
TOPS-20
PASCAL Prinler
AA-L314A-TM

September 1983

This document introduces the TOPS-20 PASCAL language. It
is intended to be used by programmers who are new to
TOPS-20 PASCAL.

OPERATING SYSTEM: TOPS-20 V5.1 (2040,2060)
TOPS-20 V4.1 (2020)

SOFTWARE: PASCAL V1.0
LINK V5 .. 1
RMS V1 . .2

Software and manuals should be ordered by title and order number. In the United States. send orders
to the nearest distribution center. Outside the United States. orders should be directed to the nearest
DIGIT AL Field Sales Office or representative.

Nt)rtheast/Mid-Atlantic Region Central Flegion Western Region

Digital Equipment Co(poration
PO Box CS2008
Nashua. New Hampshire 03061
TE'lephone:(603)884-6660

Digital Equipment Corporation Digital Equipment Corporation
Accessories and Supplies Center Accessories and Supplies Center
1050 Easi Remington Road 632 Caribbean Drive
Schaumburg, Illinois 60195 Sunnyvale. California 94086
T elephontl :(312)640-5612 Telephone:(408) 734-4915

digital equipment corporation. marlboro. massachusetts

First Printing, September 1983

c. Digital Equipment Corporation 1983. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

~D~DD~D1M
DEC MASS BUS UNIBUS
DECmate PDP VAX
DE Csystem-1 0 prOS VMS
DECSYSTEM-20 Professional VT
DECUS Rainbow Work Processor
DECwriter RSTS
DIBOL RSX

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in preparing future
documentation.

PREFACE

CHAPTER 1

1 .1
1 .1. 1
1 . 1 • 2
1.1.3
1. 2
1 • 2. 1
1.2.2
1 .2.3
1.2.4
1. 3

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4

CHAPTER 3

3.1
3.1.1

3. 1 . 2
3.2
3.3
3.4
3.5
3.5.1
3.5.2

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.4
4.4.1
4.4.2

CONTENTS

INTRODUCTJON

THE STRUCTURE OF A PASCAL PROGRAM
The Program Heading
The Declaration Section
The Executable Section .

PROGRAM DEVELOPMENT
Creating a Program ...
Compiling a Program
Loading an Object File.
Executing a Program

A PASCAL PROGRAM EXAMPLE .

DA.TA CONCEPTS

DATA AND DATA TYPES
SCALAR DATA TYPES

The Type TNTEGER •
The Type REAL
The Type BOOLEAN .
The Type CHAR
User-Defined Scalar Types . . • .

STRUCTURED DATA TYPES • • • .
VARIABLES . • • • • .
EXPRESSIONS • . • . • • .

Arithmetic Expressions • . ••••
Relational Expressions • ..•.
Logical Expressions ..•..

· . . 1-2
1-4

· . . 1-4
· • l-5

· 1-7
· 1-9
1-10
1-11
1-11
1-12

· . 2-1
· 2-2

· . 2-3
· . . 2-3

· 2-5
· . . 2-5

· • 2-()
2-6

• • 2-6
2-7

Precedence Rules for Operators •.•..

· . 2-8
2-10
2-11
2-12

DECLARATIONS AND DEFINITIONS

SYMBOLIC NAMES •
Reserved Words, Semi reserved Words, and
Predeclared Identifiers •.•.
User Identifiers.

CONSTANT DEFINITIONS .
TYPE DEFINITIONS • • •
VARIABLE DECLARATIONS
USER-DEFINED SCALAR TYPES • • . • •

Enumerated Types . • . • •
Subrange Types • . • . .

READING AND WRITING DATA

· 3-1

3-2
· . 3-3

· . • 3-4
· • • • • 3- 5
· . . • . 3-6

· 3-7
· . • 3-8

• . 3-9

THE PREDECLARED TEXT FILES INPUT AND OUTPUT . 4-1
READING DATA • • • • . • . • • 4-3

The READ Procedure . •••• . • • . . 4-3
The READLN Procedure • . . 4-5

WRITING DATA • . • • • . • 4-6
The WRITE Procedure • • • .
The WRITELN Procedure • • • • .

THE PREDECLARED FUNCTIONS EOLN AND EOF •
The EOLN Function
The EOF Function • • • • • •

iii

• 4-7
4-11
4-12
4-12
4-13

CHAPTER 5

5.1
5.1 .1
5.1 • 2
5.2

CHAPTER h

~ • 1
(-).2
f) • 3
5. '3 • 1
6.3.2
6 • 3 • 3
h .4
6 .4 • 1
6.4.2
fi.4.3

CHAPTER 7

7 .1
7 • 1 • 1
7 • 1 • 2
7 .1 • 3
7.2
7.2.1
7.2.2
7 • 3
7 .3 • 1
7 .3.2
7.4
7 .4 • 1
7.4.2
7.4.3

APPENDIX A

A.1
A.2
A.3

APPENDIX B

APPENDIX C

GLOSSl\RY

INDEX

CONT ENTS (CONT.)

STRUCTURED TYPES: THE ARRAY AND THE RECORD

ARRAYS . •
Multidimensional Arrays
Character Strings

RECORDS .•.... . . .

PASCAL STATEMENTS

THE ASSIGNMENT STATEMENT •
THE COMPOUND STATEMENT .
REPETITIVE STATEMENTS

The FOR Statement • •
The REPEAT Statement •
The WHILE Statement

CONDITIONAL STATEMENTS • . . . • •
The IF-THEN Statement
The IF-THEN-ELSE StQtement •
The CASE Statement •••••

PROCEDURES AND FUNCTIONS

SUBPROGRAMS
Format of a Subprogram
Local and Global Variables.
Scope of Identifiers in Subprograms

DECLARING A PROCEDURE . • • • • •
Calling a Procedure ••••.
Procedure Example

DECLARING A FUNCTION •
Calling a Function.
Function Example .

PARAMETERS • • • • • •
Actual and Formal Parameters.
Value and Variable Parameters
Examples •..•..•••••.

PASCAL DEFINED NAMES

RESERVED WORDS
SEMIRESERVED WORDS .
PREDECLARED IDENTIFIERS

ASCII CHARACTER SET

• • ')-2
• • • • • 5-(.)

• • • 5-8
5-10

• fi-2
• • • • • 1)-3

• • • • • • 6 - 3
• • fi-4
• • fi - 5

• • • • • • fi - 8
1)-10
fi-l0
fi-ll
fi-13

• 7-1
· 7-2

· 7-2
· . • • . • 7-3
· • • • . . 7-3
· • • • • • 7-3

. . . . 7-4
· • • • • • 7-5

· 7-6
· 7-6

• • • • • • 7 - c::,

'. • • • • • 7-7
· • • • • • 7-8

7-11

• • • • A-I
'. • • • • • A-I

• A-I

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

iv

FIGURE 1-1

TABLE

4-1
4-2
5-1
5-2

2-1
2-2
2-3
2-4
2-5
4-1
B-1
C-1
C-2

CONTENTS (CONT.)

FIGURES

Program Development Process
The End of a Text File.
File position pointer at End of File.
The Two-Dimensional Array Class Scores •
The Three--Dimensional Array Hotel Vacancies

. 1-7
4-14
4-14

· . 5-6
• • 5-8

TABLES

Arithmetic Operators. • ••••
Result Types for Arithmetic Expressions
Relational Operators • • • • •
Logical Operators
Precedence of Operators • • • • .
Default Value for Field width ••••
The ASCII Character Set
Predeclared Procedures •
Predeclared Functions

v

• • • 2-8
• . 2-9

. • . . 2-10
2-11
2-12

. . • 4-8
• • • • B-1

C-l
• • • • • C- 5

--,-------------------------------

PREF/I.CE

PRIMER OBJECTIVES

This primer introduces the PASCAL language for the TOPS-20 operating
system. It is designed to provide sufficient information about the
language so that you can begin writing PASCAL programs.

PASCAL-20 is an extended implementation of the standard proposed for
the PASCAL language by the International Standardization organization
(ISO). This manual describes a subset of PASCAL-20, omitting some
advanced features of the language. Once you have mastered the
concepts in this primer, you should consult the TOPS-20 PASCAL
Language Manual for full reference information on--the-PASCAL-20
language.

INTENDED AUDIENCE

This manual does not attempt to teach programming concepts. It is
assumed that you have experience programming in a high-level language
or that you are taking an introductory programming course. However,
prior knowledge of the PASCAL language is not necessary.

You need not have a detailed understanding of the TOPS-~O operating
system, but some familiarity with TOPS-20 is helpful. Also, you
should know how to use a text editor to create a file. If you are new
to TOPS-20, see the manual Getting Started with TOPS-20 for
introductory material.

HOW TO USE THIS DOCUMENT

This manual contains seven chapters. Each chapter (except the first)
introduces new concepts in PASCAL that build on material presented in
previous chapters. It is recommended that you read the chapters
sequentially to take advantage of this structure.

Chapter 1 explains how to develop PASCAL programs on TOPS-20. You
will find sample programs throughout this manual. You can enter,
compile, link, and run these sample programs on TOPS-20 using the
tools for program development introduced in Chapter 1.

Chapter 2 describes the data types used in PASCAL, as well as the use
of variables and expressions.

Chapter 3 describes how to define data types and identifiers in your
prog rams.

vii

Chapter 4 describes how to read and write dat~.

Chapter 5 describes two structured data types:
record.

the array and the

Chapter ~ describes PASCAL statements, including the assignment
statement, the compound statement, and repetitive st~tements. In
particular, it describes the FOR st~tement, the REPEAT statement, the
WHILE statement, the IF statement, the IF-THEN statement, the
IF-THEN-ELSE statement, and the CASE statement.

Chapter 7 describes the use of procedures and functions.

A glossary is presented at the end of this primer.
defines many of the terms presented in the text.

FOR MORE INFORMATION

The glossary

For reference information on the PASCAL-20 language, consult the
TOPS-20 PASCAL Language Manual. It provides additional information on
using ~ASCAL under the TOPS-20 operating system.

viii

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions:

Convention

[n

r]

<CTRL/x>

Simple_procedure

UPPERCASE LETTERS

Meaning

11. horizontal
preced ing :i tem
times.

ellipsis means that the
can be repeated one or more

A vertical ellipsis means that not all of the
statements in a figure or example are shown.

Double brackets in format descriptions
enclose items that are optional, for example:

WRITE ([OUTPUT, n print list)

Do not type the double square brackets.

WRITE (OUTPUT, 'Enter an integer')

Square brackets mean that the syntax requires
the square bracket characters. This notation
is used with arrays, for example:

ARRAY r index]

Braces enclose lists from which you must
choose one item, for example:

This symbol indicates where you press the
RETURN key.

The notation <CTRL/x> indicates that you must
press the key labeled CTRL while
simultaneously pressing another key, for
example, <CTRL/Z>.

In programming examples, all names created by
the programmer are printed in lowercase
letters with initial uppercase letters.

Uppercase letters in
indicate fixed (literal)
must enter as shown.

a command string
information that you

lowercase letters Lowercase letters in a command string
indicate variable information you supply.

Contrasting Colors Or~nge - where examples contain both user
input and computer output, the characters you
type are in orange; the characters printed
on the terminal are in black.

ix

CHAPTEH 1

INTRODUCTION

PASCAL is a computer language invented by Niklaus Wirth and named for
Blaise Pascal, a French mathematician and philosopher. It is one of
several programming languages used to translate symbolic language
programs into machine language. Because the PASCAL language contains
features suitable for many different programming applications, it has
gained popularity as a general purpose language. PASCAL is used
widely in educational institutions because its design lends itself
toward teaching structured programming techniques.

PASCAL's English-like statements ease the process of creating a
logical flow of control. Thus, you can create code that is
descriptive of what the program actually does. PASCAL and its
data-structuring facilities encourage modular programming. In modular
programming, you divide a problem into individual parts. These parts
can be handled easily as subprograms within the main program.

Because you must declare all the data you are going to use at the
beginning of the program, you must do some initial planning and
organization. All the data structures in your program become readily
apparent, making programs easy to read and modify.

Some of the commonly used language features of PASCAL include:

• FOR, REPEAT, WHILE statements

• CASE, IF-THEN, IF-THEN-ELSE statements

• INTEGER, REAL, CHAR, BOOLEAN, enumerated, and subrange scalar
data types

• ARRAY, RECORD, SET, and FILE structured data types

• READ, READLN, WRITE, WRITELN input and output procedures

• Functions sine, cosine, square root, round, predecessor, and
successor

PASCAL-20 is an outgrowth of the standard proposed for the PASCAL
programming language by the International Standardization organization
(ISO). It contains all the elements of the proposed standard for
PASCAL plus extensions to the language that allo~ you more
flexibility. These extensions, which are described here in this
primer and in the TOPS-20 PASCAL ~,uage Manual, include:

• Exponentiation operator

• Double-precision real data type

1-1

TNTRODUC.TION

• Variable names of up to 31 characters including
sign ($) anrl the unnerscore ()

• OTHERWISE clause in the CASE statement

the dollar

• Character string and enumerated type parameters for the READ
and READLN procerlures

• Enumerated type p~rameters for the WRITE
procedures

and WRITELN

Throughout this document, PASCAL-20 is referred to as PASCAL unless
otherwise specified.

This chapter introduces the PASC.AL language. Section 1.1 describes
the structure of a PASCAL program. Section 1.2 explains how to
develop a PASCAL program on the TOPS-20 operating system. Section 1.3
presents a PASCAL program example.

For more information on all aspects of the PASCAL language as
implemented for TOPS-20, see the TOPS-20 PASCAL Languag~ Manual.

1.1 THE STRUCTURE OF A PASCAL PROGRAM

The structure of a PASCAL program consists of the following parts:

1. A program heading

2. A declaration section

3. An executable section

4. A period (.)

The program heading contains the name of the program and any external
files the program may use for input and output. The declaration
section is the place for all the definitions and data declarations
that will be used in the program. The executable section contains all
the statements that PASCAL will compile for execution. The period (.)
marks the end of the program.

The declaration section
considered a block. A
function, or a procedure.
Chapter 7.

and the executable section together are
block can be the main borly of a program, a
Functions and procedures are described in

PASCAL allows free formatting of program text. With free formatting,
you can place statements anywhere on a line, divid~ one statement
across more than one line, or place multiple statements on one line.
However, you cannot split a name or number between Jines or with a
space. To make a program easier to read, you can indent parts of the
program according to the program flow.

You can also place comments anywhere in a PASCAL program. You enclose
comments either within braces { } or within a
left-parenthesis/asterisk asterisk/right-parenthesis 20mbination (*
*) • PASCAL ignores the text between the comment indicators. The
following are examples of comments:

{This is a comment.}
(* So is this. *)

1-2

INTRODUCTION

PASCAL provides the following delimiters for you to use when creating
a program:

• The reserved word BEGIN

• The reserved word END

• A semicolon (i)

• A pe r i od (.)

The reserved words BEGIN and END are used to separate functional parts
of a PASCAL program. A reserved word is a word already defined in the
PASCAL languagei you cannot redefine it to denote anything other than
its special meaning. BEGIN and END specify the beginning and end of
an executable section. They also delimit a compound statement (See
Section fi.2).

Generally, each BEGIN must be associated with an END. Therefore, it
is good practice to count the number of BEGINs in your program and
make sure you have at least the same number of ENDs. The END
delimiter is also associated with the RECORD declaration (Section 5.2)
and the CASE statement (Section G.4.3) No BEGINs are necessary in
these two instances where ENDs occur.

The semicolon (i) and the period (.) are also delimiters in the PASCAL
language. The semicolon separates successive PASCAL statements. It
also terminates the program heading and items in the declaration
section. You need not place a semicolon directly after the word BEGIN
or before the word END, because BEGIN and END are not statementsi
they are delimiters. The period marks the end of the PASCAL program.

The following sections explain the various parts of a PASCAL program
while building a program called Grocery_Bill. The program
Grocery Bill is an interactive program prompting you for the data it
needs, - performing calculations, and printing the results.
Specifically, it performs the following steps:

• Print instructions for entering prices of grocery items

• Read each price and sum the prices to obtain a subtotal

• Prompt for a yes or no answer to the question 'Do you have
any coupons?'

• Read and sum the total value of the coupons that are entered

• Subtract the value of the coupons from the subtotal to obtain
a total

• Print a total

The entire program Grocery_Bill is li.sted in Section 1.3.

1-3

INTRODUCTION

1.1.1 The Program Heading

PASCAL programs always begin with a heading. The heading consists of:

• The reserved word PROGRAM

• The program's name

• The program's input and output files (if any), enclosed in
parentheses

• The semicolon delimiter

The following is the heading for the program Grocery_Bill:

F:' F< Cl c.; F< A t1 G roc E' r ':! B i .1 1. (I N F' U r~· [) l.J T PUT) ;

This heading tells you that the name of the program is Grocery Bill,
and the files the program uses are INPUT and OUTPUT. INPU~ and OUTPUT
are names known to PASCAL. ~hey specify predeclared (that is,
declared by PASCAL) text files. When you run a program that requires
user response, these n~mes indicate that the program uses your
terminal for input and output.

1.1.2 The Declaration Section

PASCAL requires that you declare all data items in the program. To
declare a data item, you give it a name, otherwise known as an
identifier, and indicate what it represents. All declarations in a
program must appear in the declaration section.

Any constants, variables, functions, or procedures used in the program
must be declared in the declaration section before being used in the
executable section. Declarations must appear in the following order
(if your prog ram uses them) :

1. LABEL declares labels for use by the GOTO statement

2. CONST defines symbolic constants

3. TYPE -- creates user-defined types

4. VAR -- declares variables and their types

5. VALUE -- initializes variables

6. PROCEDURE and FUNCTION -- declare routines

CONST, TYPE, VAR, PROCEDURE, and FUNCTION are discussed in this
manual. LABEL and VALUE are described in the TOPS-20 PASCAL Language
Manual. ----

The program
definitions:
definition:

Grocery Bill
TYPE- and

contains two kinds
VAR. The first of

of declarations
these is the

and
TYPE

This TYPE section defines a data type called Yes No and the two
constants, Yes and No, that constitute the values of-the type.

]-4

INTRODUCTION

The second declaration is the VAR declaration:

VAR Item_Pricey Totalv
Co UF'O n (I m 01..1 n t.: F~ [A I... y

Subtotaly Coupons: REAI...:~O.O;

Ans: ye';; No;

This variable section declares five real vari~bles: Item Price,
Total, Coupon Amount, Subtotal, and Coupons. In addition, a sixth
variable, Ans,-is declared to be of th~ user-defined type Yes No. The
variable Ans can assume either of two values: Yes or No.

1.1.3 The Executable Section

The executable section contains the statements that, when executed,
perform the actions of the program. The executable section follows
the declaration section and is delimited by BEGIN and END (followed by
a period). The following is the executable section of the program
Grocery_Bill:

(* Executable Section *)
BEGIN
C* Print instructions for enterin~ data. *)
WRITELN('Enter cost of each ~rocer~ item. One item per line.');
WRITELNC'Enter the value 0.0 to terminate list of items.');

(* Read prices and add each to subtotal until 0.0 is read. *)
f~EPEAT

READLN(Item_Price);
Subtotal := Subtotal + Item_Price
UNTIL (Item_Price = 0.0);

WRITElN('Subtotal e8uals -- $', Subtotal:7:2);
WRITE('Do ~ou have an~ coupons? T~pe ~es or no and press <RET>. ');
r:~EADLN (Ans) ;
If (An~;;

THEN
BEGIN
WRITElN(/T~pe value of each coupon. One per line.');
WRITELN(/T~pe <CTRl/Z) after enterins all coupons.');
(* Read and sum amount of each coupon until end of input. *)
REPEAT

READlN(Coupon_Amount);
Coupons := Coupons + Coupons_Amount

UNTIL .. [OF (INPUT)
END;

(* Subtract coupons from Subtotal to obtain Total, and print Total. *)
Total := Subtotal - Coupons;
WRITELN('Pa~ this amount $', Total:7:2)
END.

(* End of Pro~ram *)
Between the words BEGIN and END are
read and write data, change the
execution. Specifically, they are:

statements and procedures that
value of variables, and control

• The WRITE procedure, Section 4.3.1

• The WRITELN procedure, Section 4.3.2

• The READLN procedure, Section 4.2.2

1-5

INTRODUCTION

• The EOF function, Section 4.4.2

• The REPEAT statement, Section 0.3.2

• The IF-THEN statement, Section 6.4.1

Several input and output procedures are used in the program
Grocery_Bill. For example, the first two WRITELN procedures print
instructions on your terminal for entering a list of prices. The text
within the apostrophes is printed. The third WRITELN procedure prints
text followed by the value of a variable. Again, the text within
apostrophes is printeri. The integers th~t appe~r after the variable
name Subtotal specify field width. The first integer specifies the
total field width, that is, the number of columns occupied by the
value being printed. The second integer specifies the number of
places to the right of the decimal point in the printed value.

The remaining output procedures in the program print either the text
that is specifieri in apostrophes or text and the value of a variable,
in the same manner as the output procedures explained above.

The program Grocery Bill contains three input procedures. Each reads
a value from the- terminal and assigns the value to the variable
specified in parentheses, for instance:

F~FAnI...N (Arl~:;) ;

This READLN procedure reads a value and assigns it to the variable
Ans. Because Ans is of type Yes_No, the value to be read must be
either Yes or No. The READLN procedure accepts the answer Yes or No
in either uppercase or lowercase characters.

The executable section of Grocery Bill also illustrates the assignment
statement. An assignment statement contains three parts - a variable,
the assignment operator (:=), and an expression. Note the following
fo rma t:

variable -= expression;

The assignment statement causes the variable to assume the value of
the expression, for example:

Subtotal := Subtotal + Item_Price;

This assignment statement arids the current value of Subtotal and
Item price, then assigns the sum to Subtotal.

Grocery Bill contains two kinds of control statements: IF-THEN and
REPEAT.- The IF-THEN statement is a conditional statement. If the
expression CAns = Yes) is true, the statement following the reserved
word THEN is executed. The statement following THEN is a compound
statement:

IF (Ans
THEN

BEGIN

END;

Ye~:;)

1-6

INTRODUCTION

A compound statement specifies that all the statements within BEGIN
and END are executed sequentially as a group.

Finally, there are two examples of the REPEAT statement. One example
is:

r~[F'EAT

READLN(Item_F'rice);
~:) u b t (J tal : :~: G 1..11:.1 tot a]. + I t em P r :i. C (,.~

UNTIL.. (IteITt ... Pr'ic<-:-~ :::: () (. (» !I

The REPEAT statement specifies that the statements between REPEAT and
UNTIL be executed in order and terminated when the value of the
variable Item Price equals 0.0. You do not need a semicolon before
UNTIL becaus; the UNTIL clause is not another statement; it is part
of the REPEAT statement. The second example is:

r~EPEAT

UNTIL EOF (INPUT);

This statement, like the previous REPEAT, performs the statements
within the REPEAT and UNTIL repeatedly. However, in this example,
execution terminates when the function EOF(INPUT) becomes true. EOF
(end-of-file) is a predeclared PASCAL function that returns true at
the end of an input file. The <CTRL/Z> that you type after entering
the values of coupons indicates the end-of-file condition to PASCAL.
(The PASCAL file INPUT is associated with your terminal.)

1.2 PROGRAM DEVELOPMENT

This section explains the steps in developing a PASCAL program.
Figure 1-1 illustrates the program development process.

Commands

Create a PASCAL
program with a
file type of PAS.

(aPASCAL G!D
PASCAL>EXAMPL.PAS G!D
PASCAL>/EXIT
(ji

(jiLOAD EXAMPL
The LOAD commancl
assumes the file type
Is REL.

(it'START
The START command
executes the curren1
program In memory.

C,eate a ,ou"e p,o~----

Compile the source program

Link the object module

Run the executable ~

Figure 1-1: Pro9 ram DevE~lopmen t Process

1-7

EXAMPL.PAS

EXAMPL.REL

MR-S-3076·63

INTRODUCTION

Developing a PASCAL program involves these six steps:

1. Designing the program

2. Creating the source file with an editor

3. Compiling the source program to create an object module

4. Loading the object module to produce an executable image

5. Saving the executable image (optional)

~. Executing the program

After you design the program and create a source file with a text
editor, do the following:

1. Call the PASCAL compiler

@PASCAL(RfT)

2. Specify the files to compile

PASCAL>filename~)

3. Exit from the PASCAL compiler

PASCAL>/EXITG£0

4. Load the relocatable binary file

@LOAD f ilename(~

5. Save the executable image of the file (optional)

@SAVE filename~

6. Execute the program

@RUN f ilenameC~

Note the following example. The program specified as the file name
prints the letter M on the terminal.

(~pascaL~D
F'ASCAL>lett.E-.'r. pase Rfl)
F'ASCAL..:>/e:d t CR~l)
~load If:~tter.relC~0
LINK: Loading

EXIT
@save 1 et te r. eNe eli;!)

LETTER.EXE.l Saved
@rl.Jn If.:'ttpr~

* * ** **
* * * * * @

1-8

INTRODUCTION

All the commands except t.he PASCAL comm~i1d include a file name, that
is, a TOPS-20 file specification. The PASCAL command returns a
prompt:

PASCAl ... >

In addition, commands can include optional switches. Command switches
modify a command by providing the system with additional information
on how to execute the command. For complete information on switches,
r e fe r to the TOPS_-20 .PASCAL Lang UAgE~ .Manua 1 .

TOPS-20 PASCAL COMPILER

On TOPS-20, you specify the file name of the program you want to
compile. You can also call upon t.he recognition and prompt features
to assist you when entering commands. With recognition, you type only
enough of the command to identify the command, and then press the
~ key. For example, you can type EXE and press the ~ key for
the EXECUTE commAnd. pressing the ~ key after typing enough to
uniquely identify the command causes TOPS-20 to display the rest of
the command. In addition, pressing tbe GD key causes TOPS-20 to
display prompts that indicate t.he next step.

FILE SPECIFICATIONS

The file specification tells the operating system which file to
process. A full file specification contains a lengthy string of
information. However, because the system assigns appropriate default
values to most of the elements in a file specification, you rarely
need to specify more than the following two elements:

filename.filetype

PASCAL recognizes PAS as the default file type. If the file type is
PAS, you can specify just the file nAme. However, if the file has
another_type (for example, PROGRM.PRG), you must specify the type.
The file name identifies the file by its name, and the file type
describes what kind of data is in the file. On TOPS-20, the file name
and file type of the source file can each contain up to 19
alphanumeric characters. However, the file name of the relocatable
binary file must contain no more than 6 characters and its file type
no more than 3 characters; otherwise, you cannot load the file with
the LINK program. For more information about file specifications and
commands, refer to the TOPS-20 User's Guide. For more information
about switches that apply t~~SCAL, refer to the TOPS-20 PASCAL
Language Manual.

