must contain a value equal to the key of 
the last record read. 

This is an ISAM statement of the form: 

UNLOCK (ch) 

where: 

ch is the channel opened for the file. 

The UNLOCK statement clears any existing lock condition on the speci
fied channel. 

CLOSE 

The form is: 

CLOSE (ch) 

where: 

ch is the channel opened for the file. 

The CLOSE statement terminates the use of a channel by closing the, 
file and releasing the channel. Any record in the device data buffer 
is written to the file. The index file FCG is updated with the number 
of records current upon the last close (in a multiuser system) by any 
update user (SU). 

10.3.4 Data Storage 

As will be seen in Section 10.4 ISAM files may be created without any 
data as input; with a sequential file as input; or with another ISAM 
file as input. In this section, files will be shown as data is added 
to illustrate the characteristics of an ISAM file. Figure 10-4 shows 
an empty file to which records are added. Figure 10-5 shows an ISAM 
file created with a sequential file as input, followed by later 
addition of records. 

10-16 ISAM (ISMUTL) 



Records Added to an Empty ISAM File 

Consider a data file with group number "Nil as shown in Figure 10-4. 
This file was created without any specified input. This is ~ata file 
two in an ISAM file whose group size is 512 bytes, each of which con
tains five records of 100 bytes each. Each data group in this file 
contains, in addition to the 5 records, 8 bytes of unused space, be
cause the fill option was chosen. Figure 10-4 consists of six parts 
used to illustrate changes in a data group as records are added and 
deleted. The parts, as identified in the figure, are: 

a) Initially the group has no data. 
the first record position. The 
the data group also has an EOF as 
shows one valid record (the EOF) 
in the same data file. No search 
ISAM file) will proceed beyond 
the greatest possible key value. 

The only entry is an EOF in 
index entry corresponding to 
the key entry. The link 
and points to the next group 
of the data file (or the 
this EOF record, since it is 

b) A record is added (with the STORE statement) which has a key 
value of 13. The EOF is now the second record in the group. 
The link shows two valid records, and the index entry remains 
unchanged. 

c) Records with key values of 15, 17, 18, and 19 are added. The 
records are stored in ascending order. The EOF record is 
replaced by the record with the key of 19. The key of 19 is 
now placed in the index for this group. No record with a key 
greater than 19 can hereafter be placed in this group number 
N. The link for the group indicates 5 valid records. 

d) The addition of one more record (key of 16) now exceeds the 
capacity of the group and results in the split to the overflow 
area as shown. The index entry for all records in this group 
is still 19 but now access to records 17, 18, and 19 is 
achieved via the link to overflow. Data group N contains 
copies of records 18 and 19, but the link identifies only 
three valid records in this group. The overflow group link 
points back to the next logical group (N+l) in the data file. 

e) If record 15 were now deleted, the group would be as shown. 
The group N link is unchanged except there are now only the 
two valid records indicated. Note there are now two copies of 
record 18 and three of record 19 shown. Only the single en
tries in the overflow group are accessible. 

Note that the figure is not to any scale and the information 
shown consists only of key values, EOF entries, and link in

.formation. The link information is: number of valid records 
in the group, number of the next data file, and number of the 
next logical record. 

ISAM (ISMUTL) 10-17 



a) no data 
DATA GROUP N INDEX ENTRY 

OVERFLOW GROUP X 

'---- RECORD AREA --~UNUSED 

b) one record (key 13) 
DATA GROUP N INDEX ENTRY 

I I 0 2,2,N+1 I EOF I 2,N 

OVERFLOW GROUP X 

I I I I 
c) four records (keys 15, 17, 18, and 19 added) index entry of 19 

,) 

DATA GROUP N INDEX ENTRY 

13 1 '5 117 1'8 1 '9 0 5,2,N+1 

OVERFLOW GROUP X 

I I I I 0 
d) record with key of 16 added 

DATA GROUP N INDEX ENTRY 

13 3,O,X 2,N 

OVERFLOW GROUP X 

Figure 10-4 Data Storage (File Initially Empty) 

10-18 ISAM (ISMUTL) 



e) record with key of 15 deleted 
DATA GROUP N 

OVERFLOW GROUP 'X 

2,O,X 

.7 \.8 \.9 \ I 0 3,2, N+' 

INDEX ENTRY 

\.9 I 2, N 

Figure 10-4 Data Storage (File Initially Empty) (Cont.) 

Records Input from a Sequential File during CREATE 

When an ISAM file is created with a sequential file specified as the 
initial input, the user has the option of selecting the load exclusion 
option. This option is illustrated here in Figure 10~5. This is data 
file number 3 in an ISAM file whose group size, as in Figure 10-4, is 
512 bytes, each of which contains 5 records of 100 bytes each. Each 
data group in this file contains, in addition to the 5 records, 8 
lbytes of unused space, because the fili option was chosen. A load ex
clusion factor of 2 record spaces has been chosen. The parts of this 
figure, as identified, are: 

a) When this ISAM file is created, the data from the sequential 
input file is immediately entered. In this example this group 
happens to receive records with key values of 13, 17, and 20. 
Records with greater key values go into the next group because 
the load exclusion of two records prevents further entries 
during the creation phase. The key of 20 is placed in the 
index entry for the group. No record with a key greater than 
20 can hereafter be placed in this group N. The link for the 
group indicates three valid records. 

b) At some time after the file is created and all the sequential 
file input data is stored, records are added (one at a time, 
with the STORE statement) which have key values of 15 and 18. 
The link now shows 5 valid records, and the index entry 
remains unchanged. 

c) A record with a key value of 14 is now added. The number of 
records now exceeds the capacity of the group and a split to 
overflow occurs, as with the example in Figure 10-4. 

d) The record with key value 13 is now deleted. 
is a reduction in the number of valid records 
shift of the other records to the left. This 
of 3 copies of the record with key value 20. 
overflow is accessible. 

The only change 
in group N and a 
creates a total 

Only the one in 

Note that this figure, like Figure 10-4, is not to any scale 
and the information shown consists only of key values, EOF en
tries, and link information. 

ISAM (ISMUTL) 10-19 



a) data from sequential file as input 

13 

DATA GROUP N 

17 20 

RECORD AREA ------' 
UNUSED 

OVERFLOW GROUP X 

b) records 15 and 18 added 

DATA GROUP N 

3,3,N+1 

LINK 

LINK 

'3 1.5 I 17 1.8 I 20 rIA 5,3, N+' 

OVERFLOW GROUP X 

I I I I 0 
c) record with key of 14 added causing overflow 

DATA GROUP N 

OVERFLOW GROUP X 

d) record with key of 13 deleted 

DATA GROUP N 

2,O,X 

OVERFLOW GROUP X 

17 3,3,N+1 

INDEX ENTRY 

KEY LINK 

INDEX ENTRY 

INDEX ENTRY 

INDEX ENTRY 

3,N 

Figure 10-5 Data Storage (Sequential File as Input) 

10-20 ISAM (ISMUTL) 



10.4 USING ISMUTL 

ISMUTL is the OIBOL utility that allows you to select 
to define, build, and support the desired ISAM file. 
four selectable operations: 

the parameters 
ISMUTL performs 

• An ISAM file is constructed by using the create (CREATE) fea
ture of ISMUTL. 

• The status (STATUS) feature of ISMUTL allows the operator to 
check file structure, fil~ status, utilization of overflow, 
and (in chain mode) append areas. When one or both of the 
latter become full, or nearly so, it is usually necessary to 
rebuild your ISAM file. This may be done with either the 
create or the reorganization feature of ISMUTL. 

• Assuming the basic parameters are still valid, the reorgani
zation (REORG) feature of ISMUTL can automatically create a 
new ISAM file which restores file expansion areas to their 
original values and consolidates all the data. The result is 
then a larger (or perhaps smaller) addressable (indexed) 
area. 

• The exit (EXIT) feature terminates ISMUTL and returns control 
to the run-time system (TSO or XMTSO) or the operating sys
tem. 

10.4.1 ISMUTL Requirements 

Before you actually use any of the features of ISMUTL, there are sev
eral requirements and characteristics of the utility that must be un
derstood. 

10.4.1.1 SUO Operation 

In order to execute a OIBOL program that contains ISAM access state
ments, ISAM must first be selected during CTSGEN. 

10.4.1.2 TSO Operation 

TSD operation with ISAM and ISMUTL requires special attention during 
CTSGEN. The CTSGEN must include ISAM, and a specific number of chan
nels must be specified in CTSGEN, depending on the number of logical 
volumes to be assigned in ISMUTL CREATE. It is also possible to add a 
data file durin~ REORG, and this would affect channel requirements. 

ISAM (ISMUTL) 10-21 



Twelve is the maximum number of channels required if you are creating 
or reorganIzIng an ISAM file of seven data volumes. TSD channel re
quirements, as a function of data volumes, are listed below: 

NUMBER OF 
LOGICAL DATA 
VOLUMES 

1 
2 
3 
4 
5 
6 
7 

NOTE 

NUMBER OF 
CHANNELS 
REQUIRED 

6 
7 
8 
9 

10 
11 
12 

Under TSD, no other user should access 
the ISAM file while it is being created 
or reorganized. 

10.4.2 Running ISMUTL 

Assuming proper linking and a CTSGEN for ISAM, the command for file 
ISMUTL.SAV (SUD) is then: 

• R ISMUTL 

or, assuming proper linking, a CTSGEN for ISAM, and sufficient chan
nels, the command for file ISMUTL.TSD (TSD) is: 

*R ISMUTL 

The response is: 

CTS300 ISAM UTILITY PROGRAM, Vnn-OOn 
SELECT FUNCTION (CREATE,STATUS,REORGANIZE, OR EXIT): 

Your response to this selection message is the first letter of the 
chosen function. But first see the appropriate section below for the 
operating details of that function. 

10.4.3 Creating a File (CREATE) 

The previous sections of this chapter have covered the ISAM file and 
its structure. This section contains a discussion of the special 
chara~teristics of CREATE and details of the CREATE process. 

10-22 ISAM (ISMUTL) 



10.4.3.1 Special CREATE Characteristics 

Input File 

Input for ISAM file creation may be a sequential file; another ISAM 
file; or an ISAM file may be created without an input file. If the 
input is a sequential file, there is a special requirement: the file 
must first be sorted in ascending order by the same key that will be
come the ISAM key. 

After naming the 
the input file 
CREATE opens two 
keep track of 
same-name file. 

input file, you will be asked if you want to delete 
after CREATE. If you chose to delete the input file, 
checkpoint files which, in an alternating manner, 
the cleanup process associated with the deletion of a 

If a machine malfunction occurs during CREATE with the input file de
leted, the checkpoint files allow resumption at the correct point. 
See Section 10.4.3.5 for details on restarting the process. 

NOTE: If you do decide to delete your input file, you may want to 
make a back-up copy to eliminate loss of data due to a hardware mal
function. 

Output File 

NOTE 

Certain ASCII characters must be avoided 
in ISAM files. These characters (listed 
below) interact with intermediate work 
files during ISMUTL CREATE or later 
REORG. Any of these characters will 
cause truncation of the record in which 
it is found. 

Character 

Null 
HT 
LF 
VT 
FF 
CR 
~Z 

Esc 

Decimal Code 

o 
9 

10 
11 
12 
13 
26 
27 

You must name the resulting ISAM file at the beginning of the CREATE 
dialog. Allocation of the index and data files to the system re
sources (devices) takes place at the end of the dialog. 

ISAM (ISMUTL) 10-23 



The output file name can be any six-character file name. The default 
extension is .ISM, which is assigned to the index file. The data 
files are assigned default extensions of .ISI through .IS7. If an ex
tension is specified, it must be at least two characters long; if it 
is three characters, the last character can not include the numbers 1 
through 7. These numbers are assigned by ISMUTL and' will override any 
third character position. The extension .ROG can not be used either, 
since that is a temporary extension used by the system when the file 
is reorganized. If the output file name is the same as the input file 
name, temporary files, .TMP and .TMI through .TM7, are built by CREATE 
and there should be no other files of that name on the system. 

Device identification takes place at the end of the CREATE dialog when 
files are allocated. There must be enough contiguous space on each 
device to open its data file and, for one device, to open the index 
file as well. If any difficulty arises, see Section 10.4.3.5. 

Ordinarily volumes containing data files must always be mounted for 
use on the same devices and units as those on which they were created. 
However, by using the RT-ll ASSIGN command for device names, you are 
not restricted to the same physical devices. 

Total File Requirements 

In addition to files already mentioned, in all CREATE operations there 
are also two work files that are opened to build the output index 
file. CREATE will try to find space for the work files on the device 
you specify for your output files. If enough space is not found, CRE
ATE will ask for additional devices. These are temporary files that 
will be deleted automatically after CREATE has built the index file. 

Below is a summary of the files that will be automatically created, 
depending on deletion and same-name choices: 

If you wish to delete the input file and both input and output files 
have the same name: 

filnam.CKI (checkpoint file on system device) 
filnam.CK2 (checkpoint file on system device) 
filnam.TMP (temporary file) 
filnam.TMI to .TM7 (depending on the number of input data files) 
filnam.ROG (temporary REORG file) 
filnam.ROI to .R07 (depending on the number of input data files) 
filnam.WKO (work file) 
filnam.WKl (work file) 

If you wish only to delete the input file: 

filnam.CKl 
filnam.CK2 
filnam.WKO 
filnam.WKI 

(checkpoint file on system device) 
(checkpoint file on system device) 
(work file) 
(work file) 

If you do not wish to delete the input file: 

filnam.WKO (work file) 
filnam.WKl (work file) 

10-24 ISAM (ISMUTL) 



Auto-Create 

The CREATE function includes the optional capability of operating from 
an external data file of input responses. This is a special function 
for experienced users and should not, in any case, be invoked to cre
ate a file with unproven parameters. For this reason, a complete dis
cussion of this capability is provided under Section 10.4.7.2, rather 
than here. 

10.4.3.2 Design/CREATE Process 

Creating an ISAM file is a five-step process. The first four of these 
steps are preliminary to running CREATE: 

1. Determine the key/record/group/block size relationship. 

2. Determine record addition characteristics for load exclusion, 
overflow, and append area requirements. 

3. Determine the output names. 

4. To satisfy requirements which apply to your proposed ISAM 
file, determine the following in advance of running CREATE: 

• Whether to do an auto-create 

• Input file (name, ext .DDF assumed) 

• Whether to delete your input file (ISAM or sequential only) 

• Output file name 

• Approximate number of input records (sequential only) 

• Record length (only if no input file) 

• Number of records per group 

• Load exclusion value 

• Whether to fill out the group to end of block boundary 

• Append area size 

• Overflow area size 

The following two factors are automatically supplied if the 
input file is an ISAM file: 

• Key length 

• Key location 

ISAM (ISMUTL) 10-25 



• Whether to allow duplicate keys, and, if so, whether to 
place at beginning or end (jf ISAM input file, question ap
pears only if not already allowed) 

• Output allocation: 

Index File 
Data Files 

The device is specified without the colon. 

5. Select CREATE by typing C in response to the ISMUTL selection 
message and enter the values you have just determined. The 
following section will help you during the CREATE process. 

10.4.3.3 CREATE Dialog 

This section contains the actual text for the create process. All 
create questions are included here, even though no given create could 
include every question. Allowable ranges are shown as a final check 
on your answer. Figure 10-6 illustrates the dialog flow for the pos
sible input file types and subsequent choices. 

The following is the CREATE dialog: 

DO YOU WANT TO DO AN AUTO-CREATE? (YES/NO) 

Answer NO, or carriage return, unless you are familiar with the 
auto-create process. The special procedures for this function are de
tailed in Section 10.4.7.2. 

INPUT FILE (DEV:NAME.EXT): 

If not specified, assumed device is the default device and assumed ex
tension is .DDF. A carriage return implies no input file, in which 
case the next question does not appear. 

DELETE INPUT FILE AFTER CREATE (YES/NO): 

If yes, your input file will be automatically deleted after the output 
file is created. 

OUTPUT FILE (NAME. EXT, DEFAULT EXT=ISM): 

Just enter the file name; device names are supplied later. 

APPROXIMATE NUMBER OF INPUT RECORDS (0-16,777,215): 

Appears only if sequential input is specified. 
the system limit. Unneeded space is not used. 
the size of the work files. 

10-26 ISAM (ISMUTL) 

You can specify up to 
Your answer determines 



FUNCTION AND FILE SPECIFICATION 

GROUP SPECIFICATION INFORMATION 

FILE EXPANSION AREA INFORMATION 

KEY INFORMATION 

INDEX FILE ALLOCATION 

.R ISMUTL 

CTS300 ISAM UTILITY PROGRAM,~V04-00E 
SELECT FUNCTION (CREATE, STATUS, REORGANIZE, OR EXIT): C 

DO YOU WA'NT TO 00 AN AUTO-CREATE? (YES/NO) 
. , N I Y 

INPUT FILE (DEV:NAME.EXT): + 
I ' I S •• S.ctlon 

DF or IF NFS 10.4.7.2 

~ 
DELETE INPUT FILE AFTER CREATE (YES/NO) 

OUTPUT FILE (NAME.EXT. DEFAULT EXT=ISM): 

I , I I 
DF 

~ 
APPROXIMATE NUMBER OF INPUT RECORDS (0-16,777,215): ,IF. _______ Nfs ____________________ ___ 

RECORD LENGTH, IN BYTES 2-16.383): 
L-______________ ~------~~----~ 

NUMBER OF RECORDS PER PHYSICAL GROUP (x-x): , 
I I 

DF or IF NFS , 
M •••• g. to u •• r: 

LOAD EXCLUSION INFORMATION FOR FUTURE REORGANIZATIONS 

LOAD EXCLUSION FACTOR. IN RECORDS (O-x): 

~ 
I. group I.ngth (In byt •• ) • multiple of 512? , 

I I 
N Y 

~ 
FILL OUT GROUP TO END OF PHYSICAL BLOCK? (YES/NO) 

i 
N 

NUMBER OF RECORDS IN APPEND AREA (k): , 
SIZE OF OVERFLOW AREA IN GROUPS (0-16,383): 

I 
I I 

DF or NFS IF 

KEY LtNGTH: 
l 

Dupllc.te key. In Input file? 
I 

~ ~ 
KEY LOCATION: ! 

ALLOW DUPLICA E KEYS (YES/NO): 

I 
Y 

ADD DUPLICATES TO BEGINNING~OR END OF SUBSET (BEGIN/END): 

INDEX FILE REQUIRES x BLOCKS 
INDEX FILE DEVICE (RETURN IMPLIES SYSTEM DEFAULT DEV.): 

i 
Y 

-------------------------------------------------------------~------------------------------~--
DATA FILE ALLOCATION A TOTAL OF x RECORD SPACES ARE ALLOCATED. 

KEY 

UPPER CASE = Sy.tem output 
Upper .nd lowerc ••• = Comment. 

INPUT FILE TYPE: 
DF = An exl.tlng .equentlal data file 
IF = An exl.tlng ISAM file 
NFS = No file .peclfled 

APPROXIMATELY Y BLOCKS OF DISK SPACE ARE 
DATA FILE 1 DEVICE (RETURN IMPLIES SYSTEM 

DATA FI.LE 1 ALLOCATION (1-x): 

DATA FILE N DEVICE (RETURN IMPLIES SYSTEM 
DATA FILE N ALLOCATION (1-%): 

Rep •• ted to N=7 If necess.ry to assign all 
r.qulred block. to de.'red device •. 

Figure 10-6 ISAM CREATE Flowchart 

ISAM (ISMUTL) 10-27 



RECORD LENGTH, IN BYTES (2-16,383): 

Appears only if no input is specified. 

NUMBER OF RECORDS PER PHYSICAL GROUP (x-x): 

The range is determined by a mInImum group size of 132 bytes and by a 
maximum group size of 127 records or 16,383 bytes, whichever is 
larger. 

LOAD EXCLUSION INFORMATION FOR FUTURE REORGANIZATION 

Appears only if there is no specified input file. Since there is no 
initial data, there can be no exclusion. However, when the file is 
reorganized, the amount of exclusion selected here will be provided. 

LOAD EXCLUSION FACTOR, IN RECORDS (O-x): 

The maximum number of records that can be allocated for exclusion is 
always one less than the total number of records in a group. If there 
were no input file specified, this message would be preceded by the 
following: 

FILL OUT GROUP TO END OF PHYSICAL BLOCK? (YES/NO) 

This answer depends on the record/group/block size relationships and 
is a matter of jUdgement. You trade efficiency for access speed. 

