
TOPS-20
PASCAL Language Manual
AA-L~31 5A-TM

September 1983

This document descnibes the elements of the PASCAL
language supported by TOPS-20 PASCAL.

OPERATING SYSTEM: TOPS-20 VS.1 (2040,2060)
TOPS-20 V4.1 (2020)

SOFTWARE: PASCAL V1.0
LINK VS.1
RMS V1.2

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/MId-Atlantic Region Central Region Western Region

Digital Equipment Corporation
PO Box CS2008
Nashua, New Hampshire 03061
Telephone:(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Acc€tssories and Supplies Center Accessories and Supplies Center
1050 East Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale, California 94086
Telephone:(312)640--5612 Telephone:(408)734-4915

digital equipment corporation. marlboro massachusetts

First Printing, September 1983

~: Digital Equipment Corporation 1983. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accorcfance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks Of Digital Equipment Corporation:

~D~DD~D'M
DEC MASSBUS UNIBUS
DECmate PDP VAX
DECsystem-10 piOS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

----------~-------------------------------- ------------.-------

PREFACE

CHAPTER 1

1 • 1
1.1.1
1 • 1 .2
1 • 1 • 3
1 • 1 .4
1.1.5
1.1.6
1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2
1.2.4
1 .3
1 .4
1.5

CHAPTER 2

2.1
2.2
2.2.1
2.2.1.1
2.2.1.2
2.2.1.3
2.2.1.4
2.2.2
2.2.2.1
2.2.2.2
2.2.2.3
2.3
2.3.1
2.3,.1.1
2.3.1.2
2.3.1.3
2.3.1.4
2.3.1.5
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.3
2.3.4
2.3.4.1
2.3.4.2
2.4
2.5
2.6

CONTENTS

INTRODUCTION

OVERVIEW OF PASCAL · . 1-2
Data Types ..•.••••.• • • • • • . • 1- 2
Structure of a PASCAL Program . • . .
Definitions and Declarations ...•.
Executable Statements

• 1-2
· 1-4

• 1-4
Subprograms •...•••• • • 1-4
Compilation Units · . 1-5

LEXICAL ELEMENTS • . • . • • . · . 1-5
Character Set •....•..•.••. • • • • 1- 5
Reserved Words • • ••.
Identifiers .•••.•••

Predeclared Identifiers
User Identifiers ••••••

Special Symbols
DELIMITERS . • . • • • • • • • • • .
DOCUMENTING YOUR PROGRAM •

· 1-0
· 1-7

· . 1-7
• • • 1-8
• • • l-8

• 1-8

THE %INCLUDE DIRECTIVE • . • . . • • • .
· • 1-9

· • .. 1-10

PASCAL DATA TYPES

DECLARING DATA TYPES
SCALAR TYPES • • • •

· • • • • • • • • . • 2-1
· . 2-2

. • • • . . • • . . 2 - 2 Predefined Data Types
INTEGER Data Type
REAL Data Type ••
BOOLEAN Data Type
CHAR Data Type •••

• • • • • • • 2-2
• • • • • • • • • • • 2 - 3
• • •• ••••• 2- 4

• • • • • • • • • 2-4
User-Defined Scalar Data

Enumerated Data ~rypes

Subrange Data Types
The ORD Function •

Types • • • 2-5

STRUCTURED DATA TYPES

• • • • • • • 2- 5
• • • • • • • • 2-6

· • • • • • 2-7
· • 2-8

Array Types • • • • • • • • • 2- 8
Multidimensional Arrays
String Variables ••••
Initializing and Assigning
Array Type Compatibility.
Array Examples ••••••

• • • • • 2-9
• • • • • • •• 2-11

Values to Arrays 2-12
• • • • • 2-14
· • • •• 2-15

· • •• 2-15
2-17

Record Types . • • • • • ••
Records with Variants
Assigning Values to Records
Record Type Compatibil~ty
Record Examples

• • • . • • •• 2-19

Set Types • • • • • • • •
File Types •••••••••

Internal and External Files
Text Files ••••••••••

POINTER TYPES . • • • • • • • • •
PACKED STRUCTURED TYPES • • • • •
TYPE COMPATIBILITY • • • • • • • • • • •

iii

2-19
2-21

• • •• 2-22
2-24
2-25

• • • • 2-25
2-26
2-28
2-29

CHAPTER 3

3. 1
1. 1 . 1
3. 1 .2
1. 1 . 3
3.1.4
3 . 1 .5
3.2

CHAPTER 4

4 • 1
4 .2
4 • 3
4 .4
4.5
4.6

CHAPTER 5

5.1
5.2
5.3
5.3. 1
5.3.2
5.3. 3
5.4
5 .4. 1
5.4.2
5.4 . 3
5.5
5.6
5.7

CHAPTER 6

11.1
6 . 1 . 1
6.1.1.1
6.1.1.2
6.1.1.3
11.1.1.4
6.1.2
6.2
6.3
6.3.1
6.3.1.1
6.3.1.2
6.3.1.3
6.3.2
6.4
6.5
6.6
11.7
6.S

CHAPTER 7

7.1

EXPRESSIONS

OPERATORS
Arithmetic Expressions.
Relational Expressions .
Logical Expressions
Set Expressions
Precedence of Operators

SCOPE OF IDENTIFIERS .•..

PROGRAM HEADING AND DECLARATION SECTION

THE PROGRAM HEADING
LABEL DECLARATIONS . .
CONSTANT DEFINITIONS .
TYPE DEFINITIONS . . .
VARIABLE DECLARATIONS
VALUE DECLARATIONS . .

PASCAL STATEMENTS

THE COMPOUND STATEMENT .
THE ASSIGNMENT STATE~ENT •
CONDITIONAL STATEMENTS

The IF-THEN Statement
The IF-THEN-ELSE Statement .
The CASE Statement

· . . 1-1
· 3-1

· 3-4
· . 3-5

3-5
· 1-6

· 3-7

· 4-2
• • • • • 4 - 3
· 4-4

· . . 4-5
· 4-6

· . 4-7

· 5-2
· . 5-2

· . . 5-4
· . 5-4

· • • • • • 5- 5
. . . . 5-6

REPETITIVE STATEMENTS · 5-8
The FOR Statement
The REPEAT Statement
The WHILE Statement

THE WITH STATEMENT .
THE GOTO STATEMENT .
THE PROCEDURE CALL .

PROCEDURES AND FUNCTIONS

· 5-S
· . . . 5-10

5-11
· . .. 5 -12

5-13
5-14

PREDECLARED SUBPROGRAMS
Predeclared Procedures

Input/Output Procedures

. • • • . • 6-1
· • • . . 6-'-1

.. • • • • • 11- 5
Dynamic Allocation Procedures
The MARK and RELEASE Procedures

· • • 6-6
• • • • 6-9

Miscellaneous Predeclared Procedures. 6-10
6-12
6-20
6-21
11-21

Predeclared Functions
FORMAT OF A SUBPROGRAM
PARAMETERS . .'. . .

Formal Parameters
Value Parameters.
Variable Parameters

.. . • . . 6-22
• • . . 6-23

Formal Procedure and Function Parameters 6-24
Conformant Arrays

DECLARING A PROCEDURE
DECLARING A FUNCTION .

. • . . 6 - 25

FORWARD DECLARATIONS . • . . • .
EXTERNAL SUBPROGRAMS .
MODULES FOR SEPARATE COMPILATION •

INPUT AND OUTPUT

· • • . 6-28
6-32
6-35
6-36
6-37

FILE CHARACTERISTICS •..........•.•. 7-2

iv

7 • 1 . 1
7 . 1 . 2
7 • 1 . 3
7.1.4
7.2
7.2.1
7.2.2
7.3
7.4
7.5
7.6
7.7
7 .7.1
7.7.2
7.7.3
7 • 7 .4
7.7.5

7 • 7 • 6
7.8
7.9
7.10
7.11
7. 12
7.13
7.14
7.15
7.10

CHAPTER 8

8.1
8.2
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.6.1
8.4./s.2
8.4.6.3
8.5
8.5.1
8.ry
8.7

CHAPTER 9

9.1
9.2
9.3
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7

Fi Ie Names • •'
Logical Names
File Organizntion
Record Access

RECORD FORMATS . . .
Fixed-Length Records .
Variable-Length Records

THE CLOSE PROCEDURE
THE FIND PROCEDURE . . •
THE GET PROCEDURE • . . •
THE LINE LIMIT PROCEDURE
THE OPEN PROC EDURE • •

· . 7-2
· 7-2

· . . 7-3
· . 7-3
· . 7-3

• . • . . 7-4
· • . 7-4

· . 7-4
. . • . . 7-4

· 7-0
· 7-7
· 7-8

File History -- NEW, OLD, RE~DONLY, or UNKNOWN
Record Length . . . • • • • . .

7-10
7-10
7-10
7-11

Record Access Mode -- SEQUENTIAL or DIRECT
Record Type -- FIXED or VARIABLE
Carriage Control -- LIST, CARRIAGE, or
NOCARRIAGE • • • . • • • .
Examples ...•.

THE PAGE PROCEDURE •
THE PUT PROCEDURE
THE READ PROCEDURE
THE READLN PROCEDURE .
THE RESET PROCEDURE
THE REWRITE PROCEDURE • • . • .
THE WRITE PROCEDURE
THE WRITELN PROCEDURE • • . .
TERMINAL I/O • • . • • •

USING PASCAL ON TOPS-20

7-11
7-12
7-14
7-15
7-10
7-18
7-19
7-20
7-21
7-25
7-28

PROGRAM DEVELOPMENT PROCESS . 8-1
FILE SPECIFICATIONS AND DEFAULTS • 8-2
CREATING A PROGRAM • . . • . 8-3
COMPILING A PROGRAM • • • . • 8-4

The PASCAL Command • • • •. ••••••.• 8-4
PASCAL Compiler Commands •••••..•••.. 8-5
PASCAL Compiler Switches. •. . •••..• 8-6
Specifying Switches in the Source Code. • 8-9
Specifying Output Files •• • . 8-11
Compiler Listing Format • • • • . 8-11

Source-Code Listing 8-14
Machine-Code Listing • •••. 8-15
Cross-Reference Listing 8-10

LOADING A PROGRAM 8-16
The LOAD Command • • • • • • . • • • 8-16

EXECUTING A PROGRAM . • • • 8-17
EXAMPLES. • • • • • 8-17

PASDDT: THE PASCAL-20 DEBUGGER

RUNNING PASDDT
USING SYMBOLIC
SCOPE • • • •
PASDDT COMMANDS

ASSIGN •

VALUES

BREAK • • • •
CLEAR • • • •
DISPLAY • • • • • • • •
EXIT • • • • • • • • • • • •
HELP • •• ••••• •
PROCEED • • • • • • • •

v

• • • 9-1
9-1

• 9-2
9-3

• • • 9-3
• • • 9-4

• 9-6
• • 9-7
• • 9-9

9-10
9-10

9.4.8
9.4.9
9.4.10
9.4.11

APPENDIX A

APPENDIX B

APPENDIX C

C.l

APPENDIX D

APPENDIX E

E.l
E.2
E.3
E.4

APPENDIX F

APPENDIX G

INDEX

G.l
G.2
G.3
G.l.1
G.3.2
G.3.3
G.3.4
G.l.5
G.4
G.t)

FIGURE 1-1
1-2
2-1
2-2
2-3
3-1
4-1
7-1
7-2
8-1
9-1

REMOVE •
SET
SHOW • •
TRACE

PASCAL .MESSAGES

ASCII CHARACTER SET

SYNTAX SUMMARY

9-11
9-11
9-14
9-15

BACKUS-NAUR FORM . . • . • • • . • • • • • • • • • C-l

SUMMARY OF PASCAL-20 EXTENSIONS TO PROPOSED ISO
STANDARD

ISO COMPLIANCE

• • • • E-l
• • E-3

IMPLEMENTATION-DEFINED FEATURES
IMPLEMENTATION-DEPENDENT FEATURES
ERROR HANDLING . . • . • . •
EXCEPTIONS AND RESTRICTIONS

• • • • • E- 3
• • • • • E-8

DIFFERENCES BETWEEN PASCAL-20 AND VAX-II PASCAL

PROCEDURE AND FUNCTION CALLING SEQUENCES

RUN-TIME STACK . . • • • . • . .
MECHANICS OF A PROCEDURE CALL
PARAMETER PASSING

• • • • . • G-l
• • G-2

Value Parameter Passed By Value ••..
• • • G- 3

G-3
Value Parameter Passed By Address
Reference (VAR) Parameter .•.•
Procedure Or Function Parameter
Conformant Array Parameter.

PARAMETER ACCESSING EXAMPLE

· G-3
• • • • • G-4
• • • • • G-4

• • • • • • G-4
• G-5

CONFORMANT ARRAY EXAMPLE • . • • • • • • • • • G- 5

FIGURES

Structure of a PASCAL Program
%TNCLUDE File Levels •.....
Two-DimensionaJ Array Two D
Three-Dimensional Array ChesslD
Storing Components in an Array
Scope of Identifiers •....•.
PASCAL Data Types ..••
File Position After GET ...•
File position after RESET
Compiler Listing Format ..•.•.
Scope •

vi

Index-l

• • • 1- 3
1-12

· 2-9
2-10
2-11

• • • 1- 8
· 4-5
· 7-6
7-19
8-12

· . • • . 9-2

TABLE

G-l
G-2
G-3
G-4

1-1
1-2
1-3
3-1
3-2
3-3
3-4
3-5
3-6
6-1
6-2
f)-3
7-1

7-2
7-3
7-4
8-1
8-2
8-3
8-4
A-I
A-2
B-1
C-l
F-I
F-2

Status of Stack After PUSHJ
Stack Frame •.•.....
External Proce~ure Declaration .
Conformant Array Parameter ...

TABLES

Feserved Words •....•
Predeclared Identifiers

· G-1
• • G-2
· • G-5

· G-6

· • I-f)
• • 1-7

Special Symbols •. . .
Arithmetic Operators ...

• • • • • . . 1- 8

Result Types for Arithmetic Expressions
Relational Operators .
Logical Operators
t:e tOpe ra to rs
Precedence of Operators
Predeclared Procedures.
Predeclared Functions
Library Routines •

• • • • . • 1-2
· 1-3
· 1-4

• • 3-5
· • • • • 3- 5

· 3-6
• fi-2
f)-13
fi-17

Default Values for TOPS-20 External File
Specifications ••••.•
Summary of File Attributes
Default Values for Field Width .
Carriage-Control Characters
File Specification Defaults
PASCAL Compiler Commands •..•.•

• 7-9
· • • • 7 -12
· . • . 7-22

· • • • • 7 -26
· 8-3

· • 8-5
PASCAL Compiler Switches.
Source Switches .••.•
Run-time Errors .•..••••

· • • • • • 8-7
• • • • • • • • 8 -10

I/O Errors •.•.••.
· A-I

A-2
The ASCII Character Set • • • • • • • • • • B-1
BNF MetaSymbols ••• .
Additional Language Elements •
Additional Predeclared Functions •

vi i

• C-l
• • • • • • F- 2
• • • • • • F- 4

PREFACE

MANUAL OBJECTIVES

This manual describes the PASCAL language and the PASCAL ctebugger,
PASDDT, as they are implemented on the TOPS-20 operating system. This
document is designed primarily for reference; it is not a tutorial
document.

INTENDED AUDIENCE

This manual is intended for readers who know the PASCAL language. The
reader need not have a detailed understanding of the TOPS-20 operating
system, but some familiarity with either is helpful. For information
about the TOPS-20 operating system, refer to the documents listed
below under "Associated Documents." For introductory information about
the use of the PASCAL language, refer to the TOPS-20 PASCAL Primer,
Order Number AA-L3l4A-TM.

STRUCTURE OF THIS DOCUMENT

This manual contains the following chapters and appendixes:

• Chapter 1 provides an introduction to the use of PASCAL and
describes the format of a PASCAL program.

• Chapter 2 introduces basic concepts including constants,
variables, data types, expressions, and scope.

• Chapter 3 describes the components of an expression.

• Chapter 4 describes the program heading an~ declaration
section.

• Chapter 5 describes the statements that perform the actions
of the program.

• Chapter ~ explains the use of functions and procedures, and
summarizes the predeclared functions and procedures supplied
with the PASCAL-20 language.

• Chapter 7 provides detailed information on input and output
procedures.

• Chapter 8 describes the compiling, loading, and executing of
PASCAL programs on the TOPS-20 operating system.

• Chapter 9 describes the PASCAL-20 debugger, PASDDT.

ix

• Appendix A lists the various messages you can receive.

• Appendix B lists the ASCII character set.

• Appendix C presents the PASCAL-20 language in the Backus-Naur
form and includes syntax diagrams.

• Appendix D summarizes the extensions incorporated in the
PASCAL-20 language.

• Appendix E describes how PASCAL-20 complies with the standard
proposed by the International Standardization Organization
(ISO) .

• Appendix F summarizes the differences between TOPS-20 PASCAL
and VAX-li PASCAL.

• Appendix G describes the calJing sequences and conventions
used by PASCAL for user-defined procedures and functions.

ASSOCIATED DOCUMENTS

Associated manuals are:

• TOPS-20 PASCAL Primer ----

• TOPS-20 User's Guide ----- ----

• TOPS-20 Commands Reference Manual

• LINK Reference Manual ----

• EDIT Reference Manual

• TV Editor Manual

x

CONVENTIONS USED IN THIS DOCUMENT

This document uses the foJlowing conventions:

Convention

[]

r]

{ }

<CTRL/x>

UPPERCASE LETTERS

lowercase letters

A horizontal
preceding item
times.

Meaning

ellipsis means
can be repeated

thnt the
one or more

A vertical ellipsis means that not all of the
statements in a figure or example are shown.

Double brackets in statement and declaration
format descriptions enclose optional items,
for examp] e:

WRITE ([OUTPUT,] print-list)

Square brackets show where the syntax
requires square brackets. This notation is
used with arrays, for example:

ARRAyrl •• 5] OF INTEGER

Braces enclose lists from which you must
choose one item, for example:

This symbol indicates where you press the
RETURN key.

The notation <CTRL/x> indicates that you must
press the key labeled CTRL while
simultaneously pressing another key (x), for
example, <CTRL/Z>.

Uppercase letters in a command Jine indicate
information that you must enter as shown.

Lowercase letters in a command line indicate
variable information you supply.

Simple_Procedure In programming examples, all identifiers,
(names created by the programmer), are
printed in lowercase letters with initial
capitals.

Contrasting Colors Orange - where examples contain both user
input and computer output, the characters you
type are in orange; the characters printed
on the terminal are in black.

xi

CHAPTER I

INTRODUCTION

PASCAL-20 is an extended implementation of level 1 of the standard
proposed for the PASCAL language by the International Standardization
Organization (ISO). This manual describes the use of PASCAL under the
TOPS-20 operating system. PASCAL-20 includes all the language
elements as defined in the PASCAL User Manual and Report by Jensen and
Wirth, as well as the following extensions:

• Exponentiation operator

• Hexadecimal, octal, and binary integers

• Double-precision real data type

• Dollar sign ($) and underline () characters in identifiers

• External procedure and function declarations

• CARD, CLOCK, EXPO, SNGL, and UNDEFINED functions

• REM operator

• OTHERWISE clause in the CASE statement

• OPEN and CLOSE procedures for file access

• FIND procedure for direct access to sequential files

• Optional carriage control for output files

• DATE, TIME, HALT, and LINELIMIT procedures

• Variable initialization

• Separate compilation

• %INCLUDE directive for
compilation

alternate input files during

• Support Eor calling externally declared FORTRAN subroutines,
and for declaration of PASCAL subroutines that can be called
by FORTRAN

Refer to Appendix E for more information on ISO compliance.

This chapter presents an overview of the important concepts in PASCAL
and illustrates the structure of a PASCAL program. It also describes
PASCAL's lexical elements the character set, reserved words,
identifiers, and special symbols. The final sections explain how to
document your program and how to include existing files.

1-1

INTRODUCTION

1.1 OVERVIEW OF PASCAL

A PASCAL program performs operations on data items known as constants,
variables, and function designators. A constant is a quantity with an
unchanging value. A constant to which you give a name is called a
symbolic constant. A variable is a quantity whose value can change
while the program executes. A function designator causes the
execution of a group of statements that is associated with an
identifier and returns a value. The function type is determined by
the type of the value it returns.

1.1.1 Data Types

Every PASCAL data item is associated with a data type. A data type,
which is usually indicated by a type identifier, determines both the
range of values a data item can assume and the operations that can be
performed upon it. In addition, the type implicitly indicates how
much storage space is required for all possible values of the data
item.

PASCAL provides identifiers for many predefined types. Thus, a
program's operations can involve integers, real numbers, Boolean and
character data, arrays, records, sets, and pointers to dynamic
variables. PASCAL also allows you to create your own types by
defining an identifier of your choice to represent a range of values.

The type of a constant is the type of its corresponding value. You
establish variable and function types when you declare them. In
general, they cannot change. Although variables and functions can
change in value any number of times, all the values they assume must
be within the range established by their type. A variable does not
assume a value until the program assigns it one. A function is
assigned a value during its execution.

PASCAL associates types not only with data items, but also with
expressions. An expression is the computation of a value resulting
from a combination of variables, constants, function designators, and
operators. In PASCAL, you can form expressions using arithmetic,
relational, logical, string, and set operators. Arithmetic
expressions produce integer or real number values. Relational,
logical, string, and most set expressions yield Boolean results.
Other set expressions form the union, intersection, and differences of
two sets.

1.1.2 Structure of a PASCAL Program

A PASCAL program consists of a heading and a block. The heading
specifies the name of the program and the names of any external files
the program may use. The block is divided into two parts: the
declaration section, which contains data declarations; and the
executable section, which contains executable statements. Figure 1-1
points out each part of a sample PASCAL program.

1-2

INTRODUCTION

PROGRAM Calculator (INPUT, OUTPUT);

Declaration
Section

Executable
Section

TYPE Yes_No = (Yes, No);
VAR Subtota 1, OpeT'arld ! REAL.;

EGuatior. ! BOOL.EAN;
Ope T'ato T' ! CHAR f
AnsweT' ! Ye!:; No ji

PROCEDURE InstT'ucticms;
BEe, IN

Procedure
Block

BEGIN

W Fn TEL N (' T his pro g r a ITI add s, sub t T' act s, lTIul tip 1 i e s, and');
WRITEL.N ('divides real nUlTlbers. Enter a nUlTlber in response');
WRITELN ('to the Operand! prolTlPt and enter an operator -- ');
WRITELN ('tf -, *, /, or = -- in response to the Operator!');
WRITELN ('proITlPt. The progralTl keeps a running subtotal');
WRITELN ('until ~ou enter an e~ual sign (=) in response to');
WRITELN ('the Operator! prolTlPt. You can then exit frolTl');
W F~ I TEl ... N (' t h €-! F' T' 0 ~.;! T' a ITI 0 I' b f::' !:.I ina new s f~ t 0 f cal c 1 • .11 at i C) n!:; • ') ;
ENI; (*end of procedure Instructions*)

WRITE ('Do YOU need instructions? r~pe yes or no. ');
RFADl..N (An~; we Y') ;

If Answer = Yes THEN Instructions;

F~FF'EAT

EC~l..Iat:i.on !"" FAL~:;F;

Subtota 1 : :: .. 0;
WR I TE (' ClF'e rand! ') ;
READLN (Subtotal);

WHILE (NOT [~uation) DO
BEGIN
WRITE ('Operator!');
READLN (Operator);
IF (Operator = '=') THEN
BEGIN
E~uation != TRUE;
WRITELN ('The answer is ',Subtotal!5!2)
END
ELSE

BEGIN
WRITE ('Operand!');
READLN (Operand);

CASE Operator OF
'+ ' Subtotal
'- , Subtotal
'*' Subtotal
IIi Subtotal

END;

. _. Subtotal + .-
' .- Subtotal -.-
,- Subtotal * ,-.. - Subtotal / ,-

Operand;
Ope T'and;
Operand;
Operand

WRITELN ('The subtotal is ',Subtotal!5!2)
END

END;

WRITE ('An~ more calculations? T~pe ~es or no.');
READLN (Answer);

UNTIL Answer = No;
END. MR·S-3150-83

Figure 1-1: Structure of a PASCAL Program

1-3

INTRODUCTION

Procedure and function declarations have the same structure as
programs. Note, in Figure 1-1, the heading and block of the procedure
instructions. This manual uses the term subprogram to denote a
procedure or function.

1.1.3 Definitions and Declarations

PASCAL requires you to define every constant and user-created type and
to declare every label, variable, procedure, and function used in your
program. The declaration section of the program contains LABEL,
CaNST, TYPE, VAR, VALUE, PROCEDURE, and FUNCTION sections, in which
you define and declare all the data your program uses. All of these
except LABEL introduce identifiers and indicate what they represent.
LABEL declares numeric labels that correspond to executable statements
accessed by the GOTO statement. PASCAL allows you to assign initial
values to variables you declare in a VAR section. An initialized
variable assumes the given value when program execution begins.

1.1.4 Executable Statements

The executable section of a PASCAL program contains the statements
that specify the program's actions. The executable section is
delimited by the reserved words BEGIN and END. Between BEGIN and END
are conditional and repetitive statements, statements that assign
values to variables and functions, and statements that control program
execution.

1.1.5 Subprograms

PASCAL provides several ways for you to group together definitions,
declarations, and executable statements. One way is to group them
into procedures and functions, generically called subprograms. Both
kinds of subprograms are groups of statements associated with an
identifier. Procedures are usually written to perform a series of
actions, while functions are written to compute a value.

Subprograms constitute a convenient way to isolate the individual
tasks that the main program is to accomplish. Subprograms do not
exist independently of the program; they are called either by an
executable statement known as a procedure call or by a function
designator appearing within an expression. PASCAL supplies many
predeclared subprograms that perform commonly used operations,
including input and output.

A subprogram consists of a heading and a block. The heading provides
the name of the subprogram, usually a list of formal parameters that
declare the input data for the program, and, in the case of functions,
the type of the result. The subprogram block consists of an optional
declaration section and an executable section. When the declaration
section is present, it declares data that is local to the routine
(that is, data that is unavailable outside the subprogram).

PASCAL is a block-structured language in that it allows you to nest
subprogram blocks not only within the main program, but also within
other subprograms. Each subprogram can make its own local definitions
and declarations and can even redeclare an identifier. that has been
declared in an outer block. A subprogram declared at an inner level
has access to the declarations and definitions made in all blocks that
enclose it.

1-4

INTRODUCTION

1.1.6 Compilation Units

A program is sometimes calJed a compilation unit in this manual
because it can be compiled as a single unit (unlike a subprogram,
which cannot be compiled without the context of a program). A program
consists of a heading and a block, just as a subprogram does. The
heading consists of the name of the program and possibly a list of
identifiers to indicate any external files that the program uses. The
declaration section of the program block declares data that is
available at all program levels, including all nested subprograms.

1.2 LEXICAL ELEMENTS

A PASCAL program is composed entirely of lexical elements. These
elements can be individual symbols, such as arithmetic operators; or
they can be words that have special meaning to PASCAL. The basic unit
of any lexical element is a character, which must be a member of the
ASCII character set, as described in section 1.2.1. Some characters
are special symbols that PASCAL uses as statement delimiters,
operators, and elements of the language syntax. Special symbols are
listed in Section 1.2.4.

The words that PASCAL uses are combinations of alphabetic characters
and occasionally a dollar sign (~;), an underscore (), or a percent
sign (%). PASCAL reserves some words for the names of executable
statements, operations, and some of the predefined data types.
Reserved words are listed in Section 1.2.2. Other words in a PASCAL
program are called identifiers. Predefined identifiers represent
routines and data types provided by PASCAL. Other identifiers can be
created by you to name programs, constants, variables, and any other
necessary program segment that is not already named. Section 1.2.3
explains the use of both kinds o~ identifiers.

1.2.1 Character Set

PASCAL uses the full American Standard Code for Information
Interchange (ASCII) character set (see Appendix B). The ASCII
character set contains 128 characters in the following categories:

• The uppercase and lowercase letters A through Z and a through
z

• The numbers 0 through 9

• Special characters, such as ampersand (&), question mark (?),
and equal sign (=)

• Nonprinting characters, such as space, tab, line feed,
carriage return, and bell

1-5

INTRODUCTION

The PASCAL compjler does not distinguish between uppercase and
lowercase characters, except in character and string const~nts and the
values of character and string variables. For example, the reserved
word PROGRAM has the same meaning when written as any of the
following:

PROGRAM

PRogrAm

pro ~.=.1 r a III

The constants below, however, represent different characters:

, b '

, B I

The following two constants represent different strings:

'BREAD AND ROSES'

'Bread and Roses'

1.2.2 Reserved Words

PASCAL reserves the words in Table 1-1 as names for statements, data
types, and operators. This manual shows these words in uppercase
characters.

Table 1-1: Reserved Words

AND END NIL SET
ARRAY FILE NOT THEN
BEGIN FOR OF TO
CASE FUNCTION OR TYPE
CONST GOTO PACKED UNTIL
DIV IF PROCEDURE VAR
DO IN PROGRAM WHILE
DOWNTO LABEL RECORD WITH
ELSE MOD REPEAT

You can use reserved words in your program only in the contexts in
which PASCAL defines them. You cannot redefine a reserved word for
use as an identifier.

In PASCAL, the following words are considered semi reserved words:

MODULE
OTHERWISE
REM
VALUE

Like the reserved words, PASCAL also predefines these semi reserved
words. However, unlike reserved words, you can redefine these words
for your own purposes. If you redefine them, they can no longer be
used for their original purpose within the scope of the block in which
they are redefined.

I-f)

INTRODUCTION

1.2.3 Identifiers

PASCAL uses the term identifier to mean the name of a program, module,
constant, type, variable, procedure, or function. An identifier is a
sequence of characters that CRn include letters, digits, dollar signs
($), and un de r 1 i n e s ym b 0 1 s (), wit h the foIl ow i ng res t ric t ion s :

• An identifier can begin with any character other than a
dig it.

• An identifier must be unique in its first 31 characters
within the block in which it is declared.

• An identifier must not contain any blanks.

PASCAL places no restrictions on the length of identifiers, but scans
only the first 31 characters for uniqueness; the rest are ignored.
~he following are examples of valid and invalid identifiers:

Va 1 id

Fo r2n8
Max Words
Upto
$CREMBX

Invalid

4awhile (starts with a digit)
Up&to (contains the ampersand)

1.2.3.1 Predeclared Identifiers - PASCAL predeclares some identifiers
as names of functions, procedures, types, values, and files. These
predeclared identifiers are listed in Table 1-2 and appear in
uppercase characters throughout this manual.

Table 1-2: Predeclared Identifiers

ABS EXP OPEN SINGLE
ARCTAN EXPO ORD SNGL
BOOLEAN FALSE OUTPUT SQR
CARD FIND PACK SQRT
CHAR GET PAGE SUCC
CHR HALT PRED TEXT
CLOCK INPU1r PUT TIME
CLOSE INTEGER READ TRUE
COS LINELIMIT READLN TRUNC
DATE LN REAL UNDEFINED
DISPOSE MAXINT RESET UNPACK
DOUBLE NEW REWRITE WRITE
EOF ODD ROUND WRITELN
EOLN SIN

You can redefine a predeclared identifier to denote some other item.
Doing so, however, means that you can no longer use the identifier for
its usual purpose within the scope of the block in which it is
redefined.

For example, the predeclared identifier READ denotes
procedure, which performs input operations. If you use the
to denote something else, such as a variable, you cannot use
procedure. Because you could lose access to useful language
you should avoid redefining predeclared identifiers.

1-7

the READ
word READ
the READ
features,

IN'rRODUCTION

The directives FORTRAN, FORWARD, EXTERN, and EXTERNAL are also
predeclared by the PASCAL compiler. However, they retain their
meanings as directives even if you redefine them as identifiers.

1.2.3.2 User Identifiers - User identifiers denote the names of
programs, modules, constants, variables, procedures, functions, and
user-defined types. User identifiers name all significant data
structures, values, and actions that are not represented by a reserved
word, predeclared identifier, or special symbol.

1.2.4 Special Symbols

Special symbols represent arithmetic, relational, and set operators,
delimiters, and other syntax eJements. PASCAL includes the special
symboJs listed in Table 1-3.

Table 1-3: Special Symbols

Name Symbol Name Symbol

Plus sign + Period

Equal Multiplication *

Not equal <> Less than <

Exponentiation ** Colon

Subrange Comma
ope ra to r

Parentneses () Square brackets I' 1 (. .)
Comment (* *) Division

Minus sign Greater than

Less than or <= Semicolon
equal

Assignment .= Pointer
operator

Greater than or >=
equal

1.3 DELIMITERS

PASCAL uses two special symbols as delimiters: the
the period (.). The semicolon separates one PASCAL
next. One line of your program can contain one or
but the statements must be separated by semicolons.
the end of the PASCAL program.

1-8

/

>

" @

semicolon (;) and
statement from the

many statements,
Th.e period marks

INTRODUCTION

The semicolon and the period are the only characters that PASCAL
recognizes as delimiters. Spaces, tabs, and carriage-return/line-feed
combinations are separators and cannot appear within an identifier, a
number, or a special symbol. You must use at least one separator
between consecutive identifiers, reserved words, and numbers; but you
can use more than one if you want. You could, for instance, put each
element of a PASCAL program on a separate line:

r-f<OGf<AM
~:; i IYt

(

OUTPUT)

BEGIN
Wr:~ITEL..N

'This is a slmple pro~ralYt.'

END.

You could also put the entire program on one line:

PROGRAM Sim(OUTPUT);BEGIN WRITELN('This is a simple pro~ram.')END.

As long as each complete statement is separated from the next by a
semicolon, PASCAL interprets your input correctly. However, including
spaces, tabs, and carriage-return/line-feed combinations make your
program easier to read and understand. For readability, you could
write it as follows:

PROGRAM Sim (OUTPUT);
BEGIN

WRITELN(JThis is a simple pro~ram.')
END.

The reserved words BEGIN and END are also used as delimiters. BEGIN
indicates the start of the executable section or a compound statement,
and need not be followed by a semicolon.

END indicates the end of one of the following:

• A record definition

• An executable section

• A compound statement

• A CASE statement (see Section 5.3.3)

Although PASCAL does not require one, you can use a semicolon
immediately before END. A semicolon in this position results in an
empty statement between the semicolon and the reserved word END. The
empty statement implies no action.

1.4 DOCUMENTING YOUR PROGRAM

In addition to statements and delimiters, you can put comments in your
PASCAL program. Comments are simply words or phrases that describe
what happens in the program.

You can enclose comments in braces { }, as follows:

< This is a comment. }

1-9

INTRODUCTION

Also, you can start a comment
character pair, ano end it

with
wi th

the
the

left-parenthesis/asterisk
asterisk/right-parenthesis

character pair, as follows:

(* This is also a comment *)

You can also mix the type of comment characters you use. For example,
you can use a left brace with an asterisk/right-parenthesis character
pair:

{ This is another comment *)
You can place a comment anywhere a space is legal. Unlike statements,
comments are not delimiteo by semicolons.

A comment can contain any ASCII character because PASCAL ignores the
text of the comment.

NOTE

To turn off braces as recognized
comment characters, use the /NATIONAL
switch. See Section 8.4.3 for more
information on thjs switch.

1.5 THE %INCLUDE DIRECTIVE

The %INCLUDE directive allows you to ~ccess statements from a PASCAL
file, calJed the included file, during compilation of the current
file. The contents of the included file are inserted in the place
where the PASCAL compiler finds the directive. This directive can
appear anywhere in the PASCAL program.

Format

[{
/L IST }ll'

%INCLUDE 'file specification /NOLIST n
where:

'file specification'

/LIST

/NOLIST

is the name of the file to be included.
The apostrophes are required.

indicates that the included file is
be printed in the listing. This is
default.

to
the

indicates the included file is not to be
printed in the listing.

When the compiler finds the %INCLUDE directive, it stops reading from
the current file and begins reading from the included file. When the
compiler reaches the end of the included file, it resumes compilation
immediately following the %INCLUDE directive.

This directive can appear wherever a comment can appear. An included
file can contain any PASCAL declarations or statements. However, the
declarations in an included file, when combined with the other
declarations in the compilation, must follow the required order for
declarations.

1-10

INTRODUCTION

In the following example, the %INCLUDE directive specifies the file
CONDEF.PAS, which contains constant declarations.

Main P~SCAL Program

PROGRAM Student_Courses (INPUT, OUTPUT, SCHED)~

CON!:>T % INCLUDE 'CONDEF. PAb'

TYPE Schf.~du 1. (.:."~;)

External File
CONDEF.P~S

MAX CLASS :::: 300;
N._PROFS :~ 140;
FROS~'I :::: 3000;

r.:ECOF~D

Yeal"' :
NalTlE.\ :

F'aY'(~nts

Collc~~ge

E:ND;

(F r', S D, ..J r 1I S r') ,
PACKED ARRAY [1 •• 30] OF CHAR,

PACKED ARRAY [1 •• 40] OF CHAR;
: (Eng i nC·:."f;' r i n!:j" Arch i tectu r'(-:~, A~~ r i cuI tl.H'f:~)

The %INCLUDE directive instructs the compiler to insert the contents
of the file CONDEF.PAS after the reserved word CONST in the main
program. The main program Student Courses is compiled as if it
contained the following:

PROGRAM Student_Courses (INPUT, OUTPUT, SCHED);

CaNST Max_Class = 300,
N_.P T'ofs = 140;
Frosh ::.: 3000;

TYPE Schedules = RECORD
Year: (Fr, SQ, Jr, Sr);
Name: PACKED ARRAY [1 •• 30) OF CHAR;
Parents PACKED ARRAY [1 •• 40) OF CHAR,
College : (Engineering, Architecture, Agriculture)
END;

You can use the %INCLUDE directive in another included file; however,
recursive %INCLUDE directives are not allowed. If, for example, the
file OUT.PAS contains an %INCLUDE directive for the file IN.PAS, then
IN.PAS must not contain an %INCLUDE directive for the file OUT.PAS.

l-Ll

INTRODUCTION

An included file at the outermost 1evel of a program is
included at the first leve1. A file included by a
included file is at the second level, and so on. There is
the number of included files you can nest in a program.
illustrates some levels of included files.

Main Program A.PAS

sa id t.o be
first-level
no limit to

Figure 1-2

F' T'()~1 rail! p, CON~:)T ZINCL..UDE 'B.F'AS'

TYF'E %INCL..UDE 'A.PAS'
(* LE:.\V0~1 :L *)

C.Pl\S

VAR ZINCLUDE 'D.PAS'
(* L..evfd 3*)

F.PAS

FUNCTION ZINCL..UDE 'G.PAS'

VAR %INCLUDE 'C.PAS'
(* Both Level 2 *)
D.PAS

FUNCTION ZINCL..UDE ~E.PAS'

PROCEDURE ZINCL..UDE 'F.PAS'
<* Both Level 4 *)

G.PAS

Figure 1-2: %INCLUDE File Levels

1-12

CHAPTER 2

PASCAL DATA TYPES

This chapter describes PASCAL data types and how to define and declare
them in the TYPE and VAR sections of a PASCAL program. This chapter
also provides general information about using each data type.

PASCAL uses three categories of data types:

1. Scalar

2. Structured

3. Pointer

Scalar data types represent ordered groups of values. The scalar data
types, which are described in Section 2.2, consist of predefined and
user-defined data types. Predefined data types include integers, real
numbers, and characters. User-defined datn types include a range of
explicitly defined values and a subrange of another data type. Scalar
data types are building blocks for the structured data types.

Structured data types are collections of data types organized in
specific ways. Structured data types include arrays, record files,
and sets. These are described in Section 2.3.

Pointer data types provide access to dynamic data structures.
are described in Section 2.4.

2.1 DECLARING DATA TYPES

They

PASCAL provides two methods of declaring variables of a particular
type. You can define the type in the TYPE section, and then use a
declaration in the VAR section to declare one or more variables of the
newly defined type. The general format is:

TYPE type identifier = type definition;
VAR variable name: type identifier;

Alternatively, you can declare a variable by specifying the type
definition in the VAR section and omitting the type identifier and
type definition from the TYPE section. The general format for this
method is the following:

VAR variable name type definition;

If a data ~ype is used only once within the program, it is simpler to
define it In the VAR section.

2-1

PASCAL D~TA TYPES

If a data type is used more than once in the program, it is more
efficient to define the data type within the TYPE section. This
creates a structure that can be accessed by more than one identifier.
For example, if a program uses an array three times, you can define
the array type in the TYPE section, and assign three identifiers to
that array type in the VAR section.

2.2 SCALAR TYPES

Scalar data types consist of ordered sets of values with the concept
of predecessor and successor. For example, the scalar data type
INTEGER represents whole numbers that follow in a predefined sequence:
5 is less than 300. Scalar data types encompass two subclasses:
predefined and user-defined. These are described in the following
sections.

2.2.1 Predefined Data Types

PASCAL provides the following predefined scalar data types:

1. INTEGER

2. REAL

3. SINGLE

4. DOUBLE

5. BOOLEAN

6. CHAR

The predefined types SINGLE and DOUBLE provide explicit
single-precision and double-precision real numbers. Throughout this
manual, the term REAL refers to REAL, SINGLE, and DOUBLE types.

The following sections describe each predefined data type.

2.2.1.1 INTEGER Data Type - The type INTEGER denotes positive and
negative whole number values ranging from (-2**35) to (+2**35)-1, or
-34359738368 to +34359738367. The largest possible value of the
INTEGER data type is known by the predefined constant identifier
MAXINT.

You can indicate a decimal integer
combined with plus and minus signs.
constants in PASCAL:

17
-333

o
+1

89324

constant with decimal digits
The following are valid decimal

A minus sign (-) must precede a negative integer value. A plus sign
(+) may precede a positive integer, but the sign is not required. No
commas or decimal points are allowed.

2-2

PASCAL DATA TYPES

In addition to decimal notation, PASCAL allows you to specify integer
constants in binary, octal, and hexadecimal notation. You can use
constants written in these notations anywhere that decimal integer
constants are permitted.

To specify an integer constant in binary, octal, or hexadecimal
notation, place a percent sign (%) and a letter in front of a number
enclosed in apostrophes. The appropriate letters, which can be either
uppercase or lowercase, are B for binary notation, 0 for octal
notation, and X for hexadecimal notation. An optional plus or minus
sign can precede the percent sign to indicate a positive or negative
value. Note that regardless of which notation you use, the value can
not exceed MAXINT, for example:

-%B'111001'
%b'10000011'
%0'7712'
-%0'473'
+%X'53Al'
-%x'DEC'

2.2.1.2 REAL Data Type - The reserved words REAL, SINGLE, and DOUBLE
denote the real number types. In PASCAL, a real number can range from
+-0.14*10**-38 through +-3.4*10**38, with a typical precision of eight
decimal digits. REAL and SINGLE are synonymous; both have
single-precision real number va]ues. The type DOUBLE allows you to
declare double-precision real variables. You can assign real and
integer values to a variable of type REAL, SINGLE, or DOUBLE. If you
assign an integer value to a variable of type REAL, PASCAL converts
the integer to a real number.

In a PASCAL program, you can write real numbers in two ways; fixed on
floating point. With fixed point notation, you write the number with
the decimal point exactly where it appears in the value. The first
way is the following form:

2.4
893.2497
-0.01
8.0

-23.18
0.0

Note that, in this form, at least one digit must appear on each side
of the decimal point. That is, a zero must always precede the decimal
point of a number between 1 and -1, and a zero must follow the decimal
point of a whole number.

Some numbers, however, are too large or too small to write
conveniently in the above format. PASCAL provides scientific (also
known as exponential) notation as a second way of writing real
numbers. In scientific notation, you write the number as a positive
or negative value followed by an exponent, for example:

2.3E2
-0.07E4
10.0E-1

-201E+3
-2.14159£0

2-3

PASCAL DATA TYPES

The letter E
by a power
letter. The
integer can
can write the

after the value means that the value is to be multiplied
of 10. Note that you can use an uppercase or lowercase

integer following the E gives the power of 10; the
be positive or negative. Using scientific notation, you
real number 217.0 in any of the following ways:

237E'O
::.~. ::~7E2

O.000237E+6
2370E····1
O.()()00000237E10

This format is often called floating-point format because the implied
position of the decimal point "floats" depending on the exponent
following the E. At least one digit must appear on each side of the
decimal point, if the decimal point is present.

PASCAL provides single and double-precision representation for real
numbers. Single precision typically provides eight significant
digits, depending on the magnitude of the number. Double precision
extends the number of significant digits to 18.

To indicate a double-precision value, you must use floating-point
notation, replacing the letter E with an uppercase or lowercase D, for
example:

ono
4. 371 ~7j2Bf.)65D··"3

--812d2
4[1··-3

The integer following the D is an exponent, as in single-precision
floating-point numbers. All the above values have approximately 18
significant digits.

2.2.1.3 BOOLEAN Data Type - BOOLEAN data types can have the value
TRUE or FALSE. Boolean values are the result of testing expressions
for truth or validity. The result of a relational expression (for
example, A < B) is a Boolean value.

PASCAL defines Boolean data types as predefined identifiers and orders
them so that FALSE is less than TRUE. For assignment purposes, the
type BOOLEAN is compatibJe with those variables and expressions that
yieln a BOOLEAN result.

2.2.1.4 CHAR Data Type - The value of data type CHAR is a single
value from the ASCII character set, as listed in Appendix B. To
specify a character value, enclose an ASCII character in apostrophes.
The apostrophe character itseJf must be typed twice within
apostrophes. Each of the following is a valid character value:

'A'
, z"
'0' , , . , , , ,
'? '

2-4

PASCAL DATA TYPES

You can use strings such as 'HELLO' and '****', but you must represent
them as packed arrays of characters (see Section 2.3.1.2). When you
use the ORD function in an expression of type CHAR, the result is the
ordinal value in the ASCII character set of the character value. See
Section 2.2.2.3 for an explanation of the ORD function.

2.2.2 User-Defined Scalar Data Types

User-defined scalar data types are those that you define, as opposed
to those data types that PASCAL predefines for you. PASCAL allows you
to define two kinds of scalar data types: enumerated and subrange.
An enumerated type consists of an ordered list of identifiers. The
subrange type is a continuous range of values of a defined scalar
type, called a base type. The following sections describe these two
user-defined types.

2.2.2.1 Enumerated Data Types - An enumerated data type is an ordered
list of identifiers. To define an enumerated type, list in some order
all the identifiers denoting its values. With PASCAL, you can define
an enumerated data type in two ways:

Fo rma t I

TYPE identifier (identifier II,identifier, •.•])

Fo rma t 2

VAR identifier (identifier I[,identifier, •.•])

where:

identifier is the name of the enumerated type.

For example:

TYPE Beverage = (Milk, Water, Cola, Beer);

This TYPE section defines the type Beverage and lists all the values
that Beverage can assume within a program.

PASCAL assigns an order to the items in your list from left to right.
Thus, the values of an enumerated type follow a left-to-right order,
so that the last value in the list is greater than the first, for
example:

TYPE Seasons = (Spring, Summer, Fall, Winter) ,

The relational expression (Spring < Fall)
precedes Fall in the list of values.

is TRUE because Spring

The only restriction on the values of an enumerated type is that you
cannot define the same value in more than one list in the same TYPE
section. For example, the following is illegal:

TYPE Seasons = (Spring, Summer, Fall, Winter)
School~ear = (Fall, Winter, Spring);

2-5

PASCAL DATA TYPES

To initialize a variable of an enumerated type, specify a constant
the variable Quarter of type value. For example, you can assign

Seasons as follows:

VAR Quarter: Seasons:= Fall;

The variable Quarter takes on the initial va]ue Fall.

Examples

TYPE ColoY's "~.(Rf:~(h Ypllow, Gret~r" Purple, Blue);
Sport = (Swim, Run, Ski);
Beverage = (Milk, Water, Colay Beer);

VAR Cookie: (Oatmeal, Choc-Chipy Peanut-Butter, Su~ar) := Su~ar;
Exercise, Fun: Sport:= Ski;
Drink: Bevera~e;

The TYPE section defines the types Colors ann Sport, listing all the
values that variables of each type can assume.

The VAR section declares the variable Cookie, which can have the
values Oatmeal, Choc-Chip, Peanut-Butter, and Sugar. The variables
Exercise and Fun are declared as type Sport, and Drink is declared as
type Beverage.

Initial values are established for the identifiers Cookie, Exercise,
and Fun in the VAR section.

2.2.2.2 Subrange Data Types - A subrange specifies a limited portion
of another scalar type (called the base type) for use as a type.