1.2.1 Creating a Program

When you write a program, you must create a file, called a source
file, that contains the program source statements. You use a text
editor to create a source file. For instance, to create a PASCAL
program that has the file name EXAMPL and a file type of PAS, you can
issue the TOPS-20 EDIT command as follows:

@EDIT EXAMPL.PAS G~D

XFile not found, Creatin~ New file
Input: EXAMPL.PAS
00100

1-9

INTRODUCTION

If the file is a new file, the editor displays an additional message
indicating that a new file is being created. You must include a file
type (for example PAS) with the EDIT command. The EDTT comm~nd

invokes the TOPS-20 default editor EDIT. The line number (00100)
prompt indicates that EDIT is ready to accept input. For information
on how to use ED1T, see the rOPS--20 EDIT User's Guide.

On TOPS-20 in addition to FDIT, you can use ~ny editor to which you
have access, for example, the TV editor. For more information about
the use of TV, refer to the TOPS-20 TV Editor Manual.

1.2.2 Compiling a Program

After you have edited your file, the next step is to compile it. To
compile a source file, issue the PASCAL command. When the PASCAL
prompt is displayed, enter the file name, for example:

(!W ?)~:;C{iL. Ciu-i)
P{i~JCAl.. >C X{)MF'L. C~-ir-)
F'{inCtiL.>/FXIT (R'-;-)
(~

To return to the operating system, type the /EXIT switch to the PASCAL
prompt. If the file type is PAS, you can omit the file type because
the PASCAL command assumes PAS as the default. However, if you use a
file type other than PAS, you must specify the file type.

When you enter the PASCAL command from the termina], the PASCAL
compiler does the following by default:

• Produces an object module that has the same file name as the
source file and a file type of REL, for example EXAMPL.REL.

• Uses defaults when it creates the output files (switches on
the PASCAL command can override these defaul ts) .

If the compiler does not detect any syntax errors in the source file,
the system displays the PASCAL prompt to indicate successful
com p i 1 a t ion:

P~)SCAL>

If the program contains syntax errors, however, the PASCAL compiler
displays error messages on your terminal. It is then necessary to
edit your source program with a text editor to correct the errors.

TOPS-20 LISTING FILE

On TOPS-20, the /LISTING switch on the PASCAL command requests the
compiler to create a program listing. PASCAL does not produce a
listing file unless you request one with the /LISTING switch. A
program listing includes the program's source statements, line
numbers, any error messages or warnings that are reported, and other
information related to the compilation. For instance, to create a
program listing of EXAMPL on TOPS-20, issue the command:

F'ASCAL>EXAMF'L. IL. I ST I NG G0

This command causes the compiler to create a file called EXAMPL.LST in
addition to the object module EXAMPL.REL. The /LTSTING switch does
not direct EXAMPL.LST to the line printer.

1-10

IN'I'RODUCTION

To obtain a printed copy of the program listing, use the PRINT command
as follows:

(~r'l, J NT EXAMF'L.. L..ST (~

A program can be successfully compiled, but still generate
warning-level diagnostic messages on your terminal. For example, a
number of warning-level diagnostic messages point out the use of
nonstandard PASCAL features (that is PASCAL-20 extensions). These
messages do not affect the compilation of a program in any way; they
are reported only to flag the use of PASCAL-20 extensions. You can
suppress the display of diagnostic messages for nonstandard PASCAL
features by appending the /NOFLAG-NON-STANDARD switch to the PASCAL
command as follows:

(~F'ASCAL
PAS CAL:> [: X I~ M F' I... / N n F l.. f~ G ... N () N !; TAN It (.1 H D ~

Many of the sample programs in this primer use nonstandard syntax.

1.2.3 Loading an Object File

An object module (for instance, EXAMPL.REL) is not executable. To
generate a file that can be executed by the system, you must use the
TOPS-20 program LINK. To call LINK, use the LOAD command as follows:

@L.OAD [XAMF'L. C~

You can omit the file type because the LOAD command assumes the file
type REL by default. The LOAD command loads the object file.

To create an EXE file, use the SAVE command.

@~)AVE EXAMF'L C~

This creates a file named EXAMPL.EXE.
image, that is, a file containing
format.

1.2.4 Executing a Program

EXAMPL.EXE is an executable
your program in an executable

To execute the program EXAMPL, use the RUN command or the EXECUTE
command. When you issue the RUN command, you provide the name of an
executable image; the RUN command assumes a file type (or extension)
of EXE by default. Thus, to run the program EXAMPL for which you have
created the executable image, issue the RUN command as follows:

@I:;:UN EXAMPL ~~D

The first time you run a program, it may not execute properly. If it
has a bug, or a programming error, you may be able to determine the
cause of the error by examining the output from the program or the
listing file. When you have determined the cause of the error, you
can correct your source program and repeat the compiling, loading, and
running steps to test the result. You can use PASDDT, the PASCAL
debugger, to debug your program. For more information about PASDDT,
refer to the TOPS-:~ PASC~..!!. Language Manual.

1-11

INTRODUCTION

1.3 A PASCAL PROGRAM EXAMPLE

This section presents the complete PASCAL program Grocery Bill.
that the characters (* *) mnrk comments in the program.

PH () G f~ A MGT' 0 C f..~ T' ~~ n :i. 1 I (I N PUT ~ 0 U T F' l.J T); (* Pro ~.:.! Y" a f1I h c! a (J e r *')

TYPE

Yes No

VAF<

(* Declaration section *)

(Yes, No); (* D p f :i. n (~! ';; c~ a t i:~ t ~:i F' P Ye ',; No
w :i t h v a llJ (.:.~ ~:; Y c! ~,; d rid No *)

Note

Item_Price, Totaly
Co U P 0 n Am 0 1..11"1 t : f< c·~ a 1 ;
An s ! Y E~ !:; _. N () ;

(* Declares three real variables *)
(* Declares a variable, Ansy of t~pe

yes No *)
Sub tot aI, C () U F' 0 n 5: f< E A l.. ! :": 0 • 0 ; (* I nit. i a liz ('::' s t ~I 0 T' pal va r :i. a bIt:,' s *)

(* E;-:ecutabl(·:~ ~:;ection *)

BEGIN
(* Print instructions for enterin~ data. *)
WRITELN('[nter cost of each ~rocer~ item. One itpm per line.');
WRITELN('[nter the value 0.0 to tprminate list of items.');

(* ~~ f~ a d P T' ice san d a (j d f? a d'l t. 0 ~:; IJ tit, 0 tal un til O. 0 i ~:; T' f? ad. *)

F,EPEAT
READLN(Item_Price);
S IJ b tot a 1 !:::: Sub tot a I + :r t e ITI P T' icE'

UNTIl.. (Item_Price = 0.0);
W Fn TEL N (, Sub tot a I e CH.I a Is.... ~~ I , ~; 1..1 b tot a 1 ! 7 : 2) ;
W R I T E (1 D 0 ~:l 0 IJ h i3 V pan ~l co U 1''' 0 n s ? T ~J F' P ~:l C~ s; 0 T' no and p Y" E' ~,; S <: I:;: E T:>. ');
F<EADLN (Ans) ;
I F (A n <..; == Y €~ 5)

THEN
BEGIN
WRITEl..N(/T~pe value of each coupon. One per line.');
WRITELN('T~pp <:CTRL/Z> after entering all coupons.');
(* Rea dan d ~:; u m a IT! 0 I.J n t () f (0 a c h co IJ F' () nun til f~' n d () fin put. *)

f~EPEAT
READLN(Coupon_AlT!ount);
Coupons := Coupons + Coupon_Amount

UNTIL EOF(INPUT)
END;

(* Subtract Coupons frolT! Subtotal to obtain Total, and print Total. *)
Total := Subtotal - Coupons;
WRITELN('Pa~ this amount $', Total:7:2)
END.

(* End of Pro~ram *)
You can run the sample program by following the steps outlined in
Section 1.2. The source file you create need not have the same name
as the PASCAL program. For instance, you can create a file called
GROC.PAS to contain the program. The name Grocery Bill is an
identifier known only within the PASCAL program. -

If you do not include the /NOFLAG-NON-STANDARD switch on the PASCAL
command, the compiler reports warning-level error messages for each
nonstandard feature used in the program. For example, the use of
underscore () characters in Grocery_Bill is a nonstandard feature.

1-12

INTRODUCTION

The following is a sample run of the program Grocery_Bill.

(~F' a ~:; cal
P.~!:)CAL>~~! Y'OC. I:,.a~j/nof:l. d~:.!
PASCAL>/f?:< :i. t
(~l Dad <.~ T'OC • T'C·;:I.

LINK: l...oar:.l:i.r.£l

EXIT
(!~<:; a v f? <.:f T' (J C • (.:.~){ t:'
GF~()C • EXE • 2 !;)Clvecl

t~ T' U n g l' 0 C • P >: f!
Ent,~?T' cost of €~ach ~.=.lT'oc(·:~r~:J :it,f.:~ITr. Onf:~ itt:'1Tr F'f:~r l:i.ne.
Enter the value 0.0 to term:i.nate list of items.
:J .25
o. ::-)7
3.42
1 • 1 ~.:;
0.89

0.0
Subt,otal e~uals -- $ 9.63
[10 ~<'1U hav(~' an!:J coupon~:;? T~:lp(,? !:If.''S 0 T' no and p rf?SS <F<ET>. ~es

T~pe value of each coupon. One per line
T~pe <CTRL/Z> after entering all coupons.
0.10
0.25
o. :1.7
0.30
~Z a~ this amount -- $
@

8.81

The program Grocery Bill illustrates a small subset of the PASCAL-20
language. It is d;signed to give you a feel for the way the parts of
a PASCAL program work together. The following chapters describe the
PASCAL-20 language in more detail.

1-13

CHAPTER 2

DATA CONCEPTS

This chapter presents an overview of the data concepts used in PASCAL.
Section 2.1 briefly describes the PASCAL concepts of data and types.
Section 2.2 describes PASCAL's predefined and user-defined scalar
types. Section 2.3 describes structured data types, and Section 2.4
describes variables. Finally, Section 2.5 describes how identifiers
and expressions are used in a PASCAL program.

2.1 DATA AND DATA TYPES

Data is a general term for what the computer uses. Within a PASCAL
program, you represent d~ta with identifiers; and, in turn, these
identifiers represent certain PASCAL constructions. In a PASCAL
program, you must assign each identifier a type. The type defines the
set or range of values that is associated with the identifier. The
following identifiers can be associated with data types:

• Constants

• Variables

• Functions

• Expressions

A constant is a quantity that remains the same throughout the
execution of a program. A constant's type is the data type associated
with that constant. For example, a value of 3.14 can be associated
with the identifier pi, which is defined to be constant. Because the
value 3.14 is a real number, the identifier pi is evaluated as a real
number.

A variable is a quantity that can change during program execution. A
variable's type is the data type associated with the set of values the
variable can assume. In the program Grocery Bill in Chapter 1, the
identifier Item Price is an example of a variable; the variable can
assume different-values in the program. Because Item Price is defined
as an integer, it can be assigned only integer values.

A function is a computation that is associated with a name and that
returns a value. A function's type is the same as that of the value
it returns. Functions are described in more detail in Chapter 7.

An expression can be a constant, a variable, a
combination of these items separated by operators.
is associated with a type.

2-1

function, or a
Every expression

DATA CONCEP'l'S

PASCAL has three categories of data types:

• Scalar

• Structured

• Pointer

The scalar data types represent ordered groups of values. PASCAL
provides two groups of scalar types: standard (or predefined) and
user defined. Integers, real numbers, and a subrange of an integer
range are examples of scalar data types.

A structured data type consists of a collection of a specific data
type. Structured data types are characterized by the types of data
that are used, and by their organization. Examples of structured data
types are arrays and records.

Pointer data types provide access to dynamic data structures. Dynamic
data structures are those in which data is stored nonsequentially.
Because pointer types maintain pointers to (that is, addresses of)
data, information that is nonsequential can be accessed.

Scalar and structured data types are described in more detail in the
following sections. Pointer data types are described in the TOPS-20
PASCA1~ Language Manual.

2.2 SCALAR DATA TYPES

Scalar data types consist of an identifier that is associated with an
ardered set of values. A scalar value is used as an individual item;
no part of it can be accessed separately. The number 4 is an example
of a scalar value. No part of the number 4 can be accessed; the
number 4 is treated as a single entity. PASCAL has two categories of
scalar data types: standard and user defined. Standard scalar types
are those already defined within PASCAL. User-defined scalar types
are data types that you can define within your PASCAL program.

Associated with each data type is a set of operations that can be
performed on those values. For example, addition can be done on
integers by using the addition operator (+).

The values of a scalar type are ordered; that is, each
greater than or less than another value of the same type.
can compare scalar data type values of the same type. For
among the integers, 2 is greater than 1 but less than 3.

is either
Thus, you

example,

PASCAL provides the ORD function which returns the ordinal value of a
character. The ordinal value is the numeric value of the ASCII
representation of the character. The format is:

ORD(x)

The ORD function can be used on any
user-defined types) except real numbers.
the use of the ORD function:

Expression

ORD (~ A ~)
ORD(~a')

ORD (~ 3 ~)

Returned Value

65
97
51

2-2

scalar type (including
The following example shows

DATA CONCEPTS

The term ordinal is used to encompass all scalar values other than
those of type REAL; that is, the term ordinal covers integer,
character, and Boolean values.

The standard scalar types are:

• INTEGER

• REAL

• CHAR

• BOOLEAN

The type INTEGER is used to represent integers. The type REAL is used
to represent real numbers. In addition to the type REAL, PASCAL
provides the types SINGLE and DOUBLE representing values that are
single- and double-precision real numbers, respectively. The type
SINGLE is identical to the type REAL. (Throughout this manual, the
term "real type" refers to the REAL, SINGLE, and DOUBLE types
collectively.) The type CHAR is used to represent character data.
Character data consists of the set of 128 ASCII characters. The ASCII
character set is shown in Appendix B. The type BOOLEAN consists of
truth values: FALSE and TRUE.

2.2.1 The Type INTEGER

The type INTEGER represents whole number values ranging from (-2**35)
to (+2**35)-1 or -343597383h8 to +34159738367. You write an integer
constant as a sequence of decimal digits; no commas or decimal points
are allowed. A minus sign (-) before the number specifies a negative
integer. A plus sign (+) can precede a positive integer, but is not
required.

Some examples of valid PASCAL integers are:

452822
o

-17
+102

-24824

PASCAL also accepts integers in binary, octal, or hexadecimal
notation. To use binary, octal, or hexadecimal notation, refer to the
TOPS-20 PASCAL Lan9uage Manual for an explanation of the syntax.

2.2.2 The Type REAL

The type REAL represents decimal numbers. The real numbers are
decimal numbers that range from approximately 0.14 * 10**-38 through
3.4 * 10**38, with a typical precision of 8 decimal digits. You can
express real constants in two ways in PASCAL:

• Decimal notation

• Floating-point notation

2-3

DATA CONCEPTS

In decimal notation, a constant of the REAL type consists of a ninus
sign (-) if the number is negative, an integer part, a decimal point,
and a fractional part. A plus sign (+) can precede a positive real
number, but is not required. At least one digit must appear on each
side of the decimal point. Examples of real constants in decimal
notation are:

48.25
0.5

-0.8
52.0
0.0

422.004

A zero must precede the decimal point of a fractional quantity, and a
zero must follow the decimal point of a whole number quantity.

Floating-point notation is used to represent very large or very small
real numbers. In floating-point notation, a constant of the REAL type
includes a positive or negative decimal number followed by a positive
or negative decimal integer exponent written in exponential notation.
For example, the following real constants are written in both
floating-point and decimal notation:

Flo at i ng- po in t

2.3E2
0.00023E6
10.4E-4
3.l4l5927EO
4.5E9
-0.4E2

Decimal

230.0
230.0
0.0010
3.1415927
4500000000
-40.0

The exponent consists of the letter E, which can be read as "times 10
to the power of", followed by a positive or negative whole number.
PASCAL prints real numbers in floating-point notation by default.

In floating-point notation, the position of the decimal point "floats"
or moves, depending on the value of the exponent. For example, each
of the following numbers is equal to 430.0:

4.3E2
4300E-l
430EO

Note that, if the decimal part of a floating-point number is a whole
number, you can omit the decimal point (for example, 430EO).

You can express double-precision real numbers in floating-point
notation, replacing the letter E with the letter D. Refer to the
TOPS-20 PASCAL Language Manual for details and examples of the type
DOUBLE.

2-4

DATA CONCEPTS

2.2.3 The Type BOOLEAN

The type BOOLEAN represents the truth values: FALSE and TRUE. PASCAL
orders these values so that FALSE is less than TRUE. Thus, ORD(FALSE)
equals a and ORD(TRUE) equals 1. Two kinds of operators combine to
form Boolean expressions:

• Relational

• Logical

Sections 2.5.2 and 2.5.3 explain how to form Boolean expressions that
include relational and logical operators.

2.2.4 The Type CHAR

The type CHAR is used to manipulate character data. A value of type
CHAR is a single element of the ASCII character set. The ASCII
character set consists of uppercase and lowercase letters, the digits
a through 9, an<3 various special symbols, such as the ampersand (&).
The full ASCII character set is listed in Appendix B.

Appendix B also lists the integer value or ordinal value that
corresponds to each element of the ASCII character set. These
integers determine how the elements of type CHAR are ordered. For
example, the integer 6fi corresponds to the uppercase 'B', and 98
corresponds to the lowercase 'b'. Thus, the character 'B' IS less
than the character 'b'. (All uppercase letters have a lower ordinal
value than lowercase letters.)

The ORD function returns the ordinal value for any given ASCII
character, for example:

DHD('K')

This function returns the value 75.

To specify a character value with the ORD function, enclose the value
in apostrophes; to specify the apostrophe character, type it twice
within apostrophes. Examples of constants of type CHAR are:

'A'

'* ' '3'
, b '

I , , ,
(the blank character)
(the a po s t r 0 ph e)

The elements of type CHAR are always single characters. A sequence of
characters within apostrophes is called a character string (for
example, 'John Doe' or 'Memorandum'); character strings are explained
in Section 5.1.2.

2-5

DATA CONCEPTS

2.2.5 User-Defined Scalar Types

User-defined scalar types are those types that you define within a
PASCAL program. A user-defined scalar type can be either an
enumerated type or a subrange of any scalar type except real numbers.

An enumerated type is an ordered set of values that you define by
naming an identifier and the values represented by the identifier.
The sample program Grocery_Bill in Chapter 1 defines the type Yes No.

TYPE

The type Yes No has two values Yes and No. Details on user-defined
types are presented in Section 3.5.

A subrange type is a specified part of another defined type. The
subrange is defined by specifying the lower and upper bounds of the
subrange. For example, a subrange of integers could be defined:

TYPE Ran9f? :;;: 0 •• 100;

2.3 STRUCTURED DATA TYPES

A structured type represents a collection of related data components.
Individual components of a structured data type can be accessed and
manipulated. PASCAL includes four structured data types: arrays,
records, sets, and files.

An array is a group of components of the same type. A record consists
of one or more fields, each of which contains one or more data items.
Records can include fields of different data types. A set is a
collection of data items of the same scalar type, the base type. You
can access a set as an entity, but you cannot access the set
components as individual components or variables. A file is a
sequence of data components that are of the same type; each component
can be individually accessed. A fiJe can be of variable length.

Chapter 5 presents two structured types: the array and the record.
For information about sets and files, refer to the TOPS-20 PASCAL
Langu~ Manual.

2.4 VARIABLES

A variable
execution.
execution.
The value
either the

is an entity that can assume a value during program
This value can change any number of times during program

In PASCAL, every variable has a name, a type, and a value.
of a variable is undefined until a value is assigned in

declaration or the executable section of a program.

You establish a variable's name and type in the variable declaration
section of a program. The name and type are permanent characteristics
during the program execution and therefore cannot be changed. A
sample variable declaration section is:

VAR Miles, Distance : INTEGER;
Gallons, MPG, Liters : REAL;
Measure : CHAR;
FIBS : BOOLEAN;

2-6

DATA CONCEPTS

The word VAR si~nifies the variable declaration part of the
declaration section. This variable section declares Miles and
Distance as identifiers of the type INTEGER; Gallons, MPG, Qnd Liters
as identifiers of the type REAL; Measure as an identifier of the type
CHAR; and Flag as an identifier of the type BOOLEAN.

One way to assign a value to a variable is with an assignment
statement:

Distance := 1043;
Mil f~ S ::::; [I i ~:; t d n c p ;

Because Distance is defined, this
Distance to the identifier Miles.

statement assigns the value of
The value of Miles is then defined.

In addition to assignment statements, you can use variable
initializations in the declaration section or input procedures in the
executable section to assign values to variables.

A value can be assigned in the VAR section:

VAR M:i.lps I NTEGEF, : ::: 0,

A value can also be assigned in the executable section, as shown in
the following example:

H[ADL..N (Mile~;);

This example uses the READLN statement to assign a value to Miles. In
this example, P~SCAL is waiting for input from the terminal.

2.5 EXPRESSIONS

An expression is an identifier or group of ioentifiers and operators
that PASCAL can evaluate. The identifiers can represent individual
constants, variables, or functions, for example:

subtotal

The variable name subtotal is an expression that is equal to the
current value of subtotal.

Expressions can also be combinations of constants, variables, and
functions, separated by operators. For example, the sample program in
Chapter 1 includes the following expression:

Total := Subtotal - Coupons

This expression is equal to the result of subtracting the value of
Coupons from the value of Subtotal.

PASCAL uses the following types of operators for forming expressions:

1. Arithmetic operators (such as +, - I, **)

2. Relational operators (such as <, >, =)

3. Logical operators (AND, OR, NOT)

Every expression has a
arithmetic expressions
results.

type. Arithmetic operators are
to produce integer or real values.

2-7

used in
Boolean

DATA CONCEPTS

2.5.1 Arithmetic Expressions

An arithmetic expression calculates an integer or real value. (For
the purposes of this section, the term "real" refers to the REAL type.
The rules for using values of type DOUBLE in arithmetic expressions
differ from those for type REAL. See the TOPS-20 PASCAL Language
Manuc~ for information on using the type DOUBLE in expressions.)

An expression can be an integer or real constant, variable, or
function. Alternatively, it can be formed by combining numeric
constants, variables, and functions with one or more arithmetic
operators (shown in Table 2-1). For example, the following expression
consists of two identifier names and the division operator (I):

Miles / Gallons

This expression equals the value of dividing Miles by Gallons.

Table 2-1: Arithmetic Operators

Operator Example

+ A+B

A-B

* A*B

** A**B

I AlB

DIV A DIV B

MOD A MOD B

REM A REM B

Meaning

Add A and B

Subtract B from A

Multiply A by B

Raise A to the power of B

Divide A by B

Divide A by B and truncate the
result

Produce the remainder after
dividing A by B; B must be greater
than 0

Produce the remainder after
dividing A by B (can be used when
B is <= 0)

The addition, subtraction, multiplication, and exponentiation
operators (+, , *, and **) work on both integer and real values.
They produce real results when applied to real values, and integer
results when applied to integer values. If the expression contains
values of both types, the result is a real number.

The division operator (I) can be used on both real and integer values,
but it always produces a real result.

The DIV operator can be used
produces integer results.
drops any remainder.

only with integer values and always
DIV divides one integer by another and it

2-8

DATA CONCEPTS

The MOD and REM operators return the remainder after dividing one
operand by another. Both operators can be used only with integer
values and always produce integer results. The MOD operator can be
used only when the divisor is greater than 0; it always returns a
positive result. The REM operator can be used whether the integers
are equal to, less than, or greater than o. The REM operator also
retains the sign of the djvidend.

Table 2-2 shows possible combinations of arithmetic operands and
operators and the type of the result.

Table 2-2: Result Types for Arithmetic Expressions

Operator Group

+, - * ** , ,

(addition,
subtraction,
multiplication,
exponen t i a t ion)
(2)

/

(division)

DIV, MOD, REM

(division with
truncation,
remainder)

Operand
Types
(1)

I op I

R op I

I op R

R op R

I op I

R op I

I op R

R op R

I op I

Result
Type
(1)

I

R

R

R

R

R

R

R

I

Example

4 + 5

4 • /. • ** 2

4 * 4.5

2.2 - 40.12

4/2

3.2/2

4/2.14

3.2/2.2

42 DIV 5

4 DIV 5

32 MOD 5

-4 REM 3

Result

9

1.7114E+01

1.800EOl

-3.792E+Ol

2.000E+00

1.I)OOE+OO

1.869E+OO

1.455E+00

8

0

2

-1

(1) The symbols "I" and "H" stand for INTEGER and REAL,
the symbol "op" stands for "operator."

respectively;

(2) When you raise an integer to the power of a negative integer you
can get unexpected results. Refer to the TOPS-20 PASCAL Language
Manual for the rules of how PASCAL evaluates expressions containing
negative integer exponentiation.

2-9

DATA CONCEPTS

2.5.2 Relational Expressions

A relational expression tests whether a specified relationship between
two values is valid. It returns TRUE if the relationship holds and
FALSE otherwise. For example, to test whether the variable MAX is
greater than the value 100, you can use the following expression:

~1AX :> 100

A relational expression consists of two scalar or character string
variables or expressions (such as MAX and 100 above), separated by one
of the relational operators listed in Table 2-3. The operands must be
of the same type; you compare characters with characters (single or
strings) and numeric values with numeric values (integer or real).

Table 2-3: Relational Operators

Operator Example Meaning

A = B TRUE if A is equal to B

<> A <> B TRUE if A is not equFlI to B

> A > B TRUE if A is greater than B

>= A >= B TRUE if A is greater than or equal to B

< A < B TRUE if A is less than B

<= A <= B TRUE if A is less than or equal to B

With character comparisons, the relationship is determined by the
ordinal values in the ASCII character set (Appendix B).

Note that in the 2-character operators «>, >= and <=) the operators
must appear in the specified order and cannot be separated by a space.