NUMBER OF RECORDS IN APPEND AREA (O-x): 

The append area is for the addition of records with key values greater 
than the initial input. Although the low range of your choice is 
labeled 0, you actually get at least one group. The maximum number is 
limited by system storage capacity. 

SIZE OF OVERFLOW AREA IN GROUPS (0-16,383): 

The overflow area is for addition of records of intermediate key value 
to groups that may eventually be filled. 

KEY LENGTH 

Key length is the length of the key in bytes. I~ appears only if your 
input is not an ISAM file. 

KEY LOCATION 

Key location is the beginning byte position of the key within the re
cord. The first byte position of a record is number one. It appears 
only if your input is not an ISAM file. 

ALLOW DUPLICATE KEYS (YES/NO): 

Do you wish to allow more than one record with the same key value? It 
appears only if your input is not an ISAM file, or if your input ISAM 
file did not allow duplicate keys. 

10-28 ISAM (ISMUTL) 



ADD DUPLICATE KEYS TO BEGINNING OR END OF SUBSET (BEGIN/END): 

To place added records before or after existing records with the same 
key, respond with B or E. Storage at the beginning means that the 
last record will be stored at the beginning of the duplicate set and 
will be the first record accessed with a READ. Storage at the end 
means tbat the last record will be stored at the end of the duplicate 
set and will be the last record accessed with a READS. This question 
is not asked if duplicates are not allowed. 

INDEX FILE ALLOCATION. 
INDEX FILE REQUIRES x BLOCKS. 
INDEX FILE DEVICE (RETURN IMPLIES SYSTEM DEFAULT DEV.): 

The program has calculated the space requirement for the index file. 
The x indicates the blocks necessary to create the index file. 
Respond with the device you want without the colon. A carriage return 
indicates the default device. The entire index file must be on a sin
gle device. 

DATA FILE ALLOCATION. 
A TOTAL OF x RECORD SPACES ARE ALLOCATED. 
APPROXIMATELY Y BLOCKS OF DISK SPACE ARE REQUIRED. 
DATA FILE 1 DEVICE (RETURN IMPLIES SYSTEM DEFAULT DEVICE): 

At this point you must finalize your decision on how many files (logi
cal volumes) the ISAM file will have and upon what device(s) they will 
be placed. The values of x and yare approximations, but they are 
close enough to indicate space requirements. With a small file, it 
may be possible to place the entire data file on the same device as 
the index file. Select the device, without the colon, for the first 
data file. 

DATA FILE 1 ALLOCATION (I-x): 

Assign the blocks to the first device. The range is from one to the 
maximum required. Select a value in keeping with the disk capacity. 
If a choice is lower than the upper limit, unassigned blocks will have 
to be assigned to other data volumes. The above sequence of assign
ment of device and blocks will continue as follows: 

NOTE 

A choice higher than, or equal to, the 
upper limit will default to the upper 
limit, thereby terminating the dialog. 

DATA FILE 2 (through 7) DEVICE (RETURN IMPLIES SYSTEM DEFAULT DEVICE): 

Assign device two (through seven). 

DATA FILE 2 ALLOCATION (l-n): 

Assign the blocks to the second (through seventh) device. There will 
be a diminishing number of blocks to be assigned, as indicated by the 
value of n. 

ISAM (ISMUTL) 10-29 



If the end of the sequence is reached but not all the blocks have been 
assigned, the process is repeated, starting at the beginning of the 
data file assignment sequence. 

It is recommended that you keep an ISAM file on as few physical and 
logical volumes as possible because nothing is gained unless you have 
a fragmented disk due to bad blocks. 

If any difficulty is encountered, see Section 10.4.3.5. 

10.4.3.4 CREATE Example 

The following is an example of the dialog for the creation of an ISAM 
file from a sequential input file. The input file is known to consist 
of 72-byte records with the key of eight bytes located at the begin
ning of the file. Seven records per group will be chosen to allow a 
group to exist within a 512 byte block. Since this leaves little 
wasted space, fill-out to the end of the block is chosen. There are 
somewhat less than 250 records in the input file. 

New records to be stored are expected to be scattered throughout the 
file and, in addition, there will be new records whose key values are 
greater than any presently existing in the input file. A load exclu
sion factor of two is chosen to handle the initial scattered records 
of intermediate key value. There are most likely less than 700 new 
intermediate records to be added that cannot be accommodated by load 
exclusion; however, an overflow area of 100 groups is chosen. There 
are estimated to be somewhat less than 200 records that will be added 
to this file that have greater than present key values. A value of 
200 records is therefore chosen for the append area size. Duplicate 
keys will not be allowed. 

After file allocation is complete, ISMUTL automatically gives you the 
status of the new file. Notice the values. Later, in Section 
10.4.4.1, STATUS Example, this same file with added records will be 
shown. 

The CREATE example is on the next page. 

10-30 ISAlVI (ISMUTL) 



The CREATE Example: 

.R ISMUTL 

CTS300 ISAM UTILITY PROGRAM, V06-00 

SELECT FUNCTION (CREATE, STATUS, REORGANIZE, OR EXIT): C 
DO YOU WISH TO DO AN AUTO - CREATE? N 
INPUT FILE (DEV:NAME.EXT): XDATA1.DDF 

DELETE INPUT FILE AFTER CREATE (YES/NO): N 
OUTPUT FILE (NAME.EXT, DEFAULT EXT=ISM): XDATA1.ISM 
APPROXIMATE NUMBER OF INPUT RECORDS (0-16,777,215): 250 

GROUP SPECIFICATION INFORMATION. 
NUMBER OF RECORDS PER PHYSICAL GROUP (2-127): 7 
LOAD EXCLUSION FACTOR, IN RECORDS (0-6): 2 
FILL OUT GROUP TO END OF PHYSICAL BLOCK? (YES/NO) Y 

FILE EXPANSION AREA INFORMATION. 
NUMBER OF RECORDS IN APPEND AREA (0-16,776,863): 200 
SIZE OF OVERFLOW AREA IN GROUPS (0-16383): 100 

KEY INFORMATION. 
KEY LENGTH: 8 
KEY LOCATION: 1 
ALLOW DUPLICATE KEYS (YES/NO): N 

INDEX FILE ALLOCATION. 
INDEX FILE REQUIRES 107 BLOCKS. 
INDEX FILE DEVICE (RETURN IMPLIES SYSTEM DEFAULT DEV.) 

DATA FILE ALLOCATION. 
A TOTAL OF 553 RECORD SPACES ARE ALLOCATED. 
APPROXIMATELY 80 BLOCKS OF DISK SPACE ARE REQUIRED. 
DATA FILE 1 DEVICE (RETURN IMPLIES SYSTEM DEFAULT DEVICE) 
DATA FILE 1 ALLOCATION (2-80): 80 

14-APR-80 FILE LOCATION 
KEY LENGTH IS- 8 INDEX FILE DK 
RECORD LENGTH IS- 72 DATA FILE tl DK 
LEVELS OF INDEXING IS- 1 
LOAD EXCLUSION FACTOR- 2 
KEY STARTS AT LOCATION- 1 
DUPLICATE KEYS ALLOWED- NONE 
CURRENT NUMBER OF RECORDS- 238 
GROUPS ALLOCATED TO OVERFLOW- 100 
GROUPS REMAINING IN OVERFLOW- 100 

GROUPS ALLOCATED 
104 

78 

NUMBER OF RECORDS PER GROUP- 7 GROUP LENGTH IS- 512 
SELECT FUNCTION (CREATE, STATUS, REORGANIZE, OR EXIT): E 

END ISAM UTILITY. 

Note that the ISAM file created in the example could become an ineffi
cient file because such a large overflow area was chosen. Because of 
this large overflow area, the index file is larger than the one data 
file. 

ISAM (ISMUTL) 10-31 



10.4.3.5 Handling CREATE Problems 

Failure During Clean-up 

If a machine malfunction occurs during the cleanup routine of a CREATE 
with input file deleted, it is possible to complete the operation. To 
do so, you must have at least one of the checkpoint files on the sys
tem device. Start the CREATE again and specify the same file previ
ously named in response to the input file question. The program 
searches for a file with the CKI or CK2 extension and, when found, 
restarts and completes the function automatically. 

NOTE: Remember that if CREATE does not terminate normally, do not de
lete temporary files, work files, or checkpoint files. Doing so may 
result in the loss of your input ISAM file. 

More Space Required for Output Files 

If, at the end of the CREATE dialog, you have failed to allocate all 
the space required by the ISAM file, you will receive a message: 

ALL FILES ALLOCATED AND MORE 
SPACE IS REQUIRED. PLEASE TRY AGAIN. 

The allocation sequence starts again, and you must allocate all of the 
required file space before you reach the end. 

Insufficient Work File Space 

It is possible that there is not enough space for the CREATE function 
to open all the files necessary to operate. If this is the case, the 
following message will appear: 

WORK FILES REQUIRE x BLOCKS OF DISK SPACE 
WORK FILE DEVICE: 

Respond with a device name. 

10.4.4 Determining the Status of an ISAM File (STATUS) 

10.4.4.1 STATUS Selection and Characteristics 

To determine the status of an ISAM file, type S in response to the 
ISMUTL selection message. The program responds with a description of 
group structure, of current number of records, and of how much 
overflow area has been used. Status selected in this manner does not 
provide any information on the append area space which remains. To 
obtain information on the free append space, see Section 10.4.7.1. 

10-32 ISAM (ISMUTL) 



10.4.4.2 STATUS Example 

The ISAM file created in the example in Section 10.4.3.4 is used to 
illustrate the changed STATUS information after the addition of some 
records. 

The number of records has increased by 110 records to a total of 348 
records. There are now 12 overflow groups in use for a maximum of 84 
records in overflow (12 x 7 records/group); therefore, the remaining 
added records are probably accounted for by load exclusion record 
spaces becoming filled and by records going into the append area. 

This same file is reorganized in Section 10.4.5.3. 

The STATUS Example: 

.R ISMUTl 

CTS300 ISAM UTILITY PROGRAM, V06-00 

SELECT FUNCTIO~ (CREATE, STATUS, REORGANIZE, OR EXIT): S 
INPUT FILE (DEV:NAME.EXT): XDATA1.ISM 
14-APR-80 fILE LOCATION 
KEY LENGTH IS- 8 INDEX FILE DK 

GROUPS ALLOCATED 
104 

RECORD LENGTH IS- 72 DATA FILE tl DK 78 
lEVELS OF INDEXING IS- 1 
LOAD EXCLUSION FACTOR- 2 
KEY STARTS AT LOCATION- 1 
DUPLICATE KEYS ALLOWED- NONE 
CURRENT NUMBER OF RECORDS- 348 
GROUPS ALLOCATED TO OVERFlOW- 100 
GROUPS REMAINING IN OVERFlOW- 88 
NUMBER OF RECORDS PER GROUP- 7 GROUP LENGTH IS- 512 
SELECT FUNCTION (CREATE~ STATUS, REORGANIZE~ OR EXIT): E 

END ISAM UTILITY. 

10.4.5 Reorganizing a File (REORG) 

As you add and delete records in an ISAM file, the sequential order 
and index are maintained, except, of course, there are no index en
tries for overflow records. When load exclusion, append, or overflow 
areas become filled, or performance deteriorates, you will want to re
store these areas and place all records into indexed data groups. 
There are two ways to reorganize an ISAM file. You can rerun CREATE 
or run REORG. If you do not WIsh to change the original specifica
tions, REORG is the logical choice. REORG allows continued growth in 
the manner originally specified, and it does not permit you to change 
any of these specifications; however, if the resulting file is 
larger, you must specify how to allocate more space. Except for dia
log, the process is the same as a CREATE. 

ISAM (ISMUTL) 10-33 



10.4.5.1 Special REORG Characteristics 

Input File 

The input for a REORG is your present ISAM file. This file will be 
deleted, and the new file will be created. 

Output File 

The output file has the same name 
temporary extensions assigned to 
through • R07. 

as the input file. There are 
the output files of .ROG and .ROI 

Note that the volumes containing data files must always be mounted for 
use on the same devices and units as those on which they were created 
(by CREATE or REORG). By using the RT-ll ASSIGN command for device 
names, you are not restricted to the same physical devices. 

File Growth 

The amount of growth is determined by a comparison of the number of 
records in the present file with the number of records in the file 
just after the last REORG or CREATE. Since the overflow area size 
does not change, the index expands or decreases by the space required 
for key entries. Since append and load exclusion are restored to 
their original values, the data area increases by a combination of 
records added from overflow, append, and load exclusion; or decreases 
as a result of records deleted. 

Total File Requirements 

Because the input file is deleted and because the output file has the 
same name as the input, the REORG function is similar to the CREATE 
function with deleted input and same input/output name. The files 
created are the same as the CREATE function under these conditions, 
namely: 

filnam.CKl (checkpoint file on system device) 
filnam .CK2 (checkpoint file on system device) 
filnam.TMP (temporary file) 
filnam. TMI through .TM7 

(depending on the number of input data f i 1 es) 
filnam.ROG (temporary REORG file) 
filnam.ROl through .R07 

(depending on the number of input data f i 1 es) 
filnam.WKO (work f il e) 
filnam.WKl (work f il e) 

10-34 ISAM (ISMUTL) 



Until enough space is found to open all the required output files, the 
actual reorganization cannot start. After the output files are built, 
REORG enters the cleanup routine. The cleanup routine: 

1. Writes a dummy checkpoint file. 

2. Renames input files to .TMP and .TMI through .TM7. 

3. Renames output files to correct extensions. 

4. Rewrites the output FCGs. 

5. Deletes input files. 

6. Checks to see if all output files are on the correct drives. 
(If yes, go to step 8.) 

7. Moves files, if possible, to the correct device. After every 
successful move, it rewrites the FCG. If there is not enough 
room on a device, it terminates the REORG and te~ls you which 
device did not have enough room. 

8. Rewrites a correct and complete FCG and gives you a status. 

If REORG fails during this process, see Section 10.4.5.4. 

10.4.5.2 REORG Process and Dialog 

To run REORG, type R in response to the ISMUTL selection message. The 
program asks you for the name of the ISAM input file, and then 
proceeds with the reorganization. During the process, you may be 
asked to provide more work file space, or be notified of a problem 
during the cleanup procedure associated with the deletion of the input 
file. If any of these occur, see Section 10.4.5.4. The last response 
you will have to make is in regard to allocation of space for the 
added records in the indexed data files. The following is the text 
that will appear for a reorganization: 

INPUT FILE (DEV:NAME.EXT): 

This is your ISAM file to be reorganized. 

APPROXIMATELY XX ADDITIONAL BLOCKS OF DISK SPACE REQUIRED 
A=ADD EQUALLY TO EACH DATA FILE - -
B=ADD TO LAST DATA FILE 
C=ADD EXTRA DATA FILE 
PLEASE RESPOND WITH A,B OR C: 

If you respond with C, the following additional question is asked: 

ASSIGN DATA FILE DEVICE: 

Respond with a device to accommodate the added file requirements. 

ISAM (ISMUTL) 10-35 



10.4.5.3 REORG Example 

The ISAM file illustrated in Sections 10.4.3.4 and 10.4.4.1 (CREATE 
and STATUS examples), is used to show the effect doing a reorganiza
tion has on a file with records in overflow, load exclusion, and the 
append area. 

The reorganization dialog consists essentially of specifying the input 
file and of allocating additional storage space. The automatic status 
response shows the file after the reorganization. 

The new file has the same 348 records as indicated in Section 
10.4.4.1; but now the overflow area has been restored to a full 100 
groups. Although not shown, the load exclusion record spaces and ap
pend area have also been restored. All the records are now in indexed 
data groups. Consequently the data file has increased by 22 groups 
and the index file by one group. 

The REORG Example: 

.R ISMUTL 

CTS300 ISAM UTILITY PROGRAM, V06-00 

SELECT FUNCTION (CREATE, STATUS, REORGANIZE, OR EXIT): R 
INPUT FILE (DEV:NAME.EXT): XDATA1.ISM 

APPROXIMATELY 23 ADDITIONAL BLOCKS OF DISK SPACE ARE REQUIRED 
A=ADD EQUALLY TO EACH DATA FILE B=ADD TO LAST DATA FILE 
C=ADD EXTRA DATA FILE 

A PLEASE RESPOND WITH A,B OR C: 
14····APR··80 FILE LOCATION 

INDEX FILE 
DATA FILE :JI:l 

GROUPS ALLOCATED 
KEY LENGTH IS- 8 
RECORD LENGTH IS- 72 
LEVELS OF INDEXING IS- 1 
LOAD EXCLUSION FACTOR- 2 
KEY STARTS AT LOCATION- 1 
DUPLICATE KEYS ALLOWED- NONE 
CURRENT NUMBER OF RECORDS- 348 
GROUPS ALLOCATED TO OVERFLOW- 100 
GROUPS REMAINING IN OVERFLOW- 100 

DK 
DK 

NUMBER OF RECORDS PER GROUP- 7 GROUP LENGTH IS- 512 
SELECT FUNCTION (CREATE, STATUS, REORGANIZE, OR EXIT): E 

END ISAM UTILITY. 

10-36 ISM (ISMUTL) 

105 
100 



10.4.5.4 Handling REORG Problems 

Failure During Cleanup 

If a machine malfunction or.a forced termination occurs during REORG, 
it is still possible to complete the operation. Do not delete any 
temporary files, work files, or checkpoint files and just start the 
REORG again and specify the input file name. The program searches for 
a file with the CKI or CK2 extension and, when found, restarts and 
completes the function. 

Insufficient Space to Open Output Files 

There are three ways you can deal with this situation. The method you 
use depends on your file and your system. The possible solutions are: 

1. Eliminate all unnecessary files, squeeze 
retry ISMUTL. This process makes use 
files. 

~he disk(s), and 
of the checkpoint 

2. Eliminate all the unnecessary files, including the input and 
checkpoint files, squeeze the disk(s), and start the entire 
process over. To do this, you must have a backup copy of the 
input. 

3. Write a small program to convert your ISAM input file into a 
sequential file and, using this file, use CREATE to produce 
the desired ISAM file. 

Insufficient Work File Space 

REORG attempts to open output files on the same devices as the input 
file counterparts. If this is not possible, due to space limitations, 
a work device is requested via the message: 

WORK FILES REQUIRE x BLOCKS OF DISK SPACE 
WORK FILE DEVICE: 

Respond to this with a device name. If the specified device does not 
have enough space, the question will be repeated. Be sure that none 
of the devices made available to REORG have files with the same name 
as the input file; files with .ROG extension (or .ROI through .R07); 
or files with .CKn extensions. Any existing file of this same name 
will be deleted. 

Until enough space is found to open all the required files (including 
the index build work files), reorganization cannot start. 

ISAM (ISMUTL) 10-37 



10.4.6 Exiting from ISMUTL (EXIT) 

When you no longer need ISMUTL, you may return to the monitor or the 
operating system by responding to the ISMUTL selection message with an 
E. The response is: 

END ISAM UTILITY 

In chain mode, the utility automatically chains to the specified user 
program. 

10.4.7 Miscellaneous ISMUTL Capabilities 

10.4.7.1 STATUS and REORG in Chain Mode 

STATUS and REORG can be automated. If you end your program with 
ISMUTL as the optional argument with the STOP statement, control is 
automatically passed to the ISAM utility program. Within your user 
program, you must previously send, with the SEND statement, a record 
of directions to ISMUTL. Depending on the function to be performed, 
the record must contain specific field sizes in a certain order. An 
example for REORG and for STATUS is shown below. It illustrates the 
required format for the record. 

