
DRAFT

11/60 MICROPROGRAMMING

SPECIFICATION

(DRAFT D, 11-1--77)

(Please direct comments to Tom Sherman
ML3-3/E71, x5300)

The information in ,this document is subject to change witpout
notice an:eL shouldrtot be contrued as a commitment by Digital
Equipment,,,CorpQration... Oigi tal Equipment Corporation aSsumes
no .responsibl1'ty :for any. errors that may appear in this
document.

Copyright. 0 1976, 1977, by DIGITAL Equipment Corp., Maynard, MA.

· , ... :; -,

\
\

PREFACE

This manual is directed to the experienced assemby

language programmer and to the hardware engineer with

some programming experience.

Although the approach is tutorial, and some introductory

information is included, this manual is not intended to

teach a higher-level language programmer how to micro

program. A familiarity with the PDP-ll, and with machine

organization in general, is assumed.

This manual describes the 11/60 as seen from the micro

programming level. The cache, memory management, bus

control, and floating point hardware are not described

in detail.

A subset of the ISP notation is used in this manual to

describe hardware functions. This notation is described

in Appendix B. In programming examples, this ISP

notation is used as if it were source code. Note that

none of these examples will run on MICRO-II or any other

microassembler without the proper field and macro

definitions.

Appendix C contains a selective annotated bibliography

of recent work on microprogramming.

CHAPTER 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5

1.2

1.3
1.3.1
1.3.2

1.4
1.4.1
1.4.2

1.5
1.5.1
1.5.2
1.5.3

1.6

CHAPTER 2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6

2.2
2.2.1
2.2.2
2.2.3

2.3
2.3.1
2.3.2
2.3.3

2.4
2.4.1

TABLE OF CONTENTS

INTRODUCTION

What is Microprogramming?
The Datapath of a Computer
A Simple Datapath
Controlling the Datapath
Microprogramming and Machine State
Architecture and Organization

The 11/60 Processor

The User Control Store Option
The UCS Product
Applications of WCS

User Investment Required
Detailed Understanding of 11/60
Detailed Analysis

Fundamental Microprogramming Parameters
The 11/60 Microword
The Microcycle
Microprogram Flow

Structure of Manual

THE 11/60 DATAPATH

The Heart of the Datapath
The ALU Field
The B and A Scratchpads
The 0 Register
Multiplexers
ALU Carry Bits
Setting the Condition

BUS BIN and BUS AIN
Organization of ASP and BSP
Reading from the Scratchpads
Writing Back of ASP and BSP

The C Scratchpad
The Base Constants
Other Locations in the CSP
Writing to the CSP

The XMUX and the Shift Register
The Shift Register

1-1

1-1
1-3
1-4
1-5
1-8
1-10

1-11

1-14
1-14
1-15

1-16
1-17
1-17

1-20
1-20
1-24
1-27

1-29

2-1

2-1
2-2
2-4
2-5
2-6
2-7
2-10

2-12
2-14
2-20
2-23

2-26
2-26
2-28
2-29

2-31
2-32

2.5
2.5.1
2 .. 5.2
2.5.3

2.6
2.6.1
2.6.2
2.6.3

2.7
2.7.1
2.7.2
2.7.3
2.7.4

2.7A

2.8

2.9
2.9.1
2.9.2

The Shift Tree
AMUX and CNTR
The BMUX
The CMUX and SENDMUX

Shifting with the Shift Register
The SR Guard
Right Shift
Lef1: Shift

Shift Examples
Multiple-Word Shifts
ASL RO
ASR RI
ASH #-11, RO

The Counter Register

The BA Register

The Residual Control Concept
Set-up Registers
The RES Register

2.10 Summary

CHAPTER 3

3.1

3.2
3.2.1
3.2.2
3.2.3

3.3
3.3.1
3.3.2
3.3.3

3.4

3.5
3.5.1
3.5.2

3.6

CHAPTER 4

4.1
4.1.1
4.1.2
4.1.3

MICROINSTRUCTION SEQUENCING

Chained and Instruc~ion-Counter Sequencing

Timing
Control Timing
Intra-cycle Timing
Inter-cycle Timing

Microcode Branching
BUTs
Timing Constraints
The BUT List

The Case Branch

Subroutines
BUTs for Subroutines
Using Subroutines

Page Changing

THE CENTRAL PROCESSOR
i

Intra-Processor Communication
BUSDINand DOUT
UCON Control Interface
UCON Control Fields

2-33
2-38
2-38
2-38

2-41
2-41
2-42
2-43

2-44
2-44
2-46
2-47
2-47

2-48

2-48

2-50
2-50
2-51

3-1

3-1

3-3
3-4
3-6
3-8

3-12
3-14
3-16
3-18

3-19

3-23
3-27
3-27

3-28

4-1

4-1
4-1
4-2
4-4

4.2
4.2.1
4.2.3
4.2.4
4.2.5

4.3
4.3.1
4.3.2
4.3.3
4.3.4

4.4
4.4.1
4.4.2

4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7

4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7
4.6.8
4.6.9

4.7
4.8

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.3

5.2
5.2.1
5.2.2

5.4
5.4.1
5.4.2

The Inner Machine
Next Micro Address
Using the 11/60's Literal Facility
Reading the Status Registers
Writing the Status Registers

Memory Operations
The Instruction Register
Microword Bus Control Fields
Internal Addresses
Timing ConsLderations

The Cache/KT Section
The Cache
Accessing KT/Cache Registers

The Bus Control Section
The Console
Console Datapath Registers
Console Microcode
Console Use of UCON
Bus Control BUSDIN Mux
The DS Register
Other Bus Control UCON

The WCS Section
Addressing Structure of The Array
Transfer of Control
DB Register
Array Address Register
Array Address Mux
The WCS Array
Bus U Mux
Bus Din Mux
Control ROM

Using WCS As A Local Store
UCON Conventions

MICROPROGRAM INTERFACES

Flow of Base Machine Code
Overlapped Fetch
Instruction Decoding
Instruction Execution

Micro-Level Interrupt Activities
Service
JAMUPP

Interface Definitions
Service
Generating a Trap

4-5
4-7
4-11
4-13
4-16

4-19
4-19
4-20
4-23
4-26

4-29
4-29
4-32

4-34
4-36
4-38
4-42
4-42
4-44
4-45
4-47

4-48
4-50
4-52
4-52
4-52
4-53
4-53
4-53
4-53
4-54

4-54
4-57

5-1

5-2
5-2
5-7
5-8

5-8

5-10

5-11
5-11
5-13

,.
CHAP'rER 6

6.1

6.2

6.3

6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

CHAPTER 7

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

7.1
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6

A

B

C

D

E

F

WCS USAGE GUIDELINES

WCS Unibus Addresses

WCS Entry Points

TMS ROM Routines

Cautions and Warnings
Timing Considerations
Unibus Usage Conventions
Internal Scratched Use
PDP-II Processor State Requirements
Complete Decoding of Opcode Groups

EXAMPLES

Blockmor
Instruction Specification
Specify Algorithm
Specify State
First-Pass ,Coding
Try To Condense The Code
Check for Interrupt Latency

Glossary

ISP Notation

Bibliography

WCS Resident Section

TMS ROM Microcode

Additional Diagrams

6-1

6-1

6-4

6-7

6-10
6-10
6-10
6-11
6-11
6-11

7-1

7-1
7-1
7-2
7-2
7-3
7-5
7-6

A-I

B-1

C-1

D-1

E-1

F-1

,

CHAPTER 1

INTRODUCTION

,
DRAFT

The 11/60 is a user-microprogrammable PDP-II central processor.

The Writable Control Store option, along with its associated

software tools, provides a means by which you can tailor the

CPU to your specific needs. The subject of this manual is the

hardware environme~t visible to the microprogrammer.

To provide a secure basis for understanding the detailed

information in later chapters, this chapter focuses on three

topics:

1. What is microprogramming?

2. What is a datapath?

3. User microprogramming on the 11/60.

A short review of terms and concepts of hardware, architecture,

and microprogramming, addressing the first two topics, ·precedes

the discussion of 11/60 microprogramming. The final section of

this chapter discusses the structure and scope of this manual.

1.1 WHAT IS MICROPROGRAMMING?

Microprogramming is a method of controlling the functions of a

computer. The essential ideas of microprogramming were first

outlined by M.V. Wilkes in 19511. Wilkes proposed a structured

hardware design technique to replace prevailing ad hoc methods

lWilkes, M.V., "The Best Way to Design an Automatic Calculating
Machine." Manchester Univ. Inaugural Conference, 1951, pp16-21.

of logic design. He observed that a machine-language instruction

could be subdivided into a sequence of e.lementary operations which

he called micro-ope~ations. He likened the execution of the

individual steps to the execution of the individual instructions

in a program. This concept is the basis of all microprogramming~

For many years, microprogramming remained the province of the

hardware designer. As new machines, incorporating advances in

theory and technology, were designed, software for older, slower

machines became obsolete. Microprogramming proved to be an

attractive solution to this problem of incompatibility. New

machines could be provided with additional read-only memory, or

control store, which allowed them to emulate earlier computers.

The ~lse of emulation, or the interpretive execution of a foreign

instruction set, was later extended to provide upward and down

ward compatibIlity among a number of computers in a family.

The IBM System 360 series was a landmark application of micro

programming to achieve compatibility. In this series, there is

a common architecture, the 360, which is the target machine.

The different models are 360 emulators implemented on different

host machines. The·performance range of the series is due to the

varying characteristics of the aifferent host machines.

Microprogramming as a tool of the user has evolved slowly. Three

thingsha0 to happen before it became truly feasible. First,

technological advances in the field of fast random-access memories

was required. The use of read-only memories in.a uner environment

was troublesome and expensive, because correction of programming

errors, or bugs, required new memories. Second, user micro-

1-2

programming required the spread of previously specialized knowledge.

When only those engineers actually involved in the design of

microprogrammed computers knew what microprogramming involved,

users and educators were at a severe disadvantage. In recent

years, microprogramming has found a place in computer science

curricula, and has been widely used throughout the electronics

industry. The third, and most important prerequisite for user

microprogramming is the inclusion of generality and extendability

in the design of a computer. A machine designed solely to

implement a given instruction set, and with no address space for

user control p~ograms, makes alteration an onerous task. A

corollary to this point is that software tools must be developed,

so that the user does not have to work solely with binary patterns.

1.1.1 THE DATA PATH OF A COMPUTER

The heart of the 11/60 is a three-board microprocessor, whose

operational unit is the datapath. A datapath is composed of

three types of components:

1. Combinational units, such as adders, decoders, or other

logical circuits;

2. Sequential units, such as registers and counters;

3. Connections, such as wires.

The execution of a PDP-II instruction involves a sequence of

transfers from one register in the datapath to another; some of

these transfers take plq.ce directly, others involve an adder or
I

other logical ~ircuit. Each step in this sequence is controlled by

a microinstruction; a set of such microinstructions is known as a

microprogram.

1-3

Microprograms are held in a control store, a block of high-speed

memory which can be accessed once per machine cycle.

cycle is the basic Unit of time within a processor.)

(A machine

The cantralof the hardware components of the datapath by a micro

program is best explained by a simple example •
•

1.1.2 A SIMPLE OATAPATH

Figure l~l shows a simplified datapath. Its only combinational

component is an Arithmetic/Logic Unit (ALU), which has two

inputs. The ALU result, or output, is stored in 0, which is a

temporary holding register. The other components of this data-

path are B, another holding register; a scratchpad (SPAD), which

is a ~ollection of 16 holding registers; and their interconnections.

The ~ircles in tbe diagram indicate gating logic.

l ',l'A II

______ &f
hgurc 1- J A SimplitJcu Dlltapalh

1-4

The arrows in the figure represent the flow of data within this

datapath. Two operands a;e presented to the ALU inputs; the ALU

combines these and presents the result at the input to D. After

storage in D, the result can be presented at the input of one of

the registers in the scratchpad.

To route the flow of data between the components of this data

path, a set of gates, with corresponding control signals, is

required. The set of control signals needed is determined by the

topology of the interconnections between the sequential and

combinational units of the datapath.

For this datapath, the following control signals are needed.

LOAD D - To store the ALU result in D

ALUF - To select the ALU function

LOAD B - To store data from the scratchpad in B

R/W - To specify reading from or writing to the

scratchpad registers

ADDRS - To specify a location in the scratchpad

These signals are shown in Figure 1-2.

1.1.3 CONTROLLING THE DATAPATH

Now we can construct a microprogram to control this datapath.

To perform a PDP-II instruction, we must set up an initial

constraint: the eight PDP-II general registers will be stored

in the first eight locations of the scratchpad. To perform the

PDP-II operation

ADD R2, RI

the second and third locations in the scratchpad must be added,

1-5

and the result stored in the second location R [lJ. Symbolically,

this is represented as:

+ R(i)

(The back-arrow symbol is read as "gets".)

DReg

+ LOAD 0

ALU AlU Functior

~ •

B Reg

LOAD B

SPA D ReadlWrite

~ • Address
1

figure 1·2 Simplified Dalapath With Control Signals

1-6

It takes three steps, or machine cycles, to perform this operation

with this simple datapath. This avoids conflicting data signals

which would produce invalid results. First, R(~ is loaded into

B, next, D is loaded with the sum of Band R(l]; and lastly, the

result is written back to R(i]. The following <lre the basic

machine steps:

CYCLE 1:

CYCLE 2:

CYCLE 3:

B • R[2]

o ,-R[l]

R OJ .. 0

PLUS B

A time state table can be constructed to indicate which control

signals must be asserted in each of these steps, as shown in

Figure 1-3. The N/A entries indicate that the assertion of the

signal. will not afffect the current operation.

CONTROL SIGNALS

TIME R/W LOAD 0 LOADB ALUF ADDRESS

CYCLE 1 R N/A YES N/A R[2]

CYCLE 2 R YES NO PLUS R[J)

CYCLE 3 W NO N/A N/A R(a]

Bit.: 2 4 4 = 12 total

Figure 1·3 Time State Tahle

After creating the time state table, we find that twelve bits are

needed to provide the control signals for this datapath. The ALU

1-7

is allocated four bits to allow for a variety of operations; the

scratchpad is assumed to have 16 locations, and the READ/WRITE

signal is allocated two bits for a "do nothing" state.

These twelve bits can be combined to form a format for a micro-

instruction.

:

: ADDRS

------------------~- ALUF

~--------------.. .. LOAD B These
are the

------.--,;.--------.. LOAD 0 fields

--------------------------~ WRITE

READ

This microinstruction format, or microword, is divided into fields.

Each field comprises the bits which are used to control a

particular signal or function •

. Using the time state table and the microinstruction format, we

can now write a microprogram to perform the PDP-II instruction

ADD R2, Rl:

CYCLE 1: 1 0 0 1 0 0 0 0 0 0 1 0

CYCLE 2: 1 0 1 0 0 0 0 1 0 0 0 1

CYCLE 3: 0 1 0 0 0 0 0 0 0 0 0 I

1.1.4 MICROPROGRAMMING AND MACHINE STATE

The qeneral reqisters form part of the processor state of a PDP-II.

By defininq the first eiqht locations of the scratchpad as the

PDP-Il general registers, we have made our simple datapath

1-8

implement, in part, a PDP-ll.

The processor state of a computer is the set of registers and

flags that hold the information left upon the completion of one

instruction available for use during the execution of the next

instruction.

programmers working at different levels of a machine see

different machine states: an applications programmer may never

be concerned with machine state at all. A machine-language, or

macro-level programmer knows the PDP-II processor state to be

defined by the contents of ~ through R7 .and the Processor Status

Word. Nearly 100 registers are included in the machine state

known to 11/60 microprogrammers. At the nano- or hardware level,

even more machine state is seen.

This concept of machine, or processor, state is fundamental to

an understanding of microprogrammable processors like the 11/60.

State changes at the microprogramming level can affect the macro

level processor state.

For those readers with some exposure to the theory of finite

state machines, the analogy with a microprogrammed machine may

be useful. A computer is made unique, or defined, by the functions

it performs and the machine states it enters while performing those

functions. Because of this, two machines can be built differently

and yet perform identically. A microprogrammed machine changes

state as it reads successive locations in the control store,

emulating the state changes that would take place in a completely

"hard-wired" machine. Additionally, the macro-level state, which

is a subset of the micro-level machine state, changes as if there

we~e nornachine but the macro-level machine. A PDP-II is thus

"covered" by an 11/60.

1.1.5 ARCHITECTURE AND ORGANIZATION

To additionally distinguish the macro-level machine from the

micro-level machine, it is useful to differentiate between the

terms architecture and organization.

Architecture, in this manual, refers to that set of a computer's

features that are visible to the programmer. To a PDP-II

machine-language programmer, this includes the general registers,

the instruction set, and the Processor Status Word. It was

architectural identity that made the members of the IBM System

360 series compatible.

r~
./

Organization describes a level below architecture, and is concerned

with many items that are invisible to the programmer.

The term architecture describes ~ facilities are provided,

while organization is concerned with how those facilities are

provided. (Occasionally, another term is included in this

hierarchy: realization. This term is used to characterize the

components used in a particular machine implementation, such as

the type of logic and chips used.)

The macro~level organization, transparent to the macro-level

programmer, defines the micro-level architecture of the machine.

The concept is illustrated graphically in Figure 1-4.

1-10

MACRO-LEVEL ARCHITECTURE

POP-II Insturction set, General Registers, etc.
Proqrams reside in main memory

MACRO-LEVEL ORGANIZATION = MICRO-LEVEL ARCHITECURE

11/60 registers (.100) and operational capabilites.
Programs reside in control store

MICRO-LEVEL ORGANIZATION

Hard-wired logic

Figure 1-4 Hierarchical Structure of Memories,

Architecture, and Organization

1.2 THE 11/60 PROCESSOR

The 11/60 is a mi.d-range PDP-II processor. It is a microprogrammed

implementation of the standard PDP-II architecture. A floating

point unit, cache memory, stack limit, and memory management are

1-11

integral parts of the processor. With the Writable Control Store

eWCs) option, th~ user can augment the architecture of the PDP-II.

The micro-level architecture of the 11/60 is radically different

from the standard PDP-II architecture, i.e., structure, visible

to the mac'ro-level programmer. To successfully microprogram the

11/60, you must familiarize yourself with the details of its

micro-level architecture.

The 11/60 can be divided into five logical sections, as shown in

Figure 1-5. The microprogrammer's task is to control the flow

of data within each of these five basic sections, and sometimes

between them. Of primary importance is the Datapath section, where

most data handling functions are performed. The Datapath is

described in detail in Chapter 2.

-
Each section will be discussed in more detail later in this manual;

for the moment, it .is only necessary to be aware of their general

function.

The Bus Control section contains the Unibus control logic, the

timing generator, and the console interface.

The KT/Cache section contains the memory management logic (KT); the

stack limit register (KJ) and lOl4 words of high-speed cache

meriory.

The Processor Control section contains the control store for the

base machine in the form of a read-only memory, or ROM; other

1-12

...

..J

o

c

I

A

• 7
. ,

6 5 3

=:~.::..::= ::..-.-=.: .. ::.:: -.....,..--:=.-

B)S (O\,TJ(OL KT/C~CHE DATA Po A. TH PROCESSOR CONTROL wcs

<...., ·r·

;.

•

.. "'~ !--~

-.+
----------------~~> ::""_'

I

-0 \- j:) L ___ ~ 1;---;-& ~I ~i1~.-.-. _
Fl' l tJ. . I ~ Co ::J --'- .; 1 , i ~i i ..,..--,--

~ _ -L::.- ,~,'T j I"" I : ~ .•.•.•. __ ~ ~ ~ __
00«_, 1-- , ,-1,::-, i nil I t ~., ,'II I . • '-.... -.-.-----, ~

~
:":C"~.f

--4-____ _

,4 L.:x i ...;

-::. :-~-

.-.'::: ...

~~

~ ~;;-~;~~~:t:~ '':Yc'
I

...........

... . :".'rJI

I
t ,.

.. ,,"'T ~ : "L.~ ~. I "J i ~OM . I I I .- R~rv,
(0"): T I • i *-t: , '-r-

I I ~ - • • I . • t ___ (~ " '.~.t

~~~.. ~~:~:.-= :~:-~ J ,,'~;':~~~~" c~~':~~' T 

~ Its.' .• ~. YAS., I ......... ~~..... -==.: __ .. 
j 1-- J -'- , ...... cr' • • ,:.':o;E , -...... T ....J --~ ~ J. I 

I . 1 . : I J ~~~.----.,..-
l L .! ..• 'I --r;-l!.. t ~ '1' 

- ! .. :I~"- :. 1 ,..... ~~ 
: _i __ ,.-~'l:- iri. t c:-J 
~ ~~~.:5 ~ , --'"--'--.1.-.& 

.~ • ;"I, ..... W.-, 

'- -r-- ~ 

I I ~us )I~ ~ 

.. 5:·'I,IIL.' 
~. ~ CO"TIIIOL 
.... : ..... uol r .. ',: ~ ... -

FIGURE 1-5 

••. ,aT.""T .. ",: .. _ .u: .. :s 
.s:IIe •••• 

"1 ... 0-·,· .. ••••• .... ,.... ,0" 

"~I> PROCESSOR 
..... : t-n-'. 

-2 

LOGICAL SECTION OF 11/60 

-il 

D 

I' ... 

I 

A 



control logic, the Processor Status word CPS) and the Floating 

Point Status register (FPS). 

The WCS section contains additional control store for the user 

microprogrammer in the form of a RAM (Random Access Memory) • 

This RAM can also be used as a high-speed local store with the 

aid of routines stored in'the Transfer Micro store (TMS) ROM. 

The main entry into the Writable Control Store is initiated by the 

XFC.USER opcode, 0767xx. This PDP-II machine instruction causes 

control to be transferred to a special location, entitled 

USERDISPATCH, .in the wes RAM. 

1.3 THE USER CONTROL STORE OPTION 

The principal use of the 11/60 microprocessor it3 the implement

ation of the PDP-II instruction set. However, the processor has 

been designed with a dynamic control structure so that other 

functions can be implemented. The ues option provides additional 

and alterable control store for the 11/60, enabling you to 

extend the capabilities of your PDP-II. Possible applications 

range from extending the PDP-II instruction set to emulating a 

computer with 'a different instruction set. 

1.3.1 THE ues PRODUCT 

The Writable Control Store is a one-board hardware option for the 

11/60 central processor, which includes a IK-by-48 bit Random 

Access Memory (RAM). This hardware by itself is not the complete 

product. 

1-14 



To use the wes hardware, that is, to do microprogram development 

and debugging, DIGITAL provides the following software tools: 
A MICRO-ASSEMBLER 
A LOADER 

The software tools for the wes option are described in the ues 
Software Tools Reference Manual. 

1.3.2 A»PLICATIONS OF wes 

By design, the PDP-ll is a general-purpose computer. Thus there 

are special-purpose computers which will perform better than will 

a PDP-lIon those applications for which they have been designed. 

wes enables you to tailor, or bias, the PDP-II. to your particular 

special-purpose needs. Such tailoring can be classified hierarch-

ically as follows. 

·Class 0 - Inntruction Set Extensions 
Some functions were considered too special

purpose to be included in the original PDP-li 

design. These functions, such as block move 

and decimal arithmetic, can become new 

PDP-II instructions. Their definition should 

conform to II-instruction format and style. 

Class 1 - Application Kernels 
Most applications and systems programs have 

sections which are executed much more 
frequently than others. A useful rule of 
thumb is that 10% of the code is executed 

90% of the time. Kernels within these critical 

sections can be microprogrammed for better 
throughput. Examples include the Fast Fourier 

Transform, an operating system's memory 
allocation routine, and Cyclic Redundancy Check 

calculation. 

I-IS 



Class 2 - Emulation 
The interpretive execution of an instruction set 

:oy software is generally called simulation. When 
this interpretation is done by hardware it is 

called emulation. Microprogramming provides a 

means for inexpensively emulating several different 
instruction sets on one piece of hardware. The 

tasks involved in emulation include instruction 

decode, address calculation, operand fetch, and 

I/O operation as well as instruction execution. 

Class 0 applications are relatively simple and straightforward uses 

of microprogramming. Class 1 applications require more intensive 

study and possibly statistical analysis if they are to improve 

performance significantly. 

The final class of applications, emulation, is best served by a 

machine specifically designed as a general purpose emulator. The 

11/60 was designed to emulate a PDP-lI;hence, the organization of 

its datapath is keyed to the 16-bit PDP-Il word and other 

characteristics of a PDP-II computer system. These factors in 

large part determine what other computers can be emulated by the 

11/60. 

1.3.3 EXTENDED CONTROL STORE 

To Be Supplied 

1.4 USER INVESTMENT REQUIRED 

To gain real benefit from use of the ues option, you should invest 

t~me and resources in two areas of study prior to attempting any 

1-16 



any WCS microprogramming. These two areas are: 1) understanding 

the 11/60 and 2) ana1y~ing your proposed application. 

1.4.1 DETAILED UNDERSTANDING OF THE 11/60 

To microprogram the 11/60 effectively, you must study the internal 

details of the microprocessor--particu1arly the datapath. Although 

this is not a difficult task per se, users with little previous 

hardware exposure may have some problems in becoming accustomed to 

the hardware terminology and the notation used for hardware 

description. Moreover, the largely unprotected nature of the 

microprogramming environment may seem overly complex and unpredict

able. 

This manual discusses the 11/60 hardware at the functional level. 

Occasional references are made to the Engineering Drawings for the 

11/60 (order no.): these-references are provided only for those 

users whose curiosity would naturally lead them to the print set. 

Most users should find that this manual, used in conjunction with 

the UCS Tools Reference Manual, is all that is required to micro

program the 11/60 UCS effectively. 

Appendix B of this manual contains a selective annotated biblio

graphy of recent work on microprogramming and emulation. 

1.4.2 DETAILED ANALYSIS OF PROPOSED APPLICATION 

Of the three classes of microcode use described in Section 1.3.2., 

Application Kernels are the most likely "end-user" use of the 

Writable Control Store. Careful analysis is warranted. 

1-17 



Use of microprogramming will not always result in significant 

performance gains. Applications well-suited to microprogramming 

may improve performance by a factor of 5 to 10; poorly suited ones 

not at all. You must understand your application and analyze the 

execution of its individual instructions. This section is aimed at 

helping such analysis, but it is in no way a complete treat3ent of 

performance analysis. 

A machine-language instruction goes through the following processing 

phases: 

I-phase 

Instruction fetche¢l from memory and decoded. 

0":' phase 

Operand addresses calculated; operands fetched from memory. 

E-phase 

Operati~n executed upon operands. 

Each of these phases takes one or more microcycles. The total 

execution time, assuming no overlap of the phase, is the sum of 

these microcycles. Each phase can be seen as a candidate for 

elimination or for cycle-reduction through microproqramming, with 

resulting gains in performance. 

The following generalizations can be made. 

COMPOSITE OPERATIONS SAVE I-CYCLES 

1-18 



A block move on the PDP-II can be programmed as: 

MOV COUNT, Rg i INSTRUCTION I 

MOV tA, Rl 2: FIRST SOURCE ADDRS TO RI 

MOV #B, R2 3: FIRST DESTINATION ADDRS TO R2 

LOOP: MOV (RI)+, (R2)+ ; 4: MOVE AND INCREMENT BOTH ADDRS 

SOB Rfl, LOOP 5: DECREMENT AND 

Combining these operations into one instruction, 

BLOCKMOV #A, #B, COUNT 

TEST COUNTER 

eli.minates I-cycles, with the predominant savings coming from 

instructions four and five. 

USING PROCESSOR STORAGE SAVES O-CYCLES 

The microprogramrner can use internal CPU ,storage (the hardware 

registers) for intermediate results. There are a number of hard

ware registers, in addition to the general registers Rfl-PC, which 

can be used by the microprogrammer to avoid memory cycles. 

Because there is more parallelism at the micro-level, the inner 

machine (the microprocessor) is potentially more efficient than 

the outer machine (the PDP-Il). 'Moreover, the microbranching logic 

structure of the microprocessor provides a broader decision logic 

capability which can be ~xploited, for example, in table search 

and string-edit 'operations. 

In general, most cycle reductions which result from microprogramming 

come for the I- and a-phases of instructions. 

1-19 



When analyzing instuctions, you must also consider the ratio of 

the time used by the I- and Orphases to that of the E-phase: , 
I + o 

E 

In polynomial evaluation or vector scalar multiplication, for 

example f the cycles saved by a composite instruction are a small 

fraction of the overall execution time. 

In summary, you should analyze your application to develop 

candidate sections for microprogramming, then apply detailed 

analysis to the instruction execution sequence within these 

sections before coding.a microprogram.-

1.5 FUNDAMENTAL MICROPROGRAMMING PARAMETERS 

This section gives an overview of several topics which represent 

fundamental parameters of the microprogramming environment. 

First, the 11/60 microword is described in general terms. Next, 

the basis for later discussion ~f timing is laid by a description 

of the microcyc1e. Finally, the central program flow of the base 

machine is described, and related to the disclclssion of 1-, 0-, and 

E-cycles in Section 1.4.2. 

1.5.1 THE 11/60 MICROWORD 

This section reviews the general concept of instruction formats as 

a foundation for describing the format of the 11/60 microword. 

1-20 



Note that an 11/60 microinstruction is exactly equivalent to one 

word of control store. Thus ,r the terms microword and micro-

instruction are interchangeable. In this manual, however, a slight 

distinction has been made in the interest of clarity. Microword 

is used as a generic term for a control store word. Micro-

instruction is used when focussing upon the control exerted by a 

particular microword. 

1.5.1.1 INSTRUCTION FORMATS -- An instruction, whether at the 

macro-level or the micro-level, is the basic mechanism that 

causes a procedure to be invoked. Instructions usually take two 

source' operands and produce a single result. This kind of 

instruction has five logical functions: 

1 and 2) Specify the address (location in storage) of the 

two source operands 

3) Specify the address at which the result of the 

operation is to be stored 

4) Specify the operation to be performed on the 

two source operands 

5) Specify the address of the next instruction in 

the sequence. 

These specifications may be explicit or implicit. Implicit 

specification saves space in the instruction at the expense of 

additional instructions in the sequence. 

There are four common formats for instructions: three-address, 

two-address, single-address, and zero-address (stack-type). These 

categories indicate how many of the address specifications are 

1-21 



explicit in the instruction. 

A normal PDP-ll instruction of the form OPR SRC DST uses a two

address instruction format. The address of both the source 

operands are explicitly specified. The result address is implicitly 

specified by the address of the destination operand. The next 

instruction to 'be executed is implicitly identified by the 

contents of the Pr~qram Counter. 

The 11/60 microword, on the other hand, uses a four-address 

instruction format: two source operand addresses: result address: 

and next instruction address are all explicitly identified in 

each instruction. There is no microprogram counter analogous to 

the PDP-ll pc. 

1.5.1.2 SEQUENCING AND. BRANCHING -- Because there is no 

11/60, each microinstruction specifies the address of its successor. 

Therefore, there is no requirement that microinst'ructions execute 

sequentially according to their storage address. 

Moreover, each microinstruction can also specify a branchcondi tion 

to be tested before the next microinstruction is fetched. The 

result of the test can cause a different microinstruction to be 

fetched. 

1.5.1.3 t·1ICROWORD FIELDS == The 11/60 microword is divided into 

fields, each of which is associated wi~h a particular functional 

unit or control function. Not all fields are contiguous, and they 

1-22 



can overlap. That is, a single bit can be used to generate 

more than one control siqnal. 

The interpretation of some overlapping fields in the 11/60 micro

word are controlled by a technique known as bit steering. A few 

bits in the microword are set aside to specify how the bits in 

other fields of the mlcroword are to be interpreted. 

For example, there are two bits in the 11/60 microword that can be . 

used either to control scratchpad writing or to clock registers on 

the datapath. A third bit is used to specify what the first two 

bits mean, as illustrated in Figure 1-6. 

Scratchpad 
Control 

Register 
Control <J 

A B 

.~ 
A B 

Q ~ 
Figure 1·6 Oit Steering 

C 

B 
C 

B 

Other "cases where fields overlap are protected from conflicts 

because the different uses of the same bits are mutually exclusive. 

For example, the· literal field overlaps the ALU function field. A 

microinstruction which specifies a literal value will generally 

specify operations to store that data correctly in the datapath. 

Another microinstruction would manipulate that literal data. 

1-23 



1.5.1.4 WIDTH AND ENCODING OF THE MICROWORD -- The standard width 

of a control store word on the 11/60 is 48 bits·. There are 

extensions in some sections of the base machine control store 

which make the microword 56 bits wide. This manual will discuss 

only the 48 bits available to the UCS user, because the 8 extension 

bits are highly specific to PDP-II emulation. 

The 11/60 employs what is known as a "horizontal" microword. That 

means that a majority of the bits in the microword· are directly 

used to generate same signal within the machine. Some of the fields 

are encoded, meaning that the value represented by the bits in that 

field must be decoded before· control signals are generated. 

The term horizontal also impliE~s a significant degree of parallelism 

within the 11/60 datapath. One microinstruction can, in some 

. circumstances, be Much more powerful than one macro-level instruction. 

Figure 1-7 is a summary diagram of the 11/60 microword. Most of 

. the notation will not make sense to you now; since each of the fields 

will not be described in detail until later chapters. It will be 

useful to refer back to this idiagram from time to time to see 

how the pieces fit together. 

1.5.2 THE MICROCYCLE 

Timing is extremely important to the microprogrammer. It imposes 

constraints on the operations that can be done within one micro

instruction, as well as what can be done within a group of micro

instructions. An awareness of what happens when will help to avoid 

trivial, but troublesome, errors. 

1-24 



':""r ___ A_L._U~F_(_a_U_s_~_~_au_S_A_J_:--,1 tLO~K~ f~-""'· ~-/~-~-1~~ I ~:~ 13. Se.qUCIoJCIN'6 

, 

:r~ 
I , 

~ 
I , , 
.,--------_--:.' · ~~. TI 

Figure 1-7 , Microworu Summary 

1-25 



A new ml.croword is gl.ven control of the. 11/60 at the beginning of 

each processor cycle, or microcycle. This microword controls the 

activity on the datapath throughout that microcycle. 

The 11/60 microcycle is 170 nanoseconds long. During this time, 

there are four clock pulses: PI, P2, P3, and pP3 (micro-P3). The 

microcycle is defined as the time period between two consecutive 

trailing edges of pP3. 

The other pulses, PI, P2, and P3, control the timing of events on 

the datapath. You will primarily be concerned with the timing of 

register loading. Inputs to a register must be stable before the 

register is loaded, or invalid data will be stored. 

For example, the result of an ALU operation can be loaded into 

a storage register at P2. 

A microword, and the microcycle during which it is in control of the 

11/60, is but one step in the execution of a PDP-II instruction. 

Each of the three clock pulses PI, P2, and P3 further divide this 

step: a number of data transfers can occur during one 11/60 micro

cycle. 

Figure 1-8 shows the relationship of the clock pulses to the micro

cycle. 

n __ -+-_____ ~ '--_______ +__ PI 

'--___ -+-_ P2 

PJ 

Figure 1-8 The Microcyde 

l-?h 



1.5.3 MICROPROGRAM FLOW 

The basic interpretive loop of instruction execution in 11/60 

microcode is as fo1towt: 

FETCH memory word addressed by PC 

! 
INCREMENT PC 

L 
DECODE 

1 
EXECUTE 

Every microprogram invoked by a PDP-11 opcode follows this pattern. 

The instruction currently pointed to by the contents of the PC is. 

brought into the processor from main memory and stored in the 

Instruction Register, or IR. The PC is incremented by two so that 

it points at the next location to be accessed. The decode step 

id~ntifies what instruction is to be executed, and dispatches control 

to the proper section of microcode. After the operation is per-

formed, another instruction is fetched. 

A slightly more detailed flow structure is shown in Figure 1-9. 

Note that at the completion of the instruction execution, a test 

is made for service conditions. If no service condition, such as 

an interrupt, exists, the next instruction is fetched. If a 

service condition does exist, control passes to another micro-

1-27 



t-phase • 

a-phase 

E-phase 

l 

FETCH 
get instr_, 
Increment PC 

Decode 

No 

Execute 

l ..,I •. ________ ----l 

Yes 

Yes 

Compute 
Operand 
Addresses 

rFETCH 
I Operands 

Increment 
PC 

~------.... To Service Routine 

FIGURE 1-9 Program Flow in the 11/60 

1-28 



program which handles the interrupt or other condition. The I-, 

0-, and E-phases are noted at the left side of the diagram. 

1.6 STRUCTURE OF MANUAL PRESENTATION 

r 

Two aspects of the 11/fO hardware are of prime concern to the 

microprogrammer: the data flow and the control flow, or control 

structure. 

There are three distinct kinds of data flow in the 11/6.0: 

Data flow within the datapath 

Data flow within the inner machine 

Data flow to the rest of the world. 

This data flow implies the model of the 11/60 in Figure 1-10. This 

model provides a different logical structure from that presented 

in Figure 1-5; this manual uses this new model as a conceptual 

framework for the discussion of the 11/60 hardware. 

The microprogrammer's world is the 'Inner Machine: the datapath 

and processor control sections of the processor. There are three 

interfaces between the Inner Machine and the rest of the computer 

system: data in, data out, and address out. 

This manual focusses on the Inner Machine and the microprogramming 

techniques for controlling it. Becuase these two major topics 

are interrelated, and because both must be understood before you 

can microprogram the 11/60, this manual discusses them in parallel. 

1-29 



The data flow within the 11/60 datapath is described in Chapter 2, 

with minimal reference to other parts of the model. 

Chapter 3 introduces the control structure of the 11/60, and 

discusses timing considerations. Further details are contained 

in Chapter 5. 

Chapter 4 extends the discussion of data flow to the inner machine, 

and then to the rest of the CPU. 

The material in Chapter 2, 3, and 4 is highly interdependent. One 

result is the Chapter 2 may seem overly detailed until you have 

finished reading Chapter 4. 

Similarly, the UCS Usage Guidelines and the Examples have been 

placed at the end of the manual so th3t they may be discussed in 

the context of previously presented information. 

1-30 



I CPU I 

INNER MACHINE 1 
MEMORY DATA 
SUB· OUT 
SYSTEM 

1 (Cache, OATAPATH 
KT. etc.) 

[ 0 1 
PROCESSOR 
CONTROL 

t-' 

~. 
I 

w 
B t-' 

c 
z 

r-- DATA 

CJ) ~R~ B 
~ AND 

c ~ 
(I) OUT A 

0 
L...--..< 

[ 1 [ 
IR 

MD 

J 

DATA 

IN 





CHAPTER 2 DRAFT 
THE 11/60 DATAPATH 

The datapath1 section of the 11/60 routes, manipulates, and 

stores data within the processor. 

This chapter describes the basic functional components of the 

datapath and the corresponding control fields in the micro

word. Looking at each component individually provides a 

secure basis for understanding the relationship of the data

path hardware to· the overall problem of microprogra~ng the 

11/60. 

At the end.of this chapter is a block diagram of the complete 

datapath (Figure 2-37). As you read through the chapter, 

refer to this fold-out diagram to see ho\t/ the pieces fit 

together. 

2.1 THE HEART OF THE DATAPATH 

The heart of the 11/60 datapath is the computational loop 

shown in Figure 2-1. 

There are two scratchpads (ASP and BSP) , each connected to a 

tri-state bus (BUS A1N and BUS BIN). These buses provide 

input to the ALU. The other ALU input comes from the CIN 

multiplexer, which provides the carry-in bit. 

o is a l6-bit register which holds the output of the ALU. 

This data can be directed back to the scrath.pads after 

1~178 7 4 

2-1 



storage in D. D(C) holds the selected carry-out bit from 

the ALU operation. 

--------:::::----~ 

Bu~e A 

Figure 2-1: The Heart of the Datapath 

Control o! the data flow among these components is provided 

by the microword. 

2.1.1 The ALU Field of the Microword 

The ALU 2 receives two l6-bit words from BUS BIN and BUS AIN, 

performs an arithmetic or lqgical operation upon them, and 

produces a l6-bit result. 

The operation performed by the ALU is determined by the ALU 

field of the rnicroword. This field occupies bits 47 through 

44, which is represented as 1-1<47:44>. Each of the sixteen 
-:t 

possible values of this field selects a unique ALU function J

• 

274Sl8l in semiconductor vendors' catalogs. 

3The function codes shown in a vendor's catalog for the 74S18l 
are not the same as the codes used in the 11/60 l-lword. 

2-2 



Figure 2-2: ALU Field -of the ~word 

Table 2-1 shows the function invoked by the various values 

of the ALU field and the corresponding source for the carry-in 

bit. (The carry-in is described in detail in Section 2.1.5). 

OCTAL VALUE 

o 
1 

2 

3 

4 

5 

6 

7 

10 

11 

12 

13 

14 

15 

16 

17 

TABLE 2-1 

ALU CONTROL FIELD ENCODING 

VERBAL DEFINITION 

Complement A 

A plus B plus PS(C) 

(NO'r A) and B 

Generate 0 

A plus B plus D(C) 

A plus (NOT B) plus D(C) 

A Exclusive OR B 

A AND (NOT B) 

Subtract B from A if D(C) = 1 
Add if D(C) = 0 

A plus B 

Select B 

A AND B 

A plus B plus 1 

A minus B 

A Inclusive OR B 

Select A 

2-3 

CIN SOURCE 

1 

PS (C) 

PS(C) 

PS(C) 

D (C) 

D(C) 

D (C) 

D(C) 

o 
o 
o 
o 
1 

1 

1 

1 



Notice that ALU operatiqns ~such as A plus B plus PS(C) and 
i . 

A plus B plus D(C) serve thf~ same function as PDP-II 

instructions like ADC, without requiring a separate 

micro-instruction for handling the carry. 

2.1.2 The B and A Scratohpads 

Primary data storage for the datapath is provided by the 

A and B scratchpads, each of which contains 32 registers. 

Each of these scratchpads is divided into two sections of 

16 words each; a HI section and a LO section: (refer to 

Appendix B for an explanation of the notation) 

BSPLO := BSP[O:17]<15:00> 

BSPHI := BSP[20:37]<15:0C> 

ASPLO := ASP[OO:17]<15:00> 

ASPHI := ASP[20:37]<l5:0Q> 

BSPLO and BSPHI have separate outputs onto BUS BINi similarly, 

ASPLO and ASPHI have separate outputs onto BUS AIN, as shown 

in Figure 2-3. 

B~ 
LO 

..J 

ALU 

ASP 
LO 

Figure 2-3: BSP and ASP 

2-4 



2.1.3 The D Register 

The purpose of the D register is to store the ALU output, either 

for testing or for routing elsewhere in the datapath or the 

processor. The ALU result can be clocked into 0 either at P2 

or P3. (When a register is clocked, the data at its input is 

immediately transferred to its output; the output does not 

change until the register is clocked again or cleared.) 

Two fields in the microword, each one bit \'lide, control the 

D register. CLKD, ~<28>, specifies whether or not D will be 

loaded in the current microcycle. The time at which D is 

clocked is determined by the WHEN field, ~<29>. 

The D register is clocked only if the CLKD field contains a 1. 

If WHEN contains a 0, clocking occurs at P2; if WHEN contains 

a 1, clocking occurs at P3. 

Figure 2-4: WHEN, CLKD Fields 

After an ALU result has been clocked in the D register, it can 

be directed to a variety of places: other datapath logic; 

other sections of the processor; main memory; or temporary 

storage in the scratchpads. 

2-5 



2.1.4 Multiplexers 

A multiplexer is a component which has several data input ports 

and only one output. Selection signals control which input 

port's data is gated to the output. Data is neither modified 

no stored when it passes through a multiplexer. 

Both the input ports and the selection signals for a multiplexer 
are numbered. The (control) data at the selection ports forms 

a binary nwnber which designates one input port. 

For example, a four-to-one multiplexer, AA shown in Figure 2-5, 
has two selection signals, SO and Sl. There are four input 

ports, .1\, B, C, and D: where A is the low-order, or 0, port. 

\ N P l.1 \"S "\Rtlrn \,,~ L€; 

C~ ... '\ P 1.. .. , 

~'5e\e(.h~ 

KS0·,a\~ 

:)h 
~ 
~ 

i. 
L 

Figure 2~ 5: Four-to-One l-lul tiplexer 

~¢ 701 t S~ le(. U a ,.-
if; A 
1- B 
¢ c... 
1- J) 

If SO and 81 are both 0, then the ~ata at port A is transferred 

to the output of the multiplexer. If 51 is 1, and SO is 0, then 
the C port is selected. The truth table in Figure 2-5 

illustrates this correspondence. 

2-6 



2.1.5 ALU Carry Bits, CIN and D{C) 

Section 2.1.1 described ALU function control and mentioned 

the carry-in bit, CIN. This section examines both the carry

in and carry-out bits of the ALU and their relationship to 

each other. Both CIN and the carry-out bit D(e) are selected 

by multiplexers. The multiplexer which selects the eIN bit 

has four inputs: 0, 1, PS(C) (the C-bit of the PSW), and 

D(C), the last carry-out. Selection of this multiplexer is 

controlled by the ALU function code. 

After an ALU operation is complete, the l6-bit result can be 

clocked into the D register. If the D register is clocked, 

D(C) is clocked at the same time. The bit which becomes D(C) 

may be the actual carry, or overflow bit of the ALU~ hence 

the term carry-out is used. However, the overflow is not the 

only source for D(C). 

It is best to consider D(C) as a state bit retained from an 

ALU operation - sort of an internal condition code. It has 

a number of different functions. As the carry output of the 

ALU, D(C) can be fed back into another ALU ope!ation through 

CIN, thur providing a facility analogous to the PDP-II 

operations ADC and SBC. D(C) is also used to load the C-bit 

of the Processor Status Word, and is also used as a test 

condition for microcode branching. 

The source for D(C) is chosen by the COUT MUX. Unlike the 

multiplexer for CIN, the COUT ~UX is controlled directly 

from the microword. Indirectly, this does affectCIN 

selection when the ALU function of the next microword uses 

D(C) as the eIN source. In these cases, the selection for 

the COUT MUX in one instruction will determine the source 

for the eIN bit in the next microinstruction. 

2-7 



Figure 2-6 shows the relationship between the ALU, the CIN 

~rux, and the COUT MUX. 

ALU 

Figure 2-6: CIN, COUT of ALU 

2.1.5.1 Selection of D(C) Source 

COUT07 and COUT15 are, respectively, the byte and word carries 

from the ALU operation. This carry bit can then be clocked 

into the Processor Status word, PS, or fed back into a sub

sequent ALU operatio"n. For example, during a 32-bit add, the 

carry-out bit from the addition of the low-order words becomes 

the carry-in bit for the addition of the high-order words. 

COUTg7 and COUT15are undefined when a logical operation is 

performed. 

2-8 



ALUIS is bit 15 of the ALU result, the sign bit. Testing for 

a ;negative result and some shifting operations would select 

thi::; source for Dee) . 

ALUg7 is bit 7 of the ALU result, which is the sign bit of a 

byte quantity. 

ALUgg is the g bit of the ALU, which indicates an odd ·or 

even result. 

eIN is the output of the CIN MUX, the same carry-in bit 

presented to the ALU. This allows you to select a 1 or a 0 

for D(C) directly, depending on the ALU code. 

PS(C) is the C bit of the Processor Status word; the base machine 

uses it as the DeC) source for those PDP-II instructions in which 

the e bit of the PSW does not change. 

D{C) is the D(e) bit generated by ·the previous eLK D specifi

cation. This allows you to save, or recycle, a DeC) value from 

the last time an ALU result was clocked into D. 

2.1.5.2 Control of COUT ~rux -- The COUT ~rux is controlled 

by the COUT field of the microword, ~<32:30>. 

Figure 2-7: COUT Field of Microword 

The encoding of the COUT field of the microword is shown in 

Table 2-2. 

2-9 



Note that, regardless of COUT, D(C) is not changed unless 
CLK D = 1; D(C) is clocked at the time specified by the 

WHEN field. 

Table 2-2 
COUT FIELD Encoding 

D(C) SOURCE MNEMONIC COUT FIELD VALUE 

Output of CIN MUX CIN 0 

C bit of the PSW PS(C) 1 

Bit 0 of ALU result ALUgg 2 

Bit 7 of ALU result ALUg7 3 

Bit 15 of ALU result ALU15 4 

Byte Carry COUT?' 5 

Word Carry COUT15 6 

Carry-out from D(C) 7 previous operation 

2.1.6 Setting the Condition Codes 

The condition codes, N, Z, V, and C of the Processor Status 

Word, are macro-level state indicators whose values are defined 

for every PDP-ll instruction~ Their purpose is not to record 

the status of the micro-level ·machine after every microcycle, 

and hence these bits are clocked only when specifically 

indicated by the microprogrammer. 

There are two ways to s~t the condition codes; only one·of them 

will be discussed here. A second, more general method is 

described in Chapter 4. 

2-10 



The Set Condition Codes (SCC) field, ~<2S>, controls the 

loading of the PDP-II condition codes. When sec contains 

a one, the condition codes are altered during the ~ 

micro-cycle. D and D(C) must be clocked at P2 for the 

condition codes to be set correctly. This timing relation

ship is illustrated in Figure 2-8. 

4 ~cycle n ) .. ~cycle n + I 

~word: CLKD/YES, t'fflEN/P2, 

SeC/YES, COUT/ALUI5 

action: P2, D +- ALU P2, PS(C) +- D(C) 

P2, o (C) +- ALUIS P2, PS(N) +- 0<15> 
P2, PS(Z) +- 0<15:00> 
P2, Ps(V) +- S 

Figure 2-8: Condition Code Clocking 

) 

= !tJ 

If the IR contains an XFC or other reserved opcode, then the 

PDP-II condition codes are clocked as follows. The e bit of 

the PSW is loaded with D(C). (From the previous discussion of 

D(C), you can' see that there are actually eig!1t sources for the 

PS(C).) The Nand Z bits reflect the status of the D register 

at P2 of the microinstruction in which sec was set. The V bit 

is loaded with o. 

D and D(C) must remain stable through P2 of the microcycle 

following the SCC/YES speci~ication. 

2-11 



Whether or not you, as a WCS user, set the contition codes 

during a microcycle depends on the requirements, or 
expectations, of the macro-level program. For example, if 

your macro-level program needs to branch upon conditions 

resulting from an XFC instruction, you would clock the 

-condition codes. 

2.2 BUS BIN AND BUS AIN 

The buses that provide operand input to the ALU are tri
state buses; that is, they connect a number of tri-state 

devices. The use of tri-st-ate logic in the 11/60 allows 

a multiplexing function to be performed without actually 

using a multiplexer, with resulting hardware savings. 

The symbol .~ denotes a tri-state device. 

A number of sources on either side of the ALU can be

selectively enabled onto BUS BIN or BUS AIN. Figure 2-9 

shows the relationship of the ALU input sources to the 

portion of the datapath previously discussed. 

On the B-side of the ALU, there are three sources: the 

two sections of the BSP, ane another l6-location scratchpad, 

the CSP. On the A-side, there are four locations: ASPLO, 

ASPHI, the Xl-1UX, and the Shift Tree. Each of these components 

will be described in detail in succeeding sections. 

The BEN field of themicroword, ~<43=42>, controls which 

source is enabled onto BUS BIN; the AEN field, ~<39:38>, 

determines which source is enabled onto BUS AIN. Table 

2-3 defines tbe encoding of these fields. Two BEN codes 

are dedicated to the CSP because there are two methods of 

providing addresses to this scratchpad. 

2-12 



Figure 2-9: BEN, AEN Fields of Microword 

I~ 

, 
J);) 
~ L I .D 

1 -.L ,1\. '----1.--....-----"1. 

AL-U 
l 

\./ 

...... -"'" : I I~ I 'I, 

Figure 2-10: BUS BIN and BUS AIN Sources 

2-13 



'Table 2-3 

Bus Enable Field Encoding 

BUS B BUS A 

SOURCE MNEMONIC BEN SOURCE MNEMONIC AEN 
ENABLED VALUE ENABLED VALUE 

BSP[O:17] BSPLO 0 XMUX x.~UX 

BSP[20:37] BSPHI 1 Shift Tree CMUX 

Arbitary CSP 
location CSP 2 ASP[O:17] ASPLO 

Base Constants BASCON 3 ASP[20:37] ASPHI 

2.2.1 Organization of ASP and BSP 

The organization of the B and A scratchpad~ is shown in 

Figure 2-10. 

The first eight locations of ASPLO and BSPLO are reserved for 

the PDP-Il general registers RO-PC. These registers are 

duplicated to allow concurrent access of two registers. This 

allows register-to-register operations to be performed in a 
single- microinstruction. The User Stack Pointer is duplicated 

in BSP[l6] and ASP[l6]. 

Three locations are reserved for the WCS user; these are 

indicated in the illustration as WCSB[n] and WCSA[n]. The 

contents of these registers is not altered by any of the base 

machine or floating point microcode. 

2-14 

0 

1 

2 

3 



The standard microcode floating point implementat~on uses 

ASP[10:15 , 30:35] and BSP[IO:15, 30:35] as the floating 

point accumulators. If the FPII-E floating point processor 

is present, these loca~ions are also available for the WCS 

user. No other standard microcode uses these registers. 

The remaining registers fall into two classes: those which 

the WCS user may alter, and those which you must not alter. 

2-15 



I-~ ] 
CIt:i- ___ 1 

,- It 2. _J 
r---- ~3 ---] 
C~~~~~~-] 

C_~.s J 
.[=--R~--l 

C~A!-=] 
[-fAe~i.tJ ___ j 
C-~~~-(~~-'j 

l·-·-FAei. Cii 1 
--_. - _ ...• -- --- -.. - .. ~. 

1
·'_-_'_'" - .' ........... _ ... ] 

. . FAc~[3J 
- ...... -------

r---- ------ ._--.-.- ------, 
___ --_~AC.-1.(1? I 

[ __ :·~A-i~F~~-l 

e".g.:&1~ 
aSPH. 

[?satil_] -C=-~--J ~CttJ J 
C~8Q~=.] L-_~~_~J '_wesQ~ 
Li(w'~lAV)] L--R"2--·-, I ~:~J 
r--~(!~-i~i~] r --~~3 J I eN&: ~MIJ J 
C~?T4·~i-'-'J L~~_ ~~-_J C-Rl.n~] 
--""-'-'-. ·_-·····1 [ __ ·_·-._-.. --R.5 -,.- I R(r"i""A)._-.l L-~(~~___ _ 
L-E~~=~-J C=~~~_J 
~~~~-J . C~=-~l I 
[~~:~·ri(l] 1_·:fA-~~~j]