Relational expressions are often used as tests in PASCAL's conditional
and re~etitive statements (see Sections ~.1 and ~.4, for example:

IF Measure = '~' THEN
BEGIN

END;

The statements within BEGIN and END are executed only if the
expression (Measure = 'g') evaluates to TRUE.

As another example, suppose you want to compare the values of two
integer variables. To determine whether a variable named New Int is
greater than or equal to a variable named Large_Int, you can use the
following expression:

If Large Int holds the value ~4 and New Int is 72, the expression
evaluates to TRUE.

2-10

DATA CONCEPTS

Because the elements of scalar types are ordered,
relational expressions using scalar constants as
example, the following expressions are valid:

Expression Result

'e' < 't\' TRUE

TF~UE :> FAI ... f;[TRUE

5 :::: 4 FALSE

you can
operands.

form
For

Any expression that contains relational operators or logical operators
is called a Boolean expression because it produces a Boolean result.

2.5.3 Logical Expressions

You can form logical expressions by combining Boolean values and the
logical operators listed in Table 2-4. Logical expressions return a
value of type BOOLEAN.

Table 2-4: Logical Operators

Operator Ex,ample

AND A ,Z\ND B

OR A 'JR B

NOT NOT A

Result

TRUE if both A and B are TRUE

TRUE if either A or B is TRUE, or if
both are TRUE

TRUE if A is FALSE, and FALSE if A is
TRUE

The AND and OR operators combine two Boolean values to form a logical
expression. The NOT operator reverses the truth value of an
expression; so that if A is true, NOT A is false, and vice versa.

The following examples show logical
results.

Expression

(4 > 3) AND (18 = 3 * 6)

(3 > 4) OR (18 = 3 * 6)

NOT (4 <> 5)

Boolean variables and functions
expressions, for example:

Fla!'J AND ODD(l)

expressions and their Boolean

Result

TRUE

TRUE

FALSE

can be operands in logical

Suppose Flag is a Boolean variable. ODD (I) is a function that returns
TRUE if the specified integer is odd and FALSE if the integer is even.
Both operands, Flag and ODD (I) , must be true for the expression to
return a value of TRUE.

2-11

DATA CONCEPTS

Another example using a Boolean expression is:

(Ints_Read = 10) OR EOF(INPUT)

The EOF(INPUT) function returns TRUE if the end of the file INPUT
been encountered. If either or both of the operands in
expression are true, the expression returns a value of TRUE.

2.5.4 Precedence Rules for Operators

has
this

When evaluating expressions containing more than one operator, PASCAL
follows rules of precedence to determine the order in which operations
are to be performed. An operation with higher precedence is evaluated
before an operation with lower precedence. Consider the following
expression:

The division operation is performed first; the multiplication
operation is performed second; and the addition operation is
performed third. For example, if A equals 4 and B equals 2, AlB is
evaluated to return 2.0. Then, 3 is multiplied by 4 to return 12.
Finally, the results of these calculations are added together to
obtain 14.0.

You can
example,
is valid:

combine operators to form complicated expressions. For
if all of the operands are integer, the following expression

A + 5 DIV 2 * 4 - C * 3

If the current values of A and C
expression evaluates to -13.
written:

are 3 and 8, respectively, this
That is, it is evaluated as if it were

A t «5 DIV 2) * 4) - (C * 3)

Table 2-5 lists the order of precedence of arithmetic, relational, and
logical operators, from highest down to lowest. Those o~erators on
the same line in the table have equal precedence.

Table 2-5: precedence of Operators

Operators Precedence

NOT Highest

**

* I, DIV, MOD, REM, AND

+, - OR

<>, <, <=, >, >= Lowest

2-12

DATA CONCEPTS

In addition, the f~llowing rules apply:

1. Expressions enclosed in parentheses are evaluated first
regardless of the precedence of operators.

2. Two operators of equal precedence (such as DIV and *) are
evaluated from left to right.

The following expressions are evaluated differently, because in the
second expression parentheses enclose an addition operation.

Expression Result

4 + 8 ** 2 DIV 7 13

(4 + 8) ** 2 DIV 7 20

In the first expression, PASCAL performs the exponentiation (**) and
integer division (DIV) operations before the addition operation (+).
In the second expression, the parentheses force PASCAL to add 4 and 8
first; then the result (which is 12) is squared to obtain 144; and
finally the DIV operation is performed to obtain 20.

You should use parentheses when you combine relational and logical
operators because the logical operators have higher precedence than
the relational operators. For example, in the following expression,
the logical operator AND has the highest precedence:

A < X AND B <~ Y + 1

PASCAL attempts to evaluate this expression as if it were written:

A < (X AND B) <~ Y + 1

An error occurs because X and B are not of type BOOLEAN. To insure
that the expression is evaluated as you intended, you must enclose the
relational expressions in parentheses as follows:

(A < X) AND (8 <= Y +1)

Similarly, you must include parentheses in the following expression:

NOT (4 <> 5)

Without the parentheses, the expression is evaluated as:

(NOT 4) <> 5

Because 4 is not a Boolean value, PASCAL generates an error.

Parentheses also help to clarify an expression. A long expression is
easier to read if it contains parentheses indicating which operations
are to be performed first, for example:

A + «5 DIV 2) * 4) - (C * 3)

The parentheses eliminate any confusion about how the expression is to
be evaluated.

2-13

CHAPTER 3

DECLARATIONS AND DEFINITIONS

Every data item used in a PASCAL program must either be declared in
the program or already be defined by PASCAL. All declarations and
definitions must appear in the declaration section. The declaration
section can contain the following parts or sections:

1. LABEL declares labels for use by the GOTO statement

2. CONST defines symbolic constants

3. TYPE -- creates user-defined types

4. VAR -- declares variables and their types

5. VALUE -- initializes variables

6. PROCEDURE and FUNCTION -- declare routines

These sections are optional in a program. However, when they are
included, they must appear in the order listed above. Furthermore,
each section (except PROCEDURE and FUNCTION) can appear only once in a
declaration section. Thus, each block uses the following reserved
words only once: LABEL, CONST, TYPE, and VAR. A block can be a
program, a function, or a procedure.

All of these sections introduce symbolic names that represent data
items. Section 3.1 describes the use of symbolic names and
identifiers; Section 3.2 explains the CONST section; Section 3.3
describes the TYPE section; Section 3.4 describes the VAR section;
and Section 3.5 describes how to create user-defined scalar types.
The LABEL and VALUE sections, along with the GOTO statement, are
described in the 1~PS-20 PASCAL Langl~ Manual.

3.1 SYMBOLIC NAMES

Symbolic names are the words used in a PASCAL program: some symbolic
names are already defined within thE! PASCAL language; other symbolic
names can be created by the user. For example, the following line of
a PASCAL program contains three symbolic names:

VAR Ans

The name VAR is defined by PASCAL; the variable name Ans and the type
name Yes No are created by the programmer.

3-1

DECLARATIONS AND DEFINITIONS

There are three classes of symbolic names in PASCAL:

1. Reserved words

2. Predeclared identifiers

3. User identifiers

Section 3.1.1 describes reserved words and predeclared identifiers.
Section 3.1.2 describes how to form user identifiers.

3.1.1 Reserved Words, Semireserved Words, and Predeclared Identifiers

Reserved words, semireserved words, and predeclared identifiers are
defined by PASCAL and have a special meaning for the compiler.

PASCAL sets aside certain reserved words that cannot be redefined.
Some of the reserved words are:

AND
ARRAY
BEGIN
CONST
DIV

ELSE
END
FILE
FUNCTION
IF

NOT
OR
PROCEDURE
PROGRAM
RECORD
REPEAT

THEN
TYPE
UNTIL
VAR
WHILE

Appendix A contains a complete list of the PASCAL reserved words.
Reserved words in this text are printed in uppercase letters.

In PASCAL, the following words are considered semi reserved words:

MODULE
OTHERWISE
REM
VALUE

Like reserved words, PASCAL also predefines these semireserved words.
However, unlike reserved words, you can redefine these words for your
own purposes. If you redefine them, they can no longer be used for
their original purpose within the scope of the block in which they are
defined.

PASCAL declares certain identifiers to name types, constants,
procedures, and functions. In contrast to reserved words, you can, if
necessary, redefine predeclared identifiers for another purpose.

If you choose to redefine these identifiers, you should do so with
caution. Once a predeclared identifier is used to denote another
item, it can no longer be used for its original purpose within the
same program. For example, it is valid to create an identifier named
COS within a program. However, once COS is redefined, it would no
longer perform the cosine function within the program.

3-2

DECLARATIONS AND DEFINITIONS

The predeclared identifiers that have been mentioned so far in this
text include:

BOOLEAN INPUT REAL
CHAR INTEGER SINGLE
COS OUTPUT TRUE
DOUBLE READ WRITE
EOF READLN WRITELN
FALSE

Appendix A presents a complete list of PASCAL predeclared identifiers.

3.1.2 User Identifiers

User identifiers are the names you create to represent programs,
constants, variables, procedures, functions, and user-defined types.
User identifiers are all the names in a PASCAL program that are not
reserved words, semireserved words, or predeclared identifiers.

When forming an identifier, you must follow PASCAL syntax rules. An
identifier can be a combination of uppercase and lowercase letters,
digits, dollar sign ($) characters, and underscore () characters,
with the following restrictions:

1. Every identifier must start with a letter, an underscore, or
a dollar sign; that is, with any printing character other
than a digit.

2. Every identifier must be unique within its
characters.

3. An identifier must not contain any blanks.

first

4. Uppercase and lowercase letters are considered equivalent.

31

Although identifiers can be any length, PASCAL only recognizes the
first 31 characters. Therefore, two different identifiers that have
the same first 31 characters are interpreted as the same identifier.

Because you can use any letter or digit in identifiers, you can easily
create names that indicate what the data item represents. This tends
to make your programs easier to read and understand. For example,
although the word Slug is a valid identifier, it would not be clear if
it were used to represent the result of a square root calculation. An
identifier like Square Root, on the other hand, indicates what kind of
data that identifier holds.

Some examples of valid identifiers in PASCAL are:

Miles
Liters
Math_Scores
FICA_ Ta~{

Examples of invalid identifiers are:

ARRAY
lulore
f'ackafJet

(a reserved word)
(begins with a digit)
(contains the special character t)

3-3

DECLARATIONS AND DEFINITIONS

The following two identifi~rs are valid according to the syntax of
PASCAL. However, they will be treated as the same identifier because
they are not unique within their first 31 characters:

New_Incorporated_S~stem_Mana~er_Functions

New_Incorporated_S~steffi_Mana~er_Re50urces

3.2 CONSTANT DEFINITIONS

You can define identifiers to represent constant values in the CONST
part of the declaration section. Defining constants up front makes
your program easier to read and to modify. These identifiers and
their corresponding values are ca] led symbolic constants. For
instance, suppose a program that adds apples to oranges uses the
number 100 to indicate the maximum number of fruit that can be summed.
Instead of using the number 100 in the program, you can define an
identifier that represents 100 as follows:

CONST Ma~·: .. J· ru :i. t :::: 100;

The identifier Max Fruit is more descriptive of the constant's use in
the program than- the number 100, thus making the program easier to
read.

You can define any number of symbolic constants in the CONST section,
but the reserved word CONST can appear only once.

The format of the CONST definition is:

CONST constant name
IT constant name

value;
value; ...]

The constant name can be any valid user identifier. The value can be
an integer, a real number, a character, a character string (see
Section 5.1.2), a Boolean constant, or another symbolic constant.
Successive constant definitions must be separated with semicolons.

The type of a symbolic constant is the type of its corresponding
value. For example, Max Fruit shown above is of type INTEGER because
100 is an integer.

Once you define a symbolic constant, the constant identifier can be
used in place of the value later in the program. You can change the
value of a symbolic constant simply by changing the declaration in the
CONST section. However, the identifier represents a constant value
that cannot be changed with subsequent assignment statements or input
procedures.

For example, to define a s~1bolic constant with the value of 25 as the
number of students in a class, you can use the following constant
definition:

You can now use the identifier Class Size to represent the number 25
anywhere in your program.

3-4

DECLARATIONS AND DEFINITIONS

The use of symbolic constants generally makes a program easier to
read, understand, and modify. If, in the example above, the size of
the class is 28 the next term, you can simply modify the CONST
definition as follows:

Using a constant this way is easier than changing every occurrence of
the value in the program.

Another example of a constant definition section is:

CONST Rain = TRUE;
Yea r :::: 20 () 1 ;
Pi :::: 3.141!,:j92/;
COlTlma =~ I, I ;

C()untr!~ ~ I Uni tied Sti3t€.~s I ;

Citizenship = Country;

This CONST section defines six constant identifiers. The identifier
Rain is equal to the Boolean value TRUE. The identifier Year
represents the integer 2001, and the identifier pi represents the real
number 3.14]5927. The identifier Comma represents the character',',
and the identifier Country represents the string United States.
Characters and strings must be enclosed in apostrophes in the CONST
section. The identifier Citizenship represents the symbolic constant
Country and thus represents a character string. Note that, since
Citizenship represents a symbolic value and not a string, apostrophes
are not used.

3.3 TYPE DEFINITIONS

You can define types in the TYPE section of a PASCAL program. The
TYPE section associates an identifier with a specified set of values.
If a data type is used more than once within the program, it is useful
to define the data type within the TYPE section, rather than in the
VAR section. This allows you to create a structure that can be
accessed by more than one identifier. For example, if a program uses
an array structure three times, you can define the array structure in
the TYPE section, and declare three variables of that array type in
the VAR section.

The format is:

TYPE type name
[type name

type definition;
type definition; ..•]

Each type name is a user identifier that denotes a type. The type
definition specifies any valid PASCAL type. The type definition can
be either an enumerated type or a subrange type.

An enumerated type lists each of the values associated with the type.
The following example declares an enumerated type in the TYPE section:

TYPE Da~s = (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

In this example, the type Days includes the identifiers Sun through
Sat. These are ordered from left to right; that is, the value on the
left is less than the value to its right. Enumerated types are
ordered starting at zero. In this example, Sun < Mon.

3-5

DECLARATIONS AND DEF~NTTIONS

A subrange type uses a subs(?t of a type that is already defined,
either by PASCAL or within your program. The subrange type is defined
by specifying the lower and upper limits of the subrange. The example
below shows a subrange type:

TYPE Scores = 0 •• 100;
W () Y' k ;::: t1 0 n • • F Y' i ;

In this example, Scores includes the values of 0 through 100, and Work
includes the values Mon through Fri.

3.4 VARIABLE DECLARATIONS

Every variable in a PASCAL program must be declared before it is used.
A variable declaration creates a variable and associates it with an
identifier and a type. A variable's value is undefined until a value
is assigned in the declaration section or in the executable section.

The format of the VAR section is:

VAR variable name
[variable name

[,variable name •••]
[,variable name ••.]

: type [:=value]
type; .••]

The variable name can be any valid user identifier. The type can be
any of the predefined scalar types (REAL, SINGLE, DOUBLE, INTEGER,
CHAR, or BOOLEAN), an identifier previously defined in the TYPE
section, or a type definition as outlined in Section 3.1. You also
have the option of initializing a variable in the VAR section. Note
the last portion of the format.

You declare variables in the VAR section of a program, for example:

VAR Miles: INTEGER;
Gallons, MPG, Liters
Mf::'asure : CHAR;
Ans: Yes_No;

REAL..;

This VAR section declares one variable (Miles) of the INTEGER type;
three variables (Gallons, MPG, and Liters) of the REAL type; one
variable (Measure) of the CHAR type; and one variable (Ans) of type
Yes No. Note that you can declare multiple variables in the VAR
section, but the reserved word VAR can appear only once.

More examples of variable declarations are:

VAR Error_Fla~, Test : BOOLEAN;
Initial : CHAR;
Cost, Retail_Pr : REAL;
Count, Iterations, I, J : INTEGER;

This VAR section declares the variables Error_Flag and Test of type
BOOLEAN; the variable Initial of type CHAR; the variables Cost and
Retail Pr of type REAL; and finally, the variables Count, Iterations,
I, and J of type INTEGER. Section 3.5 describes how to declare
variables of user-defined types. Chapter 5 shows how to declare array
and record variables.

3-6

DECLARATIONS AND DEFINITIONS

3.5 USER-DEFINED SCALAR TYPES

PASCAL provides the predefined scalar types -- INTEGER, REAL, SINGLE,
DOUBLE, CHAR, and BOOLEAN. tn addition, PASCAL allows you to create
user-defined scalar types, for example:

T Y F' F Y p S N (J :: : (y p ~:; ~ No);

This user-defined scalar type called Yes No has two values, Yes and
No. In this way, it is similar to the-predefined type BOOLEAN which
has two values, FALSE and TRUE.

There are two classes of user-defined scalar types:

1 . En urn era t E~ d

2. Subrange

To define an enumerated type, you list th~ type's values, separated by
commas, in parentheses. For example, the type definition for Yes No
is:

(YP~:iY No)

To define a subrange type, you specify the bounds of an interval of an
existing ordinal type. For example, the following is a subrange of
the type INTEGER:

(). + tOO

This definition specifies a type consisting of the integers from 0 to
100.

You can define a user-defined scalar type in either of two sections of
the declaration section:

1. The TYPE section

2. The VAR section

When you define an identifier in the TYPE section, you associate a
type name with a set of values. In the example above, the identifier
Yes No is the name of a type in the same way that the identifier CHAR
is -the name of a type. You must still use the VAR section to declare
a variable of the type defined in the TYPE section, for example:

Because Yes No is a type that was defined in the TYPE section, you can
define more-than one variable of the type, as follows:

When you define a type in the VAR section, you associate one
variable names with the set of values of the type.
following defines a variable of a subrange type:

VAR Pe rcenta~ie o •• 100;

or more
Thus, the

The variable Percentage can
Percentage is not a type name;

take on the values a
it is a variable name.

through 100.

3-7

DECLARATIONS AND DEFINITIONS

Some ex~mples are shown below:

Exampl e 1

T Y P E D a ~:~ ;:; [} f Y p a (' ::" :l.,:-3 6 I.> ;
Alphabet ~ IA' •• 'I';
Di~its ~ '0' •• '9';
January_Temps ~ -20 •• t60~

I) A r~ II a ~:I ':; n f f ! D a ':~ s .. [} f ... Y e d r 9
Initial : Alphabet;
F~ a tin ':.l ! II :i. <J :i. t ~:; ~

A veT' d ~.:.l f.~ Jan 1..1 a l' ~:I : ... 1 d n u a l' ~:! T f' IT! F' ':; Y

The TYPE section defines four subrange types: Days_Of_Year, Alphabet,
Digits, and January Temps. Note that, for an integer subrange type,
the limits can include a leading minus sign (-) or plus sign (+). The
VAR section declares the variable Days Off, which can assume the
integer values 1 through lr,6; Initial, which can assume the character
values 'A' through '2'; Rating, which can assume the character values
'0' through '9'; and Average January, which can assume the integer
values -20 through +~O. -

Example 2

TYPE IIa~s ~ (Sunf Man, Tuey Wed, Thu, Fri, Sat);
Colors ~ (Red, Yellowy Bluey Oran~ey Purpley Green);
Primary_Colors ~ Red •• Blue;

VAl:;: Wf~f.~v.. ! Da~~s;

Spectrum : Colors;
Paints ! Primar~_Colors~

WOT'v.._Da~s : Mon •• Fri;
Final_Grade! 'A/ •• 'E';

The TYPE section defines the types Days, Colors, and primary Colors.
The type primary Colors is a subrange of the enumerated type-Colors.
The VAR section declares variables of the types Days, Colors, and
Primary Colors. In addition, the variable Work Days is declared to be
of the -subrange type Mon •. Fri, and the variable Final Grade is
declared to be of the subrange type 'A' .. 'E'.

3-10

CHAPTER 4

READING AND WRITING DATA

To enter data into a program, the program must perform input
operations. To display the results of a program's actions, the
program must perform output operations. This chapter describes
TOPS-20 PASCAL terminal input and output (I/O); that is, how to read
and write data interactively from a terminal.

The TOPS-20 PASCP~~ Langu~~ Manual conta ins add i tional info rma tion on
PASCAL I/O. Specifically, it explains the use of input and output
procedures on files other than the predeclared files INPUT and OUTPUT.

This chapter covers the following topics:

• The preeleclared text files INPUT and OUTPUT

• The predeclared READ and READLN proced ures fo r data input

• The pr eel ec I a red WRITE and \,IRITELN procedures for data output

• The predeclared functions EOF and EOLN

4.1 THE PREDECLllRED TEXT FILES INPUT AND OUTPUT

Text files are the basis of input and output, and are passed as
program parameters to a PASCAL program. Text files represent an
input/output device, such as a terminal or a line printer.

You perform I/O operations on file variables. A variable of the
structured type FILE is a sequence of data items, called components,
that have the same type. The structured type FILE is described in
more detail in the TOPS-20 PASCAL Language Manual.

PASCAL predeclares two standard file variables as text files: INPUT
and OUTPUT. A text file is a file that has components of type CHAR
and that is divided into lines. The I/O procedures and functions
explained in this chapter perform operations on either INPUT or
OUTPUT, by default.

PASCAL associates the predeclared file variables INPUT and OUTPUT with
your terminal, by default. That is, your terminal is treated as the
file INPUT (for reading data) and the file OUTPUT (for writing data).
The use of INPUT and OUTPUT is necessary to make your program
interactive.

4-1

READING AND WRITING DATA

Because INPUT and OUTPUT are predeclared by PASCAL, you must not
declare them in the declaration section; however, you must specify
them in the heading of each program that uses them. For example, for
an interactive program that accepts input data and writes output data
(such as the example in Chapter 1), you must specify both files, as
follows:

F' h' 0 G f(A M C! roc f~ r- ~:! D i. :I.], (I N F'l.J T ~ 0 l.I T P l.I T) ?

You can specify the files in either order.

Some programs require no input from the terminal. For instance, a
program that prints a table of the ASCII characters needs only the
output capability. Its heading might be:

p n 0 G F< A t1 F' r i n t A ~:) C I I (0 l.J T r' U T) ~

This program heading indicates that
Print ASCII and that the program uses

the name of the
the file OUTPUT.

program is

You can access only one component of a file at a time. Associated
with every file is a file position that determines which component can
be currently accessed. You can imagine a file's position as a window
that moves, through which you can see only one component at a time. A
file's current position is the position immediately following the file
component that was last read or written.

On TOPS-20, you can alter the search path for the INPUT and OUTPUT
files without rewriting your programs. You may want PASCAL to obtain
input from a file in your disk area (or some other place) rather than
from the terminal. Or, you may want PASCAL to write the data to a
disk file rather than to the terminal. You have two options: you can
rewrite the PROGRAM heading, or you can use the TOPS-20 DEFINE
command.

The TOPS-20 DEFINE command defines a logical name. A logical name is
a descriptive word used to establish a search route for locating files
in other directories or on other structures. When you define a
logical name, you tell the system where, and in which order, to search
for a file. The two logical names you use are PASIN: for INPUT and
PASOUT: for OUTPUT.

To define a logical name, type the following to the TOPS-20 operating
system:

(~~DEF I NE PAS IN: f i 1 enalTlf? C~

Because PASCAL associates the logical name PASIN: with the INPUT in
your program, PASCAL wil] search for input from the file you specify.

Likewise, you can direct PASCAL to output data to some location other
than your terminal by specifying the following:

@DEFINE PASOUT: f i], enalTle(=-~

To remove a logical name you have defined, give the DEFINE command but
do not type any definition. After the DEFINE command, type only the
logical name, and press RETURN, for example:

@DEFINE PASIN:~

For more information on logical names and the DEFINE command, refer to
the TOPS-20 Users Guide.

4-2

READING AND WRITING DATA

4.2 READING DATA

To submit data for a program to process, you need procedures that
perform input operations. The use of input procedures allows a
program to process different sets of data each time it runs. PASCAL
provides the READ and READLN procedures for data input.

By default, the READ and READLN procedures get dAta from
predeclared file variable INPUT. The READ procedure reads values
a file and assigns them to the variables that are specified as
parameters. The READLN procedure performs a READ operation,
moves to the beginning of the next line of the input file.

4.2.1 The READ Procedure

the
from
read
then

The READ procedure reads data items from the file variable INPUT and
assigns the values that are read to specified variables. Thus, you
can use a READ procedure to give values to variables, as shown in the
following example:

F~ E A D (N E~ :< t C h C! T') v

This procedure call causes a character to be read from the terminal
and assigned to the character variable Next Char.

The general format of the READ procedure, when using the default file
variable INPUT, is:

READ ([INPUT,] variable [,variable ...]);

Because the file variable INPUT is the default, you can omit its name
from a procedure call to READ.

The variable(s) are the parameters of the READ procedure into which
values will be read. At least one variable must be specified. The
parameters of the READ procedure can be variables of any of the scalar
types, including enumerated types. As described in Section 5.1.2, the
READ procedure also accepts character string variables as parameters.

The READ procedure reads values from the terminal until it
value for each variable that is specified as a parameter.
value found is assigned to the first variable in the list;
value is assigned to the second variable, and so on.

finds a
The first

the second

Each variable must have the same type as the corresponding value being
read, with the exception that an integer value can be read into a real
variable. In the example of the READ procedure below, the variables
could be of the types REAL, INTEGER, and INTEGER, respectively:

The following values could be read into the specified variables:

9B.6 11 75

The variable Temp is assigned the value 98.6, Age is assigned the
value 11, and Weight is assigned the value 75.

Note that, in the READ procedure shown above, each input value is
separated from the next by a space. Numeric data items, typed at the
terminal, must be separated by one or more spaces or tabs, or put on
new lines. Because the space and tab are values of type CHAR, this

4-3

READING AND WRITING DATA

rule does not apply to character data. If a READ procedure specifies
a character variable and encounters a space or a tab, the space or tab
is read and assigned to the character variable.

As the result of a read operation, the value of the component in the
current file position is assigned to a variable; then the file
position is advanced one component.

Example 1

Statements

r<EAD (X~Y);

~;:EAD (A,B);
:I. 234

These two READ procedures read the values on the input line into the
variables X, Y, A, and B. After they are executed, the variable X
equals 1; Y equals 2; A equals 3; and B equClls 4. The file
position is advanced to the position that immediately follows the
value 4.

Example 7.