Fo rma t 1

TYPE identifier

Format 2

VAR identifier

where:

identifier

lower limit

upper limit

lower limit •• upper limit

lower limit •• upper limit

is the name of the subrange.

is the constant value at the low end of the
subrange.

separates the limits of the subrange.

is the "constant value at the high end of the
subrange.

The subrange type is defined only for the values between and including
the lower and upper limits. The limits you specify must be constants;
they cannot be expressions. (See Chapter 3 for information on
expressions.) The values in the subrange are in the same order as in
the base type.

2-6

PASCAL DATA TYPES

The base type can be any enumerated or predefined scalar type except
REAL. You can use a subrange type anywhere in the program where its
base type is legal. The rules for operations on a subrange are the
same as the rules for operations on its base type. A subrange and its
base type are compatible.

The use of subrange types can make a program clearer. For example,
integer values for the days of the year range from 1 to 365. Any
value outside this range is obviously incorrect. You could specify an
integer subrange for the days of the year as fo]lows:

VAF: Da~,~····Of···· y €·~a r J •• 366

By specifying a subrange, you indicate that the values of the variabJe
Day-Of-Year are restricted to the integers from 1 to 366.

Example

TYPE Months = CJan, Feb, Mar, Apr, Mas~ Jun,
Jul, Au~, Sep, Oct, Nov, Dec),

VAR Camp_Mos: Mas •• Oct;
Leaf_Mos: Sept.Nov;
First_Half: 'A' •• 'M';
We> l"'cf: () •• t.l::.'.i5::~~;'

This example defines the variables Camp_Mos and Leaf_Mos as subranges
of the enumerated type Months. A Camp Mos value can be only May, Jun,
Jul, Aug, Sep, or Oct. A Leaf Mos val~e can be only Sep, Oct, or Nov.
The variable First Half is a subrange of the ASCII characters, with
possible values uppercase A through uppercase M. The variable Word is
a subrange of the integers from a to 05535.

2.2.2.3 The ORD Function - Each element of a scalar type (except the
REAL type) has a unique ordinal value, which indicates its order in a
list of elements of its type. The ORD function returns the ordinal
value as an integer, for example:

OR[lC '(~')

This expression returns 81, which is the ordinal value of uppercase Q
in the ASCII character set (see Appendix B). Note that the order of
the ASCII character set may not be what you expect. The numeric
characters are in numeric order, and the alphabetic characters are in
alphabetic order. All uppercase characters have lower ordina] values
than all lowercase characters, for example:

ORDC'Q') is less than ORDC'a') and
OF~D('A') is less than ORDC '7') but
ORDC'Z') is less than ORD('a')

You can use ORD on a value of an enumerated type.
are ordered starting at zero, for example:

Enumerated types

Of,[I C Tuef.)da~)

Assuming that Tuesday is a value of type Weekdays (which includes
values Monday, Tuesday, Wednesday, Thursday, and Friday),
expression returns the integer 1.

the
this

The ordinal value of an integer is the integer itself. For examp]e,
ORD(O) equals 0, ORD(23) equals 23, and ORD(-1984) equals -1984.

2-7

PASCAL DATA TYPES

2.3 STRUCTURED DATA TYPES

A structured data type consists of a collection of related data
components; it is characterized by its method of structuring and its
components. All structured data types consist of a collection of
elements or components that are grouped together in a structure in
which they can collectively be manipulated.

PASCAL provides four structured data types:

• ARRAY

• RECORD

• SET

• FILE

An array is a group of components of a predefined size and of the same
type. A record consists of one or more named fields, each of which
contains one or more data items. Records can include fields of
different data types. A set is a collection of data items of the same
scalar type, the base type. You can access a set as an entity, but
you cannot access the set components as individual components or
variables. A file is a sequence of data components that are of the
same type; each component can be individually accessed. A file can
be of variable length.

Section 2.3.1 describes arrays; Section 2.3.2 describes records;
Section 2.3.3 describes sets; and Section 2.1.4 describes files.

2.3.1 Array Types

An array is a group of components of the same type that share a common
name. You refer to each component of the array by the array name and
an index (or subscript). An array type definition specifies the type
of the indices and the type of the components.

Format

ARRAY [index type [,index type •••]] OF component type

where:

index type

component type

specifies the type of the index. The (ndex
type can be a subrange, CHAR, BOOLEAN, or
enumerated type; but it cannot be a REAL
type.

specifies the type of the components of the
array.

The components of an array can be of any type. For example, you can
define an array of integers, an array of records, or an array of real
numbers. You can also define an array of arrays, which is known as a
multidimensional array.

The indices of an array must be of a scalar type, but cannot be real
numbers. Note that you cannot specify the type INTEGER as the index
type. To use integer values as indices, you must specify an integer
subrange, unless you are using conformant-array parameters. If
necessary, PASCAL determines the subrange. For example, if the index

2-8

PASCAL DATA TYPES

is BOOLEAN, then PASCAL converts the subrange to FALSE •. TRUE because
the type BOOLEAN has only two legal values. For more information
about conformant-array parameters, refer to Section G.3.2.

The range of the index type establishes the size of the array and the
way it is indexed, for example:

TYPE Letters ~ ARRAY [1~.10] OF CHAR~

VAR Letl: Letters~

The array variable LETl has 10 components, referred to as LETlrl],
LETl r2], LET 1 [31, and so on, through LETI no].

You can use array components in expressions anywhere you can use
variables of the component type. For the array as a whole, however,
you can use only the assignment statement (:=). An exception to this
rule is made for character strings, which PASCAL defines as packed
arrays of type CHAR. See Section 2.3.1.2.

2.3.1.1 Multidimensional Arrays - An array with components of an
array type is a multidimensional array. An array can have any number
of dimensions, and each dimension can have a different index type.
For example, the following declares a two-dimensional array variable:

VAR Two_D: ARRAY [0 •• 4J OF ARRAY ['A' •• 'D'] OF INTEGER;

PASCAL allows you to abbreviate the definition by specifying all the
index types in one pair of brackets, for example:

ARRAY [O •• 4,'A' •• 'D'] OF INTEGER;

To refer to a component of this array, you specify two indices, one
integer and one character, in the order they were declared:
Two_D[O,'A'l, Two DrO,'B'], and so on. You can a]so specify
Two D[O]r'A']. The first index indicates the rows of the array, and
the-second index indicates the columns. Hence, you can picture the
array Two D as in Figure 2-1.

'A' '8' 'C' '0'

o

2

3

4

MR-S-3113-83

Figure 2-1: Two-Dimensional Array Two D

2-9

P~SCAL DATA TYPES

When referring to the components of Two D, the first component in the
first row is Two Dro,'.a.'l. The second component in this row is
Two D ro,' B' 1. The Ii rst component in the second row is Two D rl,' A'] •
The- last component in the last row is Two Dr4,'D']. In general,
element j of row i is Two_Dri,jl. -

You can define arrays of three or more dimensions in a similar
fashion, for example:

V A F< C h (.;.~ s s :3 II : . f.l f< F< A Y [1..;3 ~ :I... n, n r::. • 1\ F< ::I 0 F C h (.:.~ ~:; ~:; 1'1'1 e 1"1 ;

This declaration specifies a three-dimensional chess game. The
indices of the array are the levels, the ranks, and the files of the
chessboard. For example, the reference Chess3D fI, 1, QR] specifies
the first level, first square in the upper left corner (bottom lev~l,
first rank, Queen's Rook file). Figure 2-2 illustrates the three
levels of this array.

Chess3D(1,n,
Chessmen)

(bottom)

Chess3D(2,n,
Chessmen)

(middle)

1 OR ON OS 0 K KS KN KR

Figure 2-2: Three-Dimensional Array Chess3D

Chess3D(3,n,
Chessmen)

(top)

Cf-IESS3D{3.n. CHESSMEN/

CHESS3D{2.n.CHESSMEN/

CHESS3D{I.n.CHESSMENj

lK 098 81

When storing values in an array, PASCAL increments the indices from
right to left. Thus, PASCAL increments the rightmost index until the
maximum value is reached, then moves to the left to the next index,
and so on, until all indices have been incremented to the specified
amoun t.

2-10

PASCAL DATA TYPES

In the three-dimensional array Chess3D, PASCAL starts by holding the
first two indices constant while stepping through the values of
Chessmen. Thus, the first values are assigned to components Chess3D
fl,I,QR] through Chess3D fl, 1 ,KR] • Next, the second index is
incremented and values are assigned to the components Chess3D [1,2,QRl
through Chess3D[1,2,KR1. After these eight elements are assigned, the
second index is again incremented, and values are assigned to Chess3D
rl,3,QR] through Chess3D rl,3,KR]. The assignment process continues
with the first index held constant until the second index has been
incremented from 1 to 8. Then, the first index is incremented, and
the process is repeated. Hence, all values for the bottom level
(denoted by Chess3D[1,n,Chessmenl) are stored before any values for
the middle level (denoted by Chess3D [2,n,Chessmen]). The top level
(denoted by Chess3Dr3,n,Chessmen]) receives its values last. Figure
2-3 illustrates this order.

OR ON as a K KS KN KR

- 1-,I--t--+- I---+--+--+---i

~:-:~;:: ::::=::=-+f----+----+--... --1--_--1

~ . __ j 4-,1--t--+-+-+--+-.-+---1
: - - --".5

-- -or' ""'-'--+-+--f---t-- -
[: : -.> 6 ~I--t-+-+--+--+--+----l
(: ~)7 I--+--+--+--f---t--- _.
:_ -. ~ -~> 8 '---'---'---L-

CHESS3D (I ,n,CHESSM[N (
lbo)ttom)

OR ON os 0 K KB KN KR

~1
• - - . A. 2 f------1--t--+-+--+-+--+--1
~. -.-J

: _:.'3 -f-- . - ----.. f---
, >4

f--f----jl--t--+-+--+-+-t
~ ~ ~ :.) 5 f----t-+-+-t---+-+--+-t
~ :-.:. ' 6-,I--t-+-+--+--- f----

: -> 7 f------I--t--+-+-+- +-_ +---u.
~ -;" '-----J'----'-----L---'_--'---'---'--~II

CHESS3D (2.n,CHESSMEN (
(middle)

Figure 2-3: Storing Components in an Array

OR ON os a K KS KN KR

, "
.'.

CHESS3D (3,n,CHESSMEN]
Itop)

MR-S-3115-83

2.3.1.2 String Variables - A character string variable in PASCAL is
defined as a packed array of characters with a lower bound of 1. To
declare a string variable, specify a packed array of the proper
length, for example:

VAR NAME : PACKED Af;:RAY [1 + + 20] OF CHAR;

This declaration allows you to store a string of 20 characters in the
array variable NAME. The length of this string must be exactly 20
characters. PASCAL neither adds blanks to extend a shorter string nor
truncates a longer string.

You can assign to a string variable the value of any string constant
or variable of the defined length. You can also compare strings of
the same length with the relational operators <, <=, >, >=, =, and <>.
The result of a string comparison depends on the ordinal value (in the
ASCII character set) of the corresponding characters in the strings,
for example:

'motherhood' > 'apple pies'

This relational expression is TRUE because lowercase 'm' comes after
lowercase 'a' in the ASCII character set. If the first characters in
the strings are the same, PASCAL looks for differing characters, as in
the following:

Istrin~l' < 'strin~2'

This expression is also TRUE because the digit I precedes the digit 2
in the ASCII character set.

2-11

PASCAL DATA TYPES

To assign a string constant to an array in the executable section, use
an assignment statement. The string variable must be of the same size
as the array; otherwise, an error occurs. The following example
shows an assignment statement in the executable section:

TYPE Strin~ ~ PACKED ARRAY[1 •• 10J OF CHAR;
VAR Word Strin~;

BEGIN
W 0 l' (.j : ~~ .' () T' a n ~.:.~ e I'

Y

END;

The string constant 'orange' is padded with spaces to match the size
of the array.

The READ and READLN statements automatically pad the string constant
if necessary. Thus, it is not necessary to pad the string constant
with spaces to match the varjable size, when using the predefined file
INPUT or reading from a file defined as TEXT.

2.3.1.3 Initializing and Assigning Values to Arrays - You should
assign values to an array either in the declarations or the executable
section before using the array within the program. As with all
variables, the value for each component is undetermined, until a value
is specifically assigned.

To assign values to an array in the executable section, a value must
be assigned to each component in the array. One method of doing this
is to use a FOR statement. By using the FOR statement control
variable as the array index, it is possible to step through all
components of the array, setting them to the same initial value. Each
index for the array is incremented at the same time the counter in the
FOR statement is incremented. An example of this is:

VAR Arrau_ExaffiPle : ARRAY [1 •• 10J OF INTEGER;
I ncip>: : INTEGER;

BEGIN
FOR Index := 1 TO 10 DO

A T' r a ~~ E ~.: a IT! P 1 €.~ [I n (j (., ~-: :1 : :::: 0;

END,

In this example, the array has been defined as being an array of type
INTEGER. As the FOR loop executes each time, the counter is
incremented by one. Likewise, the index is incremented by one. On
each execution of the loop, the current component is assigned a value
of o.

An array can be initialized in the VAR section. The following example
shows each component of the array Array_Example being initialized with
the value 0:

ARRAY [1 •• 10] OF INTEGER := (10 of 0);

2-12

PASCAL DATA TYPES

To assign values to a two-dimensional array in the executable section,
you can use two nested FOR statements to increment the two indices, as
shown in the following example:

CON~:>T Zf.~ ro :::: <>;
VAR Table: ARRAY [1 •• 10,1 •• 5J OF INTEGER;

i n (.l f:·~ >~ 1 , i :1".' (i (.:~ >(.... 2 : I NT E G E R ;

BEGIN

END~

F (] F~ i n d f:~ ~.(.... 1 : :::: :I. T () :l ° DO
FOR index_2 := :l TO 5 DO

Table[index_:l,index_2] := Zero;

Array_Example is :lefined to be a two-dimensional array of type
INTEGER.

The nested FOR statements assign the value of Zero (which has been
assigned the value of "0" in the CaNST section) to each component in
the array.

To initialize a two-dimensional array in the VAR section, specify a
constructor for each row, in parentheses. The following example shows
a two-dimensional array that is initialized in the VAR section:

VAR Table ARRAY [1 •• 10,1 •• 5] OF INTEGER := (10 OF (5 OF 0»;

To assign values to arrays of three or more dimensions in the
executable section, use three or more nested FOR statements:

CONST Zero:::: 0,
VAR Table: ARRAY [1 •• 5,1 •• 3,1 •• 2J OF INTEGER,

index_l"index_2,index_3 : INTEGER;

BEGIN
FOR index_1 := 1 TO 5 DO

FOR index_2 := 1 TO 3 DO
FOR index_3 := 1 TO 2 DO

TableCindex_l,index_2] := Zero;

END;

This example shows the initialization of a
The value of· Zero is assigned to each
Table[l,l,l] to Table(5,3,2].

three-dimensional array.
element in Table, from

To initialize an array of three or more dimensions in the VAR section,
specify a constructor for each row. The following example shows a
three-dimensional array being initialized in the VAR section~

VAR Table: ARRAY [1 •• 5,1 •• 3,1 •• 2] OF INTEGER :=
(5 OF (3 OF (2 OF ' '»);

2-13

PASCAL DATA TYPES

2.3.1~4 Array Type Compatibility - You can assign one array to
another only if the arrays are either identical or compatible. Arrays
of the same type or equivalent types are identical. The following
example demonstrates identical arrays:

TYPE Salar~ ~ ARRAY [1 •• 50J or REAL;
Pay = Salary;

VAR WaSe~ Income
Money : Pay;

The arrays Wage and Income are identical because both are of type
SALARY. The array ~oney of type PAY is identical to Wage and Income
because the type PAY is declared equivalent to the type SALARY.
Identical arrays are always compatible.

Arrays that Are not identical are compatible if they meet all of the
following criteria:

• They have the same number of components.

• Their elements are of compAtible types.

• Their indices are of compatible types.

• The upper bounds of their indices are equal.

• The lower bounds of their indices are equal.

• Both are packed or neither is packed.

• For packed arrays of subrange types, the bounds of the
subranges must be the same for both types.

The following two array types, though not identical, are compatible:

TYPE Grades = ARRAY [1 •• 28] OF 0 •• 4;
Feb_Temps = ARRAY [1 •• 28J OF INTEGER;

Both types define arrays with 28 components, indexed from 1 to 28.
The integer subrange components of type GRADES are compatible with the
integer elements of type Feb Temps. Therefore, you can assign
variables of type GRADES to -variables of type Feb Temps, and vice
versa. Note that, if the TYPE definition specified packed arrays, the
types GRADES and Feb_Temps would not be compatible.

PASCAL does not check for valid assignments to subranges that are part
of a structured type. If you assign an array of type Feb Temps to one
of type GRADES, you must ensure that the values are in -the correct
range. An out-of-range assignment does not result in an error
message, even if the CHECK option is enabled at compile time.

2-14

PASCAL DATA TYPES

2.3.1.5 Array Examples -

Example 1

TYPE Times = 1 •• 10;
VAR Raceresults : ARRAY[1 •• 50J OF Times;

I : I NTEGEfn

BEGIN
FOR I := 1 TO 50 DO

Raceresults[IJ != 0
END;

This example decl~res the variable Raceresults as a 50-component array
of Times. The FOR statement assigns zero to each component in the
array.

Example 2

T Y P E f:) t, r i n 9 ,,: PAC KED A F~ RAY [1.. 1 ()] 0 F C H A FU
VAR Composer, Word, Empt~ : String;

BEGIN

END;

Word := 'engrossing';
Composer := 'C.P.E.Bach';
EITJPt~:J ::::: I

This example declares three string variables. It assigns string
constants to the variables Word and Composer, and assigns a string of
10 spaces to the variable Empty.

Example 3

CONST Da\.~~:; :::: 31;
TYPE Weather:::: (Rain, Snow, Sunn~, Cloud~, Fogg~);

Month = ARRAY C1 •• DAYS] OF Weather;

This example shows how you can use a constant identifier in the index
type. The indices of arrays of type Month range from 1 to the value
of the constant Days.

2.3.2 Record Types

The record is a convenient way to organize several related data items
of different types. A record consists of one or more fields, each of
which contains one or more data items. Unlike the components of an
array, the fields of a record can be of different types. The record
type definition specifies the name and type of each field.

2-15

PASCAL DATA TYPES

Fo rma t

RECORD

field id : type [;field id
variant clause }

type ...] [variant clause]

END;

where:

field id

type

variant clause

specifies the names of one or more
fields. The names must be identibfiers
and must be separated by commas.

specifies the type of the correspond ing
field(s). A field can be :=Iny type.

specifies the variant part of the
record. See Section 2.3.7..1 fo r the
fo rma t of a variant c]ause.

The names of the fields must be unique within the record, but can be
repeated in different record types. For instance, you could define
the field NAME only once within a particular record type. Other
record types, however, could also have fields called NAME.

The values for the fields are stored in the order in which the fields
are defined, for example:

VAf~ TealYl ... HE'C ! F,[COHD
I,J:i.n'5: INTEGEH;
Losses : INTEGER;
Pe T'cent : F<EAL
END;

The values for these fields are stored in the order Wins, Losses,
Percent.

To refer to a field within a record, specify the name of the rec~rd
variable and the name of the field, separated by a period. For
example, Team Rec.Wins, Team Rec.Losses, and Team Rec.Percent refer to
the three fTelds of the -record Team Rec decTared above. You can
specify a field anywhere in the program that a variable of the field
type is allowed. Thus, you could write:

Records can include fields that are themselves records, for example:

VAR Order : RECORD
Part : INTEGER;
Received : RECORD

Month (Jan, Fe~, Mar, Apr, Ma~, Jun,
Jul, Au~, Sep, Oct, Nov, Dec);

Da~ : 1 •• 31;
Year : INTEGER
END;

Inventory : INTEGER
END;

2-16

PASCAL DATA TYPES

The fields in this record are referred to as Order.Part,
Order.Received.Month, Order.Received.Day, Order.Received.Year, and
Order. Inventory. The WITH statement provides an abbreviated notation
for specifying the fields of a record (see Section 5.5).

2.3.2.1 Records with Variants - To allow a record to contain
different data types at different times, you can define a record
variant. To do this, specify one or more variants in the TYPE
definition. A variant is a field or group of fields that can contain
a different type or amount of data at different times during
execution. Thus, two variables of the same record type can contain
different types of data.

To specify a variant, include a variant clause in the record type
definition. The variant clause must be the last field in the record.

Fo rma t

CASE tag fieJd OF
case-label list

where:

tag field

case-label list

field id

type

([field id type] [;field id type ..•]);

indicates the current variant of the record.
You can specify the tag field in two ways:

I . tag name : tag type

If you use this form, the tag field is a
field in the record that is common to all
variants. Tag name and tag type define the
name and type of this field. The tag type
can be any scalar type except a REAL type.
You can use the tag field in the same way
that you use any other field in the record;
that is, you can use the record.fieldname
fo rma t.

2. tag tYPE~

If you use this form, you must keep track of
the currently valid variant. The tag type
can be any scalar type except a REAL type.

specifies one or more constants of the tag
field type.

specifies the names of one or more fields.
The field names must be identifiers and must
be separated by commas. Note that, instead
of the field identifiers, you can specify
another variant clause, as in the last
example in this section.

~pecifies the type of the variant field. The
type cannot be a FILE type.

2-17

PASCAL DATA TYPES

When you specify the tag field in the first form (tag name tag
type), you should reference on] y the fields in the currently val i(]
variant. The following example shows the use of this form:

TYPE Name ~ PACKED ARRAY [1 •• 20J OF CHAR,
D a '.:~ ;;;: (M 0 n ~ T 1..1 (~~ y W p (j ~ T h IJ, F l' i) ;
~~ t () C k ::" F< E C Cl F< 1:1

F'd r t : 1.. (;9 (J 9 ,
Stoc~_Quantit~ : INTEGER,
f:>upp J if:" r : Name;
CASE Onorde1' : BOOLEAN OF

END,

T"HUE :(P1'omi~:;pd: Da~:I;

o T' d f.~ T' _. (J u ant i t ~~
Price: REAL);

FALf:;C : (l..ast :~hipmf.·~nt
F<pc .. _Ouant:i. t~~
Co~:;t : F<EAI ...)

I NTEGEF<;

Da~:~ ;
INTEGER,

Tn this example, the last three fields in the record type vary
depending on whether the part is on order. The tag name Onorder is
defined in the variant clause. Records for which the value of Onorder
is TRUE will contain information about the current order. Records for
whi~h this variable is FALSE will contain information about the
previous shipment.

In the second way of specifying the tag field, you use only a tag
type, as in this example:

TYPE Name = PACKED ARRAY [1 •• 20J OF CHAR;
Date ::" I NTEGEf<;
Sex = (Female, Male),
HOSF' ;:~ RECOF<D

Pat i f:~nt : Nam~l;

Birthdatp : Date;
A~H? : I NTEGEI=i:;
CASE Se~< OF

Fe ITI ale : (B i r t h s
Male: ()

1 •• 30) ;

END,

Tn this example, you must keep track of the currently valid variant.

You can define a variant onJy for the Jast
Variant fields can, however, be nested, as in

TYPE Name = PACKED ARRAY [1 •• 20] OF CHAR,
Date =" INTEGER;
Sex = (Female, Male);
HosF' = RECORD

Patient : Name;
Bi1'thdate : Date;
Age : INTEGER;
CASE Pa1'sex : Sex OF

Male : () ,

field in the record.
the following example:

Female (CASE Births : BOOLEAN OF
FALSE: ();
TRUE : (Nok i ds : INTEGER»

END;

This record type contains the name, birthdate, age, and sex of all
patients. In addition, it includes a variant field for each woman
based on whether she has had any children. A second variant, which
contains the number of children, is defined for women who have given
birth.

2-18

PASCAL DATA TYPES

2.3.2.2 Assigning Values to Records - To assign values to a record
variable, use an assignment statement to specify a value for each
field of the record. The following example shows the declaration of a
record and the assignment of values to two of the fields.

TYPE ROSTER - RECORD
Name: PACKED ARRAY[1 •• 30J OF CHAR;
Number: INTEGER;
Grade:: I:::EAL..;
END;

VAR Student ROSTER;

BEGIN

Testl,Test2,Test3 INTEGER;

WRITEL..N ('Enter your name.');
READLN (Student.Name);
Stu(·.lf~'nt • G J'i:H:.h:~ : =:: (T es t 1 + T E~S t2 + T €.'S t3) / :3;

If you are initializing a record with a variant clause, you must
always specify a value for the tag field, even if it has no tag name.
Specifying a value for the tag field, ensures that PASCAL initializes
the correct variant, for example:

TYPE Sex = (Male, Female);
Pe rson ::;; RECORD

Birthdate: RECORD
Month:
Day:
Year:
END;

Ase: INTEGER;
CASE s~~~< of

1 •• 12;
1 •• 31 ;
INTEGER;

Male:
Female:

(Bearded:BOOLEAN);
(N_Children:INTEGER);

END;
VAR Dad: Person := «5, 15, 1921), 62, Male, TRUE);

2.3.2.3 Record Type Compatibility - Two records are compatible if
their types are identical or equivalent, for example:

TYPE Life = RECORD
:Born
:Died
lEND;

INTEGER;
INTEGER

Plantlife = Life;

VAR Mom, Dad : Life;
Coleus : Plantlife;

The record variables Mom, Dad, and Coleus are all compatible. Mom and
Dad are both of type Life, which is equivalent to type Plantlife.

2-19

PASCAL DATA TYPES

Records of differing types are compatible if they meet the following
criteria:

• They have the same number of fields.

• Corresponrling field types are compatible.

• Both are packed, or neither is
packed, corresponding fields
equal bounds.

packed. If
of subrange

the types are
types must have

The following type is also compatible with Life and Plantlife:

TYPE Coords = RECORD
X : INTEGER,
Y : O •• lOO
END;

The integer subrange O .. 100 is compatible with the type INTEGER.
However, PASCAL does not check for valid assignments to fields of
subrange types. If you assign a record of type Life to a record of
type Coord, you must ensure that the value of the field Died is within
the subrange O .• 100. An out-of-range assignment does not result in an
error message.

If the records have variants, these criteria also apply:

• The records must have the same number of variants.

• Corresponding variants must have the same number of fields.

• Corresponding field types within corresponding variants must
be compa t i bl e.

• The case labels associated with the variants must agree in
number, but need not agree in value.

• Corresponding variants in structurally compatible records
must have identical tag constant values.

• The tag constant lists in each record must be identical.

2-20

PASCAL DATA TYPES

For example, assume the program includes
definition:

TYPE I ... (::~t~:;
Info

GT'adps
School

'A/ •• /D/;:
I<[CORD
Siz(? : INTEGER;
Calories : INTEGER;
ProtE~in :: 0 •• 40;
ea rb : I NTEGEFU
CASE Vi ts : Lf:~ts OF

'A'!"C','D': ();
'B' : (Niacin, Thiamine

END,
'A' •• 'F',
F,[CORD
Studentno : INTEGER,
Clas~:;: 1 •• 5;
HCH.IT'S : 1 •• ~~O;
Incompletes : 1 •• 6;
CASE Average : Grades OF

'B','C','D' : ();
'A' : (Sendlet, Firstsem

END;

the following TYPE

BOOLEAN)

BOOL.EAN)

The types Info and School are compatible. If you assign a variable of
one type to the other, however, you must be sure that both contain the
same variant.

2.3.2.4 Record Examples -

Example 1

TYPE Taxes - RECORD

VAR Fed

Year : INTEGER;
Gross : REAL;
Net : REAL;
Deductions : INTEGER;
Itemized BOOLEAN;
Interest ARRAY [1 •• 5] OF REAL
END;

Taxes := (1981, 25234.12, 18789.00, 4, TRUE,
(5 of 0.05»;

This example declares and initializes the record Fed of type Taxes.

2-21

PASCAL DATA TYPES

Example 2

T Y PES t l' i n ~.l :::; F' (.1 C 1\ E It A F~ F< A Y [: 1. • • 2 () ::I n F C H A F~ ;
Personal F~[COF<D

N a ITt e : ~:; t T' i n ~.:.l ;
Add T'e~;~:; : ~-::ECnF<D

Numbe1' : INTEGER,
~:)t1'€~pt, Town : !:;trin~:j;

Zip: 0 •• <;<;<;99
END,

A~lP : () •• :t '.:.:jO

END;

VAH Facl..ll t~~, Mascot, Stuclent F'P r~:;ona 1 ;

BEGIN
, A , Facl..llt~tNalTte := 'Niklaus Wirth

Facult~.Address.NulTtber := 5;
Facl..llty.Address.Strpot := 'Clausiusstrdsse , A ,

END,

The type Personal contains the field Address, which is of a record
type. To assign values to each of the fields of the record Address,
you must also specify the record Faculty in the assignment statement.

2.3.3 Set Types

A set is a collection of data items of the same scalar type, which is
known as the base type of the set. Unlike arrays and records,
elements in the set cannot be accessed individually. In PASCAL, you
use a set as an individual unit. The type definition specifies the
values for each element in the set:

Fo rma t

TYPE identifier

where:

identifier

base type

SET OF base type

specifies the type identifier for the set.

specifies the data type. Each element in the set
must be of this data type. You can use the
identifier or definition of any scalar type except
a real TYPE.

A set can have up to 256 members, and the value of each member must be
between 0 and 255. Therefore, real numbers or integers outside the
range 0 to 255 cannot be set elements.

After defining a base type, you can declare set variables of that
type, for example:

SET OF (Racauet, Shoes, Balls, Boots,
Skis, F'oles, Goggles, Swimsuit);

2-22

PASCAL DATA TYPES

Sets are compatible if their base types are identical or equivalent,
for example:

TYPE Vitamins = SET OF (A, B1, B2, B6, B12, C, D, E, K),
Nutrients = Vitamins;

VAR Watersoluble, Fatsoluble Vitamins,
Def:i. c i (o:o)folt : Nut J' i f.o)nts;

The VAR section specifies three mutually compatible sets.
compatible base types are also compatible, for example:

VAR ASCII : SET OF CHAR;
S pee i a 1. ~:; : SET (] F I! 1 • + 1 / I;

Sets wi th

These two sets ~re compatible because the base type of Specials is
compatible with the ASCII character set.

Packing has no effect on set compatibility except when passing sets as
VAR parameters. An unpacked set is compatible with a packed set if
both sets meet the criteria above.

You can build set expressions by using the set operators described in
Chapter 3. Set operators allow you to specify set intersection,
difference, union, inclusion, and containment. In addition, you can
assign a set expression to a set variable. The base type of the
variable must include all members of the set to which the expression
eval ua tes.

Example 1

TYPE Caps = SET OF CHAR,
VAR Vowel: Caps:= [/A/,/E/,/I/,/O/,/U'];

ConsDnant : Caps := £: 'B' + + '[I', 'F' + + 'H',' J'. + 'N',
'P' •• 'T','V' •• 'Z'];

These declarations specify the set type Caps and two set variables,
Vowel and Consonant. The set Vowel is initialized with the set of
vowel characters as initial values. The set Consonant is initialized
with the set of consonants.

Example 2

VAR Ages

This example declares and initializes a set with an integer base type.

2-23

PASCAL D~TA TYPES

2.3.4 File Types

A file is a sequence of data components of the same type. The number
of components in a file is not fixed; a file can be of any length.
The file type definition specifies the type of the file components.

Fo rma t

TYPE identifier FILE OF component type

where:

component type specifies the type of the components of the
file. The component type can be any scalar
or structured type except a file type or an
array or record type containing a file
element or field.

The arithmetic, relational, Boolean, and assignment operators do not
work on file variables or structures containing file components. For
example, you cannot assign one file variable to another file variable,
nor can you initialize a file variable.

Type compatibility for files applies only to file parameters. Two
file parameters are compatible if their components are compatible and
if both are packed or neither is packed. You can pass a file only as
a VAR parameter.

PASCAL automatically creates a buffer variable for each file variable
you declare. The type of the buffer variable is the same as the type
of the file components. To denote the buffer variable, specify the
name of the associated file variable fo] lowed by a circumflex (~), for
example:

TYPE Scores = FILE OF INTEGER;
VAR Math_Scores: Scores;

PASCAL creates ~ath Scores~ as an integer buffer variable associated
with the file Math Scores. The buffer variable takes on the value of
the file at the cur~ent file position. The predeclared input and
output procedures move the file position, thus changing the value of
the buffer variable.

Example I

VAF, T ruthva 1. s FIL.E OF' BOOLEAN;

This declaration specifies a file of Boolean values.
variable for this file is denoted by Truthva]s~.

Example 2

TYPE Names = PACKED ARRAY [1 •• 20] OF CHAR;
Data Fi Ie :::: FILE or Names;

VAH Accept L..ist" RejecL.List, Wait_List: Data_File;

The buffer

This example defines the array type Names and the file type DataFile,
which contains a list of names. The VAR section specifies three file
variables of type DataFile, with associated buffer variables
Accept_List~, Reject_List~, and Wait List~.

2-24

Example 3

PASCAL DATA TYPES

F I 1...[OF RECOf~D

TY'ial INTEGER;
Datf:'~ RECOF~D

Month: (Jan, Feb, Mar, Apr, Mas, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

D a ~:1 : 1.. 3 l ~

Y€·~ar : INTEGER
END;

Temp, Pressure : INTEGER;
Yield, Purits : REAl...
END;

The VAR Declaration specifies a file of records. To access the fields
of the record components, you specify ResultsA.Trial,
ResultsA.Date.Month, and so on.

2.3.4.1 Internal and External Files - A file that is local to a
program or subprogram is called an internal file. You can use an
internal file only within the scope of the program or subprogram in
which it is declared. The system retains an internal file only during
execution of the declaring program or subprogram. After execution the
file is no longer accessible. The system creates a new file variable
with the same name the next time it executes the declaring unit. The
contents of the old file are not available. Internal files are not
specified in the program heading. Only internal files can be
components of structured types.

An external file exists outside the scope of the program in which it
is declared. An external file can be created by the current PASCAL
program, another PASCAL program, or a program written in another
language. The system retains the contents of external file variables
after the execution of the program. You must specify the names of
external file variables in the program heading. External files cannot
be part of a structured type.

2.3.4.2 Text Files - A text file is a file with components of type
CHAR. PASCAL defines a file type called TEXT. To declare a text
file, specify a variable of type TEXT, for example:

VAR Poem TEXT;

The text file variable POEM is a file of characters. Text files are
divided into lines. Each line ends with a line-separator character.
You cannot use this character directly, but you can refer to it
indirectly through the predeclared procedures READLN and WRITELN and
the predeclared function EOLN.

The pred~clared file variables INPUT and OUTPUT are files of type
TEXT. These files are the defaults for all the predeclared text file
procedures described in Chapter 7. Note that TEXT is not equivalent
to FILE OF CHAR.

Example

VAR Guide, Manual: TEXT;

This example declares the Variables Guide and Manual as text files.

2-25

PASCAL DATA TYPES

2.4 POINTER TYPES

Normally, variables have the same lifetime as the program or
subprogram in which they are declared. Program-level vari~bles are
allocated in static storage, and subprogram-level variables are
allocated on the stack. Some applications, however, require different
lifetimes or an unknown number of variables of a certain type. PASCAL
allows you to use dynamic variables to fill these requirements.

Dynamic variables are dynamically allocated as needed during program
execution. Unlike other variables, dynamic variables are not named by
identifiers. Insie~d, you must refer to them indirectJy with
pointers.

A pointer type thus allows you to declare any number of pointer
variables to refer to dynamic variables of a specified type. Each
pointer variable assumes as its value the ~ddress of a dynamic
variable.

The pointer type definition specifies the type of the dynamic variable
to which pointers of the pointer type refer.

Fo rma t

TYPE identifier Abase-type identifier

where:

base-type identifier

Note the following example:

TYPE MYrec = RECORD

indicates
variable
refers.

A ~ B d:: : INTEGER
ENIH

Ptr_To_Myrec = ~MYrec~
VAR M : Pt T' _ .. T D M!:j Y'PC Y

the type of the dynamic
to which the pointer type

The base type can be any type.

Variables of a pointer type point to variables of the base type, and
are said to be bound to that type. To indicate a pointer variable,
specify its name. To indicate the dynamic variable to which a pointer
is bound, specify the pointer name followed by a circumflex(A). For
example, M is a pointer variable bound to records of type Myrec.
Specify MA to denote the record variable to which M points.

2-20

PASCAL DATA TYPES

Pointer type definitions are the only place in a PASCAL program where
you can use an identifier before you define it. PASCAL allows you to
use the base type identifier in a pointer type definition before you
define the base type, for example:

TYPE Ptr_To_Movie ~ ~Movie;

Nam(,~ :::: F',:':JCKED ARri:AY [:t •• 20:3 OF CHAFi:;
Mov :i. (.:~ :::: Fi:FCOI:;:D

Title, Director : Name;
Y f:'~ a Y' : I N T E C! E I~: ,
Stars : FILE OF Name;
Next : ptr_To_Movie
END;

The TYPE section specifies the type identifier Movie before defining
the type Movie.

The value of a pointer is the storage address of the variable to which
it points. Thus, in the example above, the value of the field Next is
a pointer to (or address of) a dynamic record variable of type Movie.

Pointers assume values at initialization, by assignment, and through
the NEW procedure. The value of a pointer can be any legal storage
address. The value NIL indicates that the pointer does not currently
specify an address. Thus, a NIL pointer does not point to a variable.

PASCAL allows you to define pointers to types containing files, for
example:

TYPE x:::: "'Y;
Y::~ RECORD

P : I NTEGEf;:;
Q : ARRAY[:ttt3] OF TEXT
END;

VAR M:X;

The pointer type X points to record type Y, which contains a file
component in field Q. The files denoted by Q are never closed until
execution of the program terminates, unless you use the CLOSE
procedure. For example, to close the files defined in the TYPE
section above, you must call CLOSE with the parameters MA.Q[l],
M

A

.Q(2], M".Q[31.

You can assign the constant NIL to a pointer as follows:

As a result of the assignment, the pointer variable M does not point
to a variable. NIL is the only value you can specify to initialize a
pointer.

2-27

PASCAL DATA TYPES

Example

T Y PEN d IT! f.~ :;;: {~ F< ~-;; A Y [1.. 30 ::I 0 F C H A F< ~

BEGIN

f' t r' ... T (J H :i. t ~:; :::: ,', Hit ~; ,
H i. t <:; ::: F~ [C n P I:I

Title, Artistv Composer: Name;
We p k. ~:; n n C h art y N ~:) 0 :I. (J : I NT [G E R ~
F :i. T' ~:; t V p r ~:; :i. 0 n : B 0 [) I... E (I N
END,

VA f< To F·' t f..1 n : A R F.: A Y [1.. 1 () J 0 F F' t J" To Hit ':; ,
I : INTEGEF<;

F (] I:~ :r : ::: 1. TO :I. 0 II 0
ToptenlIJ := NII...~

END,

This example defines the record type Hits to which pointers of type
Ptr To Hits refer. The array variable Topten has elements of the
pointer type Ptr To Hits. E~ch element of the array is assigned the
constant value NIL. The array Topten could be used in creating a Jist
of ten records of type Hits.

2.5 PACKED STRUCTURED TYPES

You can pack any of the structured types by specifying PACKED in the
type or variable declaration. Packed data items are stored as densely
as possible.

Fo rma t

PACKED type definition

where:

type definition defines an array, record, set, or file type.

You can initialize all packed structures in the VALUE or VAR section
in the same way that you initialize an unpacked structure of the same
type. In general, packed data items require less storage space than
unpacked data items of the same type. However, execution is usually
slower with packed data items.

In PASCAL, a packed array of characters specifies a string variable.

Example 1

TYPE I:<an~:jes .::: PACI\ED RECORD
Wo rei : 0 •• 6:::j~)3:::j;
B~t(~ : O •• 32/(,)/;
Bit : BOOLEAN
END;

This example defines a record type with three fields, each of which is
packed as densely as possible.

2-28

PASCAL DATA TYPES

Example 2

VAR Cit~_Census : PACKED ARRAY [1 •• 25J OF 2500 •• 50000;
J : I NTEGEF: i;

BEGIN
FOI:< I: : :~: :L TO 2~:.:j DO

C 1. t ~~ C (.:~ n sus I:: I] ! :=: ();

END;

This example declares the variable City Census as a 25-element array
of integer values in the subrange from ~500 through 50000. A value of
a is assigned to each element of the array.

2.6 TYPE COMPATIBILITY

Type compatibility rules determine the operations and assignments that
you can perform with data items of different types. Two scalar types
are compatible if their type identifiers are declared equivalent in
the TYPE section. In addition, a subrange type is compatible with its
base type, and two subranges of the same base type (or equivalent base
types) are compatible.

For structured and pointer types, PASCAL enforces structural
compatibility. Two structured (that is, arrays, records, files, and
sets) or pointer types are compatible if their structures are
identical.

The way PASCAL determines structural compatibility depends
types involved. For instance, the requirements for
compatibility differ from those for array compatibility.

on the
record

PASCAL uses compatibility rules in the fo]lowing three contexts:

1. Expression compatibility

2. Assignment compatibility

3. Formal and actual parameter compatibility

Expression compatibility determines the types of operands you can use
in an expression. See Chapter 3 for information on expressions.

Assignment compatibility determines the types of values you can assign
to variables of each type. Assignment compatibility rules apply to
value initializations, assignment statements, and value parameters.
Assignment compatibility is described with the assignment statement in
Section 5.2.

Formal and actual parameter compatibility determines the types of data
you can pass in a parameter list. Value parameters follow the rules
for assignment compatibility. Variable parameters follow somewhat
different rules. Value and variable parameters are described in
Chapter 6.

2-29

CHAPTER 3

EXPRESSIONS

An expression is a symbol or group of symbols that PASCAL can
evaluate. These symbols can be constants, variables, or functions, or
any combination of constants, variables, and functions, combined with
operators. The simplest expression is a single variable or constant.

This chapter lists the various operators that PASCAL provides along
with the rules for forming arithmetic, relational, logical, and set
expressions.

3.1 OPERATORS

PASCAL provides the following types of operators:

• Arithmetic operators (such as +, - /)

• Relational operators (such as <, >, =)

• Logical operators (such as AND, OR, NOT)

• Set operators (such as IN)

3.1.1 ArithmetIc Expressions

An arithmetic expression usually provides a formula for calculating a
value. To construct an arithmetic expression, you combine numeric
constants, variables, and function identifiers with one or more of the
operators from Table 3-1.

3-1

EXPRESSIONS

Table 3-1: Arithmetic Operators

Operator Example

+ A+B

A-B

* A*B

** A**B

I AlB

DIV A DIV B

MOD A MOD B

Meaning

Add l\ and B

Subtract B from A

Multiply A by B

Ra ise A to the power of B

Divide A by B

Divide A by B and truncate the result

Produce the remainder after dividing A by
B; B must be greater than 0

The addition, subtraction, muJtiplication, and exponentiation (+, ,
*, and **) operators work on both integer and real values. They
produce real results when applied to real values and integer results
when applied to integer values. If the expression contains values of
both types, the result is a real number. The only exception to these
rules concerns exponentiation. PASCAL defines the results of an
integer raised to the power of a negative integer as follows:

Base Exponen t

0 Negative or 0

1 Negative

-1 Negative and odd

-1 Negative and even

Any o the r Negative
integer

For example, the expression 1**(-3) equals 1;
(-1)**(-4) equals 1; and 3**(-3) equals o.

Result

Error

1

-1

1

o

(-1)**{-3) equals -1;

The division (I) operator can be used on both real and integer values,
but always produces a real result. Use of the division (I) operator
can therefore cause errors in precision in expressions involving
integers.

The DIV, MOD, and REM operators apply to integer values only.

DIV divides one integer by another, producing an integer result. DIV
truncates the result; that is, it drops any fraction. It does not
round the result. For example, the expression 23 DIV 12 equals 1, and
(-5) DIV 3 equals -1.

The MOD and REM operators return the remainder after dividing one
operand by another. Both operators can be used only with integer
values and always produce integer results.

The MOD operator can be used only when the divisor is greater than 0;
it always returns a positive result. For example, the expression 5
MOD 3 (5 modulo 3) returns a value of 2, and (-5) MOD 3 returns a
value of 1.

3-2

EXPRESSIONS

The REM operator can be used on integers of all sizes and retains the
sign of the dividend. For example, the expression 5 REM 3 returns a
value of 2, the expression (-5) REM 3 returns a value of -2; and the
ex pre s s ion 5 REM (- 3) ret urn s a val u E~ 0 f 2.

In arithmetic expressions, PASCAL allows you to mix integers, real
numbers (single and double precision), and integer subranges. When
you assign the value of an expression to a variable, you must ensure
that the types of the variable and the expression are compatible. In
general, you can assign an integer expression to a real variable.
However, you cannot assign a real expression to an integer variable.

Table 3-2 Jists the type of the result for all possible combinations
of arithmetic operators and operands.

Table 3-2: Result Types for Arithmetic Expressions

Operator
(Opera t ion)

Type of First
Operand

Type of Second
Operand

------.--
** INTEGER INTEGER

(e x po n e n t i a t ion) INTEGER, REAL REAL, DOUBLE

DOUBLE INTEGER, REAL,
DOUBLE

* INTEGER INTEGER

(mul tipl ication} INTEGER REAL

REJ~L INTEGER, REAL

DOUBLE INTEGER, REAL,
DOUBLE

RE)\L, INTEGER DOUBLE

/ RE1\L, INTEGER REAL, INTEGER

(division) DOUBLE INTEGER, REAL,
DOUBLE

RE1\'L, INTEGER DOUBLE

DIV, MOD, REM INTEGER INTEGER

3-3

Type of
Result

INTEGER

REAL

DOUBLE

INTEGER

REAL

REAL

DOUBLE

DOUBLE

REAL

DOUBLE

DOUBLe

INTEGER

EXPRESSIONS

TabJe 1-2: Result Types for Arithmetic Expressions (Cont.)

Operator
(Opera t ion)

(division with
truncation,
modulus,
and remainder)

+,-

(addition,
subt.raction)

Type of F'i rst
Operand

INTEGER

INTEGER

REAL

DOUBLE

REAL, INTEGER

3.1.2 Relational Expressions

Type of Second
Operand

INTEGER

REAL

REAL, INTEGER

REAL, DOUBLE,
INTEGER

DOUBLE

Type of
Result

INTEGER

REAL

REAL

DOUBLE

DOUBLE

A relational expression or condition tests the relationship between
two expressions. A relational expression consists of two scalar or
string variables or arithmetic expressions, separated by one of the
relational operators listed in Table 3-3.

Table 3-3: Relational Operators

Operator Example Meaning

A = B A is equal to B

<> A <> B A is not equal to B

> A > B A is greater than B

>= A >= B A is greater than or equal to B

< A < B A is less than B

<= A <= B A is less than or equal to B

Note that the two characters in each of the <>, >=, and <= operators
must appear in the specified order and cannot be separated by a space.

PASCAL produces a Boolean result when it evaluates a relational
expression. Every relational expression therefore evaluates to TRUE
or FALSE. For example, the condition 2 < 3 is always TRUE; the
condition 2 > 3 is always FALSE.

3-4

EXPRES~: IONS

3.1.3 Logical Expressions

Logical expressions test the truth value of combinations of
conditions. A logical expression consists of two or more expressions
that have Boolean results, separated by one of the logicnl operators
in Table 3-4.

Table 3-4: Logical Operators

--
Operator Example Result

----------,------------
AND A AND B TRUE if both A and B are TRUE

OR A OR B TRUE if either A or B is TRUE, or if both
are TRUE

NOT NOT A TRUE if A is FALSE, and FALSE if A is TRUE
--------------------------,-----

The AND and OR operators combine two conditions to form a compound
condition. The NOT operator reverses the truth value of a condition,
so that if A is TRUE, then NOT A is FALSE.

As with relational expressions, the result of a logical expression is
a Boolean value. Note that the entire logical expression is always
evaluated, even if the expression value could be uniquely determined
from only a part of the expression.

3.1.4 Set Expressions

You can use the operators in Table 3-5 with set variables and
constants.

Table 3-5: Set Operators

Operator Example Meaning

+ A+B Union of sets A and B

* A*B Intersection of sets A and B

A-B Set of those elements of A that are not
also in B

A=B Set A is equal to set B

<> A<>B Set A is not equal to set B

<= A<=B Set A is a subset of set B

>= A>=B Set B is a subset of set A

IN A IN B A is an element of set B

3-5>

EXPRESSIONS

The set operators (+, *, -, =, <>, <=, and >=) require both operands
to be set values. The TN operator, however, requires a set expression
as its second operand and a scalar expression of the associated base
type as its first operand, for example:

The value of this expression is TRUE, because 2*3 evaluates to 6,
which is a member of the set rl •. 10].