[F~~~~-i:-1}.] I=.~~~~~j-]

C~ f~.~-~~_J [~~~~3~]
[-~~A5?f~~~ J _[=~~~~_D~]

I e~sl.sw I
L~~_ SL.!,i)~ I
1
----- p.Ac~'-Gql
-------.-- .

[
------.~-

f"AC-"1. c:~ 1

t------· -.. _-_ .. -·'·-1
J

' FAC,L(~·
. _.-----_ ... _._--......

1

----_· -. --_ _.-_.-
FAC.~ [3] I

. __ ... -- -----~-.;

[:~.FAC·~~~j! - [_-F.~~~0-fl r-=~"~A~~~~i
'.'

1·---FAc.~COJ··1 I-·-F-AC i~ll [.~-FAi~~}J

L-._~s~~:~~~~J !~.- F~A··-·-I l·useR-.·_·-~~· i

L ros~_ .. _-_.I L!~:j~~ L~~~r~.--

1- -- -- - .. -. - - .. - ... ",
I FPSHt ... FEC.; L _ .. "

r~ .:~ _~_~ ~~-.J
Figure 2-11: asp and ASP Layout

2-16

2.2.1.1 Temporary Storage Registers -- A WCS microprogram

can use the registers which the base machine and floating point

use for temporary storage ·during instruction execution.

The temporary storage registers used by the base machine are:

BSPHI[4]

BSPHI[5]

ASPHI[4]

ASPHI[5]

.-
:=

:=

:=

R(TlB)

R(T2B)

R (TIA)

R(T2A)

The state of these registers is not saved if the base machine

code is invoked. Thus, data stored in these registers may be

overwritten by the base machine microcode that handles error

conditions, or if a new macro-level instruction is fetched.

The following registers are used for temporary storage by the

floating point microcode and by the FPll-E.

BSPLO [17] := FDST2

BSPHI [17] := FDSTO

ASPLO[17] := FDST3

ASPHI[17] := FDST1

User data stored in these registers will be lost if a floating

point instruction (l7xxxx) is fetched.

2.2.1.2 Reserved System Registers -- The remaining 11

registers in the B and A scratchpads are used to store

console, status, address, and constant information. These

registers are reserved for use by the base machine and must

not be altered. They may, however, be read.

2-17

WCSADR, ASPHI[l], has the contents of Unibus address 177542.

It is used to specifiy an address within the WCS control store

space to which data is to be written. (See Chapter 6)

R(VECTSAV), BSPHI[2], contains the vector address of the last

interrupt serviced. This address is saved to aid error

diagnosis.

FPA, BSPHI[6], is used by the floating p~int microcode and the

FPll-D to hold the address (incremented by twO) of the last

floating point instruction.

CNSL.CNTL, BSPHI[7], contains console control and statuR

information. It also contains the two high-order bits of the

switch register, the temporary switch register, and the console

address register.

FEA, BSPHI[l6], contains the address of the last floating point

instruction that incurred. an exception.

The WHAMI (What Am I) register, ASPHI[2], contains status

information for 'the micro-machine. Layout of the WM..~HI

register is shown in Figure 2-1.

,rst- , 4 ~ .~ • ~

,~-.

~~
r.

r"_ .. Ll .. ::\

Figure 2-12:

~ ~ ~ t

WHAMI Register

2-18

Error I.~ t~~
Ey..., -r.:." ,~ ~"
Ert.-oft e~ C)ecu.mtrt\

s.er\.r~ ~~~ tll\~~U
F.P Op~~ 'Pt.r~~t .'
WC.S ~~.f\t--.
Ec..s ~rc~

CNSL.TMPSW, ASPHI[3] , is used to assemble numbers from the -

console keypad before transfer to the switch register. It is

also used in the display subroutine in the console microcode.

CNSL.ADR, ASPHI[7], is the console address register. It is

loaded with CNSL.TMPSW data on LOA.:) ADRS. On moves to

777570, the data is loaded into CNSL.TMPSW before being

displayed on the console.

The high byte of FPSHI-FEC, ASPHI[16], contains the high byte

of the Floating Point Status Register. The low byte of FPSHI

FEC contains the exception code of the last floating point

instruction that caused an exception.

R(ZERO), BSPHI[3], contains the value zero. It is used when

ever a ~ is needed .fro:1\ the B-side during a cycle in which the

CSP is written. This location must always contain the value O.

2.2.1.3 Integrity of the General Registers -- For the 11/60

to operate correctly, the scratchpad locations reserved for the

PDP-II general registers must contain those registers. The

contents of the corresponding registers in ASPLO and BSPLO

must be identical at the start of every PDP-li instruction.

Floating point microcode uses all the registers in ASPLO to

store some state of the machine during the execution of certain

instFuctions. This is indicated by setting the General Registers

Unequal bit, W~~I<3>. Restoration always occurs at the end of

the floating point instruction; the WHAMI bit is cleared

following restoration.

2-19

2.2.2 ,. Reading From the Scratchpads

To move data from a particular scratchpad location to the ALU

input, the microword must enable the correct section onto

the bus, ,and it must specify the location within that section.

Three fields in the microword control address selection for the

A and B scratchpads: BSEL, ASEL, and RIF.

Figure 2-13: BSEL, ASEL, and RIF

i ' I
Rl.F
I J

BSEL and ASEL specify the way in which a location within the

scratchpad is addressed. Addressing can be either direct or

indirect; that is, an address in the scratchpad can actually

be specified, or a pointer to the source of the address can

be specified.

When the scratchpads are addressed directly, the Register

Immediate field (RIP), ~<35:33>, is used in conjunction with

BSEL and ASEL to provide a full five-bit address specification.

The selection codes I~~EDO and IMMEDI specify the low-order

bit of the scratchpad address, and the RIF field specified

the three high-order bits. For timing reasons, RIF<2>, u<35>

is asserted low, and so that bit is inverted when used for

scratchpad addressing.

Figure 2-13 shows how the BEN, BSEL, and RIF fields work

together- to specify an address in the BSP. The ASP works the

same way. Since there is only one RIF field direct addressing

places constraints on which registers can be concurrently

accessed by this method.

2-20

r-- - __ AlF_/9L_ .. ___)
__ ----It1.F..;LL ____ ~
. _____ Jl1.F:,~ ... __ ._ _)
____ RJ,~.-.--- .. __)

. ___ . ___ .ilF~. __ .. _»
., -... -Il.., F: /tJ. _-;'.

t.. . R'F /t.... . >
__ .. _ R..lF.I1._._~_ .. >

-_ 2t£..'_ \
-___ ----k,lfll _ ;
-. ...RIF/% ___ >
-___ lL~I.S-_-.--->

,.-.-IE.,. __ .-__ .. _.Afr~ ___ ~
.____ '1£/~ _ ... _._) t-. P..1fLl, ___ "
. . -&f.p_ .. ____ .~>

!I=-~=--~lE . .lti,-_ --~
!f1f.~ __ ._._._.\
L-_. -.i1F/2------.. ;
-.--.~~---}

~I.WI~ .. _._JUF~ .. _ .. ___ :\

I ... __ &.F.A __ -.;
-.-.fJJ~/J,----.~
. _. ~F.Ll: ______ .~)

Figure 2-14: Direct Addressing of BSP

2-21

Alternatively, ASEL and BSEL can specify that fields in the
current macro-level instruct:'.on are to provide the scratchpad

address. The instruction's source register field, IR<8:6>,

or the destination register field, IR<2:0>, may be specified.

This allows more generality at the microcode level.

For example, if the PDP-II instruction ~ .. DD R2, R3 is to be

executed, there are two ways of addressing the operands:

A:

B.

BEN/BSPLO, BSEL/IMMEDO, RIF/5,

AEN/ASPLO,ASEL/IMMEDl,

BEN/BSPLO, BSEL/SF,

AEN/ASPLO, ASEL/DF

R[2] FROM BSP

R [3] FR01~ ASP

i R[2] FROM BSP

R[3] FROM ASP

You can see tha-t the specifications in A are useful only tt.7hen

R2 and R3 are to be added, while those in' B would work for any

register-to-register add.

The encoding of the scratchpad addressing fields is sho\\1Jl in

Table 2-4

Table 2-4: BSEL, ASEL Encoding

Enable Type of Value Field Value
field Addressing Name

AEN/ASPLO
or RIF 0 IMMEO$J 0

AEN/ASPHI RIF I I~lJfEDl 1

R(DF) OF 2

R(SF) SF 3

BEN/BSPLO
or R(OF) OF 0

BEN/BSPHI
~{SF) SF 1

RIF 0 I:~EDO 2

RIF 1 IMMEOI 3

2-22

Table 2-5 summarizes how the inversion of RIF<2> affects

direct register selection.

2.2.3

TOP 3 BITS
OF REGISTER
SELECTED

000

001

010

011

100

101

110

III

Table 2-5

RIF Summary

writing Back to ASP and BSP

RIF CONTENTS

4

5

6

7

a
1

2

3

After clocking an ALU result into 0 at P2, you can write the

data into the A and B scratchpads during the same microcycle.
The primary purpose of the write-back is to update a

particular register, so address selection for write-back is

dependent upon the address chosen for reading.

This does not mean, however, that you have to write the same

location that was read. For example, consider the PDP-II

instruction ADD R2, R3 again. After execution, only the

contents of R3 should have changed. The implementation of this

instruction would contain the following specification:

ALU~~D, BEN/BSPLO, BSEL/SF,

AEN/AS~LO, ASEL/OF, WHEN/P2, CLKO/YES

2-23

This indicates that R2 is to be re~d from the BSP, and R3

from the ASP. Recalling the rule mentioned ea'rlier that

identical copies of the general registers must be maintained,

you can see that both BSP[3] and ASP[3] must be updated on

write-back., The address sel~ction used to read from the ASP

should be used to write both scratchpads.

Therefore, while you can write the contents of 0 into SSP and

ASP simultaneously, the data goes into the same location in

both scratchpads. This mechanism ensures that both copies of

the destination register are updated correctly.

The Scratchpad Rewrite field,'lJ<19:l4>, is divided into a

,number of subfields, as shown in figure 2-14.

<19> <18> <17> <16> <IS> <14>
~~.~-..----- ------------------------~~--~~

SCRATCHPAD REWRITE

WR HI/ WR .. ' ~
v-••••

CSP LQ SEL WRSP MOD
_.- . __ .. -

Figure 2-15: Scratchpad Rewrite Fields

MOD,lJ<14>, controls the interpretation of lJ<18:15>: it is

a steering bit as described in Section 1.S.l.3. The MOD

field must be 0 to write to ASP and BSP.

The Write Scratchpad (WRSP) field determines which scratchpad

is to be written: ASP, BSP, 'or both.

The Write Select (WR SEL) field specifies which address, as

specified in ASEL and BSEL, is to be used as the write-back

address.

2-24

MOD,

HI/LO specifies which section of the scratchpad(s) is to be
written. You can write-back to a different section than that
specified by the Bus Enable fields.

Write CSP (WR CSP) controls writing of the C scratchpad.

The encodinq of these fields is shown in Table 2-6.

Table 2-6

Scratchpad Rewrite Fields

FIELD ACTION MNEMONIC FIELD
VALUE

1l<14> ll<18:15> controls CLKSP 0
scratchpad rewrite

WRSP, p<-16: IS> ~frite ASP only WR A. 1
Write BSP only WRB 2

Write both ASP and WR A AND B 3 BSP .~, r ,\ I ~.; I\:C
:>0 \ .. ,,-t. l . I (.~

WRSEL, 1J<17> Use ASP address A ADDRS 0

Use BSP address on rewrite B ADDRS 1

HI/LO, 1J<18> Write LO section of SPAD LO 0

Write HI section of SPAD HI 1

Now we can add some more specifications to our microinstruction

for ADD R2, R3:

ADD: ALU/ADD, BEN/BSPLO, BSEL/SF
AEN/ASPLO, ASEL/OF, WHEN/P2, CLKD/YES, HILO/LO,

WRSEL/A ADDRS, WRSP /WR A and B,
MOD/CLKSP

2-25

Scratchpad rewrite always occurs at P3, so the 0 register must

be clocked at P2 if you wish to write back to thescratchpads
during the same microcycle.

2 .3 THE C SCRATCHPAD

The third source on BUS BIN is the C scratchpad (CSP), which is
16 registers deep_ It is the means by which data from the out

side world (i.e., main memory or other sections of the processor)

is introduced into the datapath.

TheCSP is also used to store constants and error log

information.

2 .. 3.1 The Base Constants

Three locations in the CSP are permanently reserved for the

base constants of the machine: zero, one, and two. CSP{17]

contains the value one; CSP[l6] contains the value zero; and

CSP[l4] contains the value two. These locations MUST NOT

be changed.

By convention, CSP[l5] stores data from the outside world.

Since this is usually data from memory, CSp[15] is called

the Memory Data register, or MD.

These four locations in the CSP, CSP [14:17], have a special

addressing mechanism, and a .special BEN field value may be

used to access them.

2-26

JP

LOCATION NAME ,Sl CONTENTS

CSPlO) CNST4 000004
LOG.JAM

CSP(1) CNST8 000010
LUG.S~RVICe

CSP(2) Ri::SRIGHr 020000
[JUG. PBA

C sP (3) ~:XPMASt< O"17bOO
LOG.CUA

CSP(~) RESLEfTD(C) 050000 .
fJOG. FLAG/ 1 NTR

CSP(,)) RESLEf"TGD 054000
LUG.wHAMl

CsP(b) EMITCON
I,OG.CACtiEUAIA

eSP(1) pESRfGHtGU O~4000

LOG.TAG/CPU

CSP(lO) Hlb~'reMASK 177400
CNSL.CNST100000

eSP(11) seXPMASK 177000
CNSL.CNST177770

CSP(l:t) SIG~81T 10000u
CNSL.CNST1OOOO

CNST100000

CSP(13) CNsr200 ooo~oo

HIOOENAIT
~XPUN~

SETD~ASI<

CsP(14) • 2 000002

C~P(1~) MO *it*it.*

CSP(1b) • 0 000000

C,sP(17) • 1 000001

Figure 2-16 CSP Layout

2-27

When the BEN field of the microword contains the value 3, the

BSEL field selects· one of the four special locations in the

CSP. The encoding is as follows:

When BEN/3, then:

BSEL/O selects CSP [17] (1)

BSEL/l selects CSP[16] (0)

BSEL/2 selects CSP [15] (MD)

BSEL/3 selects CSP [14] (2)

2.3.2 Other Locations in the CSP

You may use CSP[O:13] to store data, subject to certain

restrictions. These locations usually hold constants, such

as a mask for isolating the exponent field in a floating point

number, which are needed by various segments of the base machine

code.

The II/60's Emit facility, described in Chapter 4, enables you
to store arbitrary constants in the esp, after setting a flag

in another section of the processor.

When the value of the BEN field is not equal to 3, the CSPADR

field provides the CSP address, in much the same way as RIF

provides an address in the ASP and BSP.

CSPADR, 1l<23:20>, holds the complement of an address in the

CSP. That is, the bits in the CSPADR field are complemented

before they select a location, as shown in Table 2-7.

\ I
CS PA 0 ~

l

,~ .

Figure 2-17: CSPADR, WRCSP Fields

;.-28

CSPADR Bit
Field Patterns

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

10 1000
11 1001
12 1010
13 1011
14 1100
15 1101
16 1110
17 1111

Table 2-7

CSP ADDRESSING

Complemented
Pattern

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CSP Location
Selected

17
16
15
14
13
12
11
10

7
6
5
4
3
2
1
0

Thus to read from the CSP, use BEN codes BASCON or esp, and

specify the address with BSEL or CSPADR, respectively.

2.3.3 Writing to the CSP

The CSP's input data comes from the DMUX, which accepts data

from the Cache and from main memory and other sections of the

processor. You do not have to control this multiplexer: it

will automatically select the correct source.

The WRCSP field, ~<19>, controls writing to the CSP. If the

WRCSP field contains a 1, the output of the DMUX will be

written to a location in the CSP at P3. If WRCSP contains a

0, no data will be written.

2-29

If the microinstruction contains the specifications

BEN/BASCON, BSEL/MD, WRCSP/YES

then the data will be written into CSP[lS], MD. (Remember that

you ~ not over-write any other base constant.) Otherwise, t:he

WRCSP/YES specification will cause d~ta to be written into the

location specified by the complement of the CSPADR field.

, 6U·J
I

C~tttE ,
·1 c..SP
I

J
MJ)

I

•
F"R~ JtA~PATH lA',t!>~

Figure 2-18: Writing Data to CSP

If you write data to any location in the CSP other than MD,

you must set a flag in the Processor Control Section. This

flag, CSP CONSTANTS INVALID, indicates that the constants

needed by the floating point microcode are not available.· The

mechanism for setting the flag is described in Section 4.2.4.4.

2-30

The constants used by the floating point microcode are shown in

Figure 2-16; if the CSP CONSTANTS INVALID flag is not set, you

can use these constants in your routines.

Note that the two methods of CSP addressing are mutually

exclusive. You cannot read one CSP location and write to

another in the same microinstruction.

2.4 THE XMUX AND THE SHIFT REGISTER

The ~~UX is a two-to-one multiplexer which, when selected by

AEN, puts its output onto BUS AIN. One of the XMUX sources is

the 16-bit Shift Register, described in Section 2.4.1.

When AEN = 0, the XMUX field of the rnicroword, ~<36>, controls

XMUX selection. Note that this field overlaps the ASEL field.

Be careful not to specify WR SELIA ADRS if writing back to the

scratchpads after using the XMUX as the AIN source.

Figure 2-19: L~UX, AEN, and ASEL Fields

When the value of the XMUX field is 0, the output of the

SR goes onto BUS AIN. When the XMUX field contains the value

1, a word of the form shown in Figure 2-20 is put on BUS AIN.

15 14 a

o (C) 0 a o o o 000 +---- SR<6:0>--~+

Figure 2-20: 51 XMUX In9ut

2-31

2.4.1 The Shift Register

The Shift Register is a l6-bit bidirectional shift register.
It has four distinct modes of operation:

Parallel load from ALU optput (default)
Shift right one bit per microcycle

Shift left one bit per microcycle

Do nothing

Mode control for the SR is provided by the Residual Control

register, which is described in Section 2.9.

The SR, when in parallel load mode, is loaded with the output

of the ALU.

Regardless of the operating mode of the SR, its clocking is

controlled by the WHEN" lJ<2~>, and CLKSR, lJ<t-r> , fields of the

microword. The SR is clocked if the CLKSR field contains a 1.
Clocking occurs at P2 is WHEN equals 0, and at P3 if WHEN

equals 1. If both D and SR are clocked in the same microcycle,
they are clocked at the same time, and receive the same data.

A 16-way branch can be performed on the basis of SR~3:0>. This

facility, called the CASE branch, is described in Section 3.6.2.

Figure 2-21 WHEN, CLKSR Fields of l-lword

2-32

2.5 THE SHIFT TREE

The final A-side source is the Shift Tree, or barrel shifter.

This is the major element of the 11/60's field isolation unit.

The Shift Tree performs various operations on data from the

o register; these operations include:

Left Shift 1 bit per microcycle

Right Shift 1,2,3, •.• 14 bits per microcyle

Sign Extend

Byte Swap

Unlike the Shift Register, the Shift Tree is a combinational

logic element and thus does not hold its output across micro

cycles. It is designed so that data clocked into D in a

previous microcycle can be modified in the Shift Tree, operated

upon by the ALU, and the result stored -- all during one micro

cycle.

The data to be manipulated must be stored in D by P2 of the

microcycle preceding the Shift Tree operation. The data can

then be clocked into D and stored in the scratchpads, as

illustrated in Figure 2-24.
Figure 2-24: D to D to Scratchpad in one Microcycle

(llcycle a • ~ llcycle ex + 1)

P2: D -+- DATA D

J,
TREE

1
BUS AIN

1
ALU -+- BUS BIN DATA

!
P2: D +- DATA

1
P3: SPAD +- DATA

2-33

Although you will use macros to control the Shift Tree, you

must look closely at the hardware involved.

There are three levels of multiplexers, interconnected to

effect shifting, in the Shift: Tree. This layout is shown in

Figure 2-26. The contents of D are input to the AMUX, the

output of the AMUX is the input for the BMUXi the BMUX

output goes into the CMUX, and the CMUX output goes onto

BUS AIN.

To perform a particular operation, you must specify a multi

plexer selection for each stage of the Shift Tree. Thus, to

shift the D output right by six, specify:

AMUX/DIRECT, BMUX/RIGHT-FOUR, CMUX/RIGHT-TWO.

To specify a right shift of seven:

k~UX/RIGHT-EIGHT, BMUX/DIRECT, CMUX/LEFT-ONE

Note that the ·Shift Tree is not a circular shifter. That is,

bits shifted off one end ar~ not shifted into the other end

of the word.

The three fields in the microword that control the selection

of the stages of the Shift Tree are: AMUX, 1l<22:20>i

BMUX, ~<23>; and CMUX, 1l<37:36>.

2-34

])

C.MUX

:BUS AltJ

Figure 2-26 Simplified Shift Tree

2-35

,,73G 23 20...:.;. .. -..-___ -1

I-~~f~~~-R~l-F-.-'-.. ----.7""\ -. ---:----,'n:~ i A ~:-X -I -
u .. - X
X

Figure 2-27 Shift Tree Control Fields

Again, you will notice that these fields overlap fields

previously discussed. Because the AMUX and BMUX fields occupy
the same bits as CSPADRS, CSP access during Shift Tree oper

ations is contrained to those locations which can be addressed

with BSEL: the base constants.

The encoding of the Shift Tree control fields is shown in

Table 2-8. The detailed diagram of the Shift Tree (see Figure
2-28) should clarify the entries in Table 2-8. The bits in

the microword fields are the source of selection signals for

the three levels of multiplexer. Thus CMUX<O> is the source

of the signal CMUX S" and so forth.

Figure 2-28 also shows how the choice of signals going into

each input data port effects the shifting actions of the

Shift Tree.

2-36

~v..~H' '!l, ----....
L '4~. ~-------.WI.L

J(c.)

sus A

\(p

Ir------ BMCA~ V

.--_ t!MU 1. S¢ JIP---- AMUX ,",0 $f1
'"'--__ ...,... __ --I~---- ~('NQ""U. X ~ ~

Figure 2-28: Details of the Shift Tree

2-37

2.5.1 AMUX and CNTR

AMUXHI provides the high byte of the AMUX output; AMUXLO

provides the low eight bits. The high and low bytes of the
o output are separate inputs into each AI-lUX. This allows

duplicating either byte, swapping bytes, and shifting eight

bits to the right. (The right shift consists of selecting

0<15:08> as the low byte of the AMUX output, and filling in

the high byte with O(C).)

The Counter (CNTR) register, at the top of Figure 2-28, is

an iteration counter. It is not part of the Shift Tree.

However, the AMUX can introduce the contents of CNTR into the

datapath. It is' described in Section 2.7.

2.5.2 The BMUX

The BMUX can either pass the output of the AMUX without change,

or it can shift the AMUX output right by four, filling in

the high bits with O(C).

2.5.3 The CMUX and SENOMUX

The CMUX can perform a right shift by one or two; pass the

BMUX output without change; or shift left by one bit. The

Shift End Multiplexer, SENDMUX, provides the low-order bit

when the CMUX is shifting left. D(C) fills in high-order bits

when shifting right.

2-38

Table 2-8

Shift Tree Control

AMUX FIELD (lJ<22:20» ENCODING

Function (Output)

D unchanged

D<7:0>in both bytes

D(C) fills high byte, 0<7:0>
in low byte

Contents of counter in high
byte, 0<7:0> in low

O~15:08> in both bytes

Swap bytes

D(C) fills high byte,
D<15:08> in low byte

Counter in high byte,
D<15:08>in low byte

Mnemonic

DIRECT

DLO#DLO

SIGNEXT

COUNTER

DHltDHI

SWAB

RIGHT-8

COUNTER#DHI

BMUX FIELD (lJ<23» ENCODING

Field Value

1

2

3

4

5

6

7

Output of AMUX unchanged

Shift output of ~1UX right
four, D(C) fills high

bits

DIRECT

RIGHT-4 1

~. _ .. - .. -~ .. - -- -..... -_ .. - .- -- - - ... ---.------------ .---I------------..;...;;...;.......;~~.:;;.;..;...-.;....;;...;...;....,..---.;;;;.;;;;.;.-.;.....;;;;..;...;;....-~------.------.--.- -. --

CMUX FIELD (lJ<37:36» ENCODING ---------_ .. _-,--_. --_._---------------------_.- ---'.'---._-

Output of BMUX left one
with SENDMUX into low bit

Output of BMUX unchanged

Output of BMUX right one
with D(C) into high bit

Output of BHUX right two
with D(C) into high bits

LEFT-l

DIRECT 1

RIGHT-l 2

RIGHT-2 3

---_. -'::';;~' ~.-.~--_. -"_ .. ,. __ ._---'-' .'-' -_. -_."-' -'-'-----'----------------.. ,_.--" -' -------=-_.==--"-'--'-------'_ .. '-,----

2-39

You cannot control the SENDMUX directly from the microword

because the source of the bit shifted into the zero bit of
the CMUX output usually depends on what was done in the

higher stages of the Shift Tree. To illustrate how this
;

wo:rks, look again at the exarrlple of a right shift by seven.

The final CMUX output should be a word with O(C) in the high
seven bits, and 0<15:07> in CMUX<8:0>. In the example:

A..'-tUX/RIGHT-8

BMUX/DlRECT

CMUX/LEFT-l

(8*D(C) # OHI)

(No Change)

(Left One)

But you can see from Figure 2-28 that 0<07> will not go through

the BMUX to the CMUXi in effect, it falls off the end of

the AMUX. The SENDMUX "catches" this bit. When AMUX<02>, 1-1<22>,

is set - making 0<15:08> the output of AMUXLO - and no shift is

indicated for the BMUX, the SENOMUX output is 0<07>. This
becomes the low bit of the CMUX output, and the shift is

completed correctly.

Similarly, if a shift of 11 right (AMUX/RIGHT-8, BMUX/RIGHT-4,

CMUX/LEFT-l) or 3 right (AMUX/OIRECT, BMUX/RIGHT-4, CMUX/LEFT-l)
is specified, bit 3 of the AMUX output falls off the end of

the BMUX. In both cases, the SENDMUX correctly feeds this bit

into the CMUX.

These effects are possible because the S~ and Sl selection

ports of the SENOMUX are controlled by BMUXS~ and AMUXLOS',

respectively. The thrid selection port, S2, is controlled

from the RES register (see Section 2.9). Table 2-9 is the

SENDMUX truth table.

2-40

2.6 SHIFTING WITH THE SHIFT REGISTER

The shifting capabilities of the Shift Tree and the Shift

Register are somewhat interdependent, thus, before presenting

more examples of Shift Tree operations, the following sections

describe the Shift Register's shifting modes.

2.6.1 The SR GUARD

There is a 4-bit extension to the Shift Register called the

SR Guard (GUARD), for use by the microcode floating point.

The GUARD is the same type of register as the SR, and has

the same four operating modes. It is clocked at the same

time as the SR when it is enabled from the RES register.

When the RES register specifies parallel load for the SR,

the GUARD is loaded with zeroes.

Conditional braches can be made on the contents of GUARD <3:2>;

see Section 3.3.

AL~

+--------lI'----- BU5tlllJ
Figure 2-22: SR, GUARD Registers

2-41

2.6.2 Right Shif·t

When a right shift is indicated, the previously loaded l6-bit
word in the SR is shifted right one bit position. BMUX<OO> ,
from the Shift Tree, fills SR<15>. If the Guard register
is enabled, SR<OO> fills GO<03>. Bits shifted out of GD<OO>
are lost.

The wiring of the SR and Guard registers for a right shift is

shown in Figure 2-22.

SR<lS:CO)

(,Lt~ --L. ______ ~,-..-""""-

Figure 2-22: Right Shift of SR

2-42

2.6.3 Left Shift

When a left shift is indicated, either GD<Q3> or D(C) can be

shifted into SR<QQ>. SR<l5> is shifted into SENDMUX<Q>,

where it can be directed into CMUX<QQ> (see Section 2.5).

The high-order Guard bit is shifted into the SR only if the

Guard register is enabled from the RES register. Figure

2-23 illustrates the wiring of the SR and Guard registers

for a left shift.

cu.~-----.

~-~

1 ~b L(-P
E~ 6UA~ ~ ____ ~_~.CL)(

~-----J>((.)
a__--- f.tJ6 6&lA'U)~> ~

Figure 2-23: Left Shift of SR

The particular routing of the shift outputs and inputs for

the SR are designed to allow the SR and D to function as a

32-bit shift register. Examples are shown in Section 2.7.

2-43

2.7 SHIFT EXAMPLES

2.7.1 Multiple-Word Shifts

When AMUXLO selects the low byte of the 0 data, and the BMUX

passes its input without a1.teration, SR<15> can be directed
into the CMUX f'rom the SENDMUX. This enables the Shift Tree

to act as the high-order part of a 32-bit shift register.

While the low-order word is shifted one bit to the left in
the SR, the high-order word, previously stored in 0 can be

shifted in the Shift'Tree and returned to the 0 register.

This action is illustrated in Figure 2-29.

In previous cycles

RES set up for
left shift

High-order word in
D register

Low-order word in
Shift Register

Figure 2-29:

1 microcycle

AEN/CMUX, ALU/SELECT'A,

AMUX/DIRECT, BMUX/DIRECT,

CMUX/LEFT-1, CLKD/YES,
CLKSR/YES, WHEN/P2

Left Shift on 32 Bits of Data

A right shift on 32 bits of data can be accomplished in a

similar fashion. Recall that when the SR is shifted right,
the low bit of the BMUX output is shifted into SR<15>. So

by setting up the data and the SR mode control for a right

shift, and then specifying:

ALU/SELECT A, AEN/CMUX, AMUX/DIRECT, BMUX/DIRECT,

CMUX/RIGHT-l, CLKD/YES, CLKSR/YES, WHEN/P2

2-44

you will shift 0<00> into SR<l5>. Figure 2-30 illustrates

the result if the Guard register was enabled.

A: 1 dddddddddddddddd I
o

Issssssssssssssssl

SR

B: I 0 (C) ddddddddddddddd I
D

dSSSSSSSSSSSSSSSJ

SR

Figure 2-30: Right Shift on 32 Bits of Data

Table 2-9

SENOMUX TRUTH TABLE

S2 Sl S{6 CMUX<OO> in~ut

0 0 0 SR<15>

0 0 1 AMUX<03> .

0 1 0 0<07>

0 1 1 AMUX<03>

1 0 0 0

1 0 1 Ar-1UX< 03>

1 1 0 undefined

1 1 1 undefined

2-45

I 0000 J

GD

B
GO

2.6 Sh'if't E,xamp'les

This section contains simple microcode equivalents for a

number of PDP-ll shift instructions. A symbolic description

of the act;Lons of ~ach microinstruction and the field value

specifications are shown.

2.6.2 ASL RO

The execution of ASL RO would take at least two microcycles.

In the first,

P2: 0 + ASP [0]

and in the second,
P2: 0 + 0 LEFT ONE

P3: ASP [0] + 0

P3: BSP [0] + 0

The field specifications would be as follows:

INSTRl:

INSTR2:

ALU/SELECT A, AEN/ASPLO, ASEL/IMMEDO

RIF/4, eLKD/YES, WHEN/P2

ALU/SELECT A, AEN/CMUX, BEN/BSPLO,

BSEL/IMMEDO, RIF/4, AMUX/DlRECT,

BMUX/D IRECT, C11UX/LEFT ONE, eLKD /YES ,

WHEN/P2, MOD/CLKSP, HILO/LO, ~mSEL/B ADDR,
WRSP/A AND B

Notice that in the second microinstruction, a BEN and a BSEL

value were specified, even though, the ALU function was only

to pass the data on BUS AIN 'to D. The BSP address selection

is used to set up the correct write-back address. The
SENDMUX would have to be set up from RES if you wanted a ,

shifted into the low-order bit.

2-46

2.6.3 ASR Rl

Symbolic specification:

INSTRl: P3: D -+- Rl

P3: D(C) -+- ALU<lS>

INSTR2: P2: D -+- D RIGHT ONE

P3: ASP [11 -+- D

P3: BSP[l] -+- D

Field value specifications:

2.6.4

INSTRl:

INSTR2 :

ALU/SELECT A, AEN/ASPLO, ASEL/IMMEDI

RIF/4, COUT/ALUlS, CLKD/YES,

WHEN/P2

ALU/SELECT A, BEN/BSPLO, BSEL/Itt.J.1EDl,

AEN/C~1UX, Al..fUX/DIRECT, BMUX/DIRECT,

CMUX/RIGHT ONE,. MOD/CLKSP, HILO/LO,

WRSEL/B ADDRS, WRSP/A AND B, CLKD/YES,

~lHEN/P2

ASH #-11, Rfl

In this example, the indirect addressing of the B and A scratch

pads is exploited to make the example more general.

Symbolic specification:

INSTRl: P2: D + R(SF)

P2: D(C) + ALU<l~>

INSTR2: P2: 0 + 0 RIGHT 11

P3: R[SF] -+- 0

2-47

Field value specifications:

INSTR1:

INSTR2:

ALU/SELECT A, AEN/ASPLO, ASEL/SF,

CLKD/YES, WHEN/P2, COUT/ALU1S

ALU/SELECT A, BEN/BSPLO, BSEL/SF,

AEN/CMUX, CLKD/YES, WHEN/P2,

AMUX/RIGHT EIGHT, BMUX/RIGHT FOUR,

CMUX/LEFT ONE, MOD/CLKSP, HILa/La,
WRSEL/B ADDRS, WRSP/A AND B

2.7 The Counter Register

The Counter Register (CNTR) is an eight-bit counter. It can

be used to control repeated loops through the datapath. Its

loading is controlled by MOD, ~<14>, and CLK CNTR, ~<16>. If

both MOD and CLK CNTR contain the value 1, the CNTR is loaded

from BUS BUS<07:00>. (If ~MOD equals 0, ~<16> is interpre~ed

as part of the WRSP field.)

The COUNTER counts'up, not down, so the value loaded from

BUS BIN must be the complement of the actual count. For

timing reasons, it must be loaded with the 2's complement of

the count.

Incrementing and c1ear1ng the COUNTER are controlled by Active

Branches, which are described in Section 3.6.

2.8 THE; BA REGISTER

Because addresses are relocated through the KT unit, the p~ysica1

addressing of main memory is transparent to the 11/60 micro-

programmer. To access a Unibus location, you will specify its
virtual address. (only the console microcode uses physical

addresses)

~-48

The Bus AddreSs (BA) register holds the address for data

corning from or going to a Unibus location. Thus, when data

from memory is to be moved into MD (by a DATI), you load

BA with the virtual address of the location to be read.

Similarly, when data in 0 is to be written to main memory (by

a DATO) , specify the address of the location with BA.

The virtual address is loaded into BA from BUS AIN, as shown

in Figure 2-31. The two high-order bits can, in special cases,

be loaded from BUS BIN<Ol:OO>; normally they are set to Oby

Bus Control logic. You do not have to worry about the data

on BUS BIN affecting the Bus Address.

The output of the BA register goes to the Memory Management

unit (KT) , where it is mapped to a physical address. This

physical bus address is then used by both the Cache and the

Unibus.

If, on a DATI, the location specified by the BA and relocated

by the KT unit is available in the Cache, no Unibus access is

made. If a Unibus DATI cycle is performed, however, the

Cache is updated when the data is brought in from main

memory. On a DATO cycle, main memory and Cache are both

u pda ted. (.LIC.BA ,P.i.

To
K'-~--""

13
A

. $US 8lrJ

ALU

Figure 2-31: The BA Register

2-49

BA loading is controlled py the CLKBA field of the microword,
~<26>. When CLKBA contain the value 1, the SA register is

loaded at Pl. (The value of the WHEN field has no effect

upon the clocking of BA.) The BA is clocked earlier than

other registers to allow for cache cycle time. The requested

data is available at the CSP input at P3 of the f'ollowing

rnicrocycle.

Figure 2-32: CLKBA Field of ~word

2.9 THE RESIDUAL CONTROL CONCEPT

Two of the primary design goals for a rnicroprogrammable

machine are flexible control of the elements of the data

path and efficient use of the control store. These goals

are occasionally at'odds with one another, and various

techniques have been developed to minimize the trade-off

penalties.

One of these techniques is the use of distributed control, in

which the central control store does not control all of the

functional untis of the processor. Residual control (which

is essentially a special case of distributed control) is used

in the 11/60 to avoid widening the microword.

2.9.1 Set-up Registers

Much of the control information for a microprocessor is

relatively static; that is, it is not chanqed everv micro

cycle. This static information can be filtered out of the

2-50

microword and placed in special registers, called set-up

registers or stats. These set-up registers can then be used

in association with fields in the microinstruction to fully

define the control for a particular resource. This situation

is illustrated in Figure 2-33.

• 0 ~
Rt nsA

0 R.a.c>u.ra B

Figure 2-33: Set-up register

2.9.2 The RES Register

The Residual Control register, RES, controls the operating mode

of the SR and GO registers; selects the shift left input of

SR<QQ>j sets up SENMUX S2 for the end-shifted bit for CMUX in

the Shift Tree; and controls clocking of the Guard Register.

RES is loaded froM BUS BIN<"l4:11> at P2 when MOD, p/14>, ond

CLKRES, ~<18>, are both equal to 1. Inputs and corresponding

outputs of the RES registe~ are shown in Figure 2-34.

2-51

t--~"""--- .SR sst (rj) Hi
8\A5 e <1I>' ___ ... 1.' frJB E>UAe..D It) l4

............ ~(i..;--ENa o·t.tAfD I~) t1

Figure 2-34: The RES register

2.9.2.1 SENDMUX S2 (1) H -- BUS BIN<14> is inverted before

it is stored into RES. The corresponding output signal is

SENDMUX S2 (1) H, which controls the S2 selection port of

the Shift End. multiplexer.

If the SENDt1UX S2 (1) signal coming from the RES register is

low, and both the 1'.t·1UX and B~1UX pa'ss their input data unmodified,

then SR<15> becomes CMUX<OO>. SENDMUX S2 will be' low only if it

is loaded with B<14> equal to one.

2.9.2.2 SR b10de Control -- Mode control for the Shift

Register is provided by RES outputs 5R 51 (I> and 5R SI (I).

These bits are the inverse of the values loaded from BUS BIN

<13:12>. Table 2-10 shows the truth table for the SR.

2-52

Table 2-10: SR Truth Table

Sl S~ SR Function BUS BIN<13:12> Values

0 0 Do nothing 11

0 1 Right Shift 10

1 0 Left Shift 01

1 1 Load ~S

The default mode, t~at is, the SR mode when RES is cleared,

is to parallel load.

2.9.2.3 Guard Enable

The Guard register is clocked only if ENB Guard (1) is high.

The BUS BIN<ll> input to the RES register provides two output

signals: ENB GUARD (1) and ENB GUARD (0) • The Guard register

is clocked only if ENB GUARD (1) is high; -that is, if

BUS BIN<II> is equal to one when RES is loaded.

When ENB GUARD (~) is high, the GUARD register is not clocked.

Moreover, during a left shift, D(C) is shifted into the low bit

of the SR.

2.9.2.4 Constants for Loading the RES Register -- The

simplest way to load the RES register is to store a constant

in the CSP, and direct it onto BUS BIN when you want to load

RES. Table 2-11 shows the constant with which to load the RES

register for particular functions.

2-53

Table 2-11: Constants for Loading RES

Function Constant BUS BIN Bits
14 13 12 11

Shift SR right; GUARD register
not enabled

Shift SR left; DeC) into SR<OO>,
SR <15> intoCMUX<O> if AMUX and
BMUX go direct; Guard not enabled

Shift SR left; GUARD<3> into
AR<O>; SR<15> into CMUX<OO>
if AMUX and BMUX pass their
input data unmodified; Guard
enabled.

Shift SR right; SR<O> into
GUARD<3>; Guard Enabled.

Direct AMUX<03> into CMUX<OO>
SR and GUARD not enabled (note
that because-or-inversion of
BUS BIN<14>, this is not the
same as clearing RES).