READ (Month, Datev Year);

If each of these variables is of type INTEGER, the following are valid
input values:

14 1904

After the READ procedure is executed, Month equClls 2; Date equals 14;
and Year equals 1984. Note again that you can separate values to be
input with any number of spaces. The values also can appear on
different lines as follows:

2

14 19B4

In this example, Month is assigned the value of 2; Date is
the value of 14; and Year is assigned the value of 1984.
statement reads past the EOLN mark and assigns the next input
to the next variables.

Exampl e 3

READ (Char_Var);
IF Char_Var <> I I THEN

Count := Count + 1;

assigned
The READ

values

Assume that Char Var is a variable of type CHAR and that this segment
of code is withi~ a repetitive loop. This program fragment counts the
number of characters other than the space character on a line. The
READ procedure reads a character and assigns it to Char Yare If the
c h a rae t e r i s not a spa c e (' '), the va ria b lee 0 un tis inc r em e n ted by
one. If the character is a space, the assignment statement (Count :=
Co un t + 1;) iss k i pped •

When reading text files into string variables, spaces are assigned to
the string variables when the EOLN mark is encountered. EOLN is then
TRUE. A READLN statement must be used in this case to pass the EOLN.

4-4

READING AND WRITING DATA

4.2.2 The READLN Procedure

An alternative form of the READ procedure is the READLN procedure.
The READLN procedure performs ~ READ, and then positions the file
position pointer at the beginning of the next line, for example:

F<EADL..N (M:i.le~:» Y

This READLN procedure reads a value into the variable Miles, then
positions the file position pointer at the beginning of the next line.
Thus, any remaining data on the input line is ignored.

In contrast to the READ
advanced to the first
READLN procedure.

procedure, the file position pointer is
component of the next line at the end of the

The format of the READLN procedure using the default file INPUT is:

READLN ([INPUT,] [variable] [,variable] .•.);

After a value is read for each variable that is specified as a
parameter, the rest of the current line is discarded; and the file
position is set to the first component of the next line.

As shown in the format description, the variable list in the READLN
procedure is optional. Therefore, you can use READLN as follows:

This statement advances the file position pointer to the beginning of
the line after the current line without reading any values.

Exampl e 1

Statements

F~EADL.N (X, Y) ;
I=i:E.ADLN (A, II) ;

Input

123 4
"7 22 18 12

The values assigned in this example are:

X
A

1
"7

y ,.)
A-

B - 22

The first READLN procedure reads the values 1 and 2 and assigns them
to X and Y, respectively. Then, the file position pointer is advanced
to the beginning of the next line, and the remaining numbers on the
first line are ignored. The second READLN procedure starts reading
data from the second line of the input file and assigns the value 7 to
A and the value 22 to B. If these READLN procedures were both READ
procedures, only the first line of input would be read.

Example 2

Statement

READLN (X,Y,Z)

The values assigned

X 1
Y 100
Z 1000

in this

Input

1 100<EOLN>
1000 1001<EOLN>

example are:

4-5

READING AND WRITING DATA

This procedure call assigns 1 to X, 100 to Y, and 1000 to Z. Then,
the file position pointer is advanced to the beginning of the line
following the values 1000 and 1001. Note that the READLN procedure
reads across lines until a value is found for each specified variable,
and moves to the next line only after those values are assigned to the
variables. Thus, in this example, when there are no more values on
the line containing 1 and 100, the value 1000 from the next line is
read and assigned to the variable Z.

Exampl e 3

f~ [A D (C h a r (,,1 a Y') Y

IF [OI ... N THEN f~EADl..N Y

I F C h a r' VaT' <::> ,. / T H F N
Count.. !"" COl..lrd__ + 1 y

The following shows the value of Char Var after reading the sample
input:

t. h i ~:; <: E 0 I ... N :>

thi.s i~; <EOI...N>
a t f= ~:; t <: E () L.. N :>

Value of Char Var

4

11

This example shows a code fragment similar to the one used in Example
3 in Section 4.2.1. Included also in this example is a READLN
statement. This program fragment counts the number of characters
other than the space character in a file. The READ procedure reads a
character and assigns it to Char Var. If the character read is the
EOLN, then the file position pointer is moved past the EOLN mark and
positioned at the beginning of the next line. If the character is not
a space, the variable Count is incremented by one. If the character
is a space, the assignment statement (Count := Count + I;) is skipped.

4.3 WRITING DATA

To display the results of a program's actions, the program must
perform output operations. PASCAL provides the WRITE and WRITELN
procedures for data output. By default, the WRITE procedure writes
data onto the file OUTPUT, which is associated with your terminal.
The WRITELN procedure performs the WRITE procedure, then positions the
file position pointer at the beginning of a new line.

4-f)

---,.-------------------------- ,-------------------------

READING AND WRITING DATA

4.3.1 The WRITE Procedure

By default, the WRITE procedure writes data into the file variable
OUTPUT. It has the general form:

WRITE ([OUTPUT,] print list);

Because OUTPUT is the default, you can include or omit the name OUTPUT
in the WRITE procedure call. The print list specifies write
parameters, that is, the values to be written. It can contain:

• Expressions o~ any scalar type

• Character strings enclosed in apostrophes

Multiple parameters in the print list must be separated by commas.

To pr int the val ue of a symbol ic constant or a variable, you need to
specify only the variable name. You can print the result of an
arithmetic, relational, or logical expression by specifying the
expression in the print list. In addition, you can use the WRITE
procedure to print a character string to explain the output. Examples
of WRITE procedures with variable, Boolean expression, and string
parameters are shown below. For each output line, a blank sign ()
indicates that the corresponding WRITE procedure prints a space.

Statements Output

l,JF\JTE (IntVar), 12

FAI...!:;[

l.,lF~ITE (I IntVar pC~l..Ials' ~ IntVar) ~ I n t VaT' p C~ U a :I. ~:; 12

Each output line is shown above as PASCAL would print it. PASCAL
automatically provides spacing for various kinds of output. Thus, in
the first two examples, the output values (that is, the value 12 and
the value FALSE) are printed with a default number of leading spaces.
You can control the spacing by specifying the field width as explained
below.

The third example shows how to print a character string and a value.
A character string is a sequence of characters enclosed in apostrophes
(in this example, 'IntVar equals') and separated by commas. The value
12 is printed with a default number of leading blanks.

After a WRITE procedure is executed, the file position pointer is
positioned immediately after the last value that was written. Thus,
if the three WRITE procedures shown above appeared in three successive
program statements, all of the output would appear on the same line.

Field Width

The field width is the minimum number of characters that will be
written to the terminal. You can specify a minimum field width for
each possible write parameter in the print list. However, without the
field width specification, PASCAL uses the default values listed in
Table 4-1.

4-7

READING AND WRITING DATA

Table 4-1: Default Value for Field Width

Type of Variable Number of Characters Printed

INTEGER 10

REAL l~

DOUBLE 24

BOOLEAN

CHAR 1

enumerated

string Length of string

For example, the default field width for a real value is 16
characters. If the value of a real variable called Average is 5.5,
the value is printed as follows:

Statement Output

WRITE (Avera~e); 5+500000000[+00

Note that real values are printed in floating-point format, by
default. The value of Average is written in a field of l~ characters
(which includes a leading blank).

You can override the default fo~ a particular value by specifying a
field width in the print list. The following is the general form of
the field-width specification:

write parameter minimum [: fractionD

Minimum and fraction must be positive integers. Minimum indicates the
minimum number of characters, including padding spaces, that are to be
written. Fraction, which is used only with real values, indicates the
number of characters to the right of the decimal point.

For example, you may prefer to print the real value of Average in the
more readable decimal format. You can include field-width parameters
in the WRITE procedure call to do this:

WRITE ('The avera~e is',Average:4:1);

This statement produces the following output:

The average is 5+5

The integer 4 indicates that at least four characters will be printed.
This count includes -the decimal point and a minus sign (-) if the
value is negative. If the value is positive, as above, this minimum
includes a leading blank.

The integer 1 specifies that one digit will appear to the right of the
decimal point. Thus, the WRITE procedure above specifies a field at
least four characters wide, with one character to the right of the
decimal point.

4-8

READING AND WRITING DATA

The following rules apply to designating field-width parameters in
output procedures:

1. If the fraction parameter is omitted from a real value, the
value is printed in floating-poi~t format.

2. If the print field is wider than necessary, PASCAL prints the
value with the appropriate number of leading blanks.

3. If the print field is too narrow, PASCAL treats the different
kinds of write parameters as follows:

Example 1

• Truncates strings and nonnumeric scalar values on the
right to the specified field width.

• Prints integers and real numbers in decimal format using
the full number of characters needed for the value, thus
overriding the field-width specification.

• Prints real and double values in floating-point format in
a field of at least eight characters (for example,
-l.OE+OO). All real values in either format are printed
with a leading blank if they are positive and a leading
minus sign if they are negative.

Statement

WRITE ('First number -- ',Number:9);

Output

F i Y' ~:> t n IJ III b E~ Y' 1

If Number is an integer variable whose value is 1, this statement
prints the text ('First number -- ') followed by eight spaces and the
numeraL 1. That is, 1 is right-justified in the field of nine
characters.

Example 2

Statement

WRITE ('This is a test strinS':12);

Output

This is a te

The text in this example is truncated on the right so that it fits
into the field of 12 characters.

4-9

READ1NG AND WRITING DATA

Example 3

Statement

BEGIN

A v f~ l' a !J E' : "" ::.';. ~.:; ¥
W I:~ J T F (N u In tl e r : 4 y I V d 11 .I f.~ ~:; a vel' a '.'.l C~ d t 0 I Y A v C-:-~ r· a !.:.! (.:.~ : 3 : 1) ;

END;

One WRITE procedure can contain several values and strings as in this
example. If Number equals 5 and Average is 5.5, the output shown is
printed. Three leading blanks are included before the number 5 to
fill the print field, which is 4. Note that the value of Average is
printed in a field of four characters, including the leading blank,
even though the procedure specifies a field of three characters, thus
overriding the field-width specification of 3.

Example 4

Statement

BEGIN
Nurnl :~-:: 7:1..1.;
N 1..1 III 2 ::" 2 9 • 9 ,
N u m3 : :::: 1 O:J. • 0 ;
W F, T T F (N UITI 1 : :::.; : 1. ,I a n c.1 I y N u m2 : ::.:; : 1 y I SUIT! t (] I , (N um 1 + N U m 2) : (.) : 1) ;:

END;:

7:L.1 anc.i 29.9 sum to lOt.O

This example shows an arithmetic expression as a write parameter. The
values of Numl and Num2 (71.1 and 29.9, respectjvely) are each written
in a field of five characters. The expression (Numl + Num2) is
evaluated, and the value (101.0) is printed in a field of six
characters.

Example 5

Statements

WRITE ('F iT's t co lU1l1 n h P d din g I) ;

WRITE('Second column headin~':35);

Fi1'st column headin~ Spcond column headin~

Remember that, after a WRITE procedure is executed, the file pointer
is positioned after the last character printed. Therefore, two
consecutive WRITE procedures print data on the same line. The first
procedure call to WRITE prints the text, leaving the file position
after "heading". The second procedure call right-justifies its text
in a field of 35 characters.

4-10

READING AND WRITING DATA

Example ()

If you specify a variable of an enumerated type as a write parameter,
PASCAL prints the constant variable that names its value in uppercase
letters. For example, suppose the variable Color is defined as:

V A f~ Col C) r : (B 11..1 f~ ~ Y p:l 1 01,,1 Y B :I. a c k y ~::; 1 :i. ~.:.l h t 1 ~:! F' a 1 i-:-~ F' (.:~ a c h ~:) 1 . .1 HI III C~ T' ~:; 1..11"1 !:; (C.I t) Y

Assume that the value of Color is Yellow. Then this WRITE procedure
call:

tJ r~ I T E (I ~1 ~:! f i~: V 0 l' :i.·t f~ co:l. () Y' :i.!:; I ~ Co :I. 0 r : 33) :

produces the following output:

M~ favur:i.te color is YEI...I...Ol,,1

Note that yellow is printed right-justified and uppercase, preceded by
27 blank spaces.

When the value of Color is Slightly_Pale_peach_Summer_Sunset, however,
the following appears:

M,::! f avo l" :i. tf~ co:l. 0 1" :i. !:; ~:; I... I G H T I... Y PAL E ... P E () C H ~:; l.J M M [F;: .. _ ~:; l.J N ~:;

PASCAL only recognizes the first 31 characters in a variable name.
Thus, although the field width specified is wide enough for all 33
characters, only the first 31 characters are printed; and they are
right-justified in the print field.

4.3.2 The WRITELN Procedure

An alternative form of the WRITE procedure is the WRITELN procedure.
The WRITELN procedure performs the WRITE procedure, then positions the
file position pointer at the beginning of a new line. It has the
general form:

WRITELN [([OUTPUT,] print list)]

Write parameters are specified in the print list in the same manner as
in the WRITE procedure. Furthermore, the field-width rules described
in that section also apply to the WRITELN procedure.

If you have multiple
procedure prints all
line. Alternatively,
useful when you want
output file.

Exampl e 1

Statements

parameters in the print list, the WRITELN
of the values on one line, and then starts a new
you can omit the print list altogether. This is
to start a new line or write a blank line to the

WRITEI...N(/The value of X is ',X);
WRITEI...N('The value of Y is I,y);

OutEut

ThE~ value of X is 10
The value of Y is 15

4-11

READING AND WRITING DATA

In the output, the write parameters from each WRITELN procedure appear
on different lines. After both WRITELN procedures are executed, the
file position pointer is positioned at the beginning of a new line
following the output. In contrast, if you use WRITE procedures
instead of WRITELN procedures, the output from both of the print lists
appears on one line, as follows~

The value of X IS lOThe value of Y is 1.5

The file position pointer is positioned immediately after the value
15.

Example 2

Statements

WiH I TEL.N (I Name: I ~ .' A!.:H:~: I : 1 cl y I Soc. !:;f.-~c. : I : 21.)) ;
t.,IF,ITELN;
W' F(I TEL. N (I n () C T' a t f.~ ~:; I y I [) J d I : :1. ~.:j , .' Un k now n I : 2 -4) ;

Output

Soc. Hf~C.

Old Unknown

This example illustrates how multiple parameters in the print list of
a WRITELN procedure are printed. All the items in the print list are
printed on one line. Then, the file position pointer is advanced to
the beginning of a new line. This example also shows how to print a
blank line by omitting the print list. The second WRITELN procedure
call prints no characters, but creates a new line.

4.4 THE PREDECLARED FUNCTIONS EOLN AND EOF

The EOLN and EOF functions are predeclared PASCAL functions that
operate on file variables and yield Boolean results. The EOLN
function tests the end-of-line condition. The EOF function tests the
end-of-file condition.

4.4.1 The EOLN Function

Text files are divided into lines. Each line
line-separator mark indicating the end of a line.
this end-of-line mark with the EOLN function.

The format of the end-of-line function is:

E:OLN [(file variable)] i

ends with a
You can test for

The file variable must be a variable of type TEXT. The file variable
is the default file INPUT. You can either specify the name INPUT or
omit the file variable altogether, because INPUT is the default.

The function EOLN is true when the file position pointer is at the end
of a line, or after the last component on a line has been read.
Otherwise, EOLN is false.

After a READ procedure reads the last component on a line, the file
position pointer is on the EOLN mark.

4-12

READING AND WRITING DATA

In contrast, after a READLN procedure reads the last component on a
line, the file position pointer is at the beginning of the next line,
that is, past the EOLN mark. Thus, after a READLN is performed, the
EOLN function IS not true unless the next line is empty. For this
reason, the input procedure before an EOLN test is usually a READ, not
a READLN.

If a READ procedure specifying a character variable as a parameter
encounters the EOLN mark, a space (' ') is assigned to the variable.

To specify the end of a line when typing input at the terminal, you
press ~, thE~ RETURN key. Aftl=r a READ procedure reads the last
character that was typed before the RETURN key, EOLN becomes true.

The following loop shows the use of the EOLN function:

WHILE NOT EOLN(INPUT) DO
BEGIN

I:~EAD (Ch);
NUffi_Chars := NUffi_Chars t 1

EN[lv

The variable Ch is of typE! CHAR, and Num_Chars is of type INTEGER.
This loop counts the number of characters on a line. The WHILE
statement causes the loop body to execute repetitively as long as NOT
EOLN(INPUT) is true. When the last character on the line is read,
EOLN becomes true. The WHILE statement tests for NOT EOLN(INPUT),
which is now false. Therefore, the loop is not executed again. The
WHILE statement is described in Section 6.3.3.

4.4.2 The EOF Function

Every file ends with an end-of-file mark that you can test with the
EOF function. The EOF function is true when the file position pointer
is on this end-of-file mark. The EOF mark follows the last EOLN mark
in a file.

The format of the EOF function is:

EOF [(file variable)] ;

The file variable can be a variable of any file type. As with EOLN,
the file variable INPUT is the default.

As soon as the last line in a file is read, EOF becomes true. At all
other times, EOF is false.

You usually use the READLN procedure before an EOF test. If you use a
READ procedure, the last component in the file is read; and the file
position pointer is on the EOLN mark. EOF is false because the file
position pointer has not been advanced to the EOF mark.

When a value is being read into a character variable, EOF is false
after a READ procedure. In this case, after the last component in a
file is read, the file position pointer is at the EOLN mark. EOF is
still false. As a result of one more READ operation, a space (' ') is
assigned to the character variable; however, the file position
pointer remains at the EOLN mark. It is necessary to use a READLN
procedure to position the file position pointer at the EOF mark.
Until a READLN procedure is used, spaces continue to be assigned to
the character variable.

4-13

READING AND WRITING DATA

The diagram in Figure 4-1 represents the characters and the EOLN and
EOF marks in a text file.

EOLN EOF

MR S-3077-8~l

Figure 4-1 The End of a Text File

The symbol X represents the last component of a
the following procedure reads the component
variable:

text file. Suppose
denoted by X into a

READLN(variable);

The variable is assigned the value in X. The READLN procedure
advances the file position pointer past the EOLN mark (that is, to the
EOF mark). Thus, the file position pointer appears as shown in Figure
4-2.

Beginning I I L· · · of File
~--~- ---------~--~

EOLN EOF

I
File Position

MR-S-3078-83

FigurE~ 4-2: File position Pointer at End of File

When you are typing input at the terminal, you can indicate the end of
the file by typing a <CTRL/Z>. The <CTRL/Z> generates an EOLN mark
and an EOF mark. When a READLN procedure reads the last component
typed before <CTRL/Z>, EOF becomes true. The READLN procedure reads
past the EOLN mark and causes the file position pointer to be on the
EOF mark.

The following example shows the use of <CTRL/Z> to represent the EOF
constl~uct:

'JAR
Score, Total, Count: INTEGER;
A v (-;:0 T'a~.=leSco rf:'~ : F~EAL;

BEGIN
Total :::;: 0;
COI.Jnt : = 0;
WF~JTEI ... N ('Ent(·:·~r ~Iour SCOT'es.
WHILE NOT EOF DO

When done, t~pe CTRL Z');

BEGIN

END;

READLN (Seo T'e) ;

Total := Score + Total;
Count := Count + 1;

Avera~eScore := Total/Count; (*to produce real result*)
WRITELN ('The avera~e score is: ',Avera~eScore:4:1);

END.

4-14

--,------------------,--------------------

READING AND WRITING DATA

In Average Score, the first WRTTELN statement displays instructions
for enterTng data items and terminating the list of items with a
<CTRL/Z>. Each time the READLN procedure reads a value for the
variable Score, it reads past the EOLN mark. On the last iteration,
the READLN procedure encounters the end of the file, which was
generated by the <CTRL/Z>.

4-15

CHAPTER 5

STRUCTURED TYPES: THE ARRAY AND THE RECORD

This chapter describes the use of two structured data types: arrays
and records. Structured data types are composed of scalar data types.
The types presented in previous chapters of this primer are all scalar
types. A variable of a scalar type is an indivisible unit of data.
Scalar types cannot be divided into smaller, individually manipulated
data items.

A variable of a structured data type, on the other hand, is a
collection of related data items that can be accessed and manipulated
individually. You can refer to an entire structured variable with one
identifier, or you can treat its data items as single variables.

PASCAL provides the following structured types for building data
structures:

• Arrays

• Records

• Files

• Sets

An array is a collection of data items of the same type, called
components. A record is a collection of data items, called fields,
that can be of different types. A file is a sequence of data items,
called components, of the same type. A set is a collection of ordinal
scalar components or members.

This chapter presents the array (Section 5.1) and the record (Section
5.2) types. A special case of the file type -- that is, the text file
-- was introduced in Chapter 4. A detailed presentation of the file
and set types, however, is beyond the scope of this primer. The
TOPS-20 PASCAL Language Manual describes sets and files in more
detail. ------

5-1

STRUCTURED TYPES: THE ARRAY AND THE RECORD

5.1 ARRAYS

An array is a group of data items of the same data type. Each data
item in the group is called a component of the array. You refer to
the whole array with one identifier. You refer to each component with
the array identifier and an index that is enclosed in square brackets.
The indices need not be integers; they can be values of any scalar
type except a real type.

The format of the type definition for an array is:

ARRAY [index type [,index type •.. D 1 OF component type;

The index type can be a subrange of any ordinal type. It can also be
the full range of the CHAR type, the BOOLEAN type, or an enumerated
type. For example, you can specify the index type in the type
definition with the identifier CHAR. However, the index type cannot
be the full range of the type INTEGER.

The components of an array can be of any type, including structured
types. For example, you can define an array of integers, an array of
records, or an array of real numbers. An array of arrays is a
multidimensional array, as explained in Section 5.1.1.

The following is an example of an array declaration:

VAR WOT'd ARRAY[1 •• 20J OF CHAR;

An array declaration establishes three properties:

1. The identifier that names the whole array.
above, th~ name of the array is Word.

Tn the example

2. The range and type of the indices. In the array Word, the
indices are a subrange -- 1 .• 20 -- of integers.

3. The type of the components. The compon~nts of Word are of
type CHAR.

You refer to an array component with the array identifier and a
bracketed index. The index can be any expression of the index type.
Thus, in the array Word, the first component is Wordrl]; the second
is W~rd[21; and so forth. You can use array components in the same
way that you use any component of the same type. For example, if Word
is defined to be of the CHAR data type, you can use Word[2] as a
variable of the CHAR data type. Thus, Word[2] could appear on the
left-hand side of an assignment statement or as a parameter of the ORD
function.

5-2

-

STRUCTURED TYPES: THE ARRAY AND THE RECORD

The type definition shown ?bove can appear in the TYPE section or in
the VAR section. Where the type definition appears depends on whether
you are defining a type or using a previously defined type. An
example of defining an array type in the TYPE section is:

TYPE P l' i. C(·:·)S ::: AF~RAY I:: :t. •• 100 J OF I:;:EAI...;

This TYPE section defines the type Prices whose index type is the
subrange 1 .. 100, and whose component type is REAL. You can declare a
variable of type Prices as follows:

VAR Items: Prices;

Suppose a store has up to 100 kinds of items for sale, and each
is associated with a stock number in the range of 1 to 100.
identifier Items represents the price for each item. Thus,
example, the price for item number 20 is stored in Itemsf201.

item
The
for

The following declarations show an example of declaring an array
variable in the VAR section.

T Y P E 11 a ~:J~:; ::~ (f:) 1..1 n, M 0 n, T 1..1 (.:.) y lAJ f) d , T h u, F r :i. y ~:) at) ;
W 0 r'k D a ~:I () + + ::2 4 y

VAR WorkWeek: ARRAY[Mon •• FriJ OF WorkDay;

In the array WorkWeek, the index type Mon .• Fri is a subrange of the
enumerated type Days. The component type WorkDay is a subrange
(0 •• 24) of the integers. This declaration creates the variable
WorkWeek in which each of the five components represents the hours
worked in one day.

Suppose you want to write a program to calculate the average score of
a test of several students enrolled in a course. You can treat the
group of test scores as an array, and thus keep each score recorded by
a particular student. The following declarations create an array type
and a variable of that type:

TYPE Tests = 1 •• Max;
TestScores = ARRAY[TestsJ OF INTEGER;

VAR Score: TestScores;

Note that you can use a type identifier (for example, Tests) as the
index type in an array definition. If Max is equal to six, TestScores
is an array of integers whose index can range from one to six. To use
an individual score in an executable statement, specify the array
identifier (Score) and an integer expression whose value is between
one and Max.

5-3

STRUCTURED TYPES: THE ARRAY AND THE RECORD

A program that calculates the average of the components in the array
Score might be written as follows:

PH()Gr<A~1 N(.;.~w AvpY' (INPUT y OUTPUT! y

C Cl N ~; T M d ;.: C": I.) ~ (* N !..Ill"! b f~ Y' 0 f ~;; cor (.:.~ ~;; to tl (-;-' a v (.:~ l' d ~J p (1 *)

T Y F' E T €-~ ~:; t S :::; 1... M d;': y
T est ~) COY' f! (;; :": A F< F.; A Y L T ~.~ ~;; t ~;; J 0 F J N TEn E F~ y

V (:1 F< ~) C () }"' f:'~ ! r e ~;; t~) COT' t:-~ ~:; Y

S 1..1111 ~ I y A v (.;.~ 1""" a ~.:.! €.~ ! TNT E G F F;: ;

BEGIN
~31.J HI : :::: 0;
FOR I := 1 TO Max DO
BEGIN

(* ACCf~~:;~:; each COITIF'onent of ~:;co re *)

~J r~ I T [(I [n t e l' t f..~ ~:; t S COT' e ! .') v
READLNCSco1'eLIJ); (* Read an inte~eT' into each cOIl"!Ponent *)
~:; U IT! !":: ~:; I..IITI + ~:; cor t:·~ r I :1 (* ~:; I.J III t h f·! C D ITI r:' <:) n (.:.~ n t ~::. *;.

END;
A v ~:~ r' a ~.~ f~ :::" ~3 u ITt D I V M a;.; ;
W F< I T F L.. N (I T h (.:.~ f () :I. :I. 0 w :i. n ~J ~:; COT' f! <;; weT' f:.' en t e l' c·:·~ (".1: I) ;

FOR I := 1 TO Max DO
W F< I T F I... N (~;; COT' c·~ r: I J : 4), (* F' r :i. n tea c h C 0 HI F' 0 n f! n t 0 f ~;; cor p *)

W r;: I T [I ... N (I The a v C-~ T' a ~~ (.:! :i. ~:; : I, A v f~ l' a ~:.~ e : 3)
END.

