
CAPS-11 USER'S GUIDE

OEC-ll-OTUGA-A-D

"

;

..

CAPS-11 USER'S GUIDE
DEC·II-OTUGA-A·D

digital equipment corporation. maynard, massachusetts

First Printir.g, October, 1973

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equip~ent Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license fer use on a single computer system and can be copied
(with inclusion of DIGITAL'S copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright ~ 1973 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation* All comments
received will be considered whe~ subsequent documents are prepared.

The following are trademarks of Digital Eq~ipment Corpora tim::

CDP DIGITAL INDAC PS/S
COMPUTER LAB DNC KAIO QUICKPOINT
COMSYST EDGRIN LAB-a RAD-a
COMTEX EDUSYSTEM LAB-S/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOM GLC-8 OS/8 RT-ll
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

12175-15

-""

,

CHAPTER 1

1.1
1.1.1
1.1.2

1.2
1.2.1
1.2.2

1.3

1.4

1.5
1.5.1
1. 5.2
1. 5. 3

CHAPTER 2

2.1
2.1.1
2.1.2
2.1. 3
2.1. 4
2.1. 5

2.2

2.3
2.3.1
2.3.2
2.3.3

CHAPTER 3

3.1

3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6

3.3
3.3.1
3.3.2
3.3.3
3.3.4

CONTENTS

THE CAPS-1l PROGRAMMING SYSTEM

SYSTEM CONFIGURATION
Hardware Components
Software Components

WHAT IS A CAPS-l1 CASSETTE?
The Format of a Cassette
The sentinel File

THE SYSTEM CASSETTE

MOUNTING AND DISMOUNTING A CASSc~TE

CONSOLE OPERATION
PDP-l1/10 PROGRAMMER'S CONSOLE
OPERATING THE CONSOLE TERMINAL (LA30 DECwriter)
Operating the LSll Line Printer

PROGRAMMING THE PDP-II

GENERAL SYSTEM STRUCTURE
Status Register Format
UNIBUS
Device Interrupts
Instruction set
Addressing

INSTRUCTION CAPABILITY

PROCESSOR USE OF STACKS
Subroutines
Interrupts
Traps

USING THE CAPS-II MONITOR

LOADING INSTRUCTIONS

SYSTEM CONVENTIONS
File Formats
Input/Output Devices
Filenames and Extensions
Entering I/O Information
Special Characters and Commands
Error Message Format

KEYBOARD MONITOR COMMANDS
RUN Command
LOAD Command
START COl1lllland
DATE Command

iii

Page

1-2
1-2
1-2

1-3
1-4
1-5

1-5

1-5

1-7
1-7
1-10
1-12

2-1
2-3
2-3
2-3
2-4
2-4

2-9

2-9
2-9
2-10
2-10

3-1

3-3
3-3
3-4
3-4
3-6
3-8
3-10

3-11
3-11
3-13
3-13
3-14

~--

Page

3.3.5 DIRECTORY COl!U'l1and 3-14
3.3.6 ZERO Command 3-15
3.3.7 SENTINEL COl!U'l1and 3-15
3.3.8 VERSION COl!U'l1and 3-16

3.4 KEYBOARD MONITOR SECTIONS 3-16
3.4.1 Cassette Bootstrap (CBOOT) 3-17
3.4.2 Resident Monitor (RESMON) 3-17

..,
3.4.3 Cassette Loader for CAPS-II (CLODll) 3-18
3.4.4 Command String Interpreter (CSI) 3-18
3.4.5 Cassette Absolute Loader (CABLDR) 3-18
3.4.6 Keyboard Listener (KElL) 3-18
3.4.7 System Communication (SYSCOM) 3-18

3.5 USER PROGRAM LOADING PROCESS 3-21

3.6 NOTES ON DEVICE HANDLERS 3-23

3.7 KEYBOARD MONITOR ERROR MESSAGES 3-24

CHAPTER 4 EDITING THE SOURCE PROGRAM

4.1 CALL!NG AND USING THE EDITOR 4-1
4.1.1 Edi tor Options 4-2
4 ... 1.2 Input and Output Specifications 4-2
4.1.3 Restarting the Editor 4-3

4.2 MODES OF OPERATION 4-4

4.3 SPECIAL KEY COMMANDS 4-4

4.4 COMMAND STRUCTURE 4-5
4.4.1 Arguments 4-6
4.4.2 Command Strings 4-7
4.4.3 The CUrrent Location Pointer 4-7
4.4.4 Character and Line Oriented Command Properties 4-8 -,
4.4.5 Repetitive Execution 4-9
4.4.6 Input and Output Commands 4-10
4.4.7 Pointer Relocation Commands 4-14
4.4.8 Search Commands 4-16
4.4.9 Text Modification Commands 4-18
4.4.10 Utility Commands 4-22

4.5 ERROR MESSAGES 4-25

4.6 EXAMPLE USING THE EDITOR 4-27

CHAPTER 5 ASSEMBLING THE SOURCE PROGRAM

5.1 CALL!NG AND USING THE ASSEMBLER 5-1
5.1.1 Assembler Options 5-2
5.1.2 Input and Output Specifications 5-3
5.1.3 Restarting the Assembler 5-3

5.2 CHARACTER SET 5-4

iv

5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

5.4
5.4.1
5.4.2
5.4.3
5.4.4

5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

5.6

5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.9
5.7.10
5.7.11
5.7.12
5.7.13
5.7.14

5.8
5.8.1
5.8.2
5.8.3
5.8.4
5.B.5
5. B. 6
5.8.7
5.B.8
5.8.9
5.B.IO
5.8.11
5.8.12
5.8.13

5.9
5.9.1
5.9.2
5.9.3
5.9.4

STATEMENTS
Labels
Operators
Operands
Comments
Format Control

SYMBOLS
permanent Symbols
User-Defined Symbols
Directly Assigning Values to Symbols
Register Symbols

EXPRESSIONS
Arithmetic and Logical Operators
Numbers
ASCII Conversion
Assembly Location Counter
Modes of Expressions

RELOCATION AND LINKING

ADDRESSING MODES
Register Mode
Deferred Register Mode
Autoincrement Mode
Deferred Autoincrernent Mode
Autodecrement Mode
Deferrred Autodecrement Mode
Index Mode
Deferred Index Mode
Immediate Mode
Absolute Mode
Relative Mode
Deferred Relative Mode
Table of Mode Forms and Codes
Instruction Forms

ASSEMBLER DIRECTIVES
• TITLE
.GLOBL
Program Section Directives
.EOT
• EVEN
.END
• WORD
• BYTE
• ASCII
• .RAD50
• LIMIT
Listing Control Directives
Conditional Assembly Directives

WRITING POSITION INDEPENDENT CODE (PIC)
Position Independent Modes
Absolute Modes
Writing Automatic PIC
Writing non-Automatic PIC

v

Page

5-4
5-4
5-5
5-6
5-6
5-6

5-7
5-7
5-7
5-8
5-9

5-10
5-11
5-11
5-12
5-12
5-14

5-15

5-16
5-16
5-17
5-17
5-18
5-18
5-18
5-19
5-19
5-19
5-20
5-20
5-21
5-21
5-23

5-24
5-24
5-25
5-25
5-26
5-26
5-27
5-27
5-28
5-28
5-29
5-30
5-30
5-30

5-32
5-32
5-33
5-34
5-35

,~--

5.10

5.11
5.11.1
5.11.2

5.12

5.13

5.14
5.14.1
5.14.2
5.14.3

5.15

CHAPTER 6

6.1
6.1.1
6.1.2
6.1. 3

6.2
6.2.1

6.3

6.4
6.4.1
6.4.2
6.4.3

6.5
6.5.1
6.5.2

6.6

CHAPTER 7

7.1
7.1.1
7.1. 2
7.1.3

7.2
7.2.1

7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6

LOADING UNUSED TRAP VEcrORS

CODING TECHNIQUES
Altering Register Contents
Subroutines

ASSEMBLY DIALOGUE

ASSEMBLY LISTING

OBJECT MODULE OUTPUT
Global Symbol Directory
Text Blocks
Relocation Directory

ERROR CODES

LINKING ASSEMBLED PROGRAMS

CALLING AND USING THE LINKER
Linker Options
Input and OUtput Specifications
Restarting the Linker

ABSOLUTE AND RELOCATABLE PROGRAM SECTIONS
Named and Unnamed Control Sections

GLOBAL SYMBOLS

INPUT AND OUTPUT
Object Modules
Load Module
Load Map

ERROR MESSAGES
Non-Fatal Errors
Fatal Errors

EXAMPLE USING THE LINKER

DEBUGGING TilE OBECT PROGRAM

CALLING AND USING ODT
ODT Options
Input/Output Specifications
Restarting ODT

RELOCATION
Relocatable Expressions

COMMANDS AND FUNCTIONS
Printout Formats
Opening, Changing, and Closing Locations
Accessing General Registers 0-7
Accessing Internal Registers
Radix 50 Mode, X
Breakpoints

vi

Page

5-36

5-37
5-37
5-38

5-44

5-45

5-46
5-46
5-46
5-46

5-47

6-2
6-2
6-5
6-5

6-6
6-6

6-7

6-7
6-7
6-7
6-8

6-9
6-9
6-11

6-13

7-1
7-2
7-2
7-2

7-2
7-3

7-4
7-4
7-5
7-8
7-8
7-9
7-11

•

.. -----

7.3.7
7.3.8
7.3.9
7.3.10
7.3.11
7.3.12
7.3.13
7.3.14
7.3.15
7.3.16

7.4
7.4.1
7.4.2
7.4.3

7.5

7.6

CHAPTER 8

CHAPTER

8.1
8.1.1
8.1.2
8.1. 3

8.2

9

9.1
9.2

9.3
9.3.1
9.3.2

9.4
9.4.1
9.4.2
9.4.3
9.4 .. 4

9.5
9.5.1
9.5.2
9.5.3

9.6
9.6.1
9.6.2
9.6.3
9.6.4

9.7
9.7.1

Running the Progrill\1
Single-Instruction Mode
Searches
The Constant Register
Memory Block Initialization
Calculating Offsets
Relocation Register Commands
The Relocation Calculators
ODT's Priority Level
ASCII Input and Output

PROGRAMMING CONSIDERATIONS
Functional Organization
Breakpoints
Searches

ERROR DETECTION

EXAMPLE USING ODT

PERIPHERAL INTERCHANGE PROGRAM

CAJ:.LING AND USING PIP
PIP Options
Input and Output Specifications
Restarting PIP

ERROR MESSAGES

INPIJI'/OUTPIJI' PROGRAMl-lING

COlflUNICATIUG WITH ru:SIION
DEVICE ASSIGNMENTS

BUFFER ARRlINGEI-lENT IN DATA TRANSFER COMMANDS
Formatted/Unformatted I/O (excluding Cassette)
Unformatted Cassette

!1ODES
Formatted ASCII
Unformatted ASCII
Formatted Binary
Unformatted Binary

liON-DATA TRANSFER COMMANDS
RESET
RESTART
CNTRLO

CASSETTE FILE I/O COMMANDS
SEEK
SEEKF
ENTER
CLOSE

DATA TRANSFER COM-MANOS
READ

vii

Page

7-11
7-13
7-14
7-15
7-15
7-16
7-17
7-18
7-18
7-19

7-20
7-20
7-20
7-25

7-26

7-26

8-1
8-1
8-2
8-5

8-5

9-1
9-3

9-3
9-3
9-7

9-7
9-8
9-11
9-ll
9-12

9-12
9-13
9-13
9-13

9-14
9-14
9-15
9-16
9-18

9-19
9-19

Page

9.7.2 WRITE 9-20
9.7.3 Device Conflicts in Data Transfer Commands 9-21
9.7.4 WAITR (Wait, Return) 9-22
9.7.5 Single Buffer Transfer on one Device 9-22
9.7.6 Double Buffering 9-23

9.8 CASSETTE I/O PRIMITIVES 9-24
'::

9.9 ERROR MESSAGES 9-25

9.10 EXlIMPLE OF PROGRAM USING RESMON 9-26

APPENDICES

APPENDIX A ASCII CHARACTER CODES

A.l KEYBOARD DIFFERENCES A-I

A.2 CHARACTER CODES A-2

APPENDIX B ASSEMBLY LANGUAGE SUMMARY

B.l TERMINATORS B-1

B.2 ADDRESS MODE SYNTAX B-2

B.3 INSTRUCTIONS B-3
B.3.1 Double Operand Instructions B-4
B.3.2 Single Operand Instructions B-4
B.3.3 Rotate/Shift B-5
B.3.4 Operation Instructions B-6
B.3.S Branch Instructions B-7
B.3.6 Subroutine Call B-8
B.3.7 Subroutine Return B-9

~

B.4 ASSEMBLER DIRECTIVES B-9
B.4.1 Conditional Directives B-10

APPENDIX C COMMAND AND ERROR MESSAGE SUMMARIES

C.1 KEYBOARD MONITOR C-1

C.2 EDITOR C-4

C.3 ASSEMBLER C-8

C.4 LINKER C-12

C.S ODT C-16

C.6 PIP C-19

C.7 RESMON C-22

viii

APPENDIX 0

0.1

D.2

APPENDIX E

APPENDIX

E.l
E.1.1
E.1.2
E.1.3

E.2
B.2.1
E.2.2
E.2.3
E.2.4
E.2.5
E.2.6

F

F.l

F.2

1'.3
F.3.1
F.3.2
F.3.3

F.4
F.4.1
F.4.2
F.4.3

F.5

APPENDIX G

G.l

G.2
G.2.1
G.2.2
G.2.3
G.2.4
G.2.S
G.2.6
G.2.7
G.2.B
G.2.9
G.2.10
G.2.11
G.2.12

SYSTEM DEMONSTRATION

SYSTEM START-UP

SYSTEM DEMONSTRATION

CAPS-II SOFTWARE SUPPORT INFOR~TION

CAPS-II KEYBOARD MONITOR LOADING PROCESS
Cassette Bootstrap (CBOOTl
Cassette Loader (CTLOAD.SYS)
Cassette Monitor (CAPSll.SYS)

BUILDING MEMORY CONFIGURATIONS
Reconfiguring the Monitor
Reconfiguring PAL
Reconfiguring LINK
Reconfiguring OOT
Reconfiguring PIP and EDIT
Creating a New System Cassette

CASSETTE STANDARDS

INTRODUCTION

DEFINITIONS

TIlE FULL STANDARD
Applicabili ty
The Header Record
Logical End of Tape

TIlE RESTRICTED STANDARD
Applicabili ty
Restrictions
Inclusions

SUPPORT FOR MULTI-VOLUME FILES

CAPS-II ASSEMBLY INSTRUCTIONS

GENERAL INSTRUCTIONS

ASSEMBLY COMMAND LINES
Keyboard Listener (KBL)
CAB LOR
Command String Interpreter (CSI)
CLOD 11
RESMaN
csoor
PIP
CSINBF
EDIT
LINK
CSITAC
OOT

ix

Page

D-l

0-2

E-l
E-l
E-2
E-6

E-11
E-12
E-14
E-14
E-15
E-15
E-15

F-2

1'-2

F-2
F-2
F-3
1'-5

F-6
F-6
F-6
F-6

F-6

G-l

G-2
G-2
G-2
G-3
G-J
G-J
G-J
G-J
G-4
G-4
G-4
G-4
G-5

--- -~----

Number

1-1
1-2

2-1

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

4-1
4-2
4-3

5-1
5-2
5-3
5-4
5-5

6-1
6-2
6-3

7-1
7-2
7-3

8-1
8-2

9-1
9-2
9-3
9-4
9-5

E-1
E-2
E-3
&-4
E-5
&-6

F-l

G.2.l3 PAL
G.2.14 P8SYM (8K PAL Symbol Table)
G.2.l5 Pl2SYM (12K PAL Symbol Table)
G.2.16 Pl6SYM (l6K PAL Symbol Table)

TABLES

PDP-ll/IO Control SWitches
~qll Operator panel Functions

Addressing Modes

CBOOT (QCBOOT) Instructions
Permanent Device Names
CAPS-II Default Extensions
CllI Options
Special Characters/Commands
General Locations
Special Locations
Keyboard Monitor Error Messages

EDIT Key Commands
Command Arguments
EDIT Error Messages

PAL Options
Mode Forms and Codes
Instruction Operand Fields
Trap Vectors
Assembler Error Codes

Linker Options
Linker Non-Fatal Error Messages
Linker Fatal Error Messages

Forms of Relocatable Expressions
Internal Registers
Radix 50 Te rminators

PIP Options
PIP Error Messages

Device Assignments
RESHON Non-Fatal Error Codes
Device Conflicts
Cassette I/O Functions
RESHON Error Messages

Absolute Binary Load Block Format
CABLDR Switch Register Settings
CABLDR Halts
Monitor /H Option Responses
Linker and ODT /H Option Responses
System Cassette Labeling Responses

Standard File Types

x

-_ __ ------------

Page

G-5
G-5
G-5
G-6

Page

1-9
1-13

2-7

3-2
3-4
3-5
3-7
3-9
3-19
3-20
3-24

4-4
4-6
4-26

5-2
5-22
5-23
5-37
5-47

6-3
6-9
6-11

7-3
7-9
7-10

8-2
8-5

9-3
9-5
9-21
9-24
9-25

E-3
E-4
E-4
E-13
E-15
E-16

F-4

Nurober

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

2-1
2-2
2-3
2-4

3-1

9-1
9-2

E-1
E-2
E-3
E-4
E-5

F-l

FIGURES

CAPS-II Programming System
CAPS-ll Cassette
Mounting a Cassette
The PDP-ll/10 Console
LA30 DECwriter (Serial)
LA30 DECwriter (Serial) Keyboard
LA30 DECwriter (Parallel)
LSII Line Printer
LSll Operator Panel

System Diagram
Processor Status Register
Illustration of Push and Pop Operations
Nested Device Servicing

CAPS-ll Memory Map

Mode Byte
Status Byte

CTLOAD.SYS
CAPSll.SYS
CAPS-ll Loading Process
CBOOT
QCBOOT

File header Record Format

xi

Page

1-1
1-4
1-6
1-7
1-11
1-11
1-12
1-12
1-13

2-2
2-3
2-6
2-10

3-17

9-4
9-5

E-2
E-6
E-7
E-8
E-IO

F-3

,

PRRF1I.Cr.

This nanual describes the PDP-II Cassette PrograMMing System and
provides all the information necessary for normal u~aqe. It requires
no prior experience on a PDP-II cOMputer, but does assume some
exposure to asseMbly lanquagc proaraMMinq and co~puter systeMs in
general. Upon rcceivinq his SystOM, the user shnuld first read
through the entire C1I.PS-II manual, then reconfigure his systel't (if
necessary) according to the instructions provided in Appendix FI
lastly, he should try the del'tonstration prograM run in Appendix D.

Frequent reference is !'lade to tHO suppleT"lentnry ha,.,dbooks which the
user should also receive with his systeM. These are. THE PDP-II
PERIPflERJlLS AND INTEP.FACIlIG HANDBOOK and THE PDP-ll PROCESSOR
IlANDDOOK. The latter handbook may be anyone of several Processor
Handbooks, each geared to a particular PDP-II Processor (11/20/15/R20,
11/45, etc.); the handbook received with a CAPS-II SysteM depends upon
the processor purchased.

If the user intends to write his own cassette handler or if he will
use Monitor cassette priMitives, he should familiarize hiMself with
the TAll C1\SSETTE INTERFACE SYSTEI'. J:lanual (DEC-ll-IlTlICA-A-D), the TU60
CASSETTE T1I.PE TAAtISPORT M1IIlITENAHCE IIANUlIL (DEC-OQ-TU60-DlI), and the
Cassette Standard (Appendix F of this manual).

several different confiqurations are possible with the Cassette
PrograMming SysteJ:l. For documentation purposes, the following
configuration is ass,med. PDP-Il/IO processor, LA30 DECwriter, LSll
line printer ..

Documentation conventions include the follmling'

1. Actual c~puter output is used in examples wherever possible.
l'lhen necessary, COMputer printout is underlined to
differentiate it frOM user responses.

2. To avoid confusion, a line feed is represented in the text as
, ; a carriage return is represented by) • Unless
othen,ise indicated, all cO!'1l'!ands and cOl'1Mand strings are
teminated by a carriage return.

3. Teminal, console teminal, and teleprinter are general terms
used throughout the dOCUMentation to represent anyone of the
following, LA30 DECWriter, VTQ5 Display, LT33 or 35 Teletype.

4. Several characters used in system commands are produced by a
conbination of tllO keys typed at the same time. Generally,
the combinations are SHIFT and some other key (such as SHIFT
and N to produce the uparrO>l character on an LT33 or 35) or
CTRL and another key (for example, CTRL and 0 produces a
command which causes suppression of teleprinter output).
These key conbinations are dOCUMented as SIlIFT/N, CTRL/O,
etc., respectively.

xiii

5. Portions of co~and strings
brackets are optional--the
chooses without channing the

'~hich are enclosed in square
user may type them or not as he

intention of the cOJn.nand.

6. Certain keyboard variances prevail amona teleprinters which
nay be used as the console terminal in a CAP~-ll System;
these concern labeling of keyboard keys and characters output
upon receipt of particular ASCII character codes. Refer to
Appendix A for a list of possible dif·ference!!.

xiv

•
C][IIPTF.r> 1

TilE CAP,, - 11 PROGlW "'.ING SYS~Et ·

The POP-II cassette ProqrartMintJ Sy sten (CAPS-II) is a snaIl
progranminCT systcn for the PDP - II comp uter. dcsiqncd arou nd the use of
cassettes for progran and data stnraqc. CAPS- II provide s the user
",ith the canabili t y o:!: pcrforMinq all f i l e transfers, progra.n
devcloprrrent, loarlinC1 , and sto r LlC]c V' oil casset e . The sys t en also
p rovides Mininal surpor t for usinq p up er tape b y allm·,ina the w:;er: vIho
has paper t npe proqrans to trans fer t hese proqrans to cassette a nd
vice versa.

CAPS-II p rov ides the uner with oJ. Ka y h o ard Moni t or , Ilo facili tics .::tt
the "10ni tor level, and a librarv o f syst~n p ronrans , incluriinq a
machine l anguage asscnhlcr , an editor , a n d a dcbug qinn proryrarl.

Fi0'urc 1- 1 Cl\PS - 11 ProqruTlnin a Sys t em

1-1

1.1 SYSTEM CONFIGURATION

A CAPS-ll minimal system configuration consists of the following
hardware and software conponents. optional memory and peripheral
devices may be added as desired.

1.1.1 Hardware Components

The PDP-li Cassette Programming System is built around any PDP-II
processor '1ith one (only) TAll controller. a console terminal (LA30
DECwriter. LT33 or LT35 Teletype, or VT05 DECterrninal), and 8K (or as
much as 28K) of memory. A line printer (LPII or LSII) is optional. A
high-speed paper tape reader and punch are also optional and may be
used by PIP.

Section 1.5 describes operational procedures for the PDP-II/IO
processor, LA30 DECwriter, and LSII line printer, as these devices are
considered representative of a standard CAPS-II System configuration.

1.1.2 Software Components

CAPS-II software is provided on throe cassettes--two OBJ Cassettes and
a System Cassette. The OBJ Cassettes are used exclusively for
changing and building system configurations and are explained in
Appendix E. A brief description of the sofb1are package stored on the
System Cassette follows. Each program is discussed in greater detail
later in the manual.

1. Monitor - The Keyboard ~Ionitor provides COMmunication between
the user and the Cassette System executive routines by
accepting commands from the console terninal keyboard. The
commands allow the uSer to run system and user programs, load
and start prograMS usinq maKi~um memory space, and obtain
directories of cassettes.

2. Symbolic Editor - The Editor allows the user to modify or
create source files for use as input to the Assembler. The
Editor contains powerful text manipulation cOMmands for quick
and easy editing.

3. PAL Assembler - The Assembler (Program Assembly Language)
accepts source files in the PAL machine language and
generates binary object modules (and/or assembly listings) as
output. These object modules can then be linked, loaded and
executed.

4. Linker - The Linker converts relocatable object modules
produced by the Assembler into absolute load modules for
program loading and execution. The Linker also produces a
load map which displays the assigned absolute addresses.

5. ODT - The ODT (On-Line Debugging Technique) proqram aids the
programmer in debugging his object program by allowing him to
examine, change, and run any portion of his program on-line
using simple commands typed on the console terminal.

1-2

6. RESMON - The Input/Output package (RES!"ONj provides routines
for all input/output progranMincr in the CAPS-II SysteM. User
proqrans can cOMl'\unicate >lith RES!!ON (via lOT instructions
"hich utilize RESWlN) to create cassette files and perform
all console terminal and line printer I/O.

7. PIP - I'll' (Peripheral Interchan('!e Proqram) allo,"s the user to
transfer files frOM one cassette to another or to the console
terminal or line printer and to delete files from cassette.
PIP also provides mininal support for paper tape usage by
allowing prograno to be tran~ferred from cassette to the
high-speed paper tape punch and from the high-speed paper
tape reader to cansettc.

1. 2 WHAT IS A ClIPS-ll CAS8r:TTE?

A ClIPS-II cassette is a maqnetic tape device Much like that used in a
cassette tape recorder. The tape itself and the reel;; it is wound on
are enclosed inside a rectanqular plastic case (see Figure 1-2),
rnakinq handlinq, storage, nnd care of the cassette convenient for the
user.

On either end of one side of the cassette are two flexible plastic
tabs called write-protect tabs (see A in Figure 1-2). There is one
tab for each end of the tape; since data should only be written in one
direction, the user "ill need to be concerne~ with only the tab
specifically marked on the cassette lahel. Depending upon the
position of this tah the user is able to protect his tape against
accidental writinq and destruction of data. \'lhen the tab is pulled in
trniard the middle of the cassette so that the hole is uncovered, the
tape is write-locked: data cannot be written on it and any attempt to
do so will result in an error message. Nhen the tah is pushed toward
the outside of the cassette so that the hole is covered, the tape is
write-enabled and data can be written onto it. Data can be read from
the cassette with the tab in either position.

The bottOM of the cassette (ll in Figure 1-2} provi~es an opening where
the magnetic tape is exposed. The cassette is locked into position on
a cassette unit drive so that the tape COMes in contact with the
read/write head through this opening.

Both ends of the magnetic tape in a cassette consist of clear plastic
leader/trailer tape: this section of the tape is not used for
information storage purposes, but as a safeguard in handling and
storing the cassette itself. Since magnetic tape is susceptable to
dust and fingerprints, a cassette should ah,ays be rewound so that the
leader/trailer tape is the only part of the tape exposed whenever the
cassette is not on a drive.

1-3

-------------------------------- - ---_

Piqurc 1-2 CAPS- I I Cassette

1.2.1 The Fornat of a Ca sse tt e

A C<l.ssc ttc i s fo rrnatte(1 !=iO t h at it c ons ists of a s equ e nce of one or
mo re fi~cs. f iles on cassetta arc scqucntia , an d ench fil e is
p reced ed and f olI Ol-/ed by " f i l e gap . (II qap i n t hi s sense ic. a f ixed
lcn crth of h l ank tape.) 1111 Cfl c,settes mn~ s t art I:ith u file gap;
information precedinq the initial f ile <lap i s unreliah l e .

A fi le c onsists of a s eq len c e of onc or IllOro. d a t a r c corr.s s e p .ar ten.
f r om o ne ano the r by a record gn!"J' . Th e records of any given fi l e m st
fo 1 10H o ne annther in s llccessio n , Q.!-; there is no p r o vi s ion f or record
linJ:inq. The fir st record of a file is c a lle d the header record and
c o nta ins informa ion conc ern i ng t h e naI'1C o f the f i l e , its type,
l c.ng th , and so on. (The Cils5e ttc Standan1 may h e referenced in
IIppend i x F.) Thal:e a r c app r o }dn"t c l y 600 records per cass<>tte tape.
CArS- II recoq nizes an e nd -oE-file by 1e presence of either a fil~ g ap
or c lenr l eadc -r fo l lo\/inq a duta reco r o .

Data records in the CI\P~- 1 Sy sten cons ist of 12 8 (dec iMal) cassette
bytes j a byte in turn c o n s i sts of e i qht b it~ e <1ch r presentinq a
bina ry zero o r one . Charactc r~ imrl n llMllers are st0red i n b ytes w~ing
t h e stan dar d hSCI I chnrac t e r codes (sec Appen(li x l\,) an(l binary
not<ltion.

The number of recordG of i n f ornRtion on a ca~sctte ta~e may be
e stimated hy the user. On t h e o uts i d e o f th8 cas :. c tte ca5e is a clear
pla stic \"i.n doH (C i n Fi 'Ju re 1 - 2) • o ng the botton of this t'l i ndo\-l is
a series o f marks ~ each n ar1: r e p resents ahnut 50 i n hes of marrnetic
tape. J~nm·' i nq that a pprox.i nately 2 re c orrh:; f it on an inch of t a pe,
t he user is abl e t o mAke a r caho nabl e q ucss as to t he lcnqth of t ape
and numbe r o f records a Vnilable: fo r U5C. By s iMply g li1ncinq at the
Hidth o f t he tape r cel sho\lioQ in the vlinn oH, the user c a n t e ll

1-4

..

quickly if he is very close to the end. Since he is given no advance
warning of a full tape connition, the user must visually keep track of
the length of tape he has available. Should the tape become full
before his file transfer has completed, another cassette may be
substituted and the transfer or output operation repeated, or the /0
overflow option may be used to all"'" continuous transfer (see Section
3.2.4 in Chapter 3).

1.2.2 The Sentinel File

The last file on a cassette tape is called the sentinel file. This
file consists of only a 32 (decimal) byte header record and represents
the logical end-of-tape (CAPS-II also recognizes clear trailer as
logical end-of-tape). A sentinel file is identified by a null
character (ASCII=OOO) as the first nane character in the header
record. A zeroed or blank cassette tape is one consisting of only the
sentinel file.

1.3 TIlE SYRTEII CAf;SETTE

The software discussed in 8ection 1.1.2 is provided to the user on a
single cassette called ~~e SysteM Cassette. This is the cassette on
which the entire CAPS-II Syste~ resides and which is utilized for all
normal SysteM functions. I'Ihen in use, the System Cassette should
al\/ays be Mounted on dri"e 0 (the drive on the left of the TAll
controller) 1 drive 0 serves as the default device when the user fails
to specify another.

The write-protect tab on the System Cassette should usually be in the
write-locked position so that data will not accidently be written on
it; it is suggested that the user make several copies of this cassette
as protection against loss or accidental destruction.

1. 4 MOUNTING 1IND DISIIDmlTING I\. CAS!lETTE

To mount a tape on a drive, hold the tape so that the open part of the
cassette is to the left and the !ull reel is at the top. set the top
write-protect tab to the desired position depending upon whether data
is to he written on the tape.

Open the locking bar on the cassette drive by pushing it to the right,
away from the drive (soo A in Figure 1-3). Next hold the tape up to
the cassette drive at approximately a 45-degree angle and insort the
tape into the drive by applying a leftward pressure while
simultaneously pushing the cassette onto the drive sprockets. This
brings the tape into position against the road/I'rite head. When the
cassette is properly rnounted, the locking bar will automatically close
over the cassette back edge, Figure 1-3 illustrates this procedure.

Press the rewind button on the cassette unit (see B in Figure 1-3;
there 1s a rewind button for each drive). This causeS the cassette to
rewind to the beginning of its leader/trailer tape. (Pressing the
rewind button a second tiMe causes the cassette to rewind to the end

1-5

o£ the Ip.aclcr!tr~ ilcr tape Mel to the phys' c~l enc1 - c>f - tapp.. The
cassette: unit \1i ll cl icY.:; thi~ sonnn i ~ i\lro~t inaunible ond the IJRer
may not hear it; unle ss he i s 1 isteninq carp.fully . !1orMal u"oge
requires th.at t he uner pre s!:i the rCl" incl button only once uhanovar be
wishes t " r e<'lind a Cil"""tte) . F.vcn tho,,'11o tapes which are nnt
activoly hcin'l Usccl on (1 dri ve s h o uld a lready ho positionerl at the
beginn inq , the ucer shoul,1 c1cv(?lop t he h"hit of autoMatically
rewindinq a cassettca

Rew ' n(ling i1 c ans c tte i s par icularly
i nportant ~ince certain f unctions (R uch
a s s pace r,cvcr~c file a nd s Rce rcvcr~e
block), ini i aterl o n a newly noun ted
c a nsette prior t o the use of any other
f t nction, could c" use t he cassette
c ontrol ler to funotion i np r orerly , This
concliti"n i s rc",edied whenever the S'i'IIRT
key i s dcprc:lsc o, o r when a hard\lilre
RF,Sr.T ' ns tr lct ' on is execu cd .

Uhen the tare has f.inishe(~ ~" in(1i n(1 , t he cassette will strsp movinq.
The cassottc if; nm" i n pl.:lce and rCilcly for rans fe r o~ril i nns .

Fig ure 1-3 lloun tinq a Cas!';c ttc

Refore re~~vinq ctl sse tto £ron a dri'l/e I' t he tap~ ~ ht)ul d al",ily !=t be
r el10und to i ta he qinninCT hy p ~e s sinn the r ewind butt'm " n the c assette
uni t . Re,,,ir:dina a tapo cnsurc Q t~ at t c clear leader/trailer tl'pe
wil l be he oni t ape e xpoDon " t tho op~n par 0 - the cassette , ~"
r(,.J"IDVe il c aS'Rc t te frnn the c as sct P. drive , open t he l ockincr bar anti
the oasse t te \·,i l l pop " u t. Ir,-.cn cns"ettf'C are not hcin'l acttv. l v use"
on ,1 co s sotte (lr i ve, they cnn ~ 1~ s tored in tho small plaf;t j c boxes
provi c:lcrl fnr this purpos e hy tho Mtlnl1fActurcr.

1-6

nOTE

Before uning a ne.,., cassette, or prior to
using a cas~ette that has just been
shipped or accidently dropped, mount the
cassette on a drive so that the Digital
label faces the inside of the unit and
perforn a rC\1ind operation. Remove the
cassette, turn it over, and perfo,,"
another rC'I>lind operation. This packs
the tape neatly in the cassette and
places the full tape reel at the proper
tension.

1.5 CONSOLE OPERATIOn

The operation of the conputer
PDP~ll/lO processor, LA30
examples, follo\lS.

console and console terMinal, using
DCCuri ter, and LSll line printer

1.5.1 PDP-ll/10 Progranner's Console

the
as

The PDP-ll/IO console is designed to provide convenient manual control
of the systen. Using s\yitches and keys located on the console,
prograMS and info~ation can be directly inserterl into me~ory and
modified. The PDP-ll/10 console is shrn<n in Figure l-~, and each
switch and key is exnlained in the parctqraphs follo\rlinq the figure.

[!DmDm~D dIgital equipment corporat'or!·mo,,.:If'd,rro:J&Sadlusetb)

-3 ADDUSSIDoO.I .. .~), ''fVW-''I'OWI"O I
Il~ I" I 13 I I< 111 110 I 9 I. I 1 I 6 I ~ I , I J I 2 I I I 0 I 0

IlIlM ItllM 15, .,101 I rmJ GI

I

Figure 1-4 The PDP-ll/10 Con~ole

1-7

Elements of the Console

The console has the following indicators and switches:

1. A Rml lamp which, if lit, indicates that the processor
is running

2. A 16-bit Address and Data Register display

3. A l6-bit Switch Register

4. The following control 5,·Ti tches,

a) LOAD ADRS

bl EXM!

c) conT

d) ENABLE/HALT

e) START

f) DEP

The prograMmer's console has one 16-bit reaister display used for
displaying both addresses and data. Nhen displaying the contents of
the Address Register this display register is tied directly to the
output of a 16-bit flip-flop register called the Bus Address Register
and displays the address of any data examine~ or deposited. It may
also be used to display the contents of the Data Register by
displaying data in any memory location or the results of program
execution.

The programmer may reference 16-bit addresses by manipulating the
SWitch Register. A switch in the up position is considered to have a
I value; a switch in the d""m position is considered to have a 0
value. Thus, the address indicated by the switch setting Can then be
loaded into the Address Register or data can be loaded into any memory
location by using the appropriate control sl·,itches as follows (when
the system is executing a prograM, the LOAD ADRS, EXAM, and DEPosit
functions are disabled to prevent any disruption of the running
prograM) :

1-8

.......... _•. _---------

LOAD ADRS

EXl\M

DBP

ENABLE/HALT

START

conT

Table 1-1
PDP-II/IO Control switches

Action

Transfer the contents of the l6-hit
flwi tch Re,rister into the Address
Re'lister.

Display
display
location
Re'lister.

in the l6-hit
the contents
stored in the

register
of the

Addres1I

Deposit the contents of the 16-bit
51'1itch Register into the addrer,s
stored in the Address Reqister.
(?his switch is actuated by raising
it.)

Allow or prevent proqraM execution.
To allo," a pro<;rrrtM to run, the
,,,,itch must be in the ENABLE
position (up). placing the switch
in the HALT position (dOt"") will
halt the system at the end of the
current instruction~

De'lin execution of a program (the
EIlABLE/HALT sHitc;, mur,t be in the
EIIABLE position). t'ihen the START
s\i/itch is depressed, it asserts a
systeM initialization signal and
actually starts the system when it
is relea1led. The processor ,;ill
beqin execution at the address
which was last loaded usinq the
LOAD AD~~ switch.

Allow the
without
\'1hatever
haltinq.

CC'l1'ltPuter to
1ni tia lization

state it is in

continue
from

after

Operating the Control S,1itches

After the processor has halted at the end of an instruction, it is
possible to examine and update the contents of locations. To ex~ine
a specific location, set the m.itch Register to correspond to the
location's address, and press LOAD ADRfl1 this transfers the contents
of the suitch Register into the Address Re9ister. The location of the
address to be examined is displayed in the 16-hit register display.
The user can then depress BXMI, and the data in that location will
appear in the register display.

1-9

-----------------------------~ .. ~~-~.

NOTE

If the UGer atteMpts to exal'\ine data
froM or deposit data into a nonexistent
meMory location, an error will occur and
the register display will reflect the
contents of location 000004 (the trap
location for references to nonexistent
locations). To verify that this trap
has occurred, deposit SOl"',e numher other
than four in the location. If four is
still indicated, either nothincr is
assigneel to that location or whatever is
assicmed is not "orkina properly.

By depressing EXl'JI again, the Address Register will be incremented by
two to the next word address, and the contents of this next location
nay be exaMined.

The ex~ine function operates such that if LOAD ADRS is depressed and
then F.XJ\M, the Address Register will not be incremented. However,
succes~ive use of the F.XI'J! switch increrents the Address Register by
t.,o for each depresoion.

If the user finds an incorrect entry in the Data Register, he can
change it by settinq the correct data in the SHitch Regil'ter and
raising the nEP sHitch. The Address Register will not increment .,hen
this data is deposited. Therefore, by pressing the EXl'JI switch the
user can exaMine (verify) the data just deposited. Pressing EXhM a
second tiMe will increment the register to the next word address.

When perforning consecutive examines or deposits as previously
nentioned, the address will increment by two to successive word
locations. HCMever, when eXaMining the general-purpose registers
(RO-R7), the systeM will only increnent by one.

To start a program after it is loaded into memory, set the starting
address of the prograM in the Sl<itch Register and press LOAn ADRS. Be
sure that the ENABLE/HALT s"i tch is in the ENABLE posi tion; depress
STARr. The prograM should hegin executing as soon as the START switch
is released.

While in the halt mode, the user may execute a single instruction by
pressing CONT. l'ihen COlI']' is pressed, the console mOMentari ly passes
control to the processor, all~1inq it to execute one instruction
before regaininq control. Each tiMe the CONT s.fitch is pressed the
computer ~,ill execute one instruction.

To start the prograM again, place the ENABLE/HlILT switch in the ENABLE
position and press CONT.

1.5.2 Operating the Console Terminal (LA30 DECWriter)

The LA30 PEC\->riter consists of a printer and keyhoard, and is
illustrated in Figure 1-5.

1-10

."

-
Figu re 1-5 LA30 Or:CWriter (Se ri a l)

Th e pr ' nte r p rovidus " t yped copy of input nn ou tput at 30 ohnrao ters
pe r s econd , maximum . r.eyhoard function~ such as TAR and RETlmN an d
a ll charaetcrn, i ncl udi nq" r ann 1 , h a ve a distinct key a~ ~ocia ted
with t hem (un l ike the LTD amI 35 keyhoan1~ which m"" t u" e key
col"'tbinati ons to pt"oc1uce t hese and other characterF.: anr1 functions) .
The keyhoard is illustrated i n Fiqure I - n.

rnCJCJmrnmmGJlIlrn~0@JOJ
8B@]~[!]0IIlm[iJ]QJ@]0[i]Ela
S0[!]lIllEJlTIIEJ0D0[gCJ[:::J~

tQB001I10[!]~8CJDQBm -

o

r:m:. 1=.1;[1_

FillUre 1-6 Ll\30 DEC-Tri te r (Serial) Keyhoa nl

On t _hc bacJ: of the L}\30 c onsol e stann i s a sHitch ''Ihich is used to
turn the te t'l'lin nl on a nd off. "/hen the ",Ii tch is r a ' s erl , t h e WIlDY
inclicator laMp on the keyboarc~ pane.l l i fThts t o dcs i nna te t h t the
terminal is read y for U RC .. The DEC\rri ter is sht1t 0 f by pll~hinq the
s\>li tch dOHn .

Be l"'" the !mIlDY lil/'lp in a ke y labeled LOCAL LINE . r.!1~ while this key
is pressen, pilper i s advanccr1 fro,., the printer. Th e MnDF. key nf"!xt to
it should he s e t to Lnlp. for all on-l ine operations ; the baud rate is
gnne r a l.ly fi xer! at 300 nnd the BIlUO llIITE key should h e s et to this
fiq ure. llandor> characte r s \Jill bG generateil if this key is n"t set to
mutch t ho baud r ntc. The rcnai ninq k~y s on the ke'hnard a r usp.n for
producing t ypod c opy and arc s i njlf1r to t hose faunn On a type,V'riter
keyboard .

1-11

A paru l lel U\.30 DF.Curitcr va ries in pp~ ..-'n::!n ce 5 inhtly f ron a serial
L1\.30 ruHl is picturcrl in Fiqurc 1-7 ; thQ u s e r cl0es nnt h ave t o set n
J\un MTE or LI!lr r.0..y i 0.11 n t hp.T opcrilt i(ln ~ u r~ t he s aMe .

1.5.3 Operatinq the LSll L i n e Prin tnr

The LSIl line printc may b e \1 ~ Cf! tn outpu 1 tstinql1 al r1 ratn o f 105
charactc r fj per :;acond \lith 11 :> 1'1any l\~ l J:! ch,f\ r2Lc ters p e r linn. The
unit is v C! ry conpL1ct and can s i t on a s Mall t.ahle .

I'igu"c 1- 8 L'>ll J.i nc Pr inte r

The opc riltor [lane l i:. illu:.tr.J.tcr1 in Finure 1-9 an el p rnH .i.. df"! ~ the user
with t he f nl l owinn fun ction:.:

1-12

rable 1-2
LSll Operator Panel Functions

Key

ON/OFF

f;ELBCT

TOP OF FOru~

FOR/IS OVERRIDE

Pushing the
printer on
pushina the
the printer

Action

key once turns the
and lights the g«itch.

key a second tiMe shuts
off.

Pushing the SELECT key enables the
printer for use.

Pushing this key causes the paper
to advance vertically allowing
manual form control.

Pu~hing this key a110Hs the user to
cOMplete the form heina printerl if
the paper needs to be replenished
(i.e., it overrides a paper-out
condition) •

SINGLE LItlr. ADVANCE Pushing this key allm,s the user to
vortical1y advance the paper by one
line.

Indicator

HARDNAl'IE ALARM

PhPER OUT

!leaning

Lights to indicate
error ..

a hardware

Lights to indicate an out-of-paper
or paper-handling malfunction.

ONIOff

SELECT -0>
ALARM I ~gf I

r
FOIIMS I

OVER:IOE

PAPER

0>
OUr

Figure 1-9 LSll Operator Panel

1-13

CHAPTER 2

PROGR!\.MMING THE PDP-II

The PDP-ll processor is a 16-bit, general-purpose, parallel-logic
computer using two's complement arithmetic. Programmers can directly
address 32,768 16-bit words, or 65,536 a-bit bytes. All communication
between system components is done on a single high-speed bus called
the UNIBUS. Standard features of the system include eight
general-porpose registers which can be used as accumulators, index
registers, or address pointers; and a multi-level automatic priority
interrupt system. A simplified block diagram of the PDP-II System is
presented in Figure 2-1.

This chapter gives the PDP-II programmer an overview of system
architecture, points out unique hardware features, and presents
programming concepts basic to its use. Reference should also be made
to the appropriate PDP-II PROCESSOR HANDBOOK and the PDP-II
PERIPHERALS AND INTERFACING HANDBOOK.

2 • I GENERAL SYSTEM STRUCTURE

The architecture of a PDP-II system and the design of its central
processor provide:

Single and double operand addressing

Full word and byte addressing

Simplified list and stack processing through auto-address
stepping (autoincrementing and autodecrementing)

Eight programmable general-purpose registers

Data manipulation directly within external device registers

Addressing of device registers using normal memory reference
instructions

Asynchronous operation of memory, processor and I/O devices

2-1

A hardware interrupt priority structure (mul ti-line,
multi-levell for peripheral devices

Automatic interrupt identification without device polling

Cycle stealing direct memory access for high-speed data
transfer devices

Direct addressing of 32K words (64K bytes), including the 4K
external page

O'!"HER
DEVICES

7

UNIBUS
CONTROL

AND
PRIORITY

ARSITRATION

LINE
PRINTER

STATUS REGISTER

5 4 3

ARITHMETIC
UNIT

v C

o

EIGHT
GENERAL
PURPOSE

REGISTERS

CENTRAl PROCESSOR

CASSETTE CONSOlE Rf~ITE READ/ONLY
TERMINAL MfN(Yi{V MEMORY

Figure 2-1 System Diagram

TWo design features of the central processor serve to increase system
throughput.

1. The eight programmable general-purpose registers within the
central processor can be used to store data and intermediate
results durinq the execution of a sequence of instructions.
Register-to-reqister addressing provides reduced execution
time for most instructions.

2. The ability to code two addresses within a single instruction
allows operations on data within memory. This eliminates the
need to load processor reqisters prior to data operations,
and greatly reduces fetch and store operations.

2-2

~.--~ •.. - ...• ----~---

2.1.1 Status Register Format

The Central Processor Status Register (PS) contains information on the
current priority of the processor, the result of previous operations,
and an indicator for detecting the execution of an instruction to be
trapped during debugging. The priority of the central processor can
be set under program control to anyone of eight levels. This
information is held in bits 5, 6, and 7 of the PS. Four bits are
assigned to monitor the results of a previous instruction. These bits
are set as follows:

Bit Set

Z if the result WaS zero

N if the result was negative

C if the operation resulted in a
carry from the most significant bit

v -- if the operation resulted in an
arithmetic overflow

The T bit is used in program debugging and can be set or cleared under
program control. If this bit is set when an instruction is fetched
from memory, a processor trap will occur at the completion of the
instruction's execution.

15 8 7 5 4 3 2 o
z v c

Figure 2-2 Processor Status Register

2.1.2 UNIBUS

The UNIBUS is a key component of the PDP-ll's unique architecture.
The central processor, memory, and all peripheral devices share the
same bus. This means that device registers can be addressed as
memory, and data transfers from input to output devices can by-pass
the processor. No special input/output instructions exist; all PDP-ll
instructions are available for I/O operations.

2.1.3 Device Interrupts

Interrupt request
priority levels
line determines

lines provide
4 through 7.
the device's

for device interrupts at processor
Attachments of a device to a specific
hardware priority. Since multiple

2-3

devices can be attached to a specific line, the priority for each is
determined by position, devices closer to the central processor have
higher priority.

Peripheral device interrupts are linked to specific memory locations
called "interrupt vectors· in such a way that device polling is
eliminated. When an interrupt occurs, the interrupt vector supplies a
new Processor Status word (i.e., nm' contents for the Processor Status
register) and a new value for the Program Counter. The new PC value
causes execution to start at the proper handler at the priority level
indicated by the priority bits of the new Status Register.

2.1.4 Instruction Set

The instruction set (explained fully in the PDP-II PROCESSOR HANDBOOK
and summarized in Appendix B of this manual) provides operations that
act upon a-bit bytes and l6-bit words. Coupled with varying address
modes (Relative, Index, Immediate, Register, Autoincrement, or
Autodecrement, each of which can be deferred) more than 400 unique
instructions are available. Instruction length is variable (from one
to three l6-bit words) depending upon the addressing mode(s) used.

2.1.5 Addressing

Every byte has its own unique address. It is the instruction which
determines whether a-bit bytes or l6-bit words are being referenced.
Words are addressed by their low-order (even-numbered) byte. Although
byte addressing can be to odd or even numbered addresses, referencing
words at odd numbered addresses is illegal. Bits are numbered from 0
at the lowest-order bit (2(0» , to 15 (for a word) or 7 (for a byte)
at the highest-order bit (2(15) or 2(7».

Most data in programs is structured in some way, often
tables consisting of the data itself or of addresses
the data. The PDP-II handles common data structures
addressing modes specifically designed for each kind
addition, addressing for unstructured data permits
access to all of memory. The actual formats of
described in Chapter 5, concerning the Assembler.

Registers

by means of
which point to
with operand

of access. In
direct random

the modes are

Addressing in the PDP-II is done through the general registers. These
registers can be specified by preceding a number in the range 0 to 7
by a \ sign. However, it is common practice to assign register
identities to symbols; often RO=%O, Rl=%l, etc. (see Chapter 5,
Section 5.4.4). Throughout this manual, reference to RO, Rl, ••• R7, as
well as to SP and PC, assumes such prior direct assignment. All eight
general registers are accessible to the programmer, but two of these
have additional specialized functions: R6 is the processor Stack
Pointer (SP) , and R7 is the Program Counter (PC). Both are discussed
in more detail later in this chapter.

2-4

To make use of a register as an accumulator, index register, or
sequential address pointer, data needs to be transferable to and from
the register. This is accomplished using Register Mode, which
specifies that the instruction is to operate on the contents of the
indicated register itself. For example:

CLR R3 J CLEAR REGISTER 3 O~ ITS CCtHE"TS

Address Pointers

The instruction can
address of the data
be deferred. For
instruction:

be made to interpret the register contents as the
to be operated on by specifying that Register Mode
example, if register 3 contains 1000, either

CLR IR3

CLR C R3)

will clear the address 1000. Moreover, if it is desired to perform
the instruction successively upon data at sequential addresses (i.e.,
in a table), Autoincrement Mode can be selected. This will
automatically increment the contents of the register after its use as
a pointer to the next sequential byte or word address. Note that
Autoincrement Ilode (as well as Autodecrernent Mode) is automatically
deferred one level to cause the register contents to function as a
pointer.

When it is specified that Autoincrernent Mode be deferred, it is
deferred two levels so that the instruction interprets the
auto incremented sequential locations as a table of addresses rather
than as a table of data, as in nondeferred Autoincrernent Mode. The
instruction then operates upon the data at the addresses specified by
the table entries.

Each execution of each of the following ADD instructions increments
the value of the register contents by two to the next word address
(always an even number).

ACCUM: ADD (RO)+.CRI)+

•
J)1 P ACCIJt'I

ACCIJt'I: ADD ICR3)+.R2

J)1P ACCIJt'I

IIr RO INITIALLY C(JIITAI"S 1000
JAND RI INITIALLY CONTAI"S 1~50,
J THE VALUES AT LOCATI (JIIS 1000.
J1002, ETC •• ARE ADDED TO THOSE AT
JLOCAT!(JIIS 1~50. 1~52. ETC •• AND
J TH E RESULT STORED AT I ~50. ETC •

Jl ~ R3 1"1 TI ALLY CCI'HAI"S 1000
J AND LOCATI (JII 1000 CONTAI "5 3~20.
J TH E VALUE AT LOCATI ON 3420 IS
J ADDED TO THE CONTErHS or R2 AND
J TH E RESUL TIS ST ORED TH ERE. AT
JTHE NEXT EXECUTION or THE
J INSTRUCT! ON. R3= 1002.

2-5

Byte instructions such as TSTB (R2)+ (using Autoincrement Mode)
increment the register contents by one.

In addition to this capability of incrementing a register's contents
after their use as a pointer, an address mode compl~entary to this
exists. Autodecrement MOde decrements the contents of the specified
register before the contents are used as a pointer. This mode, too,
can be deferred an additional level if the table contains addresses
rather than data.

stack Operations

Both Autoincrement and Autodecrement Modes are used in stack
operations. Stacks, also called push-down or last-in-first-out lists,
are important for temporarily saving values which might otherwise be
altered. Their characteristic is that the most recent piece of data
saved is the first to be restored. The PDP-II processor makes use of
stack structure to save and restore the state of the machine on
interrupts, traps, and subroutines. To save, data is 'pushed" onto a
stack by autodecrementing the contents of a register (e.g., MeV
Rl,-(R6»; to restore, data is • popped " from a stack by
autoincrementing (e.g., MeV (R6)+,R3). The register being used as the
Stack Pointer always points to the top word of the stack.

MEMORY

02

/
01

EO

4, ANOTHER
PUSH

02

/

2, PUSHING A
DATUM ONTO
THo STACK

I

8Ej 00

01

EO

5. POP I> PUSH

), PUSHING ANOTHER
DATUM ONTO THE
STACK

E3

, I
~
~
z pop

Figure 2-3 Illustration of Push and Pop Operations

Random Access of Tables

Direct access to an entry in the middle of a stack, or in any kind of
table, is accomplished through Index Mode. The contents of a register
are added to a base (fetched from the word or second word following
the instruction) to calculate an address. With this facility a
fixed-order element of several tables, or several elements of a single
table, may be accessed.

,

if R3 Table of Words Addresses
of entries contains; Operand code is;

TABLl; +TBLI

.
• ,

+TBLl+2
+TBLl+4
+TBLl+6
+TBLl+lO

When deferred Index MOde is
calculated address contains a
containing the data itself. Byte

Address Modes

o
2
4 TBLl(R3) in
6 each case
10

,

specified (i.e., @TBLl(Rl)l,
pointer to the data, rather
tables are discussed in Section

the
than
2 .. 2.

Addressing modes may be summarized as follows and are discussed in
detail in Chapter 5,

Assembler
Syntax

Rn

(Rrl)+

- (Rn)

!

A(Rn)

Assembler
Syntax

@Rn or (Rnl

MOde

Register

Table 2-1
Addressing Modes

Non-deferred MOdes

I
Typical

Accumulator

Use

Autoincrement Sequential pointer
a table: popping
stack

Autodecrement sequential pointer
a table; pushing
stack

Index Random access to

!

table entry

Deferred Modes

Mode Typical Use

to data in
data off a

to data in
data on a

stack or

Deferred Pointer to an address
Register

(Continued on next page)

2-7

Assembler
Syntax

@(Rn)+

@-(Rn)

Mode

Deferred

Table 2-1 (Cont.)
Addressing Modes

Typical

Sequential
Autoincrernent dresses in

Use

pOinter
a table;

address pointers off a

Deferred Sequential pointer
Autodecrel'l1ent dresses in a table;

to ad-
popping
stack

to ad-
pushing

address pointers on a stack

M(Rn) Deferred Index Randol't access to table of
address pOinters

i

Accessing Unstructured Data

Addressing of unstructured data beCOMes greatly facilitated through
the use of the PrograM Counter (R7) as the specified register in these
modes. This is particularly true of Autoincrement and Index Medes,
which are mentioned below, but discussed more fully in Chapter 5.

Autoincrement Mode using R7 is the way immediate data is assembled.
This mode causeS the operand itself to be fetched from the wQrd (or
second word) following the instruction. It is designated by preceding
a numeric or symbolic value with #, and is known as Immediate Mede.
The instruction:

AOD J!5e.R3

causes the value SO(octal) to be added to the contents of register 3.
If the • is preceded by @, the immediate data is interpreted as an
absolute address; i.e., an address that remains constant no matter
where in memory the assembled instruction is executed.

Index Mode using R7 is the normal way memory addresses are assembled.
This is relative addressing because the number of byte locations
between the Program Counter (which contains the address of the current
word+2) and the data referenced (destination address minus PC) is
placed in the word (or second word) following the instruction. It is
this value that is indexed by R7--the Program Counter--as follows.

(Destination-PC)+PC=Destination

Relative lrode is designated by specifying a memory location either
numerically or symbolically (e.g., TST 100 or TST A). If a memory
address specification is preceded by @, it is in deferred Relative
Mode and the contents of the location are interpreted by the
instruction as a pointer to the address of the data.

2-8

•

.'

2.2 INSTRUCTION CAPABILITY

The twelve ways of specifying an operand demonstrate the flexibility
of the PDP-II in accessing data according to how it is structured, and
even if it is not structured. Each instruction adds to this
versatility by acting On an operand in a way particularly suited to
its task. For example, the task of adding, moving, or comparing
implies the use of two operands in any of the twelve addressing formsl
whereas the task of clearing, testing, or negating implies only one
operand. Examples:

ADD '12.GROUP(R2)
MOV MEMI.ME"2
CMP (R4l+. VAI"U£
CI..R R3
TST SUM
NEG 8-(R5)

Some instructions have counterparts which operate on byte data rather
than on full words. These byte instructions are easily recognized by
the suffixing of the letter B to the word instruction. MOV is one
such word instruction; e.g., MOVB 112,GROUP(R2) would move an a-bit
value of 12(octal) to the a-bit byte at the address specified. One
implication of byte instructions is that when using Autoincrement or
Autodecrement Mode, a table of bytes is being scanned. The
Autoincrement or Autodecrement therefore goes by one in byte
instructions, rather than by two. However. because of their
specialized processor functions, R6 and R7 in these modes always
increment or decrement by two.

Forms other than single or double operand instructions include operate
instructions such as HALT and RESET which take no operands, branch
instructions which transfer program control under specified conditions
(see Chapter 5), subroutine calls and returns, and trap instructions
(see Appendix B for the complete instruction set).

2.3 PROCESSOR USE OF STACKS

Because of the nature of last-in-first-out data structures, the same
stack can be used to nest multiple levels of interrupts, traps, and
subroutines (see Figure 2-4).

2.3.1 Subroutines

In subroutine calls (JSR Register,Destination) the contents of the
specified register are saved on the stack (the processor always uses
R6 as its Stack Pointer) and the value of the PC (return address
following subroutine execution) becomes the new value of the register.
This allows any arguments following the call to be referenced via the
register. The command RTS Register causes the return from the
subroutine by moving the register value into the PC. It then pops the
saved register contents back into the register. (Return from a
subroutine is made through the same register that was used in its
call.)

2.3.2 Interrupts

When the processor acknowledges a device interrupt request, the device
sends an interrupt vector address to the processor. The processor
then pushes the current Status (PS) and PC onto the stack and picks up
a new PS and PC (the interrupt vector) from the address specified by
the device. Another acknowledged interrupt before dismissal will
cause the PS and PC of the running device service routine to be pushed
onto the stack and the address and status of the new service routine
to be loaded into the PC and PS. A process can be resumed by popping
the old PC and PS from the stack into the current PC and PS with the
Return from Interrupt (RTI) instruction.

2.3.3 Traps

Traps are processor generated interrupts. Error conditions, certain
instructions, and the completion of an instruction fetched while the T
bit was set all cause traps. As in interrupts, the current PC and
Status are saved on the stack and a new PC and Status are loaded from
the appropriate trap vector. The instruction RTI provides for a
return from an interrupt or trap by popping the top two words of the
stack back into the PC and PS.

I PROCESS 015
~NNING ST~,;
f>C».I1ER j5l»
POINTI-.G TO
UXA,tIONPO

,----, 2. ~~~"1'oS~~
400 PC'FCo A.ND

STAT<.l5 .p5c
~TART PIIOCESS :

" K,

'" ".
,c.
,so

P"OGll.-: i

,
.00

'C'

PS'

",
n'
PCO

'"
""""'"

• ,
""

"

'" n"
pco

".
o """"'"

400 $1'OI!Ai.K HOlOING
riO ANO H,

o Fl 0. Pl(')CfSS : ItE:.tASe5
Tr;E~

f------l
51'-1 1'(0' i

j";;;j
1'0 i I'roGb)l i

Figure 2-4 Nested Device Servicing

2-10

CHAPTER 3

USING THE CAPS-II MONITOR

The Cassette Programming System is stored on a single cassette, called
the System Cassette, which contains all the programs necessary for
loading the Keyboard Monitor into memory and creating and running
system and user programs. (The System Cassette supplied to the user
is configured for an BK system. Refer to Appendix E for instructions
concerning building a System Cassette for any size configuration.) The
directory of the System Cassette is as follows:

C~O~ ~S
CAPSII SBK
PIP SRU
WIT as
LINK SRU
OOT aG
PAL SRU
D~O PAL

The Monitor is loaded into memory from the System Cassette by means of
a short bootstrap program. Once in memory, the Monitor accepts
commands from the console terminal keyboard which allow the user to
run system and user programs, and create, assemble, load, execute, and
debug programs, utilizing cassettes for all data storage.

3.1 LOADING INSTRUCTIONS

The first operation in using the CAPS-II System involves loading the
Monitor into memory from the System Cassette. The loading process may
be accomplished by following steps 1 through 4 below.

1. Ensure that the computer and console terminal are
on-line.

2. Place the System Cassette (write-locked to protect data)
onto cassette drive 0 (facing the computer, drive 0 is
to the left of the cassette unit) .

3. Press and raise the HALT key (leaving it in the ENABLE
position).

3-1

4. Load and start the sy~tem bootstrap loader (called
CBOOT). This can be done in one of two ways:

a) If the system has a hardware bootstrap, set 173300
in the Switch Register, press LOAD ADRS and START
(part b may be ignored).

b) If no hardware bootstrap is availahle, CHOOT must be
manually loaded and started by the user. Two
versions of CBOOT are provided. The standard
version is the version used in the hardware
bootstrap and consists of the 28 wordA listed in
Table 3-1. A complete listing and more information
concerning CBOOT is provided in Appendix E.