020000

050000

054000

024000

000000

o 1 o

1 o 1

1 o 1

o 1 o

o o o

Notice that both RES and CNTR can be loaded from BUS BIN at

the f'ame time, because
CNTR + BUS BIN<7:0>

RES + BUS BIN<14:l1>

For example, suppose you want to do 16 right shifts, as in a

multiply loop_ The constant 020360 from the CSP would set up

the CNTR for a count of 16, and RES for a right shift in the

SR, as shown in the Figure on the fo11owinq paqe

2-54

a

o

1

o

BUS BIN bits 15 14 13 12 11 10 9 8 7 6 5 4 3

020360 = 0 O. 1 0 Q 0 0 0 \.,1 1 1 1 0

care=--r ~ v
don't I~ J ...
don't care

set SR 51 to.O --___ OJ

set SR SO to l--------------~

GO not enab1ed---------..

don't care----------------------------~

2's complement of 1610 - 208----------------------------~

2.9.2.5 Clearing RES -- RES is cleared at P3 when a

BUT (CLEAR FLAGS) is issued. (BUT codes are described in

Section 3.xxx) Note that RES can be cleared also by loading

it.

2

0

Note that when the RES register is cleared its outputs default

to the following:

SEND MUX 52 SEL (1) H --~

SR Sl (0) H 1

SR SO (0) H 1

GO ENABLE (1) g
GD ENABLE (0) 1

This means that the SR will be in parallel load mode, the

GO is not enabled, and the CMUX<OO> input is either SR<15>,

0<07>, AMUX<03>.

2-55

1 0

0 0\

This chapter has described the functional components of the

11/60 datapath. The fields shaded in Figure 2-36 control the
components of the datapath. Table 2-12 summarizes the
functions of these fields.

Field Name

ALU
BEN

BSEL
AEN
ASEL

iC..'iUX

CMUX
RIF

COUT

WHEN
CLKD
CLKSR

CLKBA
CCC

BMUX

AMUX
CSPADR

Table 2-12
Datapath Control Field Sununary

lJword bits

47:44

43:42

41:40

39:38
37:36

36
37:36
35:33

32:30

29
28
27

26
25

23

22:20

23:20

Function

ALU function control
BUS BIN Enable

BUS BIN address selection
BUS AIN Enable
BUS AIN address selection

XMUX port selection
C!{UX port selection

Immediate addressing of
ASP & BSP: used in conjunction
with ASEL, BSEL
COUT MUX selection (for D(C))
P2 or P3 clocking
Clock D register
Clock SR register

Clock BA at Pl
Clock Condition Codes at
P2 of NEXT ~cyc1e

. BMUX port selection

AMUX port selection

Complement of arbitrary address
in CSP

2-56

I

Field Name

WRCSP

HILa
(MOD=O)

CLKRES
(MOD=l)

WRSEL

WRSP

CLKCNTR
(MOD=l)

MOD

Table 2-12 (cont.)

~word Bits

19

18

18

17

16:15

16

1

Function

Write CSP at P3

HI or La sections of SPADS

Clock RES register

A or B address on writeback

Write BSP, ASP, or both

Load CNTR from BUS BIN
Bit Steering.

=0, Scratchpad Writeback
=1, RES, COUNTER

Figure 2-37 is a block diagram of the 11/60 datapath.

2-57

o

EJ
B

OJ

c
1)
11

4
lOUT (~

j:"I&

4 r= - ------,
I

vI(,.]'.-11.
l L D i-'401<lJ<P iDlO'I)(:1
1(40' ~;~i -r-- j

.h(, 1~:tJD> ;e .5 <1~I¢,COV~~ccvn~

~.
;r" (ls:4~

I SR GO - 'ucS~

eNTil ,I
~ "49'9 "(" ~ ' L.CCA·

j .~ lit S .
Ve($T:U) f--IC, lip ~

SJ.~,:~t)

,~ fl
~O r~<.,..,~)

f- ~: r-== -- 'tl ~.7 t(;

- SA
.1 (,mea) I RES - ",,, I I ¢ ~I ~4918 - , XMLiX

~qJS

) 4(1'h,f)
ICA~

LlfJI~) eLklA 8u" <J (11l.I-ST,.T f:)

'(t{ 1L J.L: ~ (

A:J CSP BSP SSP ASP

1r.4~ 1.:-107 p...4:Y .-4~&

• • ~ t ,
~

I
~n "

CSP .I I SSP l ASP
ADRS ADRS AD:~j

1'-1CI!T ~_"'\')7 _

P"UI(i~:OI¢)

t -'- J.
-

Fic1u" L-37

P4:1T:N>
lX,~;e~ i

~ t~C) 8 8 ;~8 ~

I" A<MUX HI" "\
/(140'{

I A~UX LOI
I("~

J .. .q
A"U t]1:<. r _tr-I

6 AI r--B;'~U X f" ~D l-
lC'fICS ~ \A

)(Ol~l~:t\T
'''' J"t~,,~ ,. .. "

.. "q"~1 .. ".,,0')1 '""«"~)}, O'"'~''''
lit. ~'i.llA\ 'i "'$ b IS

I

1) Co g

:11J CMUX

)

SU.'S ~\» (-nu- !ll1'.Te:) 1

(

• V<c>
P~T f PeRf f
~ CIt.MUl< ~ AUJIS

" f'S(C) F (l'lOn:rr

C AL0~~ G CClJn!>
() ALU01 II 1)«(.)

I I SP (C'NTROL ,
BUS AIN, BUS 81~

CONTROL
I(4 ~'.!,

U.,~

-.
,

c --

...
- C"''f1t''.s~ tot

... l«)

CM~ ~1~J.Xt-t

'<;'UC('~D

V (.... ~ OL.

.. H.<lIto Cotol'T1l'O~

... (5P CCJ'Tf.O(..

~lS744-1

,

DMIT
CHAPTER 3

MICROINSTRUCTION SEQUENCING

This chapter examines two aspects of microinstruction

sequencing: address generation and the timing of microinstruction

fetches.

3.1 Cf~INED AND INSTRUCTION-COUNTER SEQUENCING

Two basic techniques for microinstruction sequencing exist,

although they are used with many variations in different machines.

~]e will 'call these met~ods chained sequencing and

instruction-counter sequencing.

In chained sequencing, the current microinstruction contains

the address of the next microinstruction. In this case, every

microinstruction that is not a conditional branch is, in

effebt, an unconditional branch. This technique is derived from

that originally proposed by Wilkes 1
•

Instruction-counter sequencing is familiar to PDP-II programmers.

This method uses an incrementing microinstruction-counter

register; microinstructions execute from sequential locations

in the control store (with the exception of branches). In this

second scheme, it is necessary to include an unconditional

branch facility not required in the chained scheme.

Wilkes, M.V., The Best Way to Design an Automatic Calculating
Machine IQS.

I

3-1

Both sequencing methods must make special provisions for

conditional branches. When a mic:roinstruction contains the

address of its successor, it is common to include a field

. in the microword to specify a test to be applied before the

next address is selected. Alternatively-, a microword might

contain fields for two or more next addresses, selection

among them being made on the basis of conditions in the

machine. Incremental sequencing schemes may provide a-field

tor specifying a conventional two-way branch-on-cDnditon or

skip-an-condition opcode or may provide a facility to gate

the contents of a register into the microinstruction

register, thus replacing the sequentially generated address.

Selection of a sequencing method is based primarily upon the

organization of the microword and the micro-level architecture

of a machine. When there is a high degree of parallelism in

the datapaths of a system, and very few microinstructions

may be required to execute a single macro-level instruction,

the incidence of unconditional branches is high, and the

chained sequencing scheme is more efficient.

For these reasons, the "{lDo uses a chained sequencing method.

The MicroPointer Field (UPF) of the microword contains the

address of the next microinstruction to be executed. A

microprogram forms a chain, similar to a linked-list

data structure, as shown in Figure 3-1. The address specified

in the UPF field can be modified before it is used to select

the next microinstruction.

Before proceeding to a detailed discussion of branching, you

must look again at the issue of timing.

3-2

UPF UPF
~

.... '-- , , , ., ..

-fouJ I e.r< 1(.)

Figure 3-1

3.2 TIMING

Section 1.5.2 stated that the 11/60 uses a clock with three

outputs, or pulses: Pl, P2, and P3. An additional time point,

uP3, follows P3 by a few nanoseconds. This section examines

how those clock pulses are used, in combination with control

signals from the microword, to cause state changes in the 11/60.

In general, the clock pulses are used to tell a memory device

to load itself with the data currently at its input. In some

cases, the clock pulse signals the device directly, so that

the device is· loaded every time the pulse occurs. In other cases,

the device is loaded at a clock pulse only if some other

caondition a~~exists: for example, the 0 register requires

eLK 0 from the microword as well as P2 or P3.

The memory devices in the 11/60 have a variety of names -- registers,

scratchpads, flip-flops, latches, etc. The type of loading signals

required by these devices divides them into two major groups:

those which are loaded on the edge of a pulse; and those for which

the input signal must be a level asserted over some period of time.

3-3

3.2. 1

As previously stated, a new microinstruction takes control of the

11/60 every microcycle. The timing associated with the fetching

of microinstructions determines the control timing of the 11/60.

3.2.1.1 Fetch Timing ----
The terms serial and parallel, or non-overlapped and overlapped,

can be used to characterize when instruction fetches take place.

In the serial, or non-overlapped fetch, the next microinstruction

is not fetched until the current microinstruction is completed

(see Figure 3-3). This ensures that all information required to

select the correct microinstruction is available before the fetch

occurs.

The parallel, or overlapped system fetched the next microinstruction

while the current microinstruction is executing. This method has

obvious speed advantages, but can have problems handling

conditional branches. If the chioce of the next address depends

upon information generated during the execution of the current

microinstruction, the overlapped fetch will obviously fail.

Because the 11/60 takes advantage of the faster overlapped fetch,

carRful attention to timing constraints when using conditional

branches will avoid unexpected loss of control.

a. Serial Fetch:

Fl I El

b. Overlapped Fetch:

t- El

F2 E2

Figure]-3 Fetch Timing

3.2.1.2 A Model for 11/60 Control Timing -- A very simple,

conceptual model for the control timing for the 11/60 is shown

in Figure 3-4. It consists of a microword register, branching

logic, and a control store.

The microword register is an edge-loaded memory device. Its

loading signal is generated unconditionally by uP3; that is,

it is loaded every time uP3 occurs. Its input data is the output

of the control store, which may be modified by machine state.

______ ... --------------------1
[/td)P~S . MI\C.~\t..J~

~\P\'~---t

.).).Ps
Figure 3-4; Control Timing Model

The output of the microword register basically controls the

actions of the 11/60 until the next uP3. Part of the microword

register is directed to the branching logic, along with some

machine state; the output of the branching logic selects the

next address in the control store.

Note

Figure 3-4 is a conceptual model only, it

does not represent the actau1 control structure

on the 11/60.

.3-5

Some of the control signals which come from the microword must

be held constant through two microcycles. Cases where this is
necessary are discussed elsewhere.

3.2.2 Intra-cycle Timins

The primary constraints on intra-cycle timing come from the
makeup of the basic computational loop of the 11/60 datapath.

The BSP and ASP are each composed of 32 level-loaded memory
devices, each loaded by different signals generated conditionally
from P3. Since the scratchpad must be enabled for loading
(writing), as well as for reading, the data on the corresponding

bus becomes undefined while the scratchpad write takes place.
1rhis means that, for examples, when a location in the ASP is

being written, the data on BUS AIN -is undefined for the time

period starting just after the leading edge of P3 until just

after the trailing edge of P3.

TheALU is a combinational logic element, whose output is a

binary function of its inputs. Even if the ALU function selected

is a unary operation such as "Select B", both inputs to the

ALU must be defined to produce the expected output.

The 0 register is an edge--loaded memory device whose loading

signal is ~erated conditionally at P2 or P3.

This information about the datapath shows that the following

operation can be performed in one microcycle:

P2, D~ASP [no] PLUS BSP [n]
P3, ASP[n]~ 0

Look at another operation, which at first glance seems feasible:

P3, D~BSP[n] , ASP[n]~D

The intent is to move data from the B scratchpad into 0 while

moving the previous contents of 0 into the A scratchpad. Since

D is not loaded (and thus its output does not change) until the

trailing edge of P3, the constraint imposed by the level-l~ed

scratchpad is satisfied. However, while the ASP is enabled for

loading, the BUS AIN input to the ALU is undefined. Hence the

ALU result is also undefined during that period, and the

correct result will not be loaded into 0 at P3.

The Shift Register (SR) is an edge-loaded memory device whose

loading is conditionally generated by P2 or P3. When functioning

as a shift register, the shift takes place, like the load, when

the trailing edge of the pulse occurs. Whenever both D and SR

are signalled in the same microcycle, their signals must be

generated from the same clock pulse. This prevents such operations

as :

P2, SR LEFT I

P3, 0 ~ SR

However, it is easy to see that operations such as the following

are possible:

or:

P2, ok SR PLUS BSP en]

P3, ASP [n]~'- 0

P2, SR "=::-BSP [n]

Note that the ALU delay is slightly longer for arithmetic

operations than it is for logic operations.

3-'~

3.2.3 Inter-Cycle Timing

Due to both the physical and logical structure of the 11/60,

operations on sections of the processor other than the datapath

generally require more than one microcycle (and hence more than

one microinstruction) for completion. A number of factors affect

considerations of timing across successive microcycles.

3.2.3.1 Memory Operations Timing

Data from ~emory is introduced into the datapath through the C

scratchpad. This scratchpad I,an be loaded only at P3. The virtual

address for a memory. operation comes from the BA, which can be

laded at Pl.

The cache and memory management logic take a finite amount of time to

process a request. Thus, even if the requested data is in the cache,

there is not enough time between the trailing edge of PI (when the BA

is loaded) and the leading edge of P3 (when CSP data must be stable)

for the data to be fetched. The loading signal for the CSP must be

delayed until the next microinstruction. This situation is illustrated

in Figure 3-5.

O~TI r
CL...K8A

~1'3

CACHE
C "ICLE-

riMe-

f

Figure 3-5: Requested Data in Cache

If the data is not in the cache, it must be fetched from main

memory. Since the main memory cycle time is much s lO'Ner than tha t I

of the cahce, the data cannot be ready at the CSP input within

the normal time.

This asynchrony is handled by the generation of a "Pulse Supress"

signal. This signal is generated when the requested data is not

found in the cahce, and it prevents the geaeration of any clock

pulses until the Unibus cycle is completed. Figure 3-6 shoNs hON

the pulse supression affects a data fetch fro m memory.

r p-worc\X: :¥ J-'- -tcJOr-~P("

Figure 3-6 Data Not In Cache

3-~

When the memory reference is to an internal location, the

interrupted cycle should do nothing except clock the esp, because

it will be executed twice. The base machine's JAM flow is used

to det~ct and service references to UNIBUS addresses located within the

processor: clocks are not supressed and datapath state is destroyed.

Figure 3-7 DATI, Internal Address

Every "DATA OUT" to a valid Unibus address involves a Unibus

cycle as well as a cache cycle. The clock pulses· are supressed

after P2 of the microcycle following the DATO specification.

The cache update, with the address specified by the BA register, and

the data specified by the contents of the D register, begins at P3

of the first microcycle. The Unibus cycle does not begin until

after P2 of the second microcycle. Hence, the data to be written

must be clocked into D by P2 of the first microcycle and kept constant

until P3 os the cycle following the DATO. The procedure for doing

DATOs to valid Unibus addresses is shown in Figure 3-8.

3-,0

Figure 3-8 DATO Timing

A DATA OUT to an internal location looks very much like the

corresponding DATA IN, a~ shown in Figure 3-9. The microinstruction

following the n~TO should be a null word. During the JAM routine,

datapath clOCking~re repeated.
r

Figure 3-9 D~TAOUT, Internal Address Timing

Since every memory reference requires two microcycles to complete,

memory references MUST NOT be specified in two successive micro-

instructions.

3.3 MICROCODE BRANCHING

This discussion of branching looks at two fields in the

microword. The MicroPointer field (UPF), ~<08:00>, contains

the address of the next microinstruction, as explained in Section

3.1. You can ~odify this sequence by using the MicroBranch

field (UBF), :J<13:09>. The UBF field serves three purposes:

1) it provides for conditional branches based on the state of

the machine; 2) it provides for subroutine calls and returns;

and 3) provides extra code-points for control signals.

Figure 3-10 UBF, UPF Fields of the~word

The mechanism for modifying the next microaddress is quite

simple. In the Processor Contr.ol Section, the Next MicroAddress,

which is used to address the control store, is generated by
• ORing the contents of the UPF field with the output of the BUT

MUX. The UBF field provides the selection signals for the

BUT MUX, as shown in Figure 3-11. The data inputs to the BUT

MUX are variou$ elements of machine state, such as the

contents of SR~03:00~.

3-l~

M·)ch.~'Q
S-r~~

r L-~~LG\PF
I

,.(, 1\ <<t. r)
--------. ---- -_. t~

Figure 3-11 NUA Generation

When an unconditional branch (normal sequencing) is specified,

the output of the BUT MUX is all Os. The~~Ring operation

does:'not ~y the UPF, and the :.c-o~£~nt's'\~-fiA:he UPF field

becomes the NUA.

'h~-AI 'Il fb'S.-l \.- <.. ~.--

In conditional branching, the binary valu~-the UPF field

is important because a UPF bit with a : of 1 is not

affected by the ORing operation.

For example, consider a two-bit-wide branch, in which two

signals (SI, S2) are to be ORld with the two low-order bits of

the UPF field. Potentially, this is a four-way branch. But if

either or both of the low-order UPF bits is a 1, the number

of potential target addresses is decreased. Figure 3-12

3-1_~

illustrates this effect. Note that you can use this to mask

out a signal in which you are not interested, as well as to

decrease the range of a branch.

A.

B.

c.

3.3.1

UPF x x x o 0

S182

NUA x x X S182

UPF x x x 1 0

NUA x x x 1 S2

UPF x x x 1 1

NUA x x xlI

Potential

x x x 0 0
x x x 0 1
X X x 1 0
x x x 1 1

x x x 1 0

x x xlI

x x xlI

Target Addresses

The state of the
signals has no
effect upon the NUA.

Figure 3-12 Microaddress Modification

BUTs

The UBF codes, which control the branching logic, are given the

generic name BUT, for Branch Micro-Test. Since not all of the

code-points available in the UBF field are needed for conditional

branches, the BUTs are divided into two groups. The -regular"

BUTs only cause the ORing of the BUT MUX output with the UPF. The

Active BUTs c)~ W € l\ change some micro-level state as well a ~~ \ \
as causing the ORing operation. SOVYU ~c hve fSu::ts f>QX" . .Q,~ m
Hu..t b~ O¥?,~ cV\ Ol/\.\.y zer-oes.

3-)~

An example of an Active BUT is BUT (COUNT) (UBF/25). This

BUT is used both to increment and to test the contents of

the CNTR (see Section 2.6). Every time BUT(COUNT) is

specified, the CNTR is tested for overflow; after the test,

the CNTR is incremented. If the CNTR contained all Is when

the test was performed, a 1 is OR'd with the low-order bit

of the microinstruction's UPF field. This provides a branch for

exiting when a loop is completed. Figure 3-13 illustrates

how the use of BUT (COUNT) affects the flow through a loop.

~ ... ,

LOAD

CNTR

,1/

START

LOOP
-----i

bPERFO~
OP~_~TIONS

NO

! CNTR

I '-T'- -. -. -_

UPF -w
Figure 3-13 BUT (COUNT)

3- '5

. "Beld (()U.~\)
Jl ~ ~ . l)JU-~.A 1(!~) oJ -o..,v- • ~~'

~~cYLd.

r----.
INCREMENT

CNTR

J rH~ ().-f f -

After the test, control will go either to the microinstruction

at the address specified by the UPF field or to the micro-

instruction stored at UPF OR 1. .s that the first

microin~~i~~~~ within the Loop (pointed to by the UPF) is

stored a~tion one less than the address of the

first microinstruction handling the exit from the loop.

This example emphasizes the impact which chained sequencing

has; upon the programmer. In this case, the microinstructions

within the loop cannot be stored in sequential locations.

3.3.2 Timing Constraints on Branching

Conditions to be tested in a branch must be set up in a

microinstruction prior to the one which specifies the BUT code

and the UPF base. I. ~fLtA ~N'O~ ~in~ ~-t ,P-P3 .

; thus, the machine state

at the inputs to the BUT MUX is that which u)d~ c. 'ocRLO b~ ~

enc> of the previous microcycle. On other words,

conditions set up in microcyle 1 can be tested in microcycle 2

to affect the address of the microinstruction which controls

microcyc1e 3, as shown in Figures ~.".'-I ~d 3.15.

~cyc1e 1

Set-up

conditions

llcyc1e 2

~bld (In'\i>;~O'\S
Test by

issuing BUT

code

llcyc1e 3

J,1instruction ~elLcJierYl

dependS on result

of ORing

Figure 3-14 Setting Up Branch Conditions

. I

i
i
I

~ · CdciL ? "u -c:;c.ie :L

0<.0 0(.;.1-

; n con *'c:> \ " n conT'rt>\

Fe1~of
Ot.

Fe-tc.~ of i
0(2-

C loc.1e.
PuJorc

,

, , I , I I
<FoR~ f'orm F"o .. fY\

Addte~ ACX)N.~~ ACJdtt~S.
e>f ~L 0\ o(~ o~ ()(.3

i- t A'-
MU " -~

N'~T J\co~~s~ 'FCRM~\ \O~

Th f'jUf1- fA not cla:~ "~~ (") N'S(~u..r bf6?-(" ~ w ~"to d~1){1.4,')"~ ct-,.:fro-(J

~~ J 50 ~~S c... BLlT (.&1#.0 itiO'l\.s on II Vn~ c»71iA. eO/-J atU£~S" fII ~ s/~d
hold the tested condition stabl~~~~J1~L~e ~i~~~cle
in which the BUT code is issued.A This>" is illu3rated in the symbolic

code below. This example uses BUT(DZERO) (BUT1S), a 2-bit

branch. The top bit, OR'd into UPF<l> is 1 when 0<14:00> is

alIOs; the bit OR'd into UPF<O> is 0<15>.

600:

602:

601:

603:

P2: SR +- R(OF)
P2: 0 + R(OF)

J/602

Pg-;. o +-NOT SR

BUT (DZERO)
J/60l

Continue-

1 Error return

Arbitrary starting address
Put data in 0 and SR at P2

Go to next microinstruction

Complement data

Test previous D data; "if non-zero,
go to 601; if zero, go to 603

The UPF specification (J/601) in the second microinstruction

masks out the 0<15> bit, so that only a test for 0<14:00> = 0

is performed. The data stored into D in the first

microinstruction is tested during the next, and the second

clocking of D has no effect upon the branch.

3.3.3 The BUT List

Table 3-1 lists all the UBF codes (BUTs), their composition,

and mnemonics. Many of the BUTs are described in detail in

later sections of this manual; ihe oth~~s . perform as

indicated in the Notes coluron of the table. The shaded rows

indicate BUTs which are least likely to be of any use to the

WCS microprogrammer. These BUTs were designed specifically to

aid in the implementation of the PDP-II.

Notice that the NULL BRANCH, that is, the UBF code that causes

only Os to be ORld with the UPF and changes no state in the

machine is BUT30. The uaF is the only field in the microword

in which a value of 0 is not an acceptable default; ~ ~
~ 3¢ aA t'VJ' cAJo.-u1A-~ ~

All BUT conditions are active high; and all branch widths are

justified to the low order microaddress.

3.4 THE CASE BRANCH

The CASE branch, BUT:~SE), causes the four low-order bits of

the SR to be OR's into the UPF field.

Using BUT(CASE), control can be directed to anyone of 16

locations within the current page. Thus, if the UPF field

contains the address 340 8 (0111000002), the next micro

address could be anyone of the following:

340 344 350 354

341

342

343

345

346

347

351

352

353

355

356

357

You may not always need the full sixteen-way branch capability

of BUT(CASE). If the UPF address in the example above were

343 8 instead of 340 8 , the branch could only go to ro~r

locations: 343, 347, 313; and 357. Only the condition of SR<3:2>

w ,
~I

o

UBP CODE
'-

99

01

02

...... ~.--.

COMPOSITION

Table 3-1

BUT LIST

.. ~
WIDTH

(Bits ORld into UPF)

SR<03:00> 4

IR<15:12> , 4

INSTR 5 BR<4;0> 5
~-- -----=--'" --- .

03 IRII a FLTPT BR<3: O>~ 5

NAME AND
SYNONYMS

BUT (CASE)

BUT (OOP)

BUT (INSTRS)

BUT (FLPDECODE)
- or -.- -~ ~- . ..,..., ~ ----....-.-. ... -- .. _-

04 IR<09:06> 4 BUT (SOP)
........ ,-..

05 ,~'glrl MOV A F'LPT V DR7 A FLPTa IR<OS: 03> 5

.. - --_ _ .. -.... --.-...- --.

06 INSTR 1 BR<7:0> 8 BUT(INSTR 1)

07 $J a BG INTERNAL V FLPT SRVC II D (C) 5
alFLTPT ACKD FRET$J

10 COUT$J7Q DOUT,87a FB$05 3 BUT (FNORM)

. -- - . __ I

II DM.' a SM,SQ BYTE 3 BUT (DM$JDSM,SaBYTE)

,

-- -

ACTION AND USAGE

See Section 3.4

Decodes opcodes of
double operand instrs.

Decode sopcode's

Floating point decode

Decodes opcode of single
oferand instructions

Indicates whether IR
contains a MOV instr.;
or a floating point
opcde with destination
register 7 (PC); and-what
the Destination mode is.

Initial PDP-II instr.
decode. I

I

Used in normalization in
floating point

"'~~-.""-'-'. ---
Indicates whether current
instr. nas destination
mode J, source mode .', and
if it is a BYTE operation.

)

TABLE 3-1

.... ----- ----,-'

UBF CODE COMPOSITION
(Bits ORld into UPF)

BUT LIST (CONT.)

WIDTH

.~- ~ ... --..... -- "._. -----

NA..\1E AND
SYNONYMS

A~TION AND USAGE

~----------~--~.~---~~ ~----~----.--.-.~--~~ ... --~----~~-----~--.. ----~--------~-------------------------~----------------------.-------------------------t
12 GUARD<3:2> 2 BUT (GUARD) Top two bits Qf GO

are OR's into UPF; use
for checking results of
shifts, etc

__--..-.-..r--_ ~ .. _.....-- -_-- - -.- .. - __ , -~ ---~---------

f

13 SR<Ol:OO>gCNTR~7:0>=1·s

,
1 ___ ..

14 BGINTE&~ALa MF INSTRIIMULTI BR

I-~-----~--- -' ----
! 1S (0<14:00> = ~Is)a 0<15> .

3

3

2

BUT (MULSTEP) Used in Multiply loop;
tests CN1R, inorements
it, and indicates what
is in SR 01:00

#.-- ~-~~-......-..-.~~ ... ~~.~ "...-----

3UT(MFINCaMULTIPLE)
BUT (MULTIPLE)

BUT (OZERO)

If you mask out the top
two bits, can use -
BUT (MULTIPLE) See Sec. x.x

Indicates if 0<14:00>is
all '5, and what O<lS>is .. ------------------ ----- ---; t

16 IRII0 PSIS 2

17 (CNTR<7:0> =l's)a D(C) 2

... ..~ --,--,-----------
20 NO INSTR OVERLAP 12 SERVICE 2

BUT (JMP, JSR)
BUT (IRl1" PSlS)

-~--.-----

BUT (ASHBR)

IR<II>distinguishes JMP
and JSR instrs., PS<lS>
indicates current mode.

Tests and increments CNTR,
~hows _~hat ___ Q (CL!~~ _____ _

.----_ ... _-------------
BUT (FOV a SERVICE)

BUT (SERVICE)
Indicates nb PDf-ll instr.
fetch overlap; SERVICE

every PDP-II instr.

checks for service conds.;
must be performed before I

--- -----_ _.------. ... ~ .. ~ __ ·~";."- u~·, _- ~ ~

ACTIVE BUT (ROR1) Low bit of IR source field
is ORld with 1; use to
address mUltiple regs.

I 21 PSSYN INTERNALD D~ _v 7.! _ .. ~:.~_ . __ .__ i
t 22 ~

..,
r
~
l

TABLE 3-1 BUT LIST (CONT.)
-

UBF CODE COMPOSITION WIDTH NAME AND ACTION AND USAGE
(Bits ORld into UPF) SYNONYMS

23 o (C) a BA< 00> 2 BUT (0 (C)gODD ADDRESS) Indica.tes carry and

• ~.
odd address

~
OTHER J~UPP GFLAG05 A EXFLAGOI 24 2 BUT (OTHERJAMUPPQ HOTWARM) Used by base machine

...............
25 CNTR<7:0> ALL ls 1 BUT (COUNT) Use to test and increment

f CNTR reg.
• i

BUT(INTR REQaSUCBRANCH)
, 26 INTR REO. NO BR INSTR 2

27 FOVLAP SAVED FPS07 2 BUT (FOVPSAV D FPS07) ,
BUT (FD)

30 Il ACTIVE BUT (NULL) This is the NULL BRANCH;
UBF and machine state

I unchanged
r····-~··· .

BUT (TRACK) enables CUA I 31 ~ ACTIVE BUT (TRACK)
tracking, which is
disabled upon JAMUPP

~

I 32 ~ ACTIVE BUT (CLEAR FLAGS) Clears RES register and
Short Term Flags (MFPI,
,~;!~ T~~~umask!.1~~"I~

33 ~ ACTIVE BUT (OIAGNOSE) Reserved for ncS'

34 ~ ACTIVE BUT(SUBR B), Return<ll:OO> + RETURN,
BUT (GO TO) Page<2:0> + PAGE

-.. -- ---.
t 35 ~ ACTIVE BUT(SUBR A) Loads Return and Page regs. 1 , Return<ll:OO> + 0<14:03>

~-36'
Page<2:0> + PAGE

I-

i ACTIVE
"iAAA "fAA-~ ~

~ ACTIVE BUT (RETURN) "R c.> e- .l.,... < •. I 37 ~~e:- ~.(otioo>1
I ~ ~,o> ;p.c "'~OS>

would affect the outcome of the branch.

A simple example that uses the CASE branch is testing whether

an ALU result is even or odd. (Obviously, there are other ways

of doing this~) To ensure that you test only the desired

condition, UPF<3:1> are'ls. The first microinstruction specifies the

ALU operation and clocks the result into the SR; the second

specifies BUT (CASE) and the base address for the branch.

INSTR 1:

INSTR 2:

P2: SR+-A PLUS B,

BUTWULrJ, J/INSTR 2

BUT(CASE), J/NEXT Go to NEXT if result
t is even, NEXT+l if odd

Using the microassembler, you would specify a constraint field

of 1110 for NEXT.

3.5 SUBROUTINES

The well-proven programming technique of subroutine

structure is available to the IMP microprogrammer. Use of

subroutines generally results in smaller microprograms,

more systematic mi~roprogramming, and more easily shared

rnicroroutines.

3.5.1 BUTs for Subroutines

There are three BUTs to control entry to and exit from

microcode subroutines. They are BUT(SUBR B), BUT(SUBR A), and

BUT (RETURN). All are Active BUTs.

A jump to the beginning of a subroutine is distinguished from
an unrestricted jump by the storing of a return address
prior to the jump. On the IMP, the return address is stored
in the Return register in the Processor Control Section. The

jump is then made in the nor-aal way to the location specified
in the UPF field. At the end of the subroutine, BUT (RETURN)

causes a jump to the previously stored return address by
loading the NUA with the contents of the Return register.

The return address can be loaded from the 0 register or

directly from the microword. You will !qenerally load the

return address from the microword for firat-l.vel aut.routines,
and load it from 0 when nesting or diapatchinq on pneVlousty <?xtrdCliu
bit patterns.

BUT(SUBR B) stores the contents of the RETURN PAGE and RETURN AOO£€SS
fields of the microword, lJ<46: 44.> and lJ<41: 3 >, in the

Return register. Note In Figure 3-16 that these fields ddQ~
overlap the ALU function field and some of the(bus control

fields. Hence, attempt no datapath manipulations in a

microinstruction that specifies BUT(SUBR B).

Figure 3-16 RETURN PAGE, RETURN Fields of lJword

The following'example shows how BUT(SUBR B) and BUT(RETURN)

can be used when no nesting is involved.

MAIN FLOW

JMP:
RETURN -+- MAINl.9,
PAGE" I,
BUTJSUBR B),

J/SUB1-------

MAIN1.":

SUBROUTINE

SUBl:

ENDSUB:
BUT (RETURN)

Both BUT(SUBR A) and BUT (RETURN) load the Return register

~ro~ ~<l4:03>. ~~i~ allows you to use a previously calculated

or stored return address.

Although you can use BUT(SUBR A) and BUT(RETURN) for

general subroutine calling like BUT(SUBR B), they are

especially useful for nested subroutines. When going through

successive levels of subroutines, you must save the return

addresses in the scratchpads.

The following sample microcode illustrates the use of BUT (RETURN)

to take a return address out of the CSP.} ~ote ~~t the caller

stores the return address. ~>" I ~t f A-l 'I

MAIN:
~, (SPt)(f\t 0]<- ("'AIA).1... ! 4Isp GETS RETURN ADDRS
PAGE" 1, BUT(SUBR B),

J/SUBI

MAINI: 1 RETURN ADDRS FOR SUBROUTINE 1

SUE,I:

J/SUBIN

SUBIN:
RETURN + SUBIM,
BUT(SUBR B), J/SUB2

SUBIM:
BUT (RETURN)

SUB2:
J/SUB2N

SUB2N:
P2: D CSP[MD],
J/SUB2N+l

SUB2N+l:
BUT (RETURN)

(SUBROUTINE I CODE

1 LOAD REUTRN ADDRS FOR SUB2

1 RETURNS CONTROL TO MAINI

1ENTRY POINT

! THIS INSTR SETS UP
!' D SO THAT RETURN WILL BE
I' CORRECTLY LOADED IN SUB2N+l

! THIS INSTR RETURNS
!CONTROL TO MAIN 1 AND

LOADS THE RETURN REG FROM
D

The function of this code may be clarified by the flow diagram
bE~low.

(\111\ 110 L

~--y'\Vl
lJx) !l

~o • .pu.:r ,wJi t- .

StAS l.

S~
e.=·o~

~ c:sP(A.1D1

Using Subroutines

In structuring your microprograms, it is important to

understand how the chained sequencing scheme of the IMP

affects the use of subroutines. In higher-level languages

where the instruction flow is sequential, a subroutine

can be seen as a "black-box" ryrocess occuring between two

main-program instructions. That is, the subroutine process

is isolated, and is generally called from and returns

to the same program flow.

On the IMP, there is no automatic distinction between

in-line and called code because every microinstruction can

call any other microinstruction in the control store.

In addition, a microcode process can be isolated merely

by ensuring that entry to and exit from its flow occurs

only at specific points.

The most general ~pproach to understanding and using the

microcode subroutine facility of the IMP is to consider it

a method for sharing code sequences. Thus, if flows

A,B, and C contain common code, only one copy of the common

code is required. The main flows A, B, and C specify

BUT(SUBR B), thus loading the return address, in the

microinstruction ~~~ specifies the jump to the common

code sequence. The last instruction in the shared code

includes a BUT (RETURN), which ret-.urns control to the

proper main flow.

~rote that control does not have to/return to the calling
. ~!-:'" , ~ "::If Jc.,., 1 '4....)

flow. Within a subroutine~a conditional branch

which can preclude the execution of the

BUT (RETURN) .

3. 6 PAGE CHANGING

Heretofore, we h~~t:' \co\<uc) Ol\~ at the low nine bits of

the microaddress. Twelve bits are needed to specify a

unique control store location on the IMP.

The IMP control store is divided into S12-word pages.

The 9~bit address selected by the UPF field represents

the displacement within a page. Three additional

address bits are used to specify the page.

Unnecessary page changing is to be avoided, since it

can add overhead.

'rhe top three bits of the-microaddress are specified by

the contents of the Page register in the Processor

Control section of the IMP. The Page register is loaded

whenever BUT(SUBR B), . BUT (SUBR A), or BUT(RETURN) is

specified. Thus, Jage changing can only occur when one

of these BUTs is specified in the UBP field of a

microinstruction.

~he contents of the PAGE field of the microword, f/<32:30>,

O(~loaded into the page register whenever BUT(SUBR B) or

BUT(SUBR A) is specified. Do not confuse this field

with the RETURNPAGE field, #(4b:41>, refer to Figure 3-11:

When BUT (RETURN) is used, the top three bits of the

Return register are loaded into the Page register. (Note

that the original source of these bits was the RETURNPAGE

£ield w~~~ B~~ (SUBR BJ,tBUT (SU~R_ ~~~~r_~~ ~~:~RN) was spec:ified,,)

,,~~~. ./ ~~~_~~ 14: ~ L~.~~
" vJY) ~~y 3-:J.S

32. 30

".~, '*PAGE

Figure 3-17 Three Ways of Loading the Page
Register

These three BUTs were discussed in the context of subroutining."

3-~q

but it is important to note that oage changing is not

restricted to subroutine dispatching. Although the three BUTs

load the Return register. as well as the Page register, that

loading is significant only if a BUT(RETURtI) is issued.

Thus, if the microinstruction at location 6056 (page 6,

location 56) looks like this:

6056:
PAGE/7, BUT(SUBR B), J/220

the next microinstruction will be at 7220 (page 7, location

220). The dat loaded into the Return register by the

BUT(SUBR B) in 6056 doesn't matter unless 7220, or one of

its successors, specifies a BUT(RETURN).

The following is an example of changing pages while calling

a subroutine:

6056:
CALL:

RETURN PAGEl 6 , RETURN~DRESS/057, PAGE/7,
BUT(SUBR B),'J/220

7220:
BUT (RETURN)

6057:

Because the subroutine BUTs are also the page-changing BUT~,

there is a danger of jumping off the current page inadvertently.

You can avoid this problem by making sure that microinstruct~ons

using BUT(SUBR B) and BUT(SUBR A) have the proper value in
the PAGE field. A no f'f'Y\cJ. ~u b, cLJVtu-. ty\l,..L~ 1'\6~ (_d/l~J tl J~ rd (f.S)
L ~ ~ .1. / J ,(:. ~ J __ ,.~../ 4 i..J Cb~~S j .~~ P((21 ~ 1\) ,..~/~-'V
EJJU..'.I1A}..JJ.~ v\ UnrLV-O ~ '--') .J..,M. Ct. ~

(
'Y (.' I . /;, . (." ,ai <' '--}'I/) oJ ~ J:;:Ii.i.xl ,J.;' .f." tfl)i'-L1.h (' lri t4) (.b,
,ll:'.1i (I '" (.AJ A f- (, (:;fJY. ~ - c, ((,) ()

i,t ,..i _ Ii. '1" ()" L- A\.';~'c'ic!L,.._~) () (() (I 1 _P -~.'

Pr- 1<.1.1 (; / f/,t:.lI I ~~(A!.JC ,- /-f 'Or C/.. lr·· ~1' i ,. -,) / ..' ~ n
./',~y~J .;K-. '- QUJr'.. rt!J(6 U~Lj ~fvl' ""'(

{odY 1~ r 6~ J I (lfl- J 1 U rJ .f-J c/) - ()

l~'lWJro.(Lh&h) 'J

CHAPTER 4

THE CENTRAL PROCESSOR

While you will work almost exclusively with the lif~ Inner

Machine (the Datapath and Processor Control sections),

~otentially useful features exist in other sections of the

processor.. In addition, it is important to be familiar with

the inter-relationships of the var~ous sections of the

processor.

The fold-out block di~gram of the processor, Figure 4-

will be a useful reference while reading this chapter.

4.1 I INTRA-PROCESSOR COMMUNICATION

The Datapath can'send data to, and receive data from, each of

the other four sections of the processor. The follo'~ing sections

discuss the mechanism for these data transfers, and the means

of controlling them.

4.1.1 BUSOIN and DOUT

BUS DIN and DOUT 'connect all the sections of the IMP

processor, and are the main data channels within the

machine. Both are 16 bits wide.

The only device that can put data on BUS DOUT is the D

register. This data is then available to all other sections of

the processor. No explicit enable signal is ~ee~d to put

the contents of 0 onto DOUT. Thus, if the contents of 0

are unstable, so is DOUT.

4-1

BUS DIN supplies data to the Datapath: every section of the

processor except the Datapath can put data on BUS DIN.

BUS DIN is connected to the DMUX (which provides the CSP input).

lIence a WR CSP specification is needed to get BUS DIN data

into the datapath. All the other sections of the processor

have tri-state multiplexers connected to BUS DIN. Selection

and enabling of these multiplexers is controlled by the UeON

register.
CAt.\. n 0 "-'>

. of' u.<:o to c ()..AA. c~se

4. 1. 2 UCON Control Register

The UCON register is a 16~bit set-up register, located in the

Processor Control section. (The general concept of set-up

registers is explained in Section 2.8.) UCON controls intra

processor communication, that is, micro-level data transfers

between sections of the II/tf:i processor.

The contents of the UCON register determine which section of

the processor is to be accessed from the datapath, and in

what manner. It is simplest to look at the UCON register in

two parts, according to the function of the bits. The low

order five bits control the selection of a section of the

processor and any necessary enabling. The remaining 11 bits

provide further control of the section selected.

The UCON register is loaded at lJP3 whenever BGB, lJ<24>,

BUSBOX, lJ<23>, and eONO, lJ<20>, are all equal to one. Figure

4-1 shows how the UeON register is loaded from the micro-

word~ Since the interpretation of the control bits depends upon

the section of the proce~sor selected, their functions are not

shown in this illustration.

4-2

-_ ... ~ l.4 c.ottJ '5
P'----~ (J'coN.4-

60-----1
lACON 13

r-----..,., u,c 0 I'J , 2-
t-----t

t----.. tJ.co N '.
uc.oNlfiI
tAc.oN~Ci
tA. (" 0 t-J¢ ~

I---~ lJ.. C. oN ¢r
lA C.Ot0 ~b

1----.. \.A. ~O "-> 0 ~;
+---.....

t----~ (.,l~O~ 6ft.. FP
+---.....

...... --~ LACON ~'- "FROG

u.C.O~ SE L- rIa
LLC.ON ~E L.. WCS
U c..o t-.J 5(. '- ,"< T

BG,aJ}l (J4f) C.O~O, ~ <020;>

6~i3DX)}..(~_---'

Figure 4-1 UCON Register

The order in which the bits are loaded into the req~ster is

transparent to the microprogrammer. It is the mapping of

microword fields to eventual effects (signals) that impacts

the microprogrammer.

4-3

The UCON register sets up a ("ol..\..h\'\:'3 ~c:t.~ -fo... data

whenever an intra-processor bus cycle is specified by the

microprogrammer. Thus, when .writing of datapath data is

specified, ueON determines which section(s) of the

processor is to take data off BUS DOUT, and to which register

in that section the data is written. When data is to be

introduced into the datapath, UCON provides the appropriate

enable and disable signals to the tri-state mUltiplexers

attached to BUS DIN.

Once this path is set up, it does not change until you

reload UCON. You can set up ueON before it is needed,

and use it repeatedly until t~e register is rel9aded.

Specific details of the BCON interface to each section of the

processor, such as the function of the control bits, are

included in the remaining sections of this chapter.

4.1.3 ~~ Control Fields

The BUS/Vet;N control fields, which span 1l<24:20>, serve to

distinguish between and provide cont~ol signals for both

Unibus cycles and intra-processor data transfers. Their use

for Bus (Unibus) control is described in Section 4.3.

The BGB field (think of it as Begin tJc.otJ or Begin GUtS), 1l<24>

determines if activity over BUS DIN or ,DOUT is

going to occur. If BGB is equal to 1, bus activity is allowed.

This bit avoids inadvertent bus cycles when setting up the

4-4

Shift Tree or addressing the CSP due to the overlapping_bit

fields. A BGB value of 1 indicates that either a Unibus

cycle or UCON activity is going to take place.

BUSBOX, ~<23>, determines how the remaining bits are to be

interpreted. If BUSBOX is 1, then ~<22:20> are used in

controlling intra-processor communication.
rr~O

~t~
FLTPT, ~<22>, is used by the floating point hardware and

should always be 0 when performing UCON activity from the

WCS control store.

DATTB, ~<2l>, is used in different ways by different sections

of the processor.

CO NO , ~<20>, is used in conjunction with BGB and BUSBOX to

load the UCON register.

4.2 THE INNER MACHINE

The Inner Machine is composed of the datapath and the

Processor Control sections. This section describes the

features of the Processor Control section and its interactions

with the datapath.

The Processor Control section, as well as providing control

signals to the datapath, contains a number of important data

registerS. Understanding how these registers can be accessed

from the datapath will give you added flexibility, both at

the macro- and micro-code levels.

4-5

• --.- , -_ ... -- " -" '" -....... , , - .. CIt 11& .. --..
....,· ... ~ i..,.~;,.,

:...::::o .. ·;·:': ... ~-....

J
6'

-
•

'01·'11

...

CDNTIt04.
.a'S,....£oI to
~tA~'o/'t4

7---

~

llOllf'(J:'> 1OII11J

6

I

_ t
1 •

!

K4 DOur

.t.
ausu

~

.....,. CII:,,>

3

_HIHa .sr.',

&iT MUX

DlII«QU ------

NC7U·
L ,,..; .'O:E ! ;.~ :CJtf~'- C,6.-.:T:Oflt .s

;""& .. E"-£'.·£; c.-, rNa ., .. ~.:s: tJlJIOIID
""'tJ ='':~·O(.

2. ~!E' '''':''.j;.'';~~ ~.;",w~~y '0' Y).I(
U':-l-:;" ./.:; Fc,IIIMIfT " "'Ill ",,'''OL
.sl6"''''lS =" !J5.J.

o.wM <oS:,,>

IT I
i I : : 10 wca/."

I*/T<J~'>

,ov"SItV

I

.. , ,. •
IU;JO'N MIJIC

BUS DIN

6 s

~,,~u v-e ~-2

..... lIlt CII:"~

3
". --r" .' - --:- • ,,~~~.;' .":"~: _ ~ 0It..

IMP M.CROPAOGPAI lNG SPEC

&
PROCESSOR CONTROL
BLOCK DIAGRAM
O*Tt: t-1Z-7to

C".UOGl

- .,
2

...~

. ..
;..

j
•

Figurt! 4-2 is a block diagran of the Processor Control

sectic.·n of the ,IMP. At the top and bottom of the diagram.

are the two data busses: BUS DOUT and BUS DIN. Data from the

D register can be moved into the Processor Control section

over DOUTi data from the processor control section can be

moved into the CSP over BUS DIN.Data is placed on BUS DIN by

the BUS DIN MUX.

In the middle of the diagram is BUSU, which carries the

microword signals through the processor.

4. J.. 1 Next Micro Address, NUA

The Next Micro Address, NUA, selects the next microinstruction

to be executed from the control store (either base machine

or WCS). ~'IUA<ll:09) ate. the contents of the Page register,

as shown in Figure 4-3. The Page MUX selects between the

two sources for the page register: Return'll:09) or

)U()2:30). NUA~8:0>is the result of ORing the output

of the ~A register with the output of the BUT MUX. Both

the Page Mux and the SUA Mux select the rnicroword input except

when BUT (RETURN) is specified.

Chapter 3 describes, from a functional viewpoint, the loading

of the Return register. You can see in Figure 4-3 that specifying

BUT(SUBR B), BUT(SUBR A), or BUT (RETURN) causes the Return

Mux to select one of its inputs; the Return Mux output

is input to the Return register.