Example of a record sent to do a REORG: 

USER PROGRAM (USPROG) 

RECORD REORG 
FNCT, AI, 'R' 
CHNFLG, Dl 

FILIN, 
USRPG, 
ADBLR, 
EXPDV, 
WORKNM, 
\'lORKDV, 

PROC 

Al?,'DK:ISAM.ISM' 
AI? 
Al 
A6 
Dl 
8A6 

SEND (REORG,'ISMUTL',TERM) 

STOP 'I SMUTL' 

10-38 ISAM (ISMUTL) 

iDO A REORG 
iO=DO NOT CHAIN TO USER PROGRAM 
iSET USRPG TO SPACES 
i1=CHAIN TO USRPG 
iYOUR ISAM FILE 
iPROGRAM TO CHAIN TO 
iADDITIONAL SPACE (A, B, OR C) 
iDEV IF C (SPACES IF A OR B) 
iNUMBER OF WORK FILES 
i (1-8 DEVICES) (3 CHAR DEVICE NAME, 
iNa COLON !) 
iIF THE NUMBER IS LESS THAN 8, 
iREMAINDER IS FILLED IN WITH SPACES 

.iTERM=NUMBER OF TERMINAL 
iYOU ARE CURRENTLY 
iRUNNING ON 

iSTOP THIS PROGRAM START 
iUP ISMUTL 



Example of a record sent to do a STATUS: 

In the following example, the first time the user program (USPROG.SAV) 
is run, there is no message to receive, so the record STATUS is there
fore sent to ISMUTL with instructions to chain (fields CHNFLG and 
USRPG) to USPROG.SAV. 

At the end of the ISMUTL STATUS function, a record is sent to the user 
program (specified by USRPG), and ISMUTL chains to USPROG. The record 
STAT must contain the fields shown in order to receive the STATUS in
formation sent by ISMUTL. 

USER PROGRAM (USPROG) 

RECORD STATUS 
FNCT, 
CHNFLG, 

AI, 's' 
D1, '1 ' 

iDO A STATUS 
iO=DO NOT CHAIN TO USRPG (SET 
iUSRPG TO SPACES) 
i1=CHAIN TO USRPG 

FILIN, 
USRPG, 
, 

A17,'DK:ISAM.ISM' 
A17,'USPROG.SAV' 
A56 

iYOUR ISAM FtLE 
iFILE TO CHAIN TO 
iFILLER 

APDFLG, 

RECORD 
CUROFL, 
TOTOFL, 
TOTREC, 
ORGREC, 
APDREC, 

PROC 

D1 

STAT 
D6 
D6 
D12 
D12 
D8 

RECV (STAT, LABEL) 

STOP 

iO=DO NOT RETURN APPEND RECORDS, 
iNON ZERO VALUE 
i= RETURN # APPEND RECORDS 

iNO. OF UNUSED OVRFLOW GROUPS 
iNO. OF GROUPS ALLOCATED TO OVRFLOW 
iC~RRENT NO. OF RECORDS IN FILE 
iORIG NO OF RECORDS IN FILE 
iREMAINING NO. OF RECORD SPACES IN 
iTHE APPEND AREA 

;CHECK FOR STATUS INFO. IF NONE, 
iSEND MESSAGE 
iOTHERWISE PROCESS AND OUTPUT 
iSTATUS 

iSTOP WITHOUT CHAIN 

LABEL, SEND(STATUS,'ISMUTL.SAV' ,TERM) iTERM=TERMINAL YOU ARE ON 

STOP 'I SMUTL' ;STOP THIS PROGRAM START 
;UP ISMUTL 

ISAM (ISMUTL) 10-39 



The STATUS function will perform considerably faster if the remaInIng 
number of record spaces in the append area is not requested. When 
APDFLG in record STATUS contains zero, the remaining number of record 
spaces will not be returned. 

10.4.7.2 Auto-CREATE 

The CREATE function requires considerable operator interaction to pro
duce a file. The auto-create capability eliminates most, or all, of 
this interaction. There are many applications for this capability. 
One use would be the situation where the parameters of a file are 
known, and similar files are to be built. It could also be used when 
some predictable small changes are to be made to an ISAM file, and it 
would be convenient to avoid numerous sessions with the dialog. 
Another si tuation would be a .. turnkey" system, in which the operator 
is not permitted to do a manual create. A final example of an appli
cation would be an auto-create to do a reorganization with different 
parameters than originally specified; because as a file matures the 
distribution of records to be added often changes. 

The auto-create is selected with an answer of YES to the first ques
tion in the CREATE dialog. This is followed by a request for an 
auto-filename. The auto-filename is a data file constructed by the 
user which contains a list of answ~rs for the expected ISAM CREATE 
questions. Upon specifying the auto-filename, the CREATE process con
tinues to completion, or until an invalid answer is encountered. 

In either SUD or TSD operation, access to the auto-filename or 
response file can be done manually with the YES answer to the first 
CREATE question. Access may also be made automatic (programmed). 
Programmed access to the auto-filename is a function of whether you 
are operating under SUD or TSD. 

Under SUD the program selection (R ISMUTL) and initial responses (C, 
YES~ auto-filename) are supplied from an indirect file. The responses 
to the CREATE dialog are then supplied by the auto-filename. Below is 
an illustration of this indirect file: 

!INDIRECT 
R ISMUTL 
C 
Y 
filnam 

FILE ISMCRT 
! RUN ISMUTL 
!CREATE FUNCTION 
!AUTO OPTION 
!AUTO FILENAME (CREATE 

10-40 ISAM (ISMUTL) 

QUESTION RESPONSES) 



TSD operation does not support indirect file operation, but a message 
can be sent to ISMUTL to supply the initial responses in the same 
manner as with REORG and STATUS when they are run in chain mode. The 
YES answer to the auto-create question is assumed by ISMUTL when this 
mode is chosen. The record sent must contain the specific field sizes 
in the order shown below: 

USER PROGRAM (USPROG) 

RECORD CREATE 
FNCT, AI, 'C ' 
CHNFLG, Dl 

FILIN, A17 
USRPG, A17 

PROC 

iDO A CREATE 
iO=DO NOT CHAIN TO USRPG (SET 
iUSRPG TO SPACES) 
il=CHAIN TO USRPG 
iAUTO-FILENAME (RESPONSE FILE) 
iCHAIN FILE 

SEND (CREATE,'ISMUTL',TERM) iTERM=NUMBER OF TERMINAL 
iYOU ARE CURRENTLY 
iRUNNING ON / 

STOP 'ISMUTL' iSTOP THIS PROGRAM START 
iUP ISMUTL 

Following is an example of an auto-file. In the previous examples, 
this is filnam for SUD, or field FILIN in the message sent from the 
TSD program. This auto-file creates the same ISAM file as shown in 
the example in Section 10.4.3.4 • 

• R DKED 
*AFILE= 
XDATAl.DDF 
N 
XDATAl.ISM 
250 
7 
2 
y 
200 
100 
8 
1 
N 
DK 
DK 
E 
(GOLD/COMMAND) 
EXIT 

iAFILE is filnam or FILIN 
iinput file 
ido not delete input file 
ioutput file 
inumber of input records 
inumber of records per group 
;load exclusion 
;fill out group 
irecords in append area 
;overflow groups 
;key length 
;key location 
;no duplicate keys 
;allocate index file to default dev 
;allocate data file to default dev 
;exit ISMUTL 

ISAM (ISMUTL) 10-41 



If ISMUTL is called from a detached job via chaining, the normal dia
log which appears on the screen will be written to a file called 
xxx. LOG where XXX is the name of the auto-file. This file will show 
all display input and output, and will help reveal problems with exe
cution of ISMUTL in detached mode. 

If any answer to the response file is invalid, the CREATE will fail. 
In the manual mode, an invalid answer will result in the question 
being repeated; in auto mode, the program terminates. If the file is 
being created in the detached mode (TSD) when an error occurs, the 
progra~ chain will be broken. A detailed study of the program queries 
and appropriate responses must be made. There are many conditions 
which will appear only at run time. Among the things that must be 
considered are disk space and disk fragmentation. 

Table 10-2 summarizes the methods you can use to create an ISAM file. 

Mode SUD 

Manual 

Semi-
Auto-
mated 

Auto- @ISMCRT.COM 

Table 10-2 
ISMUTL CREATE Modes 

System 

R ISMUTL 
C 
N 
Respond to the 
CREATE dialog 

R ISMUTL 
C 
y 
auto-filname 

In the calling 

TSD 

program: 
mated where ISMCRT.COM con- RECORD CREATE 

tains: FNCT, AI, 'C' 
R ISMUTL CHNFLG, Dl 
C FILIN, A17,'auto-filname' 
y USRPG, A17 
auto-filname 

PROC 

SEND (CREATE,'ISMUTL.TSD') 
STOP 'ISMUTL' 

10.5 ERROR MESSAGES 

See Appendix B, Table B-9, for a list of error messages for ISMUTL. 

10-42 ISAM (ISMUTL) 



CHAPTER 11 

SORT/MERGE 

11.1 INTRODUCTION 

At one time or another, you will probably be faced with a file whose 
records are not in the order you need for a particular use. Or you 
may find that you have two or more files containing information in 
identically structured records that you want to combine into one file 
to form a common data base. A sort program facilitates the reordering 
of a file, and a merge program is used to combine files having the 
same record structure. 

CTS~300 includes tools that enable the user to develop a sort or merge 
program. The techniques for doing this are described in this chapter. 
The development of a sort or merge program starts with a ~ser-written 
control file that describes the parameters of the operation. The 
SORTG program, with the control file as input, generates the variable 
data division of the desired sort or merge program. This file and 
SORTM.DBL, which is the procedure division of the sort or merge pro
gram, are then compiled to produce an object file. This object file 
is linked like any other such file to produce the usable sort or merge 
program. When the program is run, the specified files are sorted or 
merged, as requested. 

11.1.1 Characteristics 

Several features of CTS-300 Sort/Merge should be pointed out: 

• Files may be sorted by multiple keys, and the sort for each 
key may be in ascending or descending order. 

• An optional key sort (TAGS sort) is available which allows a 
sort of key fields only, without transporting entire records 
across work files. 

• Optional statements are provided to allow the user to define 
such operating parameters as memory allocation, work files, 
and so forth. 

• The sort or merge program developed by the CTS-300 user has 
the optional ability to receive a control record sent from 
another program. This control record facilitates changes in 
selected sort or merge parameters at r~n-time. 

11-1 



When you use a CTS-300 Sort/Merge program, you must be aware of some 
limitations: 

• The caret symbol (~), which is 136 octal, is the internal 
control character used in Sort for the end-of-string marker. 
If used as the first character of a record, sort results will 
be unpredictable. 

• The Sort program is not able to sort a multivolume sequential 
file, because Sort requires a CTRL/Z at the end of all input 
files. 

• The Sort/Merge program is not able to sort or merge records 
with packed keys. Compressed records can be handled as long 
as the record lengths and displaced keyes) are correctly des
cribed, and the sort keys remain unpacked. 

• The output of a sort or merge is a sequential file. Sorting 
an ISAM file will not produce another ISAM file as output. 

11.1.2 Chapter Organization 

The remainder of this chapter is structured in the general sequence 
required to develop a sort or merge program. It is comprised of three 
sections. Section 11.2, the Control File, covers control file 
characteristics and requirements. The individual statements within 
the control file are explained, and examples are given where 
necessary. The statements are then summarized. This is followed by 
Section 11.3, Sort/Merge Program Development and Use, which covers the 
development procedure. Development consists of using the routines 
supplied by CTS-300, SORTG and SORTM, to integrate the control file 
into the desired program. The last steps of the procedure are 
basically routine compilation and linking. Examples are used to 
illustrate both features and correct usage. Last of all, the use of a 
control record for chain mode operation is presented. Section 11.4, 
Error Messages, is a reference to the Sort/Merge error messages. 

11.2 THE CONTROL FILE 

The sort or merge that you want operates on information supplied by 
you, the user. The control file describes the input file{s), output 
file, sort key{s), record format and other necessary parameters and 
options. This control file is created by you with the aid of an edi
tor. 

The control file is composed of five required control statements and 
six optional control statements. A different control file must be 
built for each sort or merge. There are situations where another con
trol file may involve just a simple change of input file name, or it 
may require a change of most or of all the parameters. Whenever any 
statement is changed, the control file must go through the procedure 
of being processed by SORTG, compiled along with SORTM, and linked to 
produce the usable program. 

11-2 SORT/MERGE 



The characteristics and use of all eleven statements are discussed on 
an individual basis in the following subsections. Control statement 
options are shown in brackets. Comment lines are allowed on any 
statement line if preceded by a semicolon. Examples are given for 
each statement requiring clarification. 

Your first Sort/Merge exercise will be easier if you avoid the option
al statements. The five required statements are summarized below: 

INPUT 

OUTPUT 

RECORD 

KEYS 

END 

This statement is used to specify the input file(s) for 
the sort or merge. 

This statement is used to specify the name of the sort
ed or merged file that results from running the sort or 
merge program. 

The program must know the record structure of the input 
file(s) it IS dealing with and the location of the 
keyes) within the record. This statement specifies 
these parameters. 

This statement defines the order in which the file is 
to be sorted, in relation to the chosen key(s). 

This statement identifies the end of the control file. 

The required statements are presented in the above order in the fol
lowing sections. Optional statements are grouped together and are 
listed in alphabetical order between the KEYS and the END statements. 
There is no required order for the statements; the order shown here 
is just a logical arrangement. 

11.2.1 INPUT 

The INPUT statement is normally the first statement in a control file. 
The file to be sorted or the files to be merged are specified here. 
The specification of a single file indicates that a sort is desired. 
The specification of two or more files indicates that a merge is to be 
performed. 

The format is: 

IN [P UT] : f i I s p e c I [ , f i I sp e c 2 ••• , f i 1 s pe c'7] [ (co un t) ] 

where: 

filspecl is the first input file specification. If this is the 
only file specified, the operation is a sort of this 
file. 

SORT/MERGE 11-3 



filspec2 through filspec7 

(count) 

Example: 

is one or more additional file specification(s) up to a 
maximum of seven files. If included in the statement, 
the operation is a merge of the files specified here. 
Files specified in addition to the first file are sep
arated by commas. 

NOTE 

Files to be merged must be sorted prior to 
merging. 

is optional when used with sequential files. It 
specifies the number of records, starting with the 
first record, to be sorted or merged. If multiple 
files are specified, the count argument must either be 
specified for all of the files or for none of the 
files. The number must be enclosed by parenthesis. 

NOTE 

The count argument must be used for an ISAM 
input file(s) and must, in this case, contain 
only the letters ISM • 

• Mixed file types can not be used as input to a merge 
operation. That is, ISAM and sequential files can 
not both be specified in the same merge operation • 

• The count argument can be overridden at run time by a 
program that chains to your Sort/Merge program. See 
Section 11.3.6. 

INPUT:RKO:PAY.DDF(2400) 

Sorts the first 2400 records of file RKO:PAY.DDF. 

INPUT:LABR.DDF 

Sorts file LABR.DDF on the default device. The entire file is sorted. 

INPUT:RK1:LABM.DDF(3000),RKI:LABT.DDF(4000) 

Merges the first 3000 records of file RKI:LABM.DDF and the first 4000 
records of file RK1:LABT.DDF. 

INPUT:RKO:PAY.ISM(ISM) 

Sorts the ISAM file on RKO called PAY. ISM. 

11-4 SORT/MERGE 



11.2.2 OUTPUT 

The output statement specifies the name you wish to give the file that 
is the output of the sort or merge operation. 

The form is: 

OU[TPUT]:filspec 

where: 

fi1spec 

Example: 

is the desired name of the output file • 

• The output filename can not be the same as the input 
filename for ISAM files if a merge is performed, or 
if a TAGS:SORT, TAGS:LIST, or TAGS:INDEX sort is 
being done (see Section 11.2.9). An error message 
will result if any of these is attempted. In the 
case of the TAGS:SORT, the error message will appear 
only if there is not sufficient free space for a tem
porary copy of the input file • 

• If a sequential file is being sorted, and if the out
put file name is the same as the input file, the 
input file is overwritten. 

OUTPUT:RK1:WEEKLY.DDF 

The sorted or merged output is written as a file named WEEKL¥.DDF on 
device RKl. 

11.2.3 RECORD 

The record statement defines the format of the records in the input 
fi1e(s) • The format for each file is identical to the DIBOL record 
format, except that no initial value may be specified. 

The format is: 

RE[CORD]: 

field def 1 

field def n 

SORT/MERGE 11-5 



where: 

field def 1 to field def n 

Example: 

are field definitions for each key field to be used in 
the subsequent sort or mergei for fields to be used as 
filler to position the key fields within the recordi 
and for fields to fill out the record to the total 
length of the input record • 

• Each field def is on a separate line • 

• Each field def is formed in accordance with the rules 
for a DIBOL data division statement. 

RECORD: 

FILLA, 
NAME, 
FILLB, 
BADGE, 

AS 
A20 
A3S 
AS 

ifill characters 

ifill characters 

This record statement defines a record of 65 characters. Positions 
6-25 contain a key field named NAME, and positions 61-65 contain a key 
field named BADGE. The other positions in the record may contain any 
number of other fields, but they are of no interest to the Sort/Merge 
program. 

11.2.4 KEYS 

The keys statement specifies which fields within the input 
records are to be used to control the order of the output file. 
fields are known as control keys. 

file 
These 

The format is: 

KE[YS]:fldnaml[-] [,fldnam2[-] ••• ,fldnam8[-]] 

where: 

fldnaml through fldnam8 
indicates the field(s) to be used as the control 
field(s) (or control key(s» • 

• Each fldnam must be a name of a field defined in the 
RECORD statement • 

• The first fldnam specified becomes the major control 
keYi the last fldnam specified becomes the minor 
control keYi and the fldnams between become interme
diate control keys in the order specified. 

11-6 SORT/MERGE 



is an optional argument associated with a given fldnam 
that, if included, causes records to be ordered in des
cending sequence by that fldnam. If not included, the 
records are ordered in ascending sequence. 

No more than eight control keys may be specified. 

Example: 

KEYS: NAME, DATE-

Specifies a sort or merge using the field called NAME as the major 
control field, ordered in ascending order, and the field called DATE 
as the minor control field, ordered in descending order. Names ap
pearing first in the alphabet would appear first in the file, and for 
each name category, the records would be arranged with the most recent 
date appearing first. Note that a blank is treated differently de
pending on whether it appears in an alpha or a decimal field. An 
alpha space is on octal 40 and a numeric zero is an octal 60. 

11.2.5 DETACH (Optional) 

The DETACH statement is an optional statement that causes the sort or 
merge program to detach from its associated terminal. This allows you 
to execute another job while a sort or merge is running. 

The format is: 

DE[TACH]: 

There are no arguments. 

The characteristics of this statement are: 

• DETACH is ignored under SUD operation. 

• Any detached program that produces terminal output will hang 
until it is attached. 

• If error messages are generated, they will not be displayed 
until the program is attached. 

• DETACH occurs only once. If you reattach, your terminal 
dedicated to the attached program until it terminates. 
Chapter 5 of this manual for information on the ATTACH 
DETACH commands. 

SORT/MERGE 

is 
See 
and 

11-7 



11.2.6 EXECUTE (Optional) 

EXECUTE is an optional statement that specifies the name of a program 
to be executed (chained to) after the Sort/Merge program terminates. 

The format is: 

EX[ECUTE]:fi1spec 

where: 

fi1spec 

Example: 

specifies the name of the program to be executed. 

• If EXECUTE is omitted, control returns to the system 
monitor. 

• EXECUTE may be overridden. See Section 11.3.6. 

EXECUTE:MYFIL.SAV 

Indicates that program MYFIL.SAV on the default device is to be exe
cuted upon completion of the Sort/Merge operation. 

11.2.7 SPACE (Optional) 

The SPACE statement is an optional statement that controls the amount 
of additional memory available for a Sort/Merge operation. 

The format is: 

SP[ACE]:kbytes 

where: 

kbytes is a decimal number used to specify, in thousand byte 
segments, the total amount of main memory to be avail
able to a Sort/Merge program. This includes the DIBOL 
program and all buffers, but does not include the DIBOL 
interpreter, monitor, or any other requirement. 

• The default memory size if the SPACE statement is not 
used is 16 K bytes. 

• If the default of 16 K bytes is used, and the record 
is too large to allow a minimum of three records to 
be held in the work buffers, SORTG suggests, via a 
message, the amount of space required to support the 
number of work files requested. You then have the 
option of reducing the number of work files or of in
creasing the space. 

11-8 SORT/MERGE 



Example: 

SPACE:18 

• The Sort/Merge program is-designed to work within ar
tificial limits imposed by TSD. If the sort require
ments exceed the memory space available, a message 
(as above) will appear, suggesting new values for 
space and work file allocation. 

• For faster operation, add 1 K byte of memory for 
every work file assigned in addition to the default 
of three work files. 