A shorter (20 word) version called QCBOOT may
optionally be loaded by the user. This version does
not provide SOMe of the error checking and handling
which the longer CBOOT does, but allows a faster
means of manually booting the system. A complete
listing of QCBOOT is also provided in Appendix E;
the binary instructions are listed in the following
table:

Table 3-1
CBOOT (QCBOOT) Instructions

CBOOT QCBOOT

Location Contents contents

001000 012700 012700
001002 177500 177500
001004 005010 005010
001006 010701 010701
001010 062701 062701
001012 000052 000034
001014 012702 112102
001016 000375 112110
001020 112103 032710
001022 112110 100240
001024 100413 001775
001026 130310 100001
001030 001776 005007
001032 105202 005202
001034 100772 100770
00 1036 116012 116012
001040 000002 000002
001042 120337 000766
001044 000000 017775
001046 001767 002415
001050 000000
001052 000755
001054 005710
001056 100774
001060 005007
001062 017640
001064 002415
001066 112024

3-2

After the bootstrap has been manually loaded (using
the Switch Register, LOAD ADRS, and DEP keys), set
001000 in the switches, press LOAD ADRS and START.

At this point the RUN lamp should be lit and the System Cassette
should begin to move. The bootstrap loader (CBOOT or QCBOOT) calls
the first program on the System Cassette (CTLOAD.SYS) which in turn
loads the Keyboard Monitor (CAPSll.SYS) into me~ory. If an error
occurs during the loading process (an error may be caused by the
cassette being improperly mounted, by a missing file on the tape, or
by the occurrence of an I/O error) no error message will inform the
user. Instead, the System Cassette may stop moving and the computer
will halt. If this condition occurs and the reason for the halt is
not immediately apparent, consult Appendix E, which provides more
information concerning errors during the loading process.

Once the Monitor has been loaded, the System Cassette stops moving and
a dot is typed at the left margin of the console terminal page. A
Monitor identification line may also be typed; however, this line will
be output only if the Monitor is being loaded for the first time, or
if a previously loaded CAPS-ll system has been completely deleted from
memory_ The total ti~e involved in the loading process (i.e., from
the bootstrap initialization on a rewound ca~sette to the appearance
of the dot) is approximately 30 seconds. The dot instructs the user
that the Monitor is now in memory and ready to accept input commands.

3.2 SYSTEM ~NVENTIONS

File naming procedures, special character commands,
other conventions which are standard for the
presented next. The user should be f~iliar with
before using the system.

3.2.1 File Formats

error formats, and
CAPS-ll Syste~ are
these conventions

The Cassette Programming System makes use of two types of file
formats--ASCII and binary.

Files in ASCII format conform to the American National Standard Code
for Information Interchange in which alphanumeric characters are
represented by an a-bit code. A chart containing ASCII character
codes is provided in Appendix A. Files in ASCII format are generally
those created using the Editor.

Files in binary format consist of B-bit bytes representing data and
PDP-ll machine language code. Binary files contain addresses and
machine instructions and may be read directly into memory for
immediate execution. System programs and object programs the user has
created using the Asse~ler and Linker are in binary format.

3-3

3.2.2 Input/OUtput Devices

There are four categories of input/output devices in the CAPS-II
System; these are the console terminal keyboard and printer, cassette
drives 0 and 1, an optional line printer, and an optional high-speed
paper tape reader and punch (which may be used only by PIP as
discussed in chapter 8). Each device is referenced by means of a
standard permanent device name which is recognized by the CAPS-II
System when encountered in an rio command string. These names are
listed in Table 3-2.

Name

CTO (or

CTl (or

PP

PR

LP

TT

Table 3-2
Permanent Device Names

Device

0) Cassette Drive

1) Cassette Drive

0

1

High-speed Paper
Punch

High-speed Paper
Reader

Tape

Tape

Line Printer (LPH or
LSU)

Console Terminal (LT33
or LT35 Teletype, voros
Display, or LA30
DECWriter)

3.2.3 Filenames and Extensions

Syste~ and user files are referenced syMbolically by a name of as many
as S1X alphabetic characters (A-Z) or digits (0-9), followed by a
period and an optional extension of fr~ I to 3 alphabetic characters
or digits I the extension is generally used as an aid in remembering
the format of a file. The following are examples of legal and illegal
filenames;

Legal

ITYFE.PAL
ABCDEF.OBJ
DATA.
PRO.2lR
FILE (extension assumed)

Illegal

@STOW.PAL
FO RM
PROGRAM.DAT
LOAD. HAN

Although the user may call his files by any mnemonic filename and
extension he chooses, in most cases, he will want to conform to the
standard extensions established for CAPS-II and listed in Table 3-3.
There are two reasons why the standard extensions should be used:

3-4

-'

•

"

a) If an extension is not specified for an input file (for
example, FILE in the preceding list of legal
filenames), certain system programs and Monitor
commands will perform a search for the filename and an
assumed default extension, the Mcnitor RUN command is
one example of a system routine which assumes an
extension if no other is indicated.

b) If an extension is not specified for an output file.
some system programs will append standard extensions
during the output operation: for example, the Assembler
will append the extension .LST for the output listing
file unless the user designates another.

Standard extensions save the user time in typing the command line and
provide consistency in filenaming procedures: the following table
lists the default extensions; greater detail is presented in the
individual chapters.

Extension

.LDA

.LST

• MAP

Table 3-3
CAPS-ll Default Extensions

Meaning

Linker binary output load module

Assembler listing output file

Linker load map output

.OBJ Relocatable binary object module
(Assembler output, Linker input)

• PAL

.SLO

.SLG

Assembler source file (Editor input and
output, Assembler input)

NOTE

The next three extensions are
default extensions for the
Monitor RUN command. See
Section 3.3.1 for details.

Absolute binary object file (default
extension for RUN cornrnand, causing an
automatic load and overlay of the
Monitor as necessary up to CABLDRl

Absolute binary object file (default
extension for RUN command, causing an
automatic Load and Go)

.SRU Absolute binary object file (normal
default extension for the RUN command)

.S'fS CAPS-ll system file (i.e.,

I
, CAPSll.S'fS: the extension

for these two filesl

3-5

CTLOAD.S'fS,
is reserved

3.2.4 Entering I/O Information

As soon as the Monitor has been completely loaded into memory, it
responds by printing a dot (.) at the left margin of the console
terminal page indicating that it is ready to accept a command from the
user. A part of the Monitor called the Keyboard Listener (KBL) is
responsible for printing the dot. There are eight commands which the
user may type in response to this dot: DATE, ZERO, SENTINEL,
DIRECTORY, RUN, LOAD, START, and VE~qION. The KBL interprets these
commands and in most cases executes them; however, since the Monitor
RUN command requires more information from the user, another important
part of the Monitor--the Command String Interpreter--must be involved.

The Command String Interpreter (CSI) allows the user to enter command
strings which provide necessary information concerning input and
output files and devices, file formats to be used in I/O operations,
and any other important information needed for the I/O process. The
CSI prints an asterisk (*) at the left margin of the console terminal
page as soon as it is ready to accept this information.

N~E

The user may enter his I/O command
string as soon as the asterisk is
printed even though program loading (as
a result of using the RUN command) may
be occurring at the s~ time. The user
should be careful not to manually rewind
or dismount the System Cassette while
loading is continuing. After loading is
complete, the System Cassette will
automatically rewind.

The command string which the user enters in response to the asterisk
contains all input and output specifications in the following general
format:

*DEV,OUTPUT.EXT/OPTftDEV:I~PUT.EXT/OPT

DEV represents one of the permanent device names listed in Table 3-1.
If a cassette is the device, only the drive number need be entered
separated from the filename by a colon. OUTPUT. EXT and INPUT.EXT
represent filenames and extensions, as explained in Section 3.2.3,
/OPT represents an option letter fr~ the list described briefly in
Table 3-4. Options are separated from the rest of the command line
and from one another by a slash character (/) and are indicated in the
command string only when the user wishes the associated action to
occur. Option usage varies according to the program being used, refer
to individual chapters to learn which options are used by each CAPS-ll
system program.

3-6

~

option

Table 3-4
CSI Options

Meaning

IA ASCII; the file type is set to ASCII (used during
a PIP file transfer).

IBm Bottom; links the user program with its lowest
location at n (used by Linker).

IC Continuation; indicates that the oOMmand string is
to be broken into one Or more lines. The Ie
option must be used at the end of each line that
is to be continued.

10 Delete; indioates file deletion (used by PIP).

IF Forward; indicates that the cassette need not be
rewound before searching for the file (i.e., the
filename preceding the option is in a forward
direction in regard to the tape's current position
on the drive). The RUN command assumes this
option.

IH:n High; links the user program with its highest
location at n (used by the Linker).

10 OVerflow; used after an output filename,
indioating that the file preceding the option is
to be created and used only for output overflow
conditions. If no filename is indicated, the
overflow file will be created under the same name
as the most recently opened output file.

IP Prompt; requests that the syste~ prompt the user
to change cassettes on an indicated drive before
attempting to access a file. The system prints:

Is

IT

where # represents the number of the appropriate
drive ..

Several; used after a Linker input filename to
indicate that this filename oontains more than one
input objeot module. (Several object modules may
be combined under one filename using PIP.)

Transfer address; used after a Linker input
filename (object module) to indicate that the
transfer address of this object module is to be
used as the transfer address of the final load
module.

IX Extended; suppresses extended binary output in an
asseMbly listing (used by PAL).

IZ Zero; oauses all output cassettes indioated in the
oommand line to be zeroed, or oompletely deleted
of files (used by PIP).

3-7

The general form of the command line as shown previously consisted of
only one input and one output file indicated on a single line.
However, from 0 to an unli~ited nUMber of filenames may be entered
depending upon the system program in use, and the command string can
be broken into two or more lines by using the special option character
IC. A separator always divides the input specifications from the
output specifications and may be anyone of the following:

= equal sign

< left angle bracket

...... back arrO'N

The user may omit indicating
command string if he is
interpreted by the Monitor.

a permanent device name entirely in a
aware of how his cOlTll'land line will be
Consider the following command string:

~CT0IF[Rsr.PAL'LP,:crl'TAs<.I,CTI'TAS<.2,CT0.TAS~.3/C

,CTet. TAS-{. 4

This command string contains two 'lists' of device designations--the
output 'list' contains CTO and LP; the input 'list' is made up of CTl,
CTl, CTO, and CTO. unless the user designates otherwise, the Monitor
will always assume that the first device in any 'list' (input or
output) is cassette drive 0; all immediately following default
(unnamed) devices in this 'list' will also refer to drive O. This
continues until the user specifies a different device using a
permanent device naMe from Table 3-2. Thereafter, all immediate
default devices will reflect the most recent user-indicated device.
If the first device in a 'list' is not drive 0 (i.e., the user has
specified another permanent device name as in the input 'list' above),
all default devices will reflect this user-indicated device until a
different device is specified, and so on. Thus, the above command
line could have been written,

The Command String Interpreter scans the user's command string and
constructs a table containing all the input and outputmformation
which has been entered. Details concerning this table and more
information regarding both the KBL and CSI is provided later in the
chapter and in Appendix E.

3.2.5 Special Characters and Commands

The following special characters and commands can be used by the
programmer to control execution and correct command lines; these
commands may be used while under control of any of the system
programs.

3-8

Table 3-5
Special Characters/Commands

Character/Command Meaning

CTRL/C Control can be returned to the Keyboard
Monitor while running any of the system
programs by typing a CTRL/C (produced by
holding down the CTRL key and simultaneously
pressing the C key). A CTRL/C causes a
complete reboots trap (if necessary) of the
Keyboard Monitor by reading the appropriate
files from the System Cassette on drive O.
The system prints;

CTRL/O

which prompts the user to mount the System
Cassette on drive 0 (in the event that it may
not already be mounted); typing any character
will continue execution of the reboot. If
the Monitor is still intact in memory, no
reboot is necessary and typing a CTRL/C will
echo only tc and cause an immediate return to
the KBL. When it is ready to accept input,
the KBL types a dot at the left margin of the
teleprinter page.

Teleprinter output can be surpressed by
typing a CTRL/O (produced by holding down the
CTRL key and simultaneously press~ng the 0
key). This allows execution of the program
to continue but stops all console printout.
Typing a second CTRL/O will resume printout
again. unless output is extremely lengthy,
or unless the program is waiting for input
from the user, processing of a program after
an initial CTRL/O has been typed will usually
be completed before the user is able to type
a second CTRL/O. Printout will automatically
resume when control is returned to the
Keyboard Listener (indicated by a dot at the
left margin).

NOTE

CTRL/O does not
printer output,
prevent certain
messages from
console terminal.

suppress line
and does not

important error
printing on the

CTRL/O is treated somewhat
differently when using the CAPS-II
Linker to produce a load map.
Refer to Chapter 6 for details.

(Continued on next page)

3-9

Character/Command

CTRL/P

CTRL/U

RUBOUT

Table 3-5 (Cont.)
Special Characters/Commands

Meaning

A CTRL/P (produced by typing the CTRL and P
keys simultaneously) during the initiating of
a Monitor command echoes tp and causes
control to return to the Keyboard Listener,
indicated by a dot at the left margin.

A CTRL/p typed during the initiating of a CSI
command string echoes tP and causes a
re-initialization of the Command String
Interpreter, indicated by an asterisk at the
left margin.

During execution of a user program, a restart
address may have been specified by the user
within his program so that a CTRL/P will
cause a restart of that program rather than
of the Monitor. Refer to the CTRL/p RESTART
lOT (Chapter 9, Section 9.4.1) for details.

A line currently being entered (whether as
part of a cOArnand or as text) may be ignored
by typing a CTRL/U (produced by typing the
CTRL and U keys simultaneously). A tu is
echoed followed by a carriage return/line
feed (when using the Editor, an asterisk is
also printed), the user may enter a new line.
(This command produces the same results as
typing RUBOUTs back to the beginning of a
line.)

A RUBOUT (produced by pressing the RUBOUT
key) causes a deletion of the most recently
typed character and echoes the deleted
character on the terminal. Each successive
RUBOUT deletes and echoes one more character
(up to the preceding carriage return/line
feed, after which successive RUBOUTs will not
echo nor delete any characters).

3.2.6 Error Message Format

Error messages are printed whenever the Keyboard Monitor is used
incorrectly, or when an I/O error occurs while using Monitor commands
and system programs, or upon occurrence of a hardware error. The
appropriate message is printed on the console terminal at the time the
error occurs/ the message is preceeded by either a question mark or a
percent sign to indicate one of the following'

3-10

'.

•

?

Fatal errorl execution of the command cannot
be continued further and control returns to
the KBL. A dot is printed at the left margin
of the teleprinter page when the Monitor is
ready to accept another co_and.

Non-fatal error; if possible, execution of
the command will continue after the error
message is printed on the console terminal,
if further execution is not possible, control
will return to the CSI and the user may enter
another command string.

A list of Monitor error messages is provided in Section 3.7.

3.3 KEYBOARD MONITOR COMMANDS

There are eight Keyboard Monitor covmands which may be typed in
response to the dot printed by the Keyboard Listener, they are entered
when the RETURN key is pr~ssed. Any error made while utilizing these
commands will result ~n a message informing the user. After
occurrence of an error, control returns to the KBL and the cOMmand
must be retyped. Monitor commands generally require only a single
command line which specifies the device, filename(s), and switch (es)
in the following format:

.COMMAND/SW DEV,FILENA.EXT

COMMAND represents one of the eight Monitor commands. SW represents a
switch--an alphabetic character separated from the command and from
another switch character by a slash (I); switches are similar to the
CSI options discussed in Section 3.2.4, but perfo~ different
functions and are valid only when used with Monitor commands; switches
are discussed individually in sections concerning the comnands with
which they are used. The device (DEV), if specified, will al«ays be a
cassette, sO the user may enter only the drive number rather than the
entire permanent device name if he wishes. with the exception of the
ZEno command, drive 0 is always assumed, so the user may omit the
device specification entirely if CTO is the device. FILENA.EXT
represents the file being accessed; the filename must be separated
from the drive number (if indicated) by a colon.

Throughout this section, optional entries in the command line are
enclosed in square brackets •

3.3.1 RUN Command

The RUN command is of the form:

.R[UNj [[CT] t:jFILENA[.EXTJ

The RUN command instructs the Monitor to load and execute the file
specified in the command line: this file must be in absolute binary
format. If the user omits the extension (as is generally the case

3-11

---------------------- --- --

when calling system programs), the Monitor will search the indicated
cassette for the file as the user has designated it in the command
line. However, it aSSUffleS that it will find the filename followed by
one of three extensions: .SLO, .SLG, or .SRU; the first file found
which has the indicated filename and one of these extensions willIE
accessed.

The extensions used by the RUN co~and are interpreted as follows:

.SLO The file is an ahsolute binary object file and
will be loaded into memory overlaying as necessary
all parts of the I~nitor as far as CARLDR (see
Section 3.5); after the file is loaded, it is
automatically started. RUNning a file with this
extension is identical to a LOAD/O of the file.
Presently, no system programs use the .SLO
extension; however, it is available for future
system expansion and for general use •

• SLG The file is an absolute binary ohject file and
will be loaded into memory to the bottom location
of CLODII (see Section 3.5). Execution is
automatic. System programs which use this
extension are EDIT.SLG and ODT.SLG. Using this
extension is the sane as using the /G switch with
the LOAD command •

• SRU The file is an absolute binary object file and
will be loaded into memory and automatically
started. This is the normal default extension for
the RUN command and is used by the following
system programs: PIP.SRU, PAL.SRU, LINK.SRU.
Using this extension is similar to using the LOAD
co~nd except that execution is automatic and
more I/O information must be provided by the user,
thus involving the eSI.

For example, assume the directory of cassette drive 1 is as follows:

TABLE 1
,ORM SRU
f'I E:LD PAL
,ORM SLG

If the user types,

-'-R I: F'ORM

The cassette on drive 1 will be searched for the first file consisting
of the name FORM and one of the three extensions; in this case the
first file meeting these requirements is FORM.SRU. This file is
loaded into memory and executed. ~fter the file is loaded, the
cassette is automatically rewound I thus, if the user wishes to access
the file FORM.SLG, he must either delete the file FORM.SRU from the
cassette (see Chapter 8), Or specify the entire filename in the
command line as follows:

• R I' F'ORM. SLG

3-12

,

If a user program with no specified transfer address is loaded via
RUN, the fatal error message,

%NO START AOOR

will be printed. If the file indicated in the command line is not
present on the cassette, the fatal error message:

IF'1 LE NOT F'NO

will be printed.

3.3.2 LOAD Command

The LOAD command is used to load an absolute binary file into memory
and takes the following form:

.L!OAD] [lSi'll {{CT] t:JFILENA.EXT

/SW represents either a /0 or /G switch. If neither switch is
indicated in the command line, the command allows loading only to the
bottom location of the KBL without error (see Figure 3-1 in Section
3.4). At the completion of the load, the KBL prints a dot to indicate
that it is still intact and ready to receive another Monitor command
(typically either START or another LOAD).

LOAD used with a /G switch directs a program load
location of CLODll, and then initiates a 'GO' (START)
transfer address. If this is absent, the fatal error

%/II 0 START AD OR
te?

to the bottom
at the specified
message:

will be printed. Since the KBL and CSI are 'marked' (or assumed) as
being overwritten when the /G switch is used, the Monitor must be
rebooted from the System Cassette on drive O.

LOAD used with a /0 switch allows a program to be loaded even if its
size requires overwriting the entire Monitor. Such a program must
handle its own I/O and other functions since no part of the Monitor
may be available to do this. This type of prograll'l is started at its
transfer address, if none has been indicated, CABLDR will halt and
expect user console action (information concerning a CABLDR halt is
provided in Appendix El.

Section 3.S provides greater detail concerning the loading process
when RUN or any form of the LOAD cOllll1and is used.

3.3.3 START Command

The START command is of the form •

• ST [ART] [nnnnnnJ

3-13

---~ --

and is used to start a program which has been loaded into me~ory using
the LOAD command without a switch. nnnnnn is an optional absolute
starting address for the program, and if indicated, will cause program
control to be transferred to this address. If not indicated, the last
specified transfer address of the progr~(s) loaded will be used. If
no transfer address exists, an error message is printed and control
returns to the KBL.

For example, the program LDT.SLG on cassette drive 1 is loaded and
started at location 1000 as follows,

.LOAD lILDT.SLG

• ST 1000

3.3.4 DATE Camm~nd

The DATE command is of the form,

.DA(TF.] dd-mrnm-yy

where dd, J1ll"I\m, and yy represent the current day, month, and year as
entered by the user. 0ne- or two-digit numhers in the range 1-31 are
entered in the day portion; the first 3 characters of the month are
entered in the month portion of the cOl'1l'land; digits in the range 0-99
are entered in the year portion. The Keyboard Monitor checks for the
entry of a number which is outside the ranges allowed and for
characters which are not the first three characters of one of the
twelve months; if any error is found, a message is printed and a blank
date is produced (i.e., the location in which the date is stored is
padded with nulls and dashes are printed during directory listings).

The current date as entered by the user will appear in directory
listings (see Section 3.3.5), in Linker load maps, and in PAL assembly
listings, and the date of creation of all new files will also be in
cluded. If the date command is ~ot used, directory listings will COn
tain only filenames, extensions, and previous creation dates.

When the user enters a date, it is stored in a part of memory that is
not likely to be overwritten (and therefore destroyed) by the user or
by the CAPS-II System. The user should update his syste~ from day to
day to prevent wrong dates fr~ being assigned to files. Very
infrequently (if ever) that part of memory holding the date may be
overwritten in such a way as to cause random charRcters to be printed
in place of the date. The user need only type in the current date
using the DATE COmMand to correct this condition.

3.3.5 DIRECTORY Conmand

The DIRectory command is of the form,

.01 (R] (IF] [[CT] #,]

and causes a directory listing of the cassette on the indicated drive
to be output on the console terminal. For example,