3.1.5 Precedence of Operators

The operators in an expression establish the order in which PASCAL
evaluates the expression. Table 1-6 lists the order of precedence of
the operators, from highest to lowest.

Table 3-h: Precedence of Operators

Operators Precedence

NOT Highest

**

* I, DIV, MOD, REM, AND

* OR

<>, <, <=, >, >=, IN Lowest

PASCAL evaluates operators of equal precedence (such as + and -) from
left to right. You must use parentheses for correct evaluation when
you combine relational operators, for example:

A (= X AND B (= Y

Without parentheses, PASCAL attempts to evaluate this expression as
A<=(X AND B)<=Y and generates an error. The expression needs
parentheses, as follows:

(A (= X) AND (8 (= y)

To evaluate the rewritten expression, PASCAL compares the truth values
of the two relational expressions.

3-n

EXPRESSIONS

You can use parentheses in any expression to force a particular order
of evaluation, for example:

Expression: Evaluates to:

8 * 5 DIV 2 ... 4 16

8 * 5 DIV (2 - 4) ····20

PASCAL evaluates the first expression according to the normal rules
for precedence. First, it multiplies 8 by 5 and divides the result
(40) by 2. Then, it subtracts 4 to get 16. The parentheses in the
second expression, however, force PASCAL to subtract before
multiplying or dividing. Hence, it subtracts 4 from 2, getting -2.
Then, it divides -2 into 40, with -20 as the result.

Parentheses can also help to clarify an expression. For instance, you
could write the first example as follows:

«8 * 5) DIV 2) - 4

The parentheses eliminate any confusion about how the expression is to
be evaluated.

3.2 SCOPE OF IDENTIFIERS

The scope of an identifier is the part of the program in which you
have access to the identifier. In a PASCAL program, the scope of a
constant, type, variable, or subprogram identifier is the block in
which the identifier is declared. Figure 3-1 illustrates the scope of
identifiers declared at various levels.

Declarations in the main program block specify global identifiers,
which can be accessed in the main program and in all nested
subprograms. For example, A and B in Figure 3-1 are global
identifiers. They can be accessed from any level in the program.

Declarations in subprogram blocks specify local identifiers. You can
use a local identifier in the subprogram that contains its declaration
and in all its nested subprograms. For example, the identifiers C and
D are local to procedure Le~el lA and its nested subprograms Level 2A
and Level 3A. You can USE~ C and D i 11 any 0 f these subprog rams, but
not in the main program or in the subprograms Level_lB, Level_2B, and
Level 2C.

3-7

PROGRAM

· · ·

EXPRESSIONS

Level_.O (IN PUT, OUTPUT);
NTEGER; VAR A,B :]

· · · PROCEDURE L evel_1A (Z, y);
: INTEGER;

· • · END;

VAR C,D

· · · FUNCTIO
VAR

N L-e-v-e-=I-_-=2:--A:--7'(X:-7"':"')---=---=I:-7N":'::l:::-:'[:::-.:C:::-'E=::=R-:";- .
E : REAL;

~F~'R~'O:-C~~'E~-I~IU~R~E--L~e~v-e-l-_-"3~A--<-W-)-;---------

VAR F : REAL; ")

END; <*end procedureLevel_3A*)

· ------------------------------,----
· · END; <

<*end procedure Level_1A*)

PROCEDURE Level_1B <V, U, T);
INTEGER;

· · · END;

VAR G

· · · F'R

· · ·

. .

OCEDURE Level_2B (S, R, Q);
VAR H : REAL;

ENI

F'R

· · ·

OCEDURE Level_2C (P, 0);
VAR B : BOOLEAN;

j : CHAR;

ENI I; (*end P rocedu re Leve 1._2C* >

<*en d procedure Level_1B*>

END. <*end prograrr

Figure 3-1: Scope of Identifiers

3-8

EXPRESSIONS

Similarly, local identifiers declared in Level 1B are accessible to
LevellB, Level ~~B, and Level2C, but not to Level lA, Level ?A,
Level-3A, or the nain program.

In general, once you define an identifier, it retRins its meaning
within the block containing its declaration. You can, however,
redefine an identifier in a subprogram at a lower level. If you do
so, the identifier assumes its new meaning only within the scope of
the redefining block. Outside this block, the identifier keeps its
original meRning. For example, B is declared at program level and
redefined in Level 2C. Within the scope of Level 2C, B denotes a
Boolean variable. ·Everywhere else in the program,-however, B denotes
Rn integer.

The identifiers accessible to each routine in Figure 3-1 are listed
below.

Routine Variables -----
Main p:rog ram A, B (:i. n t f::' ~.:.! f~ T')

l..evf~ll :LA A, B (i ntt~~tp T') , r _. , 1:1
L..f?vf?l :?A A, B (i nte5.!e T') y C , , Dy E
Level.. .. 3A Ay B (i ntf.~~J(·? T') , C, [I, [y .. r
LeVE' 1 __ :L B A, B (:i. ntf.~~~e T') , G
L f? V t~ 1 .. _ 2 B A, B (integer) , (3y H
Level 2C A, B (Boolean) , ,J

3-9

CHAPTEH 4

PROGRAM HEADING AND DECLARATION SECTION

The first two parts of a PASCAL program are the program heading and
the declaration section. The program heading specifies the program
name and the input and output files.

The declaration section can contain the following sections:

• LABEL

• CONST

• TYPE

• VAR

• VALUE

• PROCEDURE and FUNCTION

declares labels for use by the GOTO
statement

defines identifiers to represent
constant values

defines user-defined, structured,
and pointer types

declares and optionally initializes
variabJes of all types

initializes variables

declare subprograms

Your program need not include all these sections, but the sections
that are present must appear in the order listed above. Although you
can specify many labels, constants, types, variables, and subprograms,
each section can appear only once in each declaration section.

This chapter describes the program heading (Section 4.1), label
declarations (Section 4.2), and constant defini tions (Section 4.3) •
It also outlines type definitions (SE!ction 4.4), variable declarations
(Sec t ion 4 • 5), and val u e dec I a rat ion s (Sec t ion 4 • 6) • Ch apt e r 6
describes the use of procedures and functions in detail.

4-1

PROGRAM HEADING AND DECL~RATION SECTION

4.1 THE PROGRAM HEADING

The program heading begins the PASCAL program. It gives the program a
name and lists the external file variables the program uses.

Format

[fOVERLAID1] PROGRAM program name [(filename [,filename •••])]

where:

[OVERLAIDl

program name

filename

specifies that
variables with
Section G.8.

the program can share global
separately compiled modules. See

specifies the name of the program;
six characters are significant.

only the first

specifies the identifier associated
external fiJe that the program uses.

with an

The program name appears only in the heading and has no other purpose
within the program. The program name cannot be redefined at program
level.

The file names listed in the program heading correspond to the
external files that the program uses. The heading must include the
names of all the external file variables. The predeclared text file
variables INPUT and OUTPUT, by default, refer to your terminal (in
interactive mode) or the batch input and log files (in batch mode).
You must declare file variables for all other external files in the
main program declaration section, and specify those variables in the
program heading. Refer to Chapter 7 for more information on files.

Example I

PROGRAM Test1;

The program heading names the program Testl, but omits the file
variable list. This program does not use the terminal or any external
file.

Example 2

PROGRAM Sauares (INPUT, OUTPUT);

The program heading names the program Squares and specifies the
predeclared file variables INPUT and OUTPUT.

Example 3

PROGRAM Pa~roll (EmploYee, Salar~, Output);

The program heading names the program Payroll and specifies the
external file variables Employee, Salary, and Output.

4-2

PROGRAM HEADING AND DECLARATION SECTION

4.2 LABEL DECLARATIONS

A label makes a statement accessible from a GOTO statement. The label
section must list all the labels in the corresponding executable
section.

Format

LABEL label [,label ...]

where:

label specifies an unsigned integer. When you declare more
than one label, you can specify the labels in any
order.

The label is an unsigned integer. Labels can be listed in any order
if more than one label is defined. A label can precede any statement
in the program, but can be accessed only by a GOTO statement. Within
the program, a colon (:) must be placed between the label and the
statement.

The scope of a label is the block in which it is declared. Therefore,
you can transfer control from one program unit to another program unit
in which the former is nested, for example:

PROGRAM Trial (INPUT,OUTPUT);
LABEL 7~;

PROCEDURE Max;
LABEL 50;

BEGIN
50 WRITELN ('Testins fairness of tosses');

GO TO 75;
END; (*end of procedure Max*)

BEGIN

75 WRITELN ('Not fair! A weighted coin!');

END.

The GOTO statement in the procedure Max transfers control to the main
program statement that has the label 75. However, you cannot use a
GOTO statement in the main program to transfer control into the
procedure at label 50.

Example

LABEL 0, 6656, 778, 4352;

The label section specifies four labels: 0, 6656, 778, and 4352.
Note that the labels need not be specified in numeric order.

4-3

PROGRAM HEADING AND DECLARATION SECTION

4.3 CONSTANT DEFINITIONS

The constant section defines identifiers to represent constant values.

Fo rma t

CONST constant name

where:

constant name

value

value; [constant name value; II

specifies the identifier to be used as the
name of the constant.

specifies an jnteger, a real number, a
string, a Boo]ean va]ue, or the name of
another constant that is already defined.
Note that the value assigned to a constant
identifier cannot be an expression. String
values must be enclosed in apostrophes.

The use of constant identifiers generally makes a program easier to
read, understand, and modify. If you need to change the value of a
constant, you can simply modify the CONST declaration instead of
changing each occurrence of the value in the program. This capability
makes programs simpler to maintain and easier to transport.

Example

CON~)T Ra i n ~:: TRUE,
Y to" a T' ~~ 20 O:L ,
Pi ::: 3 .l4:1.!:j92?'
C () ITlIT! a:;:: ',' p
Countr~ = 'United States';
Citizenship = Country;

This CONST section defines six constants. The identifier Rain is
equal to the Boolean value TRUE. The identifier Year represents an
integer, and Pi represents the real number 3.1415927. The identifier
Comma represents a character, and the identifier Country represents a
string. Characters and strings must be enclosed in apostrophes in the
CONST section. The identifier Citizenship represents the symbolic
constant Country and thus repr~sents a character string. Note that,
since Citizenship represents a symbolic value and not a string,
apostrophes are not used.

4-4

PROGRAM HEADING AND DECLARATION SECTION

4.4 TYPE DEFINITIONS

The type definition introduces the name and the set of values for a
type. Chapter 2 describes data types and includes examples of type
definitions.

Fo rma t

TYPE type identifier
[type identifier

where:

type identifier

type definition

type defi.nition;
type defi.nition; ••.

specifies the identifier
name of the type.

defines a type. The
Figure 4-1.

]

to be used as the

types are shown in

Note that you can use the identifier for a previously defined type in
place of the type definition for a new type. In addition, you can
define packed types for arrays, records, sets, and files, as described
in Section 2.5.

Figure 4-1:

predefine
scalar

J
INTEGER

REAL

BOOLEAt

CHAR

DOUBLE

scalar

user-defined
scalar

enumerated

sub range

PASCAL Data Types

[stmctu •• d EJ

ARRAY

RECORD

SET

FILE

MRS-3147-83

4-5

PROGRAM HEADING AND DECLARATION SECTION

4.5 VARIABLE DECLARATIONS

The variable declaration creates a variable and associates an
identifier and a type with the variable. Optionally, the variable
declaration can be used to assign an initial value to a variable.
Chapter 2 describes data types and shows how to declare and initialize
variables of each type.

Fo rma t

VAR variable name [,variable name .•.]
[variable name [,variable name ...]

: type
: type

[: = va 1 ue n ;
[.:= value] ; ...]

where:

variable name specifies the identifier to be used as the name of
the variable.

type

value

names or defines a type. The type can be one of
the types shown in Figure 4-1.

specifies the initial value associated with the
identifier. The value must be of the same data
type as the identifier.

You can also declare packed array, record, set, and file variables, as
described in Section 2.5. Note, however, that you cannot initialize
file variables.

4-0

PROGRAM HEADING AND DECLARATION SECTION

4.6 VALUE DECLARATIONS

The value section initializes variables that are declared in the main
program declaration section. You can initialize scalar, array,
record, and set variables with constants of the same type as the
variable's type.

The description below presents general information on value
initializations. The exact format of the value initialization depen~s
on the type of variable being initialized. For detailed formats and
examples, refer to the section in Chapter 2 that describes the type of
variable you need to initialize.

Fo rma t

VALUE variable name "= value;
[variable name ,= value; . ' ..]

where:

variable name names the variable to be initialized. You cannot
specify a list of variable names.

value specifies a constant of the same type as the
variable, or specifies a constructor for an array
or record variable.

You must specify a value of the correct type for each variable being
initialized. You must not specify an expression. Scalar variables
require scalar constants, and set variables require set constants.
For arrays and record variables, you specify the value to be assigned
to each element or field in a parenthesized list called a constructor.
An array or record constructor must contain one constant value of the
appropriate type for each component of the structure.

The value initialization
declaration section. You
functions, or modules.

can appear only in the main program
cannot use a value section in procedures,

4-7

CHAPTER 5

P~SCAL STATEMENTS

PASCAL provides several statements to perform the actions within the
program. Any of these statements can appear anywhere in the
executable part of a PASCAL program, procedure, or function. PASCAL
also includes the compound statement, which allows you to group
statements.

This chapter presents reference information on each of the statements,
organized as foJlows:

• The comp~und statement

• The assignment statement

• Conditional statements:

IF-THEN

IF-THEN-ELSE

CASE

• Repetitive statements:

FOR

REP~AT

WHILE

• The WITH statement

• The GOTO statement

• The procedure call

PASCAL includes simple and compound statements. A simple statement
can be executed and is complete in itself; that is, it is not made up
of other statements. The simple statements are the assignment
statement, the GOTO statement, and the procedure call.

A compound statement is an arrangement of simple statements that
executes sequentially. You can use a compound statement anywhere in
the program that a simple statement is allowed. This manual uses the
term statement to mean either a simple or a compound statement.

5-1

PASCAL STATEMENTS

Simple and compound statements can also be used in structured
statements. A structured stAtement is a group of statements that can
be executed either in sequence, conditionally, or repeatedly. The
structured statements are the conditional, repetitive, and WITH
statements. A compound stAtement can also be considered a type of
structured statement.

5.1 THE COMPOUND STATEMENT

The compound statement allows you to group PASCAL statements for
sequential execution as n singJe statement.

Format

BEGIN
statementl ;statement?, ... statement n;

END;

where:

statement denotes a simple or compound statement.

You can create a compound statement using any combination
statements, including other compound statements. You
semicolons to separate the statements that make up the
statement; however, no semicolon is required between
statement and the END delimiter. PASCAL treats the entire
statement as a simple statement everywhere in the program.
of compound statements appear throughout this chapter.

5.2 THE ASSIGNMENT STATEMENT

The assignment statement assigns a value to a variable.

Format

variable name 0= expression;

where:

of PASCAL
must use

compound
the last

compound
Examples

variable name specifies the name of a variable of any type
(except a file). It could be an array element, a
file buffer variable, a function, or a field of a
record.

expression specifies a value, variable name, function
reference, Boolean expression, set expression, or
arithmetic expression.

Note that the assignment operator is := in PASCAL.
this operator with the equal sign (=) operator.

Do not confuse

The expression on the right of the operator establishes the value to
be assigned to the variable on the left of the operator.

5-2

PASCAL STATEMENTS

You can use the assignment statement to assign a value to a function
identifier or to a variable of any type except a file. The variable
and the expression must be of compatibJe types, with the following two
exceptions:

• You can assign an integer expression to a real variable.

• You can assign an integer or single-precision real expression
to a double-precision variable.

For structured types, PASCAL enforces structural
assignments.

Example 1

x : :::: 1 ~

The variable X is assigned the value 1.

Example 2

Temp := Celsius(Fahrenheit);

compatibility in

The value returned by the function Celsius is assigned to Temp.

Exampl e 3

T t::::A<B,

The value of the Boolean expression A < B is assigned to T.

Exampl e 4

VoweL .. Set !:::: [JA J , JE/, JJ', JO·'" JU J];

The set Vowel Set is assigned the string constants
type of VoweT Set must include the characters 'A',
'U' .

Example 5

M~~_ .. AT'T'a!:~[lJ :::::: M~L ... AT'r·a!:J["7] + yf)l . .lT' AT'ra!.~[14];

shown. The base
, E " I I " '0', and

The first element of My Array is assigned the sum of the seventh
element of My_Array and-the fourteenth element of Your_Array.

Exampl e '5

The value of each element of the array Your Array is assigned to the
corresponding element of the array My_Array-:-

Exampl e 7

Assume that Awardrec and New Winner are record variables of
assignment-compatible types. ~his example assigns the value of each
field of New Winner to the corresponding field of Awardrec.

5-3

PASCAL STATEMENTS

Example q

Ase~5 ::::: Asps····[10+".7J'

Assume that the base type of the set variable Ages is the integer
subrange 0 .. 255. This exampJe assigns the value of the set expression
Ages- rlO+7] to the variable Ages.

5.3 CONDITIONAL STATEMENTS

A conditional statement selects a statement for execution depending on
the value of an expression. PASCAL provides three conditional
statements:

• IF-THEN statement

• IF-THEN-ELSE statement

• CASE statement

These are described in the following sections.

5.3.1 The IF-THEN Statement

The IF-THEN statement causes the conditional execution of a statement.

Fo rma t

IF expression THEN statement;

where:

expression specifies a Boolean expression.

statement indicates a simple or compound statement.

The statement is executed only if the value of the expression is TRUE.
If the value of the expression is FALSE, program control passes to the
statement following the IF-THEN statement.

The THEN clause can specify a compound statement. However, note that,
if you use the compound statement, you must not place a semicolon
between the words THEN and BEGIN. The example below shows a semicolon
immediately following the word THEN:

IF Da~ = Thurs THEN,
BEGIN

statement

END;

(* misPlaced semicolon *)

As a result of the misplaced semicolon, the empty statement becomes
the object of the THEN clause. In this example, the compound
statement following the IF-THEN statement is executed regardless of
the value of Day.

5-4

PASCAL STATEMENTS

Example 1

IF «X*37/Con~:;tant) + Factor) :> lO()O.O THEN
Answer := Answer - Factor;

If the value of the arithmetic expression is greater than 1000.0, a
new value is assigned to the variable Answer.

Example 2

IF (A :> B) AND (B ~ C) THEN
D ::::: A···· C;

If both relational expressions are true, n is assigne~ the value of A
- c.

Exampl e 3

IF (Name 'SMITH') AND (INITIAL I ,.J I) THEN
BEGIN
Count := Count + 1;
SlTIi thadd[Count]l ! :::: Add re~:;~:;;
WFnTELN ('..} SMITH NO. I,Count, I L.IVE~) AT I AddT'f.-~ss)

This example counts the number of J SMITHs, prints each one's street
address, and stores it in an array.

Exampl e 4

IF Day = Thurs THEN
FOR I := 1 TO MaxEffip DO

Pay[IJ := Salary[IJ * (l-Tax_Rate-FICA);

If the current value of the variable Day is Thurs, the FOR loop is
executed, and values for Pay(I] are computed. If the value of Day is
not Thurs, the FOR loop is not execute~; and program control passes
to the statement following the end of the loop.

5.3.2 The IF-THEN-ELSE Statement

The IF-THEN-ELSE statement is an extension of the IF-THEN statement
that includes an alternative statement, the ELSE clause. The ELSE
clause is executed if the test condition is false.

Fo rma t

IF expression THEN statementl ELSE statement2

where:

expression specifies a Boolean expression.

sta temen tl denotes the sta tement to be executed if the
exprt=ssion is true.

statement2 denotes the statement to be executed if the
expression is false.

5-5

PASCAL STATEMENTS

The objects of the THEN and ELSE clauses can be any simple or compound
statement, including another IF-THEN or IF-THEN-ELSE statement. The
ELSE clause always modjfies the closest IF-THEN statement.

IF A~~i THEN
IF B<>l THEN C:~l

E L ~; ED: c= 1 ;

By definition, PASCAL interprets this statement as if it included
BEGIN and END delimiters, as folJows:

IF A:::J. THEN
BEGIN

IF B<>l THEN C::"~i

EI ... SF It: :::: 1
END;

The variable D is assigned the value 1 if both A and B are equal to 1.

Example 1

IF Ih Sf.~aSf:~ THEN
WRITELN ('This person is sick.')

ELSE WRITELN ('This person is health~.');

This example prints a different line of text depending on the value of
the Boolean variable Disease. Note that Disease is a Boolean
expression, so you need not specify Disease = TRUE.

Exampl e 2

IF Balance < 0.0 THEN
BEGIN

WRITELN ('Overdrawn b~ ',ABS(Balance»;
WRITELN ('Loan of ',Loan,' at ',Rate,

, % automaticall~ deposited');
Balance := Balance t Loan;
BILL_AMT := Loan * (ltRate)

END
ELSE WRITELN ('No Loan issued this month ');
WRITELN ('Balance is ',Balance);

If the value of Balance is negative, the compound statement is
executed. The compound statement prints two lines of notification,
adds Loan to Balance, and computes the amount of the bill for the
loan. A zero or positive Balance results in a message stating that no
loan was issued. The WRITELN procedure that prints the final Balance
is independent of the conditional statement and is always executed.

5.3.3 The CASE Statement

The CASE statement causes one of several statements to be executed,
depending on the value of a scalar expression.

Format

CASE case selector OF
case-label list: statement
[jcase-label list statement ••• D
[OTHERWISE statementi ••• D

END;

5-6

PASCAL STATEMENTS

where:

case selector specifies an expression that evaluates to any
scal~r type except a real type.

case-label list specifies one or more constants of the same
type as the case selector, separated by
commas.

Each case-label list is associated with a statement that may be
executed. The list contains the value of the case-selector expression
for which the system executes the associated statement. You can
specify the case labels in any order. However, the difference between
the largest and smallest labels must not exceed 1000. Each case label
can appear only once within a CASE statement, but can appear in other
CASE statements.

At run time, the system evaluates the case-selector expression and
chooses which statement to execute. If the value of the case-selector
expression does not appear in any case-label list, the system executes
the statement in the OTHERWISE clause.

If the value of the case-selector expression does not match one of the
case labels and you omit the OTHERWISE clause, the status of the CHECK
run-time option determines the action that the system takes. Refer to
Section 8.4.3 for run-time options. If CHECK is enabled, the system
prints an error message and terminates execution. If CHECK is not
enabled, execution continues with the statement following the CASE
statement.

Example 1

CASE Ase OF

END~

5,6 IF Birth_Month> Se? THEN Grade l= 1 ELSE Grade != 0;
7 BEGIN

Grade := 2;
ReadinS_Skill := TRUE
END;

8 Grade:= 3

At run time, the system evaluates Age and executes one of the
statements. If Age is not equal to 5, 6, 7, or 8, and the CHECK
option is enabled, an error occurs and execution is terminated.

Example 2

CASE Ase OF
5,6 IF Birth_Month> Be? THEN Grade != 1 ELSE Grade := 0;

7 BEGIN
Grade != 2;
ReadinS_Skill := TRUE
END;

8 ! Grade := 3
OTHERWISE Grade := 0

An OTHERWISE clause is added in this example. If the value of Age is
not 5, 6, 7, or 8, the value a is assigned to the variable Grade.

5-7

PASCAL STATEMENTS

Example 1

CASE Alphabetic OF
'A','E','I'p'O','U' : Alpha_Fla~ := Vowel~

"~(I : Alpha Fla~:,~ != SometimE-'s
OTHERWISE Alpha_Flag := Consonant

END;

This example assigns a value to Alpha Flag depending on the value of
the character variable Alphabetic.

5.4 REPETITIVE STATEMENTS

Repetitive statements specify loops, that is, the repetitive execution
of one or more statements. PASCAL provides three repetitive
sta tements:

• FOR statement

• REPEAT statement

• WHILE statement

These are described in the following sections.

5.4.1 The FOR Statement

The FOR statement specifies the repetitive execution of a statement
based on the value of an automatically incremented or decremented
control variable.

Forma t

FOR control variable

where:

control variable

initial value

final value

-= initial value {TO } final value DO statement;
DOWNTO

specifies the name of a simple variable of
any scalar type except a real type.

specifies an expression of the same type as
the control variable.

specifies an expression of the same type as
the control variable.

The control variable, the initial value, and the final value must all
be of the same scalar type, but cannot belong to one of the real
types. The repeated statement cannot change the value of the control
variable. The control variable must be a simple variable; that is,
it cannot be an element of an array, a field of a record, the object
of a pointer reference, or a file buffer variable.

At run time, completion tests are performed before the statement is
executed. In the TO form, if the value of the control variable is
less than or equal to the final value, the loop is executed, and the
control variable is incremented. When the value of the control
variable is greater than the final value, execution of the loop is
complete.

5-8

PASCAL STATEMENTS

In the DOWNTO form,
than or equal to
control variable is
variable is less
complete.

if the value of the control variable is greater
the final value, the loop is executed, and the
decremented. When the value of the control

than the final value, execution of the loop is

Because completion tests are performed before the statement is
executed, some loops are never executed, for example:

FOR Control := N TO N + Q DO
Wpek r: N] :::~ We (::)k [N] + Newpa~:I'

If the value of N + Q is less than the value of N (that is,
negative), the loop is never execut,ed.

if Q is

When incrementing and decrementing the control variable, PASCAL uses
units of the appropriate type. For numeric values, it adds or
subtracts one upon each iteration. For values of other types, the
control variable takes on each successive value of the type. For
example, a control variable of type 'A' •. '2' is incremented (or
decremented) by one character each time the loop is executed.

If the FOR loop terminates normally, that is, if the loop exits upon
completion and not because of a GOTO statement, the value of the
control variable is left undefined. You cannot assume that it retains
a value. Therefore, you must assign a new value to the control
variable if you use it elsewhere in the program. However, if the FOR
loop terminates because of a GOTO statement, it retains the value it
had at termination; and you can use that value elsewhere.

Example I

FOR N := Lowbound TO HiShbound DO
Sum := Sum + IntArra~[NJ;

This FOR loop computes the sum of the elements of Int_luray with index
values from Lowbound through Highbound.

Example 2

FOR Year := 1899 DOWN TO 1801 DO
IF (Year MOD 4) = 0 THEN

WRITELN(Year:4,' IS A LEAP YEAR');

The DOWNTO form is used here to print a list of all the leap years in
the nineteenth century.

Example 3

FOR I := 1 TO 10 DO
FOR J := 1 TO 10 DO

A[I,JJ := 0;

This example shows how you can directly nest FOR loops. For each
value of I, the system steps through all 10 values of J and assigns
the value 0 to the appropriate array element.

5-9

PASCAL STATE~ENTS

Example 4

FOR Effiplo~ee := 1 TO N DO
BEGIN

HRS : :::: 40;
FOR Da~ := Mon TO Fri DO

IF Sick(Employee,Da~J THEN
HR!:l : :::: HR!3····B,

F' a y [: [IT! P 1 () y f.;> f:~ J : :::: W a ~J f:'~ [E III P 1 D ~J e f:.~] * HI:;: S
END;

You can combine compound statements as in this example. The inner FOR
statement computes the number of hours each employee worked from
Monday through Friday. The outer FOR statement resets hours to 40 for
each employee and computes each person's pay as the product of w~ge
and hours worked.

5.4.2 The REPEAT Statement

The REPEAT statement groups one or more statements for execution until
a specified condition is true.

Fo rma t

REPEAT statement [;statement ... D UNTIL expression;

where:

expression specifies a Boolean expression.

Note that the format of the REPEAT statement eliminates the need for a
compound statement.

The expression is evaluated after the statements are executed.
Therefore, the REPEAT group is always executed at least once.

Example

REPEAT
READ(X);
IF (X IN (10 1 •• 1 9 1]) THEN

BEGIN
Di~it_Count := Di~it_Count t 1;
Di~it_Sum := Di~it_Sum t ORD(X) - ORD(IOI)
END

ELSE Char_Count := Char_Countt1
UNTIL EOLN(INPUT);

Assume that the variable X is of type Char, and the variables
Digit_Count, Digit_Sum, and Char Count are integers. The example
reads a character (X) from the terminal. If X is a digit, the count
of digits is incremented by one; and the sum of digits is increased
by the value of X. The ORD function is used to compute the value of
X. If X is not a digit, the variable Char Count is incremented by
one. The example continues processing characters from the terminal
until it reaches an end-of-line (EOLN) condition.

5-10

PASCAL STATE~ENTS

5.4.3 The WHILE Statement

The WHILE statement causes one or more statements to be executed while
a specified condition is true.

Fo rrna t

WHILE expression DO statement;

where:

expression specifies a Boolean expression.

The WHILE statement causes the statement following the word DO to be
executed while the expression is true. Unlike the REPEAT statement,
the WHILE statement controls the execution of only one statement.
Hence, to execute a group of statements repetitively, you must use a
compound statement. Otherwise, PASCAL repeats only the single
statement immediately following the word DO.

The expression is evaluated before the statement is executed. If the
expression is initially false, the statement is never executed. The
repeated statement must change the value of the expression. If the
value of the expression never changes, the result is an infinite loop.

Example 1

l"'HILE NOT EOF(Filel) DO
READL.N(Fil(·?l) y

This statement reads through to the end of the text file Filel.

Example 2

WHILE NOT EOLN(INPUT) DO
BEGIN

/:;:EAD(X) ;
IF NOT (X IN ['A' •• 'Z','a' •• 'z','O' •• '9'J) THEN

IE r T' ::::: E In' + 1
END;

This example reads an input character from the current line on the
terminal. If the character is not a digit or letter, the error count
(Err) is incremented by one.

Example 1

SUITt != 0;
Ntests ::::: 1;
AV9 := 100;

WHILE (AV9 >= 90) AND (Ntests <= Maxtests) DO
BEGIN

END;

Sum := Sum + Test [Ntests];
AV9 := Sum DIU Ntests;
Ntests := NTests +1

IF AVG <: 90 THEN
WRITELN ('Your ave raSe dropped below 90 as of Test " Ntests:5);

After initializing Sum to zero, this program fragment repeatedly
calculates a student's average test score. When the average score
falls below 90 (or NTESTS > MAXTESTS), the calculations cease. If the
average score is less than 90, the system prints an informative
message.

5-11

PASC~L STATEMENTS

5.5 THE WITH STATEMENT

The WITH statement provides abbreviated notation for references to
fieJds of a record.

Fo rma t

WITH record variabJe [,record variable .•.] DO statement;

where:

record variable specifies the name of the record variable to
which the statement refers.

The WITH statement allows you to refer to the fields
directly instead of using the record.fieldname format.
WITH statement opens the scope of the field identifiers
can use them as you would use variable identifiers.

of a record
In effect, the

so tha t you

Specifying more than one record variable has the same effect as
nesting WITH statements. The names must appear in the order of their
declaration. Thus, the following two statements are equivalent:

WITH Cat, Dos DO
Bills := Bills + Catvet + Do~vet;

and

WITH Cat DO
WITH Dos DO

Bills := Bills + Catvet + Dosvet;

Note that if the record Dog is nested within the record Cnt, you must
specify Cat before Dog.

Example 1

RECORD
Gross : REAL;
Net : REAL;
Bracket : REAL.;
Itemized : BOOLEAN;
Paid : REAL
END;

WITH TaNes DO
IF Net < 10000.0 THEN Itemized := TRUE;

This statement tests the value of the field Taxes.Net, and sets
Taxes.Itemized to TRUE if Taxes.Net is less than 10000.0.

5-12

PASCAL STATEMENTS

Example 2

TYPE NalTlf:~

Datf.~

PACKED ARRAY [1 •• 20] OF CHAR;
r-~ECORD

Month (Janv Feb, Mar, Apr, Ma~y Jun,
Jul, Au~, Sep, Oct, Navy Dec)~

[I a ~:~ : 1 + • 3 1 ;

VAR Hosp

Yf.,~ar' : INTEGEf<
[NIH

RECORD
F' a't i ent : NaITIP;
Birthdate : Datp;
A~e : J NTEGEf<
[ND;

WITH HasP, Birthdate DO
BEGIN

Patient := 'THOMAS JEFFERSON
Month ::::: Ap T';

Ase : ":: 2;'56
ENIH

, .
'I

The program segment in this example shows how you can use the WITH
statement to assign values to the fields of a record. The WITH
statement specifies the names of the record variables Hosp and
Birthdate. The record names must be in order; that is, Hosp must
precede Birthoate. The assignment statements need only specify the
field names, for example: Patient instead of Hosp.Patient, Month
instead of Hosp.Birthdate.Month, and so forth.

5.6 THE GOTO STATEMENT

The GOTO statement directs the program to exit from a loop or other
program segment before its normal termination point.

Fo rma t

GOTO label;

where:

label specifies a statement label.

Upon execution of the GOTO statement, program control shifts to the
statement with the specified label. The statement can be any PASCAL
statement or an empty statement. The label must be defined in the
declaration section.

The GOTO statement must be within the scope of the label declaration.
In addition, you cannot use a GOTO statement that is outside a
compound statement to jump to a label that is within that compound
statement.

5-13

PASCAL STATEMENTS

Example

FOR I := 1 TO 10 DO
BEGIN
IF Real_Array[IJ

BEGIN
Result := 0.0;
GOTO 10
END;

0.0 THEN

Result := Result + 1.0/Real_Array[IJ
END;

10: Invertsum:= Result;

This example shows how you can use the GOTO statement to exit from a
loop. The loop computes the sum (Invertsum) of the inverses of the
elements of Rea] Array. If one of the elements is zero however, the
sum is set to-zero; and the GOTO statement forces an exit from the
loop.

5.7 THE PROCEDURE CALL

A procedure call specifies the actual parameters to a procedure and
executes the procedure. (See Chapter fi for a complete description of
procedures.)

Format

procedure name [(actual parameter [,actual parameter ..•])]

where:

procedure name

actual parameter

specifies the name of a procedure.

specifies a constant, an expression, the name
of a procedure or function, or a variable of
any type.

The procedure call associates the actual parameters in the list with
the formal parameters in the procedure declaration. It then transfers
control to the procedure.

The formal parameter list in the procedure declaration determines the
possible contents of the actual parameter list. The actual parameters
must be compatible with the formal parameters. Depending on the types
of the formal parameters, the actual parameters can be constants,
variables, expressions, procedure names, or function names. An
unindexed array name in a parameter list refers to the entire array.
PASCAL passes actual parameters by the mechanism specified in the
procedure declaration.

5-14

PASCAL STATEMENTS

Example 1

Tollbooth (ChanSey 0.25, Lane[lJ);

This statement calls the procedure Tollbooth, specifying the variable
Change, the real constant 0.25, and the first element of the array
Lane.

ExampJe 2

This statement calls the procedure Taxes, with the expression
Rate*Income and the string constant 'Pay' as actual parameters.

Example 3

Halt;

This statement calls the predeclared procedure Halt, which has no
parameters.

5-15

CHAPTER ~

PROCEDURES AND FUNCTIONS

Procedures and functions are program units that perform tasks for
other program units. A procedure associates a set of statements with
an identifier; the statements are executed as a group. A function
returns a value. Each function 5s associated with a type and an
identifier.

Procedures and functions have similar structures and restrictions.
This chapter uses the term subprogram in descriptions that apply to
both procedures and functions.

PASCAL allows you to use three kinds of subprograms:

• Predeclared subprograms, described in Section 6.1.

• User-declared subprograms written in PASCAL. Sections 6.2

•

and ~.3 present the general format of subprograms and
describe how parameters are passed to subprograms. Sections
6.4 through 6.6 describe how to declare PASCAL procedures and
functions.

External subprograms. This category includes subprograms
written in other languages. Sections ~.7 and 6.8 describe
external subprograms.

You can include subprograms in the main program compilation unit, or
you can compile them separately from the main program in modules.
Separately compiled subprograms are considered external to the main
PASCAL program, and special usage rules apply (see Section 6.8).

6.1 PREDECLARED SUBPROGRAMS

PASCAL provides predeclared procedures and functions that perform
various commonly used tasks, such as input and output operations and
mathematical functions. These predeclared subprograms are described
in the following sections.

6.1.1 Predeclared Procedures

PASCAL provides procedures that perform input and output, allocate and
destroy dynamic variables, supply the system date and time, pack and
unpack array variables, and halt program execution. Table 6-1
summarizes these procedures.

6-1

PROCEDURES AND FUNCTIONS

Table 6-1: Predeclared Procedures

Procedure

CLOSE (f)

DATE(string)

DISPOSE (p)

DISPOSE(p,
tl, ... ,tn)

FIND (f ,n)

GET (f)

HALT

LINELIMIT(f,n)

MARK (a)

NEW (p)

Parameter Type

f = file variabJe

string = variable of
type PACKED ARRAY
r 1 •• 1 1 1 0 F C HA R 1

p = pointer variable

p = pointer variable
tl, ... ,tn tag
field constants

f = file variable n
positive integer

expression

f file variable

None

f text
variable n
expression

file
integer

a a variable of
type INTEGER

p pointer variable

~-2

Action

Closes file f.

Assigns current date
to string.

Dea.lJocates
for p The
variable p
undefined.

storage
po in ter
becomes

Releases storage
occupied by p ; used
when p is a record
with variants. Tag
field values are
optional; if
specified, they must
be identical to
those specified when
storage was
allocated by NEW.

Moves the current
file position to
component n of file
f •

Moves the current
file position to the
next component of f.
Then GET (f) assigns
the value of that
component to f , the
file buffer
variable.

Terminates execution
of the program.

Terminates execution
of the program when
output to file f
exceeds n lines. The
value for n is reset
to its default after
each call to REWRITE
for file f.

Places a marker for
use when allocating
memory for dynamic
variables.

Allocates storage
for p.... and assigns
its address to p.

PROCEDURES AND FUNCTIONS

Table ~-l: Predeclared Procedures (Cont.)

------------,---
Procedure Parameter Type

-----------------------------,--------
NEW (p, t I , . . . , t n)

OPEN(f, attributes)

PACK (a , i , z)

PAGE (f)

PUT (f)

p pointer variable
tl, ... ,tn tag
field constants

f file
attributes
'rable 7-2)

variable
(see

a = variable of type
ARRAY fm •. n] OF T
i = starting index
of array a
z = variable of type
PACKED ARRAY [u •• v]
OF T

f text file
variable

f file variable

6-3

Action

Allocates storage
for p~; used when p~

is a record with
variants. The
optional parameters
tl through tn
specify the values
for the tag fields
of the current
variant. All tag
field values must be
listed in the order
in which they were
declared. They
cannot be changed
during execution.
NEW does not
initialize the tag
fields.

Opens the file f
with the specified
attributes.

Moves (v-u+l)
elements from array
a to array z by
assigning elements
afl] through
a(l+v-u] to zful
through z r vl. The
upper bound of a
must be greater than
or equal to (l+v-u).

Skips to the next
page of file f. The
next line written to
f begins on the
second line of a new
page. The default
for f is OUTPUT.

Writes the value of
fA, the file buffer
variable, into the
file f and moves the
current file
position to the next
component of f.

PROCEDURES AND FUNCTIONS

Table ~-l: Predeclared Procedures (Cont.)

Procedure

READ(f, vl, ... ,vn)

READLN(f, vl, ... ,vn)

RELEASE(a)

RESET(f)

REWRITE (f)

UNPACK(z,a,i)

Parameter Type

f file variable
vl, .•. ,vn
variables

f text file
variable vl, ... ,vn
variables

a a variable
type "INTEGER

f f i 1 e variable

f file variable

of

z = variable of type
PACKED ARRAyru •• vl
OF t
a = variable of type
ARRAY fm .. nl OF T
i = starting index
in array a

6-4

Action

For vI through vn,
RE~D assigns the
next value in the
input file f to the
variable. You must
specify at least one
variable (vI). The
default for f is
INPUT.

Performs the READ
procedure for vI
through vn, then
sets the current
file position to the
beginning of the
next line. The
variable list is
optional. The
default or f is
INPUT.

Deallocates memory
allocated by the NEW
procedure up to the
point set by the
MARK procedure.

Enables read i ng from
file f • RESET (f)
moves the current
file position to the
beginning of file f
and assigns the
first component of f
to the file buffer
variable, f ".
EOF(f) is set to
FALSE unless the
file is empty.

Enables writing ~o

file f. REWRITE(f)
sets the file f to
zero length and sets
EOF (f) to TRUE.

Moves (v-u+l)
elements from array
z to array a by
assigning elements
z (u] through z (vl to
a[i] through
ari+v-u]. The upper
bound of a must be
greater than or
equal to (i+v-u).

PROCEDURES AND FUNCTIONS

Table ~-1: Predeclared Procedures (Cont.)

Procedure Parameter Type
----------,

TIME(string) string = variable of
type PACKED ARRAY
r 1 •• 1 1 1 0 F C HA R

WRITE (f ,pI, •.. ,pn) f fUe variable
write pl, ... ,pn

parameters

WRITELN(f,pl, ... ,pn) f tex t: f i 1 e
variable pl, ... ,pn
w'rite paramE!ters

6.1.1.1 Input/Output Procedures - The PASCAL
procedures are:

• CLOSE - Section 7.4

• FIND - SE'ction 7.5

• GET - Section 7.0

• LINELIMI'I' - Section 7.7

• OPEN - Section 7.8

• PAGE - Section 7.9

• PUT - Section 7.10

• READ - Section 7.11

• READLN - Section 7.12

• RESET - Section 7.13

• REWRITE - Section 7.14

• WRITE - Section 7.15

• WRITELN -, Section 7.16

6-5

Action

Assigns the current
time to string.

Writes the values of
pI through pn into
the file f. At least
one parameter (pI)
must be specified.
The default for f is
OUTPUT.

Performs the WRITE
procedure, then
skips to the
beginning of the
next line. The write
parameters are
optional. The
default for f is
OUTPUT.

input and output

PROCEDURES AND FUNCT10NS

6.1.1.2 Dynamic Allocation Procedures - PASCAL provides the
procedures NEW and DISPOSE for use with variables that are dynamically
allocated.

NEW

The predeclared procedure NEW allocates memory for a dynamic variable.
To refer to the dynamic variable, you must use a pointer variable.

Format

~EW(p) i

where:

p specifies n pointer varinble.

The NEW procedure sets aside memory for pA, that is, the variable that
p points to. The value of pA is undefined. You cannot assume that
the allocated space is initialized.

For example, you declare a pointer variable as follows:

VAR PTR ~INTEGER:

This declares PTR as a pointer to an integer variable. The integer
variable and its address, however, do not yet exist. You use the
following procedure call to allocate memory for the dynamic variable:

NEW(PTR);

This cal] allocates a variable of type integer. The variable is
denoted by PTR A, that is, the pointer variable's name followed by a
circumflex(A). This call also assigns the address of the allocated
integer to PTR.

DISPOSE

The predeclared procedure DISPOSE deallocates memory for a dynamic
variable. As for NEW, you must use a pointer variable to refer to the
dynamic variable.

Format

DISPOSE(p) i

where:

p specifies a pointer variable.

For example, to deallocate memory for the dynamic variable in the
above example, you can issue the following procedure call:

DISPOSE(PTR)~

As a result of this procedure call, the memory allocated for PTR A is
deallocated; and the variable is destroyed. The value of PTR is now
undefined.

Pointer types and dynamic allocation allow you to create linked data
structures. An example of the use of pointer types and the NEW and
DISPOSE procedures follows.

6-6

PROCEDURES AND FUNCTIONS

This program constructs a Jinked list of records. Each student record
contains data on one student, that is, a name and a student ID number.
Each record also contains a field th~t is a pointer to the next
record. The program reads a number and a name and assigns each of
them to a field of the student record. Then, it inserts the new
record on the beginning of the linked list by assigning the "Start"
pointer to that new record.

PROGRAM LinkedList (INPUT, OUTPUT);

TYPE f:>TUDENT ... PTF~ ;::: "'~3TUDENT DATA;
STRING PACKED ARRAY[1 •• 20J OF CHAR;
NUMBER = 1 •• 99999;

~3TUDENT .,.DATI~ :::: F~E:COF~D

Nam(,~ : SlRINLH
Stud_ID : NUMBER~

Next : STUDENT_PTR
END;

VAR Startv Student : STUDENT_PTR;
New I D : NUMBER;
New_Name : STRING;
Count : INTEGER,

PF~OCEDURE WF~ I TE._.DATA (Studt~nt : STUDEN1._.PTH);

(*This procedure prints the list of students. Because the
printin~ starts at the beginnin~ of the linked list, the student
names and ID numbers are printed in reverse of the order in
which the~ were entered.*)

VAR I,J : INTEGER;
Next_Student : STUDENT_PTR;

BEGIN
WHITELN ('NAME:', 'STUDENT IDt:':29);
REPEAT

WRITELN(Student~.Name : 20, Student~.Stud_ID 7);
Next_Student := Student~.Next;
DISPOSE (Student);
Student := Next_Student

UNTIL Student = NIL
END;

(* MAIN PROGRAM *)
BEGIN

END.

Count ::= 0;
WRITELN ('T~pe a 5-di~it ID number,'

'and a name for each student.');
WRITELN('Press CTRL/Z when finished.');
Start := NIL;
WHILE NOT EOF DO
BEGIN

READLN <New_ID, New_Name);
NEW <Student);
Student-.Next := Start;
Student-.Narne := New_Name;
Student-.Stud_ID := NEW_ID;
Start := Student;
Count := Count + 1

END;
IF Count > 0 THEN

WRITE_DATA(START)

6-7

PROCEDURES AND FUNCTIONS

In the main program, the WHILE loop reads a number and a name for one
student. The following procedure call allocates memory for a new
student record:

NEW (!3tudent) ;

The new record is inserted at the beginning of the list, that is,
StudentA.Next points to the previous head of the list. The value of
the new student record is assigned to the Start pointer.

The WRITE DATA procedure writes the name and student ID number for
each stu~ent in the linked list. After writing data for one student,
the procedure assigns the address of the next record in the list to
Next Student. The following call deallocates memory for one student
record:

11 I SPOS[(Sturjf.~nt) ;

After deallocating memory, the procedure assigns the value of
Next Student to Student. When the current student record points to
NIL, the loop stops executing.

NEW AND DISPOSE -- RECORD-WITH-VARIANTS FORM

You can use the following forms of NEW and DISPOSE when manipulating
dynamic variables of a record type with variants:

N EW (p , t 1 , . • • , t n)

DISPOSE(p,tl, ••. ,tn)

The parameter p must be a pointer variable pointing
variants. The optional parameters tl through
constants. They represent nested tag field values
outermost variant.

to a record with
tn must be scalar
where tl is the

If you create p without specifying the tag field values, the system
allocates enough memory to hold any of the variants in the recard.
Sometimes, however, a dynamic variable takes values of only a
particular variant. If that variant requires less memory than NEW(p)
allocates, you should use the NEW(p,tl, ••. ,tn) form.

For example, the following record represents a menu selection:

TYPE Menu_Ptr = ~Menu_Order;
Meat_T~pe = (Fish, Fowl, Beef);
Beef _Po rt i on ;:;; «()z _ .. 1 0, Oz_ .. 16, Oz_32);
Menu_Order = RECORD

CASE Entree : Meat_T~pe OF
Fish

Fowl

Beef

END;

(F i S tL T ~ P f.~ : (S a 1m 0 n, Cod, P (-? r c h, T T' out) ;
Lemon: BOOLEAN);
(Fowl_T~pe : (Chicken, Duck, Goose);
Sauce: (Orange, Cherr~, Raisin»;
(Bee f._ T y p e : (S tea k, R 0 a~; t, P rim e _ .. rib) ;
CASE Size : Beef_Portion OF

Oz_.10, Oz_:L6 : (BeeL .. vf?~.:j : (AT'tichoke, ML·~ed»;

Oz_32 : (Stomach_Cure : (Bicarbonate,
Antacid,None_Needed»;

VAR Menu_Selection

6-8

PROCEDURES AND FUNCTIONS

You can allocate memory for only the Fish variant as follows:

The example below shows how to call NEW and specify tag field values
for nested variants:

The tag field values must be listed in the order in which they were
declared.

The DISPOSE(p,tl, ... ,tn) procedure call releases memory occupie~ by p.
The tag field values tl through tn must be identical to those
specified when memory was allocated with NEW, for example:

D I SPOHE (Menu nf:~ 1 f:~ct i on, Beef, (}::~ 32);

This call deallocates the memory allocated by the last NEW proce~ure

call shown above.

6.1.1.3 The MARK and RELEASE Procedures - The MARK and RELEASE
procedures give you the opportunity to deallocate memory set aside by
several NEW procedures without using several DISPOSE procedures.