The program reads each score that is typed after the prompt Enter test
score: and calculates a running sum. ~~e average of the scores is
the result of the expression Sum DIV Max. Output procedures print
each score that was entered and the average score.

A sample run of this program is:

En t C~ T' t est 5 COT' e : 1 0 ()
F n t C·? T' t e ~:; t ~;; cor (.:.~: 0 n
E::rlt.(·~ r t,es t., ~:;c~c) r(-~: .. ~I~j
Ent(·:·~r te~:;t ~:;core! 'YO
Ente l' te~:; t ~;;co 1'e: b3
Eft t€·~ T' t€-)S t seo T'(':'): 74
The follDwin~ SC01'es were ente1'pdt

tOO
8B
7~j

90
63
94

The average is: 85

In an executable statement, you can specify a component
an index that is an identifier. In both FOR loops
New Aver, the current score is denoted by Score[I].
index can be any expression of the index type;
example, refer to a component as Score(I+ll (as long as
rang e 1 .. f)) •

5-4

of Scores with
in the program
In fact, the
you could, for
1+1 is in the

STRUCTURED TYPES: THE ARRAY AND THE RECORD

The array component ScorerI] is used in the same manner as a variable
in the READLN st,:=ttement, in the expression Sum + Score[Il, and in one
of the WRITELN statements. 1n fact, ScorerI] is a variable of type
INTEGER.

You can use the assignment operator (:=) on two arrays of the same
type. The following example creates two array variables, called
Current Jan and Record Jan, that are both of type Month Temp.
Month Temp is a type that represents the temperatures for each day in
a month. The executable section in the example shows the assignment
of one array to another.

(* Declarations *)
CONBT [ta~:t!:; :::: 31; (* nl.Jmt:.lf:~ r of da\:l~:; :i. n Jan *)

TYPE Temp = -20++60; (* ran~e of temps occurrin~ in Jan *)
Month_Temp = ARRAY[l.+[ta~s] OF Temp;

VAR Bum, I, Averase_Temp,
Record_Ave_Temp : INTEGER;

(* Month_Temp has 31 components,
for each da~ in Jan *)

(* ave temp in current Jan *)
(* ave temp in Jan with record lows *)

CUT' r f:~ n t Jan, R e cor (i Jan ! M 0 nth T E~ IT! F" ;

(* Executable Section *)

Bum ::::: 0;
FOR I := 1 TO Days DO

(* Current_Jan and Record_Jan
represent each da~/s
temperature in this ~ear's
Jan and the Jan with lowest
averaSe temp, respectivel~, *)

Sum != Sum t Current_Jan[I);
Avera~e_Temp != Sum DIV Da~s;

(* if avera~e temp this ~ear is less than the record ~ear,
assi~n this ~ear's temp arra~ to the record temp arra~ *)

IF AveraSe_Temp < Record_Ave_Temp THEN
Record_Jan != Current_Jan;

The last line of the code shows the assignment of one array to
another.

This program fragment computes the average of the components of
Current Jan to obtain the average temperature for the month, and
assigns-that average to Average Temp. If the value of Average Temp is
less than that of Record_Ave_Temp, the array Current Jan is assigned
to Record Jan.

5-5

STRUCTURED TYPES: THE ARRAY AND THE RECORD

5.1.1 Multidim~nsional Arrays

So far only one-dimensional arrays, that is, arrays with one index,
have been discussed. An array whose components are themselves arrays
is a multidimensional array. ~n array can have any number of
dimensions. Each dimension has its own index, and each dimension can
have a different index type.

For example, the declarations below create a two-dimensional array:

CONST ClassSize = is;
N !..IITJ T €~ ~:; t ~;; :::: ~.:j;

TYPE Class = 1 •• ClassSize;
Tests = 1 •• N!..IffiTests;

VAR ClassScores : ARRAY[Class] OF ARRAY[Tests] OF INTEGER;

The variable Class Scores represents scores on a series of tests for a
group of students. If Class Size is 15 and Num Tests is 5, these
declarations create a two-dimensional array called Class Scores that
can store the scores on 5 tests for each of 15 students.

You can abbreviate the array declaration shown above by specifying all
the index types in one pair of brackets as follows:

VAR Class_Scores: ARRAY[Class, Tests] OF INTEGER;

To refer to one component of a two-dimensional array, use the array
identifier and two indices, one to specify each dimension. The first
index corresponds to the first dimension declared, and the second
index corresponds to the second dimension declared. The first
dimension is the row, and the second dimension is the column. For
example, Class Scores[I,3] indicates the first student's third test
score, and Class_Scores(3,11 indicates the third student's first test
score.

The Class Scores array is illustrated in Figure 5-1.

Figure 5-1:

Class
(rows)

r
Tests

(columns)

* ,
10 0 DOD
20 0 000

•
•
•

14 0 0 0 0 0
150 0 0 0 0

MR·S·3079·83

The Two-Dimensional Array Class Scores

5-6

STRUCTURED TYPES: THE ARRAY AND THE RFCORD

The index ranges in Class Scores that is, Class and Tests
correspond to the rows ~nd columns, respectively, in the figure. In
references to one component of Class Scores, the first index indicates
the row, and the second indicates Ihe column. A particular score is
found at the intersection of a row of Class and a column of Tests.
For example, Class Scores[3,5], indicated in Figure 5-1 by an X, is at
the intersection 07 the third row and the fifth column.

To access successive components in a multidimensional array, you must
use the proper control loop. Nested FOR loops are often used for this
purpose. Refer to Section 6."3.] for a discussion of FOR loops.

The following declaration creates a variable that holds each student's
average score:

ARRAY[Class] OF INTEGER;

The following statements include nested FOR loops to compute the
average for each student and to store that average in the appropriate
component of Clas::;_AveragE~s.

FOR I := 1 to ClassSize DO
BEGIN

~31..11l1 : :~: ();

FOR J := 1 TO NUITI_Tests DO
S U ITI ::::: S!..IIT! + CIa ~:; ~:; !:) c () Y' f? S r: I y J] ,

C las s A v P l' a !.:l P ~:; £: J:1 : :::: S 1..1111 D I V N U Ill T (~! ~:; t~:; ;
END,

The inner FOR loop sums the components in one row (row I). The
average of those components is assigned to Class Averages[Il. The
outer FOR loop causes this operation to be performed-for each value of
I, that is, the values] through Class_Size (15).

For example, on the fourth iteration of the outer FOR loop, each
component in the fourth row is processed. The components
Class Scores [4 ,J], where a ranges from 1 to Num Tests (5), are summed.
Class-Averagesr41 is assigned Sum DIV Num_Tests, where Num Tests
equals 5.

You can define arrays of three or more dimensions by
appropriate number of index types in the array
example:

specifying the
definition, for

VAR HotE\l Vacanc:i.es :: ARI~AYr:l •• n, /A/ •• IHI 1I l •• lO] OF BOOLEAN;

The variable Hotel Vacancies represents a hotel with 160 rooms. The
hotel has eight stories, each denoted by a number from one to eight.
Each story has 2 corridors, and each corridor has 10 rooms. The three
dimensions of the array have index types 1 •• 8, 'A' •• 'B', and 1 •• 10,
corresponding to the stories, corridors, and rooms in each corridor of
the hotel. Thus, each component in Hotel Vacancies represents a room
in the hotel. An individual component o~ Hotel Vacancies has the
value TRUE if the room is vacant and FALSE if it is full.

5-7

STRUCTURED TYPES: THE ARRAY AND THE RECORD

Components Name[l] through Name[12] contain the characters "Joshua
Jones". The READ procedure automatically assigns spaces to components
Name[13] through Namer20]. Note that, if there are additional
characters on the line instead of the EOLN mark, these characters can
be read into components of Name.

Similarly, you can use WRI~E or WRITELN to print a string variable,
for example:

W':;: J T E (N a ITI e) P

This WRITE procedure produces the following output:

Joshua ,.lone!:;

You can apply the relational operators «, <=, >, >=, =, and <» to
character strings of the same length. The result of comparing two
strings depends on the lexical ordering of the strings. Just as words
in a dictionary are arranged according to an alphabetical ordering,
character strings are ordered according to the ordinal value of
corresponding characters in the string. (See Appendix B for the
ordinal value of each component in the ASCII character set.)

PASCAL evaluates string expressions by comparing characters that
occupy corresponding positions in the two strings. When the first
nonequal characters in the two strings are compared, the string that
contains the character with the higher ordinal value is found to be
greater than the other string. If all characters are the same,
including spaces, the strings are equal.

For example, the following relational expressions are true:

'Pekinese' < 'Saint Bernards'
'wine & roses ') 'wine & cheese'

The first expression is true because the ordinal value of 'pi (80) is
less than the ordinal value of'S' (83). When evaluating the second
expressjon, PASCAL compares 'r' and 'c' because these are the first
characters that are not the same in the two strings. The ordinal
value of 'r' (114) is greater than the ordinal value of 'c' (99).

You can form relational expressions with character string variables as
well as with constants. Given the declaration of Section of type
Title, that is, PACKED ARRAY[1 •• 20] OF CHAR, the following statement
includes a valid relational expression:

IF Section = 'Character Strings ' THEN
WRITELN('That"s all folks! ');

5.2 RECORDS

A record is a structured type consisting of related data items of
potentially different types. A record is organized into fields; each
field can have a different type. An example of a record variable
declaration is as follows:

VAR Person : RECORD
Name: PACKED ARRAY[1 •• 20] OF CHAR;
Age: 0 •• 150;
Sex : (Female, Male>
END;

5-10

STRUCTURED TYPES: THE ARRAY AND THE RECORD

The record variable Person has three fields: the field Name is a
character string; the field Age is a subrange of integers; and the
field Sex is an enumerated type consisting of the values Female and
Male. To refer to one field, specify the record variable name and the
name of the field, separated by a period (.). Each field can be
treated as a variable of the field type, as shown in the following
example:

Person.Age refers to the field Age contained in the record Person.
Person.Age can be assigned a value as if it were an integer variable.

The record type definition format is as follows:

RECORD
field name (s) : type;

IT fieldname (s) : type ... n
END;

As shown, you can specify the names of one or more fields. If there
are multiple fields of a particular type, you must separate their
names with commas. The type specifies the type of its corresponding
field (or fields) and can be any valid PASCAL type. You cannot define
more than one field with the same name within a given record.

The reserved words RECORD and END enclose the fields in a record
definition. Successive fields of different types must be separated by
a semicolon(;). A semicolon is not required between RECORD and the
first field name, or between the last field type and END.

NOTE

You do not need a BEGIN with the END of
a record definition.

Suppose you are shopping for a new home and you want to maintain
information on the houses you see. The factors important in choosing
a home might include cost, distance from place of work, number of
rooms, method of heating, and location. The following TYPE section
defines a record type named House:

TYPE House = RECORD
Cost, Distance : REAL;
NUffi_Rooffis : 1 •• 20;
Heat: (Gas, Oil, Electric, Solar, Coal);
Location PACKED ARRAY(1 •• 20] OF CHAR;
Suitable : BOOLEAN
END;

The record type House consists of six fields. Note that you can use a
structured type as a field of a record (in the type House, the field
Location is a structured type).

To maintain information on a number of houses, you can declare an
array of records. For example, if the constant Max Houses is defined
as 10, you can declare an array of 10 House records ~s follows:

VAR House_Choices ARF<AY[l •• Ma~·~_Houses] OF House;

5-11

STRUCTURED TYPES: THE ARRAY AND THE RECORD

The variable House Choices stores multiple records in one array. To
refer to one field of one record in this array, specify the variable
name House Choices, an index enclosed in square brackets, a period,
and the fi~ld variable. This is shown in the following example:

H(JI..I~:;f::o Ch(Jices[T J. H€·~at

You use each field of a record variable in the same way a variable of
the field type is used. Thus, the following are valid statements:

F 0 F~ I :::~ 1. TOM i!l >: H 01..1 ~:; p ':; DO
BEGIN

REA D I... N (H 0 1..1 ~; e C h 0 :i. c P ~:; I:: I ::I • CD::; t) ,
r~ E A D L.. N (H [) IJ ~:; p C h 0 :i. C (,, .;; I:: I ::I < D :i. ~;; tan c (.:~) ;
r,EADL.N (Hol..I<;;e Ch(J :i. cc~~:; I:: J::I < NUlYlr~oom~::.) ;;
or F (H Cl U S f..~ C hoi C:' e ~:; [I J • C (] ~:; t <: lO 0 0 0 • 0) AND

(H 0 U S f? ._ C hoi c e ~; [I J • D i ~:; tan c f·~ <: 1. ::.:j • (» AN 1:1
(H 0 U <;; P C hoi c (-:~ ~; [:r ::I • N 1..111'1 F~ 0 0 ITI ~:; :> (.» THE N

H 0 1..1 S P C h () i c f~ !;; I:: J ::I • S 1..1 :i. t a ~J], c-:.~ : :::: T F~ l.J E
EL.SE HOl..Ise_ChoicesLIJ.Suitable := FALSE

END;

You can assign a record variable to another record variable of the
same type. For example, the following VAR section declares two record
variables of the same type:

V'AR Nt'w_Hol.J~:;c,~ y D rc·~alTl Hol..I':;(·:·~ HO!..l':;e;

If Dream House is defined (that is, if each field of Dream House has a
value) , you can assign Dream __ Hollse to New House as follows:

You can nest records in a record definition; that js, a record can
contain a field that is another record, for example:

TYPE ElTlplo~ee = RECORD
NamE.' : PACKED Ar,r,AY [1 •• 20] OF CHAR;
Adr:.l Y'(-:!~:;~:; : RECOHD

HouseNo : INTEGER;
St rpt't y Ci t~:1 : F'f~CI\ED Ar\F~AY I:: 1 •• 20J OF CHAr,;
s tat f? : I:' A C I~; E D A F~ r, A Y [:J. • • 2 J (] F C l'U':jf~ ;
Zip: 0 •• 99999
END, (*end of Address record*)

Emplo~eeNo : INTEGER,
JobTitle : PACKED ARRAY[:J. •• l0::l OF CHAR;
Sa 1. a T'~:I : F.:EAL
END, (*end of ElTlplo~ee record*)

EITIP 1 o~Jf.·~e;

To refer to a field within the Address record, you must specify the
identifier Employee N, a period, the identifier Address, a period, and
the particular field identifier, as shown in the following example:

This statement assigns the value of the string 'PA' to the State field
of Employee_N.Address.

5-12

STRUCTURED TYPES: THE ARRAY AND THE RECORD

You must read and write the information in records field by field when
you are performing I/O operations on text files. PASCAL does not read
or write an entire record, for example:

This WRITELN procedure prints two fi.elds of Employee_N: Name and
Empl oyeeNo .

The WITH Statement

When you refer to fields of the same record repeatedly, it is
cumbersome to repeat the record name in each reference. The WITH
statement allows you to specify the record name once, and refer to the
fields directly in the subsequent statement.

The format of the WITH statement is:

WITH record variable [,record variable •••] DO statement;

The record variable specifies the name of the record to which the
statement refers. Within the statement, you can refer to a field of
the record directly instead of using the record.fieldname format.

For example, the FOR loop that used the record variable House Choices
can be rewritten as follows:

FOH I : :::: 1 TO Ma>: Hou!:;(·:·~!:; Do
WIT H H 0 1..1 S (-;) C t I (] :i c (.:.) !:> I: I J DO
BEGIN

I:~ E A D I... N (C 0 ~:; t) ;
READLN(Distance);
F;:EADLN (NulTI ... F':oolTls) ,
IF (Cost < 70000.0) AND (Distance < 15.0) AND

(NulTI_R(]olTls > 6) THEN
Su:i tabl e : :::: TF.:UE

ELSE Suitable := FALSE
END;

Each statement between the BEGIN and END delimiters uses the record
name House_Choices(I]. Thus, the following statements are the same:

READI...N(Cost),

F.:EADLN (HOUSfL.Cho ices £: I J + Cos t) ;

5-13

STRUCTURED TYPES: THE ARRAY AND THE RECORD

You can also use the WITH statement to refer directly to fields in
nested records. You list the record names in the order in which they
are nested, and after the reserved word WITH, for example:

TYPE Nalll~:'~
Date

PACKED ARRAY[1 •• 20J OF CHAR;
F<ECOF<D
M 0 nth : ("" an, F p b, MaT' c h, A F' Y' i :I. ~ M a ~I' ..J U 1"1 (.:,' ,

Ju 1 ~~, Au~.:.!, ~;p~ ... t, Oct, Nov, Dec);
Da~:I : 1 •• 3:1.;

VAf< Ho~:;p

Yc~ar : INTEGEF~

ENIH

F,[COF<[I
Pat i f2nt. : Name;
BirthDate : Datf.'~

A!.~!e : I NTEGEI:;:
END,

WITH Hosp, BirthDate DO
BEGIN

Patient != 'Thomas Jefferson
Month ! :~~ AI'" T' i 1 ;
Day : :=: 1 :3 ;
Y €.~ a r ::::: 1 743 ;
A~:H? ::::: 2:37

END;

, A ,

The record Hosp contains the field BirthDate, which is also a record
(of type Date). The specification of Hosp in the WTTH statement
allows you to refer to Patient and Age which are fields of Hosp. The
specification of BirthDate allows you to access Month, Day, and Year,
even though these fields are in a nested record. Thus, the WITH
statement shown above is the same as the following:

WI I TH Hosp DO
WITH BirthDate Do
BEGIN

END;

The record names in the WITH statement must be specified in the order
in which they are nested. For instance, BirthDate is nested within
the record Hosp in the declaration; therefore, Hosp must be specified
before BirthDate in the WITH statement.

5-14

CHAPTER ~

PASCAL STATEMENTS

The basic unit of a PASCAL program is the statement. A statement
directs PASCAL to perform an action in a program. A statement
consists of a systematic arrangement of reserved words, variables,
operators, expressions, and other statements. This chapter describes
the following types of statements:

• Assignment statement

• Compound statement

• Repetitive statements

• Conditional statements

The assignment statement gives a value to a variable.

The compound statement, delimited
PASCAL statements together for
statement.

by BEGIN
sequential

and END,
execution

groups other
as a sing Ie

A repetitive statement causes a statement to be executed for a
specified number of times or until a certain condition is reached. A
conditional statement causes a statement to be executed if a certain
value is true.

Repetitive and conditional statements are control statements. Control
statements alter the sequence of execution depending on whether
specified conditions are met. In the absence of control statements,
PASCAL statements are executed in the sequence in which they appear in
the source program.

As mentioned in Chapter 1, the semicolon (;) is a delimiter used to
separate successive PASCAL statements. As such, it is not needed
(although PASCAL does accept it) after a statement followed by a
program element that is not a statement. For example, the use of a
semicolon before the END delimiter is optional. In this manual, the
semicolon is included as part of the statement format descriptions
because it is usually necessary and is illegal in only one case. The
exception occurs in the IF-THEN-ELSE statement as explained in Section
6.4.2.

6-1

PASCAL STATEMENTS

6.1 THE ASSIGNMENT STATEMENT

The assignment statement assigns the value of an expression to a
variable. The format of the assignment statement is:

variable name := expression;

The assignment statement replaces the current value of the variable
with the value of the expression on the right-hand side of the
assignment operator. The expression can be any expression having the
same type as the variable, with a few exceptions: you can assign an
expression of type INTEGER to a variable of type REAL or DOUBLE, and
an expression of type REAL to a variable of type DOUBLE. You can also
assign to a subrange variable a value of its base type. Note that
this statement uses the assignment operator (:=), not the equal i ty
ope r a to r (=) •

For example, if I is declared as an integer variable,
statement assigns the value 100 to the variable I.

I::::: 100;

the following

In addition to constant values, the right-hand side of the assignment
statement can be any of the expressions described in Section 2.5.

For example, suppose you have made the following declarations:

C () N ~:; T Y e ~:; :~: I Y I ;

No :::: I N I ;

TYPE D(~~paT'tment (En~ineerin~, Sciences, Math, English,
I ... a n =j u a ~.~.~ s, His tOT' ~~, F :i. f"I e Art s) ;

VAR I, Increment: INTEGER;
Answ(~~ T' : CHAf~;

G T' a d f:') y Fa i 1. i n ~.:1 .. _ G T' a d p : REA L. ;
M~~ .. _Ma ,jo T' : D€:' f"a rtlTl(·:~nt ;
Passed : BOOLEAN;

Then, the following assignment statements are valid:

I :~~: 1;
Failing_Grade := 1.0;
Grade := (4+5+2-1)/3;
Increment := I + 1;
Passpd := Grade> Failing_Grade;
AnsweT' ::::: Yes;
M~_MaJor := Fine_Arts;

Note that, in the statement Answer .= Yes, the expression to be
assigned to Answer is a symbolic constant. The value of the symbolic
constant Yes is a single character and therefore can be assigned to
the CHAR variable Answer. In each of the assignment statements shown
above, the type of the expression is the same as that of its
corresponding variable.

0-2

PASCAL STATEMENTS

6.2 THE COMPOUND STATEMENT

You can use the BEGIN and END delimiters to group one or more
statements into a compound statement. The statements are executed in
sequential order. The format of the compound statement is:

BEGIN
s ta temen tl
[; staternent2 ••• :0 [n

END;

The statements within the BEGIN and END delimiters can be any PASCAL
statements, including other compound statements. Each successive
statement must be followed with a semicolon; however, the use of the
semicolon between the last statement and the END delimiter is
optional. PASCAL treats the compound statement as if it were a single
statement. For example, the following contains a compound statement
that is part of an IF-THEN statement:

IF Measure = '~' THEN
BEGIN

[L~;E

END

WRITELN ('Enter the number of ~allons.');
READLN (Ga lIon!:;) ;

BEGIN
WRITELN ('Enter the number of liters.');
READLN (Liters);
Gallons := Liters / 3.785; <*converts liters to gallons*>

END;

If the Boolean expression (Measure = 'g') is true, every statement
within the first BEGIN and END is executed. If the expression is
false, flow of control transfers to the statement following the END
and beginning with the ELSE.

This manual uses the term "statement" to
statement or a compound statement. More
statements appear throughout this chapter.

6.3 REPETITIVE STATEMENTS

mean either
examples of

a single
compound

Repetitive statements cause a
number of times or until
repetitive statements are:

statement to be executed
a certain condition is

a specified
reached. The

• FOR

• REPEAT

• WHILE

The FOR statement executes a statement a specified number of times.
The REPEAT statement executes a statement and then evaluates a BOOLEAN
expression after executing the statement. The statement continues to
be executed until the BOOLEAN expression is true. The WHILE statement
evaluates a BOOLE~N expression at the beginning of a st.atement. As
long as the expression is true at the beginning of the loop, the
statement is executed.

Each of these statements is described in the following sections.

6-3

PASCAL STATEMENTS

• Because the reserved words REPEAT and UNTIL enclose the
statements to be executed, you do not need a compound
statement to set off multiple statements. The statements can
be delimited with BEGIN and END, but do not have to be. In
addition, you need not use a semicolon immediately preceding
UNTIL.

The example below shows the use of a REPEAT loop to search for a value
in a sorted array. This is an example of a binary search, one of the
classic search algorithms. Assume that the program includes the
following declarations:

en N r:; T ~:; i ~.~ (.:.~ :;;: 20; (* d i ITI f..' n <:> ion 0 faY' r' a ~:I *)

TYPE Name ~ PACKED ARRAY[1 •• 20J OF CHAR;

VAR Name_List: ARRAY[l •• SizeJ OF Name;
Name_ta_Find Name;
I, J, Middle INTEGER,
Found: BOOLEAN;

Assume also that the array ~ame List contains an alphabetized list of
names. The following program fragment prompts for a name, then
searches the array for that name.

BEGIN

(* Input the name *)
WRI1E ('Name to find ');
READLN <Name_ta_Find);

(* Initialize variables before executin~ loop *)
I : :::: :l;
,..I ::::: ~:; :i. ~.~ e ;
Faunc! ::= FALSE;

1;~EPFf:~T

(* If Name_to_Find is in Name_List, it falls between the
elements Name_List Ell and Name_List [J] *)

Middle ::::: (ItJ) DIV 2;
IF (Name_to_Find :::: Name_List [Middle]) THEN

BEGIN
(* Set Found fla~ and print a message *)
Found :::;; TF<UE;
WRITELN (Name_to_Find,' is element',Middle:3)

END
ELSE IF (Name_to_Find > Name_List [Middle]) THEN

(* increase lower array bound to select top half *)
I != Middle t 1

ELSE IF (Name_to_Find < Name_List [Middle]) THEN
(* decrease upper array bound to select lower half *)
J !:::: Middle ._. 1

UNTIL Found OR (1 > J);

IF NOT Found THEN
WRITELN (Name_to_Find,' is not in the list.');

END.

6-fi

PASCAL STATEMENTS

The REPEAT loop contains statements that partition the array and
search the appropriate half. The vari~bles I and J initially
represent the upper and lower bounds of the entire array Name_List,
and are changed during execution to represent the bounds of the part
of the array currently being searched. Execution of the loop
terminates when Name to Find is found (in which case the variable
Found is true) or when- tEe value of I exceeds the value of J,
indicating that Name to Find is not in the array.

For example, if Size is 20, the loop first compares Name to Find with
Name List[lO]. If their values match, Found becomes TRUE; a message
is printed; and the loop terminates ..

I f N arne to Fin d i~; g rea t e r" t han N arne Lis t [I 0], t hat is, i fit f a I I s
I ate r i nth e a J. ph abe t, the nIt a k E; son the val u e 11. Th e sea r chi s
confined to the second half of the array, and the loop is repeated for
elements Name_List[ll] through Name_List[20] .

If Name to Find is ll~ss than Name List[IO], that is, if it falls
earlier in the alphabet, then J ~akes on the value 9. The search is
confined to the first half of the array, and the loop is repeated for
elements Name_List[l] through Name_List[9] .

On the second iteration, the value of Name to Find is compared with
the middle element in the selected half- of the array, either
Name List[15] or Name List[5]. If the names do not match, the array
is 7urther partitio~ed. The search continues until Name to Find
matches an element of Name List.

If the name is not in the array, eventually the value of I exceeds the
value of J, causing execution of the loop to terminate.

Example 2

Assume that Count, Sum, Number, and Average have been declared as
integer variables.