3-14

~~~- ...... ~~---~~ ..... ~~-



~DIR CTI: 

03-APR-73 

"AD SLG 03-APR-73 
BA I 27-,"1AR-73 

The IF switch 
produced by 
filenames and 

is optional; if used, it causes 
omitting current and creation 
extensions. For example: 

.DIR/" I. 

ABC SLG 
* EMPTY 
PRO LDA 

a IIfast" listing to be 
dates and listing only 

If a file has been deleted from a cassette using PIP (see Chapter 8) 
its filename and extension will be replaced by the header *R~WTY in 
the directory listing. To delete *EIWTY files froM cassettes, the 
user must firRt transfer all needed files to another cassette (using 
PIP) and then zero the first cassette, or use the SENTINEL cOJl1(T1and, 
explained in Section 3.3.7. 

If no sentinel file is present on the cassette, the error message: 

%NO SENTINEL I'l LE 

.. ill be printed following the directory listing. (1'his condition 
occurs when an open file on cassette has not been properly closed.) 
The user should write a sentinel file on the cassette using the 
SENTINEL command. While files may be read froM a cassette .. hich 
contains no sentinel file, they may not be written. 

3.3.6 ZERO Command 

The ZERO command is of the form: 

.ZIERO] ICT] #: 

and causes the indicated cassette to be zeroed, or completely deleted 
of files; the sentinel file is .. ritten at the beginning of the 
cassette so that the entire tape is availahle for use. A cassette 
number must always be indicated as the ZERO command does not assume 
drive D. 

All new cassettes should be zeroed before they are first used. Tslis 
ensures that a sentinel file is present at the beginning of the tape. 

3.3.7 SENTINEL Command 

The SENTINEL command 
deleting all files 
command is: 

allows the user to Izera' part of a cassette by 
following a given filename. The fOrM of the 

• SE INTINEL] I ICT] #:] FILENA. EXT 

3-15 



This command causes the sentinel file to be written 
following FILENA.EXT, thereby effectively 'zeroing' the 
the cassette. For exanple, assume the directory of the 
unit drive I is. 

SIZE LST 
*EMPTY 
BLANK SLG 
fORTY OAT 

and the user types, 

.SE IIS1ZE.LST 

The directory of the cassette will now read. 

SIZE LST 

il!l1lediately 
remainder of 
cassette on 

Cassette drive 0 is assumed if no drive nuMber is indicated in the 
command line. 

3.3.8 VERSION Command 

The VERSION command is used to find out the version number of the 
MOnitor currently in use. Typing' 

• V(F.RSION! 

instructs the MOnitor to respond with the Monitor identification, 
version number, and current date. For example: 

.V 

CAPS-II V01-02 
27-AUG-73 

Version 01-02 is currently in use. As new versions of the Monitor are 
released, this number will be updated accordingly. Any communications 
with Digital Equipment Corporation concerning the CAPS-II system 
should indicate the version number of the MOnitor currently in use. 

3.4 KEYBOARD ~!ONITOR SECT IONfl 

That part of the CAPS-II System temed the Keyboard Monitor (and 
stored on the System Cassette as CAPSI1.SYS) is actually co~posed of 
several subprograms (such as CSl and KBL) which are responsible for 
various stages of syste~ and user interaction. As already mentioned, 
the first step in using the CAPS-li System is to bring these 
subprograms into memory and begin their execution. The user begins 
the loading process when he starts the bootstrap loader (CBOOTl. When 
the MOnitor has been completely loaded and is ready for use, it 
resides in memory as shown in Figure 3-1, 

3-16 



ceOOT 

RE5MON 

CLOD 1 1 

C51 

CASlO!! 

KilL 

FREE 
MEMOR~ 

5YSCOM 

X77l0 

264 * 

57 
40 

° 

• SVSCOM OCCUPIES lOCATIONS 
40 -57; DEVICE INTERRUPT VECTORS 
ARE CONTAINED IN NON-SVSCOM 
LOCATIONS 0-601- AND CERTAIN 
OTHER LOCATION, FROM 60 - 264 

Figure 3-1 CAPS-II Memory Map 

Each of the Monitor subsections will be discussed briefly. A detailed 
description of the Monitor loading process, information concerning 
loader formats, and Switch Register settings for use with Monitor 
loads and error halts may be referenced in Appendix E. 

3.4.1 Cassette Bootstrap (CBOOT) 

The Cassette Bootstrap is used to load and start any progran which is 
in 'CBOOT Loader Format' (such as CTLOAD.SYS). CBGOT has already been 
mentioned in section 3.1 as being instrumental in loading the CAPS-II 
Monitor into memory. A complete listing of CRGOT and most information 
concerning its use in the CAPS-II System is provided in Appendix E. 

3.4.2 Resident Monitor (RE5MON) 

Input and output operations are handled by RESMON, which contains 
routines for all file-structured cassette I/O, and all teleprinter, 
keyboard, and line printer .I/O (with the exception of CABLDR which 
contains the I/O routines necessary for performing the LOAD/O command, 
as described in Section 3.4.5) Usually RESMON is never overwritten but 
is always available in memory for access by the user (again, an 
exception occurs when processing the LOAD/O command). Chapter 9 
provides specific information concerning the way RESMON works and 
methods by which the programmer can utilize REBMON in his own 
programs. 

RESMON also contains the System Communication Area (SYSCOM), which 
provides to the user and to various system programs information 
concerning available memory and locations of important Monitor 
routines (see Section 3.4.7). 

3-17 



3.4.3 Cassette Loader for CAPS-11 (CLOD11) 

CLOD11 is used in the execution of the RUN, LOAD, and LOAD/G Monitor 
commands by directing the loading of programs when these comands are 
issued. In the case of the RUN command, the user may simultaneously 
interact with the CSI while program loading is occurring (i.e., he may 
enter his I/O command string even though the program load is in 
progress). CLOD11 performs error checking and reports certain types 
of errors to the userr these are listed in Table 3-8. 

3.4.4 Command String Interpreter (CSI) 

The Command String Interpreter (CSI) is used by all system programs 
(with the exception of the Editor and ODT) and may be used by any user 
program which is loaded and started via the Monitor RUN command. When 
the user runs a program, the CSI responds by printing an asterisk (*) 
at the left margin of the console terminal pager the user responds by 
entering all device and file I/O information needed by the program. 
The CSI then constructs a table which contains the information entered 
by the user. This table is described in more detail in Section 3.5. 

3.4.5 Cassette Absolute Loader (CABLDR) 

CABLDR is used to load programs written in 'Absolute Binary Format' 
which is the format of all system programs and all Linker output (see 
Chapter 6). CABLDR performs error checking during program loads and 
halts upon any error indication, at which time the user may set the 
Switch Register to direct further action. Refer to Appendix E for 
detailed information concerning user interaction with CABLDR. 

3.4.6 Keyboard Listener (KBL) 

The Keyboard Listener is that part of the Monitor responsible for 
printing the dot at the left margin of the teleprinter page, 
indicating to the user that he may enter anyone of the eight Monitor 
commands discussed in Section 3.3. The KBL is also responsible for 
positioning the cassette tape for proper loading during a RUN, LOAD, 
or LOAD/G command, it then passes control on to CLOD11, which handles 
the actual loading during processing of these commands. 

3.4.7 System Communication (SYSCOM) 

The System Communications Area (SYSCOM) resides in absolute locations 
40 through 57 and is loaded into memory (as part of the RES~DN source 
code) as shown previously in Figure 3-1. This area provides a means 
of communication between the Monitor and other programs not linked 
with it, such as system and user programs. 

The following information 
of general interest to 
system programs and which 

is classed into two sections--that which is 
the user, and that which is used by CAPS-11 

may be helpful to user programs requiring 

3-18 



non-standard services. The user should refer to Section 3.5 in 
conjunction with this information. 

SYSCOM--General Information 

During normal system use, the absolute locations listed in Table 3-6 
are accessed and manipulated by the CAPS-II System as noted: 

Location 

HI FREE 

DATPTR 

LPSIZE 

HLTERR 

Table 3-6 
General Locations 

Function 

Absolute location 42--this word contains the 
address of the highest location available to the 
user for program loading and storage which 
precedes the 'expected' portion of the Monitor 
still residing in memory. For example, after a 
LOAD/G command, the user can 'expect' that all of 
RESMON will remain intact, and thus HIFREE will 
contain an address equal to the start of RESMON 
minus two (bytes). After a RUN command, HIFREE 
will usually contain the starting location of the 
CSI table minus two. After a LOAD/O command, 
HIFREE will contain the address immediately 
preceding the beginning of relocated CABLDR; the 
user can plan to use all locations through the 
location contained in HIFREE and still preserve 
CABLDR. 

Absolute location 54--this word contains the 
address in RESMaN of the current date (as input by 
the user via the Monitor DATE command). The six 
bytes starting at this location contain, in order: 

two ASCII bytes containing the day 
two ASCII bytes containing the month number 
two ASCII bytes containing the year 

Absolute location 40--this byte contains a number 
which is one greater than the total number of 
character oolurnns existing on the user's line 
printer (i.e., 133 (or 205 octal) for the standard 
systeml 81 (or 121 octal) for a non-standard line 
printer) • 

Absolute location 4l--this byte is examined by the 
cassette interrupt handler upon every occurrence 
of a controller error. If this byte has been set 
to non-zero by the user (never by the system), the 
interrupt routine will halt whenever an error is 
detected so that the user may examine the cassette 
status register. Pressing the CONTinue key on the 
processor console will cause the software to con
tinue. This byte is provided primarily as a hard
ware debugging aid. 

3-19 



SYSCOM--Special Information 

The following SYSCOM locations exist primarily for use by CAPS-II 
system programs and should be accessed by the user with caution. 
These locations should not be modified except as indicated. 

Location 

KBLRES 

CSIADR 

Table 3-7 
Special Locations 

Function 

Absolute location 52--this byte is a flag 
indicating the state of the non-resident portion 
of the Monitor. It is initially set to -1 when 
the system is bootstrapped to indicate that the 
entire Monitor is resident: it is cleared when a 
LOAD/G, LOAD/a, or RUN cO!1U'\and sets HIFREE above 
portions of the Monitor in order to allow maximum 
loading and storage space. KBLRES is interogated 
by the CTRL/C and fatal error routines to 
determine whether a co~plete reboot is necessary 
or whether the Monitor need only be restarted (if 
KBLRES=O, the Monitor may not be entirely 
resident). Certain system programs (EDIT, LINK, 
DDT, PIP) do not require the extra me~ory space 
made available when the Monitor is overwritten. 
Thus, even though KBLRES is cleRred when these' 
programs are loaded, they do not actually use any 
of the memory space provided between the beginning 
of the Monitor and the beginning of RESHON. In 
order to prevent a CTRL/C or fatal error fron 
causing a cCXTlplete reboot of the Noni tor, these 
programs each reset KBLRES to -1. User programs 
may also set KBLRES to -1, the user program should 
be linked with the program KBLRES.OBJ which is 
supplied on one of the OEJ Cassettes; this process 
is described in section 3.5. 

clears KBLRES after a 
must be set to -1 at 

load-time (using the 
in order to ensure that 
~IDnitor is intact. 

Since a START command always 
load is conplete, KELRES 
run-time rather than at 
instruction MOVE #-1,@#52) 
the system will assume the 

Absolute location 46--this word contains the 
starting address of the CSI. It is used by 
certain system progrRns to call the CSI, enabling 
entry of another co~and string after action on a 
previous string has been completed. Note that the 
CSI is reusable only if it has not been 
over-written. 

(Continued on next page) 

3-20 



Table 3-7 (Cant.) 
Special Locations 

Location ____ ~F~u~n~c=t==i~o~n ________________________ ~ 

KBLADR Absolute location 50--thls word contains the 
starting address of the KBL which is also the 
lowest address in the Monitor. System software 
restarts the Monitor at this address whenever a 
CTRL/C or fatal error condition occurs providing 
the Monitor is resident (i.e., if KBLRES is 
non-zero). Note that the user may compare the 
address in KBLADR against his use of memory to 
determine whether his program must set KBLRES in 
order to allow a quick restart of the Monitor. 

ZERCORE Absolute location 53--this byte (which is 
initialized to -1) is cleared by the Assembler 
(PAL) to indicate that memory should be cleared 
before the final section of PAL is loaded. This 
is necessary since the portion of PAL containing 
the symbol table must be loaded into zeroed 
memory. This byte may be cleared by any user 
program which requires use of the CnI. Such use 
is not recommended without a careful reading of 
the CLODll source listing (available fro~ the 
software Distribution Center). 

CSITBST ' Absolute location 44--this word holds the starting 
address of the CSI table as it resides in memory. 
It is used by system programs which make use of 
the CSI, and may be utilized by any user programs 
which use the CSI. 

FILWRD Absolute location 56--this word contains 
information which is used by RESMON and ODT to 
handle differences in console terminals. Some 
terminals (such as a serial LA30 and a VT05) 
require that a certain character (e.g., carriage 
return or line feed which both take longer than 
most characters to print on the terminall be 
followed by a number of • pad' or 'fill' 
characters. The low-order byte of FILWRD 
(absolute location 56) contains the character 
which must be filled (or 0 if none must be 
filled), the high-order byte (absolute location 
57) contains the number of 'fill' characters 
required. RESMON and ODT will type this number of 
nulls (ASCII 000) after the character specified by 
byte 56. 

3.5 USER PROGRl\M LOADING PROCESS 

The CAPS-II Monitor attempts to provide the user at all ti~es with 
maximum loading space and maximum storage space for system and user 
programs. It does this by allowing unneeded parts of the Monitor to 

3-21 



be overwritten and by moving necessary sections to higher positions in 
memory. The SYSCOM parameter HIFREE is used at various tiMes during 
the loading process to indicate the highest location into which user 
lor system) programs may be loaded and the highest free location 
available for use which still preserves RESMQN (and possibly the CSI 
table). Since the goal of the system is to maximize such areas, 
HIFREE will usually be set at points above Monitor components which 
are not needed for loading or I/O, even though a user program may not 
actually overwrite the Monitor. When HIFREE is to be set to locations 
above any ~~nitor location, the SYSCOM flag KBLRES is cleared to 
indicate that the Monitor may" not be intact. This has the result of 
causing a physical reboot (requiring approximately 30 seconds) upon 
occurrence of any fatal error Or CTRL/C command, instead of a simple 
restart of the KBL. In order to avoid a possible physical reboot of 
the system in cases such as this, the user may link his program with 
the object module KBLRES.OBJ on the Build Cassette. This program is 
merely: 

.ASEeT 

.=52 

.BYTE-l 
• E'ID 

J L OC. Qf >< BL ~E:S I ~ ~y SeD"! 
I ~AR,( ,( BL AS RE:SI DE~ T 

KBLRES.OBJ should be the first program in 
Loading of this code will reset the 
cleared before loading. 

the Linker input string. 
SYSCOM KBLRES flag which is 

The user who wishes to load and execute a program has four methods 
available to him (reference should be made to Figure 3-1 while reading 
the following): 

1. Assuming the program has an extension of .SRU or any 
user-assigned extension other than .SLO or .SLO, the RUN 
command may be used to automatically load and start the 
program. RUN allows use of the CSI, and RPSMON is 
available to handle all I/O within the user program. 
The loading procedure is as follows: 

The cassette is first properly positioned for the load; 
when this is done, the KSL and CASLDR are no longer 
needed and may be ovenJritten. The CSI huilds a table 
which contains all the I/O information which the user 
has entered. 300 bytes are initially reserved for the 
table, and once it is built and its actual size is 
determined, it is moved to occupy memory just below 
CLOD1I. Thus, program loading may use all memory space 
to the bottom location of the CSI table. 

When loading is complete, CLODll is no longer needed. 
In order to maximize free memory space, the CSI table is 
standardly moved up over CLODll so as to be positioned 
immediately under RESMON. This destroys CLODll and 
makes it necessary to reboot the system upon occurrence 
of a CTRL/C or fatal error. To avoid this action (in 
cases where the user program does not need space above 
the start of the Monitor, i.e., above KBL), the u~er may 
link KSLRES.OBJ with his program as described 
previously; the second movement of the CSI table will 
thus be prevented. 

3-22 



The 300 bytes originally reserved for the CSI table is a 
parameter which may be changed by the user during 
reassembly of the CAPS-II Monitor. 

2. The second choice available to the user for loading and 
executing a program is to use the LOAD (and START) 
command. The LOAD command allows a program to be loaded 
only to the bottom location of the KBL, preserving the 
entire Monitor for future use. 

3. LOAD/G (and RUN used with the .SLG extension) may be 
chosen to load and start a prograM as follows: 

Before the file is loaded, the ca~sette is physically 
positioned before the data of the file. KBL and CABLDR 
may then be overwritten since CLODII now directs the 
program load. Program loading may occur to the bottom 
location of CLODII. After the load, CLODII is no longer 
needed, so the user has the entire memory below RESMON 
available for storage space. RESMON is preserved to 
handle I/O within the user's program. However, the rest 
of the Monitor is not preserved and no future Monitor 
commands are possible. 

4. The LOAD/O command (and RUN used with a .SLO extension) 
allows a program to be loaded providing maximum load and 
storage space. The cassette is positioned for the data, 
and CABLDR is moved into highest memory with CBOOT, 
where it directs program loading. Loading may occur to 
the bottom location of CABLDR in its new position, and 
after loading, the entire me~ory is available for 
storage. Since no part of the Monitor is preserved, the 
user progr~ must handle its own I/O, and no further 
Monitor commands or functions are available for use. 

3.6 NOTES ON DEVICE HANDLERS 

The line printer prints characters as they appear in the buffer. Tabs 
are output as spaces to the next tab stop (stops occur every a 
character positions). Carriage returns are ignored since a fo~ feed 
or line feed is assumed to follow causing the carriage to advance to 
the beginning of the next line. If more than 132 characters in a 
single line are output, the line printer handler issues a carriage 
return/line feed after the 132nd character and continues output on the 
next line. (See Appendix E for instructions regarding changing the 
length of the LPT line from 132 to 80 columns.) 

If the console terminal'is an LT33 Teletype containing 
punch units, these may be used as input/output devices in 
with the Teletype ~eyboard. To punch a tape, simply place 
unit to ON: to read a tape, place the reader unit 
Characters will be printed on the Teletype keyhoard as they 
or punched. 

reader and 
conjunction 
the punch 
to START. 
are read 

The high-speed reader and punch may be used by PIP. Refer to Chapter 
8 for details. 

3-23 



3.1 KEYBOARD MONITOR ERROR HESSAGES 

Table 3-8 lists all error 
source of each error. 
symbols: 

messages output by the system and lists the 
TheRe messages are preceeded by one of two 

Non-fatal error; execution continues if possible; 
otherwise control returns to the eSI after the 
message is printed. 

Fatal error; control returns to the KBL (if the 
Honitor is entirely resident, the user will see 
the dot printed after the message: if the Monitor 
is not resident, the system will type tC? on the 
line following the message; the user should ensure 
that the SysteM Cassette is mounted on drive 0, 
and then type any character on the keyboard to 
initiate a reboot). 

Some messages may have numeric arguments which follow the message 
itself, these usually indicate either the drive number or the program 
counter. Note that messages which have RESMON as their source are 
those which the user may see during operation of his program. 

Note also that CSI error messages ending with a colon (,) are followed 
by a line containing all command string characters entered until 
detection of the character in error (which is indicated by a ? ). 

Table 3-8 
Kevboard Monitor Error Messages . 

I 
Message Arg Meaning Source 

lOT PC Illegal lOT: URer RESMON 
specified an illegal 
device or data mode, or an 
illegal RESMON lOT code. 

NO FILE OPEN drive # READ or WRITE with no RESMON 
SEEK or ENTER 

OFFLINE drive t Cassette not mounted; if RESMON 
non-fatal, execution is 
automatically resumed when 
the cassette is mounted (if 
the user improperly mounts thE 
cassette, a fatal error will 
probably o=ur) 

TIMING drive t System software did not RESMON 
service an initiated 
request fast enough 

(Continued on next page) 

3-24 



.Message 

TRAP 

WRT LOCK 

FILE NOT FND 

ILL CMD 

NO SENTINEL FILE 

SYNTAX ERROR 

BAD TAPE 

NO STI'.RT AooR 

PROG TOO BIG 

SFTWR CHKSM ERR 

TRUNCATED FILE 

Table 3-8 (Cont.) 
Keyboard Monitor Error Messages 

Agr Meaning Source 

PC Stack overflow, reference RESMON 
to non-existent memory, 
illegal or reserved 
instruction, attempt to 
reference a word on a 
byte boundary; the SP at 
the time, of the trap is 
stored in location 44 

drive # Cassette write-locked: if RESMON 
non-fatal, execution is 
autOMaticaly resumed when 
the cassette is write-enabled 

Specified file not 
found 

Illegal command 

NO sentinel file is 
present on the tape, 
this message may occur 
during use of the DIRECTORY 
command at that point during 
the directory listing where 
the sentinel file is missing 

Arguments following a 
command are illegal 

Hardware checksum error 
(note that this error 
may also be caused by 
READ operations initiated 
on a cassette which is 
positioned after the 
sentinel file) 

Loaded program had no 
transfer address 

Program too big for the 
memory limits defined by 
the type of load used 

Software checksum error 
(message followed by number 
of errors) 

File ends before transfer 
address load block is 
found 

KBL 

KBL 

KBL 

KBL 

KBL, 
CLODll 

KBL, 
CLODll 

CLODll 

CLODll 

CLODll 

(Continued on next page) 

3-25 



Massage 

CSI TABLE 
OVERFLOW 

ILLEGAL CHAR: 

ILLEGAL DEVICE: 

ILLEGAL SYNTAX: 

Table 3-8 (Cant.) 
Keyboard Monitor Error Messages 

Arg Meaning 

COl'Ulland string too big 
for the table 

(C. S. Illegal character in 
line) col'1l!land string 

(e"s .. illegal device 
line) specification 

(C.5. Illegal syntax in 
line) I command string 

3-26 

Source 

CSI 

CSI 

CSI 

CSI 



CHAPTER 4 

EDITING TIIF. SO!:RCE PROGRAM 

The Text Editor (EDIT) is used to create ann modify ASCII source 
files. Controlled by user coMMands frO!". the keyboard, EDIT reads 
ASCII files from cassette, makes specified changos, and writes ASCII 
files back to cassette or lists then on the line printer or console 
terminal. 

The Editor considers a file to be dividen into logical units called 
pages. A page of text is generally 50-60 lines long (delimited by 
form feed characters) and corresponds approxirnately to a phl'sical page 
of a program listing. The Editor reads text frOM the input file into 
two internal buffers; froM these buffers text is then called, a page 
at a time, into the Text Buffer where the page beCOMes available for 
editing. P.diting COMmands Can then be used to: 

Locate text to be changed 

Execute and verify changes 

Output a page of text to the output file 

List an edited page on the line printer or console terminal 

4.1 CALLING AND USING THE EDITOR 

The Editor is called from the System Cassette by typing: 

!oR EDIT 

in response to the dot printed by the Keyboard 
Editor is in mernory and ready to accept 
asterisk (*) is printed at the left margin of 
page. 

4-1 

Listener. l;hen the 
I/O specifications, an 
the console terminal 



4.1.1 Eoi tor Options 

None of the options previously listed in Chapter 3 are used by the 
Editor. An autoMatic over f 10 ... ' feature is provided, however; if the 
Editor discovers an end-of-tape condition, it prn~pts the user to 
mount a new cassette ana output is continued on this cassette under 
the same output filename originally specified by the user (see Section 
4.4.6) • 

4.1.2 Input and Output Specifications (Edit Read and Edit Write) 

The Edit Read cOMMand opens a file for input. The fo~ of the cOMMand 
is; 

*ER#,FlLENA.EXT 

where t represents the unit drive number and FIJ,NAM.EXT the file to be 
opened. If no drive number is specified, the System Cassette--drive 
0--15 assumed: if no extension is indicatp.fl, .PAL is aS~l~ed. Any 
file currently open for input is closed. Edit Read inputs enollgh text 
to fill its two internal input huffers; text is not read into the Text 
Buffer however. and the contents of the other user buffers are not 
affected. 

For eXi\I'1ple, 

Open for input the file SAMP.PAL 
on cassette drive #1 ($ represents 
typing the ALTMODE key) 

The Edit Write co~and sets up a new file for output (however, no text 
is output to cassette and the contents of the user buffers are not 
affected). Any current output files are closed and a new output file 
with the specified name is opened on the indicated cassette drive. 
The form of the co~and is: 

·E\~~ ,FlLENA.EXT 

4-2 



,. 

NOTE 

A cassette which is currently open for 
an output operation cannot be 
simultaneously opened for an input 
operation. If this is attempted, the 
error Ressage: 

1*110 CHAN COI'lf"LI Ch 1 

is printed. However, a cassette which 
is currently open for input can be 
opened for output~ the cassette is 
repositioned to 'Y'rite the output file: 
no further input fro~ that cafisette is 
then possible until the output file is 
closed. 

If a file with the same name already 
exists on the cassette indicated in the 
Edit ~Irite cO!l1!lland, the old file will be 
destroyed when the user executes an EXit 
or F:nd File command. 

The user may create a new file by first opening an output file (via 
the EW colllMand) and then creating t.'le text using the Insert command 
(see Section 4.4.9); the new text will be stored on the drive under 
the filenal'le indicated in the E.l command. Since a new file is being 
created, no input file need be open to perfor,... this operation. 

Examples of use of these co~mands are: 

!ERltTEST.LS$$ 

.!EW I: OUT. TXT$,; 
!1 ..... text .... 

4.1.3 Restarting the Editor 

Open the file TEST.LS on cassette 
drive 1 for input. 

Open the file FILEl.DAT on drive 
o (the System Cassette) for output • 

Open the file OUT.TXT on drive 
for output. There is no input 
a new file will he created using 
Insert command. 

1 
file; 
the 

The Editor may be restarted at any time (while it is in meMory) by 
typing CTRL/P. This echoes as P on the console terFlinal followed b" 
a carriage return/line feed. The Conmand String Interpreter prints an 
asterisk at the left margin indicacing that it is ready to accept 
another Editor COMmand. All open files are closed and all huffers are 
cleared. 

4-3 



4. 2 !~ODES OF OPEP-ATION 

The Editor operates in one of two different 
Text Mode. In COr1l'1and Hode all input 
interpreted as cOMmands instructing the 
operation. In TAxt Node all typed input 
replace, he inserted into, or be appended to 
Buffer. 

modes: COP\I'l1and Mode or 
typed on the keyhoard is 
Editor to perform some 
is interpreted as text to 
the contents of the Text 

Immediately after being loaded into memory and started, the Editor is 
in Command Mode. The special character (*) is printed at the left 
margin of the console terminal page indicating that the Editor is 
waiting for the user to type a co"""and. All commands are teminated 
hy pressing the ALTf-IDDE key twice in succession. Execution of 
commands procoeds from left to right. Should an error be encountered 
during execution of a command string, the Editor will print an error 
message followed by an (*) at the beginning of a new line indicating 
that it is still in COl'1l1land ~Iode and a«aiting a legal command. The 
cow~and in error (and any succeeding commands) are not executed and 
rrust be corrected and retyped. 

Text mode is entered «henever the user types a corrmand which must be 
followed by a text string. These commands insert, replace, exchange, 
or otherwise manipUlate text: after such a command has been typed, all 
succeeding characters are considered part of the text string until an 
ALTMODE is typed. The ALT!10DE terroinates the text string and causes 
the Editor to reenter COrll'land Hode, at which point all characters are 
considered commands again. 

4.3 SPECIAL Kgy COMlWmS 

Special EDIT key COMmands are listed in Table 4-1. (Control commands 
are typed by holding down the CTllL key while typing the appropriate 
character. ) 

COl'lJ!land 

ALTMODE 

i 
I , 

CTllL/C 

Echoes 

Table 4-1 
EDIT Key COMmands 

Meaning 

as a $ character. 
ALTMODE terminates a text 

A single 
string. A 

double ALTMODE executes the cOfllInand 
string. For example: 

!GMOV A. BL.li- I Dlili 

Echoes at the ter1'\inal as C. Typing 
this COMmand terrn.tnates execution of 
EDIT comnands and initiatef' a return to 
the KflL. Any open files are first 
closed, and the contents of the Text 
Buffer are lost. (see Chapter 3, 
Section 3.2.5) • 

(Continued on next page) 

4-4 



~ 

Coro!I1and 

CTl!L/O 

CTRL/P 

CTRL/U 

CTRL/X 

RunoUT 

! 

TlIB 

I 

Table 4-1 (Cont.) 
EDIT Key Commands 

Meaning 

Echoo" ag to. This cOMmand inhil>its 
printing on the console terMinal until 
conpletinn of the current command 
strinq. Typinq a second CTRI,/O will 
resume outpllt (see Chapter 3, Section 
3.2.5) • 

Echoes as tP and restarts the Editor 
(see Section 4.1.3) 

Echoes as tU. This c01'1Manc deletes 
the charncters on the: current input 
(see Chapter 3; section 3.2.5). 

all 
line 

Echoes as tx and causeS the Editor to 
i9nore the entire command string 
currently being entered. The Editor 
prints a carriaqe return/line feed and 
an asteri.sk to indic"te that the user 
may enter another cOf!U1\anrl. 

The RUBOllT key is used to delete a 
char"cter fron the current line and may 
be used in both COl!1lT\and and Text 11odes; 
it echoes a bocksla"h follo.led by the 
character deleted. Each succeedinq 
Run OUT typed by the uger deletes anrl 
echoes another char~cter. An enclosing 
hack. lash is printed When a key other 
than RUnoUT iA t~lped. This erasure is 
done right to left up to the last CR/LF. 

Note that RUIlOUT use,l under 
the Editor echoes deleted 
sOMewhat differently than 
other system prograMs. 

control of 
characters 

when using 

Spaces to the next tab stop. Tab stops 
are positioned every 8 spaces on the 
terminal; typing the TAB key causes the 
carriage to advance to the next tab 
position .. 

4.4 COMMAND STRUCTURE 

Editor commands cnn be categorized as belonging to one of five groups, 
a) those commands which allow text to be input from cassette and 
output to either cassette, line printer, or the console terminal; b) 
those commands which allow the character location pointer to he moved; 
c) those co~ands which perforM searches in the text for specific 

4-5 



characters or strings of characters; d) those cOMMands which cause the 
text to be modified either by insertion of neH text, or deletion or 
relocation of existinq text; and ei a special classification of 
commands called utility COMmanns. 

The general format for the EDIT cOMmann string iq, 

nCtoxt$ 
or 

nC$ 

"here n represents one of the legal arguments listed in Table 4-2, C 
is a ane or t~o letter cn~Mand, and text is a string of successive 
ASCII characters. As a rule, cOMr1ands are separated fro~ one another 
by a sing Ie AL':'MODB i 11m-,ever, if the cOMMand. requires no text, the 
separating ALTMODF. is not necessary. COMmands are terMinated by a 
single ALTMODF.; typinq a seconn AI,TMODE begins execution. 

4.4.1 Ars~,ents 

An argument is p"!'!i ticmecl before a COMmand letter and is used either 
to specify the particular portion of text to be affected by the 
cOVll'1and or to indicate the nm"ber of times the command should be 
performed. ~'3ith some co.rruna.nd5 this specification is implicit and no 
arguments are needed: other Editor co~~nds require an argument. 
Table 4-2 lists the formats of argUMents which are used by commands of 
this last type. 

Table 4-2 
Command Arguments 

Format ' Meaning _ .. 
n n stands fer any integer in the range -16383 to 

+16383 and may, except where noted, be preceded by a 
+ or -. If no sign precede~ n, it is as~umed to be 
a r>o~iti"e nurnher. Whenever an argument is 
acceptw)le in a comroand, its absence implies an 
arguMent of 1 (or -1 if only the - is present). 

o 0 refers te the )~ginning of the current line. 

I I refers to the end of text in the current Text 
Buffer. 

= = is used with the J, D and C 

I
, represents -n, where n is equal 

last text argument used. 

COMMands only and 
to the length of the 

The roles of all arguments are explained more specifically in 
following sections. 

4-6 

.-



4.4.2 Command Strings 

All EDIT cOl'\Illand strings are terT'1inated hy two successive ALTMODE 
characters. Spaces, carriage returns and line feens within a command 
string are ignored (they are not ignored if they appear within a text 
string). COMMands used to insert text can contain text strings that 
are several lines long, in which cnse each individual line is 
terminated with a carriage return/line feed (CR/LFI and the entire 
command is terf'linated with a douhle ALTMODE. 

Several commands can he strung together and executed in sequence. For 
e"ample, 

!BGMOV PC,R0$-20Rl$SKGCLR iR2$$ 

NOTE 

If a command currently being entered by 
the user is within 10 characters of 
exceed.ing the space available in the 
Conmand. nuffer, the ne~snge: 

.. OB ALMOST FUl..L * 

is printed (the Command Buffer holds the 
co~and strinq until it is executen; see 
Section 4.4.10). If the co~nd cftn be 
conpleted within 10 characters, the user 
~ay finish entering the command; 
otherwise he should type the ALT!l(JDF. key 
twice to execute that portion of the 
cOl'1l'1and line already completed. The 
message is printed each tine a character 
is entered in one of the last 10 spaces. 

If the user attempts to enter more than 
10 characters the message: 

1CB F:.ILL? 

is printed and all comt'lands typed \vithin 
the last 10 characters are ignored. The 
user again has 10 chrtracters of 
availabie space in which to correct the 
condition. 

Execution of a command string begins when the double !\LT~l(JDE is typed 
and proceeds from left to right. 

4.4.3 The Current Location Pointer 

Most EDIT COMmands function with respect to a movable reference 
pointer which is normally located bet.,een the most recent character 
operated upon and the next character in the buffer. At any given time 
during the editing procedure, the pointer can be thought of as 

4-7 



representing the current position of the Editor in the text. Most 
commands use this pointer as an implied argument; commands are 
available for moving the pointer anY",here in the text. thereby 
redefining the current location and allowing greater facility in the 
use of other cOMmands. 

4.4.4 Character and Line Oriented Command Properties 

When using character oriented commands, a nUMeric argument specifies 
the number of characters that are involved in the operation. Positive 
arguments represent the nt~er of characters in a forward direction 
(in relation to the pointer). negative argt~ents the number of 
characters in a backward direction. Carriage return and line feed 
characters are treated as any other character. For example, assume 
the pointer is positioned as indicated in the following text; each 
line of text is terminated by a carriage return/line feed, indicated 
here by ) ~, 

MOV #VECT.R2)~LI ___________________ Pointer is here 
CLR IR2) ~ 

The EDIT COMmand -2J causes the Editor to Move the pointer backwards 
by 2 characters. 

MOV #VECT.R2~1)~lL-__________________ Pointer is now here 
CLR IR2) I 

The command 10J advances the pointer forHard by 10 characters and 
places it between the carri"'le return and line feed characters at the 
end of the second line. 

MOV #VECT. R2) I Pointer is nOW' here 
CLR "R2)..1.,, ____ ~ ____ _ 

Finally, to place the pointer after the ·c· in the first line, a -14J 
CO!Tlmand is used .. 

MOV 'VE~.~R~2~)~I~ ____________________ pointer is here 
CLR IR2) , 

The J (J~pJ command is explained in detail in section 4.4.7. 

When using line oriented cOJ'lll'ffands:, the nUJf'lel'ic argument represents the 
filmlJer of lines involved in the operation. The Edi tor recogniZes a 
line as a unit when it detects a CR/LF cOI".nination in the text. When 
the user types a carriage return, the Editor auto~atically inserts a 
line feed. Positive arguments represent the nt~"r of lines forward 
(in relation to the pointer); this is acconplished by counting CR/LP' 
coInhinations beginning at the pointer. Bence I if the pointer is at 
the beginning of a line, a line oriented cOMMand argument of +1 
represents the entire line bet.lean the current pointer and the 
terminating line feed. If the curr,mt pointer is in the middle of the 
line, an argument of +1 represents only t:lat portion of the line 
between the pointer anct the terMinating CR/LF. For exanple, assume a 
buffer of: 



MOV ,pC.RI J & 
ADO lORIV ••• RI)+ 
MOV IVECr.R2). 
Cl.R eR2). 

Pointer is here 

The command to advance the pointer one line (lA) cause~ the followin9 
change. 

MOV PC, RI). 
"IA~I)<i0;-:#"Di1iR;;.I;,Vr·-5· i',:;R[iI,.,Ju.* __________ P 0 in te r is no<' he re 
MOV #VEcr. R2)t 
CI.R IR2). 

The command 2A moves the pointer over 2 CR/LF coMbin"tions: 

MOV PC. RI) ~ 
ADD #DRI V- •• Rl) ~ 
MOV #VEcr,R2)4 
~,C~I.~R_e_R_2~~~4 _______________ pointer is now here 

Negative ar9~ents represent the nUN)er of lines backward in relation 
to the pointer. Consequently, if the pointer is at the be9inning of 
the line, a line arguMent of -1 means -the previous lineR (moving 
backward past ~he first CR/LF and up to but not includinq the second 
CR/LF); if the pointer is in the middle of a line, an argument of -1 
means the preceding 1 1/2 lines. For ex~ple, given the text. 

MOV PC. Rl) ~ 
ADD #DRI V· •• R \) + 
MOV 'VE~TT.~R~2~)~l _____________________ pointer is here 
Cl.R IR2) I 

A co~~and of -lA moves the pointer b"ck 1 1/2 lines. 

MOV PC. RI) + 
.aDO #DR! y ••• R I.) + 
MOV 'VECT. R2) + 
Cl..R eR2) + 

Pointer is lUl!re 

110\; a command of -LA h"cks the pointer by only 1 line. 

4.4.5 Repetitive Execution 

Portions of a connand string may be 
enclosing the deRired portion in an91e 
left angle bracket wi th the nUMber 
structure is:: 

Cl$C2Sn<C3$C4$>C5$$ 

executen more than once 
hrackets (<» and preceding 
of iterations desired. 

by 
the 
The 

where Cl ,C2 ••• C5 represent co"""and" and n represents an iteration 
arguMent. COllll'1ands Cl and C2 are eAch executed once, then commands C3 
and C4 are executed n tiMeS. Finally, cOllll'1ann C5 is executed once and 
the co~and line iR finished. The iteration a"9uMent (n) must he a 
positive number (1 to 16384); if not specified, it is assumed to be 1. 
If the number is negative or too large, an error message is printed. 
Iteration brackets May be nested up to 20 level.. COMmand lines are 

4-9 

-----------------------------------------------------------...... -~ -.---



checked to make certain the brackets are correctly used and match. 
For example, the follo¥ing bracket structure is legal, 

«>«<><»» 

~hile these structures are considered illegal and will cause an error 
message: 

><>< 

«<» 
As an example, assume the user wishes to input a file called SAMP 
(stored on cassette drive 1) and change the first four occurrences of 
the instruction HOV *200,RO on each of the first five pages to 
MOV f244,R4. He enters the following comnand line (commands used in 
this example are explained in detail later in the chapter), 

!ERl: SAMPS5<R4<OOMOV #200. R0S=JS3<(l0$=C4$>>> $$ . , 

C . 
B 

A 

The command line contains 3 'sets' of iteration loops (A, a, C) and is 
executed as follows, 

Execution initially proceeds from left to right; the file SAMP on 
drive 1 is opened for input and the first page is read into memory. 
The pointer is moved to the beginning of the buffer and a search is 
initiated for the character string f10V 11200,RO. \,hen the string is 
found, the pointer is positioned at the end of the string, but the =J 
command l1IOveS the pointer back so that it is positioned imrnediately 
preceding the string. At this point, execution has passed through 
each of the first two 'sets' of iteration loops (A, B) once. The 
innermost loop ec) is next executed three times, changing the O's to 
4's. Control now moves back to pick up the second iteration of loop a 
and again moves from left to right. When loop C has executed three 
tines control again moves hack to loop B. l'lhen loop B has executed a 
total of 4 times, control Jl',oves back to the second iteration of loop 
A, and "0 forth until all iterations have been satisfied. 

4.4.6 Input and output COl'llnand" 

Input col'Wtancls are used to read text into the Text Buffer where it 
then becomes available for editing or listing. Output commands cause 
text to he listed on the con~ole terminal or line printer, or written 
out to cassette. SQJ11e cOMm,mds are specifically designed for either 
input or output functions, while a fe., c()1'1I'\ands serve both purposes. 

If an output cassette neCOI'les fnll during any output operations, the 
Editor will prOMpt the user to mount another cassette by printing' 

#1 

where i represents one of the drive numbers. After the user has 
mounted the new cassette the output operation continues. The files 
may later be combined under one filena~e using PIP (see Chapter 8). 

4-10 



READ 

The Read COMmand (R) causes a page of 
file (previously specified in an 
current contents, if any, of the Text 
is: 

text to be read from the input 
BR comma~dl and appended to the 
Buffer. The form. of the command 

R 

No arguments are used with the R command and the pointer is not moved. 
Text is input until one of the following conrlitions occurs, 

1. A form feed character 
is encountered. At 
the last character in 

(signifying the end of the page) 
this point, the form feed will be 

the buffer; or 

2. The Text Buffer is '<ithin 500 characters of being full. 
(When this conclition occurs, Read inputs up to the next 
carriage return/line feed coMbination, then returns to 
cOl'lll1and mode. An asterisk is printerl as thonqh the Rel\d 
were complete, but text will not have been fully input); 
or 

3. An end-of-file condition is detected (the 'BOP* message 
is printed when all text in the file has been read into 
memory and no more input is available). 

The Maximum number of characters which can be brought into memory 
using a Read command is approximately 5,000 for an 8K system. Each 
additional 4K of memory allows another 5,000 characters to be input. 
An error message is printed if the Read exceeds the memory space 
available, or if no input is available. 

IVRITB 

The Write command (W) moves lines of text from the Text Buffer to the 
output file (as specified in the EW command). The formats are, 

nW Write all characters beginning at the pointer and 
ending at the nth CR/LF to the output file. 

-nli Write all characters beginning on the -nth line 
and terminating at the painter to the output file. 

OW Write the text fro~ the beginning of the current 
line to the pointer. 

/1'1' Write the text from the pointer to the end of the 
buffer. 

The pointer is 
affected. If 
characters are 

not moved and 
the huffer 

output. 

the contents of the buffer are not 
is empty when the Write is executed, no 

4-11 

.~------------------------------ ........ _- - .~~~- ....... ~--,----.. -



EXaI'lples: 

NEXT 

Write the next 5 lines of 
starting at the pointer to 
current output file. 

text 
the 

I'/rite tho previous .2 lines 
ending at the pointer 
current output file. 

of text, 
to the 

The Next co1'1ltland acts as both an input and output cOl'1mand since it 
perforl'1s both functions. Pirst it writes the current Text Buffer to 
the output file, then clears the buffer, and finally reads in the next 
page of the input HIe. The Next co"unand Can be repeated n times by 
indicating a~ ar~lment before the command. The command fOrl'1at is: 

nN 

Next accepts only positive argUl'1ents and leaves the pointer at the 
beginning of the buffer upon cOP1pletion of the operation. If fewer 
than n pages are available in the input file, all available pages are 
read in, output to the output file, and delete,,; the pointer is left 
positioned at the beginning of an empty buffer, and an error message 
is printed. 01 is equivalent to typing the conmand conbination 
n-<n/~Y/DR> and provides a means of spacing foruarn, in page increments, 
thrOU<jh the input file.l 

Example: 

LWT 

wri te the contents of the current 
Text Buffer to the output file, 
clear the buffer and read and write 
the nF!"t pa"e of text; clear the 
buffer and then read another page. 

The r,ist cOl'1l'1<1nd prints th" specifiF!d nul'lb"r of lines on the console 
terl'1inal. The fOrP1at of the COI'U'1,md is: 

nT, Print <Ill characters beginning at the pointer and 
ending ,lith the nth cR/LP. 

-nL Print all 
character 
pointer. 

charact"rs heginnin<j with the first 
on the -nth line and terMinating at the 

OL Print frol'1 t;,e be(Jinning of the current line up to 
the pointer .. 

IL Print fro~ the pointer to the end of the buffer. 

The pointer is not movod after the CONPtand is executed. 

4-l2 

---.~.--..... ----



I:xrunples: 

Print all characters starting at 
the second preceding line and 
ending at the pointer. 

Print all characters beginning at 
the poi~ter and terMinating at the 
the 4th CR/LF. 

Assuming the pointer location is as follo'1's: 

Move S( R I" .R2) + 
ADD, RI,CR2l+l-'.. ___ Pointer is here 

The command: 

!-ILSS 

Prints the preceding 1 1/2 lines: 

VERIFY 

MOVe 5( R Il , IIR2) I
ADD 

The Verify command prints the current text line (the line containing 
the pointer) on the terI'\inal. The position of the pointer within the 
line has nO effect and the pointer does not move. The command format 
is: 

V 

No argu~ents are used. 

Example = 

END FILE 

(V is equivalent to typing OLL.) 

The cOf!1I"1f'lnd causeR the cnrX'ent line 
of text to be printed. 

The End File co~and closes the current output file~ This cOMMand 
does nO input/output operations and docs not move the pointer; the 
buffer contents are not affected. The output file is closed, 
containing only that text previously output. The forI'\ of the command 
is: 

EF 

No arguments are used in the EF command. 

4-13 



EXIT 

The EXit cOMmand is uned to terMinate editing, copy the remainder of 
the input file to the output file, and return control to the Keyboard 
Listener (the ~bnitor should be entirely resident in MeMory so that a 
reboot is unnecessary). The EXit cOr'l.rrtand perfOrJl'lS consecutive Next 
cOl'Ullands until the end of the input file in reached, then closes both 
the input and output fi les. The cOPU'laml format is: 

EX 

No arguments are used in the EX cOJ"f1l'lland .. 

NOTE 

Either an EF or EX cOr1'11and is necessary 
to make an output file perManent. If a 
tc is typ~d prior to executing an EF, 
the current output fil~ will not be 
saved. 

An exaMple of the contrasting UReS of the EF and EX cot'll'lands might be 
the following. aSSUMe an input file called SAMPLE (on cassette drive 
0) contains several pages of text. The user wishes to Plake the first 
and second pages of the file separate files called SAMl and SAM2 
respectively, the remaining pages of text will then make up the file 
SAMPLE. This can be done using the following commands. 

!ERIl: SAI'!FLESS 
.t EW 1& SAl'! J 55 
!NEF'$$ 
.tEW J. SAI'!2U 
.tNEF'SS 
!EWIISAMFLESEX$$ 

The user might note that the EF comMands arA actually 
this eXaPlple, since the EW c~mand closes a currently 
before opening another. 

not necessary in 
open output file 

4.4.7 Pointer Relocation COI'lMands 

Pointer relocation cOI'lP1ands 1'1110'"' the current location pointer to be 
moved within the Text Buffer. Several cOml'lands are available for this 
purpose .. 

BEGINNING 

The Beginning co~and mOVAS 
beginning of the Text Buffer. 

lJ 

the current location pointer 
The co~and formnt is: 

to 

There are no arguments. For example, assume the buffer contains: 

4-14 

the 

.. 



• 

.. 

MOVB 
ADD 
CI.R 
MOVB 

Pointer is here 

The B command: 

'<ill move the pointer to the beginning of the Text Buffer: 

JUMP 

,MOVB 
ADD 
CI.R 
MOVB 

Pointer is now here 

The Jump command moves the pointer over the specified number of 
characters in the Text Buffer. The form of the comnand is, 

(+ or -)nJ Move the pointer 
characters .. 

(backward or forward) n 

OJ Move the pointer to the beginning of the current 
line (e'lui valent to OA). 

/J Move the pointer to the end of the Text Buffer 
(equivalent to /A). 

=J ~IDve the painter backward n characters, where n 
equals the length of the last text argument used. 

Negative arguments move the 
buffer, positive arguments 
form feed characters as any 
position for each. 

pointer 
toward 
other 

tQl>7ard 
the end. 

character I 

the beginning of the 
Jump treats CR, LF and 

counting one buffer 

Examples: 

!BSGASCS=JS$ 

ADVANCE 

The Advance command is 
moves the pointer a 
charactersl and leaves 
line. The form of the 

Move the pointer forward 5 oharacters 

Move the pointer back 4 characters 

Move the pointer so that it immediately 
precedes the first occurrence of 'ABC' 
in the buffer. 

similar to the Jump command except that it 
specified number of lines (rather than single 

the pointer positioned at the beginning of the 
corrunand is: 

4-15 



nA Advance the pointer forNt=tr<1 n lines and position 
it at the beginning of the n+l line. 

-nA Hove the point"r backward past n CH/L?" and 
position it at the beginning of the -nth line, 

OA Advance the point?r to the beginn1n'] of the 
current line (e(juivalent to OJ). 

IA Advance the pointer to the end of the Text Buffer 
(e'1u;_villent to IJ). 

For e"","ple, aSSUIne the buf fer contains: 

CLR 'v._.~ _____ Pointer is here 

The cOl'1I'1and, 

Moves the pointer as follo"s, 

;,;' CI.=R-'-,,'-cR"'2,,)<-l*'-_____ Po1 nte r i" n 0\<1 he re 

4.4.8 Search COMmann" 

Search cOl'lmands are usen to locilte specific chilracters or strings of 
chilracters wi thin the Text Buffer. 

GE~ 

The ('",t cOmMand is of the form, 

nGtext$$ 

and searches the current Text Duffer stilrtinq at the pointer for the 
nth occurrence of the text strinq. If the search is successful, the 
pointer is left iMMeniiltely follol4in'1 the nth occurrence of the text 
strinq, If the search fails, an error messa']e is printed and the 
pointer iii left at the eniI of the Text Buffer. 

The ar'1Ul'lent must be positiv" and is assuMed to be 1 if not otherwise 
speci fied. The text string lOa:' be any length and i!'\Jllediately follows 
the G coMMand. The search i~ made on the portion of the text between 
the painter and the end of the buffer. 

4-16 

• 



--

• 

Exrur.ple: 

Assul'ling the buf fer contains: 

PC.RI 
lOR! V~ .. RI 
IV£CT.R2 

MOV 
ADD 
MOV 
CLR 
MOVe 
ADD 
CLR 
Move 

tR2a Pointer is here 
SC R""I-;:)-.-;;''''R''2----' 
RI.(R2)+ 
tR2 
6( R IJ • IR2 

The cOl'lnand: 

pos i tions the pointer a" folIous, 

ADOL. ___ IIc.0,-,-R;;.I_V_-_,_,_R_I __ Pointer is here 

The cOl'\J11and: 

positions the pointer, 

RI,CR2)+ ADD 
CLR tR2,'-_____ pointer is here 

After search coml'tands, the pointer is left i~ediately following the 
text object. Usinq a search co;rrrnand in connection with ==J will place 
the pointer before the text object, as follo>1'" 

iGOSJ I S=J S$ 

The pointer will now be placed i~diately before 'OBJl', 

INCPSJI Pointer is here 

FIND 

The form of the Find cOMnand is, 

nFtext$$ 

Starting at the pointer, this cOlllf'land searc',es through the entire text 
file for the nth occurrence of tile ch"rilcter string specified in the 
command. It comhines the Get and Next co""""ncl,,, such thilt if the 
search is not successful in the current buffer, the contents of the 
buffer are output to cassette, the bllffer contents are then deleted, a 
new page is read in, and th" search is continue<l, This will proceed 
until either the search string is found or until the col'lplete source 
text has been searched, If the seilrch is successful, the pointer is 
left immediately following the nth occurrence of the text~ring, If 
the search fails (i.e., the end-oi-file is detected for the input file 
and the nth occurrence of the text string has not been found), an 

4-17 

----........ -.~ 



error message is printed and the pointer is left at the beginning of 
an e",pty Text Buffer. (By deliher1ltely specifying a non-existent 
search string, the UBcr eRn close out his file; thnt is, he can copy 
all remaining text fr<'lM the input cassette to the output cassette. J 

The argume:nt I!'\Ust hA positive and if; aSSllMed to be 1 if not otherwise 
specified. 

Example: 

POSITION 

!2FMOVB 6CRll.iR2$$ Search t~e entire input file for 
the secQ:'I,d occurrence of the text 
string Movn 6(JU) ,@R2. Each 
unsllccf'!-Rsf.lllly searched buffer is 
written to the output file. 

The PORi tion cOJTir'1and Rearches the input file for the nth occurrence of 
the text string. If the text string is not =ound, the buffer is 
cleared and a ne" pRge ifl read froI'1 the input fil". The forMat of the 
connano i~: 

n!'textS 

The ar.guMent must be positi \1e I and is BRSUMerl to he 1 if not otherwise 
specified. ilfuen a P COnMan{~ iB executed, the cnrrent contents of the 
buffer are searched fron the location of the pointer to the end of the 
buffer. If the s8Rrclt i~ unsuccessful, the buffer is cleared and a 
neN page of text is read and the cycle is continued.. (The difference 
bet",een the Find and Position COr''JllE'U1cts is that Find t.'IriteR the 
contents of the s,,,,rched huffer to the output file while Position 
deletes the contents of the bllffer "fter it is searched.) 

If the search is successful, the! pointer is positioned after the nth 
occurrenCe of the text. If it is not, the pointer is left at the end 
of an eMpty buffer. 

LXaMple, 

!PADD R I, C R2)+ $$ Search the entire input file for 
t"" string ADD Rl, (n-2J+, deleting 
unquccessfully searched buffers .. 

4.4 .. 9 Text Hodif:tcatinn COMmannt'{ 

The following cOflU'1anrl;:; are used to insert, relocCtte, and delete text 
in the Text Buffer. 

IllSERT 

The Insert 
text to 
inserted 
the last 

cOfl'lIT\and canseB the f:rlitor to enter Text Harle ann allows 
he inserted if'U'1ediately follo,"ting the pointer.. Text is 

until an ALTf!Onr: ioR typed and the pointer is positioned after 
charncter of the inRBrt. The COl"'Manf; fOrMat is: 

4-lB 



Itext$ 

No argUJTlents are used in the Inse rt cOP1T1an(: and the text 
li",ited only JlY the size of the Text Buffer anil the splice 
All chllracters except ,\LT~!ODF. are legll1 in the text s trin<J, 

string is 
II vai lab Ie. 

EDIT autOl'\atically protects against overflowing the Text Buffer durin<J 
an Insert. If the I connantl is the first cOP'J'fIRnd in a renetitive 
cOI'1",a,,,'! line. EDIT ensures t!1at there will be enollgh space for the 
Insert to be executed at least once, If repetition of the conmand 
exceeds the available mefl1or:~tt an error rnessngc is prir.ted .. 

Ex"'"ple, 

DELETF. 

!IMOV "BUFF, R2 
MOV 'LINE, RI 
MOVB - l( R2), R0 
$S 

! 

Insert the specif ied text at 
the current loc<1tion of the 
pointer and leave the pointer 
positionp.d at the beginning of 
the line following RO, 

The Delete command rp.1'loves a specified nUMber of cha:r.acters frnm the 
Text Buffer. Characters lire deleted starting at the pointer; upon 
COMpletion of the co~and, the pointer is positioned at the first 
character following the deleteil text. The fOrM of the cOPlmand is, 

{+ or -)nO Delete n characters (fonrard or backwllrd from the 
pointer) • 

Exal'1ples , 

00 Delete frO!". beginnin<J of current line to pointer 
(equivalent to OK). 

10 

=0 

Delete frOl'\ pointer to end of 
(equivalent to IK), 

Text Buffer 

Delete -n charllcters, where n equals the len<Jth of 
the last text argument u~ed. 

!-2DSS Delete the two characters 
immediately preceding the pointer. 

Delete the text string 'MOV RI.' 
(=0 used in conjunction with a 
search cOl'1l'1and will delete the 
inilicated text string) 

Assul'1ing a buffer of' 

ADO 
Cl.R 

RI,(R2'+ 
1"",,R,,2=--_____ pointer is here 

4-19 



The conrnand: 

leaves the huffer with: 

ADD RI.(R2)+ 
cll"R.::2=--_________ Pointer is here 

KILL 

The Kill command reJTIoves n line~ froM the Text Buffer. Lines are 
deleted starting at the current location pointer; upon completion of 
the command, the pointer is positioned at the heginning of the line 
following the deleted text. The command format E: 

Example: 

nK Delete lines beginning at the pointer and ending 
at the nth CR/LF. 

-nK Delete lines beginning with the first character in 
the -nth line and ending at the pointer. 

OK Delete frOT'1 the beginning of the current line to 
the pointer (equivalent to OD). 

/K Delete from the pointer to the end of the Text 
Buffer (equivalp.nt to /D). 

Delete lines starting 
current location pointer 
at the 2nd CR/LF. 

at the 
and ending 

Assuming a buffer of: 

ADD RI.(R2)+ 
C1.R, IR2 Pointer is here 
MOVe 6( RI>. IR2 

The cOJ11J'l'lancl: 

!l!IKU 

Alters the contents of the huffer to: 

ADD RI. (R2)+ 
CLRI Pointer is here 

CHANGE 

The CHANGR command replaces n characters, starting 
with the indicated text string and leaves the 
immediately following the changp.d text. The fOrMat 

4-20 

at the pointer, 
pointer positioned 
of the command is: 

.-



(+ or -)nCtext$ 

OCtext$ 

!Ctext$ 

=Ctext$ 

Replace n characters (fort,ard or backward 
from the pointer) with the specified text. 

Replace all characters from the beginning of 
the line up to the pointer with the specified 
text. (~uivalent to OX) 

Replace all character~ from the pointer to 
the end of the buffer with the specified 
text. (Equivalent to !X) 

Replace -n characters with the indicated text 
string, where n represents the length of the 
last text argument u~ed. 

The size of the text is limited only by the size of the Text Buffer 
and the space available. All characters are legal except ALTMODE 
which terminates the text strIng. 

If the C command is enclosed within angle brackets so that it will be 
executed ~re than once, and if there is enough space available so 
that the command can he entered, it will be executed at least once 
(provided it is first in the command string). If repetition of the 
command exceeds the available memory, an error message is printed. 

Example: 

! 5CIV£CT li$ Replace the 5 characters to ~~e 
right of the pointer with iVRCT. 

=e can be used in conjunction with a search cOMmand to replace a 
specific text string as follows: 

Assuming a buffer of: 

CLR .R2 
MOVL _ S( RI), .R2 

'l'he commanu: 

."CADDBU 

Leaves the buffer with: 

eLI< .R2 

Find the occurrence of the text 
string FIFTY ann replace it ,·11th 
the text string FIVR. 

Pointer is here 

AOO~~ __ ~S~(~R~I~)~,~.~R~2=-____ ~Pointer is here 

Typing nCTEXT$ is equivalent to typing -nDITEXT$. 

4-21 



EXCIlIINGE 

The Exchange command replaces n lines, beginning at the pointer, with 
the indicated text string and leaves the pointer positioned after the 
changed text. 

The form of the cOMmand is: 

nXtext$ Replace all characters beginning at the 
pointer and ending at the nth CR/LF with the 
indicatec1 text. 

-nXtext$ Replace all characters beginning with the 
first charncter on the -nth line and ending 
at the pointer with the indicated text. 

OXtext$ Replace the current line fro~ the beginning 
to the pointer with the specified text. 
(Equivalent to OC) 

IXtext$ Replace the lines from the pointer to the end 
of the buffer with the specifed text. 
(Equivalent to IC) 

All characters are legal in the text string except ALTMODE which 
terJTl.inates the text. 

For example, assuming a buffer of: 

ADD t'.!1. (R2) + 
CLR @R2 

The corrunanc1: 

Pointer is here 

replaces the text to the right of the pointer (on the current line) 
with the indicated text. 

If the X command is enclosed within angle brackets so that it will be 
executed more than once, ann if there is enough memory space available 
so that the X command can be entered, it will be executed at least 
once (provided it is first in the co~and string). If repetition of 
the command exceeds available memory, an error message is printed. 

4.4.10 Utility Co~ands 

The memory area used by the Editor is divided into logical buffers as 
foll""'s: 

4-22 



MACRO BUFFER 
High Memory 

SAVE BUFFER 

FREE MI:l!ORY 

COMMAND INPUT 
BUFFER 

Low llemory 
TEXT BUFFER 

The Text Duffer contains the current page of text being edited and 
the Command Input Buffer holds the command currently being typed at 
the terminal. Both of the"e buffers have been previously mentioned. 

The Save Buffer contains text stored with the Save (S) command and the 
Macro Buffer contains the command string macro entered with the Macro 
1M) cOI'".mand (each are explained next). The 1·lacro and Save Buffers are 
not allocated space until an M or S cOMPland is executed. Once an M or 
S command is executed, a OM or OU (Unsave) cOMmand must be executed to 
return that space to the free area. 

The buffers expand and contract to accomodate the text being entered. 

SAVE 

The Save command copies a specified number of lines starting at the 
pointer into the Save Ruffer. The form of the cOl'\llland is, 

nS 

The argument (n) must be positive. The pointer position does not 
change and the contents of the Text Buffer are not altered. !,ach time 
a Save is executed, the previous contents of the Save Duffer, if any, 
are destroyed. If the Save command cau"e" an overflow of the Save 
Buffer, an error message is printed. 

Example, 

Assuming the Text Buffer contains the following asseMbly language 
suhroutine, 

J SUBROUTINE MSGTYP 
J IIHE'I CAl.LEO. EXPECTS Ril TO POINT TO AN 
J ASCII MESSAGE THAT ENDS IN A ZERO Bl'TE 
JTYPES THAT MESSAGE ON THE USER TER~INAI. 

• ASECT 
MSGTVP: T5TB (%0) 

BEQ MOONE 
MLOOP: TSTB.., 177564 

BPL MI.OOP 
MOVB ("") .. II 177 566 
BR MSGTVP 

MOONE. RTS PC 

4-23 

J DONE? 
JYES-RETURN 
11.0-1 S TERMI riAl. READY? 
JNO-WAl T 
JVES-PRINT CHARACTER 
JI.OOP 
J RETURN 

----------............. ---.-- ... ~ 



The cOJ'!"Jlland ': 

:!,B13sn 

stores the entire snhroutine in the Save Buffer; it !'Ilay then be 
inserted in a progran \-lhenever needed using the U corrtreand. 

UNSIWF, 

The Unsave 
the Text 
positioned 

CO:MMann inserts the entire contents 
Buffer at the pOinter looation 
following the inserted text. 

of the Save Buffer into 
and leaves the pointer 

'.rhe form of the oommand is: 

II Insert the oontents of the Save Buffer into the 
Text Buffer. 

OU Cle,~r the Save Buffer and reolaiM the area for 
text. 

Zero is the only legal argUl'tent to the U oOl'lMand. 

The oontents of the Save Buffer are not destroyed by the U oo~and 
(only by the OU comMand) and may be Unsaved a" many times as desired. 

If the Unsave command oauses an overflow of the Text nuffer, an error 
message is displayed. 

The 1-1aoro oOl'1l'land inserts a cOMl"land string into EDIT's l1aoro Buffer, 
and is of the form: 

~1/commann stringl 

011 
or Mil 

Store the command string in the 
Hacro fluffer 

Clear the I,lacro Ruffer 
reclaiM t:u, area for text 

and 

I represents a delimiter character. The deliMiter is always the first 
character follOl,ing the ~1 cOl'lMann ann may be any character which does 
not appear within the :-lacro cOl'1l1lann string itself. 

Starting with the character foll~'ing tho deliMiter, EDIT places the 
Macr.o co,,".mand string characters into its internal r'laoro Buffer until 
the deliMiter is encountered again. A double ALTJ-IODF. then returns 
EDIT to COI1lPland Hade. The /lacro co,"",and does not execute the Macro 
string; it merely stores the cOl'U'land strIng so that it can be executed 
later by the F.xecute rlacro (IlH) cOl'1l'1and. Macro does not affect the 
oontents of the Text or Save Buffers. 

All characters except the deli"'i ter are 1"'11'11 Macro command string 
characters, including single ALTrnDP,'s to terminate text commands. 
All commands except the 11 and 1m Commands ar.e le,!a1 in a Macro cOll1mand 
string. 

4-24 



• 

In addition to the OM conmand, typing the M command imJ!lediately 
followed by two identical character" (asswned to be delil'1i ters) and 
two ALTIIODE characters also clears the Macro Buffer. 

Ex"p"ples: 

,!M.I.lSS or 
1 8M $! 

,!M/BGR8S-CIS/SS 

EXECUTE MACRO 

Clear the Macro Buffer 

Store a Iiacro to change RO to Rl 

The Execute Macro cOtn1'land executes the cOl'1Mand string specified in the 
last Macro command and is of the forl'l: 

nEM 

The 1·lacro is executed n ti!'1e" and return" control to the next cOmJ!land 
in the original command string. 

The argument must be positive. 

Examples: 

.!:BI000EMU 
1* SRCH F' AI l. 11'1 MACR 04< ? 

4.5 ERROR ME~SAGES 

Execute the Macro stored 
in the previous example. 
An error message is 
returned when the end of 
buffer is reached. (This 
Macro effectively changed 
all occurrences of RO in 
the Text Buffer to Rl.) 

In a new prograM, insert 
MOV PC,Rl, then execute 
the command string in the 
Macro Buffer twice before 
inserting CLR @R2. 

The Editor prints an error message whenever one of the error 
conditions in Table 4-3 OC~lrS. Prior to executing any commands, the 
Editor first scans the entire COMmand string for syntax errors (format 
errors such as illegal arguments, illegal coMhinations of COMmands, 
etc.). If an error of this type is found, an error message is printed 
in the following format: 

?ERROR /·\SG? 

and no commands are executed; the user must retype the cOmJ!\and. 

4-25 



If the conmand string contains no syntax errors, ex~cution is started; 
however, errors during execution are also pORsihle (buffer overflow, 
I/O errors, etc). If an error is found at during e}:ecution, a message 
of the forn, 

is printed. In this caRe, all cOI1Plands preceding the one in error 
will have been executed, the co~~and in error and those following will 
not be executed. ~IDst errorR will generally be of the syntax type and 
can he corrected he fore execution. 

When an error occurs during execution of a Macro, the rrtefisage format 
is :: 

--- .... -- ------

?*message IU :MACRO*? 

* 

Table 4-3 
EDIT Error Messages 

Message 

* Cll ALHOST FULL * 

?CR Ft:LLl 

?*EOF*? 

?*FILE NOT FOm~D*? 

?*HDW ERR*? 

?ILL ARG? 

?ILL am? 

Explanation 

Too deep nesting 
of brackets I 

or illegal use 
or unnatched 

brackets. 

The cOMMand currently heing 
entered hy the user is within 10 
characters of exceeding the space 
availahle in the COMmand Buffer 
(see Section 4.4.2). 

Command exceeded the space 
allowp.d for a conmand string in 
the Command Buffer. 

Attempted a Read or Next cowmand 
and no data was available. 
Atte~pted to open a nonexisting 
file for editing. 

A hardware err.or occurred during 
I/O. 

The argument specified was 
illegal for the conrnand used. A 
negative arquF".ent ,,,as specified 
where only a positive argument 
was allowed, or an argUMent 
exceeded the range + or -16384. 

EDIT do~s not recognize 
COMMand specified. 

the 

(Continued on next page) 

4-26 

.~~~~ .............. -



~!essage 

?ILL HAC? 

?*ILL NAMF.*? 

Table 4-3 (Cont.) 
EDIT Error ~!essages 

Explanation 

Delimiter~ were i~properly used, 
or an atteMpt 'vas made to enter 
an M corn~and during execution of 
a Macro, or an attempt was made 
to execute an E1'·-'1: command whi Ie an 
EM was in progress. 

The filename or device 
in an EI1 or ER 
illegal. 

specified 
cOll1Il'\and is 

?* I/O CIIAN CONFLICT*. An attempt '.-las made to open an 
input file on a cassette already 
open for output, or vice versa. 

?*NO FIJ.E*? 

?*NO ROOM*? 

?*SRCH FAIL*? 

?*TAPE FULL*? 

4.6 EXAI1PLE USING TlIE EDITOR 

Atte~pted to Read or write when 
no I/O file was open. 

Attenpted to Insert, Save, 
Unsave, Read, Next, Chi'tflge or 
Exchange when there waf> not 
enough room in the appropriate 
huffer. 

The text string specified in a 
Get, Find or Position cOll1Il'\and was 
not found in the available data. 

Available 
file is 
rOOM for 
file) • 

space for. 
full (i.e., 

any part of 

an output 
there is no 
the output 

The following exaP1.ple illustrates the usc of the Editor to change a 
program which is stored on ca5!=;ette drive o. Sections of the printout 
are coded by letter and corresponding explanations follow the example. 

4-27 



(

.R EDIT 

A *ER0:TESTI.PALSS 
"EW It TEST2. PALSS 
.. RU 

B 

.. /LU 
J TEST PROGRAM 

PC. 7:7 
• GLOBL MSGTYP 

START: MOV 11099.%6 HNITlPLIZE STACK 

MSG: 

J POPIT R0 TO MESSAGE 
, PRI NT IT 

MOV IMSG.%0 
JSR PC.MSGTYP 
HLT J STOP 

WORKSI • ASCI I lIT 
• BYTE 15 
• BYTE 12 
• BYTE " 

C ~*B1J50SS 
D {"GPROGRAMSVS$ 

J PROGRAM 

1
"1 TO TEST SUBROUTINE MSGTYP. TYPES 

E '''THE TEST PROGRAM WORKS" 
J ON THE CCl'ISO'\OSl'!\NSOLE TERMINPL 
$S 

F (>oF.ASCII I$SCTHE TEST PROGRAM WORKSSS 

{

*P.BYTEtU 
G >oF. BYTE 0SVS$ 

.BYTE 0 
$I 

SBA.SS 
JPROGRAM TO TEST SUBROUTINE MSGTYP. TYPES 
J "THE TEST PROGRAM WORK S" 
JON THE CONSOLE TERMINPL 

pc=n 
• GLOBL MSGTY P 

H START: MOV 11000. %6 JlNI TI ALl ZE STACK 
MOV ""'SG.19 ,POINT R0 TO MESSAGE 
JSR PC.MSGTYP ,PRINT IT 
HLT JSTOP 

MSG: • ASCIl ITH E TEST PROGRAM WORK SI 
.BYTE 15 
.BYTE 12 
• BYTE" 
.eND 

I f"8GHL TS=CHAL TSV$$ 
t HPLT J STOP 

Jr~U 

4-28 

---------------........................ -----~ --~-.~~ 

• 



A The EDIT program is called and prints an *. 
TEST1.PAL on drive 0, and the output file 
11 the first page of input is read. 

The input file is 
is TEST2.PAL on drive 

B The buffer contents are listed. 

C Be sure the pointer is at the beginning of the buffer. 
the pointer 1 character (past the ;) and delete "TEST" 

Advance 

D Position the pointer after PROGRAM and verify the linel the 
pointer is not moved. 

E Text is inserted. RUBOUT is used to correct a typing error. 

F Search for .ASCII ! and change "IT WORKS" to "THE TEST PROGRAM 
WORKS". 

G CTRL!U is typed to cancel the P command. the P command is then 
used to search for .IlYTE 0 and verify the location of the pointer 
wi th V col'lllland. 

H Insert text. The pointer is returned to the beginning of the 
huffer and the entire contents of the huffer are listed. 

I The user notices that HALT is spelled incorrectly, ",akes the 
change and verifies it. 

J The input and output files are closed after copying the current 
Text Buffer as well as the rest of the input file into the output 
file. EDIT returns control to the Monitor. 

4-29 



• 



.. 
CIlI\P'k'ER 5 

Thfl CAPs-ll ."'s'len!>ler is a tIm paR" a'l'l"l'1hler (wi tll an optional thi rcl 
poss) which alloHs the tiHer to crente a binary object file from a 
source prograM.. In the first two passes I the source program {which is 
generatfld on-line u'ling the Edi tor) is tran'llated into an object 
module which may contain both absolute and relocatahle code. 
SepRrately asse:rtbled ohject modules may reference one another using 
special symbols called global sym!>ols. Object moelules are then 
processed by the Linker, prnducj.ng a lO(ld module which nay he leaded 
into MerrtOry and executed (the linklng process is explainen in Chapter 
6). Durin,) the second (or tlle optional third) PRSS, the Assembler 
produces a complete octRl/sYI1holic listing of the assemhled program. 
The listing is e'lpecially useful for documentation and debugging 
purposes .. 

This chapter not only explains hm-, to wri te PAL assembly language 
prograflls I but a150 how to (\fisenhlo the sourCe prngrans into object 
modules~ In explaininq how to write source progJ':'3tr;s it is necessary, 
especially at the beginning o~ the chapter, to ,"ake frequent forward 
references. The user should first read throl1'lh the entire chapter to 
get a 'I feel" for the longuRge ( and then reread the chapter, this time 
referring to appropriate sections a:o; indicated in order to gain a 
thorongh underRtanding of the language and asseMbling procedures. 

It is assumed that the user is faI'liliar with the PDP-ll PROCESSOR 
HANDBOOK and the PDP-ll PERIPHlmALf; AND INTERFACING HANDBOOK, with 
eMphasis on those s"ctions which <1e"l with the PDP-II instruction 
repertoiro, fOrMats, And tininqs; a thorough knowledge of these is 
vital to efficie!lt asseJT1Jlly langUAge progr<lP'1ming. 

5.1 Cr,r,LING AND USING TH.E ASSE!1DIJ:R 

The AsseMbler ifi called from the System Cas Bette by typing: 

!oR PAl.. 

in response to thp. dot printed by 
String Interpreter responr.s bv 
Margin indicating that it is 

the Keyboard Listener. The Command 
printin'l an asterisk (") at the left 

ready to accept input/output 

5-1 



specifications. The u~er 
carriage return even though 
being loaded into me~ory. 

~ay enter his command line followed by a 
the rel'1ainder of PAL is siroul taneously 

5.1.1 Assembler Options 

The options listed in T~Jle 5-1 are valid for use with the Assembler 
and are indicated by the user in the I/O specification line. 

Option 

/e 

/F 

/0 

/p 

Table 5-1 
PAL Options 

Meaning 

This option allows an I/O specification 
line to be broken into several segments. 
The option character is followed 
il'1nediate ly by a carriage return and the 
cOmMand string is continued on the next 
line: this next line must begin with a 
coruna. 

This option is valid only after an input 
filenaJ'le and Rpecifies that the Asserlbler 
should not perforl'l a REWIND operation but 
should continue searching the cas~ette in 
a forward direction for this file. The /F 
feature saves the user tiMe when :le wishes 
to input several files from one cassette 
and these files appear on the cassette in 
the SaMe order as they are to be 
assembled. The /F option prevents the 
Assembler frOM perforll'ing a REWIND before 
accessing each file. 

ThiR option is valid only after an output 
filenaMe and indicates that the file 
(i~diately preceding the option) is to 
be created and used only if a previously 
opened output file has been written to the 
end of the cassette and more output 
reMains. All output files should later be 
co~ined under onp. naMe using PIP (see 
Chapter 8). 

This option is used whenever a file 
referenced in the I/O specification line 
exists on a cassette which is not 
currently mounted on a drive. Defore 
atteMpting to search for the file, the 
Assemhler instructs the user to I'lount the 
proper cassette on the drive by printing 
t1 where t represents the drive nUMber. 
After the user has switched cassettes on 
the drive, he may continue execution by 
typing any character on the keyhoard. 

(Continued on next page) 

5-2 

.. 



Option 

/X This 

Tahle 5-1 (Cont.) 
PAL Options 

~leiUling 

option is valid only after an output 
fi len I'Ime and Causes extended binary output 
(i .. e., tho"e locations and hinl'lry contents 
heyond the first hinn.ry word per source 
statement) to be suppre"sed from the 
listing. 

5.1.2 Input and Output Specifications 

Input and output specifications are typed by the user in response to 
the asterisk printed by PM,. The fOrMat of the cOMMand string is. 

*DEV:FII,E. MIN/OPT ,DEV,FIf,R. LST/OPT=n}::v, INPUT.l/e 
,DEV, INPUT. 2/0PT, ••• nr:v, INPUT .n/OPT 

DEV represents the uevice, Flr~.BIN represents the binary output file 
and FILE.LST represents the listing output file. Null output of 
ei ther the hinary or listing fi Ie is represented by a single comma in 
the cOlllMand line. For example: 

!ol: nL.E. BIN, =1 NPUT. PAL. 

causes only the binary file to be 
(INPUT. 1 ••• INPUT.n) is permitted. 
the options listed in Tahle 5-1. 

produced. Any number of input files 
OPT represent" anyone (or more) of 

If both the binary anu listing output file" are 
cafi5ette, the Assel11hler '<Ii 11 require three paRseR 
output these two files simultaneou"ly. OtherHise only 
required. 

to be sent to 
since it cannot 
t,,,o passes are 

Under an 8K fiystefl1, control returns to the Honitor following the 
afifiemhly process; under systp.P1S greater than SK, control returns to 
the CSI, indicated by an aRterisk, and t~e user can enter another 
cOf<1Tl'land line. 

5.1. 3 Restarting the Assembler 

The Assembler may be reRtarted at any time (while it is in memory) by 
typing eTRL/p. Thi" echoes as tp on the console terminal and 1S 

followed by a carriage return/line feed. Note that thi" restarts the 
Assembler but does not alway~ allow the u~er to input a new conmand 
string. In 8K systems, the eSI has been overlaid by the Assembler and 
cannot be accessed; therefore, typing CTRL/P "ill restart the assembly 
already in progress. In larger syste~s, the esr is not destroyed and 
typing 'tP' while PAL i" running will allow the user to enter a new 
coPlMand string .. 

5-3 

--------- ................. ~~ 



5.2 CHARACTER SET 

The following A."lCII characters are used in writing a PAL source 
program (see Appendix A) : 

1. The letters A through Z. (Both upper and lower case letters 
are acceptable, although lO\>,er case letters will be converted 
to upper case letters upon input.) 

2. The nurl1hers 0 through 9. 

3. The following separating or terminating symbols. 

= % # @ " + & 

carriage return tah space line feed form feed 

4. The characters. and $ are valid but are generally reserved 
for use by system software • 

.5. 3 STATEMENTS 

A PAL source prograJ'fl in cOJ'llposed of a sequence of statements, each on 
a single line terl'linated by a carriage return/line feed (CR/;~F) or 
carriage return/form feed coMhination. 

NOTE 

Since the carriage return is a required 
statement terminator, the Assembler 
inserts a carriage return before any 
line feed or form feed not iMnediately 
preceeded by one. If the CAPS-II Editor 
is uned to create the source program, 
any carriage return typed by the user 
automatically generates a line feed 
character. 

The statement itself may be composed of as many as fOllr 
are identified by their order of appearance and 
terminating characters. The four fields are catagorized 

Label: Operator Operand ;COJflJTlent 

The label and cOl'll'1ent fields are optional. The 
fields are interdependent; that is, either 
depending upon the contents of the other. 