If you plan to allocate memory for use by several dynamic variables,
you should consider placing a marker at some point. The MARK
procedure places an index so that when you use the corresponding
RELEASE procedure you deallocate the memory allocated after that
marker. This saves you from having to DISPOSE several times, one for
each NEW.

The format for MARK is:

Fo rma t

MARK(a)

where:

a is a variable of type INTEGER representjng a marker.

The format for RELEASE is:

Format

RELEASE(a)

where:

a is the variable specified with MARK.

f)-9

PROCEDURES AND FUNCTIONS

Note the following example:

MAf~l\ (A)
N E l,oJ (M f:~ n IJ ~:) f? 1 (~ c t ion , F i ~;; h) ;
NEW (Mf.~nu ::>E':I. f~C t i on, BE'ef , O~-::. :32) ,

MARK<B)
NEW(Menu Sf~'lE'ction,Fowl) f

RELEASE(A)

In this example, all three NEW alJocations are deallocated by
RELEASE(A). If RELEASE(B) had been specified, only the third NEW
allocation, NEW(Menu_Selection,Fowl), would have been deallocated.

6.1.1.4 Miscellaneous Predeclared Procedures - PASCAL provides four
miscellaneous predeclared procedures: PACK, UNPACK, DATE, and TIME.

The predeclared procedures PACK and UNPACK pack and unpack arrays.
Packing means that the data items are stored as densely as possible.

PACK

You can declare arrays to be packed by specifying PACKED in the TYPE
or VAR declaration. Sometimes, however, you might want to convert an
array to a packed array within the executable section of the program.
The predeclared procedure PACK copies elements of an unpacked array to
a packed array.

Fo rma t

PACK(a,i,z)

where:

a is a variable of type ARRAY [m .. nl OF T.

i is the starting index of a.

z is a variable of type PACKED ARRAY[u .• vl OF T.

The number of elements in a must be greater than or equal to the
number of elements in z. PACK(a,i,z) assigns the elements of a,
starting with a(i], to the array z, until all of the elements in z are
filled. When specifying i, keep in mind that the upper bound of a
(that is, n) must be greater than or equal to i+v-u.

For example, you can read integers from a file into an unpacked array,
element by element, then pack the whole structure.

VAR A
P

ARRAY[1 •• 20] OF 0 •• 15;
PACKED ARRAY[1 •• 20J OF 0 •• 15;

FOR I := 1 TO 20 DO
READ (A[IJ);

PACK (A,1,P);

6-10

PROCEDURES AND FUNCTIONS

This program fragment assigns the elements AD] through Ar20] to pfll
through P[201; that is, 211] the elements in A are packed into P.

You can pack part of the array A as in the following example.

VAR A
p

ARRAY[1 •• 25J OF 1 •• 1S;
PACKED ARRAY[1 •• 20] OF 1 •• 15;

(*P Y'()cedu T'e c a 11 *)
PACI\(A,:L ,P) v

This procedure call moves elements of the array A into the packed
array P. The parameter 1 specifies that the packing starts with array
element An]. Thus, the elements AD1 through Ar20] are Clssigned to
prll through pr20]. Packing need not start with the first element;
for example, PACK (A,S,P) packs elements Arsl through Ar241 into
elements P[l] through pr201.

UNPACK

You can convert a packed array to an unpacked array with the
predeclared procedure UNPACK.

Format

UNPACK(z,Cl,i) ;

where:

z is a variable of type PACKED ARRAY[u •• v] OF T.

a is a variable of type ARRAY[m .. n1 OF T.

i is the starting index of a.

For UNPACK, the restrictions on the array indices and the value of i
are the same as for PACK.

You cannot pass individual elements of a packed array to a subprogram
as a VAR parameter. Therefore, you must unpack the array before you
can pass its elements as VAR parameters.

(* Declarations *)
VAR P

A
PACKED ARRAY[1 •• 10] OF CHAR;
ARRAY[1 •• 10] OF CHAR;

PROCEDURE PROCESS_ELEMENTS (VAR CH

END;

(* Part of main program *)

READ (P);
UNPACK(P,A,1);
FOR I := 1 TO 10 DO

PROCESS_ELEMENTS (A[l]);

6-11

CHAR) ;

PROCEDURES AND FUNCTIONS

This program fragment reads characters into the packed array P. The
procedure call to UNPACK assigns Prl] through PrIOl to the unpacked
array elements AD] through ArlOl. Then, for each ca11 to
PROCESS_ELEMENTS, one element of A is passea to the procedure.

DATE AND TIME

The predeclared procedures DATE and TIME assign the current date and
time to a string variable.

Fo rma t

DATE(string);
TIME(string) ;

where:

string specifies a variable of type PACKED ARRAyrl .. 11]
CHAR.

The folJowing example demonstrates the use of DATE and TIME:

(* Declarations *)

T ()da~3S __ Da te, CI..I l' rent .. _ Time

(* Procedure calls *)
DATE(Toda~5_Date)~

TIME(Current_Time);

PACKED ARRAY[1.+11J OF CHAR;

These two calls return results in the following format:

19-Jan--1980
14:20:25

OF

The time is returned in 24-hour format. Thus, the time shown above is
14 hours, 20 minutes, 25 seconds. In the DATE procedure, if the day
of the month is a I-digit number, the leading zero does not appear in
the result; that is, a space appears before the date string.

6.1.2 Predeclared Functions

PASCAL provides functions that compute arithmetic values, test certain
Boolean conditions, transfer data from one type to another, and
perform other miscellaneous calculations. Predeclared functions
return a value as a resuJt. Table 6-2 summarizes the predeclared
functions.

Arithmetic functions perform mathematical computations. Parameters to
these functions can be integer, real, single-precision, 01

double-precision expressions. The arithmetic functions, except for
the absolute and square root functions, return a real value when the
parameter is an integer, single-precision, or real value. When the
parameter is a double-precision expression, the result is a
double-precision value. The absolute and square root functions return
a value of the same type as the parameter.

6-12

PROCEDURES AND FUNCTIONS

Boolean functions return Boolean values after testing a condition.
The EOF and EOLN functions operate on files: EOF tests for the
end-of-file condition on a variable of any file type, and EOLN tests
for the end-of-line condition on a text file variable. The ODD
function tests whether an integer parameter is odd or even. The
UNDEFINED function, for which you must supply a real value, returns
the value TRUE when the argument is not in normalized floating-point
format. Variables containing a value that is not in a normalized
floating-point format cause a reserved operand fault when used in
arithmetic computations.

Transfer functions take a parameter of one type and return the
representation of that parameter in ~nother type. For example, the
ROUND function rounds a real number to an integer, and TRUNC truncates
a real number to an integer.

The miscellaneous functions include PRED and SUCC. The PRED and
functions operate on parameters of any ordered scalar type (that
all scalar types except one of the renl types). SUCC returns
successor value in the type; PRED returns the predecessor value.

SUCC
is,
the

Table 11-2:

Category

Arithmetic

Predeclared Functions

Function

ABS (n)

ARCTAN (n)

COS (n)

EXP (n)

LN (n)

SIN (n)

Parameter Result
Type Type

integer, same
rea I, as n
double

integer,
real,
double

integer,
real,
double

integer,
real,
double

integer,
real,
double

integer,
real,
double

6-13

real
double

real
double

real
double

real
double

real
double

Purpose

Computes the
absolute value of
n. The type of n
must be either
integer, real, or
double; nnd the
type of the result
is the type of n.

Computes the
arctangent of n.

Computes
cosine of n.

the

Computes e**n, the
exponential
function.

Computes the
natural logarithm
of n. The value of
n must be greater
than o.

Computes the sine
of n.

PROCEDURES AND FUNCTIONS

Table 6-2: Predeclared Functions (Cont.)

Category Function

SQR (n)

SQRT (n)

Boolean EOF (f)

EOLN (f)

ODD {n}

UNDEFINED {r}

Parameter Result
Type Type

in teg er ,
rea] ,
doub1e

in teg e r ,
rea 1,
double

same
as n

real
double

file Boolean
variable

text file Boolean
variable

integer

real,
double

6-14

Boolean

Boolean

Purpose

Computes n**2, the
square of n. The
type of n must be
either integer,
real, or double;
and the type of
the result is the
type of n.

Computes the
square root of n.
If n is less than
zero, PASCAL
generates an
e r ro r .

Indicates whether
the file position
is at the end of
the file f. EOF(f}
becomes TRUE only
when the file
position is after
the last element
in the file. The
default for f is
INPUT.

Indicates whether
the position of
file f is at the
end of a line.
EOLN (f) is TRUE
on]y when the file
position is after
the last character
in a line, in
which case the
valur of fA is a
space. The default
for f is INPUT.

Returns TRUE if
the integer n is
odd; returns FALSE
if n is even.

Returns TRUE if
the value of r is
not in
normalized
floating-point
fo rma t.

a

PROCEDURES AND FUNCTIONS

Table ~-2: Predeclared Functions (Cont.)

Category Function

Transfer CARD (s)

CHR (n)

ORD (n)

HOUND(n)

SNGL(d)

1:'RUNC (n)

Miscellaneous CLOCK

EXPO (r)

Parameter Result
Type Type

set integer

integer char

any integer
scalclr
type
except
a real
type

real, integer
double

double rea]

rea I , in teg e r
double

none

real"
double

~-15

integer

integer

Purpose

Returns the number
of elements
currently
belonging to the
set s.

Returns the
character whose
o r din a] n urn be r i s
n (if it exists).

Ret.urns
ordinal
value

the
(integer)

corresponding to
the value of n.

Rounds the real or
double-precision
value n to the
nearest integer.

Rounds the
double-precision
real number d to a
single-precision
rea 1 n urn b e r •

Truncates the real
or
double-precision
value n to an
integer.

Returns an integer
value equal to the
central processor
time used by the
current process.
The time is not
expressed in
milliseconds.

Returns the
integer-valued
exponent of the
binary
floating-point
representation of
ri for example,
EXPO{8.0) is 4.

PROCEDURES AND FUNCTIONS

Table ~-2: Predeclared Functions (Cont.)

Category Function

PRED(a)

SUCC(a)

Parameter Result Purpose
Type Type

any
scalar
type
except
a r eaJ
type

any
scaJar
type
except
a real
type

same
type as
parameter

Returns the
predecessor value
in the type of a
(if a predecessor
exists). But it is
up to you to make
sure there is
pred/succ. The
compiJer will
always return with
the next ordinal
value higher/lower
than a. There is
no bounds
checking. Checking
0ccurs only if the
PRED(a) or SUCC(a)
is in an
ass ignmen t
statement, for
example:
(*$CHE~K+*)
x: =PRED (a)

same Returns the
type as successor value in
parameter the type of a (if

a successor
exists) .

PASCAL also provides additional arithmetic routines available with
PASLIB, the PASCAL library. Use the following format to specify a
routine from the Common Math Library:

{
reSUl t type;}

FUNCTION routine name (VAR parameter list): FORTRAN

where:

routine name is one of the names listed in Table ~-3.

parameter list are acceptable arguments for this routine. See

result type

the TOPS-IO/TOPS-20 Common Math Library Reference
Manual.

is the type of the function result.

Table ~-3 lists these routines and their purpose. For more
information concerning these routines, refer to the TOPS-IO/TOPS-20
Common Math Library Reference Manual.

6-16

Table h-3:

Routine
Name

ARCOS

AINT

ALOG

ALOGlO

AMAXO

AMINO

AMINI

AMOD

ANINT

ASIN

ATAN2

COSD

COSH

COTAN

DABS

DACOS

DASIN

DATAN

DATAN2

DBLE

DCOS

DCOSH

DCOTAN

DDIM

DEXP

DEAXP2.

PROCEDURES AND FUNCTIONS

Library Routines

Purpose

arc cosine

truncation to integer

natural logarithm

base-l0 logarithm

largest of a series

smalJest of a series

smallest of a series

rE!mainder

nearest whole number

a roc sine

arc tangent of two angles

cosine (angle in degrees)

hyperbolic cosine

contangent

double-precision D-floating-point absolute value

double-precision D-floating-point arc cosine

doubJe-precision D-floating-point arc sine

doubJe-precision D-floating-point arc tangent

double-precision D-floating-point arc tangent of
t\ol70 angles

conversion from single-precision to
doubJe-precision D-floating-point format

double precision D-floating-point cosine

double-precision D-floating-point hyperbolic cosine

double-precision D-floating-point cotangent

d 0 ubI e- prE! cis ion
differenCE!

D-floating-point positive

double-precision D-floating-point exponential

exponentiation of a double-precision
D-floating-point number to the power of an integer

6-17

PROCEDURES AND FUNCTIONS

Table G-3: Library Routines (Cont.)

Routine
Name

DEAXP 1.

DFLO,l\T

DIM

)INT

,OG

DLOGIO

DMAXl

DMINl

DMOD

DNIN'T

DPROD

DSIGN

DSIN

DSINH

DSQRT

DTAN

DTANH

EXPI.

EXP2.

EXP3.

FLOAT

lABS

lDIM

Purpose

exponentiation of a double-precision
D-floating-point number to the power or another
double-precision D-floating-point number.

conversion of an integer
D-floating-point format

to double-precision

positive difference

double-precision D-floating-point truncation

double-precision D-floating-point natural logarithm

double-precision D-floating-point base-IO logarithm

double-precision
series

D-floating-point largest in a

double-precision D-floating-point smallest in a
series

double-precision D-floating-point remainder

double-precision D-floating-point nearest
number

double-precision D-floating-point prod uc t

d 0 ubI e- pre cis ion D-floating-point transfer

double-precision D-floating-point sine

of

double-precision D- fl oa t i ng- po in t hyperbolic

double-precision D-floating-point square root

d 0 u b 1 e- pre cis ion D- fl oa ti ng-po in t tangent

whole

sign

sine

double-precision
tangent

D-floating-point hyperbolic

exponentiation of an integer to the power of
another integer

exponentiation of a single-precision number to the
power of an integer

exponentiation of a single-precision number to the
power of another single-precision number

conversion of an integer to single-precision format

integer absolute value

integer positive difference

6-18

PROCEDURES AND FUNCTIONS

Table ~-3: Library Routines (Cont.)

Routine
Name

IDINT

IDNINT

IFIX

INT

ISIGN

MAXO

MAXI

MINO

MINI

MOD

MINT

RAN

RANS

REAL

SAVRAN

SETRAN

SIGN

SIND

SINH

SNGL

TAN

TANH

Purpose

conversion of a dobule-precision D-floating-point
number to integer format

integer nearest whole number for a double-precision
D-floating-point number

conversion of a single-precision number to integer
fo rma t

conversion of a single-precision number to integer
format

integer transfer of sign

largest of a series

largest of a series

smallest of a series

smallest of a series

integer remainder

integer nearest whole number for a single-precision
number

random number generator

random number generator with shuffling

conversion of an integer to single-precision format

save teh last random number generated

set the seed value for the random number generator

transfer of sign

sine (angle in degrees)

hyperbolic singe

conversion of a double-precision D-floting-point
number to single-precision format

tangent

hyperbolic tangent

0-19

PROCEDURES AND FUNCTIONS

6.2 FORMAT OF A SUBPROGRAM

Subprograms are similar in format to programs. A subprogram consists
of a heading and a block; the block contains a declaration section
and an executable section.

The heading specifies the name of the subpYogram and lists its formal
parameters. For a function, the heading also indicates the type of
the value returned. The declaration section defines labels and
identifiers for constants, types, variables, procedures, and functions
that are used in the subprogram. The executable section contains the
statements that perform the actions of the subprogram.

The labels and identifiers declared in the subprogram are local data
and are unknown outside the scope of the subprogram. The system does
not retain the values of local variables after exiting from the
subprogram. The following is a sample subprogram:

PROCEDURE PRINT_SYM_ARRAY (VAR A: ARR; Side: INTEGER);

(* This procedure prints arra~ A if it is
determined b~ the function SYMMETRY).
in row order, one row per line. *)

VAR I, J, K, L : INTEGER;

FUNCTION SYMMETRY : BOOLEAN;

!=j \;1 m III e t T' i c
The a T' r'a~:1

(which :i.~:;

i ~:; F' T' i nted

(* This function returns true if the arra~ is s~mffietric; false
other'wisf~'. *)

BEGIN
SYMMETRY := TRUE;
FOR K := 1 TO Side DO

FOR L := K TO Side DO
IF A[K,LJ <> A[L,KJ THEN SYMMETRY := FALSE;

ENIH

BEGIN
IF SYMMETRY THEN
BEGIN

END

WRITELN (IArT'a~ entered: I);
FOR I := 1 TO Side DO
BEGIN

FOR J := 1 TO Side DO
WRITE (A[I,JJ : 4);

WRITELN
ENIH

ELSE WRITELN (IThe aT'T'a~ is not s~ffimetT'ic+I);

END;

Subprograms can be nested within other subprograms.
example, the function SYMMETRY is nested
PRINT SYM ARRAY. The order of nesting determines
identTfier.

6-20

In
in
the

the previous
the procedure
scope of an

PROCEDURES AND FUNCTIONS

Data items declared in any particular block of a PASCAL program are
considered global to all its nested subprograms. Thus, d~ta items
declared in the main program block are global to alJ subprograms. A
subprogram can access its global identifiers. For example, the
function SYMMETRY above has no local variables. Tt uses the global
identifiers K and L, and the parameters A and Side, which are declared
in PRINT SYM ARRAY.

6.3 PARAMETERS

Subprograms communicate data with the main program and with each other
by means of parameters. A subprogram can have any number of
parameters, but need not have any at all.

The subprogram heading lists the forma] parameters, which specify the
type of data that will be passed to the subprogram. For example, the
formal parameter list for the procedure PRINT SYM ARRAY is the
following:

(VAR A ARR; Side: INTEGER)

This Jist specifies two parameters to be passed to PRINT SYM ARRAY:
the variable A of the previously defined type ARR, and the-~al~e Side
of type INTEGER.

Each formal parameter corresponds to an actual parameter, specified in
the subprogram call. For example, a valid procedure call to
PRINT_SYM_ARRAY is the following:

This procedure call passes the variable Current Arr and the value of
Current Side to PRINT SYM ARRAY.

The formal parameters are identifiers used in the subprogram; they
represent the actual parameters in each subprogram call. You can call
a subprogram several times with different actual parameters. At
execution, each formal parameter represents the variable or value of
the corresponding actual parameter. The formal-value parameters, and
the actual parameters to which they correspond, must be of identical
types.

6.3.1 Formal Parameters

The formal parameter list specifies the identifier for each parameter
and the type of each parameter to be used within the subprogram.

Format

([mechanism specifier]
[[mechanism specifier]

identifier list
identifier list

n-21

type;
type .•.]);

PROCEDURES AND FUNCTIONS

where:

mechanism specifier

identifier list

type

indicates how PASCAL passes data to this
parameter. The mechanism specifiers for
PASCAL subprograms are VAR, PROCEDURE,
and FUNCTION.

specifies one or more
separated by commas.

identifiers,

specifies the type of the parameters in
the list. You can pass values,
variables, procedures, and functions to
a subprogram written in PASCAL, as
described below.

PASCAL provides two methods for passing parameters
subprograms.

to PASCAL

1. Value -- the value of the actual parameter expression is
passed to the subprogram. The subprogram cannot change the
actual parameters's value during execution. (Value is the
default method.)

2. Variable -- the address of the parameter variabJe is passed
to the subprogram. The subprogram can change the parameter's
value. The VAR mechanism specifier indicates that a
parameter is to be passed as a variable parameter.

Value parameters pass the value of the actual parameter expression to
the subprogram. The subprogram does not change the actual parameter's
value during execution. Therefore, after the subprogram executes, the
value of the actual parameter is the same as before the execution of
the subprogram. The following example shows a formal parameter list
that includes two value parameters:

PROCEDURE EXAMPLE (Counter INTEGER; NAME

Variable parameters pass the address of the actual parameter
expression to the subprogram. The subprogram can change the actual
parameter's value. Therefore, after the subprogram executes, the
value of the actual parameter is the value assigned to the
corresponding formal parameter within the subprogram. To specify a
variable parameter, use the reserved word VAR before the parameter in
the formal parameter list. The following example shows the same
formal parameter list as in the previous example. In this example,
the parameters have been defined to be variable parameters.

PROCEDURE EXAMPLE (VAR Counter INTEGER; VAR Name: CHAR);

6.3.1.1 Value Parameters - By default, PASCAL passes value parameters
to PASCAL subprograms. When you specify a value parameter, the formal
parameter list does not include the reserved word VAR.

The actual parameter corresponding to a formal value parameter must be
a compatible expression. Value parameters follow the rules for
assignment compatibility. For example, the following list passes all
parameters by value:

INTEGER; C CHAR)

6-22

PROCEDURES AND FUNCTIONS

The actual parameters corresponding
expressions. The actual parameter
character expression.

to A and B
corresponding

must
to

be
C

integer
must be a

If the subprogram changes the value of a value parameter, the change
is not reflected in the calling program unit. Thus, if you do not
want the value of an actuaJ parameter to change as a result of the
execution of a subprogram, you pass it as a value parameter.

6.3.1.2 Variable Parameters - To pass a variabJe parameter, use the
reserved word V~R. You must use the VAR specifier to pass file
parameters and to pass actual parameter variables with values that
change during execution of the subprogram. The corresponding actual
parameter must be a variable; it cannot be a constant or an
expression.

When you pass a variable as a variable parameter, the subprogram has
direct access to the corresponding actual parameter. Thus, if the
subprogram changes the value of the formal parameter, this change is
reflected in the actual parameter in the calling program unit.

In the example procedure PRINT_SYM_ARRAY, the actual parameter
corresponding to A is passed using variable semantics. It must be a
variable of the previously defined type, ARR. The actual parameter
corresponding to Side is passed by value and must be an integer
expression.

The VAR specifier must precede each identifier list that is to be
passed using variable semantics. Thus, VAR can appear more than once
in the formal parameter list, for example:

(VAR SEA, BREEZE: REAL; WIND: INTEGER; VAR SICK

As a result of this formal parameter list, the actual parameters
corresponding to SEA, BREEZE, and SICK are passed as variable
parameters; and the actual parameter corresponding to WIND is passed
as a value parameter (the default) •

Compatibility

Variables passed to a subprogram as actual variable parameters must be
of the same type as the corresponding formal parameters.

The following restrictions also apply to variable parameters:

• You cannot pass an element of a packed structure with the VAR
specifier, although you can pass the entire structure. You
must unpack the structure or assign its elements to simple
variables before you can pass individual elements.

• You cannot pass a variable of a packed set type to a formal
parameter that is an unpacked set type, and vice versa.

• You cannot pass a tag field of a record with the VAR
specifier (see Section 2.3.2.1). You can pass the entire
record or assign the tag field to another variable in order
to pass it.

~-23

PROCEDURES AND FUNCTIONS

6.3.1.3 Formal Procedure and Function Parameters - PASCAL allows
procedures and functions to be passed as parameters to other
procedures or functions. To do this, a full procedure or function
heading is given as one parameter of the procedure being declared.
For example, the following procedure declaration specifies one value
parameter and one function parameter:

F' f~ 0 C E D U I:~ E ACT U A L. (V A l..! J NT E G E r~ ,
FUNCTION FORMAL. (Fl:INTEGER):INTEGER);

VAL. := FORMAL (VAL + 1),

The formal function parameter takes one value integer parameter, and
returns an integer value. When procedure ACTUAL is called, you need
to supply it with two parameters: an integer value; and, the name of
a function which takes one integer argument and returns an integer
value. Note that ONLY the function name is passed to the procedure;
do NOT supply the function's parameters in the procedure call. They
are supplied when the procedure calls the function.

The parameter list of the formal procedure or function may consist of
anything that can be defined in a normal procedure or function
declaration, including value parameters, VAR parameters, conformant
arrays, and even other procedures and functions. These procedures and
functions obey the same rules as the formal procedure or function of
which they are a parameter.

The following is an example of a procedure heading with formal
procedures nest~d to two levels:

PROCEDURE OUTER(PROCEDURE FORMAL1(FUNCTION FORMAL2:REAL, B:REAL»,

Procedure OUTER has one parameter, a procedure. This procedure has
two parameters, a real-typed function (with no parameter.s) and a real
value parameter.

When a subprogram is called with a procedure or function parameter,
the parameter lists of the formal and actual parameters must be
congruous. This means that the parameter lists must have the same
number of parameters; and each corresponding parameter must be of the
same kind (value, VAR, etc.) and of the same type. In the following
example, procedure YOU BET could be passed as a parameter to procedure
OUTER above, because Y5U BET and FORMALl have congruous parameter
lists.

PROCEDURE YOU_BET(FUNCTION YOU: REAL, BET: REAL),

In the following example, procedures PRINTHEX and PRINTOCTAL have
congruous parameter lists. Procedure PRINTBINARY's parameter list is
not congruous to either of the others because both of its parameters
are value parameters.

PROCEDURE PRINTHEX (VAL: INTEGER, VAR SIZE: INTEGER),

PROCEDURE PRINTOCTAL. (I: INTEGER, VAR F: INTEGER),

PROCEDURE PRINTBINARY (NUM: INTEGER, WIDTH: INTEGER),

f)-24

PROCEDURES AND FUNCTIONS

An optional syntax for formal procedure and function parameters is to
omit the parameter list in the declaration. If this is done, no
checking on the number or type of parameters is possible, and only
value parameters are allowed when calling the formal procedure or
function. No conformant array, procedure, or function parameters can
be passed to a formal procedure or function unless they are explicitly
declared.

For information on calJing sequences for user-defined functions and
procedures, refer to Appendix G.

6.3.2 Conformant Arrays

Some programming applications require general subprograms that can
process arrays of varying size. PASCAL allows you to declare such
subprograms using conformant arrays. You can call the subprogram with
arrays of different sizes, as long as their bounds are within those
specified by the formal parameter.

For example, you could write a procedure that sums the components of a
one-dimensional array. Each time you use the procedure, however, you
might want to pass arrays with different bounds. Instead of declaring
multiple procedures using arrays of each possibJe size, you can use a
conformant-array parameter. The procedure treats the formal parameter
as if its bounds were those of the actual parameter.

The format of a conformant-array parameter is:

array id

where:

idlow

idup

array id

ARRAyridlow •. idup : scalar-type id]
OF conformant-array type;

is the lower bound constant identifier

is the upper bound constant identifier

is one or more identifiers associated with the
array

Idlow and idup are bound identifiers. They define the lower and the
upper limits, respectively, of the array. Each id is treated as a
constant value in the subprogram; therefore, you cannot assign values
to the id other than in the definition. You cannot use a subrange to
define the limits.

Scalar type specifies the data type of the index. Note that you must
use a type identifier to specify the range of indices. The type
identifier can be one of the predefined scalar types INTEGER or CHAR.

Conformant-array type can be either a type
conformant-array specification.

6-25

identifier or another

PROCEDURES AND FUNCTIONS

Multidimensional arrays can also use conformant array parameters. The
fo rma tis:

array-id : ARRAY ridlow •• idup : scalar-type idl
OF ARRAY ridlow •. idup : scalar-type idl
OF conformant-array type;

An abbreviated form can also be used
conformant arrays. The format is:

to define multidimensional

array-id : ARRAY [idlow •• idup : scalar-type id;
i dn •. idn : scalar- type idn; .••] OF
conformant-array type;

When a subprogram with conformant-array parameters is called, the IDs
(the bound identifiers) assume the values of the lower and upper bound
values of the actual parameters. These values are those specified in
the definition section of the actual-array parameter.

A conformant-array parameter can have up to one conformant dimension
packed. This means that a one-dimensional conformant-array parameter
can be packed or unpacked. A multidimensional conformant-array
parameter can be unpacked, or its last (rightmost) conformant
dimension can be packed. Note that this restriction applies only to
the conformant part of the parameter; the conformant array type can
be of any type, packed or unpacked.

The components and indices of the actual and formal conformant-array
parameters must be of compatible types. The rules for
conformant-array compatibility are the same as those for other arrays
with one exception. That is, the range of the index types of the
actual-array parameter must be within the range specified for the
formal parameter.

6-26

------------------------------------ ------------

PROCEDURES AND FUNCTIONS

Example 1

The following program shows how to declare and use conformant-array
parameters.

PROGRAM D~narr(INPUT~ OUTPUT);
(* T h i~:; p Y' 0 !,:,! T' a IT! ill u E t rat f:'~ ~:; t h f.~ U S (~ 0 feD n f 0 T' IT! ant a T' T' a ~:~
paraITlf.,-ters.
The PY'ocedure SUIT! is called from the main program with two
d i ffp r.:~nt actua I pa T'amet(,:,~ r~:;: AT' l':L and AT' T'2. *)

1 t • ~:-;O , TYPE Rn~,~

VAR AT'r1
AT'r2
K,J !

ARRAY[1 •• 5J OF INTEGER;
ARRAY[7 •• 20J OF INTEGER,

INTEGER,

PROCEDURE Sum (VAR InarT' : ARRAY [Low •• High : INTEGER] OF
INTEGER),
(* This proceduY'e accepts actual-arT'a~ parameters with intpgpr
components whose indices are within the range specified b~
Rng. *)

VAF, I, Ans
BEGIN

INTEGER,

Ans :== 0;
FOR 1:= Low TO High DO

A n ~j : =~ ~~ I"'I~) + I naT' T' [1 :] ;
WRITELN('The sum of the components is: ',Ans)
END, (*end Sum*)

(* MAIN PROGF~AM *)
BEGIN

END.

WRITELN ('TYPE 5 INTEGERS'),
FOR K:= 1 TO 5 DO

READ (AT'r10\]);
Sum (A r 1':L) ;
WRITELN('TYPE 14 INTEGERS');
FOR J:= 7 TO 20 DO

READU~rr2L.J]) ;.
Sum (Arl~2)

This program sums the components of the arrays Arrl and Arr2. The
procedure Sum includes a I-dimensional conformant-array parameter,
Inarr, whose indices are of type Rng. Within the main program, Sum is
called with two different arrays: Arrl with index type (1 •• 51, and
Arr2 with index type [7 •• 20].

The first procedure call, Sum(Arrl), passes Arrl to Sum. Low assumes
the value of 1, and High assumes the value of 5. The FOR loop
processes array components Inarr[ll to Inarrr5]. When Sum is called
with Arr2, Low assumes the value of 7, and High assumes the value of
20. When Sum is called with Arr2, the FOR loop processes the
components Inarr[7] to Inarr[20].

6-27

PROCEDURES AND FUNCTIONS

Example 2

A conformant-array parameter can have more than one ~imension, as in
this example:

TYPE Level_Ran~e = 1 •• 6;
Ne 1 aSSE-:·~~:; ::" 1 •• 8,
Nstudents = 1 •• 40~
Names = PACKED ARRAY [1 •• 35J OF CHAR;

VAR ~)tudents : AF\f~AY [1 •• 6,1 •• 0,1 •• 40] OF NalllE'S'

F' r~ 0 CEIl U R E 1\ i d C () U n t (!; c h (.1 () 1: A F~ I:~ A Y [: L (-::' V f? 1 L.. 0 w. • L.. (.:~ vel H :i. ~.:.~ h :
L..evel_Ran~e; Nclasses_L()w •• Nclasses_Hi~h
N cIa s 5 f? S' N 5 t IJ d €.~ n t tIl ... 0 w. • N ~:) t u d f:~ n t H i ~.~ h :
: NstudentJ OF Names);

This example defines School as a three-dimensional conformant-array
parameter. Each array passed to School mjght contain the names of all
the students in a particular elementary school. The indices of the
array denote the number of grades in the school, the number of classes
at each grade level, and the number of students in each class.

The actual-array parameters can have from one to six grades, one to
eight classes at any grade level, and one to forty students in any
particular class. Furthermore, the indices of the actual-array
parameters must be within the ranges shown in the TYPE section. For
example, a school with six grades must use integer indices from one to
six. Indices of zero to five, for instance, cannot be used.

6.4 DECLARING A PROCEDURE

A procedure is a group of statements that perform a set of actions.
The use of procedures allows you to break a complex program into
several units, each of which performs one task. For example, a
program that computes social statistics from survey data might contain
procedures to input and validate the data, select a random sample, and
print results.

To declare a procedure, specify its header and block in the procedure
and function section. The header consists of the word PROCEDURE and
the procedure name along with any parameters you want to include. The
block consists of its own declaration section and the executable
section. You can declare a procedure in the main program, in a
module, or in another subprogram.

/5-28

PROCEDURES AND FUNCTIONS

Fo rma t 1

PROCEDURE procedure-identifier [(formal parameters)]

BEGIN

label section;
constant section;
type sec t ion;;
variable section;
procedure-and-function section;

statement [; statement]
END;

Format 2

f[[.GLOBAL] TI} PROCEDURE procedure id
, r FORTRAN 1 lJ

Format 3

[(formal parameters)] [FORWARD;]

PROCEDURE procedure id [(formal parameters)] ;{[EXTERN [AL] ; TIl.
FORTRAN; lJ (

Format 1 shows the format for a procedure that is included within the
program that calls it.

Format 2 shows the format for a procedure that can be called
externally, that is, it can be called from another program. The
FORWARD declaration permits the use of forward references in the
declarations section. Forward declarations are described in Section
6.6. The FORTRAN declaration at the beginning .of the 1ine indicates
that this procedure can be called externally by a FORTRAN program.

Format 3 shows the format for a procedure that is being called
externally. The procedure must be compiled separately from the source
program that calls it. Placing the FORTRAN declaration at the end of
the line indicates that the procedure being called by PASCAL is a
procedure written in the FORTRAN language. Refer to Section ~.7.

procedure id

specifies the identifier to be used as the name of the procedure.

formal parameters

contains the names and
optjonally can include
FUNCTION.

label section

declares local labels.

constant section

types
the

of the formal parameters. It
reserved words VAR, PROCEDURE, and

defines local constant identifiers.

type section

defines local types.

6-29

PROCEDURES AND FUNCTIONS

variable section

declares local v~riables.

procedure-and-function section

declares local procedures and functions.

s ta temen t

specifies
procedure
5.

an action to be performed by the procedure. A
can contain any of the statements described in Chapter

A procedure consists of a heading and a block. The procedure block is
similar in structure and contents to the main program block, with the
following exceptions:

• The declaration section cannot contain VALUE initializations.

• The procedure block ends with END followed by a semicolon
(i), rather than a period (.) as in the main program. The
procedure does not have a block if it is a forward
declaration or is defined externally (EXTERNAL or FORTRAN).

You must declare all the variables that are local to the procedure,
but you should not redeclare the formal parameters or the procedure
identifier as variable, type, or constant identifiers.

For the two examples that follow, assume that these declarations have
been made:

CONST NUMBER = 20;
TYPE Range = 0 •• 100;

List = ARRAY[l •• NUMBERJ OF Ran~e;

VAR ARF~ : List;

Example 1

Min i IlIU Ill' M a ~·d III u tTl

Ave T'age : r~EAI...;

PROCEDURE READ_WRITE (VAR A List);
VAR I : INTEGER;
BEGIN

WRITELN ('Type a list of 20 integers',
'in the range of 0 to 100.');

FOR I := 1 TO Number DO
BEGIN

END
END;

READCA[IJ);
WRITE(A(IJ!7);
WRITELN

The procedure READ WRITE reads a list of
into the array A,-and writes the array.
parameter, the array A.

20 integers, inserts them
READ WRITE uses one variable

Given the declaration of ARR, the following is a valid procedure call:

READ_WRITECARR);

6-30

PROCEDURES AND FUNCTIONS

As a result of this call, the list of integers is written in the array
ARR. The value of this array is then returned to the program unit
that called the procedure READ WRITE.

Example 2

PROCEDURE MIN_MAX_AVG (VAR Miny Max : Ran~e;
VAR Avg : REAL; A : List);

VAR Sum, NMax~ NMin~ J : INTEGER;

BEGIN
M3X := Ael); Min:= Max; Sum:= Max;
NMax := 1; NMin:= 1;
FOR J := 2 TO NUMBER DO
BEGIN

Sum := Sum + A[JJ~
IF A[J) > Max THEN
BEGIN Max := AeJJ;

NMa>: : =:: 1
END
ELSE IF A[JJ = Max THEN

NMax := NMax + 1;
IF AEJJ < Min THEN
BEGIN Min := A[J);

END
ELSE

END;

NMin !:=: 1

IF A[JJ Min THEN
NMin : :~: NMin + 1

AVG := Sum/NUMBER;
WF~ I TELN;
WRITELN('Maximum =',Max:4,', occurring',NMax:4, , times');
WFnTELN;
WRITELN('Minimuffi =', Min:4,', occurring', NMin:4,' times');
WFnTELN;
WRITELN ('Average value (truncated) =', TRUNC(Avg):10);
WRITELN ('Average value ='r Avg : 20)

END;

This procedure computes the minimum, maximum, and average values in
array A. It also counts the number of times the minimum and maximum
values occurred, and stores those numbers in NMin and NMax. The
WRITELN statements print the results of each of those computations.

Min, Max, and Avg are formal variable parameters. Their values, as
assigned in the procedure MIN_MA.X_AVG, are returned to the calling
program unit and can be used for further computations in the program.
A is specified as a value parameter because its value does not change
in the procedure.

The following is a valid procedure call to the procedure:

The values of the formal parameters Min, Max, and Avg are returned to
the actual parameters Minimum, Maximum, and Average, which were
defined in the main block of the program.

6-31

PROCEDURES AND FUNCTIONS

6.5 DECLARING A FUNCTION

A function is a group of statements that compute a scalar or pointer
value. To declare a functjon, specify its heading and block in the
procedure and function section.

Format 1

FUNCTION function id [(formal parameters)] :result type;

labe] sect jon;
constant section;
type section;
variable section;
procedure-and-function section;

BEGIN
statement [;statement ...]

END;

Format 2

{IT [GLOBAL] 11 I(FUNCTION function id [(forma1 parameters)]
[FORTRANl lJ

Fo rma t 3

[FORWARD;D

FUNCTION function id [(formal parameters)] ;{[EXTERN [AL] ;ll}
FORTRAN; lJ

Format 1 shows the format for a function that is included within the
program that calls it.

Format 2 shows the format for a function that can be called
externally, that js, it can be called from another program. Placing
the FORTRAN declaration at the beginning of the line indicates that a
FORTRAN program can call this procedure. The FORWARD declaration
permits the use of forward references in the declarations section.
Forward declarations are described in Section h.n.

Format 3 shows the format for a function that is defined externally;
the procedure is compiled separately from the source program that
calls it. Placing the FORTRAN declaration at the end of the line
indicates that the procedure being called by PASCAL is written in the
FORTRAN language. Refer to Section h.7.

function id

specifies the identifie~ to be used as the name of the function.

formal parameters

contain the names and types
optionally can include the
FUNCTION.

result type

of the formal parameters. They
reserved words VAR, PROCEDURE, and

specifies the type of the function's result. The result must be
a scalar or pointer value.

f5-32

PROCEDURES AND FUNCTIONS

label section

declares local labels.

constant section

defines local constant identifiers.

type section

defines local types.

variable section

declares local variables.

procedure-and-function section

declares local procedures and functions.

statement

specifies an action to be performed by the function. A function
can contain any of the statements oescribed in Chapter 5. A
function must contain a statement that assigns a value to the
function ioentifier (for every potential path through the code).
If it does not, the value of the function could be undefined.

A function consists of a heading and a block. The formal parameter
list in the function heading is identical in format to the list in the
procedure heading. The function block is similar in structure and
contents to the main program, with the following exceptions:

• The function cannot contain a value initialization section .

• The function block ends with END followed by a semicolon (;),
rather than a period (.) as in the main program. The
function does not have a block if it is a forward
declaration, or if it is defined externally (EXTERN(AL) or
FORTRAN) •

You must declare all variables that are local to the function, but you
should not redeclare a variable, type, or constant with the same name
as a formal parameter or the function identifier.

Each function must include a statement or statements that assigns a
value of the result type to the function name. The last value that is
assigned to the function name is returned to the calling program unit.
To use the value, include a function call in the calling unit. Unlike
a procedure call, a function call is not a statement. It simply
represents a value of the function's resuJt type.

6-33

PROCEDURES AND FUNC~IONS

Side Effects

A side effect is an assignment to a non]ocal variable, or to a VAR
parameter, within a function block. Side effects can change the
intended action of a program and therefore, should be avoided. The
following program illustrates an example of a side effect.

PROGRAM Example (OUTPUT)~

VAR X,Y : INTEGER,
ANSI, ANS2 : BOOLEAN;

FUNCTION Positive (ThisVar
BEGIN

Positive := FALSE;
IF ThisVaT' :::- 0 THEN
BEGIN

X := ThisVar - 10;
Positive := TRUE

END
END; (* 0~nd F'o~; i t i v(,.~*)

BEGIN
Y ::::: ?; X: == 1 ~5 Y

INTEGEI:;:)

ANS1 != Positive(X) AND Positive(Y),
WRITEI ... N ('ANSI e(~uals',ANS1);

Y != '7; X !:::: 1:5,
ANS2 != Positive(Y) AND Positive(X);
WRITELN ('ANS2 eouals',ANS2)

END.

This example generates the following output:

ANS 1 e(~ua 1 5

ANS2 e~uals
TRUE
FALSE

BOOLEAN;

(* Side effect on X *)

(* MAIN PROGRAM *)

Thus, the output depends on which function call is evaluated first:
PositivelY) or Positive(X). PASCAL does not guarantee which part of
an expression is evaluated first. The resulting value of a function
should not depend on when the function is called, as it does in the
example above. Therefore, you shou]d avoid side effects on global
variables.

Example I

FUNCTION COUPONS: REAL;
VAR ANS : (YES, NO);

AMOUNT, SUBT : REAL;

END;

BEGIN
SUBT := 0;
WRITELN ('AnY coupons? Type ~es or no.');
READLN (ANS);
IF ANS==YES THEN

BEGIN
WRITELN ('Type value of each coupon, one per line,

CTRL/Z when finished?');
REPEAT

READLN (AMOUNT);
SUBT := SUBT + AMOUNT

UNTIL EOF
END;

COUPONS := SUBT
(* End COUPONS*)

6-34

PROCEDURES AND FUNCTIONS

The function COUPONS computes the total value of a group of coupons.
It uses only the three local variables, ANS, AMOUNT, and SUBT, and
requires no parameters. The result of this function is the real totaJ
of the coupon values. The assignment statement, COUPONS := SUBT,
assigns the result to the function identifier.

To use the function COUPONS, specify its name, as follows:

TOTAL := SUBTOTAL - COUPONS;

The function call is treated as a real-vaJued expression in this
statement. Note that you can use the function call in the same way
that you can use a value of its result type.

Example 2

FUNCTION SYMMETRY <VAR A : ARR) : BOOLEAN;
<*This function returns true if the arra~ A is s~mmetric; it
returns false otherwise.*)

VAR I, J : INTEGER;
BEGIN

SYMMETRY := TRUE;
FOR I := 1 TO SIZE DO

FOR J := I TO SIZE DO
IF A[I,JJ <> A[J,IJ THEN SYMMETRY:= FALSE

END; <* SYMMETRY *)

The function SYMMETRY uses one variable
SYMMETRY returns a Boolean value; the
symmetric, and FALSE if A is not symmetric.

6.6 FORWARD DECLARATIONS

parameter,
result is

the array A.
TRUE if A is

Normally, you must declare subprograms before you refer to them.
However, a subprogram can reference another subprogram that has not
yet been declared if you use a FORWARD declaration. The forward
declaration provides the compiler with information about the
forward-declared subprogram's formal parameters, and indicates that
the block of the subprogram follows later in the source file.

For example, a complete declaration is impossible if two subprograms
call each other recursively. Omitting the declaration is also
impossible because PASCAL needs information about a subprogram's
formal parameters before it can compile a reference to the subprogram.
Therefore, you must forward-declare one of the recursive subprograms.

A forward declaration consists of the subprogram heading (including
the formal parameter list, if any, and the result type, if it is a
function) and the FORWARD directive without a subprogram block, for
example:

PROCEDURE CHESTNUT (BLD :REAL; DOC: CHAR; VAR ARC: REC);FORWARD;

This example declares the procedure CHESTNUT in a FORWARD declaration.
The FORWARD declaration includes only the information shown in the
example. It could also include FORTRAN or GLOBAL, as in Format 2
above.

6-35

PROCEDURES AND FUNCTIONS

When you specify the block of a forward-declared subprogram, you must
not repeat the formal parameter list or the result type of a function.
Except for these omissions, declare the heading and block in the
normal way.

Example

FUNCTiON ADDER (OPi, OP2, OP3 : REAL) : REAL; FORWARD;

PROCEDURE PRINfER (STUDENT: NAME_ARRAY) ;

BEGIN

Z := ADDER CA,B,C)
END;

FUNe'fION ADDER (* OPi, OP2, OP3

BEGIN

REAL

PRINTER ('Leonardo da Vinci');

This example forward-declares the function ADDER. The block of the
function appears after the declaration of the procedure PRINTER. Note
that the heading of the ADDER block specifies its formal parameters
and result type within comment delimiters. Although you must omit the
parameter list and result type when you define the function block,
inserting them as a comment is a good documentation practice.

6.7 EXTERNAL SUBPROGRAMS

The FORTRAN and EXTERNAL directives indicate procedures and functions
that are defined external to a PASCAL program. With these directives,
you can declare subprograms written in another language (such as
FORTRAN or MACRO) and PASCAL subprograms that are compiled separately.
In PASCAL, the FORTRAN directive should be used only for separately
compiled routines written in FORTRAN or a language using the FORTRAN
subprogram calling conventions. The EXTERNAL directive must be used
only for separately compiled external routines written in PASCAL.

If you declare separately compiled PASCAL subprograms as EXTERNAL,
their names must be unique within the first six characters. In
addition, an external subprogram cannot have the same name as the main
program.

6-36

PROCEDURES AND FUNrTIONS

Example 1

FUNCTION SCORE (RESULT: REAL) REAL; EXTERNALf

The function SCORE is a procedure in a library that exists on disk.
This declaration declares SCORE as an external subprogram.

Example 2

PROCEDURE FORSTRCS : PACKED ARRAY[L •• U:INTEGERJ OF CHAR) FORTRAN;

This statement declares the FORTRAN procedure FORSTR. The formal
parameter list specifies S as a conformant-array parameter.

6.8 MODULES FOR SEPARATE COMPILATION

By placing PASCAL procedures and functions in a MODULE, you can
compile them separately from the main program. At load time, you
specify the compiled files containing the main program and the modules
to be loaded together in the executable image. The executable image
can include any number of modules, and each module can contain any
number of subprograms.

Format

[[OVERLAID1] MODULE module name (program parameters);
label section;
constant section;
type section;
variable section;
procedure-ana-function section;
END.

[OVERLAID]

Specifies that the module shares global values with the main
program that calls it. If the module is OVERLAID; then the
constant, type, and variable sections must be identic~l to those
in the main program.

module name

specifies the identifier to be used as the name of the module.

program parameters

lists the external files. This list must be identical in order
and in content to the list in the main program heading.

label section

declares global labels. PASCAL issues a warning-level message if
a module contains a label section, but ignores the labels.

constant section

declares global constant identifiers as in a main program.

type section

defines global types as in a main program.

6-37

PROCEDURES AND FUNCTIONS

variable section

declares global variables as in a main program.

procedure-and-function section

declares the procedures and functions contained in the module.

A module is similar to a main program, except that it has no value
initialization section and no executable section. Modules can contain
the label, constant, type, variable, and procedure-and-function
sections. (PASCAL issues a warning-level message if a nodule contains
label declarations, but ignores the labels.) If the module is
OVERLAID, then the constant, type, and variable sections and the
program parameters must be identical to those in the main program.
The procedure-and-function section defines the subprograms contained
in the module.

To ensure that the program parameters and the constant, type, and
variable sections are identical in the main program and in all
modules, you can place them in a separate file. Then, you can use the
%INCLUDE directive to insert the contents of the file into the main
program and into all modules, instead of repeating all the
declarations and definitions.

If a module shares global variables with a main program, both the
module and the program headings must include the attribute [OVERLAID].
If the module heading does not contain [OVERLAIDl, then all its global
variables are private to the module and cannot be accessed by the main
program or other modules. Subprograms declared at the outermost level
of a module can be declared and called from the main program (or from
another module). You must declare the subprogram with the EXTERNAL
modifier in the calling program unit and with the [GLOBALl attribute
in the module. Similarly, subprograms declared at the outermost level
of the main program with the [GLOBAL] attribute can be declared as
EXTERNAL in a module.

Each subprogram in the module can access data declared either locally
to itself or by the main program.

Examples

[OVERLAID] MODULE SEP (INPUT, OUTPUT);
VAR I: INTEGER;
PROCEDURE READER (N : INTEGER);

VAR K,P : INTEGER;
BEGIN

I := 0;
FOR K := 1 TO N DO

BEGIN
READ (P);
IF P=O THEN I := I + 1;

END;
END.

