TWU16 magnetic tape subsystem maintenance manual

digital equipment corporation • maynard. massachusetts

Copyright © 1975 by Digital Equipment Corporation

The material in this manual is for informational purposes and is subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL's DECset-8000 computerized typesetting system.

The following are trademarks of Digital Equipment Corporation, Maynard, Massachusetts:

DEC	
FLIP CHIP	
DIGITAL	
UNIBUS	
DECUS	

PDP FOCAL COMPUTER LAB MASSBUS

CONTENTS

CHAPTER 1	SYSTEM AND PHYSICAL DESCRIPTION
1.1	GENERAL
1.1.1	Scope
1.1.2	Related Documentation
1.2	BUS INTERFACES
1.2.1	Unibus
1.2.2	Massbus
1.2.3	Slave Bus
1.2.4	RH70 to Cache Interface
1.2.5	Main Memory Bus
1.2.6	Unibus to Cache Interface
1.2.6.1	CPU to Cache Interface 1-3
1.3	PDP-11/70 CENTRAL PROCESSOR SYSTEM 1-4
1.3.1	PDP-11 Central Processor 1-4
1.3.2	Cache Memory, Main Memory
1.3.3	Unibus Map $\ldots \ldots \ldots$
1.3.4	RH70 Massbus Controller
1.3.5	TU16/TM02 Tape System
1.4	RH70 FUNCTIONAL OPERATION
1.4.1	Register Access Control Path
1.4.2	DMA Data Path
1.4.3	Data Transfer Rates
1.5	MAGNETIC TAPE FUNDAMENTALS 1-7
1.6	TU16/TM02 RECORDING TECHNIQUES
1.6.1	NRZI (Non-Return to Zero - Change on a 1)
1.6.1.1	Definition
1.6.1.2	Format
1.6.2	Phase Encoding (PE)
1.6.2.1	Definition
1.6.2.2	Format
1.7	TWU16 SPECIFICATIONS
1.7.1	Data Format
1.7.2	TU16/TM02 Specifications
1.7.3	RH70 Massbus Controller Specifications
CHAPTER 2	MASSBUS INTERFACE
2.1	GENERAL
2.2	DATA BUS
2.3	CONTROL BUS
2.4	COMMAND INITIATION
2.4.1	Non-Data Transfer Commands
2.4.2	Data Transfer Commands 2-4
2.5	READING/WRITING DRIVE REGISTERS 2-4
2.6	MASSBUS PHYSICAL DESCRIPTION 2-5
CHAPTER 3	OPERATION AND PROGRAMMING
3.1	GENERAL
3.2	DEFINITIONS

Page

33	INTERRIPT CONDITIONS 3.4
3.5	
2.5	
3.5 1	Non Data Transfer Commands 3.6
257	Data Transfer Commanda
3.5.2	Write Date Transfor
2522	White Data Hallster
2522	Write Check Date Transfer 20
2524	White-Check Data Hansler
5.5.2.4 2.6	
3.0 2.C.1	REGISTER DESCRIPTIONS
3.0.1	Control and Status I (MICSI) Register $(7/2440)$
3.6.2	word Count (MTWC) Register ($7/2442$)
3.0.3	Bus Address (MTBA) Register ($7/2444$)
3.6.4	Frame Count (M1FC) Register ($7/2446$)
3.6.5	Control and Status 2 (MICS2) Register (772450) $\dots \dots \dots$
3.6.6	Drive Status (MIDS) Register ($7/2452$)
3.6.7	Error (MTER) Register $(7/2454)$
3.6.8	Attention Summary (MTAS) Register (7/2456)
3.6.8.1	Setting the Attention Active (ATA) Bit
3.6.8.2	Clearing the Attention Active (ATA) Bit
3.6.9	Character Check (MTCC) Register (772460)
3.6.9.1	CRC Character Storage
3.6.9.2	Dead Track
3.6.10	Data Buffer (MTDB) Register (772462)
3.6.11	Maintenance (MTMR) Register (772464)
3.6.12	Drive Type (MTDT) Register (772466)
3.6.13	Serial Number (MTSN) Register (772470)
3.6.14	Tape Control (MTTC) Register (772472)
3.6.15	Bus Address External (MTBAE) Register (772474)
3.6.16	Control and Status 3 (MTCS3) Register (772476)
3.7	PROGRAMMING EXAMPLES
3.7.1	Write Data Transfer
3.7.2	Read Data Transfer
3.7.3	Space Operation
3.7.4	Tape Mark Operation 3-43
3.8	SUGGESTED ERROR RECOVERY 3-43
CHAPTER 4	TWU16 COMMAND REPERTOIRE
4.1	INTRODUCTION
4.2	REWIND
4.3	SPACE
4.4	ERASE
4.5	PE DATA READ
4.6	NRZ DATA READ
4.7	PE DATA WRITE
4.8	NRZ DATA WRITE
4.9	WRITE TAPE MARK
4.10	ERRORS

CHAPTER 5	THEORY OF OPERATION
5.1	GENERAL
5.2	REGISTER ACCESS CONTROL PATH 5-1
5.2.1	Writing a Local Register 5-3
5.2.2	Reading a Local Register
5.2.3	Writing a Remote Register
5.2.4	Reading a Remote Register 5-5
5.3	DMA DATA PATH
5.3.1	Data Buffer Maintenance Operation
5.3.1.1	Writing the Data Buffer During Maintenance Operation
5.3.1.2	Reading the Data Buffer During Maintenance Operation
5.3.1.3	Parity Generation/Checking During Maintenance Operation
5.3.2	Write Commands (Data Buffer Operation)
5.3.2.1	Incremented Memory Addresses
5.3.2.2	Decremented Memory Addresses
5.3.3	Read Command (Data Buffer Operation)
5.3.3.1	Incremented Memory Addresses During Read Operation
5.3.3.2	Decremented Memory Addresses During Read Operation
5.3.4	Write Check Command (Data Buffer Operation)
5.4	RH70/CACHE INTERFACE
5.4.1	Write or Write-Check Operation (Read from Memory)
5.4.2	Read Operation (Write Into Memory)
5.5	WRITE COMMAND FLOW DIAGRAM DESCRIPTION
5.5.1	RH70/Cache Interface Flow
5.5.2	Masshus Flow
5.6	READ COMMAND FLOW DIAGRAM DESCRIPTION
5.6.1	Masshus Flow 5-24
5.6.2	RH70/Cache Interface Flow
5.7	WRITE-CHECK COMMAND FLOW DIAGRAM DESCRIPTION
CHAPTER 6	DETAILED LOGIC DESCRIPTION
6.1	GENERAL
6.2	BCTA LOGIC DIAGRAM 6-9
6.2.1	Local/Remote Register Selection
6.2.2	RSEL Signals
6.2.3	Decoder Inputs
6.2.4	Decoder Outputs
6.2.5	Word or Byte Addressing
6.2.6	Control Lines
6.2.7	ODD BYTE L Signal
6.2.8	Device Select (DEV SEL) Logic
6.2.9	Control Out (CNTL OUT) Signal
6.3	LOGIC DIAGRAM BCTB
6.3.1	Loading Local Registers
6.3.2	Deskew of DEMAND Signal
6.3.3	Register Strobe (REG STR)
6.3.4	Writing a Remote Register
6.3.5	SSYN Logic

		Page
6.3.6	One-Shot Multivibrator	6-14
6.3.7	Data Buffer Out Clock (DB OCLK H)	6-14
6.3.8	SSYN and TRA Light Emitting Diodes (LEDs)	6-15
6.4	LOGIC DIAGRAM BCTC	6-15
6.4.1	Interrupt Request	6-15
6.4.2	Interrupt Done	6-15
6.4.3	BG IN, SACK and BBSY Light-Emitting Diodes (LEDs)	6-16
6.5	LOGIC DIAGRAM BCTD	6-16
6.6	LOGIC DIAGRAM AWRA	6-16
6.6.1	DBL Flip-Flop	6-16
6.6.2	CNT DWN Flip-Flop	6-17
6.6.3	BA01 Flip-Flop	6-17
6.6.4	BA02, BA03 Bus Address Bits	6-17
6.6.5	BA04 – BA11 Bus Address Bits	6-18
6.7	LOGIC DIAGRAM AWRB	6-18
6.7.1	BA12 – BA15 Bus Address Bits	6-18
6.7.2	Bus Address Extension Register (Bits BA16 – BA21)	6-18
6.7.3	Asynchronous Massbus Parity (CPA OUT)	6-19
6.8	LOGIC DIAGRAM AWRC	6-19
6.8.1	BA and BAE Multiplexers	6-19
6.8.2	Address Drivers	6-19
6.8.3	Control Signals CX and C1	6-19
6.9	LOGIC DIAGRAM AWRD	6-20
6.9.1	Drive Word Count Register	6-20
6.9.2	Word Count Register	6-20
6.9.3	Detection of Maximum Word Count	6-21
6.10	LOGIC DIAGRAM AWRE	6-21
6.10.1	Drive Word Count Overflow	6-21
6.10.2	Word Count Overflow	6-21
6.11	LOGIC DIAGRAM AWRF	6-21
6.11.1	BUSI Multiplexers	6-21
6.11.2	Parity Checker, MCPE Flip-Flop	6-21
6.12	LOGIC DIAGRAM MDPA	6-22
6.12.1	RA FULL and RB FULL Flip-Flops	6-22
6.12.2	MDPA CLK RA H. MDPA CLK RBH	6-22
6.12.2.1	Assertion of CLK RA, CLK RB During Read Command	6-22
6.12.2.2	Assertion of CLK RA or CLK RB During Maintenance Operation	6-23
6.12.2.3	Assertion of CLK RA or CLK RB During Write or Write-Check Command	6-23
6.12.3	RC FULL and RD FULL Flip-Flops	6-23
6.12.4	MDPA CLK RC H MDPA CLK RD H	6-24
6.12.5	Parity Check Enable	6-25
6.12.6	START MEM Enable	6-25
6.13	LOGIC DIAGRAM MDPB	6-25
6.13.1	AMX Multiplexer	6-25
6.13.2	Parity Bits (AMX)	6-25
6.13.3	RA. RC Registers	6-2.5
6.13.4	MXR	6-25
6.13.5	Parity Bits (MXR)	6-25
6.14	LOGIC DIAGRAM MDPC	6-26

Page

	-
6.14.1	Parity Bits (BMX)
6.14.2	RB and RD Registers
6.14.3	Parity Generator/Checker Circuits
6.15	LOGIC DIAGRAM MDPD
6.15.1	Clocking the RF Register, RF FULL Flip-Flop
6.15.2	Clearing the RE FULL Flip-Flop
6.15.3	Clocking the RG Register, RG FULL Flip-Flop
6.15.4	Clearing RF FULL Flip-Flop
6.15.5	RG RDY Flip-Flop
6.15.6	Clocking OBUF, OBUF FULL Flip-Flop
6.15.7	Clearing the RG FULL Flip-Flop
6.15.8	Clearing OBUF FULL Flip-Flop
6.15.9	MDPD DB EMPTY L. MDPD LAST WORD H
6.15.10	Mixer Select (MDPD MXR SEL)
6.15.11	RD ENA Pointer
6.15.12	RB ENA Pointer
6.16	LOGIC DIAGRAM MDPE
6.16.1	MDPE CLK MXR WORD H
6.16.1.1	Write Operation 6-31
6.16.1.2	Data Buffer Maintenance Operation 6-32
6.16.1.3	Write Check Operation 6-32
6162	MDPE CLK RE L Signal 6-32
6163	Inhibiting Delay Line F011 6-32
6164	RE FULL Flin-Flon 6-32
6 16 5	MDPE REG FULL H Signal 6-32
6166	Fxclusive-OR Network 6-32
6 16 7	Odd Word and Even Word Write-Check Error 6-33
6168	Parity Checkers 6-33
6169	RF Register Chin 6-33
6.17	
6.18	LOCIC DIACRAM MDIT
6 10	
6 10 1	Commond Code Decoding Logic
6 10 2	
6.19.2	GO BIT, GO CLR Pulse
6.19.3	Function Load Flip-Flop $\ldots \ldots \ldots$
6.19.4	Ready State (RDY)
6.19.5	$BUSY FIIP-FIOP \qquad $
6.19.6	Invert Parity Check (IPCK) $\dots \dots \dots$
6.19.7	Unit Select Bits and Program Clear (PG CLR)
6.19.8	PAT Bit
6.19.9	Bus Address Increment Inhibit Flip-Flop
6.20	LOGIC DIAGRAM CSTB
6.20.1	Massbus Control Logic
6.20.1.1	$KUN \ Flip \ Fli$
6.20.1.2	End of Segment (EOS) Flip-Flop
6.20.1.3	Disable Sync Clock (DIS SCLK) Flip-Flop
6.20.1.4	DRIVE CLK Signal
6.20.1.5	Zero Filling the Sector or Record
6.20.2	Non-Existent Drive (NED) Flip-Flop

		Page
6.20.3	Program Error (PGE) Flip-Flop	6-39
6.20.4	Missed Transfer (MXF) Latch	6-39
6.20.5	Data Late (DLT SYNC) Flip-Flop	6-40
6.20.6	Exception Save (EXC SAVE) Flip-Flop	6-40
6.20.7	Read Exception Circuitry	6-41
6.20.8	Transfer Error (TRE) Flip-Flop	6-41
6.20.9	Special Conditions (CSTB SC H)	6-41
6.20.10	Interrupt Logic	6-41
6.21	LOGIC DIAGRAM CSTC	6-42
6.21.1	Memory Cycle Control Logic	6-42
6.21.1.1	SMC Flin-Flop	6-42
6 21 1 2	REO Flip-Flop	6-42
6 21 1 3	CIP Flin-Flon	6-43
6 21 2	Data Parity Frror	6-43
6 21 3	Address Parity Error (APE) Non-Existent Memory (NEM) Elin-Elons	6-44
6.22		6.44
6.22	BUSI Multiplayers (CS1 CS2)	6.44
6 22 2	NIT and Program Clear (PG CI P) Logic	6.45
6.22.2		6 4 5
6 22 1		6 4 5
6 22 2		6 45
0.23.2		645
0.24	M5904 MA55BUS TRANSCEIVER MB5A, MB5B, MB5C	. 043
0.25		0-40
6.25.1	/5113 Dual Differential Driver Chip	6-4/
6.25.2	/S10/B Dual Differential Line Receiver Chips	6-48
6.26	H870 TERMINATOR	6-48
CHAPTER 7	INSTALLATION AND MAINTENANCE	
7.1	INTRODUCTION	. 7-1
7.2	INSTALLATION	. 7-1
7.2.1	Mechanical	. 7-1
7.2.2	Electrical	7-1
7.2.3	Module Locations	7-1
7.2.4	Masshus Cables	7-1
725	Iumper Configurations	7-1
7.2.5.1	BCT Module (M8153)	7-1
7252	MDP Module (M8150)	7-4
726	Light-Emitting Diodes (LEDs)	7-4
73	VISUAL INSPECTION AND ELECTRICAL CHECK	7-5
74	TM02/TU16 INSTALLATION	7-6
741	RH70/TM02 Masshus Cable Installation	7.7
742	TMO2/THO2 Massous Cable Installation	. , , 7-8
743	Markun of Masshus and Slave Rus Cables	7.11
7.5	MAINTENANCE TOGGLE PROGRAM	7.11
751	Maintenance Program to Evercise the Data Ruffer	7.13
76	DIACNOSTIC MAINTENANCE	7.14
761	RH70 Controller Test Diagnostic (DZRHA)	7.14
7.6.2	Data Reliability Diagnostic (DZTUA)	7.14
	- and remaining production (percent)	

7.6.3 7.6.4 7.6.5 7.6.6 7.6.7	TM02/TU16 Basic Function Diagnostic (DZTUB)7-TM02/TU16 Control Logic Test (DZTUC)7-TM02 Drive Function Timer (DZTUD)7-TU16 Utility Driver (DZTUE)7-Data Tape Create (DZTUF)7-	14 15 15 16 16
APPENDIX A	INTEGRATED CIRCUIT DESCRIPTIONS	
A.1	INTRODUCTION	. -1
A.2	7442 4-LINE-TO-10-LINE DECODERS (1-of-10)	-2
A.3	74H74 D-TYPE EDGE-TRIGGERED FLIP-FLOPS	-4
A.4	74S74 D-TYPE EDGE-TRIGGERED FLIP-FLOPS	4
A.5	7485 4-BIT MAGNITUDE COMPARATORS	-5
A.6	74H106 DUAL J-K EDGE-TRIGGERED FLIP-FLOPS	-6
A.7	74123 RETRIGGERABLE MONOSTABLE MULTIVIBRATOR	7
A.8	74157 QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXER	-9
A.9	74S157 QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXER	-9
A.10	74174 HEX D-TYPE FLIP-FLOPS	10
A.11	74S174 HEX D-TYPE FLIP-FLOPS	10
A.12	74175 QUAD D-TYPE FLIP-FLOPS	11
A.13	74180 PARITY CONTROL GENERATOR/CHECKER A-	12
A.14	74191 4-BIT BINARY COUNTER A-	13
A.15	74193 4-BIT BINARY COUNTER	15
A.16	74298 QUADRUPLE 2-INPUT MULTIPLEXER	17
A.17	75107 DUAL DIFFERENTIAL LINE RECEIVER A-	18
A.18	75113 DUAL DIFFERENTIAL DRIVER A-	18
A.19	8223 256-BIT BIPOLAR FIELD-PROGRAMMABLE ROM (32 X 8 PROM) A-	18
A.20	8234 2-INPUT 4-BIT DIGITAL MULTIPLEXER A-	19
A.21	82S62 PARITY GENERATOR AND CHECKER A-	20

ILLUSTRATIONS

Figure No.

Title

Page

1-1	TWU16 Simplified System Diagram 1-1
1-2	RH70 Simplified Data Path Diagram 1-6
1-3	Read Data Transfer Sequence 1-8
1-4	Write Data Transfer Sequence 1-8
1-5	RH70 Error Termination
1-6	Reference Edge of Tape
1-7	Track-Bit Weight Relationship for Nine-Channel Transport
1-8	NRZ Format (Nine-Channel)
1-9	PE Recording Format
1-10	Data Formats
2-1	Massbus Interface Lines
3-1	Device Register
3-2	RH70/TM02 Register Summary
3-3	Control and Status Register 1-Bit Usage

ILLUSTRATIONS (Cont)

Figure No.

Title

3-4	Word Count Register Bit Usage
3-5	Bus Address Register Bit Usage
3-6	Frame Counter Bit Usage
3-7	Control and Status Register 2-Bit Usage
3-8	Drive Status Register Bit Usage
3-9	Error Register Bit Usage
3-10	Attention Summary Register Bit Usage
3-11	Check Character Register Format
3-12	Data Buffer Bit Usage
3-13	Maintenance Register Bit Usage
3-14	Drive Type Register Format
3-15	Serial Number Register Bit Usage
3-16	Tape Control Register Bit Usage 3-36
3-17	Bus Address Extension Register Format
3-18	Control and Status 3 Register Format
4-1	Rewind Operation Flowchart 4.2
4-2	Space Operation Flowchart 4.3
4-3	Erase Operation Flowchart
4-4	PE Data Read Operation Flowchart 4.5
4-5	NRZ Data Read Operation Flowchart 4.7
4-6	PE Data Write Operation Flowchart 4-8
4-7	NRZ Data Write Operation Flowchart
4-8	Write Tape Mark Operation Flowchart
5-1	Register Control Path
5-2	Writing Remote Register Interface 54
5-3	Reading Remote Register Interface 5.6
5-5 5-4	Data Ruffer Maintenance Operation 5.7
5-5	Write Command Data Path 5.11
5-6	Data Word Boundaries 5.12
57	Para Word Doundaries
58	Write Check Command Data Dath 516
50	Memory Interface Write or Write Check Operation (Deed from Memory) 518
5 10	Weite or Write Check Command Memory Pus Timing (Read from Memory) 510
5-10	Withe of Write-Check Command Memory Bus Timing (Read from Memory)
5-11	Memory Interface – Read Operation (Write into Memory)
5-12	Read Command Memory Bus Timing (write into Memory)
5-13	write Command Flow Diagram
5-14	Read Command Flow Diagram
5-15	Write-Check Command Flow Diagram
6-1	Read or Write-Check Massbus Timing Diagram
6-2	Write Command Massbus Timing Diagram
6-3	Data Buffer Maintenance Operation Timing Diagram
6-4	Data Buffer Write Command Timing Diagram
6-5	Data Buffer Read Command Timing Diagram 6-7
6-6	Data Butfer Write-Check Command Timing Diagram
6-7	Mapping Massbus/Unibus Addresses
6-8	Massbus Data Transfer Sequence
6-9	Memory Cycle Simplified Timing Diagram
6-10	Typical Differential Driver/Receiver Connection
6-11	Driver Termination

ILLUSTRATIONS (Cont)

Figure No.	Title	Page
6-12	Driver Chip Simplified Schematic	6-47
6-13	Dual Differential Driver Pin Connection Diagram	6-48
6-14	Simplified Line Receiver Logic Diagram	6-48
6-15	75107B Differential Receiver Pin Connection Diagram	6-48
7-1	Module Utilization Chart	7-2
7-2	Massbus Cable System Configuration	7-3
7-3	LED Physical Locations	7-5
7-4	Jumper Summary	7-8
7-5	RH70/TM02 Massbus Cabling Diagram	7-9
7-6	TM02/TU16 Slave Bus Cabling Diagram	7-10
7-7	Massbus Cable Stamp	7-11
7-8	Marked-Up Massbus Cable	7-11
7-9	Maintenance Program to Exercise Data Buffer	7-12

TABLES

Table No.

Title

Page

1-1	Related Documentation
2-1	Massbus Signal Cable Designations 2-5
3-1	RH70 and TM02/TU16 Device Registers 3-1
3-2	Results of Program-Controlled Clearing 3-3
3-3	Command Function Codes
3-4	TWU16 Commands and Required Parameters 3-8
3-5	Control and Status 1 Register Bit Assignments
3-6	Word Count Register Bit Assignments 3-13
3-7	Bus Address Register Bit Assignments 3-13
3-8	Frame Counter Bit Assignments
3-9	Control and Status Register 2 Bit Assignments 3-15
3-10	Drive Status Register Bit Assignments
3-11	Error Register Bit Assignments
3-12	Error Conditions
3-13	Attention Summary Register Bit Assignments
3-14	Check Character Register Bit Assignments
3-15	Data Buffer Bit Assignments
3-16	Maintenance Register Bit Assignments
3-17	Drive Type Register Bit Assignments
3-18	Serial Number Register Bit Assignments
3-19	Tape Control Register Bit Assignments
3-20	Bus Address Extension Register Bit Assignments
3-21	Control and Status 3 Register Bit Assignments
3-22	Error Recovery Procedures
6-1	Listing of RH70 Logic Diagrams
7-1	TU16 Backplane, Regulated Voltages 7-6
7-2	P4 Connector, Unregulated Voltages 7-7
7-3	TM02 Voltage Check 7-7

CHAPTER 1 SYSTEM AND PHYSICAL DESCRIPTION

1.1 GENERAL

This manual describes the TWU16 Magnetic Tape System manufactured by Digital Equipment Corporation. The basic items in the system are:

> RH70 Massbus Controller(s) TM02 Magnetic Tape Controller(s) TU16 Tape Transport(s) (Figure 1-1).

The TWU16 is employed with the PDP-11/70 Central Processor which can accommodate up to four RH70 Massbus Controllers.

1.1.1 Scope

This manual is designed to provide Digital Field Service and customer maintenance personnel with sufficient installation, operation, and servicing information to install and maintain the RH70. Because the RH70 is used with the TM02 Tape Controller and TU16 Tape Transport, brief descriptions of these items are included in this manual. Detailed information on these items may be found in the TU16/TM02 Tape Drive System Maintenance Manual.

Figure 1-1 TWU16 Simplified System Diagram

1.1.2 Related Documentation

Table 1-1 lists related documentation that supplements the information in this manual.

1.2 BUS INTERFACES

This paragraph briefly describes the following interfaces which are incorporated into the system.

Unibus – provides interface between PDP-11/70 Central Processor and RH70 Massbus Controller.

Massbus – provides interface between RH70 Massbus Controller and TM02 Tape Controller.

Slave Bus – provides interface between TM02 Tape Controller and TU16 Tape Transports.

RH70/Cache Interface – provides interface between RH70 Massbus Controller and Cache memory.

Main Memory Bus – provides interface between cache memory and main memory.

Unibus/Cache Interface – provides interface between Unibus Map and Cache memory.

CPU/Cache Interface – provides interface between PDP-11/70 Central Processor and Cache memory.

1.2.1 Unibus

The Unibus provides the interface between the PDP-11/70 Processor, Cache, the RH70 Massbus Controller and general-purpose peripherals. Unibus devices contain the highest priority for main memory accesses. Since a dedicated separate data path is available for memory and high-speed peripherals,

the Unibus is not overloaded, resulting in less contention at the Unibus. Peripheral devices connected to the Unibus access main memory via the Cache.

1.2.2 Massbus

The Massbus provides a parallel data path between the RH70 and the TM02 Tape Controller; it has a minimum cable length of 120 ft, allowing 15 ft between TM02 Controllers if the "daisy-chain" configuration (with a maximum of 8 controllers) is employed. The Massbus comprises two sections: an asynchronous control bus and a synchronous data bus for high-speed data transmission.

The asynchronous control bus:

- 1. Transmits commands and information from the controller to the drive to read or write drive registers.
- 2. Notifies the controller when an unusual (attention) condition exists in one or more drives.
- 3. Transmits status information from the drive to the controller
- 4. Provides a master reset to all drives from the controller.

The synchronous data bus transmits blocks of data at high speed between the RH70 Controller and the TM02 Controller and controls the initiation and termination of block transmissions. Because the data and control buses operate independently, the Massbus Controller can monitor drive status on the control bus while a data transfer operation on the data bus is being performed. Additional details on the Massbus can be found in Chapter 2.

Title	Document Number
PDP-11 Peripherals Handbook	2002.20175.4526
TU16/TM02 Tape Drive System Maintenance Manual	EK-TU16-MM-001
PDP-11/70 Processor Handbook	EB 04588/750100
KB11-B Processor System (PDP-11/70 Manual)	EK-KB11B-TM-001
PDP-11/70 Maintenance and Installation Manual	EK-1170-MM-001

Table 1-1Related Documentation

1.2.3 Slave Bus

All TU16s controlled by a TM02 are "daisychained" on the Slave Bus (Figure 1-1). Essentially, this means that the TU16s are configured parallel to each other. The Slave Bus consists of slave select lines, write data lines, read data lines, transport control lines and various TU16 status lines. The various signals on the Slave Bus are tabulated in the TU16/TM02 Tape Drive System Maintenance Manual.

1.2.4 RH70 to Cache Interface

The RH70-to-Cache Interface is an integral interface with an open-collector bus to which each RH70 connects. This interface routes 22 bits of address, 36 bits of data (32 data bits, plus 4 parity bits), and three control signals (C0, C1 and CX) to or from Cache. C0 specifies a Data Out Byte (DA-TOB) or Data In Pause (DATIP); however, the RH70 does not implement these operations and this bit is always unasserted, (see chart below).

C1	C0	СХ	
0	0	0	*DATI always double words
0	1	0	DATIP
1	0	0	*DATO single word
1	0	1	*DATO double word
1	1	0	DATOB

C1 specifies a DATI (read from memory) or a DATO (write into memory) transfer; and CX specifies a double-word transfer, if asserted, or a single-word transfer, if negated.

For transfers between the RH70 and memory, the Cache merely serves as an interface and is not updated as in Unibus/memory transfers or CPU/memory transfers. If the memory location being modified during a read (drive to RH70) is also in Cache, the data in Cache is invalidated. As a result, the CPU and Unibus memory cycles must access main memory to obtain correct data.

The RH70 initiates a data transfer by issuing a request to Cache. Cache arbitrates the request along with requests from other RH70 Controllers,

the Map box, or the CPU. It then sends back an acknowledge signal to the device of highest priority. If an RH70 is selected for the next memory cycle, the Cache asserts signals which gate that controller's bus address, bus address extension (memory address), and control information (C0, C1, and CX) onto the RH70 to Cache Interface. Additionalselect signals allow the specified controller to gate data onto the interface (read) or to clock data off the interface (write or write-check).

1.2.5 Main Memory Bus

The Main Memory Bus is a bus structure which originates at the Cache and daisy-chains through all the control modules of the memory. Physically, it consists of 4 cables containing 22 bits of address, 1 bit of address and control parity, 36 bits of data (32 bits of data, plus 4 parity bits), four byte mask signals, which determine the byte(s) to be written on write cycles, and various handshake signals associated with controlling the interface sequence.

1.2.6 Unibus to Cache Interface

During Unibus memory cycles, the Unibus-to-Cache interface controls the mapping of 18-bit Unibus addresses to the 22-bit address field of the Main Memory Bus. The interface contains 22 address bits, a 16-bit wide data path, a Request signal that requests use of the Cache, a parity error signal, and two control signals (C0, C1) to determine the direction of data transfer. The interface is integral with the 11/70 and contains no external bus structure.

1.2.6.1 CPU to Cache Interface – The CPU to Cache Interface is an integral interface (with no external buses) between the 11/70 processor and Cache memory. It contains a 22-bit wide address, 16-bit wide data path and associated error signals such as parity abort. The CPU/Cache Interface also contains C0 and C1 control signals which specify the type and direction of data transfer between Cache and the 11/70.

The Memory Management and Relocation unit in the processor converts the 16-bit virtual address from the processor into the 22-bit address which specifies a location in main memory.

^{*} RH70 functions – DATIP and DATOB operations are not implemented by the RH70.

1.3 PDP-11/70 CENTRAL PROCESSOR SYSTEM

The PDP-11/70 Central Processor System consists of the following components.

PDP-11/70 Central Processor Cache Memory, Main Memory Unibus Map RH70 Massbus Controller TM02 Tape Controller and TU16 Tape Transport

Each component is briefly described below.

1.3.1 PDP-11 Central Processor

The 11/70 Central Processor is an advanced processor of the PDP-11 family, available with an optional floating point unit. Several additional features are contained in this processor. The large memory capacity allows up to 2 million words of core memory. The entire 2 million words of core memory is made to appear as fast memory to the 11/70. This is accomplished via a fast 1K or 1024word Cache memory. Core memory cycle time is approximately 1 μ s and the Cache memory cycle time is approximately 300 ns. Statistically, it has been determined that 80 to 95 percent of the words referenced by the 11/70 may be in Cache, which creates an effective memory time of less than 450 ns.

1.3.2 Cache Memory, Main Memory

The 11/70 Central Processor contains a 1024-word bipolar memory system, designated Cache Memory. The Cache Memory system simulates a system having a large amount of moderately fast memory by relying on a small amount of very fast bipolar memory, a large amount of slow core memory and the statistical behavior of operating programs. The concept is to have most of the data that the processor needs in the fast Cache Memory, to allow the program to operate quickly, while having to slow down only occasionally for slow core memory cycles. This is accomplished by constantly updating the data in Cache to provide a high probability that the data most likely needed by the processor will be in fast memory.

The primary functions of the Cache Memory are to:

1. Act as a high speed buffer and interface between memory and the requesting device (e.g. CPU, Unibus or Massbus Controls).

- 2. Process parity and perform error detection to maintain system integrity.
- 3. Arbitrate cycles to determine which device will have access to memory. The Unibus Map box has the highest priority, followed by the RH70 I/O Controllers (Controller A, B, C and D, in that order) with the CPU having the lowest priority.

When the Cache is interfacing between the CPU and memory or between the Unibus Map and memory, it is continually being updated by the current data with which the CPU or Unibus Map is working. During a CPU-to-memory or Unibus-to-memory transfer, if a word to be written into memory is also in Cache, the word in Cache is updated and at the same time is transferred to main memory. If the word to be written into memory is not in Cache, the CPU-to-memory or Map-to-memory cycle occurs with no Cache update.

During a memory-to-CPU or memory-to-Unibus transfer, if a word to be read from main memory is also in Cache, the word in Cache is directly transferred to the CPU or Unibus Map and no slow memory cycle is performed. If the word to be read from memory is not in Cache, a slow memory cycle is performed and the two words of that block are sent to Cache. The word requested is then sent to the CPU or Unibus Map.

In the case of data transfers from the RH70 to memory or from memory to the RH70, the Cache merely serves as an interface and there is no updating of Cache.

1.3.3 Unibus Map

The Unibus Map is a standard hex board which allows Unibus devices in the 11/70 system to address up to 2 million words of core memory through the use of 31 read/write registers. These registers are each 22 bits long and require two Unibus register addresses. A block of 62 Unibus addresses is consequently reserved for the Unibus Map-31 registers with two addresses per register.

Bits 13 – 17 of the Unibus address dynamically select one of 31 mapping registers during Unibus memory cycles.

NOTE

A 32nd Map register is dynamically selected when Unibus address bits 13 - 17 are all 1s. In the PDP-11 architecture, this address field is defined as I/O register space; therefore, the 32nd register is not used to map address to memory.

When an Initialize is received or when power is first turned on, the system is set for one-to-one mapping, which means that a specific Unibus address specifies the corresponding main memory address with no relocation. In other words, Unibus address 5000 specifies main memory location 5000. This process is valid up to 124K of memory. Beyond that point, memory relocation (mapping) is required. In order to implement this, the programmer loads the Map registers and sets a bit in a Control register, located in the processor Memory Management Unit. When the Unibus address selects a particular mapping register via bits 13 - 17, bits 0 - 21of the Unibus address are added to bits 1 - 21 of the mapping register. The sum of these bits result in a relocated address in core memory. Consequently, this mapping scheme allows any of core memory to be accessed.

1.3.4 RH70 Massbus Controller

The RH70 Controller, in conjunction with the TM02/TU16, provides an extremely fast and reliable mass storage system that can be employed in timesharing or real-time data storage applications. The following major functions are performed by the RH70:

- 1. Communicates with the main memory via Cache in order to fetch and store data.
- 2. Communicates with the central processor via the Unibus in order to receive commands, provide error and status information, and generate interrupts.
- 3. Interfaces with from one to eight drives via the Massbus.

The RH70 can accommodate up to eight TM02 Tape Controllers. Each TM02 Tape Controller, in turn, can accommodate up to eight TU16 Tape Transports.

1.3.5 TU16/TM02 Tape System

The TU16/TM02 is a Massbus-compatible, versatile tape drive system, consisting of a TM02 Tape Controller and TU16 Tape Transport(s). The TU16/TM02 records and reads digital data in industry-standard PE or NRZ mode at a maximum data transfer rate of 72,000 tape characters per second. Tape density and tape character format are program-selectable. Forward/reverse tape speed is 45 in/sec, while rewind is performed at 150 in/sec. The TU16/TM02 Tape Drive System also has forward and reverse read/space capability.

The TU16/TM02 Tape System performs the following functions:

- 1. Records and plays back data.
- 2. Generates tape marks to separate files.
- 3. Provides clock signals to synchronize data transmission between drive and controllers.
- 4. Maintains error and status indicators and generates an Attention signal when exceptional conditions occur.
- 5. Locates data records by the spacing function.
- 6. Provides mechanisms for convenience and diagnostic testing.
- 7. Performs error detection on the data and provides error correction in PE (Phase-Encoded) mode only.

The major assemblies of the TU16/TM02 Tape System include the TU16 Tape Transport, the TM02 Tape Controller, the H740D Power Supply for the TM02, and the 861 Power Controller, which controls power in the TU16/TM02 cabinet.

1.4 RH70 FUNCTIONAL OPERATION

The RH70 is divided into two major functional groups: the register access control path, and the DMA (Direct Memory Access) data path (Figure 1-2). The register access control path allows the program to read from or write into any register contained in the RH70 or in the selected tape drive.

Figure 1-2 RH70 Simplified Data Path Diagram

There are a total of six registers in the RH70, nine registers in each TM02, and one shared register which is contained partially in the RH70 and partially in the selected TM02.

The DMA data path functionally consists of an 8 word \times 16 bit first-in, first-out memory and associated control logic. The major function of this memory is to buffer data in order to compensate for fluctuations in cycle arbitration time of the Cache.

1.4.1 Register Access Control Path

When a PDP-11 instruction addresses the RH70 to read or write any device register in the RH70 or in the drive, a Unibus cycle is initiated and this data is routed to or from the RH70. (Refer to Chapter 3 for a detailed description of the registers.) If the register to be addressed is local (contained within the RH70), the register control logic immediately gates the data to or from the appropriate register.

If the register to be accessed is remote (contained in the TM02 Controllers), the register access control logic initiates a Massbus control bus cycle. TM02 registers are loaded in the following manner:

- 1. The controller places the drive select code of the desired TM02 on the Drive Select lines.
- 2. The controller places a register select code on the Register Select lines.
- 3. The controller asserts CTOD (Controller-to-Drive).
- 4. The controller places data on the Control lines.
- 5. The controller then asserts DEM.

The selected TM02 responds to DEM and CTOD asserted by loading the selected register with the data on the Control lines; then it asserts TRA. The controller responds by negating DEM, which causes the TM02 to negate TRA; the write operation is thereby terminated.

A TM02 register is read in a similar manner except that CTOD is negated (step 3) and step 4 is eliminated. The selected TM02 responds to DEM asserted and CTOD negated by gating out the contents of the selected register onto the Control lines. The TM02 then asserts TRA to the controller. When the RH70 receives TRA, it gates the Control lines onto the Unibus. After a deskew delay, the RH70 asserts SSYN to the processor. When the processor receives the control data and SSYN, it clears MSYN, which in turn negates SSYN and DE-MAND. The negation of DEMAND negates TRA and completes the operation.

Accesses to a TM02 register via the control bus portion of the Massbus do not interfere with data transfer operations occurring over the data bus portion of the Massbus.

1.4.2 DMA Data Path

The DMA data path is used for the actual transfer of blocks of data and functionally consists of the synchronous (data) portion of the Massbus, a data buffer, and the memory bus. The data buffer compensates for cycle arbitration time of the Cache by buffering data between the RH70 to Cache Interface and the Massbus data bus during data transfers.

1.4.3 Data Transfer Rates

The data transfer rate from the drive is determined by a clock in the drive. The basic data transfer rate for the TWU16 is approximately 28 μ s/word. The memory transfer rate depends on cycle arbitration time in the Cache and memory cycle time. Figure 1-3 shows the data transfer sequence for a read operation; Figure 1-4 shows the sequence for a write operation. For lengthy data transfers, the average memory transfer rate is half the average disk data transfer since double words are transferred. Statistical fluctuations in cycle arbitration times are absorbed by the buffering in the data buffer.

1.5 MAGNETIC TAPE FUNDAMENTALS

Referenced Edge – The edge of the tape as defined by Figure 1-5. For tape loaded on a TU16, the reference edge is toward the observer.

BOT (Beginning of Tape) Marker – A reflective strip placed on the non-oxide side of the tape, against the reference edge, 15 ft (± 1 ft) from the beginning of the tape.

EOT (End of Tape) Marker – A reflective strip placed on the non-oxide side of the tape, against the non-reference edge, 25 to 30 ft from the trailing edge of the tape. *Nine-Channel Recording* – Eight tracks of data plus one track of vertical parity. Figure 1-6 shows the relationship between track and bit weight for a nine-channel transport.

Tape Character – A bit recorded in each of the nine channels.

Record - A series of consecutive tape characters.

File – An undefined number of records (minimum = zero, no maximum).

Interrecord Gap (IRG) – A length of erased tape used to separate records (0.5 in. minimum for nine-track; maximum IRG is 25 ft).

Extended IRG - A length of erased tape (3 in. minimum) optionally used to separate records. It must be used between BOT and the first record.

Tape Speed – The speed at which tape moves past the read/write heads; normally stated in inches per second.

Tape Density – The density of sequential characters on the tape. It is normally specified in bytes per inch (bpi), since 800 bpi means that there are 800 tape characters per inch of tape.

Write Enable Ring – A rubber ring which must be inserted on the supply reel to allow the transport to write on the particular tape. This safety feature helps to prevent accidental destruction of previously-recorded data.

Tape Mark (TM) – A record written on the tape to designate the end of a file; sometimes referred to as a File Mark (FMK). In the TU16/TM02, the TM is always preceded by an extended IRG.

Figure 1-3 Read Data Transfer Sequence

Figure 1-4 Write Data Transfer Sequence

Figure 1-5 RH70 Error Termination

Figure 1-6 Reference Edge of Tape

1.6 TU16/TM02 RECORDING TECHNIQUES

1.6.1 NRZI (Non-Return to Zero – Change on a 1)

1.6.1.1 Definition – NRZI is a recording technique which requires a change of state (flux change) to write a 1, and no change of state (no flux change) to write a 0.

1.6.1.2 Format – A record is a minimum of 12 characters. A CRCC character occurs four character spaces after the record. An LPCC character occurs four character spaces after the CRCC (Figure 1-7).

Figure 1-7 Track-Bit Weight Relationship for Nine-Channel Transport

Cyclic Redundancy Check Character (CRCC) – A check character that is written four character spaces after the last character of an NRZ record (ninechannel only). CRCC is derived by a complex mathematical formula applied to the characters written in the record. The result of this manipulation (CRCC) can be used to recover a lost bit in a record read from tape. CRCC error recovery hardware is not available in the TU16/TM02, but CRCC is written for purposes of compatibility.

Longitudinal Parity Check Character (LPCC) – A check character written four character spaces after CRCC (nine-channel). LPCC consists of one bit of even parity for each track of data. For example, if track 1 had an odd number of 1s written in a record, then a 1 must be written in the LPCC bit associated with track 1.

Tape Mark – A nine-channel NRZ tape mark consists of one tape character (23_8) , followed by seven blank spaces, and then LRCC (23_8) . (CRCC is not written.) Figure 1-8 illustrates nine-channel NRZ tape format.

1.6.2 Phase Encoding (PE)

1.6.2.1 Definition – Phase encoding is a recording technique in which a flux reversal occurs for each bit of information written onto the tape. A 1 can be defined as a positive level followed by a negative transition; a 0 can be defined as a negative level, followed by a positive transition.

Sequential flux transitions on the tape are either at the data rate or at twice the data rate. Sequential 1s or sequential 0s will cause flux reversals to occur at twice the data rate:

Alternate 1s and 0s cause flux reversals to occur at the data rate:

Figure 1-8 NRZ Format (Nine-Channel)

1.6.2.2 Format – To ensure proper extraction of PE data from the serial stream of transitions coming off the tape, PE data must be recorded in a precise format. A PE record consists of preamble, data, and postamble.

Preamble – Forty characters of 0s in all nine tracks, followed by a character of 1s in all nine tracks.

Data – The data consists of flux reversals for each bit of information. Negative flux reversals designate 1s; positive flux reversals designate 0s.

Postamble – One character of 1s in all nine tracks, followed by 40 characters of 0s in all nine tracks.

The PE read electronics uses a data window to isolate data transitions. For example,

Zeros in the preamble are used to set the window in position when reading in a *forward* direction; 0s in the postamble perform this function when reading in the *reverse* direction. The all-1s character in the preamble and postamble is used to mark the beginning of data.

Tape Mark – A PE tape mark consists of forty 0s in tracks 2, 5, and 8 (bit positions 0, 5, and 1) with tracks 3, 6, and 9 (bit positions 4, 6, and 3) erased.

Identification Burst (IDB) – The IDB identifies the tape as a PE tape. It consists of alternating 1s and 0s in the parity track (track 4) with all other tracks erased. The IDB is located at BOT and has a minimum length of 1.7 in. Figure 1-9 illustrates PE tape format.

1.7 TWU16 SPECIFICATIONS

This paragraph defines the parameters in the TWU16 Magnetic Tape Subsystem.

1.7.1 Data Format

Data Format is selected by the format select bits (FMT 0-3) in the tape control register as follows:

	Bi	it	Mode	
3	2	1	0	
1 1 1	1 1 1	0 0 1	0 1 0	Normal Mode Core Dump 15 Mode

FMT (0 - 3)

Figure 1-10 shows the three modes in the TWU16 system: normal mode, core dump mode and 15 mode. In 15 mode, bit 15 in memory corresponds to Massbus data bit D0; bit 0 in memory corresponds to Massbus data bit D17.

1.7.2 TU16/TM02 Specifications

Packing Density

200, 556, 800, and 1600 bpi; program-selectable.

Tape Speed Forward/Reverse: 45 in/sec (1.14 m/sec) Rewind: 150 in/sec (3.8 m/sec) Maximum Transfer Rate 72,000 characters/sec **Tape Motion Times** Start: Normal operating speed is reached within 9 ms after initiation of forward or reverse command. Stop: Motion stops in less than 8 ms after removal of forward or reverse command **Electrical Skew** Write deskew only. Read skew mechanically aligned. **Recording Method** NRZI or PE recording; industry-compatible. Transport Mechanism Single capstan; vacuum columns Read/Write Heads Dual gap, read after write. BOT. EOT Detection Photoelectric sensing of reflective strip Interrecord Gap 0.5 in. minimum, 0.65 in. nominal Tape Width: 0.5 in. Thickness: 1.5 mil Take-up Reel Diameter: 10-1/2 in. (For 1600 bpi mode, the tape should be certified at 3200 flux changes per inch). Capacity: 2400 ft Power Control 861 Power Controller Voltage Requirement TU16: 115/230 Vac + 10% at 50/60 Hz + 2% TM02: 90-135 Vac; 180-270 Vac at 47-63 Hz

TU16: 1000 W max TM02: 300 W max TU16 Transport (without cabinet) Depth: 25 in. (0.64 m) Width: 19 in. (0.48 m) Height: 7 in. (0.17 m) Weight: 150 lb (70 kg) TM02 Tape Controller Depth: 23 in. (0.58 m) Width: 19 in. (0.48 m) Height: 7 in. (0.17 m) Weight: 45 lb. (21 kg) TM02 Power Supply (H740D) Depth: 8 in. (0.18 m) Width: 19 in. (0.48 m) Height: 5 in. (0.13 m) Weight: 24 lb. (11.2 kg) 861 Power Controller Depth: 8 in. (0.20 m) Width: 19 in. (0.48 m) Height: 5 in. (0.13 m) Weight: 10 lb (4.54 kg)

Power Dissipation

Environmental Limits Temperature*: 60° to 95° F (15° to 35° C) Relative Humidity: 20% to 80% (no condensation)

1.7.3 RH70 Massbus Specifications

Controller

Mechanical

RH70 Logic 3 quad-height modules 1 hex-height module 3 double-height modules CPU Backplane 4 module slots

Power Requirements (RH70) +5.0 \pm .25 Vdc at 8.5 A max -15 \pm 1.5 Vdc at 0.5 A max

^{*} Magnetic tape operation is more reliable if the temperature is limited to 65° to 75° F (18° to 24° C) and the relative humidity to 40% to 60%.

Logic Voltage High=0.3 V; Low=0 V

Environmental

Temperature $32^{\circ} - 122^{\circ} F (0^{\circ} - 50^{\circ} C)$ Class C

Relative Humidity

8% to 90%, no condensation

Vibration Shock 1.89 g rms, 10-300 Hz 20 g, half sine, 30 ms duration, any plane

Data Transfers Memory/Controller Data is normally transferred as double data words (32 data bits, plus 4 parity bits) via the RH70/Cache Interface, and then to or/from memory via the memory bus.

TOTE I. TAPE IS SHOWN WITH UXIDE SIDE UP.

10-1280

Figure 1-9 PE Recording Format

10-1326

.

Figure 1-10 Data Formats

CHAPTER 2 MASSBUS INTERFACE

2.1 GENERAL

The Massbus provides the interface between the RH70 Controller and the TU16/TM02 Tape System. The Massbus can be up to 120 ft in length and up to eight drives may be connected in a daisy-chain configuration. The Massbus consists of two sections: a Data Bus section and a Control Bus section. These buses are described in the following paragraphs.

2.2 DATA BUS

The Data Bus section of the Massbus consists of a 19-bit (18 data bits, plus parity bit) parallel data path and six control lines (Figure 2-1).

Parallel Data Path – The parallel data path consists of an 18-bit data path, designated D00 - D17, and an associated parity bit (DPA). The data path is bidirectional and employs odd parity. Data is transmitted synchronously, using a clock generated in the drive.

RUN – After a data transfer command has been written into the control register of a drive, the drive connects to the data bus. The controller then asserts the RUN line to initiate the function.

Occupied (OCC) – This signal is generated by the drive to indicate "data bus busy." As soon as a valid data transfer command is written into a drive, and the command is accepted, the drive asserts OCC. Various errors may cause a drive to be unable to execute a command. The controller will time out in these cases, due to no assertion of OCC or SCLK, and the MXF (Missed Transfer Error) will be set in the controller. OCC is negated at the trailing edge of the last EBL pulse of a transfer.

End-of-Block (EBL) – This signal is asserted by the drive at the end of each record (after the last SCLK pulse). For certain error conditions, where it is necessary to terminate operations immediately, EBL is asserted prior to the normal time for the last SCLK. The data transfer is terminated prior to the end of the record in this case.

Exception (EXC) – This signal is asserted when an abnormal condition occurs in the drive. The drive asserts this signal to indicate an error during a data transfer command (Read, Write, or Write-check). Exception is asserted at, or prior to, assertion of EBL and is negated at the negation of EBL.

Sync CLK (SCLK), Write CLK (WCLK) – These signals are the timing signals used to strobe the data in the controller and/or in the drive. During a read operation, the RH70 strobes the data lines on the negation of SCLK and the drive changes the data on the assertion of SCLK. During a write operation, the controller receives SCLK and echoes it back to the drive as WCLK. On the assertion of WCLK, the drive strobes the data lines and on the negation of WCLK, the controller changes the data on the data lines.

2.3 CONTROL BUS

The Control Bus section of the Massbus consists of a 17-bit (16 bits, plus parity) parallel control and status data path, and 14 control lines (Figure 2-1).

Parallel Control and Status Path – The parallel control and status path consists of a 16-bit parallel data path, designated C00 – C15, and an associated parity bit (CPA). The control and status lines are bidirectional and employ odd parity.

Figure 2-1 Massbus Interface Lines

Drive Select, DS(2:0) – These three lines transmit a 3-bit binary code from the controller to select a particular drive. The drive is linked to the Control Bus when the (unit) select number in the drive corresponds to the transmitted binary code.

Controller-to-Drive (CTOD) – This signal is generated by the controller and indicates the direction in which control and status information is to be transferred. For a controller-to-drive transfer, the controller asserts CTOD. For a drive-to-controller transfer, the controller negates this signal. Register Select, RS (4:0) – These five lines transmit a 5-bit binary code from the controller to the selected drive. The binary code selects one of the drive registers.

NOTE

Ten registers (including the MTCS1 register) are present in the TM02 Tape Controller, designated by codes 00 – 11. If a register code higher than 11 is selected, an Illegal Register (ILR) Error occurs.

Corresponds To:

Massbus Address	Register Name	Register Mnemonic	Unibus Address (Octal)
00	Control & Status 1 Register*	MTCS1	772440
01	Drive Status	MTDS	772452
02	Error	MTER	772454
03	Maintenance	MTMR	772464
04	Attention Summary	MTAS	772456
05	Frame Count	MTFC	772446
06	Drive Type	MTDT	772466
07	Check Character	MTCK	772460
10	Serial Number	MTSN	772470
11	Tape Control	MTTC	772472

* This register is shared by the RH70 and the TM02 controller.

The RH70 Massbus Controller Registers are:

Register Name	Register Mnemonic	Unibus Address (Octal)
Control & Status 1 Word Count Bus Address Control and Status 2 Data Buffer Bus Address Extension	MTCS1 MTWC MTBA MTCS2 MTDB MTBAE	772440 772442 772444 772450 772462 772474
Control and Status 3	MTCS3	772476

Demand (DEM) – This signal is asserted by the controller to indicate that a transfer is to take place on the Control Bus. For a controller-to-drive transfer, DEM is asserted by the controller when data is present and settled on the Control Bus. For a drive-tocontroller transfer, DEM is asserted by the controller to request data and is negated when the data has been strobed off the Control Bus. In both cases, the RS, DS, and CTOD lines are generated and allowed to settle before assertion of DEM.

Transfer (TRA) – This signal is asserted by the drive in response to DEM. For a controller-to-drive transfer, TRA is asserted when the data is strobed and is negated when DEM is negated. For a drive-to-controller transfer, TRA is asserted after the data is asserted on the bus and negated when the negation of DEM is received.

Attention (ATTN) – This line is shared by all eight drives attached to a controller; it may be asserted by any drive as a result of an abnormal condition or status change in the drive. An ATA status bit in each drive is set whenever that drive is asserting the ATTN line. ATTN may be asserted due to any of the following conditions:

- 1. An error while no data transfer is taking place (asserted immediately).
- 2. Completion of a data transfer command if an error occurred during a data transfer (asserted at the end of the transfer).
- 3. Completion of a non-data transfer command (such as a space).

The ATA bit in a drive may be cleared by the following actions:

- 1. Asserting INIT on the Massbus (affects all eight drives).
- 2. Writing a 1 into the Attention Summary register (in the bit position for this drive). This clears the ATA bit; however, it does not clear the error.
- 3. Writing a valid command into the Control register (with the GO bit set). Note that clearing the ATA bit of one drive does not always cause the ATTN line to be negated because other drives may also be asserting the line.