5.3.1 Labels 

operator 
one may 

fields which 
by specific 

as; 

and 
be 

operand 
omitted 

A label is a symbolic na~ created by 
5.4.2) to identify the location of 
always occurs first in a statement and 

the programmer (l'H~e Section 
a statenent in the program. It 
must he terminated by a colon. 

5-4 



It is assigned the In'IluA of the assel'1bly location counter (see Section 
5.5.4), which l'1ay be either ahsolute (fixed in ",eMory independently of 
the pORition of the progri"lJ"l) or relocatable (not fixed in memory). 
For example, if the cnrrent nsserhly IOCR tion is absolute 100 (octal) , 
the stat"rtent: 

ABCD, MOV A. B 

will assiqn the vCllue 100 to til" lahel ABCD; suhsequent reference to 
ABCD .,i 11 be to location 100. 

In the ahove case if th.e aB.!if:'fYihly location counter were relocatahle, 
then the final value of J\llCf) would be 100 (octal) plus a value assigned 
by the Linker when it relocates the code, callen the relocation 
factor. (The fin"l value of ABCD would therefore not be known until 
link-ti",e. This is explaine(; in Sections 5.6 and 5.8.3 of this 
chapter, "nd in Chapter 6). 

~ore than one label !'lay appear within a label field in which ca"e each 
label wi thin the field will hi",e the SMe value. For example, if the 
current location counter is IOO(octal) , the state~ent' 

ABC. SOD. A7.7. MOV A. B 

will assign each of the three lAbels ABC, $f)D, an" A7. 7 the value 100 
(the characters $ and rlef!ignate that these labels are used in 
system software). 

A label may he cO!'lposerl of !'lore than six characters, but only the 
first six are recoqnized by the Assemhler. An error code wi.ll be 
qenerated during as"el'1bly if two or more labels have the Sa!'le first 
sIx characte rA • 

5.3.2 Operators 

An operator follows the lAbel field in a statement and may be an 
instruction mnemonic or an assembler directive (the instruction set is 
discussed in the PDP-II PROCESSOR HANDBOOK; Section 5.8 of this 
chapter provides information concerning asse~bler directives). When 
the operator if> an instruction mneFtonic, it specifies an action to be 
performed on any operand(s) which follows it. When it is an assembler 
directive, the operator specifieA a certain function or action to be 
perforr1ed during the assernly process. 

An operator may be preceded only by 
or more operands and/or a COl'lnent. 
by any of the following characters: 

II + e' , « 

labels and may be followed by one 
An operator if! legally terminated 

% & , 
line feed form feed carringe return space tab 

(7he use of each of these characters will be explained later in the 
chapte r.) For exa~ple: 

5-5 



JMP BEGIN J eTAB) TERMINATES OPERATOR JMP 

MOV@A,8 J @ TERMINATES OPERATOR MOV 

When an operator is not followed by an operand or a com~nt, it is 
terminated by a carriage return followed by either a line feed or form 
feed character. 

5.3.3 Operands 

An operand is that part of the statement which is acted upon by the 
operator and may be a symhol, expression, or numher. Multiple 
operands are separated from one another by a comma. For example, 

LABEL: MOV R0.RI 

The space between MOV and RO terminates the operator field 
begins the operand field; the comma separates the operands 
When the operand field is not followed by a comment, it is 
by a carriage return followed by a line feed or form feed 
An operand is separated from a co~ent by a semi-colon. 

5.3.4 COrrunents 

(MOV) and 
RO and RI. 
terminated 
character. 

The comment field is optional and may contain any 
except null or rubout, all other characters are 
ARselllhler when used in the coml".ent field. 

MlCII character 
ignored by the 

The COmMent field may be preceded by any 
fields, or it may be on a line by 
semicolon and end with a carriage return 
form feed character. For example: 

or all of 
itself. It 
followed by 

LABEL: CLR IiER£ J Tlil SIS A C<l'!MENT 

the other three 
must begin with a 
a line feed or 

Comments do not affect asseMbly processing or program execution, but 
are useful in program listings for later analysis, checkout or 
documentation purposes. 

5.3.5 Format Control 

The format of an asseMbly listing is controlled by the space and tab 
characters. These characters have no effect on the assembly process 
of the source program unless they are eMbeddeo within a symbol, 
number, or ASCII text, or unless they are u~ed as the operator field 
teminator. They are generally used in the source program to provide 
a neat readable listing. For eXaMple, a statement can be written: 

LABEL:MOV{SP)+.TAGJ POP VALUE 0"" STACI( 

This stateMent is correct and will asseMble properly. However, ufJing 
the format control characters it can also be written: 

5-6 



• 

LABEL. MOV (SP)+,TAG J 1'01' VALUE OFF STACK 

which is much easier to read. 

Page size is controlled by the fom f~ed character (CTRL/L). A page 
of n lines is c~ated by inserting a fom feed after the nth line. If 
no form feed is present, the Assembler automatically terminates a page 
after 56 lines of text • 

5.4 SYHIlOLS 

1\ symbol is a 
However, the 
symbols which 
identical .. 
user-defined. 

string of alphanumeric characters and may be any length. 
ASsernhler only recognizes the first six characters; thus 
contain the sarne first six characters are considered 
There are two types of syfibols, perManent and 

5.4.1 Permanent SYMbols 

The Assefibler contains a tahle (called its perManent syfibol table) 
which lists the s;'1'lhols for all instruction mnemonics and assembler 
directives. The value of a perManent symbol is unique and independent 
of the program's position in memory. That is, its value is fixed and 
need not be redefined by the programmer. Appendix B provides a list 
of all permanent sYMhols in the CAPS-II Assembler. 

5.4.2 Ul'ler-f)efined Symbols 

All symbols not already defined in the Assembler (and therefore 
represented 1n its permanent symbol tahle) must be defined by the 
programmer within the source program. These user-defined symbols are 
those either designated as lahels or created by direct assignment (as 
explained in the next section). User-defined symbols are added to the 
permanent symbol table as they are encountered during the first pass 
of the assemhly: they may be cOlT\posed of alphanumeric characters, 
dollar signs, and periods only (again $'s and .'s are ~~ually reserved 
for system software). Any other characters are illegal and, if used, 
will result in an error "",ssage. The following rules also apply to 
user-defined syMbols. 

1. The first character must not be a number. 

2. Each sy~ol must be unique within the first six characters. 
A symbol may be written with more than six characters but 
the seventh anci subsequent characters are only checked for 
legality and are not otherwise recognized by the AsseMbler. 

3. Spaces and t~'B must not be iMbedded within a symbol. 

A user-defined symbol may duplicate a pernanent symbol: the value 
associated with it depends upon its use as follows: 

5-7 



1. A permanent synhol encountered in the operator field is 
always assigned its pre-defined value. 

2. A permanent sytnbol enconntered in the operand field is 
assigned its pre-defined value unless this value has been 
re-defined by the user; in that case, it is assigned the 
user-de fined value .. 

User-defined sy~bols may be of two types--global or internal. Global 
symbols are used to provide links between object modules and are 
explicitly specified as global using a special asserrlhler directive 
(see Section 5.8.2). A global sy~ol ~y be defined by the user (by 
either direct assignment or as a label), in which case fr is called an 
entry symbol or entry point; such symbols may be referenced by other 
assemblies or object modules. A global symhol which is not de fined in 
the current asse~ly is called an external syru)ol and must be defined 
(as an entry s~bol) in another assembly. 

All other user-defined syrrlhols are terMed internal; these symbols are 
referenced only from within the current assembly. 

Under an BK system, the Assemller provides space in its symbol table 
for approxiMately 240 user-defined syr'lbols i a 12K system has rOOM for 
approximately 880 user-defined symbols, and a 16K (or greater) system 
allows more than 2000 user-definp.d syJ'lll)ols. 

5.4.3 Directly Assigning Values to Symbols 

A direct assignment statemp.nt assigns a 
newly-defined s~bol is then added to the 
table; no \.,ord is reserved at the address 
The format of the statement is: 

valup. to a ~ymbol. The 
As~emhler's permanent symbol 
where the definition occurs. 

SYMBOL=EXPRESSION 

where the expression is another symhol, numeric value, operator, or 
other expression as defined in Section 5.5. 

The following conventions apply: 

1. An equal sign (=) must separate the sy~ol from the 
expression defining the symbol. 

2. A direct a~signrnent state~ent may be preceded by a label and 
may be followed by a comment. 

3. Only one symhol may be definen by anyone direct assignment 
statement. 

EXaJTIples of direct assignment statements follm·,: 

A= 1 J TH E: SYMBCL A IS E:QUATED 
J WI TH THE: VALUE: 1 

5-8 

; 



po 

B=' A-UMASKLOW I THE SYMBOL B I S EQUATED WI TK TK E 

c: 
E: 

I VALUE O. TKE EXPRESSION (. A- I &MASI<LOW) 

D=3 
MOV , t.ABLE 

,TH E SYMBOL DIS EQUATED WITH 
I TH E VALUE 3. (SI NC E NO WORD IS 
,RESERVED, LABELS C AND E ARE 
,80TH EQUATED WI TH THE NUMERI CAL 
'MEMORY ADDRESS OF THE MOV COMMAND) 

A sy:rr;J)ol may he rndefined by aRRigninq it a new value1 the ne~., value 
will replace the old value in the peITlanent syr1hol table. 

I f the defJ,ninq expreRsion iR a 
syr,bol, the definec1 sy~~ol will 
global unless it has previously 
defined as such (see Section 5.5). 

global 
not be 

been 

Only one level of 
assignMent statenent. 

for .... 'i\rd referencing is allot;.ted in a direct 
That i5, the following arrangement is illegal; 

In a case such as this, X an,1 Y "lill both be undefined throughout pass 
1 of t.oe asser-hly and will be listed as such at the end of that pass. 
Y «ill be defined during pass 2, but X will reMain undefined 
throughout ~lat pa~s and will generate an error ~e"sage following the 
pass. 

1\ symbol is relocatable or ahsolute depending upon the mode of the 
defining expression, Section 5.5.5 explains how to deter~ine the mode 
of an expression. 

5.4.4 Register Symhols 

The eight general registers of the PDP-ll are nUPlhered 0 through 7. 
The prograMmer may aRsi~n syru)olic nanes to these registers and 
thereafter reference then as syMbols. 

A re9ister sYMhol i~ defined h~r means of a direct assignment statement 
where the defining expression contains at least one term (that is, 
sYMbol or nUJ11eric vallie) preceded by a % sign, or at least one term 
(sYMbol or numeric value) previously defined as a regiBter s~bol, In 
addition, the definin~ expresRion of a ret]ir:;ter SYMbol must be 
absolute. For example: 

R0='l:0 IDEF'INE R0 AS REGISTER 0 

R3=R0+3 J OEn NE R3 AS REGISTER 0 ... 3 

5-9 



R4-1+%3 J DEF'INE R4 AS REGI STER 3 + 1 

THERE=%2 J DEF'INE uTtiEREu AS REGISTER 2 

It is important to note that all register symbols must be defined 
before they may be referenced. Any reference to an undefined register 
symbol will generally cause errors. 

After a register SYMbol h~~ been defined, any expression containing a 
% si9n indicates a reference to a registerr such an expression is 
called a register expression. Thus, the stateMent: 

CLR %6 

indicates that register 6 will be cleared, while: 

CLR 6 

will clear the word at nemory address 6. 

In certain cases a register Can be referenced without the use of a 
register symbol or register expression. These cases are recognized 
through the context of the statement and are explained in Sections 
5.7.13 and 5.7.14. 

5.5 EXl'RESSIot,s 

Expressions are formed by the combination of terms. Terms ~ay be 
symbols, numbers, ASCII data, or the present value of the assembly 
location counter (as represented by the special character, period) and 
are joined to one another by logical or arit~etic operators. A 
single term may form an expression, or several terms ~ay be combined 
by operators to make up ~.e expression. (Symbols have already been 
explained, the remaining terms are covered in this section.) 

Expressions are evaluated by the Assem,"'ler frQl!\ left to right and are 
assigned word locations, parenthetical grouping is not allowed. The 
evaluation of an expression includes the evaluation of the mode of the 
resultant expression (i .. e .. , a})soll.lte, relocatable,. or external; see 
Section 5. 5 • 5 • l 

In evaluating expressions, the Assembler will interpret the following 
illegal conditions as indicated: 

1. A missing term, 
interpreted as O. 

A+-100 

expression or external symbol will be 
For ex~ple: 

J OPERPND 111 SSING 

will be evaluated as A+O-lOO. 

2. A missing operator will be interpreted as +. For ex~ple: 

TAG I LA 177777 JOPERATOR HlSSING 

will be evaluated as TAG! LA+1777111 an error code will be 
printed. 

5-10 

: 

----~ ... ~ ... -



,. 

3.. The value of an external expression (one which contains a 
symbol not defined in the current program) will be the value 
of only the absolute part of the expression. e.g., EXT+A will 
have a value of A. (This is later modified by the Linker, 
after program relocation and linking is complete, to become 
P.XT+A. ) 

5.5.1 ArithMetic and Logical Operators 

An operator is a syr'lbol which indicates an action (or operation) to be 
performed. Two arithmetic and two logical operators are used by the 
CAPS-II Asse",bler. The arithmetic operators are: 

+ indicates addition or a positive nur'lber 

indicates subtraction or a negative nur'lber 

The logical operators are: 

I< indicates the logical AND operation 

indicates the logical inclusive OR operation 

The logical operators cau~e bit by hit coJllparisons (bet'..,en two l6-bit 
words) to be performed wi th the following results: 

AND OR 

0 I< 0 ~ 0 a 0 ~ 0 

0 & 1 = 0 0 1 = 1 

I & 0 = 0 1 0 = 1 

1 & 1 = I 1 I = 1 

5.5.2 Numbers 

A number is any seguence of digits delimited by the termination 
characters discussed 1n Section 5.2. The Assembler accepts numbers 
indicated in both octal and deci~al bases. Octal numbers consist of 
the digits 0 through 7 onlYI decimal n'rnIDers consist of the digits 0 
through 9 followed by a deciMal point. (If a number contains an 8 or 
9 and is not followed by a decimal point, an error code will be 
printed and the number will be interpreted by the AsseMbler as 
deciMal.) A nur'lber .. hieh is preceded by a minus sign is interpreted as 
a negative numher (thu~ it is not necessary to express a negative 
nu~,er in its two's complenent form); positive numbers may be preceded 
by a plus sign although this is not required. 

If a number is too large to fit into 16 bits, the number is trlIDcated 
frOM the left and an error code is printed in the assewbly listing. 
NuwJ,ers and generated data are always considered as absolute 
quantities. 

5-11 

----------------_ ... __ .... _-----------



5.5.3 ASCII Conversion 

~fuen preceded by an apostrophe, any ASCII character (except null, 
rru)out, carriage return, line feed, or form feed) i~ assigned its 
7-bit ASCII value (see Appendix A for a chart containing ARCII codes). 
For example: 

'A 

assigns the ASCII character A the value OOOIOl(octal). 

~fuen two ASCII characters are preceded by a quotation mark, (again the 
characters Must not be null, ruhout, carriage return, line feed, or 
form feed) they are both assigned their corresponding 7-bit ASCII 
values; each 7-bit value is stored in an a-bit byte and the bytes are 
combined to form a word. For example, 01\Jl will store the ARCH value 
of A in the low-order (even) byte and the value of B in the high-order 
(oddl byte, as follows: 

lIigh-Order Byte LOVI-0rder Byte 

B's value= I 0 I 0 1 =A's value 2 I 1 ,.-., ,.-., f~'~· .-,,.-., ,.-., 
0 100 001 C/O 1 000 001 

v '-...-' "-' '--" '-...-' 
0 4 1 :1 0 1 

I 

"AB=041101 

ASCII text is always considered absolute by the Assembler. 

5.5.4 Assembly Location Counter 

As assembly proceeds, consecntive memory locations 
each byte of object data generated. Thus, each word 
normally assigned even consecutive locations. 

are assigned to 
of object data is 

'fhe special character period (. ) i" the syMbol for the assembly 
location counter; when u"ed in the operand field followinq an 
instruction, a period represents the address of the first word of the 
instruction. 

NOTE 

The assembly location counter is not the 
saFe a.q the Program Counter as described 
in Section 5.7. 

For example, assu".., the following statement occurs at location 502: 

At MOV I .. R0 

5-12 

-~ 



The perind refers to locatinn 502, thnt is, the address of the MOV 
instructinn. When used in the operand field following an assembler 
directive (see ~ectinn 5.8), the ped.od represents til" address of the 
current byte or word. Assume the follnwing statement OCcurS at 
location 450, 

• BYTE: 73,., ADR 

In this case, the period refers to location 451. 

The Assembler clears the lncation counter at the beginning of each 
asseMhly pass.. Infortrlation is then norrnp,lly stored in consecutive 
"",mory locatinns beginning at location 0 for relocatable sections, and 
\-,herevAr the prograf'l."'ler indicates for ahsolute sections.. The user may 
at any tiMe change the location where the ohject data is to be stored 
by a direct ~~signment state1'1ent of the fOrM' 

• = EXP RBSS ION 

The expression defining the locatio~ counter must not contain forward 
references or symbols that vary from one pass to another .. 

In the following example the 
di recti ves, ,.hich des ignate that 
or relocatable locations. These 
Section 5.8.3 • 

proqranner u~es .ASECT and .CSECT 
code will be assigned either ab"olute 
directives are explained in detail in 

• ASECT 
."51'11'1 JSET LOCATIo-! COUNTER TO A8S0LUTE 500 

I'IRSTI MOV .+10.COlJ'lT JTHE: LA8EL !'IRST HAS THE VALUE: See(S) 
J .+11'1 EQUALS 510(8). THE Co-!TENTS 01' 
,LOCATIo-! 510(8) WILL BE DEPOSITED IN 
JLOCATI (l'4 COUNT • 

• = 520 J THE ASSEMBLV LOCATI o-! COLN TER NOW 
'HAS A VALUE 01' ABSOLUTE 520(81o 

SECa-lD, :-IOV.,INDEX JTHE LABEL SEC(l'4D HAS TIlE VALUE 520(S). 

• CSECT 

TIll ROt • WORD Ii! 

JTHE: C(l'4TENTS OF LOCATI()\I 520(6), THAT 
JtS, TIlE: 8INAR'( CODE: I'OR THE INSTRUCTla-l 
JITSELr, WILL BE DEPOSITED IN LOCATION 
, I:iDEX 

J SET LOCATI ()\I COUNTER TO RELOCATAI3LE 20. 

JTHE: LABEL THIRD HAS TIlE VALUE Or 
J RELOCATAI3LE 20 (DETERMHIED 8 .... TIlE 
JLHIKER) • 

storage area May he reserved hy ac.vancing t:1e location counter. For 
example, if the current value of tile location counter is 1000, the 
direct assignment statement, 

.-. + 100 

,.ill reserve 100 (8) bytes of stornCT" space in the program. 
instruction will be stOJ:cd at 1100. 

5-13 

.~----------..... -~ .... -------

The next 



Si~ilar to other synbols, the asseMhly location counter has a mode 
associated with it. The mode is deternined by the mode of the section 
in which it appears (ahsolute or relocatahle). This mode cannot be 
changed by us:;ing a d~fining expression of a different mode. However, 
it may he changed by chanqin~ the mode of the section usinq either the 
.ASECT or .CSF.CT directives as explained in Section 5.8.3. The mode 
cannot at any time be external. 

5.5.5 Modes of F.xpressions 

As already nentioneit, expresRions consist of a term or the combination 
of terrn."l (terl'Os being any syl'lhol, number, ASCII data, or the value of 
the current location counter). Just as each terM of the expression 
can be assigned a mode (absolute, relocatable, or external), the Mode 
of the expression itself may be determined as follows: 

An absolute expression is defined as: 

1. An absolute term preceded optionally by a sIngle arithmetic 
operator, or 

2. A relocatable expression minus a relocatable term, or 

3. An absolute expression followed by an operator followed by an 
absolute expression. 

A relocatable expression is defined as. 

1. A relocatable tern, or 

2. A relocatable expression followed by an arithmetic operator 
followed by an absolute expression, or 

3. An absolute expression followed by a plus operator followed 
by a relocatable expression. 

An external expression is defined as: 

1. An external tert"'l, or 

2. An external eX['ression followed by an arithrrtetic operator 
followed by an absolute term, or 

3. An absolute expression followed by a plus operator followed 
by an external expression. 

In the following examples Aas represents an absolute term, REL 
represents a relocatable term, and EXT represents an external term. 
Thus, these are valid expressions: 

EXT+ABS ;EXTF.RNAL EXPRES~I()N 

REL+REL-REL ; RF.LOCATAllT,E EXPRESS ION 

ABS+REL-REL&AllS ;1\BSOLUTF: EXPRE~SION 

5-14 



The following are illegal expressions (and cannot he handled properly 
by the Linker): 

BXT+RF:l, 
REL+REL 
ABS-EXT 

5.6 RELOCATION AND LINKING 

The output of the Assemhler is a relocatahle ohject module which must 
be processed by the Linker before it can he loaded and executed. The 
ohject module contains the asserohled binary output of absolute, 
relocatahle, and external expressions. Since absolute expressions are 
fixed in me!'lOry, the Linker does no manipulation. However, the values 
of external or relocatahle expressions must be fixed (or made 
absolute) by the Linker before it can create the load module which 
will contain the binary data to actually be loaded and executed. 

To enable the Linker to fix the value of an expression, the Assemhler 
must pass certain information concerning the expression on to the 
Linker. For example, each relocatable section of corle in the source 
program has been as seroh led sequentially with the first section 
beginni~g at location 0 (called relocatahle 0) 1 thus each relocatable 
express~on is a relative n~ber of locations from O. (This 
value--relocatable n--and other information is passed to the Linker by 
means of the Global Symbol Directory and the Relocation Directory, as 
described in Section 5.14.) When the Linker relocates the section of 
code, it adds the rclocataLle value of the expression as provided by 
the Assembler to the base (or beginning location of the section after 
relocation) thereby producing an absnlute value for the expression. 

In the ca~e of an external expression, the value of the external 
s~~)ol in the expression 1S determined by the Linker (since the 
external symbol must he defined in one of the other object modules 
being linked) and this VIOl"" is then added to the value of the 
external expression provided by the Asse~)ler (see Section 5.5, 83). 

All instructions that are to he modified by the Linker in this manner 
will be !'larkerl by a single apostrophe in the ass,,~,ly listing, as 
illus trated in the following examples. 

005065 CLR EXTERNAI.! 5) 
000000' 

005065 CLR EXTERNAI.+6( 5) 
000006' 

005065 CLR REl.OCATABl..E( 5) 
000040' 

5-15 

I VAl.UE OF EXTERNAl. SYMBOL 
liS ASSUMED TO BE ZERO. WILL 
I BE MODI FI e:0 BY TH e: LI NK ER 

I VAl.UE OF EXTERNAL SYMB<L 
I (ASSUMEO Ze:RO) + 6 WILL BE 
IMODlFIED BY THE LINKER 

I ASSUME CODE I S VI AN 
J ABS<LUTE SECTION A'iO 
J VALUE OF REl.OCATABl..E SYMBOL 
Jl S REl.OCATABLE Jill 

-----....... -- ---- ............... ----.~.~~ ... ~ 



5.7 ADDRESSING MODRS 

The eight genera.l registers may be used for storing and manipulatin9 
data. Accessing these registers is done by rnenns of register 
addreSSing modes. In order to underBtand how the addressing modes 
operate and hOI< they are asoeI'lhled, the action of the PrograM Counter 
must be ~~derstood. The Progran Counter (register 7 of the eight 
general registers) al\-'nys contains the address of the next word to be 
fetched 1 i.e., either the address of the next instruction to be 
executed, or the address of the second or third word of the current 
instruction. The key rule is, 

Whenever the processor iMplicitly uses 
the Program Counter (PC) to fetch a word 
from meMOry, the Progr<'!m Counter is 
auto1'latically incremented by t,·'o after 
the fetch. 

That is, when an instruction is fetched, the PC i~ incre~ented by two 
so that it is pointing to the next word in mel".ory. 

The following conventions are used in explaining the addressing modes: 

1. E represents any expression as defined in Section 5.5. 

2. R represents a register expression. 
containing a te~ preceded by a 
previously equated to such a term, as 
5.4.4. 

This is any 
% character 
explained 

expression 
or a symbol 
in Section 

3. ER represents: a) a register expression as explained in 2 
above, or bl an expression in the range 0 to 7 inclllsi ve. 

4. A represents a general address specification which produces a 
6-bit mode address field (source or destination address) as 
described in the POP-ll PROCESSOR HANDBOOK under the sections 
entitled Sin'Jle Operand AddresRing and Double operand 
Addressing. 

Addressing modes for general registers 0-6 will be described first and 
then addressing using the Prografi Counter (register 7). The format 
for the addressing speci fication, At is explainen in terl"S of E, R, 
and ER as defined ahove. ~<'!ch will be illustrated with the single 
operand instruction CLR or dOllhle operand instruction MOV. ('rhe user 
may also refer to the PDP-ll PROCESSOR HANDBOOK for information 
concerning addressing modes.) 

5.7.1 Register 1-1ode Clode 0) 

The register contains the operand. 

--~------

Fonoat: R 

EXaMple, 
RI'I=%0 
CLR R0 

I DEl'I N e: RI'I AS R EGI STER 1'1 
I CLEAR Re:GI STe:R 1'1 

5-16 

-------_._---_. __ .... ---



• 

5.7.2 Deferred Register node (Hode 1) 

The register contains the address of the operand. 

Fomat, eR or (ER) 

ExilI'tple: 

or 
CLR IIR! 

Cl..Rel) 

I CLe:AR THE WORD AT THE 
I AODRe:SS CCNTAINe:D IN 
J REGI STe:R 1 

5.7.3 Autoincrenent Hode (Hode 2) 

The contents of the regi~ter are increnented imMediately after being 
used as the addrA~s 0:: t;\e operand oR 

Fornat, (ER) + 

Ex""'ple" : 

CLR eR0)" 
Cl..R eR0+::!) .. 
CLR (2) .. 

ICLEAR WORDS AT ADDRESSES 
I CCNTA[ NED I III Re:G[ STERS 0,3, 
I AND 2, ~"D I IIICREMENT TH e: 
I CONTENTS OF" EACH OF" THESE 
I REGI STERS BY TWO. 

NOTE 

Both ,TfT and JSR instruction" ufling mo<le 
2 increMent the register before its URe 
on the PDP-ll/20 and 11/40 (but not on 
the PDP-Il/05, 11/10, or 11/45). 

In douhle oper;mil instrnction5 of the 
addressing form %R,(R)+ (or %R,-(R)) 
lYhere the sonrce and destination 
regiRters are the same, the source 
ore rand is evaluated as the 
auto incremented (or autodecrenented) 
v.::tlue, hut the dest:i.:lntion reC]is ter, at 
the time it is uscrl, still co~tains the 
originally intended effective adilress. 
In the follo'.1ing t,'lO exarlples, as 
executed on t!te PDP-ll/20 an,] 11/40, RO 
originally contains 100. 

MOV R~,c til)+ 

MOV Rli" - (0) 

I THE QUANTI TY !til2 IS 
HIOVED TO L OCATI (l'; 100 

;mE QUANT11Y 76 IS 
I MOVED TO LOCATI CN 76 

The PDP-U/OS, 11/10, and 11/45 handle 
~lese instructions afi follows: 

5-17 



MOV Re. (0)+ ,THE QUANTITY 100 IS 
'MOVED TO LOCATI Q\l 100 

JTHE QUANTI TY 100 IS 
JMOVED TO LOCATI 0-4 76 

The u.s:e of theBe fOrTI;; should be avoided 
aR they am not co.,patihle _on,] PDP-ll 
processors. 

5.7.4 Deferred p,utoincrement Mode (mode 3) 

Tile register is uRed as a pointer to the address of the operand. The 
contents of the register are incremented after being uRed. 

FOrMat, @ (E R) + 

Exa.,.,ple , 

CLR It< 3)+ ,CQ\lTENTS OF REGISTER 3 POIiIIT 
I TO ADDRESS OF WORD TO BE 
I CLEARED, CO'lTENTS OF REGI STE:R 
,3 ARE THE'l INCREME'lTED BY 2 

5.7.5 Autodecremen t Ilode (~Iode 4) 

The contents of the register are decre~ented before being used as the 
address of the operand (see note in Section 5.7.3). 

Format, - (RR) 

EXill'lp les , 

CLR -( R0) 
CLR -( Re+3) 
CLR -( 2) 

.DECREMENT CQ\lTENTS OF REGISTERS 

.0. 3 AND 2 BEFORE USING CQ\lTENTS 
,AS ADDRESSES OF WORDS TO BE CLEARED 

5.7.6 Deferred Autodecr<'.l'1ent Hode (flode 5) 

The contents of the register are decreMented before being used as a 
pointer to the address of the operand. 

Format, @- (RR) 

Example: 

CLR '-(2) ,DECREM ENT C0-4TENTS O. REG( STER 2 
,BEFORE USING C0-4TENTS AS POINTER TO 
,ADDRESS O. W ORO TO BE CLEARED 

5-18 

-----------------------------------------

.' 



5.7.7 Index Mode (Hode 6) 

The contents of the register (ER) and the value of the expression E 
are sUMmed to for~ the address of the operand. The value of the 
expression E is stored as the second or third I.ord of the instruction 
and ~s called the base. The processor uses the Program Counter to 
fetch the base from meMOry; the PC is then increMented by two and 
points to the next word. 

Fornat, E a: R) 

EXi'll'1ples ; 

CLR X~2( RJ) I ErrECT! VE ADDRESS I S X~2 PLUS 
I Ttl E CONTE."HS or RI:GI STER I 

J ErrECT! VI: ADDRESS IS - 2 PL us 
J TKE CONTENTS or REGI STER 3 

5.7.8 Deferred Index 1·lode (1·lode 7) 

The value produced when the expression and the contents of the 
register are added is a pointer to the address of the operand. 

FOrMat, @E (ER) 

Example, 

JI. REGISTER ~ CONTAINS 110. AND 
JLOCATlO!>l II~ Co-ITAlNS 2110. LOC. 
J 2100 I S CLEARED 

ADDRE~~ING USING REGISTER 7 (PCl 

Although Register 7 serves as the PrograP! Counter, it may also be used 
as a general purpose register. The PC responds to all the standard 
PDP-II addressing modes; however four of these modes are especially 
useful when writing Position Independent CodR (explained in section 
5.9); these are SUmMarized helow. 

5.7.9 I!lnediate Mode (mode 2) 

Immediate mode allows the operand itRe1f to be stored as the second or 
third word of the instruction. It is assenhled as an autoincre~ent of 
register 7. 

EXaMples, 

"IOV 1100. R3 IMOVE ~~ OCTAL 100 TO REGISTER 3 

5-19 



MOV IX.R0 J MOVE THE VALUE OF S¥MBOI.. X TO 
J REGI STER 0 

An explanation of this mode follrn<s. Using the first exa~ple 

the statement MOV #lOO,RJ assembles as two warns: these are, 

012703 
000100 

above, 

Just before this instruction is fetched and executed, the PC points to 
the first '-ford of the instruction (012703). The processor fetches 
this word and increP1ents the PC b~' t\'IO.. Since the source operand mode 
is 27 (autoincrement the PC), the PC is used as a pointer to fetch the 
operand (the second word of the HOV instruction, 000100). The PC is 
then incremented by two to point to the next instruction .. 

5.7.10 Absolute Mode (Hade 3) 

In absolute (or deferred iMmediate) mode, the expression specifies an 
absolute address: the second word of the instruction contains the 
address of the operand. Absolute mode is aSReFhled as a deferred 
autoinerement of register 7. 

Fo=at: @#F: 

Examples: 

MOV .,240, R3 

CLR IIIX 

J MOVE COHENTS or 1..0CAT! O!'I 
J240 TO REGISTER 3 

J Cl..EAR THE CONTENTS OF ToiE 
Jl..OCATI 0'1 llliOSE ADDRESS [5 X 

5.7.11 Re lati ve Mode (Hade 6) 

Relative mode is assembled as index mode using register 7 and is the 
normal mode for memory references. 

Format: E 

Examples, 

Cl..R I",,,, 

MOV ;<. Y 

J CLEAR 1..0CATl ON 100 

JMOVE CONTENTS OF LOCATi 0.'1 
J X TO l..OCATI ON '( 

The base of the address calculation, which is stored in the second Or 
third word of the instruction. is not the adnress of the operand. 
Rather, it is the numher "hieh, when a<ined to the PC, becomes the 
address of the operand. Thus, the base is this address - PC, and is 
called an offset. The operation is explained as foll"",S' 

5-20 



If the staterrent HOV 100,R3 iB aBsel'\bled at absolute 10cRtion 20, then 
the assembled code is: 

J.A)cation 20 
LocRtion 22 

016703 
000054 

The processor fetches the NOV instruction ann adds t'tvO to the PC so 
that it points to location 22. The source operRnd mode is 67 (indp.xed 
by the PC). To pick up the baBe, the processor fetches the word 
pointed to by the PC (location 22); the PC is then incremented by two 
and points to location 24. To calculate the address of the source 
operand, the base is added to the updated PC. Thus, 
base+PC=54+24=100, the operand address. 

Since the ~~sel'\bler considers the assewlly location counter (.) as the 
address of the first word of the instruction, an equivalent index mode 
statement would be: 

MOV 100-.-4CPC),R3 

This mode is called relative becau!=;e the the operand address is 
calculated relative to the current PC. The base is the distance or 
off Bet (in bytes) between the operand and the current PC. If the 
operator and its operand are moved in rn~]T!ory so that the distance 
between the operator and data remains constant, the instruction will 
operate correctly anY't,here in memory. 

5.7.12 Deferred Relative Hode (Hade 7) 

Deferred relative mode is indicated when the expression is preceded by 
@; the expression's value is the pointer to the address of the 
operand. 

Format: @E 

EXRPlples: 

CLR @AI 

MOV @X,RIl 

.ADD SECOND WORD Of INSTRUCTION 

.TO THE PC TO OBTAIN A POINTER TO 
• TH E ADDRESS Of TH E OPERANO, 
• CL EAR OPERA"! 0 

• MOVE THE CONTENTS Of THE 
'LOCATIO~ WHOSE AOORESS IS IN X 
• HITO REGI STER " 

5.7.13 Table of Hode Forms and Codes 

Table 5-2 summarizes the addressing modes. Each instruction assembles 
as at least one word. Operanns of the first six forms listed below do 
not increase the length of an instruction. Each operand in one of the 
other modes, however, increases the instruction length by one word (n 
represents the register). 

5-21 



Table 5-2 
Mode Forms and Codes 

Form ! 110de Meaning 

(Instruction length is not increased) 

R On Register 
@R or (ER) In Register deferred 
(ER) + 2n Autoincrernent 
@ (ER) + 3n Autoincrel'lent deferred 
- (ER) 4n Autodecrement 
@-(ER) 5n Autodecrement deferred 

(Instruction length increased by one word) 

E (ER) 6n Index 
@E(ER) 7n Index deferred 
*E 27 Immediate 
UE 37 Absolute Inel'\Ory reference 
E 67 Relative 
@E 77 Relative deferred reference 

The Assemhler 
and signs 
incorrect USer 
indication, (X 

NOTE 

An alternate form for @R is (BRI. 
However, the form @(ER) is e,!uivalent to 
@O (En) • 

The form @*E differs from the form E in 
that the second or third word of the 
instruction contains the absolute 
address of the operand rather than the 
relative distance between the operand 
and the PC. Thus, the instruction 
CLR @.100 will clear absolute location 
100 even if the instruction is moved 
from the point at which it was 
assembled. 

is not particular about left and right and 
in address fields. The following are some 
syntax that will assemble as shown without 
and Yare l6-hit address offset~): 

Form 

(Rl) X 
X- (R2) 
X(R2)+ 
+ (R2) 
(P.2)
@(R2) X 
X(Rl)+Y 

AsseT.1bles As: 

X(R2} 
X(R2) or X-O(R21 
X(R2) 
(R2) + 
-(R2) 
@X(R2) 
X+Y(R2) 

5-22 

dangling + 
examples of 

any error 

--------_ ................. _ ........... ----------



• 

5.7.14 Instruction Form5 

Instruction MI\el'\onics are detailed in the PDP-II PROCESSOR HANDBOOK 
and slwrnarized in Appendix B. This section defines the nuMber and 
nature ()f the operand fields for these instructions. In the table 
that follows, let R, E, and ER repre~ent expressions as defined in 
Secti()ns 5.5 and 5.71 let OPR repre~ent the oper~tor: let A he a 6-bit 
address specification in one of these fOrMs: 

E 
R 
(J':R) + 

Instruction 

Double Operand 
Single Operand 
Operate 
Branch 

Subroutine Call 
Subroutine Return 
miT/TRAP 

@R 
@R or (R) 
@ U:R) + 

- (ER) 
E (ER) 
jE 

@-(lm.) 
@E (r:R) 
@iF. 

Tahle 5-3 
Instruction Operamj Fiel<15 

Fom 

OPR A,A 
OPR A 
OPR 
OPR E 
where -128«E-.-21/2<=127 
JRR ER,A 
RTS ER 
OPR or OPR E 
where O<=F;<=377 (octall 

EXa!'lple ! 

r10V (M)+,@Y 
CLR -(R2) 
UlILT 
BR X+2 
BID .-4 
JSR PC,SUER 
RTS PC 
EMT 
EMT 31 

Branch instructions are one worn instructions. The high byte contains 
the op code and the 10'1-1 hyte contains an B-bit signed offset (7 bits 
plus sign) >lhich specifies the branch address rolative to the PC. The 
hardware calculates the hranch arli:.re~s as follo\V's: 

1. The sign of the offset is extended throu<Jh bits 8-15. 

2. The reAu1 t is rnultipl!.ed by 21 this creates a word offset 
rather than a byte offset. 

3. The result is anded to the PC to fori". the final branch 
address. 

The Assembler performs the reverse operation to fom the byte offset 
from the specififld address. Nhen the offset is added to the PC, the 
PC is pointing to the word foll~lin<J the branch instruction, hence the 
factor -2 in the calculation. 

Byte offAet = (r;-PCI/2 truncated to eight bit,,_ 

Since PC=.+2, the 

Byte offset = (B-.-2)/2 truncated to eight bits. 

5-23 



'IOTE 

It is illegal to branch to a location 
specified as an external sy~)ol, or to a 
relocatahIe sy",hol when within an 
&)snlute section, or to an absnlute 
sYMbol when within a relocatable 
section. 

The EHT and TRAP instrllctions do not use the l".,-order byte of the 
word. This allO>ls information to be transferred to the trap handlers 
in the low-order byte. If ErIT or TRAP is foll""""O by an expression, 
the value is put into the low-order byte of the word. However, if the 
expression is too big (>311(octal» it is truncated to eight bits and 
an error code is printed. 

The programmer should not try to micro-prograM the condition code 
operators (see Appendix Bl as the CAPS-II Asse~ler does not support 
this capability. Thus: 

CLCICLV 

results in an error message and the statement is asseMbled as CLC. 

However, expressions allow logical 
instruction mnemonics. Thus, the 
written. 

operators 
following 

and 
''fords 

.WORD CLC! 

+CLC !CLV 
ICLCICLV 

5.8 ASSE1'!BLE R DIRECT IVRS 

I OPERAND Of • WORD 01 RECTI VE 
(see Section 5.8.7) 
IOPERANO Of DEfAULT • WORD 
10PER.oND Of DEfAULT .WORD 

the 
are 

use of 
correctly 

Assel'lhler directives (sometiMes called pseudo-ops) direct the assembly 
process and may generate data. Directives may be preceded by a label 
and may be followed by a cOF~"nt. The asse~ler directive occupies 
the operator field and only one directi.ve mlly be placed in anyone 
statenent. A directive and its operand s:lOuld be separated by a space 
or other legal terminator. Operand~ which are used with directives 
vary and are discussed individually. 

5.8.1 • TITLE 

The .TITLE directive Is used to name the object module. 
assigned by the first symbol following the directive. 
.TITLE statement the default naMe assigned is ·.MAI~.·. 

• T! TLE 
FILE!I MOV 'NAME,R0 

assigns the name FIJ,El to the current object ",odule. 

5-24 

The name is 
If there is no 

Thus: 

--------------- ---.................... ----~--... . 



• 

5.8.2 .GLOBL 

The • GLOBI, directi ve is used to declare a symhol as being global. A 
global synbol is generally referenced by more than one ohject module. 
It may be an entry synbol. in which case it is defined in the current 
progr~. or it may be an external syrulol, in which case it is defined 
in another program which will be linked with the current program by 
the Linker. The fOrM of the .GLOEL directive is: 

"GLOBL NAMl\ , NAt1B , .... , NAMl'f 

where symbols NAMA,NAMR, ••• NAMN are all defined as global symbols. 

NOTE 

A symbol cannot be declared glohal by 
defining it aB a glohal expression in a 
direct assignMent statement. 

If an illegal character is detected in 
state~ent an error message is not 
ignore the remainder of the statement. 

the operand field of a .GLOBL 
generated hut the Assembler may 
Thus: 

• GL OBL A. B. tiC. I) 

assembles without error as: 

.GLOBL A. B 

5.B.3 Progr~ Section Directives (.ASEC~ and .CSECT) 

The relocatable Assembler provides two directives enabling the 
programmer to specify that parts of his proqram he aSRemhled in 
absolute sections and other parts in relocatahle sections. The scope 
of each directive extends until a directive to the contrary is given. 
The AsseMbler initially starts in a relocatable section; to enter an 
absolute section, the .ASECT directive is indicated. Thus. if the 
first statement of a proqram is: 

AI .ASECT 

the label "AU would be 
value of relocatable 
absolute value of A by 
section. For example: 

a relocatable symbol which is assigned the 
zero. The Linker will later calculate the 

adding the value of the hase of the relocatable 

A: 

• ASECT 
.311!11!111l 
CLR X 
• CSECT 
JMP A 
.E:>ID 

I ASSEMBLER IN ABSOLUTE SECn ON 
IPC=I1!100 ABSOLUTE 
I A= 1000 ABSOLUT£ 
I ASSE"4BLE 1,~ Ro.OCATABL£ SECT! O~ 
1)(=0 Ro.OCATABLE 

The progr.amMer may alternate hetHeen relocatable and absolute sections 
as follows, 

5-25 

---------------------------------_ ......................................... _---



• CSECT 
.WORD 0.1.2 I ASSEMBLED AT RELOCATABLE 0. e. A.>lD " .ASECT 
• WORD 0,,"112# I ASSEMBLED AT ABS(LUTE II. e. A.~D '" 
• CSECT 
.WORD II I ASSEMBLED AT RELOCATABLE Ii 
.END 

If a label is defined twice, fir~t in an absolute section and then in 
a relocatable section, the symbol will be relocatable but its value 
"ill he as defined in the absolute section. 

Chapter 6 provides details concerning hOI-! the Linker handles absolute 
and relocatable prograM sections at link-time. 

5.8.4 .EOT 

NOTF. 

The CAPR-II Assembler provides the .EDT 
directive for the user who may W1Ah to 
write a program for execution under 
another systeM allowing the use of paper 
tape. For that reason, it is described 
here, although the average CAPS-II user 
will have no need to reference it and 
the CAPR-li Assembler will ignore it. 
The following discussion of the .EDT 
directive details its use as it pertains 
to the Papertape Software SysteM. 

The .EOT directive in.Hcates the physical End Of Tape though not the 
logical end of the prograM. If the .EOT is followed by a single line 
feed or form feed, the AsseMhler "ill still read to the end of the 
tape, but will not process anything pa'it the .EOT directive. If .EDT 
is followed by at least two line feeds or form feeds, the Assembler 
will stop before the end of the tape. Eitiler case is proper: even 
though it may appear as though the Assembler nas read too far, it 
actually has not. 

If .EDT is embedded in a tape, and more information to be assembled 
follows it, .EDT must be immediately followed by at least two line 
feeds or form feeds. Othe~'ise, ~~e first line following the .EDT 
will be lost. 

Any operands following a .EQT directive will be ignored. The .EOT 
directive allows several physically separate tapesm be assembled as 
one program. The last tape should be terminated by a .END directive 
(see Section 5.8.6) but may be terminated with .EOT. 

5.B.5 .EVEN 

The .EVEN directiVe ensures that the assembly location counter is even 
by adding one if it is odd. Any operands following a .EVEN directive 
will be ignored. 

5-26 



5. S. 6 • mID 

The .END directive indicates the logical and physical end of the 
source program. The .END directive may be followed by only one 
operand--an expression indicating the programlR transfer address. At 
load tiMe, the load module will be loaded and program execution will 
begin at the transfer address indicated by the .END directive. If the 
address is not specified and a RUN or LOAD/G co~mand is used, a fatal 
error message "ill be printed; if a LOAD/O co"""and is used, CABLDR 
will halt and expect user console action (see Appendix E) I a LOAD 
cOl11l'land in conjuction «ith the START cOl'1l'1and allows the user to 
indicate an optional starting address for the progrAm. 

If there is no .END directive in the user's prograM,. the AsseMbler 
will issue the message: 

1NO END STI'IT 

at the end of the last input file and will continue as if there had 
been an .END statement there. 

5 .. 8.7 .tiORD 

The .WORD assenhler directive may he foll~,ed by a space and one or 
more operands separated by COMmas and instn.cts the Asse~)ler to store 
each ope:rand in successive wor.ds of the object program. the operands 
may be any legally forMed expression. For ey.rt~ple: 

._1.1120 
SAL-0 
.WORD 11153S •• +.II.SAL .STORED I~ WORDS 1.1120, 1422 

• I'JIID 142.11 WILL BE 111535 • 
• 1426 AND 0 

Values exceeding 16 hits will he truncated frOM the left to ''lOrd 
length. 

A .\'IORD directive followed hy one or more vain operands separated by 
COMMas will store 7.eros for these operands. For e~ample: 

.=1430 

.WORD ,5, 
'ZERO. FIVE. A~D ZERO ARE STORED 
.IN WORDS 1430. 1432. AND 1434 

If a 5tatePlent contains no operator, t:1is field \viII be inter!,reted as 
a .. "NORD directive provirling the operand field contains one or more 
expressions. The fir!";t terM of the fir~t expresRion in the operand 
field must not be an instruction mnenonic Or asse~ler directive 
unless preceded hy a + or -. or one of the logical operators, I or &. 
For exafllple: 

.::£140 
LABELl +MOV.LABEL 

.T~E OP-CDOE rOR MOV (010000) 
J! S STOHED IN LOCATI O,~ .1140. 
I 440 IS ST OREO IN L OCAT I O'j 442. 

5-27 



Note that the default .WORD directive will occur ,,,henever there is a 
leading arithmetic or logical operator, or whenever a lea~ing symbol 
is encountered in the operator or ol~rand fieln which is not 
recognized as an in~tructi0n mnenonic or asseMhler directive. 
Therefore, if an instruction rnnef'lonic or assefl1.bler directive is 
misspelled, the .. hfORD directive is aSfiul'1ed ann errors will result. 
Assume. that MOV is spelled inco!Crectly as IIOR, 

MOR A. B 

Tlds will result in two errors caused by: a) an expression operator 
missing between NOR and 1\, ann bJ :IOR being undefined. 1'>10 words will 
be generated; one for ~~OR A and one for B. 

5.8.8 • BYTE 

The .BYTE directive may be followen by a spa"e and one or More 
operands separated h~l cotr'l'ia5 and ins:tructs the Asseftthler to store each 
operan<1 in a byte of the ohject prograM. If Multiple operands are 
specified, they are f3toren in succe~sive bytes. Tho operands may be 
any legally fo~ed expression witl1 a result of 8 bits or less. For 
eXaPlple, 

Since the 
to have 
low-order 
the .BYTE 
eXaI>1ple, 

SAM::; 
• =410 
.BYTE 48.,SAM 

1 STORED IN LOCATlO~ 410 WILL 8E 
1060 (THE OCTAL EQUIVALE!'IT 0, 46) • 
J{N 4I! WILL BE 00:; 

expression is evaluated as a word expression, if it is found 
a result of more than 8 bits, it I"ill be truncated to its 
8 bits and an error will be flagged. If an operand after 
directive is left void, it will be interpreted as zero. For 

.:420 

.BYTE • • 
IZERO WiLL 8E STORED I~ 
18,(TES 420. 421 AND 422. 

If the expression is relocatahle, a warning \vilI be printed. 

5.8.9 .ASCII 

The .ASCII directive translates strings of ASCII characters (with the 
exception of null, rubout, c~rriage return, line feed, and fOrM feed) 
into their 7-hit ARCII codes. The text to be translated must be 
enclosed by a deliMiting ch"r;,cter I<hich may be any printing ASCII 
character except colon and equal sign and tllose characters used in the 
text string itself. The 7-bit ~~CII code generated for each character 
will be stored in stlccessive bytes of the ohject prograI>1. For 
eXaMple, 

.~S00 
• ASCII 1''( ES/ 

I THE ASClI CODE FOR'( '( IIIl .. L BE 
I STORED IN 50'" niE CODE ,OR E 
lIN 50!. THE CODE FOR S IN 502. 

5-28 

---------_ ........... - .- ~~~~ ............... --



• ASCI I /5+3/2/ )THE DELIMITl~G CHARACTER OCCURS 
1 BETioIEEN THE OPERANDS. nlUS THE ASCI I 
;CODES FOR 5, +, AND 3 ARE STORED 
; I~ B't'H:S 503, 504.. AND 505. 2/ IS 
lNOT ASSEMBLED. 

The .ASCII directive may be terMinated by any legal terminator (as 
listed in Section 5.2 #3) except = and:. Note that if the text 
deliMiter is also a legal terminator, it may serve a double function, 
tel1'linating the directi "e and delimiting the text. For e>:a"'['le: 

5.B.lO 

PDP-ll 
called 
allows 
can be 

• ASCI ( /ABCO/ 

• ASCII +ASCD+ 

.MDSO 

; TH E SPACE IS REQUI RED 
; BECAUSE / IS NOT A LEGAL 
; TERMINATOR. 

INO SPACE IS REQUIRED 
J SI NCE + I S A TER>!I ,'jAT OR. 

"ystem programs often handle synbols in a specially coded form 
"RADIX 50" (sometimes also referred to as "HOD40"). This form 

3 characters to be packed into 16 bits; therefore, any symbol 
held in two words. The fonr, of the directive is: 

The single operand is entered in the fOrM /CCC/ where the delimiter 
(in this case, slash) can be any print&lle character except = and: 
and those character9 used in the operand. Characters which may be 
conv"rted are A t:,rough Z, 0 through 9, dollar ($), dot (.) and space 
( ). If there are fe_r than 3 characters they are left-justified and 
trailing spaces are ass,~ed. Any characters following the enclosing 
delimiter are ignored and no error results. For example • 

• RADS0 /ABC; 
.RADS0 /AB/ 
.RADS0 // 

'PACK ABC I NT 0 ON Ii: WORD 
I PACK AS (SPACE) INTO ONE WORD 
'PACK 3 SPACES INTO ONE WORD 

The packing algori t~ is a~ fo11"",s: 

1. Each character is first translated into its RADIX 50 
equivalent as foll~~s: 

Character 

(SPACE) 
A-Z 
$ 
• 
0-9 

RADIX 50 Equivalent (octal) 

o 
1-32 
33 
34 
36-47 

Note that another character can be defined for code 35. 

5-29 



2. The RAIlIX 50 equivalents for the three characters (CI, C2, 
C3) are then combined as follows: 

RESULT=«CI*50)+C2)*50+c3 

and the result is stored in the word. For example, the RADIX 
50 value of ABC is 3223. 

5.8.11 • LIMIT 

The .LIMIT directive generates two words into which the Linker puts 
the low and high addresses of the relocated code. The low address 
(stored in the first word) is the address of the first byte of 
relocated code; the high address is the adilre"s of the first free byte 
following the relocated coile. These addresses will always be even 
since all relocatable sections are loaded at even addresses; if a 
relocatable section consists of an odd ntwilier of bytes the Linker adds 
One to the size to make it even. 

5.8.12 Listing Control Directives (.LIST and .NLIST) 

The .LIST and .NLIST directives allow the user to choose which 
sections of his program will appear in the asseMbly listing. The 
.NLIST directive suppresses the as"embly listing and the .LIST 
directive reinitiates it. Thus if the user is developing a program 
and ha" a large section of code which does not change from one edit to 
the next, he can insert a .NLIST directive at the beginning of that 
code and a .LIST at the end. That code will not appear in the 
assembly listing • 

If the 
to be 
symbol 

• :U.IST di recti ve is in 
output, the .NLIST 

table can be listed. 

control when the s~hol table is ready 
directive will he terminated so that the 

5.8.13 Conditional Assemhly Directives 

Conditional assembly directives provide the programmer with the 
capability of conoitionally including or not including portions of his 
source code in the assembly process. In the explanation which 
follows, E denotes an expression. The conditional directives are: 

Dir.ective F.><!:ression Result 

• IFZ E Assemble if E=O 
.IFNZ E Assemble if E;'O 
.IFL E Assemble if E<O 
.IFLE E Assemble if E<=O 
.IFG E Assemble if E>O 
.IFGE E Assamhle if Ea>O 

If the condition is met, all statements following the conditional 
directive are assembled until a special delimiting directive, .ENDC, 
is encountered. If the condition of the dir.ective is not met, these 

5-30 

• 



statel'lents are ignored. When the .ENDC directive is detected, 
assembly continues as uRual. 

TwO more conditional directives are used: these take the following 
form: 

.IFDF Sell [1,&] fi(2) II,&], ... [I,&]S(N) 

.IFNDF S(l) [1.&] fi(2) [I.&j .... [1.a]S(N) 

where S(l) though SIN) represent sy~~ols, ! represents the logical OR 
operation. and & represents the logical AND operation. .IFDF and 
.IFNDF mean "if defined" and "if undefined" respectively. The scan is 
from left to right. no parentheses permitted. Nesting is permitted up 
to a depth of 127 (decinal). For exanple: 

.1 FOF S IT&U 

.IFNOF TlU!S 

Assemhle the following code (until 
detection of .ENOC) if either S or 
T is defined and U is defined 

Assemble the following code (until 
detection of .ENDC) if both T and U 
are undefined or if S is undefined 

General remarks concerning conditional 
follo>dng: 

directivRS include the 

1. A null expression or an expression in error use the default 
value 0 for purposes of the conditional test. 

2. An error in syntax, e.g., a terminator other than 
CR results in the undefined situation for .IFDF 
as does a null syrohol or symbol in error. 

! & or 
and .IFNDF, 

3. All conditionals mURt end with the .ENDC directive. Anything 
in the operand field of .ENDC ig ignored. 

4. 

5. 

Lrulels are oermitted in statements containing conditional 
directives,' however, since the scan i~ purely from left to 
riQht, in the foll"",inQ example: 

.! FZ I 
CI.R X 

AI • ENOC 

the lahel A ,<tIl be ignored (as the Assenhler ignores all 
code between the coonitional directive and the .ENDC 
directive), .. hile in this ex_pIe: 

A. .[ F'Z I 
Cl. R )( 
• ENOC 

A is entered in the syn!lol table. 

If an .END directive in 
conditional, an error 
directive will still be 

encountered while inRic'le a satisfied 
will be f lAgged I however, the • EN 0 

processed norMally. 

5-31 



6. If more than one • Ei10C directi ve 
conditional directive), error~ are 
excess. 

is encotmterecl (per 
flagged on those in 

5.9 I'IRITING POSITION INDEPENDENT CODE (PIC) 

When a standard prograM is 
often heneficial to be 
different areas of meMory. 

avnilahle for use by other programs, it is 
ahle to load and execute the program in 
There are several \'lays to do this: 

1. Reasse~hle the prograM at the desired location. 

2. Use a relocating loader which accepts specially coded binary 
ohject modules fro", the Assembler. 

3. Have the program relocate itself after it is loaded. 

4. Write code which is position independent. 

On sJTlall Il'\achines, reasseITll11y is often perfort11ecl; ha,rever, the CAPS-ll 
SystefTl has a relocating loader (Linker; see Chapter 6), and this is 
preferable. Since it generally is not econor'd.c;al to have a program 
relocate itself (as hunoreds or thousands of addresses may need 
adjustr1ent), writing position independent code. is another method of 
producing a relocatable program. 

PIC is achieved on the PDP-II by correct usage of those addressing 
modes which form an effective JTleJl10ry address relative to the Program 
Counter (PC). Thus, if an instruction and its ohject(s) are moved in 
such a way that the relative distance bett,..,een them is not altered, the 
same offset relative to the PC can be used in all positions in ~e~ory. 
PIC usually references locations relative to the cnrrent location, 
al though ahsolute rp.ferences may be made as long as the locations 
referenced re~ain stationary ""'hile the PIC is relocated. For exaJllple, 
references to interrupt and trap vectors are absolute, as are 
references to device registers in the "external page ll (281< to 32K), 
and direct references to thp. general registers. 

5.9.1 Position Independent Modes 

There are three position independent modes, or fOrMS of instructions: 

1. Branches--the conoitional 
unconditional branch, BR, 
hranch address is cOMputed 
Section 5.7.11). 

branches, as well 
are position independent 
as an offset to the 

as the 
since the 

PC (see 

2. Relative MeMory References--any relative memory reference of 
the form: 

CLR >( 

MOV >(, ~ 

JMP >( 

5-32 



is position independent hecRuRe the Assembler aRsernbles the 
reference as an off Ret indexed by the PC:. The offset is the 
difference bet>1een the referenced location and the PC. For 
eXaJ)lple, aASUMe the instruction CLR 200 is at addreRs 100, 

100 0051'.167 ;;IRST WORO OF C~R 200 
1 OFFSET " 200-104 102 01'.101'.174 

The offset is aelded to the upctated PC. 
been incremented by two and contains 
of the word foll'Ming the offset}. 

(~'he updated PC has 
104, i.e., the address 

Although the for~ C:LR X is po~ition independent, the form 
CLR @X is not. Consider the follO'ling, 

5. C~R @I( IC~EAR ~OCATION A 

x. .WORD A JPOINTER TO A 
• 
• 

A' • WORD 0 

The contents of location X are used as the address of the 
operand in the location labeled A. Thus, if all of the code 
is relocated, the contents of location X rnl~t be altered to 
reflect the nen'l adctr-ess of A. 1I000.'lever, if A \"as the r.ame 
aRsociated with sOJ:l'le fixed location (e.g., a trap vector or a 
device register), then state~ents S and X would be relocated 
and A would reMain fixed. The follO'ling code is position 
independent, 

51 

iO 

~R ItX 

JADDRE5S or SECOND WORD 
J OF TRAP VECTOR 
J CLEAR ~OCATI ON A 

.WORD A J POINTER TO A 

3. Immediate Operands--The Asse~)lp.r acdressing form #E 
~pecifies iMmediate data, that is, the operand is part of the 
instruction (see Section 5.7.9). Thus, i~~ediate data is 
position independent and is moved with the instruction. 
Immediate data is fetched using the PC in the autoincrement 
JTtooe. 

As with direct MeMory references, the addressing for", @#E is 
not position independent since the final effective address is 
absolute and points to a fixed location not relative to the 
PC. 

5.9.2 Absolute Modes 

Any time a memory location or register is used as a pointer to data, 
the reference is ahsolute. If the referenced data is fixed in memory 

5-33 



independent of the posItIon of the PIC (e.g., trap-interrupt vectors 
or device registers), absolute modes must be used. (When the 
progranner is not writing position independent code, references to 
fixed locations may be performed using either the absolute or relative 
form.) If the data referenced i" relative to the PIC, absolute I'1Odes 
must not be used unless the pointers involved are l'1odified. The 
absolute modes are: 

@E Location E is a pointer 
@#E The iJ1lI'liediate word is a 

pointer 
(R) The register is a pointer 
(R) + and - (n) The register is a pointer 
@(R)+ and @-(R) The register points to a 

pointer 
p, (R) R=6 or 7 The base, E, modified by (R) 

is the address of the operand 
@E(R) The base, modified by (R) , is 

a pointer 

The non-deferred index modes and stack operations require a little 
clarification. As described in sections 5.7.11 and 5.9.1, the form 
E(7) is the normal mode to reference mel'1ory and is a relative mode. 
Index mode, using a stack pointer (SP or other register) is also a 
relative mode and may be used conveniently in PIC. BaSically, the 
stack pointer points to a dynamic storage area and index mode is used 
to access data relative to the pointer. The stack pOinter l'1ay be 
initially set up by a position independent progra.'>l as shown in section 
5.9.4. once the pointer is set up, all data on the stack is 
referenced relative to the pointer. It should also be noted that 
since the form O(~P) is considered a relative mode, so is its 
equivalent @SP. In addition, the forl'1!! (SP)+ and -(~P) are required 
for stack pOPR and pushes. 

5.9.3 Writing Automatic PIC 

Automatic PIC is code which requires no alteration of addresses or 
pointer~. Thus, rne~ory references are liMited to relative modes 
unless the location referenced is fixed (trap and interrupt vectors, 
etc.). In addition to require~ents alremly mentioned, the following 
must be observed: 

1. ~tart the program with .=0 to allow easy relocation using 
CARLDR (see Appendix E). 

2. All location setting state~ents must be of the form .=.+X or 
.= function of tags within the PIC; for example, .=A+IO where 
A is a local label. 

3. There must not be 
This means that 
interrupt vectors 

.-34 

any absolute location setting statements. 
a block of PIC cannot set up trap and/or 

at load time with statements such as: 

.WORD TRAPH,349 1 TRAP VECTOR 

5-34 



CAST,DR, when it is relocating PIC, relocates all data by the 
load bias (see Appendix E). Thus, the data for this vector 
would be relocated to SORe other location. Vectors may be 
set at execution time (as discus~ed next). 

5.9.4 Writing Non-Automatic PIC 

Often it is not possible or economical to write totally automated PIC; 
in t..~ese cases, SOMe relocation may be eaRily perforMed at execution 
time. SORe of the methods of solution are presented below. 
Basically, ~~e methods operate by exaMining the PC to determine where 
the PIC is actually located; a relocation factor can then be easily 
computed. In all eXal'lples, it is assumed that the cone is assembled 
at zero and :'as been loaned somewhere else by CAFILDR. 

Setting up the Stack Pointer - Often the first task of a program is to 
set the stack pointer (SP). This may be done as follows, 

BEG. MOV PC, SF 
TST -( SF) 

J BEG IS TIiE f'I RST [i\lSTRUCTI a. 
J 01" THE PROGRAM. 
JSF=ADDRESS SEG+2 
• DECREMENT SF B1' 2. 
.A PUSIi (NTD T~E STAC~ WILL STORE 
.THE DATA AT BEG-2. 

Setting up a Trap or Interrupt "ector - Assume the first word of the 
vector will point to location INT which is in PIC. 

MOV FC. R0 
ADD #lNT-K-2,R0 
MOV R0,.#VECT 

J R0= ADDRESS )( .. 2 
I ADO OffSET 
JMOVE POINTER TO VECTOR 

The offset Hrr-X-2 is equivalent to INT- (X+2) , X+2 is the value of the 
PC moven by statement X. If PC(O) is the PC th~t was assumed for the 
program when loaoed at 0 and if PCln) is the current real PC, then the 
calculation is: 

IlIT-PC (0) +PC (n) =INT+ (PC (n) -PC (0) ) 

Thus, the relocation factor, PC (n) -PC (0), i" added to the assembled 
value of INT to produce the relocated value of I;{T. 

Relocating pointer~ - If pointers must be u"erl, they may be relocated 
as shown above. For example I assume a list of data is to be accessed 
with the instruction: 

ADD (R0l+. Rl 

The pointer to the list, list L, may he calculated at execution time 
as follows, 

5-35 

----- ....... _--------



H: MOV PC,R0 JGET CURRENT PC 
ADD ~l-M-2,R0 JADD OFFSET 

lInother variation is to gather all pointers into a table. The 
relocation factor "lOy he calculated once aml then applied to all 
pointers in the tahle usin<r a loop: 

XI 

1..00P: 

,'10V PC, R0 
SUB NX+2.R0 
MOV #PTRTBI... R 1 
ADD R0.Rl 
MOV ITBlLEN. R2 
ADD R0. (R 1> + 
OEC R2 
BGE: LOOP 

,RELOCATE ALL E:NTRI E:S IN PTlHBI.. 
) CALCULATE REL OCATl ON FACTOR 
)GET AND RELOCATE A POINTER 
,TO PTRTBL 
,GET I..ENGTH OF TABLE 
,RELOCATE AN ENTRY 
) COUNT 
) 8RANCI'! IF NOT DCNE 

Care tn'I.1R t be exercised \'Jl1Cn 

t"ble of pointers. The 
relocation, i..e., the tahle 
load. 

restnrtin<; a pro0ran "lhich relocates a 
restart procedure must not include the 
Jl\Ugt be relocated e""ctly once after ""ch 

5 .10 LOADING UllUSl'D TRAP VF:CTORS 

One of the features of the PDP-II is the ahility to trap on various 
conditions such a~ illegal ins.tructionR, reserved instructions, power 
failure, etc", Ho\-.tever, if the trap vectnrR are not loaded with 
Meaninqful inforMation, the occurrence. of any of these traps will 
cauge unpredict"ble refiul tg. fly loa,lin<r the vC!ctorg as indicated 
below it is possihle to avoid t:,cse prohlel'1s as '.<ell as gain 
rtteaningf.ul inforrrlation ahout nny unexpp.cted traps that occur.. This 
techni<]ue, which rnakef> it eil.sy to identify the source of. n. trap I is to 
load each untIlled tr.ap vector wi th: 

.=trap address 

.i'1rmD .+2,HN,T 

This 1<111 load the fir"t \4ord of the vector "ith the a<1dress of the 
second \-Iord of the vector hlhich contain:s a HNJT). 'rhus, for exarn.ple, 
a hi\lt at loci\tion 6 "'''an" th'tt a trap through the vector at location 
4 has occurred.. The 01<1 PC and stntus mR;! he exaMine(l hy looking at 
the stack pointed to by register 6. 

Tr'tp vectors of interest are listecl in Table 5-4. 

5-36 

: 



Vector 
I~ncation 

Halt l\t 
T .. ocation 

Tahle 5-4 
Trap Vector~ 

f1eaning 

1-----+----+------------------1 
4 6 

10 12 

14 16 

20 22 

26 

3D 

34 36 

nus Errorj il1egnl ingtruction; 
Stack Overflo,,; Nonexistent Henory: 
Nonexistent Device; \'<iord P.eferenced 
at Odd JI<1dre"" O",a(;ed by 
RBS:!O'J--caw;e" Honi tor TRAP error 
rnas"age) 

Reservc(l InstT.uction cr.,oaded by 
ru:snoIi--caURCR Hon i tor TRAP nrror 
Messa~e) 

Trace Trap Instruction (000003) or 
T-bit Set in Rtatur; Wor!'l (uAed by 
OD'!'; loc.d0.c1 Hi th a H}\'l .. ~ hy RJ:Srl0N) 

lOT Execut.,d (used by RESPON) 

Power Failur.e or ReRtoration 
(loaded with a HALT by RES 'JON) 

E:r:r Executed (10a(1e(1 "ith a III\J.T by 
Rf!sr 1orl) 

Trap Executed (T.ol1dect with a HALT 
by REnnO}!) 

5.11 CODI~JG TEClIlHOUES 

Because of the great flexihili ty in PDP-II coelin'.), time-saving and 
Rpace-saving ways of pe:r.forninq o~erntions may not be immediately 
apparent. SOMe special coding techniques are preRented in this 
section. 

5.11.1 Alterin'.) ReryiRter Contents 

The techniques descrihed in this section take 
autOMatic stepping featnre of autoincTetrtent and 
when used especially in TfiT and CUP instructions .. 
no not alter operands. 

t,OTE 

advantage of the 
autodecreMent modes 
These instructions 

altering 
condition 
contents 

rr'hese al ternati ve ~"ayp; of 
regiRter contents affect the! 
codes differently. Register 
Must be even w~en stepping by 2~ 

5-37 



1. Adning 2 to a register might be accol".plished by ADD #2, RO. 
However, this u:=;es tHO word~, , ... hereas CMPR (EO)+,(RO)+ ('.-{hich 
also adds 2 to a register), use~ only one word. 

2. Similarly, subtracting 2 froM a register can he done by the 
complementary instructions SUIl #2,RO or CIIPIl - (RO) ,- (RO). 

3. Two may he added or suhtracted froPl tHO different registers, 
or 4 from the SMle reqister, in one single-word instruction 

. as follows: 

CMP ( RII)+. ( RII)+ J ADD 4 TO RII 
CMP -(RI> .-(RI> J SUBTRACT 4 !'ROM RI 
CMP (RII)" - (R I> J ADD 2 TO RII. SUBTRACT 2 !'ROM RI 
CMP -(R3),-(RI> J SUBTRACT 2 FROM BOTH R3 AND RI 
CMP (R3)+.CR0)+ J ADD 2 TO BOTH R3 ~"D RII 

4. Variations of the example:=; above can be employed if the 
instructions ore rate on bytes and one of the registers is the 
Stack Pointer. These examples depend on the f2lct that the 
Stack Pointer (a:::l , ... ell a!1 the PC) is aI· .... ays autoincremented 
or autodecremented by 2, whereas register::; RO-RS step by 1 in 
byte instructions. 

CMPB (SP)+.(R3l+ 
CMPB -(R3).-(SPl 
CMPB (R3l+.-(SPl 

JADD 2 TO SP AND I TO R3 
J SUBTRACT I FRCM R3 & 2 FROM SP 
J ADD I TO R3. SUBTRACT 2 FROM SP 

5. Popping an unwanted word off the proces~or stack ~dding 2 to 
regi!'i.ter 6) and testing another value can be two separate 
instructions or one comhined in~truction: 

or 

TST (SP)+ 
TST COUNT 

MOV COUNT. ( SP)+ 

J POP WORD 
J SET COWl TI <l'I CODES FOR COUN T 

J POP WORD & SET CODES FOR CO~T 

The differences are that TST instructions use thr.ee words and 
clear the CRrry hit, \.,.hile the 1-'IOV instruction u:=;es tuo words 
ann does not affect the Carry bit. 

5.11. 2 Subroutines 

Condition codes set within a subroutine can be u:=;ed to conditionally 
branch upon return to the calling prolJrarrt, since the RTf> instruction 
does not affect condition cones. 

XI 

JSR PC.X 
BNE ABC 

• 

J CALL SUBROUTINE X 
J BRPtI Qi ON CON DI TI ON SET 
J IN SUBROUTINE X 

J SUBROUTI NE ENTRY 

5-38 

~ 



>' 

CMP R2. DEF 
RTS PC 

I TEST CINDI TI IN 
IRETURN TO CALLING PROGRAM 

I~en the register in the first operand of a JSR instruction is not the 
PC, data stored following a subroutine call can be accessed within the 
subroutine by referencing the register. (The register contains the 
return address.) For example: 

JSR R5.Y 
• WORD HI GH 
.WORD LOW 

• 
• 

MOll (RS)+.R2 
MOV CRS)+.R4 

• 
• 

RTS RS 

lLATEST RS VALUE WILL POINT HERE 

1 VALUE OF HI GH ACCESSED 
IVALUE OF LOW ACCESSED 

I RETURN TO LotATl IN 
I CINTAI NED IN R5 

Another possibility is: 

PSTARG. 

JSR R5. SUB 
BR PSTARG 

• WORD A 
.WORD 8 
• WORD C 

• 
• 

• 
• 

ILOW-ORDER BYTE 1 S OFFSET TO 
I RETURN ADDRESS. WHIOi EQUALS NO. 
IOF ARGS • 
IADDRESS OF ARG A 
IADDRESS OF ARG 8 
IADDRESS OF ARG C 

I RETURN ADORESS 

SUB. MOVB ORS.COll'H IGET NO. OF ARGS FROM LOW B,(TE 
I OF 8R (I F' DESI RED) • 

MOV 014( RS). R2 IE. G.. GET 6TH ARGUM ENT 
M OV 06( RS). R 1 I G £T TH I RD ARGUMENT 

• 
• 

RTS RS I RETURNS TO BRANCH WHI ell JU'lPS PAST 
IARG LIST TO REAL RETURN ADDRESS. 

In the example above, the branch instruction contributes two main 
advantages: 

1. If R5 is unaltered when the RTS is executed, return will 
always be to the hranch instruction. This ensures a return 
to the proper location even if the length of the argument 
list is shorter or longer than expected. 

5-39 



2. The operand of the branch, being an offset past the argUl'\ent 
list, provides the nuMber of arguments in the list. 

Arguments can be made sharable by separating the data from the main 
code. This is easily accomplished by treating the JSR and its return 
as a subroutine itself, 

CALL.: 
• 
• 

JSR PC.ARGI..ST 
• 
• 

ARGLST: J SR RS. SUB 
BR PSTARG 
.WORD A 

• 
• 

The examples above all demonstrate the calling of subroutines from a 
non-reentrant program. The called subroutine can be either reentrant 
or non-reentrant in ellch case. The follrn,ring example illustrates a 
method of allowing calling programs to be reentrant. The arguments 
and linkage are first placed on the stack, simulating a JSR RS,SUB, sO 
that arguments are accessed from the subroutine via X(RS). Return to 
the calling program is executed from the stack. 

CALL. 

• 
MO\l RS.-(Sp) ISAVE R5 ON STACK 
MOV J SBR. - (SP) J PUSH I NSTRUCn 011 J SR R6. fRS ON 

J STACK. PUSH ADDRESSES OF • 
• 
• 
• 

J ARGUMENTS OIl STACK I N REVERSE 
J ORDER (SEE BEL OW) 

MOV BI<N. -( SP) J PUSH BRA'ICH INSTRUCTICl'I ON STACK 
IMOVE ADDRESS OF BRANCK TO RS XI 

RET: 

JSBR, 
BRIll. 

MOil SP.RS 
JSR PC. SUB 
MOV (SP)+.RS 

• 
• 
• 

JSR R6. eR5 
BR • +/'1+1'1+ 2 

J CALI.. SUB AND SAllE RETURN ON STACK 
J RESTORE C1.D RS UPOIl RETUR'!. 

JDATA AREA OF PROGRAM 

J BRANCH PAST N ~ORD ARGUMENTS 

The address of an argument can be pU;;hed on the stack in several ways. 
Three are shown below. 

1. The arguments A, B, and C are read-only constants which are 
in memory (not on t.'1e stack) , 

MOV 'C.-( 51') 
MOil 'B. -( SP) 
MOV 'A.-(SP) 

J PUSH ADDRESS OF C 
J PUSH ADDRESS OF B 
J PUSH ADDRESS OF A 

5-40 



2. Arg~ents A, B, and C have their addresses on 
the Lth, 14th, and Nth bytes frOl'l the top of 

the stack 
the stack. 

at 

MOV NC SP). -C SP) 
MOV M+2( SP). -( SP) 
MOV L+ iI( SP) • - C SP) 

I PUSH ADDRESS OF" C 
I PUSH ADDRESS Of" B 
I PUSH ADDRESS Of" A 

Note that the displacel'1ents frOf!1. the top of the 
adjusted by t"o for each previous push because the 
stack is being moved on each push. 

stack are 
top of the 

3. ArgUMents A, B, and C are on the stack at the Lth, Mth, and 
Nth hytes from the top but their addresses are not. 

MOV #N+2. - C SP) JPUS>i DISPLACEMENT TO ARGUMENT 
ADD SP,ISP J CAL CULATE ACTUAL ADDRESS Of" C 
MOV #M+ 4, - C SP) 
ADD SP,ISP I ADDRESS OF" B 
MOV #L.+ 6, - ( SP) 
ADD sp, @SP I ADDRESS OF" A 

When subroutine SUB is entered, the stack appears as follows: 

RET 
BR .+N+H+2 

A 
B 

• 
· · JSR R6 @RS 1 BWINCH IS TO HERE 

Old R5 

Subroutine SUB returns hy means of an RTf; RS, which places R5 into the 
PC and pops the return address from the stack mto RS. This causes 
the execution of the hranch since R5 has been loaued at location X 
with the address of the branch. The JS)1 briUlched to then returns 
control to the cc=tllinq prograM, and in so doi.nq, move~ the current PC 
value into the SP, therehy r<:!l'1oving everything above the old RS from 
the stack. Upon return at Rf:T thi~ too is popped, restoring the 
original RS and SF values. 

The next exal'1l'le involves a recur~ive subroutine (one that calls 
itself). Its function iR to look for a ~atching ri~ht parenthesis for 
every left pi'lrenthesis encountered. The suhroutine is called by JSR 
whenever a left parenthesis is encountered (R2 points to the character 
following it). When a ri~ht parenthesis is found, an RTS PC is 
executed and if the right parenthesis is not the last legal one, 
another is searched for. IVhen the final matching parenthesis is 
found, the RTS returns control to the main pro'lrrun. 

AI MOVS (R2)+,R0 
CMP #' ( ,R0 
BNE B 
JSR PC, A 
BR A 

IGET SUCCESSIVE CKARACTERS 
IL.OO< f"OR L.EF'T PARENTliESIS 
I F'OLND? 
I L.EFT PARE'! fOUN!), CALL. SaF' 
IGO LaO< AT NEXT C'iARACTER 

5-41 

------~ 



BI 

BNE A 
RTS PC 

ILEFT PAREN NOT .OUND. LOOK FOR 
J RIGIiT PAREN 
I FOt..ND? I. NOT. GO TO A 
J RETURN PAREN FOUND. I. NOT LAST. 
JGO TO B. IF LAST. GO TO MAI·~ 
J PROGRAM 

The example below illustrates 
JSR PC,@(SP)+. The program 
output, performing as foll"",s I 

the use of co-routines, called by 
uSes douhle buffering on both input and 

Write 01) 
Read II aoncurrently 
Process II 

Write 
Read 
Process 

02 ) I2 concurrently 
II 

JSR PC,@(SP)+ always perfor~q a jump to the address specified on top 
of the stack and replaces that address with the new return address. 
Each ti!'1e the JSR at B is executed, it jUFlpS to a different location; 
initially to A and thereafter to the location following the JSR 
executed prior to the one at B. All other JSR's JUMP to 8+2. 

IIEClI I'll 

BI 

liND 
JI ;0 
AI 

• 
lOT 
• BYTE READ. I NSL OT 
• WORO I I 
MOV 'A. - e 61 
J SR PC. Ie 61 + 

• 

BR B 
or MAIN LOOP 
CO-ROUTINES 

lOT 
• BYTE REA!), HISLOT 
• WORD 12 

• 

• 
JSR PC, 8e 61+ 
lOT 
• BYTE WRI TE, OUT SL or 
.WORD 01 
lOT 
.BYTE READ.INSLOT 
.WORD II 

• 
• 
• 

JSR PC,le 6)+ 
lOT 
• BYTE WRI TE. OUTSLOT 
• WORD 02 
BR A 

5-42 

IDa 1;0 RESETS. INITS. ETC. 

J READ I NT 0 I I TO START PROCESS 

Ill'll TI ALIZE STACK rOR 1'1 RST JSR 
1 DO 1;0 FOR 01 A'lD I I OR 02 
1 AND 12 
IPERFORM PROCESSING 

1 MORE 1;0 

.READ INTO 12 

JSET PARAMETERS TO PROCESS 
111.-01 
JRETURN TO PROCESS AT 8+2 
JWRITE FROM 01 

J READ INTO [ I 

.SET PARAMETERS TO 
J12. 02 
JRETURN TO PROCESS 
J WRI TE .ROM 02 

I READ INTO 12 

PROCESS 

6+2 

• 



• 

~, 

• 

The trap handler below si~ulates a two-word JSR instruction with a 
one-wo~l TRAP instruction. In this exanple, all TPAP instructions in 
the prograM take an operand and trilp to the handler address at 
location 34. Thp. tallie of suhroutine addres,;"s (e.g., 11., B, ••• ) can 
he constructed afl fo11",'s: 

TABL. E. 
CAl. A= • - TABL. E 
• WORD A 

CAl. B=. - TABL. E 
• WORD B 

I CAL-I.. EO BY: TRAP CAL-A 

I CAL-I. ED BY. TRAP CAL-B 

Another way to construct the tanle I 

TABL.E. 
CAl..A=.-TABL.E+TRAP 
.1I0RD A I CAl..I.ED BY. CAL-A 

• 
• 
• 

The trap handler for either of the ahove method" follows: 

TRAP34. MOV esp. 2( SP) I REPL.ACE STACKED PS WI T'i 
SUB 12. liSP IGET POINTE:R TO TRAP 

II NST,RUCTI 0-1 
MOV Ie SP) +, -( SP) IREPL.ACE AODRESS OF TRAP 

I TRAP 1 NSTRUCTI ON I TSEL.F 

PC' 

III TH 

ADD ITABL.E-TRAP. liSP ICAL-CU~ATE SUBROUTINE ADOR. 
MOV Ie SP) +, PC IJUMP TO SUBROUTINE 

*Repl1lcin'l the s;;ved PS loses the T-bit status. If 
a hreakpoint has been set on the TRAP instruction, 
ODT will not gain control again to reinsert the 
hreakpoints hecause the T-!>i t trap will not occur. 

In the example above, if the third instruction had been written 
HOV @(SP) , (SP) it would have u5ed an extra word since @ (1'P) is in 
Index Mode and assembles a" @O(SP). In the final instruction, a jump 
was executed by a I-1OV @ (SP) + ,PC, becuase no equivalent J11P instruction 
exists • 

Following are sOf'le JJ,lP and MOV e<:!uivalences (note that JJ.1P does not 
affect condition code~). 

5-43 



JI1P (R4 ) = MOV R4,PC 
Jt.lP @(R4) = ~IOV (R4) ,PC 

(2 Words) (I Word) 
None = MOV @(R4),PC 
JMP - (R4) = Ilone 
JMP @(R4)+ = 110V (R4) +,PC 
Jt1P @-(R4) = MOV -(H4) ,PC 
None t10V @(R4)+,PC 
Mone 110V @-(R4) ,PC 
JI1P X = MOV ~x,PC 
JHP @X = MOV X,PC 
None = NO" @X,PC 

The trap handler can also he uneful as a patching techniqlle.. JUMping 
out to a patch area is often difficult because a hlO-worct jump must be 
perfor1"led. I1rn;ever, tile onCl-wnrd TllAP in"truction may he used to 
dispatch to patch areaS. A sufficient nlwIDer of slnts for patching 
should first be reserved in the disPntch table of the trap handler. 
The jump can then be accomplished by placing the ad,1res" of the patch 
area into the table and inserting the proper TRAP instruction where 
the patch is to be made. 

5. 12 ASSF.MIJLY VIALOGlJE 

During assembly, the Assembler will pause to print on the 
tenninal various mesRages to indicate that some response must 
by the user before the ass""lhly process can continue. CTRL/P 
typed at any time to stop the asse~bly process and restart the 
dialogue, as mentioned in Sectinn 5.1.3. 

If the specified assel'1hly 1h;ting output device L~ the Line 
and it is out o~ paper, the Assembler prints on the terMinal, 

EOM? 

console 
be made 
may be 
initial 

Printer 

and wai ts for paper to be placed in the device. '£yping the RETURN key 
will continue assembly. 

Other conditions which may cau"e the scm? messaqe for the line printer 
are, a) no power, b) printer drUl'1 gate open, and cj too hnt. 

There is no ROll if the line printer is switched off-line, although 
characters may be lnst for this condition as <1e11 as for an EOJ{. 

If the end-of-tape is reacherl during cassette output an" the user has 
not indicated an overflow file using the /0 option, the Assembler will 
print, 

EOM? 
RETRY? 

The user l'lust mount a different output cassette and then type any 
character on the keyhonrd: the Asseml,ler "ill retry t"e same assembly 
using the new output cassette. Alternatively, the user can type tc 
and return to the KBL. (In sy"tens greater elan than BK, the user may 
also type tp, which returns control to the CSI, enabling another 
conlPland string to be entere<'1.) 

5-44 

-------------------------------------------------------------------------

----

~ 



-. 

If a hard read error is detected on one of the input files, the 
Assembler will print. 

IBAO TAPE 
RETRY 1 

Typing tc will return control to the J(DL. Typing tp or any other 
character will cause the Assemhler to retry the SaMe asse!'lbly. (In 
syste~ larger than SK, the Assembler will return to the CSI and allow 
the user to input a new cOMMand.) 

If the last file does not have a .END, the Assembler will print: 

11>10 END ST'fT 

and will el".ulate a .END assembler directive. Note that when .END is 
emulated in this manner the error counter is incre~ented by one. 

5.13 ASSEMBLY LISTING 

The CAPS-II Assembler produces a side-by-side 
symbolic source stateMents, their octal 
addresses, and error codes, aA follows: 

CCAAAAAA ooooootSS~ ••••••• s 
000000 
000000 

assembly listing of 
equivalents, assigned 

The C's represent the error code field; error codes (listed in Table 
5-4) are flagged in this field. The A's represent the 6-bit octal 
address, while the O's represent the object data in octal. The S's 
represent the sourCe statement, and • represents a single apostrophe 
which will be printed whenever either the second, third or both words 
of the instruction will be modified by the Linker. The Assembler 
accepts on input 72 (decimal) characters per line. Any additional 
characters on the line will be ignored and the AsseMbler ~Iill generate 
an ILl error code. 

If an instruction reql1ireR t\~O or three words, the second and third 
words of the statement are listed under the command word. No 
addresses precede the second or third worns since the address order is 
sequential. The second and third words can be eliminated frOM the 
assembly listing by means of the !X switch. 

The object data field of a .EYTR directive is asse~~led as three octal 
digits. 

The value of t;le defining expression in a direct assignment statement 
is given in the object code field although it is not actually part of 
tlle code of the object progran. 

The .~~ECT and .CSRCT directives cause the current value of the 
appropriate location counter (absolute or relocatable) to he printed. 

5-45 