4-7

tL- we')

Pigure 4-3: 1 1UAFormation

Looking at the Page and BUA registers again, you will notice

a JAMUPP signal going into both of them. JAMUPP stands for

JAM MicroProgram Pointer, and the effect of this signal is

to "jam" a unique address into the NUA. This is used to dispatch

into the JAM routine, which services synchronous error conditions,

internal addresses, . etc. The JAM routine is described

in more detail in Section 5.3.

4-8

4.2.2 BUS DIN MUX

The BUS DIN multiplexer determines what data from the Processor

Control section is gated onto BUS DIN to be sent to the CSP.

This multiplexer has four inputs; selection among these

inputs is controlled by bits from the ueON register, a.

shown in Figure 4-4.

Since the BUS DIN MUX is a tri-state device, it ~equires an

enable signal as well as selection signals. The enable signal

is also generated from a combination of bits from the ueON
register. ~-\oTq.b~ ~-'-

~----------+- .. -------------.--.- -.-... _- ---

Figure 4-4 Selection and Enabling of
BUS DIN MUX

4-9

There are two ways in which the BUS DIN MUX can be enabled

and selected. The signal UeON EMIT (1) L is true whenever

the ueON register has been cleared by BUT (CLEAR FLAGS) or

INIT. OCON EMIT (1) L enables the multiplexer and forces

the selection to port D~ which is the EMIT input. This

allows you to select EMIT without using a microword to set

up the ueON register.

The other method of selecting and enabling BUS DIN MUX does

require you to set up the UCON register from the microword.

The microword fields to use are KPROC, ~<36>, and I/U, ~<46>,

(in the UCON SELECT row of the microword summary), and KPROC

READ, p<39:38>, in the·UeON READ CONTROL row of the mciroword

summary.

-fJI" ••

. .,... '""

.... . . ~
'. ,

J)II .• ,

33
f'F

.:" p

Figure 4-5 uword Fields for Controlling BUSDIN MUX

The logic for enabling the BUSDIN MUX works according to the

equation:

ENB BUSDINMUX = UCON SEL I/O A UCONL A (UeON SEL PROC V UCON EMIT)

A INH UCON(BUS XFER)

From this, you can see that to enable the BUS DIN MUX, you must

ha~e KPROC, 1l<36> equal to 1 and I/O, 1l<46>, equal to 0 in

the microinstruction which loads the UCON register. The encoding

4-10

of the KPROC READ field, ~<39:38>, is shown in Table 4-1.

KPROC READ
Field Value

0

I :

1

2

3

~ABLE 4-1

KPROC READ FIELD ENCODING

MNEMONIC

FLAGS, FPS

PS

eUA

EMIT

EFFECT

BUS DIN<15> + FLAG<03>
BUS DIN<14:11> +FLAG<07:04>
BUSDIN<lO:08>+ FLAG<02:00>
BUSDIN<07:00>+ FPS<07:00>

BUSDIN<l5:l4> + PS<15>
BUSDIN<13:l2> + PS<13>
BUSDIN<11:08> + 9
BUSDIN<07:00> + PS<07:00>

BUSDIN<15> + "
BUSDIN<14:03> + CUA<ll:OO>
BUSQIN<02:01> + EXFLAG<2:1>
BUSDIN<OO> + INSTR PREFETCH

BUSDIN<15:00> + EMIT<lS;OO>
.. -.- ... -. ---'-'-- ---_ .•.... ---.... -" -------

The signal INH UCON (BUS XFER) L is generated by the Bus

Control section of the processor. It disables all t~e UCON

controlled multiplexer on BUSDIN so that UNIBUS data can be

gated onto BUS DIN.

4.2.3 Using the IMP's Literal Facilit~

The EMIT field of the mi.:roword allows you to introduce a

l6-bit literal into the :datapath from the microword.

4-11

The contents of the EMIT field of the microword, ~<47:44, 41:30>,

is gated onto BUSOIN when both the 51 and SO inputs to the

BUSDIN MUX are high. EMIT is selected when the UCON register
is loaded with a KPROC READ value of 3, and when BUT (CLEAR

FLAGS) is issued. : (BUT (CLEAR FLAGS) selects EMIT because it

forces UCON E~T (1) L to go to the low, or true state.)

Because the EMIT field overlaps the BSEL field (~<4l:46»,

you must use the CSPADR field to specify the address in
the CSP to which you wish to write the literal data. Remember

that the contents of CSP are complemented be,fore the CSP is

addressed.

As long as you issue a BUT (CLEAR FLAGS) and do not load the

UCON register before the microword in which the EMIT l'teral

is specified, BUSDIN MUX will always be enabled onto' BUSOIN,
and the EMIT port will be selected.

The following example writes the number 326 8 to CSP[MD].

INSTRI:
BUT(CLEAR FLAGS), J/INSTR2

INSTR2:
EMIT/326, BEN/CSP, CSPADR/2, WRCSP/YES

Besides using EMIT to supply literals for datapath computation,

you will find it useful for providing constants, such as

those for loading the RES register. You can also load

subroutine return addresses by using EMIT and then issuing

BUT (SUBR A) or BUT(RETURN) in a later microinstruction.

4.2.4 Readi,g the Status Registers

The remaining three inputs to the BUSDIN MUX are status

registers. To get data from these registers into the data

path, set up the UCON register for BUS DIN MUX enabling and

selection and write a location in the CSP. If you write the

data into EMITCON, CSP[6], the UCON set-up and CSP write can

be done during the same rnicrocycle.

4.2.4.1 Current MicroAddress (CUA) -- The Current Micro-

Address register, CUA, tracks normal microcode flow. It is

loaded with the NUA at P3. When the JAMUPP routine is ~~
invoked, eUA tracking of the microaddress is disabled, and ~
the eUA contains the address of the microinstruction~usi~ -

the JAMUPP.

The eUA is gated onto BUSDIN<l4:03> when the UCON register is

set up with KPRO': SEL~equal to one and KPROC READ equal to 2.

BUSDIN<15> is loaded with zero, BUSDIN<02:0l> is loaded with

E~AGS<2;l> , which are currently unused and reserved, and

BUSDIN<OQ> is loaded with INSTR PREFETCH, which indicates the

overlapped fetch of a macro-level instruction. As there is

no macro-level instruction fetch overlap on XFC instructions,

this bit should always be O.

4.2.4.2 The ,Processor Status Registers -- The PDP-II

Processor Status Word (PS) is implemented on the IMP as three

separate registers so that each of its parts can be written

separately.

4-13

7

6

PS<l5:l2> are the mode bits. Because the IMP does not implement

Supervisor mode, PS<l4> always has the same value as PS<l5>,

'and PS<l2> always has the same value as PS<l3>. PS<15>

indicates the current processor lnode. A value of 1 indicates ~~ .

the current mode is User; a 0 indicates the current mode is

Kernel. PS<13> indicates the previoas processor mode; 1 for

User, and 0 for Kernel.

PS<7:4> contains the current processor priority and the

T-bit, and PS<3:0> contains the condition codes N, Z, V,

and C.

The PS is gated onto BUSDIN when the ueON register is set up

with KPROC SEL= land KPROC READ = 1.

4 .• 2.4.3 Floating Point Status (Low Byte) -- When the ueON

register is set up with KPRoe SEL = land KPROC READ equal to

0, the low byte of the Floating Point status word is gated

onto BUSDIN<07:00). (The high byte is stored in FPSHI-FEC in

the ASP.) The format of FPSLO is shown in Figure 4-6.

7 6 5 4 3 2 1 o

FL FT FZ FV FC

. \

Floating Oouble Precision Mode (FO)
Determines the precision that is 4
uled for Floatinl Point calcula- 3
tions. When let, Double preci·
sion Is assumed; when reset 2
Floeting precision is uMd.

Floating Maintenance Mode (FMM) .
N t' (FN)' The ult of the last operatIon

Floating Long Integer Mode (FL) 1
Active in converaion between In
teler, and Floating POint format.
When ut, the Integer format as
sumed is Double Precisiog two's
complement (i.e. 31 bits + sign).
When reset, the inteser format
is uned to be Sin;!e PreCI
sion two's complement (i... 15
bits + Ilgn).

o

Floatlnl asa Ive waa negative.

Floatlnl Ziro (FZ)

Floatin, Overflow (FV)

Aoatin, carry (Fe)

The ult of the last operation
was zero.
The ult· of the last operation
resulted In an arithmetic over-
flow.

The result of the "II. ___ ion
resulted in a carry of the most
significant bit. Thil cell only «
cur in Inteatr-Floati.. COftVeI'
liona.

Floating Truncate Mode (FT) When set, causes the result of
any arithmetic operation to be
truncated. When reset, the re
lult. ere rounded.

Figure 4-6 FPSLO

~-14:

4.2.4.4 Flag Register -- The Flag register contains a

number of micro-level state indicators for the base machine.

The register contains two types of flags: short-term and

long-term. The short-term flags are cleared by BUT (CLEAR FLAGS}.
The layout of the Flag Register is shown in Figure 4-7.

~Break ~ervice Fast
CSP -- r--- -- 1---- - r-~_b:~ .

Enable bequest (Spare) Fltpt
~' ~nabled

Cnsts ~FPI MTPI Mask
Invalidf

Enables ~brk
for MED

To WCS on
BUT (SERVIC~t-"". c~·hOl\. e)u~b)
(t.(tW ~ ---- --

I'

Fast FLTPT enabled --------------~

If set, CSP
does not contain
Floating poi(t{rl'{ Constants

Figure 4-7

Masks PS (T)
-for RTT

MTPI in
~---------progress

MFPI in
..... ---------progress

Flag Reqister

The CSP Constants invalid bit, FLAG<3>, is set whenever

CS~[O:13] are used to. store anything other than the Floating

Point constants described in Section 2.3.

The contents of the Flag register are gated onto BUSDIN when

the UCON reg istE7r is s,et up with KPROC SEL equal to land

KPROC READ equal to 0, as shown in Table 4-1.

4-15

4.2.5 Writing the Status Registers

The registers which provide input to the Processor Control's

BUSOINMUX can be loaded from the D register. You must set

up the UCON register to indicate which registers are to be

written; set up the D register, and specify the write.

After setting up the UCON register, you specify the write by

setting the microword fielc.s BGB, BUSBOX, and DATTB all

equal to 1.

4.2.S.l PS +- 0

The fields which set up the UCON register for writing the PS

are KPROC SEL; PS<3:0>, lJ<47>; PS<7:4>, lJ<34>; and PS<15:l2>,

lJ<3l>. The three sections of the PSW may be loaded at the

same time or independently. The loading of the PS from the

o register is as follows:

PS<3:0> +- 0<3:0>

PS<7:4> +- 0<7:4>

PS<13:l2> +- 0<13>

PS<IS:l4> +- 0<15>

With the UCON register set up, the indicated sections of the

PS are loaded from BUS DOUT when BGB, BUSBOX, and DATTB all

equal 1. The condition codes, PS<3:0>, are clocked at P2: the

other sections of the PS are clocked at P3. Thus you must set

up the D register one microcycle before you try to load the

p~ , and keep D stable until P2 of the microcycle
.- ,.. , .• _ \ L --.. _ I _ .1~

in which the writ. e is specified tuY_ r~<3. :0; (~.G~_.~ ~ ~UL
~/(S:{ P~3 cr-f ~. y~~ ~Cl.L\) ~~ W~ ~
~ ro.xt;~ ~ ~ ~W, . .

4-16

You may prefer to set the condition codes with this method,

rather than use the CCC rnicroword field. The logic associated

with CCC is especially designed to handle the PDP-II

instruction set. Setting the condition codes directly. allows

you to have more control over the state 1..' nformation _ r 1 ./\i'f t::L-
. ..{ ~ou. CbU.,k(j ~.

tran~mitted to the macro-level program. Jo/.J1- ~ --t.k. Wit1<'/'{)
\J-~ ~ t1U·u()c..oo~ ~ .t:.J. ~ ~ 8\1 5 c!n- .
~)r·-"·1.)

For example, the following example loads the condition codes

with values previously stored in SR<3:0>.

LDUCON:
KPROCSEL/YES,
PS<3:0>/YES,
BGB/YES, BUSBOX7YES,
CONO/YES, J/NEXT

SETUP:
P2: 0 ~ SR,
J/CLOCK

CLOCK:

ISet up UCON prior to anything
1else.

tThis exapands to: AEN/XMUX,
lXMUX/SR, ALU/SELECT A, WHEN/P2,
!CLKD/YES

BGB/YES, BUSBOX/BOX, lCondition codes loaded at P2.
DATTB/YES

Note that you do not specify any ALU activity in the micro

instruction that sets up the UCON register. Because of the

overlapping microword fields, an ALU specification could

cause an inadvertent ueON selection.

4-17

4.2.5.2 FPSLO<7:4> + 0<7:4> -- The four high bits of the

low byte of the Floating Point Status register are loaded

from 0<7:4>. The UCON register m\Jsti:be set up with KPROC SEL

and FPS<7:4>, ~<35>, both equal to 1. FSPLO<7:4> is clocked -

at P2 of the microcycle in which BGB, BUSBOX, and DATTB all

equal 1.

Clocking of FPSLO<3:0> is controlled by an extension of the

microword and cannot be performed from the wes control store.

The high byte of the Floating Point Status word is stored in

ASPHI[16].

4.2.5.3 FLAG<7:0> + D<15:08> -- The Flag register is

loaded from 0<15:08/. The ueON register must be set up with

KPROC SEL and FLAGS, J,l<30>, both equal to 1. The Flag

register is loaded at P3 when BGB, BUSBOX, and DATTB are all

equal to 1.

Remember that if you store ANYTHING in CSP (0:13], you must

set the esp invalid flag, Flag<3>.

4-11

4.3 MEMORY OPERATIONS -
The h/('o Inner Machine has three interfaces with the rest

of the system:

DATA IN •••••••••• esp, IR

DATA OUT •••••.••• D register

ADDRESS OUT ••...• BA register.

The memory management unit, the cache memory, and the Unibus

are all invisible to the microprogrammer. To access a main

memory location, you must set up the appropriate registers

in the datapath and specify a Unibus cycle.

Data from the Unibus is placed on BUSDIN, which provides one

of the DMUX inputs. The other DMUX input comes from the cache.

The DMUX output goes to the CSP and to the Instruction

Register (IR), ~ ~ FP l\-E..

4.3.1 The Instruction Register

The Instruction Register, IR, is in the Processor Control

section of the processor. The IR holds the first word of

a PDP-ll instruction. Control store dipatching is based on

the decoding of the contents of the IR.

Input to the IR is the same as that of the CSP: the output of

the DMUX. Obviously, not all words fetched from memory cont~in

PDP-II instructions. Therefore, clocking of the IR is under

microprogram control.

4-1'\

There are two ways in which you can clock a word of data

into the IR. The normal method is to issue a DATA IN AND CLOCK
IR bus code, as described in Section 4.3.2. The other
method, which may be used· to take advantage of the IR-based
BUTs, is to specif~_IR loading with the UCON register. If the

UCON register is set up with KPROC SEL and IR, ~<32>, both
equal to 1, the IR will be loaded from the DMUX during the

next microcycle in which BGB, BUSBOX, and DATTB are all equal

to 1. WhenJ IR clocking is specified, the load occurs at P2.
(JA)U'

If you refer to the BUT list in Section 3.3.3, you will see
that there are a number of branches which test the contents

of the Ii. Although these branches were designed to facilitace
decoding of PDP-ll instruction, it is possible to make more

general use of them.

For example, consider

4.3.2

[Anyone have a good idea for the example
.needed here?]

Microword Bus Control Fields

The Bus Control Fields span ~<24:20>, as illustrated in Figure

4-8. These are the same bits that are used to control intra
processor (UCON) communica·tion cycles.

Figure 4-8 Bus Control Fields

4-2.0

BGB, ~<24>, must be 1, indicating that the remaining bits are

to be used to control a bus cycle.

BUSBOX differentiates between a main memory (unibus) cycle

and an intra-processor (UCON) cycle. A value of 0 in the

BUSBOX field indicates that a main memory cycle will take

place.

The BC, or Bus Control field, ~<22:20>, indicates what type

of memory cycle is to take place. There are two basic types of

memory cycles: DATIs and DATOs. During ~the contents

of the location specified by the BA register (as relocated by

the memory management unit) is gated through the DMUX, and

can be clocked into the IR or the CSP. During a DATO, the

data in the D register is written to the location specified

by the BA register (after relocation by memory management).

Table 4-2 lists the BC codes, their mnemonics, and thei.r

functions.

DATI and

location

\OC-~
(9-

DATIB cause word~d byte reads respectively. If the

specified by thetBA re9ister is in the cache, no

Unibus cycle is performed.

If the BA specified an Internal address (see Section 4.3~3)

when DATI NO INT is issued, an Illegal Internal Address Access

Trap will be issued.

DATIP has two functions. For core memories, it inhibits the

restore cycle for locations tha~ will be immediately written

with new data. In the case of devices which can respond to

more than one Unibus, the DATIP prevents the device from

responding to any other requests. When a DATIP is issued, the

bus will remain busy until the next bus cycle or BUT (SERVICE)

4-2.1

VALUE

J

1

2

3

4

5

6

7

Table 4-2
BUS CONTROL CODES

MNBMONIC

OATI&CLKIR

DATINOINT

DATO

DATIB

DATIP

DATOB

DATI

INVALIDATE

~O\E-:;
Ohly Bytt. epea,a6 (k06a)d(;)

OAroBs.. _

FUNCTION

Data In, IR loaded

-Data In, No internal
address allowed

Data Out

Data In, odd BA
address allowed

-Data In, locks bus

Data Out, allows
odd BA address

Data In

One cache location
invalidated

An INVALIDATE Be code does not cause a Unibus cycle. The
specified location in- the cache is invalidated. The next
reference to that location causes a main memory reference.
Subsequently, the location is again cached.

DATO and DATOB cause word and byte writes respectively. A
Unibus cycle is always perfor.med, and the cache is updated.

Note that addresses in the I/O page are never cached.

4-22

I

.J.

4.3.3 Internal Addresses

Some registers with Unibus addresses are not actually

connected to the Unibus, but are located within the processor

itself. These locations are called Internal Addresses.

These locations are not accessed by the Bus Control section of

the t~. When the contents of the BA register specifies an

Internal address, the JAM routine is invoked. The JAM routine

accesses the internal register and gates its contents

through the DMUX to the CSP. When the data is ready, control

returns to the microword which issued the bus code.

Invocation of the JAM routine by specifying an Internal Address

does alter ~he state of the datapath. More significantly,' the

JAM routine uses the Return register, so an Internal Address

within a subroutine will cause a return to the wrong location.

Table 4-3 lists the ll~'s Internal Addresses. Notice that a

DATOB cannot be ~erformed to some of these registers; the DATOB is

converted to a DATa.

4-2~

Table 4-3
ll{tltJ INTERNAL ADDRESSES

ADDRESS REGISTER DATOB CHANGED TO DATO?

772300 Kernel PDR 0 No

772302 Kernel PDR 1 No

772304 Kernel PDR 2 No

772306 Kernel PDR 3 No

772310 Kernel PDR 4 No

772312 Kernel PDR 5 No

772314 Kernel PDR 6 No

772316 Kernel PDR 7 No

772340 Kernel PAR 0 No

772342 Kernel PAR 1 No

772344 Kernel PAR 2 No

772346 Kernel PAR 3 No

772350 Kernel PAR 4 No

772352 Kernel PAR 5 No

772354 Kernel PAR 6 No

772356 Kernel PAR 7 No

777540 WCS Status Register Yes

777542 WCS Address Register Yes

777544 wes Data Register ',/Q,~

777570 Switch Register YES

4-24

TABLE 4-3 (Cont.)

ADDRESS REGISTER DATOS CHANGED TO DATO?

777572 MMRJ No

777574 MMRl Yes

777576 ~I.I MMR2 Yes

777600 User POR 0 No

777602 User POR 1 No

777604 User POR 2 No

777606 User POR 3 No

777610 User POR 4 No

777612 User POR 5 No

777614 User POR 6 No

777616 User POR 7 No

777640 User PAR 0 No

777642 User PAR 1 No

77764-4 User PAR 2 No

777646 User PAR 3 No

777650 User PAR 4 No

777652 User PAR 5 No

777654 User PAR 6 NO

777656 User PAR 7 No

777744 Memory System Error Reg. Yes

77i7746 Cache Control Register Yes

777752 Hit Miss Register Yes

4-25

ADDRESS

777766

777770

777774

777776

4.3.4

~able 4-3 (Cont.)

REGISTER DATOB CHANGED TO DATO ?

CPU Error Reqister Yes

Ubreak Reqister No

Stack Limit Register Yes

Processor Status Word No

Timing Considerations

Data from memory is introduced into the datapath throuqh

the CSP. The loading siqnal for the CSP occurs at P3 if

WRCSP is specified in the microword.

The cache and memory management logic take a finite amount
of time to process:'a request. Thus, even when the requested
data is in the cache, there is not enough time between Pl
(when the SA is loaded) and P3 (when CSP data must be valid)

for the data to be qated throuqh the DMUX. The loading signal
for the CSP must be delayed unti~ the next microinstruction.

This situation i8 illustrated in Figure 4-9.

4-26

•
llP3 f!l llP3 f31lJP3

dATI,
• CLKBA WR I

I
I cSP I

I Ie cache cYfle time ~ ,
I I lJword 2

(lJword I executi.on execution I
(

FiQure 4-9 DATI Timing

Every DATO to a valid Unibus address involves a Unibus cycle

as well as a cache cycle. The cache update, with the address

specified by the memory management unit and the data specified

by the 0 register, begins at P3 of the first microcycle. The

Unibus cycle does not begin until after P2 of the second

microcycle. Hence, the data to be written must be clocked into

o during the first microcycle, and kept constant until P3

of the cycle following the DATO (i.e., until the Unibus cycle

is complete). The proc~ure for doing DATOs to valid Unibus

addresses is shown in Figure 4-10.

~ D CONSTANT- -f I
I , I

}JP3 PI P2 P3 lJP3 Pl P2 P3 pP3

I ~ 0 0
I

0 0 Cl I

D~TOcl: BA t I 1
1

I C KD ,
Cache I Unibus
UPdate

l
Cycle

Begins Done

lJword 1
.1

\Jword 2

I

Fiqure 4-10 nATI "f'iming

4-27

Because both DATIs and DATOs req'uire two microcycles to

complete, do not specify memory references in two successive
microwords. The invocation of the Unibus in two consecutive
microcycles will put the machine in an undefined state.

4.3.5 Examples

T.B.S.

4-28

4.4 THE CACHE/KT SECTION

The Cache/KT section of the processor contains the memory

management logic, the cache, the stack limit, and the DMUX.

Virtual addresses from the SA register are relocated by the

memory management l09ic, and the resultant Physical Bus

Address is directed to the Unibus and to the Cache.' A hit

(data in cahce) on a DATI causes the Cache port of the DMUX

to be selected; on a miss, the Bus Control section places the

data on BUS DIN and it is written into the cache from the

DMUX output. The NPR address monitor invalidates cache locations

which have been altered during DMA transfers. The stack limit

unit compares the stack address with a previously loaded value,

and causes an error if the stack goes below the stack limit.

4.4.1 The Cache

The 11/60 cache memory consists of 1024 words of direct-mapping

cache. Each word consists of a tag field and a data field. The

tag field has seven addres9 identification bits, a valid bit,

and byte parity. The data field consists of two eight-bit bytes,

each with a parity bit.

Each location in backing store can be directly mapped, or

allocated, to one specific cache slot and each cache slot can

accept data from up to 128 different backing store locations.

The Cache Control Register, CCR, is used to modify cache operation

for diagnostic purposes. CCR(6)is used to write wrong parity.

When set, it causes opposite (Odd) parity to be generated in the

tag and data fields. When read, those locationswill cause a parity

4-29

U ~~I B U
.-~~ -

INT.
AD 0 A
~OM

MEMORY
~1ANAGEMENT

(K T)

CAe ,.,E

BUS OiN

4-30

CACHE CONTROL REGTSn-:"'_1.r!1.?4ft!

HIT/TAG (7717"J2)

___ TI5_".f_LD ____ ·-I-_ ' MIT •• U5"..---j

STA(K LIM!l REGISTER (777"174»

I' I~

M M R0 (777'572)

MMR2 (7715761 . REAO ONLY

,
" III "1ftML ••

(772340 - 772356) KERNEL.
PAGE AOOI?(SS REGI STERS (777640 - 7776~6) USER

~~F!I • ~~~""~~_~,~"i\:~_.~IIiIIi ________ ,..._'....:IW):.:::... _______ J

(172300 - 772316) KERNEL
P~l~l OEseR IPTOfJ REG I S TE. WS (117600 - 777616) USER

• It ., ' ••) 1 I • ,. ~'IBI. I pM.wl. i"llI

I .'(71 "'41 .. M AU '·S
.. 00/11 .. '
'.110 • ..,., "f

4- 31

error and inhibit the hit signal. CCR(7' is CPE JAMUPP, which, if
set, causes an access to be abo~ted if a c~ parity error occurs.
CCI(3 : 2 > are used to force missos. CC~ ~ will causes misses
whenever PBA(lO ~ is 0 (cache lo(:~tions 0 -511). CCR(3) will
cause misses whenever PBA~O> is 1 (locations 512- 1023).

The Hit/Miss register indicates whether the six most recent references
by the CPU were hits or misses. A 1 indicates a hit, and a 0

a miss. The most recent cycle is tracked in the low-order bit. This re
register is read-only.

4.4.2 Accessing KT/Cache Registers

These cache registers, along wi,th the memory management registers
and the stack limit register, can be accessed from the datapath
over the UCON interface. Some of the registers are read-only
at the microcode level, as they are at the macro-code level.

The KT/Cache section has three devices which can gate data onto
BUS DIN: the internal address ROM, the Read-Write multiplexer,
and the Read-only Register multiplexer. The enable signals for
these devices are provided by UCON data bits: multiple enables can
cause hardware damage. Thus you must be very careful to properly
set up the UCON register, and not attempt ALU operations during
the ~ame cycle as a UCON set-up.

The particular PAR or PDR gated onto BUS DIN is determined by the
current processor mode (User or Kernel) and, within those sets,
by BA45:13).

4-32

~
I

w
laJ

I(rIca C HE UCDN INTE£.E..L-1r1l..,)",\ c ___ --r--____ _

\JeOtJ I KT . . . 'J

1-
.L
.i
i
i.
1-
1-
i
.1
.1

:!I.L. 14 l~ 12. II 10 q ~ 7...L~ FUN en a ~

1. 1.00 C) Q)")(. x)C.)(

j... G5~ QC!) (!) x. x)(x)(
io i i¢¢ x >-- "-)(~

iOC0:i.¢¢)C..)(..)(.)(.
iOOOi..0.:L~ ~)l.~

rNHl8\T l<'LO(~Tt

Bu~ J.)'~4C- I~r AO~ <:' t~'. oc >
Bus OIN Ie- MNR2 <IS!oo>
8uSO'~<IS}4- o.tHe VA L.\ D
8u~ D'N<ILI:oe>'-CA(~t. AOPR<A:l\)L
6u.~ 01 tJ < (;I'!:,"~¢ >~ 'H ,r~5 \ 0 > I

1.-0000 i-x <JOCO .B11.$OIN<ISI0C».f-5LQ~IS:O&')JCC.~<:1:0>'
1. C;) to) C 0 i '(0 C e 1.. 8QS.o , tJ 4:- MM f< ~ /
!i 0 0 u 0 i)((b 0 i 0 .JJJ.S.b1 ~<I~~oeJ0c. 03:01>4- "POR

ooooi),(!)Oi')
L C) C '...:., 0 0 x 0 i 00 Cc. ~ '(tJ{,J ~ J 2)r J::>ou.. T ''t,b J.'!/2)

1- 0 0 0 (> G)LO 1- 0 \ N~R~ <~f6¢.)~C(tJ..T~,¢¢~
i C; () CGO,x..O i. I 0 --"PJ)C«O!.~O\ ~ ,cO\J..T <o~tO''>
L 0 0 (') D C ~~ 1- I (~e<,~!o)~ Ccu.T<.:r,'o)
i00 c ~D xl 00 D SLRr<15:08>~ PO~I~(s:oe>
i (J () .J 0 0 ~ , 0 ~ I NM f.<6~'ill~'=- J)Cu,< is: oe.>
i 0 COO c) X I 0 , D FOR <:'4 ~'8 > ~ Pc~\~\4~oe >
j 0 0 a 0 0 ~ I 0 'I PAf "t\08>~.OouJ ~'\'Ice> I

L C) 00()O ,(I I CYO c<-e 5L~~DOL.lT ,
i ':> 0 0 () (.))(I I <!>, ~~~ <'S:13p~~ ~J)ou.T~IS\I"$,O~~> I

•

REA.O
RE-"15~

W~, T<:
r<t~(5~es

~ i 00 C> 0 0 X I , I 0 l'DR <'''':08 O!:O'>"'POUi(''t~oeJ 0'3 ~ Ol> "
I"'" 1-, () 0 (!) 00)c \ , I , PA R.. < I~ __ ""'. oou.:r:: ~'l·..sx>)- _____ ---L-____ _

4.5 THE BUS CONTROL SECTION

The Bus Control section of the 11/60 has four main functions:
Unibus interfacing and arbitration
Console interfacing
Timing control
Status control

This section has three interfaces to BUS DIN, as shown in
Figure 4-xx. The DU (Data-Unibus) register buffers Unibus data
on OATIs. The BUS DIN multiplexer gates console data, service
flags, error information, and the physical bus address onto
BUS DIN. The Data Storage (OS) register allows data from DOUT
to be gated onto BUS DIN. This is used for cache updating on
DATOs, and for writing data into the CSP and IR.

Nearly all of the activities on this board are transparent to
the user microproqrammer. Furthermore, meddling with this
logic offers the greatest potential for putting the CPU into an
undefined state. Thus the following sections do not suggest
using the facilities of this section. It is described here for
informational purposes.

Note that the signal IBN UCON (BUS XFER), which must be false
for other UCON activities to take place, is generated in this
section. When either the DU or OS reqisters has data to be gated
onto BUS DIN as a result of a DATI or DATO, it takes precedence
over all other BUS DIN devices. Thus, the signal IBN UCON (BUS XFER)
is qnerated by the hardware when either of these conditions is

detected.

4-3~

11/60
T, ~ , NG

UN I BUS

~------------------------------OOUT

DATA
(UNIBUS)

P8A

r--.

CONSOLE

INTERFACE

BUS OJ N :.-=========:::::=!:============
•

4-35

Microprogram control of the Unibus is essentially limited to

issuing bus codes and checking for Unibus requests (BRs)

via BUT(SERVICE) or BUT(BG).

4.5.1 The PDP-ll/60 Console

The PDP-ll/60 operator's console is shown in Figure 4-
There are five discrete visual displays which indicate

the current operation of the processor. These lights and

their meanings are as follows.

RUN

PROC

USf,R

CONSOLE

BATTERY

when lit, indicates CPU is running code

when lit, indicates CPU is Unibus master

when lit, IT-llD is in User mode

when lit, indicates processor is in console mode
if on steadlly, battery backup is present and

charged. Slow flashing indicates battery i.

charging; rapid flashing indicates battery ia

discharging. If off, battery is not pre.ent or dead.

The numeric display register contain. 8ix octal charachters.
It can display data or addre8ses. When displaying address •• ,

all decimal points are lit.

They key switch has five positions. The panel lock position

deactivates all keypad functions, and inadvertent operation

of the slide switch has no effect ••

4-36

• II •
,

The three-position slide switch allows a choice of action to
be taken on power-up. If the switch is in the HALT position,
the CPU will power-up in console mode. If the switch i. in the
RUN position, power-up will trap to location 24 (power-fa~l
vector). If the battery backup on !«l5memory has failed, the

M9301 bootstrap will be invoked, which is the action taken if

the switch is in the BOOT position.

The hardware for control of the operator's console is in
the bus control section of the proce.8or.(M7877). Keypad
entris are encoded on the console board (KY-1IP) and
trasnmitted to the status board by means of a 40-wire cable.
This interface is shown in Pigure 4-

Keypad entries are read twice and compared: the five-bit
key code is directed to the BUS DIN MUX. If the keycode
is valid and the comparison showed both readings equal, the
console service request flag is eet.

Console microcode is entered from the service flow when a

service request is detected and no higher-priority .ervice
condition exists.

1./, 5, ~ Con8ole Dat'aP!'th R4I9'i:8:ters -- The followinq datapath
registers are reae d f rYe or u •• by the conaole mdcrocode:

CNSL.TMPSW :- BSPHI [7.J
CNSL. CNTL := ASPHI[3J

eNSL. SW := ASPHI(6 J
eNSL. ADR :- ASPHIl' J

4-38

D

c

,

•

A

• 7 6
-"MI ,.. __ _ ",. ~ M'I'2' R("4Clr l
~-.. c..-• ..- , .. ,... ,......"e"'" 'Vc::. 'l~ l' I It. ./ .. VII (-'J f , 1.1

::.::,.~f~At.~~.,...

, 4
,.--------.- (A r f (.... ".~(l\.:

---X::1 I - ,.1',.L.- (~'j',"Lf I

()1~PlAY ~ 1 -- fC.CfI· "Ml(tllA"'.
'>El. ; Of SPLAT SH"'I f>W II "'ioH NOH'

1

~!()TFS
, ALL (AetE SIG'~ALS "'''vf Q£(HYfPS .~O PPhflH
l • '''IS! SIG~'LS rap ~I"OT((ONSOL(OPTIO~
' .•• '01'1 DETAIL «'OOlfHflO .. S SH (O"~OLf . ______ ~-----Fp=E=C:::1M=A=L=D:::I=!>¥PL-AY~. .. ,fL DIS<~:>L _1_

1

,aJ. Ir: 1 --I_J_~ ---'-:=t --- ------
OI5PL"\Y ~;lsn.Afl OI!lP''&V '"AS+-'L .. ·,I 1··!C:f't':"

O~IVfI4 ·o;'I.H, . :)nlvl;' lr''''v£ "'I ' ;;;"IV£"

t(t" "Y~I ~ __ ~::

-- I ~- ('I".! ': ."'<LA"',
DfCOOf' J T

~14"----. rJ' ., I. J~ JI (Of<SOLE LOC.IC Jf< STATU, "OOuLl "'811 ! I I ---__ _

MY3,;
'm ~- -,,,,,'er, ~""'OH r"fIr!IIIPAQf ...
I ~ , ... y l~'Afw)H VAUO l

I --H -lor ,rr I ;.r"erE ~£L I L
• wy rf'r) A£-.-)Tf ~fl II) l

.. ~ 'I • IIVf~r) ~t-..oT£ tOAO L

F"(lf£Jl P"1frf t "4111.~-O I,

4 , ILL EO rN UI~OW"EACS '''OIeAT("OOUt (PI"~
5. ;)l,J"tAli C,£frfEPArfO ... ,rHI~ .& I,-O{" (4'AT fl..,

j:PI~T PAl"l)! or THAT 8l0CK, • ...c.'" IItOT
IlEWAI"TOf wi TH 'HE" SIGfrfAl ,,"lit'
fo-____ .;:;D.c;.O.U T < 15: 00 > H

Iii

•

CJI';PlAY 4

~
OISi'L~Y ,

(H,

A

'fri" frl(
o

I :
I

£1 Ie .1 k fl Ir
ouT I

"'f'~ ft -CY! ~ tty)

!H~:SPL~f 1 l !H~ISP~.Y I rH~·f t

'lJ9 riJB ~·rl~.Je

I -C=:= Lf-:= ~-~-=~¢I---==--=--=:~~

~ £VPAD (001 TA8ll

MEV ""0 (OOE ".·''''l flKTOON .. I

NOTU!ltt

~~
r ,

'Ii
) ..

tilt
I

>j

I

7

IDlAOR5

(0)

LI"OR~

IRl

(OISWA
(l'S."

(Sol

MAINT

ITI

1I00T ... U "lT

L:1ciiiWr:;;---~ :

DATA EN'TRV KEV~

0"" DEP

~t_'_')- I_~
4 S 6

INI IJI 'r>
2 ,

10)

II

6

HALTlsl

,., }
rONT M(,PA" (NCODlltc:. ,.)f!'f.!.!::~P '''Ci'~?:l
flU ---.(.NY M.fT Jot

800T --'!,!.2 ----------

1(1 <",r':'Hf .'-I~..':.!...t

~TARr

~E!-_
t KY 2.

5

"' 11- 3q

,
I

~ I -

_LLL

4

'!:'U!J.~.li-'~~'_ ':-_. __

t= ;r"--====='
..... (fI~ OOUT<~:N .. H

.~ (l" Of~ 0151'1.'" l
_KL.PH!~OISP\.AY L

~.L:tM~'~~"<2~~l F5O\.fLATC-;;~
lfD~(O"s..QLl!.H --1._ M' ~~

__ -c~. __ . l

-} II OI!',PlA" c;.(AAl(W

'II" P~..:: . --------------

"(HOO(
R[GI(O".

~~-~.
Klf)1)

ra 40') ~,W1Tr"'F~ 'wl(r.co~PA~£S.lAr(H£s.
qrr. fSQ rr T+1£ TwO I?rAl1IN(,~ M,QfE

3

~-~tJ----.) .

('')., .\<:I"~:> A":~ .• "'c..Cl4:N~ 1M'

BUS OlN "'11 .. I <"TA',",SI

------r----- -:----.I("~
I1t~lJc; elk # to' Oe-"4

RUS rlN· 15<l'~ > -'-
r-:-_-:-=~":.::==-=~_== ___ =_:==c~_:::__'l

d~l'\rK l'IAU{AMl ,KYII

D

c

•

The Temporary Switch register, CNSL.TMPSW, is used to hold

the value displayed in the octal display on the console. When
any numeric key is pressed, its binary value is piaced in

the low-order three bits of the temporary switch register with
the previous contents shifted left three bits. Program '
movements to the Swi tch register are diSabledl Q! L' \ . o • .l I·:. <.C' ~<",

The Console Control register, CNSL.CNTL, contains control and

status bits, as well a·s CNSL.SW47:l6>, CNSL.TMPSWLl7:16).,

and CNSL.ADR~l7:l6>. The layout of this register is shown in

Figure 4-

The Switch Register, CNSL.SW, has Unibus ~ress 777570. It

is loaded with the contents of CNSL.TMPSW when the Load

Address and Control keys are simultaneously pressed. It can be

~cces8ed by a macro-level p~ogram; however, if the Display

Lock (DISLOCR) bit in CNSL.CNTL is set, the move will be

treated as a no-ope

CNSL.ADR, the console address register, is loaded from the

temporary switch register when Control and Load Address are

pressed simultaneously.

15 14 13 12 " If/) , 8 7 " .s 4 3 2
c 0
0 L N
S 0

1 c
H

E:..
)(

A
M

D SwREG
E
P

I? I I"

T V,.ll.~"'o
\

j

r. iSR .s T

17 I'" I C
!~

R (C.IViL.) IN ~ s,..

4-4 ,

:::JN5.::JLE
AOORES$

17 I ifill

4.5.3 Console Microcode

The BUT (SERVICE) at the end of every macro-level instruction dispatches

to the console microcode if the console service resquest flag

is set. The entry point is CSROl. The console microcode loads

console constants into the CSP and sets the CSP Invalid flag

(see Section 2.). This is done by calling two subroutines.

FLG reads the Flag register f~om the Processor Control section

and places it in R{TEl-1PI) . FLGS ORs a constant from MD with

R(TEMPl) and re-writes the Flag register. The 'EXAM', 'DEP',

and 'DON'T CLR CSR' bits in CNLiCNTL are then cleared. The

console tests for single-step mode and halts if SI is set.

If single-stepping is not indicated, the A-port of the BUS DIN

multiplexer (in Bus Control) is selected, and the data is

read into MD. Microcode branches decode the keypad code

and dispatch to the app~opri~te console service routine, as

shown in the console flow diagram, Figure 4-

4.5.4

Data to be displayed on the console is moved from CNSL. TMPSW

onto DOUT, and then written into the Display Scratchpad. The

display scratchpad is continously read (sequentially) to

drive the octal display.

Control for the dipaly Scratchpad, the console mode indicator,

the decimal displays, and for clearing the console service

request flag comes from the Display Control decoder. This

decoder uses UCON 13:11 as its data inputs and is enabled

when BEGIN, UCON, and XFER~(24,23,21> are all equal to 1, and

UCON <.15) and UCON<14> are both equal to O. Table 4- shows
the console UCON codes and their functions.

4-4~

• 1 6 5

o

c

B

A

tf-J13
r:'

..

(,,/feE;,r THC
,,"/).$£0 COCr! S)

3

" ,,, ,J II " '.

"(C/IITL.) 11'1 I!l .s~.

I "IL(.\t::I\~i';;J::h-\·;"H,: ~'rr': f-'-!ill------.-----.-----.-
CQ\JSJ LE FLo\'/

DlhGKA '.1
(,eTf: ~. l' -7~

1, , , p~." I'·'" I OJ' ! I :=-- a 7 I 6 5 f 4 3

j

I
I

1

I/O SEL

Table 4-

Console UCON codes

UC;ON SET:UP ___ I~NABLE . FUNCTION --- - ----- - - "-

<15:14> <13:11) BEGIN, UCON, XFERJ

1 00 001 YES r CLR Display WR Counter

1 00 010 YES I INC Display WR Counter

I 1 00 011 YES CLR Console Service

1 00 100 YES WR Display Storage

1 00 101 YES CLR Console LED

1 00 110 YES SET console LED

1 00 III YES Set Decimal Display
-.- ----.. -----

4.5.5 Bus Control BUSDIN Mux

Console data is moved into the datapath through the BUS DiN

multiplexer. This multiplexer is enabled onto BUS DIN when the

DCON register is set up with UCON ~ 15> =0 and UCON I/O SEL - 1

and the INH(UCON(BUS XFER) signal is not asserted. Slection

of the multiplexer is done by UCON(10:9). The data placed on

BUS DIN by each of the selection codes is shown in Table 4-

------------------------------~

&IS
o. ..9 -- :1. ~ __ 3
I~ • !lID MIlS .. "M

1*

I~ • • SEJlWtCl • PIA I~"
(I)" -- - ----

11 • • ---
12 • 1ft TIEIIt PIA 12"

"
011111 (I) .. '" " " _ .. --------

"
I Dlno (I) " flU 1'" - _--

II 1'0 Pia' ICD(M)
.. -- ---

-JJ.l1.1t ____ DISOWIID L

• • 111 ' • ,.u.
-- --- - -'!.-~.-.. --- (I) .. ., Sllll(SIt 1 l ".trT(ssw TI"'" -iiii"if""1t

,.. EM l (1) .. ---.--• SlIo(SIt. l u.rn CIOtl.-
.~ ,.. EM l (I) ..

iiMl---UO-l -"';.y----- .--
I UlQil III! -

< "(.~. • __ Qlf-L ___ (I PI .. ICEmo alii J'LlP'f SSNICE .. • MIIrT M .. (I) "

- .-! i'L'!- __ - .-- ._--- (I) "

13 IIllPIIG CIIIl ID8U SEJlWICE 10 lIM MI3(I)"
l~ __ ~l) .. (I) ..

n IFfNO alii MUll (1)" -0 lOIS EM 1112(1)14
2 (:) .. (I) ..

iii.". CIIIl --~Eif(!-I H- 1S,..1i M'1 (Il It
'i!J I! __ -• IIIlPIO alii --Y'RUII lJ1ME.- - U 1IiEii(i) .. II. (I) It
1(1;" (I) It

----- ------

4-44

Rqst

I
I
I
I
f

4.5.6 The OS Register

The primary function of the os register is to provide a latch
for OOUT data fo~ writing DATO data into the cache. However,

since DIN is gated into the DMUX in the Cache/KT section of ,
the processor, os also provides a path from 0 to the CSP and the
IR. A DATa Unibus cycle is not required to ena~~e OS onto BUSOIN.

The OS register can be loaded (at p3) from OOUT by setting up

UCON with I/O SEL and UCON <lS>both equal to 1. The OS register
is cl O.eked at P3 of the microinstruction in which UCON XFER

(BEGIN UCON XFER) is specified.

4.5.6.1 -- The DMUX The DIN port of the OMUX (see Figure 4-)

Figure 4- DMUX

is the default selection. Although the DMUX is in another section

of the processor, UCON(08) is used in conjuction with UCON I/O SEL

to select the cahce port of the multiplexer. This is used only

"hen there is a Cache. hit on a DATI.

3us CO'J7720L Cleo,..) .TIv'7-CfP r/-]CE

J.c.o~ i '1" u~610
Xf£~ T/o~

------------------------------'
\5 I ~ 1'3> \2. \ I 10 9 B -=I b 5 CLOC.I< .------. ----.--- - FLl t-J c- no I\J

.1 1. (/) rt 00 i 't x X ~ X)l.. r 3 ;. (U -1\- e- -- ~:5PLA Y wI(C t.J1t-
1- 1- ~ (6 C> 1.. 0 ~ x y .)(..)-, ')I P3 I ~ ~):> \.':"S P LA 'J -we Co. t-) 1iL
.i .i rt .:j 0 1- i y x x x X ~ P3' CL /2 COI-J~E. 0E12W I L E FLA£.
.1. .i. rt~{OO yX.x_.~x x P3 wf2.... J)l~fi.-AY siofA6£
.1.. .i' ¢ ef 1.0 1- x .)(x X K X: ~ Cl.-fC C.ONSOLf [~-l::::'
1. 1- ¢ ¢ 1.. i 0 'J- x. xx >(x' -RJ . .:£ r COAJS<)LE' L...€::-D
._~ __ -____ ~~. __ .¢ _ t_1-~ __ i _ j_:- . x. ~_)<_ ~,~ ___ __ ~3L.. st. L _ . _DE- CLMA -=-L~--",-___ .

i 'I I- ':!- A· 'j 'Y-- >- X 0 0 1.. P2 eLI< FctJe-R fflJ!.., MOOr:.
1. 1 -J 'j) ~/ y. ~/ \/), 0 ! 0 P2 C,L/Q ~ 11 M E1!R~
1. 1 'I >- x. 'I -j...< >- x. ~ 1- :1-. P2 CL R. AlP 2. TI t\.A C: C)l.,{T

~.t. 1. I . '; ~ ,\I, >< J.'!t' Y 1- 0 0 PZ CAR Poli:t12 FkJL FI-l1fo
.:. i 1. _ x >'- 'y Y X A ,,<' X. L,O 1.. P2 CLR. yc; LLO W ~ ON b'
~ I 11 ~ i. i .~ / 'I, "<, X ~ ~'" x ~ . .;&-- 0 t'2· , .

---.-J..-_~ __ ~ ___ '<.._!_.<-]/ Y 'f I \ I P'Z- K3 U5 R.£SET Cuco tJ) .'.
ct>. !- ¢)\ x x ~co x. ~~)t- tJA ~o,\J<,£·.o&)~¢~l:O'>~SL.StJ.)}OS>B,..J~' t;'#.-

6 i ¢.";< y-. ><- 0 1- l ,.(V. x ~\jp.1 BliSf)/ N ~ S T ff1lJ..S 'tJ 1-0 ~ <0 iI,' DO) ~ Key CiJof;
0; i ¢),- >'- ><- ~ 1 C). >'- / :~ kJ P. 8ltS.j)\ ~J ~ (fA kUPC> i~) F 0

___ ~~ _. __ --.1. .. -_. 9_ ~ ,,_~'(~ ~- 1,. _ ~ .. __ '._~ __ ~:_ l:..__ ~~ PI ,&.L~.DI N < \CS '·00 ~ ~ f.B ts £:. \5 ~ DC>
..1. 1- .i- >L)(. ~'<. X x: ~ .,L. y)./ Y "P3 J/:s k-- J)OU-T <. \.;. ~ (X) >

_.¥ __ . ___ ~_~ ____ ~_~ .. '. ~ __ . .:~. ~. ~ . ~ -:,,~_'x __ .~ ____ l·~ __ .. _ elJ.? __ ~_~~ ~ .~~_,~_~ O<? > __ --__ .. _
c L·)C...,)t- x.. ~'Z x.. Y X i y)< x NA S6LeL r CACHt :DA-ll\ f6eT ~F nf..t UX-.