NOTE

There are three cases in which ATA is not reset when a command is written into the Control register (with the GO bit set): 1) if there is a Control Bus parity error on the write, 2) if an error was previously set, or 3) if an illegal function code (ILF) is written.

Initialize (INIT) – This signal is asserted by the controller to perform a system reset of all drives. It is asserted when a 1 is written into the CLR bit (bit 05 of MTCS2) or when Unibus INIT is asserted on the Unibus. When a drive receives the INIT pulse, it immediately aborts the execution of any current command and performs all actions described for the Drive Clear command.

Fail – When asserted, this signal indicates that a power-fail condition has occurred in the controller. In particular, the drive inhibits reception of the INIT and DEM signals at the drive.

2.4 COMMAND INITIATION

To initiate a command in a drive via the Massbus, the controller (or the central processor via the controller) writes a word in the MTCS1 register which causes a word to be written into the drive's Control register (00). The word contains a command function code in bits 05 - 01 and a GO bit in bit 00. The GO bit is set when initiating a command. If the command specified is valid, the drive which has been addressed by the program executes the command. Commands are of two types: non-data transfer commands (such as Drive Clear, space) and data transfer commands (such as Read, Write, and Writecheck). The command function code bits (05 - 00,including GO in MTCS1) are $01_8 - 47_8$ for nondata transfer commands and $51_8 - 77_8$ for data transfer commands.

2.4.1 Non-Data Transfer Commands

Non-data transfer commands have effect only on the state of the drive. The controller merely writes the command word (with GO bit set) into the drive's Control register. At the completion of the command execution, the drive typically asserts the ATTN line to signal its completion.

If the non-data transfer command code written into the drive is not recognized by the drive as a valid command, the drive will immediately signal an error by asserting the ATTN line. The Illegal Function Error (ILF) is set.

2.4.2 Data Transfer Commands

When any data transfer command code (with the GO bit set) is written into the drive's Control register, the controller expects data transfer on the Data Bus to begin thereafter. The controller resets its RDY (Controller Ready) bit as soon as the data transfer command code is written into a drive. The drive normally responds by asserting the OCC line. The controller asserts RUN and then data is transferred to or from the specified drive.

If an error occurs in a drive during a data transfer command, the drive asserts the EXC line. This line remains asserted until the trailing edge of the last EBL pulse. The RH70 Controller always negates the RUN line when it detects EXC asserted, so that data transfer is terminated at the end of the record in which the error was signaled.

2.5 READING/WRITING DRIVE REGISTERS

The process of reading/writing drive registers is accomplished via the asynchronous (Control Bus) portion of the Massbus (Figure 2-1). The RH70 initiates the action by selecting a drive (DS2-DS0), selecting a register (RS4-RS0) in that drive, selecting a direction of transfer (CTOD), and either reading-writing the register via the 17 bidirectional control lines [C (15:00) and CPA]. After a deskew delay to allow the control lines to stabilize, the RH70 asserts DEM. Upon receiving the DEM assertion, the drive checks the CTOD line to ascertain whether a read or write is to occur. If a register read operation is specified, the drive will gate the contents of the specified register onto the Control Bus and issue TRA. When the RH70 receives TRA, it will gate the control lines onto the Unibus. After a deskew delay, the RH70 asserts SSYN to the processor. When the processor receives the control data and SSYN, it clears MSYN. The clearing of MSYN negates SSYN and DEM. The negation of DEM causes TRA to be negated and completes the operation.

If a register write operation is specified, the RH70 gates the control data onto the Control Bus when it issues DEM. The drive will transfer the data from the Control Bus into the specified drive register and assert TRA, which causes the assertion of SSYN in the RH70. SSYN is transferred to the processor and causes MSYN to be cleared. The clearing of MSYN causes SSYN and DEM to be negated. The negation of DEM causes TRA to be negated to complete the operation.

The Massbus structure allows a register read operation (asynchronous Control Bus) to occur while a data transfer (synchronous Data Bus) is taking place. Any attempt by the RH70 to write a register in a drive performing a data transfer operation (except for the Maintenance and Attention Summary registers) will cause the RP04 Drive to set the Register Modification Refused (RMR) error bit (Chapter 4).

2.6 MASSBUS PHYSICAL DESCRIPTION

The Massbus consists of 56 signals including data, control, status, and parity. These signals are routed between the RH70 and the drives by three 40-conductor flat cables. Since Massbus signal transmission (with exception of the FAIL signal) is accomplished by differential transmitter/receiver pairs, each cable can accommodate 20 differential signals.

On the drive end, the cables are plugged into M5903 Massbus Drive Transceiver modules (slots AB, -4, -5, -6 in the TM02). The last drive has M5903 modules with H870 miniterminators which terminate the bus. On the controller end, each cable plugs into an M5904 Massbus Controller Transceiver module (described in subsequent paragraphs). Each M5904 module in turn plugs into a slot (see Figure 7-1) in the 11/70 backplane to complete the signal path.

Table 2-1 shows the Massbus signals and their associated pin assignments. NOTE

Massbus cables are to be installed per markings on the cables.

	Tab	le 2-1	
Massbus	Signal	Cable	Designations

Cabla	D:		Dolonity	Designation
	Pin	.	Polarity	Designation
Massbus				
Cable A	A	1	-	MASS D00
	В	2	+	
	C	3	+	MASS D01
	D	4	-	
	E	5	-	MASS D02
	F	6	+	
	H	7	+	MASS D03
	J	8	-	
	K	9	-	MASS D04
		10	+	
	M	11	+	MASS D05
		12	-	
		13		MASS COU
	K	14		MASS CO1
	ы Т	15		MASS CUI
		17	_	MASS CO2
		18	1 +	MASS CO2
	w	19	\ <u>+</u>	MASS C03
	x	20	_	
	Y	21	-	MASS C04
	Z	22	1 +	
	AA	23	+	MASS C05
	BB	24	-	
	cc	25	- 1	MASS SCLK
	DD	26	+	
	EE	27	+	MASS RS3
	FF	28	-	
	HH	29	+	MASS ATTN
	JJ	30	-	
	KK	31	-	MASS RS4
	LL	32	+	
	MM	33	-	MASS CTOD
	NN	34	+	
	PP	35	+	MASS WCLK
		36	-	
	SS	37	+	MASS RUN
		38 20	-	CDADE
		39 40		CND
	1 V V	40	1	

*Alternate pin designation schemes

Table 2-1 (Cont) Massbus Signal Cable Designations

Table 2-1 (Cont)Massbus Signal Cable Designations

Cable	Pin*	Polarity	Designation	Cable	Pin*	Polarity	Designation
 Massbus				Massbus			
Cable B	A 1	-	MASS D06	Cable C	A 1	-	MASS D12
	B 2	+			B 2	÷	
	\overrightarrow{C} $\overrightarrow{3}$	+	MASS D07		C 3	+	MASS D13
	D 4	-			D 4	-	
	E 5	-	MASS D08		E 5	-	MASS D14
	F 6	+			F 6	+	
	H 7	+	MASS D09		H 7	+	MASS D15
	J 8	-			J 8	-	
	K 9	-	MASS D10		K 9	-	MASS D16
	L 10	+			L 10	+	
	M 11	+	MASS D11		M 11	+	MASS D17
	N 12	-			N 12		
	P 13	-	MASS C06		P 13		MASS DPA
	R 14	+			R 14	4	
	S 15	+	MASS C07		S 15	+	MASS C12
	T 16	-			T 16		
	U 17	-	MASS C08		U 17		MASS C13
	V 18	+			V 18	+	
	W 19	+	MASS C09		W 19	+	MASS C14
	X 20	-			X 20		
	Y 21	-	MASS C10		Y 21		MASS C15
	Z 22	+			Z 22	+	
	AA 23	+	MASS C11		AA 23	+	MASS CPA
	BB 24	-			BB 24	-	
	CC 25	-	MASS EXC		CC 25		MASS OCC
	DD 26	+			DD 26	+	
	EE 27	+	MASS RS0		EE 27	+	MASS DS0
	FF 28	-			FF 28	-	
	HH 29	+	MASS EBL		HH 29	+	MASS TRA
	JJ 30	-			JJ 30		
	KK 31	-	MASS RS1		KK 31		MASS DS1
	LL 32	+			LL 32	+	
	MM 33	-	MASS RS2		MM 33		MASS DS2
	NN 34	+			NN 34	+	
	PP 35	+	MASS INIT		PP 35	+	MASS DEM
	KK 36	-			KK 36		
	SS 37	+	MASS SPI		55 3/	+	MASS SP2
	TT 38	-	CDADE			 TT	MACCEAT
	00 39		SPAKE		UU 39	n n	MASS FAIL
	VV 40		GND				GND

*Alternate pin designation schemes

*Alternate pin designation schemes

CHAPTER 3 OPERATION AND PROGRAMMING

3.1 GENERAL

Sixteen 16-bit registers are employed to interface the RH70 Massbus Controller to the TM02/TU16 tape system. These registers are loaded and read under program control via the Unibus. The tape system is monitored by status and error indicators in these registers. Figure 3-1 shows the various device registers and their locations. Six of the sixteen registers are located entirely in the RH70 and nine are located entirely in the TM02. The sixteenth register (MTCS1 control and status register) is shared by both the RH70 and the TM02. Bits 15 through 13 and bits 10 through 6 of this register are stored in the RH70 while bits 12, 11, and 5 through 0 are generated by the TM02. Table 3-1 shows the various subsystem registers and their respective addresses. The following paragraphs describe the registers and their bit usage in detail.

3.2 DEFINITIONS

This paragraph describes one of the Massbus signals that are used to operate status information.

Attention Active (ATA) – The ATA bit is a TM02 bit that indicates that the TM02/TU16 requires servicing 1) because it has become ready after completion of a non-data transfer operation, 2) because of an error condition, or 3) because of an important internal status change (Paragraph 3.7.8).

Transfer Error (TRE) – The TRE bit is located in the RH70 and indicates that an RH70 error or a TM02 error has occurred while a data transfer is in progress. Writing a 1 into TRE does not affect the ERR bit in any drive. Similarly, a Drive Clear command does not affect TRE in the RH70.

Special Conditions (SC) – The SC bit indicates that a TRE has occurred or that ATA has set on one of the drives.

 Table 3-1

 RH70 and TM02/TU16 Device Registers

Mnemonic	Register Name	Unibus Address
MTCS1*	Control and Status 1 (shared by RH70 and TM02)	772440
MTWC*	Word Count	772442
MTBA*	Bus Address	772444
MTFC	Frame Count	772446
MTCS2*	Control and Status 2	772450
MTDS	Drive Status	772452
MTER	Error	772454
MTAS	Attention Summary	772456
MTCK.	Check Character	772460
MTDB*	Data Buffer	772462
MTMR	Maintenance	772464
MTDT	DriveType	772466
MTSN	Serial Number	772470
MTTC	Tape Control	772472
MTBAE	Bus Address Extension	772474
MTCS3	Control and Status 3	772476

*RH70 Registers

Ready, Drive Ready (RDY, DRY) - RDY is the "ready" indicator for the RH70 controller. When RDY is asserted, the RH70 is ready to accept a data transfer command. DRY is the "ready" indicator for each drive. To successfully initiate a data transfer command, both of these bits must be asserted. However, a non-data transfer command (e.g., Search, Drive Clear) may be issued to a drive any time DRY is asserted, regardless of the state of the RDY bit.

- bit in the bit location corresponding to it's unit no.
- 3. Location of registers denoted by solid lines; dotted lines are for reference only

MTCS1, MTCS2, MTCS3 - Control and MTWC - Word Count MTBA - Unibus Address MTFC - Frame Count MTDS - Drive Status MTER - Error MTAS - Attention Summary MTCK - Check Character MTDB - Data Buffer MTDB - Data Buffer MTDB - Drive Type MTSN - Serial Number MTTC - Tape Control MTBAE - Bus Address Extension

11-2976

Figure 3-1 Device Registers

When a data transfer command is successfully initiated, both RDY and DRY become negated. When a non-data transfer command (such as Search) is successfully initiated, only the DRY bit becomes negated. Some non-data transfer commands (such as Drive Clear) take so little time to execute, that the program will never see the negation of the DRY bit.

The assertion of RDY after the execution of a data transfer command will not occur until the DRY bit is set and the controller (RH70) is done.

If any command other than Drive Clear is issued to a drive which has ERR (a summary error bit located in each drive) asserted, the command is ignored by the drive. If a data transfer command is issued to a drive that has ERR asserted, the drive does not execute the command, and the missed transfer errox (MXF, bit 9 in the MTCS2 register) occurs in the RH70.

Clearing Methods

Controller Clear – Controller clear is the action of writing a 1 into the CLR control bit (bit 5 of MTCS2). This causes the following to be cleared:

All controller errors (MTCS1 - bits 15 through 13, MTCS2 - bits 15 through 8, MTCS3 - bits 15 through 11).

- b. Data buffer
- c. MTBA Bus Address register and MTBAE Bus Address Extension register.
- d. Unit select U(02:00), IE, BAI, PAT, IPCK 0-3, and DBL.
- e. Errors, function code, and MTDA register in all drives connected to the RH70 (by assertion of the Massbus INIT signal).

RH70 Error Clear – RH70 error clear is the action of writing a 1 into the TRE bit (bit 14 of MTCS1). This causes all controller errors to be cleared (MTCS2 – bits 15 through 8, MTCS1 bits 14 and 13, and MTCS3 – bits 15 through 11).

Drive Clear – Drive Clear is a command code (11_8) that causes errors and the function code to be cleared in the drive selected by U(02:00).

Table 3-2 shows the various methods used to clear the magnetic tape system.

				RES	ULTS	
Action	Clear All RH70 Errors	Clear Data Buffer	Clear BA, BAE, U(02:00), IE, PAT, BAI, IPCK, DBL	Assert Massbus INIT	Clear GO, ATA, ERR, and errors in the drive	Clear SSC
Unibus INIT (Reset instruction execution or console reset)	x	x	x	x	X (all 8 drives)	X (all 8 transports)
Controller Clear (Bit 5 in MTCS2←1)	x	х	x	x	X (all 8 drives)	X (all 8 transports)
Issue a Data Transfer command (with GO=1)	x	x				
RH70 Error Clear (Bit 14 in MTCS1←1)	x					
Drive Clear (Function code with $GO = 11_8$)					X (selected drive only)	X (selected transport only)

 Table 3-2

 Results of Program-Controlled Clearing

3.3 INTERRUPT CONDITIONS

The RH70 generates an interrupt in the PDP-11 CPU due to the following conditions:

a. Upon termination of a data transfer (if interrupt enable is set when the RH70 becomes "ready").

Interrupt=(RDY←1)•(IE)

b. Upon assertion of attention or occurrence of a controller error (while the controller is not busy and interrupt enable is set).

Interrupt=(SC←1) • (RDY) • (IE)

c. When the program writes 1s into IE and RDY in MTCS1 at the same time.

Interrupt=(IE←1) • (RDY←1)

CAUTION

Read-Modify-Write instruction (BIS, BIC, etc.) to MTCS1 with IE bit set will cause an immediate interrupt.

Read-Modify-Write instruction (BIS, BIC, etc.) to MTCS3 with the IE bit set will not cause an immediate interrupt. In these cases, the interrupt will occur upon normal completion of the operation.

3.4 TERMINATION OF DATA TRANSFERS

A data transfer that has been successfully started may terminate in the following ways:

Assertion of RDY – This is the normal termination and is caused by detection of the inter record gap.

Controller Error – An error is asserted in the MTCS register as indicated below:

Bit		Error Class
15	DLT (Data Late)	Α
14	WCE (Write Check Error)	Α
13	PE (Parity Error)	Α
12	NED (Nonexistent Drive)	Α
11	NEM (Nonexistent Memory)	Α
10	PGE (Program Error)	Α
9	MXF (Missed Transfer Error)	В
8	MDPE (Massbus Data Parity Error)	Α

Any of these errors sets TRE. The RH70 terminates th data transfer immediately, but waits for DRY which occur at the inter-record gap before becoming Ready.

Drive Error – An error occurs in the drive. The drive set ERR in the MTDS register and at least one bit in the MTEl register. The ERR bit causes TRE, SC, RDY, DRY, and th ATA bit to be asserted.

Program-caused Abort – By performing a controller clea or a reset instruction, the program can cause Massbus INI to be asserted by the RH70, which aborts all operations o all drives attached to the controller. (A program-cause abort can also be caused by Drive Clear.) Status and errc information is lost when any of the above conditions occur The RH70 and TM02/TU16 become Ready immediately.

3.5 TWU16 COMMANDS

TWU16 commands are classified as data transfer or non data transfer commands. Table 3-3 lists all the command with a brief description of each. Before a command i initiated, certain parameters are specified by the program for each command. These parameters are listed in Table 3-4. For example, in an Erase operation, it is only necessary to specify the TMO2 and the TU16.
Function Code F(0-5) (octal)	Operation	Description
01	No Op	Performs no operation. Clears GO bit in Control register.
03	Rewind Off-line*	1. Initiates a rewind on selected transport and places it off-line.
		2. Clears GO bit.
		3. Sets the following bits in the Status register:
		Drive Ready (DRY) Slave Status Change (SSC) Attention Active (ATA)
		Rewind off-line causes one interrupt only indicating rewind underway and transport off-line.
07	Rewind	1. Initiates a rewind to BOT marker on selected transport and clears the GO bit.
		2. Sets DRY, PIP, and ATA bits in the Status register during rewind.
		3. When BOT is sensed, sets SSC and clears PIP.
		Rewind causes two interrupts:
		a. Rewind underway
		b. SSC when BOT is sensed (rewind 'job done').
11 .	Drive Clear	Similar to Initialize. Resets all TM02 and selected transport logic only. Does not affect unselected transports.
25	Erase	Erases approximately 3 in. of tape. Clears GO bit and sets ATA on termination.
27	Write Tape Mark	Writes a special tape record on the selected transport. Clears GO bit and sets ATA bit on termination (Para- graph 1.6.1.2).
31	Space Forward	Moves tape forward (toward EOT) on the selected transport over the number of records specified by the Frame Count register. Aborts space operation if TM or EOT is detected prior to specified frame count. Clears GO bit and sets ATA on termination.

Table 3-3						
Command	Function	Codes				

*Requires manual intervention to return transport on-line.

Function Code F(0-5) (octal)	Operation	Description
33	Space Reverse	Moves tape in reverse (toward BOT) on the selected transport over the number of records specified by the Frame Count register. Aborts space operation if TM or BOT is detected prior to specified frame count. Clears GO bit and sets ATA on termination.
51	Write Check Forward	Does a word-by-word comparison of specified memory locations with the tape record read from tape in the forward direction.
57	Write Check Reverse	Same as write-check forward except for reverse tape motion.
61	Write Forward	Writes forward one tape record on the selected transport. Record length is determined by Frame Count register. Clears GO bit on command termination.
71	Read Forward	Reads forward one tape record on the selected transport. Clears GO bit on command termination.
77	Read Reverse	Reads reverse one tape record on the selected transport. Clears GO bit on command termination.
		NOTE Do not use this mode unless whole PDP-11 data words were written in the record.

Table 3-3 (Cont)Command Function Codes

3.5.1 Non-Data Transfer Commands

Non-data transfer commands do not cause the RH70 to become busy (RDY asserted). Therefore, other commands can be issued to other drives while a non-data transfer command is in progress. A non-data transfer command is terminated when the Attention bit for the specified drive is asserted. The assertion of the Attention bit, upon completion of a non-data transfer command, will cause an interrupt if the IE bit is set and RDY is asserted.

3.5.2 Data Transfer Commands

Data transfer commands cause the RH70 to become busy (RDY negated). No other commands can be issued while a data transfer command is in progress. Termination of a data transfer command is indicated by the re-assertion of RDY. Assertion of RDY, upon completion of a data transfer command, will cause an interrupt if IE is set. If a data transfer and a non-data transfer command are in progress (on different drives), an interrupt will occur only on the assertion of RDY even though the Attention bit (asserted on completion of the non-data transfer command) may be asserted before the RDY bit. Data transfer commands are read, write, and write check and cause the transfer of data over the data bus (synchronous) portion of the Massbus. The parameters specified by the program during the issuance of these commands are described as follows:

Bus Address – The bus address represents the starting memory location that the data will be read from (for a write) or written into (for a read). The address occupies the 16 bits of the MTBA bus address register and six bits of the MTBAE bus address extension register.

Selected TM02 Tape Controller – The TM02 is selected by writing the MTCS2 register in the RH70. Bits 0 through 2 of the register are the unit select bits that specify the desired TM02.

Word Count – The word count is a count of the number of words to be transferred to or from the tape drive. The MTWC word count register is loaded with the two's complement of the number of words to be transferred and is incremented toward zero for each word transferred to or from memory. Overflow to zero terminates the Unibus transfer.

Frame Count – The MTFC frame count register specifies the number of frames (bytes) to be written on tape. Each sixteen-bit PDP-11 word is divided into two frames. Consequently, the frame count register is loaded with twice the number in the MTWC register for normal or 15 mode or four times the number in the MTWC register for core dump mode. The frame count register is loaded with the two's complement of the number of frames to be written. Overflow to zero terminates transfers on the slave bus. Since the frame count register is located in the TM02 tape controller, writing this register requires the RH70 to perform a Massbus cycle. If the frame count register overflows before word count, the transfer may be terminated by FCE (see below). If word count overflows before frame count, the rest of the record is zero-filled.

Normally, the frame count register is set to twice the word count in normal and 15 mode. In core dump mode, the frame count is set to four times the word count. If less than two frames of the last word are desired in normal or 15 mode, the frame count register may be loaded with an odd number. If less than four frames of the last word are desired in core dump mode, the frame count register may be loaded to 1, 2, or 3 less than four times the word count. For example, if 21 frames were to be transferred in normal mode, the frame count register is set to the two's complement of 21 and the word count register is set to the two's complement of 11. Frame count would overflow before word count and the last byte would be transferred as Os. No FCE occurs in this case. Frame count need not be specified in a read operation or a write-check operation and is automatically reset in these cases. At the end of a read or write-check operation, the frame count is equal to the number of frames read from tape.

Selected Tape Transport, Format Character Packing and Tape Density – These parameters are specified by the program by writing the MTTC tape control register. Bits 0 through 2 of this register are slave select bits which select the appropriate tape transport (designated slave). Bits 4 through 7 of this register are the format select bits which specify Massbus-to-tape character formatting during a write (or tape character-to-Massbus formatting during a read operation). Bits 8 through 10 of this register specify the tape density (phase-encoded or one of four possible non return-to-zero formats).

3.5.2.1 Write Data Transfer – After the above parameters are specified, the data transfer is initiated by loading a write command function code in the MTCS1 register in the RH70 and setting the GO bit. This process logically connects the data portion (synchronous) of the TM02 to the RH70 as this is the path that the data will be transferred over.

Memory cycles are initiated by the RH70 and the data words from memory are transferred to the input of the data buffer (Figure 1-5).

For each data word transferred, the word count is incremented by 1 and the bus address is incremented by 2. If double words are transferred, the bus address is incremented by 4. The data words are clocked into and "bubble" through the data buffer. When the first data word reaches the top, it is automatically clocked into the output buffer (OBUF). When the data buffer is filled and a word is in OBUF, the RH70 asserts the RUN signal which signals the TM02 to begin assembling characters and writing on tape.

The TM02 accepts the first data word, converts it into two tape characters, and outputs it to the TU16 tape transport. It then sends a sync clock (SCLK) signal to the RH70 requesting another data word. The RH70 receives SCLK and echoes it back as write clock (WCLK) along with the next data word. The TM02 assembles this into two tape characters, transfers it to the TU16, and issues another SCLK. The process continues until frame count overflow is detected indicating that the desired number of characters have been transferred.

NOTE

If the word count register is set to *less* than twice the frame count, word count overflow will occur first. This causes the un line to be negated and will cause 0s to be written in the rest of the record. If the word count register is set to *more* than twice the word count, frame count overflow will occur first and may cause a frame count error (FCE).

Command	Word Count	Slave Select	Frame Count	Bus Ad- dress/Ext.	Unit Select	Density	Format	Function Code GO
Read, Read Reverse	x	x		x	х	х	х	Х
Write	x	x	x	x	х	x	х	х
Write-check, Write Check Reverse	x	x		x	х	х	х	Х
Space		x	x		x	х	9	х
Erase		x			х			х
Rewind, Rewind Off-line		x			х			х
Write Tapemark		x			х	х		x
NOP								x
Drive Clear		x			х		1	x

Table 3-4TWU16 Commands and Required Parameters

Notes: (1) Frame count for a space operation is loaded with 2's complement of number of records to be spaced.

> (2) GO bit must be loaded last. The order of specifying the other parameters is immaterial.

3.5.2.2 Read Data Transfer – In a read operation, the data words are transferred from the tape drive to memory via the TM02 and RH70 and cache. The data path functionally consists of the TM02/TU16, RH70 data buffer, cache memory and main memory (Figure 1-5).

The data transfer is initiated by loading a Read command function code in the MTCS1 register in the RH70 and setting the GO bit. This process logically connects the data portion (synchronous) of the TM02 to the RH70 as this is the path that the data will be transferred over.

The Run line is asserted by the RH70 and when the tape is up to speed, the TM02 receives two tape characters from the TU16 tape transport, assembles them into a 16-bit word, and sends it to the RH70 data buffer accompanied by SCLK. When the data word sequences through the data buffer to OBUF, the RH70 initiates a memory request to

(3) X indicates that the item must be specified, e.g., word count specified for read, write, and write check.

main memory via cache. When memory is ready, it wat accept the data.

The TM02 waits for the next two characters and, on the negation of SCLK, transfers the second word to the RH7 The process continues until the inter-record gap is detecte. At this point, the TM02 sends EBL to the RH70 terminate the data transfer.

NOTE

If the Word Count register overflows before the inter-record gap, only the number of words designated in the Word Count register will be transferred. In this case, the RH70 will ignore the remaining words and wait for EBL in the drive to terminate the data transfer. If EBL occurs before word count overflow, a frame count error (FCE) is flagged. **3.5.2.3** Write-Check Data Transfer – The third type of data transfer is a write-check and is initiated when a write-check function is specified in the MTCS1 register and the GO bit is set. In this operation, a record which has previously been written onto the tape is read from the tape. This data is compared to the data in memory originally used to write on the tape. The comparison is accomplished by Exclusive OR gates, and if any of the bits fail to compare, a write-check error occurs. This method allows automatic verification that the data on tape agrees with the contents of memory.

3.5.2.4 Data Transfer Rates – The data transfer rate from the drive is determined by the frequency of the data on tape. The basic data transfer rates are listed below:

PE	$1600 \text{ BPI} - 14 \mu\text{s/character}$
	800 BPI – 28 μ s/character
NRZ	556 BPI – 40 μ s/character
	200 BPI – 112 μ s/character

3.6 **REGISTER DESCRIPTIONS**

The following paragraphs provide a description of each bit in the RH70 and TM02 registers. Figure 3-2 shows each register and the associated bits in each register.

3.6.1 Control and Status 1 (MTCS1) Register (772440)

This register is utilized by both the controller and the mass storage device to store the device commands and hold operational status. Register bits 0 through 5, 11, and 12 are dedicated for use by the drive and are physically located in each drive attached to the controller. When reading or writing this register, the selected drive (indicated by bits 2 through 0 in the MTCS2 register) will respond in those bit positions.

When the program reads, writes a word, or writes the low byte of this register, a register cycle will be initiated to the selected drive over the Massbus. If the unit selected does not exist or respond, a NED (non-existing drive) error will result. The program may, however, write the upper byte of this register without regard to the unit selected and without affecting any drive.

Register bits 0 through 5 indicate the command to be performed and are actually stored in the selected drive. The controller will always interrogate the command code being passed to the drive by the program and will prepare for the appropriate memory cycle required by data transfer operations. Data transfer command codes are designated by 51_8 through 77_8 (always odd since the GO bit must be asserted to execute the function) and will cause the controller to become busy (RDY negated) until the completion of the operation. When the controller is busy, no further date transfer commands may be issued (see PGE bit 10 i MTCS2). Non-data transfer commands, however, may the issued at any time and to any drive which is not busy.

While a data transfer is in progress, unit select bits U(02:00) in the MTCS2 register may be changed by the program t issue a non-data transfer command to another drive. Th will not affect the data transfer.

When a non-data transfer command code is written int MTCS1 while a data transfer is taking place, only the eve (low) byte of MTCS1 should be written. This will prever the program from unintentionally changing MTCS1 statu bits (A16, A17) if the transfer is completed just before th register is written. (While the RDY bit is negated, the RH7 prevents program modification of these control bits eve when the write is done into the odd byte.)

Figure 3-3 shows the MTCS1 bit format and Table 3-provides a description of each bit.

3.6.2 Word Count (MTWC) Register (772442)

This register is loaded by the program with the 2 complement of the number of words to be transferre. During a data transfer, it is incremented by 1 each time word is transmitted to or from memory.

Figure 3-4 shows the MTWC bit format, and Table 3 provides a description of each bit.

3.6.3 Bus Address (MTBA) Register (772444)

This device register is used by the RH70 to address th memory location in which a transfer is to take place. Th MTBA register forms the lower 16 bits of address which combine with MTBAE bits 05 through 00 to create th 22-bit memory address. This register should be loaded t the program with the starting memory address. Durir forward operations, this register is loaded with the lowe value memory address, while in reverse operations, th register is loaded with the highest value memory addres Each time a data transfer is made, the register is incr mented by 2. If a double data word is transferred, th register is incremented by 4. For read reverse operation the register is decremented by two for a single word da transfer or four for a double word transfer. If the BAI (B) Address Increment Inhibit) bit (bit 03 of MTCS2) is set, th incrementing of the MTBA register is inhibited and a transfers take place to or from the starting memory addres Figure 3-5 shows the MTBA bit usage, and Table 3 provides a description of each bit.

		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MTCS1	772440	sc	TRE	MCPE	ο	DVA	0	A17	A16	RDY	IE	F4	F3	F2	F1	FØ	GO
	(Table 3-5)																
мтус	772442	wc	wc	wc	wc	wc	WC	WC	WC	WC	WC	WC	wc	wc	wc	wc	wc
	(Table 3-6)	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
MTRA	772444	ΒА	ΒА	BA	ΒА	BA	BA	BA	ΒА	ΒА	BA	BA	ΒА	ΒА	BA	BA	ВА
	(Table 3-7)	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
MTEO	772446	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC	FC
MIFC	(Table 3-8)	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
	772450																
MTCS2	(Table 3-9)	DLT	WCE	PE	NED	NEM	PGE	MXF	MDPE	OR	IR	CLR	PAT	BAI	02	01	00
	772452																
MTDS	(Table 3-10)	ΑΤΑ	ERR	PIP	MOL	WRL	ЕОТ	Ø	DPR	DRY	SSC	PES	SDWN	IOB	тм	вот	SLA
	772454						<u></u>				TNC						
MTER	(Table 3-11)	CRC	UNS	OPI	DTE	NEF	ITM	FCE	NSG	LRC	VPE	DPAR	FMT	CPAR	RMR	ILR	ILF
	772456									ΔΤΑ	ΔΤΑ	ΔΤΔ	ΔΤΛ	ΑΤΑ	ΔΤΔ	ATA	ΑΤΑ
MTAS	(Table 3-13)	Ø	ø	Ø	Ø	ø	ø	Ø	ø	07	Ø6	05	04	03	02	Ø1	00
														_			
	772460			r				r	CRCP	CRCZ	CRC6	CRC5	CRC4	CRC3	CRC2	CRCI	CRCØ
мтск	772460 (Table 3-14)	Ø	ø	ø	Ø	ø	ø	ø		CRC7		CRC5	CRC4 / DT4	CRC3	CRC2	CRC1	CRCØ
мтск	772460 (Table 3-14)	Ø	Ø	ø	Ø	Ø	0	0		CRC7 / DT7	CRC6 DT6	CRC5 DT5	CRC4 / DT4	CRC3 / DT3	CRC2 / DT2	CRC1	CRCØ DTØ
мтск мтов	772460 (Table 3-14) 772462 (Table 3-15)	Ø DB 15	Ø DB 14	Ø DB 13	Ø DB 12	Ø D8 11	Ø DB 10	Ø DB O9	CRCP DTP DB 08	CRC7 DT7 DB 07	CRC6 DT6 DB 06	CRC5 DT5 DB 05	CRC4 DT4 DB 04	CRC3 / DT3 DB O3	CRC2 / DT2 DB O2	CRC1 DT1 DB O1	CRCØ DTØ DB ØØ
МТСК МТОВ	772460 (Table 3-14) 772462 (Table 3-15)	Ø DB 15	Ø DB 14	Ø DB 13	Ø DB 12	Ø DB 11	Ø DB 10	Ø DB 09	CRCP DTP DB 08	CRC7 DT7 DB 07	CRC6 DT6 DB 06	CRC5 DT5 DB O5	CRC4 DT4 DB 04	CRC3 DT3 DB 03	CRC2 DT2 DB 02	CRC1 DT1 DB O1	CRCØ DTØ DB ØØ
MTCK MTDB MTMR	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-15)	Ø DB 15 MDF	Ø DB 14 MDF	Ø DB 13 MDF	Ø DB 12 MDF	Ø DB 11 MDF	Ø DB 10 MDF	Ø DB O9 MDF	CRCP DTP DB 08 MDF	DT7 DT7 DB 07 MDF	CRC6 DT6 DB 06 200 BPI	CRC5 DT5 DB 05 MC	CRC4 DT4 DB 04 MOP	CRC3 / DT3 DB O3 MOP	CRC2 DT2 DB 02 MOP	CRC1 DT1 DB 01 MOP	CRCØ DTØ DB ØØ
MTCK MTDB MTMR	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16)	Ø DB 15 MDF Ø8	0 DB 14 MDF 07	Ø DB 13 MDF Ø6	0 DB 12 MDF 05	Ø DB 11 MDF Ø4	Ø DB 10 MDF Ø3	Ø DB O9 MDF Ø2	CRCP DTP DB 08 MDF Ø1	CRC7 DT7 DB 07 MDF ØØ	CRC6 DT6 DB 06 BPI CLK	DT5 DT5 DB O5 MC	CRC4 DT4 DB 04 MOP Ø3	CRC3 DT3 DB 03 MOP Ø2	DT2 DB 02 MOP Ø1	CRC1 DT1 DB 01 MOP ØØ	CRCØ DTØ DB ØØ
MTCK MTDB MTMR MTDT	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466	Ø DB 15 MDF Ø8 NSA	Ø DB 14 MDF Ø7	Ø DB 13 MDF Ø6 MOH	0 DB 12 MDF 05 7CH	Ø DB 11 MDF Ø4 DRQ	Ø DB 10 MDF Ø3	Ø DB 09 MDF Ø2	CRCP DTP DB 08 MDF Ø1	CRC7 DT7 DB 07 MDF ØØ	CRC6 DT6 DB 06 200 BPI CLK	CRC5 DT5 DB O5 MC	CRC4 DT4 DB 04 MOP Ø3 DT	CRC3 DT3 DB 03 MOP Ø2 DT	CRC2 DT2 DB 02 MOP Ø1 DT	CRC1 DT1 DB 01 MOP ØØ DT	CRCØ DTØ DB ØØ MM
MTCK MTDB MTMR MTDT	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17)	Ø DB 15 MDF Ø8 NSA	Ø DB 14 MDF Ø7 TAP	Ø DB 13 MDF Ø6 MOH	0 DB 12 MDF 05 7CH	Ø DB 11 MDF Ø4 DRQ	Ø DB 10 MDF Ø3 SPR	0 DB 09 MDF 02 0	DTP DB O8 MDF Ø1 DT Ø8	CRC7 DT7 DB 07 MDF ØØ DT Ø7	CRC6 DT6 O6 200 BPI CLK DT Ø6	CRC5 DT5 DB O5 MC DT Ø5	CRC4 DT4 DB 04 MOP Ø3 DT Ø4	CRC3 DT3 DB 03 MOP Ø2 DT Ø3	CRC2 DT2 DB 02 MOP Ø1 DT Ø2	CRC1 DT1 DB 01 MOP ØØ DT Ø1	CRCØ DTØ ØØ MM DT ØØ
MTCK MTDB MTMR MTDT MTSN	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470	Ø DB 15 MDF Ø8 NSA SN	Ø DB 14 MDF Ø7 TAP	Ø DB 13 MDF Ø6 MOH	0 DB 12 MDF 05 7CH	Ø DB 11 MDF Ø4 DRQ SN 11	Ø DB 10 MDF Ø3 SPR SN	Ø DB O9 MDF Ø2 Ø SN	CRCP DTP DB 08 MDF Ø1 DT Ø8 SN	CRC7 DT7 DB 07 MDF ØØ DT Ø7 SN 07	CRC6 DT6 O6 200 BPI CLK DT Ø6 SN	CRC5 DT5 DB O5 MC DT Ø5 SN	CRC4 DT4 DB 04 MOP Ø3 DT Ø4 SN	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02	CRC1 DT1 DB 01 MOP ØØ DT Ø1 SN 01	CRCØ DTØ DB ØØ MM DT ØØ
MTCK MTDB MTMR MTDT MTSN	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470 (Table 3-18)	Ø DB 15 MDF Ø8 NSA SN 15	0 DB 14 MDF 07 TAP SN 14	Ø DB 13 MDF Ø6 MOH SN 13	Ø DB 12 MDF Ø5 7CH SN 12	Ø DB 11 MDF Ø4 DRQ SN 11	Ø DB 10 MDF Ø3 SPR SN 10	Ø DB O9 MDF Ø2 Ø SN O9	CRCP DTP DB 08 MDF Ø1 DT Ø8 SN 08	CRC7 DT7 DB 07 MDF ØØ DT Ø7 SN 07	CRC6 DT6 DB 06 2000 BPI CLK DT Ø6 SN 06	CRC5 DT5 DB O5 MC DT Ø5 SN O5	CRC4 DT4 DB 04 MOP Ø3 DT Ø4 SN 04	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02	CRC1 DT1 DB 01 MOP 00 DT 01 SN 01	CRCØ DTØ DB ØØ MM DT ØØ SN ØØ
MTCK MTDB MTMR MTDT MTSN	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470 (Table 3-18) 772472	Ø DB 15 MDF Ø8 NSA SN 15	Ø DB 14 MDF 07 TAP SN 14	Ø DB 13 MDF Ø6 MOH SN 13	Ø DB 12 MDF Ø5 7CH SN 12 EAO	0 DB 11 MDF 04 DRQ SN 11	Ø DB 10 MDF Ø3 SPR SN 10 DEN	Ø DB 09 MDF Ø2 Ø SN 09 DEN	CRCP DTP DB 08 MDF 01 DT 08 SN 08 DEN	CRC7 DT7 DB 07 MDF 00 DT 07 SN 07 FMT SFI	CRC6 DT6 DB 06 BPI CLK DT 06 SN 06 FMT SFI	CRC5 DT5 DB 05 MC DT 05 SN 05 SF SFI	CRC4 DT4 DB 04 Ø3 DT Ø4 SN 04 FMT SEI	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03 EV	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02 SS	CRC1 DT1 D8 01 MOP ØØ DT Ø1 SN 01 SS	CRCØ DTØ DB ØØ MM DT ØØ SN ØØ
MTCK MTDB MTMR MTDT MTSN MTTC	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470 (Table 3-18) 772472 (Table 3-19)	Ø DB 15 MDF Ø8 NSA SN 15	Ø DB 14 MDF 07 TAP SN 14 TCW	Ø DB 13 MDF Ø6 MOH SN 13	Ø DB 12 MDF Ø5 7CH SN 12 EAO DTE	Ø DB 11 MDF Ø4 DRQ SN 11	Ø DB 10 MDF Ø3 SPR SN 10 DEN Ø2	Ø DB O9 MDF Ø2 Ø SN O9 DEN Ø1	CRCP DTP DB 08 MDF Ø1 DT Ø8 SN 08 DEN ØØ	CRC7 DT7 DB 07 MDF ØØ DT Ø7 SN 07 FMT SEL Ø3	CRC6 DT6 DB 06 BPI CLK DT 06 SN 06 FMT SEL Ø2	CRC5 DT5 DB 05 MC DT 05 SN 05 FMT SEL 01	CRC4 DT4 DB 04 MOP Ø3 DT Ø4 SN 04 FMT SEL ØØ	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03 EV PAR	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02 SS 2	CRC1 DT1 DB 01 MOP 00 DT 01 SN 01 SS 1	CRCØ DTØ DB ØØ MM ØØ SN ØØ
MTCK MTDB MTMR MTDT MTSN MTTC	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470 (Table 3-18) 772472 (Table 3-19)	Ø DB 15 MDF Ø8 NSA SN 15 ACCL	Ø DB 14 MDF 07 TAP SN 14 TCW	Ø DB 13 MDF Ø6 MOH SN 13 FCS	Ø DB 12 MDF Ø5 7CH SN 12 EAO DTE	0 DB 11 MDF 04 DRQ SN 11 0	Ø DB 10 MDF Ø3 SPR SN 10 DEN Ø2	Ø DB O9 MDF Ø2 Ø SN O9 DEN Ø1	CRCP DTP DB 08 MDF 01 DT 08 SN 08 DEN 00	CRC7 DT7 DB 07 MDF 00 DT 07 SN 07 SN 07 FMT SEL 03	CRC6 DT6 DB 06 PPI CLK DT 06 SN 06 FMT SEL Ø2	CRC5 DT5 DB 05 MC 05 SN 05 FMT SEL 01	CRC4 DT4 DB 04 03 DT 04 SN 04 SN 04 FMT SEL 00	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03 EV PAR	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02 SS 2	CRC1 DT1 DB 01 MOP ØØ DT 01 SN 01 SS 1	CRCØ DTØ DB ØØ MM DT ØØ SN ØØ
MTCK MTDB MTMR MTDT MTSN MTTC MTBA	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470 (Table 3-18) 772472 (Table 3-19) able 3-20)	Ø DB 15 MDF Ø8 NSA SN 15 ACCL	Ø DB 14 MDF 07 TAP SN 14 TCW	Ø DB 13 MDF Ø6 MOH 13 FCS	Ø DB 12 MDF Ø5 7CH SN 12 EAO DTE	0 DB 11 MDF 04 DRQ SN 11 0 0	Ø DB 10 MDF Ø3 SPR SN 10 DEN Ø2	Ø DB 09 MDF Ø2 Ø SN 09 DEN Ø1	CRCP DTP DB 08 MDF Ø1 DT Ø8 SN 08 DEN Ø0	CRC7 DT7 DB 07 MDF Ø0 DT 07 SN 07 SN 07 SN 07	CRC6 DT6 DB 06 200 BP1 CLK DT 06 SN 06 SN 06 FMT SEL SØ2 0	CRC5 DT5 DB 05 MC 05 SN 05 SN 05 FMT SEL 01	CRC4 DT4 DB 04 04 04 04 SN 04 SN 04 SN 04 FMT SEL 00	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03 EV PAR	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02 SN 02 SN 02 A18	CRC1 DT1 DB 01 00 00 DT 01 SN 01 SS 1 A17	CRC2 DT0 DB 00 MM DT 00 SN 00 SS 0 A16
MTCK MTDB MTMR MTDT MTSN MTTC MTBA (1	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-16) 772470 (Table 3-18) 772472 (Table 3-19) E 772474 able 3-20)	Ø DB 15 MDF Ø8 NSA SN 15 ACCL 0	Ø DB 14 MDF Ø7 TAP SN 14 TCW	Ø DB 13 MDF Ø6 MOH 13 FCS 0	Ø DB 12 MDF Ø5 7CH SN 12 EAO DTE 0	0 DB 11 MDF 04 DRQ SN 11 0 0 0	Ø DB 10 MDF Ø3 SPR SN 10 DEN Ø2 O	Ø DB 09 MDF Ø2 Ø SN 09 DEN Ø1	CRCP DTP DB 08 MDF Ø1 DT Ø8 SN 08 DEN ØØ	CRC7 DT7 DB 07 MDF Ø0 DT 07 SN 07 FMT SEL Ø3	CRC6 DT6 DB 06 PD1 06 PD1 06 SN 06 FMT SEL 02 0	CRC5 DT5 DB 05 MC 05 SN 05 FMT SEL 01 A21	CRC4 DT4 DB 04 04 04 SN 04 SN 04 FMT SEL 00	CRC3 DT3 DB 03 MOP Ø2 DT Ø3 SN 03 EV PAR	CRC2 DT2 DB O2 MOP Ø1 DT Ø2 SN O2 SS 2 A18	CRC1 DT1 DB 01 MOP ØØ DT Ø1 SN 01 SS 1 A17	CRCØ DTØ DB ØØ MM ØØ SN ØØ SS Ø A16
MTCK MTDB MTMR MTDT MTSN MTTC MTBA (1 MTCS3 (1	772460 (Table 3-14) 772462 (Table 3-15) 772464 (Table 3-16) 772466 (Table 3-17) 772470 (Table 3-19) 6772474 able 3-20) 6772476 able 3-21)	Ø DB 15 MDF Ø8 NSA SN 15 ACCL Q	Ø DB 14 MDF Ø7 TAP SN 14 TCW O O	Ø DB 13 MDF Ø6 MOH SN 13 FCS O DPE LO	Ø DB 12 MDF Ø5 7CH SN 12 EAO DTE 0	Ø DB 11 MDF Ø4 DRQ SN 11 Ø 0 WCE LO	Ø DB 10 MDF Ø3 SPR SN 10 DEN Ø2 O	Ø DB 09 MDF Ø2 Ø SN 09 DEN Ø1 0	CRCP DTP DB 08 MDF Ø1 DT Ø8 SN 08 DEN ØØ 0	CRC7 DT7 DB 07 MDF 00 DT 07 SN 07 SN 07 FMT SEL 03 0	CRC6 DT6 DB 06 200 BP1 CLK DT 06 SN 06 SN 06 FMT SEL 02 0 0	CRC5 DT5 DB 05 MC DT 05 SN 05 SN 05 FMT SEL 01 A21	CRC4 DT4 DB 04 04 04 SN 04 SN 04 SN 04 FMT SEL 00 0	CRC3 DT3 DB 03 MOP 02 DT 03 SN 03 EV PAR A19 IPCK 3	CRC2 DT2 DB 02 MOP Ø1 DT Ø2 SN 02 SS 2 A18 IPCK 2	CRC1 DT1 DB 01 DT 01 SN 01 SS 1 A17 A17	CRCØ DTØ DB ØØ DT ØØ SN ØØ A16 IPCK 0

Figure 3-2 RH70/TM02 Register Summary

	Bit	Set By/Cleared By	Remarks
15	SC Special condition Read only	Set by TRE, ATTN, or Massbus con- trol parity error. Cleared by Unibus INIT, controller clear, or by removing the ATTN condition.	SC=TRE+ATTN+MCPE
14	TRE Transfer error Read/write	Set by DLT, WCE, PE, NED, NEM, PGE, MXF, MDPE, or a drive error during a data transfer. Cleared by Unibus INIT, controller clear, RH70 error clear, or by loading a data transfer command with GO set.	TRE=DLT+WCE+PE+NED+NEM +PGE+MXF+MDPE+(EXCP•EBL)
13	MCPE Massbus control bus parity error Read only	Set by parity error on Massbus control bus while reading a remote register (located in the drive). Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with the GO bit set.	Parity errors that occur on the Massbus control bus while writing a drive register are detected by the drive and cause the PAR error (MTER regis- ter, bit 03) to set. Parity checking occurs at the completion of the regis- ter cycle (an MCPE, when reading the MTCS1 register, would not be indi- cated on the same cycle).
12	Not used	Always read as a 0.	
11	DVA Drive available Read only	Always a 1 in the TM02 when read from an existing drive. Unit number in MTCS2 is an existing drive.	Used in dual port drive applications.
10	Not used	Always read as a 0.	
09 08	A17 A16 Unibus address Read/write	Upper extension bits of the MTBA register. Cleared by Unibus INIT, con- troller clear or by writing 0s in these bit positions.	These bits cannot be modified while the RH70 is performing a data transfer (RDY negated). Incremented by a carry from the MTBA register during data transfers to/from memory. These bits can also be set/cleared through the MTBAE register.

 Table 3-5

 Control and Status 1 Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
07	RDY Ready Read only	RDY normally=1. During data trans- fers, RDY=0. The assertion of RDY (transfer complete or TRE) will cause an interrupt if IE=1.	Indicates controller status. When set, the controller will accept any com- mand. When cleared, the controller is performing a data transfer command and will allow only non-data transfer commands to be executed.
06	IE Interrupt enable Read/write	IE is a control bit which can be set only under program control. When IE=1, an interrupt may occur due to RDY or ATTN being asserted (Para- graph 3.4). Cleared by Unibus INIT, controller clear, or automatically cleared when an interrupt is recog- nized by the CPU. When a 0 is written into IE by the program, any pending interrupts are cancelled.	A program-controlled interrupt may occur by writing 1s into IE and RDY at the same time. This bit can be set/cleared through the MTCS3 regis- ter.
05-0	00 F4—F0 and GO bit Read/write	F4-F0 are function (command) code control bits that determine the action to be performed by the RH70 and TM02/TU16 as shown below.F4 F3 F2 F1 F0 GOFunction010001No operation0300011Rewind off-line070011Rewind1101001250101Drive clear2501011250101Space forward33011013301101330111Write theck forward57101177111177111177111177111transfere <tr <tr=""><t< td=""><td>The function code bits are stored in the selected drive. Data transfer com- mands, defined as F4·(F3+F2), always cause the RH70 to become busy. (RDY negated.) All other commands are ignored by the RH70 Controller.</td></t<></tr>	The function code bits are stored in the selected drive. Data transfer com- mands, defined as F4·(F3+F2), always cause the RH70 to become busy. (RDY negated.) All other commands are ignored by the RH70 Controller.
The function code bits are stored in the selected drive. Data transfer com- mands, defined as F4·(F3+F2), always cause the RH70 to become busy. (RDY negated.) All other commands are ignored by the RH70 Controller.			

 Table 3-5 (Cont)

 Control and Status 1 Register Bit Assignments

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
wc															
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00

CP-1326

Figure 3-4 Word Count Register Bit Usage

 Table 3-6

 Word Count Register Bit Assignments

Bit	Set By/Cleared By	Remarks
15–00 WC Word count Read/write	Set by the program to specify the number of words to be transferred (2's complement form). This register is cleared only by writing 0s into it.	Incremented for each word transferred to or from memory.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
BA	ВА	BA	BA	BA	BA	ВА	BA	BA	BA	BA	ВА	BA	BA	BA	0
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	

CP-1327

Figure 3-5 Bus Address Register Bit Usage

Bus Address Register Bit Assignments										
Bit	Set By/Cleared By	Remarks								
15– BA 15–01 01 Bus address Read/write	Loaded by the program to specify the starting memory address of a transfer. Cleared by Unibus INIT or by con- troller clear.	The MTBA register is incremented or decremented by 4 for each double data word transferred to or from memory. For single-word operation, the register is incremented or decre- mented by 2.								
00	Not used.	Always read as a 0.								

Table 3-7Bus Address Register Bit Assignments

3.6.4 Frame Count (MTFC) Register (772446)

The frame count register is a 16-bit, read/write register that counts tape events. During a data transfer operation (read/write), this register is incremented each time a tape character is transferred to or from the tape. However, during a space operation, this register is incremented each time a record is detected. The register output may be read by the controller at any time; but the controller can only write into this register when the transport is not performing a space or data transfer (GO negated).

For a write operation, the frame count register is loaded, prior to write initiation, with the 2's complement of the number of tape characters to be written. In NRZ mode, the minimum number of characters that can be written is 13. During the writing process, the frame count register is incremented each time a tape character is recorded. Normal write data transfer termination is accomplished when the frame count register overflows to zero. For a space operation, the frame count register functions similarly to a write, except it is loaded with the 2's complement of the number of records to be spaced and is then incremented each time a record is detected. Space termination is accomplished when the register overflows to zero. For a read or write check operation, this register is automatically reset prior to read initiation. The register is then incremented each time a tape character is read. The register is not incremented for check characters (LRCC, CRCC). Thus, at the end of the read operation, the frame count register contains a count of the number of characters read. Figure 3-6 shows the frame count register bit usage and Table 3-8 provides a description of each bit.

3.6.5 Control and Status 2 (MTCS2) Register (772450) This register indicates the status of the controller and contains the drive unit number U(02:00). The unit number specified in bits 02 through 00 of this register indicates which drive is responding when registers are addressed that are located in a drive.

These are:

MTCS1 (bits 5 th	rough 0, 12 and 11)
MTDS	MTDT
MTER	MTCK
MTMR	MTTC
MTFC	MTSN

Figure 3-7 shows the MTCS2 bit usage, and Table 3-9 provides a description of each bit.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
FC 15	FC 14	FC 13	FC 12	FC 11	FC 10	FC 09	FC 08	FC 07	FC 06	FC 05	FC 04	FC 03	FC 02	FC O1	FC 00
L		1			L								1		1

CP-1328

Figure 3-6 Frame Counter Bit Usage

Table 3-8Frame Counter Bit Assignments

Bit	Set By/Cleared By	Remarks
15–00 FC 15–00 Frame count Read/write	Cleared by writing 0s in the bit locations	Designates in 2's complement form the number of records to be spaced over, characters to be written, or characters that have been read. Initiating a write or space command when the frame count register is loaded with zeros implies a count of 2^{16} .