~~~~~~---~----~~~~~~-.-----.----.--


Each page of the listing is hp.aded by a PAL identification line and a
page nurnher (octal).

An example of an asse~)ly listing is shrn1n in Chapter 7, Section 7.6.

5.14 aDJECT ~IODULE OUTPUT

T:'e output of the aSBemlller dllring the binary object pass is an object
module >lhich i" meaningful only to the Linker. An overview of what
to'1i" object module contains and at what stage each part of it is
produced follows.

The binary object module consists of three main types of data block:

1. Glohal SynlJOl Directory
2. Text blocks
3. Relocation Directory

5.14.1 Global Synbol Directory

(GSD)
(TXT)
(RLD)

1\s the naMe suggests, the GSf) contains a list of all the global
symbols together with the niU'le of the object mod"le. Each symbol is
in Radix 50 form and contains infornation regarding its mode and value
whenever known.

The aSD is created at the start of the binary ohject pass.

5.14.2 Text Blocks

The text blocks consist entirely of the binary object data as shown in
the listing. Operands are in the unmodified form.

5.14.3 Relocation Directory

The RJ.D blocks consist of directives to the Linker which may reference
the text blocks prececling the RLD. These directives control the
relocation and linking process.

Text and RLD hlocks are constructen during the binary object pass.
Outputting of each hlock is done whenever either the TXT or RLD buffer
is full and whenever the location counter neeo" to be modified.

5-46

.,

--------------------~--------~--------

5.15 f:R1\<JR CODES

The error codes printed beside the octal and sytnhnlic code in the
assembly listing have the follOldng meanings:

Error Code

A

B

D

1

L

M

N

P

Q

R

Table 5-5
l\.ssemhlf!r Error Codes

Meaning

.ll,ddrel'dnry error. lin address wi thin the
instrnction is incorrect: may also
indicate a relocation error.

Boundinry error. Instructions or word
meI'\(Jry data are being a"sembled at an
odd address in ffieRory. The location
counter is updated by +1.

Doubly-defl.nAd syw>ol
Reference was ~arle to a
defined more than once.

referenced.
syt'\hol which is

Illegal character detected. Illegal
chAracters 'i..,hich are ab::m non-printing
are replaced by a ? on the listing.

Line bufIp.r
on a line
ignored.

overflot1. Extra characters
(more thnn 72(decimal» are

/·lultiple definition of a label. A label
was encountered which was equivalent (in
the first six characters) to a
previously encountered label.

Number containing 8
point missing. The
as a d~ciMal number.

or 9 has decimal
mlI'lher is assembled

Phase error. A lw)el's definition or
value varies fron one pass to another.

Questionw}le syntax. There are missing
ar<juMents, the ins truction scan WiS not
completed, or a carriage return was not
i~ediately followed by a line feed or
form fned.

RegistAr-type error.
Or reference to a
made.

An invalid use of
reqis ter has been

(Con tinned on next page)

5-47

Error Code

S

T

U

Table 5-5 (Cont.)
A~se~~l~r Error Codes

Meaning

Symbol table overflow. When the
quantity of user-defined syt'tbols exceeds
the allocated space available in the
symhol tahle, the Assembler outputs the
current source line with the S error
code I then returns to the MOnitor (or to
the CSI in systel'1s larger than BK) •

Truncation error. A nul'1her generated
more than 16 bit" of significance, or an
expresRion generated more th;m a hits of
significance during the use of the • BYTE
directive.

Undefined sYIYhol. lin undefined symbol
was encountered during the evaluation of
an expression .. Relative to the
expreSR~Ont the undefined symbol is
assigned a value of zero.

In addition to the error codes listed above, the following messages
may also occur. (error mes~ages which are followed hy a question mark
allow the user to type a CTRJ,/C to return to the KBJ. or a CTRL/P to
retry the operation):

l-lessage

%BAD CI4D STRINe;

?IlAD TAPE?

.--_ .. _ .. _---

Table 5-6
Assembler Error Messages

t'leaning

One of the following errors has
occurred in the uRer t s cOIm"\and
string:

No output was specified,
No input was specified;
Input and output were specified
on the srune drive;
Input was specified from a device
other than cassette;
Binary output Was specified to a
device other than cassette.

A checkslllll or other hard error
occurred during a file lookup or
enter cOJ'l1J'!'land. Typing any
character will cause the Assemhler
to retry the oper..9.tion.

(Continued on next page)

5-48

Hessage

%HAD TAPE
RF:TRi'?

EOM?

EOM?
RETRY?

?FILE NOT FNm

?NO END STI·IT

?SNITCH ERROR:',,'?

?TAPE FIlL!,?

TallIe 5-6
Assem)) ler Error Ho.ssage,s

Xeanin9

A harrl read error t4aS rletec:ted on
one of the input files; typing any
character (except CTRL/C) will
cause the AsseMbler to retr:y the
S(lMe asseMbly (in systems larger
than 8K, tbe AsseMbler wi 11 return
t() the C~I and allo", the nser to
input a ne, .. ' cOfTlitnd) ..

The line printer i~ out of paper or
is not powered up ~ the drum gate is
open; or t:lf~ printer is too hot.

The end of the tape was reached
during cassette output and no
overflo", file was <;pecifieci. '!'he
u~er May mount another cassette and
then type any keyboard character to
instruct the As~emJ)ler to retry the
asseMhly using the new output
ca~~etta.

The I\ssel',bler could n()t find one of
the input files. The user f'lay
lnount another ca:ssette and type any
chal:acter on th" keyboard to
instruct the AsseMbler to retry the
lookup on the sane driv". Typing a
CTRL/P will restart the AssemJ,ler
(if the systeM is 8K the same
asse~ly will be restarted,
otherwi5e control will return to
the Cill.)

The file does not contain
directi "e; the Asse,.-hler
• END stateMent.

an .E:iD
assumes an

An undefined option character (x)
was found in the command string.
Typing any character on the
keyhoard will Cause the Assem)) ler
to ignor.e the oLJtion and continue.

The specified output cassette is
completely full. Mounting a
different cassette on the SaMe unit
and typing any character instructs
the Assembler to attempt to open
the file on a new cossette.

5-49

------------------------------ ~--"--"""~""""""""---

•
ClIJ\P'J.'E It 6

LINKING ASSEI·IDLED PRCGAAMS

The CAPS-II Linker converts object modules produced by the Assembler
into a format suitable for loading and execution. This allows the
user to assemble a large program in several small subprograms or to
separately assemble a main program and each of its subroutines without
assigning an absolute load address at assembly time. Object modules
are processed by the Linker to.

Relocate each object module and assign absolute addresses,

Link the modules by correlating global symbols defined in
one module and referenced in another module,

print a load map which displays the assigned absolute
addresses,

Output a load module which can subsequently be loaded and
executed.

Advantages of using the CAPS-II Assembler and the Linker include the
following.

1. A program is divided into segments (usually subroutines)
which are assembled separately. If an error is discovered in
one segment, only that segment need be edited and
reassembled. The new object module is then linked with the
other object modules.

2. Absolute addresses need not be assigned at assembly time as
the Linker automatically assigns absolute addresses. This
keeps programs from overlapping each other and also allows
subroutines to change size without influencing the contents
of other routines.

3. separate assemblies allow the total number of symbols to
exceed the number allowed in a single assembly.

6-1

-------------------------------- --- - --~~ ----

4. Since global symbols are usually referenced from more than
one object module, the programmer must be sure that his names
for such symbols are unique between object modules. However,
this does not apply when the symbol is internal; since an
internal symbol is referenced only from within the current
assembly, the same symbol names may be used in several
different modules.

5. Subroutines may be provided for general use in object module
form to be linked into the user's program.

6.1 CALLING AND USING THE LINKER

The Linker is called from the System Cassette by typing.

! R I..INK

In response to the dot printed by the Keyboard Listener. The Command
String Interpreter responds by printing an asterisk (*) at the left
margin of the teleprinter paper. The user may respond with his I/O
specifications as soon as the asterisk appears even though the
remainder of the Linker is being loaded into memory simultaneously.

The Linker requires two passes over the input object modules. During
the first pass any undefined globals are listed on the console
terminal, and a global symbol table is constructed which includes all
the control section names and global symbols in the input modules. on
the second pass, the Linker reads the object modules, performs most of
the functions listed in the introductory description and produces a
load module which can be loaded (using the Monitor LOAD c~and) and
e~ecuted. The load module is output in binary image format.

After execution, control returns to the CSI, indicated by an asterisk
at the left margin; the user may enter another command string.

6.1.1 Linker Options

The options listed in Table 6-1 are available for use by the Linker
and are designated by the user in the I/O specification line.

6-2

Option

/C

/F

/0

/P

/s

Table 6-1
Linker Options

Meaning

This option allows the I/O specification
line to be broken into several seqments.
The option character is followed
i~diately by a carriage return and the
I/O specification is continued on the
next line; this line must begin with a
comma.

This option is valid only after an input
filename and indicates that the Linker
should not perform a REWIND operation
but should continue searching the
cassette in a forward direction for this
file. This feature Saves the user time
when he wishes to input several files
from one cassette and these files appear
on that cassette in the sarne order as
they are to be linked. The /F option
prevents the Linker from performing a
REWIND before accessing each file.

This option is valid only after an
output filename and indicates that the
file (immediately preceding the option)
is to be created and used only if a
previously opened output file has been
written to the end of a cassette and
more output remains. All output files
can later be combined under one name
using PIP (see Chapter Sl.

This option is used whenever a file
referenced in an I/O specification line
is on a cassette which is not currently
mounted on the unit drive. Before
attempting to search for the file, the
Linker instructs the user to mount the
proper cassette on the drive by printing
11 where i represents the drive number.
After the user has switched cassettes on
the drive, he may continue execution by
typing any character on the keyboard.

This option is valid only after an input
filename and indicates that two or more
object modules have been combined (using
PIP) under the single filename. The
option instructs the Linker not to skip
to the next input filename until it has
obtained all necessary information for
the files included in the first.

(Continued on next pagel

~3

Option

IT

/BIn

/BIn

Table 6-1 (Cont.)
Linker Options

Meaning

The IT option is valid only after an
input filename and indicates that the
transfer address of this particular
object module is to be used as the
transfer address of the final load
module. If more than one /T option is
indicated in the I/O specification line,
only the last one is significant.

The program is to be linked with its
lowest location at n. If n is not
specified, the Linker assumes location
600. (The MOnitor uses locations
400-600 for stack space while loading is
in progress, so the user should not
attempt to link any data for loading
into that area.)

The program is to be linked with its
highest location at n. If n is not
specified, the Linker aSSumes that the
last location of the user program will
go just under CLOD 11 (see Chapter 3,
Figure 3-1). The ueer can then use the
LOAD/G command to run his file.

NOTE

If neither the /S or /H options are
indicated (or if both are indicated),
the Linker will load the program with
its highest location just below the KSL,
so that the entire CAPS-II Monitor will
be preserved.

The Linker does not give a warning if a
program is linked in memory in such a
way that its lowest address falls below
address O. However, this condition can
be easily recognized by examining the
low and high limits which are always
printed in the load map.

If the user wishes to link his program for an overlay load (via the
LOAD/O command), he can link it using the /S switch with no value.
The lower limit is set to 600 and the Linker will set the high limit
to allow just enough memory for CASLDR and CBOOT (which the user needs
to load his program and to re-boot the CAPS-II System). The .LIMIT
assembler directive (see Chapter S) can be used to instruct the Linker
to load the value of the high limit into the user-program. If the
user wants to link his program at the top of memory, he should use the

•

/H switch designating a value which is l2l4(octal) bytes
number of bytes in his machine. For an 8K system
40000-1214 or 36564 (octal) , the program would then be
/H:36564 •

6.1.2 Input and Output Specifications

less than the
this would be
linked using

The Linker allows two output specifications. one for binary output and
one for the load map output. Inserting only a comma for either output
specification instructs the Linker that no output of this type is to
be produced. Any number of input files are acceptable. The format of
the I/O specification line is:

*OEV: FILENA. LOA/OPT. OEV: FILE!!A. MAP /OPT=OEV: INPUT 1. OBJ /C
.OEV:INPUT2.0BJ/OPT •••• OEV:INPUTn.OBJ/OPT

DEV represents one of the CAPS-II I/O
the options listed in Table 6-1.
Linker assumes the extension .LOA for
the load map output. and .OBJ for the
input files.

devices; OPT represents any of
Unless otherwise indicated. the

the binary output file. .MAP for
relocatable binary object module

For example. consider the following I/O specification lines •

• R LINK
i!CTI. PROG. LP: ~0: RES. TY PE. 3RN /F. 0: 51 GN/P/C
.TABLE.DAT/F/H:2000

This command line causes the Linker to output the load module
(PROG.LOA) on cassette drive 1. and the load map on the line printer;
the input files are RES.OBJ and TYPE.3RN. both on cassette drive 0
(the /F option indicates that TYPE.3RN follows RES.OBJ on the cassette
and that no rewind is necessary); the next input file (SIGN.OBJ) is on
a cassette which is not currently mounted. so the user asks to be
prompted (via the /P option) when the file is needed; the command
string is continued on the next line. and the final input file is
TABLE.OAT which is in a forward direction (in relation to SIGN.OBJ) on
the cassette now mounted on drive O. The program (PROG.LDA) is linked
so that its highest address is at location 2000 •

• R LI NK
!' TT. -ACE. I. BAK. OBJ

In this example. no output load module is created; the load map is
output to the console terminal; the input files are ACE.l and BAK.OBJ.
both on cassette drive O. The cassette is rewound before BAK.OBJ is
accessed. Since no linking address is specified in the command line.
the program is linked so that its highest location will load just
below the KBL. preserving the entire CAPS-II Monitor.

6.1.3 Restarting the Linker

The Linker may be restarted at any time (while it is memory) by typing
CTRL/P. This echoes as tp followed by a carriage return/line feed.
Control is passed back to the Command String Interpreter and the user

6-5

may input a new command string. (An exception occurs when typing tp
while the load map is being output--this causes the Linker to
terminate the map iMmediately and start Pass 2.)

6 .2 AllSOLU'l'E ANI> RELOCATAllLE\ PROGRAM SECTIONS

AS explained in Chapter 5, the programmer may designate sections of
his program as absolute or relocatable by means of the .ASECT and
.eSECT assembler directives. (The Linker assumes .CSReT if neither
directive is indicated.) In an absolute section, a direct assignment
statement of the form .cEXPRESSION initially assigns an absolute
address to an instruction; succeeding instructions and data in the
absolute section are then assigned absolute addresses in accordance
with the assembly location counter.

Instructions and data encountered in relocatable sections are assigned
absolute addresses by the Linker. These addresses are normally
assigned such that the relocatable sections are loaded just below the
lowest location of the KBL (although the user can control this with
the Linker Is and /H options). All instructions and data which the
programmer has designated in a relocatable section (called a control
section and indicated by a .CSReT directive) are modified
appropriately and as necessary by the Linker to account for their
relocation.

6.2.1 Named and Unnamed Control Sections

The Linker has the capability of handling named and unnamed control
sections. (Assigning names to control sections is a feature not
supported by the CAPS-li Assembler, although the programmer may have
occasion to use other assemblers which do allow this feature.) An
unnamed control section (which is actually assigned a special default
name of 6 blanks, i.e., .eSReT) is internal to each object
module and is treated independently from any other unnamed control
section. The Linker assigns each unnamed section an absolute address
such that it occupies an exclusive area of memory. Named control
sections, on the other hand, are treated globally. That is, if
different object modules have control sections with the same name,
(for example, .CSECT DATA), they are all assigned the sarne absolute
load address and the size of the area reserved for loading of the
section is that of the largest. Thus, named control sections allow
for the sharing of data and/or instructions among object modules. A
restriction is that the name of a control section must not be the same
as the name of a global entry symbol as this will result in multiple
definition errors.

The absolute section is always assigned the special name .AllS (i.e ••
• ASECT.ABS) by the Linker.

•

6.3 GLOBAL SYMBOLS

Global symbols provide the links, or communication, between object
modules. Global syMbols are created with the .GLOBL assembler
directive (as described in Chapter 5). Symbols which are not global
are called internal symbols. If the global symbol is defined in an
object module (as a label or~ direct assignment) it is called an
entry symbol and other object modules can reference it. If the global
symbol is not defined in the object module, it is an external symbol
and is assumed to be defined (as an entry symbol) in Some other object
module •

As the Linker reads the object modules it keeps tracK of all global
symbol definitions and references. It then modifies the instructions
and/or data which reference the global symbols. Undefined globals are
printed on the console terminal during pass 1.

6 • 4 INPUT AND OUTPUT

Linker input and output is in the form of modules; one or more input
modules (object modules produced by the Assembler) are used to produce
a single output (load) module.

6.4.1 Object Modules

Object files, consisting of one or more object modules, are used as
input to the Linker; these object modules have been previously created
by the Assembler, and more than one object module may have been
combined using PIP to form a single object file. The Linker reads
each object module twice; that is, it is a two--pass processor. During
the first pass, each object module is read so that absolute addresses
can be assigned to all relocatable sections and all globals can be
assigned absolute values. The information the Linker needs for this
process is contained in the global symbol directory (GSD), located at
the beginning of each object module. unless the /S switch has been
indicated in the command line, during the first pass the Linker reads
only the GSD at the beginning of the object file.

on the second pass, the Linker reads the object modules, links and
relocates the modules, and outputs the load module. During this pass
it uses a block of information output by the Assembler in the object
file which is called the Relocation Directory (RLD).

6.4.2 Load Module

The primary output of the Linker is the load module which may be
loaded and run under the CAPS-II Keyboard Monitor. The load module
consists of formatted binary blocks holding absolute load addresses
and object data. The first few words of data will be the
communications directory (COMO) which will have an absolute load
address equal to the lowest relocated address of the program. CABLDR
or CLODII will load the COMD at the specified address but the COMO
will then be overlayed by the program. The end of the module will be

6-7

indicated by a TRA block, that is, a block containing only a load (or
transfer) address. The byte count in the formatted binary block will
be 6 on this block/ on all other blocks the byte count will be larger
than 6. The TRA is normally selected by the Linker to be the first
even transfer address seen. Thus, if four object modules are linked
together and if the first and second had an .END statement, the third
had a .END A and the fourth had a .END B, the transfer address would
be A of module three. However, the user can specify directly which
transfer address is to be used by the Linker via the IT option as
described in Table 6-1.

NOTE

The overlaying of the
relocated program is a
allows CABLDR to handle
with a COMO. However, a
if a load module is to
CABLDR and either of
conditions is true:

COMO by the
method which
load modules

problem arises
be loaded by
the following

6.4.3 Load Map

l. The object modules used to
construct the load module
contained no relocatable code,
or

2. The total size of the
relocatable code is less than
32(10) bytes (the size of the
COMIl).

In either case, there is not enough
relocatable code to overlay the COMO
which means the COMO will load into
parts of memory not intended to be
altered by the user. The COMO's load
address, selected by the Linker in the
above cases, is 400(octall. This area
is reserved for the Monitor stack while
loading is in progress, so no user data
should be destroyed when the COMO is
loaded there.

The load map provides several types of information concerning the load
module's make-up. The map begins with an indication of the low and
high limits of the relocatable code and the transfer address. Then a
section of the map is allocated for each object module included in the
linking process. Each of these sections begins with the module's name
followed by a list of the control sections and the entry points for
each control section. The base of each control section (its low
address) and its size (in bytes) is printed to the right of the
section name (enclosed in angle brackets). Following each section
name printout is a list of entry points and their addresses. After
all information has been printed for each object module, any undefined

6-8

symbols are listed. Note that modules
A, B and Care linkerl together, A is

are loaded such that if modules
lowest and C is highest in

memory.

The format is self-explanatory and is illustrated in section 6.6.

NOTE

A CTRL/O typed during output of the
Linker load map is treated somewhat
differently than during normal CTRL/O
usage. If the user does not wish to
list all entry points when the map is
being output on the console terminal,
typing to will suppress output of the
load map until the beginning of the
section for the next module; the Linker
will then automatically restart the load
map output for this module.

6.5 ER'ROR. MESSAGES

The following messages are printed by the Linker whenever it detects
an error during the linking process. Two types of errors may
occur--fatal and non-fatal.

6.5.1 Non-Fatal Errors

Table 6-2 lists errors which can occur without causing an interruption
in the linking process.

Table 6-2
Linker Non-Fatal Error Messages

Message Meaning

?BAD TAPE? A checksum or other hard error
occurred during a file LOOKUP or
ENTER command. Typing any
character will cause the Linker to
retry the operation.

?B'lTE RELOC ER'ROR. AT
ASS AOORESS xxxxxx This message designates a byte

relocation error. The Linker will
try to relocate and link byte
quantities, however, relocation
will usually fail and linking may
fail. (Failure is defined as the

(Continued on next page)

6-9

Table 6-2 (Cont.)
Linker Non-Fatal Error Messages

Message

?FILE NOT PHD?

1MAI' DEVICE EOM?

?MODULE NAME xxxxxx
NOT UNIQUE

?SWITCH ERROR, 'x'?

?'l'APE FULL?

Meaning

high byte of the relocated value or
the linked value not being zero.)
In such a case, the value is
truncated to 8 bits and the error
message is printed to inform the
user. The Linker then
automatically continues.

The Linker could not find one of
the input files. This is generally
caused when the wrong cassette is
mounted on a drive. Upon
occurrence of the message, the user
may mount the correct cassette;
typing any character on the
keyboard will cause the Linker to
retry the LOOKUP on the same drive.
Typing a CTRL/P will restart the
Linker; typing a CTRL/C will cause
a return to the MOnitor.

The Load Map device EOM error
allows the user an option to fix
the device and continue or abort
the map listing. Typing a carriage
return (or any other character)
causes the Linker to continue (if
the map device was cassette, the
map listing is continued on the
console terminal) I a tp will cause
the map to be aborted.

This error is detected during pass
I and results from a non-unique
object module name. The module is
rejected and the Linker will then
ask for more input.

An undefined option character (x)
was found in the command string.
Typing any character on the
keyboard will cause the Linker to
ignore the option and continue.

The specified output cassette is
full. Mounting a different
cassette on the same unit and
typing any character instructs the
Linker to attempt to open the file
on the new cassette.

(Continued on next pagel

6-10

•

Table 6-2 (Cont.)
Linker Non-Fatal Error Messages

I

Message Meaning

?xxxxxx MULTIPLY DEFINED
BY MODULE xxx xxx This message results during pass I

if globals have been defined more
than once. The second definition
is ignored and the Linker
continues.

6.5.2 Fatal Errors

The following errors are fatal and cause control to return to the
Monitor.

Table 6-3
Linker Fatal Error Messages

Message

%BAD CMD STRING

%CAS. CHECKSUM

%ODD ADDRESS

%SYMBOL TABLE OVERFLOW
MODULE xxxxxx, SYMBOL
xxxxxx

Meaning

One of the following errors has
occurred in the user's command
string:

No output was specifiedl

No input was specified,

Input and output were specified
on the same drive;

Input was specified from a
device other than cassette;

Binary output was specified to a
device other than cassette.

A checksum error was detected while
reading a cassette block.

An odd address Was specified using
the IB or IH options in the command
string.

A symbol table
occurred (the SK
for approximately
symbols).

overflow has
Linker has room
225 (decimal)

(Continued on next pagel

6-11

--------------_ _--_ .•..

Message

'SYSTEM ERROR xx

Table 6-3 (Cont.)
Linker Fatal Error Messages

Meaning

A system error has occurred; xx
represents an identifying nUMber
from the following list:

01 Unrecognized
entry found.

symbol table

02 A relocation directory
references a global name which
cannot be found in the symbol
table.

03 A relocation directory
contains a location counter
modification command which is
not last.

04 Object module does not start
with a GSD,

05 The first entry in the GSD is
not the module name.

06 A Relocation Directory (RLD)
references a section name
which cannot be found,

07 The transfer address (TRA)
specification references a
non-existent module name.

08 The transfer address (TRA)
specification references a
non-existent section name.

09 An internal jump table index
is out of range.

10 A checksum error occurred on
the object module.

11 An object module binary block
is too big (more than
64(decimal) words of data).

12 A device error occurred on the
load module output device.

All system errors except number 12 indicate a program failure either
in the Linker or the program which generated the object module. Error
05 can occur if a file is read which is not an object module.

6-12

r-'

~,

-

6.6 EXAMPLE USING THE LINKER

The following example demonstrates how the user can link the PAL
Assembler for an 8K system. A load map is produced on the console
terminal, and the load module is output to cassette drive 1 as
PAL8.SRU. (Refer to Appendix E for complete instructions on how to
build systems for any configuration.)

• R LINK

.1.PAL8.SRU.TT:.PALI IS,PAL8KSlr.CSITAClr/B. 400

CAPS-II LINK V01
LOAD MAP

TRANSf"ER ADDRESS. 0021l>4
LC10I LI I'll T. 000400
HI GH LI I'll T: 030544

••••••••
PAL
SECn ON ADDRESS SIZ E

<. ABS.> 000000 000000
COLLI D 000150 RESREG 104124 SAVERE 104122 STSI Z E 001312

< • 000400 020222
ASCII 001064 ASECT 006232 B'fTE 001202 CSECT 006146
END 010014 ENDC 006016 EOT 006566 EVEN 006616
GLOBL 006324 I f"Dr 005112 If"G 005616 I f"GE 005620
I f"L 005622 lYLE 005624 I f"'" Df" 005116 I rNZ 005614
If"Z 005632 LIMIT 001002 LIST 006130 "'LIST 006136
RAD511 081042 TITLE 006520 "ORD 001112
••••••••
PALS'fM
SECTION ADDRESS SIZ E

< • 020622 0114103
CHAR 13 028622 CHAR46 1122134 DOTYLG 025323 f"LAGS 024160
IDOT 024354 SVALUE 023446

••••••••
CSI TAC
SEcn ON ADDRESS SIZE

< • 025526 0113016
BADEXI 026460 CSITAC 025530 ERRCOM 026350 HDRBUf" 021504
IGNRrU 025526 I "'OUT 025554 1'1 ESOUT 021214 MESRES 021210
NMBUf"0 026662 S"MSf"L 026064 T'f PE00 026613 T'f PEIII 026133

PASS 2

•

6-13

~

I

I

I
I

I
I

~

I

I

I

I

I

I

I

I

I

I

CHAPTER 7

DEBUGGING THE OBJECT PROGRAM

onr (On-line Debugging Technique) aids the user in debugging assembled
and linked object programs. Using the console terminal keyboard, the
user interacts with OPT and his object program to:

Print the contents of any location for examination
or alteration

Run all or any portion of the object program using
the breakpoint feature

Search the object program for specific bit patterns

Search the object program for words which reference
a specific word

Calculate offsets for relative addresses

Fill a block of words or bytes with a designated
value

During a debugging session, the user should have at the console
te~inal an assembly listing of the program to be debugged. Minor
corrections to this program can be made on-line and the program may
then be run under control of OPT to verify any change made, However,
major corrections such as a missing subroutine should be noted on the
assembly listing and incorporated in a subsequent updated program
assembly.

7.1 CALLING AND USING OPT

ODT is supplied as a relocatable object module and is also stored on
the System Cassette. It is linked so as to be loaded just under the
KBL (refer to Appendix E): the procedure for loading ODT and the user
program is,

7-1

--- ---.... -~-----.... ------------

.LOAD FIL£NA. E)(T

• ROOT

These commands load the user-program to be debugged into memory and
call and start the debugger. This is the most common form of ODT use,
as it is expected that user programs will start in low memory and that
the standard location of ODT will suffice. However, the user may
alternatively relink ODT using the CAPS-II Linker, or link ODT along
with his program.

7.1.1 ODT Options

The only options allowed are those used by the LOAD co~and when the
user program is loaded into memory. ODT itself does not utilize the
CSI.

7.1.2 Input/Output Specifications

The input file is indicated in
specifications are allowed.
aids the user in determining
program; these corrections
and Assembler.

7.1.3 Restarting ODT

the J~AD command. No output file
ODT is an on-line utility program which

corrections and modifications to his
may then be implemented using the Editor

If ODT is in control, typing CTRL/P will reRtart ODT (indicated by an
asterisk at the left margin), reMOving all breakpoints and clearing
all relocation registers. If the user program is in control and no
breakpoint or HALT instruction is encountered to stop program
execution, then ODT may be restarted by following one of the
techniques described in Section 7.4.2.

7.2 RELOCATION

The Assembler produces a binary relocatahle object module 1 the base
address of this module is assumed to be location 000000 and the
addresses of all program locations as shown in the assembly listing
are indicated relative to this base address. After the module is
linked by the Linker, many values within the program and all the
addresses of locations will he incremented by a constant whose value
is the actual absolute base address of the module after it has been
relocated. This constant is called the relocation bias for the
module.

A linked program may contain several relocated monules each with its
own relocation bias; since, in the process of dehugging, these biases
will have to be subtracted from ahsolute addresses continually in
order to relate relocated code to a~semhly listings, aDT provides an
automatic relocation facility.

7-2

•

The basis of the relocation facility lies in eight relocation
registers numbered 0 through 7 (these should not be confused with
general registers 0-7) which may be set to the values of the
relocation biases at any given tive during debugging (this procedure
is explained in Section 7.3.13). Relocation biases are obtained by
consulting the memory map produced by the Linker. once set, a
relocation register is used by ODT to relate relocatable code to
relocated code. The relocation registers are initialized by ODT to
-1. (For more information on the exact nature of the relocation
process, consult Chapter 6.)

7.2.1 Relocatable Expressions

A relocatable expression is evaluated by ODT as a l6-hit (6 octal
digit) number and may be typed in anyone of the three forms presented
in Table 7-1. In this table, n represents an integer in the range a
to 7 inclusive and k stands for an octal nUFner of up to six digits in
length with a maximum value of 177777. If more than six digits are
typed, ODT uses the last six digits truncated to the low-order 16
bits. k may be preceded by a minus sign, in which caSe its value is
the two's complement of the number typed. For example:

k (number typed) Value ---
I 000001
-1 177777
400 000400
-1777 30 000050
1234567 034567

Table 7-1
Forms of Relocatab1e Expressions (r)

r Value of r

a} k The value of r is siP\ply the
value of k.

b) n,k The value of r is the value of
k plus the contents of
relocation register n. If the
n part of this expression is
greater than 7, ODT useS only
the last octal digit of n.

oj C or Whenever the letter C is
C,k or typed, ODT replaces C with the
n,C or contents of a special register
C,C called the Constant Register.

This value has the sane role
as the k or n that it replaces
(i.e. 1 when used in place of n
it designates a relocation
register). The Constant
Register is accesl!ed by typing
the l!yMllOl ~c and may bo set

i
to any value. (See Section
7.3.10.)

7-3

In the following examples, ass~e that relocation re~ister 3 contains
003400 and that the Constant Register contains 000003,

r

5
-17
3,0
3,150
3,-1
C
3,C
C,O
C,lO
C,C

Value of r

NOTE

000005
177761
003400
003550
003377
000003
0034Q3
003400
003410
003403

For simplicity's sake, most examples in
this section use form a: all three forms
of r are equally acceptahle, however.

7.3 COMMANDS AND FUNCTIONS

After ODT is loaded and started it indicates its readiness to accept
commands by printing an asterisk (0) at the left margin of the console
terminal paper. Most ODT commands are issued in response to the
asterisk and are composed of the characters and syMbols shown in this
section. By using aDT a word can be examined and changed, the object
program can he run in its entirety or in segments, and memory can be
searched for certain words or references to these words. Each command
is explained in detail here: a command sunnary is provided in Appendix
C.

7.3.1 Printout Formats

Normally, when ODT prints addres"es it attempts to print them in
relative form (form b in Table 7-1). ODT assumes the user has set the
relocation registers with the relocation biases and check" for the
register whose value is closest but less than or equal to the address
to be printed. It then represents this address relative to the
contents of the relocation register. HoweVer, if no relocation
register fits the requireI'lent (that is, the user has not entered the
relocation biases for his ohject modules), the address is printed in
~)solute form (form a in Tahle 7-1). Since the relocation registers
are initialized to -1 (the highest number) the addresses are initially
printed in ahsolute form. If any relocation register subsequently has
its contents changed, it may then, depending on the COmMand, qualify
for relative form.

7-4

For exanple, suppose relocation registers 1 and 2 contain 1000 and
1004 respectively, and all other relocation registers contain nUMbers
muc~ higher. Then the following sequence might occur (the slash
command causes the contents of the location to be printed: the line
feed command (i) aCCeSses the next sequential location),

l (absolute location 1000)
~~~~tj~~~~l (ru)solute location 1002) 
~ (absolute location 1004) 

The printout format is controlled by a special register called the 
Format Register. Initially, this register is set to 0 which instructs 
OOT to print addresses relatively whenever possible. However, the 
user may access the Format Register by typing $F, thus allowing the 
register to be modified. By changing the contents to any non-zero 
value, the user instructs ODT to print all addresses in absolute form. 

7.3.2 Opening, Changing, and Closing Locations 

An open location is one whose contents ODT has printed for 
examination, making those contents available for chanqe; a closed 
location is one whose contents are no longer available for change. 
Several commands are used for opening and closing locations. 

Any cormnand used to open a location 
open first causes the currently 
contents of an open location may be 
followed by a single character 
(i.e., i' t, RETURN, +. @, >, <). 

when another location is already 
open location to be closed. The 

changed by typing the new contents 
command which requires no argument 

The Slash, I 

A location is opened by typing its address followed by a slash. 
responds by printing the contents of the location; for example I 

!1000/012146 

Location 1000 is open for examination and is available for c~ange. 

ODT 

If the contents of an open location are not to be changed, typing the 
RETURN key causes the location to be closed; ODT prints an asterisk 
and waits for another command. 

To change the contents of a location, the location must 
opened, the new contents are then entered, and finally a 
given to close the location. 

!100B/012746 012345) 
! 

first be 
cOl'll!land is 

In the example above, location 
is closed since the RETURN 
contents. 

1000 now contains 012345. The location 
key was typed after entering the new 

7-5 



Used alone, the slash reopens the last location opened. For example: 

! 1000/012345 2340) 
~/002340 

ODT changed the contents of location 1000 to 002340; the RETURN key 
instructed DDT to close the location before printing the', The 
single slash co~and reopened the last location opened, allowing the 
user to verify that the word 002340 was correctly stored in location 
1000. 

Note that if an odd numbered address is specified using a slash, ODT 
opens the location as a byte, and suhsequently behaves as though a 
backs lash had been typed, as explained next. 

The Backslash, " 

In addition to operating on words, ODT may operate on bytes. One way 
to open a byte is to type the address of the byte followed by a 
backslash. (, is printed by typing a SllIFT/L if using an LT33 or 35). 
OOT not only causes the byte value at the specified address to be 
printed, but also interprets the value as ASCII code and prints the 
corresponding character (if possible) on the terminal. For example: 

! 1001\ 101 =A 

A backs lash typed alone reopens the last byte opened. If a word was 
previously open, the bacKslash reopens its eVen byte. 

!1002/000004 \004 ; 

The LINE FEED Key 

If the LINE FEED key is typed when a location is open, DOT closes the 
open location and opens the next sequential location: 

.! 111110/002340 + 
001002 /012140 

( + denotes typing the LINE 
nED key) 

In this example, the LINE FEllD key caused DDT to print the address of 
the next location along with its contents, and to wait for further 
instructions. Location 1000 is automaticaly closed by DDT and 1002 is 
opened. The open location may be modified by typing new contents. 

If a byte location is open, typing the LINE FEED key opens the next 
byte location. 

The Up-Arrow, t or A 

If an up-arrow (or circumflex) symbol is typed when a location is open 
(an up-arrow is produced by typing a SHIFT/N on an LT33 or 35), OOT 
closes the open location and opens the previous location. To continue 
from the example above: 

7-6 

.. 



.! 00 I 002/012740 , 
001000 /002340 

Now location 1002 is closed and 1000 is open. The open location may 
be modified by entering new contents. 

If a byte location is open, then up-arrow opens the previous byte. 

The Back-Arrow,+ or 

If the back-arrow (or underline) symbol (produced by typing SHIFT/O on 
a LT33 or 35) is typed when a location is open, ODT interprets the 
contents of the currently open word as an address indexed by the 
Program Counter (PC) and opens the location so addressed: 

.1006/000006 -
001016 /100405 

Notice in this example that the open location, 1006, was indexed by 
the PC as if it were the operand of an i~~truction with address mode 
67 as explained in Chapter 5. 

Modification to the opened location may 
feed, up-arrow, or back-arrow is typed. 
location will be used for address 
back-arrow command. For example: 

be made before either a 
Also, the new contents of 

calculations when using 

line 
the 
the 

(modify to 4 and open next location) 
(modify to 6 and open previous location) 
(change to 100 and open the location 
indexed by PC) 

Open the Addressed J,ocation, @ 

The symbol @ (SIUFT/P on an LT33 or 35) may be used to optionally 
modify a location, close it, and then use its contents as the address 
of the location to open next • 

• 1"061'0011124 • 
'001024 1'11"050" 

.10061'001024 2100' 
iill2U'0 /177774 

Relative Branch Offset,' 

(open location 1024 next) 

(modify to 2100 and open 
location 2100) 

The right angle bracket (» allows the user to optionally 
location, close it, and then use its low-order byte as 
branch offset to the next word to be opened. For example: 

7-7 

modify a 
a relative 



.1032/000407 301> 
0011636 /0001110 

(modify to 301 ann interpret as a 
relative branch) 

Note that 301 is a negative offset (-77). The offset is doubled 
before it is added to the PC; therefore, 1034+(-176)=636. 

Return to Previous Sequence, < 

The left angle bracket «) allows the user to optionally modify a 
location, close it, and then open the next location of a previous 
sequence which was interrupted when either a back-arrow, @ sign, Or 
right angle bracket coltll!land Wile usen. (As already mentioned, + , @, 
and > each cauSe a sequence change determined by the contents of the 
open location. If a sequence change has not occurred, the left angle 
bracket simply opens the next location as though using a line feed). 
This command operates on hoth worns and bytes. For exnmple, 

= < 

(> c~useS a sequence ch~ge) 
(return to original sequence) 
(@ causes a sequence change) 
« now operates on byte) 
« acts like , > 

7.3.3 Accessing General Registers 0-7 

The program's general registers 0-7 are opened using the following 
command format: 

where n 
desired 
changed 

*$n/ 

is an integer in the range 0 through 1 and represents the 
register. When openen, these registers can be examined or 

in the same manner as any addressable location. For example: 

! $0/0il0il033) 

! 

*54/000414 464) 
! /il00464 

(RQ was examined and closed) 

(R4 was openen, changed, closed,) 
(and verified) 

The , ~,+, or @ commands may he used whenever a register is open. 

7.3.4 Accessing Internal Registers 

The prograA's Status 
recent operational 
object program. The 
$S. For example: 

,US/0003 I 1 

Register contains the condition codes of the most 
results and the interrupt priority level of the 
addres~ of thi~ register i~ accessed by typing 

7-8 



• 

In response to $8/ in the example above, ODT printed the l6-bit word 
of which only the low-order 8 bits are meaningful. Bits 0-3 indicate 
whether a carry, overflow, zero, or negative (in that order) value has 
resulted, and bits 5-7 indicate the interrupt priority level (in the 
range 0-7) of the object program. (Refer to the PDP-II PROCESSOR 
HANDBOOK for the Status Register format.) 

Table 7-2 lists internal registers which may be opened using the $ 
format. 

Register! 

Table 7-2 
Internal Registers 

Function 

$8 iLocation of the first word of the breakpoint 
table (see Section 7.3.6). 

$M Mask location for specifying which bits are 
to be examined during a bit pattern search 
(see Section 7.3.9). 

$P Location defining the operating priority of 
ODT (see Section 7.3.15). 

$6 Location containing the condition codes (bits 
0-3) and interrupt priority level (bits 5-7)1 
(explained above). 

$C Location of the Constant 
Section 7.3.10). 

Register (see 

$R Location of Relocation Register 0, the base 
of the Relocation Register Table (see Section 
7.3.13) • 

$F Location of Format Register (explained in 
Section 7.3.1). 

7.3.5 Radix SO Mode, X 

The Radix 50 mode of packing certain &SCII characters three to a word 
is employed by many DEC-supplied PDP-II system programs and may be 
employed by any programmer using the CAPS-II Assembler's .RAD50 
directive. ODT allows a method for examining and changing memory 
words packed in this way by providing the X command. If the X command 
is typed when a location is open, ODT converts the contents of the 
opened word to its 3-character Radix 50 equivalent and prints these 
characters on the terminal. One of the responses in Table 7-3 may 
then be typed: 

7-9 



Table 7-3 
Radix 50 Terminators 

Response Effect 

RETURN key Close the currently open 
location 

LINE FEED key Close the currently open 
location and open the next one 
in sequence 

Up-Arrow key Close the currently open 
location and open the previous 
one in sequence 

Any three Convert the three specified 
characters whose characters into packed Radix 
octal code is 040 50 format 

. (space) or greater 

Legal Radix 50 characters for this last response are. 

$ Space 0-9 A-Z 

If any other character is typed, the resulting binary number is 
unspecified (that is, no error message is printed and the result is 
unpredictable). Exactly three characters must be typed before ODT 
resumes its normal mode of operation. After the third character is 
typed, the resulting binary number may be stored in the opened 
location by closing the location in anyone of the ways listed in 
Table 7-3. For example. 

!1000/042431 X~CBA) 
!1000/011421 x.eBA 

WARNING 

After ODT has converted the three 
characters to binary, the binary number 
can be interpreted in one of many 
different ways depending on the command 
which follows. For example: 

*\234/063337 X=PRO XIT/004004 

Since the Radix 50 equivalent of KIT is 
113574, the final slash in the example 
causes ODT to open location 113574 and 
type out its contents if it is a legal 
address. (Refer to sections 7.4 and 7.5 
for a discussion of canmand legality and 
detection of errors.) 

7-10 

--------------------_ ... _.- . 

• 

= 



7.3.6 Breakpoints 

The breakpoint feature allows the user to monitor the progress of 
program execution. A breakpoint may be set at any instruction which 
is not referenced by the program for data. When a breakpoint is set, 
CDT replaces the contents of the breakpoint location with a trap 
instruction so that program execution is suspended when the breakpoint 
is encountered. The original contents of the breakpoint location are 
then restored and CDT regains control. 

As many as eight breakpoints numbered 0 through 7 can be set at any 
one time. A breakpoint is set by typing the address of the desired 
location of the breakpoint followed by ,B. Thus n,B will set the next 
available breakpoint (frOM 0-7) at address n. Specific breakpoints 
may be set or changed by the n,mB command where m is the number of the 
breakpoint. For example: 

.10201 B (set breakpoint 0 at address 1020) 
; 10301 B (set breakpoint 1 at address 1030) ! 111401 B (set breakpoint 2 at address 1040) 
! 10321 IB (reset breakpoint 1 at address 1032) 
! 

The :B command without an argument reMoves all breakpoints. The :mB 
command is used to remove only one of the breakpoints, where m is the 
number of the breakpoint. For example: 

,!.2B 
! 

(remove breakpoint 2) 

A table of breakpoints is kept by CDT and may be accessed by the user. 
The $B/ command opens the location containing the address of 
breakpoint o. The next seven locations (represented as nnnnnn) 
contain the addresses of the other breakpoints in order, and can be 
sequentially opened by u~ing the LINE FEED key. For example: 

• SB/IilIilI 1il211J ~ 
-nnnnnn 11il1lJ11il32~ 

nnnnnn/(address internal to ODT) 

In this example 
represents an 
Linker Load Map 

breakpoint 2 is not set. The contents printed by CDT 
internal address and can be determined by checking the 
(see Chapter 6). 

7.3.7 Running the Program 

Program execution is under control of ODT. There are t\Y'O commands for 
running the program: n:G and niP. The n:G co~and is used to start 
execution (Go) and n,P to continue execution (Proceed) after halting 
at a breakpoint. For example: 

.! I 001il1 G 

This causes execution to start at 
until a breakpoint is encountered 
program enters an infinite loop, 
reentered as explained in Section 

location 1000. The program will ~n 
or until program completion. If the 
it must be either restarted or 

7.4.2. 

7-11 

--_._-----------------------



upon execution of either the n;G or niP cOMmand, the general registers 
0-6 are set to the values in the loc~tions specified as $0-$6 and the 
processor Status Register is set to the value in the location 
specified as $S. 

When a breakpoint is encountered, execution stops and aDT prints Sn; 
(where n represents the breakpoint number) followed by the address of 
the breakpoint. Loc~tions can then be examined for expected data. 
For exantple: 

.. 10 HilS 3S 
*li2Ii2I0lG 
93HI01010 
.! 

(breakppint 3 is set at location 1010) 
(execution is started at location 1000) 
(execution is stopped at location 1010) 

To continue program execution from the breakpoint, type IP in response 
to aDT's last (w). 

When a breakpoint is set in a loop, it may be desirable to allow the 
program to execute a certain number of tines through the loop before 
recognizing the breakpoint. This is done by setting a proceed count 
using the n;P COMmand. This co~nd allows the user to specify the 
number of times the breakpoint is to be encountered before program 
execution is suspended (execution will be suspended on the nth 
encounter). The count, n, refers only to the numbered breakpoint 
which most recently occurred. A different proceed count may be 
specified for the breakpoint when it is encountered. For example: 

B31001010 
,!12501B 
.. 41 P 
631001250 

.! 

(execution h~lted at breakpoint 3) 
(reset breakpoint 3 at location 1250) 
(set proceed count to 4 and continue 
execution; loop through breakpoint 
three times and halt on fourth 
occurrence of the breakpoint) 

Proceed counts for other breakpoints may be reRet by accessing the 
table of proceed counts, explained next. 

Following the table of breakpoints (as explained in Section 7.3.6) is 
a table of the proceed co~and repeat counts for each breakpoint. 
These repeat counts can be inspected by typing $B/ followed by typing 
nine LINE FEED's. The repeat count for breakpoint 0 is printed (the 
first seven line feeds Cause the tru)le of breakpoints to be printed; 
the eighth types the Single-instruction mode, explained in the next 
section, and the ninth line feed hegins the tahle of proceed COMmand 
repeat counts). The repeat counts for breakpoints 1 through 7 and the 
repeat count for the single instruction trap follow in sequence (see 
Section 7.3.8). Before a proceed count is assigned a value by the 
user, it is set to 0; after the count has been executed, it is set to 
-1. Opening anyone of these locations provides an alternate way of 
chanqing the count, aB the location, once open, can have its contents 
modified in the usual manner (by typing the new contents and then the 
RETURN key). For example: 

7-12 

, 



• 

nnnnnn/iJlHliJiJiJ t 

(address of breakpoint 7) 
(single instruction address) 
(count for breakpoint 0 is 
changed to 15) 

(count for breakpoint 1) 

nnnnnn(iJiJiJiJiJiJ I (count for breakpoint 7) 
(repeat count for single 
instruction mode. The 
single instruction address 
will be an address internal 
to the user prograM if 
single instruction mode 

nnnnnn Innnnnn 

is used.) 

The address indicated as the single-instruction address and the repeat 
count for single instruction mode are explained next. 

7.3.8 Single-Instruction Mode 

Using this mode the programmer can specify the nlmmer of instructions 
to be executed before suspension of the program run. The Proceed 
cormnand, instead of specifying a repeat count for a breakpoint 
encounter, specifies the number of succeeding instructions to be 
executed. Breakpoints are disabled when single-instruction mode is 
operative. 

Commands for single-instruction mode are: 

inS 

niP 

;S 

Enable single-instruction mode (n can 
have any value and serves only to 
distinguish this form from the form IS). 
Breakpoints are disabled. 

Proceed with program run for next n 
instructions before reentering aDT (if n 
is missing, it is assumed to be 1. Trap 
instructions and associated handlers can 
affect the Proceed repeat count. See 
section 7.4.2). 

Disable single-instruction mode. 

When the repeat count for single-instruction mode is exhausted and the 
program suspends execution, DDT prints: 

B8;n 

* 
where n is the address of the next instruction to be executed. The $B 
breakpoint table contains this address following that of breakpoint 7. 
However, unlike the table entries for breakpoints 0-7, direct 
modification has no effect. 

7-13 



Similarly, following the repeat (proceed) count for breakpoint 7 is 
the repeat count for single-instruction mode. This table entry may be 
directly modified, and thus is an alternative way of setting the 
single-instruction mode repeat count. In such a case, ;P implies the 
argument set in the $B repeat count tahle rather than assuming 1. 

7.3.9 searches 

With ODT all or any specified portion of memory can be searched for a 
specific bit pattern or for references to a specific location. 

Word Search. n;W 

Before initiating a word search, the mask and search limits must be 
specified. The location represented by $M is u~ed to specify the mask 
of the search. $M/ opens the mask register. The next two sequential 
locations (opened by line feeds) contain the lower and upper limits of 
the search. Bits set to 1 in the mask are examined during the search; 
other bits are ignored. Then the search object and the initiating 
command are given using the n;W command where n is the search object. 
When a match is found (i.e., each bit set to 1 in the search object is 
set to 1 in the word being searched over the mask range), the matching 
word is printed. For example: 

~~~~1i~7~7~4~00~ 0004 
041i1)

(test high-order eight bits)
(set low address limit)
(set high address limit)
(initiate word search)

In the above example, nnnnnn is an address internal to ODT; this
location varies and is meaningful only for reference purposes. In the
first line above, the slash was used to open $M which now contains
177400; the line feeds opened the next two sequential locations which
now contain the upper and lower limits of the search.

In the search process an exclusive OR (XOR) is performed with the word
currently being examined and the search object, and the result is
ANDed to the mask. If this result is zero, a match ha~ been found and
is reported on the terminal. Note that if the mask is zero, all
locations within the limits are printed.

Typing CTRL/U during a search printout terminates the search.

Effective Address Search, r;E

ODT provides a command to search for words which address a specified
location. The mask register is opened only to gain access to the low
and high limit registers. After specifying the search limits (as
explained previously), the command nlE is typed (where n is the
effective address) and the search is initiated.