SUITt ::::: 0;
Count ::::: 0;
REPEAT

READ (NulTtber);
SUITt := Sum + Number;
Count := Count + 1

UNTIL EOLN(INPUT) OR (Count
Avera~e := SUITt DIV Count;

10);

This example reads and sums a list of I to 10 integers on a line and
averages them. The integers must be entered on one line, and a <RET>
must be entered after the last integer. The REPEAT loop reads in one
integer, adds it to the sum, and increases Count by 1.

The REPEAT loop terminates when EOLN (INPUT) is true, or when Count
equals 10. EOLN (INPUT) becomes true as a result of the <RET> typed
after the last integer entered.

6-7

PASCAL STATEMENTS

Example 3

Suppose that the following declarations have been made in a program's
declaration section:

T Y PEN a m f?~) t r i n <.'1 ~:: PAC K E II A H F~ A Y [:L • • 20 :1 0 F C H A f~ ;

VAR Name : Namestrin~;

Namelist : ARRAY[1 •• 30] of Namestrin~;
Namecount : INTEGER;

The REPEAT loop below uses these variables:

Namf.~cC)unt ::::: 0;
F~EPEAT

F~EADLN (NalTle);
Namecount := Namecount + 1;
Namelist[NamecountJ != Name

LINT I L. EOF OR (Namecount ::~ 30);

This ex~mple reads character strings representing names and stores
them in the array Namelist, which contains components of a packed
array of characters. Namelist can contain up to 30 names.

The REPEAT loop increases Namecount by 1, then reads one name and
assigns it to one element of Namelist (that is, Namelist[Namecount]).
The loop terminates when Namecount equals 30 or when EOF becomes true.
Because the READLN statement reads one name and then skips to a new
line, each name in the input file must be typed on a different line.

6.3.3 The WHILE Statement

The WHILE statement is like the REPEAT statement in that it specifies
the repetitive execution of a statement.

The format is:

WHILE Boolean expression DO statement;

The loop is executed while the Boolean expression is true.
expression becomes false, execution terminates.

When the

There are three important differences between the WHILE statement and
the REPEAT statement.

1. WHILE tests the expression before executing the statement(s)
in the loop; REPEAT tests the expression after executing the
statement(s). Therefore, if the Boolean expression is false
when WHILE is first encountered, the statement following DO
is not executed.

2. WHILE controls the execution of only one statement. Hence,
to execute a group of statements repeatedly, you must use a
compound statement. REPEAT does not require a compound
statement; BEGIN and END are optional.

3. WHILE terminates execution
becomes false. REPEAT
condition becomes true.

6-8

of the loop when a
terminates execution

cond i tion
when the

PASCAL STATEMENTS

Example 1 in the preceding section can be rewritten using a WHILE
statement to produce the same results:

~:; U ITI : ::~ 0;
Count ! :::: 0;
I.t.IHILE NOT EOLN(INPUT) AND (Count·(to) DO

BEDIN
I:~EAD (Nunlbp T') ;

SUITt : ::" ~)um + Numb,(:~ Y' ;

Count := Count + 1
END,

Avera~e t= SUIll DIV Count;

8UIlt :::~ 0;
Count : :::: ();
I:~EF'EAT

READ (Numbe T') ;

SUIll := Sum + Number;
Count := Count + 1

UNTIL EOLN(INF'UT) OR (Count
AVEF~AGE : :::: SUITI D J V Count;

:LO),

The differences between the two examples lie in the specification of
the conditions for terminating the loop. The WHILE loop is different
in these ways:

• The test for EOLN(INPUT) must be written as NOT EOLN(INPUT)
so that the loop is repeated as long as EOLN(INPUT) is false.

• The condition determining that only 10 integers can be
averaged must be rewritten as Count < 10 (instead of Count =
10). On the last iteration, the tenth integer is read, and
Count becomes 10. Count < 10 is then FALSE, so the loop is
not executed again.

• The logical expression uses the operator AND instead of OR.

Example 2

The statements are executed as long as both conditions are
true.

WHILE NOT Errorflag AND (Intcount < :LOO) DO
BEGIN

READ (Int);
IF Int > 0 THEN Poscount := Poscount + 1
ELSE IF Int < 0 THEN Ne~count := Negcount + 1

ELSE Errorflas := TRUE,
Intcount := Intcount + 1

END;

This WHILE loop reads an integer; and, if the integer is positive,
the variable Poscount is incremented. If the integer is negative, the
variable Negcount is incremented. Up to 100 integers can be counted;
the number of integers counted is accumulated in Intcount. If a zero
is encountered in INPUT, Errorflag becomes TRUE; and the loop is
terminated.

6-9

PASCAL STATEMENTS

Suppose that, in the program surrounding the above program fragment,
there is more than one way to obtain an error and thus assign the
value TRUE to Errorflag. If Errorflag is true before the program
encounters the WHILE statement, the statements within the loop are not
executed. Similarily, if Intcount is greater than or equal to 100,
the loop is not executed.

6.4 CONDITIONAL STATEMENTS

Conditional statements control the flow of the
the evaluation of an expression. Unlike the
the conditional statements direct only the flow
not directly control the number of times
statements are executed.

The conditional statements in PASCAL are:

• IF-THEN

• IF-THEN-ELSE

• CASE

6.4.1 The IF-THEN Statement

program depending on
repetitive statements,
of execution; they do
that a statement or

The IF-THEN statement executes a statement or statements only if an
expression is true. The format is:

IF Boolean expression THEN statement;

If the expression is true, then the statement is executed. If the
expression is false, program control passes to the statement following
the IF-THEN statement.

The reserved word THEN and the statement that directly follows it are
called the THEN clause of the IF-THEN statement. The statement
following THEN is called the object of the THEN clause, for example:

IF A <: 0 THEN
N (~!~L I n t s ::= N e ~.L. I n t 5 + 1;

The object of the THEN clause is

If the value of A is less than zero, the value of Neg_Ints is
increased by one. Note that you must not place a semicolon after the
reserved word THEN. If you do, an empty statement becomes the object
of the THEN clause. In the example above, if there had been a
semicolon after THEN, the assignment statement would be executed
regardless of the value of the Boolean expression.

6-10

PASCAL STATEMENTS

Example 1

IF (Ans Yes) THEN
BEGIN

END;

The object of the THEN clause
statements between BEGIN and
expression is true. If it is
statement following the END.

Example 2

can be
END

not,

a compound statement. The
are executed if the Boolean
execution continues with the

IF (Ch)= 'A') AND (Ch <= 'I') THEN
BEGIN

Letter := TRUE;
LetterTotal := LetterTotal + 1

END;

If both relational expressions are true, the compound statement is
executed.

Example 3

IF ErrorflaS THEN
WRITELN ('Index number out of bounds');

The Boolean expression can be a single Boolean variable, as in this
example. The WRITELN statement writes the message in apostrophes if
the current value of Errorflag is TRUE.

6.4.2 The IF-THEN-ELSE Statement

The IF-THEN-ELSE statement executes one statement if the expression is
true, and another statement if the expression is false. The format of
the IF-THEN-ELSE statement is:

IF Boolean expression THEN statementl ELSE statement2;

Statement1 and statement2 can be any PASCAL statements. Statement1 is
executed only if the expression is true. If the expression is false,
then statement2 is executed. The reserved word ELSE and statement2
are called the ELSE clause of the IF-THEN-ELSE statement.

NOTE

You must not place a semicolon after
statement1 and before the word ELSE.
The IF-THEN-ELSE statement is a single
statement; the IF-THEN clause cannot be
separated from the ELSE clause. Because
ELSE does not denote an independent
statement, you receive a compile-time
error message if there is a semicolon
directly before the word ELSE.

6-11

PASCAL STATEMENTS

The ELSE clause is always associated with the closest IF-THEN
statement, for example:

IF A ::-.: 1 THEN
IF B <> 1 THEN C := 1
ELSE D :;::; 1,

The ELSE clause is associated with the second IF-THEN statement.
Therefore, if A and B are both equal to 1, 1 is assigned to the
variable D. If A is not equal to 1, neither assignment statement is
executed. If you want the ELSE clause to be associated with the first
IF-THEN, you can write the sequence as follows:

[F A ~-.: 1 THEN
BEGIN

IF B <> 1 THEN C := 1
END

ELSE II :;~" 1,

The object of the THEN clause of the outer IF-THEN-ELSE statement
consists of:

BEGIN
IF B <> 1 THEN C := 1

END

And the ELSE clause is:

ELSE D:=1;

Thus, if A is equal to 1, the THEN clause is executed, and the ELSE
clause is ignored. If A is not equal to 1, 1 is assigned to D
regardless of the value of B.

Example 1

IF (LastInitial >= 'A') AND (LastInitial <= 'M') THEN
.. Billdate := 14

ELSE Billdate := 28,

This example determines billing dates depending on the initial of a
last name. Bills are sent on the 14th of the month to each customer
whose last name starts with A through M, and on the 28th to customers
whose last name starts with N through Z.

Example 2

IF (Card_Sum> 21) THEN
Lose := TRUE

ELSE IF (Card_Sum >=17) THEN
Deal := FALSE

ELSE
BEGIN

Deal := TRUE;
Card_Sum := CardSum + Newcard

END;

6-12

PASCAL STATEMENTS

This example shows a simple strategy for the game Blackjack. Note the
nested IF-THEN-ELSE statements that allow the program to select and
execute one of a group of statements. In this example, if the cards
add up to more than 21, the player loses. If the sum is between 17
and 21, inclusive, the player is not dealt any more cards. If the sum
is less than 17, the player is dealt another card. The IF-THEN-ELSE
construct can become awkward if there are more than a few selections
to be made. A more elegant way to program this type of problem uses
PASCAL's conditional CASE statement, which is explained in the
following section.

6.4.3 The CASE Statement

The CASE statement selects one of a group of statements for execution.
Constant values or case labels are associated in a CASE statement with
each possible statement or action to be performed. The format of the
CASE statement is:

CASE case selector OF

END;

case-label list: statement
[case-label list: statement ... ;TI
[OTHERWISE clause TI

The case selector can be any expression (not only a variable) that
evaluates to an ordinal type. The case-label list can consist of one
or more values of the same type as the selector, separated by commas.
Each label list is associated with the statement to its right. The
label list and statement must be separated by a colon (:). You can
include an optional OTHERWISE clause that contains a statement that is
not associated with a label.

CASE executes the statement labelled by a value that equals a
specified expression, for example:

CASE Correct_Answers
9 , lOS C () Y' e

8 Score
7 ScoT'e
6 Score

0,1,2,3,4,5
END;

SCOT'e

OF
+ + _. ... -+ .-
•....
+-
+-.-
+ .". +-

I A I ;
I B I ,
I C I ;
I D I ;
I F I

This CASE statement compares the value of the expression
Correct Answers to the case labels (the numbers 0 through 10). If the
value 07 Correct Answers is any of the numbers from a to la, the
assignment statement to the right of that number is executed.

NOTE

No BEGIN is allowed with the END to a
CASE statement.

You can specify the labels in any order. The difference in the
ordinal values of the largest and smallest labels must not exceed
1000. Each label can appear only once within a CASE statement.

6-13

PAS~AL STATEMENTS

At run time, if the selector equals one of the specified labels, the
statement to the right of that label is executed. If an OTHERWISE
clause is included and the selector does not equal one of the labels,
the statement next to OTHERWISE is executed.

Setting the CHECK compile option controls whether an error occurs if
there is no OTHERWISE clause and none of the case labels are selected.
If the option is set, an error occurs at run time. If the option is
not set, the statement following the CASF statement is executed. For
more information about compile options, refer to the TOPS-20 PASCAL
Language Manual.

Exampl e 1

Suppose you have made the following declarations:

VAR Month (Jan, Feb, Mar, Apr, May, June,
Jul',:l, Au~.l, t)(-")F't" Oct, Nov, Dec);

~3 e a son (Win t e T', SF' r i. n ~1, S U fTIIM? T', F a 11) ;
Temp INTEGER,
nnot-.,I: BOOLEAN;

You can use the following CASE statement:

CASE Month OF

END;

Jan, Ff"'b, Ma r' BEGIN
Season := Winter;
IF (Temp <= 30) THEN

Snow ::::: T'~UE
END;

Apr, May, June : Season := Sprin~;

July, Aug, Sept : Season := Summer;
Oct, Nov, Dec: Season := Fall

At run time, the current value of Month is evaluated. The statement
associated with that value is executed; the rest of the statements
are iqnored. For example, if Month equals May, then Spring is
assigned to the variable Season.

Exampl e 2

This example represents the relationship of combinations of genes to
the occurrence of dominant versus recessive traits. Assume that
Gene Combo and Trait are variables of enumerated types declared as
follo,vs:

VAR Gene_Combo : (Recessive_Recessive, Recessive_Dominant,
Dominant_Recessive, Dominant_Dominant);

Trait: (Recessive, Dominant);

These variables are used in the following CASE statement:

CASE Gene_Combo OF

lEND;

Recessive_Recessive : Trait := Recessive;
OTHERWISE Trait:= Dominant

If the value of Gene Combo is Recessive Recessive, the value Recessive
is assigned to Trait~ If Gene Combo evaluates to any other value, the
OTHERWISE clause is executed: -that is, Dominant is assigned to Trait.

6-14

CHAPTEE 7

PROCEDURES AND FUNCTIONS

The statements described in the previous chapters provide the basic
building blocks for writing PASCAL programs. This chapter describes
the use of subprograms and the passing of data to and from
subprograms.

7.1 SUBPROGRAMS

A subprogram consists of several statements grouped together to
perform a single part of a larger task. Subprograms are useful for
solving large problems; you can divide the problem into many pieces
and solve each piece individually.

For example, if you are writing a program to maintain student records,
the program will be easier to write if it is broken into subprograms.
The larger task of maintaining records could be broken down into such
segments as adding students, deleting students, listing available
co u r s e s, and en tel" in g g r a des.

Subprograms are also useful when the same code segment is used more
than once within the program. Using a call to a subprogram is simpler
and clearer than duplicating the same code segment several times
within the main body of the program.

To handle these types of problems, PASCAL uses two types of
subprog rams:

• Procedures

• Functions.

Both procedures and functions are declared in the declaration section
(see Sections 7.2 and 7.3) and are called from the executable section.

A procedure is a qroup of statements that perform a set of actions. A
function is similar to a procedure in that: it is a set of statements
associated with an identifier; and it is declared in the declaration
section. However, a function has a type, and it returns a value of
that type.

Procedures and functions have similar structures and restrictions.
This manual uses the term "subprogram" in descriptions that apply to
both procedures and functions.

You can use predeclared subprograms that are defined by PASCAL and
denoted by predeclared variables; or you can create user-declared
subprograms, as described in this chapter. Appendix C contains tables
of all the predeclared procedures and functions in PASCAL.

7-1

PROCEDURES AND FUNCTIONS

7.1.1 Format of a Subprogram

Subprograms are similar in format to main programs. A subprogram
consists of a heading and a block; the block contains a declaration
section and an executable section. The heading of a subprogram is
slightly different from that of a program, because the subprogram
heading can contain a formal parameter list. See Section 7.4.1 for a
description of formal parameters. For a function, the heading also
indicates the type of the value returned. The declaration section
defines local data items that are used in the subprogram. The
executable section contains the statements that perform the actions of
the subprogram.

All subprograms must be declared in the declaration section of the
main program or of another subprogram. A subprogram is not executed
when it is declared. It is executed as a result of a subprogram call,
which can appear in the main program or in another subprogram.

Subprograms are said to be nested within the main program. In
addition, subprograms can be nested within other subprograms. A
nested subprogram can be called only from inside the block that
declares it.

The general format of a subprogram heading includes one of the
reserved words FUNCTION or PROCEDURE, followed by the subprogram
identifier. An optional parameter list can be included. Functions
must also include a result type as part of the heading.

The use of variables is described in Section 7.1.2. Sections 7.2 and
7.3 explain the use of procedures and functions. Section 7.4 provides
information about the use of parameters.

7.1.2 Local and Global Variables

Local variables are variables that you define within the subprogram.
PASCAL uses local variables only in the subprogram where they are
defined. Global variables are those that are declared in the
declaration section for the main block of the program. Although the
global variable is declared outside a subprogram, it can be accessed
by the subprogram. Thus, variables declared in the main program block
are global to all subprograms.

A variable declared in a subprogram is global to all its nested
subprograms. In addition, predeclared variables are global to all
parts of a PASCAL program. Global variables allow you to implicitly
pass variables to and from a subprogram to the main body of the
program.

Global variables should be used with care in subprograms. When global
variables are used, values are not explicitly passed to and from the
subprogram. Therefore, debugging and modifying a program is more
difficult than if values are explicitly passed. To avoid the problem
of accidentally changing values in subprograms, it is suggested that
parameters be used to explicitly pass values to and from subprograms.
Parameters are described in Section 7.4.

7-2

PROCEDURES AND FUNCTIONS

7.1.3 Scope of Identifiers in Subprograms

The scope of an identifier is the part of the program in which you
have access to the identifier, that is, the block in which it is
declared. Thus, the scope of a variable declared in the main program
block is the full program. The scope of a variable declared in a
subprogram block is that subprogram and all subprograms nested within
it.

In a subprogram, you can redeclare an identifier that has been
declared in an outer block. When you use an identifier in a
subprogram that is declared both in that subprogram and in an outer
block, the identifier always refers to the declaration of most limited
scope. The scope of a global variable does not include any block in
which it is redeclared. Thus, the local variable can have attributes
distinct from those of the global variable (for instance, type or
value). You should use great care if you redeclare an identifier in a
subprogram. It could easily be confusing if the program needs to be
debugged or modified at a later point. Redeclaring an identifier
within a subprogram should be avoided if possible.

7.2 DECLARING A PROCEDURE

Procedures are declared in the declaration section of a program. To
declare a procedure, you specify its heading and block. You can
declare a procedure in the main program or in another subprogram. The
format of a procedure declaration is:

PROCEDURE procedure name r [formal parameters)]
declaration section

BEGIN
statement [;statement ...]

END;

The reserved word PROCEDURE is required. The procedure name specifies
the identifier to be used as the name of the procedure. The formal
parameters describe the parameters used in the procedure (see Section
7 .4) •

The declaration section can contain local declarations and
definitions. The statements between BEGIN and END can be any PASCAL
statements. The block in the procedure is identical to the block in
the main program, with the exception that the procedure block ends
with a semicolon (;) rather than a period (.). You should not
redeclare the formal-parameter names or the procedure name as local
variables in the procedure.

7.2.1 Calling a Procedure

A procedure is executed as a result of a procedure call. A procedure
call consists of the procedure name and, when required, an actual
parameter list. If the procedure declaration contains a formal
parameter list, the procedure call must contain a corresponding actual
parameter list.

7-3

PROCEDURES AND FUNCTIONS

The following example shows a program that passes values to and from a
procE~dure.

---------_.----- ._-----
F' f< 0 G HAM S w a p (I N f' U T y () U T f' U T) ;

VAR
X, Y : INTEGER,

PRDCEDl.mC Sw itch (VA~~ A, B

VAR Temp: INTEGER,

BEGIN
Temp ::;:: B,
B ::::: {'d
A ::;:; Temp;

END,

BEGIN

:r NTEGEF<) ,

(* t his F' T' 0 9 T' a m 0 Y' d f'~ T' !:; p a :i r!:;
of numbers in ascending
orciPY' *)

(* Switch swaps values
C) f vaT' i a b 1 <-:.~~; *)

WRITELN ('This program will order a list of numbers for ~ou.');
~JF< I TELN (' WhE'n ~()u a re don(~~, t~lF'P <CTRI...:> Z.');
WRITEI...N ('Enter two nUlTlbers of an~ size.'),
t,IHIL..E NOT FDF DO

BEGIN
READL..N (X, Y),
IF X > Y THEN Switch (X,Y); (* here is the procedure call *)
WI=<ITEL.N (' " X, Y),

END,
IF EDF THEN WRITELN ('END OF LIST'),

END. --------------------------
The procedure Switch is defined in the declaration section at the
beginning of the program. The call to the procedure is in the main
block of the program:

IF X :> Y THEN Switch (X,Y);

If the expression (X) Y) returns a value of TRUE, the procedure
Switch is called and executed. The actual parameter list names the
variables (X and Y) that are passed to the subprogram. The formal
parameter list in the procedure heading names the variables (A and B)
to which the values from the main block are assigned.

7.2.2 Procedure Example

The following example shows the program Simple Procedure. This
program includes a procedure to perform a simple output operation.

Execution begins in the main body of the program with the WRITELN
statement. Execution continues to the evaluation of the IF-THEN
statement. If the statement is true, that is, if Answer equals yes,
then the procedure Read Fortune is called. The procedure is called by
using the procedure name as a statement.

7-4

PROCEDURES AND FUNCTIONS

When the procedure Read Fortune is called, the statements in the
procedure are executed. BeCAuse no values are being passed to or from
the procedure, it is not necessary to specify any parameters when the
procedure is called or in the procedure definition. After the
statements in the procedure have executed, the flow of the program
returns to the statement following the call to the procedure. In this
example the final WRITELN statement is executed following the
procedure execution.

PROGRAM Simple_Procedure (INPUT, OUTPUT);

TYPE

VAF~

(* defines data tspe with values
se~; and no *)

(* defines one variable of
user-defined tspe Yes_No and
assi~ns value Yes *)
(* this procedure executes the

WRITELN statements, when this
procedure is called *)

PROCEDURE Read_Fortune;
BEGIN

WRITELN ('You will be healths, wealths, and wise');
END;

(* main bod~ of the proSram *)
BEGIN

WRITELN ('Would sou like to see ~our fortune?');
WRITELN ('Please answer ses or no.');
~(EADLN (Answe T') ;

IF Answer = Yes THEN Read_Fortune
ELSE

WRITELN ('If ~ou had t~ped ·~esn sou would have seen',
'~our fortune.');

WRITELN ('This is the end of the prosram.')
END.

7.3 DECLARING A FUNCTION

A function is a group of statements that is associated with a name and
that returns a value. PASCAL includes in the language such functions
as SQR, SQRT, SIN, COS, and ARCTAN. In addition, in PASCAL you can
define functions within your programs.

Functions are similar in format to procedures. However, a function is
associated with a type, and returns a value of that type. The type of
the value returned is specified in the function heading.

To declare a function, specify its heading and block in the procedure
and function part of a declaration section. The format of a function
declaration is identical to that of a procedure, except that the
function heading begins with the reserved word FUNCTION instead of
PROCEDURE, and the heading includes a result type. The format is:

FUNCTION function name [(formal parameters)D
declaration section

BEGIN
statement [;statement ••• D

END;

7-5

: result type;

PROCEDURES AND FUNCTIONS

The function name is the identifier used as the name of the function.
The formal parameter list must conform to the format described in
Section 7.4. The result type must be a scalar or pointer type.

The block of a function is the same as the block of a procedure. Both
functions and procedures are terminated with a semicolon (;).

Every function must include one or more statements that assign a value
of the result type to the function nam~. In the function Divides
(Sec t ion 7. 3 . 2), i f the Boo 1 e a n ex pre s s ion - - (D i v ide n d REM D i vis 0 r
0) is true, TRUE is assigned to the function name. Otherwise,
FALSE is assigned to the function name. If a value is not assigned to
the function name during execution of the function, the function
result is undefined.

7.3.1 Calling a Function

A function is executed as a result of a function call. A function
call is an expression in which the function and the formal parameters
are included. Because the function call is an expression, it can be
used anywhere other expressions can be used. For example, a function
reference can appear on the right-hand side of an assignment
statement.

Unlike a procedure call, a function reference is not a statement in
itself. However, actual parameters in a function reference are used
in exactly the same manner as in procedure calls; they are passed to
the fun c t ion.

7.3.2 Function Example

The following is a valid function declaration:

FUNCTION Divides (Dividend, Divisor : INTEGER)
BEGIN

IF (Dividend REM Divisor = 0) THEN
Divides ::::: TRUE

ELSE Divides := FALSE
END;

BOOLEAN;

Divides is a Boolean function that returns a Boolean value. If
Divisor is a factor of Dividend (that is, it can be divided into
Dividend with a zero remainder), the function Divides returns a value
of TRUE. Otherwise, the function Divides returns a value of FALSE.

7.4 PARAMETERS

You pass data (that is, values and/or identifiers) to a subprogram by
means of parameters. Parameters can be either value parameters or
variable parameters. Value parameters are those in which the value is
passed only to the subprogram; another value is not passed back from
the subprogram. Variable parameters are those in which the value is
passed to the subprogram and a changed value is passed back to the
block from which the subprogram is called.

7-6

-

PROCEDURES AND FUNCTIONS

Formal parameters and actual parameters are terms used to describe the
assignment process of the variables. Formal parameters are those
listed in the subprogram declaration. Actual parameters are those
specified in the subprogram call. In the body of the subprogram, the
formal parameters represent the actual parameters.

7.4.1 Actual and Formal Parameters

A subprogram's formal parameters assume the values of the actual
parameters when the subprogram is called. Formal parameters are
listed in the heading of the subprogram. The formal parameters
describe the parameters used within the subprogram and their types.
The formal parameter list is the declaration for the parameters; they
are not declared elsewhere. For example, the heading for the
procedure Switcp is shown below:

F'1:~()CF[ll.mE nW:L tch (VAf.: A, B : INTFGER)~

In the procedure, A and B are formal parameters, and they are both of
the type INTEGER.

The format of the formal parameter list for specifying value or
variable parameters is:

([VAR] identifier list: type [; [VAR] identifier list: type ...])

The reserved word VAR is used to define variable parameters. Variable
parameters return a changed value to the main body of the program.
The identifier list specifies one or more variables that denote formal
parameters. The type specifies the type of the parameters in the
preceding identifier list.

The formal parameter list determines the nature of the actual
parameter list. In the actual parameter list, you must include
exactly one actual parameter for each formal parameter specified in
the subprogram heading. All variables used in the actual parameter
list must be declared or defined in the block surrounding the
subprogram call.

For example, the following is a procedure heading with a formal
parameter list:

This is a valid procedure call to the procedure Change:

The actual parameter Number is associated with the formal parameter
New Number and the actual parameter Letter is associated with the
formal parameter New_Letter.

Thus, each actual parameter corresponds to a formal parameter. This
correspondence is established solely on the basis of position in the
respective parameter lists. The type of an actual parameter must be
the same as that of its corresponding formal parameter.