-----.-----.. ----~.- .. - ---------_ ... -.- .. - ...

t UCON xf'E;£ ::: UG\~j I~ [)A1TB /\~ONO

The remaining UCON data bits are used to clear various error and
service flags. These functions are included in Table 4- I which
summarizes the UCON interface to the Bus Control section.

4-41

4.b The WCS Section

The Writable Control Store section of the IMP can function

either as a IK-by-48 control store or as a high-speed

3K-by-16 local store. Most users will configure the store

to be part control store and part local store.

The store is loaded 16 bits at a time from DOUT, under control

of the UCON interface. When the memory is read, data goes

out on BUSU<47:00> if the WCS is in control store (CS) mode,

or on'BUSDIN<IS:OO> if in local store (LS) mode.

When in LS mode, the WCS is cycling as a data store and so is

not available as a source of control signals for BUSU. An

auxiliary source for BUS U siqnals is provi6ed by the TMS

(Transfer Micro Store) ROM. The TMS ROM is a SI2-by-16

store which controls datapath activity while the WCS is

acting as a data store.

This section describes the organizatio~ of the WCS option;

the user interface is described in later chapters. The distinction

between organization and use can be shown by a discussion of

the loading mechanism.

DOUT provides the path for passing a 16-bit word and its

associated l2-bit address to the WCS section. rrhe UCON inter

face is used to select and then set-up the WCS to receive

the address and data. Once the WCS section has been set up,

its local control takes over. This local control, implemented

by CROM (Control ROM) , effects such actions as clocking the

Address Register, selecting the ~e~~~~ Mux, and generating a

write pulse for the array_

4-4b

I'J P 6

12..

""PAQlT't
~E:..~be.

!_. t1
IAleeu "-t ...

........ --It-.AH ,,",,~~)CA.")L..
uc.c~ ~s~'-

However, you will not interface to the WCS section at this

level. Using a macro-level program, you will move data into

the WCSDR and WCSAR registers in the PDP-II I/O page. An

instruction which addresses these register, e.q.,

MOV *501, WCSAR, is executed by the base machine using the

primitives described in the preceding paragraph.

A block diagram of the WCS section is shown in Figure 4-14.

Addressing Structure of the Array

The WCS array ts divided into three sections, as shown in

Figure 4-15. Each section is 1024 words long and 16 bits wide.

The array is addressed by the output of the ADRMUX.

a

I
L~_~

Figure 4-15

When the WCS is in local store mode, each section, or column,

is linearly addressed 0-1023. AORR~.<ll:lO> provides the column

address, and ADRMUX<9:0>provides the row address •. <)·cc_
.--, \ '"1 ""- \I~ ~ -- \ lo ·

4-50

When the wes 1. in control atore mode, ADR~<ll:lO> ,$ alway.
equal to '~.The entire row (48 bits) 1nQicat~u by ADRMUX<9:0>
is put on BUS U.

cs mt)~
II .0 ct J5

[i i. J 1 -N-U -A <-""-0> ---"'1

A feasible user confiquration of the wes array is shown in
Fiqure 4-17. There are,three sec.tion of local store, A, B,
and C, each linearly addressed fl.'om6&l to IOlS. Page II of
the .U~ dontrol store address space is allocated for
wes control store.

s.c*-\~Q., S.c ~8 5~+i'"'A
AOR<UHO>.~ ~OR <: \\!\~~ • CI \ AOt(<'llttto).: 0"

lS L~ lS

.
btl

(

J cs)
NUA<":~>=f.o

t
\ "Ct.

Figure 4-17 TypicAl Uaer Configuration

.4-5 •

AOfJ.4UJ« q:D>

4. 10. 2 Transfer of Control

?
The TMS Pointer register, TMSPTR, addresses both the TMS ROM

and the CRaM. The TMS Pointer is loaded with UCON<14:06>,

which defines the starting address of a TMS routine. In

subsequent cycles, TMSPTR is incremented if CROM<2> is a 1.

The TMS pointer is loaded when WCS SEL , 1J<45>, BGB, BUSBO>~,

DATTB, and CONO are all equal to l.'i'he TMSPTR value is

specified by the bits loaded into the ueON register. For

example, the following field value specifications would

load the TMSPTR with 010:

4.0.3

TMSPTR ~ 0.0 := WCS/I, BGB/I, BUSBOX/I, DATTB/I, CONO/l,
UCONH/O, UeONM/O, UCONI0/0, UeONL/20

DB Register

The DB register stores the contents of DOUT so that 16 bits

can be written into the WCS Array during each microcycle. It

is clocked at P3. When the WCS is set up, the first word clocked

into DB is the starting array address. Subsequently, the

DB register gets the data to be written, while the Array

Address register selects the array addresses. The data in DB

is written into the array only if CROM<3> is asserted.

Array Address Register

The Array Address register (ADRREG) is initially loaded with

OB<11:00> , defining the starting address in the array. In

subsequent cycles, this register acts as a counter, incrementing

if CROM<l> is a 1.

4-Sa..

4. U.5 Array Address Nux

The Array Address Multiplexer (ADRMUX) selects between the
output of the ADRREG and the NUA signals from the Procesaor

Control section. When the wes i~ being loaded, or used as a
local store, this mhltiplexer solecta the ADRREG output to
address the wes array. When the wes is in control store
mode, the array is addressed by the NUA in the same way as
the base machine control store is.

4 ••• 6 The wes Array

The wes Array is a lK-by-Sl RAM. Each l6-bit section has
a parity bit associated with it. Even parity is generated.
Only 16 bits of the array can be written at one time. When
functioning as a control store, 48 bits are read onto
BUS U<47:00>.

4 .•. 7 BUS U NUX

The BUS U multiplexer selects between the two sources of
control located in the WCS section: ~he TMS ROM and the

___ ._~ RAM. It is a tri-state mux, and is enabled by NUA<lO>

C-· an~- N.UA<11>7, whic~ i~~ic~te ~;he top IK of address. space is
~ bel.ng accessed. ~et\. ·I~ c::cn.h-cJ<.L,() b;J C ~ON <2.>

b~ .e~ -40 1-,

4-53

4.~.8 BUS DIN MUX

When l6-bit words are read from the WCS array (LS mode), the

BUS DIN multiplexer selects which 16 bits of the 48 are

put on BUS DIN. In this situation, the multiplexer selection

is controlled by ADRREG<ll:lO>. If a status cycle is underway,
this multiplexer puts status information on BUS DIN.

4.".9 Control Rom

....... -- -•....... -- _. --_._ .. , ------------------
BIT

o
FUNCTION

Address Register load enable
--------------------------1

I

2

3

Address Register Count Enable
... ---_._----_._-----_ .. ---.- .. -- .•... _ ... - .

Array Address Mux sele~t,
Entry Point count enable

Write Pulse enable
.. - - --- _. ---_. - _._------------

4.~ USING WCS AS LOCAL STORE

While the wes array is being used as a local store, the TMS

Rom provides the control signals for the datapath. Routines

in the TMS ROM provide control for loading wes locations

from any of the scratchpad register or for loading a set of

scratchpad registers from locations in the WCS array.

To use this facility, you issue a Local Store Function Code (LSFN)
over the UCON interface, passing a local store address in
the 0 register as a parameter.

Each LSFN maps directly to a starting address of a TMS routine,

4-54

1
Z
3

" 5 ..
1
8 ,

11
11
12
13
14
15
I'
11
18
l'
il
21
22
2]
24
25
26
27

. 28
~,

31
31
32
31
34
35
3ft
31
38
39

"" "I 4,
43
44
45 ". 41
4'
'" ~i
51
52
5J
54

MICRO

1 ,
I , , , ,
I
1
I
I
I
I
1
I
I
I
1 ,
1 ,
I , , , ,
I , , ,
I , ,
1
I
I , , , , , , ,
a , ,
i
I , , ,

'AGE Z

TNI ADM MICROCODE 'OA 11/61

T~I' MICAOCODE GO!S INTO THE TMS RnM CTRANS'f_ M!C.OITO~[
ROM). T"IS AO~ RESIDES ON TH! weI BOARD AND ALLOws , 'ROGR'~
~UNN!NG tN T"E WAITEA8Lt CONTROL STORE OF TH! til,.
TO UI! PAAT 0' THIS SA~E CONTROL STOAE ASA SLaCK DAT. STORE.
CLOCAL STOA!) THIS ARILITY IS R!'LIlED 8Y AOUTINES WHICH
PfR'OR" BLOCK LOADS AND STORES 0' YARIOUS PARTS 0' TH! INT!RNA
STATf 0' TH! lt/'~. TH! 'OLLO~rNG PO~TIONS 0' TH! "ACHIN!
AAE LOADED OA STOAEOi

el) GE~!AAL REGISTERS
ez) WARM 'LOATING POINT REGISTERS
el) C SCAATCHPAD EXCEPT 8ASE CONSTANTS
CA, USER SCRATC~ REGiSTERS
(5) ENTIAE A SCRATCHPAD
C6' ENTIRE 8 seRATCHP'D
(1) ENTIRE C SCRATCHPAO

THIS MICROCODE ALSO HANDLES ALL wes SUPPORT NEEDED IY THE
BASE MAtHtNE TO PfA'ORM ITS 'UNCTIQNS. THE 'OLLOWI~G II
A LIlT 0' THEI! ENTRY POINTS AND tHEtR FUNCTIONa.

TMS AOOAEIS

0001

'UNCTION

USED 8V WCStHIT FLOW. USED TO 1fT ADDA!"
REGIST[R TO ZERO AND ALSO WRITES ZERO IN
TH! W(')AO.
I' USED 8V we! conE THEN LOADS ADDR!SS REGIST!
WRITES ADO-Eas YALU! INTO 1HAT ADDAESI AND INC
TH! ADDRESS -EGIST!R 8Y ON!,

USED 8Y WCSINIT 'LOw. WRtT!S A COUNT INTO Nt
TW!~ INCREMENTS THE AODAESS REGISTER,

LOAOS WC! AOOAESS REGISTER WITH VALUE .~o TM!~
DATA INTO THIS ADDRESS.

LOADS wes AOORfSS REGISTER WIT" VALUE.
(AAS! MACHIN! ALSO SAYES THIS SAM! VALUE IN TH
SC.ATCHPAO 21). T~tS ROUTINE ALSO 'UMPS ONTO
THE DATA 'RO" THIS LOCATION,

USEO ~y 'IRST WORO IN ROUTINE THAT READS weI •
NOTE THAT THE wCI STATUS IS NOW ~£AD 8' THE ue
INTEA'AC!. T~IS WOAD CAN PR08A8LV a! _IMOVfC
8ASf ~ACHINE AND THIS ROUTINE 'ROM THE TMI .OM

NOT R!'ER[NC!D 8V THE 8AIE "ACHINE,

TH! wei USER CAN ALSO USE TH!!! ROUTINES IN THE TMS ~OM,

4-55"

, ,
1 ,
1
1 ,
1
1
I
I ,
1 ,
I ,
1
1 ,
I , , ,
1
1 ,
I
1
1 ,
1 ,
1 ,
I ,
1
1

.TOC TM! MICROCODE

USI~G ROUTINES IN THE TM~ PO~.

T~E ROUTIN!S IN THE T~S ROM A~f DESIGNEO TO SAVE OIFFERENT
SETS O~ THE lt/~0 MACHINE STATE INTO ~CS ACTING AS A LOCAL STO-!
AND ALSO TO RESTOR! THESE SFTS FqC~ DATA IN THE LOCAL STORE,

THE~F. ROUT!NES AR[OESIGNED F~~ OPTIMUM ~ATA FLOW TO FACILITATE
I~PLf.MENTATTON 0' FUNCTION! SUCH AS CONTEXT SWITCHING WMICH MUST
HAPPEN AS ~AST AS POSSI8LE. 8ECAUSE OF THIS OTHER USES OF THES!
ROUTINES ANO SUBSETS OF THfSE ROUTINES ~AV NOT 8f AS EASV TO USE AS
WOULD Sf LI~ED.

ALL RnUTIN£S ARf fNTfREn wIT~ THE WC! LOCAL STOQE MINUS ONE CLSADR-l)
CLOCKED JNTO n. RETURN TO THE ~CS ROUTINE WILL OCCUR A'TE~ THE
~UNCTION MAS eEE~ CO~PLETED. THESE RnUTINES AQE IMPLEMENTED.
~y SETTING uP A PIPELINE IN THE OATAPATH ~HERE T~n DIFFERENT
PARTS 0' THE OATAPATH MOVE OURING THE SAME MIC~OeYCLf. THE PIPELINE
CONTINUES UNTIL ALL DATA IN THIS SET HAS 8EEN MOVED.

USING SUBSfTS 0' THES! ~OUTINES TO MOVE ONLY A FEW OF THE DATA
ITf~S AND NOT THE w~OLf SET IS NOT EASY. AS AN EXAM~lE THE
'OLLOWING IS TH! PROCfOU~f TO SAVE REGtSTFRS ~1.RAI

(1) USf A ~OUTtNf TO LnAO THE AOORfSS-2 INTO THE ADORfSS REGISTER.
(2' CLOC~ ~l INTO THE 0 ~fGtSTE~.
(3) afT T~E TMS~TR WITH ADDRESS THAT WRITES RQ INTO T~E

ARRAY AND ~OVES R3 THROUGH THE OATAPATH AND ClOC~S IT
t~TO O. ONLY THE CROM BITS ON THIS INSTRUCTION WILL SE
!X!CUTEO. THE TMS ~ITS WILL NOT 8E ACCESSED. THIS WILL
~RITE R3 INTO THE LOCAL STORE ADOQ£SS-l.

(~) THE NEWT IN!TRUCTION wYLL WAITE R3 tNTO THE ADDRESS ANO
~OVE ~2 INTO D. THE REST OF T~E ROUTINE WILL WRIT!
~2.RI INTO THE A~RAV AND RET~RN CONTROL TO THE wes
~OUTINf AT THE THI~O INSTRUCTION AFT£A THE ONE THAT
SET THE T~SPTR VALUE.

THIS EXAMPLf SHOWS THAT A SUBSET OF THE DATA ITE~S
CANN~T Sf aTO~fn IN THE SAME ~ANNfR AS T~E ENTIRF. SET SINCE

4-5~

To illustrate how to invoke a TMS routine, the following
example loads the nine l6-bit words in LSG], ••• LS [j+S]
into ASPLO[O:5, 16,6: fl and BSPLO[O: 5, 16,6: 7].

SETUP2:

4.8 UCON CONVE'l'IONS

I. Don't do a UCON Select in the cycle following a BUT(CLEAR FLAGS).

II. Keep EMIT on BUSDIN most or all of the time -its a real
time-saver.

III. Watch out for accidentally enabling multiple UCONs by
trying to perform an ALU-related function in the same word
as a UCON setup. Dedicate a microword to enabling and loading
the UCON register.

4-5r

•
2"m~~:'rS~"=
~ , ... ,,.., ... ,,,,,,~~ :.;:.. "O..evt ~_-::::. ___

D

c

B

A

•

I

P3

A:-'::i':cl~El 8

P3
C~OM2

6

(ROl'I(3:Jl) i

J
rM~1
i>':;"', I

31, "'~

BUS 'J<."~1:>
I

".I- I.
"UA It

i

5

!II\. ~A~~MU.'t~ AI

B

.!

".

IK.51

~
AP·A(A~""~"StL!I
A ~~X ~J
i

,~

UCON <we',,) XC: NlI~<1:'1'"

D0111 \15:,~,)

F,~ II ~E-

6 5

4

P:,PiZ':;?

,lj -59

3

~IJS !)It'HI S:c,,!,

•
r-n-I"t .. "'~(~".; .. ,,)

/ _Ur..Oliltltll':'5Io\'.-
__ .L.--L. __

I ct I ! aU5 DIN MU)(-,.....-"c .. a~(I ... ~
1 0 c e A I

~--I

' RITt HJ
I

\i4,:~-;

I

W~ITE
It k::,~G
t:;.~ - (

,
W~IlE P'JLroEJ
~t"'ERAT-:lF\ . -n

rTATU; Ft:j

A:?H.S(\,: ..?PI,r3 :~ :i·13

3

~-~-'-'-~.

-.J l. ~ 1 \) '-? ,.. j-..: _ ~ ;: ~

PIT I,', ;I::j

c· "" 1 :,' ~.

~~--;~':~J::-C":'C (I:j
12- -,
. I ~ ,: ...: "7' u -: r D
lr ,
71f ~,,: ',,7'
C~ r..T',F-
~i' \,,-' .;, '.
~1~ v,/~,-:·t: :-··;t·;~·\..?·

;5 'f';:'~E \ .. '~_ L,': 11'\1'

--!4 ~ ::·'i:L~_
.f3 r-;,~ 2 __ -=:-=-: ,~
;;.2 ~"" ;
-fJ~ t~ J:.~ D-- - ---

CHAPTER 5
MICROPROGRAM INTERFACES

DR "FT'" . . \'{ '\ ~ .

The preceding chapters have focu ssed on the aspects of the

11/60's hardware most visible to the user microprgrammer.

However, the 11/60's architecture is not completely defined

by specifying tis haz'dware organization because it is a

highly microprogrammed machine.

The microcode architectu.re is important to the wcs user for

the following reasons:

1. It determines the environment thrlt exists
upon entry to the WCS

2. It expects certain state cond.itions to exist
after the completion of WCS control

3. The user can cause base machine code to be invoked
without intentionally exiting from the WCS

4. The base machine code has capabilities not
available to wcs code

5. The base machine code provides a large set of
examples, both of hardware usage and of
microprogramming the 11/60.

This discussion is also motivated by the fact that no

description of a microprogrammedmachine is complete without

some discussion of the microcode.

5-1

5.1 FLOW OF THE BASE MACHINE CODE

The overall structure of the base machine code is shown in

Figure 5-1. The instruction fetch uses two microinstructions,

FETOl and FET02. FETOl is the primary.entry point to which

control must be returned. FET03 issues a BUT(IN~:TR1:~, a

brach which performs initial instruction decode to approximately

75 targets. Any necessary source and destination calculations

are then made, and the instruction is executed. A test for

service is made, using BUT(SERVICE). If no service condition

exists, control is returned to the fetch se~uence.

5.1 .. 1 Overlapped Fetch

In certain circumstances, the PDP-ll/60 performs an overlapped

macro-level fetch. Register-to register operations, for

example, only require one microcycle to complete, so the

overhaed of FETOl and FET02 are eliminated by fetching the

next instruction while the reqister-to-reqister instruction is

being executed. Figure 5-2 indicates the logical flow of the

overlapped and non-overlapped fetch. Hard-wired logic detects

those instructions which cannot be overlapped, and inhibits

the overlapp~d fetch in FET03.

5-2

---'-'~-- 7 ___ l
---a' I \Ji7

D

,
l
I

<j

I . ,
~,
~

•

l--_-..__ ~ --1

.... "FO.d'

Mltf71 ~(i
•. I'S(II:".'''''/).(

• H(;:~:~;:L~ ,,,,,')ps
c. '''''./! .. I'n
I . "I" ., ,

e (;$(" • .u-lfVlt
.Jt.,rcoJl.t:>
It(Q~r$T

I IXUI'JI.T

.. ',,,,,.' I .JAN j,FP
~~-.w.JtJS

l
.. ""::::::c
C. ,.,rEItH'H,

A"O'U:S$
... O,,"S fUCCTl

oJIIo",,'RC

e, "".IILY'

~"tIf~

-.--- ... -~J_-r--

.s1,.·,I"c ~
(:F TOV) :"tIIrl t lOOT INT(""~
(';F "·Jr.1 t :411 11t•

D "c • '.
b' ,.11) I'L' tI _1

1----------v..~"1

I
I
I
• I

. -,

N' ~S"IllIlo·IC"
O~"AND ,.olt
.01':' AND

00"·" w,,"
S

L _______ _

"",

qr,a

U·

§'STOltC
rLOIrr;·. I'OSIiT
COIf' _r .. rl)

cal'

--------,

-"""'N,1f
DteoOE

IIIIffr".It ""'''1 0111 ,....,OW, ... ,,*""
6-rt~f '9 _ ____________ ...1

F. C;Uf{E 5- i
:BASE J~A~\...(aN£ FL.OW

I .

(

i

f
I
~

~;.-.4~~-!
"l ;-uIR:'~ .'._ .s __ {._,.:" ~: ... ~L.~.! .. .s ~ •• ':J' _ ... L~~ "::.c,,. 11 ·.=1.~~1~~~

•

8II /'C
1)40- ""+2
PC---D

rJJrTrArt:
/);IrrCJKZR

•
FET~2

MlJ---MrA
I""'I)/lrA

FETCH
OVERLAP

r------------------~

1JII--f'C
])"-~~2

rNITIATE:
f)117J

INHrIJJ7:
DllrJ

DEFGAr:
l' pe.-D

YFS

pc D
A~ relf,' DAr.r Tt:J

[)I3rJCI.KrH

L ____ _ _ ______ ~ ____ ...J

MODE 6+7 FlOW (~Walrl»

I ;;;p..-MTA I
:::;::::

~ ... -~ cllfec'v I r.
MD J:V1rA
IR DlJrA

5-4

U1
I

U1

r
wSlRvcnoN -..JeqLtE NC E.·o

#.1..
FE To! 1.-

.~

m"r0c::Jc~ -=- /

Nov "¢j-RL
An~ it} (~

FEr 9S2 RT¢3

FeTOL::.

:L 3

~ - - .

~) -t.J"UL 1~~lsher- ~-qfJ~ I.li"ruc.:he;-.
'ft" 4.) ~ non ~~ ,!."tU - ~,\I s~ r I'l~ t-r-ucfl Ch.

I
(Ioc_ Cc.

MO~.L 4,

FeT02c F€T¢3 exec.u.. te
~ .6 G,

1
_-- - ----1

over\Clp I

OverlQlP ~f. 1(~i~lAr.to-1?t3 i61L.r .
tMth non f<,,,,:.tir"1D"~3'~te¥ IY'}siroc.:hO'll

~:L

#.2

.~ ..,tt'.3

Y1}1(:.r0Cjc!e- =

I..,sT1tu.CTlOtJ ~q\.4£toJc.e:

FE:~L

,

Mo'l ~. R\

~O/ Ri,Rl

Mov R2..R3

RJ.~~
FETts2. FET.P3 N04It/>:L.

2.

'!lfte. F"9S2e

3 ~

t--- - - - - ~ + o.,.r~ -j.-.Z,

st':1.
J

~rit ~'t"5~- ~,~ i~hodl·~ ..
... .2) Seum~ ~,~1a..v- -r~i~W In~tnac.+-'C&;

~3J -third f'Cl,,~1M" - re&ta-btLr in~m~*,~

cl",k C~ ,
Ra...-R' clockCC,

FE::T~.3 N.cN;J. L

R3 .. RZ
CIock.CC

FET"'e FE.T~Ze FEm HO~j. '" s Gt 'l 8 "

,-- - - - - - ~ !,
c:W~lap .2.-·3

O'ltr\~ e{ ~~- Re~ L\)~ ~ ~,-,,~ t:~

Figures 5-3 and 5-4 illustrate in more detail how the

overlapped fetch works. XFC instructions are never

overlapped, so the non-overlapped entry point to service

routines in the base machine should be used.

5.1.2 Instruction Decoding

Base machine decode is done in two steps: BUT(INSTRl) and

BUT (INSTRS) . A large amount of logic is dedicated to this

initial IR decoding. Since this special purpose logic is not

tailored for XFC decoding, you will generally need to

do multi-step microprogrammed decoding. This method.

is used by some sections of the base machine code such as the

status group of floating point instructions, which decode

IRt7:6).

The instruction in the IR is also clocked into MD at P3 of

FET02. It can then be moved through the ALU, masked or

shifted in the shift tree, and then placed in the SR for a

CASE branch decode.

5-7

5.1.3 Instruction Executio~

Execution of a PDP-ll instruction in the base machine

is usually done in one step. For example, the execution step

(E-phase) of an ADD instruction with source mode 0 and

destination mode 2 (ADD Rn, (Rm)+) requires the following:

P2, DdrR(SF) PLUS MD
D (C)4:::- COUT1S
DATO
SET CONDITION CODES
J/BRA05

the destination calculation
put the correct data in MD

clocking occurs in next
luinstr, which will do a
! BUT (SERVICE)

Because WCS routines are likely to be doing more complicated

activities in the datapath, multi-step execution will be

more common. The MUL instruction in EIS i8 an example of

multi=step execution: 'in addition to set-up steps, sixteen

shift-and-add steps are performed.

5.2 MICRO-LEVEL INTERRUPT ACTIVITIES

There are two ;nethods by which the base machine handles

service and error conditions': Service and JAMUPP.

5.2.1 SERVICE

The serVice "- ~ - .!'II" __ nanCLes

non-fatal errors, interrupts, asynchronous errors, and WCS

micro-level service requests.

5-8

,
S!~:
~r-~-2

S.~¢'A

Figure 5-5 Service Dispatch

5-9

....

SERVICE
J)I ~PIJTCJ/

L
11:111'

1AJt. ,

Each event requiring service sets a flag which is later

read by the service dispatc~outine. If any of the flags

are set, any of the branches which test for service (e.g.

BUT(SERVICE» will be true. A BUT on service is done at the

end of every ~~cro-level instruction and at the end of the

shared trap flow.

service conditions are handled in priority order. The

priority ranking is:

Yellow ~ne
Cache Parity Error
Power Fail
Console Service Request
Floating Point Exception
Interrupt

Figure 5-5 shows the service flow.
4

5.2.2 JAMUPP

A JAM is a hardware-forced transfer of control to location 771,

which is the beginning of the JAM dispatch routine. In

general, those events whieh cause a JAM cannot be recovered

from, and therefore cause the macro instruction (including

XFC) currently be~.q executed to be aborted.

5-10

However, a JAM is alos caused by a reference to internal

Unibus addresses, such as the KT or Cache registers. When

an internal address is specified at the micro-level with a

DATI or DAT.O, the following microinstruction should do nothing

except clock data into the CSP. The JAM routine will destroy

datapath state, and the timing of the hardware JAM is such

that the microword following the internal address reference

will, in effect, be executed twice. Thus no data manipulations

should be attempted in that mieroinstruction.

The JAMUPP routine services the following conditions:

power-up
Internal Address
Microbreak
WCS Parity Error
Odd Address Error
Red Zone
KT AO'-\ort
Illegal Internal Address Reference
Cache Parity error
Unibus Timeout
Unibus Memory Parity Error

5.4 IN'rERFACE DEFINITIONS

5.4.1 Service

At the end of every macro-level instruction, or at least every

15 microseconds, a ,test for service must be performed. BUT (SERVICE) ,

issued when the UPF field contains the address of FETOl,

5-]1

causes the service routine to be invoked if needed. Service

starts (for non-overlapped fetch} starts at SER02 (0703).

The WCS user cannot use the same method the base machine

uses because the Page regist~r must be clocked to jump to

page O. Only BUT(SUBR B), BUT(SUBR A), and BUT(RETURN)

clock the page register.

To get around this, the user can finish execution with the

following branch:

LAST: BUT (SBRVICE) . , .

J service

PAGEE-O
BUT (SUBR B)
J/SER02

not service

PAGE 4It-o
BUT(SUBR B)
J/FET01

To eliminate this overhead, -a location in the base machine

is provided to do the service test on a FETOl base. It is

called BRAOS, at location 0003. Finish with:

LAST:
PAGE6r-O
BUT(SUBR B)
J/3RAOS

S-12

5.4.2 Generating a T~

The 11/60 trap sequence begins at TRPOO. It expects the

trap vector to be in the MD when invoked.

For example:

TRPA:
BUT (CLEAR_FLAGS)

TRPB:
EMIT/244,

P3, Mn'" EMIT
PAGE __ O>

J/TRAPOO

5-13

1 Select EMIT

!Generate trap vector

TRAPOO is at 0271

CHAPTER 6

DRAFT WCS USAGE GUIDELINES

This chapter is intended to summarize the programming

conventions which will enable you ~o make effective use of the

Writable Control Store option, without damaging other

sections of the PDP-II/60.

6.1 WCS UNIBUS REGISTERS

You will use two Unibus locations to load the WCS array: the

WCS Address Register, WCSAR, and the WCS Data Register, WCSDR.

WCSAR has Unibus address 777542. Its format is shown in

Figure 6-1.

15 12 11 10 9 g

~------+--+-~------------~-F----O--:---A=d=d-r-~~ss
l ----- -- -Column Address
I t----- - -- --- Masked out

Figure 6-1 WSSAR Format

WCSDR has Unibus address 777544. A 16-bit word moved to this

address will be loaded into the WCS array at the location

specified by WCSAR. A l6-bit word read from WCSDR will come

from the array location specified by the current contents of

the WCS Address register.

"

Pigure 6-2 shows a feasible user configuration of the wes
address space. The three sections of paqe 7 are set aside
for local store use, while page 6 is used for control store.
The following program illustrates how one can use the Unibus
registers to load the microwords for that partitioniqq.

Co'fl-\-YO 1
54-0y-.,e

;000

k(D C. ~ -
~~i?-~ ~

Figure 6-2 Possible User Configuration

This exampl,e assumes that the load image exists in main
memory as shown in Figure 6-3. The program loads the 1536
16-bit words (512 microwords) beginning at location LOADIM
in main memory into the control store, beginning at location
~ (microaddress 6000).

Figure 6-3 L9ad Image

L,- 2 ..

rITlE WCSlD
~ILENAHE lOAD.HAC
:SECT
------.- ~1:;_l-OBL -L.OAD-fH-' WCSLD---

.IRPC X,012345
R'.X~_~'~ _.. ___ . __ " ____ ._. ______ . ____ . __ ._
.ENDH
SP=X6
PC=X7
wts-A-b·R=~i·7·7S·4-2"··· --. -_ -_.- . _. --. .. -. '-- .
WCSDR=17?S44

C:SLD: M(JV tLOADIM,RO
1512. , R1
I000777,R2
etwCSADR

---- .. --- .. _.- _..". -
;LOADIH IS STARTING ADDRESS OF ARRAY
;LOAD PAGE 6 ONLY

OOP:

MOV
MOV
CLR

(RO)+,R3
R2,R3
R3,WCSDR
t2000,WCSADR
(RO) + , WC'SDR'
t2000,WCSADR
(RO)+,WCSDR

;MASK FOR INVERTING UPF
-'--'-rSiA-RT WITH ROW 0, COLUMN 0

;MOVE LOW-ORDER WORD SO CAN XOR
'; I NVe:-RTS UPF FIELD BITS
;SEND TO ARRAY
;COLUMN 1 NOW - _. -- . - .•... -- -. . ." . _.

'COLUMN 2 NOW

MOV
XOR
MOV
ADD
MOV
AttD
MOV
ADI.
SOB
.EXIT

14001, W'CSADR---' .--.. -------, _.-. ffACK TO COLUMN 0, ROW PLUS 1
R1,LOOP

.END START

The WCS status register has Unibus Address 77754g. Its format
is shown in Figure 6-4. It is provided for maintenance purposes.

I Used

Not Used ---,-- Ii I
Maint. Enable - .. --.----.. -' -1 I

-Par 1

Par 2

'------Par 3

,--------Parity Disable :::. u:: ~.~~ .. ---- ____ ==::J
Wri te Enable -- --'- '--"'---"- '.-.. _. , -.. _ ... --_ - .

Write Wrong Parity

.-- --- I

~ ____ J

Figure 6-4 wcs status Register

(, - ~

6.2 wes Entry Point.s
,

There are many ways that control of the machine is passed into
wes. The following is a list of the entry points into the WCS
address space and what the default instructions for each entry

point are:

ENTRY POINT

6000

6001

6002

6003

DESCRIPTION

wes Microbreak Entry

A microbreak occurs when the value loaded
in the register is encountered and the
microbreak enable bit is set. (FLAG<08».
Default response is to return to the console
flow.

XFC 076,XX Dispatch

This is a reserved ins'truction for DEC's
future use. Default ,response is a reserved
instructictn trap. (trap vector 10)

XFC 0767XX D~spatch

User XFC Dispatch

This is the entry point for the user's
extended function codes. The user XFC

(0767NX) is now further decoded according,
to bits 3-5 of the instruction to enter to
one of the eiqht entries of the XFC diapatch
table located at 6030.

Reserved Instruction

When the 11/60 executes one of the reserved

instructions such as FIS or FASTxl then
control is passed he,re. Default response
is a reserved instruction trap. (trap
vector 10)

t-1

ENTRY POINT

6004

6005

6006

6007

6010

DESCRIPTION

ODD PC Dispatch

Whenever the base machine encounters a

New PC value of an interrupt or trap vector

which is odd then control is passed to this

point. Default response is to return into

the trap routine as if WCS was not present.

(TRP07)

Default Service Condition Two

The Service Condition is checked once

between each macro instruction. If the

WCS Service bit of the flag register is

one (FLAG<07» then control is passed to

this point. Default response is to

FETOI.

Default Jam Condition

When the XCS Extra Jam Pin is asserted low

and the internal suppressed clocks are

suppressed then control immediately passes to

this point. Default response is to go to the

the console flow.

Default Service Condition One

Service passes control to this point if the

pin Extra Service is asserted. Default response

is to return to execute another instruction.

Diagnostic Entry

When diagnose'on the console is pressed

control passes to here. Default response

is to pass control to the End of Service

Routine •

. 0 -,5

ENTRY POINT

6Qll -
6015

DESCRIPT'ION

XFC 0761XX throuqh 0765XX Dispatch

These instructions are reserved for DEC's
future use. Default response is a reserved
instruqtion trap. (trap vector 10)

Further explanation of the entry points can be found in the listing

of resident aection of WCS found in Appendix D.

6.3 TMS ROM ROUTINES FOR THE 11/60 WCS

This ROM resides on the WCS board and allows a program running

in the writeable control store of the 11/60 to use part of this
same control store as a block data store (local store). This

ability is realized by routines which perform block loads and

stores of various parts of the internal state of the 11/60. The

following portions of the machine are loaded or stored:

General Registers

Warm Floating Point Registers

C Scratchpad except Base Constants

User Scratch Registers

Entire A Scratchpad

Entire B Scratchpad

Entire C Scratchpad

There are also routines to read and write one data item (with

and without loading the address register), read and write two

data items (with and without loading the address register),

read and write one data item indirectly.

Every TMS routine is invoked by a UCON function which loads the

Entry Point Register with the starting address of the TMS routine

wanted. All of the block move routines are entered with the WCS

local store address minus one (LSADR-I) clocked into D. Two null

cycles must be placed after the instruction that loads the Entry

Point Register. Return to the WCS routine will occur after the
function has been completed. The following example set of code

saves the general registers into local store address specified

in WCSB [O]-B:

E~1'
t> .. I# wc:.sa C.J-81 ,.a-T ! &> .. I.&." I .to". ..4.tI,. ~

NIN) 7/1Xa.

ela:
TMS'T~ _ CoSTO'-. c;.«5)" ,. ... f-,,,. ,

lAve". Cia .+ •
" •• T1 1'11~

EI.~
'1/1'" N'.T. I "~" N...at w~.

".'f: 7/iK ! SC&eft' NdA. w~ • MI"~

The following routines exist in the TMS ROM:

ROUTINE NAME

READ
READANDINCR

LOADANDREAD

LOAD READ INC
WRITE
WRITEANDINC

LOADANDWRITE
LOADWRITEINC
INCAND READ
LOADADDRESS
LOADGRS
STOREGRS

LOADFP
STOREFP
LOADCSP
STORECSP
LOADWCSAB
STOREWCSAB

SETLOAD

(

DESCRIPTION

READ DATA
READ DATA TO MD, INCREMENT ADDR

LOAD ADDRESS AND THEN READ DATA

LOAD ADDRESS AND THEN READ DATA
WRITE DATA
WRITE DATA AND THEN INCREMENT ADDRESS

LOAD ADDRESS AND THEN WRITE DATA
LOAD ADDRESS, WRITE DATA, INCREMENT ADDRESS
INCREMENT ADDRESS AND THEN READ DATA
LOAD ADDRESS
LOAD FR' S FROM LOCAL STORE
SAVE GR'S INTO LOCAL STORE

LOAD FP REGISTERS FROM LOCAL STORE
SAVE FP REGISTERS INTO LOCAL STORE
LOAD CSP UJg-13] INTO LOCAL STORE
SAVE CSP [[1[1-13] INTO LO~~L STOP~
LOAD WCS WORK REGISTERS FROM LOCAL STORE
SAVE WCS WORK REGISTERS INTO LOCAL STORE

SAME AS LOADREADINC

ROUTINE NAME

SETSTORE

AS PAD LOAD

AS PADS TORE

BSPADLOAD

BSPADSTORE

ALLCSPLOAD

ALLCSPSTORE

LOADREADTWO

INC READ TWO

LOADWRITETWO

WRITETWO

READINDIRECT

WRITE INDIRECT

DESCRIPTION

SAME AS LOAD ADDRESS

LOAD ASP [flfl-37] FROM LOCAL STORE

SAVE ASP [lIfl-37] INTO LOCAL STORE

LOAD BSP['fl-37) FROM LOCAL STORE

SAVE BSP[g'-37] INTO LOCAL STORE

LOAD CSP (fllI-l7] FROM LOCAL STORE

SAVE CSP[fl,-l7] INTO LOCAL STORE

LOAD ADDRESS AND READ TWO PIECES OF DATA

INCREMENT ADDRESS AND READ TWO PIECES OF DATA

LOAD ADDRESS AND WRITE TWO PIECES OF DATA
I

INCREMENT ADDRESS AND WRITE TWO PIECES OF DATA

READ DATA POINTED TO BY DATA

WRITE DATA AT ADDRESS POINTED TO BY DATA
(WCSA [fll)

More information on the TMS routines can be obtained from the

listing in Appendix E.

6.4 CAUTIONS AND WARNINGS

Because of the potential for problems due to microcode errors,

certain microprogramming conventions must be followed. Many of

these conventions have been mentioned in other sections' of this

manual; they are reiterated here for completeness.

6.4.1 -Timing Considerations

6.4.1.1 Interrupt Latency -- In order to assure normal CPU

responsiveness to interrupts, WCS microcode sequences should be

implemented so that a maximum· interval of fifteen (15) micro
seconds occurs between tests for interrupt service requests

(BUT (SERVICE) or BUT (BG». Note that a test for service

occured just prior to the fetch of your XFC instruction.

One technique for making a long instruction interruptable is to

"back-up" the processor state to the state at the beginning of
the instruction wh.en a service condition is detected. The
processor state to be backed up includes; the Floating Point

Accumulators;

RO - R7; the KT-ll registers; the PSW.

Note that since the PC is pointing to the next instruct~on, it

must be decremented. In this way, the aborted instruction may

be attempted again after normal interrupt servicing is completed.

Some microinstructions can be restartable by keeping updatable

paramemters in the general' registers.

Notice that failing to check for service is effectively

equivalent to setting the processor's priority level to 7.

6.4.2 UNIBUS Usage Conventions

Unibus control operations may not be performed withing micro
code subroutines. BUS operations must not be performed in

consecutive microwords.

-~- JD

6.4.3 Internal Scratchpad Use

The CSP Constants invalid flag must be set whenever the

floating point constans are not in the CSP.

6.4.4 PDP-II Processor State Requirements

The 11/60 microprocessor is used primarily to implement a

PDP-ll. Consequently, some constraints are not in the values

of internal state permissible at the initiation of normal

instruction fetch. The constraints include the following.

The contents of ASP and BSP locations 0 through

7, the PDP-II general registers, must have

duplicate contents. ASP[O] = BSP[O],

ASP[I] = BSP[l], ASP[7] = BSP[7].

The three locations in the CSP which contain the

basic machine constants must, in fact, contain

those constants.

CSP[17] = 1

CSP[16] = 0

CSP[14) = 2

6.4.5 Complete Decoding of Opcode ~roups

It is expected that within each XFC opcode group, not all of

the possible code combinations will have interpretations.

Insturction decoding must be complete in the sense that those

opcode values whichdo not have an interpretation result in an

illegal instruction trap. Failure to provide this complete

decoding could result in a loss of control due to a macro

level coding error.

b -- I /

CHAPTER 7

EXA\1PLES
"DRAFT

This chapter will provide examples of tec:1niques and

applications for WCS microprograms.

7.1 BLOCK MOVE

In Chapter 1, the efficiency of a microcode implementation

of a BLOCK-MOVE instruction was discussed. This sectaon

exam:.nes t~'le step-by-step implementation of such an

instruction. Since this example is intended to illustr~te

a variety of concepts and procedure~,it does not represent

the optima~ implementation of such an instruction.

7.1.1 Instruction Specification

Define the BLOCK MOVE instruction as follows:

where:

l~ 2 1 0
WORD 1: I XFC.BLKMOV I Ri

WORD 2:

WORD 3:

XFC.BLKMOV

R.

A

B

1

A

B

is the opcode for BLOVK MOVE

is the general register which
contains the count in <!l*~::. 07: 00>

(~ means 256J
is the starting source address

is the starting destination address

The format for this instruction is BLKMOV R., A, B.
1

7-1

For simplicity, this example avoids dealinq with several problems,

e.g., a check for interrupts and setting the condition codes.

7.1.2 Specify Algorithm

The algorithm used in this implementation of BLOCK MOVE is:

7.1.3

Set up Count

Fetch A address

Fetch B address

Do while Count ~ 0

End

Move A word to B address

Count = Count - 1

Increment A and B

Specify State

At entry to the BLKMOV microcode routine, PC-2 points to the

XFC instruction; the PC points to A, and PC + 2 points to

B. A BUT(CLR-FLAGS) was performed in FET112, so the RES reqister

has been cleared.
By convention, the PC will point to the next instruction

after the operands are fetched.

The WCS registers will be used for temporary storage as follows:

WCSA[0]

WCSA[lJ

dontains A addrs

contains B address

7-2

7.1.4 First-pass Coding

The following instructions indicate what is happening in the
datapath during the ececution of the BLKMOV instruction.

BLOCK MOVE INSTRUCTION
PC POINTS TO A ADDRESS

BEGIN:
P2, SR+NOT R(DF)

SETUPl:
P2, I)+-SR+l

SETUP2:

1

P3, WCSB[O]+D
NEXT, J/SETUP3

SETUP3:
CNTR+WCSB [0]<07:00>

SETUP4 :
PI, BA+PC,

DATI,
P2, D+PC PLUS ,2,
P3, PC+D

S!TUP5:
P3, MDt-DATA

SETUP6:
P2, D+MO,
P3, WCSA[O]+D

SETUP7:
PI, BA+PC,

DATI,
P2, I)+PC PLUS 2,
P3, PC+D

SETUPS:
P3, MD. DATA

SETUP9:
P2, D+.MO
P3, WCSB[l]+D

7-3

UPON ENTRY RES IS CLEARED
ONES'S COMPLEMENT OF COUNT

TWO'S COMPLEMENT OF COUNT

PUT COUNT ON B-BUS SIDE

LOAD CNTR

INITIATE FETCH OF A ADDRESS

POINT PC TO B ADDRESS

MD+-A ADDRESS

PUT A ADDRESS INTO
A SCRATCHPAD

INITATE FETCH OF B ADDRESS

POINT TO NEXT ~~CRO
INSTRUCTION

MDt-B ADDRESS

PUT B ADDRESS INTO
A SCRATCHPAD

MAIN PROGRAM LOOP
FETCH VALUE FROM ONE AREA AND PUT INTO OTHER AREA

THIS WORD MUST BE ON A XXXXX, BOUNDARY
STRTLOOP:

PI, BA+WCSA[O], INITIATE FETCH OF VALUE
DATI,

P2, D+WCSA[O] PLUS 2, POINT TO NEXT VALUE
P3, WCSA[O]+D

LOOP2:
P3, MD+DATA

LOOP3:
PI, BA+WCSA[l],
P2, D+WCSA[I] PLUS 2,
P3, WCSA[1]+0

LOOP4 :
P2, D+-MD,

DATA

LOOPS:
NEXT, BUT (COUNT) ,

J/STRTLOOP

VALUE ARRIVES

SET BA WITH ADDRESS
1 POINT TO NEXT VALUE IN
1 B AREA

INITIATE WRITE OF VALUE

VALUE WRITTEN INTO MEMORY
LOOP UNTIL COUNT IS OVER

! TARGETS ARE
! STRTLOOP:COUNT NOT DONE

FINISH': COUNT DONE

1 THIS WORD MUST BE ON AN XXXXXI BOUNDRY.
FINISH:

NEXT, BUT (SUBRA), PAGE (0) , ! RETURN TO TEST FOR SERVICE WITH
J/BRAOS 1 FETOl AS A TARGET

7-4

7.1.5 Try to Condense the Code

After sketching out the microcode, your next step will

be to try to exploit the parallelism in the IMP datapath

to rec'.lce the number of cycles and/or words.

Note that in the code above, SETUP4 does the same thing

as SETUP 7, and that SETUPS, SETUPS, and LOOP2 are all

identiaal. One method for reducing the number of

microinstructions (not cycles) is to try to make

subroutines out of repeated sections of code. It is

not a good programming practice to make a one- or two-word

subroutine, because the problems are usually greater than

the benefits. However, to illustrate the process, we will

ignore that point.

Look at what happens if MD ~ DATA is made into a subroutine,

call it SUBI. SUBl must 'contain a BUT(RETURN). The three

instructions which jump to it aust use a BUT(SUBR B) to

load the Return register with the correct next address,

i. e. :

SETUP3 must load Return with SETUPS

SETUP6 must load Return with SETUPS

STRTLOOP must load Return with LOOP3.

Now, can this be done ? No, because both SETUP6 and

STRTLOOP use the ALU and the 5cratchpads. The microword fields

for RETURN, RETURNPAGE, l~d PA~E overlap the ALU and

scratchpad control fields, so the BUT(SUBR B) cannot be

specified.

7-5

1'.nother potential candidate for reduction is LOO~4:

can the DATO be done in LOOP3 where the BA is set up ?

Again, this reduction will not work because the D register is
needed for incrementing the B address as well as for the

Data Out.

The preceding unsuccessful search for words to eliminate

illustrates two of the three kinds of conflicts which

put constraints on your microprogramming. Microword

bit conflicts cause one level of constraint; datapath

components provide another. The third constraint,

timing, is somewhat easier to foresee.

7.1.6 Check For Interrupt Latency

The size'limit on this block move is 255 words,

determined by the width of the CNTR. Each word that is

moved requires two memory cycles, a Data In and a Data Out.

For a worst case analysis, assume that there are no
cache hits, and that the memory cycle time is one

microsecond. Each iteration of the loop will then take approx

imately two microseconds: 15 microseconds will have elapsed

when 7 words have been moved. Hence the II/60's interrupt
latency rule will be violated if the block move instruction

cannot be interrupted.