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
DLT	WCE	PE	NED	NEM	PGE	MXF	MDPE	OR	IR	CLR	PAT	BAI	U2	Ut	υø
															11-2974

Figure 3-7 Control and Status Register 2-Bit Usage

	Bit	Set By/Cleared By	Remarks				
15	DLT Data late Read only	Set when the controller is unable to supply a data word during a write operation or accept a data word during a read or write-check operation at the time the drive demands a transfer. Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with GO set.	DLT causes TRE. Buffering is 8_{10} words deep in the controller, and a DLT error indicates a severely over- loaded system.				
14	WCE Write check error Read only	Set when the controller is performing a write-check operation and a word on the tape does not match the corre- sponding word in memory. Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with GO set.	WCE causes TRE. If a mismatch is detected during a write-check com- mand execution, the transfer termi- nates and the WCE bit is set. The mismatched data word from the tape drive is displayed in the data buffer (MTDB).				
13	PE Parity error Read/write	Set if a data parity error from memory is detected while the controller is performing a write or write-check command. Cleared by Unibus INIT controller clear, RH70 error clear, or loading a data transfer command with GO set.	PE=APE+DPEOW+DPEEW APE – address parity error DPEOW – data parity error odd word DPEEW – data parity error even word				
12	NED Non-existent drive Read only	Set when the program reads or writes a drive register (CS1, DS, ER, MR, FC, DT, CK, TC, or SN) in a drive [selected by U(02:00)] which does not exist or is powered down. (The drive fails to assert TRA within 1.5μ s after assertion of DEM.) Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with GO set.	NED causes TRE.				
11	NEM Non-existent memory Read only	Set when the controller is performing a data transfer and the memory ad- dress specified in MTBA and MTBAE is non-existent (does not respond to MSYN within 10μ s). Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with GO set.	NEM causes TRE to set.				

 Table 3-9

 Control and Status Register 2 Bit Assignments

	Bit	Set By/Cleared By	Remarks				
10	PGE Program error Read only	Set when the program attempts to initiate a data transfer operation while the RH70 is currently performing one. Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with GO set.	PGE causes TRE to set. The data transfer command code is inhibited from being written into the drive.				
09	MXF Missed transfer Read/write	Set if the drive does not respond to a data transfer command within 650 μ s. Cleared by Unibus INIT, controller clear, RH70 error clear, or loading a data transfer command with GO set.	MXF causes TRE to set. This bit can be set or cleared by the program for diagnostic purposes. This error occurs if a data transfer command is loaded into a drive which has ERR set, or if the drive fails to initiate the command for any reason (such as a parity error).				
08	MDPE Massbus data bus parity error Read only	Set when a parity error occurs on the Massbus data bus while doing a read or write-check operation. During main- tenance operation, MDPE may occur when writing or reading the MTDB register if bad parity is detected as the word is propagated through the data buffer. Cleared by Unibus INIT, con- troller clear, RH70 error clear, or loading a data transfer command with GO set.	MDPE causes TRE to set. Parity errors on the Massbus data bus during write operations are detected by the drive and cause the PAR error (MTER regis- ter, bit 03).				
07	OR Output ready Read only	Set when a word is present in the MTDB register and can be read by the program. Cleared by Unibus INIT, controller clear, or by reading DB (Paragraph 3.6.10).	Serves as a status indicator for diag- nostic check of the data buffer.				
06	IR Input ready Read only	Set when a word is written in the MTDB register by the program. Cleared when the data buffer (MTDB) is full (contains eight words).	Serves as a status indicator for diag- nostic check of the data buffer.				
05	CLR Controller clear Write only	When a 1 is written into this bit, the RH70 and all drives are initialized (Paragraph 3.2).	Unibus INIT also causes controller clear to occur.				

Table 3-9 (Cont)Control and Status Register 2 Bit Assignments

	Bit	Set By/Cleared By	Remarks				
04	PAT Parity test Read/write	While PAT is set, the RH70 generates even parity on both the control bus and data bus of the Massbus. When clear, odd parity is generated. Cleared by Unibus INIT or controller clear.	While PAT is set, the RH70 checks for even parity received on the data bus but not on the control bus. If PAT bit is set (IPCK bits are all 0s) during maintenance operations of the data buffer, the data word loaded in the data buffer will sequence through the buffer with parity being calculated by the hardware (controlled by IPCK bits). When the data word reaches the OBUF register, the parity checker (controlled by PAT) will detect inverse parity as an MDPE error.				
03	BAI Unibus address increment inhibit Read/write	When BAI is set, the RH70 will not increment the BA register during a data transfer. This bit cannot be modified while the RH70 is doing a data transfer (RDY negated). Cleared by Unibus INIT or controller clear.	When set during a data transfer, all data words are read from or written into the same memory location.				
02- 00	U 02–00 Unit select Read/write	These bits are written by the program to select a drive. Cleared by Unibus INIT or controller clear.	The unit select bits can be changed by the program during data transfer operations without interfering with the transfer. The CS1, DS, ER, MR, FC, DT, CK, TC, and SN registers contain bits that come from the selected drive.				

 Table 3-9 (Cont)

 Control and Status Register 2 Bit Assignments

3.6.6 Drive Status (MTDS) Register (772452)

This register contains the various status indicators for the selected drive. The status indicators displayed are those of the tape drive which is specified by the unit select bits (02:00) of the MTCS2 register. The register is a read-only

register. Figure 3-8 shows the MTDS bit usage, and Table 3-10 provides a description of each bit. Writing into this register will not cause an error and will not modify any of the status bits.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
ΑΤΑ	ERR	PIP	MOL	WRL	EOT	NOT USED	DPR	DRY	SSC	PES	SDWN	ІОВ	тм	вот	SLA

CP-1330

Figure 3-8 Drive Status Register Bit Usage

	Bit	Set By/Cleared By	Remarks
15	ATA Attention active Read only	Set by the drive when there is an attention condition in that drive. Cleared by Unibus INIT, controller clear, drive clear, loading a command with the GO bit set, or loading a 1 in the MTAS register in the bit position corresponding to the drive's unit number. (The last two methods of clearing the ATA bit will not clear the error indicators in the drive.)	 An attention condition indicates one of the following: 1. The TM02 and the selected transport require servicing due to SSC (see bit 6 in this Table). 2. The TM02 and the selected transport have become ready after a non-data transfer operation. 3. At the completion of any operation with EOT asserted.
14	ERR Error summary Read only	Set when one or more of the error bits is set in the MTER register of the selected drive. Cleared by Unibus INIT, controller clear, or by drive clear.	This bit is the logical OR of all the bits in the MTER register. This bit is not cleared by loading a command other than drive clear. While ERR is asserted, commands other than drive clear are not accepted by the drive.
13	PIP Positioning in progress Read only	Set by the drive while the space or rewind command is under way. Cleared at the completion of the operation.	
12	MOL Medium on-line Read only	Set when the selected slave is loaded and the on-line switch activated. This condition is necessary for response to any commands — if GO=1 and MOL=0, the command is aborted and UNS and ATA are asserted. This bit is not affected by drive clear or INIT.	Indicates selected slave is ready for immediate use. Any change in status of MOL will set ATA.
11	WRL Write locked Read only	Set whenever a reel of tape without a write enable ring is loaded on the selected slave. This bit is not affected by drive clear or INIT.	Indicates that the selected slave transport is write protected.
10	EOT End of tape Read only	Set when the EOT marker is recog- nized during forward tape motion. Cleared when the EOT marker is passed over during reverse tape motion. This bit is not affected by drive clear or INIT, however, execu- tion of a rewind command causes EOT to be cleared.	

Table 3-10Drive Status Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
09	Not used		
08	DPR Drive present Read only	Always set in the TU16/TM02 system.	This bit is a hardwired 1.
07	DRY Drive ready Read only	Set by INIT or at the completion of a command. Cleared whenever a valid command (with the GO bit asserted) is loaded into MTCS1.	Indicates that the drive is on-line and prepared to accept a command. It does not necessarily indicate that the slave is ready to accept a command (see SPR, MOL, PIP).
06	SSC Slave status change Read only	 Set when any slave transport requires attention due to one of the following conditions: a) Completion of a rewind b) Power failure c) Coming on-line d) Going off-line Cleared by INIT. Drive clear will clear this bit if the SSC condition was raised by the selected slave and no other slaves are posting SSC. 	Setting SSC causes ATA to be asserted as soon as DRY becomes asserted. ATA is asserted immediately if DRY is asserted. More than one slave can be asserting SSC simultaneously. Each drive must be polled (for changes in SPR, MOL, PIP), in turn, and after servicing, a drive clear should be used to clear the SSC on that slave. All drives must be polled when SSC is serviced since an interrupt will only occur on SSC transitioning to a 1.
05	PES Phase encoded status Read only	Set when the selected slave is in PE mode. Cleared when the selected slave is in NRZI mode. This bit is not affected by drive clear or INIT.	Reflects the format mode in which the formatter is operating.
04	SDWN Slowing down Read only	Set during the period when tape motion is stopping. This bit is not affected by drive clear or INIT.	DRY is asserted on the leading edge of SDWN.
03	IDB Identification burst Read only	Set in PE mode on recognition of the PE identification burst. Cleared when another command is issued, or cleared by drive clear or INIT.	In the forward direction, the bit remains set through the reading, writing, or spacing operation. On a PE tape, IDB should be asserted after any tape motion operation which began from BOT.

Table 3-10 (Cont)Drive Status Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
02	TM Tape mark Read only	Set when a tape mark is detected and remains set until the next tape motion operation is initiated. Cleared by INIT or drive clear.	Indicates detection of tape mark. The phase encoded tape mark written by the TU16 consists of 40 characters with zeros in physical tracks 1, 2, 4, 5, and 8 with tracks 3, 6, 7, 9 dc erased. The NRZI filemark written by the TU16 consists of a single character record followed by the LRCC for that record. CRCC is held 0 for 9-track recording of tape mark. The single character contains octal 023. TM should be asserted after the comple- tion of a write tape mark command.
01	BOT Beginning of tape Read only	Set when the selected slave detects the BOT marker. This bit is not affected by drive clear or INIT. Cleared by passing BOT (Beginning of Tape) in the forward direction.	
00	SLA Slave attention Read only	Set by a selected slave which requires attention due to coming on-line. Cleared by drive clear or INIT.	

Table 3-10 (Cont) Drive Status Register Bit Assignments

3.6.7 Error (MTER) Register (772454)

There are 16 different error conditions that can be detected in the TM02/TU16 tape drive system. The error register is a 16-bit, read-only register which stores all of the tape system error indications.

TM02/TU16 errors are categorized as class A and class B. Class B errors will terminate an in-progress data transfer; a class A error will not. However, the Massbus controller is notified of any error during a data transfer by the immediate assertion of EXC H on the Massbus. If the TM02/TU16 is not performing any operation, or is performing a rewind (i.e., the GO bit is clear), the controller is immediately notified of an error condition by the assertior of ATTN H on the Massbus.

Figure 3-9 illustrates the error register bit usage and Table 3-11 provides a description of each bit. Table 3-12 lists the various operations and the associated error condition which can occur during normal operation of the system After performing one of the operations listed at the left o the table, only errors indicated by an X may be present in the MTER register. Presence of any other errors indicate a hardware malfunction.

Figure 3-9 Error Register Bit Usage

	Bit	Set By/Cleared By	Remarks
15	COR/CRC Correctable data error/CRC error Read only	PE mode — set on a tape character. Therefore, PE error correction logic was able to correct the data on-the-fly and good data was transferred to memory. NRZ mode — set when the CRC character generated from read back data does not agree with the CRC read from tape. Cleared by drive clear or INIT.	In the PE case, when the single dead track is accompanied by a parity error, the data bit in the dead track is inverted. COR/CRC is a class A error.
14	UNS Unsafe Read only	Set if the GO bit in the MTCS1 register is set, the MOL bit in the MTDS register is reset, and a command code other than drive clear is issued. Also set if the TM02 detects an immi- nent power fail condition (AC LO asserted, DC LO not asserted).	UNS is a class B error.
		If UNS is caused by GO=1 while MOL=0, it is cleared by RH70 CLR or DRIVE CLEAR. If UNS is caused by a transient voltage-low condition, it can be cleared by INIT or drive clear when voltage returns to an acceptable level. If UNS is caused by a permanent voltage – low condition, it cannot be cleared.	
13	OPI Operation incomplete Read only	A read or space operation indicates that a tape record has not been detected within 7 sec from command initiation. A write operation indicates that a read-after-write tape record has not been detected within 0.7 sec from command initiation. Can also indicate that NSG > 0.08 inches. Cleared by INIT or drive clear.	OPI is a class B error. Also, OPI can be set when a rewind command is issued at BOT.

Table 3-11Error Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
12	DTE Drive timing error Read only	Set (1) during a write operation if WCLK was not received from the RH70 in time to provide a valid tape character, or (2) when a data transfer is attempted when the bus of the Massbus is already occupied (OCC=1). Cleared by INIT or drive clear.	When DTE is asserted, the drive also asserts EBL and EXC and aborts the command. Case 1 can be distinguished from case 2 by monitoring the MTFC frame count register. In case 1, this register is incremented at least once since it was loaded. In case 2, this register will contain the same number with which it was loaded prior to the issuance of the data transfer command. During a read operation, DTE can occur only due to case 2. DTE is a class B error.
11	NEF Non-executable function Read only	 Set when: A write operation is attempted on a write-protect transport. A space reverse, read reverse, or write check reverse is attempted when the tape is at BOT. The DEN 2 bit in the tape control register does not agree with the PES status bit (i.e., selected drive not capable of selected density). A space or write operation is attempted when FCS=0 in the tape control register. A read or write operation is attempted with DEN2=0 in the tape control register and the 2's complement of a number less than 13 is in the frame count register. 	NEF is a class B error.
		Cleared by drive clear or INIT.	

Table 3-11 (Cont) Error Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
10	CS/ITM Correctable skew/ illegal tape mark Read only	In PE mode, this bit is set when excessive but correctable skew is detected in data read back from tape. It is a warning only, and does not indicate that bad data was read from tape. In NRZ mode, this bit is set when a bit pattern is detected on tape which has the general characteristics of an NRZ filemark (specifically, two single characters separated by seven blank character spaces) but which does not contain the exact data expected in an NRZ filemark. Cleared by drive clear or INIT.	When such a bit pattern is detected in NRZ mode, both tape marks in the DS register and CS/IFM in the ER register will become asserted.
09	FCE Frame count error Read only	Set when a space operation has termi- nated and the frame counter is not cleared. Also set when the RH70 fails to negate RUN when the TM02 asserts EBL. Cleared by drive clear or INIT.	FCE is a class A error.
08	NSG Non standard gap Read only	Set after a data transfer operation whenever any tape characters are read while the read head is scanning the first half of the interrecord gap. Cleared by drive clear or INIT.	NSG is a class A error.
07	PEF/LRC PE format error/LRC Read only	Set in PE mode when an invalid preamble or postamble is detected. Set in NRZ mode when the LRC character generated from readback data does not match the LRC character read from tape. Cleared by drive clear or INIT.	PEF/LRC is a class A error.
06	INC/VPE Incorrectable data/ vertical parity error Read only	 A PE read operation indicates that one of the following has occurred: 1. Multiple dead tracks 2. Parity errors without dead tracks 3. Skew overflow During an NRZ read operation, indicates that a vertical parity error has occurred or that data has occurred after the skew delay is over. Cleared by drive clear or INIT. 	INC/VPE is a class A error.

Table 3-11 (Cont) Error Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
05	DPAR Data bus parity error Read only	Set when a parity error is detected on the Massbus data lines during a write operation. Cleared by drive clear or INIT.	DPAR is a class A error. Can be forced set by the PAT bit (bit 04 of MTCS2).
04	FMT Format error Read only	Set when a data transfer is attempted with an incorrect format code (i.e., the tape format code loaded in the MTTC register is not implemented on that TM02). Cleared by drive clear or INIT.	Tape motion is inhibited; EXC and EBL are asserted. DRY and ATA are asserted on the negation of EBL. FMT is a class B error.
03	CPAR Control bus parity error Read only	Set when a parity error is detected on the Massbus control lines during a control bus write operation. Cleared by drive clear or INIT.	Detection of CPAR does not interfere with the register write sequence except during a write to the MTCS1 register which suppresses setting of the GO bit. CPAR is a class A error. Can be forced set by the PAT bit (bit 04 of MTCS2).
02	RMR Register modification refused Read only	Set when the controller attempts to write into any implemented TU16 register except the maintenance register or the attention summary register while the GO bit is asserted. If RMR occurs, the addressed register is not modified. Cleared by drive clear or INIT.	RMR is a class A error.
01	ILR Illegal register Read only	Set when a read or write from a non-existent register is attempted. Cleared by drive clear or INIT.	No register modification should occur. On a control bus read, all zeros are gated onto the control lines. ILR is a class A error.
00	ILF Illegal function Read only	Set when the GO bit is asserted and a function code not implemented by the TM02/TU16 is attempted. Cleared by drive clear or INIT.	ILF is a class B error.

Table 3-11 (Cont)Error Register Bit Assignments

OPERATIONS					· · · · · ·		E	RROF	RS							
	ILF 1	ILR ¹	RMR ¹	CPAR ¹	FMT ¹	DPAR ¹	INC/VPE	PEF/LRC	BTE	FCE ¹	CS/IFM	NEF ¹²	DTE	Ido	UNS ²	COR/CRC
WRITE TO ANY REGISTER* READ FROM ANY REGISTER LOAD NO-OP WITH GO=1 LOAD REWIND OFF LINE WITH GO=1 LOAD REWIND ON LINE WITH GO=1 LOAD DRIVE CLEAR WITH GO=1 LOAD WRITE FMK WITH GO=1 LOAD SPACE FWD WITH GO=1 LOAD SPACE REV WITH GO=1 LOAD WRITE CHECK FWD WITH GO=1 LOAD WRITE CHECK REV WITH GO=1 LOAD WRITE FWD WITH GO=1 LOAD READ FWD WITH GO=1	X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X	X X X X X	x	x x x x x x	x x x x x x	x x x x x x x	X X X X X X X X	x x x x x x x x	x x x x x x x x x x x x x x	X X X X X	x x x x x x x x x x x	X X X X X X X X X X X X X X X	x x x x
LOAD READ FWD WITH GO=1 LOAD READ REV WITH GO=1 MASS BUS INIT WRITE TO AS OR MT REG	X X	x x x	x	x x x	x		x	x	x x	X X	X X	X X	x x	X	X X X	x X

Table 3-12Error Conditions

*Except MTAS or MTMR registers

TM02 operations with errors that could be detected during those operations and remain asserted after the operation is complete:

¹ Most likely a programmer-caused error.

² Possible operator errors (WRL, off-line).

3.6.8 Attention Summary (MTAS) Register (772456)

The attention summary register is a read/write "pseudoregister," which consists of from one to eight bits depending on the number of TMO2s in the system. The term "pseudo-register" refers to the fact that only one register bit position is physically contained in each TMO2. This bit position reflects the state of the ATA status bit for tha TM02. Hence, bit position 0 of the attention summar register is generated by the ATA bit of TM02 0, bit position 1 is generated by the ATA bit of TM02 1, and so on to bi 7. Bits 8 through 15 are not used.

Unlike the other drive registers, the attention summary register is directly selected by the RH70 controller without first addressing a particular TM02. Thus, for a single attention summary register read operation, every TM02 in the system responds by placing the state of its ATA bit in the appropriate bit position on the control bus and disabling its remaining 15 control bus transmitters. This control bus configuration appears as a single register output which collectively informs the controller of all TM02s that require attention (i.e., ATA=1). The programmer can then selectively examine the error or status registers of each of the affected TM02s to determine the cause of the individual attention conditions.

The programmer can also write into the attention summary register; however, the significance of the bits being written is unusual. Writing a 1 into a bit position resets the ATA bit in the TMO2 assigned to that bit position; however, writing a 0 has no effect. This unique writing scheme allows the controller to reset, after inspection, all summary bits that were set, without accidentally resetting those bits that may have become set in the meantime. The following table illustrates the effects of writing into an attention summary bit position.

ATA Bit Before	Summary Bit Written	ATA Bit After
0	0	0
1	0	1
0	1	0
1	1	0

Figure 3-10 shows the bit usage of the attention summary register and Table 3-13 provides a description of each bit.

3.6.8.1 Setting the Attention Active (ATA) Bit – The ATA bit is displayed in bit 15 of the MTDS register, and indicates that the TM02/TU16 requires servicing (1) because it has become ready after completion of a non-data transfer operation (2) because of an error condition, or (3) because of an important internal status change. ATA is asserted only if the DRY (drive ready) bit is asserted. The setting of the ATA bit does not in itself prevent execution of commands. If the ERR (bit 14-MTDS) or the SSC (bit 06-MTDS) transitions from the negated to asserted state while the DRY bit is set, the ATA bit will become asserted. The ATA bit will also be asserted if the DRY bit transitions from the negated to the asserted state at the time one of the following conditions is met:

- 1. ERR is asserted
- 2. SSC is asserted
- 3. The function code in the MTCS1 register denotes a space, erase, write tape mark, rewind or read-in preset command.
- 4. EOT is asserted.

3.6.8.2 Clearing the Attention Active (ATA) Bit – The ATA bit may be cleared by writing a 1 into its position in the attention summary register. Parity is checked during the control bus transfer which controls the writing of the ATA bits, and if a parity error is detected, the ATA bit will be set at the completion of this transfer. The ATA bit will also be cleared by issuing a valid drive clear command, by asserting the INIT line, or by loading a GO bit into the MTCS1 register while the ERR bit is negated.

CP - 1332

Figure 3-10 Attention Summary Register Bit Usage

Bit	Set By/Cleared By	Remarks
15-08	Not used.	
07–00 ATA 07–00 Read/write	Each bit sets when the corresponding drive asserts its ATA bit. All bits are cleared by Unibus INIT, drive clear, or controller clear. Individual bits are cleared by loading a function code with the GO bit in the corresponding drive or by writing a 1 in the ATA bit positions of this register. Writing a 0 has no effect.	

 Table 3-13

 Attention Summary Register Bit Assignments

The description below applies only to clearing the ATA bit by writing a 1 into it.

- Clearing the ATA bit while ERR is asserted will result in negation of ATA but will not affect the status of the error register. No commands except drive clear can be executed until the error register is cleared.
- Clearing the ATA bit when the attention condition is caused by normal completion of a space, rewind, read-in preset or write tape mark operation will result in negation of ATA and will result in no other drive status changes.
- Clearing the ATA bit when the attention condition is caused by assertion of SSC will result in negation of ATA. SSC will remain set, and unless it is cleared by drive clear or INIT, completion of the next command will cause ATA to become set.

Note that SSC can be generated by up to eight slaves in the TM02/TU16 tape system and that its assertion may indicate status changes in several slaves including the selected slave. Thus, while a drive clear command will clear SSC and SLA in a selected slave, unselected slaves could continue to assert SSC. Moreover, if an unselected slave caused SSC to be asserted because of a power failure, issuance of drive clear may (and INIT will) succeed in clearing SSC while leaving a broken slave on the master-slave bus waiting to abort the next command issued it. BECAUSE OF THIS, SSC SHOULD NEVER BE CLEARED BEFORE A DECISION IS MADE TO POLL ALL AVAILABLE SLAVES TO DETERMINE THEIR STATUS.

• Clearing the ATA bit when the attention condition is caused by assertion of DRY while EOT is asserted will result in negation of ATA and will leave the drive ready to accept another command. Note that detection of EOT during tape motion will not generate an ATA and will not cause an abort. The EOT flag is a warning only, and it is the programmer's responsibility to go no more than 10 feet beyond the EOT marker.

3.6.9 Character Check (MTCC) Register (772460)

The check character register is a nine-bit, read-only register that permits the programmer to check the validity of a data transfer. At the end of an NRZ read operation, this register contains the CRC character for that operation. Hence, the programmer can determine if the CRCC generator logic is functioning properly. At the end of a PE read operation, however, this register contains a dead track indication (DT=1) of any track which may have dropped one or more bits during the operation.

3.6.9.1 CRC Character Storage – At the end of an NRZ Read or Write operation, the CRC character read from tape will be stored in bits 0 through 8 of the MTCC register. The least significant bit will be stored in bit 0, and the most significant bit in bit 7 of this register.

NOTE

The check character register will contain the check character described above at the end of a read or write operation when DRY transitions from a 0 to a 1. Bits 00 through 08 are guaranteed true only as long as DRY is equal to 1.

3.6.9.2 Dead Track – The dead track register is normally used for maintenance to determine which tracks are dropping data bits. The dropped data bits (read data) are oriented with the following binary weights.

Dead Track	Binary Weight
DT0	2 ⁰
DT1	2 ¹
DT2	2 ²
DT3	2 ³
DT4	24
DT5	2 ⁵
DT6	2 ⁶
DT7	27
DTP	Р

Figure 3-11 illustrates the check character register bit usage for both NRZ and PE modes and Table 3-14 provides a description of each bit.

3.6.10 Data Buffer (MTDB) Register (772462)

This register provides a maintenance tool to check the data buffer in the RH70. A total of eight words is accepted before the data buffer becomes full. Successive reads from data buffer will read out words in the same order in which they were entered into the data buffer.

The IR (input ready) and OR (output ready) status indicators in the MTCS2 register are provided so that the programmer can determine when words can be read from or written into the MTDB. IR should be asserted before attempting a write into DB; OR should be asserted before attempting a read from DB.

The MTDB register can be read and written only as an entire word. Any attempt to write a byte will cause an entire word to be written. Reading the DB register is a "destructive read-out" operation: the top data word in the data buffer is removed by the action of reading DB, and a new data word (if present) replaces it a short time later. Conversely, the action of writing the DB register does not destroy the "contents" of DB; it merely causes one more data word to be inserted into the data buffer (if it was not full). Figure 3-12 shows the MTDB bit usage, and Table 3-15 provides a description of each bit.

Figure 3-11 Check Character Register Format

Bit	Set By/Cleared By	Remarks
15–09	Not used.	
08-00 CCD Check character/ dead track Read only		Contains the CRC character and parity bit in NRZ mode or the dead track register in PE mode.

 Table 3-14

 Check Character Register Bit Assignments

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
DB															
15	14	13	12	11	10	O9	O8	07	O6	O5	04	O3	02	O1	00

CP-1334

Table 3-15Data Buffer Bit Assignments

Bit	Set By/Cleared By	Remarks				
15–00 DB 15–00 Data buffer Read/write	When read, the contents of OBUF (internal RH70 register) are delivered. Upon completion of the read, the next sequential word in the data buffer will be clocked into OBUF. When written, data is loaded into IBUF (internal RH70 register) and allowed to sequence into the data buffer if space is available.	Used by the program for diagnostic purposes. When the register is written into, IR is cleared until the DB is ready to accept a new word. When the register is read, it will cause OR to be cleared until a new word is ready. During a write-check error condition, the data word read from tape which did not compare with the corre- sponding word in memory is frozen in MTDB for examination by the program.				

3.6.11 Maintenance (MTMR) Register (772464)

The maintenance register is a 16-bit read/write register which performs the following functions:

- 1. Provides data wraparound paths for checking the data formatting logic in the TM02.
- 2. Provides a means for testing error detection circuitry within the TM02.
- 3. Acts as a storage buffer for the longitudinal parity check (LRC) character when operating in NRZ mode and performing a forward read or forward write operation.

Figure 3-13 shows the maintenance register bit format and Table 3-16 provides a description of each bit.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
MDF	MDF	MDF	MDF	MDF	MDF	MDF	MDF	MDF	200	MC	MOP	MOP	MOP	MOP	мм
8	7	6	5	4	3	2	1	0	CLK		3	2	1	ø	
				-~-					,				-~-		
	MAINTENANCE											MAI	NTENA	NCE	
DATA FIELD										OPCODE CP-1335					

Figure 3-13 Maintenance Register Bit Usage

Table 3-16Maintenance Register Bit Assignments

	Bit	Set By/Cleared By	Remarks
15-	7 MDF 8–0 Maintenance data field Read/write		These bits buffer the data generated during wraparound operations. At the end of normal NRZ transfers (except read reverse), these bits contain the LRC of the last record. MDF 0 con- tains the parity bit for the mainte- nance data character. MDF 1 contains the LSB of the maintenance data character and the remain bits are contained in order in MDF 2 through MDF 8.
6	BPICLK Two-hundred BPI clock Read only		Displays a clock signal derived from the crystal oscillator in the selected slave. The clock frequency is de- pendent on the read/write speed of the selected slave and is equal to the frequency at which a continuous succession of characters is written on tape when operating at 200 characters per inch density. BPICLK is displayed to aid in moni-
			toring of drive functions during main- tenance mode operations.
5	MC Maintenance clock Read/write	Cleared by drive clear or INIT.	This bit controls the sequencing of data through the TM02 data paths when operating in maintenance mode. If the GO bit is asserted and a maintenance op code of 4_8 , 5_8 , or 6_8 is contained in MOP bits 0 through 3, the MC bit changes state each time a control bus write to the maintenance register is executed. If the GO bit is asserted and an op code of 3_8 is contained in MOP bits 0 through 3, the MC bit changes state after each read strobe occurs. The maintenance op code is described under bits 4 through 1 in this table.

Bit	Set By/Cleared By	Remarks
4-1 MOP3-MOP0 Maintenance op code 03-00 Read/write		These bits control the maintenance function which will occur when the MM bit is set to 1 and the TM02 is loaded with the appropriate command. The following op codes will be im- plemented:
		 a. 0000 - Null code b. 0001 - Interchange read
		 b. 0001 - Interchange read In NRZ mode, this op code causes a more stringent skew check to be made on data during read or write-check operations. In PE mode, this op code suppresses on-the-fly correction of data errors resulting from a single dead track. c. 0010 - Even parity Causes an even parity bit to be associated with data sent from the TM02 to the controller on either the data or control bus lines, thereby causing the controller to detect parity errors. d. 0011 - Data Wraparound, Global Causes execution of a write forward command to be executed as follows: Data is brought in on the data lines, divided into bytes using the algorithm defined by the format code in the tape control register, formatter as either NRZ or PE write data, multiplexed into the read circuitry and deposited in the maintenance register data field. In PE mode, every other character generates a read strobe to allow the programmer sufficient time to write and monitor a loop.

Table 3-16 (Cont)Maintenance Register Bit Assignments

Bit	Set By/Cleared By	Remarks				
41 (Cont)		e. 0100 – Data Wraparound, Partial Causes execution of a write for- ward command to be executed as follows: Data is brought in on the data lines, divided into bytes using the algorithm defined by the format code in the tape con- trol register, formatted as either NRZ or PE write data, and deposited in the mainte- nance register data field.				
		 f. 0101 – Data Wraparound, Formatter Write Causes execution of a write for- ward command to be executed as follows: Data is brought in on the data lines, divided into bytes using the format code in the tape control register, and de- posited in the maintenance register data field. g. 0110 – Data Wraparound, Formatter Read Causes execution of a read com- mand to be executed as follows: Data is taken from the main- tenance register data field, multiplexed into the format- ting logic byte-by-byte, formed into data bus words using the algorithm defined by the format code in the tape control register, and transmitted to the RH70 con- troller. In addition, this op code sup- presses reception of the Massbus WCLK signal. Thus, an attempt to perform a write operation with this op code in the mainte- nance register will result in de- 				

 Table 3-16 (Cont)

 Maintenance Register Bit Assignments

	Bit	Set By/Cleared By	Remarks					
4-1	(Cont)		 h. 0111 - Cripple Reception of OCC An attempt to perform any data transfer operation with this op code in the maintenance register will result in detection of DTE i. 1000 - In NRZ mode, this op code suppresses initialization of the CRC checking logic, resulting in CRC errors. In PE mode, this op code sup presses detection of data in logical track 1. j. 1001 - This op code causes bit 5 of tape data bytes to remain in the asserted state. In PE mode, this op code sup presses detection of data in logical tracks 1 and 2. k. 1010 - Maintenance Mode End of Record This op code is used to signal the end of a maintenance mode operation causing the GO bit to become negated. 1. 1011 - Causes logical bit 1 of a PE preamble and postamble to be inverted during a write for ward command, resulting in generation of invalid preamble 					
0	MM Maintenance mode Read/write	Must be set to a 1 when any mainte- nance mode function is desired. Setting the MM bit to 1 does not initiate any action on the part of the drive but alters the manner in which the drive executes various commands. The manner in which the command execution is altered depends on the maintenance op code in bits 4 through 1 of this register.						

Table 3-16 (Cont)Maintenance Register Bit Assignments

3.6.12 Drive Type (MTDT) Register (772466)

The drive type register is a 16-bit read-only register, the content of which identifies the particular type of storage device (transport) being used. Bits 0 through 8 (DT 0-8) of the drive type register identify the type and status of the selected transport. If a nonexistent transport is selected or if the selected transport is not powered up, DT 0-8 will contain 010_8 . If the selected transport is powered up, but is not a TU16, DT 0-8 will contain 012_8 to 017_8 , depending on the type of transport. If the selected transport is a TU16 and is powered up, these bit positions will contain 011_8 .

Figure 3-14 shows the drive type register bit usage and Table 3-17 provides a description of each bit.

3.6.13 Serial Number (MTSN) Register (772470)

The serial number register is a 16-bit, read-only register which contains a BCD representation of the four least significant digits of the transport serial number.

Figure 3-15 shows the serial number register bit usage and Table 3-18 provides a description of each bit.

3.6.14 Tape Control (MTTC) Register (772472)

The tape control register is a 16-bit read/write register which selects an existing transport, the data format, and the density.

Figure 3-16 shows the tape control register bit usage and Table 3-19 provides a description of each bit.

3.6.15 Bus Address External (MTBAE) Register (772474) The MTBAE register contains the upper 6 bits of the memory address and combine with the lower 16 bits located in MTBA to form the complete 22 bit address. This register should be loaded by the program in conjunction with the MTBA register to specify the starting mem address of a data transfer operation. The six bit field incremented (decremented for specific function codes) etime a carry (borrow) occurs from the MTBA regis during memory transfers.

Address bits A16 and A17 can also be set or clea through the MTCS1 register. If an address extension field written into MTBAE, the program should ensure that A and A17 are not altered when a command is loaded in MTCS1. This can be accomplished by either loading command with a write low byte instruction to MTCS1 by ensuring the proper value appears in the A16 and A bit positions of MTCS1.

Figure 3-17 shows the MTBAE register bit usage and Ta 3-20 provides a description of each bit.

3.6.16 Control and Status 3 (MTCS3) Register (7724: The MTCS3 register contains parity error informati associated with the memory bus. Bit position 13 of 1 MTCS2, (PE) indicates that a parity error occurred duri the memory transfer. Bits 15 through 13 of MTCS3 furth localize the error for diagnostic maintenance. In additionability bits 3 through 0 provide the diagnostic program the ability invert the sense of parity check and thereby vericorrect operation of the parity circuits.

An Interrupt Enable bit in the MTCS3 register allows t program to enable interrupts without writing into a dri register as previously described. This bit also appears in t MTCS1 register for program compatibility and can be set cleared by writing into either register.

Figure 3-18 shows the MTCS3 register bit usage, and Tał 3-21 provides a description of each bit.

DRIVE TYPE (08-00)

CP-1336

Figure 3-14 Drive Type Register Format

	Bit	Set By/Cleared By	Remarks
15	NSA Not sector addressed Read only	Always set to indicate that the device is not sector addressable.	Neither drive clear or INIT affect this bit.
14	TAP Tape Read only	Always set to indicate that the device is a tape transport.	
13	MOH Moving head Read only	Always negated to indicate that the device is not a moving head unit.	
12	7CH 7 Channel Read only	Asserted if the selected transport is a 7-channel unit. Always negated if the selected transport is a TU16.	
11	DRQ Drive request required Read only	Always negated to indicate that the device is a single-port device.	
10	SPR Slave present Read only	Asserted when a transport is powered up and has been assigned the selection code contained in the MTTC tape control register.	
09		Not used.	
08—	00 DT 08–00 Drive type Read only		Contains the drive type number for the selected slave $(11_8 \text{ for the} \text{TM02/TU16})$. If no slave is assigned in bits 0–2 of the MTTC tape control register, the drive type code readback is 010 ₈ . If a slave has been assigned a select code in bits 0–2 of this register, the drive type code will be a code from 11 ₈ to 17 ₈ . Drive clear or INIT do not affect these bits.

Table 3-17Drive Type Register Bit Assignments

.

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN	SN
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
			·		·										
	10 ³ dig	jit			10 ² 0	digit			10 ¹ a	, ligit			10 ⁰ a	' Jigit	
															CP-1337

Figure 3-15 Serial Number Register Bit Usage

Bit	Set By/Cleared By	Remarks
15–12 SN15–SN12 Read only		Most significant BCD digit (10 ³) of slave serial number.
11–08 SN11–SN08 Read only		10 ² digit of slave serial number.
07–04 SN07–SN04 Read only		10 ¹ digit of slave serial number.
03–00 SN03–SN00 Read only		Least significant BCD digit of slave serial number.

 Table 3-18

 Serial Number Register Bit Assignments

Figure 3-16 Tape Control Register Bit Usage

	Bit	Set By/Cleared By	Remarks
15	ACCL Acceleration Read only	Set when the transport is not actively reading or writing data.	ACCL is not affected by drive clear or INIT.
14	FCS Frame count status Read only	Normally set at the end of a write into the frame count register. Cleared when frame count register overflows. Cleared by drive clear or INIT.	Loading a space or write command with the GO bit asserted and FCS equal to 0 will cause a non-executable function (NEF-bit 11 of drive status register) to be asserted and will cause the command to be aborted. No tape motion will occur.
13	TCW Tape control write Read only	Set when a control bus write operation to the tape control register is per- formed. Cleared by the initiation of any command requiring tape motion.	TCW is used by the TM02 to deter- mine whether or not to wait for the completion of the settle down process (SDWN-bit 4 of the drive status register). If TCW is asserted, SDWN should be negated before issuing a new command to the selected slave.
12	EAODTE Enable abort on data transfer errors Read/write		This bit, when written to a 1, will cause a data transfer operation to be aborted as soon as one of the fol- lowing errors is deleted:
			 a. DPAR-bit 5 of MTER register b. COR/CRC-bit 15 of MTER register c. FMT/LRC-bit 7 of MTER register d. INC/VPE-bit 6 of MTER register
11		Not used.	
10—	08 DEN2–DEN0 Density select		Specifies the tape character density during read or write operations as follows: DEN2 DEN1 DEN0 Density (bpi) 0 0 0 200 0 0 1 556
			0 1 0 800 0 1 1 800
			1 0 0 1600 PE
			$\left \begin{array}{cccc} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}\right\} \text{Reserved}$
			Drive clear and INIT do not affect the density select bits.

Table 3-19Tape Control Register Bit Assignments

Bit	Set By/Cleared By	Remarks				
07–04 FMT SEL 3–0 Format select Read/write		Specifies Massbus-to-tape character formatting during a write operation, or tape character-to-Massbus formatting during a read operation. Data format is selected by the FMT				
		SEL bits as follows: FMT SEL Bit Mode 3 2 1 0 1 1 0 0 Normal mode 1 1 0 1 Core dump 1 1 0 15 mode				
		If the FMT SEL bits specify a format not implemented on a TM02/TU16 system and a valid data transfer com- mand is loaded in the MTCS1 register with the GO bit asserted, the format error bit (FMT-bit 4 of the MTER register) will be asserted and the opera- tion will abort (Figure 1-10).				
03 EV PAR Even parity Read/write		If this bit is set in NRZ mode, even parity will be written on tape and even parity is expected on read-back. If this bit is reset, odd parity will be written on tape and will be expected on read-back. When the TM02 is opera- ting in NRZ with EV PAR set, it will not allow an all zeros character to be written on tape. If an all zeros char- acter is presented to the TM02, the TM02 will invert binary bit 4 and the parity bit before writing the character on tape. This converts 000_8 to 020_8 .				
		This bit is ignored in phase encoded (PE) mode (DEN2=1). In PE mode, odd parity is always used.				
02–00 SS2–0 Slave select Read/write		Specifies the unit number of the transport to be used. Drive clear or INIT does not affect SS2-0.				

Table 3-19 (Cont)Tape Control Register Bit Assignments

Figure 3-17 Bus Address Extension Register Format

Table 3-20Bus Address Extension Register Bit Assignments

Bit	Set By/Cleared By	Remarks
15:06	Not Used	Always read as a 0.
05:00 A(21:16) Bus Address Read/Write	Loaded by the program to specify the starting memory address of a data transfer operation. Cleared by Unibus INIT or controller clear.	The MTBAE register is incremented (or decremented) each time a carry out (borrow out) of MTBA occurs. A16 and A17 can also be set or cleared through the MTCS1 register.

11-2907

Figure 3-18 Control and Status 3 Register Format

3.7 PROGRAMMING EXAMPLES

The TJU16 tape system allows the software to monitor the status of all transports at all times (via SSC) and to monitor the readiness of all drives to receive new commands (via ATA bits). This, however, is a programmer's option. Actually there are four ways to program the TJU16 system.

Dedicated Processor – In this mode the interrupt enable bit (IE) is never set and the processor must check status on the RH11 controller, TM02 tape controller and the TU16 transport before initiating each command. The program must loop on RDY and DRY to establish when the job is done. This method is impractical in a sophisticated programming environment since it requires a dedicated CPU.

Device-Interactive with Unmonitored Status – In this method the programmer assumes the correct status exists (WRL, MOL, SPR, PIP) and issues a command without first checking status. If the wrong status exists, the command will abort and the system must have the facility to cause error correction through the error handler. This method has two disadvantages: (1) the error handler must be expanded to allow the status error recovery, and (2) IE should only be set when a command is to be executed; consequently, the system does not become aware of status changes through the interrupt facility. As a result, dequeuing of requests to a multi-transport system is not normally possible without use of a real time clock (RTC) and status polling.

	Bit	Set By/Cleared By	Remarks			
15	APE Address Parity Error Read only	Set if the address parity error line indicates that the memory detected a parity error on address and control information during a memory transfer. Cleared by Unibus INIT, Controller Clear, Error Clear, or loading a data transfer command with GO set.	APE causes PE, bit 13 of MTCS2. When an APE error occurs the MTBA and MTBAE registers contain the ad- dress +4 of the double word address at which the error occurred during a double word operation or the address +2 during a single word operation.			
14, 13	DPE, OW, EW Data Parity Error Odd Word, Even Word Read only	Set if a parity error is detected on data from memory when the RH70 is per- forming a Write or Write Check com- mand. Cleared by Unibus INIT, Con- troller Clear, Error Clear, or loading a data transfer command with GO set.	DPE causes PE, bit 13 of MTCS2. When a DPE error occurs, the MTBA and MTBAE register contain the address +4 of the double word address at which the error occurred during a double word operation or the address +2 during a single word operation.			
12, 11	WCE OW, EW Write Check Error Odd Word, Even Word Read only	Set when data fails to compare between memory and the drive. Cleared by Unibus INIT, Controller Clear, Error Clear, or loading a data transfer command with GO set.	Causes WCE, bit 14 of MTCS2. The word read from the drive which did not compare is locked in the data buffer and can be examined by reading the MTDB register.			
10	DBL DouBLe word Read only	Set if the last memory transfer was a double word operation. Cleared by Unibus INIT, Controller Clear or loading a data transfer command with GO set.				
9–7	Not Used	Always read as a 0.				
6	IE Interrupt Enable Read/write	IE is a control bit which can be set under program control. When $IE = 1$, an interrupt may occur due to RDY or SC being asserted. Cleared by Unibus INIT, Controller Clear, or auto- matically cleared when an interrupt is recognized by the CPU. When a 0 is written into IE by the program, any pending interrupts are cancelled.	This bit can be set or cleared by writing into MTCS1 register. If written through MTCS3 register, a register write operation is not performed into a drive register simultaneously.			
5-4	Not Used	Always read as a 0.				

Table 3-21Control and Status 3 Register Bit Assignments
Bit	Set By/Cleared By	Remarks			
3-0 IPCK (3:0) Invert Parity Check (3:0) Read/write	These bits are written by the program to control the data parity detection logic. When set inverse parity is checked with data during memory transfers of Write and Write Check operations.	Parity control is provided for each byte in double word addresses, i.e., IPCK 0 – Even Word, Even Byte IPCK 1 – Even Word, Odd Byte IPCK 2 – Odd Word, Even Byte IPCK 3 – Odd Word, Odd Byte During maintenance operation of the MTDB data buffer, if IPCK 0 or IPCK 1 is set when the first word is written into the MTDB, that data word (con- taining bad parity) will sequence through the data buffer and when it reaches OBUF, the parity checkers (controlled by the PAT bit) will detect the bad parity as an MDPE error. Note if both IPCK 0 and IPCK 1 are set, no bad parity will be generated. The same explanation applies for IPCK 2 and IPCK 3 which are associated with the alternate data word (i.e., the second data word loaded in the data buffer).			

 Table 3-21 (Cont)

 Control and Status 3 Register Bit Assignments

Device-Interactive with Monitored Status – In this method, the software checks the status previous to issuance of a command. The disadvantage is that IE should only be set during command execution and "multi-transport" dequeuing is not possible without use of a real time clock and polling of slave status.

Monitored Status via Interrupt Facility – In this method, IE is always set except while actually servicing an interrupt. Because the system is always monitoring "slave-status changes" and "attention active" on all TU16s and TM02s, dequeuing may occur as soon as the device becomes ready.

NOTE

This method is capable of controlling multidrives and multi-transports simultaneously. In the other three modes, if dequeuing is to be done it must be done via the "system clock" facility, and the RH70, TM02, and TU16 must all be assigned to the user.

The following paragraphs show several typical programminexamples. These are write, read, space, and tape ma operations.

3.7.1 Write Data Transfer

The write data transfer causes data words from memory to be transferred to the RH70 Massbus controller, then to the TM02 tape drive where they are converted into tape characters and finally to the slave transport where they are written on tape. A typical sequence of steps necessary to initiate a write data transfer is enumerated below. It is assumed that this is the first record to be written on tape. As a result, additional steps are required that would not be necessary when writing subsequent records.

- 1. Issue an RH70 clear by setting bit 5 in the MTCS2 register in the RH70. (First time only error bits should be cleared by the error handler and ATA bits by the interrupt handler).
- 2. Select a TM02 tape drive by writing bits 0 through 2 of the MTCS2 status register in the RH70.
- 3. Read the MTDT drive type register in the TM02 to see what type of drive is specified. In this case, bit 14 (TAP) should be set indicating a tape drive.
- 4. Read bit 12 (non-existent drive) of the MTCS2 status register to see if the drive that was addressed is an actual drive.
- 5. Read the following bits in the MTDT drive type register.

Bit 10 (SPR) — This bit is set if the slave specified in bits 0 through 2 of the MTTC tape control register is powered up and properly assigned.

Bits 0 through 7 – These bits specify the drive type and are designated 011_8 for the TU16 slave transports.

6. Read the following bits in the MTDS drive status register.

Bit 12 (MOL) – If the medium on-line bit is set, the drive is powered up and ready to go. Bit 11 (WRL) – If the write locked bit is set, the write operation is inhibited and it is necessary to insert the write enable ring.

Bit 07 (DRY) – If this bit is set, it indicates that the drive has concluded a previous operation (if one was specified) and is prepared to accept or send data.

Bit 01 (BOT) - This bit is set if the tape is at the BOT.

NOTE

If the tape is not at BOT, issue a rewind command. However, the DRY bit must be set. To issue the rewind command, load a function code of 07_8 (GO bit asserted) into the MTCS1 control register. The DRY bit will temporarily be negated and will be reasserted as soon as the rewind function is transmitted to the slave. This allows the drive to accept another command before completion of the rewind.

- 7. Examine the MTER register for errors. If the error is a TM02/TU16 error, a drive clear should be issued which clears only the selected drive. The drive clear is issued by loading a 11_8 function code in the MTCS1 control register with the GO bit asserted. If the error is an RH70 error, an INIT should be issued. The INIT is issued by setting bit 5 (CLR) in the MTCS1 register.
- 8. When rewind is completed, the slave will assert SSC which will cause the TM02 to raise ATTN on the Massbus. In addition, the PIP bit will be negated and BOT asserted. The clear can be accomplished by performing a drive clear to the TM02.
- 9. Read the MTDS drive status register and monitor the following bits.

Bit 15 (ATA) – This bit will set immediately (if DRY is set) to indicate status change (completion of the rewind operation). If DRY is negated, ATA will be asserted as soon as DRY is asserted.

Bit 14 (ERR) – If this bit is set, it indicates an error condition that can be determined by reading the MTER error register. At this point, the software should enter the error recovery procedure.

Bit 6 (SSC) – This bit will be set indicating completion of the rewind operation.

Bit 1 (BOT) – This bit is set since the selected slave detects the BOT marker when the rewind is completed.

10. Select the format, density and type of parity by writing the MTTC tape control register in the TM02. The format is written into bits 4 through 7 of the MTTC register (Paragraph 1.7.1).

The density is selected by writing bits 8 through 10 in the MTTC register and is described in Paragraph 3.6.14. The parity can be specified even or odd for NRZI operation by writing bit 3 of the MTTC register. If this bit is set, even parity is read or written from tape. Odd parity is always performed during PE operation.

- 11. Select the starting memory address by writing the MTBA bus address register in the RH70.
- 12. Select the number of 16-bit data words to be transferred by writing the MTWC word count register in the RH70 with the two's complement of the number of words to be transferred.
- 13. Load the MTFC frame count register in the TM02 with twice the word count for normal format and with four times the word count for core dump format. For normal format, two tape characters are generated for each 16-bit word, and, for core dump, four tape characters are generated for each 16-bit word.
- 14. Load the MTCS1 register in the TM02 with the write function code (GO bit asserted) of 61_8 . If the interrupt facility is employed, set the IE bit (bit 6 of the MTCS1 register in the RH70).
- 15. Read bit 4 (IDB) of the MTDS drive status register. Upon completion of writing the record, this bit should be set if PE density is selected and should be cleared if NRZI density is selected.

This procedure will cause one record to be written on tape. If it is desired to write another record, it is merely necessary to reload the MTBA bus address register, the MTWC word count register, and the MTFC frame count register. Then the data transfer can be implemented by loading the MTCS1 register with the 61_8 write function code (GO bit asserted).

3.7.2 Read Data Transfer

In order to do a read data transfer, a similar operation to that just described is followed with the exceptions listed below.

1. It is not necessary to write the MTFC frame count register, as this is automatically cleared for a read data transfer.

2. The read function code of 71_8 (with GO bit asserted) is loaded in the MTCS1 register instead of the write function code.

If it is desired to do a read reverse operation, the MTBA bus address register should be loaded with the start of the buffer plus the size of the record since the RH70 decrements the bus address in a read reverse whereas it increments the bus address in a read forward operation.

3.7.3 Space Operation

When a space operation is desired, the software must specify the spacing length by loading the MTFC frame count register with the two's complement of the number of records it is desired to space.

A space operation will terminate either due to frame count overflow (desired records are spaced over) or when BOT, EOT, or TM (tape mark) is detected (signifying the end of the file). The space operation allows random access of any record within any file on tape.

3.7.4 Tape Mark Operation

To perform a write tape mark operation (to indicate the end of file for example), it is merely necessary to load a 27_8 function code (with GO bit asserted) into the MTCS1 control register. This can be monitored by reading bit 2 (TM) of the MTDS drive status register. When the bit is set, the tape mark is detected.

Tape marks can be used to indicate logical end of tape. A single tape mark indicates termination of the previous file while two tape marks indicate the logical end of tape (no more data has been written).

3.8 SUGGESTED ERROR RECOVERY

Table 3-22 gives the suggested procedures for recovering from drive or controller errors. The numbers in the column titled "Recovery Procedure" are keyed to the following steps:

- 1. If *not* programmer or operator error, then this condition is fatal. Disconnect from drive, report error to operator.
- 2. Tape position is lost, three possible recovery procedures are indicated.
 - a. If physical position of desired record is known, Rewind, Space Forward to desired record and retry.

- b. If each record contains an identifiable label (or sequence number), Read FWD and/or Read REV commands may be used to re-establish tape position.
- c. If neither alternatives a or b are possible or practical, consider error fatal.
- 3. Step
 - a. Read Reverse
 - b. Read Forward
 - c. Repeat steps a and b until successful or re-try count overflows (suggest 20 re-tries)
 - d. If re-try count overflows, report to operator
- 4. Step
 - a. Back-space
 - b. Erase
 - c. Re-write record
 - d. Repeat steps a, b, and c until successful or re-try count overflows (suggest 20 re-tries)
 - e. If re-try count overflows, report error to operator
- 5. Report failure to operator

NOTE

The error classes are:

Class A: EXC is asserted immediately but transfer to the end of the current sector is completed and normal EBL is asserted.