7-14

~~~~~ ... --...... ~~~~~~~~ 



words which are either an absolute addreRs 
relative address offset, or a relative 
address, are printed after their addresses. 

(argument n itself), a 
branoh to the effeotive 
For example: 

.$M/17H00+ 
nnnnnnl1001000 1010+ 
nnnnnnl1001040 1060) 
*1034Je: 
'001016 1001006 
001054 1002161 
* 10201 E: 
001022 1171114 
001030 /001020 

* 

(open mask register only to gain 
aooess to search limits) 

(initiating searoh) 
(relative branoh) 
(relative branch) 
(initiating a new search) 
(relative address offset) 
(absolute address) 

Partioular attention should be given to the reported references to the 
effeotive address, sinoe a word may have the specified bit pattern of 
an effeotive address without actually being so used. OOT reports all 
possible references whether they are actually used as such or not. 

Typing CTRL!U during a search printout terMinates the searoh. 

7.3.10 The Constant Register 

It is often desirable to convert a relocatable address into its value 
after relocation or to convert a nu~er into its two's complement, and 
then to store the converted value in One or more plaoes in a program. 
The Constant Register provides a means of accomplishing this and other 
useful functions. 

When nlC is typed, the relocatable expression n is evaluated to its 
six-digit octal value and is both printed on the terMinal and stored 
in the Constant Register. The contents of the Constant Register may 
be called in subsequent relocatable expressions by typing the letter 
C. Examples are: 

!-44321 c= 113346 
!: 

*1000/001000 C 
;; 

* I, 42121 C"'!l!l5212 
;; 

(The two's complement of 4432 is 
placed in the Constant Register) 

(The contents of the con~tant 
Register are stored in location 1000) 

(Relocation register 1 is set to 
1000) 

(Relative location 4272 is reprinted 
as an absolute location and stored 
in the Constant Register) 

7.3.11 Memory Blook Initialization 

The Constant negister can be used in conjunction with the COMmands ;F 
and II to set a block of meMory to a given value. While the most 
common value required is zero, other possibilities are plus one, minus 
one, ASCII space, etc. 

7-15 



,fuen the command ;F is typed. aDT stores the contents of the Constant 
Register in successive meJ'\ory words starting at the mel"\ory word 
address specified in the lower search lil"\it and ending with the 
address specified in the upper search liMit. 

mien the command ;1 is typed. the low-order 8 bits in the Constant 
Register are stored in successive bytes of memory starting at the byte 
address specified in the lower search liMit and ending with the byte 
address specified in the upper search liMit. 

For example, assume relocation register 1 contains 
2000, and 3 contains 3000. The following sequence 
1000-1776 to zero. and byte locations 2000-2777 to 

1000. 2 contains 
sets word locations 
ASCII spaces. 

~m~~=21;' 0~ , -2) 

iIF' 
• 
; $/'1/000000 ~ 
-nnnnnn/001000 2.0~ 

nnnnnn /00177 6 3. - 1 ) 
.4111; C=0I!JI!J040 

!Jl 
! 

7.3.12 Calculating Offsets 

(Open nask register to gain 
access to search limits) 

(Set lower limit to 1000) 
(Set upper limit to 1776) 
(Constant Register set to zero) 
(Locations 1000-1776 set to zero) 

(Set lower limit to 2000) 
(Set upper liMit to 2777) 
(Constant Register set to 40-
!,Scn space) 

(Byte locations 2000-2777 are set 
to value in low-order 8 bits of 
Constant Register) 

of an offset--the 
the current location 
session it may be 

branch reference by 

Relative addressing and branching involve the use 
number of words or bytes forward or backward frol"\ 
to the effective address. During the debugging 
necessary to change a relative address or 
replacing one instruction offset with another. 
offsets in response to the n;o cOMmand. 

aDT calculates the 

The command nlD causes aDT to print the l6-bit and 8-bit offsets frO!'! 
the currently open location to address n. For example, 

!346/000034 ~1410 000044 022 22) 
./000022 

In the example, location 346 is opened 
location to location 414 are calculated 
location 346 are then changed to 22 (the 
the next line. 

and the off~ets 
and printed. The 
8-bit off~et) and 

frOl'l that 
contents cf 
verified on 

The a-bit offset is printed only if it is in the range 
to 127 (decimal) and the l6-bit offset is even, as was 
For example, the offset of a relative branch is 
modified as follows: 

!,10341!03421 103410 177776 377 '021 '" 377) 
~:t 103777 

7-16 

128 (decimal) 
the case above. 
calculated and 



Note that the modified low-order byte 377 must be coMbined with the 
unmodified high-order byte. 

7.3.13 Relocation Register Commands 

~he use of the relocation registers has been defined in Section 7.2. 
At the beginning of a debugging session it is desirable to preset the 
registers to the relocation biases of those relocatable modules which 
will be receiving the most attention. 

~his can be done by typing the relocation bias followed by a semicolon 
and the specification of relocation registers, as follows. 

r may be any relocatable expression and n is an integer from 0 to 7. 
If n is omitted it is assumed to be O. As an example: 

* 1000J 5R 
!S, 100J 5R 
.! 

(Set relocation register 5 to 1000) 
(Add 100 to the contents of 
relocation register 5) 

In certain uses programs may be relocated to an address below that at 
which they were asseMbled. ~his could occur with PIC coding which is 
moved without the use of the Linker. In this case the appropriate 
relocation bias would be the 2's complement of the actual downward 
displacement. One method for easily evaluating the bias and entering 
it in the relocation register is illustrated in the following example. 

Assume the program was asseMbled at location 5000 and was moved to 
location 1000. ~en the sequence • 

• 1000J IR 
!1.-50001IR 
.! 

enters the 2's complement of 4000 in relocation register 1, as 
desired .. 

Relocation registers 
relocation registers 
searches for the most 

are initialized to 
never enter into the 

appropriate register. 

-1, so that unwanted 
selection process when DOT 

To set a relocation register to -I, type ,nR. To set all relocation 
registers to -I, type ,R. 

DOT maintains a table of relocation registers, beginning at the 
address speCified by SR. Opening $R (SRI) opens relocation register 
O. Successively typing the LINE FEED key opens the other relocation 
registers in sequence. When a relocation register is opened in this 
way, it may be modified just as any other memory location. 

7-17 



7.3.14 The Relocation Calculators 

When a location has been opened, it is often desirable to relate the 
relocated address and the contents of the location back to their 
relocatable values. To calculate the relocatable address of the 
opened location relative to a particular relocation bias, type nl, 
where n specifies the relocation register. This calculator works with 
both opened bytes and words. If n is o~itted, the relocation register 
whose contents are closest but less than or equal to the opened 
location is selected automatically by ODT. In the following example, 
assume that these conditions are fulfilled by relocation register 2, 
which contains 2000. To find the most likely module that a given 
opened byte is in, the user types: 

.2500'-'!l11 = 1=2,1300500 

Typing nR after opening a word causes aDT to print the octal number 
which equals the value of the contents of the opened location minus 
the contents of relocation register n. If n is omitted, ODT selects 
the relocation register whose contents are closest but less than or 
equal to the contents of the opened location. For example, assume the 
relocation bias stored in relocation register 1 is 001234, then, 

The value 23314 is the contents of 1,500, relative to the base 1234. 
An example of the use of both COmMands follows. 

Assuming relocation register 1 contains 1000 and relocation register 2 
contains 2000, then to calculate the relocatahle address of location 
3000 and its contents relative to 1000 and 2000, the following can be 
performed: 

.3000/005670 11=1>00201'10 2!=2.001000 IR=I,0041670 2R=2,003670 

7.3.15 ODT's Priority Level 

$P represents a location in ODT which contains the priority level at 
which ODT operates. If $P contains the value 377, ODT operates at the 
priority level of the processor at the time aDT is entered. Otherwise 
$P may contain a value between 0 and 7 corresponding to the fixed 
priority at which aDT will operate. 

To set ODT to the desired priority level, open $P. 
present contents, which may then be changed: 

! SP/000006 377) 
• 

If $P is not specified, its value will be seven. 

ODT prints the 

Breakpoints may be set in routines at different priority levels. For 
ex~ple, a program running at a low priority level may use a device 
service routine which operates at a higher priority level. If a 
breakpoint occurs from a low priority routine, 1f ODT operates at a 
low priority, and if an interrupt occurR from a high priority routine, 
then the breakpoints in the high priority routine will not be executed 

7-18 



since they have been removed when the low priority breakpoint 
occurred. That is, interrupts set at a priority higher than the one 
in which DDT is running will occur and any breakpoints will not be 
recognized. 

For example. 

! 11199. B 
!2999. B 
! 5119. G 
Be. 11190 
:!. 

If a higher level interrupt occurs while ODT is waiting for input, the 
interrupt will be serviced and no breakpoints will be recognized. 

NOTE 

If the user is debugging a program which 
utilizes double-buffered cassette I/O 
(especially in formatted modes), he may 
find it useful to set DDT's priority to 
5. This will allow cassette flags to 
interrupt DDT but will lock out terminal 
printer, keyboard, and line printer 
interrupts. If this is not done and a 
breakpoint is encountered while cassette 
I/O is occurring, timing errors will 
occur. 

7.3.16 ASCII Input and Output 

ASCII text may he inspected and changed using the command. 

r:nA 

where r is a relocatahle expression and n is a character count. If n 
is omitted it is assumed to be 1. ODT prints n characters starting at 
location r, followed by a carriage return/line feed. One of the 
following may then be typed, 

RETURN 

LINE FEED 

up to n 
charac
ters of 
text 

ODT outputs a carriage return/line 
feed and an asterisk and waits for 
anothe r cOml'land. 

DDT opens the byte following the 
last byte output. 

ODT inserts the text into memory 
starting at location r. If less 
than n characterR are typed, ter
minate the command by typing 
CTRL/U, causing a carriage 
return/line feed and an asterisk to 
be output as for RETURN. However, 
if exactly n characters are typed, 
DDT responds with a carriage 

7-19 

---~~-- .... - .--... -------.... --~.--.... --- --- .... ----....... - ...... ~-....... ~ ... . 



return/line feed, the address of 
the next available byte and a 
carriage return/line feed/asterisk. 

Note that n may actually be expressed as a relocatable expression and 
could accidently be quite large. There is no safeguard against this 
in DDT. 

7.4 PROGRAMMING CONSIDERATIONS 

Information in this section is not necessary for the efficient use of 
ODT. However, it does provide a better understanding of how ODT 
performs some of its functions I in certain difficult debugging 
situations, this understanding is necessary. 

7.4.1 Functional Organization 

The internal organization 
independent s~~routines. 
major functions: command 
utility routines. 

of ODT is alnost totally modularized into 
The internal structure consists of three 

decoding, cOPiIDand execution, and various 

The command decoder interprets the indi vidual crnnmar.ds, checks for 
~mand errors, saves input parameters for use in cOAmand execution, 
and sends control to the appropriate COMmand execution routine. 

The command execution routines take paraneters saved by the command 
decoder and uses the utility routines to execute the specified 
command. Command execution routines exit either to the object program 
or back to the c~mand decoder. 

The utility routines are cornmon routir.es such as SAVE-RESTORE and I/O. 
They are used by both the cOPll'land decoder and the cO""".and executers. 

7.4.2 Breakpoints 

The function of a breakpoint is to give control to ODT whenever the 
user program tries to execute the instruction at the selected address. 
Upon encountering a breakpoint, all of the ODT commands can be used to 
examine and modify the program. 

When a breakpoint is executed, ODT removes all breakpoint instructions 
from the user's code so that the locations may be examined and/or 
altered. OOT then types a message on the console te~inal ir. the form 
Bm:n where n is the breakpoint addr~ss (and m is the breakpoint 
number). The breakpoints are automatically restored when execution is 
resumed. 

One restriction in the use of breakpoints follows: the word where a 
breakpoint has been set must not be ref~renced by the program in any 
way since ODT has altered the word. Also, no breakpoint should be set 
at the location of any instruction that clears the T-bit. For 
example, 

MOV #240,177716 J SET PRl ORl TY TO l.EVEI.. 5 

7-20 



NOTE 

Instructions that cause or return fr~ 
traps (e.g., Ef.f.l', RTI) are likely to 
clear the T-hit, since a new word from 
the trap vector or the stack will be 
loaded into the Status Register. 

A breakpoint occurs when a trace trap instnlction (placed in the user 
program by ODT) is executed. When a breakpoint occurs, the following 
steps are taken' 

1. Set processor priority to seven (automatically set by 
trap instruction). 

2. Save registers and set up stack. 

3. If internal T-bit trap flag is set, go to step 13. 

4. Remove breakpoints. 

5. Reset processor priority to ODT's priority or user's 
priority. 

6. Make sure a breakpoint or single-instruction mode caused 
the interrupt. 

7. If the breakpoint did not cause the interrupt, go to 
step 15. 

8. Decrement repeat count. 

9. Go to step 18 if non-zero; otherwise reset count to one. 

10. save console terminal status (refer to the section 
entitled 'Procedure for Saving and Restoring Console 
Terminal Status' below), 

11. Type message about the breakpoint or single-instruction 
mode interrupt. 

12 • Go to cOMl!\and decoder. 

13. Clear T-bit in stack and internal T-bit flag. 

14. Jump to the Go processor. 

15. Save console terminal status. 

16. Type BE (Bad Entry) followed by the address. 

17. Clear the T-bit, if set, in the user status and proceed 
to the command decoder. 

18. Go to the Proceed processor, bypassing the console 
terminal restore routine. 

7-21 



Note that steps 1-5 
during which time 
running at level 7). 

inclusive take 
interrupts are 

approximately 
not permitted 

100 microseconds 
to occur (ODT is 

When a proceed (;P) co~and is given, the following occurs: 

1. The proceed is checked for legality. 

2. The processor priority is set to seven. 

3. The T-bi t flags (internal and user status) are set .. 

4. The user registers, status, and Program Counter are 
restored. 

5. Control is returned to the user. 

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14 of 
the breakpoint sequence are executed, breakpoints are 
restored, and program execution resumes normally. 

When a breakpoint is placed on an lOT. EMT, TRAP, or any instruction 
causing a trap. the following occurs: 

1. When the breakpoint occurs as described ahove, ODT is 
entered .. 

2. When;P is typed, the T-bit is set and an lOT, EMT. 
TRAP, or other trapping instruction is executed. 

3. This causes the current PC and status (with the T-bit 
included) to be pushed on the stack. 

4. The new PC and status (no T-bi t set) are obtained from 
the respective trap vector. 

S. The whole trap service routine is executed without any 
breakpoints. 

6. When an RTI is executed, the saved PC and PS (including 
the T-bit) are restored. The instruction following the 
trap-causing instruction is executed. If this 
instruction is not another trap-causing instruction. the 
T-bit trap occurs, causing the breakpoints to be 
reinserted in the user program, or the 
single-instruction mode repeat count to be decremented. 
If the following instruction is a trap-causing 
instruction. this sequence is repeated starting at step 
3. 

NOTE 

Exit from the trap handler must be via 
the RTI instruction, otherwise the T-bit 
is lost. DDT cannot gain control again 
since the breakpoints have not yet been 
reinserted. 

7-22 

• 

; 



Note that the ;P command is illegal if a breakpoint has not occurred 
(OOT responds with ?); ;P is legal, however, after any trace trap 
entry. 

The internal breakpoint status words have the following fOrll'at: 

1. The first eight words contain the breakpoint addresses 
for hreakpoints 0-7. (The ninth word contains the 
address of the next instruction to be executed in 
single-instruction mode.) 

2. The next eight words contain the respective repeat 
counts. The following word contains the repeat count 
for single-instruction mode.) 

These words may be changed at will, either by using the breakpoint 
commands or by direct manipulation with $B. 

When program runaway occurs (that is, when the program is 
under ODT control, perhaps executing an unexpected part of 
where a breakpoint has not been placed) ODT may be given 
follows. 

no longer 
the program 
control as 

1. Press the HALT key to stop the computer. 

2. If ODT was linked with the user's program, start ODT at 
anyone of these addresses. 

3. 

a) 

b) 

Its entry address (contents of locations where 
breakpoints were set are not reRtored to their 
original contents). 

Its entry address 
breakpoints were 
are removed and 
cleared} • 

+ 2 (contents of 
set are restored; 
all relocation 

locations where 
all breakpoints 
registers are 

cJ Its entry address + 4 (simulates a breakpoint). 

If COT was not linked with the user's program, but the 
user executed a LOAD/G OOT or a .R OOT, the entry 
address of ODT in an 8K system is 14000. One of the 
restart addresses in 2 above may then be used. 

ODT prints an (*) indicating that it is ready to accept a command. 

If the program being debugged uses the teleprinter for input or 
output, the program may interact with OOT to cause an error since ODT 
uses the teleprinter as well. This interactive errOr will not ocCur 
when the program being debugged is run without ODT. 

1. If the teleprinter interrupt is enahled upon entry to 
the DDT break routine and no output interrupt is pending 
when ODT is entered, ODT generates an unexpected 
interrupt when returning control to the program. 

7-23 



2. If the interrupt of the teleprinter reader (the 
keyboard) is enabled upon entry to the ODT break routine 
and the program is expecting to receive an interrupt to 
input a character, both the expected interrupt and the 
character are lost. 

3. If the teleprinter reader (keyboard) has 
character into the reader data buffer when 
routine is entered, the expected character 
data buffer is lost. 

just read a 
the GDT break 
in the reader 

Procedure for Saving and Restoring 
Console Terminal Status 

Upon entering the console terminal S~VF. routine, the following occurs: 

1. Save the console terminal keyhoard status register 
(TKS) • 

2. Clear interrupt enable and maintenance bits in the TKS. 

3. Save the console terminal printer status register (TPS). 

4. Clear interrupt enable and maintenance bits in the TPS. 

To restore the console terminal status I 

1. Wait for completion of any I/O fro~ GOT. 

2. Restore the TKS. 

3. Restore the TPS. 

If the 
interrupt 
DDT break 
occur: 

console terminal printer 
is enahled upon entry to the 
routine, the following may 

1. If no output interrUpt is 
pending when ODT is entered, an 
additional interrupt always 
occurs when ODT returns control 
to the user. 

2. 

If the 
done, 
reader 

If an output interrupt 
pending upon entry, 
expected interrupt occurs 
the user regains control. 

is 
the 

when 

teleprinter keyboard is 
the expected character 
data buffer is lost. 

busy 
in 

or 
the 

If the teleprinter keyboard interrupt is 
enabled upon entry to the DDT break 
routine, and a character is pending, the 
interrupt (as well as the character) is 
lost. 

7-24 

------_ ...... _----

; 



7.4.3 Searches 

The word search allows the user to search for 
specified sections of memory. Using the $M/ 
specifies a mask, a lower search limit ($M+2). and 
limit ($M+4). The search object is specified in 
itself. 

bit patterns in 
cOMmand, the user 

an upper search 
the search command 

The word search compares selected bits (where ones appear in the mask) 
in the word and search object. If all of the selected bits are equal, 
the unmasked word is printed. 

The search algorithm is: 

1. Fetch a word at the current address. 

2. XOR (eXClusive OR) the word and search object. 

3. AND the result of step 2 with the mask. 

4. If the result of step 3 is zero, type the address of the 
unmasked word and its contents. Otherwise, proceed to 
step 5. 

5. Add two to the current address. If the current address 
is greater than the upper limit, type * and return to 
the command decoder, otherwise go to step 1. 

~ote that if the mask is zero, ODT prints every word between the 
limits, since a match occurs every time (i.e., the result of step 3 is 
always zero). 

In the effective address search, ODT interprets every word in the 
search range as an instruction which is interrogated for a possible 
direct relationship to the search object. The mask register is opened 
only to gain access to the search limit registers. 

The algorithm for the effective address search (where X denotes the 
contents of X, and X denotes the search object) is: 

1. Fetch a word at the current address X. 

2. If (X)=X [direct reference), print contents and go to 
step 5. 

3. If (X)+X+2=K [indexed by PC], print contents and go to 
step 5. 

4. If (X) is a relative branch to X, print contents. 

5. Add two to the current address. If the current 
is greater than the upper limit, perform a 
return/line feed and return to the co~and 

otherwise, go to step 1. 

7-25 

address 
carriage 
decoder, 



7.5 ERROR DETECTION 

ODT detects two types of error: illegal or unrecognizable command and 
bad breakpoint entry. ODT does not check for the legality of an 
address when commanded to open a location for examination or 
modification. Thus the command: 

1177741 

references nonexistent memory, thereby causing a trap through the 
vector at location 4. RESMON sets location 4 to produce the message: 

%TRAP nnnnnn 

However, if the user program modifies location 4 or 6, the results of 
such a trap are unpredictable. 

Similarly, a command such as: 

$201 

which references an address eight tiMes the value represented by $2, 
may cause an illegal (nonexistent) meMory reference. 

Typing something other than a legal cOMMand causes ODT to ignore the 
corranand, print: 

(echoes illegal cOMmand)? 
* 

and wait for another cOlT1IT1and. Therefore I to cause DDT to 
command just typed, type any illegal character (such as 9 
and the command will be treated as an error and ignored. 

ignore a 
or RUBOUT) 

CDT suspends program execution whenever it encounters a breakpoint by 
trapping to its breakpoint routine. If the breakpoint routine is 
entered and no known breakpoint caused the entry, ODT prints: 

BE001542 
! 

and waits for another command. In the example above, BE001542 denotes 
Bad Entry from location 001542. A bad entry may be caused by an 
illegal trace trap instruction, setting the T-bit in the status 
register, or by a jump to the middle of ODT. 

7.6 EXAMPLE USING ODT 

The user has a program which he has assembled with PAL to produce a 
listing. He wishes to run the program under ODT to demonstrate the 
use of breakpoints: 

7-26 



CAPSII PAL V01 OS/25/13 PAGE 001 

J 
J PROGRAM TO DEMo,'1STRATE: OOT 
J 

000""1 R 1= %1 
""0002 R2=%2 
0"0000 R0=%0 
000003 R3=%3 
000""6 SP=%6 
000""0 • ASECT 
0011111110 .=11110111 

001000 012706 START: MOV 
0011160111 

001004 11112703 MOV 
00011102 

001010 012700 LOOP2. MOV 
000200 

001014 005001 CLR 
001016 005201 LOOPt: [IIC 
00102!! 00530!! DEC 
001022 "01375 BNE 
001024 005302 OEC 
001026 001370 BNE: 
001030 000000 fiALT 

Ilill000 • END 

CAPS II PAL V01 OS/25/13 PAGE 

1.001'1 
RI 
SP 

001016 
s %00000 I 
=:1,000006 

000000 I!:RRORS 

LOOP2 
R2 
START 

'601" SP 

'2. R3 

'200. !!0 

RI 
RI 
R0 
1.001'1 
R2 
1.001'2 

START 

002 

001010 
=%00"002 

001000 

J SET STACK PTR 

J SET LARGE LOOP COIklTER 

J [NCREMENT RI FROM 0 TO 200 
J DECREMENT R0 FROM 200 TO 0 
INOT DONE: SMALL LOOP YET 
, RESTART SMALL I. 001' 
HF R3 NOT ZERO YET 

R0 
R3 

=%000000 
=%000003 
= 001032 

The program is stored on cassette drive 1 as TESODT.LDA, and is loaded 
into memory using the LOAD co!11l\and: 

DDT is then called. The debugging process follows (NNNNNN represents 
an address internal to DDT). 

OOT V00 
A {+1022J 08 

.102418 

{

*SB/"01022 
NNNNNN /001024 

8 NNNNNN /117776 
NNNNNN /117776 
*10001G 
80J001022 
*£6/000600 
*£3/000002 
*11 

C *£0/00"177 
*$\ /000001 
*£8/00111122 

7-27 



NNNNNN 1001 024 
• 100J P 
B0J 001022 
.S3/000002 

D • $0100007 7 
"S1/000101 
*$B/001022 
tlNNNNN 1001024 

{:~~~:1022 E • S3/1!J1!J0002 
.$1/000177 
• S0/01!J01!J1!J1 

1
:~:001022 

I' • S0/001!J1!J00 
.S1I000200 
.S3/01!J1!J1!J02 
.1024/01!JS302 5303 

~
JP 

81J 001024 
.$3/000002 

G .58/001022 
NNNNNN 1001024 

/

,,102618 
.SB/01!J1022 

H NNNNNN 10011!J24 
NNNNNN 11!J01026 
NNNNNN II 1777 6 
.55/000004 

(

OJP 
82J 001026 

I ,,$3/000001 
.S5/000000 
• S0/000000 
.$1/000200 

[

UP 
80J001022 

J ,,$0/000177 
• SI/000001 
• $3/000001 

{

.200JP 
81J 001024 

K • $0/000000 
.S1/000200 
,,53/000001 
"SS/000004 

!
"JP 
82J 001026 

L • $5/000004 
.S3/000000 
.1030J B 

l
·JP 
B3J001031!J 

M "tC 

· 

7-28 



A set hreakpoint a within the small loop; set the next 
available breakpoint (1) wi thin the large loop. 

B Examine CDT's breakpoint table 
assigned; start the program. 

o and I are properly 

C Breakpoint 0 is encountered; registers 3 and 6 are exanined. 

o 

An illegal co_and (#J is typed, which ODT ans"er5 with a 1. 
Registers 0 and I and the ODT breakpoint table are examined. 

Proceed through lOa (octal) 
examine the registers--3 
decrementing and incrementing 

occurrences of 
is unchanged, 

properly. 

breakpoint 0; 
o and I are 

E Proceed through 76 more occurrences of breakpoint 0; the 
registers are exanined and seem correct. 

F Proceed from breakpoint O. The small loop has finished, but 
the instruction at location IO?4 is incorrect (it should be 
DEC R3); it is corrected. 

G Execution proceeds; breakpoint 1 is encountered 

H The next available breakpoint ("hich is breakpoint 2) is set 
as location 1026, the user status Z bit has been set. 

I Breakpoint 2 is encountered; register 3 has been decremented; 
the Z bit is clear so the branch to loop 2 will be taken. 

J Breakpoint 0 is encountered; registers 0 and I have been 
reset. 

K Continue through all iterations of the small loop. 

L 

Breakpoint 1 is encountered. Register 3 contain" 1; the user 
status Z bit is set. 

Breakpoint 2 
register 3 
the branch. 

is encountered; the Z bit is still set and 
contains 0; program execution will fall through 
A breakpoint is set at the HALT instruction. 

M The breakpoint at the HALT is encotmtered. A +C is typed to 
return to the Keyboard 11onitor. 

7-29 





CHAPTER a 

PERIPHERAL INTERCHANGE PROGRAM 

The Peripheral Interchange Program (PIP) provides the user with a 
means of transfering files between any of the permanent devices which 
are available on his system (as listed in Table 3-2) including the 
high-speed reader and punch. In addition, PIP provides the capibility 
for deleting files from a cassette, zeroing a cassette, and making 
multiple copies of a cassette. 

B.l CALLING AND USING PIP 

PIP is called from the System Cassette hy typing' 

.R PIP 

in response to the dot printed by the Keyboard Listener. The Co~and 
String Interpreter responds by printing an asterisk (*) when it is 
ready to accept input/output specifications. The User may enter his 
command string even though the re~ainder of PIP is being loaded into 
memory simultaneously. 

Control is returned to PIP after each execution of an I/O co~and 
string. 

a.l.l PIP Options 

The options listed in Table 8-1 may be used by PIP with the following 
results: 

6-1 



Option 

IA 

Ie 

ID 

IP 

11. 

Table 8-1 
PIP Options 

Meaning 

Used with an output filename to designate 
that the header bit be set to ASCII (the file 
type is otherwise assumed to be binary). If 
a file is transfered from the paper tape 
reader to cassette using the IA option, a +1. 
character (designating end-of-file) is 
automatically appended to the end of the 
file. 

Allows the command string to be broken into 
one or mOre lines. 

Causes the filename (s) indicated in the 
COI"IMand line to be deleted frOM the specified 
cassette. 

Requests that the system prompt the user to 
change cassettes on the indicated drive 
before an attempt is made to access the file. 
The system prints, 

#? 

where * represents the number of the 
appropriate drive. When the user has mounted 
the proper cassette, he may type any 
character on the keyboard to continue 
execution. 

Indicates that all cassettes on the unit 
drives specified in the command line are to 
be zeroed. 

PIP does not support the 10 overflow option. File transfers must not 
exceed a single cassette. 

8.1.2 Input and Output Specifications 

PIP allows four basic operations, cassette zero, file deletion, 
cassette copy, and file transfer. No default extensions are assumed 
by PIP, so the user must be Sure to always indicate extensions in his 
command line. 

CASSETTE ZERO 

The cassette zero function is provided in PIP to allow a user who is 
performing a series of PIP commands the option of zeroing a cassette 
without returning to the Keyboard Monitor (to use the ZERO command). 

8-2 

~---...... 



The form of the command is: 

*[CTlf:/Z/OPT, ••• [CTli:/OPT[=] 

The device, if specified, must be cassette, so only the drive number 
need be entered: unit 0 is assumed if no number is indicated. Any 
number of cassettes may be indicated in the c~and line: the Iz 
option is necessary only once after the first cassette specification, 
The IC and /P options are optional, as is the IIO separator (-, <, or 
+), The input field must be empty if a separator is used. 

An example of use of the PIP zero function might be the following case 
in which the user wishes to zero several cassettes: 

*O, ;'Z •• ,.0. ;'P. 11.8: ;'P. II = 
~ 

IZ indicates that the PIP zero function is requested; the cassettes on 
units 0 and 1 are zeroed; the user is then prompted (via IP) to change 
cassettes; he mounts different cassettes on drives 0 and I and then 
types any character on the console terminal keyboard to continue 
execution, The newly mounted cassettes are also zeroed; again he 1s 
prompted to change cassettes, and so on. 

FILE DELETION 

File deletion is performed using a command line in the following form: 
" 

·[CTlt:FILEl.EXT/OPT,[CT]#:FILE2,EXT/OPT" •• [=] 

Cassette drives 0 and 1 are the only legal devices and drive 0 is the 
default device. Filenames are indicated only on the output (left) 
portion of the COMmand line: the input portion of the co~and line 
must remain empty. Options allowed are ID, Ie and IP: the ID option 
is necessary only once after the first file specification. 

Any number of files may be indicated in the c~and string. 
files specified are then deleted from the cassette directory 
replaced by an *EMPTY header in the directory listing. If PIP 
that the sentinel file immediately follows an 'EMPTY file, 
also delete that 'EMPTY file fr~ the directory. For example, 
the di'rectory of cassette drive 0 is: 

21-MAR-13 

COPSO LOA 01-0EC-72 
BLANKS DAT 21-MAR-73 
SORT LST 21-MAR-73 
TORN ASC 19-MAR-73 

and the user types, 

!BLANKS. OAT ;'D. TORN. ASC= 

Those 
and are 
detects 
it will 

assume 

These two files will be deleted leaving the directory as follows: 

8-3 

...... --------



21-MAR-73 

COPSO LOA IH-OEC-72 
* EMPTY 
SORT LST 21-"'AR-7 3 

If more than one file exists on a cassette under the same filename, 
all files under that name will be deleted. 

CASSETTE COPY 

The PIP copy function is used to 
*EMPTY headers and to make multiple 
the command string is. 

*[CTlt.:(CTlt,/OPT 

'clean up' cassettes 
copies of a cassette. 

containing 
The form of 

Since cassettes are the only legal devices, only the cassette number 
need be specified, cassette drive 0 is the default device. The only 
option allowed in the copy function is /e and only one input and one 
output device speCification may be indicated. For example, 

The cassette on drive 1 is first zeroed, and the entire contents of 
cassette drive 0 are then copied to the cassette on drive 1, producing 
an exact copy of cassette O. Dates are copied as they appear on the 
original cassette. This copy function of PIP is particularly useful 
in making multiple copies of the System Cassette. 

FILE TRANSFER 

A file transfer using PIP is initiated by a command in one of the 
following formats. 

or 
*DEV:FILENA.EXT/OPT=DEV,FILE1.EXT/OPT, ••• DEV,FILEn.EXT/OPT 

*DEV:OUTl.EXT/OPT, ••• DEV,OUTn.EXT/OPT2DEV,INI.EXT/OPT, ••• /C 
,DEV,INn.EXT/OPT 

DEV represents any of the legal permanent devices (listed in Table 
3-2). Any number of input specifications are allowed. If only one 
output specification is indicated, all input files will be combined 
under the filename and/or device designated in the output field; the 
input files will be combined in the order in which they are listed in 
the command string. Otherwise, each input file must have a 
corresponding output filename and/or device, and transfers will be 
performed on a one-for-one basis. options allowed in the output 
portion of the command line are /p, /A, and /C. Options allowed in 
the input portion are /P, /F and /C. 

For example: 

8-4 

-----_ ..... _- .--- .. 



A listing is to be output on the line printer. First the file ABC.DA~ 
on cassette drive 1 is output, then without interruption FI~~T.ASC on 
drive O. and finally FINT.DAT. Before FINT.DAT is output. the system 
pauses and prints: 

I? 

The user should make sure the correct cassette is mounted on drive 1 
and then type any character on the keyboard. The listing will 
continue. 

After each execution of a PIP co~and string, control returns to PIP1 
the Command String Interpreter prints an asterisk to indicate that it 
is ready to accept another PIP co~and string. The user might next 
enter a command line such as the following. 

!I.P •• 1: AfT. OAT. SIGNA. PAL/A-lill AfT. OAT. AfT. OAT. 51 GNA. PAL 

This command transfers the file AFT.DAT to both the line printer and 
cassette drive 1, and then transfers SIGNA.PAL in kqCII mode to 
cassette drive 1. If the number of input files is not equal to the 
number of output specifications (providing there is more than one 
output specification). an error message is printed. 

To return to the Monitor, type tC. 

8.1.3 Restarting PIP 

PIP is automatically restarted after each execution of a command line; 
the CSI prints an asterisk indicatng that the user can enter a new 
command. A CTRL/P typed during execution of a command will cause the 
current output file to be closed and control will be returned to the 
CSI. 

9.2 ERROR MESSAGES 

The following error messaqes can occur during incorrect usage of PIP, 

Table 8-2 
PIP Error Messages 

Message Meaning 

?BAD TAPE 
?BAD TAPE? Hardware checksum error (may also be 

caused by READ operations initiated on 
a cassette which is positioned after 
the sentinel file) ; a question mark 
following the message indicates that 
the error is not fatal; the user may 
mount another cassette and type any 
character on the keyboard to continue 
execution. 

i 

(Contl.nued on next page) 

8-5 

----- ...... ~~.~.----..... -- - --~ ... - ... --~ 



Table 8-2 (cont.) 
PIP ~rror Messages 

r----------------r-------------------------------1 
Message 

?EOM 

?EXCESS INPUT FI~S 

Meaning 

Indicates an out-of-paper 
for the line printer, 

condition 
console 

terminal, or paper tape punch. 

The numher of input files exceeds the 
numher of output files (providing the 
number of output files is greater than 
one): this error occurs during use of 
the file transfer function. 

?EXCESS OUTPUT FILES The nlwilier of output files exceeds the 
n!wilier of input files; this error 
occurs during use of the file transfer 
function. 

?Fl~ NOT FND? 

?ILLEGAL DEVICE 

?ILLEGAL INPUT LIST 

?ILLEGAL OUTPUT LIST 

?I/O CHAN CONFLICT 

?NO FI~ NAME 

?OFFLINE x 

?SWITCH ERROR 'x'? 

The specified 
the cassette 
mOlmt another 
character on 
the search. 

file was not found on 
indicated; the user may 

cassette and type any 
the keyboard to continue 

An illegal device was indicated for 
the PIP function used. 

An input list was indicated where not 
allowed (as when using the zero, 
delete, and copy functions), or an 
illegal command was entered. 

An output list 
allowed (as 
function) • 

was indicated where not 
when using the copy 

An attempt was made to open an input 
file on a cassette already open for 
output, Or vice verga. 

A filename WaS not indicated in a 
command line which required one. 

The cassette is not properly mounted 
on drive x. The user should correctly 
mount the cassette so that execution 
can continue. 

An illegal switch was indicated in the 
command line, where 'x, represents the 
switch in errOr. The check is made 
for as many as 10 illegal switches in 
anyone command line. Typing any 
character on the keyboard will cause 
PIP to ignore the switch and continue 
execution. 

Continued on next page) 

8-6 



Message 

?TAPE FULL 
?TAPE FULL? 

?WRT LOCK x 

Table 8-2 (Cant.) 
PIP Error Messages 

Meaning 

Available space for an output file 
full. A question mark following 
message indicates that the error 

is 
the 
is 

not fatal; the user may mount another 
cassette and type any character on the 
keyboard to continue execution. 

The cassette is write-locked; x 
represents the drive number. The user 
should dismQu.T'l.t the cassette (the 
OFFLINE error message will then be 
printed), write-enable the cassette, 
and remount it. Execution will 
continue. 

8-7 



---_ ......... _-.. 



CHAPTER 9 

INPUT/OUTPUT PROGRAMMING 

The majority of 1/0 in the CAPS-II System is done using RESMON, the 
part of the Monitor which contains routines to handle all file 
structured cassette I/O and all teleprinter, keyboard and line printer 
input and output. 

RESMON is brought into memory by bootstrapping the system or by typing 
a CTRL/C (tC) while running another system program. RESMON loads the 
following interrupt and trap vectors: console terminal keyboard and 
printer, line printer, cassette, timeout, breakpoint, illegal memory 
reference, stack overflow, power fail, EMT, TRAP and lOT. The RESMON 
1/0 handlers remain in memory unless the user does an overlay load 
(using the Monitor LOAD commandl see Chapter 3). 

Simple I/O requests can be made 
for interrupt-controlled data 
occurring concurrently with the 
multiple I/O devices may be 
processing simultaneously. 

by specifying devices and data forms 
transfers. These requests can be 

execution of a running user program: 
running single or double buffered I/O 

9.1 COMMUNICATING WITH RESMON 

RESMON commands can be divided into two categories: 

1. Those concerned with establishing necessary conditions 
for performing input and output, and 

2. Those concerned directly with the transfer of data. 

when transfer of 
priority level 
priority level, 
sequentially. 
following: 

data is 
of the 
either 

Before 

occurring, 
device. The 
concurrently 
using data 

RES~ION is operating at 
calling program runs at its 
with the data transfer. 
transfer COMmands, note 

1. Device specifications are made by referencing device 
numbers. Devices and their corresponding numbers are 
listed 1n Table 9-1. 

9-1 

the 
own 
or 

the 



2. The buffer, 
most cases 
data. 

whose address is specified in the code, in 
must be set up with information about the 

In non-data transfer COMmands where an address or device number does 
not apply, the device number should be set to zero; the address is 
ignored by RESMON and may be any number. Addresses or codes may be 
specified symbolically. 

Communication with RESMON is accomplished 
instructions in the user's program. Each 
consisting of one of the RESMON commands 
following format: 

lOT 
.BYTE (command code I , (device ill 
• HORD (address) 

by lOT (Input/Output Trap) 
lOT is followed by two words 
and its operands in the 

As an example, the following program segment illustrates a simple 
input-process-output sequence. It includes the setting up of a single 
buffer. a formatted ASCII REAP into the buffer, a wait for completion 
of the REAP, processing of data just read, and a WRITE command from 
the buffer. (RESMON commands used in this example are explained in 
detail later in the chapter.) 

000001 
1!J00005 
0001!J03 
000004 

000000 1!J01!J1!J04 START. 
000002 001 
1!J001!J03 001!J 
0001!J1!J4 00001!J0 

000006 00001!J4 KREAIl: 
000010 005 
000011 003 
000012 000130' 

1!J1!J00 I 4 000004 WAI T, 
000016 003 
000011 003 

000020 000014' 

(process 

000122 000004 
1110111124 004 
000125 002 
00111126 11100130' 

000130 000100 BUFFER: 
000132 000000 
000134 000000 

000236 

000000 

RESET- I 
READ- 5 
WAI TR=3 
WRI TE= 4 

lOT 

• BY IE: RESET. 0 

• WORD 0 

lOT 
, BY T E READ.3 

, "ORO BUFFER 

IOT 
• BY TE WAI TR.3 

• WORD WAX T 

buffer) 

lOT 
• BY TE WRI TE. 2 

• WORD BUFFER 

1111111 
0 
0 

.=.+-100 

.ElIID START 

9-2 

J ASSI GN RES"'Ia-I CO:>!I1ANO 
J CODES 

J I SSUE RESET lOT 

J TRAP TO RES'ION 
;SPECIFY BUFFER AND READ 

J F'RO"'i KBO (OEVI CE 3) UNTI L 
JLIIIIE FEED OR FORM FEEIl 

J TRAP TO RESMON 
J WAIT FOR KBD (DEVICE 3) 

J TO FINI Sf! 
J BUSY RETURN ADDRESS \!HILE 
J WAI TIIIIG FOR KBD TO FINI SH 

J TRAP TO RESMON 
J WRI TE TO TELEPRINTER 

,(DEVICE 2), SPECIFY BUFFER 

1 BUFFER SI Z £ 1111 BYTES 
1 CODE FOR FORMATTED ASCI I 
11100£, RESMON WILL SET HERE 
1 TH £ NUMBER OF Bl'TES READ 
JSTORAGE RESERVED F'OR 100 
1 BY TES 

--_ ..... - ----_ ..... _-----



In more complex programming it is likely that more than one buffer 
will be set up for the transfer of data, sO that data processing can 
occur concurrently rather than sequentially, as here. 

9.2 DEVICE ASSIGNMENTS 

I/O devices in the CAPS-II System are fixed. The programmer 
references them by using RESMON and s[~cifying a device number from 
Table 9-1. The device assignment numberA are: 

Table 9-1 
Device Assignments 

Device 

Cassette Drive 0 
Cassette Drive 1 
Console Terminal 
Console Terminal 
Line Printer 

Thus, in the following example: 

lOT 
• B'fTE READ. 1 
.WORD STORE 

Printer 
Keyboard 

Number 

0 
1 
2 
3 
4 

data is read from device 1, which is cassette drive 1. 

9.3 BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS 

Use of the data transfer commands (READ and WRITE) requires the 
setting up of at least one buffer. This buffer is used not only to 
store data for processing, but to hold information regarding the 
quantity, form, and status of the data. All formatted I/O and all 
unformatted I/O (excluding unformatted cassette I/O) use one type of 
buffer; unformatted cassette I/O requires a special buffer. 

9.3.1 Buffer Arrangement for Formatted I/O 
and Unformatted I/O (Excluding Cassette) 

The buffer area for all I/O except unformatted cassette consists of 
two sections: the buffer header and the buffer itself. The non-data 
portion of the buffer is called the buffer header and precedes the 
data portion. In data transfer co~ds, the address of the first 
word of the buffer header is specified in the second word after the 
lOT command. 

9-3 

-------------- .............. _-_ ... __ ._---------



NOTE 

RESMON uses the buffer header while 
transferring data. The user's program 
must not change or reference it (other 
than to check status bits). 

The arrangement of the buffer is as follows. 

BUFFER SIZE (in Bytes) 

STATUS I MODE 

BYTE COUNT 

DATA 
• . 

Buffer Size 

The first word of the buffer contains the maximUM size (in bytes) of 
the data portion of the buffer and is specified by the user as an 
unsigned integer. RESMON will not store more than this many data 
bytes on input. Buffer size has no meaning on output. 

Mode Byte 

The low-order byte of the second word holds information concerning the 
mode of transfer. A choice of four modes exists. 

:.lode Coded as. 

Formatted ASCII 000 (or 200 to suppress eCho) 

Formatted Binary 001 

Unformatted ASCII 002 (or 202 to suppress echol 

Unformatted Binary 003 

The term echo applies only to the console terminal 
transfers from other devices never involve an 
illustrates the format of the Mode Byte. 

765,11320 

I·N:) FCHO..:..J I 
0> ECHO 

~~~~~E:l,-______ --, 

~:~~~y-.... -----------'
""'0 OCHO SET fOil ICEY80ARD ONLY

Figure 9-1 Mode Byte

Modes are further discussed in Section 9.4.

9-4

-------........... -~.---

keyboard. Data
echo. A diagram

-,

Status Byte

The high-order byte of the second
information set by RESMON on
follows.

word of the buffer header contains
the status of the data transfer as

Bits 0-4 Contain the non-fatal error codes (coded
octally; see Table 9-2)

Bit 5 1 .. F.nd-Of-File has occurred (atteMpt at
reading data after an End-Of-Medium)

Bit 6 1 .. End-of-Medium has occurred

Bit; 7 1 = Done (Data Transfer complete)

Thus, this byte is set up as follows:

765 4 3 2 I o

NON-FATAL ERRORS (CODED O~AllYI----=r

Figure 9-2 Status Byte

Non-fatal error codes for the Status Byte are described in Table 9-2.

Table 9-2
RESMON Non-Fatal Error Codes

Error Code Meaning

1 .. block check error A block check error can occur on
any cassette read (hard error;
RESMON cannot read the block).

2 .. checksum error A checksum error can occur only on
a formatted binary READ; (see
Section 9.4.3).

(Continued on next page)

9-5

3

4

=

.

Error Code

Tahle 9-2 (Cant.)
RESMON Non-Fatal Error Codes

Meaning

truncation of Truncation of a long line can occur
a long line on either a formatted binary or

formatted ASCII READ (see Section
9.4.1l. This error occurs when the
binary block or ASCII line is
bigger than the buffer size
specified in the buffer header. In
both cases, RESMON continues
reading characters into the last
byte in the buffer until the end of
the binary block or ASCII line is
encoun te red.

= improper mode lin iMproper mode Can occur only on
a formatted binary READ. Such
occurrence means that the first
non-null character encountered was
not the proper starting character
for a formatted binary block (see
Section 9.4.3) •

When the data transfer to or from the buffer is complete, the Done Bit
(bit 7) is set by RRSMON.

The following conditions cause the EOM Bit (bit 6) to be set in the
Buffer Status byte. (lin EOM occurrence also sets the Done Bit.)

Line Printer Cassette

No paper
No power

tz detected during
formatted ASCII input

Printer drum gate open
Overtemperature condition

lin End-Of-Medium condition occurring during
cleared by a manual operation such as
printer. RESMON does not retain any record

When an End-Of-Medium has occurred during a
may be data in the buffer. If an EOM has
the printer, there is no way of knowing how
written.

use of the line printer is
putting paper in the line

of an EOM.

READ frOM cassette, there
occurred during a WRITE to
much of the buffer was

The following conditions cause the EOF Bit (bit 5) and the Done Bit to
he set in the Buffer Status byte:

1. File gap or clear trailer encountered during a READ from
cassette.

2. Clear trailer encountered during a WRITE to cassette.

9-6

When an End-Of-File OCCUrS during a READ, the byte count is set to
reflect the amount of data actually read. When an EOF oCcurs during a
WRITE, there is no way of determining how much of the buffer was
actually written.

I>yte Count

The third word of the buffer header contains the Byte Count determined
as follows:

Type of Transfer Action

Input: During unformatted transfers from the
keyboard, RESMaN reads as many data bytes as
the user has specified. During formatted
transfers from cassette or keyboard, RESMON
inserts in this location the number of data
bytes available in the buffer. During
formatted fu~CII mode from cassette, if an EON
Or EOF occurs, REBMON will set the I>yte Count
equal to the number of bytes actually read.
See Section 9.3.2 for information concerning
unformatted cassette input.

Output, The Byte Count deteZ'l'lines the number of bytes
output for all modes. A line printer
out-of-paper condition will also te~inate
output and EOM will be set in the Status
I>yte. RESMON does not modify the Byte Count
on output.

9.3.2 Buffer Arrangement for Unformatted Cassette

The distinction between formatted and unformatted cassette I/O is made
at the time a cassette file is opened for input or output (at SEEK or
ENTER time--see Sections 9.6.1 and 9.G.3). The mode specified at that
time governs the way subsequent READs or WRITEs are interpreted for
the opened file. In the special caSe of unformatted I/O to or from
cassette, the buffer pointer in the READ or WRITE lOT command is
assumed to point to a 128 byte buffer without a buffer header, and not
to a buffer as previously described. The buffer specifications for
unformatted cassette I/O made at SEEK or ENTER time are ignored.
During an unformatted READ from cassette, a 128 byte data block is
read directly into the buffer indicated by the second word of the
parameter block. (See Sections 9.7.1 and 9.7.2 for a description of
the parameter block). During an unformatted WRITE to cassette, 128
bytes of data are taken directly from the buffer indicated and
transferred to cassette.

9.4 MODES

Modes have already been mentioned in section 9.3; following is a
detailed description of each type.

9-7

9.4.1 Formatted &qCII

A formatted ASCII READ transfers 7-hit characters (bit 8 is zero)
until a line feed or form feed is encountered. REBMON sets the Byte
Count word in the huffer header to indicate the number of characters
in the buffer. If the line is too long, characters are read and
overlaid into the last byte of the buffer until an EOM or an
end-of-line (indicated by a line feed or form feed) is detected.
Thus, if there is no error, the buffer will always contain a line feed
or form feed.

A formatted &qCII WRITE transfers the
specified by the buffer Byte Count.
zero.

number of 7-bit characters
Bit 8 will always be output as

Device-dependent functions for the console terminal keyboard and
printer, line printer, and cassette follow.

Console Terminal Keyboard

Seven-bit characters read from the keyboard are entered in the buffer
and are echoed on the console terMinal with the following exceptions:

Null

Tab
(CTRL/TAB
keys)

RUBOUT

CTRL/U

Carriage
Return
(RETU RN key)

CTRL/C

CTRL/O

- Ignored. This character is not echoed or
transferred to the buffer.

- Echoes as spaces up to the next tab stop.
·Stops· are located at every 8th carriage
position.

- Deletes the previous character on the current
line and echoes the character deleted. If
there are no characters to delete, RUBOUT ie
ignored.

- Deletes the current line and echoes as tu
followed by a carriage return/line feed.

Echoes as a
line feed.

carriage return followed by a
Both characters enter the buffer.

Echoes as tC followed by a carriage
return/line feed and a "7". The user should
make sure that the Syst~ Cassette is mounted
on drive 0, typing any character in response
to the "7" will rehoot the system, (If the
system is intact in memory, no "?" is printed
since no reboot is necessary--the KBL is
merely restarted.)

- Echoes as to followed by a CR/LF. Console
terminal output is supressed until either:

1. to is typed again, which causes
teleprinter output to be resumed,

9-8

CTRL/P

LoWer Case
ASCII

2. The program which is
requests keyboard input;

executing

3. The program executes the
RESET lOT (lOT #0 1 ~

4. tc is typed.

CTRL/O

5. The program executes the RESET lOT
(lOT 11).

6. The prograJ1l executes a prompted
SEEK, SEEKF, or ENTER command
(Section 9.6.3). RESOON enables
teleprinter output so the prO!'1pt
message will be seen.

If to is typed during a keyhoard input
command, it will be echoed but will not be
passed to the buffer; keyboard input will
continue to be echoed as u~ual.

- Echoes as tP and causes a jump to the restart
address, if a non-zero restart address was
specified via the RESTART lOT (lOT 12 f see
Section 9.5.21.

- The ~SCII codes 141-172 (lower case a-zl are
converted to the codes 101-132 (upper case
A-Z) on input and are echoed and stored in
the buffer as such.

The echo may be suppressed by setting bit 7 of the buffer header Mode
Byte.

If the buffer overflows, only the characters which fit into the buffer
are echoed. Characters which are deleted by RUBOUT or CTRL/U do not
read into the buffer even though they are echoed. If a carriage
return causes an overflow, or if a carriage return is typed after an
overflow has occurred, a carriage return/line feed will be echoed but
only the line feed will enter the buffer.

In the following formatted ASCII examples, assu~ there is room for
five characters in the buffer.) indicates typing a carriage return,

, represents typing a line feed, RUBOUT represents typing the RUBOUT
key, and CTRL/U indicates that the CTRL/U c~ination has been typed.

9-9

User Echoed on ASCII Code
Typed: Console Terminal: Entered into Buffer:

ABC) ABC)~ ABC) ~

ABCD) ABCD) ~ ABCD ~

ABCDEF) ABCD) ~ ABCD~

ABCDEF RUB) ABCDD) ~ ABC) ~
OUT

CTRL/U RUB)
) ~ OUT tU) l

ABCDEF RUB RUB) ABCDDC) ~ AB) ~
OUT OUT

ABCDEF RUB RUB RUB X) ABCDDCBX) ~ AX) ~
OUT OUT OUT

Console Terminal Printer

Characters
nulls are
stop.

are printed from the buffer as they appear except that
ignored and tabs are output as spaces up to the next tab

Line Printer

Characters are printed from the buffer as they appear except as
follows:

Nulls

Tab

Carriage
Return

- Ignored.

- Output as spaces up to the next tab stop.

- Ignored. It is assumed that a line feed or
form feed follows. These characters cause
the line printer ftcarriage n to advance.

All characters beyond the 132nd (or 80th if the optional line printer
is used) are printed on the next line; RESMON issues a CR/LF and
continues output.

Cassette Input

Nulls

Rubout

CTRL/Z

- Ignored.

- Ignored.

- Sets Done Bit and EOM Bit (bit 6) in Buffer Status
byte.

9-10

-------- --------

<

cassette output

Characters
formatted
the output

are transferred from the buffer as they appear.
ASCII cassette file is closed, the Monitor writes a
block and pads the unused portion of the block with

9.4.2 unformatted ASCII

When a
+Z into
nulls.

Unformatted ASCII READs and WRITEs transfer the number
characters specified by the header Byte Count. (See Section
information on unformatted transfers using cassette.>

of 7-bit
9.3.2 for

Device-dependent functions include only the keyboard. Characters are
read and echoed except as follows:

Tab

CTRL/P

CTRL/C

CTRL/O

Lower Case
ASCII

- Echoes as spaces up to the next tab stop.

- Same as formatted ASCII.

- Same as formatted ASCII.

- Same as formatted ASCII.

- Same as formatted ASCII.

9.4.3 Formatted Binary

Formatted binary is used to transfer checksummed binary data (S-bit
characters) in blOCKS. A formatted binary block appears as follows:

Byte (octal) Meaning

001 - Start of block (output automatically by

000

RESMON) •

Always null (output automatically by
RESMON).

xxx - Block Byte Count (low-order followed by
XXX high-order). Count includes data and

preceding four bytes (output
automatically by RESMON).

9-11

DDD
DDD

•

• - Data bytes (from user's buffer) •

DDD
DDD

CCC Checksum. Negation of the
preceding bytes in the
automatically by RESMON).

sum of all
block (output

RESMON creates the block during output from the buffer and buffer
header. The Byte Count word in the buffer header specifies the number
of data bytes which are to be output. Note that the number of bytes
output is four larger than the header Byte Count. As the block is
output, RESMON calculates the checksum which is output following the
last data byte.

On formatted binary READs, RESMON ignores null characters until the
first non-null character is read. If this character is a 001, a
formatted binary block is assumed to follow and is read from the
device under control of the Byte Count value. If the first non-null
character is not 001, the RF~D is immediately terminated and error
code 4 (see Table 9-2) is set in the status Byte. As the block is
read a checksum is calculated and compared to the checksum following
the block. If the checksum is incorrect, error code 2 is set in the
status Byte of the buffer header. If the binary block is too large
(i.e.. [Byte Count-4] larger than the buffer size specified in the
header). the last byte of the buffer is overlaid until the last data
byte has been read; error code 3 is set in the Status Byte.

Device dependent functions do not apply to formatted binary READs and
WRITEs. Eight-bit data characters are transferred to and from the
device and buffer exactly as they appear.

9.4.4 Unformatted Binary

This mode transfers S-bit characters with no formatting or character
conversions of any kind. For both input and output, the buffer header
Byte Count determines the number of characters transferred. (See
Section 9.3.2 for information on unformatted transfers using
cassette.)

Device dependent functions do not apply.

9.5 NON-DATA TRANSFER COMMANDS

The following commands are needed for initialization before any I/O
transfers can take place.

9-12

9.5.1 RESET

The RESET command must be the first RESMON command issued by a user
program and takes the form.

IOT
.BYTE 1,0
.WORD 0

It initializes many of RESMON's internal flags, resets all devices to
their state at power-up (a hardware RESET instruction is issued)
enables keyboard interrupts, clears the to flag, and clears the tp
RESTART address (set by the RESTART lOTl. This lOT is normally issued
only at the start of a user's program. It takes a significant amount
of time to complete since RESMON goes into a timing loop and then
issues a hardware RESET instruction. If this were not done, the last
characters printed on the console terminal could be garbled.

9.5.2 RESTART

The RESTART command designates an address at which to restart a
program. The format of the command is:

lOT
.BYTE 2,0
.WORD (address to restart)

After this command has been
transfer program control
address is designated as 0,

issued, typing CTRL/P on the keyboard will
to the restart address. If the restart
the CTRL/P restart capability is disabled.

The RESTART command cancels keyboard internlpts. It is the program's
responsibility to clean up any I/O in progress and to ensure that the
Stack Pointer is reset.

It is a good programming practice for the code at the restart .address
to check if any cassette output files were open when tp was typed and
to close them before actually restarting normal program execution. It
is also advisable to issue a RESET lOT after a tp restart and before
any RESMON data transfer commands are issued.

9.5. J CNTRLO

The CNTRLD command resets the RESMON to flag, thus enabling future
console terminal output. The format is:

lOT
.BYTE 0,0
.WORD 0

The to flag (which suppresses console terminal output) is set by the
user typing to on the keyboard. The flag is cleared (thus enabling
teleprinter output to continue) "hen one of the following occurs:

9-13

...... _------ ---- _ ... _

1. to is typed again.

2. The p rogr aJIl running in memory requests keyboard input.

3. +C is typed.

4. The program running issues CNTRLO rOT.

5. The program running issues RESET rOT.

6. The prograJll running issues a prompted SEEK, SEEKP, or
ENTER rOT (see Section 9.6.3, User Prompting).

9.6 CASSETTE FILE I/O COMMANDS

The following RE~MON commands are used for setting up r/o transfers.

9.6.1 SEEK

for cassette only and is used to open a cassette
~EEK sets up infornation which RESMON uses in

from the specified unit. The format of the SEEK

The SEEK command is
file for input.
subsequent READ's
command is:

rOT
.BYTE 10,Cdevice i--device 0 or 1 only)
.WORD (pointer to list of arguments for SEEK)

The list of arguments for the SEEK command appears as:

.BYTE Status/Error, (llOOe)

,WORD (address of 128 byte buffer for use when reading
cassette blocks if formatted mode is specified;
otherwise 0)

.WORD (address of a second 128 byte buffer if double
buffered input is desired; otherwise 0)

,WORD (address of 32 byte buffer for storage of
file headers while SEEKing)

, WORD (address of fi lename to SEEK)

,WORD (address to return to if error detected)

The 32 byte buffer for file headers is the area into which RESMON will
read file headers as it is looking for the specified file. This
buffer is a scratch area and will generally be the same for every SEEK
command the user has in his prograJll, The address of the filename to
SEEK is a pointer to an area containing the filename and extension
properly padded to nine bytes (if necessary), which is to be looked
for on the specified cassette unit. For formatted I/O, the address of
the 128 byte buffer tells RESMON where to read cassette data blocks
once the specified file has been found. RESMON reads blocks into this

9-14

."

-----_ ... _---_._------_ _---- ... -~--... ----

buffer from cassette and then takes data fr~ this buffer and moves it
to the user's line buffer to fulfill a READ lOT. If the user
specifies a second 128 byte buffer, RESMaN will use it to implement a
double buffered input scheme for subsequent RFAD's On that device.
For unformatted I/O, the buffer specifications are ignored.

RESMON sets the Status/Error Byte in the list of SEEK arguments to
reflect errors, as follows:

Bit set

7
6
5
4
3

Error

Error detected
File not found
Hard error
Conflict (e.g. output file was open)
No I/O buffer specified for formatted I/O

On detection of an error, RESMaN sets bit 7 and one other bit in the
error byte and transfers control to the error address specified in the
list of arguments.

If no error was detected, SEEK returns with the header of the desired
file in the user-specified scratch area and with the cassette
positioned to READ the first data block of the file. No data blocks
are read as a result of a SEEK. The SEEK command always rewinds the
specified cassette before doing a SEEK (sequential search).

If the first byte
user in a SEEK
will not attempt
rather will look
same filenarae.

NOTE

of an extension specified by the
or SEEKF command is 000, RESMaN
to match the extension, but

for the first file which has the

If the first byte of a filename specified by the
user in a SEEK or SEEKF co~nd is 000, RESMON
will not compare filenames at all, but rather will
position the cassette so as to read the first file
encountered. For SEEK, this is always the first
file on the cassette, since the tape is always
rewound first. For SEEKF, this is the first file
encountered spacing forward from the current
position.

9.6.2 SEEKF

The SEEKF (SEEK Forward) command is identical in format and operation
to the SEEK command, except SEEKF does not perform a rewind before
searching for the specified file. The format of the command is:

lOT
.BYTE 11, (device *)
.WORD (pointer to list of arguments for SEEKF)

The list of arguments is the same as for SEEK and can be found in
Section 9.6.1.

9-15

9.6.3 ENTER

The ENTER c~and is for cassette only, and is used to create a new
file on cassette (at the logical end of cassette). The format of the
cOl!llTland is:

lOT
.BYTE 7, (device #)
.WORD (pointer to list of ENTER arguments)

The list of arguments for the ENTER command is similar to the list of
arguments for the SEEK commands:

.BYTE Status/Error, (I-lode)

.WORD (address of 128 byte buffer for use in writing
cassette blocks in formatted mode; otherwise 0)

.WORD (address of second 128 byte buffer if double
buffered output is desired; otherwise 0)

.WORD (address of 32 byte buffer for storage of
file headers)

.WORD (address of filename to be ENTERed)

.WORD (address to return to if. error detected)

.tl1ORD (address of overflow subroutine to be called if a
formatted file hits end-of-tape before it is
closed lathe rwise 0)

The ENTER command rewinds the specified cassette unit and does a SEEK
for the filename supplied by the user. (ENTER assumes that the
filename address supplied by the user is the beginning of a 32 byte
header to be written out as the header block of the file being
ENTERed. See Appendix F for a complete description of the cassette
file header.) If the file is found, it is deleted by overwriting the
existing header with an "*EMPTY· header. The ENTER command then moves
down to the logical end of cassette and replaces the end of cassette
marker with the header specified by the user. The cassette is left
positioned to write the first data block of the new file. Before
writing the new header, RES MaN performs several operations, the
sequence and continuation bytes of the user-specified header are set
to zero; the length is set to 128 bytes per data record; if the first
two bytes of the date are zero (or spaces--ASCII 240), RESMON will
supply the current date (if the user specified a date with the Monitor
DATE command).

For formatted I/O, the 128 byte buffer in the list of ENTER arguments
is an intermediate buffer which RESMaN useS in writing data blocks of
the ENTERed file. The user normally issues a WRITE lOT specifying a
line buffer; RESMON takes data fram the line buffer and moves it to
the user-specified 128 byte buffer; when this 128 byte buffer is full,
it is written out to cassette. If the URer supplies the address of a
second 128 byte buffer, REBMaN will double buffer cassette output for
this file. Buffer information from the ENTER is stored by RESMON for
reference during I/O to the specified unit. For unformatted I/O the
buffer specifications are ignored.

9-16

.-~--...... --.... -.--...... ---- ---_ .. _-_ .. _----

The Mode Byte in the list of arg~ents is similar to the Mode Byte in
the SEEK command--it indicates how the u~er intends to write the file
being ENTERed and is stored by RESMON for reference during I/O. It
can have only the values listed in Section 9.3.1 under "Hade Byte".
The Status/Error Byte in the list of ENTER arguments is set by RESMON
to reflect errors detected during the ENTER function; following is a
list of the error bits:

Bit Set

7
6
5
4

3

Error

Error detected
Full tape (clear leader found)
Hard error
Conflict (output file was
open)
No I/O buffer specified for
formatted I/O

If an error is detected, RESMON sets bit 7
transfers control to the error address
arguments.

and one
specified

other bit and
in the list of

The last item in the list of ENTER arguments is an overflow subroutine
to be called in case the user ENTERs a formatted file and the WRITE
processor encounters the end of cassette before the file is CLOSEd.
If an overflow subroutine wa~ specified when the file was ENTERed, the
WRITE processor will call it via a JSR PC,SUBR. The user's subroutine
should tell the user to mount a new cassette on the same drive that
the file which overflowed was mounted on. It should then ENTER a file
on that new cassette (using the same internal buffers as the original
ENTER command) and then return to RESMON's WRITE processor via an
RI'S pc. The \iRITE processor will continue writing onto the new file:
the two files should then be combined with PIP before being used
further. RESMON saves registers 0-5 before calling the user
subroutine, so the user need not worry about destroying the contents
of these registers. However, the user should be careful not to
destroy the stack pointer (Register 6).

User Prompting

The commands SEEK, SEEKF, and ENTER have an additional feature which
can aid the user who has his files on many different ca~settes. If,
on entry to these commands, the Status/Error byte in the list of
arguments is equal to 377(octal) RESMON will prompt the user to mount
a new cassette on the unit specified for the command. RESMON will
type:

t?

where "I" is the unit number on which RESMON expects a new ca~sette to
be mounted. RESMON then waits for the user to type any character on
the keyboard. When the user has done this, RESMON assumes that the
proper cassette has been mounted and initiates the command.

Chapter 3 provides more details concerning user prompting.

9-17

Non-Fatal Off-Line and Write-Lock Errors

SEEK, SEEKF, and ENTER have the ability to detect write-lock and
off-line (no cassette mounted) errors and allow the user to correct
them without aborting the cOmMand in progress. When one of these
commands is initiated, if there is no cassette mounted on the
specified unit, the message:

?OFFLINE n

will be generated. The user should mount on unit n the cassette
containing the file he wishes to SEEK or the cassette on which he
wishes a new file ENTERed. RESMON will automatically proceed with the
specified command. No action other than mounting the cassette is
necessary •

Likewise, when an ENTER command is initiated, if the cassette mounted
on the specified unit is write-locked, RESMDN will generate the
message:

?WRT LOCK n

The user should
it. RESMON
automatically.

9.6.4 CLOSE

dismount the cassette, write-enable it, and
will continue with the specified ENTER

NOTE

When the user dismounts the cassette, he
will also see the "?OFFLINE n" message
described above.

rel'lount
cOl'll'l\and

The CLOSE command is for cassette only and specifies that a certain
file presently open for output is to be closed and not referenced
further.

NOTE

CLOSE may be issued for any device, but
it is ignored for the console terminal
keyboard and printer, and line printer.
It is also ignored if no output file is
open on the specified unit.

The format of the command is,

lOT
• BYTE 6, (device #)
.WORD (address for transfer if error detected)

CLOSE frees the unit sO that it may be opened again via a SEEK, SEEKF,
or ENTER. If CLOSE is issued for a unit which is open for input, no
error will occur but control will return immediately to the user.

9-18

.... -~ •.... ~ ... -- - .-~-~--~ .~ .. ~~ -----..... ---~.-...

In the case of unformatted ASCII and binary files, CLOSE waits until
the last WRITE initiated is cOMpleted, then writes an end-of-tape
marker and rewinds the cassette. If the user initiates an unformatted
WRITE and then immediately does a CLOSE, the CLOSE processor has to
wait until the WRITE is completed before it can start to write an
end-of-tape marker. The error return is never taken for unformatted
CLOSEs.

If a formatted output
portion of RESMON's
write an end-of-file
Control is returned to

file is open, CLOSE must write out the last
internal buffer (if there is any data in it),
On the cassette, and rewind the cassette.
the user once the rewind has been initiated.

In the case of a formatted ~~CII file open for output,
supply a +Z (ASCII 32) as logical end-of-file, pad the
last data block with nulls, write out the last data block,
end-of-tape marker, and rewind the cassette.

CLOSE will
rest of the
write the

In the case
block with
end-of-tape

of formatted binary files, CLOSE writes out the last data
any unused portion of it padded with nulls, writes the

marker, and rewinds the cassette.

The only possible error which may occur during a formatted CLOSE is
clear leader or full tape, this error is detected when RESMON writes
out the last portion of the internal buffer. If this WRITE is not
successful, the error return is taken. If clear leader is detected
when writing the end-of-tape marker, it is ignored.

9.7 DATA TRANSFER COMMANDS

The following lOT's are used to transfer data between devices.

9.7.1 READ

The READ command causes RESMON to read fram the device associated with
the specified device number according to the inforro.ation found in the
buffer header. The format of the command is:

lOT
.BYTE 5, (device #)
.WORD (address of first word of the buffer header)

or
.WORD (address of paraMeter block)--for unformatted

cassette READs

For unformatted cassette READs, the parameter block has the following
form:

.BYTE Status/Error,O

.WORD (address of 128 byte buffer for READs)

RESMON initiates the transfer of data, clears the Status Byte, and
returns control to the calling program. If the device on the selected
channel is busy, or if a conflicting device (see Section 9.7.3) is
busy, RESMON retains control until the data transfer can be initiated.

9-19

--------- ----~-

Upon completion of the READ, the appropriate bits in the Status Byte
are set by RESMON and the Byte Count word indicates the number of
bytes in the data buffer.

For formatted cassette READs the flaw of execution is as follows.

RESMON reads a data block into an intermediate cassette buffer
(specified by the user at SEEK ti~e). From that buffer, RESMON pulls
characters one at a ti~e and uses them to fill the buffer specified by
the user in the READ command. The user buffer is filled exactly as if
the characters were coming directly from the cassette and the process
is governed as described in Section 9.3.1. If, at SEEK time, the user
specified a second intermediate buffer, the cassette I/O is double
buffered, thus ~inirnizing the amount of time the user prograJl'. must
wait for physical I/O transfers. Note that the user can implement his
own double buffering sche~e by using unformatted cassette I/O, since
in that case the location of cassette buffers is not fixed at SEEK or
ENTER time, but can be varied with every READ (or WRITE) command
simply by changing the buffer pointer in the command (see Section
9.3.2).

For formatted cassette READs, RESMaN will set the Status Byte in the
buffer header to reflect the status of the data transfer as described
in section 9.3.1, Status Byte. For unfornatted cassette READs the
Status Byte in the parameter block is set to reflect the status of the
operation as described in the section on Cassette I/O primitives
(Section 9.8). For formatted cassette READs, the Done Bit will be set
when the user's buffer has been filled, even though there may be some
physical I/O still in progress. With regard to formatted cassette
I/O, as a result of the intermediate buffering scheme the user's
buffer will always be full when he regains control following a READ
command since the data is coming from a memory buffer. If the user
tries to do a READ from cassette before doing a SEEK or SEEKF, the
Monitor will give a "NO FILE OPEN n" message, where n is either 0 or 1
(for drive 0 or 1).

9.7.2 WRITE

RESMON
number
format

writes on the
according to

of the command

lOT

device as~ociated with the specified device
the information found in the buffer header. The
is;

.BYTE 4, (device #)

.WORD (address of first word of the buffer header)
or

.WORD (address of parameter block)--for unformatted
cassette WRITEs

For unformatted cassette WRITEs, the parameter block has the form:

.BYTE Status/Error,O
• WORD (address of 128-byte buffer to WRITE)

Transfer of data occurs in the aI'1OWlt specified by the Byte Count
(Buffer+4). RESMON returns control to the calling program as soon as
the transfer has been initiated. If the selected device is busy or a

9-20

----~

,~,-~- ,-,-~~~~~~~-,~~~~~~~~~~~~~~~~~~~~~~~~~~~-

conflicting device is busy, RE5MON retains control until the transfer
can be initiated. Upon completion of the WRITE, RESMON "ill set the
Status Byte to the latest conditions. If a WRITE causes an EOM
condition, the user has no way of determining how much of his buffer
has been written (the Byte Count remains the same).

The WRITE command behaves the same way as the READ command with regard
to formatted and unformatted cassette I/O. When control is returned
to the user after a formatted cassette WRITE, his line buffer is
available. The status bytes for formatted and unforMatted cassette
WRITEs are interpreted like those for cassette RFADs.

If a WRITE is issued without first doing an ENTER (see Section 9.6.3)
the Monitor will respond by typing a "NO FILE OPEN n" message, where n
is the drive number.

9.7.3 Device Conflicts in Data Transfer Commands

Because there is a physical association between the printer and
keyboard on the console terminal, certain devices cannot be in Use at
the same tillle. When a data transfer cOf!UT\and is given, RESMON
silllultaneously checks for two conditions before executing the command:

1. Is the device requested already in use?

2. Is there sOllie other device in use that would result in
an operational conflict?

RESMON resolves both conflict situations by waiting until the first
device is no longer busy before allowing the requested device to start
functioning. (This is an automatic WAITR command; see the next
section.) For example, if the console terminal is in use, and either a
KBD request or a second request for the terminal itself is made,
RESMON will wait until the current output operation has been completed
before returning control to the calling program.

Table 9-3 lists the devices; corresponding to each device on the left
is a list of devices (or the echo operation) which would conflict with
it in operation.

Device

Terminal Keyboard
Printer (TTY)

Table 9-3
Device Conflicts

All Possible Conflicting
Devices or Operations

(KBD) Echo, KIlO, TTY

Cassette (CTO or CTl) CTO, CTl

Line Printer (LP) LP

9-21

9.7.4 WAITR (Wait, Return)

The WAITR corrmand is used to test the status of the specified device.
The format of the command is,

lOT
.BYTE 3, (device II
.WORD (husy return address)

If the device (or any possible conflicting device) is not transferring
data, control is returned to the instruction following the WAITR
command. Otherwise, control is transferred to the busy return
address.

Note that a not busy return from WAITR nortnally means the device is
availab Ie. However, in the case of a l'lRITE to the console terminal or
line printer, this means only that the last character has been output
to the device. The device is still in the process of printing the
character. Thus, care must be exercised when performing a hardware
RESET or HALT after a WRITE-WAITR sequence, since these may prevent
the last character from being physically output.