You can call a subprogram several times with different actual
parameters. For example, the same program that contains the procedure
call to Change shown above can contain the following, if Old Letter
and Old Number have been defined in the VAR section:

7-7

PROCEDURES ~ND FUNC~IONS

As a result of this procedure call, when Change is called, the formal
parameters New Number and New Letter assume the values of the actual
parameters Old Number and Old Letter, respectively. See Section 7.4.3
for the program containing the procedure ChAnge.

7.4.2 Value and Variable Parameters

You can specify two kinds of parameters in the formal parameter list
of a subprogram: value parAmeters and variAble parameters. The kinrl
of parameter specified in the subprogram heading determines how the
parameter is passed to the subprogram.

Value parameters pass the value of the actual parAmeter to the
subprogram. The subprogrAm cannot change the actual parameter's value
during execution. Variable parameters pass the address of the actual
parameter variable to the subprogram, thus the subprogram can change
the actual parameter's value.

PASCAL passes value parameters to subprograms by default. When you
use the VAR specifier, the memory address of the actual parameter is
passed to the subprogram. Therefore, the formal parameter and the
actual parameter with which it is associated represent the same
variable. When the subprogram changes the value of the formal
parameter, it really changes the value of the actual parameter.

The following example shows the use of a program that uses value
parameters with a function:

PROGRAM Dra~on (INPUT,OUTPUT);

lJAF~

Gold, Silver, Copper: INTEGER;

(* The function Wealth calculates the wealth of the player, based
on the ~old, silver, and copper the player has. *)

INTEGEF..:)

VAR
Total._Weal th

(* One ~old coin is worth $25, one silver coin is worth $2.50,
and one copper coin is worth $.25 *)
BEGIN

END;

BEGIN

Total_Wealth := Gold_Coins * 25.0;
Total_Wealth != «Silver_Coins * 2.5) t Total_Wealth);
Total_Wealth := «Copper_Coins * 0.25) t Total_Wealth);
Wealth != Total_Wealth;

(* Main pro~ram *)

WRITELN (~How many coins does your player have?');
WRITE ('Gold:');
READL.N (Gold);
WRITE (~Silver:~);

READLN (Silver);
WRITE (~Copper:');

READL.N (Copper);

F..:EAL;

WRITELN ('Total wealth is: $~,Wealth(Gold,Silver,Copper):8:2);
END.

7-8

.

PROCEDURES AND FUNCTIONS

In the main block of this program, values are entered at the terminal.
These values are assigned with the READLN statement to the variables
Gold, Silver, and Copper. These values are passed to the function
Wealth with the call:

WRITELN ('Tolal wealth $, ; Wealth (Gold, Silver¥ Copper):8:2);

This statement calls the function Wealth, using Gold, Silver, and
Copper as value parameters. The function Wealth calculates the
Total Wealth, and then assigns that value to the function name.
Contr~l is returned to the main block, and the WRITELN statement is
executed, using the newly calculated value of Wealth.

Because the values of Gold, Silver, and Copper
parameters, the values remain the same.
execution of the Wealth subprogram.

are passed as value
They are not changed by

The following is the output of the program Dragon, from compilation to
execution:

@F'ASCAL
PASCAL)dragon.pas
PASCAL>/e~<i t
(~]. Dad d ra30n • re 1
LINK: Loading

EXIT
@save dragon. ~~~·~e

DRAGON.EXE.2 Saved
@T'un dragon
How man~ coins does ~our pla~er have?
Gold:25
S i 1 ve T' : ~jb

C(JPF'f.~ r : 7
Total wealth is: $ 76b.75
@

The program Swap, shown at the beginning of the chapter, shows the use
of variable parameters in a procedure.

PROCEDURE Switch (VAR A, B : INTEGER);

VAR Temp: INTEGER;

BEGIN
Temp ::::: B;
B ::::: A;
A ::::: Temp;

END;

When the procedure Switch is called, the values of X and Yare
assigned to A and B respectively. The procedure switches the values
of A and B; and, since they are variable parameters, these changes in
value also apply to the actual parameters X and Y.

7-9

PROCEDURES AND FUNCTIONS

Combining Value and Variable Parameters

The following example shows the use of both value and variable
parameters in a function:

FUNCTION S~ffiffietr~ (VAR S~mArr : SQuareArr;
SidE.' ! I NTEGEfO : BOOLEAN;

VAR I¥J : INTEGER;
BEGIN

SYmlT!(,?tr~ ::::: TF~LJE;

FOR I := 1 TO Side DO
FOR J := I TO Side DO

END;

IF A[I,JJ <> AC,J,IJ THEN
S~mmetr~ := FALSE

The function Symmetry returns TRUE if
symmetric and FALSE if it is not
Square __ Arr is defined as follows:

a two-dimensional
symme tr ic . Suppose

TYPE SQuare_Arr = ARRAY[1 •• 10,1 •• 10J OF INTEGER;

array is
the type

That is, it is a IOO-element array of" integers. The parameter Side is
of type INTEGER and holds the length of the sides of the current array
being tested.

The function heading specifies that an actual parameter of type
Square Arr will be passed as a variable parameter. However, the
actual--parameter of type INTEGER that is passed to Side is a value
parameter.

You can reference the function Symmetry as follows:

IF SYmmetrY (This_Arr, This_Side) THEN
WRITELN ('The array is Symmetric');

Say that This Arr is of type Square Arr, and This Side is of type
INTEGER. This Arr will be passed as a variable parameter, and
This Side will Ee passed as a value parameter.

7-10

PROCEDURES AND FUNCTIONS

7.4.3 Examples

In the following examples, the program Pass demonstrates the use of
these terms. The procedure Change is used to show the use of local
variables, global variables, value parameters, and variable
parameters.

PI~OGI;:AM P as~:; (I NPUT y OUTPUT) ,

Number : INTEGER;
L(·:~ttpr : CHAF~;

L :i. ITt it: F~ E () L ;

PROCEDURE Change (New_Number
VAF~

<* statempnts for the procedure Change*)

BEGIN

END,

FOR I := 1 TO 3 DO
BEGIN

END

WRITELN ('Enter a new value for Number:');
READLN (New_Number),
WRITELN ('Enter a new value for Letter:');
READLN (New_Letter);
WRITELN ('Entpr a new value for Limit:');
~\: E A D L.. N (L i ITt it) ;

(* main bod~ of the program *)

BEGIN
Nt.JlTtb(·~r

Lf.·~tt(~T'

•• _. r.;- _. ,.},

:;::: 'A'j

END.

Limit ::::: 12.:::j;
WRITELN ('The value of Number is:'yNumber:3),
WRITELN ('The value of Letter is:',Letter:2);
WRITELN ('The value of Limit is:', L..imit:4:2),
Change (Number, Letter);
WRITELN ('The new value of Number is:',Number:3),
WFUTELN ('The new valu(~ of Letter is:' ,LetteT':2);
WRITELN ('The new value of Limit is:', Limit:4:2),

Example 1

CHAFO,

The following declaration shows the definition of global variables for
the program:

VAF~

Number : INTEGER,
Letter : CHAR,
Limit : REAL,

These global variables are defined in the
associated with the main block of the program;
can be used anywhere in the main block or in any
defined in the declaration section.

7-11

declaration section
these variable names
of the subprograms

PROCEDURES AND FUNCTIONS

Example 2

The following shows the use of formal parameters in the procedure
heading:

(Nf?w NuITlbe T' INTEGER; VAR New_Letter CHAR) ,

The formal parameter list lists the variable nnmes that are associnted
with variable names used in the procedure call. The names of the
formal parameters are unknown outside the subprogram, and therefore
cannot be used elsewhere in the program.

Example 3

The following shows the use of a value parameter:

New Numb~:~ T' : INTEGEH;

The variable name New Number is
called) with n variable name in

associated (when
the procedure call.

the procedure is

A value parameter does not pass a value from the subprogram back to
the block from which it is called. The type must be specified, and
the type must agree with the type of the variable named in the
procedure call.

Example 4

The following shows the use of a variable parameter:

CHAF~

The v~riable name New Letter is associated (when the procedure is
called) with a variable name in the procedure call.

A variable parameter passes the value from the subprogram back to the
block from which it is called. Variable parameters must be preceded
with the reserved word VAR. As with value parameters, the type must
be specified, and the type must agree with the type of the variable
named in the procedure call.

Example 5

This example contains a local variable. A local variable can be used
only in the subprogram in which it is defined. It does not pass any
values to or from the subprogram. Local variables are frequently used
in FOR statements in subprograms.

INTEGER; VAR New_Letter CHAR) ;

VAF,
I INTEGER;

Local variables in subprograms are defined exactly as if they were
being defined in the declaration section for the main block of the
prog ram.

7-12

PROCEDURES AND FUNCTIONS

Example ()

This is the call to the subpro~ram:

BEGIN
Chan~e <Number, Letter);

The call includes the procedure name and the actual parameter list.
The actual parameter list includes the names of all the variables that
are being used to pass data to the subprogram. The actual parameter
list must coincide with the formal parameter list in two ways: the
number of variables must match, and the type of variables must match.

When a procedure is called, the leftmost variable in the actual
parameter list is associated with the leftmost variable in the formal
parameter list.

CHAr,) ;

Chan~e (Number, Letter);

The top line shows the formal parameter list. The second line shows
the actual parameter list. When the procedure is called, New Number
is associated with Number, and New Letter is associated with Letter.
When the flow of the program ~eturns to the main block, the value
associated with New Letter is assigned to Letter. The value
associated with New iumber is not passed out of the procedure because
New Number is a vallue parameter, and values of value parameters are
not-returned from the subprogram.

7-13

-

APPENDIX A

PASCAL DEFINED NAMES

This appendix contains lists of the names defined by PASCAL. section
A.I lists the reserved words that cannot be redefined as identifiers.
Section A.2 lists the semireserved words that can be redefined.
Section A.3 lists the predeclared identifiers that hold a special
meaning to PASCAL, but can, if necessary, be redefined as user
identifiers.

A.I RESERVED WORDS

AND FILE
ARRAY FOR
BEGIN FUNCTION
CASE GOTO
CONST IF
DIV IN
DO %INCLUDE
DOWNTO LABEL
ELSE
END

A.2 SEMIRESERVED WORDS

A.3

MODULE
OTHERWISE
REM
VALUE

PREDECLARED

ABS
ARCTAN
BOOLEAN
CARD
CHAR
CHR
CLOCK
CLOSE
COS
DATE
DISPOSE
DOUBLE
EOF
EOLN
EXP

IDENTIFIERS

EXPO
FALSE
FIND
GET
HALT
INPUT
INTEGER
LINELIMIT
LN
MAXINT
NEW
NIL
ODD

NIL REPEAT
NOT SET
OF THEN
OR TO
PACKED TYPE
PROCEDURE UNTIL
PROGRAM VAR
RECORD WHILE

WITH

OPEN SINGLE
ORD SNGL
OUTPUT SQR
PACK SQRT
PAGE SUCC
PRED TEXT
PUT TIME
READ TRUE
READLN TRUNC
REAL UNDEFINED
RESET UNPACK
REWRITE WRITE
ROUND WRITELN
SIN

A-I

APPENDIX B

ASCII CHARACTER SET

Table B-1 summarizes the ASCII character set. Each element of the
ASCII character set is a constant value of the PASCAL predefined type
CHAR. The ASCII decimal number in Table B-1 is the same as the
ordinal value (as returned by the PASCAL ORD function) of the
associated character in the type CHAR.

Table B-1: The ASCII Character Set

ORD
Decimal
Number

o
1
2
3
4
5
5
7
8
9
10
11
12
13
14
15
If)
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Character

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
SP

"

Meaning

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledgement
Bell
Backspace
Horizontal tab
Line feed
Vertical tab
Fo nn feed
CarJriage return
Shift out
Shift in
Da ta 1 ink e sc a pe
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledgement
Synchronous idle
End of transmission block
Cancel
End of med i urn
Substitute
Escape
Fil,e separator
Group separator
Record separator
unit separator
Space or blank
Exclamation mark
Quotation mark

B-1

ASCII CHARACTER SET

Table B-2: The ASCII Character Set (Cont.)

ORD
Decimal
Number

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
1)0

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

Character

$
%
&

(

)

*
+

/
o
1
2
3
4
5
n
7
8
9

<

>
?
@

A

B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q

R
5
T
U
V
W
X
Y

Z
r

Meaning

Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Left parenthesis
Right parenthesis
Asterisk
Plus sign
Comma
Minus sign or hyphen
Period or decimal point
Slash
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Colon
Semicolon
Left angle bracket
Equal sign
Right angle bracket
Question mark
At sign
Uppercase A
Uppercase B
Uppercase C
Uppercase D
Uppercase E
Uppercase F
Uppercase G
Uppercase H
Uppercase I
Uppercase J
Uppercase K
Uppercase L
Uppercase M
Uppercase N
Uppercase 0
Uppercase P
Uppercase Q
Uppercase R
Uppercase S
Uppercase T
Uppercase U
Uppercase V
Uppercase W
Uppercase X
Uppercase Y
Uppercase Z
Left square bracket

B-2

ASCII CHARACrER SET

Table B-2: The ASCII Character Se t (Co n t.)

ORD Character Meaning
Decimal
Number

92 \ Back slash
93 Right square bracket
94 or Ci rcumfl ex or up arrow
95 or Back arrow or underscore
9e) Grave accent
97 a Lowel::-case a
98 b Lowercase b
99 c Lowercase c
100 d Lowel::-case d
101 E! Lowercase e
102 f Lowercase f
103 9 Lowercase 9
104 h Lowercase h
105 i. Lowercase i
106 ~i Lowercase j
107 k Lowercase k
lOR 1 Lowel::-case 1
109 m Lowercase m
110 n Lowercase n
III 0 Lowercase 0

112 P Lowercase p
113 q Lowercase q
114 r Lowercase r
115 c·

~) Lowercase s
116 t Lowercase t
117 II Lowercase u
118 v Lowercase v
119 '-I{ Lowe lrcase w
120 x Lowercase x
121 y Lowercase y
122 r,

~. Lowercase z
123 Left brace
124 vertical line
125 Right brace
126 Ti1dE~
127 DEL Delete

B-3

--------------,-------------------------

APPENDIX C

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Tables C-I and C·-2 summarize the procedures and functions declared by
PASCAL. Some of the listed procedures and functions are not described
in this primer. For information on these, see the TOPS-20 PASCAL
Language Manual.

Table C-l: Predeclared Procedures

Procedure

CLOSE(f)

DATE(string)

DISPOSE (p)

DISPOSE(p,
tl, ••• ,tn)

FIND(f,n)

GET (f)

Parameter Type

f = file variable

string = variable of
type PACKED ARRAY
[1 .• 11] OF CHAR

p = pointer variable

p = pointer variable
tl, ••• ,tn tag
field constants

f = file variable
n = positive integer
expression

f = file variable

C-l

Action

Closes file f.

Assigns current date
to string.

Release storage for
pA. The pointer
variable p becomes
undefined.

Release storage for
pA; used when pA is
a record with
variants. Tag field
values are optional;
if specified, they
must be identical to
those specified when
storage was
allocated by NEW.

Moves the current
file position to
component n of file
f.

Moves the current
file position to the
next component of f.
Then GET(f) assigns
the value of that
component to fA, the
file buffer
variable.

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-l: Predeclared Procedures (Cont.)

Procedure

HALT

LINELIMIT(f,n)

MARK(a)

NEW(p)

NEW(p, tl, .•. ,tn)

OPEN(f,attributes)

Parameter Type

None

f text
variable
n
expression

f i I e

integer

a a variable of
type "INTEGER

p pointer variable

p = pointer variable
tl, ... tn = tag field
constants

f file variable
attributes; see the
TOPS-20 PASCAL
Language Manual

C-2

Action

Calls LIBSSTOP,
which signals
SS$ ABORT. Without
an appropriate
condition handler,
HALT terminates
execution of the
program.

Terminates execution
of the program when
output to file f
exceeds n lines. The
value for n is reset
to its default after
each call to REWRITE
for file f.

Places a marker for
use when allocating
memory for dynamic
variables.

Allocates storage
for p" and assigns
its address to p.

Allocates storage
for p"; used when p"
is a record with
variants. The
optional parameters
tl through tn
specify the values
for the tag fields
of the current
variant. All tag
field values must be
listed in the order
in which they were
declared. They
cannot be changed
during execution.
NEW does not
initialize the tag
fields.

Opens the file f
with the specified
attributes.

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-I: Predeclared Procedures (Cont.)

Procedure

PACK(a,i ,z)

PAGE(f)

PUT (f)

READ(f, vl, ..• ,vn)

READLN (f, vI, ••• ,vn)

RELEASE(a)

Pa r arne te r 'Type

a = variable of type
ARRAY [m .. nl OF T
i starting
subscript of array a
z = variable of type
PACKED ARRAY fu .. vl
OF T

f text file
variable

f file variable

f = file variable
vl, ..• ,vn
variables

f text file
variable
vI , •.• , vn
variables

a a variable of
type "INTEGER

C-3

Action

Moves (v-u+l)
elements from array
a to array z by
assigning elements
a r i 1 t h r 0 ug h
a[i+v-ul to zful
through z [v]. The
upper bounn of a
subscript must be
greater than or
equal to (i+v-u).

Skips to the next
page of file f. The
next line written to
f begins on the
second line of a new
page.

Writes the value of
fA, the file buffer
variable, into the
file f and moves the
current file
position to the next
component of f.

Assigns successive
values from the
input file f to the
variables vI through
vn. You must specify
at least one
va ria b 1 E~ (vI). Th e
default for f is
INPUT

Performs the READ
procedure, then sets
the current file
position to the
beginning of the
next line. The
variables vI through
vn are optional. The
default for f is
INPUT.

Deallocates memory
allocated by the NEW
procedure up to the
marker set by the
MARK procedure.

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-l: Predeclared Procedures (Cont.)

Procedure

RESET (f)

REWRITE (f)

UNPACK (z , a , i)

TIr-tE (s tr ing)

WRITE (f ,pI, ••• ,pn)

WRITELN(f,pl, ••• ,pn)

Parameter Type

f = file variable

f file variable

z = variable of type
PACKED ARRAY[u .. v]
OF T
a = variable of type
ARRAY rm •. nl OF T
i starting
subscript in array a

string = variable of
type PACKED ARRAY
[1 .• 111 OF CHAR

f = file variable
pI, ..• ,pn
parameters

f text
variable
pI, .•. ,pn
parameters

C-4

write

file

write

Action

Enables reading from
file f. RESET(f)
moves the current
file position to the
beginning of the
file f and assigns
the first component
of f to the file
buffer variable, f~.
EOF(f) is set to
FALSE unless the
file is empty.

Enables writing to
file E. REWRITE(f)
truncates the file f
to zero length and
sets EOF(f) to TRUE.

Moves (v-u+l)
elements from array
z to array a by
assigning elements
z [u] through z r v] to
a[i] through
a [1+v-ul. The upper
bound a subscript
must be greater than
or equal to (l+v-u).

Assigns the current
time to string

Writes the values of
pI through pn into
the file f. At least
one parameter (pI)
must be specified.
The default for f is
OUTPUT"

Pe r fo rms the
procedure,
skips to
beginning of
next line. The

WRITE
then

the
the

write
parameters are
optional. The
defaul t for f is
OUTPUT~

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-2: Predeclared Functions

Category Function Parameter Result Purpose
Type Type

Arithmetic ABS (x) In teger, Same Computes the
real, as x absolute value of
double x.

AHCTAN(x) In teger, Real Computes the
real, arctangent of x.
Double Double

COS (x) Integer, Real Computes the cosine
real of x.
Double Double

EXP (x) Integer, Real Computes e**x, the
real exponential
Double Double function.

LN (x) Integer, Real Computes the
real natural logarithm
Double Double of x. The value of

x must be g rea ter
than o.

SIN (x) Integelr, Real Computes the sine
real of x.
Double Double

SQR (x) Integer, Same Computes x**2, the
real, as x square of x.
double

SQRT(x} In tege r , Real Computes the square
real root of x. If x is
Double Double less than zero,

PASCAL genera tes an
error.

C-5

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-2: Predeclared Functions (Cont.)

Category

Boolean

Function

EOF (f)

EOLN (f)

ODDen)

Parameter
Type

File
variable

Result
Type

Boolean

Purpose

Indicates whether
the file position
is at the end of
the file f. EOF(f)
becomes TRUE only
when the file
position is after
the last component
in the file. The
default for f is
INPUT.

Text file Boolean
variable

Indicates whether
the position of
file f is at the
end of a line.

In teger

EOLN (f) is TRUE
only when the
position pointer is
after the last
character in a
line, in which case
the value of fA is
a space. The
default for f is
INPUT.

Boolean Returns TRUE if the
integer n is odd;
returns FALSE if n
is eVI~n.

UNDEFINED(r) Real, Boolean Returns TRUE is the
value of r is not
in the proper
floating-point

double

fo rma t.

C-6

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-2: Predeclared Functions (Cont.)

Category Function

Transfer CARD(s)

CHR (n)

OHD (x)

ROUND(n)

SNGL(d)

TRUNC (n)

Parameter
Type

Set

Integer

Any
ordinal
type

Real,
double

Double

Real,
double

C-7

Result
Type

Integer

Char

Purpose

Returns the number
of elements
currently belonging
to the set s.

Returns the
character (if one
exists) whose
ordinal value is n.

Integer Returns the ordinal
value corresponding
to the value of x.

Integer Rounds the real or
double-precision

Real

value n to the
nearest integer.

Rounds the
double-precision
real number d to a
single-precision
rea 1 n urn b e r •

Integer Truncates the real
or double-precision
value n to an
integer.

SUMMARY OF PREDECLARED PROCEDURES AND FUNCTIONS

Table C-2: Predeclared Functions (Cant.)

Category Function

Misc CLOCK

EXPO(r)

PRED(x)

SUCC (x)

Parameter
'rype

None

Heal,
double

Any
ordinal
type

Any
ordinal
type

C-8

Result
Type

Integer

Purpose

Returns an integer
value equal to the
central processor
time used by the
current process.
The time is
expressed in
milliseconds.

Integer Returns the

Same
as x

Same
as x

integer-valued
exponent of the
floating-point
representation of
r.

Returns the
predecessor value
in the type of x
(if a predecessor
exists) .

Returns the
successor value in
the type of x (if a
successor exists) •

GLOSSAHY

actual parameter

Value or variable that is passed in a procedure or function call
and is used during execution of the subprogram.

actual parameter list

List of actual parameters specified in a subprogram call. The
actual parameters must be separated by commas, and the entire
list must be enclosed in parentheses.

address

Specification of a location in the computer's memory.

arithmetic expression

Expression that evaluates to a real or integer value.

arithmetic operator

array

Symbol used with numeric variables, function references, and
co"hstants in forming arithmetic expressions. In PASCAL, the
arithmetic operators are +, -, *, I, **, DIV, MOD, and REM.

Collection of data items, called components, that have the same
type and share an identifier. The components can be accessed by
the array identifier and an index enclosed in brackets. See also
index.

ASCII character set

Characters and output control data that represent characters in
PASCAL. (ASCII stands for American Standard Code for Information
Interchange.) Each member of the ASCII character set corresponds
to a unique integer between 0 and 127, inclusive.

assignment statement

Executable statement that assigns a value to a variable.

base type

(1) For a subrange, the scalar type of which it is a subset. For
example, the subrange 0 •• 123 has the base type INTEGER. (2) For
a set, the nonreal scalar type from which the elements of the set
are chosen.

Glossary-l

GLOSSARY

block

Declaration and executable sections of a program, procedure, or
function. One block can be nested in another; for example, a
procedure block is nested in the block of its declaring program.

Boolean expression

Expression that evaluates to one of the Boolean values, FALSE or
THUE.

BOOLEAN type

bound

Predefined scalar type that has the identifiers FALSE and TRUE as
constant values.

Upper or lower limit of a subrange, often used
index limits for a dimension of an array.

in defining the

case label

In the CASE statement, a constant of the same type
selector. A 1 ist of case labels, separated
followed by a colon (:), pr,ecedes each statement
chosen for execution.

case sE~lector

as the case
by commas and

tha t can be

In the CASE statement, the expression whose value determines the
statement selected for execution. In choosing the statement to
be executed, the CASE statement first evaluates the case
selector. It then scans the case labels preceding each possible
statement, and executes the statement that is labeled with the
value of the case selector.

character

Single element of the ASCII character set and a value of the
predefined type CHAR.

character string

Sequence of ASCII characters, enclosed in apostrophes. See also
string constant and string variable.

CHAR type

Predefined scalar type that has the ASCII character set as
constant values.

comment

Any sequence of characters appearing between the character pairs
(* and *) or { and }. Comments are for documentation purposes
and are ignored by PASCAL.

compil er

Program that translates source program statements into an object
module.

Glossary-2

GLOSSAHY

component

In an array, an individual data item denoted by the array name
and an index for each dimension.

compound statement

One or more PASCAL statements, bracketed by the reserved words
BEGIN and END, that are executed sequentially as a unit.

conditional statement

Statement that selects another statement for execution, depending
on the value of an expression. PASCAL's conditional statements
are IF-THEN, IF-THEN-ELSE, and CASE.

constant

Literal that represents a value that cannot change during program
execution. Examples include 'p', 3, 2.781, and 'metaphysics'.

control statement

Statement that directs the flow of control in a program, such as
the IF-THEN-ELSE, FOR, WHILE, or CASE statement.

control variab]e

Scalar variable that takes on sequential values with each
iteration of a FOR loop. After completion of the loop, the value
of the control variable is undefined.

data structures

Combinations of single data items that form related groups of
data, for example, records or arrays.

data type

See type.

decimal notation

Representation of real numbers in the integer.fraction format, as
in 23.27, -7.83, and 0.0.

declaration

Specification that lists one or more labels or that associates an
identifier with what it represents. Labels and identifiers for
constants, types, variables, procedures, and functions must be
declared.

declaration section

The part of a program or subprogram block that contains the
declaration and definitions.

default

Action taken or value assumed by the system when none is
explicitly specified.

Glossary-3

G LOSSl-.RY

delimiter

P~nctuation mark or reserved word that sets off one part
PASCAL program from another. BEGIN and END enclose
executable section or a compound statement. The semicolon
separates declarations or statements, and the period
indicates the end of the program.

dimension

of a
the
(;)
(.)