Class B: EBL and EXC are asserted immediately. Data transfer stops.

The numbers in the "Possible Operator Error" column are keyed to the following steps:

Possible Operator Errors

- 1. Wrong unit number (plastic button) plugged into TM02.
- 2. Dirty read/write heads or tape path (operator PM). Also could be bad tape.
- 3. Operator did not insert rubber write-ring before mounting tape which was to be written on.
- 4. Wrong unit number (plastic button) plugged into TU16, or tape not loaded with vacuum on.

Operator did not load tape to BOT, program initiated a rewind, and tape unloaded. Power was removed from TU16.

MTER Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
00	Illegal Function (ILF)	Indicates that an illegal func- tion code has been transmitted.	Class B	1	No	No	1	Program is selecting function code not implemented on TWU16.
01	Illegal Register (ILR)	Indicates that a read or write from a nonexistent register is attempted.	Class A	1	No	No	1	Program is selecting a register which does not exist on TM02.
02	Register Modification Refuse (RMR)	Indicates that while a trans- port operation is in progress (GO = 1), a write into one of the registers is attempted. (Does not apply for the Maintenance or Attention Summary registers.)	Class A	1	No	No	None	Program did not check for DRY = 1 before writing a register (other than AS or MR).
03	Control Bus Parity (CPAR)	Indicates that incorrect con- trol bus parity was detected during an attempt to write a TM02 register.	Class A	1	No	No	None	None if programmer is not using Maintenance register.
04	Format (FMT)	Indicates that a data trans- fer with an incorrect format code is attempted.	Class B	1	No	No	None	Programmer is selecting a format code which does not exist.
05	Data Bus Parity Error (DPAR)	Indicates that incorrect data bus parity has occurred dur- ing a write data transfer (i.e., bad data transferred to the TM02 and written on tape.)	Class A	1	Yes	No	None	None if programmer is not using PAT bit in RH70.
06	Incorrectable Data Error or Vertical Parity Error (INC/VPE)	During a PE data transfer operation, indicates that an incorrectable data error has occurred.	Class A	(PE READ)-3 (PE WRITE)-4	Yes	No	2	None if programmer is not using Maintenance register.
		During an NRZ data transfer operation, indicates that a vertical parity error has occurred or that data has occurred after the skew delay is over.		(NRZ READ)–3 (NRZ WRITE)–4	Yes	No	2	None if programmer is not using Maintenance register.

MTER Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
07	Format Error or LRC (PEF/LRC)	During a PE data transfer operation, indicates that an incorrect preamble or post- amble is detected.	Class A	(PE READ)-3 (PE WRITE)-4	Maybe ¹ Yes	No	2	None if programmer is not utilizing Maintenance register.
		Indicates that the LRCC which was written on tape does not agree with the LRCC calculated on the data during a "read" com- mand execution or during the read after write opera- tion which happens on a "write" command execu- tion.	Class A	(NRZ READ)-3 (NRZ WRITE)-4	Maybe ² Yes	No	2	
08	Nonstandard Gap (NSG)	Indicates that a tape charac- ter is detected during the first half of the inter-record gap. (i.e., tape unit thought it saw end of record but detected more data after shut-down process began.)	Class A	(READ)–3 (WRITE)–4	Maybe ¹ Yes	No	2	None if programmer is not utilizing Maintenance register.
09	Frame Count Error (FCE)	Indicates that either: 1) a space operation has ter- minated and the Frame	Class A	(SPACE)-2	No	Yes	2	Programmer loaded wrong frame count on space command.
		Counter is not cleared. (This is not a hardware failure if space operation was terminated by TM, EOT, or BOT if that termination was expected.)		(WRITE)—1	Yes	No	None	Programmer loaded a word count value which was not proportional to the frame count.
		2) A write command was executed and the frame count overflowed before the word count.						
		 A read command was executed and the end of record was detected before word count overflow. 						

MTER Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
10	Correctable Skew or Illegal Tape Mark (CS/ITM)	During a PE data transfer opera- tion, indicates that excessive but correctable skew is detected for read. (This condition is only a warning and does not indicate bad data.) For a write, it indi- cates that data of questionable quality was written and the record should be re-written.	Class A	(PE READ)–None (PE WRITE)–4	No Yes	No No	2 2	None
		In NRZ mode, indicative of illegal tape mark written on tape after a "write tape mark"		(NRZ Read or Space) TMK expected–None	No	No	2	None
		command, or Read from tape after a Read or Space command.		(NRZ Read or Space) TMK not expected-5	Yes	Yes	2	Software lost track of tape position
				(NRZ Write TMK)-4	Yes	No	2	None
11	Nonexecutable Function (NEF)	Indicates one of the following: 1) A write operation is attempted on a write-protected transport.	Class B	5	No	No	3	Programmer did not check WRL status.
		 A Space Reverse, Read reverse, or Write Check Reverse is attempted when the tape is at BOT. 		2	No	Yes	None	Program did not keep track of tape position.
		 The DEN2 bit in the Tape Control register does not agree with the PES status bit. 		1	No	No		Program selected a transport incapable of density mode specified.
		 A space or write operation is attempted when FCS = 0 in the Tape Control register. 		1	No	No		Program is trying to write without specifying record length.
		5) An NRZ write operation is attempted with the 2s com- plement of a number less than 13 in the Frame Count register.		1	No	No		Program is specifying record length shorter than minimum of 13 characters.

Table 3-22 (Cont) Error Recovery Procedures

MTER Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
12	Drive Timing Error (DTE)	Indicates one of the following: 1) During a write operation, the controller did not sup- ply a tape character to TMO2 in time for it to be written.	Class B	4	Yes	No	None	None
		2) A data transfer (read/write) was attempted when the data bus of the Massbus was already occupied (i.e., transfer in progress on some other drive).		1	No	No	None	Program did not check con- troller "RDY" before issuing data transfer command.
13	Operation Incomplete (OPI)	 During a read or space operation, indicates that a tape record has not been detected within 7 see from command ini- tiation. Assume that the drive is beyond valid data on the tape. During a write operation, indicates that a read-after- write tape record has not been detected within 0.7 see from command initia- tion. Assume write operation has failed. Additional data has been detected after minimum gap length has been traversed. This condition causes a loss of tape position. Rewind command initiated, 	Class B	2	Yes	Yes	2	None on a write operation. On a Read or Space, programmer did not keep track of tape posi- tion. On a Rewind operation, pro- grammer did not check for BOT before issuing command.
		tape already at BOT						

MTER Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
14	Unsafe (UNS)	 Indicates one of the following: 1) A program-controlled operation is attempted on a selected transport which is not powered up, on-line, vacuum on. 2) An imminent power failure is detected (AC LO L). 	Class B	1	Yes (If transfer was in progress)	Yes	4	Program did not check MOL before issuing command.
15	Correctable Data Error or CRC Error (COR/CRC)	 During a PE read operation, indicates that a single dead track has occurred. (Data is corrected, this is only a warning.) PE Write – questionable quality. Re-write. During an NRZ operation, indicates that the CRCC read off the tape does not match the CRCC computed from the data read off the tape. 		(PE READ)None (PE WRITE)4 (NRZ READ)3 (NRZ WRITE)4	No Yes Maybe ² Yes	No	2	None

.

	I	1	r	D	D. J. D. to	Tage Desition	Passible	
MTCS2 Bit Position	Name	Description	Туре	Procedure	Bad Data Transferred	Lost	Operator Error	Possible Programmer Error
8	Massbus Data Bus Parity Error (MDPE)	Set when a parity error occurs on the Massbus data bus while doing a read or write-check operation.	Class A	1	Yes	No	None	None if programmer is not using PAT bit in RH70.
9	Missed Transfer (MXF)	Set if the drive does not respond to a data transfer command within 650 μ s.	Class B	1	No (No data has been transferred)	No	None	Programmer loaded a data transfer command into a drive which has ERR set.
10	ProGram Error (PGE)	Set when the program attempts to initiate a data transfer opera- tion while the RH70 is currently performing one.	Class A	1	No	No	None	Program did not check RDY prior to issuance of data transfer command.
11	Non-Existent Memory (NEM)	Set when the controller is performing a DMA transfer and the memory address specified in MTBA is non- existent (does not respond to MSYN within 10 µs.	Class A	1	Yes (Transfer incomplete)	No	None	Program specified memory locations (via WC & BA registers) which did not exist.
12	Non-Existent Drive (NED)	Set when the program reads or writes a drive register (CS1, DS, ER, MR, FC, DT, CK, TC, or SN) in a drive [selected by U(02:00)] which does not exist or is powered down. (The drive fails to assert TRA within 1.5 μ s after assertion of DEM.)	Class A	1	No	No	1	Program attempted to read or write a drive register on a drive that did not exist.
13	Parity Error (PE)	Set if the RH70 detects bad data par- ity for a write or write check com- mand or if cache notifies RH70 that memory detected a bad address or control parity on any data transfer.	Class A	1	Yes	No	None	(See CS3 register bits 15 – 13.

MTCS2 Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
14	Write Check Error (WCE)	Set when the controller is performing a write-check operation and a word on the tape does not match the corresponding word in memory.	Class A	4	Yes	No	None	None
15	Data LaTe (DLT)	Set when the controller is unable to supply a data word during a write opera- tion or accept a data word during a read or write-check operation at the time the drive demands a transfer.	Class A	WRITE-4 READ-3	Yes	No	None	
MTCS1 Bit Position	Name	Description	Туре	Recovery Procedure	Bad Data Transferred	Tape Position Lost	Possible Operator Error	Possible Programmer Error
13	Massbus Control Bus Parity Error (MCPE)	Set by parity error on Massbus control bus while reading a remote register (located in the drive).	Class A	1	No	No	None	None if programmer is not using maintenance register.
14	Transfer Error (TRE)	Set by DLT or WCE or PE or NED or NEM or PGE or MXF or MDPE or a drive error during a data transfer.	See associated error bits above					

Notes: ¹ If the programmer knows how many frames should have been read and the FC equals that number and there are no other errors, the data is valid.

²Possibility exists that CRCC character is in error so if software checksum tallies, data is valid.

CHAPTER 4 TWU16 COMMAND REPERTOIRE

4.1 INTRODUCTION

This chapter contains a description of the TWU16 commands and provides a flow diagram of each command showing the interaction between the RH70 Massbus Controller and the TU16/TM02 Tape System.

4.2 REWIND

A program-controlled rewind operation may be initiated by one of two commands from the processor. One of these commands (07_8) performs the rewind operation and retains the transport on-line. The other command (03_8) places the transport off-line immediately after command initiation. Following completion of the 03_8 command, the operator must use the ON-LINE/OFF-LINE switch on the transport to return it to the on-line status.

To initiate a program-controlled rewind operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 Register in the RH70 (see Figure 4-1). The RH70 then performs a register write into the MTTC Tape Control register, selecting the slave TU16 desired to perform the rewind operation. The TM02 places the Slave Select bits of the Tape Control register on the slave bus. The RH70. Massbus Controller then writes the operational function code of the rewind command $(03_8 \text{ or } 07_8)$ into the MTCS1 Control and Status 1 register. The TM02 decodes the function code and asserts RWND L on the slave bus. (If a rewind/off-line operation has been specified, the TM02 also asserts WRITE L.) It then checks for errors, and, if there are none, initiates tape motion. The TM02 asserts DRY (drive ready) which, in turn, asserts ATA and PIP (bit 13 MTDS register). If the Interrupt Enable (IE-bit 6 of MTCS1 register) bit is set in the RH70, the ATTN will cause the RH70 to interrupt the CPU.

The TU16, enabled by its address code on the Slave Select lines (SS 0-2), activates the capstan drive for a high-speed

(150 in./sec) rewind operation. The TU16 completes the rewind operation independently, and the Massbus Controller and TM02 may divert attention to other transports.

When the reflective beginning-of-tape (BOT) marker is detected, the TU16 terminates its high-speed reverse motion, but will overshoot the BOT marker. The TU16 then initiates forward tape motion at read/write speed (45 in./sec). When it encounters the BOT marker again, the capstan motor is deactivated. When the TU16 has completed its rewind operation, it asserts SET SSC (Slave Status Change) on the slave bus and clears PIP. This causes the Attention bit in the TM02 to be set, which results in ATTN H being asserted on the Massbus thereby notifying the Massbus Controller. If the Interrupt Enable (IE-bit 6 of MTCS1) bit is set, the RH11 will interrupt the CPU.

4.3 SPACE

To initiate a space operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 Register in the RH70 (see Figure 4-2). The RH70 then performs a register write into the MTTC Tape Control register selecting the slave TU16 desired to perform the space operation. The TM02 places the Slave Select bits of the Tape Control register on the slave bus.

The RH70 Massbus Controller then loads the 2s complement of the number of tape records to be spaced into the TM02 Frame Count register. Following this, the RH70 loads the MTCS1 Control and Status 1 register with the operational function code of the space command (31 for space forward, 33 for space reverse). The TM02 decodes the function code and asserts FWD L or REV L on the slave bus. It then checks for errors and, if there are none, initiates tape motion.

Figure 4-1 Rewind Operation Flowchart

If end-of-tape (EOT), beginning-of-tape, or tape mark is detected, tape motion is terminated. If not, spacing continues until the interrecord gap (IRG) is reached. This causes the MTFC Frame Count register to increment and a motion delay to occur which terminates tape motion. If the frame count is not equal to zero, or EOT or BOT is not detected, tape motion is initiated again until an interrecord gap is detected again which reincrements the Frame Count register. This sequence continues until the Frame Count register is equal to zero or until EOT or BOT is detected indicating that the desired number of records has been spaced over. The space operation is performed at a constant speed of 45 in./sec.

When frame count overflow, or EOT or BOT is detected, the TM02 asserts DRY indicating completion of the operation by the drive. The TM02 also asserts ATTN to the RH70. If the Interrupt Enable (IE-bit 6 of MTCS1) is set, the RH70 will interrupt the CPU.

4.4 ERASE

To initiate an erase operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 Register in the RH70 (see Figure 4-3). The RH70 then performs a register write into the MTTC Tape Control register selecting the slave TU16 desired to perform the erase operation. The TM02 places the slave select bits on the Tape Control register on the slave bus. The RH70 then loads the MTCS1 Control and Status 1 register with the operational function code (25_8) of the erase command. The TM02 decodes the function code and asserts FWD L and WRITE L on the slave bus. It then checks for errors, and, if there are none, causes the TU16 to energize the write and erase heads and initiates tape motion.

The TU16, which is enabled by its address code on the Slave Select lines, responds to SLAVE SET Pulse by activating the capstan drive (starting forward tape motion) and by activating the write and erase heads.

Since the erase head is activated and the write heads receive no data input during an erase operation, all the tape moving past the erase head will be dc erased.

The erase operation is terminated by the TM02 asserting STOP L on the slave bus which deactivates the capstan motor in the TU16. When tape motion has ceased, the write and erase heads are deenergized. The TM02 asserts DRY indicating completion of the operation by the drive. The TM02 also asserts ATTN to the RH70. If the Interrupt Enable (IE-bit 6 of MTCS1) bit is set, the RH70 will interrupt the CPU.

Figure 4-3 Erase Operation Flowchart

4.5 PE DATA READ

To initiate PE read operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 register in the RH70 (see Figure 4-4). The RH70 then performs a register write into the MTTC Tape Control register specifying the selected TU16 slave, tape character format, and tape density (1600 bpi for PE).

The TM02 places the slave selects (SS 0-2) and density (DEN 0-2) bits of the Tape Control register on the slave bus. The RH70 then loads the MTCS1 Control and Status 1 register with the operational function code of a read operation (71₈ read forward, 77 read reverse, 51 write check forward, or 57 write check reverse) and asserts RUN on the Massbus. The TM02 decodes the function code and asserts FWD L or REV L on the slave bus. It then check for errors, and, if there are none, asserts OCC on the Massbus to notify the controller and other drives that it i occupying the data bus of the Massbus. The TM02 their transmits SLAVE SET Pulse to the TU16.

The TU16, which is enabled by its address code on th Slave Select lines (SS 0-2) of the slave bus, responds to SLAVE SET Pulse by activating the capstan drive moto and initiating tape motion.

The TU16 read amplifiers are on continuously. Even as th tape accelerates, the TM02 PE read circuitry checks for PE identification burst (IDB) and begins looking for preamble. When the tape is at speed, the preamble will b detected and read; the tape characters immediately afte the preamble all-1s character are data characters.

The characters are assembled into 18-bit words and place on the data bus of the Massbus. This action continues unt the first character of the postamble is detected.

The TM02 reads the postamble which signifies the end c the record and asserts EBL H (end-of-block) on th Massbus. When the gap has been detected, the TM0 terminates tape motion, asserts DRY, and negates EBL. Th negation of EBL causes the RH70 to go to the RD' (Ready) state causing the RH70 to interrupt the CPU if th Interrupt Enable (IE-bit 6 of MTCS1) bit is set.

Figure 4-4 PE Data Read Operation Flowchart

4.6 NRZ DATA READ

To initiate an NRZ read operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 register in the RH70 (see Figure 4-5). The RH70 then performs a register write into the MTTC Tape Control register, specifying selected slave TU16, tape character format, and tape data density. The TM02 places the slave select (SS 0-2) and density (DEN 0-2) bits of the Tape Control register on the slave bus. The RH70 then loads the MTCS1 Control and Status 1 register with the operational function code of a read operation (718 read forward, 77 read reverse, 51 write check forward, or 57 write check reverse) and asserts RUN H on the Massbus. The TM02 decodes the function code and asserts FWD L or REV L on the slave bus. The TM02 then checks for errors, and, if there are none, asserts OCC on the Massbus to notify the controller and other drives that it is occupying the data bus of the Massbus. The TM02 then transmits SLAVE SET Pulse to the TU16. The TU16, which is enabled by its address code on the Slave Select lines (SS 0-2) of the slave bus, responds to SLAVE SET Pulse by activating the capstan drive motor and initiating tape motion.

When a tape character is detected by the TU16, it is multiplexed onto the slave bus Read Data lines and is strobed into the TM02. LRCC and CRCC are generated from the data and will be used to check the validity of the data read.

The TMO2 assembles the characters into 18-bit data words and places them on the data bus of the Massbus. When a data word is assembled by the TMO2, the TMO2 notifies the RH70 which strobes the word from the data bus. The assembling of data characters into 18-bit words continues until the end of the data record as represented by an all-Os tape character.

During a forward read, the rest of the read circuitry continues its operation, reading the CRCC and strobing it into the Check Character register, and then reading the LRCC. Discrepancies between generated CRCC/LRCC and detected CRCC/LRCC cause their respective error bits to be set.

During a reverse read, the LRCC character is encountered first at the start of the read operation, but is ignored. The

CRCC is encountered next, and strobed into the Check Character register, but otherwise it is ignored. No CRC or LRC error is generated. Then the data is read; assembly of characters into data words may differ when reading in the reverse direction, but this depends on the data format selected.

When the data and LRCC/CRCC have been read, the TM02 asserts EBL. When the interrecord gap is detected, the TM02 asserts DRY, terminates tape motion, and negates EBL. The negation of EBL causes the RH70 to go to the RDY (Ready) state and will cause the RH70 to interrupt the CPU if the Interrupt Enable (IE-bit 6 of MTCS1) bit is set.

4.7 PE DATA WRITE

To initiate a PE write operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 register in the RH70 (see Figure 4-6). The RH70 then performs a register write into the MTTC Tape Control register, specifying selected slave TU16, tape character format, and tape data density (PE - 1600 bpi). The TM02 places the slave select (SS (0-2) and density (DEN (0-2)) bits of the Tape Control register on the slave bus. The RH70 then loads the 2s complement of the number of tape characters to be written into the TM02 Frame Count register. Following this, the RH70 Controller loads the MTCS1 Control and Status 1 register with the operational function code (61) of the data write command. The TM02 decodes the function code and assets FWD L and WRITE L on the slave bus. It then checks for errors, and, if there are none, asserts OCC on the Massbus to notify the controller and other drives that it is occupying the data bus of the Massbus.

When the RH70 has data available for transfer, it asserts RUN H on the Massbus. The TM02 responds by asserting SLAVE SET Pulse on the slave bus and accepting the first data word from the RH70.

The TU16, which is enabled by its address code on the Slave Select lines (SS 0-2) of the slave bus, responds to SLAVE SET by activating the capstan drive motor for forward tape motion and by turning on the write and erase heads. The first data word, loaded on the Massbus when RUN is asserted, is accepted by the TM02.

Figure 4-5 NRZ Data Read Operation Flowchart

Figure 4-6 PE Data Write Operation Flowchart

When the TU16 is up to speed, it transmits a WRT CLK signal to the TM02. Upon receipt of WRT CLK, the TM02 begins generating a preamble. When forty all-0 characters and one all-1 characters have been written, the TM02 begins disassembling the first data word into characters. When it has disassembled the first data word, it requests the next data word from the RH70 Massbus Controller and continues to do so until all the data words have been transferred. Each time the TM02 generates a character, the Frame Count register is incremented, a vertical parity bit is generated, and the tape character is converted to PE mode and transmitted to the write circuitry of the TU16. When the Frame Count register overflows to zero, the TM02 generates a postamble which is written on tape and asserts EBL. During the entire operation, the TU16/TM02 read operation is active and reads the record being written.

When the TU16/TM02 read circuitry detects the end of the record, the TM02 asserts DRY, terminates tape motion, and negates EBL. The negation of EBL causes the RH70 to go to the RDY state, and causes the RH70 to interrupt the CPU if the Interrupt Enable (IE-bit 6 of MTCS1) bit is set.

4.8 NRZ DATA WRITE

To initiate an NRZ write, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 register in the RH70 (see Figure 4-7). The RH70 then performs a register write into the MTTC Tape Control register specifying selected slave TU16, tape character format, and tape data density. The TM02 places the slave select (SS 0-2) and density (DEN 0-2) bits of the Tape Control register on the slave bus. The RH70 then loads the 2s complement of the number of tape characters to be written into the TM02 Frame Count register. Following this, the RH70 loads the MTCS1 Control and Status 1 register with the operational function code (61) of the data write command. The TM02 decodes the function code and asserts FWD L and WRITE L on the slave bus. It then checks for errors, and, if there are none, asserts OCC on the Massbus to notify the controller and other drives that it is occupying the data bus of the Massbus.

When the controller has data available for transfer, it asserts RUN H on the Massbus. The TM02 responds by asserting SLAVE SET Pulse on the slave bus and accepting the first data word from the RH70.

The TU16, which is enabled by its address code on the Slave Select lines (SS 0-2) of the slave bus, responds to SLAVE SET by activating the capstan drive motor for forward tape motion and by activating the write and erase heads. The first data word, loaded on the Massbus when RUN is asserted, is accepted by the TM02.

When the TU16 is up to speed, it transmits a WRT CLk signal to the TM02. Upon receipt of WRT CLK, the TM02 begins disassembling the first data word into characters.

When it has disassembled the first data word, it requests the next data word from the RH70 Massbus Controller, and continues to do so until all the data words have been transferred. Each time the TM02 generates a character, the Frame Count register is incremented, a vertical parity bit is generated, the CRCC is generated, and the tape character is transmitted to the write circuitry of the TU16 where it is converted from binary to NRZ mode (1s become transi tions) and written on the tape. When the Frame Coun register overflows to zero, the TM02 transmits EBI (end-of-block) to the RH70. It then generates the timing to write the generated CRCC and the LRCC.

During the time that the tape is moving at speed, the TU16/TM02 performs a read-after-write operation.

When the TU16/TM02 read circuitry detects the end of ϵ record, the TM02 asserts DRY, terminates tape motion, and negates EBL. When tape motion stops, the write and erase heads are deenergized.

The negation of EBL (end-of-block) causes the RH70 to gc to the RDY (Ready) state and causes the RH70 to interrup CPU if the Interrupt Enable (IE-bit 6 of MTCS1) is set.

4.9 WRITE TAPE MARK

To initiate a write tape mark operation, the address of the desired TM02 is placed on the Drive Select lines of the Massbus via the MTCS2 Control and Status 2 register in the RH70 (see Figure 4-8). The RH70 then performs a register write into the MTTC Tape Control Register, selecting the slave TU16 to perform the write tape mark operation and the density at which the tape mark characters are to be written. The TM02 places the slave select (SS 0-2) and density select (DEN SEL 0-3) bits of the Tape Control register on the slave bus.

The RH70 Massbus Controller then loads the MTCS1 Control and Status 1 register with the operational function code (27) of the write tape mark command. The TM02 decodes the function code and asserts FWD L and WRITE L on the slave bus. It then checks for errors, and, if there are none, issues SLAVE SET to the TU16.

The TU16, which is enabled by its address code on the Slave Select lines, responds to SLAVE SET by activating the capstan drive (starting tape motion) and by activating the write and erase heads. As tape moves past the heads, it is erased. After a 3 inch acceleration delay, the TM02 generates the tape mark.

Figure 4-7 NRZ Data Write Operation Flowchart

Figure 4-8 Write Tape Mark Operation Flowchart

If the TU16/TM02 is operating in PE mode, slave bus write lines WD 3, 4, 6, and 7 are forced high, while PE 0s are generated for WD 0, 1, 2, and 5. At the same time record pulses $(40 \times 2 = 80)$ are transmitted to the TU16. As a result, forty 0s are written in tracks 1, 2, 4, 5, and 8, and the remaining tracks are erased.

If the TU16/TM02 is operating in NRZ mode, the tape mark character is forced onto the slave bus WD lines, and a record pulse is transmitted to the TU16. The TU16 is then allowed to erase seven character lengths of tape at which time it receives LRC STROBE on the slave bus and writes an LRCC (which will be the same as the tape mark character).

After writing the NRZ or PE tape mark, the TU16/TM02 continues to erase tape. As the write tape mark operation is performed, the read circuitry performs a read-after-write.

After the read circuitry has detected the written tape mark, the TM02 transmits STOP L to the TU16. This signal deactivates the capstan motor to terminate tape motion. When tape motion has stopped, the write and erase heads are deenergized. The TM02 asserts DRY indicating that the drive is ready to perform another function. The TM02 also asserts ATTN to the RH70. The RH70 will interrupt the CPU if the Interrupt Enable (IE-bit 6 of MTCS1) bit is set.

4.10 ERRORS

TM02 errors may occur at command initiation or at command execution. The error handling for each type is described below.

Command Initiation – Any error that occurs when a command is initiated (GO bit asserted) will cause an immediate abort. The error will assert EXC (if it is a data transfer command) and during command initiation will also assert ATTN and EBL (see Figure 4-9). The assertion of EBL and ATTN will cause the RH70 to interrupt the CPU if the IE bit is set. The assertion of EXC causes TRE in the RH70 to set. TRE is monitored in bit 14 of the MTCS1 register.

Command Execution – During the execution of a command, Class A or Class B errors may occur and are handled in the following manner.

Class A: If a class A occurs during execution of a data transfer command, EXC is raised immediately but the command will not terminate until the operation is completed. This occurs at the end of the record when ATTN and EBL are asserted. Note that EXC asserts TRE which can be monitored via bit 14 of the MTCS1 register.

Class B: If a class B error occurs during execution of a command, EXC, ATTN and EBL are raised immediately and the command is terminated. If the command is a data transfer command, EXC is also asserted which sets TRE in the RH70.

CHAPTER 5 THEORY OF OPERATION

5.1 GENERAL

This chapter describes the theory of operation of the RH70 Controller in two functional groupings – the Register Control Path and the Data Path. These are described in detail in the following paragraphs.

5.2 REGISTER ACCESS CONTROL PATH

The Register Control Path provides the interface that enables the program to read from or write into any register in the RH70 or associated drive. Specific bits in these registers are designated as follows:

Read only bits indicate that the program can read the status of these bits but cannot load them; *write only* bits indicate that the program can load them but will read back a 0; *read/write* bits indicate that the program may load them and read back the status.

The RH70 examines Unibus address bits 17 - 05 (17 - 06 if there are a total of more than 16 registers) to determine if the register being addressed is an RH70 register (Figure 5-1). The address field can be defined by a set of jumpers within the RH70. The Unibus address is compared with the set of jumpers and if the two match, the addressed register is a valid RH70 register, which enables the circuitry for a register function. If the Unibus address does not compare with the jumpers, the RH70 will not accept the address and will not initiate a data transfer with the processor.

The RH70 contains two registers (Bus Address Extension and Control and Status 3 registers) which float in the Massbus address field. Their respective addresses may vary in different subsystems, depending on the number of registers within a given system. Consequently, the registers are logically defined as being the last two registers in a system. The number of registers is classified as the *register length field*.

The logic implements this in the following manner. Address bits 4 - 2 from the Unibus are compared to the register length field consisting of a set of jumpers weighted 2, 4, 8, and 16.

NOTE

If the subsystem contains more than 16 registers, address bit 5 from the Unibus is also compared to the jumpers selected in the register length field.

The Unibus address bits and the register length field jumpers are compared in a comparator which yields the following outputs:

A>B – denotes that the register length field is greater than the Unibus address specified, indicating that a valid register has been addressed. If the register is remote, a Massbus cycle is initiated.

A < B – denotes that the Unibus address is greater than the register length field, indicating that an illegal register has been addressed.

A=B – indicates that either the CS3 or BAE register has been specified. If address bit 01 is asserted, the CS3 register is specified; if the bit is unasserted, the BAE register is specified. For this case, no Massbus cycle is initiated.

Figure 5-1 Register Control Path

5.2.1 Writing a Local Register

Unibus address bits 04 - 01 (05 - 01 if more than)16 registers are employed) select a cell in a Read Only Memory (ROM) which specifies a unique register. The ROM outputs are register select signals (RSEL 04:00), two coded bits (M6 and M7), and a LOCAL REG H signal. Since this description involves accessing a local register (one contained in the RH70), LOCAL is generated at the output of the ROM as LOCAL REG H. When this signal is unasserted or low and a register operation is being performed, a remote register (unless CS3 or BAE) is selected. Signals RSEL 01:00 and M6 and M7 are supplied to the register decoders to select one of the local registers. RSEL 04:00 is also supplied to the Massbus control logic, but is inhibited from the Massbus because a "write local register" function is specified and REMOTE REG remains unasserted.

Unibus control lines A0, C0, and C1 specify the direction of transfer and also specify byte or word addressing. When writing a register, the C0 and C1 lines are encoded for a DATO or DATOB (if byte addressing is specified). The A0, C0, and C1 control lines are supplied to a direction control network which generates IN, OUT, HI BYTE, or LO BYTE signals, depending on the cycle desired. These signals are fed to the register decoder where they are used in decoding the various register enable signals.

The Unibus data lines are connected to the RH70 and contain the data used to load the desired register.

When BUS MSYN is received from the central processor (150 ns after the data, control and address are placed on the Unibus), a DEV SEL (Device Select) signal is generated, which enables the register decoder to generate the appropriate enable signal for the register specified. Signal REG STR is created 85 ns later and is ANDed with the HI BYTE or LO BYTE signal and the specified register enable signal from the register decoder. The signals designated IN are used for writing local registers; the signals designated OUT are used for reading local registers. For example, if it was desired to write into the WC (Word Count) register, the register decoders specify the WC IN L signal, which is AN-Ded with HI BYTE or LO BYTE and REG STR to generate a clock used to load the WC register. The data is clocked into the WC register at the time of REG STR. The trailing edge of this signal, which is 150 ns long, causes SSYN to be asserted. The central processor receives SSYN and lowers MSYN, which deselects the RH70 from the Unibus. The lowering of MSYN then causes SSYN to be lowered, and 75 ns after the lowering of MSYN, the address lines change and the cycle is completed.

5.2.2 Reading a Local Register

The process of reading a local register is the same as that described for writing a local register (Paragraph 5.2.1) with the following exceptions:

- 1. The C0 and C1 Unibus control lines are decoded for a DATI or DATIP operation.
- 2. When reading a local register, the register "OUT" signals of the register select decoders gate the contents of the register on the BUSI lines for transmission to the processor via the Unibus.

5.2.3 Writing a Remote Register (Figure 5-2)

A remote register is defined as a register located in the drive. The data path for writing a remote register is from the Unibus via data lines D00-D15 IN H on to the Massbus, via control lines MASS C00-C15 H, where the data is received by the selected drive and loaded into the specified register in that drive. A CTOD (Controller to Drive) signal on the Massbus specifies the direction of transfer to the drive.

The upper address bits of the Unibus address are compared with a set of jumpers in the RH70 to enable the register selection logic, previously described. Unibus address bits 04 - 01 (05 - 01 ifmore than 16 registers are employed in the system) select a cell in the ROM (Read Only Memory) which specifies a particular register. The outputs of the ROM are register select signals RSEL (04:00), two coded bits (M6 and M7), and the LOCAL REG signal. The selected drive, whose unit number was preloaded by the programmer in the CS2 register, is specified by device select lines DS00 – DS02 on the Massbus.

* ALL EVENTS WITHIN BRACKET OCCUR AT APPROXIMATELY SAME TIME.

Figure 5-2 Writing Remote Register Interface

When the MSYN signal is received over the Unibus by the RH70, the DEV SEL signal is enabled and a delay of 235 ns occurs before the RH70 issues DEM to the Massbus. This delay allows the select and data lines to settle and be decoded on the Massbus before the drive strobes the Massbus control lines. When the drive receives DEM and recognizes the unit address as its own, and when the data has been clocked into the appropriate drive register, it issues transfer (TRA) to the RH70. When the RH70 receives TRA, indicating that the drive has obtained the data, it issues SSYN to the processor. SSYN signals the processor that the slave (RH70) has finished the cycle, and the processor removes MSYN, which in turn causes SSYN to go unasserted. Also, MSYN going unasserted, removes the DEV SEL signal which causes DEM to drop. This action in turn causes TRA from the drive to go unasserted. The address and data is then removed from the Unibus and Massbus to complete the cycle.

5.2.4 Reading a Remote Register (Figure 5-3)

The process of reading a remote register is similar to that of writing a remote register with the following exceptions:

- The data path for reading a remote register is from the drive to Massbus control lines C00 C15 H, to the RH70 open-collector multiplexers (8234), to the BUSI lines, and then to the Unibus data lines D00-D15.
- 2. Upon receipt of TRA when writing a remote register, SSYN is immediately sent to the CPU. When reading a remote register, however, SSYN is delayed 220 ns from TRA to ensure that the data is present and settled on the Unibus.

5.3 DMA DATA PATH

The DMA data path (Figure 1-2) is used for memory-to-Massbus data transfers or from Massbus-tomemory data transfers. The data path consists of an eight-word data buffer and associated data buffer control logic. The data buffer provides for temporary storage of up to eight data words. It is designed to accept or provide memory with single-(16 bits) or double-word (32 bits) data and to convert double words to single words for transfer to the Massbus. Parity checking and generating is also provided for Massbus and memory data words.

Due to the complexity of the Data Buffer (DB), a built-in maintenance feature has been incorporated that allows the programmer to write into the DB as a register, thereby allowing a succession of data words to be sequenced through the DB and read back via a read from the DB. In this way, the data path and parity generator and checker for the Massbus can be easily verified.

5.3.1 Data Buffer Maintenance Operation

Figure 5-4 shows the data path used when the programmer attempts to read or write the DB register during maintenance operations. The RA, RB, RC, RD and RE - OBUF registers contain associated flags (RA FULL, RB FULL, RC FULL, RD FULL, RE FULL, - OBUF FULL) to designate the status of their respective registers. The RA or RB FULL flags are presented to the programmer via the IR (Input Ready) status bit (bit 06) in the CS2 Control and Status 2 reg ister. When the hardware selected flag (RA FULL or RB FULL) is asserted (register is full), the Input Ready Status is negated, indicating that the register is not available to receive a word. The OBUF FULL flag is presented to the programmer via the OR (Output Ready) status bit (bit 07) of the CS2 Control and Status 2 register. When the OBUF FULL flag is asserted, it indicates that the contents of OBUF are full (has a valid data word) and that the programmer can read the data buffer.

The data path also contains three steering signals used to alternate the flow of data between the right- and left-hand sides of the data path: RB ENA, RD ENA, and MXR SEL. When the system is first initialized, by asserting INIT on the Unibus, or by setting the CLR bit in the CS2 register, the RB ENA flip-flop is pointing to the RA register, the RD ENA flip-flop is pointing to the RC register, and the MXR SEL logic is pointing to the RC register. This primes the right-hand side of the data path to accept the first data word.

* ALL EVENTS WITHIN BRACKET OCCUR AT APPROXIMATELY SAME TIME.

Figure 5-4 Data Buffer Maintenance Operation

5.3.1.1 Writing the Data Buffer During Maintenance Operation – To understand maintenance operation of the data buffer, the following description assumes that eight words are to be sequentially loaded into the data buffer and none of the words are to be read out.

WORD 1 - The first word loaded in the DB by the programmer is transferred from the Unibus to IMX, AMX and then to the RA register. This action causes two events: the RA FULL flag is asserted (which negates the IR Status in CS2) and the RB ENA flip-flop is toggled to point to the RB register (which, if empty, will cause the IR Status to again be asserted). Since the RC register is empty (RC Full flag negated) and the RA register is full. the data word in RA sequences to the RC register. This causes the RC FULL flag to be asserted, the RA FULL flag to be negated, and the RD ENA flip-flop to toggle to the RD register. The data word then sequences to the RE register through the MXR since the MXR SEL was pointing to RC. The RC FULL flag is cleared, the RE FULL flag is asserted, and the MXR SEL switches to the RD register. Now, the logic is set up to enable the lefthand side of the data path. The data word in RE is transferred to RF, to RG, and then to OBUF, which causes the OBUF FULL flag to be asserted.

WORD 2 - The second word loaded into the DB by the programmer is transferred from the Unibus to IMX, BMX, and then to the RB register. The RB FULL flag is asserted and the IR (Input Ready) status is cleared. The RB ENA flip-flop is toggled to point to RA again (which causes IR to be asserted, since RA is empty). Since the RD register is empty (RD FULL flag negated) and the RB register is full, data word 2 sequences to the RD register. This negates the RB FULL flag, asserts the RD FULL flag and toggles the RD ENA flipflop to point to the RC register again. The word in RD is then transferred to RE via the MXR SEL logic, since the MXR SEL is pointing to RD. At this point, the MXR SEL is changed to point to RC again. Now, the right-hand of the data path is primed to receive the next data word. Data word 2 in RE is transferred to RF, then to RG, and remains there since data word 1 is still in OBUF.

WORD 3 – As previously stated, the right-hand side of the data path is primed and the third word loaded by the programmer is transferred from the Unibus to IMX, AMX, RA, RC through the MXR to RE, and finally to RF. The description of how this word sequences through the DB is similar to that described for word 1. The difference is that word 3 remains in RF since word 2 is in RG and word 1 is in OBUF. All the pointers are now primed to enable the left-hand side of the data path.

WORD 4 – The fourth word is transferred from the Unibus to IMX, BMX, RB, RD, and finally to RE. The description as to how this word sequences through the DB is similar to that described for data word 2; however, the fourth data word remains in RE, since word 3 is in RF, word 2 is in RG, and word 1 is in OBUF. The pointers are now all primed to enable the right-hand side of the data path.

WORD 5 – The fifth word loaded by the programmer is transferred from the Unibus to IMX, AMX, RA and then to the RC. The word can sequence no further because RE is already full with the fourth word. The RB ENA and RD ENA flip-flops are toggled to point to RB and RD, respectively; however, the MXR SEL is not affected since no word was transferred through the mixer in this case. The left-hand side of the data path is now primed to accept the sixth data word.

WORD 6 – The sixth word loaded by the programmer is transferred from the Unibus to IMX, BMX, RB and then to RD. Both the RB ENA and RD ENA flip-flops are toggled to point to RA and RC, respectively, in order to prime the right-hand side of the data path to accept data word 7. The MXR SEL again remains unchanged, since no word is sequenced through the mixer. At this point, word 1 is in OBUF, word 2 is in RG, word 3 is in RF, word 4 is in RE, word 5 is in RC and word 6 is in RD. Since both RC and RD are full, the RD ENA flipflop can now be ignored, as is the case with the MXR SEL. WORD 7 – The seventh word loaded into the DB is transferred from the Unibus to IMX, AMX, and then to RA. The word remains in RA since word 5 is still in RC. The RB ENA flip-flop is toggled to prime the left-hand side of the data path in order to accept the eighth data word.

WORD 8 – The eighth word loaded is transferred from the Unibus to IMX, BMX, and then to RB. The eighth word remains in RB since all the remaining registers in the DB are filled. The RB ENA flip-flop is toggled to point to RA. Since a word is in RA (RA Full flag asserted), the IR (Input Ready) status is negated.

The programmer can verify that the DB is full by examining the OR (Output Ready-bit 07 of CS2) and IR (Input Ready-bit 06 of CS2) status bits. If OR is asserted and IR is negated, it indicates that a word is in OBUF and words are in RA and RB, and due to the "bubble" technique of word sequencing, it is evident that the data buffer is full. If the programmer attempts to write a ninth word into the DB, he would overwrite the entire contents of RA and would cause the RB ENA flip-flop to toggle to point to RB.

5.3.1.2 Reading the Data Buffer During Maintenance Operation - When the programmer does a read from the DB register, the contents of OBUF is supplied to the Unibus as data and the OBUF FULL flag is cleared (OR status bit negated). When this occurs, the contents of RG (word 7) is sequenced to OBUF (OBUF FULL sets and OR if asserted), RF sequences to RG, RE to RF, RC to RE (since the MXR SEL was pointing to RC) and RA to RC. This action causes the MXR SEL to now point to RD, the RD ENA flip-flop to point to RD and the RB ENA flip-flop to remain unchanged (pointing to RA). At this point, all the registers in the Data Buffer are filled, except for the RA register, and the IR status indicator is asserted in the CS2 register to indicate that space is available for additional data words.

When the second word is read from OBUF, the OBUF FULL flag is cleared. The contents of RG (word 6) is sequenced to OBUF, RF to RG, RE to

RF, RD to RE (since the MXR SEL is pointing to RD), and RB to RD. This process causes the MXR SEL to switch to RC, the RD ENA flip-flop to point to RC and the RB ENA flip-flop to re main unchanged (pointing to RA). At this point, word 3 is in OBUF, word 4 is in RG, word 5 is in RF, word 6 is in RE, word 7 is in RC and word 8 is in RD, with both RA and RB cleared. As successive reads are performed, the words are sequenced out of the DB in the same order in which they are loaded into DB.

5.3.1.3 Parity Generation/Checking During Maintenance Operation – Whenever a word is clocked into RA and then to RC, the parity checker/generator circuit (shown between RA and RC) generates odd parity for each byte as the word is sequenced to RC. For example, assume that the low byte contains all 1s; in this case, a parity bit is generated. Assume that the high byte contains all 0s; in this case, a parity bit is also generated. A similar parity generator/checker is located between RB and RD, and as a word is transferred from RB to RD, odd parity for each byte is created.

As the data word sequences the RE, the parity bits are X-ORed, resulting in one parity bit for the word. This parity bit is transferred along with the data word until the data word reaches OBUF. There is a third parity generator/checker prior to OBUF. This circuit checks the parity of the data word to ensure that it is odd parity. If it is not, the parity checker will cause the MDPE (Massbus Data Parity Error) condition (bit 8 of CS2) to be asserted, indicating that a hardware failure occurred between inputting the data word into the data buffer and the outputting of the data word from the data buffer.

Additional flexibility is provided the programmer for maintenance checking of these parity circuits by allowing bad (even) parity to be *generated* as words are input or by allowing bad (even) parity to be *checked* as the words are input. The IPCK bits control the parity generators between RA and RC and between RB and RD. The PAT bit controls the parity checker between RG and OBUF.

5.3.2 Write Commands (Data Buffer Operation)

In a write operation, data is transferred from memory to the RH70 Massbus controller, to the Massbus, and subsequently to the drive. The data buffer in the RH70 is the device that accepts data to be written on or read from the drive (Figure 5-5). In a write operation, words are obtained from memory in one of four ways: single word, double word, words whose addresses are sequentially incremented and words whose addresses are sequentially decremented. When one of these operations is specified, the RH70 data buffer is initialized for that type of operation. When bus address bit 01 (BA 01) is a 0 (even word address), the right-hand data path (RA and RC) is initialized; when this bit is a 1 (odd word address), the left-hand data path (RB and RD) is initialized.

For a data transfer, the program specifies the bus address, bus address extension, word count, desired address and the data transfer command code - a write command in this case. When the write command is loaded and the data buffer is full, or word count overflow or an error condition occurs, the RUN line is asserted on the Massbus and the drive starts searching for the sector specified by the desired address. When the desired address is found, the drive sends SCLK (Sync Clock) signals to the RH70. The RH70 returns SCLK as a WCLK (Write Clock) signal, along with the data word. On the trailing edge of WCLK (SCLK plus the cable delay), the drive strobes the data word into its data buffer. This process continues until either word count overflow is detected or until an error condition is asserted.

The normal operation of the data buffer is to transfer double words as the memory addresses are sequentially incremented. The hardware also implements double-word transfers as the memory addresses are sequentially decremented. (This command code is not implemented in the RP04 Drives.) In certain conditions, it is necessary to do singleword transfers. These conditions are enumerated below.

1. Word Count – If the word count indicates that the word to be transferred is the last word, a single word transfer will occur.

- 2. Bus Address Increment Inhibit If this bit (BA1-bit 3 of CS2) is asserted, the memory addresses are not incremented and the same data word is written in successive locations in the drive.
- 3. If the memory address of the data word is on a single-word boundary, it is necessary to do a single-word transfer to arrive on a double-word boundary. When this occurs, normal double-word transfers can be accomplished. If memory addresses are being incremented, and the least significant digit of the address is a 0 or 4, the word is on a double-word boundary. In this case, Bus Address bit 01 (BA 01) is a 0. If the least significant digit of the address is a 2 or 6, the word is on a single-word boundary and BA 01 is correspondingly a 1 (Figure 5-6).

The reverse case is true when memory addresses are being decremented. In this instance, a least significant digit of 2 or 6 specifies a double-word boundary (BA 01 equals a 1) and a least significant digit of 0 or 4 specifies a single-word boundary (BA 01 equals a 0).

The following paragraphs describe a write data transfer using incremented memory addresses followed by a write data transfer using decremented memory addresses.

5.3.2.1 Incremented Memory Addresses – To understand the data buffer, assume that BA 01 is a 0, which places the memory address on a double-word boundary and initializes the right-hand data path with the RB ENA pointer pointing to RA. It is further assumed that a double-word data transfer is to be performed, followed by a single-word transfer (i.e., a word count of 3).

The low word from memory is applied to RA via AMX and the high word from memory is simultaneously applied to RB via BMX. During double-word operation, the RB ENA pointer is overridden. This can be thought of as adding two to the RB ENA pointer which is actually a flip-flop; adding two to this device reverts it to its original state. Consequently, after this double-word transfer, the RB ENA pointer will remain pointing to RA. In addition, the RD ENA pointer is not employed during a write command and can be ignored.

Figure 5-5 Write Command Data Path

Figure 5-6 Data Word Boundaries

When the double word from memory is clocked into RA and RB, the RA FULL and RB FULL flags are asserted. Since RC and RD are empty, the double word is clocked into RC and RD, respectively, clearing the RA and RB FULL flags and asserting the RC FULL and RD FULL flags. Each data word consists of two bytes, plus a parity bit for each byte. The byte parity is checked by a parity checker as the double word is transferred from RA to RC and from RB to RD. If the parity is correct, the act of transferring a word from RA to RC or a word from RB to RD will initiate a new memory cycle. If the parity is incorrect, the data parity error is flagged and the memory transfer is frozen in order to allow the programmer to determine the address of the incorrect data word.

NOTE

The data word may or may not be written in the drive. This depends on whether the parity error is synchronized with the SCLK from a previous word, or with the SCLK associated with the word in question. In the former case, the data word will remain in the data buffer; in the latter case, the word will be written in the drive. Since RC and RD are full, and the MXR SEL is pointing to RC, the word in RC is transferred to RE, clearing the RC FULL flag, and switching the MXR SEL to RD. The word in RE sequences through the data buffer and is followed by the word in RD which is now transferred to RE. As a result, the RD FULL flag is cleared and the MXR SEL points once again to RC. The double word has thus been converted into two single words - the low word followed by the high word. As the data word is transferred from RG to OBUF, a parity bit is generated if required (for odd parity). This ensures correct parity for the data as it is clocked onto the Massbus.

For descriptive purposes, assume that the programmer had requested a three-word transfer and a single word must follow behind the double word which is now located in OBUF and RG. This word from memory is applied to RA via AMX, since RB ENA is pointing to RA and it is an even word. Since RC is empty, the word is transferred to RC, the RC FULL flag is asserted, the RA FULL flag is cleared, and the RB ENA pointer is switched to RB. Since the MXR SEL is pointing to RC, the word in RC is transferred to RE via the mixer. The MXR SEL is switched to RD, the RC FULL flag is cleared, and the single data word continues to sequence through the data buffer to RF. Two memory cycles have been performed to read three words from memory. The first word is in OBUF, the second in RG and the third in RF, ready to be transferred to the drive via the Massbus.

5.3.2.2 Decremented Memory Addresses – To understand the operation using decremented memory addresses, assume that BA 01 is set to a 0, indicating that the data word is on a single-word boundary. In order to perform double-word memory cycles, the memory address must be on a double-word boundary. To accomplish this, a single word transfer is first performed; then the next memory address will be on a double word boundary.

NOTE

Decremented memory addresses' subscript for a write a write command code of 67_8 which will fill the data buffer with words from memory, but will cause an illegal function error (ILF) in the disk drives. Since BA01 is a 0, the right-hand data path (RA and RC) is initialized. The single word from memory is clocked into RA via AMX. The RB ENA pointer is switched to RB and the RA FULL flag is asserted. Since RC is empty, the word in RA is transferred to RC, the RA FULL flag is cleared, and the RC FULL flag is asserted. As the word is transferred from RA to RC, a parity check is performed. If parity is correct and if RA and RB are empty, a new double-word memory cycle is initiated. If parity is incorrect, the memory transfer is frozen as previously described.

Since the MXR SEL is pointing to RC and since RE is empty, the word in RC is transferred to RE. The RC FULL flag is cleared and the MXR SEL is switched to RD. The word in RE continues to sequence through the data buffer and as the word is transferred from RG to OBUF, a parity bit is generated, if required.

If RA and RB are empty and no parity error is detected, the transfer of the word from RA to RC initiates a double-word memory cycle (BA01 is a 1 which now points to a double-word boundary). The double word is clocked into RA and RB, then into RC and RD, as previously described. Since the RB ENA pointer does not switch for double words and the RD ENA pointer is not used for write operations, they can be ignored. The MXR SEL is pointing to RD and the high word in RD is transferred to RE, followed by the low word in RC. The description of the words sequencing through the data buffer is similar to that described for incremented memory addresses.

The important distinction is that the low word follows the high word of a double-word block in decremented memory addresses and the MXR SEL points to RD for a double-word boundary, which is the reverse of what occurs in incremented memory addressing.

5.3.3 Read Command (Data Buffer Operation)

In a read data transfer, data is transferred from the drive to the Massbus, to the data buffer in the RH70 Massbus Controller and subsequently to memory. The data buffer in the RH70 is the device that accepts data to be written on or read from the drive (Figure 5-7). In a read operation, single words are clocked into the data buffer, via the Massbus, and are normally assembled into double words for subsequent transfer to memory. For a data transfer, the program specifies the bus address, bus address extension, word count, and the data transfer command code – a read command in this case. When the read command is loaded, the RUN line is asserted on the Massbus. After the tape is up to speed, the TM02 receives two tape characters from the TU16, assembles them into a 16-bit word, and sends it to the RH70, accompanied by an SCLK signal. On the trailing edge of SCLK, the data is strobed into the RE register in the data buffer. The data sequences from RE to RF, to RG and the OBUF. Parity is checked as the data is transferred from RG to OBUF.

NOTE

Parity is calculated on the 16 data bits, the parity bit, and the exclusive-OR of data bits 16 and 17 from the Massbus. Bits 16 and 17 are written as 0s during write commands. If a parity error occurs, a Massbus Data Parity Error (MDPE) is flagged.

The data word in OBUF is transferred to RA (if BA01 = 0) or is transferred to RB (if BA01 = 1). If double-word operation is occurring, the next data word is assembled with this one as a double-word in RA and RB for transfer to RC and RD and subsequently to memory. As previously described, during incremented memory operations, addresses whose least significant bit is a 0 or 4 are on a double-word boundary while addresses whose least significant bit is a 2 or 6 are on a single-word boundary. The reverse holds true for decremented memory addressing.

5.3.3.1 Incremented Memory Addresses During Read Operation - To understand double-word transfers during a read operation, assume that BA 01 =0 so that the RB ENA pointer points to RA and the RD ENA pointer points to RC. The word reaching OBUF from the drive is clocked into the RA register. At this point, the RA FULL flag is asserted and the RB ENA pointer switches to RB. Since this is a double-word transfer, the data path logic prevents the word in RA from being clocked into RC until a word is loaded in RB. Now, a double word is assembled in RA and RB and, since RC and RD are empty, the double word is clocked into RC and RD. The RC FULL and RD FULL flags are asserted. The RA FULL and RB FULL flags are negated, and the RD ENA pointer is incremented twice, which effectively leaves it pointing to RA. The act of transferring the word from RA and RB to RC and RD initiates a memory request.