WAITR va. Testing the Buffer Done Bit

WAITR tests the status not only of the device it specifies, but also
of all possible conflicting devices. This means that when WAITR
indicates that the device is not busy, the data transfer on the device
of interest may have been completed for some time. Depending on the
program and what devices are being used for a given run, the WAITR
could have been waiting an additional amount of time for a conflicting
device to become free (i.e., waiting for the KBD when the TTY is to be
used, or waiting for CTO when CTl is to be used). Where this
possibility exists and buffer availability is the main concern,
testing the Done Bit of the Status Byte (set when the buffer transfer
is complete) would be preferable to WAITRJ alternately, WAITR would be
preferable if device availability is the main interest.

In unformatted transfers to and from cassette, WAITR is equivalent to
checking the Done Bit for the last READ or WRITE command.

In formatted transfers to and from cassette, a WAITR is equivalent to
checking whether there is any physical I/O occurring on the specified
unit. The user is not generally concerned with this--normally he only
wants to know when his line buffer is free if he is doing formatted
I/O. Note that in this case even though no physical I/O is going on
when the not busy return is taken, there may still be data in the
user's intermediate cassette buffer (as specified in the SEEK or ENTER
commandl. WAITR would generally not be used when the programmer is
writing/reading a cassette file in formatted mode.

9.7.5 Single Buffer Transfer on One Device

The program segment below includes
address that is its own lOT,
availability, in this case, only a

a WAITR which
continuously
single device

9-:22

goes to a busy return
testing device 3 for
and a single buffer

•

are involved. A done condition in the buffer I Status Byte can be
inferred from the availabilty of device 3. This knowledge ensures
that all data requested for Buffer 1 is available for processing.

AI

BUSY I

lOT
.BYTE READ.3
• WORD BUFI

lOT

• BYTE
• WORD
•

lolA! TR,l
BUS'!'

,TRAP TO RES"/)';
, SPECI FY BUFFER AND
'READ FROM DE VI eE 3
II "lTD BUFFER

,TRAP TO RESMON
'WAIT FOR DEVICE 3
, SPECI FY BUS'!' RETUR'l
'ADDRESS TO FHlI Sri

•
(Process

, READING
Buffer 1)

J:1P A

Testing the Done Bit of Buffer 1 might have 9een used instead, but was
not necessary with only one device operating.

9.7.6 Double Buffering

The example below illustrates a time-saving double buffer scheme
whereby data is processed in Buffer 1 at the Same time that new data
is being read into Buffer 2, sequentially, data is processed in Buffer
2 at the same time that new data is being read into Buffer 1.

A,

BI

lOT
• BY TE READ.3
• WORD BUFI

lOT
• BY TE READ, 3
• WORD BUF2

(process BUFI

lOT
• BYTE READ. 3
.WORD BUFI

•
•

,TRAP TO RES,''! il'I
, SPECI F'Y BUFFER I
'READ FROM DE VI CE
,3 INTO BUrrER 1

• TRAP TO RESMil'I
, SPECI F'Y BUFFER 2
.READ FROM DEVICE
'3 [NTO BUFFER 2

concurrently with READ into BUF2)

,TRAP TO RESM/)';
, SPEeI F'Y BUrF'ER I
J READ FROM DEVI CE
J 3 I NTO BUFFER I

(process BUF2 concurrently with READ into aUFI)
•

JMP A

Because RESMON ensures that the requested device is free before
initiating the command, the subsequent return of control from the lOT
at A implies that the READ prior to A is complete, that is, that
Buffer I is available for processing. Similarly, the return of

9-23

control from the lOT at B i~plies that Buffer 2 is available.
are not required because RESMON has automatically ensured the
availability before initiating each READ.

9.8 CASSETTE I/O PRIMITIVES

WAITR's
device's

RESMON also allows the sophisticated user to access the basic routines
necessary for doing cassette I/O. This is done by means of lOT's with
the following format.

lOT
.BYTE function, (device It)
.WORD (pointer to argument list)

These IOT's can aCcess only cassette, i.e., device numbers 0 and 1.
The functions listed in Table 9-4 are valid.

Function

12
13
14
15
16
17
20
21

Table 9-4
Cassette I/O Functions

t Meaning

WRITE file gap
WRITE (see below)
READ (see below)
Space reverse file
Space reverse block
Space forward file
Space forward block
Rewind

For READ and WRITE, the list of argUMents is as follows •

• BYTE Status/Error,O
.WORD (buffer address)
• WORD (byte coun t)

For functions other than READ and WRITE the list of arguments is only,

.BYTE status/Error,O

Errors are reported in the statUS/Error byte as follows.

Bit set Meaning

7 Error Detected
6 Block Checksum (on READ)
5 Clear Leader
4 (not used)
3 File Gap Detected
2 (not used)
I (not used)
0 Done

9-24

RESMON sets bit 7 and one (or
detected. Write-lock, off-line,
message and return to RESMON.

more> other bits if an error is
and timing errors cause a fatal error

RESMON stores the high order byte of the cassette status
register in the user's status error byte when an error
The user should check error bits in the follo"ing order:

and command
is detected.

1. Clear Leader
2. File Gap
3. Block Checksum

Because of
bits may
bits; only

the
be
the

nature of the cassette hardHare, more than one of these
set. The above order should be used when checking the
first bit detected is significant.

Bit 0 of the Status/Error byte is set to 1 when the function is
complete: control is returned to the user as soon as the function is
initiated. If physical cassette I/O is in proqress wben one of these
functions is called, RESMON will wait until the I/O is complete,
initiate the desired function, and then return to the user.

9.9 ERROR MESSAGES

The following error messages are detected in RES~IDN (refer to Section
3.7 of Chapter 3):

Message

IO'l'

"1<0 FILE OPE"I<

OFFLINE

TIMING

Table 9-5
RESMaN Error Messages

Arg Meaning

PC An lOT was issued at the indicated
location which referenced either an
illegal REBMON cOMfl'land, illegal
device, or illegal data mode.

drive t User issued a cassette READ or
WRITE without doing a BfJ':l{ or
ENTER.

drive t User atteMpted to access a cassette
which was not mounted; execution is
autOMatically resumed when the
cassette is mounted.

drive • A tirning error occurred on the
drive indicated (RESHON tries the

I

operation 3 tirnes.)

(Con tl.nlled on next page)

9-25

Message

TRAP

WRT LOCK

Table 9-5 (cont.)
RESmN Error l-!essages

Arg !1eaning

PIC A stack overflow , atte",pt to
reference a word on a byte
boundary, or illegal _"lory
reference trap occurred at the
location indicated. The stack
pointer (R6) at time of error is
saved in location 44.

drive * User attempted to ~IRITE on a
wri te-locked cassette; execution is
autoMaticAlly resumed when the
cassette is write-enabled.

9.10 EXAMPLE OF PROGRAM USING RES~~N

An example of the uSe of RE5mN by both the CAPS-il System and fro~
within a user progr~ is presented in Appendix D.

9-26

-----_ -

.-;

APPENDIX A

ASCII CHARACTER CODES

A.l KEYBOARD DIFFERRNCES

Certain console terminals vary concerning labeling of keyboard keys
and characters output upon receipt of particular ASCII character
codes. The follm.ing list should be referenced to determine possible
differences:

Keys Which Perform
the Same Function

t

RUBOUT
ESCAPE
SHIFT L
CTRL I
SHIFT K
SHIFT M

DELETE
ALTMODE

\
TAB

[
1

A-I

Represent
the ASCII Code

136
137
177
176 175
134
211
133
135

A. 2 CHARACTER CODES

The following is a list of the 7-bit octal ASCII character codes.
(ASCII is an abbreviation for American Standard Code for Information
Interchange.)

7-Bit 7-Bit 7-Bit 7-Bit
Octal Character Octal Character Octal Character Octal Character

000 NUL 040 SP 100 @ 140 space
001 SOH 041 ! 101 A 141 a
002 STX 042 • 102 B 142 b
003 ETX (tC) 043 t 103 C 143 c
004 EOT 044 $ 104 0 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 , 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FF 054 • 114 L 154 1
015 CR 055 - 115 M 155 m
016 SO 056 · 116 N 156 n
017 SI (to) 057 I 117 0 157 0
020 OLE (tP) 060 0 '120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 V 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 x
03l EM 071 9 131 Y 171 y
032 SUB(tZ) 072 : 132 Z 172 z
033 ESC 073 : 133 [173 [
034 FS 074 < 134 "- 174 (,)
035 GS 075 a 135 I 175 (I)
036 RS 076 > 136 t (,) 176 H
037 US 077 ? 137 ~(-) 177 DEL

A-2

----- .. _ .. _"._------

•

B.l TERMINATORS

-- _.

Character

CTRL/FORH

LINE FEED

RETURN

•
,
TAB

BLANK or
SPACE

+

APPENDIX B

ASSEMBLY LANGUAGE SUMMARY

Function

Source line terminator

Source line terminator

Source line terminator

Label terminator

Direct assignment delineator

Register term delineator

Item terminator
Field terminator

Item terminator
Field terminator

Immediate expression field indicator

Deferred addressing indicator

Initial register field indicator

Terminal register field indicator

Operand field separator

Comments field delimiter

Arithmetic addition operator

Arithmetic subtraction operator

B-1

Character Function

•

Logical AND operator

Logical OR operator

Double ASCII text indicator

Single ASCII text indicator

B.2 ADDRESS MODE SYNTAX

In the following syntax table, n represents an integer between 0 and
7; R is a register expression; E represents any expression; ER
represents either a register expression or an absolute expression in
the range of 0 to 7.

Address
Mode
Number

On

In

2n

3n

4n

5n

6n

Address
Mode Name

Register

Deferred Register

Autoincrement

Deferred
Autoincrement

Autodecrement

Deferred
Autodecrement

Index by the
Register
Specified

--~ ~-.

Symbol in
Operand
Field

R

Meaning

Register R contains the operand.
R is a register expression.

@R or (Il) Register R contains the operand
address.

(ER) +

@(ER)+

-(ER)

@-(ER)

E (ERI

B-2

The contents of the register
specified by ER are incremented
after being used as the address
of the operand.

ER contains
address of
incremented

a pointer to the
the operand. ER is

after use.

The contents of register ER are
decremented before being used as
the address of the operand.

The contents of register ER are
decremented before being used as
a pointer to the address of the
operand.

The value obtained when E is
combined with the contents of
the register specified (ERI is
the address of the operand.

Address Symbol in
Mode Address Operand
Number Mode Name Field Meaning

Deferred index
by the Register

7n Specified @E(ER) E added to ER produc~s a pointer
to the address of the operand.

27 Immediate Operand .E E is the operand.

37 Absolute address @IE E is the operand address.

67 Relative address E E is the address of the operand.

77 Deferred relative
address @E E is a pointer to the address of

the operand.

B.3 INSTRUCTIONS

The tables of instructions
operands they take and
op-codes.

which follow are grouped according to the
according to the bit patterns of their

In the representation of op-codes, the following symbols are used:

SS Source operand Specified by a 6-bit
address mode

DO Destination Specified by a 6-bit
operand address mode

XX 8-bit offset to a Branch instructions
location

R Integer between 0 Represents a general
and 7 register

Symbols used in the description of instruction operations are:

SE Source effective address
DE Destination effective address
(Contents of

+ Becomes

The condition codes in the processor status word (PS) are affected by
the instructions; these condition codes are represented as follows:

N Negative bit: Set if the result is negative
Z Zero bit: Set if the result is zero
V OVerflow bit: Set if the result had an

overflow
C Carry bit: Set if the result had a carry

In the representation of the instruction's effect on the condition
codes, the following symbols are used.

B-3

•

a

1

Conditionally set

Not affected

Cleared

Set

To set conditionally means to use the instruction's result to
determine the state of the code.

Logical operators are represented by the following symbols:

B.3.l

Op-code

OlSSDD
llSSDD

02SSDD
l2SSDD

03SSDD
l3SSDD

04SSDD
14SSDO

05SS0D
15SSDD

06SS00
l6SS00

..

Inclusive OR

Exclusive OR

AND

Used over a symbol to represent
the l's complement of the symbol

Double Operand Instructions (OP A,A)

Condition Codes
Mnemonic Stands for 0li!!ration N Z V C

MJV MJVe (SE)*(DE) • * 0
MJVB MJVe Byte

CMP CoMPare (SE)- (DE) * * • * <:MPB CoMPare Byte

BIT BIt Test (SE) .. (DE) • * 0
BITB BIt Test Byte

BIC BIt Clear (SE) .. (DE)~(DE) • * 0
BICB BIt Clear Byte

BIS BIt Set (SE) (DE)+(DE) * • 0
BISB BIt Set Byte

ADO ADD (SE) + (DE) + (DE) • * * * SUB SUBtract (DE) - (SE)+(OE) * * * •

B.3.2 Single Operand Instructions (OP A)

Condition Codes
Op-code Mnemonic stands for operation N Z V C

0050DO CLR CLeaR O+(OE) 0 1 0 0
1050DD CLM CLeaR Byte

005100 COM COMplement (DE)+{DE) * • 0 1
105100 COMB COMplement Byte

B-4

Condition Codes
Op-code Mnemonic Stands for Operation N Z V C

005200 INC INCrement (DE) + l+(OE) * * .. 1
105200 INCB INCrement Byte

005300 OEC OECrement (OE) - l+{OE) *
106300 OECS DECrement Byte

005400 NEG NEGate (DE) + l+(DB) * *
105400 NEGB NEGate Byte

005500 ACe AOd Carry (OE) + (C)+(DE) * *
105500 ADCB ADd Carry Byte

005600 SBC SuBtract Carry (DE) - (C) +(OE) *
105600 SBCB SuBtract Carry

Byte

005700 TST TeST (DE) - O+(OE) 0 0
105700 TSTB TeST Byte

B.3.3 Rotate/Sllift

006000 ROR ROtate Rigllt • ..
106100 RORB ROtate Right U::::=:=::=::=::~J .,

Byte -.-

006100 ROL ROtate Left &r, , I
~ ,==:It'

106100 ROLB ROtate Left ~_:t __ , ___ , __ -,,.- • * .. *
Byte L --0--

006200 ASR Ad t:hmetic I--<:::J~
..

Shift Right G - ,

106200 ASRB Ari t:hmetic
Shift Right Li.' "".,..!., ,.H]!,; , -_. , HJ

Byte

006300 ASL Arithmetic • E- f-..
Sllift Left

106300 ASLB Ar i thI1Ieti c •
Shift Left 8~l - , '"'0- ,"" ' !-'

Byte

000100 JMP JuMP DE -+ (PC)

, 000300 SWAB SWap Bytes !L=:::0 ____ , 0 0
~

B-5

---.---.... -~ ---

The following 3 instructions are available on the POP-ll/40, 45 only:

0065SS MFPI Move From (SE)->(TEMP) ,. ,. 0
Previous (SP) -2~(SP)
Instruction (TEMP)"((SP»
space

006600 ifrPI Move To «SP) ,"{TEMP) ,.
* 0

Previous (SP+2-.(SP)
Instruction (TEMP)~ (DE)
space

006700 SXT Sign eXTend o OE if N *
bit is clear
-1 OE if N
bit is set

B.3.4 Operation Instructions (OP)

Op-Code

000000

000001

000002

000003

000004

000005

Mnemonic Stands for

HALT

WAIT

RTI

000003

lOT

RESET

HALT

WAIT

ReTurn from
Interrupt

Breakpoint
Trap

Input/Output
Trap

RESET

Operation
Condition Codes

N Z V C

The computer stops
all functions.

The computer stops
and waits for an
interrupt ..

The PC and ST are
popped off the SP
stack:
(SP))"CPC)
(SP)+2+(SP)
«SP»+(ST)
(SPl+2+(SP)

Trap to location
14. This is used
to call ODT.

Trap to location
20. This is used
to call RESI<t:lN.

Returns all I/O
device handlers to
power-on state.

,.

,.

,.

*
,. ,.

,. • *

,. ,.
*

The following instruction is available on the PDP-ll/40, 45 only:

000006 ReTurn from Same as RTI
Interrupt instruction but

inhibi ts trace
trap.

B-6

* '* * '*

•

,

.. ~~---.. ~ .--~--~ .-_ .. __ ... _---- .. ~----.. ~------~ ... -----.. ~--.---

Trapping OP or OP E where 0<-E(-337(octal)

104000- EMT EMulator Trap to location * * * * 104377 Trap 30. This is used
to call system
programs.

104400- TRAP TRAP Trap to location * * * * 104777 34. This is used
to call any routine
desired by the pro-
grammer ..

CONDITION CODE OPERATES

Op-code Mnemonic Stands for

000241 CLC CLear CArry Bi t in PS.

000261 SEC SEt Carry bit.

000252 CLV CLear oVerflow bit.

000262 SEV SEt oVerflow bit.

000244 CLZ CLear Zero bit.

000264 SEZ SEt Zero bit.

000250 CLN CLear Negative bit.

000270 SEN SEt Negative bit.

000254 CNZ CLear Negative and Zero bits.

000257 CCC CLear all Condition Codes.

000277 scc set all Condition Codes.
~'c

000240 NOP No-operation.

B.3.5 Branch Instructions OPR E
where -128 (decimal) «E-.-2)/2<127 (decimal)

Condi tion to be
met if branch is

Op-Code Mnemonic Stands for to occur

0004XX BR BRanch always

OOIOXX BNE Branch if Not Equal (to zero) Z-o

00 14 XX BEQ Branch if EQual (to zero) Z-l

B-7

--~ .. -~

Condition to be
met if branch is

Op-Code Mnemonic Stands for to occur

0020XX BGE Branch if Greater than or NeD VaO
Equal (to zero)

0024XX BLT Branch if Less Than (zero) NeDV = 1

0030XX BGT Branch if Greater Than Z I (NeD V)-O
(zero)

0034XX BLE Branch if Less than or ZI (NeDVlal
Equal (to zero)

lOOOXX BPL Branch if PLus N-O

IOO4XX BMI Branch if MInus N-l

lOIOXX BIll Branch if HIgher C (i) Z-O

IOl4XX BLOS Branch if LDwer or Same CIZ=l

I020XX BVC Branch if oVerflow Clear v-o
I024XX BVS Branch if oVerflow Set V=l

I030XX acc (or Branch if Carry Clear
BIllS) (or Branch if HIgh or Same) C-O

I034XX BCS (or Branch if Carry Set (or
BLO) Branch if LOw) Cal

B.3.6 Subroutine Call (JSR ER,A)

Op-code

004RDD

Mnemonic Stands for

JSR Jump to Sub
routine

Operation

Push register on the SP stack,
put the PC in the register:

B-8

DE' (TEMP)

(SPI-2+ (SP)
(REG) + «SP))

A temporary
storage register
internal to the
processor

(PC)+m+(REGI M depends upon
the address mode

(TEMPJ+(PCI

~

"

•

B. 3.7 Subroutine Return

Op-code

00020R

Mnemonic Stands for

RTS ReTurn from
Subroutine

B.4 ASSEMBLER DIRECTIVES

Mnemonic Operand Stands for

.EOT none End Of Tape

• EVEN

• END

• WORD

• BYTE

.ASCII

• TITLE

.ASECT

.CSECT

.LIMIT

• GLOBL

.RAD50

.LIST

.NLIST

none

E
(E op
tional)

E, E ••••
E, E ••••

E,E, •• •

EVEN

END

WORD
(the void
operator)

BYTE

/xXJ(••• x/ ASCII

NAME TITLE

none ASECT

none CSECT

none LIMIT

NAME ,NAME, • ••
GLOBaL

/'XXX/ RADix 50

none LIST

none No LIST

Operation

Put register contents in PC
and pop old contents from SP
stack into register.

Operation

Indicates the physical end of
the source input medium.

Ensures
location
adding 1

that the assembly
counter is even by

if it is odd.

Indicates the physical and
logical end of the program and
optionally specifies the entry
point (E).

Generates words of data •

Generates bytes of data.

Generates 7-bit
acters for text
delimi ters.

Generates a name
object module.

Initiates
section.

the

Ini tiates the
Control section.

ASCII char
enclosed by

for the

Absolute

Relocatable

Generates two words containing
the low and high limi ts d. the
relocatable section.

Specifies each name to be a
global symbol.

Generates
sentation
character

the RADIX 50 repre-
of the ASCII

in delimiters.

Enables assembly listing (if
it was off).

Disables assembly listing (if
it was on).

B-9

8.4.1 Conditional Directives

Mnemonic Operand

.IFZ E

.IFNZ E

.IFL E

.IFLE E

.IFG E

.IFGE E

.IFDF NAME

.IFNDF NAME

.ENDC none

Stands for

IF E-O

IF E<O

IF E(-O

IF E>O

IF E->O

IF NAME
defined

IF NAME
undefined

End of
Conditional

Operation

Assemble what follows up to
the terminating .ENDC if the
expression E is O.

Assemble what follows up to
the terminating .ENDC, if the
expression E is not O.

Assemble what follows up to
the terminating .ENDC, if the
expression E is less than O.

Assemble what follows up
the terminating .ENDC, if
expression E is less than
equal to O.

to
the
or

Assemble what follows up to
the terminating .ENDC, if the
expression E is greater than
O.

Assemble what follows up to
the terminating .ENDC, if the
expression E is greater than
or equal to O.

Assemble what follows up to
the terminating .ENDC if the
symbol NAME is defined.

Assemble what follows up to
the terminating .ENDC if the
symbol NAME is undefined.

Terminates the range of a
conditional directive.

B-10

APPENDIX C

COI1MAND AND ERROR MESSAGF. SUMMARIES

The following s~aries are provided for the user's convenience and
are grouped in chronilogical order according to the system program to
which they refer. As these are only summaries, the user is referred
to the appropriate chapter for details.

C.l KEYBOARD MONITOR (Chapter 3)

COI1lI'land Sunvnary *
Command

!2.!l:TE

~RECTORY

!2!RECTORY/F

LOAD

RUN

Explanation

Allows the user to enter the
year. This date is then
directory listings.

day, month,
represented

and
in

Causes a directory listing of the cas~ette

specified in the command line.

Cause~ a "fast1t directory listing by orrtitting
current and creation dates and listing only
filena~es and extensions.

Instructs the Monitor to load the
specified in the cor:unand line.

file

Instructs the Monitor to load and start the
file specified in the cOMMand line.

Instructs the Monitor
specified in the cOlTlI11and
r·ionitor as neces:=;ary.

to load the file
line, overlaying the

Instructs the 1-1oni tor to loan and execute the
file specified in the cOMMann line.

*CI'lly those characters underlined need be entered.

C-l

KEYBOARD WlNITOR (Cont.)

Command

SENTINEL

Explanation

Causes a sentinel file
irll'lediately folloHing the
the cOMmand line.

to be written
file specified in

START nnnnn Instructs the ~Ionitor to begin execution of a
loaded file at the specified (nnnnn) address,
or at the transfer address if nnnnn is not
indicated.

VERSION

ZERO

Causes the version
currently in use to
terMinal.

numher of the Monitor
be printed on the console

Causes deletion of all files on the cassette;
a sentinel file is written at the beginning
of the cassette.

Error Hessage Summary

tlonitor error messages are preceec1ed by one of two syPlbols indicating
the type of error which occurred:

?

%

Message

lOT

NO FIT..E OPEN

OFFLINE

TIMING

Non-fatal error; execution continues if possible,
otherwise control returns to the eRI after the
message is printed.

Fatal error; control returns to the KDL after the
~ssage is printed •

. Arg Meaning Source

PC Illegal rOT RESMON

dri"e ~ READ or WRITE with no RESMaN
SI>EK or ENTER

drive; Cassette not ~ounted; if RESMON
non-fatal, execution is
automatically resuMed
when the caq:sette is moun ted
(if the user inproperly mounts
the cassette, a fatal errOr
will probably occur)

drive * ~ystem sofulare did not RESMaN
service an initinted
re'lues t fast enough

C-2

•

KEYBOARD /lONITOR (Cant.)

Message

TRAP

WRT LOCK

FI LIl NOT FND

ILL CMD

NO SENTINEL FILE

SYNTAX ERROR

BAD TAPE

NO START ADDR

PROG TOO BIG

SFTh"R CHKSM ERR

TRUNCATED FILE

Ar'J

PC

Meaning

Stack overflow, reference
to non-existent memory I
illegal or reserved
instruction, atte~pt to
reference a word on a
byte boundary; the SP at
the tiFe of the trap is
stored in location 44

Source

REBMON

drive # Cassette.write-lockedl if REBMON
non-fatal, execution is
automatically resumed when
the cassette is write-enabled

Specified file not found

Illegal cOl'll1land

No sentinel file is
present on the tape;
this message occurs during
use of the DIRECTORY
command at that point during
the directory listing where
the sentinel file is missing

Arguments following a
command are illegal

Hardware checksUM error
(note that this error

may also be caused by
RFJW operations initiated
on a cassette which is
positioned after the
sentinel file)

Loaded program had no
transfer address

PrograF. too big for the
me~ory limits defined by
the type of load used

Software checksum error
(message followed by number
of errors)

File ends before transfer
address load block is
found

C-3

-------------_ _.

KIlL

KIlL

KIlL

KIlL

KIlL,
CLODU

KBL,
CLODU

CLODll

CLODll

CLODU

KEYBOARD MONITOR (Cont.)

Message Arg Meaning Source

CSI TABLE Command
OVERFLOW for the

ILLEGAL CHAR. (C. S. Illegal
line) cOfl'U'!land

ILLEGAL DEVICE. (C.S" Illegal
line)

ILLE(,,AL SYNTAX. (C.S. Illegal
line) string

C.2 EDITOR (Chapter 4)

Command Summary

Input and Output Commands

COMmand

EDIT READ

EDIT WRITE

READ

WRITE

NEXT

LIST

VERIFY

Form

ERUilnarn.ext$

EWifi1narn.ext$

R

nW
-nW
OW
W

nN

nL
-nL
OL
L

v

C-4

s tr.ing too big
table

character in
string

device specification

syntax in command

l-le an ing

Open a file for input.

Open a file for output.

CSI

CSI

CSI

CSI

Read a page of text from the
input file and append it to
the contents of the buffer.

Output a specified number of
lines of text from the Text
Buffer to the output file.

Output the contents of the
Text Buffer to the output
file, clear the buffer, and
read in the next page of the
input file.

Print a specified number of
lines On the console ter
minal.

Print the current text line
(the line containing the
pointer) on the console
te.rT'1ina 1 "

"

<

.'

EDITOR (Cont.)

Command

END FILE EF

EXIT EX

Pointer Relocation Commands

COl'llT\and

BEGINNING

JUMP

ADVANCE

Search Commands

GET

FIND

nJ
-nJ
OJ
J

nA
-nA
OA
A

Form

Form

nGtext$

nFtext$

,Meaning

Close the current output
file without performing any
further input/output
operations..,

Output the remainder of the
input file to the output
file and return control to
the Monitor.

Meaning

Move the current location
pointer to the beginning of
the line.

Move the
specified
acters in

pointer over a
number of char
the Text Buffer.

Move tl1e pointer over a
specified number of lines
in the Text Buffer. The
pointer is positioned at the
beginning of the line.

Meaning

Search the contents of the
Text Buffer, beginning at
the current location
pointer, for the next
occurrence of the text
string.

Beginning at the current
location pointer, search the
entire text file for the nth
occurrence of the specified
character string. Pages of
text are input, searched,
and then output to the
output file until the text
string is found.

C-5

EDITOR (Cant.)

Command Form

POSITION nptext$

Text Modification COMmands

COl'1l!land

INSERT

DELETE

KILL

CHANGE

EXCHANGE

Utility Commands

COl"mland

SAVE

ONSAVE

Itext$

nD
-nD
OD
D

nK
-nK
OK
K

nC
-nC
OC
C

Form

nXtext$
-nXtext$
OXtext$
xtext$

Form

nS

U

Meaning

Search the input file for
the nth occurrence of the
text st:ing; if the text
string 1S not found, the
buffer is cleared and a new
page is read from the input
file.

Meaning

Insert text immediately
following the current
location pointer; an ALTMODE
terI".inates the text.

Remove a specified number
of characters from the
Text nuffer, beginning at
the current location
pointer.

Remove n
Buffer,
current

lines from the Text
beginning at the

location pointer.

~pl~ce n characters, be
g1nn~ng at the pointer, with
the indicated text string.

Replace n lines, beginning
at the pointer, with the
indicated text string.

Meaning

Copy the
lines,
pointer,
Buffer.

specified number of
beginning at the

into the Save

Insert the entire
of the Save Buffer
Text Buffer at the
of the current
pointer.

C-6

contents
into the
position
location

---------------------.............................. -~.~~~----

,

EDITOR (Cont.)

COMl'land

OU

Form Meaning

Clear the Save Buffer and
reclai~ the area for text.

M/command string/
Insert a command string into
EDIT's Macro Buffer

OH

EXECUTE MACro nEM

Error Message Summary

Message

* CB ALMOST FULL *

?CB FULL?

?*EOF*?

?·FILE NOT FOUND"?

?*HDW ERR.?

?ILL ARG?

?ILL C'!D?

?ILL MAC?

Clear the Macro Buffer and
reclaiM the area for text.

Execute
specified
command.

the command string
in the last macro

Explanation

Too deep nesting, or illegal use of
brackets, or unmatched brackets.

The co~and currently
the user is within
exceeding the space
Command Buffer.

being entered by
10 characters of

available in the

Command exceeds the space allowed for a
cOMmand string in the COl'1mand Buffer.

Attempted a Read or Next COMmand and no
data was available.

Attempted to open a nonexisting file for
editing.

A hard",are error occurred during I/O.

The argument specified was illegal for
the cOl'lnand used, a negative argument
was specified where only a positive
argument '~as all",.ed, or an argUMent
exceeded the range + or -16384.

EnIT does not recognize the cOl'1mand
speclfied ..

fle limi ters were improperly used, or an
attempt was made to enter an H COmMand
during elCecution of a Macro, or an
attempt was made to execute an EM
cOl'1l'1and while an EH was already in
progress.

C-7

EDITOR (Cant.)

Message

?*ILL :-lAME*?

Explanation

The filename or device specified in an
EH or ER command is illegal.

?*I/O CHAN CONFLICT*? An attempt was made to open
file on a cassette already
outpnt, or vice versa ..

an input
open for

?'*NO FILE*?

?*NO ROOM*?

?*SRCH FAIL*?

?*TAPE FULL*?

An attempt was made to Rend or write
when no file was open.

An ntt~pt was made to execute an
Insert, Save, Un save I Read, Next,
Change, or J;xchange cOI'C",and when there
was not enough roo~ in the appropriate
huffer.

The text string specified in a Get, Find
or Position co~ .. and was not found in the
availahle data.

Availahle space for an
full (i.e., there is
part of the file).

output file is
no room for any

C.3 ASSEMBLER (Chapter 5)

Language S~ary

Reference may be made to Appendix B for the CAPS-ll PAL assembly
language SUMmary.

Option SUPlmary

Option

/C

/F

Meaning

This option allows an I/O specification line
to be broken into several segments.

This option is valid only after an input
filename and specifies that the Assembler
shonld not perforn a REWIND operation but
should continue searching the cassette in a
fOr'l'lnrd direction for the file.

C-8

"

ASSEMBLER (Cont.)

Option

/0

/P

/x

Meaning

This option is valid only after an output
filena~e and indicates that the file
(il'll1\ediately preceding the option) is to be
created and uRed only if a previouRly opened
output file has been written to the end of
the cassette and more output remains.

This option is used whenever a file
referenced in the I/O specification line
exists on a caRsette which is not currently
mounted on a drive. Before attempting to
search for the file, the Assemhler instructs
the user to mount the proper cassette on the
drive by printing t? where # represents the
drive nt~her. After the user has switched
cassettes on the drive, he may continue
execution hy typing any character on the
keyhoard.

This option is valid only after an output
filename and causes extended binary output
(i.e., those locations and binary contents
beyond the first binary word per source
state~ent) to be suppresRed from the listing.

Error Message Summary

Error Code

B

D

I

L

Explanation

Addressing error. An address wi thin the
instruction is incorrect; may also
innicate a relocation error.

Bounding error. Instructions or ~'Jord
memory data are being assembled at an
odd address in rnePlory. The location
counter is updated by +1.

Doubly-defined symbol referenced.
Reference was mane to a symbol which is
defined more than once.

Illegal character detected. Illegal
characters which are also non-printing
are replaced by a ? on the listing.

Line buffer
on a line
ignored.

C-9

overfloN. Extra characters
(more then 72 (deciPlal» are

A..<;SEHllLER (Cant.)

Error Code

M

N

P

Q

R

s

T

u

Explanation

1!ultiple definition of a label. A label
wa" encountered .. hich was e<Juivalent (in
the fir~t six characters) to a
previously encountered label.

Number containin,) 8
point missing. The
as a decimal number.

or 9 has decimal
number is assembled

Phase error. A label's definition or
value varies fro1"i one pass to another.

Questionahle syntax. Missing arguments,
the instrnction scan was not completed,
or a carriage return was not immediately
followed hyaline feed or form feed.

Register-type error.
or reference to a
made.

An invalid use of
register has been

Symbol table overflow. When the
qU1\nti ty of user-defined syY'1bols exceeds
the allocated space available in the
symhol table, the Assembler outputs the
current Source line with the S error
code, then returns to the initial
dialogue.

Tr~~cation error. A number generated
more than 16 bits of significance, or an
expression generated more than 8 bits of
significance during the use of the .BYTE
directive.

Undefined symbol. An undefined symbol
waR encountered during the evaluation of
an expression. Relative to the
express~on, the undefined symbol is
assigned a value of zero.

In addition to the error codes listed ahove, the following messages
may also occur (error messages which are followed by a question mark
allow the user to type a CTRL/C to return to the KBL, or a CTRL/P to
retry the operation):

C-IO

ASSEMBLER (Cont. J

Message

%BAD CMD STRING

flUID TAPE?

%BAD TAPE
RETRY?

EOM?

EOM?
RETRY?

?FILE NOT FND?

Meaning

One of the following errors has
occurred in the user's command
string:

No output was specified;
No input was specified:
Input and output were specified
on the same drive;
Input was specified from a device
other than cassette;
Binary output was specified to a
device other than cassette.

A checksum or other hard error
occurred during a file lookup or
enter command. Typing any
character will ca~qe the Assembler
to retry the operation.

A hard read error was detected on
one of the input files; typing any
character (other than tCI will
Cause the Assembler to retry the
SaMe assembly (in systems larger
than 8K, the Assembler will return
to the CSI and allow the user to
input a new command).

The line printer i~ out of paper or
is not powered up; the drum gate is
open; or the printer is too hot.

The end of the tape was reached
during cassette output and no
overflow file was specified. The
user may mount another cassette and
then type any keyboard character to
instruct the Assembler to retry the
assembly using the new output
cassette.

The Asse~~ler could not find one of
the input files. The user may
mount another cassette and type any
character on the keyboard to
instruct the Assembler to retry the
lookup on the same drive. Typing a
CTRL/P will restart the Assembler
(if the system is greater than SK) •

C-ll

ASSEMBLER (Cont.)

Message

?NO END STMT

?SWITCH ERROR:' x'?

?TAPE FULL?

C.4 LINKER (Chapter 6)

Option Surunary

Option

/C

/F

/0

/P

l1eaning

The file does not contain an .END
directive~ the Assembler assumes an
.END stateI'l'lent.

An undefined option character (x)
was found in the command string.
Typing any character on the
key hoard will cause the Assembler
to ignore the option and continue.

The specified output cassette is
cOIl1pletely full. Mounting a
different cassette on the same unit
and typing any character instructs
the Assembler to attempt to open
the file on a new cassette.

Meaning

This option allows the I/O specification
line to be broken into several segments.

This option is valid only after an input
filename and indicates that the Linker
should not perform a REWIND operation
but should continue searching the
cassette in a fon~ard direction for the
file.

This option is valid only after an
output filename and indicates that the
file (immediately preceding the option)
is to be created and used only if a
previously opened output file has been
written to the end of a cassette and
more output reMains.

This option is used ,\'1henever a file
referenced in an I/O specification line
is on a cassette which is not currently
mounted on the unit drive. Before
attempting to search for the file, the
Linker instructs the user to mount the
proper cassette on the drive by printing
#? where # represents the drive number.

C-12

LINKER (Cant.)

Option

/s

/T

/B:n

IH:n

Error Message Summary

Non-Fatal Errors

l4essage

?BAD TAPE?

Meaning

After the user h~q switched cassettes on
the drive, he may continue execution by
typing any character on the keyhoard.

This option is valid only after an input
fi lename and indicates that t,.,o or more
object modules have been coMbined (using
PIP) under the single filenal!le. The
option instructs the Linker not to skip
to the next input filename until it hns
ohtained all necessary information for
the files included in the first.

The /T option is valid only after an
input filenal!le ana indicates that the
transfer address of this particular
object module is to be used as the
transfer address of the final load
module. If more than one /T option is
indicated in the I/O specification line,
only the last one is significant.

The program is to be
lowest location at
specified, the Linker
600.

linked
n. If

assumes

with its
n is not

location

The program is to be linked with its
highest location at n. If n is not
specified, the Linker assumes that the
last location of the user program will
go just under CLODll; the user can then
use the LOAD/G command to run his file.

Meaning

A checksu~ or other haro error
occurred during a file LOOKUP or
ENTER command. Typing any keyboard
character instructs the Linker to
retry the operation.

C-13

LINKER (Cont.)

Message

?BYTE RELOC ERROR AT
ABS ADDRESS xxxxxx

?FILE NOT FND?

?MAP DEVICE F:OM?

?HODULE NAMP. xxxxxx NOT
UNIQUF:

Meaning

This message designates a byte
relocation error. The Linker has
tried and failed to relocate and
link byte quantities; the value is
truncated to 8 bits, the message is
printed, and the Linker
automatically continues.

The Linker could not find one of
the input files. Typing any
keyboard character in~tructs the
Linker to retry the operation.

The Load Hap device EOO errOr
allows the user an option to fix
the device and continue by typing
any response ter~inated by a <CR>
or <LF> , or to ahort the map
listing by typing a tP.

This errOr results from
non-unique ohject module
during Pass 1. The module
rejected and the Linker will
ask for more input.

a
name

is
then

?SWITCH ERROR: 'x'? An undefined option character was
found in the command string.
Typing any character instructs the
Linker to ignore the character and
continue,.

?TAPE FULL? ~le specified output cassette is
full. A different cassette may be
mounted on the same drive; typing
any keyboard character then
instructs the Linker to attenpt to
open the file on the new cassette.

?xxxxxx 11ULTIPLY OF-PINED
BY MODULE xxxxxx This message results during Pass I

if globals have been defined more
than once, The second definition
is ignored and the Linker
continues.

c-14

LINKER (Cont.)

Fatal Errors

l-Iessage

%BAD CliO STRING

%CAS. CHECKSu/1

%000 ADDRESS

%SYMllOL TABLE OVF.RFLOH
MODULE xxxxxx, S~MllOL
xxxxxx

%SYSTEM ERROR xx

I-leaning

One of the following occurred in
the cornl'land string: no output or no
input specification; input and
output were specified on the same
drive; input was specified from a
device other than caRRetta; binary
output WaS specified to a device
other than cassette.

A checksu'T!l error occurred \..,hile
reading a cassette hlock.

An odd add res" was specified using
the IB or IH options.

A synhol table overflow has
occurred.

A systen error has occurred
xx represents an identifying
from the following lis t:

where
nlLIftber

01 unrecognized
entry found.

symbol table

02 A relocation directory
references a global name which
cannot be found in the symbol
table.

03 A relocation directory
contains a location counter
modification command which is
not last.

04 Object module dOOR not start
with a GBD.

05 The first entry in the GSTJ is
not the module name.

06 A relocation directory
rp.ferences a sGction name
which cannot be found.

07 The transfer address
specification references a
nonexistent module naMe.

C-l5

08

J.1eaning

The trans fer a(ldress
specification references a
nonexistent section naMe.

09 An internal jrump tanle index
is out of range.

10 A checksul"l error occurred on
the object module.

111m object l'lodule binary block
is too big (more than
64{decimal) words of data).

12 A device error occurred on the
load module output device.

All systel'l errors except n~)er 12 indicate a prograM failure
in the l.inker or the prograM which generated the object module.
05 can occur if a file is reao which is not an object module.

either
Error

C.5 OOT (Chapter 7)

C=and fiUl'1Mary

r/

/

r\ (SHIFT/L)

\

nR

nl

I'leaning

Open the word at location r.

Reopen the last opened location.

Open the byte at location r.

Reopen the last opened byte.

After a word has been opened, retype the
contents of the word relative to
relocation register n. If n is omitted,
OOT selects the relocation register
whose contents are closest but less than
or equal to the contents of the opened
location.

After a word or byte has been opened,
print the address of the opened location
relative to relocation register n. If n
is omitted, CDT selects the relocation
register Whose contents are closest, but
less than or equal to the address of the
opened location.

C-16

OPT (Cant.)

COITlmand

~ (LINE FEEP
key)

tor A

RETURN

+or _

@

>

<

x

r;O

$n/

$Y/

Meaning

Open next sequential location.

Open previow:;
circumflex, ",
keyboards and prints
up-arrow.)

location. (The
appears on some
in place of the

Close open location and accept the next
COJlUTl.an d.

Take contents of opened location,
indexed by contents of PC, and open that
location. (The underline, _, appears
on so~e keyboards and prints in place of
the back-arrow.

Take contents of opened location as
absolute address and open that location.

Take contents of opened location
relative branch instruction and
referp.nced location.

n as
open

Return to sequence
or +- command

prior to last @, > ,
and open succeeding

location.

Perform a Radix 50 unpack of the binary
contents of the current opened word;
then permit the storage of a new Radix
50 binary number in the same location.

Calculate offset fro~ currently open
location to r.

Open general register n (0-7).

Open special register Y, .. here Y may be
one of the following letters:

S status register (saved by
ODT after a breakpoint)

M Mask register

B First word of the
breakpoint table

P Priority register

c-17

DDT (Cont.)

Command

IF

;I

;

;B

r;B

r;nB

r;E

r;W

~nS

;P

kiP

Meaning

C Constant register

R First relocation register
(register 0)

F Format register

Fill meMory words with lIle contents of
the constant register.

Fill memory uytes
the low-order 8
register.

with the contents of
bits of the constant

Separate co~ands frOM cOMMand arguments
(used with alphabetic commands below);
separate a relocation register specifier
froJTl an aclcend,.

Remove all Breakpoints.

Set Breakpoint at location r.

Set Breakpoint n at location r.

Remove nth Breakpoint.

Search for instructions that reference
effective address r.

Search for Words with bit patterns which
match r.

Enable single-instruction
have any value and is not
disahle breakpoints.

mode (n can
significant) ;

Disable single-instruction l'!1ode1
reenahle breakpoints.

Go to location n and start program run.

Proceed with program execution from
breakpoint; stop when next breakpoint is
encountered or at end of program.

In single-instruction Mode only, proceed
to execute next instruction only.

Proceed with progra!>1
breakpoint; stop after
breakpoint k tiMes.

C-IS

execution from
encountering the

----.. ~ .. ---..... -----

ODT (Cont.)

Command

/nR

r;nR

r;C

CTRL/C

Meaning

In single-instruction mode only, proceed
to execute next k instructions.

Set all relocation registers to
(highest address value).

-1

Set relocation register n to -1.

Set relocation register n to the value
of r. If n is omitted, it is assuned to
be O.

Print the value of r and store it in the
constant reqi~ter.

Print n
starting
bytes to
r.

bytes in their ASCII format
at location r; then allow n

be typed, starting at location

Return to Monitor and accept a command
from the keyhoard.

Error 14assage SUMmary

No error messages occur under ODT as illegal cOMmands are ignored; ODT
prints ? and the user may enter another cOMmand.

C.6 PIP (Chapter 8)

Op ti on SUl'II!Iary

Option

/A

/C

/D

Meaning

Used with an output filename to designate
that the header bit be set to ASCII (the file
type is otherwise assUMed to be binary).

Allo"s the command string to be broken into
one or more lines.

Causes the
command line
cassette.

filenaMe (s) indicated in the
to be deleted frOM the specified

C-19

PIP (Cant.)

Option

IP

IZ

I-leaning

Requests that the sy~te~ pro~pt the user to
change ca~settes on the indicated drive
before an atte~pt is made to access the file.
The systeM prints:

#?

,.here ~ represents the nwnber of the
appropriate drive. When the user has mounted
the proper cassette, he may type any
c"1.aracter on the ke~lboard to continue
execution.

Indicates that all
drives specified
be zeroed.

cassettes on the unit
in the cOMMand line are to

Error l1essage Sumr>lary

Message

?BAD TAPE
?BAD TAPE?

?EOM

?EXCESS INPUT PIr.ES

I>'leaning

HardHare checksu.m error (may also be
cansed by READ operations initiated on
a cassette which is positioned after
the sentinel file); a question mark
following the message indicates that
the error is not fatal; the user may
mount another cassette and type any
char1l.cter on the keyhoard to continue
ex~ctltion",

Indicates an out-of-paper condition
for the line printer, console
terminal, Or paper tape punch.

The nwnber of input files exceeds the
nu~}er of output files (providing the
n,wmer of output files is greater than
one); this error occurs during use of
the file trRnsfer function.

?EXCESS OUTPUT FILES The number of output files exceeds the
nurnher of input files; this error
occurs during use of the file transfer
function.

?FILE NOT FND? The specified
the cassette
mount another
character on
the search.

C-20

file wa5 not found on
indicated; the user may

cassette and type any
the keyhoard to continue

.:::

,-~

-.

PIP (Cont.)

Message

?ILLEGAL DEVICE

?ILLEGAL INPUT LIST

?ILLEGAL OUTPUT LIST

?I/O CHAN CONFLICT

?NO FILE NAME

?OFFLINE x

?SWITCH ERROR 'x'?

?TAPE FULL
?TAPE FULL?

?WRT LOCK x

Meaning

An illegal device was indicated for
the PIP function used.

An input list was indicated where not
allowed (as when using the zero,
delete, and copy functions), or an
illegal command was entered.

An output list
allowed (as
function).

was indicated where not
when using the copy

An attempt was made to open an input
file on a cassette already open for
output, or vice versa.

A filename was not indicated in a
command line which required one.

The cassette is not properly mounted
on drive x. The user should correctly
mount the cassette so that execution
can continue.

An illegal switch was indicated in the
command line, where 'x' represents the
switch in error. The check is made
for as many as 10 illegal switches in
anyone command line. Typing any
character on the keyboard will cause
PIP to ignore the switch and continue
execution.

Available space for an output file is
full. A question mark following the
message indicates that the error is
not fatal I the user may mount another
cassette and type any character on the
keyboard to continue execution.

The cassette is write-locked I x
represents the drive number. The user
should dismount the cassette (the
OFFLINE error message will then be
printed) ,write-enable the cassette,
and remount it. EXecution will then
continue.

C-21

C.7 RESHON (Chapter 9)

Error r·1essage SUJ"'Ullary

RERMON error messages are sllfl"lI"'larized in Section C.l und.er the Keyboard
Monitor error message su~ary.

C-22

APPENDIX D

SYSTEM DEMONSTRATION

The following is a brief demonstration of the CAPS-II system software.
Before proceeding with this demonstration. the user sbould read tbe
rest of the CAPS-II manual and become familiar with the CAPS-II system
programs and conventions. He should pay particular attention to the
second half of APpendix E, which describes reconfiguring the CAPS-II
Monitor for non-standard I/O devices and different memory
configurations. In particular, if the user's system contains a
non-standard console terminal (either LT33 or LT35. parallel LA30
DECWriter, or VT05 display). he should use his reconfigured system
Cassette for this demonstration.

Before starting. the user should have ready the proper CAPS-II System
Cassette and two scratch cassettes. The first step of the
demonstration is to copy the System Cassette. The demonstration
should then be continued using this newly created copy.

In general, the user should always keep at least one good copy of the
System Cassette in a safe place in the event that he should accidently
destroy his 'working coPY'. Note that this demonstration uses the
System Cassette when it is write-enabled. The purpose is to simplify
the demonstration; under normal operation, the user should always use
the System Cassette write-locked.

Please read through the entire system demonstration before attempting
to enter any of the command lines.

0.1 SYSTEM START-UP

write-lock the CAPS-II System Cassette by setting the hinged red tabs
so that they are pointed toward the center of the cassette, exposing
the write-protect holes I mount the cassette on drive 0 (the drive to
the left of tbe unit). Bootstrap the CAPS-II Monitor into memory
using the procedure described in Chapter 3, Section 3.1. When loaded,
the Monitor will type an identification line and a dot at tbe left
margin of the console terminal page (subsequent loads will cause only
the dot to be printed):

0-1

CAPS- 11 V01- 02

If this does not occur, check that the terminal is turned on and that
the cassette is mounted properly and retry the bootstrap procedure.

D.2 SYSTEM DEMONSTRATION

This section demonstrates briefly how to use the CAPS-II system
programs by presenting them in the context of a simple exercise. The
user will copy the system Cassette, and then edit, assemble, link,
load, and run a simple demonstration program. In the following
discussion, computer output is underlined when necessary to
differentiate it from user inputl a) is used to indicate typing the
RETURN key and $ indicates typing the ALT MODE key. Mistakes made
while entering command strings may be corrected by typing the RUBOUT
key.

Once the CAPS-II Monitor has been bootstraped into memory and has
typed a dot, enter the current date by typing a command of the form •

.=. DA 21- AUG- 73)

substituting the current date in place of
indicates that it is ready to accept another
at the left margin of the page. When this
following command:

:.,V)

27-AUG-73. The Monitor
command by printing a dot
dot appears, enter the

The Version command causes the Monitor to print out the version number
of the Monitor in use. The Monitor should respond by printing.

CAPS-II V01-02
27-AUQ-13

After the user has verified that the version he is using is the
correct one, he should next copy the System Cassette (or his
reconfigured System Cassette) using PIP. Mount a scratch cassette on
unit I, write-enabled, and type:

.:.R PI p)

The Command String Interpreter (CSI) will print an asterisk at the
left margin of the page when it is ready to accept a command line.
Type the following command to copy the System Cassette to the scratch
cassette on drive 1 (the command may be entered as soon as the
asterisk is printed even though program loading may be occuring
simultaneously) ,

*1.:0.)

This command causes the output cassette (on drive 1) to be zeroed, and
then copies the entire cassette from drive 0 to drive 1. When the
copy function is complete, the CSI will type another asterisk. Now
type CTRL/C to return to the CAPs-II Monitor, which will print a dot.

D-2

--.~--.--- .. -- -_ _--_ ... ----_ _--_ -------~--... --~

!.

Dismount the System Cassette on unit 0 and put it away_ From now on,
the copy of the System Cassette just created should be used in the
demonstration. Dismount this copy fro~ unit 1 and mount it,
write-enbaled, on unit 0, then type:

.: 01)

The Monitor will list the directory of the copy just produced--a
typical directory will appear as follows:

21-AUG-13

CTLOAO SYS B8-AUG-13
CAPS II S8K 19 -AUG-7 3
PIP SRU I9-AUG-73
EDIT SLG I9-AUG-73
LINK SRU 19- AUG-7 3
DDT SLG 09-AUG-73
PAL SRU I9-AUG-73
DEMO PAL I9-AUG-73

Attach this directory listing to the System Cassette on unit O. Now
mount another scratch cassette on unit 1, write-enabled, and zero it
by typing:

.. Z I:)

Again, the Monitor will print a dot when ready for the next command.
Type in response to this dot:

~R PAL)

This command loads and starts the CAPS-II Assembler. When the
Assembler is found on the System Cassette, the CSI will print an
asterisk at the left margin of the console terminal page. When the
asterisk appears, type the following line:

!=DEMO)

The command instructs the Assembler to assemble the demonstration
program stored on unit 0 (DEMO. PAL) and print any errors on the
console terminal. The following error message is printed, indicating
that there is an illegal character in the de~onstration source file
which must be corrected before the file can be assembled properly:

0-3

--

PASS 2
I 000026 000167' J>lP .. KBLADR J BACK TO CAPS-liMON! TOR

000001 ERRORS

In SK systems, the CAPS-li Assembler overlays part of the Honitor so
that the system must be re-bootstrapped after an assembly has been
completed, The assembler signals the user that it is done and ready
to re-bootstrap the system by typing:

The user should ensure that the System CaR sette is still mounted on
unit 0 and then type any character on the console keyboard--the Intire
CAPS Honitor will be bootstrapped into memory and will print a dot
when it is ready for a command.

If the user is running with a 12K or larger CAPS-ll Monitor, the
assembler will not overlay the Monitorl thus when the assembly of the
demo program is complete, the assem~ler will transfer control to the
Command String Interpreter which will print an asterisk. In this
case, return to tile CAPS-II Monitor by typing:

.t' C)

Again, the Honitor will print a dot when ready for a command.

To correct the error detected in the assembly just performed, the
CAPS-II Editor must be called fro!!'. unit O. Type.

~R EDIT)

This command loads and starts the CAPs-II Editor. The
print an asterisk when it is ready to accept a command.
following line ($ represents typing the AI,THOOE key):

!ER0' DEMon

Editor will
No" enter the

There will be a pause before the next asterisk is printed since the
Editor is searching the System Cassette for the file OEtlO. PAL. When
the asterisk appears, type:

f.EW I: DEMO 1 $'Ii

This command instructs the Editor to open an output file on unit 1;
when another asterisk appears, type the command:

This will read text into the Text Buffer from the input file, search
the buffer for a line containing an * and leave the pointer positioned
immediately following the * The Editor should type:

0-4

JMP *KBLADR ,BAD< TO CAPS- II MONI TOR

This line of text contains an error which must be corrected. Type in
response to the asterisk:

~-C8$\I$$

This deletes the *, replaces it with @ and verifies the line. The
Editor should now type:

J>1P @KBLADR ,BAD< TO CAPS- II ,"\ONI TOR

Close the output file by typing:

!,E:X $$

When control has returned to the CAPS-II Monitor, a dot will be
printed. Next, run the Assembler by typing:

!.R PAL)

When the Assembler is found on the System Cassette, the csr will print
an asterisk. Type the following command to assemble the edited file,
putting the object module on the System Cassette and printing the
listing on the console terminal (the c~and may be entered as soon as
the asterisk appearsJ the Assembler will be simultaneously loaded into
memory) :

~DEMOI.TT:=I'DEMOI)

If the user's system includes a line printer, 'LP': may be substituted
for 'TT, in the above command to cause the assembly listing to be
printed on the line printer rather than the console terminal.

The assembler will type 'PASS 2' and then print the listing as
follows,

PASS 2

CAPSII PAL \11111 88"'27-'13 PAGE 001

.TITLE CAPS-II DEMO PROGRAM ,
,CAPS-II DEM().ISTRAl! ON PROGRAM ,
, DEC-II-OTDMA-A-LA
,COP't'RI GHT 1973 01 GI TAL EQUI PMENT CORPORAl! ON
'MAYNARD. MASSAOi USETTS 01754
,DEC ASSUMES NO· RESP().ISI BILl TY fOR THE USE OR
, RELI ABI LI T'f Of ITS SOfTWARE 0'1 EQUI PM EN T WHI Oi I S ,'lOT
, SUPPLI ED BY DEC. , ,

• GL OBL START ,
,ADDRESS Of CAPS-II KBL I S IN LOCAl! ON 50 ,

D-5

000050
000015
000012

000000 012706 START:
000600

00000.4 00000.4
000006 001
000007 000
000010 000000
000012 000004
000014 01!l4
000015 002
000016 000032'
000020 000004 WAIT.
0001!l22 003
000023 002
000024 000020'
000026 000177'

000050

000032 000100 MSGBUf'1
000034 000
000035 00111

000036 000054
00111040 015
000041 012
000042 103
000043 101
00011144 120
000045 123
00011146 055
000047 061
1110005111 061
000051 11140
000052 104
000053 105
000054 115
000055 116
000056 117
000057 123
000060 124

CAPSII PAL V01 013/27/12

000061 122
000062 101
000063 124
000064 111
000065 117
000066 116
000067 040
00007 0 120
000071 122
000072 117
000073 107
000074 122
000075 101
000076 115

KBl.ADR= 50
CR= 15
L f'= 12
MOV

lOT
• BYTE

.WORD
lOT

• BYTE

• WORD
lOT
• BYTE

• WORD
JMP

.WORD
• BYTE

.WORD

.8'(1E

• ASCII

PAGE

• ASCII

'600. %6

1.0

0

4,2

MSGBUf'

3.2

WAI T
I!KBLADR

100
0.0

MSGEND-MSGBUf- 5
CR,LF

J SET STACK POI NTER

J RESET CAPS- II

'TYPE MESSAGE ON CO"SOLE

, WAI T f'OR I T TO f'I ,~I Sri

'BACK TO CAPS- II ~ONI TOR

'MAX. SIZE Of' BUf'f'ER
JMODE IS ,ORMATTED ASCII

ISTATUS BnE IS 0
J BYTE COl1H

/CAPS- II DEM,'10STRATI ON /

002

/PROGRAM COMPI.Ii:T£. /

D-6

..,

~.~

000077 040
000100 103
00010! 117
000102 115
000103 120
000104 114
000105 105
000106 124
000107 105
000110 056
000111 015 • BYTE
2100112 012
0001 I 3 012 MSGEND, • BYTE

000000 • END

CAPS I I PAL V01 08/27/13 PAGE

CR = 000015 KBLADR
MSGBUf 000032R MSGEND
WAIT 000020R • •

000000 ERRORS

.C?

!

=
=

LF
START

003

000050
000113R
000114R

LF " 000012
START 000000RG

Again, in 8K systems, the system must be re-bootstrapped after an
assembly has been completed, thus the assembler signals the user that
it is done and ready to re-bootstrap the system by typing.

Ensure that the System Cassette is still mounted on unit 0 and then
type any character on the console keyboard to re-boot the system.

If the user is running with a
assembler will not overlay
CAPS-II Monitor by typing,

!t'C)

12K or larger CAPS-II Monitor, the
the Monitor; in this case, return to the

The Monitor will print a dot when ready for a command.

The assembler's output must be linked before it can be loaded and
started. Run the Linker by typing:

.R 1..1NK)

When the Linker is found on the System Cassette, the Command String
Interpreter will print an asterisk. Type the following command to
link the assembler output file, outputting the load module (DEMO. LOA)
to the scratch cassette on unit 1 and printing a load map on the
console; as with the assembler, 'LP,' may be substituted for 'TT:' if
the system contains a line printer:

D-7

------------- -~ ~ ... --~

! I. DEMO I, TT:· DEMO I /8)

CAPS-II LINK V01 08,127/73
LOAD MAP

TRANSFER ADDRESS, 000600
LOW LIMIT. 000600
Iii GH LIMI T. 0007 14

.*******
CAPS
SECT! ON

<. ASS.>

<
START

PASS 2

ADDRESS SI Z E

000000 000000

000600 000114
000600

When the Linker has finished, it will
CSI, which will print an asterisk.
the CAPS-ll Monitor:

transfer control back to the
Type CTRL/C to return control to

!., C)

Now type the following command to load the de~onstration progr~ into
memory:

!LOAD \I OEMOI.LOA)

Once the progra~ has been loaded, the Monitor will print a dot.
run the debugging program, ODT, by typing:

Next

• R OOT)

When DDT has been loaded into ~mory, it will type:

001 V01

!.

From the load map printed hy the Linker, notice that
address occupied by the program is 600(octal).
relocation register zero to 600 by typing:

;!600J 0R)

the lowest memory
Therefore, set

Next, use DDT to correct a spelling error in the output line; this
correction is made only in memory and not permanently in the source
file. (In the following example, data typed by aDT is underlined;
note that) indicates typing a carriage return; is typed on an LT33
or LT35 by pressing the SHIFT and L keys simultaneously) :

*0,55,\116 aN 111)
!0,56,\1t1 =0 116)
J.

D-8

· ..

•

Start
type
dot:

the program using the 'Go' command in ODT; the demo program will
a message and then return to the CAP5~ll Monitor, which prints a

!6001 G)

CAPS-II DEM(XIISTRATI (XII PROGRAM CCJoIPl..ETE.

D-9

..

APPENDIX E

CAPS-II SOFTWARE SUPPORT INFORMATION

E.l CAPS-ll KEYBOARD MONITOR LOADING PROCESS

The CAPS-II Monitor loading process is initiated when the user loads
the bootstrap loader (CBOOT) into memory either through use of the
hardware bootstrap or manually via the SWitch Register. CBOOT calls
the first program on the System Cassette, CTLOAD.SYS, and from there,
as far as the user is concerned, system loading is automatic. A
detailed description of this loading process follows.

E.l.l Cassette Bootstrap (CBOOT)

The Cassette Bootstrap is used to load and
written in "CBOOT Loader Format" and is
(decimal) byte record; this record must be
the first file on a cassette.

start any
contained
the first

program which
entirely in a
data record

is
128
of

·CBOOT Loader Format" programs are defined to be those of length less
than or equal to 128 (decimal) bytes which are linked sO as to be
loaded in memory beginning at location O. A program in this format
begins execution at its first instruction, which must be NOP
(-0002401.

CBOOT verifies that the first byte in the program contains 240 as a
method of detecting accidental attempts to boot a program in the wrong
format. If this occurs, or upon occurrence of any I/O error, CBOOT
halts at location CBOOT+501 at this time the user may examine either
location 0 (which will contain the first byte of the program being
loaded) or the cassette control and status register (TACS-777500) to
determine the cause of the error. The user may restart CBOOT by
pressing the CONTinue switch on the computer console.

CBOOT may be executed using an optional hardware bootstrap or
be manually loaded by the user. Although CBOOT may be loaded
in memory (with the exception of locations 0-177), it is
loaded at location 1000, and references in this appendix will
address.

E-l

it may
anywhere
normally
use that

Memory Map 11 in Figure E-3 illustrates a map of POP-II memory
following loading of CBOOT. CBOOT is normally used to load PRELDR,
which is the first record of the first file on the CAPS-II System
Cassette. (Listings of CBOOT and QCBOOT are provided in Figures E-4
and E-5.)

E.l.2 Cassette Loader (CTLOAD.SYSl

The first file on the System Cassette is CTLOAO.SYS, which consists of
a data record called PRELOR followed by succeeding data records making
up the program CABLOR (which ends with a copy of CBOOT), as follows:

Figure E-l CTLOAD.SYS

As seen in Figure E-l, PRELDR is the first record of the first file on
the System Cassette. This cassette pre-loader is actually a small
program written in "CBOOT Loader Format" which is powerful enough to
determine memory size and load succeeding programs into highest
memory. It is linked, loaded, and started automatically by CBOOT at
location O. A map of CAPS-II I!lemory now appears as shown in Memory
Map 12 of Figure E-3.