• Files with very large records may require more than 
the default of three work files (see Section 
11.2.10). Specify 1 K byte of additional memory for 
each added file. 

• Within TSD operation, the SPACE option should be used 
with consideration for the memory requirements of 
other users. 

Indicates that a Sort/Merge program may use up to 18 K bytes of memo
ry. 

11.2.8 SU (Optional) 

SU is an optional statement that specifies that the Sort/Merge program 
is going to be run as a Single User DISOL program. SUD operation is 
faster than TSD operation, for several reasons, and should be used for 
large files. 

The format is: 

SU: 

There are no arguments. 

The characteristics of SU are: 

• Compared to TSD, SU operation is faster, because more memory 
can be used. There is no contention for memory or disk re
sources. 

• I/O buffer allocation is automatically doubled with the SU 
option. 

• The SU option forces six work files. More may be specified 
with the WORK statement, but it is not advised for sorts that 
utilize random access I/O (TAGS:SORT). 

SORT/MERGE 11-9 



• The SU option overrides the SPACE statement and automatically 
optimizes the internal working areas • 

• If you use the SU option with the XM monitor, you may receive 
a message indicating there is not enough memory. If this 
happens, use the'SJ monitor. 

11.2.9 TAGS (Optional) 

The TAGS statement is an optional statement that allows a sort to be 
performed using only the keys instead of the entire record. A key 
sort offers substantial advantages in execution speed and minimized 
disk requirements, since the entire file need not be manipulated. The 
TAGS option should be used for most sorts. 

The format is: 

TA[GS]:type 

where: 

type is either SORT, LIST, or INDEX. 

TAGS:SORT specifies a sort that produces a sorted version of the 
input file. The key or keys are first sorted, and then 
a pass is made to write each complete record in the new 
output file. 

• TAGS:SORT must not be used on an ISAM file. 

• A TAGS:SORT requires much smaller work files than a 
normal sort. 

• A TAGS:SORT can provide a significant performance ad
vantage over a normal sort when working with a record 
of approximately 80 characters and a short key. With 
larger records, the advantage is greater. 

• The final pass to write the output file consumes much 
of the time required for a TAGS:SORT. This pass is 
eliminated with either the TAGS: LIST or the 
TAGS: INDEX sort below. 

TAGS:LIST specifies a sort that produces an output file which 
consists of a seven-byte record number. This file 
can then be used to access the original file. The 
TAGS:LIST is basically like the TAGS:SORT but without 
the pass required for the post-sort write. 

11-10 SORT/MERGE 



• Each of the records in the output file contains a 
record number identifying the record in the original 
file that corresponds to the relative position of 
this number in the output file. That is, the third 
record in the output file contains the record number 
for the record in the original file that has become 
third in the desired sort sequence. 

• Leading zeros in the output file are encoded as 
spaces. 

• The output f il e name -should :be different from the 
input file name. 

TAGS:INDEX specifies an output file consisting of the key 
field(s) specified in the KEYS statement and a cor
responding seven-byte relative record number, as in 
the TAGS:LIST statement. The record format consists 
of the major key, the intermediate key(s), the minor 
key, and the relative record number. 

• If your original file is an ISAM file, use the 
TAGS:INDEX option and add the ISAM key as a minor 
sort key. It has little effect on sort speed, and 
you can then access the original ISAM data file by 
means of the sorted TAGS:INDEX output file. That is, 
you can select a record on the basis of any chosen 
key in the TAGS:INDEX output file, and then access 
the record in the ISAM file using the corresponding 
ISAM key. 

• The output file name should be different from the 
input file name. 

11.2.10 WORK (Optional) 

The WORK statement is an optional statement that specifies both the 
number of work files to be used for a sort and the devices on which 
the work files are to reside. 

The format is: 

WO [RK]: [number] [,devl: ••• ,devn:] 

where: 

number is a decimal number between three and nine, inclusive
ly, that specifies the number of work files to be allo
cated. If the number (or the WORK statement itself) is 
omitted, the default is three work files on the default 
device. 

SORT/MERGE 11-11 



devl: through devn: 

Example: 

WORK:4 

specifies a list of one or more devices to which the 
work files are allocated. Dev: must be a valid device 
name and must include the colon. If dev: is omitted, 
all work files are allocated to device OK:. 

• The first work file is assigned to the first device 
in the list. The second work file is assigned to the 
second device, and so forth. The same device may be 
specified more than once. 

• If the number of devices specified is less than the 
number of work files, devices are allocated to files 
by starting over with the first device specified. 
File assignments cycle through the device list, until 
all the files have been assigned to devices. 

• If the number of devices assigned exceeds the number 
of work files, the excess devices are ignored. 

• If a merge is specified, the WORK statement is ig
nored. 

• With a file of approximately 5000 to 10,000 records, 
four to six work files, rather than the default of 
three, will result in a measurable performance im
provement. 

Allocates four work files, all on device OK:. 

WORK:3,RK2: 

Allocates three work files, all on device RK2. 

WORK:3,RKl:,RK2:,RK3:,RK4: 

Allocates three work files, one each on devices RKl, RK2, and RK3. 
RK4 is ignored, since only three work files are specified. 

WORK:3,RKI:,RK2: 

Allocates three work files, the first on device RKl, the second on 
device RK2, and the third on device RKI. 

11-12 SORT/MERGE 



11.2.11 END 

The END statement indicates the end of the control file. 
is: 

The format 

EN [D] : 

there are no arguments. The only restriction on the statement is that 
it must be the last one in the control file. 

11.2.12 Summary of Control File Statements 

Below are the control file statements in the order presented previous
ly, with optional statements indicated. 

Statement Optional 

IN[PUT]:filspecl[ ••• ,filspec7] No 
[ (co unt) ] 

OU[TPUT]:filspec No 

RE[CORD]: No 
field def 

KE[YS]:fldnaml[-] No 
[ ••• ,fldnam8 [-]] 

WO[RK]: [number] Yes 
[,devl: ••• ,devn:] 

TA[GS]:SORT Yes 
:LIST 
: INDEX 

S P [ACE] : kbytes Yes 

SU: Yes 

DE [TACH] : Yes 

EX[ECUTE]:filspec Yes 

EN [D] : No 

Comments 

First statement 

Name of the file resulting 
from the sort or merge 
operation 

Fields must be in specified 
order 

Maximum of 8 

Ignored for merge 

Fast sort 

su overrides SPACE 
allocation 

Ignored with SU option 

Last statement in control 
file 

SORT/MERGE 11-13 



11.3 SORT/MERGE PROGRAM DEVELOPMENT AND USE 

Now that you have developed a control file, it must be processed by 
SORTG. The output of SORTG is compiled together with SORTM, and the 
result linked to produce your Sort/Merge program. The program is then 
run to perform the sort or merge. The details of these steps are con
tained in the following sections. 

11.3.1 SORTG 

SORTG is a CTS-300 supplied file (SORTG.SAV) that generates the data 
division of your Sort/Merge program, using your control file as input. 
It is an executable program that asks you for the name of its input 
file and of its output file. The dialog sequence follows: 

.R SORTG 
SORT GENERATOR VAnn-nn 
INFILE= 

Respond with the name given to your control file when you created it 
with the editor. The response will be: 

OUTFILE= 

Respond with the desired file specification of your Sort/Merge program 
(SMPROG.DBL for the sake of the following discussion). 

After 'you provide the output file name, SORTG generates the output 
file unless an error is detected. Errors for SORTG are listed in Ap
pendix B, Table B-lO. If an error is detected, a message will be dis
played indicating that output has been suspended. This message will 
be followed by the error message. The error message is usually pre
ceded by the line number of the control statement in error. 

11.3.2 Compiling with SORTM 

SORTM.DBL is another CTS-300 supplied file and is the procedure 
division of your Sort/Merge program. SORTM and the output resulting 
from running SORTG (SMPROG.DBL) must both be compiled to produce an 
OBJ file. That is: 

.DIBOL SMPROG+SORTM 

whose output is SMPROG.OBJ. 

11-14 SORT/MERGE 



11.3.3 Linking 

The .OBJ file produced by the compiler must be linked to run in either 
SUD or TSD mode. 

for SUD: 

.LINK SMPROG.OBJ,DIBOL 

whose output is: SMPROG.SAV ,or 

for TSD 

.LINK/EXE:SMPROG.TSD SMPROG.OBJ,TDIBOL/BOT:lOOOOO 

whose output is: SMPROG.TSD 

You will probably want to run REDUCE on this TSD file. 

11.3.4 Running the Sort or Merge Program 

The Sort/Merge program is run like any other program: 

.R SMPROG or .RU dev:SMPROG 

The input file{s) specified in the control file is sorted (or merged) 
to produce a file with the specified output name. Errors generated 
during execution are those listed for SORTM in Appendix B, Table B-ll. 

11.3.5 Example 

The following is an example illustrating all the steps required to 
generate and run a sort program. 

There are five steps: 

1. Create the control file: 

• R DKED 
*FILE.CTL= 
IN: DATAl. DDF 
OU: SDATAl. DDF 
RE: 
, A5 
NAME,A20 
, A35 
BADGE, A5 
SU: 

EN: 
<GOLD/COMMAND> 
EXIT 

ithe unsorted input data file 
ithe desired sorted file 
irecord definition follows 
ispace filler 
ia field to be used as a sort key 
ispace filler 
ia field to be used as a sort key 
ithe sort program will be 
irun in a single-user environment 
iend of control file 

SORT/MERGE 11-15 



2. Run SORTG 

.R SORTG 
SORT GENERATOR VAn-nn 
INFILE=FILE.CTL 
OUTFILE=SORT.DBL 

3. Compile: 

.DIBOL SORT.DBL+SORTM 

whose output is: SORT.OBJ 

4. Link: 

.LINK SORT.OBJ,DIBOL 

whose output is: SORT.SAV 

5. Run the sort program: 

.R SORT.SAV 

when you run SORT.SAV file DATAl.DDF will be 
sorted as specified into a new file SDATAl.DDF. 

11.3.6 SORT/MERGE in Chain Mode 

Certain parameters in the Sort/Merge Control File can be changed at 
run time. The parameters that can be changed are: 

• The record count in the control file INPUT statement. 

• The name of the program to be executed after the sort or 
merge is completed (originally specified in the control file 
EXECUTE statement). 

• The EXECUTE statement, as originally specified, 
lected as the only statement to be executed. 
sort or merge is to be performed. 

may be se
That is, no 

• A message can be sent by a preceding program to the program 
specified in the EXECUTE statement of the Sort/Merge Control 
File. The size of the message is 100 characters but it can 
be changed by editing SORTM.DBL. 

11-16 SORT/MERGE 



The operations listed previously are accomplished via a Sort/Merge 
Control Record that is sent to the sort or merge program prior to exe
cution. The required format of this control record is: 

RECORD SCR 
OPCODE, A1,'x' ;value determines the interpretation of 

;the control record (see below) 
COUNT, 

NEXT, 
MSG, 

D6 

A14 
A1DD 

;record count (overrides count in INPUT 
;statement) 
;filspec of program to follow sort 
;message to be passed to the program to 
;which sort or merge is chained 

The value of the opcode character determines how the control record is 
interpreted. This character may have one of three values. They are: 
%, @, or a character other than % or @ (including a space). 

If the opcode value is a %: 

• If COUNT (in the control record) is nonzero, its value is in
serted as the control file INPUT statement record count. Any 
previous value is overwritten. 

• If NEXT is nonblank, its contents replace the program speci
fied in the control file EXECUTE statement. NEXT, therefore, 
forces sort or merge to chain to a program specified at run 
time. 

If the opcode value is a @: 

• No sort or merge takes place. Instead the program specified 
by the control file EXECUTE statement is executed. This fea
ture allows SUD-chained programs to dynamically bypass a sort 
without breaking the run chain. 

If the opcode value is anything other than a % or a @: 

• The message in field MSG of the control record is sent to the 
program specified by the EXECUTE statement in the control 
file. 

Thus a control record may consist of the following combinations of 
fields and functions: 

OPCODE{%) 

OPCODE{@} 

sets COUNT and/or NEXT 

indicates no sort or merge; simply chain directly to 
program specified by the EXECUTE statement 

OPCODE (other than % or @) 
indicates a message is to be sent to the program speci
fied by the EXECUTE statement. 

SORT/MERGE 11-17 



As an example of how this feature is used, consider a program {PROGl} 
running prior to a sort or merge. Within P~OGI a Sort/Merge Control 
Record is sent (wi th the OrBOL SEND statement) to--,the Sort/Merge pro
gram {SMPROG}. PROGI then chains to SMPROG by hav{ng SMPR6G specified 
as the chain program name in the DrSOL STOP statement at the end of 
PROGI. SMPROG then runs with modifications determined by the control 
record contents. Upon completion of the sort or merge, the chain pro
gram {if so specified by the EXECUTE statement in the sort control 
file} is executed or control returns to the monitor. 

11.4 ERROR MESSAGES 

See Appendix B, Tables B-I0 and B-ll, for a list of error messages for 
SORTG and SORTM. 

11-18 SORT/MERGE 



CHAPTER 12 

STATUS 

12.1 INTRODUCTION 

STATUS is a TSD utility used to obtain information on your TSD 
Run-Time System. 

12.1.1 Features 

The information obtained using STATUS is determined by the option you 
choose. The specific kinds of information available are: 

• List of STATUS options 

• Available free memory and its relative location 

• Total active jobs 

• Information on a specified active job 

• Total line printer active jobs 

• Active job information for a specific line printer 

• Pending messages 

• Characteristics of the current version of a time-shared RTS. 

Additionally, two options that are useful after information has been 
retrieved are: 

• Termination of an active job 

• Exit from STATUS 

Some of the other characteristics of STATUS are: 

• STATUS runs only on a time-shared system with an attached 
terminal. 

• STATUS requires 6 K bytes of memory. 

• STATUS outputs to either a terminal or a line printer. 

12-1 



12.1.2 Chapter Organization 

The remainder of this chapter is comprised of two sections. 
12.2, Options, details the individual options available. 
12.3, Using STATUS, explains how to use the STATUS utility to 
information on your time-shared system. 

12.2 OPTIONS 

Section 
Section 
gather 

STATUS functions as a result of the options you select. These options 
are explained after a short discussion of the conventions used in 
STATUS. 

12.2.1 STATUS Conventions 

A list of options is initially displayed every time STATUS is run, and 
a brief option list is displayed each t~me STATUS prompts for input. 
Only one option can be selected at a time. STATUS recognizes a maxi
mum of three characters to designate an option; however, most options 
require only one character. 

The individual options are all shown with the STATUS prompt line fol
lowed by a typical output. 

12.2.2 Option F 

Option F retrieves the amount of free memory and identifies its loca
tion. 

Typical Option F response: 

ENTER OPTION 
FREE MEMORY 
HIGH MEMORY: 
LOW MEMORY: 
STATUS. TSD: 

(F,H,J,K,L,M,T OR X): F 

o BYTES 
16824 BYTES 

6304 BYTES IN LOW MEMORY 

DD-MMM-YY HH:MM:SS 

The numbers shown indicate the amount of memory available in extended 
memory (HIGH) and in lower memory (LOW). The dividing line between 
LOW and HIGH memory is at 56 KB. The high memory value will always be 
zero unless you have an XMTSD system. The size and location of STATUS 
indicate additional memory that will be available when STATUS is ter
minated. 

12-2 STATUS 



12.2.3 Option H 

Option H presents a list of the STATUS options. 

The response is: 

ENTER OPTION (F,H,J,K,L,M,T OR X): H 
OPTIONS (F) FREE MEMORY 

(H) HELP 
(J) ACTIVE JOB LIST 
(JX) ACTIVE JOB NO. DESCRIPTION 
(KX) KILL AN ACTIVE JOB 
(L) LPQFIL JOBS PENDING - ALL LP'S 
(LX) LPQFIL JOBS PENDING - BY PRINTER (L1,L2,L3,L4) 
(M) MESSAGES PENDING 
(T) TSD PARAMETERS 
(X) EXIT 

12.2.4 Option J 

Option J retrieves the complete list of active jobs on the system. 

Typical Option J response: 

ENTER OPTION (F,H,J,K,L,M,T OR X): J 
JOB NO. JOBNAME TERM. NO. SIZE 

o DK :STATUS.TSD 0 6232 
1 KBDLDR 1 688 
3 DK :COUNT2.TSD DET 920 

(MESSAGE AREA> 2048 

MEM.LOC. DD-MMM-YY HH:MM:SS 
LOW 
LOW 
LOW 
LOW 

JOB NO. is a numeral assigned by STATUS to identify a job. JOBNAME 
is displayed in usual fi1spec format (dev:fi1nam.ext). The remaining 
entries are self-explanatory, with the following exceptions: If there 
is no job running at a terminal, and if the terminal is able to re
ceive a job request, that terminal will show a pseudo job indicated by 
the name KBDLDR. The last line in the example shows the message 
buffer allocation for XMTSD systems only. If there are no messages 
pending, the message area report does not appear. In this case, it 
shows there is 2 K bytes of buffer space used for this purpose. 

STATUS 12-3. 



12.2.5 Option Jx 

Option Jx retrieves information on a specific job. The STATUS job 
number is specified by a numeric value for x where x may be up to two 
characters. Use the J option to determine the STATUS job number. 

Typical Option Jx response: 

ENTER OPTION (F,H,J,K,L,M,T OR X): J3 
JOB NO. 3 DD-MMM-YY HH:MM:SS 
JOBNAME DK :COUNT2.TSD TERM. NO. 
CHANNEL DEV:FILNAM.EXT FLSIZE 

DET SIZE 920 LOW MEMORY 
MODE TOT. USERS UPD.USERS 

I DK :NUMBER.DDF 3049 o 1 255 

This message repeats the job number (3, selected with J3) on the first 
line. The second line specifies the job filspec, the terminal number 
(indicated by DET because job 3 is detached), and the size of the job 
in bytes. The fourth line shows the channels open for the job; the 
device and files being accessed; the file size; the mode of access; 
the total users of that file; and the number of update users of that 
file. If the job number specified is valid, but no files are open, a 
message appears indicating that no files are open. If an invalid job 
number is specified, a message will appear indicating that no job by 
that number exists. 

12.2.6 Option Kx 

The option Kx kills the job indicated by the specified numeric value 
of x where x may be up to two characters. This option permits you to 
terminate any job, regardless of whether or not the job is attached or 
detatched, or on a master or a slave terminal. Use the J option to 
determine the number of the job you wish to terminate and again to 
verify that the termination took place. 

When the job specified is running attached, the TSD version number is 
displayed on the attached terminal once the job is terminated. 

When the job specified is running detached, there is no message. 

12-4 STATUS 

NOTE 

The Kx option operates like a double 
CTRL/C. Files opened in output mode are 
lost when Kx is entered; and files that 
were opened in update mode may not re
flect the latest record updates, if Kx 
is entered. 



12.2.7 Option L 

Option L retrieves the contents of the print queue that was created 
with the print spooler utility, LPTSPL.TSD. 

Typical Option L response: 

ENTER OPTION (F,H,J,K,L,M,T OR X): L 
NAME NO. DEV:FILENAM.EXT COPIES ALIGN 

LP 1 RK1:MIPROG 1 Y 
LP 1 RK1:URPROG 2 Y 
LR 3 RKl:BIGPRG 4 
LS 4 RK1:SMLPRG 1 

DELETE DD-MMM-YY HH:MM:SS 
N 
N 

Each print request is identified by a two-character line printer name, 
followed by the line printer number; the file to be printed; and the 
number of copies. The response to the ALIGN and DELETE arguments is 
as specified in the original DIBOL LPQUE statement. If the queue is 
empty, a message is displayed indicating this condition. 

12.2.8 Option Lx 

Option Lx retrieves the contents of the print queue for a specific 
printer. When entered, x is a decimal number in the range 1 to 4 
which indicates the desired printer~ 

Typical Option Lx response: 

ENTER OPTION (F,H,J,K,L,M,T OR X): Ll 
NAME NO. DEV:FILNAM.EXT COPIES ALIGN 

LP 1 DK1:MIPROG 1 Y 
LP 1 DK1:URPROG 2 Y 

DELETE DD-MMM-YY HH:MM:SS 
N 
N 

Each file in the queue for the selected printer is on a separate line. 
The information is arranged in this order: printer name and number; 
file specification; and, as with Option L, the number of copies. The 
response to the ALIGN and DELETE arguments is, again, as specified in 
the original DIBOL LPQUE statement. 