END
<* READER *)
<*MODULE SEP *)

The MODULE SEP contains one procedure, READER. You can declare READER
as an external subprogram in another module or in the main program.
Because SEP contains the definition of a global data item, I, it is
declared as an [OVERLAID] module. If you declare READER as an
external subprogram, you must declare READER as [GLOBAL] in the module
so that the main program can call it.

6-38

CHAPTER 7

INPUT AND OUTPUT

This chapter describes input and output (I/O) for PASCAL on TOPS-20.
PASCAL provides predefined procedures to perform input and output to
file variables. These procedures are divided into the following
categories:

General Procedures

• OPEN -- associates R file with specified characteristics

• CLOSE -- closes a file

• FIND -- performs direct access to file components

Input Procedures

• RESET -- opens a fiJe and prepares it for input

• GET -- reads a file component into the file buffer variable

• READ -- reads a file component into R specified variable

• READLN -- reads a line from a text file

Output Procedures

• REWRITE -- truncates a file to length zero and prepares it
for output

• PUT -- writes the contents of the file buffer variable into
the specified file

• WRITE -- writes specified values into a file

• WRITELN -- writes a line into a text file

• LINELIMIT -- terminates program execution after a specified
number of lines have been written into a text file

• PAGE -- skips to the next page of a text file

In addition, you can use the predefined functions EOF and EOLN with
text files.

The following sections describe:

• PASCAL file characteristics

• PASCAL record formats

7-1

INPUT AND OUTPUT

• PASCAL input and output procedures

• Terminal 1/0

The input and output procedures are presente~ in alphabetical order.

7.1 FILE CHARACTERISTICS

This section describes the organization of records and methods of
accessing records.

The term file organization app] ies to the way records are physically
arranged on a storage device. The term record cccess refers to the
method used to read records from or write records to a file,
regardless of the file's organization. A file's organization is
specified when the file is created and cannot be changed. Record
access is specified each time the file is opened and can vary.

7.1.1 File Names

The file name indicates the system name of a file that is represented
by a PASCAL file variable in an OPEN procedure (Section 7.7). For the
file name, you can specify a character-string expression that contains
a TOPS-20 file specification or a logical name. Apostrophes are
required to delimit a character-string constant or a logical name used
as a file name.

7.1.2 Logical Names

The TOPS-20 operating system provides the logical name mechanism as a
way of making programs device and file independent. If you use
logical names, your PASCAL program need not specify the particular
device on which a file resides or the particular file that contains
data. Specific devices and files can be defined at run time.

A logical name is an alphanumeric string that you specify in place of
a file specification. Logical names provide great flexibility because
they can be associated not only with. a complete file specification,
but also with a device, a device and a directory, or even another
logical name.

On TOPS-20 you can create a logical name and associate it with a file
specification by means of the TOPS-20 DEFINE command. Thus, before
program execution, you can associate the logical names in your program
with the file specifications appropriate to your needs, for example:

@DEFINE DATA: PS:<BENJAMIN)TEST.DAT.2

This command creates the logical names DATA: and associates it with
the file specification PS:<BENJAMIN)TEST.DAT.2. The system uses this
file specification when it encounters the logical name DATA: during
program execution, for example:

OPEN (INDATA, 'DATA:', OLD);

7-2

INPUT AND OUTPUT

In executing this PASCAL statement, the system uses the file
specification PS:<BENJAMIN>TEST.DAT.2 for the logical name DATA:. To
specify a different file when you execute the program again, issue
another DEFINE command, for example:

@DEFINE DATA: PS:<JENNIFER)REAl.DAT+7

This command associates the logical name DATA: with a different file
specification and replaces the previous logical name assignment. The
OPEN statement above now refers to the file PS:<JENNIFER>REAL.DAT.7.
For more inform3tion about the use of logical names, refer to the
TOPS-20 User's Guide.

7.1.3 File Organization

PASCAL supports sequential file organization. Sequential files
consist of records arranged in the order in which they are written to
the file. The first record written is the first record in the file;
the second record written is the second record in the file, and so on.
As a result, records can be added only at the end of the file.

7.1.4 Record Access

You specify record access mode as a parameter to the OPEN procedure.
PASCAL provides two ways of accessing records:

• Sequential

• Direct

If you select sequential access mode, records are written to or read
from the file, starting at the beginning and continuing through the
file one record after another.

Having sequential access to a file means that you can read a
particular record only after reading all the records preceding it.
New records can be written only at the end of a file that is open for
sequential access.

If you select direct access mode, you can specify the order in which
records are accessed. Each FIND procedure call must include the
relative record number indicating the record to be read. You can
directly access a file only if it contains fixed-length records,
resides on disk, and is open for input (reading).

7.2 RECORD FORMATS

Records are stored in one of two formats:

• Fixed length

• Variable length

You can access fixed-length records in
mode. Variable-length records can
mode.

7-3

either sequential or direct
be accessed only in sequential

I~PUT AND OUTPUT

7.2.1 Fixed-Length Records

When you specify fixed-length records, you ~re specifying that all
records in the file contain the same number of bytes. A file opened
for direct access must cont3in fixed-length records to allow the
record location to be computed correctly. All binary files (that is,
all files except TEXT files) must have fixed-length records. P~SCAL

does not support binary files with variable-length records.

7.2.2 Variable-Length Records

Variable-length records can contain any nUffiber of byt~s up to the
buffer size specified when the file was opened. TEXT files must have
variable-length records. PASCAL does not support TEXT files with
fixed-length rec~rds.

7.3 THE CLOSE PROCEDURE

The CLOSE procedure closes an open file.

Fo rma t.

CLOSE (file variable);

where:

file variable specifies the file to be closed.

Execut.ion of this procedure causes the system to close t.he file. Each
file is automatically closed upon exit from the procedure in which it
is declared, except those which have been dynamically allocated with
the procedure NEW. These files should be explicitly closed; if not,
they are automatically closed when the program ends, or when they are
DISPOSED.

You can close only files that have been opened explicitly with the
OPEN procedure or implicitly by the RESET or REWRITE procedure.
Therefore, you cannot close the predeclared file variables INPUT and
OUTPUT.

Example

CLOSE (AlbulTls);

This procedure closes the file Albums to further access, and deletes
the file if it is internal to the current program.

7.4 THE FIND PROCEDURE

The FIND procedure positions a file pointer at a specified component
in the file.

Fo rma t

FIND (file variable, integer expression);

7-4

where:

file variable

integer expression

INPUT AND OUTPUT

specifies a file that is open for direct
access. The file must have fixed-length
records.

specifies the positive integer
expression indicating the component at
which to position the file. The
component number must not be less than
or equal to zero.

The FIND procedure allows you to directly access the components of a
file. You can use the FIND procedure to move forward or backward in a
file. The file must be open for direct access. That is, you must
have specified DIRECT in the OPEN statement for that file. In
addition, the file must have fixed-length records.

After execution of the FIND procedure, the file is positioned at the
specified component. The file buffer variable assumes the value of
the component, for example:

FIN D (A 1 b 1.1 III S, 4) ~

As the result of this statement, the file position moves to the fourth
component in the file Albums. The file buffer variable Albums
assumes the value of the fourth component.

If you specify a component beyond the end of the file, no error
occurs.

You can use the FIND procedure only when reading a file. If the file
is open for output (that is, with REWRITE), a call to FIND results in
a run-time error.

Example I

BEGIN
FIND (Albums, Current + 2);

END;

If the value of Current is 6, this statement causes the file position
to move to the eighth component. The file buffer variable Albums
assumes the value of the component.

Example 2

BEGIN
FIN D (A 1 b U IT! S, C U l'r e n t .. -1) ;

END~

If the value of Current is 6, this statement causes the file position
to move backward one component to the fifth component.

7-5

INPUT AND OUTPUT

7.5 THE GET PROCEDURE

The GET procedure reads the next component of a
buffer variable.

file into the file

Fo rma t

GET (file variab1e);

where:

file variable specifies the file to be read.

Before you use the GET procedure to read one or more file components,
you must have called the RESET procedure to prepare the file for
reading (input). RESET moves the file position to the first component
and assigns its value to the file buffer variable.

As a result of the GET procedure, the file position moves to the next
component of the file. The file buffer variable takes on the value of
that component, for example:

r;: [~:) E T (B () 0 k ~:;) Y
N P ItJ Y' pc: ::" li n 0 k ~:; ,., Y

GET (Buoks);

After execution of the RESET procedure, the file buffer variable
Books A is set to the first component of the file. The assignment
statement assigns this value to the variable Newrec. The GET
proce~ure then assigns the value of the second component to Books A

,

moving the file position to the second component. The next GET
procedure moves the file position to the third component, as shown in
Figure 7-1.

RESET GET
(BOOKS) (BOOKS)

B.,'""'", CT I
. . I EOF of File

• • t I

RESET GET GET
(BOOKS) (BOOKS) (BOOKS)

MR-S-3117-83

FigurE~ 7-1: File position After GET

By repeatedly using GET statements, you can read sequentially through
the file.

7-f)

INPUT AND OUTPUT

When you reach the end of the file and you request a GET operation,
EOF automatically becomes TRUE, and the file buffer variable becomes
undefined. When EOF is TRUE, you cannot use the GET procedure.
P~SCAL signals a run-time error, and program execution is aborted.

Example

BEGIN
GET (Phones);

END;

This example reads the next component of the file Phones into the file
buffer variable Phones A

• EOF(Phones) must be FALSE; if it is TRUE,
an error occurs.

7.6 THE LINELIMIT PROCEDURE

The LINELIMIT procedure terminates execution of the program after a
specified number of lines have been written into a text file.

Format

LINELIMIT (file variable, n);

where:

file variable

n

specifies the text file to which this limit
applies.

represents
indicating
written to
terminates.

a positive
the number

the file

integer expression
of lines that can be

before execution

When PASCAL initializes a text file, it specifies a large default line
limit. You can override this limit by calling LINELIMIT with your
desired value.

After the number of lines output to the file has reached the line
limit, program execution terminates.

Example

BEGIN
LINELIMIT (Debts,100);

Execution of the program terminates after 100 lines have been written
into the text file Debts.

7-7

INPUT AND OUTPUT

7.7 THE OPEN PROCEDURE

The OPEN procedure does not actually open a file but rather allows you
to specify file attributes. You cannot use OPEN on a file th~t has
had a RESET or REWRITE done, or on the predeclared file INPUT.

Fo rma t 1

OPEN (file variable [,file name E [,history E
IT ,record length E [,record-access-method E
[,record type E [,carriage control E);

Format 2

OPEN (FILE VARIABLE := file variable
[,FILE NAME := file name E
[,HISTORY := history status E

where:

[,RECORD LENGTH := positive integer E
[,RECORD-ACCESS METHOD := record-access-mode E
[,RECORD-TYPE :~ record type E
[CARRIAGE CONTROL .= carriage control D);

file variabJe specifies the PASCAL file variable associated
with the file. You cannot open the
predeclared file variable INPUT.

file name

(internal files)

This parameter is ignored for internal files.
The system creates a unique name for each
internal file.

(external files)

provides information about the file to
TOPS-20. The file name can be a variable or
constant identifier defined as type PACKED
ARRAY (l .• n] OF CHAR, or a file specification
enclosed in apostrophes (for example,
'PS:(MASELLA)BOOKS.DAT') .

If you omit the file name, PASCAL will first
attempt to use the file variable identifier
as a logical name. If that name is not
defined, PASCAL will use the defaults shown
in Table 7-1.

The file variable and the file name parameters designate the file to
be opened. The remaining parameters specify attributes for the file
and are summarized in Table 7-2, in Section 7.7.5. Except for the
file variable name, all parameters are optional. Any parameters you
specify, however, must be in the order shown above unless you use
keywo rd syn tax.

You can specify either the value of the parameter or the keyword and
the value of the parameter. You can also use a combination.

7-8

INPUT AND OUTPUT

To specify only the value without the keyword, place each parameter in
the same order shown in the format. If a particular parameter is not
used, then a comma may be inserted. PASCAL generates a warning
message if the position of an unused parameter is not jndicated by a
comma. However, the correct default for the missing parameter is used
in either case.

To use a keyword, specify the keyword and its associated value. When
you use a keyword, you have to specify only the parameters that are
used; it is not necessary to insert ~ comma to indicate unused
parameters. Keyword parameters can be placed in any order; they do
not have to be in the same order as shown in the format.

You can also use a combination of values and keywords with values.
However, once you use a keyword within the statement, subsequent
values must be associated with a keyword.

Table 7-1: Default Values for TOPS-20 External File Specifications

--
Element

Device

Directory

File name

File type

Generation number

Default

Current user device

Current user directory

PASCAL file variable name,
truncated to first 39
characters

DAT

OLD: highest current number
NEW: highest current number + 1

Because the RESET and REWRITE procedures actually open files, you need
not always use the OPEN procedure. RESET and REWRITE impose the
defaults for the TOPS-20 file specification, file status, record
length, record access mode, record type, and carriage control shown in
Table 7-1 and Table 7-2. For the file status attribute, RESET uses a
default of OLD, and REWRITE uses a default of NEW. You must use the
OPEN procedure for the following:

• To open a file for DIRECT access by the FIND procedure

• To specify a buffer size other than 133 for a text file

• To open any file with other than the default file name

7-9

INPUT AND OUTPUT

7.7.1 File History -- NEW, OLD, READONLY, or UNKNOWN

The file status indicates whether the specified file exists or must be
created. The possible values are:

NEW
OLD
HEADONLY
UNKNOWN

A file status of NEW indicates that a new file must be created with
the specified attributes. NEW is the default value.

If you specify OLD, the system tries to open an existing file. An
error occurs if the file cannot be found. OLD is invalid for internal
files, which are newly created each time the declaring program or
subprogram is executed.

A file status of READONLY indicates that an existing file is being
opened only for reading. An error occurs if you try to write to a
file that has been opened with READONLY.

If you specify UNKNOWN, the system first tries to open an existing
file. If an existing file cannot be found, a new file is created with
the specified attributes.

If you specify READONLY, the system generates an error if a REWRITE is
performed on the file. READONLY implies OLD.

7.7.2 Record Length

The record length parameter specifies the record length used in the
file. Any positive integer can be used.

7.7.3 Record Access Mode -- SEQUENTIAL or DIRECT

The record access mode specifies the access to the components of the
file. The modes are:

DIRECT
SEQUENTIAL

In SEQUENTIAL mode, you can access files with fixed
variable-length records. The default access mode is SEQUENTIAL.

or

DIRECT mode allows you to use the FIND procedure to access files with
fixed-length records. You cannot access a file with variable-length
records in DIRECT mode.

7-10

INPUT AND OUTPUT

7.7.4 Record Type -- FIXED or VARIABLE

The record type specifies the structure of the records in a file. The
record types are:

FIXED
VARIABLE

A value of FIXED indicates that all records in the file have the same
length. A value of VARIABLE indicates that the records in the file
can vary in length. FIXED is the default for non-TEXT files;
VARIABLE is the default for TEXT files.

7.7.5 Carriage Control -_. LIST, CARRIAGE, or NOCARRIAGE

The carriage control option specifies the carriage control format for
a text file. The options are:

LIST
CARRIAGE
FORTRAN
NOCARRIAGE
NONE

A value of LIST indicates single spacing between components. LIST is
the default for all text files, including the predefined file OUTPUT.

The CARRIAGE option indicates that the first character of every output
line is a carriage control character. These characters and their
effects are summarized in Table 7-4.

FORTRAN is equivalent to CARRIAGE.

NOCARRIAGE means that no carriage control applies to the file. In
particular, WRITELN will not output an EOLN to a NOCARRIAGE file, and
the PAGE procedure will cause a run-time error.

NONE is equivalent to NOCARRIAGE.

7-11

INPUT AND OUTPUT

Table 7-2 summarizes the file attributes.

Table 7-2: Summary of File Attributes

Parameter

File status

Reco rd I eng th

Record-access
mode

Record type

Carriage control

7.7.6 Examples

Example I

BEGIN

possible Values

OLD, NEW, RE~DONLY or
UNKNOWN

any positive integer

DIRECT or SEQUENTIAL

FIXED or VARIABLE

LIST,
FORTRAN,
or NONE

TEXT;

CARR Lh.G E ,
NOCARRIAGE,

OPEN (Userguide);

EN1H

Default

NEW

133

SEQUENTIAL

VARIABLE for text
files; FIXED for
no n- t ext f i 1 e s .

LIST for all text
files; NOCARRIAGE for
all other files

In this example, the OPEN procedure specifies only the file variable
so no defaults for the file will be changed. This usage of OPEN
essentially causes no action.

Example 2

BEGIN
OPEN (Userguide",80);

END;

The OPEN statement sets the record length for USERGUIDE to 80
characters.

Exampl e 3

BEGIN
OPEN (OUTPUT"""CARRIAGE);

END;
7-12

INPUT AND OUTPUT

This example causes the system to interpret the first character of
each line written to the predeclared file OUTPUT as a carriage control
character. When you call OPEN for the predeclared file OUTPUT, you
can specify only a carriage control option. If you include any other
parameters, an error occurs.

Example 4

BEGIN
[) PEN (A :I. b I..Im S 9 ,. P!:l : -::: ,J E N N J F E r~ :> I N V E N T I, 0 L.. D , , [I IRE C T) ;

END,

The file variable albums will be associated with the file
specification PS:(JENNIFER>INVENT. A RESET will initiate reading of
the existing (OLD) file, or cause an error if the file does not exist.
The file wil] be opened for direct access; that is you Cr.ln use the
FIND procedure with this file. A REWRITE will ignore the OLD
parameter.

Example 5

BEGIN
OPEN (~;DlaT" 'Enpr'~J~:l:" NEWl' , FIXED);

END;

Assuming that Energy is defined as a logical name, this statement
causes a RESET or REWRITE to create a file with the specification
designated by the logical name Energy. The identifier Solar is used
within the program to refer to the TOPS-20 logical name. The file is
created with fixed-length records. Default values are used for the
record length and the record access parameters.

Exampl e 6

BEGIN
OPEN (File_Name := 'PS:-:::SMITH:>PLAN.DAT',RECORD_TYPE != VARIABLE,

File_Variable:=Plans);

END,

The file variable plans is associated with the file PLAN.DAT on PS:
with a directory of <SMITH>. The file name and record type parameters
use keywords. Because the file name keyword is used, each subsequent
parameter must use a keyword. It is not necessary to indicate each
unused parameter with a comma when keywords are used.

7-.13

INPUT AND OUTPUT

7.8 THE PAGE PROCEDURE

The PAGE procedure skips to the next page of a text file.

Fo rma t

P i'\G E (f i 1 e va ria b] e) ;

where:

file variable specifies a text file.

Execution of the PAGE procedure causes the system to flush the
contents of the record huffer, then skip to the next page of the
specified text file. The next 1 ine written to the file begins on the
first line of a new page. You can use this procedure only on text
files. If you specify a file of any other type, PASCAL issues an
error message.

The value of the page eject record that is output to the file depends
on the carriage control format for that file. When CARRIAGE is
enabled, the page eject record is equivalent to the carriage control
character '1'. When LIST is enabled, the page eject record is a form
feed character. When NOCARRIAGE is enabled, the PAGE procedure
generates an error.

Example 1

BEGIN
PAGE (Use T'~.:.lU i. de) ;

END;

This example causes a page eject record to be written in the text file
Userguide.

Example 2

BEGIN
PAGE (OUTPUT);

ENIH

This example calls the PAGE procedure for the predeclared file OUTPUT.
As a result of this procedure, a page eject record is output at the
terminal (in interactive mode) or in the batch log file (in batch
mode) •

7-14

INPUT AND OUTPUT

7.9 THE PUT PROCEDURE

The PUT procedure appends a new component to the end of a file.

Fo rma t

PUT (file va:riable);

where:

file variable specifies the file to which one or more
components will be written.

Before executing the PUT procedure, you must have executed the REWRITE
procedure. REWRITE clears the file and sets EOF to TRUE, preparing
the file for output. If EOF is FALSE, the PUT procedure fails; a
run-time error occurs; and program execution is terminated.

The PUT procedure writes the value of the file buffer variable at the
end of the specified file. After execution of the PUT procedure, the
value of the file buffer variable becomes undefined. EOF remains
TRUE.

Example

PROGRAM Bookfile (INPUT,OUTPUT,Books);

TYPE St T':i n~~~ :::: PACKED ARRAY [1 •• 40 J OF CHAR;
Book rec ::!: RECORD

Author : Strins;
Title : Strins
END;

VAR Newbook: Bookrec;

BEGIN

END.

Books : FILE OF Bookrec;
N : INTEGER;

F~EWR I TE (Books);
FOR N !: 1 TO 10 DO BEGIN

WITH Newbook DO BEGIN
WRITE ('Title:');
f~EAD (Title);
WRITE ('Author!');
READ (Author);
END;

Books- != Newbook;
PUT (Book~;)

END

This program writes the first 10 records into the file Books. The
records are input from the terminal to the record variable Newbook.
They consist of two 40-character strings denoting a book's author and
title. The FOR loop accepts 10 values for Newbook, assigning each new
record to the file buffer variable BooksA. The PUT statement writes
the value of Books A into the file for each of the 10 records input.

7-15

INPUT AND OUTPUT

7.10 THE READ PROCEDURE

The READ procedure reads one or more file components into a variable
of the component type.

Format

READ ([file variable,TI variable name [,variable name •.. TI);

where:

file variable

variable name

specifies the input file. If you omit the
file variable, PASCAL uses INPUT by default.

specifies the variable into which the file
component(s) are read. For a text file, many
file components can be read into one
variable.

By definition, the READ procedure
assignment statement and a GET
Thus, the procedure call

for a nontext file performs an
procedure for each variable name.

READ (file variable, variable name);

is equivalent to

variable name := file variable~;
GET (file variable);

The READ procedure reads from the file until it has found a value for
each variable in the list. The first value read is assigned to the
first variable in the list; the second value is assigned to the
second variable, and so on. The values and the variables must be of
compatible types.

For a text file, more than one file component (that is, more than one
character) can be read into a single variable. For example, many text
file components can be read into a string or numeric variable. The
READ procedure repeats the assignment and GET process until it has
read a sequence of characters that represent a value for the next
variable in the parameter list. It continues to read components from
the file until it has assigned a value to each variable in the list.

Values from a text file can be read into variables of integer, real,
character, string, and enumerated types. In the file, values to be
read into integer and real variables must be separated by spaces or
must be put on new lines. Values to be read into character variables,
however, must not be separated because they are read literally,
character-by-character. Constants of enumerated types must be
separated by at least one space. Any other character that is invalid
in an identifier terminates the constant. Only the first 31
characters of the constant are significant; PASCAL ignores any
remaining characters.

You can use READ to read a sequence of characters from a text file
into a string (that is,a variable of type PACKED ARRAY[l •• n] OF CHAR).
PASCAL assigns successive characters from the file to elements of the
array, in order, until each element has been assigned a value. If any
characters remain on the line after the array is full, the next READ
begins with the next character on that line. If the end of the line
is encountered before the array is full, the remaining elements are
assigned spaces.

7-16

INPUT AND OUTPUT

READ does not read past EOLN if it is reading into a string type.
Instead, READ continues to return blanks until the EOLN is explicitly
passed by using READLN.

If you call READ when the file is positioned at the end of a line, the
file position moves to the beginning of the next line, unless it is c.
string variable. Characters are then read into the specified starting
variable. If this line is empty, the string is filled with spaces.

Every text file ends with an end-of-line mark and an end-of-file mark.
Therefore, the function EOF never becomes TRUE when you are reading
strings with the READ procedure. To test EOF when reading strings,
use the READLN procedure.

Example I

BEGIN
READ (TemFY Ase~ Weisht);

END;

Assume that Temp, Age, and Weight are real variables, and you type in
the following values:

90.6 11.0 7~5+0

The variable Temp takes on the value 98.6; Age
11.0; and Weight takes on the value 75.0.
type all three values on the same line.

Example 2

TYPE Strins = PACKED ARRAY [1 •• 20J OF CHAR;
VAR Names TEXT;

Pres~ Veep: Strins;

BEGIN
READ (Name!:., Pres, Veep);

takes on the value
Note that you need not

This program fragment declares and reads the file Names, which
contains the following characters:

John F. Kennedy
Hubert H. Humphrey
Richard M. Nixon

Lyndon B. Johnson
<EOLN)
Spiro T. Agnew

Lyndon B. Johnson <EOLN)

<EOLN)

The first call to the READ procedure sets Pres equal to the
20-character string 'John F. Kennedy 'and Veep equal to 'Lyndon
B. Johnson The second call to the procedure assigns 'Lyndon B.
Johnson to Pres and spaces to Veep. Unless READLN is used to read
past the EOLN, READ continues to assign spaces.

7-17

INPUT AND OUTPUT

7.11 THE READLN PROCEDURE

The READLN procedure reads lines of data from a text file.

Fo rma t

READLN [([file variable,E variable name [,variable name···E)E

where:

file variable specifies the name of the text file to be
read. If you do not specify a file variable,
PASCAL uses INPUT by default.

variable name specifies the variable into which a value
will be read. If you do not specify any
variable names, READLN skips a line in the
specified file.

The READLN procedure reads values from a text file. After reading
values for all the listed variables, the READLN procedure skips over
any characters remaining on the current line and positions the file at
the beginning of the next line. All the values need not be on a
single line; READLN continues until values have been assigned to all
the specified variables, even if this process results in the reading
of several lines of the input file. READLN performs the following
sequence:

READ (file variable, variable name .•.);
READLN (file variable);

EOLN(file variable) is TRUE only if the new line is empty.

You can use the READLN procedure to read integers, real numbers,
characters, strings, and constants of enumerated types. The values in
the file must be separated as they are for the READ procedure.

The READLN statement automatically pads strings. Thus, it is not
necessary to pad strings with spaces to match the variable size if you
are using the predefined file INPUT or reading from a file defined as
TEXT.

If EOLN() is TRUE when you call READLN, the first value read is the
first value in the next line, unless you are reading a character. If
you are reading a character, the first value read is a space.

Example

TYPE Strin~ = PACKED ARRAY [1 •• 20J OF CHAR;
VAR Names : TEXT;

Pres, Veep : Strin~;

WHILE NOT EOF (Names) DO;
BEGIN
READLN (Names, Pres, Veep);

END;

7-18

INPUT AND OUTPUT

This program fragment declares and reads the file Names, which
contains the following characters:

John F. Kennedy
Hubert H. Humphrey
Richard M. Nixon
(EOLN>
(EOF>

Lyndon B. Johnson
(EOLN>
~;piro T. Agnew

Lyn~on B. Johnson (EOLN>

(EOLN>

The READLN procedure reads the values 'John F. Kennedy for
Pres and 'Lyndon B. Johnson 'for Veep. It then skips to the next
line, ignoring the remaining characters on the first line. Subsequent
execution of the procedure assigns the value 'Hubert H. Humphrey ,
to Pres and sets Veep to all blanks, because READ of a string will not
go past EOLN. The next execution of the procedure assigns the value
'Richard M. Nixon ' to Pres and 'Spiro T. Agnew to Veep, then
skips to the next line. The last execution of READLN sets both Pres
and Veep to all blanks, and skips the EOLN, which causes EOF to become
TRUE, so the loop exits.

7.12 THE RESET PROCEDURE

The RESET procedure readies a file for reading by setting the file
pointer to the first component in the input file.

Format

RESET (file variable);

where:

file variable specifies the file to be read.

If the file is not already open, RESET opens it using the defaults
listed in Table 7-1 and Table 7-2. To open a file that does not use
default values, use the OPEN statement.

After execution of RESET, the file is positioned at the first
component; and the file buffer variable contains the value of this
component. The arrow in Figure 7-2 shows the file position after
RESET. If the file is empty, EOF is TRUE; otherwise, EOF is FALSE.
If the file does not exist, RESET returns an error at run time; RESET
does not create the file.

Figure 7-2: File position after RESET

7-19

INPUT AND OUTPUT

You must call RESET before reading any file except the predeclared
file INPUT. If you call RESET for the predeclared file INPUT or
OUTPUT, a run-time error occurs.

Examples

Example I

BEGIN
OPEN (Phones,'Phones.Dat'"DIRECT);
RESET (Phones);

These statements open the file variable Phones for direct access on
input. After execution of the OPEN and RESET procedures, you can use
the FIND procedure for direct access to the components of the file
Phones.

Example 2

BEGIN
RESET (Weights)~

END~

If the file variable Weights is already open, this statement enables
reading and sets Weights A to the first file component. If the fil~ is
not open, this statement causes the system to search for the file
designated by the logical name Weights: If no such logical name is
assigned, the system searches for the file WEIGHTS.DAT on the user's
default device and directory. If the file exists it is opened for
sequential read access. If the file does not exist, a run-time error
occurs.

7.13 THE REWRITE PROCEDURE

The REWRITE procedure readies a file for output by setting the file
pointer to the first component of the output file.

Format

REWRITE (file variable);

where:

file variable specifies the file to be enabled for output.

If the file does not exist, REWRITE creates and opens it using the
defaults listed in Table 7-1 and Table 7-2. If the file exists,
REWRITE supersedes it using the defaults listed in Table 7-1 and Table
7-2. To open a file that does not use default values, use the OPEN
statement.

7-20

INPUT AND OUTPUT

You must call REWRITE before writing any file except the predeclared
file OUTPUT. If you call REWRITE for the predeclared file INPUT or
OUTPUT, a run-time error occurs.

The REWRITE procedure sets the file to length zero and sets EOF to
TRUE. You can then write new components into the file with the PUT,
WRITE, or WRITELN procedure (WRITELN is defined only for text files).
After the file is open, successive calls to REWRITE close and
supersede the existing file; that is, they create new versions of the
file.

To update an existing file, you must
file, specifying new values for
upda te.

Example I

BEGIN
REWRITE (Storffis)~

END;

copy its contents to another
the components that you need to

If the file variable Storms is already open, this statement enables
writing and sets the file position to the beginning of the file. If
Storms is not open, a new version is created with the same defaults as
for the OPEN procedure.

Example 2

BEGIN
OPEN (f~t:'sult~;" 'F'~:;:<CHEN>ISSUES+DAT' , OLD" ,FIXED);
REWRITE (Hesults),

END,

The OPEN procedure sets defaults for the file variable Results, which
is associated with the file ISSUES.DAT in directory PS:<CHEN>. The
REWRITE procedure discards the current contents of the file Results
and sets the file position at the beginning of the file. After
execution of this statement, EOF(Results) is TRUE.

7.14 THE WRITE PROCEDURE

The WRITE procedure writes data into a file.

Fo rma t

WRITE [file variable,] print list);

7-21

where:

file variable

print list

INPUT AND OUTPUT

specifies the file to be written. If you
omit the file variable, PASCAL uses OUTPUT by
defaul t.

specifies the values to be output, separated
by commas. The print list can contain
constants, variables, and expressions. For
nontext files, the items in the print list
must be compatible with the file component
type.

By definition, the WRITE procedure for a nontext file performs an
assignment statement and a PUT procedure for each variable name.
Thus, the following procedure calls are equivalent:

1. WRITE (file variable, variable name);

2. file variable A

:= variable name;
PUT (file variable)

For text files, the WRITE procedure converts each item in the print
list to a sequence of characters. The WRITE procedure repeats the
assignment and PUT process until all the items in the ljst have been
written in the file.

The print list can specify constants, variable names, array elements,
and record fields, with values of any scalar type. Each value is
output with a minimum field width, as specified in Table 7-3.

Table 7-3: Default Values for Field Width

Type of Variable Number of Characters Printed

In teg er 17.

Real 16

Double 24

Boolean

Character 1

Enumerated 31

String Length of string

You can override these defaults for a particular value by specifying a
field width in the print list. The field width specifies the minimum
number of characters to be output for the value. The following is the
format of the field-width specification:

variable name: minimum: fraction

Both minimum and fraction represent positive integer expressions. The
minimum indicates the minimum number of characters to be output for
the value. The fraction, which is permitted only for real numbers,
indicates the number of digits to the right of the decimal point.

7-22

INPUT AND OUTPUT

The following rules apply to designating field-width parameters in
output procedures:

1. If a real value does not have the function parameter, PASCAL
prints the value in floating-point format.

2. If the print field is wider than necessary, PASCAL prints the
value with the appropriate number of leading blanks.

3. If the print field is too narrow, PASCAL treats the different
kinds of write parameters as follows:

• Strings and nonnumeric scalar values are truncated on the
right to the specified field width.

• Integers and real numbers in decimal format are printed
using the full number of characters needed for the value,
thus overriding the field-width specification.

• Real and double values in floating-point format are
printed in a field of at least eight characters (for
example, -l.OE+OO). All real values in either format are
printed with a leading blank if they are positive and a
leading minus sign if they are negative.

By default, PASCAL prints real numbers in floating-point format. Each
real number is preceded by at least one blank, for example:

WRITE (Shoesize);

If the value of Shoesize is 12.5, this statement produces the
following output:

1.25000000EtOl

To print the value in decimal format, you must specify a field width
as in this example:

WRITE (Shoeslze:5:1);

The first integer indicates that a minimum of five characters will be
output. The minimum includes the leading blank, the sign (if any),
and the decimal point. The second integer specifies one digit to the
right of the decimal point. This statement results in the following
output:

12.5

If the print field is wider than necessary, PASCAL prints the value
with leading blanks.

If you try to print a nonnumeric value in a field that is too narrow,
PASCAL truncates the value on the right to fit into the field. For
integers, however, it prints the entire value without truncation.
PASCAL widens the field to eight characters for real and
double-precision numbers in exponential notation. It does not
truncate real and double-precision numbers in decimal notation.

7-23

INPUT AND OUTPUT

For a variable of an enumerated type, PASCAL prints the constant
identifier denoting the variable's value. Because PASCAL ignores any
characters beyond the thirty-first in an identifier, only the first 31
characters of a long identifier appear, for example:

VAR Color : (Blue,Yellow,Black,Sli~htl~_Pale_Peach_Summer_Sun5et)~

BEGIN
WRITE ('M~ favorite color is ',Color:35);

END;

When the value of Color is Yellow, the following is printed:

M~ favorite color is YELLOW

When the value of Color is Slightly_Pale Peach Summer_Sunset, however,
the following appears:

My favorite color is

Although the field width specified is wide enough for all 33
characters in the identifier, PASCAL ignores the last two characters
and prints two leading blanks. Note that constants of enumerated
types are printed in all uppercase characters.

If you open the predeclared file OUTPUT with the carriage control
option LIST, PASCAL allows you to use the WRITE procedure to prompt
for input at the terminal. Each time you read from INPUT, the system
checks for any output in the terminal record buffer. If the buffer
contains any characters, the system prints them at the terminal, but
suppresses the carriage return at the end of the lin(~. The output
text appears as a prompt, and you can type your input on the same
line, for example:

WRITE ('Name three presidents:');
READ (Pres1, Pres2, Pres3);

When PASCAL executes the READ procedure, it finds the output string
waiting to be printed. PASCAL prints the prompt at the terminal,
leaving the carriage just after the colon (:). You can then begin
typing input on the same line as the prompt.

Prompting works only for the predeclared files INPUT and OUTPUT. For
any other files, no output is written until you fill the record buffer
or start a new line.

Example 1

TYPE Strins = PACKED ARRAY [1 •• 20] OF CHAR;
VAR Names: FILE OF Strins;

Pres String;
BEGIN

WRITE (Names, 'Millard Fillmore " Pres);

END;

7-24

INPUT AND OUTPUT

This example writes two components in the file Names.
the 20-character string constant 'Millard FiJlmore
is the string variable Pres.

The first is
The second

Example 2

BEGIN
WRITE (Num1:S:1,' and',Num2:S:1,' sum to',(NumltNum2)!6:1);

END;

If you specify an expression, PASCAL prints its value. For example,
if Numl equals 71.1 and Num2 equals 29.9, this statement prints:

71.1 and 29.9 sum to 101.0

Note that each of the real numbers is preceded by a space.

Example 3

VAR Rainamts : FILE OF REAL;
Avgrain,Maxrain~Minrain : REAL;

BEGIN
WRITE (Rainamts,Avgrain,Minrain,0.312,Maxrain);

END;

The file Rainamts contains real numbers indicating amounts of
rainfall. The WRITE procedure writes the values of the variables
Avgrain and Minrain into the file, followed by the real constant 0.312
and the value of the variable Maxrain.

7.15 THE WRITELN PROCEDURE

The WRITELN procedure writes a line of data in a text file.

Format

WRITELN [file variable,] print list);

where:

file variable

print list

specifies the text file to be
you omit the file variable,
OUTPUT by default.

written.
PASCAL

If
uses

specifies the values to be output, separated
by commas. The print list can specify
constants, variable names, array elements,
and record fields, with values of any scalar
type. Output of strings is also permitted.
Each value is output with a minimum field
width.

7-25

INPUT AND OUTPUT

The WRITELN procedure writes the specified values into the text file,
then starts a new line, for example:

W F..: I T E t.. N (U ~:; E' T' ~.11..1 ide, / T his 11. a n 1..1 aId f.~ seT' i b c·~ s how Y () 1..1 i n t e T' act /) ,

As a result of this statement, the system writes the string in the
text file Userguide and skips to the next line.

When you open a text file, you can specify the CARRIAGE option for
carriage-control format. If you select CARRIAGE format, the first
character of each output line IS treated as a carriage-control
character when output is directed to carriage-control devices such as
the terminal and the line printer. If output is not directed to a
carriage-control device, the carriage-control character is written
into the file and will be read when you open the file for input.
Table 7-4 summarizes the carriage-control characters and their
effects.

For carriage-control purposes, any characters other than those listed
in the table are ignored.

The carriage-control character must be the first item in the WRITELN
print list. For example, if the text file Tree is open with the
CARRIAGE option, you can use the following statement:

lAHnTEl..N (TT'ef:~' I I ~ StT'i.n~H, Strins2) ;

The first item in the print list is a space character. The space
indicates that the values of Stringl and String2 are printed beginning
on a new line when the file is output to a terminal, line printer, or
similar carriage-control device.

Table 7-4: Carriage-Control Characters

Character Meaning

'+'

space

'0'

1 '

Overprinting: starts output at the beginning of the
current line

Single spacing: starts output at the beginning of
the next line

Double spacing: skips a line before starting output

Paging: starts output at the top of a new page

If you specify CARRIAGE but use an invalid carriage-control character,
the first character in the line is ignored. The output appears with
the first character truncated.

7-2()

INPUT l\ND OUTPUT

Example 1

BEGIN
WRITELN (Class[lJ:2,' is the ~rade for this student.');

END;

This example writes an element of the character array Class to the
file OUTPUT. The value is written with a minimum field width of ~.

Example 2

BEDIN
WF~ I TELN;

If you specify WRITELN without a file variable or print list, PASCAL
ends the printing of the current line on the standard output device
(usually the terminal).

Example 3

TYPE String: PACKED ARRAY [1 •• 40] OF CHAR;
VAR Newhires: TEXT,

BEGIN

N : INTEGER:
NE.'w T'f?C : RECORD

ID : INTEGER,
Name : St T' i n~H
Address : String;
Salary : String
END,

OPEN (Newhires, CARRIAGE);
WITH Newrec DO BEGIN

END;

WRITELN (Newhires, 'lNew hire t',ID,'IS ',Name);
WRITELN (Newhires, , " Name, 't Lives at:');
WRITELN (Newhires);
WRITELN (Newhires, , " Address)
END;

This example writes four lines in the text file Newhires. The output
starts at the top of a new page, and fits the following format:

New hire t 73 is Irving Washington
IrVing Washington lives at:

22 Chestnut St, Seattle, Wash.

7-27

INPUT AND OUTPUT

7.16 TERMINAL I/O

The PASCAL language requires that the file buffer always contain the
next file component that will be processed by the program. This
requirement can cause problems when the input to the program depends
on the output most recently generated. To alleviate such problems in
the processing of the predeclared text files INPUT and OUTPUT, PASCAL
uses a technique called delayed device access, also know as lazy
lookahead.

As a result of delayed device access, an item of data is not retrieved
from a physical file device and inserted in the file buffer until the
program is ready to process it. The file buffer is filled when the
program makes the next reference to the file. A reference to the file
consists of any use of the file buffer variable, including its
implicit use in the GET, READ, and READLN procedures, or any test for
the status of the fi1e, namely, the EOF and EOLN functions.

The RESET procedure initiates the process of delayed device access.
RESET is done automatically on the prede~lared file INPUT. RESET
expects to fill the file buffer with the first component of the file.
However, because of delayed device access, an item of data is not
supplied from the input device to fill the file buffer until the next
reference to the file.

When writing a program for which the input will be supplied by the
predeclared text file INPUT, you should be aware that delayed device
access occurs. Because RESET initiates delated device access, and
because EOF and EOLN cause the buffer to be filled, you should place
the first prompt for input before any tests for EOF or EOLN. The
information you enter in response to the prompt supplies the data that
is retained by the file device until you make another reference to the
input file.

Example

VAR
I

BEGIN

INTEGER;

WRITE ('Enter an integer or an empty line: ');
WHILE NOT EOLN DO

BEGIN
READLN (I);
WRITELN ('The integer was: ' , 1:1);
WRITE ('Enter an integer or an empty line: ');
END;

WRITELN ('Done');
END.

7-28

INPUT AND OUTPUT

The first reference to the file INPUT is the EOLN test in the WHILE
statement. When the test is perfor~ed, the system attempts to read a
line of input from the text file. Therefore, it is very important to
prompt for the integer or empty line before testing for ROLN.

Suppose you respond to the first prompt by supplying an integer as
input. Access to the input device is delayed until the EOLN function
makes the first reference to the file INPUT. The EOLN function causes
a line of text to be read into the internal line buffer. The
subsequent READLN procedure reads the input value from the line of
text 8nd assigns it to the variable I. The WRITELN procedure writes
the input value to the text file OUTPUT. The final statement in the
WHILE loop is the request for another input value. The loop
terminates when the EOLN detects the end-of-line marker.

7-29

CHAPTER 8

USING PASCAL ON TOPS-20

This chapter describes how you use PASCAL with the TOPS-20 operating
system. The steps in the program development process include:

• Creating the source program

• Compiling the program

• Loading the program

• Executing the program

This chapter describes the standard TOPS-20 file specifications and
defaults, and contains instructions for creating, compjling, loading,
and executing a PASCAL program.

8.1 PROGRAM DEVELOPMENT PROCESS

The TOPS-20 operating system provides a variety of methods to produce
an executable program.

The first step is to create a program using an editor.
described in Section 8.3.

This is

The second step is to compile the program using the PASCAL command.
This is described in Section 8.4.

The third step is to load the program into memory using either the
LOAD command or the LINK program. The LOAD command is described in
Section 8.5. For more information about LINK, refer to the LINK
Reference Manual.

At this point you can use the START or the SAVE command. START runs
the program that is currently loaded in memory. SAVE creates an
executable image, an EXE file, and stores it in your disk area. If
you use the SAVE command, you can then use the RUN command to execute
the program now or at a later date.

If you do not SAVE the EXE file, you must load the file into memory
before you can run it.

To save time, you can use the EXECUTE command. (See Section 8.6.)
With EXECUTE, you can compile, load, and start a program all at once.
EXECUTE does not create an EXE file.

8-1

USING PASCAL ON TOPS-20

8.2 FILE SPECIFICATIONS AND DEFAULTS

A file specification indicates the input file to be processed or the
output file to be produced. File specifications have the following
form:

device:<directory>filename.fiJetype.gen

The punctuation
required syntax
specification.

marks
that

(colons,
separate

angle brackets, and periods) are
the various compone~ts of the file

device

identifies the device or file structure on which the file is
stored or is to be written.

directory

identifies the name of the directory under which
catalogued, on the device specified. You can
directory name with angle brackets, as shown above.

the file
delimit

is
the

filename

identifies the file by its name.
to 39 alphanumeric characters.
characters.

The source file name can be up
REL file names can be up to six

filetype

gen

describes the kind of data in the file. The source file type can
be up to 39 alphanumeric characters. REL ffle types can be up to
three characters.

specifies the generation of the TOPS-20 file desired.
Generations are identified by a decimal number, which is
incremented by 1 each time a new generation of a file is created.
A period is used to separate file type and generation.

You need not explicitly state all elements of a
each time you compile, load, or execute a program.
is required, as long as you use the default file
summarizes the default values.

file specification
Only the file name
type. Table 8-1

8-2

USING PASCAL ON TOPS-20

Table 8-1: File Specification Defaults

Optional Default Value
Element

device User's current default device (DSK:)

directory User's current default directory

file type Depends on usage:

gen

Input to PASCAL compiler - PAS
Output from PASCAL compiler - REL
Input to LINK - REL
Output from SAVE command - EXE
Input to RUN command - EXE
Compiler source listing - LST
LINK map listing - MAP
Input to executing program - DAT
Output from executing program - DAT

Input: highest existing generation
Output: highest existing generation plus 1

When compiling a PASCAL program, you need specify only the file name
if the file is:

• Stored on the default device

• Catalogued under the default directory name

• A file type of PAS

If more than one file meets these conditions, the compiler chooses the
one with the highest generation number.

For example, assume that your default device is PS:; your default
directory is (CHEN>; and you supply the following file specification
to the compiler:

@F'ASCAL
F'ASCAL>CIRCl.E

The compiler searches device PS: in directory (CHEN>, seeking the
highest generation of CIRCLE.PAS. The compiler then generates the
file CIRCLE.REL, stores it on device PS: in directory (CHEN>, and
assigns it a generation number that is one higher than any other
generation of CIRCLE.REL currently in PS:(CHEN>.

8.3 CREATING A F'ROGRAM

The first step in creating a program is to design and plan it. The
TOPS-20 PASCAL Primer describes the use of PASCAL for the novice
PASCAL programmer who is already familiar with higher-level
programming language concepts. Many books exist that describe
programming techniques, methods, and algorithms.

8-3

USING PASCAL ON TOPS-20

After planning the progr~m, you use an editor to create a file that
contains the source statements. You use a text editor to create a
source file. You can use EDIT, TV, or any other text editor to create
the source file.

For example, to create a PASCAL program that has the file name EXAMPL
and a file type of PAS, you can issue the EDIT command as follows:

(~EDIT EXAMF'L... PAS ~~
Input: EXAMPL.PAS
O():lOO

If this is a new file, an additional message is displayed indicating
that a new file is being created. Because the EDIT command does not
assume a file type, you must include the file type as part of the file
name. The EDIT command runs the TOPS-20 default editor EDIT. The
line number (00100) prompt indicates that EDIT is ready to accept
input. For information on how to use EDIT, see the TOPS-20 EDIT
User's Guide.

You can also use any other editor to which you have access, for
exampJe, the TV editor. To use TV, you can either type TV to TOPS-20,
or you can define the logical name EDITOR: to be SYS:TV.EXE. For
more information about the use of TV, refer to the TOP§-20 TV Edit.or
Manual.

After the program is created and edited, it is ready to be compiled.

8.4 COMPILING A PROGRAM

After creating a PASCAL source program, you compile it. At compile
time, you specify the source filers) and indicate any qualifiers you
wish to use.

Optionally, the compiler produces one or more object files, which are
input to LINK, and one or more listing files. The listing files
contain source-code listings, information about compilation errors,
and optional items such as cross-reference listings.

8.4.1 The PASCAL Command

To compile a source program, specify the PASCAL command and press the
RETURN key. TOPS-20 then returns the PASCAL prompt, at which point
you specify the file name and any switches.

@PASCALG0
PASCAL)source-filename U/switch(es)TI ~)

8-4

USING PASCAL ON TOPS-20

where:

source-filename specifies the source file(s) containing the
program or module to be compiled. If you
have one program split into several source
files, you can specify these source files at
the same time by separating the file names
with a plus sign (+). If you specify more
than one source file, the files nre
concatenated and compiled as one program.

/swi tch (es) indicates special processing to be performed
by the compiler.

In many cases, the simpJest form of the PASCAL command is sufficient
for compilation. For other situations, however, PASCAL provides
compiler commands and switches to specify special processing. PASCAL
compiler commands give special instructions to the compiler. PASCAL
compiler switches modify the compilation of the program.

Section 8.4.2 describes the PASCAL compiler commands, and Sections
8.4.3 and 8.4.4 describe the PASCAL compiler switches.

8.4.2 PASCAL Compiler Commands

Table 8-2 lists the commands to the compiler.

Table 8-2: PASCAL Compiler Commands

Command Purpose

/EXIT Exits from the PASCAL compiler

/HELP Displays a help messnge

/RUN: Begins execution of the specified program

/TAKE: Takes commands from the specified command file

/EXIT

The /EXIT command exits you from the compiler and closes all files
that were opened by the compiler.