In single-word transfers, the RD ENA pointer ensures that the RC or RD register is clocked at the proper time. After memory acknowledges the request and completes the transfer, the RC FULL and RD FULL flags are cleared. The process continues with data being clocked into RE, RF, RG, OBUF, and subsequently to RA and RB, where it is assembled into double-words for transfer to RC and RD.

NOTE

The double-word operation will normally take place if the word is on a double-word boundary, if it is not the last word, or if the BAI (Bus Address Increment Inhibit) bit is negated.

Parity generators attached to RA and RB examine each data byte and generate an odd parity bit, if required. Each 16-bit word consists of 2 8-bit bytes and an associated parity bit for each byte. Both data and parity are sent to memory.

5.3.3.2 Decremented Memory Addresses During Read Operation – To understand read data transfer operations using decremented memory addresses, assume that BA 01 is a 0, which primes the righthand data path and indicates that the data word is on a single-word boundary.

The drive places a data word on the Massbus with a SCLK signal. On the trailing edge of SCLK, the RH70 strobes the word into RE and it sequences through RF, RG, OBUF and into RA, since the right-hand data path is enabled. The RA FULL flag is asserted and the RB ENA pointer is switched to RD. The act of transferring the contents of RA to RC initiates a memory request and the data word is then transferred to memory. At the completion of the memory transfer, the RC FULL flag is cleared.

The next data word is then on a double-word boundary and is transferred to the RE register from the drive via the Massbus. The word sequences from RE to RF, RG, OBUF and then to RB, since the left-hand data path is enabled. The RB FULL flag is asserted and the RB ENA pointer is switched to RA. However, since a double-word transfer is specified, the contents of RB will not be transferred to RD until both RC and RD are empty and both RA and RB are full. The next data word from the drive sequences through the data buffer and is clocked into RA since the right-hand data path is primed. Now, a double word is in RA and RB, RC and RD are empty and the double word is transferred into these locations. This clears the RA FULL and RB FULL flags, asserts the RC FULL and RD FULL flags, and initiates a memory request, causing the double word to be transferred to memory. Successive double words continue to be transferred in this manner.

5.3.4 Write Check Command (Data Buffer Operation)

In the write-check operation, data previously written onto the drive is compared with the corresponding data from memory. Using this technique, transmission errors from memory to the drive can be detected.

The data words from the drive are transferred to the RE register in the data buffer via the synchronous portion of the Massbus (Figure 5-8). The data sequences from RE to RF, RG, and then to OBUF. This portion of the data path is similar to that described for the Read command (Figure 5-7).

Data from memory is normally input as double words to AMX and BMX and then to RA and RB, respectively. In the case of a single-word transfer, the data word is clocked into RA (if BA01 = 0) or into RB (if BA01 = 1). This portion of the data path is similar to that described for a write operation (Figure 5-5).

NOTE

As previously described in the write operation, a double word is clocked into RA and RB. This causes the RA FULL and RB FULL flags to be asserted. The RB ENA pointer is overridden for double-word transfers. If both RC and RD are now empty, the double word is clocked into RC and RD, the RC FULL and RD FULL flags are asserted and the RA FULL and RB FULL flags are cleared. A parity check is performed on the data as it is clocked into RC and RD. If a parity error is detected, a data parity error is flagged and the next memory request is inhibited. The act of clocking the double word into RC and RD with no parity error initiates another memory request.

Figure 5-8 Write-Check Command Data Path

To understand the write-check operation, assume that a data word from the drive has been transferred to the RE register and has sequenced up to OBUF; also assume that a double word from memory has sequenced into RC and RD. Also, assume that the MXR SEL is pointing to RC. In this case, the output of RC is applied to one input of the exclusive-OR (XOR) network and the output of OBUF is applied to the other input of the XOR network. The RC output is the data word from memory and the OBUF output is the corresponding word from memory which was previously written onto the drive. These two words are compared in the XOR network on a bit-by-bit basis. If any of the bits do not compare, the XOR network yields a 1 which is used to set the WCE (Write-Check-Error) flip-flop when it is clocked. If the data words do compare, the WCE flip-flop remains in the reset state.

When the WCE flip-flop is clocked by the clock signal, the OBUF FULL flag is cleared (if no WCE occurs) and the RC or RD flip-flop is cleared (whichever was being selected by MXR SEL). In this case, it is the RC flip-flop. This action releases the word in RC and OBUF to allow subsequent words to be write-checked. At the same time, the MXR is switched to RD. The data word in RD is now compared with the next data word from the drive which has sequenced up through OBUF. The MXR switches back to RC after this check and the process continues.

For write-checking memory addresses which are decremented, the procedure is similar, except that the high data word is write-checked before the low data word. IF BA01 is a 1, the left-hand data path is primed, which means hat the high word in RD is write-checked before the low word in RC. If BA01 is a 0, the right-hand (low word) data path is primed and, in decrementing operations, this word is on a single-word boundary.

5.4 RH70/CACHE INTERFACE

Data Transfers between the RH70 Massbus Controller and Cache take place over the RH70/Cache Interface. The transfers are asynchronous in nature and normally consist of two data words (32 bits, plus four parity bits). The Cache interfaces with up to four RH70 Massbus Controllers and contains the necessary priority arbitration logic to select the appropriate controller when multiple requests are initiated.

The backplane slots are designated A, B, C and D for the various controllers which it can accommodate (refer to Figure 6-1). The logic for the controllers is identical; therefore, in order to make one set of logic diagrams common to all controllers, certain signals are designated with an X in the signal designation. Examples of this are CSTC CNTLX REQ L, CDPJ SELADRS CNTLX H and CDPJ SELDATA CTRLX H. The X in these signal names designates A, B, C or D, depending upon which controller is specified. For example, the signal CSTC CNTLX REQ L for Controller A is CSTC CNTLA REQ L. The following paragraphs provide the interface description of write data transfers (data read from memory to be written on a Massbus device) read data transfers (data read from a Massbus device to be written into memory) and write-check data transfers (data read from memory to be compared with data from a Massbus device in the RH70).

5.4.1 Write or Write-Check Operation (Read from Memory)

Figure 5-9 is an interface diagram showing the relationships among the RH70/Cache Interface and the Cache/Memory Bus Interface. Figure 5-10 is a timing diagram showing the RH70/Cache timing relationships.

When the RH70 wishes to make a memory access, it issues a CSTC CNTLX REQ signal. For example, if Controller A is making the request, CSTC CNTLA REQ is issued. The Cache receives the RH70 request along with requests from other devices and arbitrates them to determine which controller will access memory. The Cache then transmits CDPJ SELADRS CNTLX H to the Controller which has been selected. If Controller A was selected, Cache issues CDPJ SELADRS CNTLA H.

Upon receipt of this signal, the RH70 gates the address and control bits (C0, C1, and CX) to Cache. The Cache latches the address and control bits for subsequent transfer to Main Memory.

NOTE: This figure assumes no Address Parity Error and no Non-Existent memory, both of which cause CCBD MBC TIMEOUT. The RH70 monitors for these conditions while CDPJ SEL DATA CNTLX H is asserted.

The Cache then transmits CDPJ SELDATA CTRLA H to the RH70. During write or writecheck operations, this signal is used to gate CCBD MBC TIMEOUT from Cache. CCBD MBC TIME-OUT will occur only as a result of addressing a nonexistent memory or as a result of an address parity error on the Main Memory Bus. Either condition causes an error status to be indicated in the RH70 (APE-bit 15 of CS3 and NEM-bit 11 of CS2). The Cache then issues a CCBE MBC REQ ACKN signal to the RH70 that it can now unassert the request signal and the address and control bits.

After the Cache issues CCBE MBC REQ ACKN, it issues a START signal to Main Memory. This causes the address and control bits, which were latched in Cache, to be transferred to Main Memory. A memory cycle is initiated and memory issues MAIN ACK, indicating that memory is responding properly. The assertion of MAIN ACK inhibits the TIMEOUT signal (which denotes an error condition when asserted). After receiving MAIN ACK from memory, the Cache issues CCBE MBC ADRS ACKN L to the RH70. In the RH70, MBC ADRS ACKN is made into a 50-ns pulse and causes CSTC READ DONE L. The trailing edge of READ DONE clears the memory cycle control logic in the RH70.

NOTE

If ADDR ACK is not received within 10 microseconds after START, Cache issues a CCBD MBC TIMEOUT signal and the RH70 examines the Address Parity Error line. If TIMEOUT and Address Parity Error are asserted, the CSTC APE flip-flop is set. If TIMEOUT is asserted and there is no address parity error, the CSTC NEM (Non-Existent Memory) flip-flop is set.

Main Memory then places two words on the data lines of the Main Memory Bus. After a data deskew delay, memory issues MAIN DATA READY. The data words are then routed from Cache to the RH70, selected by the priority arbitration logic (controller A, in this example). The CDPK DATA RDY CNTLA H signal is the MAIN DATA READY signal from Cache to the RH70 and causes the data from memory to be transferred to the data buffer in the RH70. The trailing edge of CDPK DATA RDY CNTLX clears the memory cycle control logic in the RH70. While Cache is transferring data to the RH70, it may already be in the midst of servicing some other request for memory access.

5.4.2 Read Operation (Write Into Memory)

Figure 5-11 is an interface diagram showing the relationships among the RH70/Cache Interface and the Cache/Memory Bus Interface. Figure 5-12 is a timing diagram showing the RH70/Cache timing relationships.

When the RH70 wishes to make a memory access, it issues a CSTC CNTLX REQ L signal. The Cache arbitrates this request with other requests in order to determine which device will obtain access to memory. If this RH70 has been selected (assume Controller A), the Cache returns a CDPJ SE-LADRS CNTLA H signal.

Upon receipt of this signal, the RH70 gates the address and control bits (C0, C1, and CX) to Cache. The Cache latches the address and control bits for subsequent transfer to Main Memory.

The Cache then transmits CDPJ SELDATA CNTLA H to the RH70 (Controller A). This signal allows the RH70 to gate the data from its data buffer onto the RH70/Cache Interface. The data is placed on the Main Memory Bus as long as MAIN OCC is unasserted (indicating that the data lines are free).

NOTE

When a read from memory is being performed, the assertion of MAIN OCC indicates that the data lines are in use.

The Cache now issues a CCBE MBC REQ ACKN signal to the RH70 to notify the RH70 that it can negate the request signal and the address and control bits.

NOTE: This figure assumes no Address Parity Error and no Non-Existent memory, both of which cause CCBD MBC TIMEOUT. The RH70 monitors for these conditions while CDPJ SEL DATA CNTLX H is asserted.

11-2904

11-2905

Figure 5-13 Write Command Flow Diagram

After the Cache issues CCBE MBC REQ ACKN, it issues a START signal to Main Memory. This signal causes the address, control bits and data on the Main Memory Bus to be transferred to Main Memory. A memory cycle is then initiated and MAIN ACK is generated by Main Memory and sent to Cache. The memory cycle causes the data to be written into core. Upon receipt of MAIN ACK from memory, Cache issues CCBE MBC ADRS ACKN to the RH70, notifying the RH70 that the Main Memory operation has completed.

The receipt of MAIN ACK by Cache indicates that Main Memory has properly responded, and inhibits the generation of a Main Memory Bus timeout, which would occur if an address parity error occurred or a non-existent memory was addressed. After receiving MAIN ACK from memory, the Cache issues CCBE MBC ADRS ACKN L to the RH70. In the RH70, MBC ADRS ACKN is made into a 50-ns pulse and causes CSTC READ DONE L. The trailing edge of READ DONE clears the memory cycle control logic in the RH70.

NOTE

This figure assumes that no address parity error has occurred and assumes that non-existent memory has not been addressed. Both of these conditions cause CCBD MBC TIMEOUT. The RH70 monitors for these conditions while CDPJ SELDATA CNTLA H is asserted.

5.5 WRITE COMMAND FLOW DIAGRAM DESCRIPTION

The flow diagram for the write command is shown in Figure 5-13. This paragraph describes the write command, where data is transferred from memory to the RH70 data buffer and is then written onto the drive. The RH70 must be in the Ready State (indicating it is not doing a data transfer command). The assertion of bit 07 (RDY) in the CS1 register puts the RH70 in the Ready state. The program loads the word count, bus address, bus address extension registers and the frame count.

The write command is then loaded, which negates the RDY bit (RH70 becomes busy) and causes the data buffer and control to be initialized.

At this point, the flow divides into two major flows: 1) an RH70/Cache Interface flow, which transfers words from memory to the RH70 data buffer, and 2) a Massbus flow, where words are transferred from the RH70 data buffer to the drive. Both flows operate asynchronously until both DONE and EOS (End of Segment) are asserted (see connector B at right of figure). DONE indicates termination of the RH70/Cache Interface flow and EOS indicates termination of the Massbus flow. When both flows are terminated, RDY is asserted to allow a new command to be loaded. Paragraph 5.5.1 describes the RH70/Cache Interface flow; Paragraph 5.5.2 describes the Massbus flow.

5.5.1 RH70/Cache Interface Flow

The RH70 requests that a memory cycle be asserted CNTLX REQ to Cache. At the same time, the RH70 sets a Cycle in Progress (CIP) flip-flop, internally indicating initiation of a memory cycle. The CNTLX REQ signal increments a Start counter. When four such requests have been made (indicating that the data buffer is probably full), the RH70 asserts a START signal. If word count overflow occurs, or if an error condition is posted, the START signal is asserted previous to this. This signal primes the Massbus cycle (Paragraph 5.5.2).

At the same time this is happening, the RH70 is waiting for SELADRS CNTLX from Cache. This signal allows the RH70 to gate its address and control information to Cache. Thus, the bus address, bus address extension, and the C0, C1 and CX control lines are gated onto the MBCBUS. C1 and C0 indicate a read from memory and CX is specified as 0.

After gating the address and control onto the MBCBUS, the RH70 waits for REQ ACKN from Cache. This signal indicates that Cache has acknowledged the request and this controller will perform the next memory cycle. REQ ACKN clears the CNTLX REQ signal, which informs Cache that the REQ ACKN has been received by the RH70. On the trailing edge of REQ ACKN, the bus address, bus address extension and word count are incremented since the address and control information has been stored in Cache by this time.

The RH70 then waits for ADDR ACK, which, in a write command, has no significance other than to let the RH70 know that memory has responded to Cache. If ADDR ACK is not received by the Cache within 10 μ s, Cache sends a Timeout signal to the RH70. If the Timeout signal is asserted and the Address Parity Error interface line is also asserted, Address Parity Error (APE bit 15-CS3), (PE bit 13-CS2) and Transfer Error (TRE bit 14-CS1) are set. If the Timeout signal is asserted and there is no address parity error, Non-Existent Memory (bit 11-CS2) and Transfer Error are both asserted.

In both cases just described, the Cycle in Progress (CIP) flip-flop is cleared and the flow branches to connector D where DONE is asserted. DONE is asserted upon termination of the RH70/Cache Interface flow. Termination of the Massbus flow is indicated by End-of-Segment (EOS). When both flows are completed, the RH70 returns to the Ready state to accept another command.

Assume that there is no error condition and ADDR ACK has been received within 10 μ s. The RH70 now waits for a DATA RDY CNTLX signal from Cache, indicating that memory has sent a data word. Upon receipt of DATA RDY CNTLX from Cache, the data is strobed into the RA and/or RB registers in the data buffer, and the RA FULL and/or RB FULL flip-flops are set. If a double-word operation is specified, both the RA and RB registers are loaded. If a single-word operation is specified, either RA or RB is loaded. A 100-ns delay is initiated to allow time for checking the parity on the data as it is strobed from RA into RC and/or from RB into RD.

If the word is an even word, the data is clocked from RA into RC, RA FULL is cleared, and RC FULL is set. If the word is odd, the data is clocked from RB into RD, RB FULL is cleared, and RD FULL is set. If a double-word operation is specified, the contents of RA and RB are both transferred. If a parity error is detected on the data as it is being strobed into RC and/or RD, Data Parity Error (DPE OW bit 14 or DPE EW bit 13 - CS3), Parity Error (PE bit 13-CS2), and Transfer Error (TRE bit 14-CS1) are set. This causes the assertion of DONE to terminate the RH70/Cache Interface flow. With no error conditions present, the flow loops back to the CNTLX REQ which initiates another memory cycle. This process continues until the number of words specified by the Word Count register have been transferred from memory to the Data Buffer, or until an error condition occurs. In either case, DONE is asserted and the flow branches to connector B, where it waits for the Massbus flow to complete. The completion of both flows returns the RH70 to the RDY state.

5.5.2 Massbus Flow

When the command is loaded by the program and the RH70 becomes busy, the Timeout for the assertion of OCC (Occupied) is initiated. The assertion of OCC indicates that the drive has recognized the command and is able to execute it. If the drive does not respond to OCC within 650 μ s, a Missed Transfer error (MXF) is asserted and RUN is negated (if it was asserted). Also, the RH70 becomes Ready and waits for a new command.

The RH70 awaits the assertion of START, which occurs when the start counter has a count of four, word count overflow occurs, or Transfer Error is asserted. The RH70 then waits until a word in the data buffer has sequenced to OBUF. At this time, the RUN line is asserted on the Massbus and the contents of OBUF is placed on the Massbus data lines. The assertion of RUN signals the TM02 to begin assembling characters and waiting on tape. The TM02 accepts the first data word, converts it into two tape characters and outputs it to the TU16 transport. The TM02 now issues a SCLK (Sync Clock) signal, requesting another data word. The RH70 reroutes this to the drive as WCLK (Write Clock) with the next data word.

When SYNC CLK is negated, drive word count is incremented. Drive word count keeps track of the number of Massbus cycles. In addition to incrementing drive word count, the negation of SYNC CLK creates a 50-ns pulse, designated DRIVE CLK.

If drive word count overflow occurs, or an error condition is posted (TRE), the OBUF register is cleared and 0s are written onto the remainder of the record. Also, RUN is negated and the OBUF FULL flip-flop is cleared. If frame count in the drive is set to less than twice the word count, frame count overflow will occur (EXCP asserted) and may cause a Frame Count Error (FCE). If frame count is set to more than twice the word count, word count will overflow first, negating the RUN line. The RH70 now waits for End of Block (EBL) from the drive. Since RUN is negated at this time, End of Segment (EOS) is asserted, terminating the Massbus flow. The flow branches to connector B to wait for termination of the RH70/Cache Interface flow. When both flows are complete, the RH70 goes to the Ready state to be able to accept another command.

If there is no error or drive word count overflow, the above described path is bypassed and the flow sequences down to the block designated "Does RG RDY = 1?" If RG RDY is a 0 (unasserted) indicating that a word is not available to be loaded into OBUF, a Data Late (DLT bit 15 of CS2) error is posted, Transfer Error is posted, the OBUF register is cleared, and the remainder of the segment is zero-filled. If RG RDY is asserted, indicating that a word is available in RG, the word in RG is transferred to OBUF. The contents of OBUF is directly gated onto the Massbus data lines. If both EXC (asserted due to a drive error) and EBL are asserted, Transfer Error is set. At the time of EBL and EXC there are no more SYNC CLK signals from the drive, and the RH70 thus asserts EOS. The flow branches to connector B to wait for termination of the RH70/Cache Interface flow.

If there was no drive error, the flow loops back to the point where the RH70 waits for the assertion of SYNC CLK, since the data has been changed and a new word is available for transfer. This process continues until an error is asserted or drive word count overflow occurs, both of which cause the operation to terminate.

5.6 READ COMMAND FLOW DIAGRAM DESCRIPTION

The flow diagram for the Read command is shown in Figure 5-14. This paragraph describes the read command, where data is read from the drive and transferred to memory via the RH70 data buffer. The RH70 must be in the Ready state (indicating that it is not doing a data transfer command). The assertion of bit 07 (RDY) in the CS1 register puts the RH70 in the Ready state. The program loads the word count, bus address, bus address extension registers and the frame count.

The read command is then loaded which negates the RDY bit (RH70 becomes busy) and causes the data buffer and control to be initialized.

At this point, the flow divides into two major flows: 1) a Massbus flow, which causes data words from the drive to be transferred to the RH70 data buffer, and 2) an RH70/Cache Interface flow, which transfers words from the RH70 data buffer to memory. Both flows operate asynchronously until both DONE and EOS (End of Segment) are asserted (see connector B of right of flow diagram). DONE indicates termination of the RH70/Cache Interface flow and EOS indicates termination of the Massbus flow. When both flows are terminated, RDY is asserted to allow a new command to be loaded. Paragraph 5.6.1 describes the Massbus flow; While Paragraph 5.6.2 describes the RH70/Cache Interface flow.

5.6.1 Massbus Flow

When the Read Command is loaded by the program and the RH70 becomes busy the timeout for the assertion of OCC (occupied) is initiated from the drive. The assertion of OCC indicates that the drive has recognized a data transfer command and is able to execute it. If OCC is not received from the drive within 650 μ s a missed transfer error (MXF bit 9-CS2) and Transfer Error (TRE bit 14-CS1) are asserted, RUN is negated (if it was asserted) and the flow branches to connector A where the RH70 returns to the Ready state.

The RH70 asserts the RUN line, indicating to the drive that it is ready to accept data. When the tape is up to speed, the TM02 receives two tape characters from the TU16 transport, assembles them into a 16-bit word and sends it to the RH70, accompanied by SCLK. On the negation of SCLK, the RH70 increments the drive word count which keeps track of the number of Massbus cycles. The TM02 waits for the next two characters from the TU16, assembles them into a 16-bit word and sends it into the RH70, accompanied by SCLK. This process continues until an error condition is posted, word count overflow is detected, or the interrecord gap is detected in the drive. On the trailing edge of SCLK, the RE register is examined. If the register is full (RE FULL=1), Data Late (DLT bit 15-CS1) and Transfer Error (TRE bit 14-CS1) conditions are asserted, since there is no place to store the data word from the Massbus. The RUN line is negated and at EBL time, EOS (End of Segment) is asserted terminating the Massbus flow. The flow branches to connector B to wait for termination of the RH70/Cache Interface flow. When both flows complete, the RH70 returns to the Ready state.

If the RE register was empty, the data from the Massbus is strobed into it and the RE FULL flag is asserted. Should an error condition be asserted, or drive word count overflow occur at this time, the RUN line is negated and the RH70 waits for EBL, ignoring any data words prior to EBL. With RUN negated at EBL time, EOS is asserted to terminate the Massbus flow. The flow branches to connector B, where it waits for the RH70/Cache Interface flow to complete, so the RH70 may return to the Ready state.

Figure 5-14 Read Command Flow Diagram

5-25

However, if no error occurs, or if drive word count overflow does not occur, the EXC line is monitored. If EXC is asserted (denoting a drive error) at EBL time, the transfer error bit is set after the RH70 data buffer has been emptied. This allows the RH70/Cache Interface flow to transfer all data words currently in the data buffer to memory, prior to asserting the error condition. The RH70 terminates the Massbus flow and the flow branches to connector B to wait for completion of the RH70/Cache Interface flow.

If there was no drive error, the flow loops back to the point where the RH70 waits for the assertion of SYNC CLK and the next data word is loaded into the data buffer. This process continues until an error is asserted, or until drive word count overflow occurs, both of which cause the data transfer to terminate.

5.6.2 RH70/Cache Interface Flow

The RH70/Cache Interface flow is not initiated until the data words from the drive have sequenced through the data buffer and into RC and/or RD via the Massbus flow. When a data word reaches RC and/or RD, the RH70 sends a CNTLX REQ signal to Cache, requesting a memory cycle. In addition, the RH70 sets the CIP flip-flop, indicating that a cycle is in progress.

The RH70 now waits for Cache to acknowledge the memory request by issuing SELADRS CNTLX. This signal allows the RH70 to gate its address and control information onto the address and control lines of the MBCBUS, respectively. The bus address and bus address extension is gated onto the address lines and a DATO operation is gated onto the C0 and C1 control lines. If a double-word transfer has been specified, the CX line is asserted; if a single-word operation is specified, the CX line is unasserted.

At this point, the RH70 waits for a SELDATA CNTLX signal from Cache. Upon receipt of this signal, the RH70 gates the data from RC and/or RD onto the MBCBUS data lines. After the address, control, and data have been transferred to Cache, the RH70 waits for REQ ACKN, indicating that Cache has acknowledged the memory request, accepted the address and control, and is about to start a Main Memory cycle. The assertion of REQ ACKN causes the CNTLX REQ to drop. On the negation of REQ ACKN, word count, bus address and bus address extension are incremented since by this time, Cache has accepted and stored the address and control information.

The RH70 now waits for the ADRS ACK signal from Cache. Cache has a timeout feature which causes a Timeout signal to be asserted to the RH70 if ADRS ACK is not received within 10 μ s. If the Timeout is asserted (indicating no ADRS ACK), the Address Parity Error line is monitored. If there is an address parity error. Address Parity Error (APE bit 15-CS3), Parity Error (PE bit 13-CS2), and Transfer Error (TRE bit 14-CS1) are all asserted. If there is no address parity error, the timeout is due to non-existent memory and NEM (bit 11 in CS2) is asserted along with Transfer Error. In both cases, the CIP flip-flop is cleared and DONE is asserted, terminating the RH70/Cache Interface flow. When EOS occurs to terminate the Massbus flow, the RH70 returns to the Ready state.

Assume that ADRS ACK was received within the 10 µs Timeout. The receipt of ADRS ACK, during a Read command, indicates that Main Memory has received the data and now the RC FULL and RD FULL flip-flops can be cleared. After a 50-ns delay, the CIP flip-flop is cleared, indicating termination of the memory cycle. If there is an error condition, or if word count overflow occurs, DONE is asserted to terminate the RH70/Cache Interface flow. However, if there is no error and if word count has not overflowed, the RH70 waits for the RA or RB register to be loaded and the corresponding RA FULL or RB FULL flag to be asserted. If a double-word operation is specified, both RA and RB will be loaded and the RA FULL and RB FULL flags are both asserted.

The RH70 then waits 100 ns and transfers the contents of RA into RC and/or RB into RD and sets and clears the appropriate flags. For example, if a double-word transfer is specified, the contents of RA is transferred into RC, the RA FULL flag is cleared and the RC FULL flag is set. Also, the contents of RB is transferred into RD, the RB FULL flag is cleared and the RD FULL flag is set. The flow now loops back to the point where the RH70 makes another request to memory (CNTLX REQ). This request will transfer the contents of RC and/or RD into memory. This process continues until there is an error, or until word count overflow occurs. Either condition causes the operation to terminate, as previously described.

Figure 5-15 Write-Check Command Flow Diagram

.

CHAPTER 6 DETAILED LOGIC DESCRIPTION

6.1 GENERAL

This chapter provides a detailed description of the RH70 Massbus Controller logic diagrams. These diagrams should be used in conjunction with the flow diagrams in Chapter 4 to provide both an overall and detailed understanding of the RH70. The diagrams described in this chapter are tabulated in Table 6-1.

The M8150 module is designated MDP and contains the data buffer and the associated parity checking and generating logic. The M8151 module is designated CST and contains the control and status logic. The M8152 module is designated AWR and contains the address and word count register logic. The M8153 module is designated BCT and contains the bus control logic. Detailed timing diagrams are also included in the chapter and may be used in conjunction with the detailed logic descriptions to show timing relationships between signals. The timing diagrams included are listed below:

Figure 6-1 Read or Write-Check Massbus Timing Diagram

Figure 6-2 Write Massbus Timing Diagram

Figure 6-3 Data Buffer Maintenance Operation Timing Diagram

Figure 6-4 Data Buffer Write Command Timing Diagram

Figure 6-5 Data Buffer Read Command Timing Diagram

Figure 6-6 Data Buffer Write-Check Command Timing Diagram

Logic Print	Functions	
BCTA	Register Selection	
BCTB	SSYN and Demand Logic	
BCTC	Unibus Interrupt Logic	
BCTD	Unibus Data Transceivers	
AWRA	Bus Address Reg (11:01)	
AWRB	Bus Address and Extension (21:12)	
	and Control Parity Out	
AWRC	BUSI MUX (BA and BAE Registers)	
	and Address Drivers	
AWRD	Word Count Register (07:00)	
AWRE	Word Count Register (15:08)	
	and WC OFLO	
AWRF	BUSI MUX (WC and Remote Registers) and MCPE	
MDPA	Memory Register Control	
MDPB	Even Word Memory Data Registers and Mixer	
MDPC	Odd Word Memory Data Registers	
	and Memory Parity Generator/Checkers	
MDPD	Data Registers Control	
MDPE	Write-Check Logic, Clock RE and Data Parity	
MDPF	Data Buffer Registers	
MDPH	IMX and Data Drivers	
MDPJ	Data Path Block Diagram	
CSTA	CS1, CS2, and CS3 Control and Status, Function Select	
CSTB	Errors, IE, Intr. Req. and Massbus Control	
CSTC	PE, NEM, and Memory Cycle Control	
CSTD	BUSI MUX (CS1 and CS2 Registers) and Clear Logic	
CSTE	BUSI MUX (DB and CS3 Register) and START Logic	
MBSA	Massbus Transceiver (Massbus Cable A)	
MBSB	Massbus Transceiver (Massbus Cable B)	
MBSC	Massbus Transceiver (Massbus Cable C)	

Table 6-1Listing of RH70 Logic Diagrams

BLOCK READ	
	DONE *EOS
<u>ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا </u>	
IG WORDS IN BLOCK IGNORED]
	· · · · · · · · · · · · · · · · · · ·
	1 - 29 5 4

Figure 6-1 Read or Write-Check Massbus Timing Diagram

ITTEN	
	DONE *EOS
,\$	
IN BLOCK WRITTEN AS O'S	

11-2955

Figure 6-2 Write Command Massbus Timing Diagram

	FIRST WORD
MDPA DB IN H	
BCTB REG STROBE H	
MDPA IR H	
MDPD RB EN (1) H	
MDPA CLK RA H	
MDPA RA FULL (I) H	
MDPA CLK RB H	
MDPA RB FULL (1) H	
MDPD RD EN (1) H	
MDPA CLK RC H	
MDPA CLR RA L	
MDPA RC FULL (1) H	
MDPA CLK RD H	
MDPA CLR RB L	
MDPA RD FULL (1) H	
MDPD MXR SEL (1) H	
MDPE CLK RE L	
MDPE RE FULL (1) H	
MDPE CLR RC L	
M DPE CLR RD L	
MDPD RF FULL (1) H	<u></u>
MDPD CLR RE L	
MDPD CLK RG H	ſŢ
MDPD RG FULL (1) H	
MDPD CLR RF L	
MDPD CLK OBUF H	
MDPD OBUF FULL (1) H	
MDPD CLR RG L	
BCTA DB OUT H	
BCTB DB OCLK H	NOTE:

A 2 WORD (MOV) TO RHDB FOLLOWED BY A 2 WORD (MOV) FROM RHDB.

Figure 6-3 Data Buffer Maintenance Operation Timing Diagram

	SINGLE WORD MEMORY TRANSFER DOUBLE WORD MEMORY TRANSFER
CSTC CTRLX REQ L	CSTO FIRST REQ L
CCBE REQ ACKN L	
CSTA GO CLR L	
AWRA BAOI (1) H	
MDPA REQ CLK H	
AWRA DBL (1) H	CSTC CTRLX REQ *CSTA BAI(0)
CDPJ DATA RDY CRTLX H	
MDPD RB ENABLE (1) H	
MDPA CLK RB H	
MDPA RB FULL (1) H	
MDPA CLK RA H	
MDPA RA FULL (1) H	
MDPA CLK RD H	<u>_</u> <u>_</u>
MDPA RD FULL (1) H	
MDPACLR RBL	
MDPA CLK RC H	<u></u>
MDPACLR RAL	/``J`
MDPA RC FULL (1) H	
MDPD MXR SEL (1) H	
MDPD CLK REL	
MDPD RE FULL (1) H	ſ_\ <u>\</u> ſ_\ <u>\</u> ſ\
MDPECLR RC L	
MDPE CLR RD L	
MDPD RF FULL (1) H	
MDPD CLR RE L	
MDPD CLK RG H	
MDPD RG FULL (1) H	
MDPD RG RDY (1) H	
MDPD CLR RF L	
MDPD CLK OBUF H	
MDPD OBUF FULL(1) H	
MDPD CLR RG L	
MBSA SYNC CLK H	(
CSTB DRIVE CLK H	

NOTE: 3 WORD WRITING STARTING ON AN ODD WORD BOUNDARY (BAO1 BIT = 1) A SINGLE WORD FOLLOWED BY A DOUBLE WORD.

Figure 6-4 Data Buffer Write Command Timing Diagram

		FIRST DRIVE WORD	SECOND DRIVE WORD	THIRD DRIV
CSTA GO CLR L	٦			· · · · · · · · · · · · · · · · · · ·
CSTB DRIVE CLK H			<u>ۍ او </u>	
MDPE CLK RE				
MDPE RE FULL (1) H			۶ <u> </u>	
MDPE REG FULL H			í	
MDPD E62-PIN 8				
MDPD RF FULL (1) H				
MDPD CLK RE L				
MDPD CLK RGH				
MDPD RG FULL (1) H				
MDPD CLR RF L				
MDPD CLK OBUF H		<u>_</u>		
MDPD OBUF FULL (1)H				
MDPDCLR RG L				
MDPA CLK RAH		J \	▶	
MDPD RBEN (1)H	· · · · · · · · · · · · · · · · · · ·		(ح
MDPA RA FULL (1) H				
MDPA CLK RB H				
MDPA RB FULL (1) H			/	
MDPA CLR OBUF H			<u> </u>	·
AWRA EN DBL H				
MDPD RD EN (1) H				
MDPA CLK RC H				- <u>_</u>
MDPA CLK RA L				7
MDPA RC FULL (1) H				
MDPA CLK RDH				-57
MDPA CLR RBL				7
MDPA RD FULL (1) H				Д
MDPA REQCLK H				للمراجع المراجع ملماحم المراجع
CSTC ADRS ACKN H				-/
AWRA BAO1 (1) H				
CSTC CTRLX REQ L				۹
CCBE REQ ACKN L				Y
CSTC READ DONE L				
	NOTE: 3 WORD STARTING ON AN EVEN WORD BOUNDARY (BAO1 BIT=0)			DOUBLE WORD TRANSFER

A DOUBLE WORD FOLLOWED BY A SINGLE WORD

Figure 6-5 Data Buffer Read Command Timing Diagram

3 WORDS STARTING ON AN EVEN WORD BOUNDARY (BAO1 BIT = 0) A DOUBLE WORD FOLLOWED BY A SINGLE WORD.

Figure 6-6 Data Buffer Write-Check Command Timing Diagram

	<u>-</u>
· · · · · · · · · · · · · · · · · · ·	
-	
-	
-	

11-2959

6.2 BCTA LOGIC DIAGRAM

This diagram contains the register selection logic used by the program to select local RH70 registers or remote registers in the associated drive. The register address is supplied to 15 Unibus receivers (8640) via the Unibus. Bits 17 - 13 of the register address are asserted designating the I/O area. Bits 12 – 6 are fed to a series of jumper Exclusive-OR gates, whose outputs are collector-ORed to compare the device address against the Unibus address that is received. This detects if the program is addressing this device. If any of the outputs of these zates go low, it forces the output line low, as is the case where the Unibus address does not match the selected address of the RH70. The addresses to which the RH70 responds can be relocated by modifying the jumpers. If a jumper is left in, it represents a logic 0; if it is cut, it represents a logic 1. The register address bits are asserted low on the Unibus. For example, address bit 12 is low at the input to the 8640 Unibus receiver. The output of this gate goes high. This is compared to the jumper in place which is low. The output of the Exclusive-OR gate, after inversion, is low and this drives the collector-ORed output line low to inhibit DEV SEL. On the other hand, if the jumper is out (representing a 1), the Exclusive-OR gate compares two high inputs, yielding a high output which enables the DEV SEL signal for that bit.

The BAE and CS3 registers "float" over the Massbus addresses; their addresses will vary based on the number of subsystem registers. These registers are logically defined as the last two registers in the system. The following paragraphs describe how these registers are addressed.

Bits 4 - 1 of the Unibus address are supplied to a 32-cell Read-Only Memory (ROM). These bits specify one of 16 registers in a subsystem. In subsystems with 16 registers or less, address bit 05 (BUS A05 L) is applied to the exclusive-OR gates to decode the device address; otherwise, there would be two fields where a register address might be located (one field where bit 05 is a 1 and one field where bit 05 is a 0). In subsystems with more than 16 registers, bit 05 is applied to a ROM (EO50) where it is used with bits 04 - 01 to specify one of 32 registers (Figure 6-7). For example, if all the inputs to the ROM are 1s (corresponding to an octal address of 37), the ROM maps this to a Massbus address of 33. This corresponds to a Unibus address of the base address (defined as the address of the first register) plus 76, since Unibus addresses

are incremented by 2. The ROM also contains a BCTA LOCAL REG H signal, which specifies a local (RH70) register when asserted and specifies a re mote register when unasserted. The M6 and M7 outputs of the ROM are used to select additional registers within the RH70.

Address bits 04 - 02, in addition to feeding the ROM, are input to Comparator E046 where they are compared with the register length field. The register length field is equal to the weighted value of the jumpers removed, plus 2. If more than 16 registers are specified, address bit 05 is also applied to the comparator. If the subsystem contains a total of 16 registers for example, (as in the TWU16 subsystem) the jumpers corresponding to a value of 8 (pins 7 and 10), 4 (pins 6 and 11) and 2 (pins 5 and 12) are cut. This yields 14 plus 2 or 16. The "plus 2" is to allow for the CS3 and BAE registers which represent the last two registers in a subsystem.

The comparator has three outputs: A=B, A>B and A<B; only one of these can be asserted at any given time. Each is described below.

A=B – The A=B output is asserted if the CS3 or BAE register is specified, which is defined as the end of the field of registers for this subsystem (register length field = incoming address). This output, in conjunction with the state of address bit 01 (BUS A01 L), is applied to BCD-to-Decimal Decoder E010 in order to determine whether the CS3 or BAE is addressed. If address bit 01 is asserted, the CS3 register is specified and if this bit is negated, the BAE register is specified. Note that BCTA C1 L and BCTA DEV SEL L are also applied to the decoder. With C1 L asserted, it indicates that a write operation is to be performed; with C1 L unasserted, it indicates that a read operation is to be performed to the register. The DEV SEL signal ensures that this is the device that has been selected. As an example of the operation, assume that a subsystem has been cut for 14 registers (the 8 and 4 jumpers being removed from E041) and that the program specifies a write into the BAE register. The A=B output of the comparator is asserted and address bit 01 will be negated. These signals are fed to decoder E010, along with C1 L asserted, causing the decoder to assert BCTA BAE IN L.

A>B – The addresses of the CS3 and BAE registers are variable, depending on the number of registers employed in the subsystem. They will be assigned some address between the base address +22 and

OCTAL			REG	BSEL4	BSEL3	RSEL2	BSEL1	BSEL 0
ADDRESS	M7	M6	M5	M4	M3	M2	M1	MO
00	L	L	L		L		L	L
01	H	Ē	н	L	L	L	н	н
02	н	H	Н	L	L	L	L	L
03	н	Н	L	L	L	Н	L	н
04	н	Н	Н	L	L	L	Н	L
05	н	н	L	L	L	L	L	Н
06	н	н	L	L	L	L	Н	L
07	L	н	L	L	L	Н	L	L
10	н	н	L	L	L	н	Н	Н
11	н	н	Н	L	L	L	L	Н
12	н	н	L	L	L	L	н	н
13	н	н	L	L	L	н	Н	L
14	н	н	L	L	н	L	L	L
15	н	н	L	L	Н	L	L	н
16	н	н	L	L	н	L	н	L
17	н	Н	L	L	Н	L	н	н
20	н	н	L	L	н	н	L	L
21	н	н	L	L	н	н	L	н
22	н	Н	L	L	Н	н	н	L
23	н	н	L	L	н	Н	н	н
24	н	н	L	н	L	L	L	L
25	н	н	L	н	L	L	L	н
26	Н	H	L	н	L	L	н	L
27	н	н	L	н	L	L	Н	н
30	н	H	L	н	L	н	L	L
31	Н	Н	L	н	L	Н	L	Н
32	н	Н	L	н	L	н	н	L
33	Н	н	L	н	L	Н	Н	Н
34	Н	Н	L	н	Н	L	L	L
35	Н	н	L	Н	н	L	L	Н
36	Н	Н	L	н	н	L	н	L
37	н	Н	L	н	н	L	Н	н

REGISTER	UNIBUS
SELECTED**	ADDRESS
RHCS1	BASE
MASSBUS (00)	ADDRESS
RHWC	BASE +2
RHBR	BASE +4
MASSBUS (05)	BASE +6
RHCS2	BASE +10
MASSBUS (01)	BASE +12
MASSBUS (02)	BASE +14
MASSBUS (04)	BASE +16
MASSBUS (07)	BASE +20
RHDB	BASE +22
MASSBUS (03)	BASE +24
MASSBUS (06)	BASE +26
MASSBUS (10)	BASE +30
MASSBUS (11)	BASE +32
MASSBUS (12)	BASE +34
MASSBUS (13)	BASE +36
MASSBUS (14)	BASE +40
MASSBUS (15)	BASE +42
MASSBUS (16)	BASE +44
MASSBUS (17)	BASE +46
MASSBUS (20)	BASE +50
MASSBUS (21)	BASE +52
MASSBUS (22)	BASE +54
MASSBUS (23)	BASE +56
MASSBUS (24)	BASE +60
MASSBUS (25)	BASE +62
MASSBUS (26)	BASE +64
MASSBUS (27)	BASE +66
MASSBUS (30)	BASE +70
MASSBUS (31)	BASE +72
MASSBUS (32)	BASE +74
MASSBUS (33)	BASE +76
1	

REGISTER SELECT PROM - 23040A1 (8223)

*Address bit 05 may be grounded if there are less than 16 registers in the subsystem.

** The BAE and CS3 registers are assigned Massbus addresses which may vary depending on the number of registers employed in a particular subsystem. These registers are respectively located at addresses 772070 and 772072 for the RWS04 subsystem; 776750 and 776752 for the RWP04 subsystem, and 772474 and 772476 for the TWU16 subsystem.

Figure 6-7 Mapping Massbus/Unibus Addresses

the base address +76 (Figure 6-7). Note that this area is in the Massbus register field and since these registers are local, it is necessary to inhibit a Massbus control bus cycle when either of these registers is specified.

The A>B output of Comparator E046 is asserted when the register length field is greater than the Unibus address specified. This means that a valid register has been addressed and causes the Comparator to assert BCTA REM ENA H. This signal is ANDed with BCTA LOCAL REG H in NOR gate E030-pin 1. If a local register has been designated, the gate is inhibited and BCTA REMOTE REG H is negated, inhibiting the Massbus cycle. If a remote register is designated, the gate is enabled and BCTA REMOTE REG H is asserted to allow the Massbus cycle to be initiated.

A < B – The BCTA ILLEGAL REG H output of the Comparator is asserted when A < B (that is, when the Unibus address specified is greater than the register length field). This condition indicates that an illegal register has been addressed and this device is prevented from being selected by negating the BCTA DEV SEL signal in AND gate E038-pin 12.

6.2.1 Local/Remote Register Selection

In addition to encoding the register address, the ROM asserts the BCTA LOCAL REG H signal if a local register is being accessed. The Massbus handshaking sequence, necessary to access a register located in a drive, is inhibited in this case. If a remote register is being addressed, the BCTA LO-CAL REG H signal is not asserted (the Massbus handshaking sequence is enabled) and the DE-MAND signal is initiated.

NOTE

The CS1 register is shared by the RH70 Controller and the associated drive. The LOCAL REG H signal is not asserted to address this register. If LOCAL REG H is asserted, the Massbus handshaking sequence is inhibited. This would prevent access to the portion of the CS1 register located in the drive.

6.2.2 RSEL Signals

The BCTA RSEL 04 – RSEL 00 signals from the output of the ROM are supplied to the Massbus, which will be decoded in the drive to select a specific register. In addition, RSEL 00 and RSEL 01 are supplied to a 7442-BCD-to-decimal decoder (E019) and are used when BCTA LOCAL REG H

signal is asserted. The decoder decodes the CS2, DB, and BA registers and whether an input (from processor to RH70) or output (from RH70 to processor) function is to occur.

6.2.3 Decoder Inputs

Inputs D0, D1, and D2 to decoder E019 specify one of 8 outputs from f0 - f7 (outputs f8 and f9 are not used). RSEL 00 and RSEL 01 are applied to inputs D0 and D1 of the decoder, respectively, and specify one of the three above mentioned registers. BCTA C1 L is applied to input D2 of the decoder and specifies an input or output function. When BCTA C1 L is asserted, the D2 input to the decoder is low, enabling the register codes on outputs f0, f1, f2, and f3. This indicates a DATO or DA-TOB where the data is transferred from the master (processor) to the slave (RH70). The register signal names which incorporate the word IN denote a "write register" operation. When BCTA C1 L is not asserted, the D2 input to the decoder is high, enabling the register codes on outputs f4, f5, f6, and f7. This indicates a DATI or DATIP where the data is transferred from the slave (RH70) to the master (processor). The signal names designated the word OUT denote a "read register" operation. Input D3 is asserted low if the BCTA LOCAL REG H signal indicates that a local register is addressed. DEV SEL H is asserted for both read register and write register operations to select this device.

6.2.4 Decoder Outputs

With input D3 low, outputs f0 - f7 are enabled. If input D3 is not asserted, the outputs from f0 - f7are inhibited and the decoder outputs are switched to f8 and f9, which are not used. Since the RSEL 04 - RSEL 00 signals are not used for selecting a drive register when the BCTA LOCAL REG H signal is asserted, it is possible to redefine the two bottom bits of the ROM (RSEL 00 and RSEL 01), depending on whether the register specified is local or remote. If a remote register is specified, RSEL 00 and RSEL 01 are used with RSEL 02, RSEL 03 and RSEL 04 to decode the register. If a local register is specified, RSEL 00 and RSEL 01 are fed to decoder E019 to decode the CS2, DB, and BA registers.

Decoder E015 is similar to E019 with a few exceptions noted below.

Input D2 operates exactly the same as described for decoder E019.

ROM outputs M6 and M7 are applied to D0 and D1 of decoder E015 and are used to decode the WC, CS1, and AS registers.

Input D3 is enabled when DEV SEL L is asserted. BCTA LOCAL REG H is not required since the M6 and M7 outputs of the ROM are not dual-defined and may be used anytime.

6.2.5 Word or Byte Addressing

The logic network with the A0, C0, and C1 inputs determines whether word or byte addressing is required and whether an input or output function is occurring. The network implements the chart shown below.

BUS C1 L BUS C0 L

H L H	DATI (read from device) DATIP DATO (write into device) DATOB*
	 *If BUS A 00 L =H, low byte is specified. *If BUS A 00 L = L, high byte is specified.

6.2.6 Control Lines

The C1 line from the Unibus generates the BCTA CTOD H (direction of transfer) signal. When this signal is asserted, the direction of data transfer is from the RH70 to the drive register via the Massbus. When the signal is not asserted, the direction of data transfer is from the drive register to the RH70, and then to the Unibus to be made available to the program.

6.2.7 ODD BYTE L Signal

The BCTA ODD BYTE L signal is asserted when performing a DATOB to the high byte and is used to generate BCTB INH DEM H (Inhibit Demand). INH DEM prevents the low (even) byte of the CS1 register (located in the drive) from changing when the program is doing a byte operation to the upper (odd) byte. (This is necessary since the Massbus does not implement byte operations and writeable bits in the low byte of CS1 are located in the drive.)

6.2.8 Device Select (DEV SEL) Logic

The upper portion of BCTA shows the DEV SEL LOGIC. Bits 17 - 5 of the Unibus address are used to generate BCTA DEV SEL L when BCTA MSYN H occurs. MSYN is delayed from the address 150 ns to allow the address to be properly decoded by the jumper Exclusive-OR gates. The MSYN signal then keys the DEV SEL signal which starts the register strobing sequence.

6.2.9 Control Out (CNTL OUT) Signal

The BCTA CNTL OUT L signal is used when reading a remote register in the drive. CNTL OUT L is generated when the BCTA LOCAL REG H signal is not asserted (remote mode), DEV SEL is asserted and the BUSA C1 L signal is not asserted. This signal switches the multiplexer on logic diagram AWRF to gate the Massbus asynchronous data to the Unibus data lines, making the register information available to the program.

6.3 LOGIC DIAGRAM BCTB

This logic diagram contains the register strobe logic for loading local registers, and the SSYN and DE-MAND logic. The logic for addressing a non-existent device is also contained on this diagram.

6.3.1 Loading Local Registers

The leading edge of the BCTA DEV SEL signal triggers one-shot multivibrator E006. The external components associated with this multivibrator are chosen to provide an 85-ns delay. Consequently, the one-shot produces a negative-going, 85-ns pulse from the 0 output. At the end of 85 ns, the positive-going transition triggers a second one-shot (E006) multivibrator. When this one-shot is triggered, it causes BCTB REG STR H to be asserted, via gate E002-pin 8. This signal is used for clocking local registers contained in the RH70.

6.3.2 Deskew of DEMAND Signal

The second one-shot multivibrator (E006) just described provides a delay of 150 ns. The 0 output of this one-shot produces a negative-going pulse, 150ns in duration. The positive-going transition of this pulse (which occurs approximately 235 ns after MSYN) clocks the SET DEM (Set Demand) flipflop set if the BCTB INH DEM H signal remains unasserted. When asserted, INH DEM H inhibits a Massbus cycle if:

1. The register address is a local register address (BCTA LOCAL REG H).

- 2. The BCTA REM ENA L signal is not asserted, which means that the CS3 or BAE register is being selected (local RH70 registers).
- 3. If the access is to the odd byte (BCTA ODD BYTE L) in the CS1 register (BCTA CS1 IN L). The CS1 register is shared by the RH70 and the drive, with the odd byte being in the RH70 and the even byte being in the drive. ODD BYTE L and CS1 IN L generate BCTB INH DEM H to inhibit the Massbus handshake sequence. This prevents altering the even (low) byte of the CS1 register located in the drive, when the program is doing a byte operation, to the odd (high) byte in the RH70. This is necessary because the Massbus cannot differentiate byte from word operations.
- 4. The STOP DEM L signal is asserted when the processor tries to load a function code, specifying a data transfer operation, into the drive while the RH70 is already busy executing a data transfer function with that drive or some other drive. For example, if unit 0 is doing a read data transfer and the processor tries to do a read or write data transfer in unit 1, the CSTB STOP DEM L signal prevents the function code from being transferred to unit 1: otherwise, there would be the OR condition of data from unit 0 and unit 1 on the synchronous Massbus and the program could not distinguish unit 0 data from unit 1 data.

With the SET DEM flip-flop set, the DEMAND flip-flop is set, provided the TRA from the previous Massbus cycle has completed. If the previous Massbus cycle has not completed, the BCTB TRA L signal prevents the DEMAND flip-flop from setting. The DEMAND signal is sent to the drive via the Massbus and requests a Massbus control bus cycle.

6.3.3 Register Strobe (REG STR)

A BCTB REG STR H signal is generated 85 ns after MSYN and is used for clocking the local registers.

6.3.4 Writing a Remote Register

The BCTB GATE CNTL H signal is used when writing a remote register in the drive. BCTB GATE CNTL H is generated when BCTA CTOD H (write) and BCTA DEV SEL H are asserted and gate the Unibus data signals to the Massbus control lines.

6.3.5 SSYN Logic

The SSYN logic determines when SSYN is sent to the Unibus. Each of the various methods of setting SSYN is described below.

> Setting SSYN-Writing Remote Register 1. (register electrically located in the drive) - When the program writes a remote register via the RH70, the unit select bits, the RSEL 04 - 00 signals, and the data are gated onto the Massbus. The unit select bits select the specified unit and the RSEL 04 - 00 signals select the appropriate register in that unit. If the RH70 is writing into a remote register, BCTA CTOD H is asserted. After a 235-ns deskew period, the RH70 asserts DE-MAND on the Massbus. When the drive sees DEMAND and recognizes its own unit select code, it takes the data and issues MBSC TRA. The MBSC TRA signal is applied to one input of gate E001pin 13, provided the Attention Summary register was not addressed. If the Attention Summary register was addressed, BCTA AS IN L or BCTA AS OUT L inhibits gate E001-pin 13, which inhibits MBSC TRA from being applied to E012-pin 12. The other two inputs to E012-pin 12 are DEMAND (1) H (doing a Massbus cycle) and BCTA CTOD H (indicating a write data transfer) which, when enabled, generate BCTB SET SSYN L which is applied to the directset input of the SSYN flip-flop.

NOTE

The Attention Summary register is a 1-bit per drive pseudo register. When this register is accessed, more than one drive may respond. Therefore, the TRA signal cannot be used to indicate the availability of data. In order to ensure that all drives have their respective Attention Summary bits loaded, a 1.5 microsecond delay is incorporated before the setting of SSYN.