The pr?gram loaded by PRELDR may be of any size, but it must exist as
data ~n 128(decimal) byte records immediately following the record
containing PRELOR, and it must be written in 'PRELOR Format". PRELOR
format data consists of two bytes (low-order, then high-order)
containing the byte count for the rest of the data «-77777), followed
by a memory image (i.e., data only) of the program written so as to
begin at its first location.

PRELDR first determines memory size, then loads this object program
into highest memory (thus, the program must either be linked into
highest memory or written in position independent code). If an error
(generally a hardware error) occurs during loading, PRELDR halts with
the contents of the cassette control and status register in Register
4. To restart the PRELOR loading process, the user should press the
CONTinue key on the computer console.

The programs loaded by PRE LOR are CABLDR and CBOOT, which are loaded
into memory as illustrated in Memory Map U (Figure E-3).

E-2

NOTE

Information provided thus far assumes
the user is specifically loading the
CAPS-II Keyboard Monitor from the System
Cassette mounted on drive O. In order
to allow booting from cassette drive II
or from a secondary controller, PRELDR
assumes that Register 0 contains the
address of the desired controller and
that the appropriate drive has been
selected. This should be done manually
by the user before booting (it is done
automatically by CBOOT during normal
loading).

The main data portion of the file CTLOAD.SYS is CABLOR, the Cassette
Absolute Loader. This progr~ is used to load programs written in
"Absolute Binary Format", which is the format of all system programs
and all Linker output. Absolute binary format consists of a number of
'load blocks' of memory image load data with associated header
informationl such a load block has the following general form I

Table B-1
Absolute Binary Load Block Format

Byte t Contents

1 001
2 000
3 Byte Count-low order
4 Byte Count-high order
5 Load Address-low order
6 Load Address-high order
• Memory Image Data
• •
· · · •

last byte Checksum

If the byte count of a load block is greater than 6, data is loaded
into memory. If the byte count of a load block is equal to 6, the
load address specified in the load block will be considered to be the
desired transfer, or starting, address of the program; if this address
is odd, CABLDR will halt. (It is not possible for the byte count of a
load block to be less than 6.)

Immediately after being loaded into highest memory, CABLeR is started
and checks the contents of the SWi tch Register, which must have been
previously set by the user for one of the conditions listed in Table
E-2:

B-3

----.. - .•.•.•......................... _--

Table E-2
CABLDR Sw~tch Register Settinqs

Switch Register

Bit #0=0

Bit #0=1 and
Bit 115=1

Bit to=l and
Bit U5-0 and

Bits 1tl-14=O

Bit #0=1 and
Bit #15-0 and

Bits U-14-n

Action

Normal load; use loading and starting
addresses as specified in load blocks.
(This is the switch setting used during
the CAPS-II system load,)

Relocating load; CABLDR halts so that
the user can set the Switch Register to
the address at which the program is to
be relocated (called the load bias; the
program must be position independent).
Bit 0 of this switch Register setting is
ignored. The user begins the load by
pressing CONTinue on the computer
console.

Contiguous relocating load; the program
is loaded immediately following the last
byte of a previously loaded program.

Non-contiguous relocating load; n-l
files are skipped and the program is
positioned before the nth file; CABLDR
halts for further user action.

Data will be loaded in standard cassette files with a fixed record
size (128 bytes), CABLDR checks the continuation byte in the file
header record (see the Cassette Standard in Appendix Fl, and allows
for an additional header record if this byte contains 1. Record size
is determined from the proper header locations.

If CABLDR halts during operation, the user may examine the contents of
Register 4 to determine the reason for the halt as follows:

R4 Contents

I

2

Table E-3
ClUlLDR Halts

Meaning

File skip complete; the user should reset the
Switch Register for the next desired action
(see Table E-2) and then press CONTinue to
load.

Command to relocate noted; the user should
set the relocation address in the Switch
Register and press CONTinue to begin the
load.

(Continued on next page)

E-4

..

R4 Contents

3

4

Table E-3 (Cont.)
CABLDR Halts

Meaning

File has no fixed record length; since CABLDR
cannot handle this type of file, the user
should press CONTinue to cause CABLDR to skip
to the next file.

No transfer address was found in the last
load block; the user should set the address
in the Switch Register and press CONTinue to
go to the next file.

lxxxxx Hardware error: The contents of the cassette
and control status register are displayed in
Register 4. Three basic types of hardware
errors may occur:

~

Off-Line, Write-Lock

Clear Leader, File Gap

Timing and Block Check

Action

Press CONT to retry
function.

File is not in legal
LOA format and is
ignored. Set the
switch register
(refer to Table E-2)
to indicate which
file to skip to, or
insert another
cassette, and press
CONT.

Retry function 3
times before halting
again. Pressing
CONTinue causes
CABLOR to skip the
current file and try
the next.

Software checksum errors are noted but do not affect the loading
process. At the termination of loading, the last location in CABLDR
(SFTCHR) will contain the number of software checksum errors
encoun tered.

NOTE

In order· to allow booting from cassette
drive 1 or from a secondary TAll
controller, CABLDR assumes (on entry)
that Register 0 contains the desired
controller address with the appropriate
drive selected. This is ordinarily done

E-5

.~~ ~ ... -------~

by CROQT, or manually by the user before
booting.

Once in memory, CASLOR may be started
manually as foilowsl

1. Select appropriate drive in desired
control and status register;

2. Deposit that controller
into RO;

address

3. Start CASLOR at location x6570
where x corresponds to memory size
as foilowsl

x Memory Size

1 4K
3 ilK
5 12K
7 16K
11 20K
13 24K
15 28K

To load from drive 0 of the cassette
control and status register (=777500)
without setting up RD, start CASLOR at
location x6572.

E.l.l Cassette Monitor (CAPSll.SYSI

In the Monitor loading process, the file loaded
CAPSll.SYS, which is made up of two programs,
CAPSll.LDA, as foliowsl

by CASLDR
CSYSLD.LOA

L-_CS't_5L_O_,_LO_A_L-____ C_A_P_S_II_,_L_DA __ --~~
Figure E-2 CAPSll.SYS

is
and

CSYLO.LOA is loaded first by CASLOR at location 1100 (refer to Memory
Map '4 of Figure E.l) and is simply a special version of CASLOR
modified to load a program consisting of 128 byte records; the load
begins with the byte immediately following CSYSLO.LOA; this is the
first byte of the second file comprising CAPSll.SYS--CAPSII.LOA. Part
of this load overlays the normal CASLOR originally stored in high
memory, and part is loaded into low memory, overlay ing PRELOR. A map
of memory now exists as shown in Memory Map '5 (Figure E-l).

The CAPS-ll System is now fully loaded into memory.

E-6

-.

.. , lor :x

l Mo, ... ,

I ..
3 OK • 12K , 16'

I
II 20K
13 24K

" 26'

,....-------...,,01O I----~;;c;---- 1070 t-------------, tOOO I

C BOor
f----------lIOOO

1---~..£ .!O..91_ - - - xnlo
, CASlOR

r---------l~510

FC-IlQO! -----""0

I CAI'Sll LOA

, -[X·']1500
1.,,;'<1 ';;',r .o;."~

-- -_ & JlQ.oJ _____ XnlO

CAaLDE

----------- X6570

l---------C800T
1010

CSYSlO. LOA

!---------- -- lC70
C BOOT C 6001

1000 1000 looe

------ --- --~200 l---------- wo r--------------lU4

'-___ P._'_'_O_· ___ -'i 0
MEh4()t(Y MAP # 3

: ~E'lDlt

---~--------~O
MEMORY MAP' #4

CAPS11. LDA
'--__ ,--,-,---____1 0

MEMORY MAP # 5

Figure E-3 CAPS-11 Loading Process

E-7

-- .. ~-... --------

CAPSII PAL V01

CAPSII PAL V01

000000

PAGE 01'11

.TITL.E ceOOT (CAPS-II) V01-06 5/30/13
J
J PDP-II CASSETTE BOOTSTRAP
J
J COPYRIGHT 1913 Dl Gl TAL EQUI !'MENT CORPORAT! ON.
J MAYNARD. MA.
J
J DEC- I 1- OTCBA- A-L.A
J
J BY: P. JANSON
J
J CBOOT !l1L.L. L.OAI) AI"I) SUCCESSFUL.l.Y START
1 ANY PROGRAM WHI CH IS WRI TTEN IN 'ceOOT
1 L. OADER F"ORMAT' Ai'lD IS CONTAI NEI) ENT! REl. Y
J IN A 128. (DECIMAL) BYTE RECORD WHICH IS THE
J 1'1 RST DATA RECORD 01" THE I'IRST I"Il.E
J OF" A CASSETTE.
I
I CBooT IS POSI TI ON I ND EPENDENT.
J
I TO BOOT F"ROM UNI T ,. OR F"ROM SOME OTHER
J CON TROLl. ER. SET UP R0 WI TH THE DESI RED
J CONTROLL.ER ADDRESS AND SET THE Ll'll T SELECT
J BIT AS DESIRED. TH~" START THE BOOTSTRAP
I AT THE Ti'lIRD INSTRUCT! ON. PRELDR AND
I CABl.DR !l1L.L. USE R0 AS SET-UP AT BOOTSTRAP
J TIME TO CONTINUE L.OADING F"ROM THE
J SELECTED lkIIIT.
I
J CBOOT DOES A RE!lINO. SPACES F"ORWARD
I A RECORD (TO SKI P OVER Ii EADER 01" FI RST
I I'Il.E), AND STARTS READING THE NEXT RECORD.
I A CRC CHECK IS MADE AT THE END OF" THE RECORD.
I
1 SIZE .. 28. !lORDS

PAGE 0112

I
• GL. OBl. CBODT

I

• CSECT
J

0001lllD RIl: %0
0000111 RI=!l
000882 R2= %2
BIle003 R3- %3
0110001 PC .. %7
111580 TACS=111501l

J
J TA-Il CONTROl. AND STATUS REG.

Figure E-4 CBoar

E-8

-----~ ---.... ---------

000000 012700 CBOOT: MOV ITACS.R0
177500

000004 005010 C1.R (R0) ,SEl.ECT IfiI T '0
000006 010701 RESTRT: MOV PC.RI ,USE F"OR PI C
0!D0ill0 062701 ADD ,TABLE- .. RI ,RI HOl.OS AOOR. OF"

000052
,COMi'llWO TAI:ll.E

000014 012702 MOV '375. R2 'MEMORY PTR. A."O
000375

,OATA F"l.AG

• 000020 112103 MOVB Oll)+.R3 ,TEST BI TS
I

000022 112110 l.OOPI: MOVB (R I) •• (R0) ,COMMA."IO F"ROM TABl.E
000024 100413 - BMI DQIIIE ,TO TACS. WH EN COM,'IA,I/D

,CODE '4EG •• QUI T
000026 1303 10 l. 00P2: BITB R3. (R0) J TEST READ'(AND T- REQ.

J BI TS PI TACS
000030 001176 SEQ l. OOP2 J l. OOP • TI l.l. SOMETHI NG

J COMES UP
000032 105202 INCa R2 J AOVIWCE MEMORY PTR.
000034 100772 S?1I l.OOPI 11 F" I'll NUS. TRY NEXT

I CO?1MAND
01!l0036 I 16012 MOVB 2(R0), (R2) ,READ DATA 11<1 TO I'IEI'IOR'(

000002
1Il00042 12111331 CMPB R3 • .,0 I F"I RST BY TE READ

000000
I SHOUl. 0 BE ' 240'

efilfile46 efill767 BEQ l. OOP2 Jlf O.K •• GO READ
I ANOT>i ER BY TE

1Il00050 000000 STOP: HALT IHAL T ON ERROR
0fil00S2 000755 8R RESTRT IRESTART ON CONTINUE

I
000054 005710 DQIII EI TST (1<0) I CliECo< F"OR ERROR
0fil0056 10fil774 BMI STOP IHALT ON ERROR
000060 0051'11'17 el.R PC I: 'JMP "1'1'

I

0000'2 1117 &40 TABl.E, .WORD 17640 I. BYTE 24111
I READY> T- REQ.
I.BYTE 31:
Jll.BS+READY+GO

000064 1l0241S • WORD 2415 ,.BYTE 1 SI SF"B+GO
, .BY TE S: READ> GO

01l1ll066 112024 • WORD 112024 J • BYTE 241 READ>Il.BS
,.BYTE 224:
J READ+II.BS<> [. O. TABl.E

000001 .END

Figure E-4 CBOOT (Cont.)

E-9

CAPSII PAL Viii 06/05/73 PAGE 00\

000000

1!!00004
0011006
0011010

00001"
600016
000020

006024

000026
011JjlJ030
1IJ1IJ0032

01111034

11011J1I36

11011042

000044

000000

• TITLE QCBOOT Vill-05 5/20/73 ,
, PDP- II QUI CK CASSETTE BOOTSTRAP ,
, COPYRIGHT 1973 Ff(01 GI TAL EQUI PMENT CORP ••
, MAYNARD. MA,
, BY: ROY FOI..K

• • , ,
I

• •
J ,
•
I

•

LOADS CNE RECORD UNTIL ERROR. LOADS AT 0,
DOES REWIND AND SKIPS F'If<ST RECORD OF FIRST F'lLE.
STARTS LOADED PROGRAM AT 0.
THE CODE IS POSITION INDEPENDENT.

TO BOOT FROM 01 FFEREN! U··U T OR CONTR<LLER. SET
UP R0 AND CORRESPOI~Dll'IG TACS REQI STER AS DESI RED
MA~UALLY AND START AT THIRD INSTRUCTION Dr BOOT.

SIZE" 20. WORDS

.CSECT

• 000000 RjIJ: '%0
'%1
'%2
'%7

000001 RI'"
000002 R2=
jlJ00007 PC",
177500 TACS= ,
012700 QCBOOT.
117500
005010
010701
0627 01
600034
112102
112110 FU'!C.
0327 10 LOOP.
100240

801775

1011JjlJ01
011JS007
011JS2112 GOON:

1110770

1161112
00110112
110e766

I
017775 TABLE.

11751!!0 .TA-II CONTROl.. AND STATUS REGISTER

MDV ITACS.R0

CLR (R0)
MDV PC.RI
ADD 'TABLE-., R1

MOVB (RD+,R2
MOVB (RD+,{ RI!!)
BIT '100240. (R0)

BEQ LOOP

BPI.. GOON
CLR PC
INC R2

BMl F!.NC

MOVB 2< R0), (R2)

BR LOOP

• WORD 11775

• SEL ECT U'!I T '"
.LOAD >-lEAD Or TABLE
.INTO REG. PIC'LY

•• 'MOV '177775.R2'
• SELECT rU'!CTI ON AND
• GO TEST ERROR, READY.

• TREG).
,LOOP 'TILL SOMETHING
ItfAPPENS
HIO ERROR - GO ON
.START PROG. ON FIRST
• ERROR COU'! TER AND
• MEMORY ADDR.
• DO REWI N 0, SFB, READ.
• THEN GET BYTES
'ACTUAL LOAD

J WAI T, TH EN GET MORE
• U'! TI L ERROR

.' BYTE 3751 rOR
• R2 COll>lTER
•• BYTE 37:
• REWI NO+I LBS+ GO

000046 1102415 .WORD 2"'5 J • tn I t. I:): ~"B+ GO
•• BYTE 5: REAO+GO • 001/l001 • END

Figure E-S QCBOOT

E-IO

.... ~ ... - .. -----------------~

•

E.2 BUILDING MEMORY CONFIGURATIONS FOR THE CAPS-II SYSTEM

A CAPS-II System configured for 8K is stored on the System Cassette
included in the CAPS-II software package. Upon first receiving the
system, the user should read the documentation to familiarize himself
with CAPS-U.

If his hardware includes additional memory or a non-stand~rd terminal
or line printer, the user will want to reconfigure his CAPS-II system
to take advantage of this hardware. The Linker stored on the 8K
System Cassette is used for the reconfiguration process. In addition,
the user should have ready two blank cassettes and the two OBJ
Cassettes containing the following directories:

OBJ Cassette U OBJ Cassette #2

CSYSLD LDA
KBLRES OBJ
KBL OBJ
CABLDR OBJ
CSI OBJ
CLODU OBJ
RESMON OBJ
CBOOT OBJ
LA30P OBJ
VT05 OBJ
LP80 OBJ
ODT OBJ
PIP OBJ
CSINBF OBJ
EDIT OBJ

Ensure that the 8K System Cassette and the
write-locked, write-enable the two blank
System Cassette on drive 0 and bootstrap the
Chapter 3).

KBLRES OBJ
PAL OBJ
P12SYM OBJ
P16SYM OBJ
LINK OBJ
CSITAC OBJ
P8SYM OBJ

two OBJ Cassettes are
cassettes. Mount the 8K

CAPS-II System (refer to

To reconfigure the Monitor files, the user must first consider which
hardware options a~e present on his system. Standard hardware devices
include serial LA30 and l32-column line printer. Non-standard devices
include parallel LA30, LT33 or LT35 Teletype, VT05 and 80-column line
printer. If reconfiguration is necessary because of non-standard
devices, the user will find it helpful at this point to patch the
Monitor so that the non-standard devices (in this case, specifically
the console terminal) can be used more efficiently during the
reconfiguration process itself. To make the patch, follow the
procedure listed below:

1. After the 8K CAPS-II Monitor has typed the version message on
the terminal, set the ENABLE/HALT switch to HALT

2. Set the Switch Register to 000056

3. Depress LOAD ADDRESS

4. If the console terminal is a:

a. LT33 or LT35 Teletype or parallel LA30, set the Switch
Register to 000000, go to step 5

b. VT05, set the Switch Register to 002012, go to step 5

E-ll

5. Raise the DEPosit switoh

6. Set the ENABLE/HALT swi toh to ENABLE

1. Depress the CONTinue key

NOTE

The user is advised to read through the
remainder of this seotion before
entering any of the following command
lines. All command lines are terminated
by a carriage return [)).

After the patoh has been made, continue with the systeA
reconfiguration by mounting one of the blank cassettes on drive 11
enter the current date and zero the blank cassette using the commands •

.:. OA dd-mlllll-YY)

.:.2: I.)

[day-month-year)

Next run the BK System Linker and enter the
carriage return as shown below I the command
soon as the asterisk is printed eVen though
simultaneously loaded into memory.

command line and a
line may be entered as
the Linker is being

!R LINK)

! 1: CAPS II. TT. :K BL IP. CABL DR IF'. CSI/F'. CL 01) I III'. RES"!!)." II'/C)

Because of the IC
the second half
following.

option, the Linker will not initiate action until
of the command line is typed: see Section E.2.1,

NOTE

If the system includes a line printer,
the output device specification LP. may
be substituted for 'l"l': in all command
lines described in this section. If the
user does not desire a listing of the
load map, he may omit the listing output
specification entirely from all command
lines.

E.2.l Reconfiguring the Monitor

To reconfigure the Monitor files for a standard system [i.e., one
includes the standard devices--serial LA30 and 132-column
printer) continue the previously entered command line by entering
following'

E-12

that
line
the

,CBOOT /, /H. ""xxxx)

The response for the IH option depends upon the size of the system to
be reconfigured as follows:

Table E-4
Moni tor IH Option Responses

Memory Size xxxxxx

12K 60000
16K 100000
20K 120000
24K 140000
28]((or larger) 160000

To allow reconfiguration for non-standard devices, modifications must
be made to the continued portion of the command line. The user should
choose the command line which corresponds to his hardware
configuration from the descriptions which follow.

PARALLEL LA30 OR TELETYPE

If the console terminal is a parallel LA30 or LT33 or LT35 Teletype,
the second line of the command string must be entered as follows:

,CBOOT /" I.A30P /1' /fl. xxxxxx.J

The response for IH is taken from Table E-4.

PARALLEL LA30 OR TELETYPE AND aO-COLUMN LINE PRINTER

If, in addition to a parallel
includes an aO-column line
string becomes:

LA30, LT33 or LT35 Teletype, the system
printer, the second line of the command

,CBOOT /1', I.A3IilP/" I.PS 0/1' /fl. xxxxxx)

Again, the response for /H is taken from Table E-4.

VTOS

If the console terminal is a VT05, ~~e second line of the command
string is the following:

,CBOOT/',VT05/1'/~IXXXXXX)

The response for IH is taken from Table E-4.

E-13

VTOS AND SO-COLUMN LINE PRINTER

If the system includes a VTOS and an SO-column line printer, the
command line must be entered as follows.

,CBOOT/"VT05/"LP80"/K.XXXXKX)

The response for IH is again chosen fr~ Table E-4.

Thus, for example, if
printer and is to
would be entered as •

the system includes a VT05 and an 80 column line
be reconfigured for 16K, the entire command line

• I. CAPS II, LP. =K BL ,p, CABLDR'F", CSI IF", CL OD 11/" RESM ();II IF" IC)
-; CBOOT I" VT05/F", LPg 0/, 1-1. 100000)

When the entire command line has been entered followed by a carriage
return, a prompt message will occur (01); mount OBJ Cassette 11
(containing the files XBL. OBJ, CABLDR. OBJ, etc.) on un! t 0 and type
any character on the keyboard to continue execution. When the prompt
message occurs for pass 2, again respond by typing any character on
the keyboard. After the command has been executed, control returns to
the Linker which prints an asterisk indicating that it is ready to
receive another command. If the system includes 8K of memory and the
user is reconfiguring the Monitor only to take advantage of a
non-standard device, his reconfiguration is complete and he should
skip to Section E.2.6 to create his new System Cassette. If the
system includes more than SK, continue the reconfiguration process as
described below.

E.2.2 Reconfiguring PAL

Rewind OBJ Cassette #1 and then mount OBJ Cassette 12 (containing
PAL.OBJ, etc.l on drive 0 and enter the following'

.! I. PAL. SRlJ, TT: =KBLRES, PALl" /C)
,PI2SYM/F"[or PI 6SYM/F"l ,CSITAC/F"/B. 400)

The file P12SYM is used for reconfiguring PAL for a 12K system; P16SYM
is used for all systems which are 16K or more.

E.2.3 Reconfiguring LINK

The 8K Linker contains room for approximately 22S(decirnal) symbols, if
the user needs more, he can next reconfigure LINK as follows.

! I' LI,~I(. SRlJ, TTl =LINK, CSI TAC;, I'il-XXXXXX)

where xxxxxx represents one of the following.

E-l4

Table E-5
Linker and ODT /H Option Responses

Memory Size xxxxxx

12K 41500
16K 61500
20K 101500
24K 121500
28K (or larger) 141500

E.2.4 Reconfiguring ODT

Rewind OBJ Cassette f2. ODT is next reconfigured by mounting OBJ
Cassette tlon unit 0 and entering the following command line:

!. J: OOT. SLG. TTl = KBL RES. OOT If 1">1 .xxxxxx)

The value for xxxxxx is also chosen from Table E-5.

E.2.5 Reconfiguring PIP and EDIT

There is no need to relink PIP or the Editor since these programs use
the same amount of memory in any size system.

The user is nOW ready to create the new System Cassette.

E.2.G Creating a New System Cassette

Return to the Monitor by typing:

Rewind
obtain
all the

OBJ Cassette fl and mount the 8K System Cassette on unit OJ
a directory listing of the cassette on unit 1 (which contains
newly reconfigured files) by typing.

:. 01 II)

When the directory has finished listing, remove the cassette from unit
I, write-protect it, and attach the directory listing to it. The
second blank cassette should next be mounted on unit 1 and zeroed.
Then run PIP and type the co1!1!land line as shown below.

:.1.. I')

• R PI P)

!.1: CTLOAD. SYS=CTLOAD. SY S)

The command line may be entered as soon as the asterisk appears.
Control remains in PIP, so when this transfer is complete, mount OBJ

E-15

--------~ --~~~-

Cassette il (containing CSYSLD.LDA, etc.) on unit 0 and enter the next
command:

!I,CApSI1. Snn=CSYSLD.LDA.CApSII.LDA/1')

The values for nn are taken from the following list, this causes the
file to be labeled so as to correspond with the memory size of the
system:

Table E-6
System Cassette Labeling Responses

Mel'lOry Si ze nn

BK BK
12K 12
16K 16
20K 20
etc .•• etc

When the prompt message occurs, the user should rewind OBJ Cassette #1
and dismount it from unit 0: mount the cassette containing the
reconfigured files (i.e., the new version of CAPSll) and type any
keyboard character to continue execution.

When PIP returns an asterisk indicating that the transfer is finished,
the user can copy PIP and the Editor from the 8K System Cassette using
the cOl1D1land,

!llpIp.SRU.EDIT.SLG=Plp.SRU.EDIT.SLG)

The remaining files comprising the CAPS-ll
copied to the new System Cassette using
recommended order of files iSI

CTLOAD SY 5
CAPS II SS'<
PIP SRU
EDIT SLG
LINK SRU
ODT SLG
PAL SRU
DEMO PAL

system should next be
any order desired. The

If the user has reconfigured LINK, ODT, or PAL, he should copy these
programs from the cassette containing the reconfigured versions.
Otherwise, he should copy them from the original BX System Cassette.
The DEMO program on the 8K System Cassette should be the last program
copied.

The PIP commands to perform these transfers are as follows.

Mount the cassette containing the proper version of LINK on unit 0,
write-locked, and typel

~l'LINK.SRU.LINK.SRU)

&-16

r

Mount the cassette containing the proper version of ODT on unit 0,
write-locked, and type:

!l: DDT. SLG=ODT. SLG)

Mount the cassette containing the proper version of PAL on unit 0,
write-locked, and type:

.!l: PAl.. SRU=PAI.. SRU)

Lastly, mount the BK System Cassette on unit 0, write-locked, and
type:

! 1: DE:10. PAI.=DE:10. PAL)

A directory listing of the new System Cassette should be obtained when
all transfers are complete and compared to the directory listing above
to ensure that all files are present. Several copies of this cassette
should next be made (using the PIP copy function).

The user is now ready to try the demonstration program in Appendix D.

E-17

-. ,

APPENDIX F

CASSETTE STANDARl>S

The information in this document is subject to
change without notice and should not be construed
as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no
responsibility for any errors that may appear in
this document.

The software described in this document is
furnished to the purchaser under a license for use
on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice)
only for use in such system, except as may
otherwise be provided in writing by DIGITAL.

Digital Equipment corporation assumes no
responsibility for the use or reliability of its
software on equipment that is not supplied by
DIGITAL.

F-1

F.I INTRODUCTION

Following is a description of the format and labeling conventions for
files and records written on Digital Equipment Corporation TU6G
cassettes and specifically for those written under the CAPS-II system.
This standard must be followed when reading and writing cassettes
intended for interchange between systems; it is recommended for other
cassettes.

The standard describes provisions for file header records which
contain information on filename, creation date, record length and data
format. There is room in the standard header record for twelve bytes
of additional information which can vary from system to system. There
is also provision for an extra header record if twelve bytes are not
sufficient for additional file information.

The subset of the standard (described in Section F.4) details the
minimum requirements that any cassette system should support. This
restricted standard includes header record labels, fixed-length,
l28-byte records, and date. No support is required for
variable-length records, multi-volume files, or expanded information
in a second header record.

F.2 DEFINITIONS

A cassette consists of a sequence of one or more files, separated from
each other by a single file gap. The first file on the cassette must
be preceded by a file gap1 the last file must be followed by a file
gap and a sentinel file (refer to paragraph F.3.3), or by clear
trailer.

Each file consists of a sequence of a header record plus zero or more
data records separated from each other by record gaps. The first
record of a file is called the file header record, or file label.

A record consists of
bytes followed by
logical limit1 there
the tape.)

a sequence of from one up to 2 16- 1
a two-byte cyclic redundancy check.
is no physical limit, except for the

cassette
(This is a
length of

A cassette byte is eight bits. A bit is a binary zero (0) Or one (1).

A character is a byte
Parity is not required
data.

interpreted via the ASCII character codes.
and CAPS-II ignores the high-order bit of ASCII

F.l THE FULL STANDARD

F.3.l Applicability

This standard is intended to allow full
capabilities of cassettes.

F-2

utilization of the

~'

F.3.2 The Header Record

THE FILE NAME

Each file must begin with a 32 (decimal) byte file header record.
Figure F-l illustrates the format of the header record. The name and
the date are in seven-bit ASCII.

LENGTH IN SYTES {DECIMAL) 9 I 2 1 1 6 12

I I I I I I I JD fiLENAME DATE UNUSED , , , , , , , , , ,
BYTES NUMBER 0 1 5 t 10. n 15 20

(DECIMAW
TYPE
RECORD LENGTH
SEQUENCE
CONllNUED

Figure F-l File Header Record Format

The first nine bytes of a header record contain the file's name. File
names are divided into a six-character "name" and a three character
"extension". File names and extensions may consist of letters,
numerals and blanks. The first character may not be blank; there can
be no imbedded blanks within name or extension; name or extension may
be padded on the right with blanks.

THE FI LE TYPE

NOTE

When a file is deleted, the current
systems change the name to begin with an
aste~isk (0), in addition to setting the
type bit (described nextl to 14.

Byte nine in the header record contains the "File Type', The
Type defines the mode in which data was recorded in that file.
F-l lists the file type codes and gives the meanings associated
them (CAPS-II uses file type codes I, 2, and 14),

F-3

File
Table
with

Type

Table F-l
Standard File Types

Description

1 ASCII (seven bits per character--high-order bit
undefined)

2 Paper Tape Image (non-ASCII) lone frame per byte
(operating system dependent)

3 Core Image Format tl

5

One 36-bit computer word in five bytes (wastes
low-order four bits of the fifth byte)

Core Image Format t2
One l2-bit computer word in two bytes (only the
low-order six bits of each byte is used)

Core Image Format .3
One IS-bit word
low-order six bits

Core Image FOrmat '4

in three bytes
of tb.e last byte)

(wastes

One 36-bit computer word in six bytes (only the
low-order six bits of each byte is usedl

7 Core Image Format .5

lQ

One l6-bit computer word in two bytes

Core Image Format '6
Three bytes for
below:

(OS/S character packing)
two l2-bit words, as

I: I
! !

I I

11 Core Image Format '7

12

13

14
i

Two 36-bit words in nine bytes.

Core Im<lge Format IS
Four l8-bit words in nine bytes.

Bootstrap File

Bad File

FILE RECOlUl LENGTH

shown

I

Bytes 10 and 11 of the File Header Record contain the file record
length (the file record length is fixed at 128 bytes per recordl.

F-4

------------------------_ --------

r

•

NOTE

Byte 10 contains the
Thus. record length
byte 10 plus contents

FILE SEQUENCE NUMBER

high-order bits.
- 256*contents of
of byte 11.

Byte 12 contains the sequence number for multi-volume files. It is
normally zero. otherwise. It is used for information that is split UP
among files of the same name. Successive continuation files on
different cassettes should be numbered 1. 2. l. ••• etc. in this
field. (CAPS-II does not support multivolume files.)

HEADER CONTINUATION BYTE

Byte ll. when non-zero. specifies the number of bytes in an auxiliary
header record. which immediately follows this record. If it is zero.
data begins immediately with the next record. The format of auxiliary
header records is not specified at this time. (CAPS-II does not use
auxi liary header records.)

FILE CREATION DATE

The file creation date is contained in the six bytes starting at byte
14. Wben specified. this date shall consist of six seven-bit ASCII
digits specifying the day number COl-ll}. the month number (01-12).
and the last two digits of the year number. in the order ddmrnyy. If
not used. the first byte should be zero (null). or blank (ASCII-40).

UNUSED BYTES

The twelve bytes starting at byte 20 are not currently specified.

F.3.l Logical End of Tape

Logical end of tape is signified by clear trailer or a sentinel file.
The sentinel file consists of a single header record whose file name
begins with a zero (null).

F-5

~~~-~~~~~--~ 

---- -----..... _- -.. - ------------_ .... ----



F.. THE RESTRICTED STANDARD 

F.4.l Applicability 

CAPS-II supports a subset of the cassette standard described 
previously. Features supported and not supported are listed below. 

F.4.2 Restrictions 

RECORD LENGTH 

Records shall be 128 bytes long. 

NO CONTINUATION HEADER RECORD 

The second record in a file must be a data record. 

NO SUPPORT FOR MULTI-VOLUME FILES 

No support for multi-volume files is required. 

F ••• 3 Inclusions 

The restricted standard (as implemented under CAPS-II) requires 
support for the following items described in the full standard. 

• The Pile Name 

• Logical End of Tape 

• Read the (first) header record 

• File Creation Date (may be blanks) 

F.5 SUPPORT FOR MULTI-VOLUME FILES 

The following information should act as a guideline to users who wish 
to implement multi-volume cassette support in their system. The 
easiest way to support multi-volume files is the "falloff the tape" 
method. Whenever the end of a tape is reached before a file has been 
closed, the system should type out a message to that effect and allow 
the user to mount another tape, if necessary. 

F-6 

• 



" 

• 

• On READ, the system should, 

1. Type out the message: 

2. If the user indicates that the end of file has been 
reached, the syste~ should react as such; 

3. If the user indicates that end of file 
reached, the system should allow the 
another tape, indicate the controller, 
system to continue processin9~ 

has not been 
user to mount 
and tell the 

4. The system should verify that there is a file on the tape 
with the SaMe naJ'le and the next higher volume number as 
the previous file: 

5. If that is the case, the system 
processing the file. 

should continue 

• On WRITE, the system should: 

1. Erase any partially-written record by backspacing two and 
forward-spacing one, and writing an EOF to the end of the 
tape;· 

2. Type out the message; 

3. Allow the user to mount a new tape: 

4. The system may either assume a blank tape, or space to 
logical end of tape; then write a file gap followed by a 
header record(s) with the proper name and volume number; 

5. Continue processing. 

The other method involves using the sentinel file, as outlined in the 
standard. The procedure is as follows: 

• On READ, the system should, 

1. Examine the next header record whenever it encounters a 
file gap: when there is no sentinel file at end of tape, 
assume end of file; 

2. If the header represents a sentinel file and the sequence 
byte is one greater than that of the file just being 
read, the system should request the user to mount another 
tape: if not, the system should report end of file: 

3. If a sentinel file indicates more 
system should allow the user to 
cassette, (2) indicate where it is, 
system to continue processing; 

volumes exist, the 
(1) mount another 
and (3) tell the 

*When using 12B-byte records, the hardware will never mistake the 
inter-record gap plus the erased tape for a file gap. This is 
possible when using larger records. Systems using such records should 
consider the second method for supporting multi-volume files. 

F-7 



4. The system should verify that there is a file on the tape 
with the same name and the next higher volume number as 
the previous filel 

5. If that is the case, the system 
processing. 

should continue 

• On WRITE, when the system reaches the end of tape, it should: 

1. Erase enough records to allow a file gap 
file to be written (this involves double 
case of large records, and triple or 
buffering, in the case of small recordsl: 

and a sentinel 
buffering in the 

even quadruple 

2. Write out a file gap, and request the operator to mount 
another cassette, 

3. If the operator indicates there will be no extra 
cassette, the system should (II write out a sentinel file 
with a null sequence byte, and (2) tell the operator he 
can dismount the cassette (clearly, the operator loses 
some data if he does not mount another cassette); 

4. If the operator indicates he wishes to mount another 
cassette, the system should (1) write out a sentinel file 
with sequence byte equal to the current files sequence 
number plus one, and (2) tell the operator he can 
dismount the cassette; 

5. The system should allow the operator to (1) mount another 
tape, (2) indicate the controller and drive number that 
holds the tape, and (3) tell the system to continue 
processing; 

6. The system should space to logical end of tape, then 
write a file gap followed by a header record(s) with the 
proper name and volume nwnber, followed by the records 
erased from the previous cassette; and 

7. Continue processing. 

When processing cassettes that may have been written on the other 
systems, it may be wise for systems that support the full method for 
multi-volume files to support the • falloff the tape" method, too. 

F-8 

"\ , 

----_ ....... _---------



APPENDIX G 

CAPS-II ASSEMBLY INSTRUCTIONS 

G.I GENERAL INSTRUCTIONS 

Listed below are asse~ly instructions for the CAPS-II Monitor and 
system programs. Due to symbol table size, note that some of the 
system components cannot be assembled under the standard 8X CAPS-II 
assembler, but require at least the 12K ver~ion of PAL. 

The following general instructions apply to all assemblies in this 
appendix: 

1. Mount the System Cassette write-locked on unit 0 and 
bootstrap the CAPS-II Monitor. 

2. When the Monitor is loaded and responds with a dot, 
type, 

.R PAL 

3. MOunt the proper source cassette (obtained from the 
Software Distribution Center) on unit I, write-locked 
(this will be the cassette containing the first file in 
the input field of the command line). 

4. When the COMmand String 
enter the appropriate 
carriage return", 

Interpreter types 
command string 

an asterisk, 
followed by a 

5. When the prompt message (01) is typed during the second 
pass of the assembly, dismount and the System Cassette 
from unit 0 and mount an output cassette (on which the 
binary OBJ files will be stored) write-enabled on the 
unit; type any character to continue execution. 

NOTE 

If the user's CAPS-II system is 12K Or 
more, the IP (prompt option) is 
necessary only on the first assembly. 
Since the system does not need to be 
rebooted between assemblies, the user 
may mount one cassette on unit 0 and 
output as many OBJ files as will fit 
before mounting a new cassette. 

G-I 



6. When the assembly is complete, PAL will type the 
message: 000000 ERRORS (with the exception of the 
Editor, in which there are several line buffer overflow 
errors; extra characters on a line greater than 72 
characters in length are iqnored and are indicated on 
the listing by an 'L message.) In an BK system PAL will 
next respond by typing +C?; the user should dismount the 
cassette on unit ~, remount the System Cassette,and type 
any character on the console terminal to rebootthesys
tern. After this is done, return to step 2 above. 

7. 

If the system is 12K or larger, control 
will return to the CSI, which prints an 
asterisk. No rehoot is necessary. and 
the user may proceed with the next 
assembly (step 4 above). 

Whenever a prompt message for unit 1 occurs. 
source cassette containing the proper 
parentheses) on unit 1 write-locked, and 
keyboard character. 

mount 
file 
type 

the 
(in 
any 

8. In all command lines, TT: may be specified in place of 
LP:; however, several output listings will be extremely 
long and the use of the console terminal as the listing 
output device is not recommended. 

G.2 ASSEMBLY COMMAND LINES 

G.2.l Keyboard Listener (KBL) 

*KBL/P,LP:=I:KBL.035 

PASS 2 

07 ~eStep5 

G.2.2 CABLDR 

*CABLDR/P,LP:=I:CABLDR.022 

PASS 2 

07 see Step 5 

G-2 



G.2.3 Command String Interpreter (CSI) 

*CSl/P,LP.=I,CSI.014 

PASS 2 

01 see Step 5 

G.2.4 CLODU 

*o..ODII /P,LP, = I, CLODI1. 024 

PASS 2 

01 see Step 5 

G. 2.5 I1ESMON* 

* RE:SM CI\l /P, LPI = It RESi'lOCl 01168 

PASS 2 

01 see Step 5 

G.2.6 CIlOOT 

.CBOOT/P,LP,=I,CBOOT.007 

PASS 2 

01 see step 5 

G.2.7 PIP • 

• PIP/P,LP'=IIPIP.022 

PASS 2 

iii 1 see Step 5 

"Requires minimum l2K PAL assembler 

G-3 



G.2.B CSINBF 

.CSINBr/P,~p'=I'~OBUrr.PAR/P,CSITAC.032/P 

I? see step 7 (NOBUFF. PAR) 

I ? see step 7 (CSITAC.032) 

PASS 2 

0? see Step 5 

!1 see Step 7 (NOBUFF. PAR) 

11 see Step 7 (CSITAC.032) 

G.2.9 EDIT· 

.£DIT/P.LPI=I,CAPSII.PAR/P,IDIT.023/P 

11 see Step 7 (CAPS1L PAR) 

11 see Step 7 (EDIT.023) 

PASS 2 

01 see Step 5 

11 see Step 7 (CAPS1LPAR) 

11 see Step 7 {EDIT. 023) 

G. 2 .10 LINK· 

"LINK IP.LP, = I'Ll NK. fl3f1 

PASS 2 

01 see Step 5 

C.2.11 CSITAC 

*CSITAC/P,LP:=I,CSITAC.fl32 

PASS 2 

fl1 see Step 5 

*Requires minimUIII 12K PAL assembler 

G-4 

, 

, 



G.2.12 ODT 

G.2.13 

• OOT IP, LP: = 1, OOT .!i!15 

PASS 2 

0? see Step S 

PAL* 

.. PAL/P,LP' = l' PAL 1. 021 IP, PAL2. 027/P, PAL;). 027/P 

11 see Step 7 (PALL 027) 

11 see Step 7 (PAL2.027) 

1 ? see Step 7 (PAL3.027) 

PASS 2 

01 see Step 5 

11 see Step 7 (PAL1.027) 

11 see Step 7 (PAL2.027) 

l? see Step 7 (PAL3.027) 

G.2.14 P8SYM (8K PAL Symbol Table) 

.. Ps S'I'M/P. LP, = U f'6 S'I'M 

PASS 2 

01 see Step 5 

G.2.1S p12SYM (12K PAL Symbol Table) 

.. P 12S'I'M/P, I. p, = I, P 125'(01 

PASS 2 

01 see Step 5 

*Requires minimum 12K PAL assembler 

G-5 



0.2.16 P16SYM (16K PAL Symbol Table) 

*P 16SYM.lP. LP: = I: PI6SYM 

PASS 2 

01 see Step 5 

•• 

0-6 , 



Absolute, 5-5 
binary format, 3-18, 8-5 
binary load block 

format, B-3 
mode, 5-20 
program sections, 6-6 

Accessing unstructured data, 
2-8 

Address mode syntax, B-2 
modes, 2-7 
poin ters, 2- 5 
register display, 1-8 

Addressing, 2-4 
Addressing modes, 5-16 

absolute, 5-20 
autodecrement, 5-18 
autoincrement, 5-17 
deferred autodecrement, 5-16 
deferred autoincrement, 5-18 
deferred index, 5-19 
de ferred register, 5-17 
deferred relative, 5-21 
index, 5-19 
register, 5-16 
relative, 5-20 

Addressing using PC, 5-19 
Altering register contents, 

5-37 
Arithmetic operators, 5-11 
ASCII, 

character codes, A-2 
conversion, 5-12 
input and output, 7-19 

Assembler, PAL, 1-2, 5-1 
addressing modes, 5-16 
calling and using, 5-1 
coding techniques, 5-37 
directives, 5-24, B-9 

conditional, B-lO 
error codes, 5-47 
error messages, 5-48, C-9 
example listing, 5-46 
expressions, 5-10 
I/O specifications, 5-3 
language summary, B-1 
object module output, 5-46 
options, 5-2 
restarting, 5- 3 
statements, 5-4 
symbols, 5-7 

Assembling the source 
program, 5-1 

Assembly, 
command lines, G-2 
dialogue, 5-44 
instructions, G-l 
listing, 5-45, 5-46 
location counter, 5-12 

Assembly language summary, B-1 
instructions, B-3 
terminators, B-1 

INDEX 

Assigning values to symbols, 
5-8 

Autodecrement mode, 2-5, 
5-18 

Autoincrernent mode, 2-5, 
2-8, 5-17 

Auxiliary header record, 
1"-5 

Base address, 7-2 
Bits, 1-4 
Blank cassette, 1-5 
Blocks, Text, 5-46 
Breakpoint status words, 

7-23 
Breakpoints, 7-20 
Buffer arrangement, 

transfer commands, 9-3 
unformatted cassette, 9-7 

Buffer size, 9-4 
Building memory 

configurations, B-ll 
Byte count, 9-7 
Byte count word, 9-12 
Bytes, 1-4, 1"-2 

Unused, F-5 

CABLDR, E-2, E-3 
halts, B-4 
switch register settings, 8-4 

CAPS-II loading process, E-7 
CAPS-II memory map, 3-17 
CAPSll.LDA, 8-6 
CAPSll. SYS, E-6 
Cassette, 1-3, 1"-2 

Absolute Loader (CABLDR), 3-18 
blank, 1-5 
Bootstrap (CBOOT), 3-17, E-l 
dismounting a, 1-5 
format, 1-4 
Loader (CLODll), 3-18, 8-2 
Moni tor, E-6 
mounting a, 1-5 
OBJ, 1-2 
removing a, 1-6 
Standards, 1"-1 
System, 1-2, 1-5 

Cassette file I/O commands, 9-14 
CLOSE, 9-18 
ENTER, 9-16 
SEEK, 9-14 
SEEK!", 9-15 

Cassette I/O functions, 9-24 
Cassette I/O primitiVes, 9-24 
CBOOT, 3-2, E-l, E-8 

loader format, E-1, E-2 
Character, F-2 

null, 1-5 
set, 5-4 

Index-l 



Checksum, 9-12 
Clear trailer, F-5 
Command and error message 

summaries, C-l 
Command input buffer (EDIT), 

4-23 
Command mode (EDIT), 4-4 
Command String Interpreter 

feSI), 3-6, 3-18 
Command summaries, 

Editor, C-4 
Monitor, C-l 
0111', C-16 

COI1II1lents, 5-6 
Communications directory, 

6-7 
Components, 

Hardware, 1-2 
Software, 1-2 

Condition code operates, B-7 
Condition codes, B-3 
Conditional directives, B-IO 
Console, 

elements, 1-8 
operation, 1-7 
terminal operation, 1-10 

Constant register, 7-15 
Contiguous relocating load, 

E-4 
Control sections, 

Named, 6-6 
Unamed, 6-6 

Control switches, 
PDP-H/IO, 1-9 

Copying cassettes, 8-4 
Creating a new system 

cassette, E-15 
CSI options, 3-7 
eSYSLD.LDA, B-6 
CTLOAD. SYS, B-2 

Data record, 1-4, F-2 
Data register display, 1-8 
Data transfer commands, 9-19 

READ, 9-19 
WAITR, 9-22 
WRITE, 9-20 

Debugging the Object 
program (see 0111') 

Default extensions, 3-5 
Deferred, 

autodecrement mode, 5-18 
autoincrement mode, 5-18 
index, 5-19 
modes, 2-7 
register mode, 5-17 
relative mode, 5-21 

Device, 
assignments, 9-3 
conflicts, 9-21 
dependent functions, 9-9 

9-12 
interrupts, 2-3 

Directives, 
.ASCII, 5-28 
• BYTE , 5-28 
conditional assembly, 5-30 
.END, 5-27 
.EOT, 5-26 
.EVEN, 5-26 
.GLOBL, 5-25 
• LI!4IT, 5-30 
listing control, 5-30 
program sections, 5-25 
.MD50, 5-29 
• TITLE, 5-24 
• WORD, 5-27 

Dismounting a cassette, 1-5 
Display, 

Address register, 1-8 
Data register, 1-8 

Done bit, 9-6 
Double buffering, 9-23, F-8 

EDIT (Text Editor), 4-1 
calling and using, 4-1 
cnaracter conmand 

properties, 4-8 
closing files, 4-14 
conmand arguments, 4-6 
COmMand string format, 4-6 
command strings, 4-7 
command structure, 4-5 
co_and SUJ1l!lIary, C- 4 
current location 

pointer, 4-7 
error messages, 4-25, C-7 
example of use, 4-27 
I/O specifications, 4-2 
input and output 

commands, 4-10 
key commands, 4-4 
line oriented command 

properties, 4-8 
modes of operation, 4-4 
options, 4-2 
restarting, 4-3 
search commands, 4-16 
text MOdification 

commands, 4-18 
utility commands, 4-22 

Editing the source program 
(see EDIT) 

Elements of the console, 
1-8 

EMPTY header, 3-15, 9-16 
End of tape, F-5 
Entering I/O information, 

3-6 
Entry symbol, 5-8 
EOF bit, 9-6 
EOM bit, 9-6 
Error message format, 3-10 

Index-2 

-------------~-- .... ~ ... ---------



Error message summaries, 
Assembler, C-9 
Editor, C-7 
Linker, C-13 
Monitor, C-2 
ODT, c-19 
PIP, C-20 
RESMON, C-22 

Expressions, 5-10 
modes, 5-14 
terms, 5-10 

Extensions, 
Default, 3-5 
Filenames and, 3-4 

File, 1-4 
creation date, F-5 
deletion, 8-3 
fannats, 3-3 

ASCII, 3-3 
Binary, 3-3 

gap, 1-4, F-2 
name, F-3 
Sentinel, 1-5 
type, F-3 

Filenames and extensions, 
3-4 

Files, sequential, 1-4 
Fonnat, 

Cassette, 1-4 
centro1, 5-6 
Header record, F-3 

FOrMatted, 
ASCII, 9-9 
Binary, 9-11 
cassette I/O, 9-7 

Full standard, F-2 
Functional organization 

(ODT), 7-20 

General assembly 
instructions, G-1 

Global Symbol Directory 
(GSD), 5-15, 5-46, 6-7 

Global symbols, 6-7 

Hardware components, 1-2 
Header continuation byte, 

F-5 
Header record, 1-4, F-2, F-3 

Auxiliary, F-5 
format, F-3 

I/O buffer area, 9-3 
Immediate mode, 5-19 
Index mode, 2-6, 2-8, 5-19 
Input/output, 

devices, 3- 4 
programming, 9-1 

Instruction, 
capability, 2-9 
forms, 5-23 
set, 2-4 

Instructions, 
assembly, G-l 
branch, 8-7 
double operand, B-4 
operation, B-6 
rotate/shift, B-5 
single operand, 8-4 
subroutine call, B-8 
subroutine return, 8-9 

Internal registers, 7-9 
Internal symbols, 6-7 
Interrupt vectors, 2-4 
Interrupts, 2-10 
lOT instructions, 9-2 
Iteration brackets, 4-9 

Keyboard, 
differences, A-I 
LA30 DECWri ter, 1-11 
Listener (KBL), 3-18 
Monitor loading process, 

3-1, E-1 
Monitor sections, 3-16 

LA30 DECwriter, 
keyhoard, 1-11 
parallel, 1-12 
serial, 1-11 

Labels, 5-4 
Leader/trailer tape, 1-3 
Linker, 6-1 

calling and using, 6-2 
error message summary, C-13 
example of use, 6~13 
fatal errors, 6-10 
input and output, 6-7 
input and output 

specifications, 6-5 
non-fatal errors, 6-9 
options, 6-2 
restarting, 6-5 

Linking, 
Relocation and, 5-15 

Load map, 6-5, 6-8 
Load module, 6-5, 6-7 
Loading unused trap vectors, 

5-36 
Locking bar, 1-5 
Logical operators, 5-11 
LSll line printer operation, 

1-12 
LSII operator panel, 1-12 

Index-J 



Macro buffer (EDIT), 4-23 
Mask register, limits, 7-14 
Memory block initialization, 

7-15 
Memory map, CAPS-II, 3-17 
Minimal system 

configuration, 1-2 
Mode, 

Autodecrernent, 2-5 
Autoincrement, 2-5, 2-8 
Index, 2-6, 2-B 
Radix-50, 7-9 
Register, 2-5 
Relative, 2-8 
Single-instruction, 1-13 

Mode (EDIT), 
command, 4-4 
text, 4-4 

Mode byte, 9-4, 9-17 

Modes, 9-7 
address, 2-7 
deferred, 2-7 
formatted ASCII, 9-9 
formatted binary, 9-11 
non-defferred, 2-7 
unformatted ASCII, 9-11 
unformatted binary, 9-12 

Modes of expressions, 5-14 
absolute, 5-14 
external, 5-14 
relocatable, 5-14 

Mon! tor, 1-2 
commands, 3-11, C-l 

DATE, 3-14 
DIRECTORY, 3-14 
LOAD, 3-13 
RUN, 3-11 
SENTINEL, 3-15 
START, 3-13 
VERSION, 3-16 
ZERO, 3-15 

error messages, 3-24 
loading instructions, 3-1 
reconfiguring, E-12 
sections, 3-16 

CABLDR, 3-18 
CBOOT, 3-17 
CLODll, 3-18 
CSI, 3-18 
KBL, 3-18 
RESMON, 3-11 
SYSCOM, 3-18 

Mounting a cassette, 1-5 
Mu1ti-vol~e files, F-6 

Named control sections, 6-6 
Nested device servicing 2-10 
Non-contiguous relocati~g 

load, E-4 

Non-data transfer commands, 
9-12 

CNTRLO, 9-13 
RESET, 9-13 
RESTART, 9-13 

Non-defferred modes, 2-7 
Non-fatal off-line and 

write-lock errors, 9-18 
Normal load, E-4 
Notes on device handlers, 

3-23 
Null characters, 1-5, 9-12 
Numbers, 5-11 

decimal, 5-11 
octal, 5-11 

OBJ cassettes, 1-2, E-ll 
Object module output, 5-46 
Object modules, 6-7 

ODT, 1-2, 7-1 
accessing general 

registers, 7-8 
accessing internal 

registers, 7-8 
breakpoints, 7-11 
calculating offsets, 1-16 
calling and using, 7-1 
changing locations, 7-5 
closing locations, 7-5 
commands and functions, 

7-4, C-16 
error detection, 7-26 
error message summary, C-19 
example of use, 7-26 
I/O specifications, 7-2 
mask register, 7-14 
opening locations, 7-5 
options, 7-2 
printout formats, 7-4 
priority level, 7-18 
program execution, 7-11 
relocation register 

commands, 7-17 
restarting, 7-2 
restoring terminal 

status, 7-24 
searches, 7-14, 7-25 
trace trap instruction, 

7-21 
Operands, 5-6 
Operation, Console, 1-7 
Operator panel, LSIl, 1-12 
Operators, 5-5 

Arithmetic, 5-11 
Logical, 5-11 

Option summary, 
Assembler, C-B 
Linker, C-12 
PIP, C-19 

OVerlay load, 6-4 

lOOex-4 

! 

. ' 

~. 



Packing algorithm, 5-29 
Page size, 5-7 
PAL assembler, (see Assembler) 
PDP-ll/lO control switches, 

1-9 
PDP-ll/lO programmer's 

console, 1-7 
Peripheral Interchange 

Program, (see PIP) 
Permanent device naAeS, 3-4 
Permanent symbol table, 5-7 
PIC coding, 5-32 
PIP, 1-3 

Calling and using, 8-1 
Error messages, 8-5, C-20 
I/O specifications, 8-2 
options, 8-1 
.Restarting, 8-5 

Pointer relocation commands, 
4-14 

Position independent modes, 
5-32 

absolute, 5-33 
branches, 5-32 
immediate operands, 5-33 
relative memory references, 

5-32 
PRELDR, E-2 
Processor stack pointer, 

2-4 
Processor status register, 

2-3 
Processor use of stacks, 

2-9 
Program counter, 2-4, 2-8 
Program runaway, 7-23 
Program sections, 

Absolute, 6-6 
Relocatable, 6-6 

Programmer's console 
(PDP-ll/IO),1-7 

Programming considerations, 
7-20 

Programming the PDP-II, 2-1 
Push and pop operations, 

2-6 
Push-down lists, 2-6 

QCBOOT, 3-2, E-9 

Radix 50 mode, 7-9 
Radix 50 terminators, 7-10 
Random access of tables, 

2-6 
Reconfiguring system programs, 

E-13 - E-15 
Reconfiguring the Monitor, 

E-12 

.Record, 
Data, 1-4 
gaps, 1-4, F-2 
Header, 1-4 
length, F-4, F-6 

Recursive suhroutines, 5-41 
Register Switch, 1-8 
Register display, 

Address, 1-8 
Data, 1-8 

Register, 2-4 
mode, 2-5, 5-16 
Symbols, 5-9 

Relative branch offset, 7-7 
Relative mode, 2-8, 5-20 
Relocatable, 5-5 

expressions, 7-3 
forms, 7-3 

object modules, 5-15, 7-2 
program sections, 6-6 

Relocating load, E-4 
Relocating pointers, 5-35 

Relocation, 7-2 
and linking, 5-15 
bias, 7-2, 7-17 
calculators, 7-18 
factor, 5-5 
registers, 7-3 

Relocation Directory (RLD), 
5-15, 5-46, 6-7 

Removing a cassette, 1-6 
Repeat (proceed) count, 

7-14 
.Repetitive execution (EDIT), 

4-9 
Resident Monitor (RESMON), 

1-3, 3-17 
communicating with, 9-1 
error messages, 9-25, C-22 
example, 9-2, 9-26 
non-fatal error codes, 9-5 

Restricted cassette 
standard, F-6 

Rewind button, 1-5 

Save buffer (EDIT), 4-23 
Sentinel file, 1-5, F-2, 

F-5 
Sequence number, F-5 
Sequential files, 1-4 
Serial LA30 DECWriter, 1-11 
Setting up the stack 

pointer, 5-35 
Setting up trap for 

interrupt vectors, 
5-35 

Single buffer transfer on 
one device, 9-22 

Single-instruction mode, 
7-13 

Index-5 



Software components, 1-2 
Software support 

information, E-1 
Special characters and 

commands, 3-8 
CTRL/C, 3-9 
CTRL/O, 3-9 
CTRL/P, 3-10 
CTIU./U, 3-10 
RUBOUT, 3-10 

Stack operations, 2-6 
Standard (Cassette), '1'-1 

Full, '1'-2 
Restricted, '1'-6 

Standard hardware devices, 
E-ll 

Starting a program, 1-10 
Statements, 5-4 

comments, 5-6 
labels, 5-4 
operands, 5-6 
operators, 5-5 

status byte, 9-5 
Status register format, 2-3 
Status/error byte, 9-17, 

9-24 
Subroutines, 2-9, 5-38 

Recursive, 5-41 
Swnmariea, 

Command and error message, 
C-l 

Switch register, 1-8 
Symbols, 5-7 

permanent, 5-7 
register, 5-9 
user-defined, 5-7 

SYSCOM, 3-17 
general locations, 3-19 
special locations, 3-20 

System, 
cassette, 1-2, 1-5, 3-1 

directory, 3-1 
communication (SYSCOM), 3-18 
configuration, minimal, 1-2 
conventiona, 3-3 
demonstration, D-1, D-2 
diagram, 2-2 
start-up, D-1 
structure, 2-1 

Tab stops, 3-23 
Table of breakpoints, 7-11 
Table of mode forms and 

codes, 5-21 
Table of proceed counts, 

7-12 
Table of relocation 

registers, 7-17 
Text blocks, 5-46 
Text buffer (EDIT), 4-10, 

4-23 
Text Editor (aee EDIT) 
Text mode {EDIT}, 4-4 
TRA block, 6-8 
Transfer mode, 9-4 
Transferring files, 8-4 
Trap vectors, 5-37 
Traps, 2-10 
Two pass assembler, 5-1 

Unamed control sections, 
6-6 

Wl.formatted, 
ASCII, 9-11 
Binary, 9-12 
Cassette I/O, 9-7 

UNIBUS, 2-3 
Unused bytes, '1'-5 
User program loading 

process, 3-21 
user prompting, 9-17 
User-defined symbols, 5-7 

global, 5-8 
internal, 5-8 

Using the CAPS-II Monitor, 
3-1 

WAITR vs. testing buffer 
done bit, 9-22 

WRITE, '1'-7 
Write-protect tabs, 1-3 
Writing, 

automatic PIC, 5-34 
non-automatic PIC, 5-35 
position independent 

code (PIC), 5-32 

Zeroing a cassette, 8-2 

Index-6 

," 
) 



CAPS-Il-USER'S GUIDE 
DEC-ll-OTUGA-A-D 

READER'S CO¥~ENTS 

NOTE: This form is for document comments only. Problems 
with software should be reported on a Software 
Proble~ Report (SPR) form. 

Did you find errors in this manual? If 50, specify by page. 

Did you find this ~anual understandable, usable, and well-organized? 
Please make suggestions for improve~ent. 

Is there sufficient docu~entation On associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

o Assembly language programmer 

o Higher-level language programmer 
o Occasional programmer (experienced) 

o User with little programming experience 

o Student programmer 
o Non-programmer interested in computer concepts and capabilities 

Name Date ________________________ _ 

Organization __________________________________________________________ ___ 

Street ________________________________________________________ ___ 

City ________________________ State ___________ Zip Code ____________ _ 

or 
Country 

If you require a written reply, please check here. o 



------------------------------- Fold H .... --------------------------------------

----------------------------- Do Not Te.r - Fold Here and Staple ----------------------------------------

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be pai~ by: 

Digital Equipment Corporation 
Software Communications 
P_O. Box F 
Maynard, Mass. 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 



1 

1 

1 

I 

,~. 

1 

I 
1 

1 

1 

1 

1 

1 

I 

1 

1 

'I 

'I 

I 
1 

,I 

1 



.. , 


	Front Cover
	Contents
	Preface
	Chapter 1 - The CAPS-11 Programming System
	Chapter 2 - Programming the PDP-11
	Chapter 3 - Using the CAPS-11 Monitor
	Chapter 4 - Editing the Source Program
	Chapter 5 - Assembling the Source Program
	Chapter 6 - Linking Assembled Programs
	Chapter 7 - Debugging the Object Program
	Chapter 8 - Peripheral Interchange Program
	Chapter 9 - Input/Output Programming
	Appendix A - ASCII Character Codes
	Appendix B - Assembly Language Summary
	Appendix C - Command and Error Message Summaries
	Appendix C1 - Keyboard Monitor
	Appendix C2 - Editor
	Appendix C3 - Assembler
	Appendix C4 - Linker
	Appendix C5 - ODT
	Appendix C6 - PIP
	Appendix C7 - RESMON

	Appendix D - System Demonstration
	Appendix D1 - System Start-Up
	Appendix D2 - System Demonstration

	Appendix E - CAPS-11 Software Support Information
	Appendix E1 - CAPS-11 Keyboard Monitor Loading Process
	Appendix E2 - Building Memory Configurations for the CAPS-11 System

	Appendix F - Cassette Standards
	Appendix F1 - Introduction
	Appendix F2 - Definitions
	Appendix F3 - The Full Standard
	Appendix F4 - The Restricted Standard

	Appendix G - CAPS-11 Assembly Instructions
	Index