/HELP

The /HELP command displays a help message.

/RUN:filespec

The /RUN: command exits you from the compiler and begins execution of
the specified program. Using the /RUN: command is the same as
specifying the /EXIT command to the compiler and then using the
operating system command RUN to execute the specified program.

USING P~SCAL ON TOPS-20

/TAKE

The /TAKE command takes commands from the specified command file. The
/TAKE command recognizes the default file type CMD.

Example 1

(~PAf:)CAL..

PASCAL)/TAKE: PLAN
P{~SCAL)

Assume that the command file PLAN.CMD contains the following:

PLAN. PAS IN()FI...AG-··NON··-~JTANDAr~[I IL I ~JT I NG ~

The /TAKE: command causes the contents of PLAN.CMD to be executed.
In this example, the source fiJe PLAN.PAS is compiled; display of
warning messages for nonstandard features is suppressed; and a
listing file is generated. Make sure the command file ends with a
carriage-return/line-feed. After execution of the command file, you
can give another command to the compiler.

Example 2

PASCAL)SORTER.PAS
PASCAL)/RUN: LINK

*
The compiler compiles the source file SORTER. PAS, and the /RUN:
command is then used to run the LINK program. The /RUN: command
exits you from the compiler and causes the LINK program to begin
executing. The asterisk (*) is the prompt displayed by LINK.

Example 3

@PASCAL
PASCAL:>AVER.F'AS
F'ASCAL:>/EX I T
@

The EXIT command exits you from the compiler and puts you at TOPS-20
command level.

8.4.3 PASCAL Compiler Switches

Table 8-3 lists the switches you can use with the PASCAL compiler.
You can specify the switches following the file name or in source code
comments. This section describes the effect of each switch on a
PASCAL program.

8-6

USING PASCAL ON TOPS-20

Table 8-3: PASCAL Compiler Switches

-----------------_._--------------------_. -
Switch

/ABORT

/BINARyr[:filespecll

/CHECK

/CREF or
/CROSS-REFERENCE

/DEBUG

/ERROR-LIMIT:n

/FLAG-NON-STANDARD

/LISTING[[:filespecl]

/MACHINE-CODE

/NATIONAL

/WARNINGS

Purpose In
Source

Causes the compiler to No
exist at the end of a
compilation that contains
errors

Produces a binary object No
file.

Generates code to check Yes
for various error
conditions

Produces a cross-reference Yes
listing of identifiers

Produces information in No
the object file to be used
wi th PASDD'r

Stops compilation after No
the specified number of
errors

Issues warning messages Yes
for nonstandard features

Produces a source listing Yes
during compilation

Lists generated assembly Yes
language in source listing

Turns off braces
comment characters

Prints diagnostics
warning-level errors

as Yes

fo rYes

/ABORT

Default

Off

On

On

Off

Off

30

On

Off

Off

Off

On

The /ABORT switch causes the compiler to exit at the end of a
compilation that contains errors. This is useful when used with the
/TAKE: command. The default is /NOABORT.

/BINARY [:filespecD

The /BINARY switch can be used when you want to specify the name of
the object file. The /BINARY switch has the form:

/BINARY [:filespecD

8-7

USING PASCAL ON TOPS-20

If you omit the file specification, the object file defaults to the
name of the last source file, the default directory, and a file type
of REL. You cannot specify this switch in the source code.

You can disable this switch to suppress object code, for example, when
you want to test only the source program for compilation errors.

The default is /BINARY.

/CHECK

The /CHECK switch directs the compiler to generate co~e to perform
run-time checks. This code checks for ilJegal assignments to sets and
subranges, out-of-range array indices and case labels, and references
to NIL pointers. The system issues an error message and terminates
execution if any of these conditions occur.

When this switch is disabled, the compiler does not generate code for
run-time checks. The default is /CHECK.

/CROSS-REFERENCE or /CREF

The /CROSS-REFERENCE switch produces a cross-reference listing of all
identifiers. The compiler generates separate cross-references for
each procedure and function. To get complete cross-reference listings
for a program, the switch must be in effect for all modules of the
program. This switch is ignored if no listing file is being
generated.

The default is /NOCROSS-REFERENCE.

You can specify this switch in the source code. Note, however, that
the cross-reference listing for a portion of a procedure or function
may be incomplete.

/DEBUG

The /DEBUG switch specifies that the compiler is to
information that can be used with run-time debugging.

generate

The default is /NODEBUG.

/ERROR-LIMIT:n

The /ERROR-LIMIT switch terminates compilation after the specified
number of errors, excluding warning-level errors, have been detected.
The default limit is 30 errors. If this switch is disabled,
compilation continues through the entire unit. You cannot specify
this switch in the source code.

The default is /ERROR-LIMIT:30.

Note that, after finding 20 errors (including warning messages) on any
one source line, the compiler generates error 255, Too Many Errors On
This Source Line. Compilation of the line continues, but no further
error messages are printed for that line.

/FLAG-NON-STANDARD

The /FLAG-NON-STANDARD switch tells the compiler
warning-level messages at each place where the
nonstandard PASCAL features.

8-8

to
program

print
uses

USING PASCAL ON TOPS-20

Nonstandard PASCAL features are the extensions to the proposed ISO
standard for the PASCAL language that are incorporated in PASCAL-20.
Nonstandard features include VALUE declarations and the exponentiation
operator. Appendix D lists all the extensions.

By default, /FLAG-NON-STANDARD is enabled.

/LISTING

The /LISTING switch produces a source listing file. It has the form:

/LISTING [:fiJespecE

You can include a file specification for the listing file. The
default file specification designates the name of the first source
file, your default directory, and a file type of LST.

The compiler does not produce a Jisting file in interactive mode
unless you specify the /LISTING switch. In batch mode, the compiler
produces a listing file by default. In either case, the listing file
is not automatically printed.

/MACHINE-CODE

The /MACHINE-CODE switch places in the listing file a representation
of the object code generated by the compiler.

The compiler ignores this switch if the /LISTING switch is not
enabled.

The default is /NOMACHINE-CODE.

/NATIONAL

The /NATIONAL switch causes the braces to have no speciaJ meaning.
Therefore, if you specify the /NATIONAL switch, you cannot use braces
as comment characters. Instead, you must use (* *).

The default is /NONATIONAL.

jWARNINGS

The /WARNINGS switch directs the compiler to generate diagnostic
messages in response to warning-level errors.

By default, /WARNINGS is enabled. A warning diagnostic message
indicates that the compiler has detected acceptable but unorthodox
syntax, or has performed some corrective action. In either case,
unexpected results may occur. To suppress warning diagnostic
messages, disable this switch. Note that messages generated when the
/STANDARD switch is enabled appear even if /WARNINGS is disabled.

8.4.4 Specifying Switches in the Source Code

You can use switches in the source code to enable and disable special
processing during compilation. When specified in the source code,
switches have the form:

(*$switch + ,switch + , ••• ;comment *)

8-9

USING PASCAL ON TOPS-20

The first character after the comment del imiter must be a doll~r sign
(S); the dollar sign cannot be preceded by a space. Table 8-4 lists
the switches you can specify in your source program. Note that you
can optionally use a I-character abbreviation for each switch. The
abbreviation is simply the first character of the switch name, except
for CROSS-REFERENCE, which has X for an abbreviation.

Table 8-4: Source Switches

Abbreviation Full Command-Line Switch

C CHECK CHECK

L LTST LIST

M MACHINE-CODE MACHINE-CODE

N NATIONAL NATIONAL

S STANDARD FLAG-NaN-STANDARD

W WARNINGS WARNINGS

X CROSS-REFERENCE CREF

To enable a switch, specify a plus sign (+) after its name or
abbreviation. To disable a switch, specify a minus sign (-) after its
name or abbreviation. You can specify any number of switches. You
can also include a text comment after the switches, separated from the
list of switches by a semicolon.

When specified in the source code, the LIST switch cannot contain a
file specification. The listing file has the default specification
described above.

For example, to generate check code for only one procedure in a
program, enable the CHECK switch before the procedure declaration, and
disable it at the end of the procedure, as follows:

<*$Ct ; enable CHECK for TEST1 onl~ *)
PROCEDURE TEST1;

END
<*$C-;disable CHECK *)

Command line switches override source-code switches.
the source code specifies NOWARNINGS, but you
command line, warning messages will be generated.

NOTE

If, for example,
type /WARN on the

When specifying the NATIONAL switch in
the source code, always use the
parentheses/asterisks combination (* *)
and not braces { }.

8-10

USING PASCAL ON TOPS-20

8.4.5 Specifying Output Files

The PASCAL compiler can produce object files and listing files, as
well as compile the source code. You can control the production of
these files with the addition of various file names and switches on
the PASCAL command line.

PASCAL produces an object file automatically, taking the name from the
source file and assigning it the file type REL. To change the name of
the object file, specify the /BINARY switch with a file name.

To produce a listing file, you must specify the /LISTING switch on the
PASCAL command line. You have the option of giving a file name with
the /LISTING switch or taking the default, which is the name of the
source file and the file type LST. Note, however, if you run PASCAL
from a batch control file, you automatically receive a listing file.
In this case, to suppress the creation of a listing file, specify the
/NOLISTING switch in the batch control file.

During the early stages of program development, it is often useful to
suppress the production of object files until your source program
compiles without error. To suppress the production of an object file,
specify the /NOBINARY switch along with the source file.

You can specify more than one source file at a time, to be
concatenated and compiled. When specifying multiple source files,
separate each one with a plus sign (+). Although you may specify more
than one source file, you still receive one object file to load for
execution. By default, the object file produced from concatenated
source files has the name of the last source file on the command line.
All other file specification attributes (device, directory, and so
forth) assume the default attributes.

Example 1

@PASCAL
PASCAL)XXX+YYY+ZZZ

Source files XXX.PAS, YYY.PAS, and ZZZ.PAS are concatenated and
compiled as one file, producing an object file named ZZZ.REL. In
batch mode, this command also produces the listing file ZZZ.LST.

Example 2

@PASCAL
PASCAL><S.GRAVES)MNP/LISTING

The source file MNP.PAS in directory <S.GRAVES> is compiled, producing
an object file named MNP.REL and a listing file name~ MNP.LST. The
compiler places the object and listing files in the default directory.

8.4.6 Compiler Listing Format

When you request a listing file (by specifying the /LIST switch,
PASCAL produces a compiler listing. This section explains the format
of the compiler listing illustrated in Figure 8-1.

8-11

ex>
I
~

t'V

• AVERAGE SCORE
SOURCE LISTING

LINE
NUMBERS

100

o ct 17-Aug-1983 11:23:32
CBL20:<MASELLA)AVER.PAS

ADDRESS PROC LEVEL
DATA INST NO PROC STMT STATEMENT.

o
PASCAL-20 1(611)

000041 0 0 PROGRAM Averaqe Score (INPUT,OUTPUT);
CEr'456---.

o
Page

% PAS456 Nonstandard Pascal: n$n OR in identifier in AVERAGE SCOREG)
VAR 200 2 000215 0

300 3 000215 0 0

0 400 0 4 000220 0
500 5 000221 0
600 6 0400000 0
700 7 400012 0
800 8 400033 0
900 9 400034 0

1000 10 400052 0
1100 11 400061 0
1200 12 400061 0
1300 13 400076 0
1400 14 400101 0
1500 15 400104 0

1 0

0 1
1 .~

0
0
1
1
1
1
1
2

Score, Total, \.ount : INTEGER;
AverageScore : REAL;

BEGIN
To ta 1 : = 0;
Count := 0;
WRITF,LN ('F,nter your scores. When done, type CTRL/Z.');
WHILE NOT EOF no

BEGIN
READLN (SCORE);
Total ;= Scarp + To tell ;
Count := Count + 1;

End;

(1)

1600 16
1700 17

400105 0
400113 0

AverageScore ::. Tolal / Count; (*to produce real results"")
WRITELN ('The average score is: " AverageScore:4:1);

1800 18 400142 0 END.
1800 19 400172 0

1 Nonstandard feature
Last error (warning) on 1 ine 1.0
Active options at end of compilation:
NODEBUG,STANDARD,LIST,CHECK,WARNINGS,CROSS REFERENCF"G)
MACHINE_CODE, OBJECT, ERROR_LP'lIT 30

Compilation time: 1 • ') 1 sec 0 nd s (7 5 5 1 in e s pe r min ute) . CD

AVERAGE SCORF.
GENERATED CODE

17-Aug-1983
CBL20:<MASELLA)AVER.PAS

LINE INSTRUCTION ADDRESS

07 255 00 a 00 000000 400012
265 16 0 00 000000* 400013
202 17 0 00 000002' 400014

(t400 16 0 00 000000 0400015
201 05 0 00 000041' 400016
261 17 0 00 000005 400017
260 17 0 00 000000* 400020
105 17 0 00 777777 400021
200 00 0 00 000017 400022
201 05 0 00 000041' 400023

11:23:32

OPCODE

JFCL
JSP

G) MOVEM
SETZ
MOVEI
PUSH
PUSHJ
ADJSP
MOVE
MOVEI

PASCAL-20 1(1111)
(])

OPERAND{S)

00
ACH,OO PASLD%
AC17,02

C)AC16 ,
ACOS,000041
AC]7,05
AC17,OO INP%IN
AC17,777777
ACOO,l?
AC05,000041

*** 1 ===) o
CD C)

C
Jl
H
Z
GJ

'tl
>'
Cf}
(J

>'
l'

o
Z

t-3
o
'tl
Cf)

I
10
o

(X)

I
I-'
w

AVERAGE SCORE
CROSS REFERENCE

17-Aug-1983
CBL20:<MASELLA)AVER.PAS

AVERAGESCORE 4
AVERAGE SCORE 1
COUNT
INPUT •
OUTPUT
SCORE :3
TOTAL 3

GLOBALLY DEFINED IDENTIFIERS~e

AVERAGE SCORE 17-Aug-1983
GENERATED CODE CBL20:<~ASELLA)AVER.PAS

LINE INSTRUCTION ADDRESS

523214520302 400153
7331362607 Hi 400154
625016361736 400155
713124064746 400151)
351000000000 400157.

.427356462744 40011)0
203635772744 400161
203474367744 400162
627465620256 40011'13
643135620310 400164
677354526100 400165
723636062500 40016')
416512241)136 400167
551340000000 400170
000000000000 400171

11:23:32

16 17

8 14

12 13
7 13

] 1:23:32

OPCODE

CONS'T'ANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

Figure 8-1: Compiler Listing Format

PASCAL-20 1(~11) Page

14 Hi

13 16

PASCAL-20 1(~11)

OPERAND(S)

2
(1)

(1)

MR-S-3122-83

c:::
U1
H
Z
C)

"0
;t>o
U1
n
>'
l'

o
Z

t-3
o
'"'0
U1
I

N
o

USING PASCAL ON TOPS-20

The compiler listing in Figure 8-1 cont~jns the following three
sections:

• Source-code listing - When you request a listing file, the
source code is listed by default.

Machine-code listing - To generate the machine-code
you must specify the /MACHINE-CODE switch,
MACHINE-CODE + source switch.

1 isting,
or the

• Cross-reference listing - To gener~te cross-references for
all identifiers used in the program, you must specify the
/CREF switch.

The numbers throughout this section are keyed to the numbers in Figure
8 -1.

TITLE LINE - Each page of the listing cont~ins a title line.
title line lists the module n~me 0, the nate and time of
compilation 0, the PASCAL compiler name ~nd version number 0,
listing page number 0, and the file specification of the source

o·

The
the
the

f il e

8.4.6.1 Source-Code Listing - The lines of the source code are
printed in the source-code listing. In addition, the listing contains
the following information pertaining to the source code:

• Editor line numbers 0 - If you created or edited the source
file with an editor that automatically inserts line numbers,
these line numbers appear in the leftmost column of the
source-code listing. Editor line numbers are irrelevant to
the PASCAL compiler. Note these are not the line numbers you
specify to PASDDT for debugging purposes.

• Line numbers 0 - The compiler assigns unique 1 ine numbers
to the source lines in a PASCAL module. The symbolic
traceback that is printed if your program encounters an
exception at run time refers to these line numbers. Note
these are the line numbers you use when working with PASDDT.
Refer to Chapter 9 for information concerning the debugger.

• Address 0 - The listing includes the octal address of the
instruction on that line of source code.

• Procedure number C) - PASCAL numbers each procedure in the
listing file as it progresses down the source code, starting
with 0 for the main program.

• Procedure level 0 - Each line that contains a declaration
lists th~ procedure level of that declaration. Procedure
level 1 indicates declarations in the outermost block. The
procedure-level number increases by one for each nesting
level of functions or procedures.

8-14

USING PASCAL ON TOPS-20

• Statement level CD The] isting specifies a statement
level for each line of source code after the first BEGIN
delimiter. The statement level starts at a and increases by
1 for each nesting level of PASCAL structured statements.
Specifically, the CASE statement, the REPEAT statement, Rnd
the BEGIN/END block increase the statement level. The
statement level of a comment is the same as that of the
statement that follows it.

ERRORS and WARNINGS -- The source-code listing includes information on
any errors or warnings detected by the compiler. The actual message
is printed beneath the error in the source code. In addition, the
following items appear in the listing:

• A circumflex (A) that points to the character position in the
line where the error was detected t)

• A numeric code, following the circumflex, that specifies the
particular error G). On the following lines of the source
listing, the compiler prints the text that corresponds to
each numeric code G)

• The line number 'where the error was detected CD and
line number of the previous line containing an error
You can use these error line numbers to trace the
diagnostics back through the source listing.

the

G
error

SUMMARY -- At the end of the source listing, the compiler tells you
how many errors or warnings were generated (if any), with the source
line number where the last one occurred CD. The compiler prints the
status of all the compilation optjons CD and how much time was
required for the compilation G)

8.4.6.2 Machine-Code Listing - The machine-code listing (if requested
with the /MACHINE-CODE switch) follows the source-code listing. The
machine-code listing contains:

• Source line number CD - A source line number marks the
first object instruction that the compiler generated for the
first PASCAL statement on that source line.

• Octal representation of instruction _ This is the octal
representation of the object instruction.

• Address fa This is the relocatable address of the
instruction.

• Opcode fa This is the mnemonic operation code for the
instruction.

• Operand G - This contains the mnemonic accumulator field
and address field for the operation.

For more information on machine-code instructions, refer to the
DECsystem-lO /DECS,xSTEM-20. Processor Reference Manua 1.

8-15

USING PASCAL ON TOPS-20

8.4.6.3 Cross-Reference Listing - The cross-reference listing (if
requested with the /CREF switch) appears after the machine-code
listing. It contains two s~ctions:

• User-specified identifiers fa - This section lists all the
identifiers you declared.

• Globally-defined identifiers CD - This section lists the
PASCAL predefined identifiers that the program uses.

Each line of the cross-reference listing contains an identifier and a
list of the source lines where the identifier is used G. The first
line number indicates where the identifier is declared. Predefined
identifiers are listed as if they were declared on] in(~ 0 fa. The
cross-reference listing does not specify pointer type identifiers that
are used before they are declared.

8.5 LOADING A PROGRAM

After compiling your PASCAL program, you load the object module(s)
with the LINK program to produce an executable image file. Loading
resolves all references in the object code and establishes absolute
addresses for symbolic locations. This section describes the use of
the LOAD command.

8.5.1 The LOAD Command

To load an object module, specify the LOAD command in the following
general form:

LOAD filename [/switch(es) .••]

where:

filename

/swi tch (es)

specifies the input object file to be loaded. The
file must be a REL file, created with the PASCAL
compiler (or some other translator).

specify input file options.

The file specification must be typed on the same line as the LOAD
command. If the file specification does not fit on one line, you can
continue typing without pressing the RETURN key.

The LOAD command runs the LINK program, which reads the REL file
specified on the command line and loads it into memory. When LINK
exits, it leaves your program in memory, ready to be SAVEd as an EXE
file or to be STARTed.

Th~ LOAD command can do a COMPILE command before running LINK. If you
specify a file name to the LOAD command for which there is a source
file but no REL file, the LOAD command automatically performs a
COMPILE command first.

See the TOPS-20 Commands Reference Manual for more information on the -------- ---------
LOAD command.

8-16

USING PASCAL ON TOPS-20

8.6 EXECUTING A PROGRAM

After you have compiled and linked your program, you can execute the
object file with the START command; or you can save the file with the
SAVE command, and then execute it with the RUN command.

You ~an save time by using the EXECUTE command. The EXECUTE command
acts by performing a LOAD command (which may start with a COMPILE
command) followed immediately by a START command. So, instead of
performing severa] separate steps of running the compiler, compiling
your program, loading your program, and starting your program, you can
compile, load, and start your program with a singJe command:

(~EXECUTE f i 1 ename ~)

Using the EXECUTE command does not save the executable image of the
object file. The SAVE command stores a copy of the executabJe image
in an executable file. The default file type that is created is EXE.
After an executable image is saved, you can execute it with the RUN
command. The SAVE and RUN commands have the form:

(~~~AVE f i 1 ename ~
@f~UN f i 1 ename ~

You must specify the file name; default values are
omit optional elements of the file specification.
type is EXE.

appl ied if you
Th e d e fa u] t f i 1 e

8.7 EXAMPLES

Example 1

(~F'ASCAL..

PASCAL> ~:;()HTEf~ /NOFLAG/L.. I ST I NG
PASCAI...:>/EXIT
@EXE SnRTEf~

This example uses the PASCAL command to compile the source
SORTER. The /NOFLAG switch prevents display of messages
nonstandard PASCAL statements in the program; the /LISTING
generates a .LST file of the compilation in your disk area.

Example 2

@.PASCAL.
PASCAL:>MERGER/DEBUG
F'ASCAI, .. >/EX I T
@.LOAD MERGER/DEBUG
@DEBUG MERGER

f i] e
about

switch

The PASCAL command is used to compile the program with the debugger,
PASDDT. The DEBUG command is used to load the compiled program and
the PASCAL debugger automatically. The DEBUG command executes the
program with PASDDT.

8-17

USTNG PASCAL ON TOPS-20

Example 3

frl LOAD PLAN ICOMF'I LE / Cf~LF
@PFUNT PLAN. L.S"J
(~ !:)TAJ:~T

The LOAD command first compiles the program because
switch, then, if compilation js successful, loads
/CREF switch generates a listing file with

of the /COMPILE
the program. The

c ross- refe renee
The program is information. The PRINT command prints the listing.

then executed with the START command.

8-18

CHAPTER 9

PASDDT: THE PASCAL-20 DEBUGGER

The PASCAL-20 debugger, P~SDDT, provides the means to monitor and
modify the execution of a PASCAL program. PASDDT provides symbolic
debugging capabilities that allow you to read and modify the values
associated with variables by referring to the PASCAL identifiers
within your program.

9.1 RUNNING PASDDT

To use the debugger, you must
program. First, compile the
switch in the command string:

@PASCAL
PASCAL>filename/DEBUG
PASCAL>/EXIT
@

compile and load PASDDT with the
source program and include the /DEBUG

Then, load the program along with PASDDT by specifying the DEBUG
command:

@DEBUG filename

The DEBUG command loads and starts the program currently in memory,
with the debugger, PASDDT.

If you want more control over where the debugger is placed, or you
have the need for more options, you can use the TOPS-20 LINK program
directly. Refer to the LINK Reference Manual for TOPS-20 information.

When running PASDDT, the source file with the extension PAS should be
located in the same directory as the EXE version of the file. This
should also be the directory to which you are connected when running
PASDDT. If you have specified a file with the %INCLUDE directive,
PASDDT looks for a file with the same name.

9.2 USING SYMBOLIC VALUES

Symbolic values are the identifiers defined within the source program.
PASDDT allows access to identifiers available only in the current
scope, and performs recognition on these identifiers.

You can specify a location in the source code by using the line number
shown in the listing file created when the program is compiled. See
Section 8.4.7.

9-1

PASDDT: THE PASCAL-20 DEBUGGER

9.3 SCOPE

Scope is the range within the program in which a specific definition
of an identifier exists. The scope corresponds to the part of the
program in which the identifier can be used. Figure 9-1 shows the
scope of three variables in program Modules. The scope of the
identifier A (a global variable) is the entire program. The scope of
variable B, declared in procedure Outer, is the entire procedure,
including procedure Inner. The scope of variable C is limited to
procedure Inner.

PROGRAM Modu 1 (;~S (I NF'UT, OUTPUT);
VAR A : INTEGER := 0;

F' t, 0 C E D LJ F~ E (J 1..1 t f!' T' ;

VAF~ B : I NTEGEF~;
PROCEDUHE Inner,

VAH C INTEGEf<;
BEGIN (*beSin Inner*)

END;
BEGIN

Figure 9-1:

(*end I nne T'*)
(*besin Outf.·~r*)

Scope

SCOPE

A

B

C

PASDDT uses the concept of dynamic scnpe when accessing identifiers
and their values. Dynamic scope is the scope in relation to the use
of the program; the dynamic scope refers to the level at which a
particular identifier is being used. For example, a recursive
procedure (a procedure that calls itself) has multiple scopes for the
same identifier.

PASDDT represents the scope of an identifier with a positive integer.
Global data has a scope of 1. Each nested level from that has a scope
of one greater than that of the level from which it is called. The
following example is a recursive function that calculates factorials.

9-2

PASDDT: THE PASCAL-~O DEBUGGER

PF<OGI:<AM Ca 1 cu 1 ate (I NPUT, OUTPUT) ,

VAR Answer~ Num : INTEGER;

FUNCTION Factorial (Number
BEGIN

WHILE Number > 0 DO

INTEGER) INTEGEF< ,

F i3 C tor i a 1. : ::" N 1,,1 IT! b E\ T' * F act 0 r :i. a 1 (N U IT! tl f.~ Y' 1),

BEGIN
Answer := Factorial(Num);

ENDt

When Factorial is called from the main program, the value of Num is
passed to Number. Until Number is equal to 0, the function Factorial
continues to call itself; the value of Number is decremented by 1
each time the function calJs itself. Assume that the value 3 is
passed to Number. Number then has the value of 3, then of 2, then of
1, then of O. Each call to itself represents another level of dynamic
scope. Number has a scope of 1 the first time it is called; a scope
of 2 the second time it is called, and so on.

9.4 PASDDT COMMANDS

The following sections describe each of the PASDDT commands. The
default radix for all purposes is decimal.

PASDDT uses the facility of recognition and guidewords. Recognition
permits you to type enough of the word or identifier to be unique.
For example, you can type CL to specify the CLEAR command. You can
also use recognition with identifiers you have used in the program.
For example, if you have defined the identifiers NewList and NewTABLE,
you could use NewL and NewT, respectively, to specify these
identifiers.

PASDDT also provides guidewords when you press the ESC key. The guide
words indicate what you should enter next. In the following sections,
guidewords are displayed in parentheses. You do not need to type the
guidewords or the surrounding parentheses in the syntax. In addition,
PASDDT displays the options that you can enter when you type a
question mark (:'). For more information about recognition and
guidewords, refer to the TOPS-20 User's Guide.

9.4.1 ASSIGN

ASSIGN assigns a value or virtual address to the specified identifier.
The format is:

ASSIGN (VARIABLE or ADDRESS) {user identifier}
octal address

(:=) {constant }
octal value

where:

user identifier is a variable name in the active scope.

octal address is a virtual address in the user program.

9-3

PASDDT: THE PASCAL-?O DEBUGGER

constant

octal value

Example

is a value with a simple data type of
INTEGER, REAL, CHAR, BOOLEAN, DOUBLE, or
user-defined enumerated type.

is the value to be placed in the octal
address.

PASDDT)ASSIGN New_Int (:=) 20

This example assigns the value of 20 to user identifier New Int.

9.4.2 BREAK

BREAK sets a new breakpoint at a specified location or resets an
existing breakpoint. During a debugging session, when the program
reaches the location specified, it stops execution, thus allowing you
to perform debugging operations. You can set a maximum of 20
breakpoints.

To set a new breakpoint, use the following format of the BREAK
command:

BREAK (AT) line number [(NAME) break identifierD

where:

line number

break identifier

is a line number corresponding to a line in
the source code. These line numbers are
found in the listing file generated when you
compile the program.

is the name you associate with the
breakpoint. Each breakpoint identifier can
contain any number of characters, but the
first nine characters must be unique. The
break identifier can contain all characters
except an underscore () or dollar sign ($).

Note that you cannot set a breakpoint in the declaration section of a
program. If you do, PASDDT sends you an error message and does not
set the breakpoint.

To change the status of a breakpoint from CLEAR (Section 9.4.3), use
the following format of the BREAK command:

BREAK (AT) {line number }
break identifier

where:

line number

break identifier

is the line number of the breakpoint that you
want to reactivate.

is the name of the breakpoint you want to
reactivate.

Note that you can find out the status of breakpoints by displaying
them with the DISPLAY command. See Section 9.4.4 for information on
the DISPLAY command.

9-4

---- ----------------

PASDDT: THE PASCAL-20 DEBUGGER

The following rules apply to the use of BREAK:

If you specify a break identifier, but not a line number, the
following happens:

• If there is already a breakpoint with this identifier, this
breakpoin~ is used.

• If there is no breakpoint with this identifier, an error
occurs.

If you specify a line number, but not a break identifier, the
following happens:

• If a breakpoint is assigned for this
breakpoint is used.

location, that

• If a breakpoint has not been assigned, a new breakpoint is
established with the identifier NO NAME.

If the command specifies both a line number and a break identifier,
the following happens:

• If a breakpoint has already been assigned for this location
with this identifier, the previously defined breakpoint is
used.

• If a breakpoint has already been assigned for this location
with a different identifier, an error occurs.

• If a breakpoint has already been assigned at another location
with this identifier, and no breakpoint has been set at this
location, PASDDT prints a warning message. PASDDT then asks
if you want to override the address associated with that
breakpoint. If so, the previous breakpoint is discarded, and
a new breakpoint is declared with the given identifier and
location.

Note that you must use the PROCEED command after each break for the
program to continue. PROCEED is described in Section 9.4.7.

Note the following example:

PASDDT)break 10 first
PASDDT)displa~ break
BREAK POINT(S):

Name = FIRST
Break Address
Line Number
Status

PASDDT)proceed
»BREAK:FIRST

000000400044
10

BREAK

PC AT VIRTUAL ADDRESS 00000040044
PASCAL LINE NUMBER 10
LINE 9: Count:= O~
LINE 10: WRITELN ('Enter ~our scores. When done, t~pe CTRL/Z.');
LINE 11: WHILE NOT EOF DO
PASDDT)

9-5

PASDDT: THE PASCAL-20 DEBUGGER

As shown in the previous example, PASDDT automatic~lly displays three
lines of source code at a breakpoint. See the SET command, Section
9.4.9, for details of controlling the display of source code when a
breakpoint is reached.

9.4.3 CLEAR

CLEAR turns off breakpoints and tracepoints set with the BREAK and
TRACE commands. The format is:

CLEAR (AT) jline number } [(NAME) bre~k identifier]
\break identifier

whe re::

line number is the line number in the source code where
the breakpoint or tracepoint is set.

break identifier is the name of the breakpoint or tracepoint
associated with the line number.

You can specify either both the line number and associated break
identifier, just the line number, or just the bre~k identifier.

The CLEAR command does not delete the breakpoint or tracepoint; the
CLEAR command merely turns it off. Also, although you have cleared a
breakpoint or tracepoint, it is still counted in the total 20 allowed.
To delete a breakpoint or tracepoint, use the REMOVE command, Section
9.4.8. If you want to check the status of breakpoints and
tracepoints, use the DISPLAY command, Section 9.4.4.

Note the following example:

PASDDT:::bT'€:.'ak 11 onp
PASDDT)break 12 two
F' A S [t D T :::.0.1 :i. S p 1. a'.:l b rea k
BREAK POINT (~:» :

Nam'f.? := ONE
Break Add T'(-::'ss

Lin,:? Numb<::.' Y'

Status

Nc31T'E' ::.:: TWO
Break Acid T'€~SS
Line NlJlTlbe r
Statu~:;

PASDDT:::clear 11
PASDDT:::di SF' la~:I break
BREAI\ PO! NT (S) :

Name :::: ONE
B real>:. Add T'€:'S~:;
Line Number
Status

Name :::: TWO
Break Addrpss
Line Number
Status

000000400062
:l1

I-:lF<LAt(

000000400071
:t2

BRE(.lt(

000000400062
11

OFF

000000400071
12

BRE/~K

9-tS

PASDDT: THE PASCAL-20 DEBUGGER

PASDDT)clear two
PASDDT)displaY break
m~EttK PO I NT ([» !

NalYt(·:·~ :::: ONE
B r f? a k A (! d T' f:~ ~; !:;

Line Nl..IlTtb€·~ l'

Status

NalTtf.~ ~:: TWO

B T'E~ak Add rE.'S!:;

L.. i ne NUlYlt:.\f.-~ T'

L,t.atu5
PASDDT> t,l T'f·~ak 12
PASDDT>disp}ay break
BREAK F'DINT(S):

Na"ff.·~ :::: ONE
Break Add T'E.'!;;!:;

Line NUITtbe T'

Status

Name :::: TWO
BT'eak Addre!:;s
I... i ne Numbe T'

Status
PASDDT) e;.~

9.4.4 DISPLAY

OO()()0040()062
1:1.

OFr

000000400()71
1 ':)

OrF

000000400062
11

OFF

000000400071
12

BREAK

The DISPLAY command has three functions:

1. To show the status of breakpoints and tracepoints

2. To show the calling sequence of procedures and functions

3. To show a line (or range of lines) of the source code

To DISPLAY information about breakpoints and tracepoints, use the
following format:

DISPLAY B [REAK-IDENTIFIERD [break identifierD

where:

B [REAK-IDENTIFIERD

break identifier

indicates that you want to
breakpoints and tracepoints.

display

is the name of a particular breakpoint or
tracepoint. If you do not specify a break
identifier, PASDDT displays information
about all of them.

The information you receive includes the name of the breakpoint, the
line number of the breakpoint, and the status of the breakpoint (ON or
OFF) •

9-7

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

F't-lf; VI:! T>f."j:i ~:;F' 1. d ':1 LI r E' aV
r: F~ E f~ 1< POI N T (~:;) :

Name ~ FIRS1'
I: Y' f~ d k A d (I l' f~ ~:; ':;
I... :i, f"tf~ Nl..llTil.'.l(':'~ Y'

~:; t, d t I..J ~:;

o () 0 () 0 0 0 () () :5 ') ::,:j
.1.9

Bf~EAK

Name SECOND
:0 r E' a k f1 cli.".i Y' f~ ''', ':; O()()O O()OOO 4 ~:i 2
I... i. n e N UITI t ... C~ r 2 3
~:;t,atl,I<:; THAC[

N~m0 = THIRD
n r'eak Ad(1 T'f?~:;S
L i f"t(,~, NUITI~:.le T'

O()()O()()0006:1.?
37

PASDDT>displa~ break
BF,EAK POINT (~;) :

Name = SECOND

second

Break Address 000000000452
I... i n f:~ N u m b c,~ T' 23
Status TRACE

To DISPLAY the calling sequence of procedures and functions, use the
following format:

DISPLAY (OPTION) 1 [NVOCA1'ION-STACK] {integer} [{/STATIC }n
* /DYNAMIC

where:

I [NVOCATION-STACK]

integer

*

/STATIC

/DYNAMIC

indicates that you want to display the
calling sequence of your routines.

is a decimal number representing how
many routine calls to display.

indicates that you want
calls displayed back
program.

all routine
to the main

causes the static level of the routines
to be displayed as they were defined in
the user program.

causes every invocation of a routine to
be displayed. This is the default.

The information you receive includes the calling sequence, the static
level of the procedure or function, and the address at the time of the
display.

9-8

PASDDT: THE PASCAL-20 DEBUGGER

Note the following eXAmple:

PASDDT)dispIBY invocation-stack */static

PI?OCEDUI:<E NAME
G f< 0 C E f< Y D 11 ... 1 ...

~:; TAT J C I... E V [I ...
:I.

ADDr<Ff:;~:;

OOO:L40
PAf:;DDT>d i !:;F']. a\~ i nvoc *1 (l':~nalTl i c

r-f<OCE DUf<[NAt'1E
C; F< [) C [F< Y n J 1...1 ...
PA~:;DDT)

~:;TATIC I ... EVEL..
l

ADDf~'ES~:;

O()O:l.40

To DISPLAY lines of source code in the current scope, use the
following format:

DISPLAY (OPTTON) S [OURCE-LINEn line number [/RANGE:integern

where:

S [OURCE-LINE n indicates that you want to display a] ine of
the source code.

line number is an integer representing a line in the
source code. You will find these numbers in
the listing file.

/RANGE:

integer

is an optional value indicating that you want
to display more than one line of source code.

is a decimal number indicating how many lines
of source code to display.

DISPLAY prints the source code of the line number you specify and any
other lines included in the range.

Note the following example:

PrY:lDDT >d i Sp 1 a~:j ~)C)l.1 T'Cf? ~)I T'an9f?: 10
LINE ::.=;: YP~;;, ... ND :::: (YP~:; , No),
LINE 6:

(* Defines data type Yes_No
with valups Yes and No *)

LINE 7:
I ... INE B! VAR
LINE 9:
LINE :LO:
LINE :L1:
LINE :1.2:
LINE 13:
LINE :J.4:
PAf~DDT>

9.4.5 EXIT

ItplTI ... YT'ic(", , Total,
C () 1..1 F' [) n .. _ A III C) U n t <*Declares three real
An!:> : Yes Nc); <* Declares a variable,

Yes .. _No *)
~:;ubt Dta:l. y CouF'ons: REAL.. : :=: O. ();

An~; ¥

EXIT halts execution of the program. The format is:

EXIT

9-9

variab:l.ps*)
of t~IPP

PASDDT: THE PASCAL-20 DEBUGGER

Note the following ex~mp]e:

F' It.) S n n T:> F X I T

C F:' U t :i. IYI C-' : () () • :I. <:.) [J. d F' ~:; (.:.) (1 t i ITI P : () 3 • :3"7
U!

This exits you from PASDDT an~ puts you at TOPS-20 command level. The
CPU time and elapsed time are ~lso displ~yed.

9.4.6 HELP

HELP displays a help message. The format is:

HELP (with PASDDT) [command name]

Note the following example:

[HELP::! H [I ... F' [C (] HlITI a n ,j n a ITI (.:.~ 0 T' T' P t u T' n :I

T h i. ~:; C () ITIIT! and a:l. low ~:; t h f~ 1 . .1 ~:; e l' t n ~:1 f.~ t h (~) 1. F' wit h PAn 1:1 11 T •
l ~~ F' f:~ / HE l.. F' / foIl D I-J [~d b ~~ the C () !TIm a n (.1 ~~ C) u wan t h f;;> 1. p

wit h • T \:~ P e i:l G I.J est ion IT! a T' k (/? /) t (] Sf:) e t h (-? co !TIm and s
that are available.

PA~)DDT> P;':

This displays help messages about all of the PASDDT commands.

9.4.7 PROCEED

PROCEED initiates or continues execution of the program until a
breakpoint is reached or the user program terminates. The format is:

PROCEED (with USER Program)

Example 1

i~ PASCAL.
PASCAL>TEST.PAS/DEBUG
FASCAL:>/EXIT
(~, DEBUG TEST
FAt;DDT> F'f<OCEED

This example shows source program TEST.PAS being compiled, loaded, and
started. PROCEED initiates the execution of the program.

Example 2

(;1 PASCAL
@PASCAl..>EXAMPL IDEBUG
f'ASCAL> lEX I T
@LOAD EXAMPL.REL,SYS:PASDDT.REL
(;l SAVE EXAMPL
(!) F<UN EXAMPL
PASDDT>PROCEED

9-10

PASDDT: THE PASCAL-20 DEBUGGER

This example compiles and loads the program EXAMPL. Loading
PASDDT.REL with the program EXAMPL causes a copy of PASDDT to become a
part of the executable file EXAMPL.EXE. PROCEED initiates the
execution of the program.

Example 3

p f:':j ~:; II II T >P H () C E E D

This example causes the program to resume execution after stopping at
a breakpoint.

9.4.8 REMOVE

REMOVE deletes breakpoints and tracepoints completely. The format is:

REMOVE (AT) {Jine number }
break identifier

[(NAME) break identifier]

where:

1 ine number is the line number in the source code where
you set the breakpoint or tracepoint.

break identifier is the name of the breakpoint or tracepoint.

You can specify either a line number followed by the break identifier
associated with that line number, just the line number, or just the
break identifier.

Note the following example:

PASDDT>b reak 10
PASDDT>displa'3 break
rmFAK POINT (S) :

Name : <NONAME>
Break Address 000000400044
Line Number 10
Status BREAK

PASDDT>remove 10
F'ASDDT>d i SF' 1 <3'3 b r'eak
NO BREAKPOINTS SET
F'ASDDT>E'~'~

9.4.9 SET

The SET command has four functions:

1 . Turning on automatic
breakpoint is executed.

displaying of source
This is the default.

code when a

2. Telling PASDDT how many lines to display when a breakpoint is
executed. The default is three.

9-11

PASDDT: THE PAS~AL-20 DEBUGGER

]. Telling PASDDT which separately compiled module to use in
terms of setting breakpoints and gaining information about
the user program. When PASDD~ starts up, the default is the
main program.

4. Setting the level of jnformation displayed by PASDDT. The
default is VERBOSE.

To SET the automatic displaying of source code on or off, use the
following format:

SET (OPTION) {A [UTO-DISPLAY D l
NO-A [UTO-DISPLAyD (

where:

A.UTO-DISPLAY

NO-AUTO-DISPLAY

turns on the automatic displaying of source
code at a breakpoint. This is the default.

turns off the automatic displaying of source
code at a breakpoint.

When AUTO-DISPLAY is set, PASDDT displays the line of source code at
the breakpoint. If your terminal is slow or you are using a dial-up
line, you may want to turn off displaying the source code with
NO-AUTO-DISPLAY.

Note the following example:

PASD[lT>bT'f.~ak .10
PA~)DDT> set no-ooauto
PAf:;DDT> p T'oc(~ed

»BF,EAK:
PC AT VIRTUAL ADDRESS
PASCAL LINE NUMBER
PASDDT>break 12
PASDDT>set auto
PASDDT>PI'oC

000000000416
10

Enter YOUI' SCOI'es. When done, t~pe CTRL/Z.
23
»BREAK:
PC AT VIRTUAL ADDRESS 000000000443
PASCAL LINE NUMBER = 12
LINE 11: WHILE NOT EOF DO
LINE 12: BEGIN
LINE 13: READLN (Score);

To SET the number of lines to automatically display, use the following
format of the SET command:

SET (OPTION) W [INDOwD n

where:

lrlINDOW

n

indicates that you want to set the number of
lines of source code to display at a
breakpoint.

is a decimal integer specifying how many
lines of source code to display. The default
is three.

The window is centered around the line on which the breakpoint is set.

9-12

PASDDT: THE PASCAL-20 DEBUGGER

Note the following ex~mple:

PASDD1)set window 10
Pt,!:;ODT>p I'OC

4~:.:j

»Bf<EAI< ~
PC AT VIRTUAl... ADDRESS 000000000443
P(.)!:;C(~L I... J NF NUMBEI< 12
I ... INE "?! BEGIN
I... 1 N [n: Tot a :I. !:::: () y
I... J N E (1': C 0 u n t. ~:::: () y
I...JNE :1.0:
LINE :I. 1 · · LINE :1.2:
LINE 13:
LINE :1.4 · · LINE :1. !:.=.; :

LINE 1 f.) · ·

1 .. 1 F~ I TEL. N (I E n tt-:~ l' ~~ 0 U J' ~:; C 0 J' e !,;. W h €.~ n don e, t ~:t F' peT R I ... / 1 • I) ;

WHII ... E NOT FOF DO
BEGIN

Endy

F~ [A D I ... N (!:) COl' e) Y
Total := Scorp + Total;

Count := Count + 1;

To SET the name of the module where
relevent for debugging purposes, use
command:

PASDDT can find information
the following format of the SET

SET (OPTION) M [ODULE] module name

where:

MODULE

module name

indicates that you want to specify the name
of a separately compiled module.

is the identifier after the word PROGRAM or
MODULE in the source file. At start-up, the
default is the main program.

Note the following example:

PASDDT>spt module ? MODULE NAME AVERAGE_SCORE
PASDDT>set module average_score
F'ASDDT>

To SET the level of information displayed by PASDDT, use the following
format of the SET command:

SET (OPTION) V [ERBOSITY] (OF TYPEOUT) {V [ERBOSEll }
BRIEF lJ

where:

VERBOSITY

VERBOSE

BRIEF

indicates that you want to change the level
of information displayed.

displays the most information. This is the
default.

dispJays ~ minimal amount of information.

9-13

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

PA~;DD T>~:;.,·:·.>t VP r;·:.lo';; I TY (OF TYPEOUT) b T' i. e'f
PA~:;DnT::F' rucp

::.:it:·,
:> >Br~FA~<:
F'(~~:;C()/... I ... I NE NUMBEI:~ :1.2
LINE "7! BEGIN
LINE 8: Total:= 0;
I ... INE 9: Co u n t ; ~o () y

LINE :LO:
LINE It!
LINE :L?:

("II:~ I TEl... N (/ En t P l' ~:J (.") 1..1 r .; C () T' f' s. W h p n (Ion E', t ~:~ p (.:.) C T f< l.. / Z • ') ,
("IH T LE NOT FOF no

I ... INE 13:
LINE 14:
LINE :l~::j:

LINE 1,'.):

BEGIN

Enrj y

f~ E A 1:1 L.. N (S COl"' e) ;
Total := Score t Total;

Count := Count t 1;

PAf;nItT>Sf::,t w:i nl.".luw ~.:J
F'(':)~:;DDT)1-"' roc
/U
»BF~EAK :
PAbCAL.. I ... I NE
LINE :LO!
LINE :1.1;
LINE 12:
LINE 13:
LINE 14:
PASDDT>t');.: i t

9.4.10 SHOW

NUMBER 12
WRITELN ('Enter ~our scores.
~JH:r LE NOT [OF DO

BEGIN
F~E(.:IDLN (SCOT'f.~);

When done, t~pe CTf<L/Z.');

Tutal := Score t Total;

The SHOW command prints the current value of an identifier. The
format of the SHOW command is:

SHOW (VARIABLE OR ADDRESS) {user identifier}
octal 0r'ldress

where:

user identifier

octal address

is the name of a variable in the current
scope.

is A virtual address in the user program.
(This is not the address shown in the listing
f i 1 e.)

Note that, when you set a breakpoint, PASDDT automatically displays
three lines of source code, unless you specified SET NO-AUTO-DISPLAY.
You can then see any identifiers that are declared for the current
scope of the user program with the SHOW command. You can also type a
question mark (?) to the SHOW command to see what identifiers are
available.

9-14

PASDDT: THE PASCAL-?O DEBUGGER

Note the following example:

P (.~ ~:; 11 D T ::- /..1 r (7.' a k :I. ()
r'A~:;DDT:> F' rocc:'f.·~(i

:> :> n F;: F (~,.(:
PC AT VIRfUAL ADDRESS 000000400044
PASCAl... I... I NE NUMBE'~ 1 ()
LINE 9: Count:= ()~

LINE 10: WRITELN ('Enter ~our scores. When done, t~pe CTRL/Z.');
LINE 11: WHILE NOT EOF DO
PASDDT:>show ? VIR1UAL ADDRESS

o J' F' A ~; CAL. VA f~ J f~ [: l.. Eon e 0 f the f 0 1. low i n ~~ :
AVFF~(~GESCDf~E AVERAGE SCURE COUNT INPUT
OUTPUT SCORE TOTAL

F'f.1SDDT> (~,how seo T'C';'>

VALUE
TYPE INTEGER
ADDRESS 037060
PA~:;DDT> show count
ljALUE
TYPE INTEGER

OT?062
PASDDT>show input
F :i. I (-? is OPEN fo l' T'E~ad i ng
File is a TEXT file
F :i. :I. p i ~:; TTY:

()

o

File is the standard INPUT file

Fi If? name
F'ASDDT> e;<

TTY:

9.4.11 TRACE

TRACE sets a new tracepoint at a specified location or resets an
existing tracepoint. When the program reaches the location specified,
PASDDT prints a message indicating that a trace was placed on this
line. Unlike the BREAK command, TRACE does not halt program execution
or print source code. You can set a total of 20 tracepoints and
breakpoints. Clearing them does not delete them from the count.

To set a new tracepoint, use the following format of the TRACE
command:

TRACE (AT) line number [(NAME) trace identifierD

where:

line number

trace identifier

is the line number associated with the line
of source code that you want to trace. This
line number can be found in the listing file.

is the name you want to associate with the
tracepoint. Each identifier can contain any
number of characters, but the first nIne
characters must be unique. The identifier
can contain all characters except underscore
() and doLlar sign ($).