One solution is to change the instruction specification so

that the state of the execution is held in the general

registers, namely: the decremented count, the incremented

7-6

A address, and the incremented B address. This would make the

instruction restartable as well as interrup.table. The BLKMOV

microcode would test for Service once in t!ach loop. When the

service condition arises the PC must be backed up to point to

the XFC instruction. The microprogrammer has two options when

the interrupt has been serviced:

1) return to XFC code and restart instruction from the beginning

2) set a flag internally and restart execution in the middle of

the instruction.

This example also raises a.nother point which the microprogranuner

must resolve and that is the problem of leaving an instruction in

a half executed fashion. (i.e., part of the B address field has

been changed) There are no PDP-II instruction which leave things half

done. The microprogrammer may want to add a level of sophistication

and set a flag (Semaphore) at the macro level which signifies that

the B address field is invalid. (Does not contain old or new data.)

If the microprogrammer decides to restart execution of an instruction

in the middle he must either be sure that his task is the only one

using this instruction or else stack up the data he needs to know

insuring a valid implementation.

7-7

Adder

APPENDI>: A

GLOSSARY

A device whose output is a representation of the sum of the

quantities represented by its inputs.

Address assignment
The allocation of an absolute address or a relative address

to a symbolic address.

ALU

Arithmetic and logic unit: a device whose output is a

representation of the result of the operation specifiea •

,by its control inputs performed upon the quantities

represented by its operand inputs.

Architecture
That set of a computer's features that are visible to the

programmer.

Barrel shifter

Bit Steering

An encoding technique in which one bit in the microword

is used to specify how bits in other fields are to be

interpreted.

Branch set

A set of microinstruction addresses which are potential

targets of a conditional branch.

Bus
A} A path over which information is transmitted from any of

several sources to any of several destinations. B) A path

over which information is transmitted ~rom any of several

sources to a single destination. A bus is a communications

path which is capable of mul tiplexed u~;e.

Chained sequencing

A method of instruction sequencing in which each instruction
explicitly idetifies the next instruction to be executed: that

is, it contains a separate address field. Contrast with

instruction-counter sequencing.

Clock (verb)

To provide a signal to a register or other logic device

which causes the data at its inputs to appear at its outputs.

(Con trast latch.)

Combinational logic element

A device having at least one output channel and zero or more

input channels, all charac~erized by discrete states, such

that the state of each output channel is completely determined

by the contemporaneous states of the input channels.

constructed address

An instruction address that is formed by isolating the

next-address field and modifying it with machine-state

indicators by means of an arithmetic or logical operation.

Control field
an

A-2

Control line

An input channel that controls the operation of a device

or logic element.

Control signal

A signal on a control line.

Control Storage

Memory in which executable microeode can be stored.

CPU

Central processing unit.

Cross-assembler

An assembler which executes on one machine and produces

machine language code for another machine.

Direct control

A method of organizing the micrword in which there is a one

to-one mapping between bits in the microword and control

signals in the computer. Also known as unpacked control.

Disable

,Emit field

A microinstruction field which provides either a data literal

to the datapath, or an address literal to the sequencing logic.

Emulation

The use of microprogramming techniques for the interpretive

execution of one machine by another.

A-3

Enable

Encoded control
A method of microword organization in which the values of
the control fields must be decoded to generate control signals.

Fetch
To obtain data or instructions from storage.

Firmware
A term used to describe the microrpogramming level, between

hardware and software, in the implementation of computer

systems. 1\lso used to characterize prog:ram code which resides

in non-alterable, non-volatile memory, usually ROM.

Horizontal architecture

A loose term used to cat«~gorize machines whose microword has

some of the following attributes:
A) it is capable of specifying multiple simultaneous

operations;

B) it is not highly encoded
C) it is relatively wide; and

D) it specifies the address of its successor

Host machine

A microprogrammable computer upon which an emulator for

a target machine is implemented.

Instruction-counter sequencing

A method of instruction sequencing in which a special counter

is used to store the address of the next instruction to be
executed. Most macroprograms are sequenced this way.

A-4

Instruction decode

The first phase of instruction interpretation, in which the

fields of the instruction are decoded to determine the

operations specified by the instruction.

Instruction register

A special-purpose register which stores only instructions;

generally serves as the source for instruction decode.

Interpretive execution

A method of implementation in which the execution of a·

single instruction at one level of the machine requires the

invocation.and execution of multiple instructions for a

lower level of the machine.

Interrupt latency

The longest period of time a microprogram should execute

before allowing interrupts to be serviced.

Latch (verb)

To provide a signal to a register or other device which

causes the data at its outputs to take a constant value,

and to cease tacking changes in its input data.

Local storage

Data storage within a processor which is not accessed over

a main, general-purpose memory bus.

Macroinstruction

A machine language or macro-level instruction

A-S

Macro-level machine
The computer defined by the macro-level architecture I

Macromachine

Synonym for macro-level machine.

Masking
A programming technique; the first step in the process of
extracting a non-word group from a word.

~1icrocode

A) One or more microinstructions, B) To write one or mere
mioroinstructions.

Microcycle
The smallest unit of time available for the execution of:
a single microinstruction.

~icroinstruction

An instruction which causes the generation of control signals
to control the logical elements of ,a processor.

Micro-operation

An operation specified by a control field of a microinstruction.

Microprocessor

A) A processor on an LSI chip, usually implemented in MOS,
Bipolar, or 12L technology. B) That portion of a central
processing unit that interprets and executes ll'.icrocode.

,iicroprogram
A microcode routine; a prog~am composed of microinstructions.

A-6

Microprogrammable

Pertaining to the capability to control the actions 0; the

micro-level machine via microprogramming.

Microword

A word of control storage.

Organization

A level below architecture, organization is concerned with

how the facilities available to the programmer are provided.

PROM

Programmable read-only memory.

PROM blaster

The device used to program a PROM.

ROM

Read-only memory. A storage device whose contents cannot

be altered.

Realization

In the hierarchy of architectures and organizations, realization

describes the lowest level -- the ehips and wires which

implement a machine organization.

Reentrant program

A program that can be interrupted at any point, and then

resumed from the pOint where it was interrupted.

Register

A-7

Scratchpad memory
Local storage within the central datapaths of a machine.

Scratchpad registers
Individual words of a scratchpad memory.

Shift register.
A register capable of shifting its contents_ to the right

or left when a control signal is received.

Special-purpose register

A register whose use is limited to a special purpose, such

as a floating-point register, an instruction register, or
a stack pointer.

Set-up register

A register used to store relatively static control information.

After loading, the data in the register can be used to

supplement the control information provided by the micro
instruction.

Target machine·

The computer whose architecture is implemented by an
emulator running on a host machine.

Tri-state logic

A type of logic in which the source that controls a given line

can force the line into one of three states:

A) Logical one
B) Logical zero

C) Off, or high impedance state.

In the off, or hiqh impedence state! the line is available for

other devices to put information on it without affecting the
original source that drives the line. Hence a selecting (or
multiplexing) function can be realized.

A-a

Vertical architecture
A general term used to describe machines which have some of

the following attributes;

AJ Instruction~counter sequencinq
B) Relatively narrow microwords

C) Microinstructions s~ecify a single operation
D) The microinstruction is highly encoded.

A-9

APPENDIX B
DRAFT

INSTRUCTION SET PROCESSOR (ISP) NOTATION

The Instruction Set Processor (ISP) notation provides a

coherent method of describing hardware operations. A subset 0

of the ISP notation has been used in examples throughout

this manual. This appendix described the elements of this

subset, and the conventions which are followed in its use.

~or a complete description of ISP notation, refer to paegs

15-36 and the Appendix of Computer Structures: Readings

and Examples..L.

B.l MEMORY DECLARATIONS

In this manual, memory declarations have the general form:

where:

1".1.1.

M
a and b

x and y

M[a:b](x:y>

is the name of the declared entity

are the {~pp~~ and(lo·;~r·i bounds (addresses)
. -_ .. -.. --

of the memory

indicates a range of values

are the upper and lower bounds of the

elements (bits) of the memory.

Conventions

T~p_rsp notaticn provides for mixed numbering systems by

means of subscripts, e.g.: ~1[a:b8]"'x:y>lO

On the 11/60, these explicit subscripts are omitted,. and

the following ,set of conventions is followed.

J.. Bell, C. G., and Newell, Allen: Computer Structures: ~eadings
and Examples . ~lcGraw-Hill; ~ew York, 1971.

b-\

Ir.cations are numbered in octal, and are Ii .sted in ascending
('):r:"n~r. ~it:~ ~~-e numbered in decimal , listed from leftmost to

rightmost.

Thus, ASP[0:17]~15:0> declares ASPLO to be a l6-word ,

memory. Each word is composed of 16 bits named 0, 1, 2, ••• 15.

D.2 ASSIGNMENT AND SUBSTITUTION

The "colon_equals" symbol (:=) assigns a name to an expression.

Thus, x:=y assigns the name x to mean the same thing as
expression y.

A slash mark is used to indicate abbrev'iation or replacement.

r::'hus, if x is any name, and y is any name, the x/y

assigns y as a synonym for x.

To illustral:e the use of these symbols, let's look at

one of the fields in the microword, BEN.

BEN :=)l~43: 42 >
YlASCON :- 0
CSP :. 1
BSPLO := 2
BSPHI := 3

With these definitions and assignments, we can specify the

BEN field value for a particular microinstruction with:

BEN/BASCON

This specification indicates that the field composed of

bits 43 and 42 of the microword is to be loaded with the

value zero.

B-2

B.3 OPERATIONS

Most of the symbols for operations in ISP are used widely

enough that they are self-explanatory. There are two

symbols, however, which may be new ,to some programmers.

A back arrow 'E--) indicates the ',readIng, transmission,

and writing of data. For example,

tl~ t2

indicates that tl receives t 2 - If t2 is a memory, then

Tl receives t 2 's contents_ If t2 is a value, then the value

is put in tl-

CSP [21 T- 200

ASPLO[O] ~ D

The value 200 is pla~ed in CSP(2]

The contents of D is placed .
in ASP(O] •

i'\ front arrow, (.~), inciicat:es a control opera't:ion wilicn

invokes an action-sequence. Thus,

b~ action-sequnce

indicates that if b is true, then the action-sequence is

applied; otherwise, it is ignored. For example:

SR~4:0~ ~ 0 ~ Branch

B.4 ISP NOTATION SUMMARY

APPENDIX C

BIBLIOGRAPHY

DRAFT

Bell, C.~., and Newell, Allen, com~uter Structures: Readings
,a.r:E_Examples. r1cGraw-HiJ.l_, New Yor , 1971.

Gear, C.W., Computer orianization and Programming, 2nd Edition,
New York: McGraw-Hill, 974. Chapter 7.

les and Practices,

?lynn, ~.1.J. I "rl{icroprogramming - Another Look at Internal
Computer Control," Proceedings of the IEEE, Vol. 63, Nov.
1975, ~p. 1554-1567.

Flynn, M.J., and ROSIN, R.F., "Microprcgramming:An Introduction
and a Viewpoint, II IEEE TrailS. Comput., Vol C-20, July 1971.
pp. 727-731.

rreprints of the Seventh Annual Workshop on Microprogramming

Rosin, R.F., "Cor;temporary Concepts of Microprogramming and
Emulation," Computing survey, 1, 4, Dec. 1969.

~alisbury, Allan B, Microprograrnmable Computer Architectures,
New York: American Elsevier Publishing Co., 1976.

COO!

RASIC SKE'L£TON 0' ~EStDE~T SECTlnN F~R WCI "PTION ", THf PD~ 11/60

TH!~E .Af NINE CLASSES OF ENTRY POINTS INTO THE ~.SIC AESIDE~T
SEeTtON. THESE E~TRV PMINTS 'ND THERE AE'SO~S ARE ltST!D
H!IEi

(t) ERROR A~UTINE

60tb USER HAS LOST CONT;OL OF MrcAOCOD~ OR OBTAINED
rLLfG.L fAAO. e~NDrTION.

(2' NON-USER VFC OISPATCH

60~t XFC 0160NN
'011 ~~C ~16tNN
'0t2 XFe 0162NN
6013 XFC ~7'3NN
6~tu ~'C P764~N
~~15 XFC ~16SNN

tJ) USER .Fe DtSPA'C~

(I) ODD PC DISPATCM

c" We! "ICRO~AEAK

6000 ~rCAOAIE'K MAS ~EEN EN'"LED AND ADD~!SS ~A! REfN ~'TC~EO

(a) RESERVED INSTRUCTIONS

6~Al A A!SERVE~ INST.UCTJ~N ~,s BEEN !XECUT,O.
CFrs,'AST~t,ETe.)

C" DEFAULT SE~VtCE CONDITIONS

&APJ~ WC! !ERvrcE' eFLAG) HAS AEE~ TURNEn ~~J BY ~tCAocnf')~.
69A7 PIN ~XTR' SF.RVleE HAS BEEN PULLED OOWN~

C~) ~EF'ULT JAM CONOITION

60~~ EXTERNAL JAM PIN HAS B~EN PULLED.

CO) DIAGNOSTIC CONOITION

6007 OIAGNOSE CONOITION PRESSED nN THE CON!nL!.

II~PCHI

REGTN.~R0(.03016037'
lTA~r,FTS ARE ENTRJES IN DISPATCH TARLF..

v

14]
144
14!
l A6
141
10e
t4q
\51
151
152
1~3
154
155
1~'
15'7
1S8
15'
1&0
1 b 1
1&2
1"3
1&4
105
100
lb1
108
lb'
171
171
172
171
174
175
110
111
118
11,

'lSA
; 18 t
, 182
, 181
'184
'1815

, 18,
~ 187

1
1 TH! ~OlLOwrNG COO! IMPL[~!NTa T~E A'SIC RESIDENT FUNCTIONS
I NEEDEO TO SfRV! THE WC~ USER. NOT! THAT THE USER I~ WE CHOOSE
1 CAN OV!RL.Y THE PORTIONS 0' THII conE WHtCH HE NEEDS Tbo.
I
1

.TOC REtIDENT ROUTINE eODf.

1
I we! ~IeA~~A!'~ fNTAY 'OSITIO~
1
I A MleRbBR!A~ OCCURS WHEN THE VALUE LOADED IN THE MICR08R!AK
I .ECIITER IS ENCOUNTERED AND TW' MJCR08RfAK ENABLE eIT IS SET~
1 ('lAG e'8~). IF THE TRAP ON ~ICR08REAK ~IT (WHAMI elq~, IS ON
1 THEN THE BAS! MACHIN! TRAPS TO TRAP VECTOR 4. CONTROL ONLY
1 CO~!S TO THII LnCATION I' THAT BIT IS 0".
1
I THE 'OLLnwING INPUT CONDITIONS ARE 0' INTER!ST.
1
1 (1) ~IeROBR!AK [NABLE 8IT ('LAGe0~.) HAS ~EEN CLEA~ED.
1 (2) LOG ROUTINE HA' LOGGED.
I CA) CSP INVALID SIT SET IN 'LAr. REGISTER.
I (8) CS'C~) e •• JAM REGISTER
1 eSpel) e •• STATUS VaR S40
1 eSPt2' e •• P8A
I CS'Cl) e •• CUA
I CIPe") e •• 'LAGS. VECTOR
I CI'C!) e •• WHA~I
I eSpe6' e·. C1CH! OATl
, CIP(,) e •• HITTAG WITH TAr, 'IELD MYGH.
I capCt" e •• OS REGIST!_. ,
1 IN TM! OE'AULT C1S! CDNT.OL ~!TURNS TO THE CONSDLf. ,
x,cauBAtl

NEXT, PAG!(1),BUTCIU8A8), lRETURN TO 'ETCH NE~T INSTQUCTi
J/CON"

.~P~ 0 ~,e~'~11 ~"1011~ 't0~e'0~ IRA"e~A IltI1~~A fltP'I"

) 188 1
v'c e70axx OlS~ATCM

THIS ~'C rNST~UCTION IS RESE-VEO BY DEC AND NOT TO

•

~ 18' 1
! 1'~ 1
! l' 1 I
) 1 '2 I
~1f~] I

I! USED 8Y THE ~es 'AOGRAMM[~. O!'AULT IS JU~~ TO THE TAA' ROUT!I

21'" I
21'5 ,
OJ • ft ...
~l""a

21'7
21 '-8
21"
22~0
2201

TO INITIATE A R[SERVED INSTAUCTION TRAP. (TRAP VECTOR tl).

x,e ~1~1NX OISPATCH
UI!A XFe DISPATCH

THIS IS THf ENTRY POINT 'OR ALL 0' THE US[A! rNST'UCTIO~S.
TH! USER XFC C07~7NX' fS NOw 'U.T~[. D!eODED ACCO-OING
TO etTS !-~ OF TH, tNSTAUCTIO~ TO ENTER ONE 0' TM! fl'WT
fNTRIES n, THE v'c OISPATCH TAAL!.

TM! FOLL~WtNG INPUT CONDITIONS EXtST AT THIS TIME.

etl MO CONTAINS x'c INSTRUCTlnN.
(2) SR CONTAINS Y'C INSTRUCTION.
(]) TA CONTAINS x'c tNSTAUCTIO~.

USf'POrS,Al.
NEXT, @UTCIRS-]), lJUMP TO ONE 0' THE fIGHT

J/USE~0 IENTRIFS IN THE OISPATC~ T'BLE.
b~A? ~ ~A0~A~0~ p~~~~~~~ 0An~A0~~ '0~A~~~~ ~~~~lAl~ a~~11~~~

1
1
1
1
!
J
1
1
I
1 ,
J ,
1
1

RESERVF.O tNST~UCTtONS

THE POP tl1b0 CONTAINS A FEW R!SERVFO INST~UCTrONS WHIC~
ARE NOT IMPLEMENTEO· SUCH AS FIS AN~ FASTY. YF THE We!
IS ENA8LEO THEN ExtT fS TAKEN TO THIS SPOT. TwE ~E'AULT
AES-bNSE rs TO EXECUTE A RESERVED tNSTRU~TtON TAAP. C[~ROQ
VECTOR 1~'.

THE FOLLOWING INPUT CONDITIONS EXIST AT THIS Tr~EI

(1) 0 REGISTER CONTAINS WH'~I VALUE.
C2) "eCl CONTAINS ALlIcl'l7~.

wr.SRsvn~tl
~3, CSPO[Mn]:E~ITC~~l~), 110 - FnR TRAP VECTOR.
~EXT, PAGE(0) ,~lJT(SUBRA), l~FTUR"1 TO TRAP FLn~ TO

J/Tqp~~ !INITIATE TPAP.
b003 ~ ~~~Al~A0 ~~~~~~1~ ~A0~~~~~ ~~1~1~~~ ~~111~~P 01PtAl11

J7
J~
.:Jq
SIC' 1
; I 1
52 1
53 1
51.& 1
5'5
5b ..
57

nOD PC OISPATC~

WHfNEVfR THE aAS~ ~ACMYNF FINO~ AN coo AonRESS IN AN INTE~RUPT
OR TRAP V!tTnR ANn T~£ wes IS P~FSFNT IT fXIT~ TO
THIS LOCATt~~. THIS ALLOWS T~E U~fR Tn wRIT~ A FA~T INTEPRUPT
HAN~LER CONSISTING OF we! ~ICROCO"'. THE OEFAUL~ c,s~ wTLL
BE Tb RETURN TO T~E TRAP FLOW JU~T 'S IF We! ~AS NOT DPESENT.

0-3

1
1 TH! 'OLlowING INPUT CONDITIONS EXIST UPON ENTRY TO THIS
1 LOCATIONi
1
1 (1) ReVECT) CONTAIN' N!W PC VAlU[TN TRAP VECTOR (OOD VALUE).
1 (2) 0 CONTAINS NEw P8 VALUE.
1 (I) SR CONTAINS OLD PS VAlU!.
1
, THfR! IS NO WAY TO 'YNO OUT W~ICH T~AP VECTOR WAS ENCOUNTEA!O.
1 USER MICROCODE WILL ~AVE TO ANALVZE THE NEW PC OR PS VALUE
1 TO D!T!R~INE TH! OEVtC! W~TCH INTFRRUPTED. ,
1

OOOPCOIS0ti
NEXT, PAGfC4),BUTCSU8RB), lRFTUAN AtG~T 8AC- TO THE

J IT" P 01 1 A AS E' HAC ~, I NET A A P FLO W •
&~04 9 ~~eleell ~~a~~eal ~e0~~~0~ 0~~0~AA~ ~~1'I~Q'l t~Alt~Al

,
1
1 ,
1
1
1
1
1
1
1
1
1
1
1
1
1

TM! SE~VIC! CONDITION IS CHEC~!D ONCE 8ETWEEN EAC~ ~ACRO
INSTRUCTION. ONE cnNDtTloN TMAT CAUSES SERVICE Tn AE
N![O!O I~ IF TME wes !fRVICE ~lT nF THE FLAG R~GJSTER TS
TURNED ON. (FLAG c~7». THE WCS SERVICE BIT IS TU~NEO
ON BV T~! We! MICROPROGRAMMfQ WHENFVER ~E WISHES TO MONITOR
(TAACE) THE NfXT INSTRUr.TtON!. WHF.N TMYS BIT IS ON eONT~OL
tS 'ASSED TO THIS INSTRU~TtCN ONCE ~~Tw£~N EVER V ~~CAO
INSTAUCTION. l' THtS BIT IS ON T~fN THE WCS CAN MONITOR
rV!RV tN!lTRUCTtON EXECUTED. THf DEFAULT IS TO NOT
MONITOR ANYTHING BUT INSTEAD RETUQN TO EXECUTE A~OTHEA
INSTRUCTION. C'ET~l) NOTE THAT RF.TlIRN MtJ~T NOT AE
TO 8AAa~ AS AN INFINITE LOOP WILL RESULT.

SVCDF'LT02i
N[)tT, PAGf(0),BUTC!U8RA" lRETURN Tn E'(ECuTf

J/'rT~l lTHF. NEXT INSTPUCTION.
~~A~ ~ 00~~00al ~~~0R000 ~~9A00~~ 00~~~~~0 ~At'1Att lt~'A~t0

1
1
1
1
1
1
1
1
I

WH!N T~! XCS fXTRA JAM PIN IS Y'N~EO T~rs CAUSE!
AN IM~!OIAT! JA~ CONDYTION TO OCCUP.. IF TME wes IS [NA8LEO
THEN CONTRbL IS PASS!O TO THIS LnCATION. IN TH! OE'AULT CAS!
CONTROL IS RETURNED TO THE CONSOLE 'Lnw.

JAM"EFLT01i
NEXT, PAGE(1),BUT(SUSR8),

J/eo~q~

o-~

IRfTURN TO CONSOLE CONTAOl.

1
2
]
4
5

• 7
8
q
o
\
2
3
~

S
b
7
8
Q

" 1
2
3
4

5
&

1
e
q
~

1
2
3
lJ

5
b
7
8
q

o
1
2

3
4
~
b
7
8
q

o
1
2
3

1
1
1 ,
1
J
1
J
I

Of FAULT ~ERvtC[CONDYTION ON!

WH!N T~E PIN EXTRA SERvrCE IS PULLED THEN TM!!
CAUSFS A SERVICE CONOITION TO AAtSE. EXIT IS TO THIS
ROUTINE TO ~ANOL! THAT cnNDITInN WHEN wes IS ENA8L!D.
THE DEFAULT CASE IS TO RETUPN TO EXECUTE' ANOTH! ..
INI'TRUCTION.

, .
SVeO!'LT01.

NEXT, PAG'C0),~UT(SUARA', l~£TUt:PN TO !XEClIT!
J/'ET~l 1THE N'XT rNST~UCTION.

b007 A 0~~~~~~0 ~~~~A~~A ~~0~~~~~ 0~9~~0~0 0A1Jll~t It""11

1
1
I
1
1
1
1
1

DIAGNOSTIC ENTRY

~HE~ OIAGNCS~ ~N THE CONSCLE I~ PQES~E~ AND We! IS
FNA8LEO THEN CONT~OL IS PASSED Tn THIS POINT. DEFAULT
~!8PONSE I~ TO PASS CONTQOL TO THF ENO 0' SE'PVICE ROUTINE.

WCSOrAG01t
NEXT, PAGE(1),BUT(SU8RB),

J/EOS1A
lPETURN TO ENO
10' SERVICE AOUTIN£.

&0t~ ~ 00~~0~00 A~~~~~~0 ~10A0~0~ A00~~~P~ ~~111~~1 0'110~A0

XFC ~1&lXX DISPATCH

THIS XFC INSTRUCTION IS RES~RVEO BY DEr ANO NOT TO ~F. USED
qy THE wes PROGRAMMER. DEFAULT IS TO JUMP TO TME TPAD
ROUTINE TO INITIATE A RESERVED IN~TRltC:TION TRAP. (TR.P V~CTCA t~l.

X'COTH1Qt.
P3, wR-C!P,CSPD(Ol~),EMIT/~01~, 11~ • FOR TPAP VECTOR.
N£~T, P.GE(0),AUT(!UR~B), lRETU~N TO TRAP FLOW. PAGE 8ITS

J/TRP0A lS~APEO WITH FMIT ~TTS~
&011 0 ~0~~t00A ~~0~~010 0~~~~~~~ ~~10t~A~ ~~111~A~ ~10101\1

1
1
1 ,
1
1
1
1

XFC 07tt2XX OISPATCH

TMIS XFC INSTRUCTION IS RE'8E'RVEO ~v OFC AND NOT TO BE USED
ev T~f wes PRnGRA~~ER. Of FAULT IS TO JUMP TO THF TPAP
ROUTtNE TO INITIATE A RESERVED IN~TRUCTION TRAP. (TRAP VECTOR 10).

~)(FCOTH2~1

5 Pl, WR·CSP,CSPO(D1S),EMIT/~01~, 11~ - FOR TRAP VECTOR.
o N!XT, PAGE(0),8UT(SURRA), lPETLJR~ TO TRAP FLOW. PAr,E BrT~
7 J/TRP0~ lSHAREO WITH fMIT BITS.

b A I2 '" "''''A'''I''''''' "'{;o"'P:II:III{;O I>I{;O"'''''''M'I'I ""'I ill "''''!' ""'111""''' "'1"'1"'111 @: ~'

1
1
1
1
1
1
1 ,

w,c 97,.3XX OISPATCH

THII X'C INSTRUCTION IS RESERVED l'V DEC AND NOT TO Bf: IlSEO
8V TH! weI "ICROP~OGR'MM!R. DFFAULT IS TO JUMP TO THE TRAP
ROUTIN! TO INITIAT! A AESEAV!D tNST~UCTlnN T~AP. (TAAP V£CTOQ

X'CCTH]a,
Pl, wA.CS~,CSPO(Ol~,,!MIT/~gl~, ItA • 'OR TRAP VECT~Q.

10).

~!XT, 'lG!(0),BUTClUBAI), 'R!TUR~ TO TRAP 'LOW. PAG! ~rTS
J/TAP~I ISHARfO WITH f~IT BITS~

o~11 0 "le1~gl ~0'0~~la 01'1~~ep a010t~0~ ~~ltl~~~ At~\0ttt

1
1
1
1
1
1
1
1

X'c 07,UXX DISPATCw

TH!S X'C INSTRUCTION fS R!SERVEO BV o~c ANO N~T T~ BE lISEO
BY TH! wCS MtCROPROG~A~M!R. O(FAULT IS TO JUMP TO T~£ TRlP
ROUTYN! TO INITY'T! A AfSEAV!D IN!TRUCTlnN TRAP. (TRAP V!CTOA 10).

XFC~THU0t
Pl, wR.CSP,CSPO(015),[~IT/911~, 11~ - FOR TRAP VECTO~.
NEXT, P'GE(0),eUTCSU~AB), 1RETURN Tn T~AP 'LOW. PAGF AITS

J/TQP00 '5MA~EO WITH fMIT ~ITS~
bAt4 ~ 0A9~t~0g 00~~00t0 ~~A~0~0~ ~0t01~A0 A0t110~~ 0101~ltl

TH!S X'C INSTRUCTION IS AESE~vEO ev nEe AND NOT TO Sf USED
BV T~f We! MJCROPRn~R.MMFR. OEFAULT TS TO JU~p TO T~! TAAP
ROUTINE TO INITIAT! A RESERVEO INSTRUCTION TAAP. (TAl' V!CTOA t.,.

XFCCTH5Q11
Pl, W~·CSP,CSPO(015),!~IT/~010, 11~ • ~OR TAAP VEtTO-.
NEXT, plGf(0),JtUT(SU8A"', 'RETURN TO TA'" 'LOw •. 'AG! 8ITI

J/TRP0A lSHAPED WITH EM!T 8tTI.
bAl~ e 0~~Pl~~0 81,~e0te .~~~Ag0P ~AtetA~~ ~8t'l~el Itltl111

1 wes ERROR ROUTINE
1
1 WHEN THE WC! RESIDENT IS LOAOED ALL OT~E~ LOCATIONS 0'
1 wei WILL CONTAIN A JUMP TO THIS L~C'TrnN. T~E USERS
1 ~ICAOCOO! WILL R~ OVERLAIO ON TOP OF T~ESE JUMPS. W~!N!V!A
1 - TH! USfR~ MICROCOOE LO~E~ CONTAOl CENT'RS UNPLANNED '~DA!SS'
I OR OECIOES A FATAL E~ROA HAS OCCUORfO cnNTAOL WILL [HTtP
1 ~!AE. OE'AULT HANOLING FOR TWIS C'~E IS TO !XIT TO T~!
1 CONsnLE CODE' JUST A~ IF A HALT INSTRUCTION WAS ENCOUNTER!O.
1 IN A LOT OF CASES THE' USER WTLL WANT Tn BUILD HIS
1 nWN f~QOR AOUTIN£.
1
1

WCSERAt
NEXT, PAGEC1',BUTCSUBR8), lP.ETlJR~ Tn BAse: M~CHINE.

JICnNQq lMALT FLC~.
'~1~ 0 ~~~~~A~~ 0~~AA~~~ ~·t~~~A0~ p~~~~~p~ ~~11t~P~ ~~10~~~0
1

1
1 U~ER XFC DT~PATCM TA~LE C~7~7NX)
1
1 ACCORDING TO BYTS 3-5 OF THE USFP ~FC I~ST~UCTlnN nNE
1 OF T~ESE EIG~T ENTRIE~ OF THF "ISPATCH TAPLE IS ~NTE~E~.
1 THY! OI~PATCH TABLE rs MOOIFrF.~ RY THE MICQncn~~ LOAnER
1 WHEN IT LOAOS THE U~fRS MICROCODE Arr.OQCING TO THE ENTQV
1 STATEMENTS ~PEeIFIEn IN T~E 4SSE~~LV. THF ~EFAULT 'OR
1 fAC~ OF T~~S! ENTRIES r9 TO ~F.TUR~ Tn THE AA~E MACHINE AS
1 I' , P~SERVEO INSTRUCTION WAS ENCOllNTF.REO. AN INSTQlICTtON
1 IS ONLY ACCEPTE~ AS LEGAL IF ~CS cnnF Tn fXfCUTF THAT
1 INSTRUCTION ~'S ~F.EN L~A~F.n. NOTE THAT THE USFR ~ICRnpROG~A~MER
1 CAN FURT~F.~ DECOOt RIT! ~.~ OF THE X~C TNSTRUCTION TO
1 FACIL!TATE MORE YFC !~STAUCTtONS. ~INCE THf x~C IS IN T~f SR
1 FUR THE ROE enD f 0 FIT C A r~ n C C 1.1 ~ ~ V T F ~ T T r-I r. S R C ? - P) •

1
1

.CASF
US~RV'I

OF DYSPCM

P], ~R.C!p,C!pn(D1S),E~IT/~01A,

NEXT, PAGE(0),BUT(SUR~e),

J/TRP"''''

!t~ - RESERVFD TRAP.
lRFTURN Tn TR.P FLOw~ PAGE BITS
lSHARE~ WITH FMrT ~IT!.

1~3~ 0 ~~~0t00~ A~~0~~tP ~0~~~~0~ ~~l~t~~~ e~1tl~~~ 01~101tl

.CASF 2 OF Otspc~
USFRtl

lYFC ~7b71X

03, WR.CSP,CSPOCD1S),!~IT/0~10, 11~ - RESERVEO TR.P.
NEXT, P4GE(Q'),eUTCSUARA}, lRETURN TO TRAP FLOW. PAGE BITS

J/TRP0~ ISHAPED WITH EMIT RTTS.
,Plt ~ 0000t00~ ~0~0~~10 ~~0~~00A ~0t~10~~ 0~ltlA~~ 01010111

.ClS! 3 0' OISPCM
US!Jl21

lXFC ~7b2x

.CAS! 4 O~ OISPCH lXFC ~7&73X
U.S!"l.

'], WR.csp,eSPO(015),EMtT/~At~, 11~ • FOR TRAP V[CTO~.
NEXT, PAG!C0),8UT(!URRB), JRETURN TO TRAP 'L~W. 'AGf 8IT~

J/TRP01
~eJ] I ""I~t0IA ""001010 0~0~0~PA ~~1010A~ ~~1tl~P0 el~t~ltt

.CAS! ! 0' OIS'CH
USER4t

Pl, WA-CSP,CSPO(D15),!~IT/0010,
NEXT, PAG!(0),8UT(!UBRA),

... f ITRP01

lXFC Q97b75X

ItA • FOR TRAP Y!CTOP.
l~ETIJPN Tn TPAP FLOW. PAGE eITS
IS~APE~ WITM EMIT ~JTS •

b~l" "000el~A~ ~0~0~01~ ~100~~~~ A~t~t0~~ ~~'11~n0 ~1~t~tI1

.CASf ~ 0' OISPC~
USP:RIJ.

P3, WR-CSP,CSPDCOt51,fMIT/001A,
N!XT, PAGEC01,BUT(SU8RB),

J/TAP0~

lXFC ~7675V

'1~ • FnR TRAP V~CTOR.
lRETU~~ TO TRAP FLnw. P'GF BITS
lSHARED WITH EMIT BITS.

b015 ~ 0~~~100~ ~~~A~~10 00~~0~2~ 101~10~0 A011t~A0 0101Attl

.C.s~ 1 O~ OISPCH
USER&.

Pl, WR-C~P,CSPO(015),E~IT/001A,
NEXT, PAGE(0),AUTC!UA~A',

J/TAP0R

!XFC "'7~1bX
lRf:TlIRN TO TRAP FLOW. PAGf AITS
ISHA~En WITH EMIT AITS.

~01b ~ 0~0010~~ ~~P00al~ ~~0A0A~e ~r'~1~~0 0~111~00 ~l~lAltl

.CASE 8 O~ OISPCH IXFC 07b17X
USEq7,

P3, w~.csP,eS-O(015),!~IT/~01~, 11~ - FOq TRAP V!CTQA.
NEXT, PAG!(~),8UTCSUBRB), lRETUR~ TO TRAP 'LOW. PAGE ~rTS

J/TRP~0 lS~APED WITH E~IT 8ITS.
bP17 ~ A0~01A~~ ~~00~~t'" ~0~A~~0~ ~~10t~~~ ~~111~~0 AtAt9111

p- 8

I
1
I ,
I , , , , , , ,
I ,
I ,
I ,
I ,
1
I

I ,
1
1
1
1
I
I , ,
1
I ,
I
I
I
I
1
I
1
I
I , ,
I
I ,
I
1 ,
I
I ,

TM' ROM Mlc~ncOO£ FOR l1/b~

T~II MICROCOD! GOr~ t~TO T~E TM! RnM (TRANSFEP MICQnST~~F
RO.)~ THIS RO" -fSYOES ON T~E wes ROARO ANO ALLOwS A P~OGRA~
.UNNtNG l~ TH! WRTTEABLE CONTQOL STOPF OF THE 11/~~
TO US! PART 0' T~IS SAME CONTROL STORE AS A ALOCK nATA STC~E.
CL~CAL STOR!) THIS JAIlITY IS ~£ALIZFO PV ~OUTt~f~ ~~JC~
P£R,bRM SLOCK LOADS ANO STORlS OF VARIOUS P'~TS O~ T~E I~Tf~NAL
ITAT! ~, T~! tl/b~. THE 'OLLowING ~ORTIO~S "F THE ~ACHINE
ARE LOAO!D OR STOA£O~

(1) G[NEAAL REGISTERS
(2) ~AR~ FLOAlING POINT RFGI5T~RS
(3) C ~CRATCHPAO EXCEPT AASf cnNSTANTS
(4) USER SCRATCH REGISTERS
(5) !NTIR£ A SCRATCHP'~
Cb) ENTI-! B SCRATCHPAO
(7) !~TtAE C seRATC~'AO

TMIS "ICROCOOE AlSO HANDLES ALL We! SUPPORT NfEOED RY THE
8'1! MACHINE TO ~ER'OR~ ITS FUNCTIONS. THE FnLL~wING IS
A LIST 0' TMfS! £~TRV POINTS 'NO THEIR FIINCTIClNS.

'.11

••••

FUNCTION

USED BY WCSINtT FLnw. LISEI') TnSfT ,,,nRESS
REGISTER TO Zf~O AND ALSO ~QITES lf~O I~

T"'E wO~O.
t, USEO AY wes COOE TH~N LOAns .n~QE5S QEGI~T~~
WAITES AnnRES! VALUf INTO THAT AOORESS ANO JNC~~MENTS
TM! ADDRESS REGISTER BV ONE.

USEO BY wCSYNIT FLO-. w~ITES' COU~T INTO we! {~~
T"'EN INC-!MfNTS THf AOO~FSS ~EGISTER.

LOAOS wes AD~RESS REGISTER WtTH VALUE AND THEN ~RITES
DATA INTO THIS AOOAFSS.

LOADS WC! ADORES! ~E~l~TER WITH VALUE.
(['ASf ~'CHINE ALSO SAVE'S THIS SA-"E VALUE IN TMF. A
SCRArCHPAD 21). THIS ROUTI~Jf ALSO PUMFS O~!Tn aUSOI'"
THE OAT. 'Rn~ T~ts LOCATtON.

USED BY FIR!T WORO TN ROUTINF. T ... AT QE,nS wes STATUS.
NOTE THAT T~E WC! STATUS IS Nn~ REAO ~y THE ueON
INTERFACf. THIS wnRn CA~ PRO~APLY RF. RFMOVFO F~C~
BASE ~AeMINE AND THt~ ROUTINE FPOM T~£ T~S ROM.

NOT REFERENCED BY THE RASE HArMINE.

T H r we SUS f A CAN • L SOU S f THE 5 E p eHJ TIN E S ! N T ~ E T M S ~ n M • THE
'OllOWING IS A LIST OF FUNCTIONS WA~TE~ RY wCS USF.RS ANO ~AYS
TO R!ALIZ! TMf8! 'UNCTION!.

~ - (

,
I
I , , , ,
I ,
I ,
,"
I ,
I , ,
1
1 ,
I
I ,
1
1
1 ,
1
I
I
I ,
I
I ,
I , ,
I
1
I
1
I , , , ,
I

TM, AOD"rll

"S2

1'24

AIZI

aeS4

1114

"14

111'

"lit

IIIG'

"UNCTInN

(READ)
AfAO nATA ~NTO 8U!DI~ ~OtNTED TO BY THE AOooE55
.!riIITER.

(RfAOANOINC)
R!AO DATA 'OINTfD TO I~TO MO AND THEN INC~EM£~T
THf ADDRESS A[GISTER.

(LOAOANORfAO)
LOAD TH[A~D~ESS REGtSTER wrTH VALUE AND ~EAO DATA
OUT ONTO RUSOIN.

(LO'D~EAOINC)
LOAD T~E ADDRESS qEGtSTER AND RE40 THE DATA
POINTED T~ INTO ~D. 'OLLOWS T~I5 BV INCREMENTING
T~E AOOIE5S REGtSTE~.

(WRIT!)
WPITE DATA I~TO T~E AOOPES! POI~TEO TO.

(lliRITEANnINC)
WRITE DATA INTO T~E LOCATION POINTED TO AND T~EN
INCR!~!NT THE AnDRESS RfGISTE~.

CLOAOANOWRITE)
LnAO AOOAESS REGTSTfR A~~ WRITE OATA INTO THIS
LOCATInN. METHOD OF USING THIS ROUTINE lSI
18T TNIT. CLOCK 0 AT ~2 WITH AOORESS
2ND INST, SET TMS~TA TO 1~
lAO INST. CLOCK D AT P2 WITH DATA TO A! WRITTE~
4TH INST. (DATA IS wRyTTEN INTO LnCAL ST~AE)

(LOAOWRITEINC)
LOAD THE ADO~ESS Q[GISTEA AND WRlTE DATA INTO TNtS
LOCATION, 'OlLOws THIS BY INCREMENTING THE ADDRESS
A£GISTE~. (NOTE THAT T~rs ROUTINE IS INVO~fO
IN T~£ SA~! MANNER AS AeaV! M[THOD.)

CINCANOR!AO)
INCAF.~fNT THE ADOR!SS R!r,rST!R ANO P.!AD TH! DATA OUT ON
T~E SUSDtN. DATA 1S AVAILA8LE AT P] OF THE SECOND
NULl. wo-O.
tLn'J)A~DRESS)
lOAD THE APORESS ~F.GtSTER wtT~ AN"ADDRESS.
'UNCTYON rs EQUIVAlFNT TO lOAOAN~READ.

NOTE T"'IS

'.TITL! T~SAO~
_tOENT Ivelll
_RADIX 8
,WIDTH 32A
• 08JECT cl'I"~

~eOUNDS r0.,711
• ADORfSS OUMlt.clI123~

lOCTAt. NUM£RYCS.
,Of'INf 12 ArT wOAO •
'ACTUAL ROM IS t6 ~ITS FOR TM!
,AND U BITS FeR CAOM~
lnEF!NE 512 wOAOS •
'T~rs FIELD EXISTS ONLY TO SATI5FY T~E
10F TME ~ICRn ASSE M8l.ER.

· . ALU II. cl.

Ai,. 1
I ., ••
BEN i,. cl.'c2.

SIPlO il. e
el'Ht i •• 1
cap i •• 2
,'aeON". 1

• 't!LD elEL i~. ~3.

-D Ii- I

• 't!lD AfN i,. c4.

ASPlO ,,. W1
As, ... r ". t

'~rT IN TMS A~M TO ~ANOLE ALU FIELD.

'S~D A STRAIGHT THROUGH ALLU.
lSENn A STRAIGHT THROUGH 'LlJ.
I~US AIN SOURCE.

lLn~ HALF 0' e SCRATCMPAO.
lHIG~ HALF OF 8 SCP.ATC~PAO.
Ie SC~'TCHPAD LOCATION.
IBASE cnNSTANTS I~ TME CSP •

Ie aus SELECTION.

'WHEN lO~qESSING THE BASE CONSTANTS •

IBUS lIN SOuctCE.

'LOW ~'LF OF A SCAATc~p'n.
lHTGH HALF OF A SCRATCHPAn.

"r!lD SADDA ". c1.'ca.'C). ILOw O"OER THQE£ ArTS OF B ADDRESS.

,'J!LC 'ADOA II. c1.'c8.'CIj. lLnw OqnEA TM~EE BtTS OF A· '''C'lqESS

l'I!lD ALLAAODA I~. c4.'c6.'c1.'c8.'c5. 1& AODRESS r~T~ • SCRATC",OAD.

,.". , • Ie
AI t 1 • 1 t
It"2 , • 12
.'3 , • 13
1It14 , • 14
.e! 1 • 15 "e. 1 • 16
Aa, 1 • 11 "I' , • ,
Att J • 1
"12 , • 2
JlIS , • 3
It t4 , • '4

Itt! , • 5
At' ~ ••
Rt1 , - ., "'I , •]~
IItl t ~ •] 1
"22 , • 32
"23 , • 33
A24 , •]4
AI! "~a]~
"2' , • le.
.27 , • 3'
A31 , • 2P
A31 , • 2 t
All , • 2i
A]l , • 23
R34 , • 2"
A15 , • l5
R]' , • 26
AI' I • 2'

.'tELO ALL.'DD~ II· C2~'Cb~'c7~'c'.'cJ~

R •• , .. tl
ttlt "~a 11
•• a "- 12
R03 , . 13
•• 1 , • 14
".! , • l~ , -1&
.. 81 , - t7

"1' , • I "11 , . 1
-12 ~ • 2 A13 , . 1
"14 "~a 4
At! ,,- 5
.t6 ". b
A17 ,~. 1
A2QJ "- 30
R21 ,,- lt
-22 ,t· 12
"23 "- 11
RZQ , . 34
.l~ , -35
A26 , • 3b
"l7 , •]1
R31 , • 29
Alt , • 21
"32 I • 22
"33 , -21
R14 , - 24
-lIS , • 25 Alb , • 2ft .31 I - 27

.FlflO ALLA~ODRW II. cI2.'c •• 'c7~·c8.'c5~
R~" II· tB
RII ,,. 11
FUJ2 ,fa 12
Rll ,,. II
R~4 ,,. 14
IfB! ,,. 15
AI6 , .. 10
,~11 ,,. 17
"II , .- A
"11 ,,. I
"12 , .. 2
• 11 .,.]
Rt4 ,,. 0
"t5 ,,. 5
"16 ,,. • Al1 ,,. 7
-21 ,,8 ,~

;;2i ". li R~2 ". 32
R21 ,,8 33
R24 ,,. 34

• A25 ,, . 35
R26 II· 3.

r3'/~

.
AZ' , .. 37
fiJI ,~. 28
ItSt "- 21
R!2 ,.- 22
ItSJ ,,- 21
A34 ,,. 24
AJ5 ,, . 25
• S. ,~. 2f)
It37 ',8 Z1

,'t!LD 'LT"T II. Cf)~

VII" ;,8 "
NO II. 1

",'IELD ca'ADR ii- c.>·c7>·ca>·ct'~

• 'IELD CLkD i.- c,~

VEl i,8 t

.,tELD WIC." i.- ell>

VEl i,8 !

.'IELD H!LO .,. e12>

"'1 ". 1
LO II. I

,'IELD WAS" 118c14>·C!S>

• j'. 1
a 118 Z
10TH .i-]

.'t!LO UAOALD .i- ct.·,l

VES i •••

• 'IELD UAOAIC .i8 C17.

vra il. 1

• 'IELD INCTMS .i- e18>,1

Y!I i,8 t
NO .i8 a

,'IELD UWIIT! •• - Cl'·

VEl ,,8 t

~TOC TP4S MACAO DE'INITICtNS

'AlA SCPATCHPAD ADDRESS 8IT 3.

'THYS 8tT IS ASSERT!D LO~ AN~
lNnT ~IGH AS NOR~AL.

'ADDRESS WHEN 'CCESSI~G C SCRATCMP'~.

lCLOCK C ~EGISTE~ •

l~RITE C SCRATC~PAD.

IWH£N WAITING TO A nR R SCAATCHP,OS
ITHIS FJELD SPECIFIES HIr.~ O~ Lnw ~'LF.

,HtG'" ~ALF.
lL(')w MAL'.

lWRITF eSP,ASP, nR 80T~.

'WRITE A SCRATCHPAO.
'WATTE ~ SCPATCH8AD.
aWRIT£ ROTH A AND 8 SCRATCH~AOS

le.n~ ~ LOAD 'DORf!! AEGtSTFA.

IlOAD ADDRESS ~~GIST£.~

lCAO~ 1 INCREMENT 'O~PESS A'-GISTER •

IINCRE~fNT 'DO~ESS ~F.GtST!~.

lDEFAUlT IS TO INCA£~f~T T~S POINTE~ •

'I~CRfMENT TMS POtNTEP~
'[N~ OF T~S ROUTtN~.

lREAD/wRITE LOCAL STORE.