If there are no print jobs pending for this printer, a message is dis
played indicating that there are none. 

12.2.9 Option M 

Option M retrieves the contents of the message queue. 

Typical Option M response: 

ENTER OPTION (F,H,J,K,L,M,T OR X): M 
MESSAGE FOR PROGRAM TERM. NO. SIZE DD-MMM-YY HH:MM:SS 
DK1:MIPROG 1 704 

STATUS 12-5 



Each pending message is on a separate line. Information is provided 
on the device; program name; size (in bytes); and the number of the 
terminal for which the message is queued. 

If there are no messages pending, a message is displayed indicating 
there are none. 

12.2.10 Option T 

Option T retrieves the operating parameters of the current version of 
the TSD or XMTSD RTS. 

Typical Option T response: 

ENTER OPTION (F,H,J,K,L,M,T 
TSD PARAMETERS 
MAX. NO. OF JOBS: 
MAX. NO. OF CHANNELS: 
MAX. NO. OF DEVICES: 
SWAP USR: 
DDT: 
FORCED JOB STARTUP: 

4 
12 

6 
YES 
YES 
YES 

OR X): T 

NO. OF TERMINALS: 
DD-MMM-YY 

2 
MAX. NO. OF MESSAGES 
SLICE: 

8 
64 

YES ISAM: 
MONITOR (SJ/FB/XM) FB 

HH:MM:SS 

The values displayed are the limits for the current version of the TSD 
or XMTSD system. Most of these reflect decisions made during CTSGEN 
and can be changed only with another CTSGEN, the exceptions are SLICE 
and swap/noswap USR. 

12.2.11 Option X 

This is the exit option. It allows control to return to the run-time 
system. When option X is selected, the TSD or XMTSD RTS regains con
trol of the terminal and displays the current TSD version number and 
the asterisk prompt. Any program linked for TSD operation can then be 
run. 

12.3 USING STATUS 

The STATUS program is run by entering the following response to the 
TSD asterisk prompt: 

*R STATUS or *RU dev:STATUS 

the response is: 

OUTPUT TO LINE PRINTER? ENTER YIN: 

12-6 STATUS 



Respond with Y or N. An N response indicates that you want the output 
device to be the terminal. A Y response indicates that you want the 
output device to be a line printer. Line printer selection produces a 
further question: 

ENTER PRINTER NUMBER. (1-4): 

Enter the number for the desired printer on your system. The printer 
must have been specified during the RT-ll SYSGEN. If the printer were 
not specified in SYSGEN, or if the printer is busy, an appropriate 
message is displayed. If an invalid printer number (not 1-4) is en
tered, the system prompts for the number again. 

After selection of output device, a list of options is displayed or 
printed, as with Option H. 

12.4 ERROR MESSAGES 

Error messages for STATUS are contained in Appendix B, Table B-12. 

STATUS 12-7 





CHAPTER 13 

REDUCE 

13.1 INTRODUCTION 

REDUCE is a time-shared utility program that decreases the size of a 
file linked at a base address of 100000 (octal) (16 K bytes). A file 
so linked includes 63 unused blocks. In a small system, especially 
those using floppies, this wasted space can become excessive. Eighty 
TSD files, linked as described, contain more than enough wasted space 
to fill an entire RK05. REDUCE accepts an input file, reads it; then 
copies the file, minus the 63 unused blocks. It then deletes the 
input file. For overlaid files, the relative block number in the 
overlay handler tables is also modified. 

13.1.1 Characteristics 

• Requires 4 K bytes of memory. 

• Recognizes file-structured devices only. 

• Supported by RT-ll V3 (or later) only. 

13.1.2 Chapter Organization 

The remainder of this chapter is comprised of two sections. The 
first, Section 13.2, REDUCE Options, is a discussion of the options 
available with REDUCE. The second, Section 13.3, Using REDUCE, des
cribes the use of REDUCE. 

13.2 REDUCE OPTIONS 

There are three modes in which REDUCE can operate: query, no query, 
and version number. These modes are a result of options selected when 
you specify the file(s) to be reduced. There are two options. Modes 
and options are discussed next. Because REDUCE is such a straight
forward program, selection and format for mode and option are shown in 
Sections 13.3.2 and 13.3.3 rather than in this section. 

13-1 



13.2.1 Query Mode 

This is the default mode; no option is specified. Each file that sa
tisfies the stated file specification{s) is listed for you to decide 
whether to reduce it. You respond with Y if you wish the file re
duced, or with N (or carriage return), if you do not wish the file re
duced. If you attempt to reduce a file that was previously reduced, 
or a file that was not linked for a base of 100000, a message will be 
displayed indicating that REDUCE has ignored that file. 

13.2.2 IN Option (No Query) 

The IN option suppresses the individual file queries present in the 
query mode. Processing proceeds on all the files that meet the file 
specification{s). This option provides fast processing of your files. 
Messages are displayed, as in the query mode, indicating a previously 
reduced file or a file not linked for a base of 100000. 

13.2.3 IV Option (Version Number) 

The IV option causes the REDUCE utility to display its current version 
number. 

13.3 USING REDUCE 

13.3.1 Conventions 

Input files 

• REDUCE operates only on files that have been linked for a 
base address of 100000 (octal). Upon receipt of an input 
file specification, REDUCE searches the header block for the 
correct link address, and makes sure the file has not already 
been reduced. 

• REDUCE will select only files with an extension of .TSD. 

• More than one input file can be specified. 

Output files 

The output file resulting from reduction has the same name as the 
input file{s). 

13-2 REDUCE 



13.3.2 Running REDUCE 

To start REDUCE, enter the following command: 

.R REDUCE or .RU dev:REDUCE 

or, for TSD 

*R REDUCE or *RU dev:REDUCE 

REDUCE responds with an asterisk prompt for the input file(s). 

The general form of file specification and option selection is: 

filespecln 

where: 

filespec is the file specification of the file(s) to' be reduced • 

• If more than one file is to be reduced, the file 
specifications are separated by commas • 

• REDUCE assumes a default extension of .TSD. 

In is the option specifier with n being either an N for no 
query or a V for version number. 

13.3.3 REDUCE Examples 

The modes and options available with REDUCE are illustrated in the 
following subsections. 

13.3.3.1 Query Mode 

To reduce the two files MYFIL and YURFIL, enter the following in res
ponse to the asterisk prompt: 

*MYFIL,YURFIL 

REDUCE 13-3 



The result will be 

DK:MYFIL.TSD? 

The file is on the default device and exists with a .TSD extension. 
Respond with Y or N. The next line will be: 

DK:YURFIL.TSD? 

The same conditions and possible response exist as did for the first 
file. 

13.3.3.2 No Query Mode 

To reduce the two files used in the query mode example without query, 
the response to the asterisk prompt is: 

*MYFIL,YURFIL/N 

to which the only response would be the prompt indicating that the 
files have been reduced. 

13.3.3.3 Version Number Mode 

To obtain the version number of the REDUCE utility, the response to 
the asterisk prompt is: 

*/V 

The display would then be 

REDUCE UTILITY VAnn-nn 

where: 

nn-nn is the current version number. 

13.4 ERROR MESSAGES 

See Appendix B, Table B-13, for REDUCE error messages. 

13-4 REDUCE 



APPENDIX A 

CTS-300 RUN-TIME ERROR MESSAGES 

The following is a list of the CTS-300 Run-Time Error Messages and 
their meanings. They are listed in order by error number. Table B-3 
in Appendix B of this manual contains a few special errors generated 
by the DIBOL Time-Shared RTS only. Additional errors are also listed 
in Appendix B of this manual for the CTS-300 Utility Programs and in 
the RT-ll System Message Manual for the RT-Il Operating System. 

There are certain errors listed which suggest you notify your Digital 
representative. These errors indicate there is a serious logic error 
in the system software rather than the application software. You 
should inform DIGITAL in writing notifying us of the problem and in
clude information on how to reproduce the problem. 

Messages are identified by type: T for trappable errors and NT for 
nontrappable errors. 

A-I 



CTS-300 Run-Time Error Messages 

Number/Message 

1 END OF FILE 

2 RETURN WITHOUT CALL 

3 COMPILATION ERROR 

4 DIBOL STACK OVERFLOW 

Type Meaning 

T Logical end-of-file (CTRL/Z) detected: 

• When reading an input file (except 
via ACCEPT field). 

• When operator typed CTRL/Z in res
ponse to the message requesting 
you to mount a successor device 
for input. 

• When requesting an ISAM record 
whose key value exceeds the great
est key already in the file. 

NT Program executed a RETURN statement but 
no CALL or XCALL statement was in ef
fect. 

NT Attempt to execute a statement line that 
contains an error previously detected by 
the compiler. 

NT Too many nested subroutine calls and/or 
subroutine calls with many arguments. 

Subexpression nesting too deep. 

5 RECURSIVE EXTERNAL CALL NT An external subroutine attempted to call 
itself (XCALL statement) either directly 
or indirectly through another external 
subroutine. 

6 INCORRECT NUMBER OF 
ARGS 

7 SUBSCRIPT ERROR 

NT The number of arguments passed to an 
external subroutine by an XCALL state
ment is not equal to the number of argu
ments specified under the subroutine's 
SUBROUTINE statement. 

NT The subscript value of a singly sub
scripted variable specified a data ele
ment outside the program's data area, or 
was zero or negative. 

The first subscript 
subscripted variable 
greater than that 

of a doubly 
specified a value 
of the second 

subscript; one of the subscripts was a 
negative value; or the subscript 
specified a data element outside the 
program's data area. 

A-2 eTS-300 RUN-TIME ERROR MESSAGES 



CTS-300 Run-Time Error Messages 

Number/Message Type Meaning 

8 WRITING INTO A LITERAL NT Attempt by an external subroutine to 
store data in a literal passed as an ar
gument to the subroutine call. 

9 NOT ENOUGH MEMORY T Insufficient memory for the device 
buffer and/or the device handler being 
loaded: 

• In response to an OPEN statement. 

• In response to a call to the DELET 
external subroutine. 

Insufficient memory for the 
being sent (SEND statement). 

message 

10 ILLEGAL CHANNEL NUMBER NT The channel number specified in an OPEN, 
ACCEPT, DISPLAY, FORMS, WRITE, WRITES, 
READ, or READS statement is out of the 
range for legal channel numbers (I-IS). 

11 CHANNEL NOT OPEN NT 

12 INPUT FROM WRITE-ONLY T 
DEVICE 

13 CHANNEL DEFINITION NT 
ERROR 

14 UNDEFINED OPCODE NT 

15 NUMBER TOO LONG T 

Attempt to perform I/O to a channel 
prior to issuing an OPEN statement. 

Attempt to issue an OPEN statement in 
input (I) mode to an output-only device 
(for example, a line printer). 

The operating system detected a logic 
error in the run-time system software. 
Notify your DIGITAL representative. 

The run-time system detected a 
compiler-generated error in your pro
gram. Notify your DIGITAL representa
tive. 

The program performed a calculation pro
ducing a result greater than 18 digits. 

An INCR statement caused a number to 
exceed the specified size of its data 
field. 

16 DIBOL CHANNEL IN USE NT Attempt to issue an OPEN statement to a 
channel that is already open. 

17 BAD FILE SPECIFICATION T Incorrect syntax in the file specifica
tion for LPQUE, OPEN, or SEND statement, 
or in an external call to RENAME. 

CTS-300 RUN-TIME ERROR MESSAGES A-3 



CTS-300 Run-Time Error M~ssages 

Number/Message Type Meaning 

18 FILE NOT FOUND T 

19 HANDLER NOT AVAILABLE T 

20 BAD DIGIT T 

21 BAD OPEN T 

22 1-0 ERROR T 

23 LINE TOO LONG T 

24 NO SPACE FOR FILE T 

The file specified in an OPEN statement 
does -not exist. 

The handler for the device specified in 
the file specification of an OPEN state
ment is not installed and/9r loaded. 

The alphanumer'ic value being converted 
to a decimal value consisted of char
acters other than: space, +, - 0, 1, 
2, 3, 4, 5, 6, 7, 8, or 9. 

Attempt to issue an ACCEPT, READ, or 
READS statement to an output-only device 
(for example, line printer, paper tape 
punch) • 

Attempt to issue a DISPLAY, WRITE, 
FORMS, or WRITES to an input-only device 
(for example, paper tape reader). 

Attempt to open a file of length zero in 
I or U mode. 

Attempt to perform other than a READ or 
a WRITE in U mode. 

The system detected bad data during an 
input or output operation. This may be 
either a software or a hardware error. 
If the operation being performed is se
quential (READS or WRITES), attempts to 
retry may cause loss or duplication of 
data. 

The data record being input is larger 
than,the space reserved for it in memory 
by the associated RECORD statement in 
the Data Division. 

The number of blocks of storage request
ed in the file specification of an OPEN 
statement is not available on this dev
ice. 

The device cannot contain more 
because its directory is full. 
systems, squeezing the disk may 
the problem. 

files, 
On TSD 

relieve 

A-4 CTS-300 RUN-TIME ERROR MESSAGES 



CTS-300 Run-Time Error Messages 

Number/Message 

25 OUTPUT FILE FULL 

26 FIELD OR RECORD TOO 
LONG 

27 UPDATE OF NON-FILE 
DEVICE 

Type Meaning 

T This message is output when the operator 
types a CTRL/Z at the terminal in res
ponse to the message MOUNT SUCCESSOR TO 
dev:filnam.ext FOR OUTPUT. It indicates 
that: 

NT 

T 

The blocks of storage requested in the 
file specification of the OPEN statement 
are used. 

No further storage space is available on 
this device. 

The size of a recerd or field is greater 
than 16, 383 characters. 

Attempt to issue an OPEN statement in 
update mode to a nonrandom access device 
(that is: papertape, line printer, mag-
netic tape, or terminal) • 

28 ILLEGAL RECORD NUMBER T A READ or WRITE statement specified a 
record number argument that is negative, 
zero, or greater than the number of 
records in the file. 

29 INCOMPATIBLE COMPILER NT The program was compiled using a version 
of the compiler that is incompatible 
with the run-time system. 

30 DIVIDE BY 0 T The program performed an arithmetic op-

31 ARGUMENT WRONG SIZE 

32 SUPERSEDING EXISTING 
FILE 

eration that resulted in division by 
zero. 

NT Attempt to call one of the external 
utility subroutines supplied by DIGITAL 
using one or more arguments of the wrong 
1 eng th. 

T Indicates that the program attempted to 
create an output file having the same 
name as an existing file. This error 
will always occur with magnetic tape. 
With disks this condition is detected 
only if set up by the FLAGS external 
utility subroutine (see the OIBOL-ll 
Language Reference Manual). 

CTS-300 RUN-TIME ERROR MESSAGES A-S 



eTS-300 Run-Time Error Messages 

Number/Message Type Meaning 

33 TOO MANY CHANNELS OPEN NT A program attempted to open more I/O 
channels than the Time-Shared OISOL 
supervisor allows. This limit is set 
during system generation. This error 
occurs while executing an OPEN 
statement. 

34 TOO MANY HANDLERS 
CALLED 

35 TOO MANY FILES 
OPENED 

36 TOO MANY BUFFERS 
ALLOCATED 

37 DEVICE IN USE 

38 FILE IN USE 

39 OUTPUT TO READ-ONLY 
DEVICE 

40 RECORD LOCKED 

41 ?M-ILL USR 

NT A program attempted to use more devices 
than the Time-Shared OISOL supervisor 
allows. This limit is set during 
CTS-300 system generation. This error 
occurs while executing an OPEN state
ment. 

NT The maximum number of files that Time
Shared DISOL allows to be open simul
taneouslywas exceeded. 

NT The maximum number of buffers that 
Time-Shared DISOL allows was exceeded. 

T A program operating under Time-Shared 
DISOL attempted to open a channel to a 
nonsharable I/O device that was being 
used by another program. This error is 
detected during execution of an OPEN 
statement. 

T A program operating under Time-Shared 
DISOL attempted to open an output file 
(0 mode) that was already opened by 
another program. 

T Attempt to issue an OPEN statement in 
output (0 mode) to an input-only device 
(that is: paper tape reader). 

T A READ or WRITE statement specified a 
record that is currently being accessed 
by another program running under 
Time-Shared DIBOL. 

NT Indicates an internal problem with the 
system software that is beyond your con
trol. Notify your DIGITAL representa
tive. 

A-6 eTs-300 RUN-TIME ERROR MESSAGES 



CTS-300 Run-Time Error Messages 

Number/Message 

42 ?M-NO DEV 

43 ?M-DIR IO ERR 

44 ?M-BAD FETCH 

45 ?M-OVLY ERR 

46 ?M-DIR OVFLO 

47 ?M-ILL ADDR 

48 ?M-ILL CHAN 

49 ?M-ILL EMT 

50 UNRECOVERABLE SYSTEM 
ERROR 

Type Meaning 

NT Attempt to use the line printer while 
the single-user line printer spooler is 
running. 

T 

Indicates an internal problem with the 
system software that is beyond your con
trol. Notify your DIGITAL representa
tive. 

Hardware error: 
• 

• Device write-locked. 

• Device either cannot read or 
cannot write in its directory. If 
condition persists, notify your 
DIGITAL representative. 

NT Error while loading a device handler. 
The file cannot be read. If condition 
persists, notify your DIGITAL represen
tative. 

NT Error while reading DIBOL-II program 
overlay into memory. This is a hardware 
error. If condition persists, notify 
your DIGITAL representative. 

T During execution of an OPEN statement (0 
mode) no entry space for the new file 
was available in the device directory. 

NT Indicates an internal problem with the 
CTS-300 software. Notify your DIGITAL 
representative. 

NT Indicates an internal problem with the 
CTS-300 software. Notify your DIGITAL 
representative. 

NT Indicates an internal problem with the 
CTS-300 software. Notify your DIGITAL 
representative. 

NT Indicates an internal problem with the 
system software that is beyond your con
trol. Notify your DIGITAL representa
tive. 

CTS-300 RUN-TIME ERROR MESSAGES A-7 



CTS-300 Run-Time Error Messages 

Number/Message 

51 TOO MANY MESSAGES 

52 ILLEGAL KEY 

53 KEY NOT SAME 

54 NO DUPLICATES 

55 NO ISAM CTSGENED 

56 NOT ISAM FILE 

57 OVERFLOW FULL 

Type Meaning 

T The total size of all messages is more 
than 16 K bytes, there are too many mes
sages, or the size of this message is 
too large. In all cases, the message is 
not stored. 

T An ISAM key was specified that was not 
defined in the data section of the pro
gram. That is, the key position was 
wrong. This message occurs with the 

~READ, NEXT, STORE, and WRITE statements 
in conjuction with ISAM. 

T This message can occur while doing a DE
LETE or a WRITE: 

• 

• 

This message occurs with a READ if 
the size of the key is equal to 
the size of the data file key but 
the system can not find the key 
specified. The next higher ap
proximate key is returned along 
with this message. 

This message occurs while doing a 
DELETE or a WRITE if the key value 
identified within the record to be 
deleted or updated is not the same 
as the key of the last record 
read. This last record is still 
locked and the DELETE or WRITE is 
not performed. 

T In an ISAM file, a recQrd with a dupli
cate key was added to a file where du
plicate keys are not allowed. 

NT During CTSGEN, a negative answer was 
specified to DO YOU WANT ISAM? 
Therefore, if SI or SU is used with the 
OPEN statement, this message will occur. 

T The specified file was not an ISAM file 
and was OPENed in SI or SU mode. The 
message occurs with DELETE and STORE 
statements. 

T In an ISAM file, there is not enough 
room for another record to be added 
(that is, there are no empty overflow 
groups or load exclusion spaces). 

A-a CTS-300 RUN-TIME ERROR MESSAGES 



CTS-300 Run-Time Error Messages 

Number/Message Type Meaning 

58 JOB STARTUP ERROR T There is not enough memory, the terminal 
is busy, or an I/O error occured while 
loading the job. 

59 ILLEGAL TERMINAL T You are either sending a message spec
ifying a terminal number that does not 
exist or you are trying to start up a 
job on a terminal that does not exist. 