9-lS

P~SDDT: THE PASCAL-?O DEBUGGER

To reset a tracepoint that you have turned off with CLEAR
9.4.3), use the following format of the TRACE command:

(Section

TRACE (AT) J line number }
tbreak identifier

where:

line number is the line number of an existing tracepoint
that you want to reset.

break identifier is the name of an existing tracepoint that
you want to reset.

The following rules apply to the use of TRACE:

If you specify a trace identifier, but not a line number, the
following happens:

• If there is already a tracepoint with this identifier, this
tracepoint is used.

• If there is no tracepoint with this identifier, an error
occurs.

If you specify a line number, but not a trace identifier, the
following happens:

• If a tracepoint is assigned for this
tracepoint is used.

location, that

• If a tracepoint has not been assigned, a new tracepoint is
established with the identifier NO NAME. You can have more
than one tracepoint with the name NO NAME.

If you specify both a line number and a trace identifier, the
following happens:

• If a tracepoint has already been assigned for this location
with this identifier, the previously defined tracepoint is
used.

• If a tracepoint has already been assigned for this location
with a different identifier, an error occurs.

• If a tracepoint has already been assigned at another location
with this identifier, and no tracepoint has been set at this
location, PASDDT prints a warning message. PASDDT then
asks if you want to override the address associated with the
previous tracepoint. If so, the previous tracepoint is
discarded, and a new tracepoint is declared with the given
identifier and location.

9-10

PASDDT: THE PASCAL-20 DEBUGGER

Note the following example:

PASDDT>trace 10 one
F'r:":)f;DDT> p 1'ocf.~pd

»Tr~ACF: ONE
PC AT VIRTUAL ADDRESS
PASCAL LINE NUMBER

000000400044
:1.0

Ent~:~ l' ~:IOU r ~:;co T'P~;;. Whf.:'n (lOne, t\:lf"e CTF~I ... /Z.
7:':;
44
Dr;
'·'7Thf~ ave ra!.:.!p ~:;co r'(-;-:o :i~;: 69.3

9-17

APPENDIX A

PASCAL MESSAGES

._-------------
Table A-I: Run-time Errors

? PRTOOI

? PRTOO2

? PRTOO3

? PRTOO4

? PRTOO5

? PRToor;

? PRTOO7

? PRTOO8

? PRTOO9

? PRTOIO

? PHTOll

? PRT012

? PRT013

? PRT014

? PRT015

? PRTOII1

? PRT017

? PRT018

? PRT019

? PRT020

? PRT021

Value not within subrange of variable in assignment.

Case selector out of range.

Array index out of bounds.

Conformant array index out of bounds.

Size of conformant arrays incompatible.

NIL pointer value at runtime.

Attempt to divide by O.

Mod with 0 or negative value.

Set value out of range in assignment.

Set element out of range in assignment.

Stack expansion faiJed - No more memory available
for stack space.

Memory expansion failed - No more memory available.

DISPOSE called with NIL pointer.

Page creation failed, error code = number.

Page destroy f~iled, error code = number.

Insufficient initial memory - cannot start program.

Fatal error - ilJegal instruction detected at user
PC number.

Fatal error - illegal memory reference detected at
user PC number.

Fatal error - illegal memory read detected at user
PC number.

Fatal error - illegal memory write detected at user
PC number.

Fatal error - non-existent page detected at user PC
numbe r.

A-I

PASCAL MESSAGES

Note that errors PRTOl7 through PRT021 are probably caused by improper
use of an array or pointer variable. If you receive one of these
errors, try compiling the program with the /CHECK switch.

Table A-2:

? PIOOOI

? PIOOO2

? PIOOO3

? PTOOO4

? PIOOO5

? PIOOO'S

? PIOOO7

? PIOOO8

? PIOOO9

? PIOOlO

? PIOOlI

? PIOOl2

? PIOOI]

? PIOO14

? PIOO15

? PIOO U:;

? PIOOl7

? PIOOl8

? PIOO19

? PIOO20

? PIOO21

? PIOO22

? PIOO21

? PIOO24

I/O Errors

User buffer overflow. File in error: filespec

Line limit exceeded. File in error: filespec

File not open for reading. File in error: filespec

File not open for writing. File in error: filespec

Field width <= zero. File in error: filespec

String write error. File in error: filespec

Integer write error. File in error: filespec

Field width < zero. File in error: filespec

Attempt to read past EOF. File in error: filespec

Integer read error. File in error: filespec

String read error. File in error: filespf~c

Illegal character in number I/O. File in error:
filespec

Attempt to RESET(output). File in error: filespec

Attempt to RESET(input). File in error: filespec

Integer overflow. File in error: filespec

~ttempt to reset/rewrite uninitialized file. File in
error: filespec

Error in opening binary file. File in
filespec

error:

Error in writing to object file. File in error:
fiJespec

Error in closing binary filc. File in
filespec

Delete file error. File in error: filespec

error:

Include/Exclude file error. File in error: filespec

Attempt to use FIND on text file. File in error:
filespec

Attempt to FIND a negative record. File in error:
filespec

Field width too small for number output. File in
error: filespec

A-2

PASCAL MESSAGES

---_._---------
Table A-2: I/O Errors (Cont.)

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

PIOO25

PIOO2f)

PIOO27

PIOO2R

PIOO29

PIOO30

PIOO31

PIOO32

PIOO33

PIOO34

PIOO35

PIOO3(j

PIOO37

PIOO40

PIOO42

PIOO43

PIOO44

PIOO45

Scalar out of range. File in error: filespec

Attempt to open/close INPUT file. File in error:
filespec

Attem~t to close OUTPUT file. File in
filespec

error:

Attempt to write to READONLY file. File in error:
filespec

Attempt to open already opened file. File in error:
filespec

At tern p t toR EWR I T E (0 u t put). F i 1 e in err 0 r: f i] e s pe c

At~::empt to REWRITE (input) • File in error: filespec

Exponent too large. File in error: filespec

Exponent too small. File in error: filespec

Reset error
filespec

File not found. File in error:

Scalar is all blanks. File in error: filespec

Attempt to read past enct of line. File in error:
filespec

Attempt to readln/writeln to a binary file. File in
err-or: filespec

PAGE called with fjle opened NOCARRIAGE.
err-or: filE~spec

File in

EOLN called when EOF true. File in error: filespec

Testing EOF on unopened file. File in
filespec

Too many open files.

e r ro r:

Attempt to RESET new internal file. File in error:
filespec

Compile-Time Errors

? PASOOI Error in simple type

The declaration for a base type of a set or the index type of an
array contains a syntax error.

? PASOO~ Identifier expected

The statement syntax requires an identifier, but none can be
found.

A-3

PASCAL MESSAGES

? PAS003 tlpROGRAM tI or tlMODULE tI expected

The statement syntax requires the reserved word PROGRAM or
MODULE.

? PAS004 tI) tI expected

The statement syntax requires the right-parenthesis character.

? PAS005 11:11 expected

?

?

?

?

?

?

?

?

?

?

?

The statement syntax requires a colon character.

PASOOf) III eg a] symbol

The statement contains an illegal symbol, such as a misspelled
reserved word or ilJegal character.

PASOO7 Error in parameter list

The parameter list contains a syntax error, such as a missing
comma, colon, or semicolon character.

PASOO8 1I0F II expected

1'he statement syn ta x requires the reserved word OF •.

PASClO9 II (II expected

The statement syn tax requires the left-parenthesis character.

PASOIO Error in type

The statement syn tax requires a data type, but no type identifier
is present.

PASOll II r II expected

The statement syntax requires the left square bracket character.

PAS012 II 1 II expected

The statement syn ta x requires the right square bracket character.

PAS013 IIENDII expected

The compiler cannot find the delimiter END, which marks the end
of a compound statement, subprogram, or program.

PAS014 ". " expected ,

The statement syn tax requires the semicoJon character.

PAS015 Integer expected

'rhe statement syn tax requires an integer.

PAS016 11=11 expected

The statement syntax requires the equal sign to separate a
constant identifier from a constant value or to separate a type
identifier from a type definition.

A-4

PASCAL MESSAGES

? PASOl7 "BEGIN" expected

The compiler cannot find the delimiter BEGIN, which marks the
beginning of an executable section.

? PAS018 " " expected

?

?

?

The compiler cannot find the symbol, which is required
between the endpoints of a subrange.

PAS019 Error in field list

The field list in a record declaration contains a syn tax error.

PAS020 " " expected ,

The statement syntax requires a comma.

PAS021 Empty parameter (successive " , ") not allowed

The parameter list attempts to specify a null or missing
parameter, or contains an extra comma.

? PAS022 IJlegal (nonprintable) ASCII character

The program contains an illegal character that is not a printable
ASCII character.

? PAS023 "," or ")" expected

The statement syntax requires either a comma or a
right-parenthesis character.

? PAS024 '" '" expected

The statement syntax requires two quotation marks.

? PAS050 Error in constant

A constant contains an illegal character or is improperly formed.

? PAS051 ":=" expected

The statement syntax requires the assignment operator.

? PAS052 "THEN" expected

The compiler cannot find the reserved word THEN to complete the
IF-THEN statement.

? PAS053 "UNTIL" expected

The compiler cannot find the reserved word UNTIL to complete the
REPEAT statement.

? PAS054 "DO" expected

The compiler cannot find the reserved word DO to complete the FOR
statement or the WHILE statement.

? PAS055 "TO" or "DOWNTO" expected

The compiler cannot find the rE~served word TO or DOWNTO in the
FOR statement.

A-5

PASCAL MESS~GES

? PAS05A Invalid expression

The statement syntax requires an expression, but the first symbol
the compiler finds is not Jegal in the expression.

? PAS059 Error in variable

A reference to an array element or record field contains a syntax
error.

? PAS060 "ARRAY" expected

The compiler cannot find the reserved word ARRAY in the type
definition.

? PASO~l "PROCEDURE" or "FUNCTION" expected

The statement syntax requires the reserved word PROCEDURE or
FUNCTION.

? PASO~2 Internal compiler error

An internal error has been detected.

? PAS095 Functions "BIN", "OCT", or "HEX" not allowed in this context

The context does not allow the functions BIN, OCT, or HEX.

? PAS096 File component may not exceed ~5515 words

The file component is larger than 65535 words.

? PAS097 Error count exceeds error limit. Compilation aborted.

The number of errors exceeded the limit you specified.

? PAS099 End of input encountered before end of program. Compilation
aborted.

? PAS100 Array size too large

A declared array is larger than 2,147,483,647
2,147,483,647 bits for a packed array.

? PAS101 Identifier declared twice

bytes or

An identifier is declared twice
You can redeclare identifiers
sections.

within
only

a
in

declaration section.
different declaration

? PASl02 Lowbound exceeds highbound

The lower limit of a subrange is greater than the upper limit of
the subrange, based on their ordinal values in their base type.

? PASI03 Identifier is not of appropriate class

The identifier names the wrong class of data. For example, it
names a constant where the syntax of the statement requires a
procedure.

? PAS104 Identifier not declared

The program uses an identifier that has not been declared.

A-6

PASCAL MESSAGES

? PASIOS Sign not allowed

A plus or minus sign was found in front of an expression of
nonnumeric type.

? PASI06 Identifier previously used in this block.

You gave two items the same identifier within the same block.

? PASI07 Incompatible sub range types

The subrange types are not compatible according to the rules of
type compatibility.

? PASIOS File not allowed in variant part

A file type cannot appear in the variant part of a record.

? PASI09 Type must not be real or double

You cannot specify a rea] value here. Real values cannot be used
as array subscripts, control values for FOR loops, tag fields of
variant records, elements of set expressions, or houndaries of
subrange types.

? PASIIO Tagfield type must be scalar or subrange

The tag field for a variant record must be a scalar or subrange
type.

? PASlll Incompatible with tagfield type

The case label and the
These two items must
compatibility rules.

tag
be

field are
compatible

of incompatible types.
according to the general

? PASll2 Index type must not be real or double

Array subscripts cannot be real values;
integer or integer subrange values.

if numeric, they must be

? PASll3 Index type must be scalar or sub range

Array subscripts must be scalar or subrange values, and cannot be
of a structured type.

? PASl14 Base type must not be real or double

The base type of this set or subrange cannot be one of the real
types.

? PASllS Base type must be scalar or subrange

The base type of this set or subrange must be scalar or subrange
values, and cannot be of structured type.

? PASll6 Actual parameter must be a set of correct size

The actual parameter must be of correct size when passed as a VAR
parameter.

? PASl17 Undefined forward reference in type declaration: name

Compilation aborted.

A-7

PASCAL MESSAGES

? PASll8 Value injtializatjon must be in main program

A VALUE initialization must be in the main program.

? PASl19 Forward declared: repetition of parameter list not allowed

You cannot repeat the parameter list
declaration of a subprogram.

after the forward

? PAS120 Function result type must be scalar, subrange, or pointer

The function specifies a result that is not a scalar, subrange,
or pointer type. Function results cannot be structured types.

? P~S121 File value parameter not allowed

A file cannot be passed as a value parameter.

? PAS122 Forward declared function:
allowed

repetition of result type not

The result of the function appears in both the forward
declaration and in the later complete declaration. Th€ result
can appear only in the forward declaration.

? PAS123 Missing result type in function declaration

The functjon heading does not declare the type of the result of
the function.

? PASl24 Fraction format for real and double only

You can specify two integers in the field width (such as R:3:2)
for real, single, and double values only.

? PAS125 Error in type of predefined function parameter

A parameter passed to a predefinen function is not of the correct
type.

? PAS126 Number of parameters does not agree with declaration

The number of actual parameters passed to the subprogram is
different from the number of formal parameters declared for that
subprogram. You cannot add or omit parameters.

? PAS127 Parameter cannot be element of a packed structure

You cannot
subprogram;
use it.

pass
you

one element of a packed structure to a
must pass the entire structure if you want to

? PAS128 Result type of actual function parameter does not agree with
declaration

The result of an actual function parameter is not of the type
specified in the formal parameter list.

? PAS129 Operands are of incompatible types

Two or more of the operands in an expression are of incompatible
types. For example, the program attempted to compare a numeric
and a character variable.

A-8

PASCAL MESSAGES

? PAS130 Expression is not of set type

The operators you specified are valid only for set expressions.

? PAS131 Type of variable is not set

The statement syntax requires a set variable.

? PAS132 Strict inclusion not allowed

You must use the <= and >= operators to test set inclusion.
PASCAL does not allow you to use the less than «) and greater
than (» signs for this purpose.

? PASl33 File comparison not allowed

Relational operators cannot be applied to file variables.

? PASl34 Illegal type of operand(s)

You cannot perform the specified operation on data items of the
specified types.

? PAS135 Type of operand must be Boolean

This operation requires a Boolean operand.

? PAS136 Set element must be scalar or subrange

The elements of a set must be scalar or subrange types.
cannot have elements of structured types.

? PASl37 Set element types not compatible

The elements of this set are not all of the same type.

? PASl38 Type of variable is not an array

Sets

A variable that is not an array type is followed by a left square
bracket or a comma inside square brackets.

? PASl39 Index type is not compatible with declaration

The specified array subscript is not compatible with the type
specified in the array definition.

? PAS140 Type of variable is not record

A period appears following a variable that is not a record type.

? PASl41 Type of variable must be file or pointer

A circumflex character appears after the name of a variable that
is not a file pointer.

? PASl42 Illegal parameter substitution

The type of an actual parameter is not compatible with the type
of the corresponding formal parameter.

A-9

P~SCAL MESS~GES

? PAS143 Loop control variable must be an unstructured non-floating
point scalar

The control variable in a FOR loop must be
subrange, or user-defined scalar type;
variable.

an integer, integer
it cannot be a real

? PAS145 Type conflict between control variable and loop bounds

The type of the control variable in a FOR loop is incompatible
with the type of the bounds you specified.

? PAS146 Assignment of files not allowea

You cannot assign one file to another. Output procedures must be
used to give values to files.

? PAS147 Label type incompatible with selecting expression

The type of case label Is incompatible with the type to which the
selecting expression evaluates. Case labels and selecting
expressions must be of compatible types.

? PAS148 Subrange bounds must be sca]ar

You can specify subranges of scalar types only.
specify a real or string subrange.

? PAS149 Index type must not be integer

You cannot

The index type of a nonconformant array cannot be integer,
although it can be an integer subrange.

? PAS150 Assignment to this function is not allowed

You cannot assign a value to an external or predeclared function
identifier.

? PAS151 Assignment to formal function parameter not allowed

You cannot assign a value to the name of a formal function
parameter.

? PAS152 No such field in this record

You attempted to access a record by an incorrect or nonexistent
field name.

? PAS153 Type of parameter must be character string (array of char)

The actual parameter passed to this function or procedure must be
a character string.

? PAS154 Type of parameter must be integer

The actual parameter passed to this function or procedure must be
an integer.

? PAS155 Recursive %INCLUDE not allowed. Compilation aborted.

? PAS156 Multidefined case label

The same case label refers to more than one statement. Each case
label can be used only once within the CASE statement.

A-IO

PASCAL MESSAGES

? PAS157 Case label range exceeds 1000

The range of ordinal values between the largest and smallest case
labels must not exceed 1000.

? PASl58 Missing corresponding variant declaration

In a call to NEW or DISPOSE, more tagfield constants were
specified than the number of nested variants in the record type
to which the pointer refers.

? PAS159 Double, real or string tagfields not allowed

Tag fields cannot be real or string variables, but must be
scalar.

? PAS160 Previous declaration was not forward

The reiteration of a procedure or function that was not forward
declared is illegal.

? PASJGl Procedure/function has already been forward declared

The subprogram has already been forward declared.

? PAS162 Undeclared procedure or function: name Compilation aborted.

You specified a procedure or function without declaring it in the
declaration section.

? PAS163 Type of parameter must be real or integer

The subprogram requires a real or integer expression as a
parameter.

? PAS164 This procedure/function cannot be actual parameter

The specified predeclared procedure or function cannot be an
actual parameter. If you must use it in the subprogram, cal] it
directly.

? PAS165 Multiply defined label

A label appears in front of more than one statement in a single
executable section.

? PASl66 Multiply declared label

The program declares the same label more than once.

? PASl67 Undeclared label

The program contains a label that has not been declared.

? PAS168 Undefined label: label number Compilation aborted.

You specified a label as an argument to the GOTO statement, but
the label is not defined.

? PASl69 Set element value must not exceed 255

The ordinal value of an element of a set must be between 0 and
255.

A-II

PASCAL MESSAGES

? PAS170 Value parameter expected

A subprogram that is passeo as nn actual parameter can have only
value parameters.

? PAS17l Type of variable must be textfiJe (file of char)

The specified operation or subprogrnm requires a text file
variable as an operand or parameter.

? PASl72 Undeclared external file: name Compilation aborted.

You specified nn external file that was not declared in the
declaration section.

? PASl73 Negative set elements not allowed

The valu€ of an integer set element must be between 0 and 255.

? PASl74 Parameter must be a file type

The specified subprogram requires a file as a parameter.

? PAS175 "INPUT" not declared as nn external file

The program makes an implicit reference to the file variable
INPUT, but INPUT is either not declared or has been redeclared at
an inner level.

? PAS176 "OUTPUT" not declared as an external file

The program makes an impJicit reference to the file variable
OUTPUT, but OUTPUT is either not declared or has been redeclared
at an inner level.

? PAS177 Assignment to function identifier not allowed here

Assignment to a function jdentifier is allowed only within the
function block.

? PAS178 Multidefined record variant

A constant tag fieJd value appears more than once in the
definition of a record variant.

? PAS179 File of file type not allowed

You cannot declare a file that has components of a file type.

? PAS181 Array bounds too large

The bounds of an array are too large to allow the elements of the
array to be accessed correctly.

? PASl82 Expression must be scalar

The expression must specify a scalar value; structured variables
are not legal.

? PAS183 "[GLOBAL]" or "[FORTRAN]" may only precede declarations at
level 1

The words (GLOBALl or [FORTRAN] can be placed only in a function
or procedure heading.

A-12

PASCAL MESSAGES

? PAS184 External procedure has same name as main program

Program and procedure names must be unique.

? PAS186 Formal procedures may not have conformant array parameters

You cannot pass a conformant array as a parameter to a procedure
that is itself passed as a parameter.

? PASl87 IJlegal conformant array assignment

The program attempts to perform an illegal assignment involving
conformant arrays.

? PAS188 Parameter must be scalar and not real or double

The parameters to the predeclared functions sucr and PRED must be
scalar types, and cannot be one of the real types.

? PAS189 Actual parameter must be a variable

When you use VAR with a formal parameter, the corresponding
actual parameter must be a variable and not a general expression.

? PAS190 "READLN" , "WRITELN" and "PAGE" are defined
textfiles

only fo r

The predeclared procedures READLN, WRITELN, and PAGE operate only
on text files.

? PAS191 "READ" and "WRITE" require input/output parameter list

The READ and WRITE procedures require at least one parameter;
you cannot omit the parameter list.

? PASl92 Illegal type of input/output parameter

Arrays, sets, records, and pointers cannot be parameters to the
READ and WRITE procedures.

? PAS193 Field width parameter must be of type integer

The field width you specify must be an integer.

? PAS194 Variable must be of type PACKED ARRAYfl .• ll] OF CHAR

The DATE and TIME procedures require a parameter of PACKED ARRAY
[1 .. 11] OF CHAR.

? PAS195 Type of variable must be pointer

The statement syntax requires a variable of pointer type.

? PAS196 Type of constant does not agree with tagfield type

The type of a constant in a tag value list is incompatible with
the tag field type.

? PASI97 Type of parameter must be real or double

The statement syntax requires a real
precision) value.

A-I]

(singIe- or double-

PASCAL MESSAGES

? PAS198 Type of parameter must be double

The statement syntax requires ~ double-precision value.

? PAS199 Parameter must be of numeric type

The procedure or function requires an integer or real number
value.

? PAS200 Parameter must be scalar or pointer and not real

The procedure or function requires an integer, user-defined
scalar, Boolean, integer subrange, user-defined scalar subrange,
or pointer parameter.

? PAS201 Error in real constant: digit expected

A real constant contains a nonnumeric character where a numeral
is required.

? PAS202 String constant must not exceed source 1ine

The end of the Jine occurs before the apostrophe that closes a
string. Make sure that the second apostrophe has not been left
out.

? PAS201 Integer constant exceeds range

An integer constant is outside the permitted range of integers
(that is, 2**31 to 2**31).

? PAS204 Actual parameter is not correct type

The actual parameter is not compatible in type with the
corresponding formal parameter.

? PAS205 Zero length string not allowed

You cannot specify a string that has no characters.

? PAS206 Illegal digit in binary, octal or hexdecimal constant

A binary, octal, or hexadecimal constant contains an illegal
digit.

? PAS207 Real or double constant out of range

A single- or double-precision real number is outside the
permitted range 0.29*10**(-38) to 1.7*(10**38) for positive
numbers and -0.29*10**(-38) to -1.7*(10**38) for negative
numbers.

? PAS208 Data type cannot be initialized

This variable contains a type, such as a file, that cannot be
initialized.

? PAS209 Variable has been previously initialized

You can specify only one VALUE declaration for a variable.

? PAS2l0 Variable is not array or record type

The VALUE initialization for a variable that is not a record or
an array contains a constructor.

A-14

PASCAL MESSAGES

? PAS?II Incorrect number of values for this variable

The VALUE declaration contains too many or too few values for the
variable being initialized.

? PAS21? Repetition factor must be positive integer constant

The repetition factor in an array initialization must be a
positive integer constant.

? PAS2I1 Type identifier does not match type of variable

The optional type identifier must be compatible with the t:"?e of
variable to be injtialized.

? PAS2I4 Incorrect type of value element

A constant appearing in a VALUE initialization has a type other
than that of the variable, record field, or array element to be
initialized.

? PAS2l5 RMS record size must be a positive integer constant

The record size specified in the OPEN procedure call was not a
positive integer constant.

? PAS216 "OLD" is not allowed for this file

You cannot specify OLD for an internal file.

? PAS217 Assignment to Conformant Array Index is not allowed

You cannot make this assignment to a conformant array index.

? PAS2I8 Array must be unpacked

An array parameter to PACK or UNPACK is not unpacked correctly.

? PAS2I9 Array must be packed

An array parameter to PACK or UNPACK is not packed correctly.

? PAS220 Packed bounds must not exceed unpacked bounds

The bounds of the packed array exceed the unpacked bounds.

? PAS224 "rOVERLAID1" expected

The statement syntax requires the keyword rOVERLAID].

? PAS225 Illegal file attribute specification

You specified an attribute in the OPEN statement that is not
recognized by the compiler.

? PAS226 Positional parameter not allowed after first non-posjtional
parameter

? PAS227 "OLD n , "NEW", nREADONLY", or "UNKNOWN" expected

The statement syntax requires either the keyword OLD or NEW.

A-I5

PASCAL MESSAGES

? PAS228 "SEQUENTIAL" or "DIRECT" expected

The statement syntax requires either the keyword SEQUENTIAL or
DIRECT.

? PAS229 "FIXED or "VARIABLE" expected

The statement syntax requires either the keyword FIXED or
VARIABLE.

? PAS230 "NOCARRIAGE", "NONE", "CARRIAGE", "FORTRAN", or
expected

"LIST"

The statement syntax requires one of the following keywords:
NOCARRIAGE, NONE, CARRIAGE, FORTRAN, or LIST.

? PAS231 II legal keyword

This keyword cannot be specified in this context.

? PAS232 Parameter has already been specified

You have specified the same parameter twice.

? PAS233 File variable must be specified

You forgot to specify the file variable.

? PAS234 Identifier or character string literal expected

You need to specify a identifier or character string literal.

? PAS235 Parameter cannot be specified in this posjtion

You specified a parameter that did not belong in this place.

? PAS237 A "NEW" and "DIRECT" file must have fixed-length records

You specified variable-length records for a file that must have
fixed-length records.

? PAS238 Record type may not be "VARIABLE" for "DIRECT" files

You cannot have variable length records for a DIRECT file.

? PAS239 %INCLUDE file not found. Compilation aborted.

? PAS240 Include/Exclude file error. CompiJation aborted.

? PAS250 Too many nested scopes of identifiers

You can have only 20 levels of nesting. A new nesting level
occurs with each block or WITH statement.

? PAS251 Too many nested procedures and/or functions

Subprograms can be nested no more that 20 levels deep.

? PAS252 Assignment to function not allowed here.
scope conflict

Probable name

A function is nested within a function with the same name.

A-l{)

PASCAL MESSAGES

? PAS253 Too many arguments in an "OPEN" statement

You specified too many arguments.

? PAS255 Too many errors on this source line

The PASCAL compiler diagnoses only the first 20 errors on each
source line.

? PAS259 Expression too complicated

The expression is too deeply nested. To correct this error, you
should separately evaluate some parts of the expression.

? PAS261 Declarations out of order or repeated declaration sections

The declarations must be in the following order:
constants, types, variables, values, and subprograms.
main program can contain value declarations.

labels,
Only the

? PAS2~4 Only "VAR" parameters allowed for "rFORTRAN1" declared
routines

You cannot specify value parameters for rFORTRANl
routines.

declared

? PAS265 Parameter not allowed for " [FORTRAN1" declared routines

This type of parameter is not allowed for rFORTRAN]
routines.

declared

? PAS266 Conformant part of Conformant arrays can have on]y one
dimension packed

You packed more than one dimension in a conformant array part.

? PAS267 Conformant arrays must be of the same type

When using relational operators with conformant arrays, the array
types must be equivalent.

? PAS300 Division by zero

The program attempts to divide by zero.

? PAS302 Index expression out of bounds

The value of the expression is out of range for the array element
to which you are assisning it.

? PAS303 Value to be assigned is out of bounds

The value to the right of the assignment operator is out of range
for the variable to which it is being assigned.

? PAS304 Set element expression out of range

The value of the expression is out of range for the set element
to which you are assigning it.

? PAS30S Field width must be greater than zero.

A-17

PASCAL MESSAGES

? PAS306 Index type of conformant array parameter exceeds range of
declaration

The index type of the actual conformant array parameter extends
beyond the range declared in the formal parameter list.

? PAS307 Modulus with zero or negative value

The program tried to take the mod of zero.

? PAS309 Variable space exceeds low segment memory size, 377777
(octal)

? PAS310 Code space exceeds available address space, 777777 (octal)

Compile-Time Warnings

% PAS401 Identifier exceeds, 31, characters

Identifiers can be any length, but PASCAL scans only the first 31
characters for uniqueness.

% PAS402 Error in option specification

A compiler option is incorrectly specified in the source code.

% PAS403 Source input after "END." ignored

The compiler ignores any characters after the END that terminates
the program.

% PAS404 Duplicate external procedure name

Two external procedures or functions have been declared with the
same name. They refer to the same externally compiled
subprogram.

% PAS405 LABEL declaration in MODULE ignored

The compiler ignores label declarations at the outermost level in
a module.

% PAS407 Illegal option on include file specification; LIST assumed

You specified an option that is not available.

% PAS408 One or more parameter values assumed before "param"

% PAS409 Alternative ordering of HISTORY and RECORDLENGTH parameters

% PAS4I0 Parameter type is not known by FORTRAN.

% PAS413 Case label out of range

% PAS450
% PAS451
% PAS452
% PAS453
% PAS454
% PAS455
% PAS456

Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL~

Exponentiation
VALUE declaration
OTHERWISE clause
%INCLUDE directive
MODULE declaration
Label exceeds 9999
"$" or "" in identifier

A-I8

PASCAL MESSAGES

% PAS457 Nonstandard PASCAL:

% PAS458
% PAS459
% PAS460
% PAS461
% PAS4fi2

% PAS463
% PAS4fi4
% PAS465
% PAS466

% PAS467
% PAS468

% PAS469
% PAS470

% PAS4 7 1

Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:

Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:
Nonstandard PASCAL:

NonstAndard PASCAL:
Nonstandard PASCAL:

Nonstandard PASCAL:
Nonstandard PASCAL:

Nonstandard PASCAL:

% PAS472 Nonstandard PASCAL:

% PAS473 Nonstandard PASCAL:
% PAS474 Nonstandard PASCAL:

% PAS475 Nonstandard PASCAL:
% PAS476 Nonstandard PASCAL:

% PAS477

% PAS478
% PAS479

% PAS480
% PAS481

Nonstandard PASCAL:

Nonstandard PASCAL:
Nonstandard PASCAL:

Nonstandard PASCAL:
Nonstandard PASCAL:

Conformant passed to value conformant
array
Directive "rGLOBAL)" or "rFORTRAN) "
Binary, octal or hexadecimal constant
Double precision constant
External procedure declaration
Binary, octal or hexadecima] data
output
Output of user-defined scalar
Input of string or user-defined scalar
Input/output of double precision data
Implementation-defined type, function,
or procedure
Directive " [OVERLAIDl"
Formal and actual parameters not of
identical type
Control variable is not local
Formal and actual parameters not both
packed or unpacked
No parameter list declared for this
call
No parameter list declared for this
fo rma t
Nonstandard parameter declaration
Array or record types not identical in
assignment
Types not identical in comparison
VAR parameter is selector of variant
record
Parameter is pre-defined procedure
function
NIL used as constant identifier
Case constants do not cover range
tag- type
Input/output of conformant string
Comparison of conformant strings

A-19

or

of

APPENDIX B

ASCII CHARACTER SET

Table B-1: The ASCIl Character Set

--
ASCII
Decimal
Number

o
1
2
3
4
5
6
7
R
9
10
11
I?
13
1<1
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3~

33
34
35
36
37
38
39
40

Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
V1:
FF'
CH
SO
S1
DLE
DC1
DC2
DC3
DC4
Nl\K
SYN
ETB
Cl~N

E~1

SUB
ESC
FS
GS
RS
US
SP

"
i
$
%
%

Meaning

Null
Start of heading
End of text
End of text
End of transmission
Enquiry
Acknowledgement
Bell
Backspace
Horizontal tab
Line feed
vertical tab
Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledgement
Synchronous idle
End of transmission block
Cance]
End of med i urn
Substitute
Escape
File separntor
Group separator
Record separator
Unit separator
Spac '9 or blank
Exc]amation mark
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis

B-1

ASCII CHARACTER SET

Table 8-1: The ~SCII Character Set (Cont.)

ASCII Character Meaning
Decimal
Number

41 Right parenthesis
42 * Asterisk
43 + Plus sign
44 Comma
45 Minus sign or hyphen
4fi Period or decimal point
47 / Slash
48 0 Zero
49 1 One
50 2 Two
51 3 Three
52 4 Four
53 5 Five
54 f) Six
55 7 Seven
56 8 Eight
57 9 Nine
58 Colon
59 Semicolon
60 < Left angle bracket
61 Equal sign
62 > Right angle bracket
63 ? Question mark
64 @ At sign
65 A Upper case A
66 8 Upper case 8
67 C Upper case C
fi8 D Upper case D
69 E Upper case E
70 F Upper case F
71 G upper case G
72 H upper case H
73 I Upper case I
74 J Upper case J
75 K Upper case K
76 L Upper case L
77 M Upper case M
78 N Upper case N
79 0 Upper case 0
80 P Upper case P
81 Q Upper case Q
82 R Upper case R
83 S Upper case S
84 T upper case T
85 U Upper case U
86 V Upper case V
87 W Upper case W
88 X Upper case X
89 y Upper case Y
90 Z Upper case Z
91 [Left squa re b racke t
92 Back slash
93 Right square bracket
94 or Circumflex or up arrow
95 or Back arrow 0 r underscore

B-2

ASCII CHARACTER SET

Table B-1: The ASCII Character Set (Cont.)

ASCII Character Meanjtng
Decimal
Number

96 GraVE~ accent
97 a Lowe l~ case a
98 b Lowe l~ case b
99 c Lower case c
100 d Lower case d
101 e Lower case e
102 f Lower case f
103 9 Lower case 9
104 h Lower case h
lOS Lower case i
106 j Lower case j
107 k Lower case k
108 1 Lower case 1.
109 m Lowe l~ case m
110 n Lower case n
III 0 Lower case 0

112 P Lower case p
113 q Lower case q
114 r Lower case r
115 s Lower case s
116 t Lower,case t
117 u Lower case u
118 v Lower case v
119 w Lower case w
120 x Lower case x
121 y Lower case y
122 z Lower case z
123 { Left brace
124 I Vertilcal line
125 } Right brace
126 Ti1dE~
127 DEL Delete

B-3

APPENDIX C

SYNTAX SUMMARY

This appendix summarizes the syntAx of the PASCAL-20 language in the
Backus-Naur Form (BNF):

C.l BACKUS-NAUR FORM

In the BNF, each element of the language is defined recursively in
terms of simpler elements. The element being defined is written to
the left of the symbol: ::= and its definition is writt.en to the right
of tha t symbol.

The BNF uses a group of metasymbols that differ from the conventions
used in the rest of this manual and are not part of the PASCAL
language. Table C-l] ists the meta-symbols used in the BNF.

Table C-l: BNF MetaSymbols

Symbol Meaning

< >

separates the
definition.

element being defined from its

Encloses a definable language element.

Encloses an optional element.

Means "or"; separates possible elements.

Encloses elements that may be repeated one or more
times, but need not be present

The remainder of this section lists PASCAL in BNF.

<compilation unit> ::= <program> I <module>

<module> ""= <module heading> <global declaration part>
<procedure and function declaration part> END .

<program> ::= <program heading> <block> •

<module heading> ::= <module word> <identifier>
<module word> <identifier> (<program parameters>

C-l

SYNTAX SUMMARY

<global declaration part> ::= <label decJaration part>
<constant definition part>
<type definition part>
<variable declaration part>

<module word> ::= MODULE I r rOVERLAJDll MODULE

<program heading> ::= <program word> <identifier>
<program word> <identifier> (<program param'2ters>

<program parameters> ::= <external file identifier>
{ , <external file identifier> }

<external file identifier> ::= <identifier>

<program word> ::= PROGRAM r rOVERLAIDll PROGRA~

<identifier> ::= <identifier head> {<Jetter or digit> I S}

<identifier head> . -= <Jetter> $

<letter> . -= A B I C D E F I G H I I I ,} I K I
N 0 I P Q R S I T U I V I W I X I
a b I c d e f I g h I I j I k I
n 0 I p g r s I t u I v I w I x I

<digit> : :=,0 I I I 2 I 3 I 4 I 5 I fi I 7 I 8 I 9

<special symbol> ::= <operator symbol> I <reserved word>
<semireserved word> I <incJude symbol>

L I M
Y I z
I I m
y I z

<operator symbol> - -= + I - I * I /
I) I r I 1 I

= I <> I < I > I <= I >=
I } I : = I _ I , I I: I 1

" I ** I '@ (* I *) , (. , •)

<reserved word> - -= DIV , MOD I NIL IN OR I AND I NOT I IF
THEN I ELSE I CASE I OF I REPEAT I UNTIL I WHILE
DO I FOR , TO I DOWNTO I BEGIN I END I WITH , GOTO
CONST I VAR , TYPE I ARRAY I RECORD I SET , FILE
FUNCTION I PROCEDURE I LABEL I PACKED I PROGRAM

<semireserved word> ::= REM I OTHERWISE I MODULE VALUE

<include symbol> ::= %INCLUDE

<blank> ::= <single blank> { <single blank>

<single blank> ::= <space character> I <tab character>

<block> ::= <declaration part> <value initialization part>
<procedure and function declaration part> <statement part>

<declaration part> ::= <label declaration part> <constant declaration
part> <type declaration part> <variable declaration part>

<label declaration part> ::= <empty> I LABEL <Jabel> { , <label> } ;

<label> ::= <unsigned integer>

<constant definition part> ::= <empty> I
CONST <constant definition> { ; <constant definition> }

<constant definition> ::= <identifier> = <constant>

C-2

SYNTAX Sm1MARY

<constant> ::= <unsigned number> I <sign> <unsigneo number> I
<constant identifier> I <sign> <constant identifier>
<string> I NIL

<unsigned number> ::= <unsigneo inteqer> I <unsigned real>

<unsigned integer> ::= <digit sequence> <radix integer>

<radix integer> - .. = % <octal integer) I % <hex integer> I
% <binary integer>

<octal integer> :.= <JettE!r 0> ' <octa] digit sequence> '

<letter 0> ::= 0 1 0

<octal digit sequence> ::= <octal digit> { <octal digit> }

<octal digit> - -= 0 I 1 I 2 I 3 I 4 I 5 I h I 7

<hex integer> - -= <letter x> ' <hex ("iigit sequence> '

<letter x> ::= X I x

<hex digit sequence> ::= <hex digit> { <hex djgit> }

<hex digit> - -= <digit> I A I B I C I DIE I F I a I b I c I d
I elf

<binary integer> "-= <letter b> ' <binary digit sequence> '

<letter b> ::= B 1 b

<binary digit sequence> - ,,= <binary digit> { <binary digit> }

< bin a r y dig it> :: == 0 I 1

<unsigned real> ::= <unsigned single> I <unsigned double>

<unsigned single> ::= <digit sequence> • <digit sequence>
<digit sequence> • <digit sequence> E <scale factor>
<digit sequence> • <digit sequence> e <scale factor>
<digit sequence> E <scale factor> I
<digit sequence> e <scale factor>

<unsigned double> ::= <digit sequence> • <digit sequence> D <scale
factor> I <digit sequenc.e> • <digit sequence> d <scale
factor> I <digit sequence> D <scale factor> I
<digit sequence> d <scale factor>

<digit .sequence> ::= <digit> <digit> }

<scale factor> ::= <digit sequence> I <sign> <digit sequence>

< s ig n> :: = + I -

<constant identifier> ::= <identifier>

<string> ::= , <character> { <character> } ,

<character> ::= <any ASCII character except '> I I'

<type definition part> 00: <empty>
TYPE (type definition>

C-3

<type definition> }

SYNTAX SUMMARY

<type definition> ::= <identifier> = <type>

<type> ::= <simpJe type> I <structured type> I <pointer type>

<simple type> - -= <scalar type> I <subrange type>

<scalar type> --= <identifier> { , <ioentifier>

<subrange type> ::= <constant> 00 <constant>

<type identifier> - -= <identifier>

<structured type> - -= <unpacked structured type> I
PACKED <unpackeri structured type>

<type identifier>

<unpacked structured type> ::= <array type> I <record type>
< set type> I < f i 1 e type>

<array type> ::= ARRAY <index type> { , <index type> } 1 OF
<component type>

<index type> ::= <simple type>

<component type> ::= <type>

<record type> ::= RECORD <field list> END

<field list> ::= <fixed part> I <fixed part>
< va ria n t pa r t>

<variant part> I

<fixed part> ::= <record section>{ <record section> }

<record section> ::= <empty> I
<field identifier> { , <field identifier> } : <type>

<variant part> ::= CASE <tag field> <type identifier> OF
<variant> { ; <variant> }

<tag field> ::= <field identifier> : < empty>

<variant> ::= <case label list> : (<field list> I <empty>

<case label list> ::= <case label> { , <case label> }

<case label> ::= <constant>

<set type> ::= SET OF <base type>

<base type> 00= <simple type>

<file type> 00= FILE OF <type>

<pointer type> ::= A <type identifier>

<variable declaration part> ::= <empty> I
VAR <variable declaration> { ; <variable declaration>

<variable declaration> ::= <id~ntifier list> : <type>
I <identifier list> : <type> := <value>

<identifier list> ::= <identifier> { , <identifier> }

<value initialization part> ::= VALUE <value initialization>
{ ; <value initialization> } ; I <empty>

C-4

SYNTAX Sur~MARY

<value initialization> ::= <identifier> := <value>

<value> ::= <constant> I <set constant> I <constructor>

<set constant> ::= r <constant element list> 1

<constant element list> ::= <empty>
<constant el(~ment> { , <constant element>

<constant element> ::= <constant> <constant> •• <constant>

<constructor> ::= <opt.ional type> (<value element>
{ i' <value element> })

<optional type> ""= <empty> <type identifier>

<value element> ""= <value> <repetition factor> OF <value>

<repetition factor> ::= <unsigned integer> <constant identifier>

<procedure or function declaration part.> ::=
{ <procedure or function declaration>

<procedure or function declaration> ."= <procedure declaration>
<function declaration>

<procedure declaration> ::= <internal procedure declaration>
<external procedure declaration>
<forward procedure declaration>

<internaJ procedure declaration> ::= <procedure heading> <block>
rrGLOBAL]] <procedure heading> <block>
[rFORTRAN]] <procedure heading> <block>

<external procedure declaration> ::= <procedure heading> EXTERN I
<procedure heading> EXTERNAL I <procedure heading> FORTRAN

<forward procedure declaration> ::= <procedure heading> FORWARD
[rGLOBAL]] <procedure heading> FORWARD I
rrFORTRAN1] <procedure heading> FORWARD

<procedure heading> ::= PROCEDURE <identifier> ;
PROCEDURE <identifier> (<formal pnrameter section>
{ ; <formal par"ameter section> })

<formal parameter sect.ion> ::= <extended parameter group>
VAR <extended parameter group> I
FUNCTION <parameter group> I
PROCEDURE <identifier> { , <identifier> }
<procedure heading> I <function heading>

<extended parameter group> ::= <parameter group> I
<identifier> { , <identifier> } : <conformant array schema>

<conformant array schema> ::= ARRAY r <index type specification>
{ ; <index tYPE! specification> }] OF <type identifier>
ARRAY (<index type specification>
{ , <index type specification> } , OF <conformant array
schema> PACKED ARRAY r <index type specification> 1
OF <type identifier>

<index type specification> ::= <identifier> •• <identifier>
<scalar type identifier>

C-5

SYNT.AX SUMMARY

<scalar type identifier> ::= <i~entifier>

<parameter group> ::= <identifier> , <identifi.er>
<type identifier>

<function declaration> - -= <internal function declaration>
<external function declaration>
<forward function declaration>

<internal function declaration> ::= <function heading> <block>
rGLOBAL) <function heading> <block>
rFORTRANl <function heading> <block>

<external function declaration> ::= <function heading> EXTERN I
<function heading> EXTERNAL I <function heading> FORTRAN

<forward function declaration> ::= <function heading> FORWARD I
rGLOBALl <function heading> FORWARD I
rFORTRANl <function heading> FORWARD

<function heading> - -= FUNCTION <identifier> : <result type> ;
FUNCTION <identifier> (formal parameter section>
{ ; <forma] parameter section> }) : <result type>

<result type> ::= <type identifier>

<statement part> ::= <compound statement>

<statement> ::= <unlabeJ ed statement> I <label> : <unlabeled statement>

<unlabeled statement> ::= <simple statement>

<simple statement> ::= <assignment statement>
<go to statement>

<structured statement>

<procedure statement>
I <empty statement>

<assignment statement> - -= <variable> := <expression>
<function identifier> := <expression>

<variable> - -= <entire variable> I <component variable>
<referenced variable>

<entire variable> ::= <variable identifier>

<variable identifier> ::= <identifier>

<component variable> ::= <indexed variable> I <field designator> I
<file buffer>

<indexed variable> - -= <array variable> r <expression>
{ , <expression> }]

<array variable> ::= <variable>

<field designator> ::= <record variable> • <field identifier>

<record variable> ::= <variable>

<field identifier> ::= <identifier>

<file buffer> ::= <file variable> A

<file variable> ::= <variable>

C-6

SYNTAX SU~1MARY

<referenced variable> ::= <pointer variable> ft

<pointer variable> ::= <variable>

<expression> ::= (simple expression> I <simple expression>
<relational operator> <simple expression>

<relational operator> ::= = I <> I < I <= I >= > I lN

<simple expression> ::= <term> <sign> <term>
<simple expression> <adding operator> <term>

<adding operator> ::= + I - I OR

<term> ::= <primary> <term> <multiplying operator> <primary>

<multiplying operator> ::= * I / I DIV I MOD I AND I REM

<primary> ::= <factor> <primary> ** <factor>

<factor> ::= <vari.able> I <unsigned constant> I (<expression>)
<function designator> I <set> NOT <factor>

<unsigned constant> - -= <unsigned number> <string>
<constant identifier> I NIL

<function designator> - -= <function identifier>
<function identifier> (<actual parameter>
{ , <actual parameter> })

< fun c t ion ide n t i fie r> - -= < ide n t i fie r>

<set> ::= [<elemE~nt list>]

<element list> : :== <element> { , <el.~ment> } I <empty>

<element> ::= <expression> I <expression> ._ <expression>

<procedure statement> ::= <procedure identifier>
<procedure identifier> (<actual parameter>
{ , <actual parameter> })

<procedure identifier> ::= <identifier>

<actual parameter) - -= <expression> I
<procedure identifier> I <function identifier>

<go to statement> ::= GOTO <label>

<empty statement> ::= <empty>

<empty> :: =

<structured statement> ::= <compound statement> I
<conditional statement> I <repetitive statement> I
<with statement)

<compound statement> ::= BEGIN <statement> ; <statement> } END

<conditional statement> ::= <if statement> <case statement>

<if statement> ::~ IF <expression> THEN <statement> I
IF <expression> THEN <statement> ELSE <statement>

C-7

~YNTA.X SUMMARY

<case statement> ::= CASE <expression> OF <case list element>
f ; <case list element> } <otherwise part> <end case>

<case list element> ::= <case 1abel] ist> : <statement'> < empty>

<otherwise part> ::= <empty>
OTHERWISE <statement,> {
; OTHERWISE <statement>

<statement> J
; <sta tement>

< end case> :: = END I END

<repetitive statement> - -= <while statement> I <repeat statement>
<for statement>

<while statement> ::= WHILE <expression> DO <statement>

<repeat statement> ::= REPEAT <statement,> { ; <statement>
UNTIL <expression>

<for statement> ::= FOR <control variable> := <for list> DO <statement>

<for list> ::= <initial value> TO <final value>
<initial value> DOWNTO <final value>

<control variable> ::= <identifier>

<initial value> ::= <expression>

<final value> ::= <expression>

<with statement> ::= WITH <record variable list> DO <statement>

<record variable list> ::= <record variable> { , <record variable>

<open statement> ::= OPEN (<open parameters>

<open parameters> ::= <file parameters>
I <keyword parameters> { , <keyword parameters>

<keyword parameters> - -= FILE VARIABLE := <file variable>

<file name> ::= <variable>

T FILE NAME := <file name>
I HISTORY := <file status>
I RECORD LENGTH := <record length>
I ACCESS-METHOD := <record access mode>
I RECORD-TYPE := <record type>
I CARRIAGE CONTROL := <carriage control>

<constant identifier>
I I <file specification> '

<file status> ::= OLD I NEW I UNKNOWN I READONLY

<record length> ::= <unsigned integer>

<record access mode> ::= SEQUENTIAL I DIRECT

<record type> ::= VARIABLE I FIXED

<carriage control> ::= CARRIAGE I NOCARRIAGE I LIST

C-8

SYNTAX SUr-1MARY

<file parameters> ""= <file variable> <RMS file specification>
<RMS fiJe history> <RMS record length>
<RMS record access mode>
<RMS record type>
<RMS cRrriage control>

<RMS file specification> ::= , , <file specification> ' I <empty>

<RMS record length> ::= , <record length> I <empty>

<RMS file history> ""= < file status> I <empty>

<RMS record access mode> ."= <record access mode> I <empty>

<RMS record type> ::= , <record type> I <empty>

C-9

APPENDIX D

SUMMARY OF PASCAL-20 EXTENSIONS TO PROPOSED ISO STANDARD

Category

Lexical and
syntactical

Predefined types

Predeclared Procedures

READ, READLN, WRITE,
and WRITELN extensions

READ, READLN, WRITE,
and WRITELN extensions

Declarations

Statements

Procedures and Functions

Compilation

Extension

Semi reserved words: MODULE, OTHERWISE,
REM

Exponentiation operator (**)

REM operator

Binary, hexadecimal, and octal notation
for integers

Double-precision real data type

Dollar sign ($) and underscore ()
characters in identifiers

Identifiers of up to 31 characters

SINGLE, DOUBLE

CLOSE, DATE, FIND, HALT,
OPEN, TIME, MARK, RELEASE

LINELIMIT,

Parameters of character string and
enumerated types for READ and READLN

Parameters of enumerated types for WRITE
and WRITELN

Optional carriage-control specification
for text files with WRITE and WRITELN

variable initialization

OTHERWISE clause in CASE statement

External procedure and function
declar,ation

Support for calling externally declared
FORTRAN subroutines and for declaration
of PASCAL subroutines that can be called
by FOR'TRAN

MODULE capability for combining
declarations and definitions to be
compiled independently from the main
progralltl

D-I

-------- ---- ---- -------------------

APPENDIX E

ISO COMPLIANCE

This appendix is a statement of the compliance of PASCAL-20 with the
PASCAL standard ISO 7185. It is divided into four -sections:

1. Implementation-defined features. This is a list of the
features of PASCAL that must be defined by each
implementation, but which may vary between implementations.