IWATTE INTO LOCAL STORE.

•

,MAClltO
.MACAO
.MACRO

'. MACAO
• MACAO
.,..AC"O
.MACAO
.MAC"O
.JI4ACRO
.M~CRO
• J!4ACItO
• MACRO

.t-1ACRO
• MACAO
.... ACAO
• MACRO
,"ACAO

,'''ACAO
• fl4ACRO
.~ACAO
.... AC.O
, Ji4ACItO
,fI4ACAO
."'CAO
,"ACIitO

MO:OATA i ••
O O:D~TA II-
1)."'0 '1.

LOADANOWAIT! .i
'OaTINC&OOA ., •
GOOD8YE ia
WAtTEDATA il8
'llL!A ii.
lOADADDR!IS II
lNCANDWAtTE ".
tNC:ADOA!SS II •
IT!'THROUG~ 11 •

G!N[All AEGISTER ~ACAOS

LOADGPT i ••
LOAOGRCN) •••
STORfGRCN) Ii.
LOAOUSEA" •• , •
STOAEUSfAA. II.

LO'P3CN) •• -
lO'P2(N) I.a
lO"1CN) 118
LD, .. ,(N) ., •
S"'](N) .,_

S"P2CN) ' ••
ST'P1CN) II.
ST"ICN) II.

I

BfN/8ASCON,8Sfl/MD,WACSP/YES
MD.DATA,CLKO/YES
8£N/aAaCON,8SEl/fl4~,ALU/B,C:L~O/vrs

UAORLD/Yf!,UWAITE/YES
UADAIC/Y!S
tNCTMS/QI
uwAITE/YfS
tNCT'4~/"
UAOFU.O/YES
UAD~IC/V!S,UWArTE/VfS
UAOAIC/VfS
INCT"'S/I

D."n40'TA,WRSP/~nTH,FLTPT/NO
lOAOGAT,'AnDR/'N
~LU/A,FLTPT/Nn,A'DDR/'N,CLKO/VF.S
D."O.OATA,WRS'/90TH,FLTPT/VES,A'ODA/b
'LU/A,FlTPT/VES".onA/b,CLKO/YES

O.~040'T"WRSP/A,A'DD.I'N,FlTPT/VES
D.MO.OATA,WR!P/A,"OOA/eN,'LTPT/Y[S
lOF']C'N),MILO/HI
l~'P2('N),HILO/HI
'LU/A,A'DO~/'N,'LTPT/YE~,CLKD/VfS
ALU/e,8ADDA/.N,FLTPT/Y!S,CL~O/YfS
ST'P3C·N),'fN/ASPHI
IT'P2('N),AE~/SSPMI

WCI ICRATCHP'D AEGISTfR ~'CAns

,"'ACAO
,,..ACAO
,MACRO
,""'CItO

LOWCSA(N) •• -
LOWCIS(N) .,.
STwe!ACN) ,,.
STWe8!CN) II.

.MACltO LOCSP(N) .,.
,MACltO STCIPeN) .i.
.~'CAO
••. UC-O
,"'CAO
,"'CAO
.~.c"o
,""CltO

ALL ICAATCHPAD MACROS

LOAOASPA"C~O I ••
LOA08SPAO(N) II
STOAEA"'DCN) ,,8
ITORflspaO(N) "
LOiOiL.LeSiiCN) I.
ITO"(ALLCSPCH) , ••

~.~D.~ATA,HILO/~t,WASP/A,rLTPT/~O,AAOOA/'N
D.MO.OAT',~TLn/HI,w~SP/A,FlTPT/~n,A,~n~/'~
'LU/A,'EN/'SPwt,CLWD/Y£S,FLTPT/Nn.AAODA/.~
'LU/ft,8fN/ASPHt,CLI(D/YfS"LTPT/~o,"ADn.I.N

~(N/CS"WPCSP/VFS,C!PAOR/.H
'lU/8,8!N/CSP,CLWD/Y£S,CSP'OA/.~

O.MO.O'T"W~SP/"'LL"DOPW/.~
D.~O.O'T"WQSP/A,·LLA'OOAW/.N
'LU/A,CLWO/V!S,ALL'.onQ/e~
ALU/A,CLI(O/YfS,ALLA'DO~/eN
~fN/CSP,wPCSP/YES,CSP'DP/.~

, L U 18, "f N I r. , .. , r. L tt 0 I V f S , C S P , D A 1-.'

I ,
I , , ,
I , , , , ,
1 , ,
1 ,
1 , , ,
1
I ,
1
I , , , ,
1 , , ,
1
1
I ,
1
I

.coor

~TOC T~S MICROCOOE

USING ROUTr~!S IN TM! T~S ROM.

1M! ROUTINES IN THE T~S ROM AqE OESIGNE~ TO SAVE DrF~ERENT
IfTS 0' THE 11/o~ ~lCHtNf STATE INTO wC~ ACTING AS A LnCAL STO~E
ANO ALao TO RESTORE T~fS! seTS FROM OATA TN THE LOCAL STORE.

TM!!! ROUTtN~S AR[OfStGNEO FOR npTI~u~ OATA FLOW TO 'ACtLTTATE
1~'LE~!NTATtON OF FUNCTrONs SUCH AS r.nNT~~T SW1TC~ING W~ICH ~UST
HA'''e:N AS '&11 AS POISISLf. SECAUSE OF T"'1S OTHER USES'"' THESE
~OUTIN!S AND SUBS!T! 0' THES! qOUTTNES MAY NOT ~F. AS EASY TO USE .~
WOULD aE L.IKED.

ALL ROUTINES AR! !NTERE~ WITH THE We! LOCAL STO~E ~rNUS "~f ClSAOQ-t)
CLOCKED tNTO D. RETURN TO THf wes ROt/TTNE wYLl nCCLIR AFTER T"'E
'UNeTION HAS BEEN COMPLfTEO, THESE ROUTINf5 ARE I~PL~~ENTEO
IV SETTING UPA PIPELIN! IN THE OATAPATH WHERE TWO DIFFERENT
'ARTS OF THE DATA,A1H ~OVE OURING TH~ SAME ~tCRnCYCLf. TH! prpELI~E
eONTINU!S UNTIL ALL OAT A IN T~IS SET HAS ~fEN MOVE~,

UIING SU8SETS ~F THESE ~~UTIN~S TO ~nvE ONLY A FEW OF THE OATA
%TrM~ AND NOT TH! WHOLE SET IS NnT EASV, AS AN £~A~PLE T~E
'OLLOWING IS TME P.~CEOURf TO SAYf REGISTERS R3-R01

(1) USE A ~OUTtN£ TO LOAO T~E ACO~~S~.2 INTO THE AODRESS QEGISTER.
(2) CLOCK R3 INTO T~f 0 REGISTER.
(3) SET THE TMSPT~ WITH AonRES! T~AT ~RITES Q4 INTO THE

ARqAV ANO ~OVES R3 THROUGH T~E nATAPATH ANO eL~CKS tT
INTO O. ONLY TM! CRO~ 8TTS ON THIS rNSTRUCTION -YLL ~E
!YfCUTEO. THE T~S eITS WILL NOT BE ACCES~ED. THIS ~ILL
WRITf Al INTn THE lOC-L STOPE ADDR!SS-'.

(4) THE NfYT tNST~UCTION WILL WRITE ql INTO THE AO~~ESS A~n
MOVE Q2 INTO D. TH! REST 0' T~E ROUTINE WTLL ~QtTE
~2-0~ INTO THE ARRAY AND ~€TUQN CONTROL TO TME We!
qOUTINE AT T~E THIRD INSTRUCTION A'TER T~F ONE T~AT
SET TM! T~SPTR VAlUE.

THIS EXA~PLE SHOWS THAT A SU8~ET OF TME OATA ITEMS
CAN~bT BE STOR!O IN TH~ SAME MANNER AS THE ENTlqE SET SJNCf
TME 'IAIT DATA IT£~ WILL 8£ SAYED TwICE IN Twn DIFFERENT ADnRE!SES.

.Toe CqO~ LooeATIONS USED 8Y WCS TO stlPpnRT T~E eASF. MACHINE.

lLOCATro~ lERO OF THF T¥S IS Acce:~!En
IWH!NEV!R AN INtT SIGNAL IS ~AISEn
ley THf AASE MAe~rNE. An~~ESS ~EGTSTF~

'tLL!~ '~TLL Cyel! HERE UNTIL THF TM~~TR IS CHANGED.
~ BII~~'I~ llAAPABl ~a8~11~~ ~0~9~0~A

TMSllli

2

]