NUMBER 

66 R6 STACK OVERFLOW NT An attempt was made to use imbedded 
CALLs, or a routine calls itself. 

68 NOT ENOUGH MEMORY TO NT 
RUN PROGRAM 

Program cannot be run, due to insuf
ficient addressable memory space. In 
Time-Shared DIBOL, the size of the pro
gram is greater than available free mem
ory. 

69 PROGRAM NOT LINKED NT A program is linked at an octal address 
other than 100000. WITH /B:100000 ? 

70 BAD BINARY FILE 

71 ILLEGAL DEVICE 

72 JOB TABLES FULL 

73 JOB EXCEEDS 
MAXIMUM SIZE 

74 TOO MANY ISAM VOLUMES 
PER FILE 

75 TOO MANY ISAM FILES 

NT The data is corrupted, or this is not a 
DIBOL file. 

NT In XMTSD, the device handler is either 
not installed or is installed and not 
loaded. In nonextended memory TSD, a 
legal device name has been specified but 
the handler is not installed in the sys
tem. 

T You have exceeded the maximum number of 
jobs specified when you did your CTSGEN 
for your configuration. 

T 

NT 

The job has exceeded the maximum permis-
sible size. In TSD or 
addressable amount of 
words (32 K bytes). In 
is limited by available 

The maximum number of 
that you specified in 
exceeded. 

XMTSD the maximum 
memory is 16 K 

SUD maximum size 
free memory. 

volumes per file 
CTSGEN has been 

NT The number you specified in CTSGEN has 
just been exceeded. 

76 TOO MANY FILES OPENED NT The number you specified in CTSGEN has 
IN U-MODE just been exceeded. 

CTS-300 RUN-TIME ERROR MESSAGES A-9 



CTS-300 Run-Time Error Messages 

Number/Message Type Meaning 

77 ARGUMENTS OUT OF ORDER T The order of the arguments in the call 
to the PAK/UNPAK subroutine does not 
match the record definition. 

78 ARGUMENT OUT OF RECORD T 
LIMIT 

An argument passed in the call is not 
part of the record being packed or un
packed. 

79 ARGUMENT COUNT 

80 FIELD NOT PACKED 

81 FB INIT ERROR 

82 ILLEGAL XCALL 

T A minimum of three arguments is required 
by the PAK subroutine. 

T The UNPAK subroutine is asked to unpack 
a record that was not previously packed. 

NT A program has attempted to use a system 
communication feature that is reserved 
for exclusive use by XMTSD. 

NT A call to the GLINE subroutine is inval
id from a time-shared program. 

A-10 CTS-300 RUN-TIME ERROR MESSAGES 



APPENDIX B 

ERROR MESSAGES 

The following tables B-1, B-2, and 8-4 through 8-11 present the error 
information for the CTS-300 Utility Programs. Table 8-3 contains er
rors generated by a OI80L Time-Shared RTS program. 

All error messages are in blue print. 

8-1 



Table 8-1 
DKED Error Messages 

Advance line finds end of page 
The advance line function moved the cursor to the top of the page. 
Use any valid function or command. 

Arrow command finds extremity of page 
The meaning depends on the particular arrow function: 

• The uparrow function has moved the cursor to the bottom of 
the page. 

• The leftarrow function has moved the cursor to the begin
ning (first character position) of the page. 

• The downarrow function has moved the cursor to the bottom 
of the page. 

• The rightarrow has moved the cursor to the end (last char
acter position) of the page. 

Use any valid function or command. 

Backup line finds beginning of page 
The backup function moved the cursor to the beginnin~ of the page. 
Use any valid function or command. 

Bad digit in repeat count 
A character other than a digit was entered as part of the repeat 
count. 

Buffer is full 
The text buffer is full. Keyboard data is no longer accepted. Use 
EXIT, REOPN, or PAGE to continue entering data. 

Change case finds beginning of page 
In the backup direction mode, the change case function changed the 
case of the first character in the page. Use any valid function or 
command. 

Change case finds end of page 
In the advance direction mode, the change case function changed the 
case of the last character in the page. Use any valid function or 
command. 

CTRL/C ignored use quit 
DKED ignores a single CTRL/C. Use any valid function or command. 

Cursor not at target 
DKED could not complete a REPLACE or SUBSTITUTE function because 
either the cursor is not at the search model or you have not speci
fied a search model. 

B-2 'ERROR MESSAGES 



DELETE finds end of page 

Table B-1 (Cont.) 
DKED Error Messages 

The DELETE function deleted the last character in the page. Use 
any valid function or command. 

DELETE finds beginning of page 
The DELETE function erased the first character in the page. Use 
any valid function or command. 

Dot (.) cannot be 1st chr of target 
When you are specifying wildcards in a search model, the first 
character can not be a dot. 

Dot (.) cannot be last chr of target 
When you are specifying wildcards in a search model, the last char
acter can not be a dot. 

EDL finds end of page 
The end-of-line function moved the cursor to the end of the page. 
Use any valid function or command. 

EDL finds beginning of page 
The end-of-line function moved the cursor to the beginning of the 
page. Use any valid function or command. 

Illegal command 
DKED could not recognize the command you specified. 

Illegal command sequence. Please start over. 
This error occurs when you open a file that already exists; you 
elect to continue and then issue a QUIT command. 

Illegal function for mode of use 
This error occurs in inspection use mode. When you are inspecting 
a file, you can not enter commands or perform functions that modify 
the file. 

Invalid terminatinq key 
DKED could not complete a FIND function for one of the following 
reasons: 

• You included an illegal character in the model • 

• You did not terminate the model with the ADVANCE or BACKUP 
function. 

More than 130 chars./record 
You entered more than 130 characters since the previous carriage 

. return / line feed. 

ERROR MESSAGES B-3 



Table 8-1 (Cont.) 
DKED Error Messages 

Move to bottom when at bottom 
You have attempted to move to the bottom of the page when you are 
already there. 

Move to top when at top 
You have attempted to move to the top of the page when you are al
ready there. 

No search model defined 
DKED could not process the FIND-NEXT, REPLACE, or SUBSTITUTE func
tion because you have not yet specified a search model. 

NOT ENOUGH ROOM IN OUTPUT FILE - PLEASE START OVER 
You have opened a file and have specified a value for number of 
blocks that results in a file smaller than the input, and then you 
exited or paged. 

There are not enough blocks in the output file, or intermediate 
output file, you have specified. 

There is no room on the physical device for the output file or in
termediate output file. 

Nothing to undelete 
DKED could not complete the undelete function because the corres
ponding line or character buffer is empty. 

No valid select range 
There are three circumstances under which this message can occur: 

• You tried to CUT or APPEND before using the SELECT func
tion. 

• You have modified the file after using the SELECT func
tion. 

• You used either a PAGE or a YANK after the SELECT RANGE 
function. 

Repeat = 0 ?? 
Repeat count can not be a "0". 

Section finds beginning of page 
The section function moved the cursor to the beginning of the page. 
Use any valid function or command. 

Section finds end of page 
The section function moved the cursor to the end of the page. Use 
any valid function or comman~ 

Asterisk (*) cannot be 1st chr of target 
When you are specifying wildcards in a search model, the first 
character can not be an asterisk. 

8-4 ERROR MESSAGES 



Table 8-1 (Cont.) 
DKED Error Messages 

Asterisk (*) cannot be last chr of tarqet 
When you are specifying wildcards in a search model, the last char
acter can not be an asterisk. 

Target not found 
A FIND or FINDNEXT function moved the cursor to the bottom or top 
of the page (or file if p option used in forward mode) without 
finding a string that matches the model specified. 

Text buffer is filling up 
DKED has detected that the text buffer is close to being filled. 
Use EXIT, REOPN, or PAGE to continue entering data. 

Unable to open input file 
The file specified was not found. 

ERROR MESSAGES 8-5 



Table B .... 2 
DICOMP Error Messages 

In the following table the errors are identified as to type: 

E = error, compilation not stopped 

F = fatal error, compilation stops 

W = warning, program will run, but unpredictably 

Message Type Meaning 

BAD DUMMY VARIABLE SIZE W The size of a dummy variable should be 
O. To prevent the warning message, the 
dimension should be specified as 0 or 
omitted altogether. 

BAD IF STMNT E A START, END, or illegal statement was 

BAD LEFT SIDE OF '=' E 

BAD LPQUE STMNT E 

BAD OVERLAY E 

BAD PROC # E 

BAD SWITCH F 

CCP ERROR E 

COMMA MISSING E 

CREF I/O ERROR F 

8-6 ERROR MESSAGES 

detected within an IF statement, or no 
statement was found on the right side of 
the IF statement. 

No variable was found on the left side 
of "=", or it was not a legal variable. 

A colon was missing, or the order of ar
gum'ents was incorrect in an LPQUE state
ment. 

There was no previously defined record 
to be overlaid. 

The left parenthesis was missing, or n 
was greater than 16. The statement must 
be of the form PROC (n). 

The compiler detected an unrecognized 
switch. The compiler is restarted. The 
switches are: 

W,B,S,D,O,A,C,P:N,G, and L 

Every .IFDEF and .IFNDEF 
corresponding .ENDC for 
nesting. 

must have a 
each level of 

No comma was found where it was expect
ed. 

A hardware error occurred while writing 
the CREF output file. The system re
turns to monitor command level. 



Message 

CREF OUT OF ROOM 

DECIMAL FIELD )18 CHARS 

EXPECTED LABEL MISSING 

EXPRESSION NOT DECIMAL 

EXTRA CHARS AT STMNT END 

FIELD TOO LARGE OR ZERO .,. 

FILE NOT FOUND 

ILLEGAL COMMAND 

ILLEGAL DEVICE 

ILLEGAL FIRST STMNT 

ILLEGAL NAME 

ILLEGAL OR MISSING 
OPERATOR 

ILLEGAL STMNT 

Table B-2 (Cont.) 
DICOMP Error Messages 

Type Meaning 

F The space allocated for the temporary 
CREF output file was completely filled. 

W 

E 

E 

E 

W 

E 

F 

F 

F 

E 

E 

E 

E 

The legal limit of a decimal field for 
run time is eighteen (18) characters. 

A label was not found where it was ex
pected or required. 

The expression is not defined, or it is 
in alphabetic format. 

This is an error in the PROC section. 

This becomes a warning in the DATA sec
tion. 

A field exceeded 16,383 bytes (char
acters) • 

The compiler could not find the 
specified in the command line. 
piler is restarted. 

Only two output files may be 
in a compiler command string. 
piler is restarted. 

file(s) 
The com-

specified 
The com-

A device specified in the compiler com
mand string was not recognized as a 
legal device. 

The only allowable initial statements in 
a program segment are the RECORD, 
SUBROUTINE, START, and CCP statements. 

The first character in a name was not an 
alphabetic character. 

No comma appeared in the data format
ting statements, or an invalid operator 
was found within an expression. 

The statement was not recognized as a 
legal DIBOL statement, or the PROC 
statement was used more than once, or an 
END or START was found within an IF 
statement. 

ERROR MESSAGES B-7 



Message 

Table B-2 (Cont.) 
DICOMP Error Messages 

Type Meaning 

INITIAL VALUE NOT ALLOWED W No fields within overlay records can be 
given initial values. 

INITIAL VALUE NOT EQUAL 
TO SIZE 

INPUT FILES? 

INPUT I/O ERROR 

LINE TOO LONG 

LISTING I/O ERROR 

LISTING OUT OF ROOM 

MISSING CLOSE PAREN 

MISSING OPERAND 

MISSING QUOTE 

NAME PREVIOUSLY DEFINED 

NAME TOO LONG 

NO FIELD STMNTS IN 
PREVIOUS RECORD 

8-8 ERROR MESSAGES 

W 

F 

F 

E 

F 

F 

E 

E 

E 

E 

W 

E 

The field size specifier and the size 
of its initial value do not agree. 

The compiler command string contained no 
input files. 

A hardware error occurred while an input 
file was being read. The system returns 
to monitor command level. 

The line exceeded 511 characters includ
ing carriage return / line feed pairs. 

A hardware error occurred while writing 
the listing file. The system returns to 
monitor command level. 

The space allocated for the listing file 
was completely filled. 

Not every left parenthesis used within 
an expression has a corresponding right 
parenthesis. 

An expected variable or literal was 
missing. 

A quote (I) was not found where it was 
expected. 

Multiple definition of a field or record 
name is not allowed. 

A name with more than six characters, or 
a subroutine name with more than five 
characters, was detected. The excess 
characters are ignored. 

A record size of zero was detected. 
The problem occurs because of the lack 
of, or the improper definition of, field 
statements. 



Table 8-2 (Cont.) 
DICOMP Error Messages 

Message Type Meaning 

NO LISTING FILE FOR CREF F A CREF listing was specified in the com
piler command string via the /C switch, 
but no listing file specification was 
included in the same command string. 
The compiler is restarted. 

NOT A OR D E A field specification can be only A (al-
phabetic) or D (decimal). 

NOT DECIMAL E The initial value of a decimal field was 
not specified in decimal format. 

NOT ENOUGH MEMORY F There was not enough memory to compile 
the program. Reduce either the number 
of output files and different device 
handlers, or the number of symbols in 
the program. The system returns to mon
itor command level. 

NOT I, 0, OR U E The second argument of an OPEN statement 
does not begin with an I, 0, U, or S. 

OBJ I/O ERROR F A hardware error occurred while writing 

OBJ OUT OF ROOM F 

RECORD TOO BIG E 

RELATIONAL NOT IN IF W 
STMNT 

STMNT TOO COMPLEX E 

SUBSCRIPT ERROR E 

SUBSCRIPT STACK OVERFLOW E 

the object file. The system returns to 
monitor command level. 

The space allocated for the object file 
was completely filled. 

The named record exceeded 16,383 bytes 
(characters), or an overlay exceeded the 
size of the record it was overlaying. 

A relational operator appears outside an 
IF statement. 

Internal compiler storage was exceeded 
in an attempt to compile too complex an 
expression. Break the expression into 
two or more statements. 

The specified subscripts are alphabetic, 
or are not separated by a comma, or are 
not.c1osed by a right parenthesis, or 
total more than two subscripts. 

Internal compiler storage was exceeded 
in an attempt to compile too many nested 
subscripts. 

ERROR MESSAGES B-9 



Table B-2 (Cont.) 
DICOMP Error Messages 

Message Type Meaning 

SUBROUTINE NAME MISSING E The name of the subroutine in a SUBROU
TINE or XCALL statement is missing. 

TOO MANY SYMBOLS OR 
LABELS 

TOO MUCH DATA 

UNDEFINED LABEL 

UNDEFINED NAME 

WRONG DATA TYPE 

8-10 ERROR MESSAGES 

F 

E 

E 

E 

E 

More than 1023 symbols, or more than 
1023 labels occurred in a program seg
ment. 

More than 32,767 bytes of data and 
literals were found in the program. 

An unidentified label was referenced in 
the PROC section. 

A variable not defined in the DATA sec
tion was encountered in the PROC sec
tion. 

An expression contains incompatible data 
types: alphabetic and decimal. 



Table 8-3 
Time-Shared OI80L Error Messages 

PROGRAM NOT DETACHED 
An attempt was made to issue an ATTACH command to a program that 
was currently attached to another terminal. 

PROGRAM NOT FOUND 
The program specified in an ATTACH or RUN command does not reside 
on the specified device. 

TRAP TO 4 PC= 
A time-out or bus error has occurred, there has been an attempt to 
access nonexistent memory, or a word instruction was attempted on 
an odd address. Consult your DIGITAL hardware/software specialist. 

TRAP TO 10 PC= 
An attempt to execute an undefined instruction has occurred. 
Consult your DIGITAL hardware/software specialist. 

TSD INITIALIZATION ERROR CANNOT RUN IN FOREGROUND PARTITION 
An attempt to run nonextended memory TSD in the foreground parti
tion was made. Control returns to the RT-ll monitor. 

XM-TSD INITIALIZATION ERROR CANNOT CREATE EXTENDED MEMORY REGION 
An attempt was made to run XMTSD with the SJ or F8 monitor. 

ERROR MESSAGES 8-11 



Table B-4 
Foreground/Background Communication Command 

Error Messages 

Message 

BACKGROUND LISTENER NOT 
RUNNING REQUEST DISCARDED 
filespec 

FILE NOT FOUND 

HANDLER NOT FOUND 

Meaning 

The special background listener program 
is not running, so the request from the 
foreground has to be rejected. The file 
discarded is identified by filespec. 

The indirect file specified in the re
quest from the foreground was not found. 

In processing the indirect file from the 
foreground, the background has found a 
necessary device handler missing. 

ILLEGAL BACKGROUND OPERATION A communication command was issued when 
XMTSD is running in the background. 

QUEUE FULL-ENTRY REJECTED 
filespec 

QUEUE IS EMPTY 

B-12 ERROR MESSAGES 

The job queue is full, so the 
has to be rejected. The file 
is identified by filespec. 

request 
rejected 

There are no jobs in the queue for 
background processing. This is not 
considered an error message when in 
response to a SHOW command. 



Message 

LITERAL? 

NO SUCH VARIABLE 

SUBSCRIPT ERROR 

TOO MANY BREAKPOINTS 

WHAT? 

Table 8-5 
DDT Error Messages 

Meaning 

The variable name entered appears to be 
a literal. 

There is no variable by the name en
tered. 

You have attempted to manipulate a vari
able using subscripts to access part of 
a field and you have not conformed to 
the rules for subscripts. See the 
DI80L-II Language Reference Manual. 

There may be only one breakpoint in the 
main program and in each of the sub
scripts. A maximum of eight breakpoints 
total is allowed at anyone time. 

The number was not specified in an iter
ation command. 

You specified a routine name in which to 
set q breakpoint but did not follow it 
with a colon. 

A decimal value was expected but was not 
entered. 

ERROR MESSAGES 8-13 



Table 8-6 
Spooler Error Messages (LPTSP1.REL) 

Message 

FATAL LPQUE ERROR 

?M-NO DEV 

?PLEASE LOAD LINE PRINTER 
HANDLER 

8-14 ERROR MESSAGES 

Meaning 

The spooler detected an error in the 
file being read. 

The device handler for the device con
taining the file to be printed was not 
loaded when the spooler was initialized. 

The spooler was run before the line 
printer handler was loaded. 



Table 8-7 
Spooler Error Messages (LPTSPL.TSD) 

Message 

BAD LPQFIL.LPQ 

ERROR OPENING 
dev:filnam.ext 

I/O ERROR dev:filnam.ext 

LP HUNG-FIX & TYPE CR 

Meaning 

This message occurs under the following 
conditions:' 

• The spooler attempts to create this 
file and the OPEN fails. 

• The file already exists and the 
spooler attempts to open it in up
date mode and the OPEN fails. 

• The file exists and a failure oc
curs while doing I/O to the file. 

The queue file entry specified a nonex
istent file (dev:filenam.ext), or a 
nonexistent or illegal I/O device. 
Processing continues with the next queue 
file entry. 

An error occurred while the spooler was 
reading the file (dev:filnam.ext) cur
rently being printed. A YES response to 
the resulting message CONTINUE PRINTING 
filename? will reprint the file. 
Otherwise, processing continues with the 
next queue entry. 

The line printer is in an off-line 
state. This could be because it ran out 
of paper, was placed off line, or possi
bly because of a malfunction. The re
cord that was being printed is lost. 
Correcting the problem and typing car
riage return will resume printing with 
the next record. 

ERROR MESSAGES 8-15 



Table 8-7 (Cont.) 
Spooler Error Messages (LPTSPL.TSD) 

Message Meaning 

PRINTER n NOT FREE The printer handler is not loaded or 
a job has just been submitted to a 
satellite which attempts to open a 
printer. The printer is found to be 
already in use. The satellite program 
terminates and the spooler searches for 
another job to print. When the spooler 
returns to this point in the queue, 
another attempt will be made to print 
the file. 

SATELLITE L P SAT CAN NOT RUN Failure to CTSGEN for forced job startup 
Q can cause this error message~ It may 
R also indicate that a satellite progr~m 
S is already running although, it IS 

unrecognized by the spooler, or that the 
spooler is attempting a forced job 
startup on an already active satellite. 
Kill that job via the STATUS option Kx 
and bring the TSD system down and 
restart it. 

8-16 ERROR MESSAGES 



Table 8-8 
PRINTU Error Messages 

The number near the error message (indicated by a pound sign) indi
cates the character position nearest where the error occurred. 