- 2. Setting SSYN-Reading Remote Register - If the RH70 is reading a remote register (accepting data from the drive), the drive, after recognizing its unit select code, the negation of direction of transfer (CTOD H) and DEMAND, issues TRA and the data. TRA, BCTB DE-MAND (1) H and BCTA C1 L are applied to one-shot multivibrator E008. BCTB DEMAND (1) H is asserted (denoting a Massbus cycle) and BCTA C1 L is high (denoting a read from a device). With these conditions present, the one-shot is fired. The external components are selected to provide the 225ns pulse, designated BCTB DESK DATA L. This delay is designed to allow the data from the drive to propagate to the RH70 and onto the Unibus before SSYN is set. In other words, SSYN cannot be asserted on the Unibus until the data from the drive has been transferred to the Unibus and has stabilized. Consequently, when the one-shot fires, the 0 output goes low for 225 ns, forcing the clock input to the SSYN flip-flop low for this period. At the end of 225 ns, the positive-going trailing edge of the pulse sets the SSYN flip-flop (E017) which is asserted on the Unibus as BUS SSYN L.
- 3. Setting SSYN-Access Local Registers SSYN is set during the access of local registers as a result of BCTB REG STR H and BCTB INH DEM H being asserted. REG STR H is generated 85 ns after MSYN and is used as a strobe input to the local register being accessed. The signal INH DEM H indicates that the Massbus cycle is inhibited and a lo cal register is being accessed. At the trailing edge of the REG STR signal, SSYN is set, indicating that data has been accepted or is present on the Unibus when writing or reading a local register.

6.3.6 One-Shot Multivibrator $(1.5 \ \mu s)$

The 1.5 μ s one-shot multivibrator (E00)8 serves two purposes. First, it determines whether a non-existent drive has been accessed. The one-shot is fired when DEMAND is asserted. If the drive does not respond with MBSC TRA within 1.5 μ s, the oneshot times out and the positive-going trailing edge at the 0 output clocks the SET NED (Set Non-Existent Drive) flip-flop set if the Attention Summary register is not addressed (BCTB AS REG H).

If the RH70 issues BCTB DEMAND (1) H and the drive responds with MBSC TRA within 1.5 μ s, the one-shot is cleared. The MBSC TRA signal generates BCTB DESK DATA L (reading remote register) or BCTB SET SSYN L (writing remote register). Either of these signals direct-clears both the 1.5 μ s one-shot and the SET NED flip-flop via gate E013-pin 6.

NOTE

If the drive does not respond within 1.5 microseconds, the BCTB SET SSYN L (writing remote register) and BCTB DESK DATA L (reading remote register) signals are inhibited, preventing the 1.5 microsecond one-shot and the SET NED flip-flop from being cleared. This action causes the one-shot to time-out and the SET NED flip-flop to set.

The BCTA DEV SEL H signal is applied to the direct-clear input of the one-shot and SET NED flipflops. If set, the flip-flops are cleared after the Unibus cycle is completed and the addressed register has been deselected.

A second function of the one-shot is to provide a 1.5 μ s waiting period to allow the Attention Summary register in the various drives to be properly read from or written into. In this case, the one-shot times out because the TRA signal is inhibited by BCTA AS IN L or by BCTA AS OUT L and at the end of 1.5 μ s, SSYN is set. BCTA AS IN L is associated with writing the AS register and BCTB AS OUT L is associated with reading the AS register. The SET NED flip-flop is not set, since it can be set only when a register other than the Attention Summary register has been addressed and no TRA is received from the drive.

6.3.7 Data Buffer Out Clock (DB OCLK H)

The DB OCLK H signal is used to release data at the output of the data buffer when the DB register is read by the program. The BCTA CO L signal is used to inhibit the assertion of DB OCLK during Unibus DATIP operations. This is necessary so that a read-modify-write instruction does not falsely remove data from the data buffer. DB register selection is used for maintenance purposes when verifying the operation of the data buffer. DB OCLK is asserted when the RH70 responds with SSYN to the register operation (if not a DATIP) and is released when the processor removes MSYN.

6.3.8 SSYN and TRA Light Emitting Diodes (LEDs)

When the SSYN flip-flop in the RH70 or the TRA signal on the Massbus is stuck in the asserted condition, it can hang up the Unibus. The SSYN and TRA LEDs are provided for Field Service and maintenance personnel so they may visually monitor either of these conditions. If the LED is illuminated in this case, it indicates that the associated signal is stuck in the asserted state.

6.4 LOGIC DIAGRAM BCTC

This diagram contains the interrupt control logic to prepare the Unibus to do an interrupt. The logic contained herein is similar to that on the M7821 Interrupt Control module, which can be found in the *PDP-11 Peripherals and Interfacing Handbook*.

6.4.1 Interrupt Request

The interrupt control logic is initiated by CSTB INTR REQ L which is asserted if: 1) the IE bit and the Special Condition (SC) bit are set while the RH70 is in the RDY state (not doing a data transfer command) or 2) the RH70 has completed a data transfer and the RDY bit has gone from a 0 to a 1 or 3) the program writes 1s into the IE and RDY bit positions of the CS1 register.

This logic is implemented on logic diagram CSTB.

THE CSTB INTR REQ L signal is a request to interrupt the Central Processor and is applied to priority jumper plug E022 which causes a bus request on a specific BR level. Normally for this device, BUS BR5 L is asserted. The other BR outputs from the plug are unasserted at this time. BUS BR5 L causes a bus request on the Unibus. When the processor is ready to allow the RH70 to become bus master, it returns BUS BG5 IN H which is routed through the priority jumper plug and is output as BCTC BG IN H. This signal performs the following functions:

1. It is applied to the clock input of the GRANT flip-flop. However, the data input to GRANT is inhibited by the low output of gate E030-pin 13. The output of this gate is low since BBSY is not set and INTR REQ is asserted which forces the output of E025-pin 3 to go high. This is applied to one input of E030-pin 13. Consider that the other input to E030 is high since BUS NPR L is not asserted at this time.

2. The SACK flip-flop is set 100 ns after the BG IN H signal is issued. The set input to the SACK flip-flop is enabled because the GRANT flip-flop is reset and the BG IN H signal is asserted. This forces both inputs to gate E030-pin 10 low, which causes the output to go high to set the SACK flip-flop. The setting of the SACK flip-flop removes the BUS BR5 L level from the Unibus by inhibiting gate E027-pin 1. BUS SACK L is asserted on the Unibus.

> When the processor receives SACK, it removes the BG IN H signal. At this point, the RH70 waits for SSYN and BBSY from the previous cycle on the Unibus to become unasserted. With BUS BBSY L and BUS SSYN L unasserted and the removal of BG IN H, gate E021-pin 8 is enabled which clocks the BBSY flip-flop set.

NOTE

When BBSY is set, it enables the set input to the GRANT flip-flop through gates E025-pin 3 and E030-pin 13. The next BG IN H signal from the processor will set the GRANT flip-flop which will pass the BG IN H signal to the next device on the bus.

Note that the data input to BBSY is high because SACK is set. The setting of BBSY clears the SACK flip-flop via gate E025-pin 3, gate E030-pin 13, and gate E021-pin 12.

In addition, BUS BBSY L and BUS INTR L are asserted on the Unibus along with the 7-bit vector address of the device (the vector address being 224 for the TWU16 subsystem). The vector is jumper-selectable. If the jumper is left in, the corresponding bit is a 1; if the jumper is cut, the corresponding bit is a 0.

6.4.2 Interrupt Done

When the processor has accepted the interrupt vector, it asserts BUS SSYN L which is used to generate BCTC INTR DONE via gate E025-pin 11. INTR DONE is used to terminate the interrupt sequence by direct-clearing the IE and the INTR flipflops on diagram CSTB. This negates the CSTB INTR REQ signal, which in turn, direct-clears the BBSY flip-flop. The clearing of the BBSY flip-flop removes the BUS BBSY, BUS INTR signals and the vector address.

6.4.3 BG IN, SACK and BBSY Light-Emitting Diodes (LEDs)

The BCT module contains BG IN, SACK and BBSY LED indicators, which are used by Field Service and maintenance personnel to determine if one of these signals is hanging up the Unibus. For example, if the BBSY flip-flop is stuck in the set state, it will illuminate the associated LED. This will allow Field Service personnel to quickly correct the problem.

6.5 LOGIC DIAGRAM BCTD

The logic diagram contains the Unibus data transceivers for driving data on or receiving data from the Unibus. When reading a register, data is driven onto the Unibus from the internal bus (BUSI D00 OUT L - D15 OUT L). This internal bus accepts multiplexed data from the open-collector multiplexers in the RH70 register control logic. The data is enabled by the assertion of BCTB SSYN (1) L. When SSYN is negated, the data is removed from the Unibus.

When writing a register, the Unibus data is supplied to the RH70 as BCTD D00 IN H – D15 IN H. These control lines feed all RH70 registers and also feed the Massbus when writing remote registers.

6.6 LOGIC DIAGRAM AWRA

This logic diagram contains the DBL (Double) flipflop, the CNT DWN (Count-Down) flip-flop, bits 1 – 11 of the BA Bus Address register and the associated control logic. The Bus Address register increments by two for single-word operations or by four for double-word operations. The register also decrements by two for single-word reverse operations or by four for double-word reverse operations.

6.6.1 DBL Flip-Flop

The DBL flip-flop determines whether the register counts by two or by four, while the CNT DWN flip-flop determines whether the register counts up or counts down. The DBL flip-flop is clocked by the CSTC CNTLX REQ L signal. The X designates Controller A, B, C or D since this logic print is common to all controllers. The CNTLX REQ signal is asserted when the REQ flip-flop on diagram CSTC is set. This signal is sent to Cache and also clocks the DBL flip-flop set or clear. This flip-flop controls the C lines to Cache, designating whether a single- or double-word transfer is to occur. The DBL flip-flop also controls the single- or doubleword operation of the Data Buffer, the Word Count register, and the Bus Address register.

Note that the output of AND-OR gate E058-pin 8 is applied to the DBL flip-flop. When the output of this gate is driven low, the DBL flip-flop is inhibited from setting, and the AWRA EN DBL H signal is negated. In this situation, single-word operation will take place. The conditions under which single-word operation will occur are described below.

AWRE WC HIB=1 and AWRD WC LOB=1

When asserted, these signals designate that the word count is all 1s, representing a last word condition, thereby inhibiting double-word operation.

AWRA CNT DWN (1) H and AWRA BA 01 (0) H When asserted, these signals indicate that the Bus Address register is decrementing and is on a singleword boundary which is not a double-word by definition.

NOTE

When memory addresses are incrementing and BA01 is a 1, the word is on a single-word boundary. Conversely, when memory addresses are decrementing, and BA 01 is a 0, the word is on a single-word boundary (see Paragraph 5.3.2).

AWRA CNT DWN (0) H and AWRA BA 01 (1) H When asserted, these signals indicate that the Bus Address register is incrementing and is on a singleword boundary, which also prevents double-word operation.

CSTA BAI (1) L

When asserted, this signal indicates that the bus address is inhibited from incrementing or decrementing and thus causes only single-word transfers to occur.

MDPD LAST WORD H and CSTB READ EXCP H

When a read operation is taking place and a drive error occurs, the RH70 will attempt to continue transferring all remaining words in the data buffer. If the last word in the buffer is part of a doubleword data block, the RH70 would normally wait for a second word before accomplishing the memory transfer. In the first word of a double-word operation, the drive will not send the second word, due to the error condition. However, the RH70 expects to receive this word; in this case, the last word in the data buffer will assert MDPD LAST WORD H, which will inhibit the AWRA EN DBL H signal and force a single-word operation to occur.

The DBL flip-flop is cleared by the AWRE CLR signal or by loading a data transfer command into the drive (GO CLR L).

6.6.2 CNT DWN Flip-Flop

The CNT DWN flip-flop determines whether the Bus Address register is to be incremented or decremented. This flip-flop is clocked by the trailing edge of the CSTA GO CLR L signal which is asserted when a data transfer command has been loaded. The function codes for the various commands are listed in Paragraph 3.5. Note that all reverse operations have function code bits F0 and F1 (corresponding to BCTD D01 IN H and BCTD D02 IN H, respectively) asserted. Since the GO bit is also asserted, the least significant octal digit of the command code is a 7. When these conditions are met, the CNT DWN flip-flop is set and will cause the Bus Address register to decrement. The CNT DWN flip-flop is cleared by the CSTD CLR H signal, which is asserted as a result of a program clear, DC LO signal or INIT signal.

6.6.3 BA01 Flip-Flop

The BA01 flip-flop represents bus address bit 01. For single-word operations, this flip-flop is toggled, causing the address to be incremented or decremented by two. There is no countup or countdown logic associated with bit 01 due to the following reasons. If the flip-flop is reset, incrementing or decrementing the address will set the flip-flop. Conversely, if the flip-flop is set, incrementing or decrementing the address will reset the flip-flop.

NOTE

For double-word operations, this flip-flop is not toggled; instead bus address bit 02, which is part of a 74193 4-bit binary counter chip, is employed. This bit causes the bus address to increment or decrement by four.

The BA01 flip-flop is a J-K type with J and K inputs tied together. In this configuration, when a high input is applied to J and K and the clock input is clocked, the flip-flop will toggle. If a low input is applied to the J and K inputs and the clock input is clocked, it has no effect on the flip-flop. Note that the AWRA DBL (0) H signal (DBL flipflop reset) is applied to the J-K inputs, which means that the flip-flop will toggle each time a clock is applied (single-word operation). If the DBL flip-flop is set, the J and K inputs are driven low and the flip-flop is locked in its present state.

The clock signal to the BA01 flip-flop is asserted if the CDPJ SELADRS CNTLX H signal and the AWRD RACK H signals are asserted and the BAI flip-flop is not set. CDPJ SELADRS CNTLX H is a level from the Cache which indicates that this controller has been selected. The AWRD RACK H signal is a pulse which occurs during the RH70 memory cycle with Cache and indicates that the Cache has acknowledged the request made by this controller and has stored the bus address and control information. The CSTA BAI (0) H is the bus address increment inhibit signal. If this flip-flop is reset, the bus address will increment or decrement in its normal fashion. The BA01 flip-flop is loaded or cleared by the direct-set or direct-clear input. BCTB REG STR H. BCTA LO BYTE H. BCTA BA IN L and the state of BCTD D01 IN H from the Unibus determine whether the flip-flop is loaded or cleared. The first three signals indicate that the low byte of the Bus Address register is being written during the time of the register strobe. If D01 is asserted, the flip-flop is clocked set; if D01 is negated, the flip-flop is clocked reset.

6.6.4 BA02, BA03 Bus Address Bits

There are three 74193 4-bit binary counter chips on this diagram which yield bus address bits 02 - 11 (AWRA BA 02 H - AWRA BA 11 H).

Note that bus address bits 02 and 03 are on one chip, bits 4 - 7 are on a second chip, and bits 8 - 11 are on a third chip. The bits are implemented this way since the bus address is loaded as a byte and this configuration minimized the logic required. Note that bits 2 - 7 are loaded by AWRA LOAD BALB L and bits 8 - 11 (and 12 - 15 on AWRB) are loaded by AWRA LOAD BAHB L, corresponding to the low byte and high byte, respectively.

As previously stated, BA02 is incremented or decremented 1) during double-word operations, or 2) when a carry propagates from BA01. During double-word operations, gates E053-pin 6 and E053-pin 3 are enabled. If the bus address is being *incremented*, AWRA CNT DWN (0) H is asserted and enables gate E060-pin 6, which will cause binary counter chip E043 to increment on the trailing edge of the AWRD RACK H signal. If the bus address is being *decremented*, AWRA CNT DWN (1) H is asserted and enables gate E060-pin 8, which will cause binary counter chip E043 to decrement on the trailing edge of AWRD RACK H. Note when decrementing or incrementing during double-word transfers, that the BA01 bit is inhibited from changing state due to the negation of the AWRA DBL (0) H signal.

In the case where a carry is propagated from bit BA01, assume that the operation is a single-word transfer and the address is being incremented. In this case, BA01 is a 1 which enables gate E053-pin 3. This in turn enables gate E060-pin 6, causing binary counter chip E043 to increment on the trailing edge of AWRD RACK H. In addition, the BA01 flip-flop is toggled, since the DBL input is no longer holding it disabled. Consequently, in this case, BA02 incremented while BA01 went from a 1 to a 0. For decrementing, a similar analysis is followed with BA01 on a 0. Gates E053-pin 6 and E060-pin 8 are implemented. On the trailing edge of AWRD RACK H, BA02 decrements and BA01 changes from a 0 to a 1.

Since the upper two bits of binary counter E043 are not used, the carry and borrow condition for bus address bits 02 and 03 must be calculated. A carry condition is generated if BA01, BA02 and BA03 are asserted, or if BA02 and BA03 are asserted and a double-word operation is to occur (see gate E049pin 6). The output of this gate enables NAND gate E054-pin 8 to increment BA04 during incrementing [AWRA CNT DWN (0) H], if AWRA COUNT BA H is asserted. COUNT BA H is asserted if this RH70 has been selected, Cache has issued the REQ ACKN signal to the RH70, and the Bus Address Increment Inhibit flip-flop is reset (see AND gate E059-pin 6).

When bus addresses are decremented a borrow condition must be calculated. A borrow is generated if BA01, BA02 and BA03 are all negated or when BA02 and BA03 are negated and a double-word operation is specified. This is implemented in NOR gate E055-pin 8. The output of this gate enables NAND gate E054-pin 6. The other inputs to this gate are enabled when decrementing addresses [AWRA CNT DWN (1) H] if AWRA COUNT BA H is asserted.

6.6.5 BA04 - BA11 Bus Address Bits

Binary counter E047, which is associated with bus address bits 04 - 07, generates an internal borrow or carry to the next counter chip E046 as all bit positions of E047 are used. The count up input to E046 is incremented by a carry while the count down input is decremented by a borrow. Note that AWRA LOAD BALB L (Load Bus Address-Low Byte) is used to load the low byte of the bus address (bit 01 - 07). Bus address bits 08 - 11 are part of the upper byte and is loaded by AWRA LOAD BAHB L (Load Bus Address-High Byte).

6.7 LOGIC DIAGRAM AWRB

This diagram contains the upper part (bits 12 - 15) of the high byte of the Bus Address register, contains the Bus Address Extension register (bits 16 - 21), and the control parity logic.

6.7.1 BA12 - BA15 Bus Address Bits

Bus address bits 08 - 11 are shown on logic diagram AWRA; bus address bits 12 - 15 are shown on logic diagram AWRB. Bits 12 - 15 represent the upper bits of the high byte of the bus address register and are loaded by AWRA LOAD BAHB L. The carry and borrow outputs of binary counter E047 on sheet AWRA, which process bus address bits BA07 - BA11, are applied to the Countup (CUP) and Countdown (CDN) inputs of binary counter E041 (sheet AWRB), which process bus address bits BA12 - BA16.

6.7.2 Bus Address Extension Register (Bits BA16 - BA21)

The borrow and carry outputs of binary counter E041 are applied to the CDN and CUP inputs to binary counter E035, which processes bus address extension bits 16 - 19. The borrow and carry outputs of E035 are applied to the CDN and CUP inputs of binary counter E036, which processes bus address bits BA20 and BA21. Consequently, the borrow or carry propagates through the Bus Address register to bits 20 and 21 of the Bus Address Extension register.

If the program is writing bits A16 and A17, it can write these bits in two registers: bits 8 and 9 of the CS1 Control and Status 1 register (high byte) and in bits 00 and 01 of the BAE (Bus Address Extension) register (low byte). Note that there is only one load input into binary counter E036. Consequently, AND-OR gate E045-pin 8 is provided to allow loading from the CS1 register or from the BAE register. If A16 and A17 are written via the BAE register, the upper AND gate is enabled (AWRB BAE IN H, BCTA LO BYTE H, and BCTB REG STR H). BCTD D00 – D03 in H are loaded via multiplexer E040 into A16 and A17 positions of binary counter E036. If A16 and A17 are written via the CS1 register, the lower AND gate is enabled (BCTB REG STR H, BCTA HI BYTE H, BCTA CS1 IN L and CSTA RDY H).

Since binary counter E035 is a four-bit chip and the program is writing bits A16 and A17, AWRB A18 H and AWRB A19 H are fed back to the input multiplexer (E040) to preserve their contents.

6.7.3 Asynchronous Massbus Parity (CPA OUT)

The two 74180 chips shown on sheet AWRB are employed for parity generation when writing into a register in the drive. The 16 data inputs to the chips are from the Unibus data lines. Note that odd parity is normally selected. (CSTA PAT H is normally negated.) Parity on the Massbus is odd.

Assume that the data inputs contain an even number of 1s. This is summed with the ODD input to assert the EODD output which generates PA OUT H. This is the parity bit generation and is supplied to the Massbus driver for transfer to the drive. If the data inputs contain an odd number of 1s, the PA OUT H signal is not asserted and no parity bit is generated. When reading from a drive register, a different set of data lines is used and this necessitates two additional 74180 chips to check parity. (See sheet AWRF.)

The PAT H signal can be asserted by the program (bit 4 in CS2) to generate even parity on the Massbus. This maintenance feature allows verification of the parity logic in the drive.

6.8 LOGIC DIAGRAM AWRC

This logic diagram contains the BUSI internal bus multiplexers for the Bus Address and Bus Address Extension registers. The diagram also shows the address drivers which drive bus address and bus address extension information from the RH70 to the MBCBUS, which is the RH70/Cache Interface.

6.8.1 BA and BAE Multiplexers

The four open-collector multiplexers (E020, E024, E026 and E030) gate the bus address and the bus address extension bits onto the BUSI internal bus.

If BCTA BA OUT L is asserted, the A0 – A3 inputs of each multiplexer are supplied at the output which feed the bus address onto BUSI. If BCTA BAE OUT L is asserted, the B0 – B3 inputs of eachmultiplexer are supplied to the output.

This gates the bus address extension bits onto BUSI. Since the bus address extension is only six bits, the remaining ten inputs to the B side of the multiplexer are grounded. The BUSI internal bus, in turn, is used to provide the appropriate register contents to the Unibus data lines when the program reads a register.

6.8.2 Address Drivers

There are 21 address drivers for the Bus Address and Bus Address Extension Registers that are used to drive address information onto the MBCBUS which serves as the RH70/Cache Interface. The MBCBUS lines are common to all RH70 Controllers. The address is gated onto the MBCBUS by the CDPJ SEL ADRS CNTLX signal for this controller.

NOTE

This diagram is common to all four RH70 Controllers. The X in CNTLX actually refers to the Controller (Controller A, B, C or D) that has been selected by the Cache.

6.8.3 Control Signals CX and C1

There are two drivers for driving the CX and C1 signals onto the MBCBUS. When asserted, the CX signals, specify a double-word operation and when unasserted, specify a single-word operation. CX is not used during a write operation or write-check operation, since double words are normally transferred from memory to the RH70. If a single-word operation has been specified, the memory will still transfer a double word; however, only the appropriate word is clocked into the RH70; the other one is disregarded. During a read operation, the CX line is used to specify writing a double (CX asserted) or single word (CX negated) into memory.

NOTE

The C0 signal (if it was implemented) defines read pause or write byte. However, since the subsystem only reads or writes words, this bit is not used. The chart below shows the various control signal combinations for the data transfer operations.

OPERATION	MBCBUS CX L	MBCBUS C1 L
Write, write-check	unasserted	unasserted
Read (double word)	asserted	asserted
Read (single word)	unasserted	asserted

6.9 LOGIC DIAGRAM AWRD

This diagram contains the low bytes of the Drive Word Count register (DRWC) and the Word Count register (WC).

6.9.1 Drive Word Count Register

The Drive Word Count register is loaded in parallel with the Word Count register. CSTB SYNC CLK B H is applied to the Countup (CUP) input of the register and causes the register to be clocked on the trailing edge of the SYNC CLK signal. This register is incremented by one, since single words are gated on/off the Massbus.

Bits 00 - 03 of the Drive Word Count register are located on E037; bits 04 - 07 are located on E032. The Carry (CRY) output from E037 is fed to the Countup (CUP) input to E032. The CRY output of E032, in turn, is fed to the high byte of the Drive Word Count register (see logic diagram AWRE), in order to propagate the carry through the register.

The Drive Word Count register is loaded by ANDing BCTA WC IN L, BCTA LO BYTE H and BCTB REG STR H, which is similar to the loading of the other RH70 registers.

6.9.2 Word Count Register

The Word Count register for the low byte is configured differently than the Drive Word Count register. Bit 00 of this register is a single J-K flip-flop with J and K inputs connected together. Consequently, a clock signal with asserted J-K inputs cause the flip-flop to toggle, while a clock signal with negated J-K inputs has no effect. For doubleword operation, WC00 is prevented from toggling due to AWRA DBL (0) H being unasserted. Instead, WC01 is toggled for each double word. During single-word operation, WC00 is toggled with each clock input applied to the register. Only bits 01 – 03 of the Word Count register are located on E022 since WC00 is implemented as a single flipflop. This leaves one unused input on this counter since it is a four-input device. It is necessary therefore to calculate the carry from this stage. Bits 04 -07 are located on E017. Note that the output of WC00 or DBL (0) H is applied to E042-pin 11 which then enables a carry condition to E042-pin 8, E028-pin 8, and E005-pin 6. A carry condition from bits 01 - 03 is applied to E028-pin 8 and E005-pin 6 via gate E005-pin 8. In effect, this configuration ANDs the bits of the low byte to determine if a carry is propagated to the next stage. For example, if bits 00 - 03 are all asserted, or if bits 01 - 03 are asserted and double-word operation is specified, AND gate E028-pin 8 is qualified when the register is clocked, causing bit 04 in E017 to increment. Similarly, if bits 00 - 07 are all asserted, or bits 01 - 07 are asserted and double-word operation is specified, AND gate E005-pin 6 is asserted yielding AWRD WC LB CRY H. This signal is applied to the high byte of the Word Count register to increment the E011 low order stage in that register (see logic diagram AWRE).

NOTE

The MAX output on pin 12 in E017 is asserted if the counter is incremented to all 1s. The MIN output is not utilized as the word counter is only allowed to increment and not to decrement.

The Word Count register is clocked in the same manner as the Drive Word Count register. When the bus address is incremented, the word count is incremented. This occurs as a result of the CCBE REQ ACKN L signal from the Cache and the CDPJ SEL ADRS CNTLX H signal which specifies this controller. These signals are ANDed in AND gate E005-pin 12 to yield AWRD REQ ACKN H. Note that the entire Word Count register is clocked by AWRD REQ ACKN H (see logic diagram AWRE).

6.9.3 Detection of Maximum Word Count

When bits 00 – 07 of the Word Count register are all 1s, AWRD WC LOB 1 H is asserted at the output of E003-pin 10. This signal is ANDed with AWRE WC HIB 1 H on logic diagram AWRE to detect an all 1s condition in the Word Count register. This all 1s condition signifies that the last word is being transferred and inhibits the data input to the DBL flip-flop (see logic diagram AWRA).

6.10 LOGIC DIAGRAM AWRE

This diagram contains the high bytes of the Drive Word Count and the Word Count registers. They are incremented similar to the drive word count low byte and word count low byte, described on logic diagram AWRD. Since all chips on this diagram are four-input chips, with all inputs being used, the carry from one chip is rippled to the Count-up (CUP) input of the next chip.

The high bytes of the Drive Word Count and Word Count registers are loaded similarly to the low bytes previously described. Note, however, that BCTA HI BYTE H is used instead of BCTA LO BYTE H.

6.10.1 Drive Word Count Overflow

For Drive Word Count, when all bits are 1s and a carry is propagated through the register, the lowgoing carry from the most significant bit (bit 15) is inverted and is applied to the clock input of the Drive Word Count Overflow (DRWC OFLO) flipflop as a positive-going transition. Consequently, this flip-flop will be clocked on the leading edge of the clock pulse, and causes AWRE DRWC OFLO (0) H to be asserted. This signal inhibits further Massbus cycles by causing the CSTB DIS SCLK (Disable Sync Clocks) flip-flop to set.

The Drive Word Count overflow flip-flop is cleared by the CSTA CLR + GO CLR L signal, which is asserted by CD LO, INIT, PROGRAM CLEAR or by initializing the RH70 during a data transfer command.

6.10.2 Word Count Overflow

For Word Count, when all bits are 1s and a carry is propagated through the register, the carry (RIP CLK) output of WC15 is applied to the WC OFLO flip-flop, which causes this flip-flop to set on the trailing edge of the clock pulse. This asserts AWRE WC OFLO (0) H which inhibits the CSTC SMC (Start Memory Cycle) flip-flop from setting, thus terminating further memory data transfers. The Word Count Overflow flip-flop is cleared by CSTA CLR + GO CLR L, which is asserted by DC LO, INIT, PROGRAM CLEAR or by initializing the RH70 during a data transfer command.

6.11 LOGIC DIAGRAM AWRF

This logic diagram contains the BUSI open-collector multiplexers, the parity checkers, and the Massbus Control Parity Error (MCPE) flip-flop.

6.11.1 BUSI Multiplexers

The BUSI open-collector multiplexers (E007, E008, E013 and E014) gate the word count or the contents of a remote register onto BUSI. BUSI is the internal bus which is driven onto the Unibus data lines. When reading the Word Count register, the multiplexer gates the word count (AWRD WC 00-WC 07 and AWRE WC08-WC15) onto the Unibus data lines. When reading a Remote Register, the multiplexer gates the Massbus C lines (C00 IN H - C15 H) onto the Unibus data lines. The word count is enabled onto BUSI via BCTA WC OUT L and the Massbus C lines are enabled onto BUSI via BCTA CNTL OUT L.

6.11.2 Parity Checker, MCPE Flip-Flop

The parity checkers monitor the CPA parity bit and the 16 Massbus control bus data lines when a remote register is being read. If the parity is odd, the EVEN output is forced low and inhibits the Massbus Control Parity Error flip-flop from setting. However, if a parity error occurs (even parity), the EVEN output is asserted and enables the set input to the MCPE flip-flop. When the flip-flop is clocked by the negation of BCTA CNTL OUT L signal (asserted during a remote register read operation), the MCPE flip-flop is set. This condition is reflected in bit 13 of the CS1 register. When the MCPE flip-flop is set, the reset output latches the flip-flop set via NAND gate E010-pin 6.

When reading the Attention Summary (AS) register, the parity check logic is inhibited, since it is not known how many devices will respond with their respective Attention Summary bits. Consequently, when the AS register is read, BCTB AS REG H is asserted which inhibits the setting of the MCPE flip-flop.

The MCPE flip-flop is cleared by CSTB CLR ERR L which is a function of CLR. GO CLR, or the posting of a 1 in the TRE bit position (bit 14) of the CS1 register.

6.12 LOGIC DIAGRAM MDPA

This sheet contains the control logic which controls the clocking sequence for the RA, RB, RC, and RD registers. Refer to Figures 4-5, 4-7, and 4-8 for the following detailed description of the data buffer.

6.12.1 RA FULL and RB FULL Flip-Flops

The RA FULL and RB FULL flip-flops are shown in zone D2 and C2 and indicate the status of the RA and RB registers, respectively. MDPA CLK RA H is the signal used to clock the RA FULL flip-flop; MDPA CLK RB H is the signal used to clock the RB FULL flip-flop. These flip-flops are clocked on the leading edge of the clock signals. When either flip-flop is clocked, the set output goes high, indicating that the respective register is full.

The RA FULL flip-flop is cleared by the generalpurpose initialize pulse (CSTD DB INIT L) or by the MDPA CLR RA L signal. MDPA CLR RA L is generated approximately 50 ns after the data has been clocked from RA into RC. (Note that MDPA CLK RC H occurs at the 100-ns tap on delay line E102 and at the 150-ns tap, AND gate E100-pin 6 is asserted low which creates MDPA CLR RA L to direct-clear the RA FULL flip-flop.) The 100-ns delay ensures that the data has been transferred to RC and has had time to stabilize.

The RB FULL flip-flop is cleared in exactly the same manner as the RA FULL flip-flop. In other words, approximately 50 nanoseconds after the RD register is clocked, MDPA CLR RB L is generated (note the 150-ns tap on delay line E091). This ensures that the data has had time to be transferred from RB to RD and stabilize. At this point, the RB FULL flip-flop can be cleared.

6.12.2 MDPA CLK RA H, MDPA CLK RBH

MDPA CLK RA H is derived from AND-OR gate E113-pin 8 as a result of one of the following conditions:

- 1. In a read operation, when the contents of OBUF is being clocked into RA (twoinput AND gate-pins 2, 3)
- 2. In data buffer maintenance operation, when Unibus data is being clocked into RA (three-input AND gate-pins 4, 5, 6)

3. When memory data is being clocked into RA or RB, or both, during a Write or Write-Check command (four-input AND gate 1, 11, 12, and 13).

MDPA CLK RB H is derived from AND-OR gate E104-pin 8 as a result of one of the following conditions:

- 1. In a Read operation, when the contents of OBUF is being clocked into RB during a Read command (two-input AND gate-pins 2, 3)
- 2. In data buffer maintenance operation, when Unibus data is being clocked into RB (three-input AND gate-pins 4, 5, 6)
- 3. When memory data is being clocked into RA or RB, or both, during a Write or Write-Check command (four-input AND gate-pins 1, 11, 12, 13).

6.12.2.1 Assertion of CLK RA, CLK RB During Read Command - The topmost AND gate in E113pin 8 is grounded and is not used. In a Read command, data from the drive is transferred to RE, sequences up to OBUF, and is transferred to RA or RB, then to RC or RD for transfer to memory. The two-input gate in E113-pin 8 is asserted during a Read command if OBUF is full, Input Ready (IR) is asserted, and the RB ENA pointer is pointing to an even word. Assertion of the IR signal (MDPA IR H) indicates that the RA register is empty and has been selected to receive a data word from OBUF or that the RB register is empty and the RB register is selected to receive a word from OBUF. MDPA IR H, MDPH READ H, and MDPD OBUF FULL (1) H are ANDed in AND gate E114-pin 8. The output of this gate is driven down delay line E119 by driver Q6. 100 ns after the start of the delay line, AND gate E114-pin 12 is qualified. If the RB ENA pointer is selecting the even word [MDPD RB ENA (0) H], the two-input AND gate of AND-OR gate E113-pin 8 is qualified. This causes the MDPA CLK RA signal to be generated which clocks the RA register with the contents of OBUF. If the RB ENA pointer is selecting the odd word [MDPD RB ENA (1) H], the two-input AND gate in AND-OR gate E104-pin 8 is qualified. This causes the MDPA CLK RB H signal to be generated, which clocks the RB register
with the contents of OBUF. At the same time, AND gate E114-pin 6 is asserted, which generates MDPA CLR OBUF H. 50 ns later (150-ns tap on delay line E119), the CLR OBUF signal is negated, and the OBUF FULL flag is cleared, releasing that data word from the OBUF register.

NOTE

At the 200-ns tap on delay line E119, AND gate E114-pin 12 becomes negated. This means that the CLK RA or CLK RB signal is approximately 100 ns wide, plus additional gate delays.

The output of AND-OR gate E113-pin 8, used to yield the CLK RA signal, and the output of AND-OR gate E104-pin 8, used to yield the CLK RB signal, are ORed in OR gate E099-pin 3 to assert MDPA INC RB ENA H. On the trailing edge of this signal, the RB ENA pointer is incremented to switch to the opposite side of the data path (odd word to even word or even word to odd word).

6.12.2.2 Assertion of CLK RA or CLK RB During Maintenance Operation - When writing the data buffer during maintenance operation, data from the Unibus can be sequenced through the data buffer and transferred back to the Unibus. This is accomplished as described below. BCTA DB IN L from the register decoder enables one input of the threeinput AND gate in E113-pin 8 and in one input in AND gate E104-pin 8. A second input to each of these gates is the register strobe signal (BCTB REG STR H) which allows the registers to be clocked with data. A third input to each gate is the RB ENA pointer which determines whether data will be clocked into the RA (even word) or RB (odd word) side of the data path. For example, assume that the data buffer is initialized to point to the RA register [RB ENA (0) H asserted]. The first word written by the program is clocked into the RA register since the CLK RA H signal will be asserted. In addition to clocking the RA register, this signal is applied to OR gate E099-pin 1, generating MDPA INC RB ENA H. This switches the RB ENA pointer, which will now point to the odd word (RB register) portion of the data path. As a result, the next data word from the Unibus will be clocked into the RB register.

6.12.2.3 Assertion of CLK RA or CLK RB During Write or Write-Check Command – In a Write or Write-Check command, data from memory is applied to RA and RB. This is accomplished via the four-input AND gate of E113-pin 8 for the CLK RA signal and the four-input AND gate of E104pin 8 for the CLK RB signal. The inputs to these gates are described below.

- 1. The CSTA WR + WR CHK H signal designates that a Write or Write-Check command has been loaded into the drive.
- 2. The CDPK DATA RDY CNTLX H signal is the clock pulse from the RH70/Cache Interface, which is used to clock memory data into the RA or RB register. When this signal is asserted to the RH70 Controller, it means that the Cache arbitration logic has recognized this controller. The X designates one of four RH70 Controller (Controller A, B, C, or D) which may be installed in the system.
- 3. AWRA DBL (1) L and the sense of the RB ENA pointer. If AWRA DBL (1) L is asserted, it indicates that the DBL flip-flop is set and the bottom gate of E113-pin 8 and E104-pin 8 are both enabled. As a result, both RA and RB will be clocked simultaneously. When the DBL signal is not asserted, the CLK RA or CLK RB signal is generated as a result of the sense of the RB ENA pointer. If MDPD RB ENA (0) H is asserted, RA CLK is generated, which will transfer the even word from memory to the RA register. If MDPD RB ENA (1) H is asserted, RB CLK is generated, which will transfer the odd word from memory to the RB register.

6.12.3 RC FULL and RD FULL Flip-Flops

The RC FULL and RD FULL flip-flops are shown in zones B2 and A2 and designate the states of the RC and RD registers, respectively. MDPA CLK RC H is the signal used to clock the RC FULL register; MDPA CLK RD H is the signal used to clock the RD FULL register. These flip-flops are clocked on the leading edge of the clock signals.

The RC FULL and RD FULL flip-flops can be cleared in one of the following ways:

1. By the general-purpose CSTD DB INIT L signal which initializes the data buffer.

- 2. By the MDPE CLR RC L and MDPE CLR RD L signals, which are asserted after the contents of the RC or RD has been transferred through the MXR to the RE register during write, write-check or data buffer maintenance operations. This occurs approximately 150 ns after the transfer of data from RC or RD into RE.
- 3. By the CSTC READ DONE L signal, which is a timing signal derived from the RH70/Cache Interface during read operations. When asserted, this signal indicates that memory has accepted the data and the RC or RD register may be cleared in order to allow new data to be loaded into these registers.

6.12.4 MDPA CLK RC H, MDPA CLK RD H

Data is clocked into the RC and RD registers under the following conditions:

- 1. During maintenance operation, or when the program is executing a Write or Write-Check command, data is transferred from RA to RC and/or RB to RD.
- 2. Normally, during a Read command, double words are transferred to memory from RC and RD. The act of transferring either RA into RC or RB into RD initiates a Cache memory request. Thus, during double-word transfers the RH70 logic forces the assembly of a double word into RA and RB before attempting a transfer to RC and RD.

MDPA CLK RC H is derived from delay line E102 as a result of one of the following conditions: MDPA CLK RD H is generated in a similar manner to delay line E091. The differences between the two are noted.

> 1. During data buffer maintenance operation, when RA is full [MDPA RA FULL (1) H] and RC is empty [MDPA RC FULL (0) H]. This is implemented in AND gate E107-pin 6.

NOTE

The third input [RD ENA (0) H] to AND gate E107-pin 6 is not required, but is merely implemented to verify that the pointer is switching as required.

- 2. During a write or write-check operation, when both RC and RD are empty and RA is full (see AND gate E107-pin 8).
- 3. During a single-word transfer to memory (read operation), either the three-input AND gate in AND/OR gate E106pin 8, or the three-input AND gate in AND/OR gate E105-pin 8 is asserted. If the RD ENA pointer is pointing to RC, MDPD RD ENA (1) H is negated and the three-input AND gate associated with E106-pin 8 is qualified, causing the next data word to be transferred from RA to RC. Conversely, if the RD ENA pointer is pointing to RD, MDPD RD ENA (0) H is negated and the three-input AND gate in E105-pin 8 is qualified, causing the next data word to be transferred from RB to RD.
- 4. During a double-word transfer to memory (read operation), when RA and RB are both full, RC and RD are both empty, a Read command and doubleword operation is specified, all inputs to the four-input AND gates in AND-OR gates E106-pin 8 and E105-pin 8 are qualified, which ultimately cause both RC and RD CLK signals to be asserted.

When the output of E106-pin 8 goes low as a result of one of the conditions just mentioned, it is driven down delay line E102 by driver Q6. 100 ns after the pulse is sent to the delay line, AND gate E090-pin 12 is asserted, which causes MDPA CLK RC H to be asserted. Similarly, if E105-pin 8 goes low, this pulse is driven down delay line E091 via driver Q7. 100 ns after this pulse is applied to the delay line, AND gate E090-pin 8 is qualified, which causes MDPA CLK RD H to be asserted. Both signals are cleared 50 ns later (see 150-ns tap on delay line E102, which inhibits E090-pin 12 and the 150-ns tap on delay line E091, which inhibits E090-pin 8).

6.12.5 Parity Check Enable

When a write or write-check operation is specified, one input to AND gate E115-pin 10 and one input to AND gate E115-pin 13 is enabled. If the output of E106-pin 8 goes low, MDPA EN EWPCK H is asserted to enable the even-word parity check circuitry, which monitors the contents of the RA register, plus the parity bits. If E105-pin 8 goes low, MDPA EN OWPCK H is asserted to enable the odd word parity check circuitry, which monitors the contents of the RB register, plus the parity bits. When double-word operation is specified, both the odd and even-word parity check circuitry are enabled. For read or data buffer maintenance operations, the parity check enable signals (MDPA EN EWPCK H, MDPA EN OWPCK H) are inhibited.

6.12.6 START MEM Enable

When either E106-pin 8 or E105-pin 8 goes low (causing the RC CLK or RD CLK signals, respectively), MDPA START MEM H, at the output of OR gate E100-pin 11, is asserted. This signal is sent to the memory control where error conditions are examined (refer to logic description of logic diagram CSTC).

NOTE

During data buffer maintenance generations, this signal is inhibited in the memory control logic since no memory transfer takes place in this mode.

If no errors are present by the time of the REQ CLK signal (which occurs approximately 100 ns later), the next memory request is issued. fifty ns after the data has been clocked into RC, or RD, or both, MDPA CLR RA L, or MDPA CLR RB L, or both, are asserted, which direct-clears the RA FULL or RB FULL flip-flops. At the same time (see the 150-ns tap on delay lines E102 and E091), MDPA CLR SMC H is asserted, which clears the Start Memory flip-flop on CSTC that previously monitored and synchronized the error conditions.

6.13 LOGIC DIAGRAM MDPB

This diagram contains the even word memory data registers. This includes the AMX, the RA and RC registers and the MXR logic.

6.13.1 AMX Multiplexer

The AMX consists of four and one-half two-input quad multiplexer chips. This multiplexer accepts

memory data during write or write-check operations, OBUF data during read operations, and Unibus data during maintenance operations. The OBUF data and Unibus data are multiplexed in the IMX multiplexer shown on logic diagram MDPH. The output of the IMX in turn feeds the AMX. During write or write-check operations, the A inputs (A0, A1, A2, and A3) inputs to AMX are enabled; during read or maintenance operations, the B inputs (B0, B1, B2 and B3) inputs are enabled.

6.13.2 Parity Bits (AMX)

A section of the AMX monitors the memory parity bits during write or write-check operations. CDPC MEM BYTE 1 PAR H represents parity for the high byte of the even data word; CDPC MEM BYTE 0 PAR H represents parity for the low byte of the even data word. In the case of data buffer maintenance operations or read operations, the parity signals are unasserted into the RA register.

6.13.3 RA, RC Registers

The output of the AMX is applied to the RA register, due to assertion of the MDPA CLK RA H signal. The output of the RA register in turn is applied to the RC register (due to assertion of the MDPA CLK RC H signal) and also to the parity generator/checker logic on logic diagram MDPC.

6.13.4 MXR

The output of the RC and RD registers are connected to the Mixer (MXR). If MDPD MXR SEL (1) H is asserted during write, write-check or data buffer maintenance operations, the output of the RD register is applied to the MXR and if MDPD MXR SEL (1) H is not asserted, the output of the RC register is applied to the MXR.

During a read operation, the contents of the RC register is applied to drivers on the RH70/Cache Interface, which eventually asserts data to the even word in memory.

6.13.5 Parity Bits (MXR)

Parity bits which are transferred through the MXR are applied to an MXR multiplexer. In this multiplexer, the STB (Strobe) input is used. Consequently, during write operations, this multiplexer forces 0s as parity bits. This prevents false parity from being sent through the data buffer so that correct parity can be generated in the parity generator between RG and OBUF for transfer to the drive. If a write-check or maintenance operation is specified, the RC or RD parity bits are selected, depending on the state of the MXR SEL flip-flop. If MDPD MXR SEL (1) H is asserted, the parity bits associated with RD are applied through the MXR; if MDPD MXR SEL (1) H is not asserted, the parity bits associated with RC are applied through the MXR.

6.14 LOGIC DIAGRAM MDPC

This diagram contains the odd word memory data registers, BMX, RB and RD registers and parity generator/checker circuits. The odd word memory data registers are similar to the even word memory data registers described on logic diagram MDPB. Note that the left-hand side of the diagram shows the BMX which is similar to the AMX on MDPB. However, the BMX is associated with the odd word (that is, bits 16 - 31 from memory). The BMX accepts data from memory during write or write-check operations or accepts data from the IMX multiplexer during read or data buffer maintenance operations. The IMX selects data from OBUF during read operations or selects Unibus data if data buffer maintenance operation is employed.

6.14.1 Parity Bits (BMX)

A section of the BMX monitors the parity bits from memory during write or write-check operations. CDPD MEM BYTE 2 PAR is the parity bit associated with the low byte of the odd word; CDPD MEM BYTE 3 PAR is the parity bit associated with the high byte of the odd word. In the case of data buffer maintenance operations or read operations, these parity signals are unasserted to the RB register.

6.14.2 RB and RD Registers

The output of the BMX is applied to the RB register due to assertion of the MDPA CLK RB H signal. The output of the RB register in turn is applied to the RD register (when the MDPA CLK RD H signal is asserted) and also to the parity generator/checker circuits (shown on this diagram).

6.14.3 Parity Generator/Checker Circuits

The parity generator/checker circuits consist of four chips: parity odd word-high byte, parity odd

word-low byte, parity even word-high byte and parity even word-low byte. During read operations, parity is generated by these circuits when data is written into memory. While in write and writecheck operations, parity is checked by these circuits. For data buffer maintenance operations, parity is generated as data is written through the data buffer.

The upper two parity generator/checker chips (parity odd word-high byte and parity odd word-low byte) accept the 16-bit data word from the RB register while the two lower parity chips accept the 16bit data word from the RA register. In addition, each chip has a ninth input, which is the actual parity bit from memory in write or write-check operations and which are 0s for data buffer maintenance operations or read operations. The parity bit for each chip is exclusively-ORed in the XOR gate E103 with one of four invert signals: CSTA INV 0, CSTA INV 1, CSTA INV 2 or CSTA INV 3. The assertion or negation of these signals is controlled by four corresponding control bits in the CS3 register, and allows bad parity to be simulated in order to check the parity generator/checker circuits themselves. During a read operation, the outputs of the parity generator/checker circuits are applied to the RC and RD registers. During write or write-check operations, the parity outputs are applied to logic to see if there is a parity error.

6.15 LOGIC DIAGRAM MDPD

This diagram contains the control logic which controls the clocking sequence for the RF, RG and OBUF registers. The diagram also shows the RB ENA pointer, RD ENA pointer, and the MXR SEL pointer.

6.15.1 Clocking the RF Register, RF FULL Flip-Flop

The RF register is clocked on the leading edge of the MDPD RF FULL (1) H signal. Note that this signal is derived from a flip-flop configured as a latch; there is no CLK RF signal as with the other registers. Although the configuration is different, the principle of operation remains the same. When MDPE RE FULL (1) H (designates RE register full) and MDPD RF FULL (0) H (RF register empty) are asserted, the output of AND gate E060pin 6 is asserted and is driven down delay line E071 via driver Q4. 100 ns after this signal is applied to the delay line, the set condition of the latch is asserted, which yields MDPD RF FULL (1) H, causing the data from the RE register to be clocked into the RF register.

NOTE

The TEST INPUT A signal of pin 3 of E060 is a test input for module checkout.

6.15.2 Clearing the RE FULL Flip-Flop

At 150 ns on the delay line, MDPD CLR RE L is asserted, which allows the RE FULL flip-flop to now be cleared since the contents of RE has already been transferred to RF. At 175 ns on the delay line, MDPD CLR RE L is negated, resulting in a 25-ns pulse.

6.15.3 Clocking the RG Register, RG FULL Flip-Flop

The data in the RF register is transferred to the RG register upon assertion of MDPD CLK RG H. This signal is dependent on the RG register being empty and the RF register being full. These conditions cause AND gate E060-pin 8 to be asserted. The output is driven down delay line E052 via driver Q3. After 75 ns, MDPD CLK RG H is asserted via AND gate E050-pin 11. The CLK RG signal clocks the contents of the RF register into the RG register, and causes the RG FULL flip-flop to be direct-set.

6.15.4 Clearing RF FULL Flip-Flop

50 ns after the CLK RG signal is asserted (125-ns tap on delay line E052), MDPD CLR RF L is asserted, which clears the RF FULL flip-flop to allow new data to be entered into the RF register. 50 ns after the CLR RF signal is asserted (175-ns tap on delay line E052), the signal is negated, resulting in a 50-ns pulse.

The RF FULL flip-flop is cleared by the generalpurpose CSTD DB INIT L signal, or approximately 125 ns after the transfer of data from RF into RG by the MDPD CLR RF L signal.

6.15.5 RG RDY Flip-Flop

When the RG RDY flip-flop is set, it indicates that the data in the RG register has previously been loaded, the data has had time to settle and stabilize, and the parity has been checked. This is used for Data Late (DLT) or data overrun conditions. Normally, when writing the drive, the data in OBUF is strobed into the drive on the leading edge of SCLK and the data in OBUF is changed on the trailing edge of SCLK. Before the data can be changed however, it must be ensured that a data word is in RG and has stabilized because this is the next word to be transferred to OBUF. The setting of the RG RDY flip-flop indicates that this condition has been satisfied.

The RG RDY flip-flop is set 150 ns after the MDPD RG FULL (1) H signal is asserted. The 150 -ns delay is comprised of two 75-ns delays. The first 75-ns delay is a result of the delay line (150 -ns tap, minus 75-ns tap); the second 75-ns delay is due to the fact that the trailing edge of the 75-ns pulse traveling down the delay line clocks the RG RDY flip-flop. The pulse traveling down the delay line is turned off at the 75-ns tap by the setting of RG FULL.

The clearing of the RG FULL flip-flop after the data has been transferred to OBUF causes the clearing of the RG RDY flip-flop, which indicates that the data in RG is not valid.

6.15.6 Clocking OBUF, OBUF FULL Flip-Flop

To clock a data word from RG into OBUF requires the RG register to be full and the OBUF register to be empty. When these conditions are satisfied, AND gate E060-pin 12 is qualified and the output is driven down delay line E041 via driver Q2. At 150 ns, MDPD CLK OBUF H is asserted via gate E040-pin 8 and gate E062-pin 3. The 150-ns delay allows the data in RG to settle and stabilize and provides additional time for parity checking, since the parity check is situated between RG and OBUF. MDPD CLK OBUF H clocks the data from the RG register into the OBUF register and also direct-sets the OBUF FULL flip-flop, which then turns the delay line off. During a write operation, once OBUF is full and the OBUF FULL flip-flop is set, OBUF FULL remains set for the entire transfer until an error or word count overflow occurs. It may be recalled in the other data buffer registers that the delay line was used to generate the clock and clear signals necessary to transfer data from one register to the next. However, the delay line is not used in a write operation after the first data word reaches OBUF.

NOTE

Delay line E041 is used in the normal fashion for read, write-check and data buffer maintenance operations, in addition to the first data word in a write operation.

At this point, a word is in OBUF and the OBUF FULL flip-flop is set. Assume that successive data words have filled the rest of the data buffer. The RH70 then asserts the RUN line to the drive and the drive proceeds to rotate to the correct address. When the correct address is found, the drive issues a SCLK pulse. The leading edge of SCLK causes the data in OBUF to be transferred to the drive. The trailing edge of SCLK initiates a Drive Clock pulse which causes the data in RG to sequence to OBUF (provided RG RDY is set, indicating that a word has been loaded in RG and has stabilized). Successive SCLK signals cause the data in OBUF to be transferred to the drive, while successive Drive Clock (trailing edge of SCLK) signals cause the data in RG to sequence to OBUF by causing E50-pin 3 and E62-pin 3 to assert CLK OBUF H signals without using the delay line. The process continues until an error condition is flagged or word count overflow occurs.