2. Implementation-dependent features. This is a list of the
features of PASCAL which mayor may not be defined by an
impl emen ta tion.

3. Errors. This is an explanation of how PASCAL-20 handles each
of the errors defined by ISO 7185.

4. Exceptions and restrictions. This is a list of violations of
the standard which PA$CAL-20 does not detect, and
restrictions imposed by PASCAL-20.

This appendix does not list extensions to the ISO 7185 standard
implemented by PASCAL-20. These extensions are listed in Appendix D.

E.1 IMPLEMENTATION-DEFINED FEATURES

The ISO 7185 standard leaves the exact definition of a number of
language elements up to the implementation. Following is a list of
those features, and the definition given them by PASCAL-20.

1. The predefined type CHAR corresponds to the 7-bit ASCII
charact€!r set.

2. The identifier MAXINT denotes a value of 2**35-1, which is
the maximum integer value of a PDP-lO word.

3. In a WRITE or WRITELN statement, the default field-width for
integers is 10, for real numbers is 16, and for Booleans is
16. The number of digits written in the exponent of a
floating-point format real is 2. On output to a text file,
the Boolean values TRUE and FALSE are translated to the
uppercase character strings "TRUE" and "FALSE" respectively.

E-l

ISO COMPLIANCE

4. A program parameter that is a file variable is bound at
runtime to an external (operating system) file. An external
file may exist prior to execution of the program and is not
deleted when the program exits. PASCAL-20 determines which
file specification to use when opening the file in the
following manner:

• If an OPEN statement is executed prior to a RESET or
REWRITE of the file, the file specification given in the
OPEN statement is used.

• If no OPEN statement is executed, the RESET or REWRITE
looks for a logical name with the same name as the file
va ria b 1 e . I fit fin d s the]. og i cal n arne, t ha t n arne i s
used as the file specification.

• Otherwise, the variable name is used as the file name,
and an extension of .DAT is assumed.

The ISO 7185 standard also states that the precise actions of the I/O
procedures REWRITE, PUT, RESET, GET, and PAGE are implementation
defined. In the following items, F is assumed to be a file variable,
and the various pre- and post assertions for each operation are
assumed to be true.

1. REWRITE(F) creates or supersedes an operating system file,
and opens the file for writing.

2. PUT(F), where F is a text file, writes the contents of the
file buffer variable to the output buffer, and advances the
buffer pointer; no file operation is performed.

3. PUT (F) , where F is not a text file, writes the contents of
the file buffer variable to the file.

4. RESET(F) opens an existing operating system file for reading,
reads the first record, and assigns a value to the file
buffer variable.

5. GET (F) , where F is a text file, advances the file input
buffer pointer. If EOLN (F) is true, the next record is read
from the file, and the buffer pointer is reset to the
beginning of the buffer.

6. GET (F) , where F is not a text file, reads the next record
from the file.

7. PAGE(F) first flushes the output buffer to the file. Then,
it causes the file to skip to the top of the next page; the
mechanics of this depend on the setting of the file's
carriage-control attribute. If this attribute is LIST (the
default), a form feed character (control-L) is written to the
file. If the attribute is CARRIAGE or FORTRAN, a '1' is
written to the file. If the attribute is NOCARRIAGE or NONE,
an error is generated.

E-2

ISO COMPLIANCE

E.2 IMPLEMENTATION-DEPENDENT FEATURES

These language elements are defined by the ISO 7185 standard as
"possibly differing between processors and not necessarily defined for
any particular processor." Following is a description of how PASCAL-20
treats each of these elements.

1. The order of evaluation of array indices is their lexical
order (t.hat is, left to right).

2. The order of evaluation of members of a set constructor is
their lexical order (that is, left to right).

3. The order of evaluation of the operands of a dyadic operator
(for example, '+') depends on the complexity of each operand.
Both operands are always evaluated (even in Boolean
expressions which could be "short-circuited").

4. The order of evaluation, accessing, and binding of actual
parameters to formal parameters in a procedure or function
call is their lexical order (that is, left to right).

5. The varjable in an assignment statement is accessed after the
evaluation of the expression.

6. The effect of reading a file at the point where a PAGE was
executed when writing the file is to return either a
form-feed character (control-L) or the digit '1', depending
on the status of the file when the PAGE was executed. (See
above for a description of PAGE's actions.)

7. Program parameters which are not file variables have no
defined meaning in PASCAL-20, and cause an error.

E.3 ERROR HANDLING

This section describes how the PASCAL-20 compiler and run-time system
detect violations of level 1 of the standard proposed by the ISO for
the PASCAL language. Errors detected at run time cause a program to
terminate and return appropriate error messages. Errors described
here as "not detected" cause a program to produce unexpected results.

The type of an index value is not assignment compatible with the index
type of an array.

Explanation: Detected at run time if checking was enabled during
compilation.

The current variant changes while a reference to it exists.

Explanation: Not detected. An example of a reference to a
variant is the passing of the variant to a formal
VAR parameter.

IlIJ'he value of a variable to which a pointer refers (p) is NIL.

Explanation: Detected if checking was enabled at run time.

The val ue of a va r iable to wh ich a po inter refers (p) is undefined.

Explanation: Not detected.

E-3

ISO CO~PLIANCE

The DISPOSE procedure is calJed to dispose of a heap-allocated
variable while a reference to the variable exists.

Explanation: Not detected. Examples of such references are:
passing the variable or a component of it to a
formal VAR parameter, or using the variable in a
WJTH statement (if the variable is a record).

The value of file f changes while a reference to f~ exists.

Explanation: Not detected. An example of a reference to f~ is
the passing of f- by reference to a routine; until
the routine has ceased execution, you may not
perform any operation on file f.

The ordinal type of an actual parameter is not assignment compatible
with the type of the corresponding formal parameter.

Explanation: Detected at run time if checking was enabled during
compilation of the called routine.

The set type of an actual parameter is not assignment compatible with
the type of the corresponding formal parameter.

Explanation: Detected at run time if checking was enabled during
compilation of the called routine.

A file is not in Generation mode when a PUT, WRITE, WRITELN, or PAGE
procedure is attempted.

Explanation: Detected at run time.

A file is in Undefined mode when a PUT, WRITE, WRITELN, or PAGE
procedure is attempted.

Explanation: Detected at run time.

The result of an EOF function is not TRUE when a PUT, WRITE, WRITELN,
or PAGE procedure is attempted.

Explanation: Detected at run time.

The value of the file buffer variable is undefined when a PUT
procedure is attempted.

Explanation: Not detected.

A file is in Undefined mode when a RESET procedure is attempted.

Explanation: Not detected.

A file is not in Inspection mode when a GET, READ, or READLN procedure
is attempted.

Explanation: Detected at run time.

A file is in Undefined mode when a GET, READ, or READLN procedure is
attempted.

Explanation: Detected at run time.

The result of an EOF function is TRUE when a GET,
procedure is attempted.

Explanation: Detected at run time.

E-4

READ, or READLN

ISO COMPLIANCE

The type of the file buffer is not assignment compatible with the type
of the variable that is a parameter to a READ or READLN procedure.

Explanation: Detected at run time if checking is enabled during
compilation at the READ or READLN.

The type of the expression being written
procedure is not assignment compatible
buffer variable.

by
with

a WRITE or WRITELN
the type of the file

Explanation: Detected at run time if checking is enabled during
compilation of the WRITE or WRITELN.

The current variant does not exist in the list of variants specified
with the NEW procedure.

Explanation: Not detected.

The DISPOSE(p) procedure is called to deallocate a pointer variable
that was created using the variant form of the NEW procedure.

Explanation: Not detected.

The variant form of the DISPOSE
disposal of the same number of
variant form of the NEW procedure.

Explanation: Not detected.

procedure does not specify the
variants that were created by the

The variant form of the DISPOSE procedure does not specify the
disposal of the same variants that were created by the variant form of
the NEW procedure.

Explanation: Not detected.

The value of the parameter to the DISPOSE procedure is NIL.

Explanation: Detected at run time.

The value of the parameter to the DISPOSE procedure is undefined.

Explanation: Usually detected at run time.

A variant record created by the NEW procedure is accessed as a whole,
rather than one component at a time.

Explanation: Not detected.

In the PACK(a,i,z} procedure, the type of the index value i is not
assignment compatible with the index of a.

Explanation: Not detected.

The PACK procedure is attempted when the value of at least one
component of a is undefined.

Explanation: Not detected.

The index value i in the PACK procedure is greater than the upper
bound of the index of a.

Explanation: Not detected.

E-5

ISO COMPLIANCE

In the UNPACK(z,i. ,a) procedure, the type of the index value i
assignment compatible with the index type of a.

Explanation: Not detected.

is not

The inctex value i in the UNPACK procedure is greater than the upper
bound of the index type of a.

Explanation: Not detected.

The UNPACK procedure is attempted when the value of at least one
component of z is undefined.

Explanation: Not detected.

The resulting value of SQR(X) does not exist.

Explanation: Detected at run time.

In the expression LN(X), the value of X is negative.

Explanation: Detected at run time.

In the expression, SQRT(X), the value of X is negative.

Explanation: Detected at run time.

The resulting va]ue of TRUNC(X) does not exist after the following
calculations have been done: if the value of X is positive or zero,
then 0 <= X-TRUNC (X) <1; otherwise, -1 < X-TRUNC (X) <= o.

Explanation: Detected at run time.

The resulting value of ROUND(X) does not exist after the following
calculations have been done: if the value of X is positive or zero,
ROUND(X) is equivalent to TRUNC(X+O.5); otherwise, ROUND(X) is
equivalent to TRUNC(X-O.5).

Explanation: Detected at run time.

The resulting value of CHR(X) does not exist.

Explanation: Not detected.

The resulting value of SUCC(X) does not exist.

Explanation: Detected at run time if checking was enabled during
compilation.

The resulting value of PRED(X) does not exist.

Explanation: Detected at run time if checking was enabled during
compilation.

The function EOF(f) is called when the file f is undefined.

Explanation: Detected at run time.

The function EOLN(f) is called when the file f is undefined.

Explanation: Detected at run time.

E-6

ISO COMPLIANCE

The function EOLN(f) is called when the result of EOF(f) is TRUE.

Explanation: Detected at run time.

A variable is not initialized before it is first used.

Explanation: Not detected.

In the expression X/Y, the value of Y is zero.

ExplAnation: Detected at run time.

In the expression I DIV J, the value of J is zero.

Explanation: Detected at run time.

In the expression T MOD J, the value of J is zero or negative.

Explanation: Detected at run time if J is zero; not detected if
J is negative.

An operation or function involving integers does not conform to the
mathematical rules for integer arithmetic.

Explanation: Detected at run time.

A function result is undefined when the function returns control to
the calling block.

Explanation: Not detected.

The ordinal type of an expression is not assignment compatible with
the type of the variable or function identifier to which it is
assigned.

Explanation: Detected at run time if checking was enabled during
compilation.

The set type of an expression is not assignment compatible with the
type of the variable or functjon identifier to which it is assigned.

Explanation: Detected at run time if checking was enabled during
compilation.

None of the case labels is equal in value to the case selector in a
CASE statement.

Explanation: Not detected.

In a FOR statement, the type of the initial value is not assignment
compatible with the type of the control variable, and the statement in
the loop body is executed.

Explanation: Detected at run time if checking was enabled during
compilation. Assignment compatibility is not
enforced if the statement in the loop body can
never be executed.

E-7

ISO COMPLIANCE

In a FOR statement, thp type of the final value is not assignment
compatible with the type of the control variable and the statement in
the loop body is executed.

Explanation: Detected at run time if checking was enabled during
compilation. Assignment compatibility is not
enforced if the statement in the loop body can
never be executed.

When an integer is being read from a text file, the ~igits read do not
constitute a valid integer value. (Initial spaces and end-of-line
markers are skipped.)

Explanation: Detected at run time.

When an integer is being read from a text file, the type of the value
read is not assignment compatible with the type of the variable.

Explanation: Detected at run time.

When a real number is read from a text file, the digits read do not
constitute a valid real number. (Initial spaces and end-of-line
markers are skipped.)

Explanation: Detected at run time.

The value of the file buffer variable is undefined when a READ or
READLN procedure is performed.

Explanation: Not detected.

A WRITE or WRITELN procedure specifies a field width in which the
integers representing the total width and the number of fractional
digits are less than 1.

Explanation: Detected at run time.

The bounds of an array passed to a conformant array parameter are
outside the range specified by the conformant array's index type.

Explanation: Not detected.

E.4 EXCEPTIONS AND RESTRICTIONS

PASCAL-20 is not able to detect a number of violations of the ISO 7185
standard. Violations that are not defined as errors are listed below.

1. Statements threatening a FOR-loop control variable are not
detected. A statement "threatens" a variable if it occurs
within the FOR-loop or within a prior procedure, and if it is
one of the following kinds of statements:

• A READ or READLN statement containing the variable

• An assignment statement with the variable to the left of
the' :='

• A procedure or function call with the variable as a
formal VAR parameter

E-8

ISO COMPLIANCE

2. The concept of a "totally-undefined" variable has no meaning
in PASCAL-20. Any violation of the standard which requires
"totally-undefined" to be meaningful is not detected.

3. Variant records in PASCAL-20 are implemented by overlaying
the fields of the variants in the same memory. Changing the
active variant does not alter the contents of that memory,
and the fields of the newly-active variant are not undefined.
Also, note that variant parts of records cannot be of the
type FILE.

4. The DISPOSE procedure does not cause its argument to become
undefined, but rather the argument is set to NIL.

5. No restrictions on the relative placement of labels and GOTO
statements are enforced.

6. Packed and unpacked sets are implemented in similar ways in
PASCAL-20. Therefore, the compiler is very "loose" about
interchanging packed and unpacked sets; the only requirement
imposed on compatibility of set types is that their base
types must be compatible.

7. Under certain conditions, a procedure call may be bound to
the wrong procedure definition. This can only happen when
two procedures are declared with the same name at different
levels, and the inner procedure is called before it is
declared. The following example illustrates this situation.

PROCEDURE B;
BEGIN (* level 1 *)
END;
PROCEDURE C;

PROCEDURE D;
BEGIN
B (* call bound to level 1 procedure *)
END;
PROCEDURE B;
BEGIN (* level 2 *)
END;

BEGIN
END;

PASCAL-20 also imposes a number of restrictions on programs.
are:

These

1. Identifiers may be of any length, but only the first 31
characters are stored. Therefore identifiers in PASCAL-20
must be unique in the first 31 characters.

2. The ordinal values of the base type of a set type are limited
to the range 0 •• 255. This means that no set may have more
than 256 elements.

3. File variables are not permitted as fields in the variant
part of a record.

4. The range of ordinal values of case constants in a CASE
statement must be less than 1000.

E-9

APPENDIX F

DIFFERENCES BETWEEN PASCAL-20 AND VAX-II PASCAL

PASCAL-20 VI and VAX-II PASCAL V2 are compatible languages; that is,
you can compile and run a PASCAL-20 program on a VAX/VMS operating
system, and you can compile and run a VAX-II PASCAL program on a
TOPS-20 operating system. However, there are differences between the
languages.

The VAX-I] PASCAL language (V2) contains features that the PASCAL-20
language does not. Therefore, if you plan to transport PASCAL
programs from the VAX/VMS operating system to the TOPS-20 operating
system, you should avoid using these additional features. This
appendix lists the additional features that VAX-II PASCAL (V2) has
over PASCAL-20 (VI).

F-l

DIFFERENCES BETWEEN PASCAL-20 ~ND VAX-Il PASCAL

Table F-I Jists the language eJements that VAX-II PASCAL V2 has that
PASCAL-20 does not:

Table F-I: Additional Language Elements

Category Language Element

Special Symbol

Nonstandard

Reserved words

Predeclared Identifiers

Type cast operator

%DESCR
%IMMED
%STDESCR
%REF
VARYING

~DD INTERLOCKED
ADDRESS
BITNEXT
BITSIZE
CLE~R INTERLOCKED
DBLE
DELETE
EST.~BL ISH
FINDK
INDEX
INT
LENGTH
LOCATE
LOWER
NEXT
PAD
QUAD
QUADTRUPLE
READY
RESETK

REVERT
SET INTERLOCKED
SIZE
STATUS
SUBSTR
TRUNCATE
UAND
UFB
UINT
UNLOCK
UNOT
UNSIGNED
UOR
UPDATE
UPPER
GROUND
UNTRUNC
UXOR
WRITEV

Data Types UNSIGNED: a through 2**~2 - 1
o through 42949n7295

Formal Parameter List

Structured Type

Real Types

String Operators

Predeclared Procedures

foreign section

VARYING OF CHAR

G_floating
QUADRUPLE

Plus sign (+)

DELETE(f,e)
ESTABLISH(id)
FINDK(f,kn,kv,m,e)
LOCATE(f,n,e)
READV (s ,vI, .•• ,vn)
RESTK(f,kn,e)
REVERT
TRUNCATE(f,e)
UNLOCK (f , e)
UPDATE(f,e)
WR I T EV (s , pI, • • • , p n)

F-2

DIFFERENCES BETWEEN PASCAL-20 AND VAX-II PASCAL

Table F-I: Additional Language Elements (Cont.)

----------------------------------,,--- -'.-- ---<"-,-------

Category Language Element
------------------,,--,--------------------,--,- -, -',"

Predeclared Functions

OPEN
Parameters

CLOSE
Parameters

Procedure

Procedure

See Table F-2

DISPOSITION
SHARING
USER ACTION
ERROR
KEYED

DISPOSITION
USER ACTION
ERROR

The following predeclared procedures are contained in both PASCAL
languages, however, VAX-II PASCAL offers an additional argument:

e = error parameter

These predeclared procedures are:

FIND(f,n,e)
OPEN(f,parameters,e)
PAGE(f,e)
PUT(f,e)
READ(f,vl, ... ,vn,e)
READLN(f,vl, ... ,vn,e)
RESET(f,e)
REWRITE(f,e)
WRITE(f,pl, •.. ,pn,e)

Whenever you see rfattribute-listl] in a syntax description in the
VAX-Il PASCAL language, it signifies that you can add certain
arguments to the syntax depending on the type of circumstances. Note
the following syntax and attribute descriptions:

Attribute-list

({identifier IT ({ constant-expression }, ...)] }, .•..]

In the PASCAL-20 language, only a
FUNCTION can have an attribute-list.
or MODULE is OVERLAID. The only
FUNCTION are GLOBAL and FORTRAN.
attribute can not be followed by an

F-3

PROGRAM, MODULE, PROCEDURE, or
The only attribute for a PROGRAM

attributes for a PROCEDURE or
Note that in PASCAL-20 the GLOBAL

identifier.

DIFFERENCES BETWEEN PASCAL-20 AND VAX-II P~SCAL

Table F-2 lists additional predeclared functions that VAX-II PASCAL
provides but P~SCAL-~O does not:

Table F-2: Additional Predeclared Functions

Category Function

Boolean UFB(f)

Transfer DBLE(x)

Dynamic Allocation

Character String

Un signed

Allocation Size

Low Level
Interlocked

Miscellaneous

QUAD (x)
UINT(x)
UROUND (r)
UTRUNC (r)

ADDRESS(x)

INDEX(sl,s2)
LENGTH(s)
PAD(s,fill,l)
SUBSTR(s,b,l)

UNAD(ul,u2)
UNOT (u)
UOR(ul,u2)
UXOR(ul,u2)

SIZE(x,cl, ... ,cn)
NEXT (x)
BITSIZE(x)
BITl\JEXT (x)

ADD INTERLOCKED(e,v)
SET-INTERLOCKED(b)
CLEAR INTERLOCKED(b)

STATUS (f)

If you plan to transport VAX-II PASCAL programs to TOPS-20, or
PASCAL-20 programs to VAX/V~1S, note the following:

• The precision for INTEGER data type:

TOPS-20

VAX/VMS

(.- 2 * * ~ 5) t h r 0 ug h (+ 2 * * 3 5) -1
-34~59738368 through +34359738367

(-2**31)+1 through (+2**31)-1
-2147483647 through +2147483647

• The maximum number of items in an enumerated type:

TOPS-20 Depends on amount of memory available

VAX/VMS 65,535

• PASCAL-20 has two procedures MARK and RELEASE that are used
in conjunction with NEW and DISPOSE. VAX-II PASCAL does not
have MARK and RELEASE.

If you have any further questions concerning VAX-II PASCAL, refer to
the VAX-II PASCAL documentation set.

F-4

APPENDIX G

PROCEDURE AND FUNCTION CALLING SEQUENCES

This appendix] describes the calling sequences and
by PASCAL for user-defined procedures and functions.
is particularly useful in writing MACRO routines that
PASCAL programs.

conventions used
This information

interface with

Note that, in this appendix,
procedures and functions.
explicitJy noted.

the word
Exceptions

"procedure" refers to both
in the case of functions are

G.I RUN-TIME STACK

The majority of ~un-time information is kept on the stack; in
particular, the stack contains all local variables, parameters, static
and dynamic links, and return addresses for procedure calls. The
stack pointer is kept in AC 17. A frame pointer, used for most
variable accessing, is kept in AC 16. The frame pointer is fixed over
the course of a procedure, while the stack pointer can change. Figure
G-l shows the status of the stack just after a PUSHJ to a procedure.

=======~==================

1111111I111111111111111111
AC 0 -) I previous stack frame I

1111111I111111111111111111 (--
=========~==================== I

I parameter values, I
I addresses, descriptors I I
=======~================== I
I saved stack pointer)--

=======~==================

ACl7 -) I caller's return addressl
=======~==================

Figure G-l: Status of Stack After PUSHJ

The information in this appendix is copyrighted by Scott Arthur
Moody @ 1982.

G-I

PROCEDURE AND FUNCTION CALLING SEQUENCES

Figure G-2 shows the stack frame in its entirety, just
first executable statement in a procedure.

AC16 -)

AC17 -)

1111111111111111111111111I
I previous stack frame I
11111111111111111111111111

parameter values,
addresses, descriptors

saved stack pointer

caller's return addressl
==========================

dynamic link

static link

function value (if a
function) 2 words

I local variables I
11111111111111111111111111

oversized value
parameters

saved ACs 2 - IS

size of conformant
value parameter space

conformant array value
parameters

next available stack
space

Figure G-2: Stack Frame

G.2 MECHANICS OF A PROCEDURE CALL

When PASCAL generates a call to a
following general sequence is followed:

<-----
<-- I

I I
I I
I I
I 1

)-- I
I
I
I

)-----

user-defined

1. Save the current stack point~r in AC o.

prior to the

procedure, the

2. Push the parameters onto the
Passing") •

stack (see below, "Parameter

3. Push the s~ved stack pointer onto the stack.

G-2

PROCEDURE AND FUNCTION CALLING SEQUENCES

4. Copy the current frame pointer into AC O.
dynamic link.

Th i sis the

5. Determine the frame pointer of the block lexically enclosing
the called procedure, and copy it into AC

o This is the static link.

6. Call the procedure by means of a PUSHJ.

After the called procedure returns, the stack is restored to its
previous state. PASCAL expects the called procedure to preserve all
accumulators except ACs a and~. (Note particularly that AC 16, the
f ram e po i n t e r , m u s t be res tor e d .) I nth e cas e 0 f a f un c t ion, the
function value is returned in AC a (P,Cs a and 1 if the function is of
type DOUBLE).

G.3 PARAMETER PASSING

How a parameter is passed depends on what kind of parameter it is and,
for a value parameter, how large it is. The five different methods
used to pass parameters are:

1. Value parameter by value

2. Value parameter by address

3 • Re fe renCE! (VAR) parameter

4 • Procedure/function parameter

5. Conformant array parameter

Each of these methods is described be]ow.

G.3.1 Value Parameter Passed By Value

A value parameter passed by value is simply pushed onto the stack.
This method is used for sets, DOUBLE, and any type that fits into a
single word, including integer, real, char, pointers, scalars, and
small packed arrays and records.

G.3.2 Value Parameter Passed By Address

Any value parameter larger than one word, other than a DOUBLE or set
parameter, is passed by address. The address of the parameter,
without indirection or indexing, is pushed onto the stack. It is the
responsibility of the called procedure to copy the parameter into its
own local storage.

G-3

PROCEDURE AND FUNCTION CALLING SEQUENCES

G.3.3 Reference (VAR) Parameter

All VAR parameters are passed by address. The address of the
parameter, without indirection or indexing, is pushed onto the stack.
Thus, it is perfectJy safe (and recommended) to access the contents of
a VAR parameter using indirection.

G.3.4 Procedure Or Function Parameter

Procedures and functions, as parameters, are passed as two-word
descriptors. The first word of the descriptor is the address of the
procedure's entry point; the second is its static link. The static
link is needed when the procedure is actually called (see above under
"Mechanics of a Procedure Call").

G.3.5 Conformant Array Parameter

A conformant array can be of any size; however, in order for
parameters to have fixed offsets from the frame pointer, a fixed-size
descriptor must be passed. This oescriptor contains a fixed part of
two words, and a variabJe part of three words for each conformant
dimension.

The fixed part contains the base address of the array in the first
word. The second word contains the overall size of the passed array
in words.

Each three words of the variable part contain information on one
conformant dimension. The second and third words contain the lower
and upper bounds, respectively, on the index of the dimension. The
first word contains the size of the dimension, which is the upper
bound minus the lower bound plus one.

The conformant array descriptor is the same for both value and VAR
parameters. It is the responsibility of the called procedure to copy
value conformant parameters into its own local storage.

G-4

PROCEDURE ~ND FUNCTION CALLING SEQUENCES

G.4 PARAMETER ACCESSING EXAMPLE

Figure G-3 gives an example of a typical external procedure
declaration, followed by MACRO code showing how the various parameters
can be accessed.

PROCEDURE Test(first: DOUBLE; VAR second! INTEGER; third: INTEGER); EXTERNAL;

TEST:
ENTRY

MOVE
MOVEI
MOVE
MOVE
DMOVE

MOVEM

PDP,j

TE~3T

1,,"':?(1./)
2,(~··~:·3(17)

29 :3(1.7)
:3¥(~"'<3(17)
4, !}(:L7)

:'3,t~""3(17)

1?~

;Define as ~lobal symbol
;Save ACs in local stora~e
;Get value of THIRD
;Get address of SECOND
;Get address of SECOND (alternate method)
;Get value of SECOND
;Get (2-word) value of FIRST
;Perform computations
iReturn new value of SECOND
; F~f?S to re ACs
;Return to caller

Figure G-3: External Procedure Declaration

Saving the ACs is not shown; they are assumed to be preserved in some
static locations, not on the stack. The stack pointer is used for
accessing the parameters. (If the ACs are saved on the stack, or if
the stack is used for other purposes, then another AC should be set up
for accessing parameters.)

Offset a (from AC 17) is t.he return address; offset -1 is the saved
stack pointer. Therefore, offset -2 is the last parameter location.
Since THIRD is an integer, it takes up only one word, and is accessed
with an offset of -2. The next previous parameter, SECOND, is a VAR
parameter, passed by address. The address is in the next previous
word, at offset -3. FIRST is a double-precision real, taking up two
words. Therefore, offset -4 is the second word of the parameter, and
offset -5 is the first word.

G .5 CONFORMANT AR.RAY EXAMPLE

Figure G-4 shows an example of an external procedure decl~ration with
a conformant array parameter, and a picture of the stack after the
call. The base address of the array is at offset -6; the length in
words is at offset -5. The lower and upper bounds on the index are at
offsets -3 and -2, respectively. The number of elements is at offset
-4.

G-5

PROCEDURE AND FUNCTION CALLING SEQUENCES

PROCEDURE Confar(VAR a: ARRAyrJa .• ha:INTEGER] OF INTEGER); EXTERNAL;

-6 (l 7) array base address fixed

-5 (l 7) size 0 far ray (wo rd s) part

-4 (17) # elements (ha-la+l) variable

-3(17) lower bound (] a) (per dimension)

-2 (17) upper bound (ha) pa rt

-1 (l 7) saved stack pointer

o (l7) return C'tddress

Figure G-4: Conformant ArrAY Parameter

G-6

-A-

/ABORT switch, 8-7
ABS function, 1-7, 6-13
Actual parameter, 5-14
AND operator, 1-6 j' 3-5
ARCTAN function, ~-7, 6-13
Arithmetic expression, 3-1
Arithmetic functions, 6-13
Arithmetic operator, 1-8, 1-1
ARRAY, 1-0
ARRAY ~ata type, 2-8
Array examples, 2-15
Array type compatibility, 2-14
ASCII character set, 2-7, B-3
ASSIGN command, 9-3
Assigning

a string constant, 2-12
a string variable, 2-11
values to an array, 2-12
values to records, 2-19

Assignment operator, 1-8
Assignment statement, 2-12, 5-2
Asterisk, 1-8

-B-

BACKUS-NAUR form, C-l
Base type, 2-6, 2-22
BEGIN, 1-0, 1-9
Binary notation, 2-2
/BINARY switch, 8-7
Block, 1-2, 1-4
BNF syn tax, C-l
BOOLEAN data type, 1-7, 2-2, 2-4
Boolean functions, 6-14
BOOLEAN results, 3-5
BREAK command, 9-4

-c-

Calling sequences
function, G-l
procedure, G-l

CARD function, 1-7, 6-15
Caret, 1-8
CARRIAGE, 7-11

INDEX

Carriage control, 7-11
Carriage control characters, 7-20
Case selector, 5-0
CASE statement,]-0,2-17,5-4,

5-h
Case-label list, 2-17, 5-0
CHAR data type, 1-7, 2-2, 2-4
Character set, 1-5
/CHECK switch, A-7, A-8
CHR function, 1-7, h-15
CLEAR command, 9-6
CLOCK function, 1-7, 6-15
CLOSE procedure, 1-7, G-5, 7-4
Collection of elements, ?-8
Colon, 1-8
Comma, 1-8
Command

ASSIGN, 9-3
BREAK, 9-4
CLEAR, 9-6
DISPLAY, 9-7
EXECUTE, 8-17, 9-1
/EXIT, 8-5
EXIT, 9-9
/HELP, 8-5
HELP, 9-10
LOAD, 8-ln, 9-1
PROCEED, 9-10
RE~OVE, 9-11
/RUN, 8-5
RUN, 8-1 7
SAVE, 8-1 7
SET, 1-6, 9-11, 9-12, 9-13
SHOW, 9-14
START, 8-17, 9-1
/TAKE, A-5, 8-6
TRACE, 9-15

Comment, 1-8, 1-9
Compilation unit, 1-5
Compile-time errors, A-3
Compile-time warnings, A-18
Compiler listing format, 8-16
Compiling a program, 8-4
Component type, 2-24
Components, 2-8
Compound statement, 5-1, 5-2
Conditional statement, 5-4

Index·-l

Conformant array, h-25
CONST, 1-6, 4-1, 4-4
Constant definition, 4-4
Constant identifier, 4-4
Constant name, 4-4
Control variable, 5-8
COS function, 1-7, 6-13
Creating a program, 8-3
/CREF switch, 8-7, 8-8
/CROSS-REFERENCE switch, 8-7, 8-8

-D-

Data type, 2-1, 4-5, 4-f)
ARRAY, 2-8
BOOLEAN, 1-7, 7.-2, 2-4
C HA R , 1 - 7, 2 - 2, 2 - 4
DOUBLE, 1-7, 2-2
enume ra ted, 2-4
FILE, 2-8, 2-24
INTEGER, 1-7, 2-2
pointer, 2-1, 2-2n
predefined, 2-2
REAL, 1-7, 2-2, 2-3
RECORD, 1-6, 2-8, 2-15
scalar, 2-1, 2-2, 2-4
SET, 2-8, 2-22
SINGLE, 1-7, 2-2
structured, 2-1, 2-8
subrange, 2-6

Data types, 1-2
DATE procedure, 1-7, 6-5, 6-12
Deallocating memory, 6-6
/DEBUG switch, 8-7, 8-8, 9-1
Debugger, 9-1
Debugging a program, 9-1
Decimal notation, 2-2
Declaration, 1-4
Declaration section, 4-1
Declaring a data type, 2-1
Definition, 1-4
Delimiter, 1-8
Direct access, 7-3, 7-10
DISPLAY command, 9-7
DISPOSE procedure, 1-7, f)-5, 6-6
DIV operator, 1-6
Division, 1-8
DO, 1-6, 5-8, 5-11, 5-12
Documenting your program, 1-9
Dollar sign, 1-7
DOUBLE data type, 1-7, 2-2
Double precision, 2-4
DOWNTO, 1-6, 5-8
Dynamic allocation procedure, 6-6
Dynamic variable, 2-26, 6-6

-E-

ELSE clause, 1-6, 5-5
END, 1-6, 1-9
Enumerated data type, 2-5
EOF function, 1-7, 6-14
EOLN function, 1-7, 6-14

Equal, 1-8
/ERROR-LIMIT switch, 8-7, 8-8
Examples, 8-17
EXE file, 8-17
Executable statement, 1-4
EXECUTE command, 8-17, 9-1
Executing a program, 8-17
/EXIT command, 8-5
EXIT command, 9-9
EXP function, 1-7, h-13
EXPO function, 1-7, 6-16
Exponentintion, 1-8, 3-2
Expression, 3-1

a r i t hm e tic, 3-1
logical, 3-5
relational, 3-4
set, 3-5

Expression compatibility, 2-29
Extensions, D-1
EXTERNAL, f)-36
External file, 2-25, 4-2
External subprogram, f)-I, n-3h

-F-

FALSE, 1-7
Field identifier, 2-15
FILE, I-f)
File

TEXT, l-7
File characteristics, 7-2
FILE data type, 2-8, 2-24
File examples, 7-12
File history, 7-10
File organization, 7-3
File specification defaults, 8-3
File specifications, 8-2
File status, 7-10
File variable, 7-16
Final value, 5-8
FIND procedure, 1-7, 6-5, 7-4
FIXED, 7-11
Fixed length, 7-3
Fixed-length record, 7-3
/FLAG-NON-STANDARD switch, 8-7,

8-8
Floating-point format, 2-4
FOR statement, 1-6, 5-8
Formal and actual parameter

compatibility, 2-29
Formal parameter, 6-20, 6-29,

6-32
FORTRAN, 6-29, 6-32, 6-36
FORWARD, 6-29, 6-32
FORWARD declaration, 6-35
FUNCTION, 1-6, 4-1
Function, 6-1

ABS, 1-7, 6-13
ARCTAN, 1-7, 6-13
CARD, 1-7, 6 -1 5
C HR, 1-7, 6 -15
CLOCK, 1-7, 6-15
COS, 1-7, 6 -13

Index-2

Function (Cont.)
EOF, 1-7, 6-14
EOLN, 1-7, 6-14
EXP, 1-7, 6 -13
EXPO, 1.-7, 6-16
LN, 1-7, 6 -13
ODD, 1-7, 6 -14
ORD, 1-7, 2-7, G-15
PRED, 1-7, 6-1 ()
ROUND, 1-7, 6-l~)

SIN, 1-7, f)-14
SNGL, 1-7, f)-IS
SQR, 1-7, 6-14
SQRT, 1-7, 6-14
SUCC, 1-7, 6-16
TRUNC, 1-7, 6-1~)

UNDEFINED, 1-7, f)-IS
Function calling sequences, G-l
Function declaration, 6-32
Functions

a r i t hm e tic, 6 -1 3
Boolean, 6-14
transfer, 6-15

-G-

GET procedure, 1-7, 6-5, 7-6
GLOBAL, 6-29, 6-32
Global file, 2-2S
GOTO statement, 1-6, 4-3, 5-13
Greater than, 1-8
Greater than or equal, 1-8

-8-

HALT procedure, 1-7, 6-5
Heading, 1-2, 1-4
/HELP command, 8-5
HELP command, 9-10
Hexadecimal notation, 2-2

-I-

I/O errors, A-2
Identifier, 1-2, 1-7
IF statement, 1-6
IF-THEN statement, 5-4
IF-THEN-ELSE statement, 5-4, 5-5
IN, 1-6
%INCLUDE directive, 1-10
Included file, 1-10
Index, 2-8
Initial value, 5-8
Initializing

a variable, 4-6
an array, 2-12

Initializing a variable, 4-7
INPUT, 1-7, 4-2
Input, 7-1
Input procedure, 6-5
INTEGER data type, 1-7, 2-2
Internal file, 2-25

-L-

LABEL, 1-6, 4-1, 4-1
Label, 5-13
Label declaration, 4-3
Less than, 1-8
Less than or equal, 1-8
Lexical elements, 1-5
LINELIMIT procedure, 1-7, 6-5,

7-7
LIST, 7-11
/LISTING switch, 8-7 , 8-9, 8-11
LN function, 1-7, 6-13
LOAD command, 8-16, 9-1
Loading a program, 8-16
Local file, 2-25
Logical expression, 1-5
Logical operator, 3-1, 3-5
Loops, 5-8
Lower limit, 2-6

-M-

/MACHINE-CODE switch, 8-7, 8-9
Mark procedure, 6-5
MAXINT, 1-7, 2-3
Mechanism specifier, 6-21
'~inus sign, 1-8
MOD operator, 1-6
'~ODULE, 1-6, 6-37
I~odul es, t) -3 7
Multidimensional array, 2-9
Multiplication, 1-8

-N-

/NATIONAL switch, 8-7, 8--9
NEW procedure, 1-7, f)-5, 6-6
NIL, 1-6
NOCARRIAGE, 7-11
Not equal, 1-8
NOT operator, 1-6, 3-5

-0-

Octal notation, 2-2
ODD function, 1-7, 6-14
OF, 1-6
OPEN procedure, 1-7, 6-5, 7-8
Operator, 3-1

AND, 1-6, 3-5
arithmetic, 1-8, 3-1
ass ignmen t, 1-8
DIV, 1-6
logical, 3-1
MOD, 1-6
NOT, 1-6, 3-5
OR, 1-6, 3-5
relational, 1-8, 2-11, 3-1, 3-4
REM, 1-6
set, 1-8, 3-1, 3-5
sub range , 1-8

OR operator. 1-6, 3-5

Index--3

INDEX (Cont.)

ORD function, 1-7, 2-7, 6-15
o r d e red set, 2 - 5
Ordinal value, 2-7, 2-11
OTHERWISE clause, 1-6, 5-6
OUTPUT, 1-7, 4-2
Output, 7-1
Output procedure, 6-5
OVERLAID, 6-37

-p-

PACK procedure, 1-7, ~-5, ~-10

PACKED, 1-6, 2-28
Packed array, 2-11,2-28
Packed file, 2-28
Packed record, 2-28
Packed set, 2-28
PAGE procedure, 1-7, 6-5, 7-14
Parameter, 6-21

act ua 1, 5 -1 4
formal, 6-20, 6-29, 6-32

Parentheses, 1-8
PASDDT, 9-1
PASDDT command, 9-3
Passing parameters, 6-22
Period, 1-8
Plus sign, 1-8
Pointer, 1-8
Pointer data type, 2-1, 2-26
Pointer variable, 6-6
Precedence of operators, 3-6
PRED function, 1-7, 6-16
Predecessor, 2-2
Predeclared

fun c t ion, 6 -1 2
identifier, 1-7
procedure, 6-1
subprog ram, 6-1

Predefined data type, 2-2
PROCEDURE, 1-6, 4-1
Procedure, 6-1

CLOSE, 1-7, 6-5, 7-4
DATE, 1-7, 6-5, ~-12

DISPOSE, 1-7, 5-5, 6-6
FIND, 1-7, 6-5, 7-4
GET, 1-7, 6-5, 7-6
HALT, 1-7, 6-5
LINELIMIT, 1-7, ~-5, 7-7
MAHK, 6-5
NEW, 1-7, 6-5, 6-6
OPEN, 6-5, 7-8
PACK, 1-7, 6-5, 6-10
PAGE, 1-7, 6-5, 7-14
PUT, 1-7, 6-5, 7-15
READ, 1-7, 6-5, 7-16
READLN, 1-7, 6-5, 7-18
RELEASE, 6-5
RESET, 1-7, 6-5, 7-19
REWRITE, 1-7, 6-5, 7-20
TIME, 1-7, 6-5, 6-12
UNPACK, 1-7, ~-5, 6-11
WRITE, 1-7, 6-5, 7-21
WRITELN, 1-7, 6-5, 7-25

Procedure call, 5-14
Procedure calling sequences, G-l
Procedure declaration, 6-28
Procedure identifier, 6-29
Procedure name, 5-14
PROCEED command, 9-10
PROGRAM, 1-5, 4-2
Program development, 8-1
Program heading, 4-1, 4-2
Program name, 4-2
Program structure, 1-2
PUT procedure, 1-7, 6-5, 7-15

-R-

Random access, 7-3
READ procedure, 1-7, 6-5, 7-16
READ statement, 2-12
READLN procedure, 1-7, ~-5, 7-18
READLN statement, 2-12
REAL data type, 1-7, 2-2, 2-3
Record access, 7-3
Record access mode, 7-10
RECORD data type, 1-6, 2-8, 2-15
Record examples, 2-21
Record format, 7-3
Record length, 7-10
Recrrrd type, 7-11
Record type compatibility, 2-19
Record variable, 5-12
Records with variants, 2-17
Relational expression, 3-4
Relational operator, 1-8, 2-11,

3-1, 3-4
RELEASE procedure, 6-5
REM operator, 1-6
REMOVE command, 9-11
REPEAT statement, 1-6, 5-8, 5-10
Repetitive statement, 5-8
Reserved words, 1-~

RESET procedure, 1-7, 6-5, 7-19
Result type, 6-32
REWRITE procedure, 1-7, 6-5, 7-20
ROUND function, 1-7, 6-15
jRUN command, 8-5
RUN command, 8-17
Run-time errors, A-I

-s-

SAVE command, 8-17
Scalar data type, 2-1, 2-2
Scientific notation, 2-4
Scope of identifiers, 3-7
Semicolon, 1-8
Semi reserved words, 1-6
Separate compilation, 6-37
Sepa ra to r, 1-8
Sequential access, 7-3, 7-10
SET command, 1-6, 9-11, 9-12,

9-13
SET data type, 2-8, 2-22
Set expression, 3-5

Index-4

INDEX (Co n t.)

Set operator, 1-8, 3-1, 3--5
Setting a breakpoint, 9-4
Shifting program control, 5-4
SHOW command, 9-14
Simple statement, 5-1
SIN function, 1-7, 6-14
SINGLE data type, 1-7, 2-2
Slash, 1-8
SNGL function, 1-7, 6-15
S P e cia 1 s ym bo 1 s, 1-8
Specifying output files, 8-11
Specifying switches in source

code, 8-9
SQR function, 1-7, 6-14
SQRT function, 1-7, 6-14
Square brackets, 1-8
START command, 8-17, 9-1
Statement

assignment, 2-12, 5-2
CASE, 1-6, 2-17, 5-4, 5--6
compound, 5-1, 5-2
conditional, 5-4
FOR, 1-'5, 5-8
GOTO, l-6, 4-3, 5-13
IF, 1-6
IF-THEN, 5-4
IF-THEN-ELSE, 5-4, 5-5
READ, 2-12
READLN, 2-12
REPEAT, 1-6, 5-8, 5-10
repetitive, 5-8
simple, 5-1
WHILE, 1-6, 5-8, 5-11
WITH, 1-6, 5-12

String comparison, 2-1l
String variable, 7-11
Structured data type, 2-1, 2-8
Subprogram, 1-4
Subprogram format, 6-20
Subprogram heading, 6-20
Subrange data type, 2-6
Subrange operator, 1-8
SUCC function, 1-7, 6-16
Successor, 2-2
Switch

/ABORT, 8-7
/BINARY, 8-7
/CHECK, 8-7, 8-8
/CREF, 8-7, 8-8
/CROSS-REFERENCE, 8-7, 8-8
/DEBUG, 8-7, 8-8, 9-1
/ERROR-LIMIT, 8-7, 8-8
/FLAG-NON-STANDARD, 8-7, 8-8
/LISTING, 8-7, 8-9, 8-11
/MACHINE-CODE, 8-7, 8-9
/NATIONAL, 8-9
NATIONAL, 8-7
/WARNINGS, 8-9
/WARNINGs, 8-7

Symbolic values, 9-1

Syntax summary, C-l

-T-

'rag field, 2-17
'rag name, /,-1 7
'rag type, 2-1 7
/TAKE command, 8-5, 8-6
Test condition, 5-5
TEXT file, 1-7, 2-12, 2-25
Text file, 2-25
'rHEN, 1-t;
TIME procedure, 1-7, 6-5, 6-12
TO, 1-6, 5-8
TRACE command, 9-15
Transfer functions, ~-15

'rRUE, 1-7
TRUNC function, 1-7, 6-15
Truth value, 3-5
TYPE, 1-6, 4-1, 4-5
Type compatibility, 2-29
Type definition, 4-5
Type identifier, 4-5
TYPE section, 2-1

-u-

UNDEFINED function, 1-7, 6-15
Underscore, 1-7
UNPACK procedure, 1-7, 6-5, 6-11
UNTIL, 1-6, 5-10
Upper limit, 2-6
User identifier, 1-8
User-defined scalar data type,

2-5

-v-

VALUE, 1-6, 4-1, 4-7
Value declaration, 4-7
Value initialization, 4-7
Value parameter, 6-22
VAR, 1-6, 4-1, 4-6, 6-23
VAR section, 2-1
VARIABLE, 7-11
Variable declaration, 4-6
Variable length, 7-3
Variable name, 4-6
Variable parameter, 6-23
Variant clause, 2-15

-w-

/WARNINGS switch, 8-9
WARNINGS switch, 8-7
WHILE statement, 1-6, 5-8, 5-11
WITH statement, 1-6, 5-12
WRITE procedure, 1-7, 6-5, 7-21
WRITELN procedure, 1-7, 6-5, 7-25

Index-5

TOPS-20
PASCAL Language Manual

AA-L31 5A-TM

READEIR'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
o Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please specify)~~~~_~~~~~~~~~~~~~~~~~~

Name ~~_~, ________________ Date ___________ _

Organization ___ , ________________ Telephone ., ________ _

Street _____ ~, ______________________ ~ _________ _

City _____ , __________ . ____ ~ State ____ Zip Code _____ _
or Country

- Do Not Tear - Fold Here and Tape

I II II I DmDoma
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L12

MARLBOROUGH, MA 01752

Do Not Tear - Fold Here and Tape

No Postage
Necessary

if Mailed in the
United States

I
I (1)

! .=
I....J

I~
It::
I 0

1°
I~
1.£
I~
I:;
IW
!
I