Message 

ALPHA LITERAL REQUIRED # 

ALREADY DEFINED 

HEADER IS TOO LONG 

IMPROPER DEFINITION # 

IMPROPER LITERAL # 

IMPROPER USE OF DECIMAL 
PLACES # 

Meaning 

Expected alpha literal is missing. 

An attempt was made to name a field in 
the INPUT or COMPUTE section with a name 
that was previously used. 

The header line exceeds 132 characters. 

Filler item in the PRINT section is used 
incorrectly. 

Literal too large 

The number of decimal places exceeds the 
size of the field being defined. 

INTEGER FROM 1-15 REQUIRED # The expected decimal field is out of 
range. 

INTEGER FROM 1-132 REQUIRED # The expected decimal field is out of 
range. 

INTEGER REQUIRED # 

LITERAL TOO LONG # 

MUST BE IDENT # 

MUST BE NUMERIC ITEM # 

MUST BE SU OR IS 

NEED FILE NAME 

NO ENDING QUOTE # 

NO INPUT DIRECTIVE 

Integer missing where expected. 

Field description exceeds 30 characters. 

The first section in the control file 
must be IDENT. 

An item expected to be numeric is de
fined incorrectly. 

SU and IS are the only legal options in 
the INPUT statement that follow the 
comma. 

File name missing from the IDENT state
ment. 

No closing quote for a HEADl, HEAD2, or 
for the text portion in a PRINT state
ment. 

The INPUT statement is missing. 

ERROR MESSAGES 8-17 



Table 8-8 (Cont.) 
PRINTU Error Messages 

Message 

NO PRINT ITEMS 

NOT DEFINED 

NOT ENOUGH RIGHT 
PARENTHESES # 

PICTURE TOO LONG 

SYNTAX ERROR # 

TOO MANY COLUMNS IN REPORT 

TOO MANY COMPUTE STATEMENTS 

TOO MANY DATA ITEMS 

TOO MANY LEFT PARENTHESES 

TOO MANY LIST ITEMS 

TOO MANY RIGHT PARENTHESES 

UNKNOWN DIRECTIVE 

8-18 ERROR MESSAGES 

Meaning 

No fields are specified following the 
PRINT statement. 

An attempt was made to print a field 
that has not been defined. 

A statement in the COMPUTE section has 
too few right parentheses. 

The picture, or edit mask, for printing 
exceeds 22 characters. 

Statement contains illegal characters or 
options. 

More than 132 columns under 
HEAD2, or PRINT sections. 

HEAD1, 

More than eight COMPUTE statements were 
specified. 

More than 20 data items in the INPUT 
section. 

A statement in the COMPUTE section is 
too complicated to be handled by PRINTU. 

More than 20 data items in the INPUT 
section. 

A statement in the COMPUTE section has 
too many right parentheses. 

An invalid section statement. Only 
IDENT, HEADI, HEAD2, INPUT, COMPUTE, 
PRINT, and END are legal. 



Table 8-9 
ISMUTL Error Messages 

Message 

ALL FILES ALLOCATED AND MORE 
SPACE IS REQUIRED PLEASE TRY 
AGAIN 

BAD FILE SPECIFICATION 

DUPLICATE KEYS FOUND 

FILE ALREADY EXISTS 
REPLACE? (YES/NO) 

Meaning 

The required disk space was not. allocat
ed within the limit of seven data files. 

Something other than a specification of 
the form DEV:FILENA.EXT was given, or 
the specification contains an invalid 
element. (The extension is not necessa
ry when specifying an output file.) 

During CREATE, the input file was found 
to contain records with duplicate keys 
when the answer had been NO to ALLOW DU
PLICATE KEYS. 

An existing file name was specified for 
an output file. 

FUNCTION REQUIRES ISAM INPUT During a REORG or STATUS function, a 
FILE file other than an ISAM file was speci

fied as the input file. 

MORE INPUT RECORDS THAN The number of records in the input file 
SPECIFIED - RESTART FUNCTION is greater than the number specified 

during the ISAM file CREATE. Restart 
the CREATE and specify a number for 
input records equal to, or greater than, 
the number in ·the input file. This mes
sage may also occur during a REORG if 
the number of records specified by the 
Index File Control Group is less than 
the number of records in the ISAM input 
file. In this situation a restart will 
not help. You must build a sequential 
file from the corrupted ISAM file and 
use this as input for a new ISAM CREATE. 

NO SPACE FOR FILE While running REORG, the number of 
blocks of storage requested is not 
available on the device, or the device 
directory is full. 

NOT ENOUGH WORKFILE SPACE While running REORG in CHAIN mode, there 
ALLOCATED was not enough work space available to 

perform the function. Control is re
turned to the monitor. 

OUT OF RANGE 

PLEASE TRY AGAIN 

A number larger than the limit was used 
during the CREATE or REORG dialog. 

Neither a Y nor an N was given as res
ponse to a YES/NO question. 

ERROR MESSAGES 8-19 



Table 8-10 
SORTG Error Messages 

Message 

EXECUTE STATEMENT ERROR 

FILENAME MISSING 

INPUT: STATEMENT MISSING 

INSUFFICIENT SPACE 

INVALID INPUT RECORD COUNT 

KEYS: STATEMENT MISSING 

MULTIPLE CONTROL STATEMENT 

OUTPUT: STATEMENT MISSING 

RECORD HAS NO DATA ITEMS 

RECORD: STATEMENT MISSING 

SIZE DEFINITION ERROR 

SORT KEY MISSING 

8-20 ERROR MESSAGES 

Meaning 

The EXECUTE statement does not contain a 
valid file specification. 

An INPUT or OUTPUT statement has no file 
name. 

No INPUT statement exists. 

The main memory allocation is too small 
to support the record size. You must 
either increase main memory allocation, 
decrease the number of work files, or 
change to aTAGSORT. 

The SORT/MERGE internal buffer is 
slightly smaller than the maximum nIBOL 
record size permitted. This error mes
sage could be caused by record sizes 
which are larger than the limits of the 
work area. In this case, a TAGSORT 
could be used. 

The record count for an input file in 
the INPUT statement is not valid. 

No KEYS statement exists. 

More than one control statement has the 
same identifier. 

No OUTPUT statement exists. 

The RECORD statement does not contain 
any field definitions. 

No RECORD statement exists. 

A field definition in the RECORD state
ment describes the field as having an 
invalid length. 

The KEYS statement has no control key 
names, or ends with a comma. 



Message 

Table 8-10 (Cont.) 
SORTG Error Messages 

Meaning 

SORT MODE FILENAME CONFLICT An attempt was made to write the file 
into itself when: 

TAG SORT TYPE INVALID 

TOO MANY MERGE FILES 

TOO MANY SORT KEYS 

TYPE DEFINITION ERROR 

UNRECOGNIZED STATEMENT 

• The input file is an ISAM file. 

• A file merge is being done. 

• TAGSORTS that do not produce a re
ordered file (i.e., INDEX or LIST) 
are being done. 

A tag other than SORT, LIST, or INDEX 
has been used and is not recognized. 

The INPUT statement has more than seven 
files specified. 

The KEYS statement contains more than 
eight control key names. 

A field definition in the RECORD state
ment describes the field to be other 
than alphabetic or decimal. 

SORTG was unable to identify the meaning 
of the line. 

ERROR MESSAGES 8-21 



Message 

END OF SORT RECIN-xxxxx 
RECOUT=yyyyy 

HANDLER NOT AVAILABLE 

OPEN ERROR FREE SPACE 
MARGINAL 

WRONG RECORD SIZE 

8-22 ERROR MESSAGES 

Table 8-11 
SORTM Error Messages 

Meaning 

Possibly due to a bad I/O transfer, the 
number of input records does not agree 
with the number of output records. In 
this case, xxxxx will be the count of 
input records, and yyyyy will be the 
count of output records. 

An unassigned device name has been 
specified. You must assign the logical 
device name to a physical device. 

SORT/MERGE cannot find enough disk space 
to allocate the files. 

An attempt was made to specify a file 
name with an improper record descrip
tion. 



Table 8-12 
STATUS Error Messages (STATUS.TSD) 

Message 

BAD SPECIFICATION 

LP IN USE 

NO JOB BY THAT NUMBER 

NO SUCH OPTION 

Meaning 

A printer number for a nonexistant 
printer has been specified. 

A number between 1 and 4 
tered; however, that 
busy. 

has been en
line printer is 

A job number for a nonexistant job has 
been entered. 

A letter other than a valid option 
letter has been entered. 

ERROR MESSAGES 8-23 



Table 8-13 
REDUCE Error Messages 

Message 

?REDUCE-F-ERROR READING 
DIRECTORY 

Meaning 

The directory is nonexistent or damaged. 
This is often a hardware error. 

?REDUCE-F-ERROR READING FILE The input file cannot be read. This is 
usually a hardware error. 

?REDUCE-F-ERROR WRITING FILE The file cannot be written. This is 

?REDUCE-I-FILE INCORRECTLY 
LINKED DEV:FILENA.EXT 

?REDUCE-I-IMPROPER BASE 
ADDRESS IN OVERLAID FILE 
DEV:FILENA.EXT 

?REDUCE-I-INCORRECT RELATIVE 
BLOCK NUMBERS IN OVERLAID 
FILE DEV:FILENA.EXT 

?REDUCE-I-FILE-PREVIOUSLY 
REDUCED DEV:FILENA.EXT 

?REDUCE-W-FOREIGN HANDLER 

?REDUCE-W-ILLEGAL COMMAND 

?REDUCE-F-ILLEGAL DIRECTORY 

?REDUCE-W-ILLEGAL OPTION 
"/OPT" 

usually a hardware error or a 
WRITE-LOCKED device. 

An input file linked for a base address 
of other than 100000 has been specified. 

An input file linked for a base address 
other than 100000 has been specified. 

A library .OBJ file has been linked into 
an overlay region. 

An input file that has already been 
REDUCED has been specified. 

A device handler unknown to REDUCE has 
been specified'. 

A nonfile-structured device has been as
signed a file-structured name. 

This is a syntax error; usually a typo
graphical error. 

A device with a non-RT-ll directory has 
been specified for input. 

An option other than /N or /V has been 
entered. 

?REDUCE-F-INSUFFICIENT MEMORY There is not enough memory on the system 
to support REDUCE and its associated 
data. 

?REDUCE-F-INSUFFICIENT ROOM 
IN DIRECTORY OR ON DEVICE 

8-24 ERROR MESSAGES 

The output device 
contain the file. 

specified cannot 



Table B-13 (Cont.) 
REDUCE Error Messages 

Message 

?REDUCE-I-VERNUM 

?REDUCE-W-SPECIFIED INPUT 
FILE(S) NOT FOUND 

Meaning 

This message is displayed with the cur
rent verSion number (VERNUM) whenever 
the IV option is specified in the com
mand line. 

The input 
specified. 
null line. 

file is not on the device 
This can also be caused by a 

?REDUCE-W-UNSUPPORTED DEVICE: A nonfile-structured device has been 
"DEV" specified. 

?REDUCE-W-[+2K MEMORY] This notes that, due to processing 
needs, the USR is forced to swap to ob
tain the necessary processing space for 
REDUCE. 

ERROR MESSAGES 8-25 





A 
/A (DICOMP option), 4-3 
Abbreviated keyboard commands, 

2-2 
Absolute shutdown, 5-31 
Access, 

ISAM, 10-14 to 10-16 
random, 2-5 
sequential, 2-5 

Accumulation field, 9-2, 9-13, 
9-14 

Append area, 10-3, 10-5, 10-12 
ASSIGN command, 5-11 

use with I$AM file devices, 
10-24 

Assignments, 
device, 2-2 
removal of, 2-3 

ATTACH command, 5-6, 5-11 
restrictions, 5-7 

Auto-Create (ISAM), 10-25, 
10-40, 10-42 

Auto job startup, 
specification in CTSGEN, 6-19 

B 
/B (DICOMP option), 4-3 
Backup file (ISAM input), 10-23 
BGMAN.TSD, 5-17 
Brackets in keyboard commands, 

2-2 
Breakfield (PRINTU), 9-2, 9-9 
Breakpoints, see DDT 
Brief error messages, 

specification in CTSGEN, 6-18 
.BAD, 2-4 
• BAK, 2-4 

C 
/C (DICOMP option), 4-3 
CANCEL command (XMTSD), 5-20 
Carriage return, command 

terminator, 2-2 
Chain mode startup (TSD 

program), 5-12 
RTEXIT, 5-31 

INDEX 

STATUS and REORG, 10-38, 10-39 
TSD printer spooler, 8-8 

Changing record or key length, 
10-10 

Channels, 
specification in CTSGEN, 6-16 
requirement for ISAM files, 

10-21, 10-22 
Checkpoint files (ISAM), 10-23, 

10-34 

Cleanup routine (in ISAM 
CREATE), 10-32 

Clearing breakpoints, see DDT 
Clock, KWII-P, 6-2 
CLOSE statement (ISAM use), 

10-16 
Command(s) , 

abbreviations, 2-2 
compiler, see DICOMP 
debugging, see DDT 
errors from terminal, 2-4 
keyboard, 2-3 
linker, see program (utility) 

to be linked 
syntax, 2-2 
termination, 2-2 
to allocate system resources, 

2-3 
to start a program, 2-3, 5-10, 

5-16 
Common cross-reference table 

(D I COM P), 4 - 7 
Compiler, see DICOMP 
Compiling for DDT, 7-2 
COMPUTE statement (PRINTU), 9-12 
Concurrent development (XMTSD), 

5-28 
Control, 

file (PRINTU), 9-2, 9-3 
file (SORT/MERGE), 11-2, 11-3 
key (SORT/MERGE), 11-6 

Control statements, see PRINTU 
and SORT/MERGE 

COpy command (XMTSD), 5-25 
CREATE command (XMTSD), 5-25 
Creating overlays, 5-9 
CREATE, ISAM function, 10-22 to 

10-32 
characteristics, 10-23 
dialog, 10-26 to 10-30 
example, 10-30, 10-31 
flowchart, 10-27 
possible CREATE problems, 

10-32 
CREF listing (DICOMP), 

common cross-reference table, 
4-7 

external subroutine 
cross-reference table, 4-7 

label cross-reference table, 
4-7 

symbol cross-reference table, 
4-7 

CTRL/B, LPTSPl.REL, 8-3 
CTRL/C, 2-1. 5-14 
CTRL/F, LPTSPl.REL spooler 

response, 8-3, 8-4 

Index-l 



INDEX (Cont.) 

CTRL/G, in DDT, 7-5 
CTRL/L, 3-2 
CTRL/O, 2-2 
CTRL/Q, 2-2 
CTRL/S, 2-2 
CTRL/U, 2-2 
CTRL/Z, 

as EOF, 2-5 
DKED interpretation, 3-9 
in DDT, 7-4 
keyboard command, 2-2 

CTRL key, 2-1 
CTSGEN, 1-4, 5-1, 6-1, 6-4 

brief error messages, 6-18 
choices, 6-4 
dialog, 6-6 to 6-19 
error messages, 6-20 
flowchart, 6-7 
hardware/software 

configuration, 6-16 to 6-19 
preliminary requirements, 6-5 
question types, 6-6 
SUD system, 6-8, 6-9 
terminal specification, 6-10 

to 6-16 
TSD system, 6-9 

CTS-300, 
common file name extensions, 

2-4 
data files, 2-5 
device name format, 2-4 
pur po s e, 1-2 
run-time system errors, A-2 
utility programs, 1-4 

CTS-300/RT-11 SYSGEN, 6-2, 6-3 
.COM, 2-4 

D 

/D (DICOMP option), 4-3 
Data, 

field (DICOMP), 4-5 
field dimension (DICOMP), 4-6 
field names (DICOMP), 4-5 
field size DICOMP), 4-6 
f i 1 e ( I SAM), 10- 2 , 10:'" 4, 10-5 
file management (TSD), 5-6 

DATE command, 2-3 
DCL commands, 4-1, 5-17 
DCL-like commands, 5-18, 5-21 
DDT (DIBOL debugging technique), 

1-4, 7-1 
breakpoint control, 7-5 
commands, see DDT commands 
command termination, 7-4 
compiling for, 7-2 
consequences of improper 

preparation, 7-3 

2-Index 

error messages, 7-3, B-13 
1 ink i ng, 7 - 2 
preparing for, 7-1 to 7-3 
program execution control, 7-4 
running, 7-3 
specification in CTSGEN, 6-18 
subroutine traceback, 7-10 
variable manipulation, 7-8 

DDT commands, 
clearing breakpoints, 7-7 
examining variables, 7-8 
extended variable 

manipulation, 7-9 
iteration of breakpoints, 7-7 
setting breakpoints, 7-6 
setting variables, 7-9 
single step, 7-5 
start or resume operation, 7-4 
subroutine traceback, 7-10 

DEASSIGN command, 2-3 
Debugging, see DDT 
Default extensions, 2-4, 10-24 
Default printers, see LPTSPL.TSD 
DELETE command (XMTSD), 5-25 
DELETE statement (ISAM use), 

10-16 
DETACH statement, 

SORT/MERGE, 5-6 
TSD, 5-6 

Detached program operation, 5-6 
Device, 

assignments, 2-3, 10-24, 10-34 
handler changes by SET 

command, 2-3 
name, 2-4 
sharing, 5-7 
specification in CTSGEN, 6-16 

DIBOL, 
code interpreting, 1-2, 5-2 
compiler, see DICOMP 
data file, 1-4, 2-4 
debugging technique, see DDT 

DIGITAL's Business Oriented 
Language, 1-1 

library, 5-3, 5-8 
object file, 1-4, 4-1 
source file, 1-4, 4-1 
utilities, 1-4, 1-5 

DIBOL ISAM access 
statements, 10-13, 10-16 

CLOSE statement, 10-16 
DELETE statement, 10-16 
OPEN statement, 10-13 
READ statement, 10-14 
READS statement, 10-14 
STORE statement, 10-15 
UNLOCK statement, 10-16 



INDEX (Cont.) 

WRITE statement, 10-15 
DICOMP (DI80L compiler), 1-4 

/A option, 4-3 
/8 option, 4-3 
/C option, 4-3 
/D option, 4-3 
/G option, 4-3 
/L option, 4-4 
/0 option, 4-4 
/P:Noption, 4-4 
/S option, 4-4 
/W option, 4-4 
cross reference listing, see 

CREF 
error messages, 4-7, 8-6 
error reporting, 4-7 
label table, 4-6 
options, 4-3, 4-4 
program listing, 4-5 
running, 4-2 

DKED, 1-4, 3-1, 5-8 
command response, 3-3 
error messages, 3-9, 8-2 
file extensions, 3-4 
QUIT command, 3-1, 3-3, 3-4 
REOPN command, 3-3 
search mode, 3-5 
wildcards, 3-5, 3-6 
YANK command, 3-3 

Duplicate key, 10-9 
.D8L, 2-4 
• DDF, 2-4 
.DIR, 2-4 

E 

EDIT program, 10-10 
END statement, 

PRINTU, 9-15 
SORT/MERGE, 11-13 

EOF (end of file), 2-2 
Error log file, 5-28 
Error messages, 

CTS-300 run-time system, A-2 
DICOMP, 8-6 
DDT, 8-13 
DKED, 8-2 
foreground/background 

communications, 8-12 
ISMUTL, 8-19 
LPTSP1.REL, 8-14 
LPTSPL.TSD, 8-15 
monitor, 2-4 
REDUCE, 8-24 
SORTG, 8-20 
SORTM, 8-22 
STATUS program, 8-23 

TSD, 8-11 
Examining variables, see DDT 
EXECUTE statement, 

PRINTU, 9-6 
SORT/MERGE, 11-13 

Extended memory monitor (XM), 
1-1, 1-2, 5-4 

Extensions, default, 2-4, 10-24 
External subroutine 

cross-reference table 
(DICOMP), 4-7 

F 

F8 monitor, 1-2 
wi th SUD, 5-2 
wi th TSD, 5-4 

FCG, file control group, 10-4, 
10-6 

File, 
conventions, 2-4 
device name, 2-4 
name, 2-4 
extension, 2-4 
sharing, 5-6 
types, 2-4 

Files, 
checkpoint, 10-23, 10-34 
control (PRINTU), 9-2, 9-3 
control (SORT/MERGE), 11-2, 

11-3 
data, 2-5, 10-2, 10-4, 10-5 
EOF (end of file), 2-5 
index, 10-6 to 10-8 
ISAM, see ISAM and ISMUTL 
multivolume ISAM, 10-4 
multivolume sequential, 2-5 
object (DICOMP), 1-4, 4-1 
random access, 2-5 
sequential access, 2-5 
source (DICOMP), 1-4, 4-1 

FLAGS option, 2-5 
Forced job startup, 5-12 

specification in CTSGEN, 6-18 
TSD printer spooler, 8-7 

Foreground/background 
communications (XMTSD), 5-16 
to 5-26 

commands, 5-18 to 5-21, 5-24 
to 5-26 

message record format, 5-21, 
5-22 

request codes, 5-22 
response codes, 5-23, 5-24 
user-created commands, 5-24 to 

5-26 

Index-3 



INDEX (Cont.) 