This process is implemented by the logic as described in Figure 6.8.

- 1. SCLK (leading edge) clocks first data word from OBUF to drive.
- 2. SCLK (trailing edge creates Drive Clock) - second data word in RG sequences to OBUF. This is accomplished by MDPD WRITE H and CSTB DRIVE CLK H, which are ANDed in E050-pin 3 to assert MDPD CLK OBUF H. RG register is now transferred to the OBUF register.

Figure 6-8 Massbus Data Transfer Sequence

3. Drive Clock (trailing edge) – clears RG FULL flip-flop since RG is now empty. This flip-flop is cleared on the positivegoing transition from gate E050-pin 3. This gate went negative on leading edge of Drive Clock and goes positive on trailing edge.

NOTE

If RG FULL is reset, the output from the 1 side direct-clears the RG RDY flip-flop, indicating that the data in RG is no longer valid.

- 4. SCLK (leading edge) second data word transferred from OBUF to drive.
- 5. SCLK (trailing edge) third data word had transferred from RF to RG 150 ns after RG was emptied (in step 3). This data word now transfers from RG to OBUF, provided RG RDY flip-flop is set, indicating that the data in RG has had time to settle and have the parity checked.

The transfer of the data word from RG to OBUF is caused by MDPD CLK OBUF H which is asserted as a result of MDPD WRITE H and CSTB DRIVE CLK H.

This process continues until error condition is flagged or word count overflow occurs.

6.15.7 Clearing the RG FULL Flip-Flop

The RG register and the RG FULL flip-flop is cleared by MDPD CLR RG L. This signal is generated 50 ns after the data word is transferred from RG to OBUF. (At 150 ns on the delay line, data is clocked from RG to OBUF and at 200 ns, the RG FULL flip-flop is reset by the MDPD CLR RG L signal). In addition to resetting the RG FULL flip-flop via the delay line, there are two other conditions which can reset the RG FULL flip-flop. One is the general-purpose CSTD DB INIT L signal which intializes the RH70. The second is the positive-going transition from gate E050-pin 3 which clocks the flip-flop reset. This occurs on the trailing edge of Drive Clock during a write operation.

6.15.8 Clearing OBUF FULL Flip-Flop

The OBUF register is cleared as a result of SCLK from the drive which clocks the data out of OBUF. The OBUF FULL flip-flop is cleared in one of the following ways:

- 1. By the general-purpose CSTD DB INIT L signal which initializes the RH70. (This is a direct clear.)
- 2. On the trailing edge of MDPE CLK MXR WORD H during a write-check operation. On the leading edge of MDPE CLK MXR WORD H, data from the RC or RD register is compared to OBUF data. If the write-check showed no error, the data in the RC or RD register and data in OBUF can be invalidated by clearing the respective Register Full flip-flops.

If a write-check error (MDPE WCE L) occurs, the data is frozen in OBUF. This keeps AND-OR gate E061-pin 8 low to prevent the clearing of the OBUF FULL flip-flop. When the programmer recognizes the error, it will clear the WCE bit (bit 14, CS2 register), which in turn causes the OBUF FULL flip-flop to clear.

3. When the last data word has been transferred during a write operation (from RG to OBUF). This occurs when there is no word in RG to transfer to OBUF [MDPD RG FULL (0) H]. On the leading edge of Drive CLK, the output of E061-pin 8 goes low. On the trailing edge of CSTB DRIVE CLK H, the positive-going transition from this gate clocks the OBUF FULL flip-flop clear. Consequently, OBUF FULL is cleared on the last transition of Drive CLK during the normal completion of a Write command.

- 4. During a read operation when the data in OBUF has been clocked into the RA or RB registers. The MDPA CLR OBUF H signal is asserted at the time that the data is clocked into RA or RB. 50 ns later, the negation of CLR OBUF H causes the OBUF FULL flip-flop to clear.
- 5. During maintenance operation, the OBUF FULL flip-flop is cleared when the program has read the data buffer. This is the result of ANDing BCTB DB OCLK H and BCTA DB OUT L in gate E059-pin 11. The BCTB DB OCLK H signal is asserted when the processor has recognized that the data has been read from the data buffer. On the trailing edge of the BCTB DB OCLK H signal, the OBUF FULL flip-flop is clocked clear.

6.15.9 MDPD DB EMPTY L, MDPD LAST WORD H

These signals are used during a read operation when an error has been detected in the drive but not in the controller. In this case, the data in the data buffer is transferred to memory, which allows error correction on those drives using error correction hardware. The error condition from the drive causes the transfer to stop at the next EBL pulse. The data buffer is empty (MDPD DB EMPTY L) when all the register flags are unasserted. These include the RA, RB, RC, RD, RE, RF, RG and OBUF registers which are ANDed in gate E049-pin 8.

In the case where word count overflow has not yet occurred during a read operation and an error has occurred in the drive and not in the RH70. The RH70 contains logic to determine if the operation is a single- or double-word transfer. If the last transfer should be a double word, the RH70 tries to assemble a double word and if an error occurred, preventing the drive from sending additional words, the RH70 would be left waiting for a word which it will never receive. To avert this situation, the RH70 must detect the fact that the last word is in the data buffer and also must force the memory operation to be performed as a single-word rather than as a double-word operation. This is the function of the MDPD LAST WORD H signal. Note that the single-word section of the data buffer must be

empty (RE, RF, RG, and OBUF). In the doubleword section, if either MDPA RA FULL H or MDPA RB FULL H is asserted, but not both, MDPD LAST WORD H is asserted. If both RA FULL and RB FULL are asserted, meaning there are two words in the buffer. MDPD LAST WORD H is inhibited, and the operation is performed as a double-word transfer. MDPD LAST WORD H is ANDed with CSTB READ EXC H on logic diagram AWRA. With MDPD LAST WORD H and CSTB READ EXCP H both asserted, the DBL flip-flop is prevented from setting (see logic diagram AWRA), thus forcing a single-word memory operation.

6.15.10 Mixer Select (MDPD MXR SEL)

The MXR SEL flip-flop switches the select lines on the mixer multiplexer to alternately point to the RC and RD registers. In write or data buffer maintenance operations, the MXR output is applied to RE. In write-check operations, the contents of the MXR loaded from RC or RD is compared with the contents of OBUF in the Exclusive-OR gates. When the RH70 is initialized by CSTD DB INIT L, the MXR SEL flip-flop is initially set or cleared to control the MXR. If DB INIT is a result of Unibus INIT, PG CLR, or Power Fail, the Bus Address register is cleared [BA 01 (0) H asserted] and the MXR SEL flip-flop is cleared by gate E080-pin 8. When a data transfer command with the GO bit is loaded in to the drive. CSTA GO CLR L is asserted in the RH70, causing a DB INIT.

NOTE

CSTA GO CLR L is one of the means of generating CSTD DB INIT L. However, the GO CLR signal will not cause the Bus Address registers to clear [does not affect BA 01 (0) H].

If AWRA BA 01 (1) H is asserted (odd-word boundary), the MXR SEL flip-flop is directly-set, causing the MXR to point to the RD register (even word). If the bus address bit (BA 01) is reset, (even word) the MXR SEL flip-flop remains reset due to the DB INIT signal leaving the flip-flop pointing to the RC register.

The MXR SEL flip-flop is wired to toggle on every clock input. The clock input is MDPE INCR MXR

SEL H. On the trailing edge of this signal, the flipflop is toggled to the alternate state. There is one condition in which the MXR SEL flip-flop is prevented from toggling. This occurs during a data transfer command when the BAI (Bus Address Increment inhibit) bit is set. In this situation, it is desired to do transfers to or from the same location and the same memory data register (either RC or RD).

NOTE

If the RH70 is in the RDY state (ready to receive a command), the state of the BAI bit is immaterial, since no memory transfers will take place and incrementing the MXR SEL pointer will always occur during data buffer maintenance operation.

6.15.11 RD ENA Pointer

The RD ENA pointer is primarily used for the read operation to allow the RC and RD registers to be clocked at the appropriate times.

During write-check or write operations, the pointer toggles but is not examined, and in data buffer maintenance operations, the pointer is alternately toggled as individual words are being sequenced through the buffer.

The RD ENA pointer is direct-set and directcleared in the same manner as the MXR SEL flipflop just described. This pointer is also wired to toggle on alternate clock inputs. The clock input is MDPA REQ CLK H, which is the ORed condition of the RC and RD Clock signals (MDPA CLK RC H and MDPA CLK RD H). During read operations, there are two cases where the RD ENA pointer is inhibited from toggling. One is the setting of the Bus Address Increment Inhibit [CSTA BAI (1) H] bit, which causes data transfers to or from the same memory location and causes the RC or RD register (but not both), to be utilized. The second occurs when the DBL (Double) flip-flop is set. In this case, when doing double-word transfers to memory, the RD ENA pointer is overridden by AWRA EN DBL H. Conceptually, this can be thought of as adding two to the flip-flop pointer, which leaves it in its original state since two words are clocked simultaneously (one in RC and one in RD).

6.15.12 RB ENA Pointer

The RB ENA pointer is used during all operations (read, write, write-check and data buffer maintenance). It is direct-set and direct-cleared in the same manner as that previously described for the MXR SEL pointer. This flip-flop pointer is wired to toggle on alternate clock inputs and to control the clocking of the RA and RB registers. The clock input to this pointer is the MDPA INC RB ENA H signal, which is derived from the logic that generates the clock signals for the RA and RB registers. Consequently, when the MDPA CLK RA signal is asserted, the MDPA INC RB ENA H signal is asserted, causing the RB ENA pointer to switch and point to the odd-word RB register. When the CLK RB signal is generated. MDPA INC RB ENA H is again asserted and causes the RB ENA pointer to toggle to the even-word RA register.

If a write or write-check operation is being performed, the RB ENA pointer is inhibited from toggling if a double word from memory is transferred to RA and RB simultaneously. The pointer is overridden in this case and can conceptually be thought of as being incremented by two, which effectively leaves the flip-flop pointer in its original state. The top two-input AND gate in AND-OR gate E039-pin 6 accomplishes this function.

If the RH70 is not in the RDY (ready) state (performing a read, write, or write-check operation), and the BAI (Bus Address Increment inhibit) bit is set, the pointer is inhibited from toggling, since it is desired to transfer data to or from the same memory location. The lower two-input AND gate in AND-OR gate E039-pin 6 performs this function.

6.16 LOGIC DIAGRAM MDPE

This logic diagram contains the logic for clocking the RE register, the RE FULL flip-flop, data parity circuit and the exclusive-OR network used to compare the MXR contents with the OBUF contents during a write-check operation.

6.16.1 MDPE CLK MXR WORD H

The MDPE CLK MXR WORD H signal is used in data buffer maintenance operations, write and write-check functions. During data buffer maintenance and write operations, MXR data is clocked into the RE register as a result of MDPE CLK MXR WORD H. During write-check operations, the WCE (Write-Check Error) flip-flops are clocked by MDPE CLK MXR WORD H. In read operations, the RE register accepts data from the Massbus and the clocking logic is consequently inhibited for a Read command. The MDPE CLK MXR WORD H is derived from delay line E011 and driver Q1. This input to the delay line is from OR-AND gate E028-pin 8.

6.16.1.1 Write Operation – For a write operation, this gate is qualified as follows:

- 1. The top two two-input gates are asserted when the MXR SEL flip-flop is pointing to the RD register [MDPD MXR SEL (1) L] and the RD FULL flip-flop is full [MDPA RD FULL (1) L] or when the MXR SEL flip-flop is pointing to the RC register [MDPD MXR SEL (0) L] and the RC FULL flip-flop is full [MDPA RC FULL (1) L]. These two gates, in essence, are asserted when the MXR SEL pointer is pointing to the register that is full.
- 2. During a write, CSTA WR L is asserted, qualifying the three-input gate.
- 3. RE FULL (0) L must be asserted, since it is necessary to have a word in the MXR and no word in the RE register to transfer a word to RE. This is accomplished in the four-input gate of E28.

With the above conditions satisfied, OR-AND gate E028-pin 8 is asserted and the pulse is driven down delay line E011. 100 ns after this, MDPE CLK MXR WORD H is asserted which asserts MDPE CLK RE L. This signal clocks the MXR data into the RE register. This pulse is 50-ns long and is turned off at the 150-ns tap on the delay line. Also at 150 ns, MDPE INC MXR SEL H is asserted and is ANDed with the state of the MDPD MXR SEL flip-flop to clear the RC or the RD register. For example, if data was transferred from the RD register to RE, MDPD MXR SEL (1) H is asserted, and when the MDPE INC MXR SEL H signal is asserted, MDPE CLR RD L is asserted, indicating that the contents of the RD register has been transferred to RE; the RD FULL flip-flop can now be cleared. This logic is accomplished for RD in AND gate E038-pin 8 and for RC in AND gate E038-pin 6. The MDPE CLR RC and MDPE CLR RD signals are 50-ns long as they are turned off at the 200-ns tap on delay line E011. On the trailing edge of the MDPE INC MXR SEL H signal, the MXR SEL pointer on MDPD is toggled to switch from the RC to RD or from the RD to RC register.

6.16.1.2 Data Buffer Maintenance Operation – During data buffer maintenance operation, the MDPE CLK MXR WORD H signal is generated in the same manner, except that in the third OR gate from the top in E028-pin 8, MDPE RDY L is asserted instead of CSTA WRITE L. The RDY signal is asserted when the RH70 is not doing a data transfer command.

6.16.1.3 Write Check Operation – During writecheck operation, the delay line driven by the output of E028-pin 8 is asserted under the following conditions:

- 1. The two two-input gates of E228-pin 8 function the same as that described for write; in other words, they are asserted when the MXR SEL pointer is pointing to a register that is full.
- 2. The three-input OR gate is qualified when MDPD OBUF FULL (1) L is asserted. This is required since MDPE CLK MXR WORD H in a write-check operation is used to clock the WCE flipflops and these flip-flops monitor the XOR comparision of the MXR and OBUF.
- 3. CSTA WR CHK L must be asserted for a write-check operation which qualifies the four-input gate to E028.

When the above conditions are satisfied, the MDPE CLK MXR WORD H is asserted similar to that described for the write operation.

6.16.2 MDPE CLK RE L Signal

The MDPE CLK RE L signal is generated by MDPE CLK MXR WORD H in a write operation and data buffer maintenance operation. Note that the output of AND gate E010-pin 6 is MDPE CLK MXR WORD H and is applied to AND-OR gate E039-pin 8, qualifying that gate to assert MDPE CLK RE L (except for a write-check operation).

During a read or write-check operation, data is taken from the drive to be loaded into RE. In these cases, the Drive Clock (CSTB DRIVE CLK H) signal qualifies AND-OR gate E039-pin 8 to assert MDPE CLK RE L. Drive Clock occurs on the trailing edge of SCLK and is a 50-ns pulse.

6.16.3 Inhibiting Delay Line E011

During a Read command, the delay line is inhibited since Massbus data rather than MXR data is clocked into RE. This is accomplished in AND gate E030-pin 8 by CSTA RD L.

During a write-check operation, if a write-check error occurs, the delay line is inhibited by the assertion of MDPE WCE L which inhibits AND gate E030-pin 8. This allows the data in OBUF to be frozen that so the programmer can examine it.

6.16.4 RE FULL Flip-Flop

The RE FULL flip-flop is clocked-set with assertion of the MDPE CLK RE L signal, indicating that the RE register is full. This flip-flop is cleared by the general-purpose CSTD DB INIT L or by the MDPD CLR RE L signal. After the data in RE is transferred to RF, MDPE CLR RE L is asserted, indicating that the data has been transferred to RF and the data in the RE register in now invalid.

6.16.5 MDPE REG FULL H Signal

The MDPE REG FULL H signal is used to flag the programmer of Data Late (DLT) conditions. During read or write-check operations, data from the Massbus is applied to the RE register. If the RE register is full [MDPE RE FULL (1) L] or if the RH70 is in the process of clearing the RE FULL flip-flop (MDPD CLR RE L), MDPE REG FULL H is asserted, meaning that data cannot be accepted by the RE register at that time.

NOTE

The purpose of ORing CLR RE with RE FULL is to cover the condition where the RH70 is in the process of clearing RE FULL at the same time a clock pulse may be applied, which would normally cause the clock pulse to be lost.

If the next Drive Clock signal (derived from the trailing edge of SCLK) occurs while MDPE REG FULL H is asserted, a DLT condition is flagged, indicating that the drive is ready to send another word to RE before the last word in RE has had time to be transferred to RF. This is shown on logic diagram CSTB.

6.16.6 Exclusive-OR Network

In write-check operations, 16 Exclusive-OR gates compare the contents of the MXR with the contents of OBUF. The MXR data may be either from the RC register if the data is an even word or from RD if the data is an odd word. The outputs of the Exclusive-OR gates are opencollector ORed. If any two bits mismatch, the output line is pulled low. The four jumpers (W1, W2, W3, and W4) are provided as a maintenance aid to isolate a defective XOR gate on one of the integrated circuits (ICs). If a defective gate in an IC is pulling the output line low, the defective IC can be found by removing the associated jumpers, which isolate that IC from the output.

6.16.7 Odd Word and Even Word Write-Check Error

The output of the Exclusive-OR network is applied to the D inputs of the WCE OW (Write-Check Error-Odd Word) and WCE EW (Write-Check Error- Even Word) flip-flops. One of these flip-flops is clocked during a write-check command when MDPE CLK MXR WORD H is asserted. If the MXR SEL flip-flop is set, indicating an odd word in a double-word block, the WCE OW flip-flop is set and if the MXR SEL flip-flop is reset, indicating an even word in a double-word block, the WCE EW flip-flop is set when a write-check error occurs. To find out which memory word caused the write-check error, it is necessary to examine the Bus Address register which will reveal the last doubleword block transferred. By implementing the logic with two WCE flip-flops (each having an associated status indicator in the CS3 register), the programmer can determine whether the write-check error was caused by the odd word or the even word in that double-word block.

The output of the WCE flip-flops are ORed in E019-pin 11 to assert MDPE WCE L, indicating the existence of a write-check error. The summary WCE bit can be read from bit 14 of the CS2 register.

6.16.8 Parity Checkers

Two nine-bit parity checker/generators are employed which examine the data in the RG register. During a write operation when the data in RG is transferred to OBUF, parity is computed and if the number of 1s in the data word is even, a parity bit is generated to OBUF so odd parity can be transferred to the Massbus. This parity bit is designated MDPE DATA PA L.

During read or write-check operations, a Massbus parity bit (MDPE RGPA L) is applied to the parity checker/generators along with the Massbus data. This Massbus parity bit has sequenced to the RG register from the RF and RE registers, at which point the signal name is MBSC SYNC PA.

NOTE

The Massbus data is 18-bits wide and the RH70 data is 16-bits wide. As a result, bits 16 and 17 are X-ORed into one input of the parity circuit (MDPF RG1617 H).

If the sum of the data plus parity (RG00-RG1617, plus RGPA) is odd, MDPE DATA PA L is asserted and no error is registered. If the sum is even DATA PA is negated (high) at the D input of the MDPE Massbus (Data Parity Error) flip-flop.

When data is clocked into OBUF (MDPD CLK OBUF H), except during a write, the MDPE flipflop is clocked-set, registering a data parity error. Once the flip-flop is clocked-set, the 0 output inhibits the clock input, keeping the flip-flop locked until the error is recognized and cleared by the CSTB CLR ERR L signal.

The CLR ERR signal is a function of program clear, GO clear, Init, or DC LO (see logic diagrams CSTB and CSTD), or by posting a 1 in the TRE bit position of the CS1 register (error clear).

The Parity Test (PAT) bit is a control bit from the CS2 register which is used to invert the sense of the parity detection generation to allow the parity checker/generator circuits to be exercised.

6.16.9 RE Register Chip

The RE register chip shown on this diagram is a quad two-input mulitplexer and register which accepts Massbus data during read or write-check operations, or accepts MXR data during write or data buffer maintenance operations. Consequently, when MDPF RE SEL L is asserted, the A0 - A3 inputs to the multiplexer are enabled. These inputs accept Massbus data bits MBSC SYNC D17 H and MBSC SYNC D16 H and Massbus Parity bit MBSC SYNC PA H. The fourth input (A3) is tied high to provide for the logic inversion through the Exclusive-OR gate E018-pin 11 of the parity bit. The two Massbus data bits (D16 and D17) are Exclusively-ORed to yield MDPE RE1617 H, since these data bits from the Massbus represent the extra two bits not used (18 Massbus data bits versus 16 bits of data in the buffer). The two bits are monitored, however, to sense their parity. As a result, when the data is transferred to the RG register, an 18-bit parity check can be performed.

During write or data buffer maintenance operations, MDPF RE SEL L is unasserted which enables the B0 - B3 inputs to the multiplexer.

These inputs are tied to the MXR circuit. Note that B0 and B1 are grounded since the MXR is only 16 bits wide. The B2 and B3 inputs represent the byte parity for each word. These parity bits are Exclusively-ORed at the multiplexer output, resulting in word parity designated MDPE REPA L. The MDPE CLK RE L signal clocks the selected multiplxer inputs into the RE register which is part of this IC chip. Note that the output of Exclusive-OR gate E18-pin 11 (MDPE REPA L) is defined low, even though no logical inversion occurs between this signal and the input to the RE multiplexer/register. Conceptually, to maintain odd parity when converting byte parity to word parity via X-ORing of the byte parity bits, it is necessary to invert the sense of the resultant word parity bit.

6.17 LOGIC DIAGRAM MDPF

This diagram shows the RE register (except for the RE register chip shown on diagram MDPE), the RF register chip shown on diagram MDPE), the RF register, the RG register and OBUF. These registers comprise the single-word section of the data path. The RE register multiplexer accepts data from the Massbus during read or write-check operations, or accepts MXR data during write or data buffer maintenance operation. The RE register consists of quad two-input multiplexer chips and a four-bit register. The A0 – A3 inputs are enabled during read or write-check operations by CSTA RD + WR CHK H. During write or data buffer maintenance operations, the B0 – B3 inputs are enabled. MDPE CLK RE L clocks the selected input data into the RE register.

The output of the RE register is fed to the RF register. In addition, the two Massbus data bits (which were Exclusively-ORed on diagram MDPE) and the parity bit are fed to the RF register. The RF register is clocked when the RF FULL flip-flop is set.

The output of the RF register is applied to the RG register when the MDPD CLK RG H signal is asserted. The output of the RG register is applied to the OBUF register and to the parity checkers on diagram MDPE when the MDPD CLK OBUF H signal is asserted. The OBUF register is the only register with a clear signal designated CSTB CLR OBUF DATA L. This signal is generated as a result of drive word count overflow or an error condition during a write operation; it allows the OBUF

register to be cleared to zero-fill the rest of the sector (for disks) or record (for magtape). By storing the parity bit (OBUF PA) in the inverted sense, it is possible to receive correct (odd) parity when this clear signal is used.

The output of the OBUF register is applied to the Massbus drivers, (see logic print MBSA, MBSB, and MBSC) during a write operation, is applied to the IMX for the assembly of double words during a read operation, or is applied to one input of the XOR network in a write-check operation.

The output of the OBUF register is also supplied to the Unibus via the open-collector multiplexers shown on logic print CSTE for maintenance operation when reading the data buffer.

6.18 LOGIC DIAGRAM MDPH

This logic diagram contains the IMX and the MBCBUS data drivers for the RH70/Cache Interface. The IMX multiplexes OBUF data or Unibus data for transfer to the AMX or BMX which feeds the RA and RB registers.

During data buffer maintenance operations, the Unibus data is supplied to IMX; during read operations OBUF data is supplied to the IMX.

The right half of this diagram shows the 32 data drivers and the four parity drivers for the RH70/Cache Interface. Note that the contents of the RC register are supplied to data lines D00 -D15 (even word) and the contents of the RD register are supplied to data lines D16 - D31 (odd word). These lines accept data from the RC and RD registers for transfer to memory during a read operation. The data and parity drivers are consequently enabled by MDPH READ H and the appropriate SEL DATA signal from the Cache. This diagram is common to all four RH70 Controllers (Controller A, B, C, or D) and the signal is designated CDPJ SELDATA CNTLX H. When the RH70 makes a request to Cache, the Cache arbitrates this request with all other requests. If this module is plugged into the Controller D slot for example, the Cache will send a CDPJ SELDATA CNTLD H signal to this module, which will allow the data in the data drivers from this module to be transferred to memory. Each of the four RH70 slots in the CPU backplane has a separate wire from the Cache, which allows Cache to select one of the four controllers by one of the four SEL DATA CNTL signals.

6.19 LOGIC DIAGRAM CSTA

This diagram contains the command code decoding logic, various control and status bits, the FCTN LOAD, BAI, and BUSY flip-flops.

6.19.1 Command Code Decoding Logic

The command code is represented in the least significant bits of the CS1 register as shown below.

D05	D04	D03	D02	D01	D00
F4	F3	F2	F1	F0	GO
	MSD octal digit			LSD octal digit	
5=write 6=write 7=read	-check				

The three data transfer command codes (read, write, and write-check) are decoded by BCD-todecimal decoder E56. This decoder decodes data bits D03 - D05 from the Unibus data lines. If a Write-Check command is specified, a binary code of 5 is supplied to the decoder; the F5 output is asserted and fed to the data input of the WR CHECK flip-flop. If a Write command is specified, a binary code of 6 is supplied to the decoder, the F6 output is asserted and fed to the data input of the WRITE flip-flop. If a Read command is specified, a binary code of 7 is supplied to the decoder, the F7 output is asserted and fed to the data input of the READ flip-flop. The GO bit must be asserted for the hardware to execute the command requested by the program. The command flip-flops are clocked by the trailing edge of the GO pulse if the RH70 is in the ready (RDY) state. At the completion of the command execution, the flip-flop which had been set will be cleared by the assertion of BUSY (0) H, if a register is not currently being accessed by the program (DEV SEL unasserted). This is accomplished by gate E46 pin 6.

Various gates are shown on the outputs of these flip-flops and provide buffered versions of the signals and also provide combinations of these signals for use by the data buffer control logic.

6.19.2 GO Bit, GO CLR Pulse

The GO Bit is stored in the drive in bit 00 of the CS1 register and must be asserted for the execution of all data transfer commands. This results in all data transfer commands having odd command codes. For example, the data transfer command codes for a write-check operation are 51, 53, 55 and 57. In addition, all reverse operations are specified by a 7 in the least significant digit. For example, the read reverse command code is 77. The CSTA GO H signal is asserted when the following conditions are satisfied:

- 1. A data transfer command is specified which enables one of the inputs to gate E52-pin 6, depending on the command specified.
- 2. BCTD D00 IN H is asserted which designates the GO bit.
- 3. The signals associated with writing the low byte of the CS1 register are asserted. These signals are BCTB REG STR H, BCTA CS1 IN L, and BCTA LO BYTE H.

If the three data transfer command flip-flops are all reset, indicating that the RH70 is in the ready state (RDY asserted) the GO bit asserts CSTA GO CLR L via NAND gate E62-pin 8. GO CLR initializes the data path, clears all error conditions, and sets up for a data transfer operation. In addition, the GO CLR pulse sets the BUSY flip-flop, which indicates that a data transfer command is being executed.

6.19.3 Function Load Flip-Flop

The Function Load (FCTN LOAD) flip-flop is set when a data transfer command code is being loaded. The trailing edge of the GO CLR signal clocks the FCTN LOAD flip-flop set. The BCTA DEV SEL H signal is asserted, indicating that the RH70 is selected to do a register read or write and holds the direct clear input high, preventing FCTN LOAD from resetting. The RH70 can monitor for non-existent devices this time, or can request the first word from memory during write or writecheck operations. When the RH70 is deselected (DEV SEL unasserted), the FCTN LOAD flip-flop is direct cleared.

6.19.4 Ready State (RDY)

When the READ, WRITE and WR CHECK flipflops are cleared, the CSTA RDY H signal is asserted, indicating that the RH70 is not doing a data transfer command.

The 0 outputs of these flip-flops are ANDed in AND gate E57-pin 6 and AND gate E50-pin 12 to assert RDY.

6.19.5 BUSY Flip-Flop

The BUSY flip-flop is set when the RH70 is doing a data transfer command. When a data transfer command is specified, it is transferred to the drive with the GO bit set. The GO bit creates a GO CLR, which directs-sets the BUSY flip-flop. Normal completion of a data transfer operation occurs upon receipt of a clock pulse with the data input grounded to clear BUSY. When the drive reaches the End of Segment (EOS) with the RUN line unasserted, CSTB EOS (1) H is set. This indicates that the RH70/Massbus transfer is complete. When CSTC DONE H occurs (indicating completion of the RH70/Memory data transfer), along with EOS (1) H, the BUSY flip-flop is clocked clear, indicating termination of the data transfer. The BUSY (0) H signal is supplied to the READ, WRITE and WR CHECK flip-flops and clears them.

The BUSY flip-flop is also direct-cleared under the following conditions:

- 1. CSTD CLR L, which is a function of initializing the RH70, power up, etc.
- 2. CSTB MXF L, which is an error condition in the CS2 register, indicating that the hardware failed or that the data transfer did not complete in the normal manner. This error condition forces termination by direct-clearing the BUSY flip-flop.
- 3. CSTA FCTN LOAD (1) H and CSTB NED H. These two signals are asserted when a data transfer command is attempted to be loaded into a non-existent device. Since there will be no response from the device, the data transfer is terminated by direct-clearing the BUSY flip-flop.

6.19.6 Invert Parity Check (IPCK)

CSTA IPCK0 – CSTA IPCK3 are the four least significant bits of the CS3 register and are used to invert parity checking on the data words received from memory during write and write-check operations. IPCK0 is the bit associated with the even word-low byte, IPCK1 with even word-high byte, IPCK2 with odd word-low byte, and IPCK3 with odd word-high byte.

The IPCK0 – IPCK3 bits are applied to the opencollector BUSI multiplexers on logic print CSTE (which may be read when reading the CS3 register). The IPCK0 – IPCK3 bits are also ANDed with CSTA READ (0) H to create invert signals CSTA INV0 H – CSTA INV3 H, respectively. When a read operation (transferring data to memory) is specified, parity should not be inverted. Consequently, the CSTA READ (0) H is unasserted (driven low) during a read operation, inhibiting the invert signals. For any other operation, the invert signals are enabled. During data buffer maintenance operation, the IPCK bits invert the parity bits generated when moving data through the RSDB.

6.19.7 Unit Select Bits and Program Clear (PG CLR)

The Unit Select bits are three bits which specify one of eight drives. They are located in bits 0 - 3 of the CS2 register and drive the Drive Select (DS00-DS03) lines on the Massbus. The unit to be selected is specified by BCTD D00 IN H - BCTD D03 IN H from the Unibus. The Unit Select bits are clocked by BCTA CS2 IN L, BCTA LO EYTE H, and BCTB REG STR. These signals are AN-Ded in AND gate E54-pin 8. The output of the gate, in addition to clocking the Unit Select bits, also asserts CSTA PG CLR L if BCTD D05 IN H is asserted. D05 IN H is asserted when the program writes a 1 in bit 5 (CLR) of the CS2 register. The PG CLR signal clears the RH70 and the associated drives.

6.19.8 PAT Bit

The Parity Test (CSTA PAT H) bit controls the parity generator between the RG and OBUF registers in the data buffer (see logic diagram MDPE) and inverts parity associated with Massbus data. Inverting the PAT bit during a write operation will convert odd (correct) parity to even (wrong) parity to allow exercising of the drive's parity checking circuits. Inverting the PAT bit during a read or writecheck operation will convert odd parity to even parity to allow the exercising of the RH70 parity checking network. The PAT bit is clocked by the same signals which clock the Unit Select bits.

The PAT bit also controls the generation of the parity bit associated with the control lines on the Massbus. When PAT is set, even (wrong) parity is sent along with the data over the control data lines when writing a remote register. During data buffer maintenance operation, the PAT bit will invert the parity checking for data words bubbling from the RG register to OBUF.

6.19.9 Bus Address Increment Inhibit Flip-Flop

The Bus Address Increment Inhibit (BAI) flip-flop, when set, inhibits the incrementing of the bus address. The BAI flip-flop is clocked by BCTA CS2 IN L, BCTA LO BYTE H, and BCTB REG STR H, which are ANDed in AND gate E54-pin 8. The RH70 must be in the RDY state (not performing a data transfer command) in order for the BAI flipflop to be clocked. This ensures that the BAI flipflop will not change state during the middle of a memory transfer, which could cause a spike on the address lines. BAI is loaded from data bit D03 on the Unibus and is cleared by the general-purpose CSTD CLR L signal (INIT, DC LO, or Program Clear-bit 5 of CS2).

6.20 LOGIC DIAGRAM CSTB

This diagram contains the Massbus control logic, the interrupt logic, and the various error conditions.

6.20.1 Massbus Control Logic

To effectively understand the Massbus control logic, the following signals are reviewed. When transferring data to the drive (write operation), the RUN line is asserted on the Massbus, provided that the required number of words are in the data buffer (four memory cycles). When transferring data from the drive (read or write check operations), the RUN line on the Massbus is asserted immediately, indicating that the RH70 is prepared to receive data from the drive.

At the end of each logical block of data transferred to or from the drive, the drive asserts an EBL (End-of-Block) pulse. At the trailing edge of EBL the drive monitors the RUN line. If it is asserted, it will continue a data transfer of the next logical block. If RUN is unasserted, the data transfer operation is terminated. The transfer of data to or from the drive is accomplished by drive-generated SCLK signals. In a read or write-check operation, the drive provides a data word on the Massbus, on the leading edge of SCLK, and the RH70 strobes the data in its buffer on the trailing edge of SCLK. In a write operation, the RH70 places a data word on the Massbus, on the trailing edge of SCLK and the drive strobes it into its buffer on the leading edge of SCLK. The SCLK signal from the drive to the RH70 is rerouted back to the drive as a WRITE CLK signal. WRITE CLK is used during a write operation to cause the drive to clock the data from the Massbus into its buffer.

At the trailing edge of SCLK, a 50-ns pulse, called DRIVE CLK, is generated unless drive word count overflow or an error condition occurs. This pulse indicates that the RH70 is going to receive or change data.

6.20.1.1 RUN Flip-Flop – The RUN line is asserted on the Massbus as a result of setting the RUN flip-flop. This flip-flop is set under any of the following conditions:

1. When a write operation is specified, a word is in OBUF and the required number of words are stored in the data buffer. The CSTA WRITE (1) H signal denotes that a write command has been loaded, the MDPD OBUF FULL (1) H flip-flop sets when a data word is in OBUF, and CSTE START H is asserted when four memory cycles have taken place. Four memory cycles could mean as few as four words in the data buffer (four single-word transfers) or as many as eight words (four double-word transfers). Typically, the data buffer is designed for double-word operation and will contain seven or eight data words. For example, if the first word to be transferred is on a single-word boundary, one word would be transferred on the first memory cycle and double words are then transferred, resulting in a data buffer containing seven words. CSTE START H, CSTA WRITE (1) H, and MDPD OBUF FULL (1) H are ANDed in gate E40-pin 6 and clock the RUN flip-flop set, which asserts CSTB RUN H at the output of Inverter E43-pin 10.

- 2. When a read [CSTA READ (1) L] or write-check [CSTA WR CHECK (1) L] operation is specified, the RUN flip-flop is clocked set immediately, indicating that the RH70 is prepared to accept data.
- 3. If an error is detected in the RH70 before the START signal is asserted, the Transfer Error (TRE) condition clocks the RUN flip-flop set and forces the RUN line asserted, which allows the drive to normally end the command execution.

The RUN flip-flop is cleared under the following conditions:

- 1. The TRE condition is applied to the set input of the DIS SCLK flip-flop. The clock input to this flip-flop is the SYNC CLK signal. When SYNC CLK is asserted, DIS SCLK is set, which disables SYNC CLK signals and causes the RUN flip-flop to be direct-cleared, which in turn negates CSTB RUN H.
- 2. When the drive detects an error, it asserts the EXC (Exception) line. This signal is ANDed with EBL and causes the CSTB EXC SAVE flip-flop to set. CSTB EXC SAVE (1) direct-clears the RUN flip-flop via gate E25-pin 12.
- 3. When the required number of words have been transferred on the Massbus, the drive word count overflow [AWRE DRWC OFLO (1) L] flip-flop is set, which direct-clears the RUN flip-flop.
- 4. When the RH70 is not busy [CSTA BUSY (0) L], the RUN flip-flop is direct-cleared. The conditions under which the BUSY flip-flop are cleared are:
 - a. Normal data transfer termination. CSTB EOS (1) H and CSTC DONE H are asserted.
 - b. General-purpose clear signal (CSTD CLR H).
 - c. Missed transfer error occurs.

d. When the RH70 attempts to load a data transfer command into a non-existent drive.

6.20.1.2 End of Segment (EOS) Flip-Flop -- The drive monitors the RUN line at the trailing edge of EBL and if the RUN line is unasserted, the drive will stop transferring data. The RH70 also detects this condition and when detected, the CSTB EOS flip-flop is set. Note that the RUN signal is applied to the D input of EOS. The EBL pulse is applied to the clock input of the flip-flop. The positive-going trailing edge of EBL sets the flip-flop if RUN is unasserted. The setting of EOS indicates termination of the Massbus data transfer. CSTB EOS (1) H is ANDed with CSTC DONE H, indicating termination of the RH70/Memory data transfers. These conditions clear BUSY, which denotes that the data transfer is completed on the Massbus and on the Memory bus. The EOS flip-flop is cleared by the general-purpose CLR signal, or by GO CLR, which is asserted when a data transfer command has been loaded in the drive.

6.20.1.3 Disable Sync Clock (DIS SCLK) Flip-Flop - When the DIS SCLK flip-flop is set, it indicates that the data transfer has been completed or that an error condition has occurred, in which case, it is desired to inhibit SYNC CLKs and to terminate the transfer. A Data Late (DLT) condition causes DIS SCLK to be direct-set since the DLT condition is detected at the time of SYNC CLK. It is therefore necessary to immediately set DIS SCLK. DIS SCLK can also be set by a transfer error [CSTB TRE (1) L] or by drive word count overflow [AWRE DRWC OFLO (1) L]. These signals are ORed in E45-pin 8 and applied to the D input of DIS SCLK. The CSTB SYNC CLK signal is applied to the clock input and the leading edge of SYNC CLK sets DIS SCLK if either condition is present. DIS SCLK is cleared by the general-purpose CLR signal, or by the GO CLR signal, which is asserted when a data transfer command has been loaded into the drive.

6.20.1.4 DRIVE CLK Signal – The DRIVE CLK signal is a 50-ns pulse used by the RH70 and is initiated on the trailing edge of SYNC CLK. The circuitry that generates it is Driver E22-pin 8, 50-ns delay line DL2, and Receiver E17-pin 13. To understand the operation, assume that DIS SCLK (0) H is asserted and the MBSA SYNC CLK H signal is present. These conditions turn Driver E22 on. The low output of the driver is applied to the delay line.

The DRIVE CLK signal, however, is not generated since the SYNC CLK H signal inhibits pin 11 of Receiver E17. After a period of time, the SYNC CLK signal is driven low by the drive. Now, the driver is turned off and the receiver is enabled, producing CSTB DRIVE CLK H.

When the driver is turned off, a positive-going transition appears at its output. This transition is fed to the receiver after 50 ns (the time required to propagate down the delay line). At this point, the receiver becomes inhibited again and the DRIVE CLK signal becomes unasserted. This results in a 50-ns pulse initiated at the trailing edge of SYNC CLK. If DIS SCLK (0) H is unasserted, the driver is inhibited, which in turn inhibits the receiver, thereby preventing generation of the DRIVE CLK signal.

6.20.1.5 Zero Filling the Sector or Record – During a write operation, it is necessary to gate the data from OBUF onto the Massbus data lines. This is accomplished by the CSTB GATE SYNCD H signal. If an error condition [CSTB DIS SCLK (1) L] occurs, or if drive word count overflow [AWRE DRWC OFLO (1) L] occurs before the end of a segment (disks) or a record (magtapes), the rest of the segment or record is filled with zeros. This is accomplished by clearing the OBUF register at the trailing edge of SYNC CLK when either of these conditions exist. The logic that accomplishes this is gates E39-pin 11 and E40-pin 8.

6.20.2 Non-Existent Drive (NED) Flip-Flop

When the program reads or writes a remote register, the RH70 asserts Demand on the Massbus. Within 1.5 μ s, the drive should respond with TRA (transfer). If not, a 1.5 μ s one-shot multivibrator times out and asserts BCTB SET NED L. This signal is fed to a latch which generates CSTB NED H, indicating that a non-existent drive has been accessed. CSTB NED H is applied to the clock input of the TRE flip-flop via gate E20-pin 8 and clocks TRE set, indicating that a transfer error has occurred.

NED is cleared by the CSTB CLR ERR B L signal which is a result of Unibus INIT, Power Fail, setting bit 5 (CLR) in the CS2 register, or posting a 1 in bit 14 (TRE) of the CS1 register (error clear). NED is bit 12 in the CS2 register.

6.20.3 Program Error (PGE) Flip-Flop

The PGE flip-flop is set when the program attempts to load a data transfer command while a data transfer command is already in progress. CSTA RDY is applied to the D input of the flipflop and is unasserted when the RH70 is not ready (in the busy state). The CSTA GO H signal is applied to the clock input, which indicates that an attempt has been made to load a data transfer command with the GO bit set. When this occurs with the RH70 in the busy state, PGE sets. This causes CSTB STOP DEM L to be asserted. This signal prevents the data transfer command from being loaded on the Massbus.

The PGE flip-flop is cleared by the CLR ERR signal as a result of Unibus INIT, Power Fail, loading a 1 in bit 5 (CLR) of the CS2 register, or posting a 1 in bit 14 (TRE) of the CS1 register. PGE is bit 10 in the CS2 register.

6.20.4 Missed Transfer (MXF) Latch

When a command is loaded into the drive and the drive recognizes this command as one that it implements, it sends an OCC (Occupied) signal to the RH70. This signal remains asserted until the last EBL pulse, or until an EBL pulse with the RUN line unasserted is received. When the RH70 becomes busy, CSTB RDY L becomes unasserted, providing a high level on pin 10 of 650 μ s one-shot multivibrator E27. With no SYNC CLK signal applied, pin 9 of the one-shot is low. These conditions fire the one-shot and it begins to time-out for 650 μ s. However, when the RH70 loaded a command into the drive and the drive recognized the command, it returned OCC. This signal is applied to the one-shot to terminate it and is also applied to the CSTB set MXF flip-flop, keeping it directcleared. In this case, no MXF (missed transfer) condition occurs. If the drive did not respond with the OCC signal, the one-shot would time-out. After 650μ s, the positive-going transition from the 0 output of the one-shot is applied to the SET MXF flip-flop. Since this flip-flop is not held directcleared by OCC, it sets and causes CSTB MXF H to be asserted. This signal is applied to the TRE flip-flop via gate E20-pin 8, causing TRE (Transfer Error) to be raised (bit 14 of the CS1 register). This operation describes the time-out feature associated with the initiation of a data transfer command.

A similar time-out feature is present during the completion of a data transfer command and is implemented as follows. Assume that the RH70 has loaded a command, the drive has recognized the command and has returned the OCC signal, which remains asserted throughout the transfer. When the drive completes the transfer and reaches the last EBL (or EBL with the RUN line unasserted), it removes the OCC signal from the Massbus, thus removing the direct-clear from the one-shot and the SET MXF flip-flop. Since the inputs to the 650 μ s one-shot are still enabled (low on pin 9, high on pin 10), the one-shot begins to time-out again. If the BUSY flip-flop is not cleared within 650 μ s of the removal of OCC, the one-shot times-out and the positive-going transition at the output sets the SET MXF flip-flop. If the BUSY flip-flop is cleared within 650 μ s of the removal of OCC, the one-shot is cleared and the SET MXF flip-flop is prevented from setting. MXF is bit 9 in the CS2 register.

6.20.5 Data Late (DLT SYNC) Flip-Flop

The Data Late synchronizing flip-flop provides for synchronization of data late conditions – i.e., to prevent clocking of data late conditions just as they occur. The DLT SYNC flip-flop causes the data late condition to settle for the width of Drive Clock. At the end of Drive Clock, the DLT SYNC flip-flop is sampled to see if a DLT condition has occurred. If it has, the DLT flip-flop is set.

A Data Late condition can occur as a result of the following:

1. During a read or write-check operation (when reading data from the drive), the drive attempts to put a word in the RH70 while a word is already stored where the data is to be transferred. In the case of Read or Write-Check commands (CSTA RD + WR CLK H), the words from the drive are transferred to RE and a Data Late condition occurs when the drive attempts to put a word in RE when RE is already full (MDPE REG FULL H). With these two conditions present, the DLT flip-flop is set on the trailing edge of DRIVE CLK. 2 During a write operation, where data is transferred from the OBUF register in the RH70 to the drive, a word must be available for transfer to OBUF from the RG register when the present word in OBUF is transferred to the drive. This information is implemented by MDPD RG RDY (0) H. Consequently, during a write operation [CSTA WRITE (1) H], if RG RDY (0) H is asserted (indicating a data word is not available for transfer to OBUF), the DLT flip-flop is set on the trailing edge of Drive Clock. In the case where the word in OBUF is the last word to be transferred. RD RDY (0) H will be asserted since there are no more words to transfer. Consequently, AWRE DRWC OFLO (0) H becomes unasserted, indicating that all words have been transferred onto the Massbus. This signal inhibits gate E50-pin 6 from setting the DLT SYNC flip-flop.

The DLT SYNC and DLT flip-flops are cleared by the general-purpose CSTB CLR ERR L signal. DLT is bit 15 of the CS2 register.

6.20.6 Exception Save (EXC SAVE) Flip-Flop

When the drive is doing a data transfer and has detected an error, it raises the Exception (EXC) line on the Massbus. The RH70 sets the EXC SAVE flip-flop at EBL time. MBSB EBL H and MBSB EXCP H are ANDed in gate E41-pin 3 and clock the EXC SAVE flip-flop set.

During a write or write-check operation, CSTA WRITE (1) L or CSTA WR CHK (1) L, respectively, is asserted. Either signal is ANDed with EXC SAVE in gate E46-pin 11 to yield the Exception Error condition (CSTB EXC ERR L). The error condition is asserted immediately in the write or write-check operation.

In a read operation, it is necessary to wait until the data buffer is emptied before the EXC ERR condition is asserted. This ensures that all good data in the data buffer, including the word which caused the posting of the error, has been transferred to memory. The signals that implement this are MDPD DB EMPTY L and CSTB EXC SAVE, which are ANDed in gate E46-pin 11. When the CSTB EXCP ERR L signal is asserted, the transfer error (TRE-bit 14 in CS1) flip-flop is set.

6.20.7 Read Exception Circuitry

If a drive detects an error during a data transfer read operation, CSTA READ (1) H and CSTB EXC SAVE are asserted and yield CSTB READ EXCP H via AND gate E35-pin 8. READ EXCP controls the double-word logic shown on logic diagram AWRA. This is to force a single-word memory operation if only one word is in the data buffer (MDPD LAST WORD), the drive will not send more words (due to the Exception Error), and the RH70 is waiting to assemble a double word.

6.20.8 Transfer Error (TRE) Flip-Flop

The TRE flip-flop summarizes all RH70 and all drive error conditions. The RH70 error conditions are:

Write-check error – MDPE WCE H Parity error – CSTC PE H Data Late – CSTB DLT (1) L Non-existent drive – CSTB NED L Non-existent memory – CSTC NEM (1) L Programming Error – CSTB PGE (1) L Missed transfer – CSTB MXF (1) L Massbus data bus Parity error – MDPE (1) L

The drive error condition is reported as an exception error (CSTB EXCP ERR L). The TRE error conditions are summarized in the Special Conditions (SC-bit 15 of CS1) bit. The TRE flip-flop is cleared by the CSTB CLR ERR L signal which is asserted as a result of CSTD CLR . GO CLR L (see logic diagram CSTD) or by loading a 1 in the TRE bit position of the CS1 register. The gating for clearing TRE in this instance is CSTA CS1 IN H, BCTA HI BYTE H, BCTB REG STR H, and BCTD D14 IN H, which are ANDed in gates E59pin 8 and E52-pin 12.

6.20.9 Special Conditions (CSTB SC H)

All conditions requiring action by the CPU are summarized in the Special Conditions (SC bit 15 in CS1) bit. This is accomplished by gate E44-pin 8 which ORs TRE (Transfer Error), ATTN (Attention condition from a drive on the Massbus), or MCPE (Massbus Control Bus Parity Error). The SC bit will cause an interrupt if the Interrupt Enable (IE) bit is set.

6.20.10 Interrupt Logic

The Interrupt Request logic, when enabled, causes CSTB INTR REQ L to be asserted. This signal is applied to the logic on logic diagram BCTC and initiates an interrupt to the CPU over the Unibus. An interrupt may be generated in one of the following ways:

- 1. A programmed interrupt which occurs by writing 1s into the IE and RDY bit positions of the CS1 register (bits 6 and 7, respectively). This is implemented by gate E52-pin 8 which direct-sets the INTR flip-flop. The CSTA CLK CS1 LO signal enables the low byte of the CS1 register.
- 2. Successful completion of a data transfer command. When the RH70 goes from busy to the ready state, CSTA RDY H clocks the INTR flip-flop.
- 3. A Special Condition (SC) which occurs as a result of the assertion of SC when IE (Interrupt Enable) is set with the RDY bit asserted (RH70 not busy). If the RH70 is busy, it is inhibited from causing an interrupt until the control is back into the Ready state. This logic is implemented in NAND gate E44-pin 6. In order to set the INTR flip-flop, the IE flip-flop must set. This flip-flop is set as a result of loading bit 6 from the low byte of the CS1 or CS3 registers during register strobe. The gating for this is shown at the input to the IE flip-flop.

The IE and the INTR flip-flops are cleared by BCTC INTR DONE H or by CSTD CLR H. The INTR DONE signal indicates that the CPU has recognized the interrupt and has accepted the interrupt vector. The IE and INTR flip-flops are cleared by INTR DONE to prevent further interrupts during the interrupt service routine.

6.21 LOGIC DIAGRAM CSTC

This logic diagram contains the memory cycle control logic and memory cycle error logic, including data parity error, address parity error, and non-existent memory.

6.21.1 Memory Cycle Control Logic

The memory cycle is divided into three states: a Start Memory Cycle (SMC), a Request (REQ), and a Cycle-in-Progress (CIP). Initially, the memory cycle is started by MDPA START MEM H which occurs when the data in RA/RB is transferred to RC/RD (Figure 6-9). This signal clocks the SMC flip-flop, which sets to indicate that the RH70 is ready to make a memory request. The SMC flip-flop must be set in order for the RH70 to send a memory request to Cache.

Approximately 100 ns after SMC is clocked, MDPA REQ CLK H is generated via the delay line on the data buffer module. This signal clocks the REQ flip-flop set, indicating that a memory request is issued to Cache. The memory request is designated CSTC CNTLX REQ L. (As previously described, the X in the signal name designates one of four controllers.) The reset output of the REQ flipflop is applied to the direct-set input of the CIP flip-flop and sets it. The setting of this flip-flop indicates that a memory cycle has been initiated. The CIP flip-flop remains set until the transfer is completed. Approximately 50 ns after REQ is set, the SMC flip-flop is reset by the MDPA CLR SMC H signal.

For a read operation (words written into memory), the memory cycle is completed when the Cache returns Address Acknowledge (CCBE MBC ADRS ACKN L). For write or write-check operations, the memory cycle is completed upon receipt of the Data Ready (CDPK DATA RDY CNTLX H) signal from Cache.

6.21.1.1 SMC Flip-Flop – The SMC flip-flop is clocked at MDPA START MEM H time. This signal is a timing pulse from the delay lines which clocks the data from RA/RB into RC/RD. The SMC flip-flop is set if there is no error [CSTB TRE (1) L], no word count overflow [AWRE WC OFLO (1) L], or no program clear or initialize operation [CSTD PG CLR + INIT (1) L] in progress. The three signals are ORed into the D input of the SMC flip-flop and are also fed through a 50-ns delay line.

Figure 6-9 Memory Cycle Simplified Timing Diagram

This allows the SMC flip-flop to synchronize these conditions. If one of these conditions has been asserted for 50 ns and the memory cycle has not been started [SMC (0)], CSTC DONE H will be asserted (if the memory cycle has been started) one more memory cycle is accomplished before CSTC DONE can be asserted (see gate E17-pin 3 and gate E35-pin 6). When DONE is asserted, it indicates that the data transfer command has completed on the RH70/Cache Interface.

The SMC flip-flop is direct-cleared by the generalpurpose CSTD CLR. GO CLR signal, or by MDPA CLR SMC H. CLR SMC occurs at the end of REQ CLK and is a 25-ns pulse. REQ CLK is a 50-ns pulse occurring at the end of SMC, which is a 100-ns pulse.