Range of values for one subscript of an array. An array can have
any number of dimensions; see multidimensional array.

double precision

Precision of
floating-point
precision.

approximately
rea 1 n urn b e r ;

l~ significant digits for a
the type DOUBLE provides double

DOUBLE type

Predefined scalar type that has double-precision real numbers as
values.

end - 0 f- f i 1 e

Condition indicating that the current file contains no more data.
The EOF function tests this condition.

end-of-line

Condition indicating that the current line contains no more data.
The EOLN function tests this condition.

enumerated type

Type comprising a sequence of values denoted by
list of identifiers, separated by commas
parentheses, defines an enumerated type.

executable image

identifiers.
and enclosed

A
in

File containing the executable version of a program. An
executable image is the output from the linker, and is created by
linking one or more object modules.

executable section

The part of a block that
delimited by BEGIN and
block.

executable statement

contains the executable statements,
END, that perform the actions of the

Statement in the executable section of the block that performs an
action or directs the flow of control.

expression

A constant, a variable, a function reference, or some combination
of constants, variables, function references, operators, and
parentheses that PASCAL can evaluate. Every expression is
associated with a type.

Glossary-4

GLOSSARY

external file

field

File that exists outside the scope of the PASCAL program, and
therefore must be specified in the program heading.

Named component of a record, containing data items of one or more
types. References to a field are in the record.fieldname format.

field width

file

Minimum number of characters that the WRITE or WRITELN procedure
writes to a text file for a particular expression or character
string.

See file variable.

file component

Accessible unit of a file variable. A file component can be of
any type except a file type or a structured type containing
elements of a file type.

file name

On TOPS-20, a 1- to 39- character name component of a source file
specification. However, the name of a relocatable binary file
must contain no more than six characters.

file generation number

Numeric component of a TOPS-20 file specification. As a file is
updated and changed, the file's generation number is updated with
each successive copy.

file position

position immediately following the file component that was last
read or written. Only the component at the current file position
can be accessed.

file specification

Unique TOPS-20 identification of a file on a mass storage medium
(such as a disk). It describes the physical location of the file
(node, device, and directory) and identifies the file name, file
type, and file generation number.

file type

(1) On TOPS-20, in the source file specification, the 0- to
39-character type component that usually describes the nature of
a file or how it is used. For example, PAS indicates a PASCAL
source program. However, the file type of the reI file must
contain no more than three characters. (2) In PASCAL, a
structured type that is a sequence of any number of data
components of the same type.

Glossary-5

GLOSSARY

file variable

Named sequence of components of the same type used in I/O
operations. A file can have any number of components; they can
be of any type except a file type or a structured type containing
components of a file type.

floating-point notation

Representation of real
format, followed by a
exponent is introduced by
number, such as 7.321E02,
number, such as 4.0D-6.

formal parameter

number data in the mantissa.fraction
positive or negative exponent. The
the letter E for a single-precision
and the letter D for a double-precision

Name that is declared in the heading of a procedure or function,
and that represents an actual parameter when the procedure or
function is invoked.

formal parameter list

List of passing mechanisms and formal parameter declarations that
appears in the heading of a procedure or function. The entries
in the list are separated by semicolons, and the list is enclosed
in parentheses.

function

Program unit that returns a value when executed. A function
consists of a heading, which includes the function's name and
result type, and a block.

function heading

Specification of the name, formal parameter list, and result type
of a function in a function declaration.

function reference

Use of a function name and actual parameter list in an executable
statement to invoke the function.

global identifier

Identifier that is declared in a block at an outer level and
therefore can be used inside the current (inner-level) block
without redeclaration.

global variable

Variables that are declared in the declaration section for the
main block of the program. Their scope is the entire program.

heading

Specification that precedes a block and defines the block's name
and parameters.

Glossary-6

GLOSSAHY

identifier

index

One or more alphanumeric characters that denote a variable,
constant, type, procedure, function, or other item that is not a
reserved word. Although an identifier can be any length, PASCAL
treats only the first 31 characters as significant.

An expression of an ordinal type that is used with an array name
to specify a component of that array.

input procedure

Procedure that reads data into a program. PASCAL provides three
predeclared input procedures: READ, READLN, ~nd GET.

integer

In PASCAL, a whole number between -34359738368 and +341597381~7;

a value of type INTEGER.

INTEGER type

Predefined scalar type that has integers as values.

interactive mode

Mode of communication in which the system responds to the
commands and program input that the user types at the terminal.

internal file

label

LINK

LOAD

File that exists only within the scope of a block and is deleted
when execution of that block terminates.

(1) See case label. (2) Unsigned integer constant that is
declared in the LABEL section and used to make a statement
accessible from a GOTO statement. The label precedes the
statement and is separated from it by a colon (:).

Program that creates an executable image from one or more object
modules. Programs must be linked before they can be executed.

Command used to invoke the LINK program.

local identifier

Identifier that is declared within a block and is unknown, and
therefore inaccessible, outside that block.

logical operator

Reserved word or symbol that specifies a logical test. The
logical operators in PASCAL include AND, OR, and NOT.

Glossary-7

GLOSSARY

loop body

One or more statements that are executed repetitively until a
specified condition is met.

multidimensional array

Array with elements of
multidimensional array
different types.

an array type. Each dimension of a
has its own subscripts, which can be of

modulus

Remainder of dividing one number by another. The MOD and the REM
functions return the modulus.

nested

Containect within, as in a function declared within a procedure or
a record that is a field of another record.

object module

Binary output from a language compiler or assembler that is input
to the linker. The linker processes one or more object modules
to produce an executable image.

operator

Symbol used in an expression to
specific task. PASCAL includes
logical operators.

cause PASCAL
arithmetic,

to perform a
relational, and

ordinal

Term used to encompass all nonreal scalar data types;
refers to integer, character, and Boolean data types.

ordinal value

ordinal

Integer corresponding to the position of a given value in a
sequential list of values of its type. Ordinal value applies
only to integer, character, Boolean, enumerated, and subrange
types. The ORD function returns the ordinal value of an
expression of one of these types.

output procedure

Procedure that writes data into a file. PASCAL provides three
predeclared output procedures: WRITE, WRITELN, and PUT.

packed

Stored as densely as possible in the computer's memory.

parameter

Means of passing information between program units.
parameter, formal parameter, read parameters,
parameters.

Glossary-8

............... 1 ________________ _

See
and

actual
write

GLOSSARY

parameter list

Specification of the actual or formal parameters for a procedure
or function. The parameter list follows the name of the
procedure or function and is enclosed in parentheses. See also
actual pRrameter list and formal parameter list.

Pa scal

(1) Blaise Pascal, a French mathematician and philosopher, born
in 1623 and died in 1n~2. (2) Structured programming language
developed by Niklaus Wirth in Zurich, Switzerland in the early
1970s.

pointer

Variable whose value is a reference to a dynamic variable.

precedence rules

Rules applied to the order of evaluation of operations in an
expression. An operation with higher precedence is performed
before an operation with lower precedence.

predecessor value

Value that immediately precedes a given value in any nonreal
scalar type. The PRED function returns the predecessor value.

predeclared

Declared by PASCAL rather than by the programmer.

predeclared identifier

Identifier declared by PASCAL to name a type, constant, variable,
procedure, or function.

predeclared subprogram

Procedure or function declared by PASCAL and available for use
without further declaration.

predefined

See predeclare-d.

procedure

Program unit that consists of a procedure heading and
When called, a procedure is executed as a unit.
predeclared subprogram.

procedure call

a block.
See also

Statement that invokes a procedure. A procedure call consists of
the name of a procedure and its actual parameter list (when
requi red) •

procedure heading

Specification of the name and optional formal parameters of a
procedure in a procedure declaration.

Glossary-9

GLOSSARY

program heading

Specification that begins a PASCAL program. The program heading
specifies the program's name and its external files.

read parameters

Variables used as parameters in a call to the READ or READLN
procedure to which input values will be assigned.

real number

In PASCAL, the floating-point internal representation of a number
that can be of any size; however, each number can be rounded to
fit the precision of 27 bits (7 to 9 decimal digits). The value
0.0 is also included.

REAL type

Predefined scalar type that has single-precision real numbers as
values; synonymous with SINGLE type.

record

Organized collection of data containing one or more fields, each
of which can be of a different type.

relational operator

Symbol that tests the relationship between two values, the result
of which is one of the Boolean values, FALSE or TRUE. PASCAL's
relational operators are <, >, <=, >=, and <>.

repetitive statement

Statement that causes an action to be performed iteratively.
P~SCAL's repetitive statements are FOR, REPEAT, and WHILE.

reserved word

Ward set aside by the PASCAL compiler as the name for a
declaration, statement, data structure, delimiter, or operator.
Reserved words have special meanings to the compiler and cannot
be used as identifiers.

return value

Result of a function, assigned to the function's name during its
execution. The return value is supplied to the calling program
wherever a reference to the function appears.

scalar data type

scope

Type in which the values are unique and indivisible units of
data. The values of a scalar type follow a particular order.
Predefined scalar types include INTEGER, REAL, CHAR, and BOOLEAN.

Portion of the program in which an identifier has a particular
meaning. The scope of an identifier is the block in which it is
declared.

Glossary-IO

GLOSSARY

semireserved word

set

Word set aside by the PASCAL compiler that has a special meaning
to the compiler. Semireserved words can be used as identifiers.

Collection of nonreal scalar elements, called members.

single precision

Precision of approximately
floating-point real number;
single precision.

SINGLE type

seven significant digits for a
the types SINGLE and REAL provide

Predefined scalar type that has single-precision real numbers as
val ues; synonymous wi th REAL type.,

source file

TOPS-IO or TOPS-20 file that contains source program statements
used as input to a language compiler.

statement

Sequence of reserved words, identifiers, operators, expressions,
and special s)~bols describing a program action or altering the
flow of program execution.

string

See character string.

string constant

Character string used as a literal constant in the program, for
example 'one pink rose'.

string variable

Variable of type PACKED ARRAY rl .. n] OF CHAR, where n represents
an integer constant.

structured data types

Collection of related data components. The components can be of
the same type (as for arrays and files) or of different types (as
for records).

subprog ram

Procedure or functions; used in this manual in descriptions that
apply to both procedures and functions.

sub range types

Subset of an existing scalar type, defined for use as a type. A
subrange must be a continuous range of values, and is described
by its upper and lower bounds separated by the .• symbol.

Glossary-II

GLOSSARY

successor value

Value that succeeds a given value in any nonreal scalar type.
The SUCC function returns the successor value.

symbolic constant

Name defined to represent a constant value; can be used in place
of the value.

symbol ic name

Word used in a PASCAL program. A symbolic name can be a reserved
word, a predeclared identifier, or a user identifier.

text file

type

File that has components of type CHAR and is implicitly divided
into lines.

Set of values, usually named with an identifier, for which
certain operations are defined. Some types are defined by PASCAL
-- INTEGER, REAL, SINGLE, DOUBLE, BOOLEAN, and CHAR. Others are
defined by the programmer.

user-defined type

Type defined by the programmer. User-defined types can be scalar
(enumerated or subrange), structured, or pointer.

user identifier

Identifier created by the programmer to denote a program,
constant, type, variable, procedure, or function.

value initialization

TOPS-20 extension that allows a programmer to assign a constant
value to a variable in the program's declaration section.

value parameters

Parameters in which the value is passed only to the subprogram.
Another value is not passed back from the subprogram.

variable

Data item (of fixed type)
execution of the program.

variable parameters

that can change in value during

Parameters in which the value is passed to the subprogram, and a
changed value is passed back to the block from which the
subprogram is called.

write parameters

Expressions that are specified as parameters to the WRITE or
WRITELN procedure, which writes them in the specified file.

Glossary-12

-A-

ABS function, C-8
Actual parameter list

See Glossary
Actual parameters, 7-3, 7-7

See Glossary
Address

See Glossary
AND operator, 2-11, 3-2, ~-9
ARCTAN function, C-8
Arithmetic expressions, 2-8

See Glossary
Arithmetic functions, C-R
Arithmetic operators, 2-7, 2-8

See Glossary
ARRAY, 3-2, 5-2
Arrays, 2-6, 5-1, 5-2

See Glossary
ASCII character set, B-3

See Glossary
Assignment operator, 6-2
Assignment statement, 1-6, 2-7,

6-1, 6-2
See Glossary

-8-

Base type, 2-6
See Glossary

BEG IN, 1-3, 3 - 2
Binary notation, 2-3
Block, 1-2, 3-1, 7-2, 7-3

See Glossary
Boolean expressions, 6-5, 6-8,

6-10, 6-11
See Glossary

Boolean functions, C-8
BOOLEAN type, 2-3, 2-5, 3-3

See Glossary
Bound

See Glossary

-c-

Calling a function, 7-6
Calling a procedure, 7-3

INDEX

CARD function, C-8
Case label

See Glossary
Case selector, 6-13

See Glossary
CASE statement, 6-10, 6-13
Case-label list, 6-11
CHAR type, 2-3, 2-5, 3-3, 5-2

See Glossary
Character

See GJ ossary
Character strings, 5-8

See Glossary
CHR function, C-8
CLOCK function, C-8
CLOSE procedure, C-4
Command

EXECUTE, 1-11
LOAD, 1-11

See Glossary
Commen ts, 1-2

See Glossary
Comparisons, 2-10
Compiler

See Glossary
Compiling a program, 1-10
Component type, 5-2
Components, 5-1

See Glossary
Compound statement, 1-~, 6-1, 6-3

See Glossa ry
Conditional statement, 6-1, 6-10

See Glossary
CONST, 1-4, 3-1, 3-2, 3-4
Constant definitions, 3-4
Constants, 2-1

See Glossary
Control statement

See Glossary
Control variable, 6-4

See Glossary
COS function, 3-3, C-8
Creating a program, 1-9
CTRL/Z, 4-14

Index·-l

INDEX (Cont.)

-0-

Data structures
See Glossary

Da ta types, 2-1
See Glossary

DATE procedure, C-4
Decimal notation, 2-3

See Glossary
Declaration section, 1-2, 1-4,

7--2
See G]ossary

Declarations, 3-1
Declaring a function, 7-5
Decla~ing a procedure, 7-3
Default

See Glossary
Defining logical names, 4-2
Definitions, 3-1
Delimiter

See Glossary
Dimension

See Glossary
DISPOSE procedure, C-4
DIV operator, 2-8, 3-2
DO, 6--4, 6-8
Dollar sign, 3-3
Double precision, 2-3, 2-4

See Glossary
DOUBLE type, 2-3, 3-3

See Glossary
DOWNTO, 6-4

-E-

ELSE, 3-2
END, 1-3, 3-2, 5-11
End-of-file

See Glossary
End-of-l ine

See Glossary
Enumerated types, 2-6, 3-7 , 3-8

See Glossary
EOF function, 3-3, 4-1, 4-12,

4--13, C-8
EOLN function, 4-1, 4-12, 6-9,

C--8
EXE file, 1-11
Executable image

See Glossary
Executable section, 1-2, 1-5, 7-2

See Glossary
Executable statement

See Glossary
EXECUTE command, 1-11
Executing a program, 1-11
/EXIT switch, 1-10
EXP function, C-8
EXPO function, C-8
Expressions, 2-2, 2-7

See Glossary
a r i t hm e tic, 2 - 7

SE~e Glossary

Expressions (Cont.)
Boolean, 0-5, h-8, 0-10, 0-11

See Glossary
logical, 2-5, 2-11, 6-9
relational, 2-5, 2-10

External file
See Glossary

-F-

FALSE, 2-5, 3-3
Field

See Glossary
Field names, 5-10
Field widths, 4-8

See G]ossary
Field-width parameters, 4-9
FILE, 3-2
File

See Glossary
Fi 1 e componen t

See Glossary
File generation number

See Glossary
File name

See Glossary
File position

See Glossary
File position pointer, 4-13
File specification

See GJossary
File type

See Glossary
File variable

See Glossary
Files, 2-6, 5-1
FIND procedure, C-4
Floating-point notation, 2-3

See Glossary
FOR statement, 6-3, 6-4
Formal parameters, 7-3, 7-5, 7-7

See Glossary
FUNCTION, 1-4, 3-1, 3-2, 7-1, 7-5
Function

See Glossary
ABS, C-8
ARCTAN, C-8
CARD, C-8
CHR, C-8
CLOCK, C-8
COS, 3-3, C-8
EOF, 3-3, 4-1, 4-12, 4-13, C-8
EOLN, 4-1, 4-12, 6-9, C-8
EXP, C-8
EXPO, C-8
LN, C-8
ODD, C-8
ORD, 2-3, 2-6, C-8
PRED, C-8
ROUND, C-8
SIN, C-8
SNGL, C-8
SQR, C-8

Index-2

.... 1 , , ____ ••••• , __ .w ________________________ __

INDEX (Cont.)

Function (Cont.)
SQRT, C-8
SUCC, C-8
TRUNC, C-8
UNDEFINED, C-8

Function call, 7-~
Function example, 7-~

Function heading, 7-5
See Glossary

Function reference
See Glossary

Function type, 7-S
Functions, 2-1

-G-

GET procedure, C-4
Global identifiers

See Glossary
Global variables, 7-2

See Glossary
Glossary

See Glossary

-H-

HALT procedure, C-4
Heading

See Glossary
Hexadecimal notation, 2-3

-I-

Identifiers, 2-1
See Glossary

IF statement, 3-2
IF-THEN statement, ~-10

IF-THEN-ELSE statement, 6-10,
6-11

Index
See Glossary

Index type, 5-2
INPUT, 1-4, 3-3, 4-1
Input procedure

See Glossary
Integer

See Glossary
INTEGER type, 2-3, 3-3

See Glossary
Interactive mode

See Glossary
Internal file

See Glossary

-L-

LABEL, 1-4, 3-1
Label

See Glossary
LINELIMIT procedure, C-4
LINK

See Glossary
/LISTING switch, 1-10

LN function, C-8
LOAD command, 1-11

See Glossary
Loading an object file, 1-11
Local identifier

See Glossary
Local variables, 7-2
Logical expressions, 2-5, 2-11,

5-9
Logical operators, 2-7, 2-11

See Glossary
Loop body

See Glossary
Loops, 6-4, ~-5, ~-8

Lower limit, 3-9

-M-

Members, 5-1
Miscellaneous functions, C-8
MOD operator, 2-8
~10DULE, 3--2
~~odulus

See Glossary
Multidimensional arrays, 5-~

See Glossary

-N-

Nested
See GJossary

NEW procedure, C-4
NOT operator, 2-11, 3-2

-0-

Object module
See Glossary

Octal notation, 2-3
onD function, C-8
OPEN procedure, C-4
Operator

See Glossary
AND, 2-11, 3-2, 6-9
ass i. g nm e nt, 6 - 2
DIV, 2-8, 3-2
MOD, 2-8
NOT, 2 -11, 3 - 2
OR, 2-11, 1-2, 6-9
REM, 2-8, 1-2

Operators
arithmetic, 2-7, 2-8

See Glossary
logical, 2-7, 2-11

See Glossary
relational, 2-7, 2-10, 5-10

See Glossary
OR operator, 2-11, 1-2, 6-9
ORD function, 2-2, 2-5, C-8
Ordinal

See GJossary
OTHERWISE, 3-2
OTHERWISE clause, ~-11

Index--3

INDEX (Cont.)

OUTPUT, 1-4, 3-3, 4-1
Output procedure

See Glossary

-p-

PACK procedure, C-4
PACKED, 5-9
Packed

See Glossary
Packed array, 5-8
PAGE procedure, C-4
Parameter list, 7-2

See Glossary
Pa rameters, 7-7

See Glossary
a c tua 1, 7 - 3, 7 - 7

See Glossary
formal, 7-3, 7-7

See Glossary
read

See Glossary
value, 7-7

See Glossary
variable, 7-7

See Glossary
write

See Glossary
PASCAL extensions, 1-1
PASDDT, 1-11
PASIN:,4-2
PASOUT:, 4-2
Period, 1-2
Pointer

See Glossary
Pointer data types, 2-2
Precedence, 2-12
Precedence of operators, 2-12
Precedence rules

See Glossary
PRED function, C-8
Predecessor value

See Glossary
Predeclared functions, C-4, C-8
Predeclared identifiers, 3-2, 3-3,

A-I
See Glossary

Predeclared procedures, C-4
Predeclared subprogram

See Glossary
PRINT command, 1-11
PROCEDURE, 1-4, 3-1, 3-2, 7-1,

7-3
Procedure

See Glossary
CLOSE, C-4
DATE, C-4
DISPOSE, C-4
FIND, C-4
G E'I', C-4
HALT, C-4
LINELIMIT, C-4
NEW, C-4

Procedure (Cont.)
OPEN, C-4
PACK, C-4
PAGE, C-4
PUT, C-4
READ, 3-3, 4-1, 4-3, 5-9, C-4
READLN, 3-3, 4-1, 4-5, C-4
RESET, C-4
REWRITE, C-4
TIME, C-4
UNPACK, C-4
WRITE, 3-3, 4-1, C-4
WRITELN, 3-3, C-4

Procedure call, 7-3
See Glossary

Procedure example, 7-4
Procedure heading, 7-3

See Glossary
P R OG R AM, 1-4, 3 - 2
Program development, 1-7
Program example, 1-12
Program head ing, 1-2, 1-4

See Glossary
Program structure, 1-2
PUT procedure, C-4

-R-

Read parameters
See Glossary

READ procedure, 3-3, 4-1, 4-3,
5-9, C-4

Reading data, 4-1, 4-3
READLN procedure, 3-3, 4-1, 4-5,

C-4
Real number

See Glossary
REAL type, 2-3, 2-4, 3-3

See Glossary
RECORD, 3-2, 5-11
Record

See Glossary
Record declaration, 5-10
Records, 2-6, 5-1, 5-10
REL file, 1-11
Relational expressions, 2-5, 2-10
Relational operators, 2-7, 2-10,

5-10
See Glossary

REM operator, 2-8, 3-2
REPEAT statement, 3-2, 6-3, 6-5
Repetitive statement, 6-1, 6-3

See Glossary
Reserved words, 1-3, 3-2, A-I

See Glossary
RESET procedure, C-4
Result type, 7-5
REWRITE procedure, C-4
ROUND function, C-8
RUN command, 1-11

Index-4

INDEX (Cont.)

-S-

Scalar data types, 2-2
See Glossary

Scope
See Glossary

Scope of identifiers, 7-3
Section

declaration, 1-2, 1-4, 7-2
See Glossary

executable, 1-2, 7-2
See Glossary

Semicolon, 1-2
Semireserved words, 3-2, A-I

See Glossary
Sets, 2-5, 5-1

See Glossary
SIN function, C-8
Single precision, 2-3

See Glossary
SINGLE type, 2-3, 3-3

See Glossary
SNGL function, C-8
Source file

See Glossary
SQR function, C-8
SQRT function, C-8
Statement

assignment, 1-6, 2-7, 6-1, 6-2
See Glossary

CASE, 6-10, 6-13
compound, 1-6, 6-1, 6-3

See Glossary
conditional, 6-1, 6-10

See Glossary
control

See Glossary
FOR, 6-3
IF, 3-2
IF-THEN, 6-10
IF-THEN-ELSE, 6-10, 6-11
REPEAT, 3-2, 6-3, 6-5
repetitive, 6-1, 6-3

See Glossary
WHILE, 3-1, 6-3, 6-8

Statements, 6-1
See Glossary

String constant
See Glossary

S t ring va ria b 1 e
See Glossary

Structured data types, 2-2, 2-6
See Glossary

Structured types, 5-1
Subprogram

See Glossary
Subprogram call, 7-2
Subprogram format, 7-2
Subprogram heading, 7-2
Subprograms, 7-1
Subrange type, 2-6, 3-6, 3-7, 3-9

See Glossary
SUCC function, C-B

Successor value
See Glossary

Switch
/EXIT, 1-10
/LISTING, 1-10

Symbolic constant
See GJ ossary

Symbolic names, 3-1
See Glossary

Syntax rules, 3-3

-T-

Text files, 4-1, 4-12
See Glossary

THEN, 3-1, (-)-10
TIME procedure, C-4
TO, 6-4
Transfer functions, C-8
'I'RUE, 2-5, 3-3
TRUNC function, C-8
'I'YPE, 1-4, 3-1
'I'ype

See Glossary
BOOLEAN, 2-3, 2-5, 3-3

See Glossary
CHAR, 2-3, 2-5, 3-3

See Glossary
DOUBLE, 2-3

See Glossary
INTEGER, 2-3, 3-3

See Glossary
REAL, 2-3

See Glossary
SINGLE, 2-3

Type definitions, 3-5

-u-
UNDEFINED function, C-8
Underscore, 3-3
UNPACK procedure, C-4
UNTIL, 3-1, 6-5
Upper limit, 3-9
User identifiers, 3-3

See Glossary
User-defined types, 2-6, 3-7

See Glossary

-v-
VALUE, 1-4, 3-1, 3-2
Value initialization

See Glossary
Value parameters, 7-7, 7-8

See Glossary
VAR, 1-4, 2-7, 3-1, 3-6
Variable declarations, 2-6, 3-6
Variable parameters, 7-7, 7-8

See Glossary
Variables, 2-1, 2-6

global, 7-2
See Glossary

Index--5

INDEX (Cont.)

Variables (Cont.)
local, 7-2

-w-

WHILE statement, 3-1, ~-3, ~-8

Write parameters
See Glossary

WRITE procedure, 3-3, 4-1, 4-7,
C-4

WRITELN procedure, 3-3, 4-11, C-4
Writing data, 4-1, 4-6

rndex-6

READER:'S COMMENTS

TOPS-20
PASCAL Primer
AA-L314A-TM

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company's discretiion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

D Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)
D User with little programming experience
D Student programmer
D Other (please speci~~~~~~,~~~~~~~~~,~~~~~~~~~

Name _~_~ _______________ Date ~ ___ , ________ _

Organization ___ , ______________ ~ Telephone ________ _

Street ______ ~ ___ ~_~ __ ~~~ ___ ~ __

City ____ _ , ___________ State ____ Zip Code ___ _

or Country

- - - Do Not Tear -- Fold Here and Tape

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS

200 FOREST STREET MR01-2/L 12

MARLBOROUGH, MA 01752

No Postage

Necessary

if Mailed in the

United States

-- Do Not Tear - Fold Here and Tape - - - - - - - __ - __ - - - - - - - - __ - - - - __ I
1

I
I

I
I

I (J,j

I'S
I-J

I~
I:::

o
o
0.1
C

.£
~

"5
u