G 

/G (DICOMP option), 4-3 
Group (ISAM), 10-2, 10-4, 10-5, 

10-11 
Group, fill to end of block, 

10-11 

H 
Handler, 

LPTSPl.REL, 8-3 
LPTSPL.TSD (XMTSD), 8-11 

HEADl/HEAD2 statements (PRINTU), 
9-5 

HELP command, 
DKED, 3-7 
STATUS, 12-3 

IDENT statement (PRINTU), 9-3, 
9-4 

Implicit job startup, 5-13 
specification in CTSGEN, 6-18 
TSD printer spooler, 8-8 

Improperly defined symbols, 4-8 
Index file, 10-2, 10-6 to 10-8 
Index level, 10-6 

. Indexed Sequential Access 
Method, see ISAM 

INDEX/LIST statement (PRINTU), 
9-10, 9-11 

Indirect fi1e(s), 
foreground/background 

communications, 5-17, 5-18 
with ISAM auto-create, 10-40 

INPUT statement, 
PRINTU, 9-4, 9-7 
SORT/MERGE, 11-3, 11-4 

Interpretive program, 1-3 
ISAM files, 1-5, 2-7, 10-1 

access statements, see DI80L 
ISAM access statements 

advantages, 10-1 
append area, 10-3, 10-5, 10-12 
ba sic s , 10- 2 , 10- 3 
data files, 10-2, 10-4, 10-5 
data groups, 10-2, 10-4, 10-5, 

10-11 
data section, 10-2 
data storage, 10-16 to 10-20 
default file extensions, 10-24 
duplicate keys, 10-9 
example showing added records, 

10-16 to 10-20 
file control group, 10-4, 10-6 
file efficiency, 10-11 
handling added records, 10-2 

4-Index 

index file organization, 10-6 
to 10-8 

index section (file), 10-2, 
10-6 to 10-8 

input files, 10-23 
key, 10-2, 10-9 
links, 10-5 
load exclusion factor, 10-2 
locked block/record, 10-11 
output files, 10-23, 10-24 
overflow area, 10-2, 10-6, 

10-12 
record, 10-2, 10-9 
record area, 10-4 
sequential search, 10-2 
specification in CTSGEN, 6-17 
utility program, see ISMUTL 

ISMUTL (ISAM utility program) , 
1-5, 10-1, 10-22 

assignment of append area, 
10-2 

Auto-Create, 10-25, 10-40 to 
10-42 

changing record and key buffer 
sizes, 10,10 
CREATE function, see CREATE, 

ISAM function 
duplicate keys, 10-9 
error messages, 10-42, 8-19 
exiting ISMUTL, 10-38 
fill to end of group, 10-11 
REORG function, see REORG, 

ISAM function 
running, 10-22 
STATUS and REORG in chain 

mode, 10-38, 10-39 
STATUS function, see STATUS, 

ISAM function 
using, 10-21 

Iteration count, see DDT 
• ISM, 2-4 

K 

Key, ISAM, 
definition (ISAM), 10-2, 10-9 
duplicate, 10-9 

Keyboard commands, 2-1 to 2-3 
Keyboard monitor (KMON), 2-1 
Key sort (SORT/MERGE), 11-10, 

11-11 
KEYS statement, 11-4, 11-5 
Kill option (STATUS utility), 

12-4 
K52 (editor), 3-1 



INDEX (Cont.) 

L 
/L (DICOMP option), 4-4 
Label cross-reference table 

(DICOMP), 4-7 
Label table listing (DICOMP), 

4-6 
Line number (DICOMP), 4-4 
Line printer spooler program, 

see LPTSPl.REL and 
LPTSPL.TSD 

Line printer spoolers, 1-4 
Link map, 6-19 
Linking, 1-4, 

for DDT, 7-2 
for the SUD run-time system, 

5-3 
for the TSD run-time system, 

5-8 
Links (ISAM), 10-5 
Listing file, 4-2 
LISTNR.SAV (XMTSD), 5-17, 5-18 

termination, 5-32 
LOAD command, 2-3 
Load exclusion factor, 10-2 
Locked blocks/records, 5-7 
Log file (DICOMP), 4-3 
Logical, 

assignments, 2-3 
names, 2-3 

LPQFIL, 8-7 
STATUS display, 12-5 

LPQUE statement, 
FORMS/ALIGN argument 

(LPTSPl.REL), 8-4 
FORMS/ALIGN argument 

(LPTSPL.TSD), 8-9, 8-12 
LPTSPl.REL, 

error messages, 8-5, 8-14 
error recovery, 8-5 
handler, 8-3 
requirements, 8-2 
shared line printer, 8-2 
shared terminal operation, 8-3 
starting, 8.3 

LPTSPL.!I'SD, 
assignment of default 

printers, 8-6 
detached mode operation, 8-7, 

8-8 
error messages, 8-10, 8-12, 

8-15 
extended memory operation, 

8-10 
file recovery, 8-6 
handl~rs (XMTSD operation) , 

8-11 
interrupted or terminated 

pr i nt, 8-9 

requirements (TSD) , 8-6 
requirements (XMTSD), 8-11 
queue file (LPQFIL), 8-7 
starting (TSD) , 8-7 
starting (XMTSD), 8-11 
startup dialog, 8-8 
stopping (TSD), 8-9 
stopping (XMTSD), 8-12 
suspensiom ~f spooling, 8-6 

• LST, 2-4 
• LOG, 2-4 

M 

Manipulating variables, see DDT 
Memory allocation, 

SUD, 5-3 
TSD, 5-15 
XMTSD background, 5-30 
XMTSD foreground, 5-27 

Memory requirements, 
SUD, 5-2 
TSD/XMTSD, 5-5 

MERGE, see SORT/MERGE 
Mode, 

DKED search, 3-5 
input, 5-6, 5-7 
no query (REDUCE), 13-2, 13-4 
query (REDUCE), 13-2, 13-4 
update, 5-6, 5-7, 5-14 
version number (REDUCE), 13-2, 

13-4 
Model (DKED search), 3-5 
Monitor error messages, 2-4 
Monitors (RT-l1), 1-1, 1-2 

see also SJ, F8, XM 
Multivolume ISAM file, 10-4 
.MAP, 2-4 

N 
/N (REDUCE option), 13-2 
Name, 

dev ice, 2-4 
file, 2-4 
log ical, 2-3 

No query mode (REDUCE), 13-2, 
13-4 

o 
/0 (DICOMP option), 4-4 
Object file, 1-4, 4-1 
ONERROR, 5-10 
OPEN statement, 

ISAM use, J.0-13 
TSD use, 5':"6 

Index-5 



INDEX (Cont.) 

Operating commands (RT-ll), 2-1 
Operating system (CTS-300), 5-1 
Output, 

file (ISAM), 10-23, 10-24 
file restrictions (ISAM), 

10-23, 10-24 
OUTPUT statement, 

PRINTU, 9-3, 9-6 
SORT/MERGE, 11-3, 11-5 

Overflow area, 10-2, 10-6,. 10-12 
Over 1 ays, 5-9 
• 08J, 2-4 

p 

/P:N (DICOMP option), 4-4 
(DKED), 3-5 

PRINT command (XMTSD), 5-25 
PRINT statement (PRINTU), 9-4, 

9-13 
Printer, see LPTSPl.REL and 

LPTSPL. TSD 
PRINTU utility, 1-5, 9-1 

/IS option, 9-7, 9-8 
/SU option, 9-7, 9-8 
accumulation field, 9-2, 9-13, 

9-14 
break field, 9-2, 9-9 
column separators, 9-14 
COMPUTE statement, 9-12 
control file, 9-2, 9-3, 9-15 
END statement, 9-15 
error messages, 9-17, 8-17 
EXECUTE statement, 9-6 
field description lines, 9-8, 

9-9 
file control records (as a 
limitation), 9-1, 9-2 
HEADI/HEAD2 statements, 9-5 
IDENT statement, 9-3, 9-4 
INDEX/LIST statement, 9-10, 

9-11 
INPUT statement, 9-4, 9-7 
ISAM input file, 9-11 
OUTPUT statement, 9-3, 9-6 
PRINT statement, 9-4, 9-13 
producing the report program, 

9-15, 9-16 
report program, 9-3, 9-17 
required control statements, 

9-2, 9-3 
running, 9-16, 9-17 
sorting input prior to using, 

9-7 
specification of input file at 

run time, 9-8 

6-Index 

specification of output file 
at run time, 9-7 

summary print, 9-3, 9-8, 9-14 
tag file, 9-3 
tag file as input, 9-10 to 

9-12 
Production mode, 

XMTSD as a background program, 
5-30 

XMTSD as a foreground program, 
5-28 

Program, 
development, 1-4 
development utilities, 1-4 
execution, 2-3, 5-10, 5-16 
listing (DICOMP), 4-5 
schedul ing, 5-5 

Prompt character, 
RT-ll, 2-1 

Q 

TSD, 5-15 
XMTSD., 5-27 

Query mode (REDUCE), 13-2, 13-4 
Queue file (LPQFIL), 8-7 
Queue manager (8GMAN.TSD), 5-17 
QUIT command (in DKED), 3-1, 

3-3, 3-4 

R 

Random access, 2-5 
R command, 2-3 
READ statement (ISAM use), 10-14 
READS statement (ISAM use), 

10-14 
RECORD statement (SORT/MERGE), 

11-5 
REDUCE utility, 1-5, 13-1 

/N option, 13-2 
/V option, 13-2 
characteristics, 13-1 
conventions, 13-2 
error messages, 13-4, 8-24 
examples, 13-3, 13-4 
no query, 13-2, 13-4 
query mode, 13-2, 13-3, 13-4 
runni ng, 13-3 
using, 13-2 
version number, 13-2, 13-4 

Relocatable image file, 2-4 
Remote patching (XMTSD), 5-28 
Removal of assignments, 2-3 
RENAME command (XMTSD), 5-25 
REOPN command, 3-3 



INDEX (Cont.) 

REORG, ISAM function, 10-33 to 
10-37 

characteristics, 10-34 
dialog, 10-35 
example, 10-36 
in chain mode, 10-38, 10-39 
possible REORG problems, 10-37 
requirements, 10-34 

RT-11 SYSGEN, see SYSGEN 
RTEXIT, 

absolute shutdown, 5-31 
for XMTSD in the foreground, 

5-32 
run n i ng, 5-31 

RUBOUT, 2-2 
RUN command, 2-3, 5-10 
Run-time system, 1-1 
• REL, 2-4 

S 
/S (DICOMP option), 4-4 
Sequential access, 2-5 
SET command, 2-3 
SHOW co~mand (XMTSD), 5-20 
Single buffering (DICOMP), 4-3 
Single step, see DDT 
Single-User DIBOL (SUD), 1-3 
DIBOL code interpreter, 5-2 

linking for DDT, 5-3 
memory allocation, 5-3 
preparing programs, 5-2 
running, 5-3 
system requirements, 5-2 
wi th DDT, 5-2 
wi th ISAM, 5-2 

Single user print spooler, see 
LPTSP1.REL 

Shared line printer operation 
(LPTSP1.REL), 8-2 

Shared terminal operation 
(LPTSP1.REL), 8-3 

SHOW command (XMTSD), 5-20 
SJ monitor, 1-2 

wi th SUD, 5-2 
wi th TSD, 5-4 

Sort control record 
(SORT/MERGE), 11-17, 11-18 

opcode, 11-1 7 
SORTG, 1-5, 11-1, 11-14 

error messages, 8-20 
SORTM, 1-5, 11-1, 11-14 

error messages, 8-22 
SORT/MERGE, 1-5, 11-1 

chaining to another program, 
11-8, 11-16 to 11-18 

chain mode, 11-16 to 11-18 

characteristics, 11-1, 11-2 
compiling, 11-14 
control file, 11-2 r 11-3 
control key(s), 11-6 
control statements, 11-2 to 

11-13 
count argument, 11-3. 11-4 
detached SORT/MERGE operation, 

11-7 
DETACH statement, 11-7 
error messages, 11-18, B-20, 

B-22 
END statement, 11-13 
example, 11-15, 11-16 
EXECUTE statement, 11-8 
field definition, 11-5, 11-6 
INPUT statement, 11-3, 11-4 
KEYS statement, 11-4, 11-5 
limitations r 11-2 
1 inK r ng, 11-1 6 
~~rge specification, 11-3, 

11-4 
OUTPUT statement, 11-3, 11-5 
overriding the EXECUTE 
statement, 11-16, 11-17 
RECORD statement, 11-5 
required control statements, 

11-2, 11-3 
r un n i ng, 11-15 
single-user operation, 11-9, 

11-10 
SORT/MERGE program 

development, 11-14 to 11-16 
SORTG, 11-14 
sorting with keys only, 11-10, 

11-11 
SORTM, 11-14 
SPACE statement (SORT/MERGE), 

11-8, 11-9 
specifying a descending order 
sort, 11-7 
specifying memory available 

for SORT/MERGE, 11-8, 11-9 
specifying work files, 11-11, 

11-12 
summary of control file 

statements, 11-13 
SU statement, 11-9, 11-10 
TAGS: INDEX, 11-11 
TAGS: LIST, 11-10, 11-11 
TAGS:SORT, 11-10 
tags sort, 11-5 
tags sort with ISAM file as 

input, 11-11 
TAGS statement, 11-11, 11-12 
WORK statement, 11-11, 11-12 

Source code file, 4-1 

Index-7 



INDEX (Cont.) 

SPACE statement (SORT/MERGE), 
11-8, 11-9 

Special character functions, 2-1 
Spooler, see LPTSPl.REL and 

SPTSPL.TSD 
Standard listing (DICOMP), 4-5 
Stan9ard terminal, specification 

1 n CTSGEN, 6-9 
STATUS, ISAM function, 10-32, 

10-33 
exampl e, 10-33 
in chain mode, 10-38, 10-39 

STATUS utility, 1-5, 12-1 
available memory, 12-2 
conventions, 12-2 
error messages, 12-7, B-23 
ex i ti ng, 12-6 
features, 12-1 
job list, 12-3 
kill job, 12-4 
line printer output selection, 

12-6, 12-7 
list of options, 12-3 
message queue, 12-5, 12-6 
option F, 12-2 
option H, 12-3 
option J, 12-3 
option Jx, 12-4 
option Kx, 12-4 
option L, 12-5 
option Lx, 12-5 
option M, 12-5 
option T, 12-6 
option X, 12-6 
print queue by printer, 12-5 
print queue list, 12-5 
specific job information, 12-4 
TSD or XMTSD RTS operating 

parameters, 12-6 
usi ng, 12-6, 12-7 

STORE statement, 10-15 
Stored messages, 6-16 
SUBMIT command (XMTSD), 5-19 
SUBMIW command (XMTSD), 5-26 
Subroutine traceback,· see DDT 
SUD, see single user DIBOL 
SUDGEN, see CTSGEN 
SUD.RTS, 5-2, 6-9 
Suspension of spooling, 8-6 
Symbol cross-reference table 

listing (DICOMP). 4-7 
Symbol table listing (DICOMP) 

4-5 ' 
Symbols, improperly defined, 4-8 
SYSGEN, 1-4, 5-1, 5-14, 6-2 ( 
System conventions, 2-4 
System development, 1-4 

8-Index 

SYSTEM.BKG (XMTSD), 5-18 
SUBMIT command (XMTSD), 5-19 
.SAV, 2-4 
• SYS, 2-4 

T 
TAGS statement (SORT/MERGE), 

11-11, 11-12 
Temporary files, 2-4, 10-24, 

10-34 
Terminals, 

specification in CTSGEN, 6-10 
to 6-16 

shared (LPTSPl.REL), 8-3 
Terminating spooling 

(suspension), 8-6 
TIME command, 2-3 
Time-shared DIBOL, 1-3, 5-4 

capabilities, 5-4 
commands, 5-9 to 5-11 
common data base, 5-6 
creating overlays, 5-9 
data file management, 5-6 
detached program operation, 

5-6 
device sharing, 5-7 
dynamic memory allocation, 5-5 
error detection, 5-4, 5-33 
error messages, 5-33, B-11 
file management, 5-6 
file sharing, 5-6 
linking for DDT, 5-9 
linking programs, 5-8 
locked blocks/records, 5-7 
program preparation, 5-8 
program scheduling, 5-5 
programmed startup, 5-11 to 

5-13 
running programs, 5-10, 5-16 
scheduling, 5-5 
stopping programs, 5-14 
system requirements, 5-5 
utilizing resources, 5-32, 

5-33 
Time sharing, 1-3 
Traceback, see DDT 
TSD, see time-shared DIBOL 
TSD run-time system, 

memory allocation, 5-15 
system requirements, 5-14, 

5-15 
r unn i ng, 5-15 
termination, 5-31 

TSDGEN, see CTSGEN 
TYPE command (XMTSD), 5-25 
• TMP, 2-4 
• TSD, 2-4 



INDEX (Cont.) 

U 
UNLOAD command, 2-3 
UNLOCK statement, 

ISAM use, 10-16 
TSD use, 5-7 

User-created commands, 5-24 
User service routine (USR), 5-33 

specification in CTSGEN, 6-17 
Utility programs, 1-4, 1-5 

v 
/V (REDUCE option), 13-2 
Variable manipulation, see DDT 
VIEW command (XMTSD), 5-26 
Virtual overlays, 5-16 

w 
/W (DICOMP option), 4-4 
Wildcards (DKED), 3-5, 3-6 
WORK statement (SORT/MERGE), 

11-11, 11-12 
WRITE statement (ISAM use), 

10-15 

X 
XM monitor, 1-2 

wi th SUD, 5-2 
wi th TSD, 5-4 

XMTSD run-time system, 
applications as a background 

prog ram, 5-30 
applications as a foreground 

prog ram, 5-28 
as a background program, 5-29 

y 

as a foreground program, 5-16 
to 5-28 

background listener program 
(LISTNR.SAV), 5-17, 5-18 

BGMAN.TSD operation, 5-18 
communication commands, 5-18 

to 5-21, 5-24 to 5-26 
foreground queue program 

(BGMAN.TSD), 5-17 
indirect files, 5-17, 5-18 
memory allocation as a 

background program, 5-30 
memory allocation as a 

foreground program, 5-27 
program execution, 5-16 
running in the background, 

5-29 
running ih the foreground, 

5-26, 5-27 
running LISTNR.SAV, 5-27 
system requirements, 5-16 
termination of LISTNR.SAV, 

5-32 
termination (RTEXIT), 5-31, 

5-32 
timing facility, 5-17 
user-created commands, 5-24 
virtual overlays, 5-16 

YANK command, 3-3 

Index-9 





· Q) 

.5 

CTS-300 System User's Guide 

AA-C747C-TC 

READER'S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company's 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 

o Higher-level language programmer 

o Occasional programmer (experienced) 

o User with little programming experience 

o Student programmer 

o Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ __ 

Organization ____________________________________________________________ ___ 

Street __________________________________________________________________ _ 

City __________________________ St~te-------------Zip Code ____________ __ 
or 

Country 



- - - -Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - -

~DmDDmallllll 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Applied Commercial Engineering MK1-2/H32 
Continental Boulevard 

Merrimack N.H. 03054 

ATTN: Documentation Supervisor 

I 
I 

----1 

No Postage 
Necessary 

if Mailed in the 
United States 

Do Not Tear - Fold Here and Tape - - - - - - - - - - - - - - - - --

I 
I --, 


	00000
	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-001
	01-002
	01-003
	01-004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-001
	03-002
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	07-001
	07-002
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	replyA
	replyB