lOADANOW~ITf
1'~10111 ~aBA110~

POSTINCAOOR
"1~~~~1 1~P~ll11

cnOD8YE
0Ie~All~ 000~Ja~1

~~~~~"'0Q1 

0A~~~"0" 

SLOAn AOORF~S, W~TTE OAT4 A~~ 
ot~Aot~"'t'I~ 
lTHEN I~CREMFNT TO POINT Tn THE 
'H'~"'0~0I0 
1NEXT AOORESS. 
""HH~0~~' 



TN1114. 
WRYTfOATA ,wRITE OATA FROM OOUT I~TO we~ 

4 010e~lll 1~~~11~1 00~0e"~,, 0A~000"'0 
POITINtAOOA ,AN,., tNeRf"'f~T Tn porNT Tn T"" 

! '1118111 0111~111 """"III'" 1~"Qln0~~~ 

GOODBYE It N f )C TAO 0 A [ S S • 
e- "1111111 1 ,,,,,QUit,! 0"""'~"00 "00"'9.''''0~ 

'llL!A , 
7 'II~II~I 1000APQll 0I''''00~QI''' "'''9'A0~0''' 

TMS.1". 
LOAOANOwJlITE ILnAO AO~PE'!S AND w~tT[ DATA. 

1" 0"1~lllg 1'~~110~ 0"""""00 "'''0091P0A 
GOOD8Yf I 

1 t "10~"lel 10"'''leI1 ~000001~ 1f11000"'QH~' 
'!lL!A 

12 1'1101"1 1"""'10"1 """''''0",." "Qt"0"~ep 
'IlLER 

13 018all1'" 1001B001 ~~fJ'U''''00 ~"00~~"'P 
wRtT!OATA ,WRIT! DATA 'AO~ DOUT I~TO LOCAL STORE 

11.6 011"~111 100011~1 0C11"'0"'UJ" 5I'0"00"'A~ 
GOOOSY! I 

IS 1111"'111 0",,,A0A01 ""1"'000"1 ~0",,,,QI~,,,, 

'tlt.!A 
1'" 080'0111 !Cute.",,,,,, 1 0CU''''''0'''''' "'0P'''~~QtQt 

FILl.fA 
1 7 0,a11011 00001001 'UI0"0Q101", £II 00 PI 010 Qt '" 

TM8121, 
LOAOAOORfS8 IlNITIALI1E AonRfSS R€GISTE~ Tn VALUf. 

21 110el~g", 10000100 00"'0~0p~ ~~A~A~P~ 
GOODBVE 

2t 0~~~1~~t ~~~~900t 0~p~~A~~ ~0A00~~~ 

FILL!R 
22 sa~011~t 10~~~~~1 00~9~~B~ p9v~~~AA 

FIlL.f~ 
23 ~'111~t' .al~la91 01~00~A~ ~~~~B0A0 

A!AOANOt~el 
ST!PTHROUGM 

24 0AI0t'1~ t~0a0101 ~~~AA0~~ 
~D~DATA,STEPTHAOUGH 

25 0.e~1~11 ~A~A~lel 090~lA~e 
tNCADORESS 

26 0eell~11 10011111 Ae~A~f0~ 
GOODBYE 

21 ag00tlsa ~e0g~~01 09B"'~00~ 

T~S0]01 ST!PTHAOUGH 

100 NOTHY"'G 
0~"'~"'~~0 
'R[AO DATA 
Pt"'0Q'011(a 
lINCRfllllfNT 
~,,~"'~~"'~ 
lfXIT 'lACK 
00~P9ACI'0 

]0 00001100 lA~~~l~t 0~0f~~0~ ~0"'~0~~0 
STf'TMAOUG~ , 

11 0~0~11~1 ee~AA1"S 0A~A~"'~p ~00~0A"'~ 
ST!.'PTMROU(iH 

31 ~1'~llAl t~A~ll~1 0A~A~A~0 AAA~A0~P 
FILl.ER 

33 0~Aettl~ 00A00~Al ~0AAA0~0 0~0P10AA0 
LOAORfAOA~DINCI 

AUT O[AO OATA 

,~o PUT INTO "'0 

Tn CAllER. 

LOAOADOAfSS 
34 e,e~tJle 100AA1~a 0~P0aA0p 

~O.OATA,!T~.T~ROUGH 

'LOAD AonPFSS ~FGtSTER. 

Clt"'~~0""'''' 

• J! "IeAtltS 0A0A0101 00A"'lA~0 
INCAOOAE!S 

]6 Ileatll! 10~A~ttl ,,~,,~~,,~~ 

GOOD8YE 
l' ~.eJ_~_r .Q~~~~~l 0P~R~~~~ 

l~.TTE ~ATA INTO ~O. 

CIt"""''''!''' iPCTNT TO NfXT ADnQfSS. 
~~AP"''''''''' 
IExyT 8AC~ Tn r.ALlFR. 
QUHH' fI ~ '" OJ 

~-8 



TM •••• i 

I 
I 
I 
I , , 
1 
1 , 
1 , 

LOA01DDRfSS 
II ".1"1~ 11~1~1~~ 110A~I'~ 9~~~~9~0 

QOOD!V! 
It al'11 •• 1 10e~~~~1 0ee~ee~~ ~~0A0A~0 

.TOC LOAD G!N!~AL A!GIST!RS 'Rn~ wes 

THf GENE~AL. AEGtSTF~S '~.A7 AND U!E~ R~ AR! LOADED wIT~ OITA 
IAV!D IN T~[ We! LOCAL. STORf IN 9 CONTIGUOUS LOC'TION~. T~F. -c! COO~ 
IMbuLD LblO T~! START!NG 'DDA!!S MINUS ONE CLSAD~.t) INTO 0 A~O TRANS'; 
CONTAOL TO THIS .OU~IN!. TH[ nATA. IS PIPELtNFD 'ROM Lor4l STORE TO 
THE G[N!.AL .!GtST[~IS. (IN (ACH cvr.LE ONIE 1& f'IT VALUE IS .-£t"l'; 
A!'O OUT OF LOCAL S?OR! AND WRITTfN INTO T~f 
-0 -let!T!A WHILE A SECONO 1. BIT VALUE IS MOV~~ 'AOM M~ THQOUGH T~E 
ALU INTO 0 .NO TH!N WRITTEN INTO 80TM THE A AND B SCRATcwPAOS.) 
CONTROL TS RfTUANEO TO TM! WCS MICAoconE AT THE !ND n, TMrs 
~OUTtN! WHfN CROMc2~ GOES LOW. 

1 
LOADGAI. 

LOAOADOR!SS 
"2 1'011'11 101~01~0 ~0~el~A~ ~0~0000~ 

MO.DATA,INCAODRfSS 
4] 0'lllel~ R~~~0111 ~~~01~0A '09P~lt~ 

LOICGR(1),INCAOORESS 
"4 elBll'l. 11~I~tl1 11~91011 1\10Atll 

l010GRt&),tNCAOORfSS 
4~ '11t0811 a0~09tl1 11011~11 11~~~110 

LOADUa!RP',INC1DDREas 
4' .1111111 1011"111 1IP't"!1 lQ1Q10f'110 

LOADGR(!),INCADOAESS 
41 l'lt'll~ A0a0~11t 110al~1~ tl1t011~ 

LOAOGR(4',INCAOOR!SS 
~I .le11109 1000~tl1 110~111~ J10~~tl~ 

LOADG.(l',INCAOO~!SS 
St 90~1010i 00~0"ltl 11011'11 Al1e311~ 

L01CG-C23,tNC100RfSS 
~2 •• 011101 11000111 11001011 ~le~e119 

L010GRC1',INCADORfSS 
5] eel11110 09110111 11~Bl~le 011~e110 

LOADGRCS) 
54 leel.tle t01AA191 11~at01~ ~1~00tl~ 

IOODBV! 
5' 110t9111 10~~a0~1 0~~00~~A ~0~0"~~0 

'llLER 
! •• ~elal11 11000001 ~~000e~0 ~~0~J~~0 

,tL.LfA 
51 "'1111' e.,e~ee1 00~~'0~a ~0~~3~B0 



.TOC STOAE GENfRAL REGISTER! INTO ~CS. 

, , 
1 
1 
1 
1 
1 
1 
1 
1 
1 

THE GEN!RAL RF.GTSTERS R~-R7 AND USER Rb ARE SAVEO INTn T~E ~e~ LnCAL 
STO~! IN q CONTIGUOUS LOCATIONS. T~I! CODE IS INITIATED BY L"ADtNG 
TMS~TR wIT~ T~E STARTING AOORESS OF T~TS ROUTINE A~n CLOCKING 
tNTO 0 T~[ LOCAL AOORESS MINUS ONE CLSAOR-l). T~E DATA IS 
pr~!LrNEO 'RO~ T~E A SCRATCHPAO TO wCS LOCAL STOAf. CJ~ EACH CVCLE ONE 
tb 8IT VALUE IS READ OUT OF THE" A 'CRATC~PAO THROut;H THE AllJ iNO 
CLnCKED INTO 0 WHILE ANOTM!R lb AIT VALUE ~HICH ~AD AEf~ ClnCKEO INTO 
08 PREVIOUSLY IS WRITT~N JNTO A l~CAL STOPF ADnAESS.l CONTPOl 
-ETURNS TO THE WC! ~ICROCODE AT TH! END nF THE POUTt~E WHEN ep~~.c2> 
GO!S LOW. 

1 
STOA!GASi 

LOAt)AODAESS 
b0 011110~~ 1~~0~10~ ~~0A~~0~ P.~~000A~ 

STnRF.GR(1) 
&1 00011001 A0~~~t~1 ~~~0~Al1 111~~~~t 

STOREGR(b),INCANOwAITE 
b2 00011A~1 1~~~111t 00~P~~11 11~~~~~1 

STORfUSE~Rb,r~CANOW~tTF 

bl ~001t~1~ A~0~ltll 000~~~11 11.~~~~~1 
STOREGR(S),INCANOwRITF 

b4 A~~1101~ IP001111 ~00~0~1~ 111~~~~t 
STn~EGR(4),INCANnwAYTf 

b5 00011~11 ~0001111 ~~~~~~1~ 11~~~~~1 
STOREGRC]),tNCANOwRtTE 

bb 08111011 1~~01111 0~~~~~11 011A0~~1 
STOREGR(2),INCANOWRITE 

b7 II~t1100 ~P~~lttl ~~~~~Att 01~~~001 
aTOR£GRCt),INCANO~ATTE 

71 ~'0111~~ 1~~01111 ~~~~A~l~ ~11~~~~1 
STOR£GRC0),INCANOwRITE 

71 01111101 00A~1111 0~~0~01~ ~1~~~~~1 
INCANOWRYT! 

72 111111~1 1~001111 ~~~~~A~~ ~~~~~~~A 
GOOOeVf 

73 00'11110 ~0~0~0~1 0~~~~~"A ~~A~~P0~ 
'ILL!R 

7~ 0~01'110 1~~~0~01 0~~'0~~~ ~~0~~~00 

'ILLER 
7~ 91111111 0000~~~1 900~~A~~ ~P~~AP~' 

.TOC LOAD WAA~ FLOATING pnT~T QFGtSTFQ~ FPOM wr~. 

~-IO 



TH! SIX WA~M FLOATING REGISTER! ARE lnAOED WITH OATA P~EVIOUSLY 
SAVED IN TM! We! LOCAL STO.! IN 2a/tA CONTIGUOUS LOClTI~NS. THE 
wei INITIAT!! TMYS CODE BY LnADIN~ TMSPTR wITH THf ~TARTI~G A~n~E!~ 
0' TMIS ~OUTYNf ANO CLOCKING INTO 0 T~F. LOCAL STnRE AODAE~S MINUS nNF. 
c~aAOR.l). TME OATl IS PIPELtNfO FROM L~CAL STOA[ TO EITHER THf A OR 
e seAATeMPlOS. CIN EACM MICAOCVCLE ONE 1~ BIT VALUE IS AftNG AEA~ 
OUT 0' lOCAL STORE AND W_ITTfN INTO THE MO ~EGTSTfR W~tLE A SECOND 1~ 81 
"0 V E D 0 U T 0 F T ME JI4 0 T H R 0 U GMT MfA L U , T Io4R OU G H D • N D W R ITT EN tNT 0 E I T H'[ R 1 
A OA B SCAATCM~AO OfPENOYNG UPON T~f SYGNIFrClNrE nF THE RFGTSTER.) 
CONTROL .ETUANS TO TH! WC! ROUTIN,. wHF.N CPO~C2~ GOES L~~. 

o,~'''i 
L.OAOAOOAESS 

7, eletl)11 10000t0A ~0~~~~~~ "'01~"'~0Qt0 
MD 4 OATA,tNCAOOAfSS 

." 90t~~00A ~A~~~111 P000100Qt "'AAClI~tl~ 
LO'P0(S),INCAonRESS 

II lellA~a0 1~00~111 ~t011al~ 1011~~110 
LO"t(5),INCAODRE!S 

at 1'10e0~1 00R0~tl1 1"'QJtl~10 1"1"''''110 
LO'P2(5),INCAO~RESS 

02 0Il0""'~1 la~0""11 0t~~t~1~ 1~t"'~11" 
LO'P1(5),INCADDRESS 

133 aI31~00t~ ~~~~~111 10QJ~1~lQt lQ110011'" 
lO'P~(4),INCAOORESS 

"4 a~1~001~ 10~0~111 ~1~110t0 lC1tQH~AJ1~ 

lO'~t(4),tNCAOOAE!S 

I! 1'19~el1 0~~~0111 1~~1101" 1~0I"'011'" 
LO"2(4),INCAOORESS 

•• 11181"11 1~"0I"111 Qll"''''1'''10 tGIIQt0"'11'" 
lO'P3(4),INCAOOAf!S 

'" 'Itll!SA eR",~ellt 1"001"'10 1'''Qt''''''11~ 
LO'P~Cl),tNCAOOR!SS 

II 01tl'118 11"0~111 01011011 "'0tP~11'" 
LO"1(3),INCA~O~ESS 

11 alt~~llt 0"~~"'ltl 1"''''11011 "'''t''''''ltQt 
LO"2(3),INCAOOR!SS 

II 'It81101 t~08011t ~1~~lPl1 "''''100110 
LO'P1Cl),INCAOORESS 

1] 111~~t10 ~0~0~111 t"'''''''l~lt "'''l~''lt''' 
LO'P~(2),INCAODR£SS 

14 001~~11~ 10~0I""'1 01"'11Cltl1 0Q19'''''''11Q1 
LO'P1(2),;,NCAOnRfSS 

15 ell~~tl1 0~0~"'111 1~t'lt1011 ~~"'0c-l1" 
LO'P2C2',INCAOORESS 

If) 811~"'11t l~~~~ltl 010Al~tl ~P0A"'11~ 
LO"l(2),INCAOORfS! 

17 al101001 10A~Pl11 100~1011 QlC'l0A"110 
LD'P~(l)~INCAOCRESS 

Z" eatll~0e 10~00111 ~1~110t~ 00t~Qllt~ 

LO'Pl(t),INCAOORfSS 
2t 11101001 ~0"'~~11t 1~011~t~ ~Vl1~~11~ 

LO'PlCl',INCAOOAfSS 
il 11101001 10~00111 ~1~~1010 ~010"'lt0 

LD'P1Ct),INCAOOR[SS 
23 .1111110 80~0~111 100~1011 Ql01~"'110 

LO'P~(0),INCAODRESS 
l4 ,et~l~l~ 1~~A~111 01~tl~t~ ~0~0"'lt0 

LD"l(0),INCADORESS 
~-(I PI) '11'1021 00A~0111 lAQtll~l" 000"'~11~ 



LD'P2(0),INCAODRE!! 
12. all11111 109a31tl 010~1~10 0~~"'0110l 

LOII'PlCI) 
la7 "1111ee IIIme101 lP1~"'1011QJ ~~~""'11Q1 

Goooev! 
131 11111100 10100~0t QJ00"'''' "QH" 100P1f1Af'tA 

'IL.l.fR 
lSI IItll111 010~00~1 0~0A"ft09.1 """'''''''OIR 'ILLfR 
132 'llmlt"l 10CUI~e01 11~0"0"ft e8Q10eCUII 

, 
~ T~! SIX WAR~ FLOATING POINT REGISTEPS APE SAYED t~TO THE WC! LOCAL 
1 STO;E INTO 24/\01 CONTIGUOUS LOCATIONS. wrT~IN fACH OF THE FLOATING 
I POINT REGISTERS WOROS AR! SAYEO IN srG~r'tcANeE ORDER. T~! wCS ~OUT: 
I IN!TIATES TMIS eon.E AV LOAOING TMSPTR wITH THE STARTI~G ADD~ESS OF TH: 
I ROUTINE ANO CLOCKING INTO 0 TME LOCAL STOQ£ ADDRESS ~INUS 'ONE (LSADA.' 
a TH! DATA IS PtPELINEO 'RriM T~f A nR B SCRATCHPADS INTO THE ~cs LOCAL 
1 STORE. eIN EACH MICROCVCLE' O~E lb BIT VALUE IS READ OUT 0' THE 
I A OR e SCRATeHPAo THROUG~ TME 'LU AND CLOCKED INTO 0 WHILE ANOTHER 16 
& VAlUf WHICH HAO BEEN CLOCK!O INTO n~ PREVIOUSLY IS w.tTT~N INTO A 
1 LOCAL STORf AOORESS). CONTROL IlF.TlIRNS Tn THE WCS MICROCODE AT THE 
I !NO 0' THE ROUTINE WHEN CRO~C2> GOES LOW. 
1 
STORf'PI 

LOAOAODRESS 
113 00101110 0000~100 000~~00~ ~~P0000~ 

STFPOICS) 
11~ ~At01110 1~0~0101 00000010 1~0011~~ 

. ST'PI is), INCANOWRITE 
135 00101111 0'~~1111 00000010 101100~1 

STFP2(5),INCANOwRtTE 
136 e01~1111 1~001111 00~0001~ 100A10~~ 

ST'PltS),INCANOWRTTf 
111 ea110101 00001111 0~0~~~10 t~t~00~t 

STF~~(4),INCAND~RITf 
141 11110909 10001111 0~~0"'01A 100~AI0~ 

ST'PI(4),INCANOWRITE 
141 0~lt0001 0I0~~111t 00"'0~~t0 l~Al~~~1 

ST"2(4),INCANOwRITf 
142 0al1~ell 10001111 00~0~~lA 10000~A0 

STFP1C41,INCANDWRITf 
tQ3 00110018 00~~tltl 0A00~01~ 1~0~00~1 

STFPOItl),INCANDwRITE 
144 IIll011Q1 100A1111 00000911 0~0011~0 

STFP1(3),rNCANOWRITf 
145 11110011 00001111 00090011 ~~ltAA01 

ST'P~(3),INCANOWRIT! 
246 01110011 l0A01111 ~0~A00It ~A0A1P.P0 

STFP3Cl),INCANOWRITE 
ta1 le110100 00101111 0~000A11 001AA001 

ST'P0(2),INCANOwRITE 
150 1011~IPl 10~01tl1 000~A~11 ~0~~~I~A 

STFPIC2),INCANOWRITE 
151 eI11~1~1 0e~01111 00AQI~~lS ~~~10~~1 

ST'P2(2),INCANOWRtTf 
152 l~lt0101 tPA01111 0P~~~Pll ~~~00~~~ 

STFP1(2),INCANOWRITE 
• 151 ~0110110 0~aAl111 00A00011 ~A~~0~Al 



11' 

lSI 

1" 

1" 

I •• 

1'1 

1.2 

1.3 

164 

1ft! 

1 •• 

16' 

I 

ST'~0Cl),rNeANOWRITf 
11110110 10~0tl11 000~~~1~ ~0"l3l1"CJ' 

ST'Pl(1),tNCANOWRITE 
.ll1Bl11 0m-Il111 01~e~~1~ 00110A91 

,T'P2C11,INCANowAtTE 
'll11tll ta~01111 00~~0110 A0~Ql10"'''' 

'T"3Cl),INeANDW~lT! 
•• tI1011 eA~0111t ~Iee0el~ ~P.t~0ft"'t 

ST"I(I),INCANowRtT! 
Illt10'1 1011t111 e0~0011~ ~'~0"tfl0 

aT'~!(0"INCANDWRrT! 
Iltttalt 0~mel111 IAA~~lt~ ~00tA""'1 

IT'P2(8),tNCANDWRIT! 
.1111111 10011111 10~a0Alf "'''''''0~''''''' 'T'~3(1),rNCANowRrTE 
"111"'11 "'0~0tll1 ~fI",a~"'t'" Cl'01P1Q1P191 

tNCANDWRtT! 
e'11101~ t0~~1111 e0Q1"GIt"'~'" "'~Ql0"''''ot''' 

GOODlY£' 
lel11~11 10a91"'01 00000~'UI "'90"''''0''1 

'IL.L.ER 
l'~ttlQ11t 1"'011"el 0~IcJ'U'aA" "''''~'''I'''~''' 

'IL.L.!R 
Iltl111~ e2~e"'0el 0aa","'",al ""0110"'8 

THII AOUTINF LOAOS ALL OF T~f ENTAI!S YN T~E C SCP1TCHPln [yeEPT 
~O. TH! BASE CONSTANTS FRO~ OlTA PA!VYOUSL.Y SAVED IN TWE We! LOCAL 
STOR! IN 12/10 eONTIGuaus LOCATIONS, THIS CODE IS INITIATED AV 
LOAOING T~SPT~ WIT~ T~E STARTINQ AOORF.SS OF THYS A"UTtNE ANn tl.nr.KI~G 
INTO 0 TI-t! lOCAL STOR!: A"O"fSS Mt~lJS ONE CLS,,,R-l'. TWE nATl IS 
R!AO OUT OF We! LOCAL STORE ANO WRYTT~~ INTO T~E C seR'TC~PAO r~ n~E 
~ICQOeVCLE. EAC~ CYCLE H1NDL!S ON£ 1~ 8IT ITEM. CONTqOL AF.TUQNS Tn 
TH( wes ~OUTINE WHEN CRO~c2. GO!S L.OW. 

.OAOea" 
LOA01OOA!S! 

, '7 fI ell1t101 1~1101P0 ~~~~~g~m ~Qte"QI"~~ 
L.DeSp(11),tNC~OORESS 

,11 '811111t 1~1"''''tlt '~~~tl~t 118'-1"'18 
LOCS-(lb),tNCAO~R!SS 

.11 1'111111 10~~ltlt ~~~~10Al 11~0~"'1'" 
LOeS'(15),rNCAOO~!SS 

13 ~.ttl1t~ a~~'Al11 ~00~1Ja0 t10~0010 
L.DCSP(14),INCAOORESS 

14 0Bltltl~ 1011~111 ~0~~1~~~ 11~~0~t0 
LDCSP(13),INCAOORESS 

15 01111111 e''''~0111 0~"'~lt~t 01~~B~1'" 
LOCSP(12),INCAOORESS 

'7' ell1111t ta~ePtll ~0A~1~~1 "'100"'~1' 
loeSP(11),INCAOOAESS 

11 01111000 0~110111 ~0~~1100 ~10",e01Qt 

LDCS'(10),rNCAOO~!SS .e ~1~~0Ie~ 1~~~~111 00~~10~~ ~la0Ap'1~ 
LOCSP(1),tNCADORESS 

81 0110~~~1 0~~0al11 ~~~011At 1"C'I~"'01'" 

E'- \3 



lOCSPC6"INCAOORESS 
212 0t0""'QJ01 10~~0111 00~~la91 lAB0e01P 

LOCSP(5),INCAOORfSS 
213 IteeAete 0"'QJ~111 000~11AA t"''''Q'IAtl 

lOCSP(4),INCAODRESS 
210 11110etl telA~11t 0a"'01~~'" 10~00"t0 

r;OOO8Y! 
215 11110~11 000""001 e0"'~0,uJ~ 00G'J00C1100 

'ILLER 
21' 01lAIAIt t0AQI"0Q11 "",,,,QU.lQlP0 "'0000a~QJ 

'ILLER 
207 11'"IIIA 00000001 000000G1tDl "'CllCIJ~00Qt9 

• TOC STOR! C aCRATCHPAO EXCEPT SASE CONSTANTS INTet WCS • 

I , T~! C SCRATCHPAO ENTRIES !XCfPT FOR THE aAs£ cn~STANTS ARE SAVEn I~Tn 
1 , T~[ WC! LOCAL STORE INTO J2/1~ CONTIGunUS LoeATIONS. THIS CODE IS 

1 , 
INITIATED BY LOADING T~SPTR WITH THE STA.TING AonRfSS OF THIS ROUTINE A 
CLOCKING INTO 0 THE LOCAL STOPE AnOQESS MINUS ONE CLSAOA-l). THE DATA 
IS PIPfLINfD 'ROM TH! C SCRATCHPAO INTO THE ~CS LOCAL STORr. (IN EACH , 

I 
1 
1 
1 , 

CYCLE ON! Ib ATT VALUE IS ~EAO OllT rF TMf C SCRATCMPAD THROUGH THE ALU 
AND CLOCKED INfO 0 WHILE ANOTHER 16 AtT VALUE ~~rCH HAD BEEN 
PREVIOUSLY CLOCKED INTO OA IS WPITTEN INTO A LOCAL STORE 'ODQE~~l. 
CONTROL RETURNS TO THE WCS ~ICROCODE AT THE END OF THE ROUTINE 
WHEN CROMC2~ GOES LO~. 

STORfCSPI 
LOAOAOORESS 

210 01000100 1~0aa100 0"'00~~~~ 00"'00~0~ 
STCSP(17) 

211 11e~01Q11 00",001Al QJ0"'~0111 110P001A 
STCSPCt6),INCANOWRITE 

212 110"'0101 teGltQJtl!1 ~00"'0Q111 1100"''''10 
STCSPC!5),INCANOWRITf 

213 0t00011A e0101111 "'000~11~ t1000Pt'" 
STCSPCI4',INCANOWRITE 

214 alAe~110 tDle0ltl1 0"'~"'~"'t~ 1100"'~1~ 
!TeSP(13),INCANOWRfT! 

215 0t~0"'111 00001111 0AA09111 01"'1""'10 
STCS~(12),lNCANowRtTE 

216 0100~tl1 10Q01111 ~~00a"'lt Al~~0~1~ 
STCSP(11),INCANowRrT~ 

217 0t0~t000 00'lt111 0~00~tt~ ~t0~0~1~ 
aTCSP(10),tNcANOW~rTE 

22'" 11a0100A teelttt1 0A000~1~ "'1~00~1~ 
STCSP(7),INC~NDwRrTf 

221 ~1'~t0"'1 00~01111 0A00~tl1 1~0~~~t~ 
aTC8P(6),INCANOwRtTE 

222 01101101 10001111 ~A00001t lA000P.10 
STCSP(5),INCANOWRITE 

221 el101BtR 0e~0tltl 0~~00110 t0000P.t0 
STC!P(4),INCANOWRIT! 

224 01001Al~ 1~~~1111 0000001'" lA~00A.10 
INCANOWAITf 

225 01e~101t A~A01111 00~000A~ 0~0~0~~A 

GOOOBYf 
el101~11 10000001 "'~0~~~"'''' ~000~00e 

'-ILLER 
010~11e0 00A0~~01 000~0~~~ ~AA0~0~0 4 

~-, 



'ILL[" 
131 11,.1111 111~e001 aaa~0~~~ ~0~~0~~~ 

~TOC LOAD wei Usr.. at.ATCN _fGIST!RS 'ROM we •• 
LOADweS.I. 

lOADAOOA!SS 
231 Itell111 ele0~lB0 0A~000~' AAIRmAe~ 

"D~DATA,INCADOA!SS 
232 It"ltll le.~'ltl 0Ae~1~~~ ~1100tt0 

LOWCSACI),YNCADORESS 
231 ~t'"ttl~ ~~.ael11 110t10l~ It,~etl~ 

LDWCSece),tNCAOOA!SS 
234 0tllltl~ tl~e~111 11~11~1~ ~1~0~lt~ 

loWeSBCl) 
235 011.1111 1010'111 01~11RtP ~tlA't10 

;OOOBY! 
23~ 11111tl1 10~0a~~1 0RAR~e~~ ~~~A~~" 

'IlLER 
211 1101110e ~~~A~~~l ~~~A~~~' ~~IA~A0~ 

'ILL.!R 
249 1101~'0R 11001.01 ~0000AA~ A~~AI~00 

.TOC STORE we! USER SCRATCH REGISTEPS FRO~ we!. 

STOAfwCSA". 
LOAOAOORESS 

241 11~tR'11 00~0AI0~ ~00A~~~~ A~'00A0~ 
STlIfeSA(0) 

24Z 01010'01 10~00t01 00~~0A1A 0101AAAt 
ITweS8(0),INCANowRtT! 

243 It01081A 0A001111 ~~~~~~1~ ~tA~ll~~ 
STWC!AC1),INCANOwRITf 

244 It'1011~ te~~tt11 ~QJ0000t0 ~l""ll(11~ 
t~e'~DWRITE 

245 010t~~tt 00~~tl11 ~~"~0~~A ~0"~~~~~ 
GOOOeYE 

2"& "101~Plt 10~~"0~1 0~~~0"~~ 0~"00n~p 
FILLER. 2"' "10101~~ ~~P~~001 ~~~0"0~~ ~~~Aa0~0 
~ILlER · 

25~ e101"10~ l~~,,~~al 0~~~~0A0 ~~0~~~"~ 

.TOC T~S UTILITY ROUTINES TO SfT LOCAL STn~E ADDRFSS 

SfTLOAOa 
LOADAODRESS 

251 0t0t0t~1 ~~00~10~ 0a~0~00" ~09~e~A0 
~O~OATA,tNeAOOAESS 

Z51 el"t~19t 1~0~~tl1 110~1'~~ ~~AI~lla 
GOOOBYE 

253 It"t~110 la~p,e01 ~~~~1"90 "0~~'0~' 

SfTSTOR!i 
LOAOAOORfSS 

25~ elel"lt~ 1~~~~lA0 0'''~~0~~ 0"~190A~ 
G0008YE 

255 01010111 "0~~~~~1 e~0"0000 00e00~~0 



~TOC LOAD ALL A SCRATCHPAD VALUES. 

1 
1 
1 , 
1 , 
1 
1 
1 
1, 
1 , 

ALL OF THE REGISTERS IN THf A SCRATr.HPAD ARE LOADED WITH ~ATA wMtCH 
COMES FROM THE WCS LOCAL STORE IN 32 cnNTtGUOUS LO~'TtnNS. THE 
wes CODE SHOULD LOAD T~E STAqTt~G AnOQfSS MINUS O~F ClSADR-t). 
INTO ° AND TRANSFER CONTROL Tn THIS ROUTINE, THIS ROUTINE ~tLL 
PIPELINE TME DAT~ FROM LnCAL STaPF TO THE GENERAL PEGr!Tf~S. 
(IN [ACM M1CROCYCLE nNE 1~ BIT VALUE IS REAO OUT o~ l.OCAL ST"AE 
AND WRITTEN INTO THE MO REGISTER WHILE A SECOND I' BIT 
VALUE IS MOVED 'RO~ ~o THROUGH T~E ALU INTO 0 AND THEN ~AtTTEN 
INTO THE A SCRATCHPAOS.) CONTROL T5 RETURNED TO TH! 
WC! MICROCODE AT THE ENO 0' THIS f:tOUTINE WHEN CAOMcl. GC'ES'l.OW. 

ASPADl.CADI 
LOAOAOORfSS 

2!. 01810111 100~~100 A00000~0 0~e00'~~ 
"O~OATA,I~CADORESS 

257 0t0110~~ ~~~0~111 ~~~01~~~ 000'~\1~ 
LOAOASPAO(R~0),TNCAOO~fSS 

2b0 01011000 100a~111 10~Pl~10 ~10~0110 
LOAOASPAO(R~I),INCAO~RfSS 

2.1 91e110~1 00P00111 1~0~t0t0 ~lt001t~ 
LOAOASPAnCR02),INCAOORESS 

?bZ ~t~11~~1 100A~tl1 1~~~tPtl A10A~tl~ 
LOAOASPAOCR03),I~CAOORES! 

2b3 01011010 ~0~~0111 10001~11 011P01t~ 
LOAOASPAD(R04),INCAOOAESS 

2~4 010'11010 1000011'i 1~~01~1~ 110P0110 
lOAOASPAOCR0S),INCADDRESS 

2'5 01~11011 0~000111 1000101~ l11PA11~ 
LnAOASPAOCR0b),INCAOOR~SS 

2 •• Al~ll~11 lA~00111 10~01Al1 11~A011~ 
LOAOASPAO(R07),INCAOORESS 

2.7 81111100 00000111 1~AA.1011 111~Pl1~ 
LOAOASPAOCR1~),INCAOORESS 

21~ ~tA11100 10~0'[11 1~0Al~l~ PA~~~11~ 
~OAOASPAOCR11),INCAOORESS 

271 01011101 ~0C"APtll lClt~0t~ICl1 0~tf)tC!'t10 
LOADASPAnCRI2),INCAOORfSS 

171 01011101 1~P~~111 1~~~lPl1 ~A00~11~ 
LOAOASPAOCR13),I NCAOORfSS 

Z71 ~tAtl110 ~~~~Pl11 10~Al~lt ~Pt~~11P 
LOAOASPAO(RI4),INCAOO~~SS 

27" 01~11110 100~Attt t~0~1~t~ l~a~~lt~ 
LOAOASPADC~t5),INCAOORESS 

275 01011111 ~~~~0t11 10001~lA t~1~~'10 
LOAOASPAOCR1~),INCADOAESS 

27' 01aSl111 l!i1Q1P~111 t~<""'1~11 1~"'~0tlO1 
LOAOASPAOCRt7),INCAOORESS 

~7' 01t~~P08 ~0A0~111 10~~t0tl t~10~110 
LOAOASPAOCA2~),INCAOOAESS 

l~~ a110000~ 100~~111 1~011~t~ ~lA9~tt~ 
LOAOASPAO(P21),INCAOOR~SS 

3~1 01100~0t ~A~0~111 10011Al~ ~11A~11P 

102 01100~01 t0~00tl1 10~11~t1 ~lA00tl~ 
LOAOASPAD(R23),tNrAnop~ss 

• 1 ~J 011 Ql0 01" "0 V' ~ ~ 111 t" ~ 11011 011" P 1 t 0 

£-l~ 



LOAOASPAO(~ZQ),INCADOQESS 
Je4 11tlll19 1000~tl1 10~t10t0 lt~~91ta 

LOAOASPAOCR2~),INCAOORfSS 
Se,· .tl11111 ~1~~~ltl le~11~1~ ltle~tll 

LOADASPAO(~Z&),INCADDR!SS 
]06 111~191t 1~0~0111 10~tl~11 lt~letl0 

LOADASP'OCR21),INCAOOA!SS 
311 111~etle 00~A~tl1 la~lt011 ltt~~11~ 

LOADASPAO(R]0),INCAODRESS 
311 .tl~ll~e 10~0'11t l~~lt~t~ AAA~0110 

lOAOAS~'OCA31),INCAODA!S! 
311 Ittlatl1 ~0~0~111 la~lt01A ~~tA~tl~ 

LOADASPAOCR12),INCAOnRfS! 
J1Z 'tll'111 1000~111 l~Alt~tl ~~'~~11~ 

. LOADASPAD(A13),INCADORE!S 
31S '111~ltl 11~0~111 1~~t1011 e91a~11~ 

LOADASPAO(R]4),INC'ODAESS 
314 11111111 10~00111 10Alt~tA 10AA0'10 

LOADASPAOCR3S),INCAOOAfS! 
]1' el111t11 0e~~0111 1~~11Al~ lAl~A119 

LOADASPADCRlb),INCADORfS! 
lib 11111tl1 lae00tlt tAPtlatl tll~Rl11 

LOADASPAOCR37) 
111 11tltl0e ~11~~l~t 10~11011 lel~~tt0 

;OODSY! 
321 11101200 t00~~~~1 000~0~~~ ~~~~'Apa 

FYLL.ER 
321 01111"1 ee0ap~Al ~'00~0A0 0~~e00~p 

'ILLEFI 
3ll Itll1e~t 1~~~00~1 2~~0~0~0 P0~~0~~~ 

.TOC STORf ALL A SCQATCHPAO VALUfS INTO wCS LOCAL STORE. 

1 
, ALL OF TME • SCRATCMP.O RlGISTF.RS AP~ S'V~D INTO TH~ We! 
, l 0 CAL S TOR f T. N 12 C 0 ~ T t GUO U S· l 0 C • T TON S • T ... E W C S I ~ I T I , T ~ S 
I tHIS COOE Ay LO'DING T~SPT~ WYTM THE STAATING ADDRESS nF 
I THIS ROUTINE AND CLOCKING I~TO 0 THE LOC'L STORf AonAESS 
, ~YNUS o~£ CLS.DR-l'. THIS ~OUTINf PI'Elt~fS THE ~AT' 
, 'AOM TM! A SCR'TCHPAO TO lOCAL STnRf. C IN EAC~ ~tCAnCYClE 
1 ONE lb lIT VALUE IS ~EAD OUT 0' THf , SCRATCHPAO T ... ROUr.M T~F ALU 
1 AND CLOCKEO INTO D WHILE ANOTH!A 1~ AIT VALUE wHIC'" .... 0 BEEN 
, CL.OCKED YNT~ oe PREVIOUSLY IS WAITTEN INTO' LOCAL STORE 'O~RESS.) 
, CONTROL Q!TUA~S TO THE WCS AOUTINF WHEN CAOMC2. GOES LOW. , 
ASff'OSTORf; 

LOAO'DOQ[SSI 
STOR!ASPAOCRI0) 

III 0t1~lPl~ 0e~00101 0000801~ ~t0000~1 
STOR[ASPAO(P01),tNCANOwRIT[ 

1~4 01101~10 t0~01tl1 AP~~~~10 ~11~00~1 
STOREASPAO(R02),INCANOWRTTE 

325 01t01~lt ~~~01111 00~~~011 0t000~01 
STOREASPAO(R~ll,INCANOWRITf 

32. 11111111 10~Al111 11~0~el1 01t00~~1 
aTOR!ASPAD(A0~),rNCANowRITE 

111 '11e110~ 0~001111 00~A~~1~ 11~~0~Pl 
STORfASPAOCPA5),TNCANowRITE 

330 11111t01 l1P~1111 0~0~~~1~ 11100~~t 



ITORfASPAOCR0~"rNCANOWAITE 
331 et1011~1 00~01111 003~~~lt 11'~0A~t 

STOREASPAOCR01),tNCANOWRITE 
312 'tl~tI01 la0~ttl1 ~~aa00tl 111"~~t 

STOAfAaPADCR10),tNCANOWRITf 
]]] 11101110 ~~t~1111 ~R000P.t~ ~00AA9Al 

STOAEASPAOCR11),tNCANOWRIT! 
]]4 11101110 1~~~tl11 0000t0~0 ~010~~Pt 

ITOREASPAOCRll),INCANOWRIT£ 
]]5 Itl1ttl1 00001111 00000Att ~0~~1'~1 

STORfASPAO(R13',INCANOWRIT! 
3], 01101111 1~001111 00~0~~lt 00ta0a~1 

STOA!ASPAOCRI4,,!NCANOWRIT! 
]]1 0111'100 10901111 0A0A~01~ t~la~~~l 

aTOAEASPAO(R1S),INCANOWRITE 
]40 01118000 1~001111 0A000011 1010~001 

STOA~ASPADCRlb"INCAN~WRITE 
]41 atl10101 0~~~1111 ~~0~A02t 10~~la~t 

STOR!ASPAOCR11"INCAN~WAITE 
342 0t110~~1 100al111 000~0~11 10t01AAt 

STOA!ASPAOCR20',INCANOWRITE 
3~3 0tl1~~10 00001111 000~~01A ~101~~~1 

STOR!ASPAO(R21',INCANDWRtTE 
344 01110010 10001111 0~0~~~10 A1110A~t 

·STOA!ASPlOCR22"INCANOWRYTE 
3Q5 el1tB~11 A0~~11tl ~0~~~01t At~100AI 

STOREASPAOCR2l),INCANOWRITE 
3Ab 0tlt~lll 10001111 ~~0A~~tl 01tl~~'1 

STOREASPAO(R2~),INCANowRtTE 
347 ~tl1A100 0A~01111 0~~A0~10 !10tR~~t 

STORfASPAO(R25',INCANOWAITf 
359 011tlilA t~901111 A0~~~~1~ l'110~0t 

STOA!ASPAO(~2~),rNCANOWRrTE 
351 011t01~1 ~0~011tl A~~0~~11 t101R~~t 

STOREASPAOCR27l,INCANOWRITE 
352 011t~1~1 10A~l111 0a0~0~11 111180'1 

STORfASPAOCR3~l,INCA~DWAITf 
353 ~11t0t10 ~~~01111 P00~~~t~ ~0~10~e, 

STORfASPAO(Rll',rNCANowAITE 
354 0111~tlA t0A01ttl A0~~0~1~ A~lt~~el 

STORfASPADC~32),tNCANOwRtT! 
355 01110111 ~e0el111 ~0A~0~11 ~~01~0el 

STOREASPAO(Rll),INCANDWAIT! 
l!' Itl1~111 10001111 0~A~~~11 P~11A~01 

STOREASPAO(R14',INCANnwRITE 
357 01tlt~00 0~~01111 00~0~010 1~~1~~~1 

STOREASPAOCR3S),INCANOWRITE 
l,a 0tt1100A IAPeltll 0~~00~l0 101t~0~t 

STOREASPAO(R3b),INCANOWRITf 
3~1 11111~Al 0e~01111 AAA00~11 l~Al~AA' 

STORfASPAO(R37),INCANOWRITf 
3b2 0t111001 10001111 0'APeell lA1111~1 

INCANOWRITE 
3'3 11111010 0~'At111 ~00~~0~~ A~AS0'P~ 

1~4 01111Al~ lA00~001 00P0~0~~ ~A~~0~P~ 
'ILLER 

lb5 etl1t~tl 0~~~~A~1 0~~0~~~~ 0~~P~P~P 

• FILLER 
lbb 01111011 1~00~001 ~0~~0~A~ P0000~A0 



.Toe LOAD ALL ~ !CRATCMPAO VALUES 

I , , 
I 
1 , 
1 , , 
I , , 

ALL 0, TM! R£GISTERS IN TME e sc~.TC~.AD ARE LnAOED WTTM DATA WHICH 
CO~[S FR~M TME We! LnCAL STOAf IN 32 CONTIGUOUS LnC'Tro~S. THE 
wei INITIATES THIS eno! 8Y lOADING THS-TR WITH THE STAATI~G ADDRESS 
0' THIS ROUTtNF. AND CLOCKING INTO 0 TME l~CAL STORE AonRESS ~TNUS ONE 
CLSAOA-l) TMIS ROUTINE WiLL PtPfLTNE TH£ nATA '~n~ LOCAL 
ITOAf TO THE GENERAL R!GtSTERS. (IN fACH ~ICROCYCLE nNE 
l~ BIT VALUE IS REAO OUT OF LOCAL STORF AND WRITTEN INTO T~~ ~D 
qEGISTfR WHILE ANOTHER 1& 8IT VALUE IS ~OVEO FROM MO THAOUGW 
TM! ALU INTO ° A~O THf~ WRITTEN INTO THE ~ SC~'TCHPAOS). 
CONTROL IS RETURNEO TO THE wC! ~rC~OCODE AT THE END 0' THIS 
-OUTIN! WH!N CROMc2> GOES LOW, , . 

el'ADLoAO. 
LOAOAOOA!SS 

3,7 Itl11111 ~100'10~ 0~0000~~ 00~~~0~0 
MO.OATA,YNCAODRES! 

370 11111100 10P0~111 ~a~010~p A0~~~tt~ 
LOAOBS'AO(R09),INCAOORESS 

371 Itl11t91 0e00~111 01~Al~1~ ~1~A~11~ 
lOA08S'AO(A01),INCAOORESS 

372 111tl\lt t00~~111 ~1~~1010 ~lt~0tt~ 
LOA08SPAn(R~2),INCADORfSS 

373 01111110 ~~~00111 01~~101t ~100~lt~ 
LOAOeSPAO(R01),tNCAOORESS 

370 9111111' t~~001tl ~1~01~11 01t~~lt~ 
_ LOAOBSPAnC~0U),INtADD~fSS 

375 01111111 A0~0~tl1 ~1~01010 11g~Atl~ 
LOA08SPAO(R05),TNCAOOR£!S 

37b Illtl111 1~000111 Pl~~1~10 111001t~ 
LOAoesPAOCQ06),tNcAODR!SS 

371 le~l~ee~ ~09~0111 ~1~~t0tl lt~0011' 
LOA08SPADCR~7),INeAODRESS 

40~ 1~~~0000 10~0~111 01001Atl 111~et10 
LOAOBSPAO(R10),t NCAOOPESS 

401 100~~00t ~~0A0111 ~t~A1010 ~~~00tl~ 
LOAD8!PAO(Rtl),INCAODRESS 

092 l1tl0101 10~0~111 ~t~~t01A ~0t~~110 
LOAoeSPAOCR12),tNCAOORF.SS 

403 111~e01A le~00tl1 ~10~10tl 0~0~0tl~ 
LOAoeSPAOCR13),YNCAODRESS 

~A~ tI0'~ltl 1~~~~111 01~910tl 0~10~tl~ 
LOA08SPAC(RIU),INCAOORESS 

405 110~~ll1 P0~~Pllt ~t~~l~l~ 1~0~0tl~ 
LOAO~SPAO(~t5),INCAOORESS 

4~b 1100e~11 1~~a~tl1 ~1~~1~1~ 1~10011~ 
LOAoeSPAOCRlb),YNCAOORfSS 

"07 le0~9100 ~~A0Pl11 0t~~1~lt t~100tt~ 
LOAOBSPAO(~17),INeAOORESS 

419 11010t~a 1~00Altl 01~Al~11 1~10~tt0 
LOAOBSPAOCR?~),INCAOORESS 

411 11'~0101 A0P~01tl Pl~11~1~ 010A0tt0 
LOAOBSPAO(R21),INCAOORf!S 

412 1'~00101 1~~00111 ~10110t~ 0110A11~ 
LOAOBSPAOCR22),INCAOORfSS 

41] 100~0110 00090111 ~101t011 ~1~~0110 
LOAOBSPAO(R23),TNCAOO~ESS 

41U 1~000tl~ 1~~00111 ~1~tlAl1 ~1100110 



• 

41! 

41' 

411 

421 

421 

422 

421 

.TOC 

1 , 
I , 
I 
I , , , 
I 

LOADBSPAOCRi4),INCAOORESS 
11111111 0e~0~111 A1011~t0 110~0110 

LOA08SPAOCR25),INCAODR!!S 
11111111 t~'011tl 0tP1101A ttl~011~ 

LOA08SPAO(A2.),INCADORfSS 
111111~' 11~0Rl11 A1011~11 11~0~tl~ 

LOAOBlPAO(R21),INCADOA!SS 
1 ••• 1111 18~eal11 01~tl~lt ltlA~ttl 

LOAOeS'AO(A]0),YNCADDAfSS 
11~ltlAt '~~~0111 0t0ttll~ ~~9~Alt9 

LOAOBtPAO(R31),INCAOOR!SS 
tlelll~t t~~~~tl1 01~tlA10 ~"t~01t0 

LOAOBSPAOCA]2),INCADOR!SS 
lIB'l~tA ela~lll1 ~t~11Itt ~0~~AI10 

LOAOBSPAD(R331,INCAOOR!SS 
tlllllta lA~~~ltl ~1~11~lt ~91~011' 

lOAOBSPAO(R3~),INCAOOR!SS 

10111011 ~~~0Altl 0101t~11 lA0~Alt' 
LOAOBSPAOCR1S',INCAOORESS 

1~~0t0tt lA~A~111 ~lAl1~10 10t0011A 
LOADBSPAOCR3~),INCAOORfSS 

l~0elt00 00e~0111 01011111 10~~Al1~ 
LO~OeSPAO(R31) 

lA~0t100 l~eletll A1011~11 t0t~0tlP 
GOODBYE 

le0~lt31 1~~AIIAl 0~A~~~0~ 0~0~A~AA 

'ILlER 
1~0Alt01 10000011 0~P0~00~ ~0P~0~~0 

'ILL£R 
lA0et1l0 l~me0~el ~00~0~0A 000~A000 

STORE ALL B SCRATCHPAO INTn WC! lOCAL STORf. 

ALL OF T~f ~ SCRATCHPAO AEGISTE~S A~E SjVf~ INTO TH£ wes 
LOCAL STORE IN 32 CONTJGUOUS lOCATIONS. THE wes INTTI'TF.! 
THIS COO! av LOAOING TMSPTA (BY USE ~F UeON) WITH TH! 
STARTING ADDRESS 0' THIS ROUTJ~E A~D CLOC~I~G INTO 0 TME ·LOCAl 
STORf ADOR~SS ~INUS ONE CLSAnR-l'. THIS ROUTINE PJPF.L1 NES THF 
ON! 1~ BIT VALUE IS READ OUT OF THE e SCqATCHPAO THAOIJ~H T~E 'LU 
AND CLOCKEO INTO ° WHIL! ANOTH[q 1& BIT VALU'- WHICH HAn A£EN 
CLOCKfD INTO O~ PA!VIOUSlY IS ~ArTTE~ t~ITO A LOCAL STnR~ A~OQfSS.' 
CONTROL ~ETURNS TO THf We! ROUTIN£ WHE~ CD"Mc?~ GOF.! LO~. 

I 
8S'AOSTOAft 

LOAOAOORESS 
0]' llle1110 10~~01e0 A000~000 A00A0~0~ 

STOR!8SPAOCR0~' 
4]5 1011ttl1 ~eAe0111 00~0~~lA 010~0000 

STORfSSPAOCRel),YNCANOwRtTE 
43. 'lee01111 100~1111 000e001~ Pl~01~~~ 

STOR!SSPAO(Q02),tNCANOwRYTE 
4]7 1001000~ 00~01111 ~0~~0~tl ~100.0A0~ 

aTORE8SPAOCR03',I~eANOWRrTE 
uui ii0i~B~~ i0~lll11 0~A00011 A1001~~~ 

STORfS8PAOCR0Q),JNCANOWRITE 
401 19010001 100011t1 0~00~01~ 11~0~~~0 

STOAE8S'AOCRA5),rNCANO~RITE 
442 1~ell'01 1~P01111 0A00001~ tl~010P~ 



STORf8SPAO(Alb),INCANOWRtT! 
143 111111t9 10101111 ~~000~11 11AA~00a 

'TO~fBIPAO(RI7',INCANOWArT! 
••• 1 •• t.lll 1~llll11 ~~~1~011 tleA1RR~ 

ITOR!BSPAO(Q10),INCANOWAIT! 
145 11111011 ee~~1111 Aee0~Al~ e01~a~~~ 

ITOAe8IPAOC~11',tNeANowAtT! 
44. l'll~'11 10101111 0A0~ee1~ ~0~Al~~~ 

ITOA£8IPAOCR12',tNCANOWAtT! 
147 11111181 Im~~1111 0e~101tl 001a~0e0 

ITDRfSIPAOCRt3),YNCANowAtTE 
451 11111'11 11101111 0~~0~'11 ~~00t00~ 

ITOR!8SPAOCA14),INCANOWRIT! 
4~1 11'tlt11 le~0111t 1~~~001~ 1~1010R~ 

ITORfBSPAOCA15),tNCANOWAIT[ 
4~2 t •• lltll 11~~ltl1 II,aA~t~ t~0It~l. 

ITOAfBSPAOCRtb),INCANowAtTf 
.~l l~ll'ltP 10A01111 0~~00Alt 1~10RAP0 

STORf8SPAOCRt7),YNCANOWAIT! 
4~4 le11011~ 10001111 eA~~~~11 lA001010 

STORf8SPAOCR20),INCANowRtT[ 
455 11111111 00~01111 0100A~1~ ~1~0etI0 

STORf!SPAO(Ail',INCANOWAIT! 
a~, 11111111 1~0~1111 0~000~10 01~0tl~~ 

STORf8SPADCR22),INCANOWRITf 
~~7 le~11~0A 00~Al111 0~~~~~tl ~1'~0t~A 

STOAf8SPAO(Q23),INCANOWRITf 
4'~ legtl~eA 10~~tl11 0~~00~tl ~t~01tA~ 

STORE8SPAO(~24),tNCANOWRITE 
4~1 l'0tl~01 00~~111t 0~~0~010 11~0~1~~ 

STORfRSP'OCR25),INCANO.~ITf 
A~2 1~ll1'll 10~0111t 00~~1~1~ 110~11~~ 

aTORfBSPAOCR2b),INCANCwAIT! 
·4~3 1~0t~lt0 e0~~1111 0~~~0~11 t100~t0~ 

STOR[BSPAOCP27),INCANOWRIT[ 
4~A tllt1819 1~~01111 ~~~A0011 110~lt1A 

STbAE~SPAO(R30',INCANowRtTE 
4~5 le0tl~11 0A~~1111 ~~~~0~1~ 0~A001~~ 

STORfASPAOCR31),INCANOWRIT! .'b tlltt'11 1~0~1111 ~0~0~et~ ~~~0t10~ 
STORf!SPAOCA32),tNCANOWRITE 4" tlelt10~ 10A~1111 00~~~~lt ~0~00t'0 
STOAf!SPAO(R33),INCANOWRITf 

47~ tl~t110A laAA1111 ~~~a~'tl A~0~11~0 
aTORE8SP,O(R]4),INCANOwRITE 

47\ 10~1'lAl 0~~~ltl1 ~A~~~~l~ 1~~00tA~ 
STORf8SPAD(R3~),INCANOwRITE 

472 1"11101 ltA~1111 ~0~A~01~ t~~~11~0 
aTOAEBap'O(R3b),INCA~DwRITE 

413 lJ'1111A e00~1111 000~~el1 l~~~el~~ 
ITORf8S'.OCR311,YNCANDWRITE 

474 1~'lt110 19~0tl11 0~A00~tl 100011~~ 
INCANOWAtTE 

475 11011111 ~~~~1111 000~~~0~ ~~0A~~~~ 
GOOD8VE 

07b tlAtllt! tB0A~~~1 ~~~0~~A~ ~~~AA~~~ 

'!LLr-
077 lBl~9.~e 10000101 00~~0~~0 ~~00~00~ 

• 'ILLER 
5~0 10t000~a 100~~0~1 ~e000~~A A0~~00P~ 

\ 



.TOC LOAD ENTIRE C SCRATCHPAO FROM WCS , 
1 
1 
1 
I 
1 , 
1 

THIS ROUTINf lOAOS ALL nF THE ENTAr~s IN TME C SCAATCHPAD FRnM DATA 
PREVIOUSLY SAVEO IN THE wes LOCAL STORE. THIS CODE IS tNITIATED 
BY LOADING TMSPTR ~ITH TH! STARTING AnDRESS OF THISPOlJTtNE AND 
CLOC~ING INTO D TME LOCAL STOPf AnDRESS ~tNUS ONE CL.SADP-t). 
TH! DA'A IS R!AD OUT 0' WCS LOCAL. STORE AND WRITTEN INTO T~F. 
C aCRATCMPAO IN ONE ~ICROCYCLE. EACH CYCLE HANDLES ONE 1& erT 

'DATA ITEM. CONTAOL A~TURNS TO THE wCS MICAncoOE WHEN CROHcl> GOES LO 
1 
AL.L.CSPlOADI 

LOAOADDR!SS 
511 11109~~1 ~~~0~1~~ ~0~~~'0~ ~~10~0~0 

LOAOAL.LCSP(~),INCAOOAESS 
5~2 101~0001 t0A0~111 0A0~190~ ~00'0PtP 

L.OAOALLCSP(1),INCAOOAESS 
5m] 11110010 10000111 ~00~tl~~ ~~~~~~t0 

L.OADALL.CSP(2),INCAOOAESS 
~0G 10110010 10~~~111 ~0~01~~t 00AA00t0 

LOADALLCSPC]),INCAODRESS 
50S 10110~11 0e~A'tl1 000~110t ~0AA~~1~ 

lOAOALLCSPC~),tNCAOORES8 
50~ latAlll1 10A0~tl1 00~010A0 t~A00~1~ 

lOAOAlLCSPCS),INCAOORESS 
501 11100100 00~00ttl ~~~~t!0~ 1~~~~0t0 

lOAOAL.L.CSP(~),INCAODRfSS 
510 lltA01~e 10~01111 ~0~01~01 1000a~1~ 

LOAOALLCSP(7),tNCAOORESS 
511 llt~0111 00~00111 ~A~~lt~t I~A0101A 

LOAOAL.LCSP(t0),INCAOORESS 
512 10110101 10~~Altl 0IA0t0~~ ~t~~0AtA 

lOADALLCSP(11),INCAOOPESS 
51] 11101119 000~0111 00~0tl~~ ~110~~IA 

LOAnALLCSP(12),INCAOnRESS 
514 l~1~~11~ 1~~AAltl 00A~tP~1 ~1'0~AtA 

LOADALLCS~C13',INr.AOORF.SS 
~15 10100111 0A~~~111 ~0~0tt~t ~t~0~01~ 

LOADALLCSP(l~),INC'OOQfSS 

51~ l~l'~ltl 10~~0tl1 ~0~01~~~ 1100001~ 
LOAOALLCSPC1S),INCAOOAESS 

517 tll~t~9~ 0f000t11 0~~~110~ 11~~0~1~ 
LOAO'LLCSP(l~),JNCAOOAESS 

520 1~IAt~0~ 1~~0Altt 000~I~P1 ttA~001A 
LOAO'LLCSP(17),I~CAOOAfSS 

521 101A1001 ~~~~~111 ~AA~lt01 1IAA0~1~ 
GOOOBYE . 

522 1~1~1A~t tA~0~~Pl ~~P~0~~~ ~~A~~~~A 
FILLEQ 

52] 19101010 0~~0~A~1 P~~0~~0~ ~~A0A~~~ 

'ILLER 
521 llt't~10 'A~0A~0t 0~~~~~P~ ~AA0~~0~ 

.TOC 



A~L THE C SCR&TC~P&O [NT~IES &RE SAVED INTO We!. THIS RnlJTINF. IS 
CAl~!D BY LOADING TMSPTR wITH T~! STARTING ADDRESS OF T~IS ~OUTtNE AND 
CLOCKtNC INTO D TH! C SCRATCMP&D INTO wei LOCAL STOAE. eIN E&CH 
MIe~OeYCL! ONE l' SIT VALUE IS READ OUT OF THE C SC"TC~PAD, THAOUG~ 
TH! A~U AND CLOCKED INTO D WHIL! ANOTHER t~ SIT VALUE WHICH ~&O 
SEEN PREVIOUSLY CLOCKED INTO 08 IS wRITTEN I~TO A LOCAL STORE ADDRESS.) 
CONTROL RETURNS TO THE wCS ~%CROCODf W~[N CAOMc2> GOES LOW AT THE 
!~D 0' THIS ROUTINE • 

. LCS'ITOR[I 
lOAOADOAE8S 

~! 1~111111 a210~t0~ ~~~~0A~0 ~pe~0~A~ 
STOREALlCSP(e) !, '1'1~1~11 la~0e191 00~a001A 000~00tf 
ITOI!ALLCSP(1),INC&NOWRITE 

!1 111~t100 0~leltl1 ~~~1~11~ ~~A0a~t~ 
ITOA!ALLCSP(2),INC&NOWRITE 

,e 10101101 1000tl11 0AA~~0tt ~~009A10 
STOAf&LLCSP(1),INC&NDwAtTE 

~, 1119\111 0010tll1 0~~00tl1 ~0100~10 
STOA!AL~CSP(4),INe&NOwRtTE 

Il 111~11~t 10A~11tl ~0AA~01~ t0~0~~11 
STOR!ALLCSPtS),INCANDwAITE 

'3 l'1~il1e ~0~atltt A00~~tt~ t~A~~010 
STOR!ALLCSP(b),lNC&NDWAITE 

~a l11A111~ 19151111 ~0A0a~11 10~0001~ 
STORfALLCSP(7),INCANDWRIT£ 

~5 11111111 000~11tl ~A~AAttl 100~AetA 
STOR(ALLCSPC19),INC&NOWAITE 

'6 llt~tl11 1~~0tl11 00~~001~ 01e~0~10 
STO-fALLCSP(11),rNeA~DwAITE 

'1 111t01~~ 0~10tltl e0~00tt~ ~l~AA~tA 
STOREALLCSP(12),INCANOWAIT! 

10 lWl1eB0A 10~01111 0A~00~11 01~P~01' 
STOR!ALLCIPtl1),INCANOwRtTE 

'1 l1t10001 01~0tl11 0A~0~11t AI00~~t0 
STOA!ALLCSP(14),INCANOWRTTE 

l2 lltlel~l 10'01111 0~0e0A10 l1Ala91~ 
ITn~!&LLCSP(t5),INCANDwRtT! 

l3 t~lt90tl 0010ttl1 0A000110 tt9~~0t0 
STOR!ALLCSP(l&),INCANOWAtT! 

&4 lltteel~ 10001111 00~A0011 1100001' 
STOI!&LLCSP(17),r~C&NDWAtT! 

&5 11110111 00901111 00000111 ltA00~11 
%NCANOWAtT! 

I' 111111tl 1110111t 0001000e A~110RR0 
GOOO!V! 

" 11111'11 IIIIR001 fg0111e~ 1~110010 
'ILLE' 

Sl 11111110 lell.~ll e1Ag01~1 elle0gl~ 
'ILLE. 

11 1.ttllll "~~1~~1 '10Ie0~e 8'000000 

\ 



.TOC 

I 
I 
& , 
& 

I 
I , , , , 
1 , 
I , 
I , , , , 
I , , 
I 
1 
I 
I 
1 
I 
1 , , , 

READ TWO ~I!C[I 0' DATA 'ROM LOCAL STOP! 

THIS ROUTINE REQUIR!S A TOTAL OF st~ ~ICROeVCLES TO LOAD 
TH! ADDR!la R£GfST!' AND READ TWO 'lfef3 0' nATA '~OM LOCAL 
.TOR! PLAtING TH! '1"8T IN' 0 A~D THE SECOND VALUE IN Mn. THE 
'OlLOWING DIAGRAM SHOWS wnw TO CALL THIS ROUTINE A~D WHAT ~&'Pf~S 
AT WHAT TIME. 

******************************.******************.*************** we! MtCROCODE * TMS AND CROM • 
**.-***-************ •• **-*-_.****** •• *.*-* •••• **.**.**.**.*._-**-
* • • 
* Pl.T, DC--ADDRESS * NO CONTROL • 

- • • 
*-*.*******.******** ••• ** •••• *._** •••• ** •• ***** ••••••• *** ••• *--** 
* • • 
* TMSPTR~CLOADAE.OT~O). NO CONTROL • 
* • • 
**** ••• **** •• *********.********.** •• ***********.*-*._*****-**-*-* 
* - * * NULL ~ORD * ~n CONTAOL * 
• • • 
**** ••• ***********.*.*_.**.*-_.***_ •• _*.* ••••••• **---- ••• *.****.* 
* • l"AO AOORESS * 
* * COATA CLOCI<En ONTO AUSDtNl * 
* Pl, ~OC.·DATA * • 
**.*.*.******-**.**.****.*.* ••• ***.*_ ••• * ••• * •• *._***-***.******* 
* * INCADORfSS * 
* NO CONT~OL * ,P2-T, DC.-MD, CDATA CLOCKED ~US* 

- * Pl, ~Dc.·DATA -
_.*.**.* •• _***** ••• ****.**.**.* •• _ •• ***.**--**.***-*.**._.*._*-_. 
* * -
* NO CONTROL * GOODBYE -* * * _.*.* ••••••••••• ****-** ••• *.* •••• ***_ •••••••••••• * ••••• *._ •••••• -
• BACK IN CONTROL. 

lOAOREADTWO. 
lOAOADOR!SS 

552 111t1S~1 tele~lap a~~~A~~A ~~~~~~A0 
D.MD,MD.DATA,INCADOAfSS 

551 1111111' Ale0Atll ~~~~1~1~ PA~P~lt~ 
GOODBYE 

55" lelJ~tt~ tl'AA~~l ~~~~~~I' ~P9~1'~~ 
'Illf-

555 Ilt1Alt1 ~0'A~~~1 P~~I~~~~ ~~~~~AA~ 

1 
1 THIS ROUTINE AEQUr~ES A TOTAL nF FIVE MICRnCVCLES TO PFAO T~O 
1 't!C!S 0' DATA ASSU~tNG THE AO~AfSS REGISTEP HAS ALRE&nV 
1 8!fN lOADED. T~E 'OllowING DIAGOAM SH~WS ~O~ TO CALL T~lS 
, ROUTINf AND WHAT HAPPENS WHEN, 



, , , 
1 
I , , , , , , , , , , , , , , , , , , , 
1 

.*.************************************************************** 
* WCI MICROCOOE * TM! AND CAO~ * 
****************************.************************************ 
* • * * T~SPTA~(INeA['DTWO' * NO CONTR~L * 
• * * 
.* ••• ** •• ***.******.******.****************************** •• *.**** 
• * * * 
* 

NULL WOAD * 
* 

NO CONTROL * 
* 

****** •• _**********.*************************.************.****** 
- * INCADDRESS * 
* * (DATA CLOC~En ONTO ~USOIN) * 
* P], NOe-. OATA * • 
*****************.**********.******.***************************** 
* * INCAOORfSS * 
_ NO CONTROL * P2-T. Oe--MO (8USOJN CLOCkEO) * 
* * Pl, ~OC·-CAT' * 
***********************.*****.*.****************.***.**.********. 
* * * • NO CONTROL • G~OD8VE * 
• • * 
*.* •• **.**************.**************.**************.**** •••• ***. 
*BACK IN CONTAOL. 

rNCft!ADTWOI 
INCAOORESS 

556 11111111 11119111 a~~~~~~~ ~~001~1~ 
O~MD,MO~O'T.,rNrADDRESS 

551 1111111' IB~g1111 e~~ll't0 Pllgelt~ 
G0008VE 

5'1 1111109~ 1~~'~~0\ ~~~~000~ ~~~00A~0 

.Toe WAIT! TWO PIECES 0' DATA I~TO LOCAL STORE 

T~IS ROUTINE REQUIRES A TnTAL nF SIX CYCLES TO LOAD TME 
AOOPESS AEGIST!A AND WAITE TWO PIECES ~, DATA tNTn L~CAL 
'TORE. T~E FOLLOWING DT'GR'~ SHOWS ~Ow TO CALL T~JS 
ROUTINE AND WHAT MAP-!NS WHENI 

•• ****************.****** •• ****.** ••• ******.******.**** •• * •• ** ••• 
• wes MICROCODE * TM! ANO CROM * 
-***********.**.**** •• *.*.**.**** •• ** •••• * ••• *.** •• **** ••• **** ••• 
* • • 
* P2-T, De.-AOORESS * ~O CONT~OL • 
• • * 
.********.*.** ••• ** •• ********.* •••• *.******.*****.** •• * ••• ** •• **. 
* * CORe--AD~RESS) • 
* TMSPT~.(LOAOWAITfTWO) * NO CONTROL * 
* • * 
**** ••• ****.***** •• ***.********.*** ••••• *** •• ************ ••••••• * 
* • * 
• P2-T, De--OATAl * NO CONTPOL * 
• * • e-:2-6 



, 
I , , 
1 
1 , 
1 , 
1 
1 
1 , , 

***************************************************************** * * LOAOADOR£SS (OAc--OATA1) * 
* '2-T, oc--OATA2 * (DATAl WRITTEN rNT~ LnCAL Sf) * 
* * * 
***************************************************************.* * * INCADORESS CO~<--OATAi) * 
* NO CO~fROL * (0.T62 WRITTEN) * 
* * * 
***************************************************************** 
* * * 
* 
* 

NO cnNT~OL • 
* 

GOODBYF. * 
* 

***************.********.*******~******************************** 
*SACK TN CONTROL. 

LOADWArT!TWO~ 
LOAOANOWRITE 

501 t~111~el ~e~~tlA9 ~00110~~ A~A~0~0~ 
INCADDRESS,WRIT!OATA 

5~2 11111101 t~I~lltl al'I~I~~ Ael~~~~9 
GOODBYE 

501 1~111~t~ A910A0~t ~1~1110~ ~~e~~0AP 
FILLER 

Sou 1~lt1010 lA~0~001 0IA~~000 ~AI~P0AA 

, 
1 , 
I 

, , , , , , 
1 , 
1 , , 
I , , , , 
1 
I 
I , , , 

THIS ROUTINE REQUIRES • TOTAL OF 5 CYCLES TO WAI~E TW" PIECf~ bF D'TA 
INTO LOCAL ST~R! ASSU~INGT~( ADORES! ~~GISTER ~A! AEfN LnAOED 
PREVIOUSLY. T~E FOLLowtNG DIAGRAM SHnwS HOW TO CALL T~TS 
~OUTINE AND WHAT HAPPENS WHEN. 

************************************************************.**** 
* We! MICROCODE * T~S ANO CROM * 
**** •• *.*********************.***.******************************* 
* * * * T~SPTR:(WRIT!TwO) * ~O CONTAOL * 

* * * 
******************** •• ******************.**.*.****************.** 
* * * * P2-T, O.--OATAI * NO CONTROL * 
* * * 
******.**********.***** •• ********* •• *******.********************. 
* * TNCADOR!SS (Dec·-DATAl) * 
* P2-T, 0<0'TA2 * (~'T.t w~tTT[N) * 
* * * ****.**********.*.*** •• *.**.**.***** •• ***** •• *****.** ••••• * •• * •• * 
* • INCAO~PfSS C08C·-OAT~2) * 
* ~o CONTROL * (06TA2 WRITTEN) * 
* * * 
*****.***********.**.*****.**.********* •• ************.* •• ******** 
* * * 
* 
* 

NO CONTROL * 
* 

GOOOSYF. * 
* •• ****** •••• ******** •• **** •• ** ••••••••• ***.*****.*.*.*** •• **.**.* 

*SACk I~ CO~TROL. 



"'''fTITwoi 
INCADDR!SI,wRIT!DATA 

,., 1.111111 81111111 11110000 IBmeI0A~ 
!~eAOOR!SS,WAtT!O'TA !,. l1tl1l1t l'P'1111 ~IAII~aA ~~10Ia0' 
G0008YE 

5" l'ltl1~1 R0aeaA01 ~A~8~0~P 00~~000~ 
'tLL!A 

!1~ 11111111 lA90'091 0e0R0000 80000A01 

• TOC 

1 
1 
I , 
1 

, 
I 
1 , 
1 
1 
I , 
I 
I 
I , 
I 
I 
I 
I 
I 
1 
1 
I 
I 
1 
1 
I 
I , 
I , , 
1 
1 
I 
1 
1 
I , 
• 

R!AO DATA VALUE POtNTED TO BY LOCAL STORE VALuE POINTER • 

THIS ttQUTINE TAKES T~! ADDRESS LOADED, READS TME VALUE IN THAT 
ADDAfV!, AND THEN USES THAT VALUf AS AN AODRESS TO lEAD THE DATA 
YALU! INTO ~O. THIS ROUTINE AE~UIRES SUP-OAT 'ROM THE ~ICROCOOE 
AI DESCRIBED l~ 1H! CALLING SEQUENCE DIAGRAM BELOWI 

••• *.* •••••••• **.**** •• ***.**** ••••••• *.**.* ••• * ••••••• **** •• **** 
* we! MICROCODE * T~S AND CROM * 
.******************.******* •• **.***** •• *************.****.* ••• *** 
* * • * P2-T, DC--ADORESS * NO CONTROL • 
* • * 
***********.******.****.*****.**.* •• **.***.** ••• *****.*.*.**.**** 
* • CDAc-.ADDRESS) • 
* TMSPTA.(AEAOt~OIRECT) * NO CONTROL * 
* * * 
****************.*********.**********.********.**********.******* 
• * * * NULL wOAD • NO CnN~AOl * 
• * * *** •• ******* •• ********************************* ••• ******.**** •• ** 
* * " LOADADDAESS * 
* * CCLOC~ eUSDIN) * 
* Pl, ,..OC.-AOORESS * • 
*********.********.**.****.* •• ***.***********************.****.** 
* * * * NO CONTROL * P2-T, Oe--MD * 
• • • 
***.*.***** •• **********.*********-***********_ •••• ***.**** ••• ***. 
* * C08e·-'ODR[SS) * 
* NO CONTROL * * 
• * * **** •• ******************.*****.******.*.* •• *.*.**.* •• **.***** ••• * 
* * LO'DACeRES! * 
• NO CONTROL * (~USOINc-·O'T') • 
• * P3, MOe--o'TA * 
*******************.***** •• ***.********* •• ************.***** •• *** 
• * • * NO CONTROL * GOODBYE * 
* * -* ••••• ***-********.***.** ••• **-**-***-**.**.***.**** •• *-******* •• " 
*SACK IN CONTROL. 



AIAOINO%A!CTi 
lOAOAOOR!:SS 

571 11111101 e0ee~11~ 30A0~A00 ~0~~10~~ 
O.~O,aT!PTHPOUGH 

571 11111101 10001101 ~~e00S1e 00801!10 
ST("THROUGH 

571 11111111 eSt011a1 0A~a0RI~ ~~~'I~A0 
lOADADORfSS,MO:OATA 

57. 11111111 1~11~1~' 1"01900 ~~'~lttP. 
GOOOIYE 

57' 1.111111 0~1'10e1 11110010 10'0~A~9 
'lLL.EA 

57. l1tl11tl 1000A0Al eAI~0~pa ~01~1~10 

.TOC wRIT! DATA INTO LOCAL STOA! ADDRESS POINTEO TO BV LOCAL STO~! POINTER. 

, 
1 
1 
1 
1 
1 
1 , , 
I , , 
1 , , , 
I 
1 , , , , 
1 , 
1 
1 
1 , , , 
I 

THIS ROUTINE USES AODRfSS POtHT£D TO BY CAllING ROUTINE AS 
A POINTER TO ANOT~ER LOCAL STORE VALUE. THf VALUE IN WCSA(0) 
II WRITTEN TO THAT LOCAL ST~A£ POSYTION. THE FOlLowI~G 
TIMING DIAGRAM SHOWS HOW THIS ROUTINE IS CALlEO AN~ E~FClJTEDI 

•••••••••• *.****.*.* ••••••• ***.*_.*** •• ****--*** ••• _*----***-*.-* 
* wCS MICAOCOD! • TMS AND CPO~ * 
*.*.****._.**.*.*_.*.*e*_.*** ••• *.* •• _*_*_**_* ••• _*_*** ••• ****.-. 
* • * * Pl-T, Dc-.AODR!SS • NO CONTRnL * 
* * • 
.*.*****.**.*_ •• *-*.**---*****-****._.*.*******-***._-****--****. * • C08c--AODPfSS) • 
- TMSPTR.CWAITEtNDTRfCT) * NO CONTROL. • 

* * * ****_.****.******-*._*****._*-***.**.****** •••• ***---***-***-*_.-
• • • * NULl. WORD * NO CONTROL * 
* * * .*--•• _*.-.**.**-*.** •• *_._-*-*._-**.***._* •• ****-* •• -*******.*.* 
- * LOAD AD~~PESS * 
- - ( BUS!) t N C I. OC KED wIT H 0 A T A ) . * 
- P3, MOc--OATA. -
*******._****-*.-.******* •• *.* •• _***-***.*_.*_.*.*-**-** •• **** •• * 
* * • 
• NO CONTROL • Pl.T, OC-.MO * 
* * • 
****.**._*****._-_.*************-**._*.*** •• _**.***._*.-*_ •• ***** 
* * COBC.-AOO~ESS' * 
* NO CONTROL - P2-T, OC-.WCSAC~) * 
- * * *************._****-.******.********.****-***.****-*-**********.* 
* - Lo.nAOD~ESS COAc·-DAT.) * 
- NO CONTROL ,* COATA WRITTEN) * 
* - -*.e**.**._***.******.******._**** __ ******_*******.******_******** 
* * * * NO CONTROL * GOnOBYE * 
* * -
*****-****.****.*****-*******---**************-*********.**-**-*. 
*BACK IN CONTROL. 



• 

"'''ITfINO!A!CT. 
LO.D'OO"[II 

'77 ltal1811 11-11111 ~eel~'00 ~~~III'A 
D.MO,ST!PTHROUGH 

'" 111111'1 1~.1'10\ ~I~~~et~ 101elltl 
"IIICIAC" 

.at 11""lt 1119~lat ~e190e10 Rl~I~A'1 
LO'D'DO~ESS,WAIT!D'TA,STfPTH~OUGH 

.82 11~lelll 181R110A 011'111~ 8etl~~" 
GOODBV! 

.1] 11Ia'~11 1IIIIat1 'AA~age~ e'I'10~~ 
'ILL!A 

••• tl18"te 11'~I~'t 1'0~el'A ""'1" 





APPENDIX F 
(TEMPORARY) 

The following pages contains drawings and other information 
from the Microprogramming Summary which have not yet been 
integrated into the specification. 

F -1 

\ 



fOV- OOP*SMm*OH0.-SR7*-OR7 
+ SOP'*OHe*-OR7 
+ OOP*SM(& OR 7) 
+ DOP*SM0*DM(b OR 1) 
+ SOP*DMC. OR 7) 

u •• d t", 1, FOv. ~ERYICE (I BUT) 

1 
2 
S 
4 
5 

2. SP ~.writ. d.f.et (bot" byte., whl" ·,OV a'i. IUT 
(INSTR1) 
[if BUT (t".t~ 1) Ind not fitch ove~lep th.~ def •• , 
,..w,.ttel. 

On I JAMUPP ,IV. Fey ( •• etton. 1 end ~) t" I ICltijl f1o, 
r •• dable thru ~ot bo- t"t.rf~c. or, mlybl, YI.d ." •• UT~ 

Condftto"al OATI fn FET01 
It Ilwav. do DATI 
b. w. hive I STOP THE BUS lt~e to bUI co"t~ol if ~ot ~OV 

thin Ylnk ft (ff'" do .to~ the 'buI"). 



1 

c. 

I' 

A 

• 

~-~,. .. 
~ w.-8IICII I')" 

ai, \III M 

"', e,) L 

_ • ..,lrTL 

nJ"T! " 
__ ,It tie L 

lit ... 
IUS US4 .. 

'11111 " 
Itt, ... 

""'UU .. 
111:11 0tI cur; L 

",,.. L 

IUS un .. _u_ .. 
....,Cl.II.L 

.~ 8:1~ 100II5 !!lit .. 
... CUt • eJllL .. 

:11K: _s 'H osr_," 

_U4f .. 

- uetI .. 

IItHN 

7 6 

I 
'14" 

U 'IIIeM 

~ 
~ 

~ 

-

5 .. 3 
flA6-£ 4:L 

_ A AND B SCRATC.H PAO~ C SCRATCH FAD 

ArlOll3lS 
!IO.t.tl1Ol4 

~ 
D' . 

e' ,. 
,,~'" ". A~" 

"'~~ • ,,1-.. .. 
~ 
I~ 

DI , 
" \!II r4:1'~' 

I..-"t A"" 
"(,A~~') -. .~. 

r-1I4I 
r-~ 

~ 

':' ,reI :r~ 
01 

I ,. 
11

1
1.,," 

~, I!'" 
.... .IIt 

':!Q<!."') ., f-
"' 
~ 
:~ 
f-III 

f-lel ,. 
" '14'51" 
AI e:P 

r-Ict(::~:-> 
r-' ,IJ 

If 

~ 
. 

1-'- ~ 

~ 
Itt:Go5T111l 

I I I 
!II ,g~ 

" 11](,) 

T~'" 
In ~I) 

,.,. ACte 
I '''I') 
<~!I.~) 

Of/ JIG:,) 

a..e CUI OSL 

I I I 

I' 1 l1 
51 !, c:_ 

0' 1!!(ll 
14"'!I4 

c~ ~t:,~ 

A5~ AIlII' 
C' A.(I' 

(AI,~) e., R;:I~ 

CLIt C,\,. O!IL 

I I 

r--, 11 
SI " C!I. 

D! .'(1) 
'.'1!l4 

O~ Rl~I~ 

~1IC1l' 
01 '''1'\ 

(M,AIt) 
~ IlJ(I~ 

~II tuC c:!I.. 

. I I 

~I 
,. '" 0:_ 

" tt!(:~ 
''''SI,... 

Dt ~:Il _""In 
DI 111(11 

<"I, A41) 
Of "t:'l 
Q.. (.UI C!L 

I I 

""fI6_-SAll(I)M 

_un" 
11 .... _- .... ") .. _ un .. 

_IMI" 
"" URI " 

.." Uftf" .U!t...., " 

IIYTt tONST¥rf " •• ,. ,.~ .. ",D_, '" (.) .. 
." U4t .. 

_U41 .. 
I('~ MI' A~ Af! c.) .. 

..-as 
!I\.ICT1ClII 

~ 
taAOl5TVl 

".,,14 
(.3f'..,j 14'" 

• It------IIOI II!III) 

"4(1)' 

1l!I(. 

otttl 

It,It) 

ltlIt'l 

.... ' t:!I' Ae," '" Ill" 

_=YIoC'tS~(I)" 

It .... 01" AD~ /4J (II .. 

-or_"""" 

C1.~'''L------~----______ -J 

~'L---------------------J 

.... _ "DII, AS:I) .. 

IC4IT .. ., _ Nt (I) M 

" .. ' IIY .otn AI (I) " 

..... 7 III!IP' AD" .. II)" 

,., AND fI S::RArCH O.6C~ 

fiU' U M"'£,,",O"l'(; 

"" II!I~ 'I' 
U~. '"P' I 
U)!I "'~ I ",. A,,1. • 
U)1 A!>ll. I 
U .. , 
~~ ~~-- e~El I 

C !:>CP.A1CH PAD 

eu' U MNEMONIC j 

UZ. ecNO 
uu OAnll 

·uU. ",-TOOT 

uU 8U:\r'8QII 
u-. ~ . 
U41 • ~I 
IJ4& elH , 
U.3 lit .. I 

.,A'(MICAOPI<OGRAMMING SPEC 

A, e. ..... 0 C. SCRATCH PAD 
"'OOR£~!lING LOGIC 

CAn.4'<a'.",. 

2 

o 

c 

~ 

I : 
I 

A 

B 





D 

c 

I 

It 

7 

"""-I'f:N" 

"'lffl I "1fV1~' 

.lit"".' 

C. ", YNCJ</f01fO#I ,If"O". 
.. IOOIf-JIltnn 

'''''''11$ 
C. ,."II"uI'rs 
", (O",.lDU 
•. II .. " .... ·UV.L 

o3:'<'O"&lD 
". '1111.1 r 

I. DI,,*,~T 

,)""11"" 
~IIOI'lOU' ',,/IOIf' 
.. _.IIu" 
C. ""r .. ,,"_ 

,.cc ... " 
"'C:""8'~'" ~'ft 
•. "I'lOIIir 

, 5 

r~r;.~ 11 

OleDO •• 

1M'" f'f!, 

.. 

Ii' ,ov] Olllr. , NOT rItT'~ 
~,. ,ovtl) t C:LIUIf. 

O ... "C tol. 

CU' "011} I'e- D 

3 

TIT.' 

"",1 

r- - - -- - - - - - (r:~;j" ~~~~~-----------------~ 

I 
I , 
I 
I 
I 
I 
I 
I 

IIlr onrt.,·,rt • ., 

17"''''''''' "", 
.oJt~ ItdO 

Oo"'S wrr" 
S .. •• 

L _______ _ 

If 

"1I~U'" ... 2' 

I 
I 
I 

f'!Jlfr.,,, 1I1'''l!! ON "'''LLowtNG ""G' r , 

_______ ~'!...!.._.__l 

.f' I..... ""'" I"" , 
~----------~----~------~----------~------------~----,----. "' 5 2 

r- '-I 

D 

. 'e 

• 

A 





" 

• 7 

D 

c 

• 

Ii 

6 5 4 
fA~E ~1 

301111(' ItO" .... ,. CItLClItllTtllHJ 
IINtI. "1',11",,0 III1t!,. 

twOIf., -.,"'. 

HO- ","It 
nST Ilf <.$ :II> 

{ .O~ J ,...,.,-It'(!I DO" 
.1r«euT,s. T"'BU' 

" (0"1 ~, ('-ID, " {pf'J 
i 

· ... O-1IIt1It 

{

I" :::;'''ro_} 
.. -.:;run I1fTI'IU 

'011 -0,... 
r"'-MOV 
~;:;;f"CEt:;JDr 

-NOV 

• .,rrl1 0'" 

M"'" Dltno 
"v.c, ,,(>CIt.u,o 
e,rf 0' O"TI' '" 

II f)/lt!], HI t La /!j,rc 

Tlur lit .""'7 

{

dO TO } 
.... M -Itl' DO" 
Bvr • .... c ... Te' _ 

rlllllr " 

1t[bll}~UI)'" "If!!_:!}, "(]J!-' 

T 
,,~1t(J ....... 0. Tnr lit c.s, J) 

!lO "' Olln,.lIrlO., 
... op"". CII\.elllIlTlo" 
WITH ,,..,It., ~r"r$ 
I'ott >:,,' Dfsn,.ltrlON 

,",OOfS fi, 

"Gull' •. :11 

F:--G 

3 

GO '"' U~""Ir"r:CIf 
I It"~It.U (~I(UI-:~" 

.",TN ,,.~,,., 1'fC""'--~ 

: ~Oll r..,_UI'_ 
i .. ,T'lt is;n 

.. ov 

","f' "DD"U~O 
evn lit Itl)lt(j 
HI t te e.n 

Goro_"'IIHurr 
'1711 CO"."'c"OJ" ,,"",.-

N.": Mev 10 R'G IS U'" ,.,.,.17'" 

.. ,n 

:2 

o 

c 

• 

A 



i 
"' ........... ~,~ .--~ --, 

, .. 



( 

o 

... 

i 
.., = 

n o 



.. : 

J , 



..: .J 

( 

1 
) : 

• 

.I 
! 

n 

' . 

• 

n 



'1 ... 

;, 



( 



........ ,;"".Ir" I.JI,~' •• ' ... : 

, tJ; 

; .. 

• 

! ' 





• 

,. 

~.' f • 

\ .. ' .' 
'\ ;l 