6.21.1.2 REQ Flip-Flop – The REQ flip-flop sets when the RH70 is ready to perform a memory request and indicates that the RH70 requests use of Cache. SMC must be set in order for REQ to set. With SMC in the reset state, the D input to REQ is held low. Once REQ is set, CSTC CNTLX REQ L is issued to Cache. The RH70 now waits for Cache to acknowledge the request. When Cache acknowledges the request with CCBE REQ ACKN, this signal is ANDed with CDPJ SELADRS CNTLX H to assert AWRD REQ ACKN H (see logic diagram AWRD). AWRD REQ ACKN H then direct-clears the REQ flip-flop.

NOTE

If the 650 microsecond transfer error one-shot times out due to a hardware failure (see logic diagram CSTB), the time-out will clear the BUSY flip-flop, putting the RH70 back into the RDY state. In this case, CSTA RDY B H direct-clears REQ to ensure that the REQ flip-flop is not locked in the set state.

There are several conditions which hold the D input to the REQ flip-flop low, thus preventing a memory request to Cache:

- 1. CSTC SMC (0) H if this flip-flop is cleared, it drives the D input to REQ low, preventing the REQ flip-flop from setting.
- 2. If there is a data parity error associated with the odd word or the even word, the D input to REQ is driven low (see pins 9 and 3 of AND-OR gate E38-pin 8).
- 3. When the RH70 is in the data buffer maintenance mode of operation, memory requests are inhibited by the assertion of CSTB RDY L.
- 4. If a write-check error occurs, further memory requests are inhibited as a result of MDPE WCE H being asserted.

In a write or write-check operation, the timing to perform the memory cycle is a REQ CLK signal from the data buffer when data is clocked from RA/RB into RC/RD. However, for the first word transferred there is no REQ CLK signal. Consequently, when a data transfer command is loaded and a non-existent device has not been addressed, 45-ns one-shot E27 is triggered which asserts CSTC FST REQ (first request). This signal is applied to the direct-set input of the REQ flip-flop to force the flip-flop set for the first memory cycle.

6.21.1.3 CIP Flip-Flop – When the REQ flip-flop sets, the low-level 0 output direct-sets the CIP flip-flop, indicating that a memory cycle has started. The CIP flip-flop remains set for the rest of the memory cycle. The CIP flip-flop is used to indicate a DONE (CSTC DONE H) condition after the last memory cycle has completed.

For write or write-check operations, the CIP flipflop is clocked clear on the trailing edge of CDPK DATA RDY CNTLX H. This is one of the gating signals from Cache used to generate CLK RA AND CLK RB signals for clocking data into the data buffer. For read operations, the CIP flip-flop is clocked by the trailing edge of CSTC READ DONE L. READ DONE is asserted upon receipt of CCBE MBC ADRS ACKN L from Cache during a read operation if this controller is selected. This logic is implemented by ANDing CCBE MBC ADRS ACKN L, CSTA READ (1) H, and CDPJ SELDATA CNTLX H in NAND gate E24-pin 6. Delay line DL1 converts ADRS ACKN into a 50ns pulse.

NOTE

The leading edge of the READ DONE signal clears the RC FULL and RD FULL flip-flops (see logic diagram MDPA) to allow new data to be sequenced into RC and RD.

The CIP flip-flop is direct-cleared due to:

- 1. Address Parity Error [CSTC APE (1) L] on the memory address and control lines. In this error, the RH70 does not receive any timing signals from Cache so the CIP flip-flop must be direct-cleared.
- 2. Addressing Non-Existent Memory [CSTC NEM (1) L]. When this condition occurs, there are no timing signals from Cache so the CIP flip-flop must be direct-cleared.
- 3. RH70 going to Ready State (CSTB RDY L). If the 650 μ s Missed Transfer error one-shot times-out due to a hardware failure, the BUSY flip-flop is cleared, forcing the RH70 back into the Ready state. This ensures that the REQ and CIP flip-flops are cleared so that they are not latched in the set state.

6.21.2 Data Parity Error

The data parity error logic contains two flip-flops and associated gating. One flip-flop is designated DPE OW (Data Parity Error – Odd Word) and is used during write or write-check operations to detect a parity error on the odd data word. The second flip-flop is designated DPE EW (Data Parity Error – Even Word) and is used during write or write-check operations to detect a parity error on the even data word. If a single-word operation is specified, one of two enable signals is asserted. When an odd data word is being transferred during a write or write-check operation, MDPC EN OWPCK (Enable Odd Word Parity Check) is asserted. If one of the odd word parity bits, high byte or low byte (MDPC OWHB PAB H or MDPC OWLB PAB H) is raised (denoting an odd word parity error), the data input to the DPE OW flip-flop is asserted. At REQ CLK time, the flip-flop is clocked set, indicating an odd word high byte or odd word low byte parity error.

When an even data word is being transferred during a write or write-check operation, MDPC EN EWPCK (Enable Even Word Parity Check) is asserted. If one of the even word parity bits (MDPC EWHB PAB H or MDPC EWLB PAB H) is raised (denoting an even word parity error), the data input to the DPE EW flip-flop is asserted. At REQ CLK TIME, the flip-flop is clocked set, indicating an even word low byte or high byte parity error.

If double-word operation is specified, all four parity bits are monitored and both enable signals (MDPA EN OWPCK H and MDPA EN EWPCK H) are asserted. If any of the four parity bits is asserted high, it indicates a parity error and will cause either or both of the data parity error flipflops to set, depending on the parity bit(s) asserted. When a parity error is detected, the output of AND-OR gate E38-pin 8 is driven low, which prevents the data input of the REQ flip-flop from being enabled, thus preventing further memory cycles from occurring. The DPE OW and DPE EW error conditions are indicated in bits 14 and 13 of the CS3 register and are ORed together in gate E24-pin 12 to cause a parity error (PE bit 13 of CS2 register). The data parity error flip-flops are cleared by the CSTB CLR ERR B L signal.

6.21.3 Address Parity Error (APE), Non-Existent Memory (NEM) Flip-Flops

The APE flip-flop is asserted when memory detects a parity error on the parity generated by Cache for RH70 address and control information. The RH70 sends address and control information to Cache, Cache computes parity and transfers the address, control, and parity to memory. Memory performs a parity check, and if a parity error is detected, sends a signal to Cache, which in turn causes Cache to assert the ADML ADRS PAR ERR H signal to the RH70.

Cache also sends a CCBD MBC TIMEOUT H signal which is applied to both the APE and NEM flip-flops. Since the TIMEOUT signal is applied to all four controllers, it is ANDed in gate E35-pin 3 with the proper controller select signal (CDPJ SEL-DATA CNTLX H). If the time-out occurs due to a non-existent memory, the NEM flip-flop is set and the APE flip-flop remains cleared. If a time-out occurs due to an address parity error, the APE flipflop is set and the NEM flip-flop is inhibited from setting.

The APE error condition is bit 15 of the CS3 register and is ORed in gate E24-pin 12 to cause a parity error (PE bit 13 of CS2 register). The NEM error condition is bit 11 of the CS2 register. Both the APE and NEM flip-flops are cleared by the CSTB CLR ERR B L signal.

6.22 LOGIC DIAGRAM CSTD

This logic diagram contains the BUSI multiplexers for the CS1 and CS2 registers, and the clear logic used to store INIT or Program Clear conditions if they occur during a memory cycle.

6.22.1 BUSI Multiplexers (CS1, CS2)

The BUSI multiplexers consist of four open-collector 8234 multiplexers used to gate out data from the CS1 and the CS2 registers when the program reads those registers.

BCTA CS1 OUT L, when asserted, enables the A0 – A3 (containing CS1 data) inputs to the multiplexer. BCTA CS2 OUT L enables the B0 – B3 (containing CS2 data) to the multiplexer. The BUSI outputs are applied to the Unibus as BUS DO L – D15 L.

6.22.2 INIT and Program Clear (PGCLR) Logic

If the programmer sets a 1 in the CLR bit position of the CS2 register, or if an INIT on the Unibus is raised due to a Reset instruction, the CSTD INIT.PGCLR flip-flop sets. This flip-flop stores the INIT or PGCLR condition in order to allow any memory cycle which might be in progress to complete, and to then prevent the next memory cycle from occuring. The CSTD PGCLR.INIT (0) signal from the flip-flop is applied to 50-ns delay line DL3 (see logic diagram CSTC) which causes CSTC DONE H to be asserted at the completion of any memory cycle in progress. This signal, coupled with the CSTD PGCLR.INIT signal, fires 400-ns oneshot E37-pin 4, causing CSTD CLR L and CSTD CLR H signals to be generated. These signals clear the RH70 and the associated drive. If the RH70 is in the RDY state and an INIT or PG CLR is asserted, 400-ns one-shot E37-pin 4 is fired immediately (due to RDY enabling pin 1 of E37), which causes the CSTD CLR L and CSTD CLR H signals to be generated.

The CSTD CLR L signal is also applied to discrete element Q1, resistor R15 and capacitor C67 to provide a small delay before clearing the CSTD PGCLR.INIT flip-flop.

If the RH70 is currently performing a memory cycle, the CSTA RDY B H and CSTC DONE H signals (both being unasserted) prevent the 400-ns one-shot from firing. When the memory cycle completes and DONE is asserted, or the RH70 goes to the Ready State, it will clear the RH70 and drive when an INIT or PGCLR condition occurs. A second 400-ns one-shot is shown (E37-pin 12). The function of this one-shot is to extend the period of the CSTA GO CLR pulse. GO CLR is asserted when a data transfer command is loaded in the drive. The output of the one-shot is ORed in NOR gate E32-pin 6 with BCTC DC LO L and the INIT.PGCLR output of one-shot E37-pin 4. The assertion of any of these signals asserts CSTD DB INIT L which initializes the data buffer logic (see logic diagram MDPA-MDPJ).

THE CSTA GO CLR L signal, in addition to being supplied to the 400-ns one-shot, is ORed in OR gate E4-pin 8 with the BCTC DC LO L and BCTC INIT.PGCLR to yield CSTD CLR.GO CLR L, which clears certain error and control bits in the RH70.

6.23 LOGIC DIAGRAM CSTE

This logic diagram contains the BUSI multiplexers for the data buffer and CS3 registers and the Start logic used to initiate Massbus cycles during write operations.

6.23.1 BUSI Multiplexers (DB, CS3)

BCTA CS3 OUT L, when asserted, enables the A0 – A3 inputs (containing data from the CS3 register) to the multiplexers. BCTA DB OUT L, when asserted, enables the B0 – B3 inputs to the multiplexers. These inputs contain data from OBUF in the data buffer. DB OUT L is asserted when the program attempts to read the data buffer during data buffer maintenance operation. The outputs of the multiplexers are supplied to the Unibus as BUSI D00 OUT L – BUSI D15 OUT L.

6.23.2 Four Counter

The four-count circuit counts memory cycles. After four counts, a carry is obtained which causes CSTE START H to be aserted. In the event that fewer than four memory cycles are to occur, AWRE WC OFLO (1) L is set, which also causes CSTE START H to be asserted. The START signal will cause the RUN line on the Massbus to be asserted. When the four counter overflows, the R3 output is fed back to the CUP (Countup) input via NAND gate E7-pin 8 to prevent the counter from counting higher than four.

The counter is loaded with the 2's complement of four (1100) when the CSTA GO CLR L signal is asserted. This signal is asserted when a data transfer command is loaded in the drive.

When the counter reaches a count of four, it indicates that four memory transfers have been initiated. This may mean that as many as eight data words are in the data buffer if all the transfers were double words. Typically, there will be eight words or seven words (allowing one single-word transfer) to put the next memory address on a double-word boundary.

6.24 M5904 MASSBUS TRANSCEIVER MBSA, MBSB, MBSC

The Massbus consists of three Massbus cables and associated Massbus transceiver modules. A 40-pin connector on each M5904 Massbus Transceiver module connects the transceivers to the Massbus cables. Each signal on the Massbus is applied to a differential driver circuit (75113) which transmits the true signal and an inversion of the signal along the bus. At the other end of the bus, the signals are received by differential receivers (75107B) which output the true form of the signal. The differential circuitry serves to eliminate noise, since any common mode noise will be cancelled at the differential receivers. For additional description, refer to the M5904 Massbus Transceiver module description in this chapter.

The three Massbus cables are designated Massbus Cable A, Massbus Cable B, and Massbus Cable C (sheets 1,2,3 of drawing D-BS-RH70-0-1).

The M5904 Massbus Transceiver is functionally shown with the dotted block on each block schematic. The 40-pin connector is shown in the center of the dotted block. The differential transmitters which drive signals onto the Massbus from the RH70 are shown to the left of the connector. These signals originate at the drive and are routed to the RH70 via the differential receivers.

To minimize switching of signals on any transceiver module at a given time, the signals are grouped on different modules. For example, OBUF 00-05 H is contained on MBSA, OBUF 06-11 H is contained on MBSB and OBUF 12-15 H is contained on MBSC. The D00 IN H – D15 IN H signals from BUSA are also divided on the three modules in a similar manner. The RSEL 0 H – RSEL 4 H signals are grouped on MBSA and MBSB.

The OBUF signals are gated by GATE SYNCD H, which enables the output of OBUF to be gated onto the MASS "D" lines of the Massbus. The D00 IN H – D15 IN H signals, which form the MASS "C" lines are enabled by BCTB GATE CNTL H, which occurs when the RH70 is writing a remote register. GATE CNTL H is the assertion of BCTA DEV SEL H and BCTA CTOD H. The RSEL signals select a drive register and are enabled by the DEV SEL signal. Unit select signals U00 H – U02 H are also enabled by DEV SEL and specify one of eight possible drives. The remaining control signals which are supplied to the drive are also shown. These include WCLK, RUN, CTOD, CLR, AC LO, DEMAND (1), OBUF PA, CPA OUT. The signals sent from the drive to the Massbus are SYNC D00 – SYNC D17, which represent synchronous data, and C00 H – C15 H, which represent the contents of a drive register. Control signals which include EXCP, EBL, ATTN, SYNC CLK, CPA IN, OCC and TRA are also shown.

6.25 M5904 MASSBUS TRANSCEIVER MODULE

The M5904 Massbus Transceiver module contains nine differential driver chips (75113) and seven differential receiver chips (75107B). Each driver chip and each receiver chip is capable of carrying two signals. Thus, the chips can be designated dual drivers and dual differential receivers. The transmission line connected to the transceivers are bidirectional in that they can both receive and transmit information. This is illustrated for one signal line in Figure 6-10.

Figure 6-10 Typical Differential Driver/Receiver Connection

The advantage of differential circuitry is that any noise picked up is generally picked up on both the inverted and non-inverted signal lines. The differential receiver takes the difference between the signals, regardless of the noise level, and the noise is effectively cancelled out.

Each driver on the M5904 must be terminated since the M5904 is used to drive transmission lines (Figure 6-11).

Figure 6-11 Driver Termination

The M5904 Massbus Transceiver requires input voltages of +5 Vdc and -15 Vdc. The dual drivers require +5 Vdc operating voltage while the dual differential receivers require +5 Vdc and -5 Vdc. The -5 Vdc is obtained from the -15 Vdc source via a resistor and Zener diode.

6.25.1 75113 Dual Differential Driver Chip

The 75113 Tri-State Dual Differential Driver Chips provide differential outputs with high current capability in order to drive balanced lines. The chips feature a high output impedance, making it possible to connect many drivers on the same transmission line. A simplified schematic of the 75113 is shown in Figure 6-12.

The inverting output of the driver chip is the transistor collector, while the non-inverting output is the transistor emitter, shown at point B. When the input is low, neither transistor conducts and line A is biased to +2.5 V, while line B is biased to 0 V by the terminator resistors (refer to diagram). When the input is high, the upper transistor collector is driven low (0 V) and the lower transistor emitter is driven high (+2.5 V). The pin connection diagram for the dual differential driver is shown in Figure 6-13.

Figure 6-12 Driver Chip Simplified Schematic

Figure 6-13 Dual Differential Driver Pin Connection Diagram

6.25.2 75107B Dual Differential Line Receiver Chips

The 75107B Differential Receiver Chips feature dual independent channels with common voltage supply and ground terminals. The circuits operate as follows. If the voltage at pin 1 is positive with respect to the voltage at pin 2, the output at pin 4 goes positive (Figure 6-14).

If the voltage at pin 1 is negative with respect to pin 2, the output at pin 4 goes negative. The pin connection diagram for the receiver is shown in Figure 6-15.

6.26 H870 TERMINATOR

The H870 Bus Terminator provides a simple and reliable method of terminating the Massbus. The Massbus is terminated by plugging H870 terminators into each M5903 transceiver module in the last drive.

The H870 consists of 38 82-1/4 Watt resistors wired between each Massbus line and a common ground connection.

NOTE

The H870 terminators are to be installed on the M5903 transceiver module with the resistors facing up.

Figure 6-14 Simplified Line Receiver Logic Diagram

Figure 6-15 75107B Differential Receiver Pin Connection Diagram

CHAPTER 7 INSTALLATION AND MAINTENANCE

7.1 INTRODUCTION

This chapter describes the necessary installation information required to install the RH70. The chapter also describes the preventive and corrective maintenance procedures that apply to the RH70 when connected to a TM02/TU16 drive. A major point in the maintenance philosophy of this manual is that the user understand the normal operation of the RH70.

This knowledge, and the maintenence information contained in the TU16/TM02 Tape Drive System Maintenance Manual, will assist maintenance personnel in isolating system malfunctions.

7.2 INSTALLATION

The following paragraphs describe the mechanical and electrical installation, power checks, jumper configurations, visual inspection, and diagnostics associated with the RH70.

7.2.1 Mechanical

The RH70 uses one hex-height module, three quadheight modules and three double-height modules (Massbus connectors). *There is no mechanical unit to mount*. The modules are merely inserted into the appropriate slots in the 11/70 CPU box as shown in the Module Utilization chart in Figure 7-1. The Massbus Cables are plugged into the double-height slots and the jumpers are configured for the proper address and interrupt vector.

7.2.2 Electrical

The 11/70 CPU mounting box contains a wired backplane that runs the full depth of the box. The Unibus signals are prewired on the backplane. Power to the RH70 is provided by the cabinet power supply as follows:

> +5 V@18.5 A max. -15 V@0.5 A max

7.2.3 Module Locations

The 11/70 CPU mounting box houses the Floating Point Unit, Central Processor, Memory Management, Unibus Map, Cache, 5 Small Peripheral Controller (SPC) slots, the KW11 clock, and up to four RH70 Controllers. The location of the respective modules is shown in Figure 7-1.

7.2.4 Massbus Cables

Massbus connections to the RH70 are made via three 40-conductor ribbon cables. These cables plug into three M5904 Transceivers in the RH70 and are designated Massbus Cable A, Massbus Cable B, and Massbus Cable C. The connections are made as shown in Figure 7-2.

The Massbus cables are marked and should be inserted with the edge-marking *facing* the module handles. To terminate the Massbus, three H870 Massbus Terminators, supplied with the RH70, should be plugged into the M5903 modules located in the last drive on the Massbus (Figure 7-2).

7.2.5 Jumper Configurations

The following paragraphs describe the various jumper configurations on the BCT (M8153) module and on the MDP (M8150) modules.

7.2.5.1 BCT Module (M8153) – The BCT module contains jumpers for register selection, BR level interrupt and vector address.

Register Selection

The RH70 is capable of responding to 32 possible Unibus addresses. The number of addresses, however, is dependent on the Massbus device. Jumpers W8 – W15 select the block of Unibus addresses to which the TWU16 subsystem responds. The standard addressing block assigned is 772440 - 772476.

Figure 7-1 Module Utilization Chart

7-2

^{*} H870 terminator cards plug into M5903 modules in last drive on massbus.

*	CONTROLLER A	CONTROLLER B	CONTROLLER C	CONTROLLER D
MASSBUS CABLE A	AB 25	AB 29	AB 33	AB 37
MASSBUS CABLE B	AB 26	AB 30	AB 34	AB 38
MASSBUS CABLE C	AB 27	AB 31	AB 35	AB 39

11-2941

i igure 7-2 massous Cable System Comiguratio	Figure 7-2	Massbus	Cable System	Configuration
--	------------	---------	--------------	---------------

For the TWU16 subsystem, the following jumper configuration should be used (see D-CS-M8153-0-1, sheet 2 of 6).

			Add	lress B	Bit		Jumpe	r	Jur	nper I	n/Jum	per O	ut				
			1	12			W14				OUT			_			
			1	1		ı ا	W10				IN						
			1	10		<u>ا</u>	W9				OUT						
				9		1	W8			•	IN						
				8		۱ I	W11				OUT						
				7		۱ I	W13				IN						
				6		<u>۱</u>	W15				IN						
				5			W12				OUT			-			
ADDR.																	
BIT	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1 1	$\overset{1}{\smile}$	1	1	1	0		0	1	0	0	1	X	X	x	X	X
	7			7		_	2	-		4			4			0	
													to			to	
													7			7	

Jumper	In	= Binary	0
--------	----	----------	---

The jumpers in E41 (D-CS-M8153-0-1, sheet 2 of 6) are selected for the appropriate number of registers in the subsystem, minus 2. For example, there are 16 registers in the TWU16 subsystem, so the jumpers are selected for a weighted value of 16, --2 or 14, as shown below. This procedure is described in detail in Paragraph 6.2.

Slot	Jumper	Jumper In/Jumper Out
E41	1-16	IN
	2-15	IN
	3-14	OUT
	4-13	OUT
	5-12 (2)	OUT
	6-11 (4)	OUT
	7-10 (8)	OUT
	8-9 (16)	IN

Jumper In = Binary 0

BR Level Interrupt

The priority jumper plug for the RH70 is normally set for the BR5 level. This plug is located in E022 (refer to D-CS-M8153-0-1, sheet 4 of 6).

Vector Address Jumpers

The interrupt vector transferred to the processor is jumper-selectable via jumpers W1 - W7, representing vector bits 2 - 8. The TWU16 subsystem has been assigned a vector address of 000224. The jumper configuration for this vector address is shown below:

Vector	Vector Bits			Jumper			In/Ju	mper O	Jut
V2			W7			IN			
V3			V	V3		OUT			
V4			V	V6		IN			
V5			W 2			OUT			
V 6			W 5			OUT			
V 7			V	V1		IN			
V8			V	V4		OUT			
V 8	V 7	V6	V5	V4	V 3	V2	V 1	V0	
0	1	0	0	1	0	1	0	0	
	$\widetilde{2}$			2			4		

Jumper	In =	Binary	1
--------	------	--------	---

7.2.5.2 MDP Module (M8150) - The MDP module contains jumpers which allow maintenance personnel to disconnect wired-OR connections from the Exclusive-OR network used to detect writecheck errors. These jumpers are designated W1-W4 and are shown on D-CS-M8150-0-1, sheet 6 of 9. The jumpers provide maintenance personnel with a method of isolating a faulty output (stuck low) of the wired-OR bus to one of four integrated circuit (IC) chips which perform the Exclusive-OR function during write-check operations. For example, if the output of the E21 and E23 open-collector line is stuck low when scoping of the inputs indicates that it should be high, the faulty IC (E21 or E23) can be ascertained by removing jumpers W2 and W1. If after removing the jumpers, the outputs of the Exclusive-OR gates in E23 are still low, it indicates that the E23 chip is defective. If E23 outputs are high, the E21 chip is defective (outputs stuck low).

7.2.6 Light-Emitting Diodes (LEDs)

The following light-emitting diodes are incorporated in the RH70 Massbus Controller logic on the M8153 BCT module (Figure 7-3).

SSYN (Slave Sync) D-CS-M8153-0-1, Sheet 3 of 6

TRA (Transfer) D-CS-M8153-0-1, Sheet 3 of 6

BG IN (Bus Grant In) D-CS-M8153-0-1, Sheet 4 of 6

SACK (Selection Acknowledge) D-CS-M8153-0-1, Sheet 4 of 6

BBSY (Bus Busy) D-CS-M8153-0-1, Sheet 4 of 6

These LEDs are provided to aid maintenance personnel in isolating system faults as described below:

> 1. Unibus on PDP-11/70 is in "hung" condition (no operations can be performed on Unibus).

This condition may be caused by:

Stuck SACK Stuck BBSY or Stuck SSYN

The associated LED will be continuously illuminated. LEDs may flicker intermittently during normal operations.

Figure 7-3 LED Physical Locations

2. Unibus device interrupt sequence not functioning properly (processor continuously loops in service routine and fails to execute instructions).

This condition is caused by discontinuity of the bus grant signal on the Unibus from the processor to the device interrupting and may be caused by missing Grant continuity cards or defective circuitry, which normally passes Grant signals from device to device. This will cause the BG IN light emitting diode to illuminate. If this LED is brightly illuminated, it indicates that the Unibus BG IN signal coming to that device is stuck high.

3. Processor attempts to read or write a remote register in the TWU16 subsystem and receives an address error indication on the console (CPU traps to location 4).

> This condition may be caused by a stuck TRA signal on the Massbus which prevents the SSYN response from the RH70. Determination of this condition may be made if local registers in the RH70 can be successfully accessed. If no register responds, the address jumpers may be improperly selected.

7.3 VISUAL INSPECTION AND ELECTRICAL CHECK

Before the diagnostics are run, the following visual inspection and electrical checks should be made.

1. Verify that all modules have been configured correctly in accordance with Figure 7-1.

NOTE

The M5904 modules should be marked on the etch with REV E or later for proper positioning of the cables.

- 2. Ensure that all modules are firmly seated in the system backplane assembly.
- 3. Inspect backplane wiring for broken wires or damaged pins. Repair or replace as required.
- 4. Clean air filters at the top of the cabinet.
- 5. Ensure that all Unibus and Massbus cables are properly terminated and firmly seated. The Unibus should be terminated with an M9301 Terminator in slots E, F 01, and an M9302 Terminator in slots A, B 44. The Massbus cables are terminated in the last drive with H870 Miniterminators which are plugged into the M5903 Transceiver modules.
- 6. Check cabinet fans for proper operations.

- 7. Verify that Grant continuity cards that should be installed are properly installed in slots D27, D31, D35, and D39 if no controllers are housed in these slots.
- 8. Ensure that all jumpers are properly configured (refer to Paragraph 7.2.5).
- Check for power shorts with an ohmmeter. +5 V is contained on pin AA2 of each module slot, -15 V is contained on pin AB2 of the M5904 module; pin AC2 on each module is grounded.
- 10. Power-up system and verify voltages indicated in step 9.
- 11. Verify that all LEDs are extinguished.

7.4 TM02/TU16 INSTALLATION

This paragraph describes the installation procedure and voltage checkout of the TM02/TU16 Tape Drive Subsystem.

- 1. Unpack the TM02/TU16 cabinet and bolt it to the system cabinet.
- 2. Install the cabinet ground strap.
- 3. Set the 861 circuit breaker to the OFF position.
- 4. Set the 861 LOCAL/OFF/REMOTE switch to OFF.

- 5. Check the power receptacle to be used for the 861 for correct hot, neutral, and ground connections. Refer to the 861-A,B,C,D,E,F, Power Controller Maintenance Manual, EK-861AB-MM-002 for the plug and receptacle diagrams for the particular 861 being used.
- 6. Plug the 861 power cord into the power receptacle.
- 7. Set the 861 circuit breaker to the ON position.
- 8. Set the 861 LOCAL/OFF/REMOTE switch to LOCAL.
- 9. Verify the following:

Cabinet fan operating TM02 fan operating TU16 PWR indicator lit. TM02 power LED (bottom LED) lit.

- 10. Remove the TU16 shipping brackets and slide the transport out.
- 11. Check the power supply voltages listed in Tables 7-1 and 7-2.

NOTE

The voltage settings are critical. Do not attempt to adjust the voltages unless a well-calibrated scope or digital voltmeter is available.

Designation	Pin No.	Voltage (Vdc)	Tolerance (Vdc)	Control Potentiometer
+5V	D01A2	+5.25	+0.05	R16
+12V	B04S1	+12.05	+0.05	R37
-6.4V	C04N2	-6.35	+0.05	R44
+12V (NRZ)	C02J2	+11.875	+0.125	R26
+5V (PE) *	C02J2	+5.6	+0.1	R57
GND	D01C2	—	_	_

Table 7-1 TII16 Backplane Regulated Voltages

Designation	Wire Color	Minimum Voltage (Vdc)
+17V	Orange	+17.0
-17V	Yellow	-17.0
+18V	Pale Green	+18.0
-18V	Blue	-18.0
GND	Black	-

Table 7-2P4 Connector, Unregulated Voltages

12. Load a scratch tape on the TU16 and check out all manual functions:

Load Brake Release Forward Reverse Rewind Start Stop

- 13. Connect the slave bus cables to the TU16 as described in Paragraphs 7.4.2 and 7.4.3.
- 14. Set the 861 LOCAL/OFF/REMOTE switch to OFF.
- 15. Slide the TU16 back into the cabinet.
- 16. Remove the shipping brackets from the TM02 and slide it out of the cabinet on its slides.
- 17. Remove the top and side covers of the TM02.
- 18. Set the 861 LOCAL/OFF/REMOTE switch to LOCAL.

- 19. Check the power supply voltages listed in Table 7-3 and adjust if necessary.
- 20. Set the 861 LOCAL/OFF/REMOTE switch to OFF.
- 21. Connect the Massbus and slave bus cables going into and out of the TM02 as described in Paragraphs 7.4.1, 7.4.2, and 7.4.3.
- 22. Install the remote power control cable to the 861 power controller.
- 23. Set the 861 LOCAL/OFF/REMOTE switch to REMOTE.
- 24. Apply system power. Verify that the TM02 and TU16 power indicators are lit.
- 25. Attempt to examine locations 772440 772476 (standard TWU16 addresses). If the processor traps, refer to Figure 7-4 for possible addressing jumper problems.
- 26. Attempt to deposit and examine all 1s in location 772446. If any bits are missing, check out the Massbus cabling (Paragraph 7.4.1 and 7.4.3).

7.4.1 RH70/TM02 Massbus Cable Installation

Massbus cables must be installed between the RH70 and the TM02 as shown in Figure 7-5. The ribbed surface of the Massbus cables must face up at the RH70 output, and the smooth surface of the cables must face up at the input of the TM02. Refer to Paragraph 7.4.3 for cable identification markings.

CAUTION

All Massbus cables must be installed with the red line toward the module handle. Otherwise, a signal line will be grounded.

TM02 Voltage Check								
Designation	Pin No.	Wire Color	Voltage (Vdc)	Tolerance (Vdc)	Control Potentiometer			
+5V +15V -15V AC LO DC LO	A01A2, F01A2 F01V1 A04B2 A09H1 A09J1	Red Orange Blue Yellow Violet	+5.00 +15.0 -15.0 +4.85 +4.85	+0.25 +1.0 +1.0 +0.15 +0.15	R50 R35 R26 —			

Table 7-3

If more than one TM02 is used:

- 1. All TM02s must have the smooth side of the BC06R Massbus cable up at the input of the TM02, and the ribbed side up at the output.
- 2. Mid-bus TM02s use M5903 modules.
- 3. The end-of-bus TM02 (as in the case of a single TM02) uses M5903 modules with H870 miniterminators.

7.4.2 TM02/TU16 Slave Bus Cable Installation

Slave Bus cable connections between the TM02 and the TU16 and between daisy-chained TU16s are shown in Figure 7-6. A half-twist in the slave bus cable is not required between the TM02 and the first (or single) TU16, but if multiple TU16s are installed, a half-twist of the slave bus cable must be used between TU16s. Refer to Paragraph 7.4.3 for cable identification markings.

CAUTION

All slave bus cables must be installed with the red line toward the module handle. Otherwise, the +5 V will be applied to a signal line instead of the shield where it belongs.

Mid-bus TU16s use different modules than an end-of-bus (or single) TU16.

Mid-Bus	End-of-Bus		
M9001	M9001YB		
M8913	M8913YA		
M9001YA	M9001YC		
	Mid-Bus M9001 M8913 M9001YA		

					W14 OUT	W1O IN	W9 OUT	W8 IN	W11 OUT	W13 IN	W15 IN	W12 OUT						JUMPER JUMPER IN	N/OU
17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS E	BITS
1	1 7	1	1	1 7	1	0	1 2	0	1	0 4	0	1	0 4	0	0	0 0	0	BINARY AD OCTAL AD	DRES
VE (F	ECTO	R S	SELE S VE	CTIC	ON ₹ 224	.)													
JU	MPER	≀IN:	= BIN	ARY	1				W4 OUT	W1 IN	W5 OUT	W2 0UT	W6 IN	W3 OUT	W7 IN			JUMPER JUMPER IN	1/0U
7	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	VECTOR BI	тѕ
0	0 0	0	0	0	0	0	0 0	0	0	1 2 	0	0	1 2	° 	1	0 4 —	0	BINARY OCTAL	<u> </u>
LE (SE SL	GAL EGAL ELEC	O RE TS DI Ø41 BII EQ		O O TER AL 10	O SEL 6 REC	ECT JUI	O O ERS)	0	0	1 2 	0 	0 	1 2 —	0 	1	0 4 	0	BINARY OCTAL	
LE (SE SL	GAL EGAL	O RE TS DI EØ41 BII EQ		O O TER AL 10	O SEL 6 REC	JUI 1 2	O O ERS) MPER TO TO	0 16 15	0	1 2 	O PER I IN IN	0 	1 2 —	• 	1	04	0	BINARY OCTAL	
LE (SE SL	GAL EGAL ELEC	O TS DI Ø41 BII		O O TER AL 10	O SEL 6 REC	JUI 1 2 3	O O ERS) MPER TO TO	0 16 15 14	0	1 2 	O PER I IN OUT	0 	1 2 	• 	1	04	0	BINARY OCTAL	
	GAL EGAL ELEC	O RE TS DI EØ41 BII EQ		O O TER AL 10	O SEL 6 REC	0 ECT 3IST 1 2 3 4 5	O O ERS) MPER TO TO TO TO	0 16 15 14 13 12	0	1 2 	O ER IN OUT OUT	0 IN/01	1 2 	• 	1	0 4 	0	BINARY OCTAL	
 0 LE (SE SL	L 0 EGAL ELEC OT E	O RE TS DI EØ41 BII EQ	GIS ECIM NARY	O O TER AL 10	O SEL 6 REC	0 ECT 3IST 1 2 3 4 5 6	O O ERS) MPER TO TO TO TO TO	0 16 15 14 13 12 11	0	1 2 	O ER IN OUT OUT OUT	0 	1 2 	• 	1	0 4 	0	BINARY OCTAL	

M8153 JUMPERS

Figure 7-4 Jumper Summary

11-3079

Figure 7-5 RH70/TM02 Massbus Cabling Diagram

TMØ2 TO FIRST TU16

Figure 7-6 TM02/TU16 Slave Bus Cabling Diagram
7.4.3 Markup of Massbus and Slave Bus Cables

Both surfaces of each end of the Massbus and slave bus cables are stamped as shown in Figure 7-7. The stamps are marked up to indicate cable designations at the time the cables are installed. Mark the BC06R Massbus cables as follows when installing them:

- 1. Cross out the designation THIS SIDE UP on the under side of the cable.
- 2. Cross out the CONTROLLER designation that does not apply. Cross out B when plugging into the RH70; cross out A when plugging into the TM02.
- 3. Cross out the CONNECTOR MOD-ULE designations that do not match the cable letter being used.
- 4. Cross out IN for the output cables; cross out OUT for the input cables.

11-2803

Figure 7-7 Massbus Cable Stamp

Figure 7-8 shows an example of a cable that is marked up to be plugged into the M5903 module in slot A/B06 of end-of-bus TM02.

Figure 7-8 Marked-Up Massbus Cable

7.5 MAINTENANCE TOGGLE PROGRAM

This paragraph lists and describes a maintenance program (Figure 7-9) which may be used by maintenance personnel for exercising the data buffer. This program allows maintenance personnel to select a data pattern and load it into the data buffer in the RH70 via the DATA switches on the console. This pattern is loaded into the right-half, or even-word section of the data buffer, will sequence through the data buffer, and be transferred to the DATA lights on the console. The pattern displayed on the lights should agree with the data pattern loaded in the switches.

A second pattern or data word can be loaded into the data buffer via the DATA switches. This word is loaded into the left-half, or odd word section, of the data buffer. The second data word will sequence through the data buffer and will be transferred to the DATA lights on the console, similar to the first data word. The data pattern on the lights should agree with the data pattern loaded in the switches. This program is strictly an internal RH70 verification program; no peripheral device or Massbus cycle is required.

LOC.	CONTENTS		PROGRAM
1000/	052737	START:	BIS #CLR, @#MTCS2
1002/	000040		
1004/	172450		
1006/	013737		MOV @#SWR, @#MTDB
1010/	177570		
1012/	172462		
1014/	013737		MOV @#SWR, @#MTDB
1016/	177570		
1020/	172462		
1022/	005000		CLR R0
1024/	105737	WAIT:	TSTB @#MTCS2
1026/	172450		
1030/	100403		BMI ROUT
1032/	105200		INCB R0
1034/	001373		BNE WAIT
1036/	000000		HALT1
1040/	013737	ROUT:	MOV @#MTDB, @#LITES
1042/	172462		
1044/	177570		
1046/	000403		BR TEST
1050/	013737		MOV @#MTDB, @#LI~ES
1052/	172462		
1054/	177570		
1056/	105737	TEST:	TSTB @#MTCS2+1
1060/	172451		
1062/	001746		BEQ START
1064/	000000		HALT2

NOTES:

- 1. To loop on no Output Ready, deposit 000760 in location 1036.
- 2. To display second data word, deposit 000240 in location 1046.
- 3. To loop on error condition, deposit 000745 in location 1064.

Figure 7-9 Maintenance Program to Exercise Data Buffer

7.5.1 Maintenance Program to Exercise the Data Buffer

The first instruction in location 1000 is a Bit Set instruction to bit 5 (CLR bit) in the MTCS2 register. This instruction initializes the data buffer and all error conditions. The next instruction is a MOV instruction, which transfers the contents of the DATA switches into the right-half, or even word section, of the data buffer. The DATA switches are loaded by maintenance personnel with some desired data pattern. The third instruction is another MOV instruction, which transfers the data pattern set into the switches into the data buffer. This pattern is loaded into the left-half, or odd word section, of the data buffer, which now allows the entire data buffer to be exercised. The next instruction in location 1022 is a CLR R0 instruction which clears the R0 register. This register functions as a wait loop counter. If a hardware failure prevents data words from being read out of the data buffer, the Output Ready (OR) signal will not be asserted and the program might end up in an infinite loop. To prevent this condition, the wait loop is included in the program. The wait loop is initiated by a TSTB instruction which examines the low byte of the MTCS2 register. Assume that the Output Ready (OR) signal is asserted and the first data word is in OBUF. The OR signal is bit 7 of the low byte of MTCS2. Bit 07 is also the sign bit for the low byte and indicates a minus when asserted.

As a result, the branch condition of the BMI instruction in location 1030 is met and the program branches to the ROUT (Read Out) loop. The first instruction in this loop is a MOV instruction, which transfers the contents of OBUF (first data word) to the DATA lights on the console. The pattern on the lights should agree with the data loaded in the switches. The next instruction is a BR TEST which branches the program to location 1056. A TSTB instruction in this location tests the upper byte (MTCS2 + 1) of the MTCS2 register for error conditions.

If there are no errors, this byte is 0 and the next instruction (BEQ) loops the program back to START (location 1000). If an error condition was present, the upper byte of MTCS2 would not be 0 and the program would sequence to location 1064. A HALT instruction in this location causes the program to halt.

NOTE

The address lights will indicate the address, +2, (which is location 1066).

If it is desired to loop on this error condition, 000745 is deposited into location 1064. This causes the program to loop back to START.

Now, return to the Output Ready wait loop. If there is no Output Ready signal (indicating a hardware failure), the program sequences to location 1030, the branch condition is not met, and the program sequences to the next instruction at location 1032. This location contains an INCB instruction, which causes the low byte of the R0 register to be incremented. If the low byte is not equal to 0, the next instruction, which is a Branch on Not Equal (BNE), loops the program back to location 1024, where the Output Ready (OR) signal is again monitored. If the OR signal is still not available, the low byte of R0 is again incremented. This continues for 256 counts if no OR signal is available, and at this time, the low byte of the R0 register overflows to all 0s. Now, the program sequences to the next sequential location (location 1036) which contains a HALT1 instruction, thus halting the program. This means that the MTCS2 register has been examined 256 times with no OR signal being asserted and indicates that a hardware error has occurred. To loop on this error, 000760 is deposited in location 1036. This causes the program to loop back to START, enabling maintenance personnel to examine the error condition.

Up to this point, only the first data word has been examined on the DATA lights. If it is desired to examine the second data word loaded in the data buffer, a NOP (000240_8) is loaded in location 1046, replacing the BR TEST instruction. Now, the program will merely sequence through location 1046 to 1050. This location contains a MOV instruction, which moves the second data word into the DATA lights on the console. The pattern on the lights should correspond to the DATA switches on the console.

The next instruction in location 1056 is the TSTB instruction, which checks for error conditions in the second data word by monitoring the high byte of MTCS2. If there are no errors, the high byte of MTCS2 is 0 and the next sequential instruction (BEQ) branches the program back to START. If there is an error, the high byte of RSCS2 will not be equal to 0 and the program will sequence to the next instruction at location 1064. This location contains a HALT2 instruction which halts the program. The error condition can be looped on by depositing 000745 in location 1064, which will cause the program to loop back to START.

7.6 DIAGNOSTIC MAINTENANCE

The diagnostic programs described herein are employed with the TWU16 subsystem. Refer to the applicable diagnostic operating procedures for detailed information.

7.6.1 RH70 Controller Test Diagnostic (DZRHA)

This diagnostic verifies that the RH70 Controller is operating correctly. The diagnostic can test up to four RH70 Controllers simultaneously, however, an operating Massbus peripheral must be connected to each RH70 Controller. The major tests in the diagnostic are:

- 1. Determining whether all registers in the controller can be read from or written into.
- 2. Checking error conditions in the controller by causing an error and observing the results on the associated error bit in the CS1, CS2, or CS3 registers.
- 3. Checking that the data buffer can accurately store and transfer data.

7.6.2 Data Reliability Diagnostic (DZTUA)

This diagnostic provides for evaluation and debugging of magnetic tape drives. The program is capable of exercising any tape drive that is compatible with the Massbus and the TM02. Any number of drives up to eight (single or multi-drive systems) may be tested by a single execution of the program. This flexibility is possible because the program has no fixed parameters or testing sequence. The entire test plan, including parameters and operating sequence, is determined by the operator through responses to teletype writer requests and setting of console switches.

The program provides for testing all tape drive functions such as writing, reading, rewinding, tape positioning, EOTBOT sensing, and assumes a properlyoperating RH70 Massbus controller and TM02 tape controller. During a test cycle, checks are made for status errors, data errors, position errors, word count, and memory address errors wherever applicable.

The program will attempt to perform any operation. Therefore, caution should be used to ensure that the unit can perform as requested. For example, an attempt to read tape that has not been written on yields unpredictable data. However, if a tape has been written with this program, it can be read as often as desired without being rewritten. This is good procedure to use for testing tape compatibility.

7.6.3 TM02/TU16 Basic Function Diagnostic (DZTUB)

This diagnostic provides for testing all functional level operations of the TM02/TU16 Magtape System. The following is a list of all tests in their proper sequence. A basic description of each test is provided to aid in understanding the error messages associated with each.

RH70 Tests

The first ten tests will perform basic RH70 operations as far as possible without requiring the TM02/TU16.

FT1: RH70 Addressing

This test will ensure that the RH70 will respond without causing a bus trap to all TM02 register addresses in sequence, starting at the address of CS1 entered by the operator.

FT2: RH70 Register Bits Read/Write

This test will ensure that all bits of the RH70 write/read registers can be set and reset.

FT3: RH70 Initialize

This test will ensure that an RH70 Initialize (bit 5 of CS2 = 1) will indeed clear the RH70 errors.

FT5: Data Buffer Test 2

This test will ensure that both the IR and OR bits will respond correctly to loading the data buffer with all zeroes followed by a word of all ones.

FT6: Data Buffer Test 3

This test will write and then read the entire data buffer to ensure that data can be properly loaded into and read from the data buffer. The proper status of IF and OR are also checked.

FT7: Data Buffer Test 4

This test will ensure proper RH70 response to data buffer overflow.

FT10: Data Buffer Test 5

This test will ensure data buffer reset by RH70 Initialize.

TM02/TU16 Basic Functions

The following 14 tests will ensure operation of the Magtape basic functions.

FT11: NOP Test

This test will ensure that the NOP function executes with no error.

FT12: Rewind Test

This test will ensure that the rewind function will position the tape to BOT with no error.

FT13: Write/Read Test

This test will ensure that the unit under test can write and read in all densities.

FT14: Space Test

This test will ensure that proper positioning is maintained by both space forward and reverse.

FT15: Erase Test

This test will ensure that the erase function will indeed erase tapes.

FT16: Tape Mark Write/Read

This test will ensure that a tape mark can be written and read in both PE and NRZ.

FT17: Tape Mark Space Test

This test will ensure that spacing will be terminated by recognition of tape mark both in PE and NRZ.

FT20: Write-Check Test

This test checks write-check forward and reverse in both PE and NRZ modes.

FT21: Erase Head Test

This test will ensure that the erase head is operating.

FT22: Buffered Command

This test will ensure that the TM02 will accept and execute another command while its selected slave is rewinding.

FT23: Read in Preset

This test will ensure that unit 0 is rewound and set to 800 bpi normal (only if slave 0 is selected).

FT24: Rewind

Off-line, this test will ensure that the unit will rewind and go off line (not if in continuous cycle).

7.6.4 TM02/TU16 Control Logic Test (DZTUC)

This diagnostic sequentially tests all control logic and data formatting within the TM02 formatter. Each test will attempt to isolate failures to the module level and provide printout information that will identify the failing module.

There are two major areas of testing – control logic and data formatting. The control logic testing will test all error and status conditions, as well as address protocol and operational logic sequences. On the first line, the printout will contain a header which calls out the test number, function being tested, and the suspected module(s). The second line will contain information regarding the actual error. Both expected and actual results will be given. Line three will show the contents of the major registers at the time of the error and line four will print the iteration number, as applicable.

The data formatting section will test all data formats and transfer paths in all possible combinations. These tests will print a header containing the test number and a description of the wraparound function under test. A list of major registers, with expected and actual values, will follow the header. Any bad data will be printed (per character) following the register information, or following the header if no status errors were encountered.

7.6.5 TM02 Drive Function Timer (DZTUD)

This diagnostic measures the time required and the gap sizes produced by the TM02/TU16 Magtape Drive. The program requires a PDP-11 family central processor with 4K memory and with up to 64 TM11/TM02 Controller/Magtape stations.

Two types of errors are detected by this program – hardware errors and incorrect function times.

7.6.6 TU16 Utility Driver (DZTUE)

This diagnostic uses a brute force routine to continuously execute an operation or series of operations, regardless of the results. Because of the complexity of the TU16 tape system on the Massbus, it is not always possible to provide for every contingency in normal programs. Therefore, this utility driver will allow an operator to execute anything desired (in any order). There are no error checks or printouts made; any variation from preset sequences and values are made by changing the appropriate memory locations.

The program requires that the operator be knowledgeable of the TU16 tape system as operated with the RH70 Massbus controller. The operator must be able to decide which sequence of operations is required and to assign values to the various parameters required to execute them.

7.6.7 Data Tape Create (DZTUF)

This diagnostic is not a test program but a supplement to both the TM11/TU10 and TM02/TU16 data reliability programs. The purpose of this supplement is to allow the operator to create a paper tape for any data pattern desired; it is used by the data reliability programs when data pattern zero is selected.

APPENDIX A INTEGRATED CIRCUIT DESCRIPTIONS

A.1 INTRODUCTION

This appendix contains descriptions of some of the integrated circuits used in the RH70 Massbus Controller. Where applicable, logic diagrams, schematics, truth tables, and pin connection diagrams are shown.

A.2 7442 4-LINE-TO-10-LINE DECODERS (1-of-10)

These monolithic decimal decoders consist of eight inverters and ten 4-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions. The 7442 BCD-to-decimal decoder features familiar transistor-transistor-logic (TTL) circuits with inputs and outputs that are compatible for use with other TTL and DTL circuits.

	BCD	Input	put Decimal Output											
D	С	В	Α		0	1	2	3	4	5	6	7	8	9
0	0	0	0		0	1	1	. 1	1	1	1	1	1	1
0	0	0	1		1	0	1	1	1	1	1	1	1	1
0	0	1	0		1	1	0	1	1	1	1	1	1	1
0	0	1	1		1	1	1	0	1	1	1	1	1	1
0	1	0	0		1	1	1	1	0	1	1	1	1	1
0	1	0	1		1	1	1	1	1	0	1	1	1	1
0	1	1	0		1	1	1	1	1	1	0	1	1	1
0	1	1	1		1	1	1	1	1	1	1	0	1	1
1	0	0	0		1	1	1	1	1	1	1	1	0	1
1	0	0	1		1	1	1	1	1	1	1	1	1	0
1	0	1	0		1	1	1	1	1	1	1	1	1	1
1	0	1	1		1	1	1	1	1	1	1	1	1	1
1	1	0	0		1	1	1	1	1	1	1	1	1	1
1	1	0	1		1	1	1	1	1	1	1	1	1	1
1	1	1	0		1	1	1	1	1	1	1	1	1	1
1	1	1	1		1	1	1	1	1	1	1	1	1	1
				-			-					-	-	

TRUTH TABLES

A.3 74H74 D-TYPE EDGE-TRIGGERED FLIP-FLOPS

The 74H74 consists of two D-type edge-triggered flip-flops. Each flip-flop has individual clear and preset inputs and complementary Q and Q outputs. Information at input D is transferred to the Q output on the positive-going edge of the clock pulse.

t _n	t _{n+1}					
INPUT	OUTPUT	OUTPUT				
D	Q	Q				
L	L	H				
H	H	L				

H = high level, L = low level

NOTES:

A. t_n = bit time before clock pulse. B. t_{n+1} = bit time after clock pulse.

Signal/	Pin	Designa	tion
---------	-----	---------	------

Signal Name	Circuit #1	Circuit #2
D	2	12
CLOCK	3	11
CLEAR	1	13
PRESET	4	10
Q	5	9
Q	6	8

A.4 74S74 D-TYPE EDGE-TRIGGERED FLIP-FLOPS

The 74S74 D-Type Edge-Triggered flip-flop is similar to the 74H74 flip-flop described in Paragraph A.2. The major difference is that the 74S74 is a faster flip-flop.

A.5 7485 4-BIT MAGNITUDE COMPARATORS

The 7485 performs magnitude comparison of straight binary and straight BCD (8421) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs.

COMPARING INPUTS			CASCADING INPUTS			OUTPUTS			
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = B
A3 > B3	x	Х.	×	x	×	x	н	L	L
A3 < B3	×	×	×	x	×	x	L	н	L
A3 = B3	A2 > B2	x	×	x	×	x	н	L	L
A3 = B3	A2 < B2	×	×	×	×	X	L	н	L
A3 = B3	A2 = B2	A1 > B1	×	x	×	x	н	ι	L
A3 = B3	A2 = B2	A1 < B1	×	x	×	x	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	x	×	x	н	L	L
A3 = B3	A2 ~ B2	A1=B1	A0 < B0	×	×	x	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	н	L	L	н

TRUTH TABLE

NOTE: H = high level, L = low level, X = irrelevant

Pin (16) = V_{CC} , Pin (8) = GND

IC-0159

A.6 74H106 DUAL J-K EDGE-TRIGGERED FLIP-FLOPS

The 74H106 J-K flip-flops are negative-edge triggered. J, K, clock, asynchronous preset, and clear inputs are available. When the clock goes high, the inputs are enabled and data will be accepted. The logical state of the J and K inputs may be allowed to change when the clock pulse is in a high state and will perform according to the truth table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative edge of the clock pulse.

TRUTH TABLE						
t _n t _n +1						
J	к	Q				
0	0	Qn				
0	1	0				
1	0	1				
1	1	ō,				

NOTES: 1. t_n = Bit time before clock pulse 2. t_n +1 = Bit time after clock pulse IC-0145

A.7 74123 RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

The 74123 Monostable Multivibrator provides dc triggering from gated low-level active (A) and highlevel active (B) inputs. Overriding direct-clear inputs and complementary outputs are also provided. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the external timing components.

The waveshapes below show the input/output pulses when the one-shot is triggered by the high-level active (B) inputs.

FUNCTIONAL LOGIC/PIN LOCATOR

TRUTH TABLE						
INP	UTS	OUT	PUTS			
Α	8	Q	Q			
н	x	L	н			
X	L	L	н			
L.	t	л	v			
ł	н	л	J			

NOTE: H=high level (steady state), L= low level (steady state), f= transition from low to high level, i= transition from high to low level, JT = one high-level pulse, TT = one low-level pulse, X= irrelevant (any input, including transitions). IC-0156

A.8 74157 QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXER

The 74157 quadruple 2-line to 1-line multiplexer features buffered inputs and outputs. All outputs are low when disabled (enable high). The truth table and logic diagram are shown below.

INPUTS			Ουτρυτ γ	OUTPUT W
			SN54/74157,	
ENABLE	SELECT	АВ	SN54S/74S157	SN54S/74S158
н	x	хх	L	н
L	. L	LX	L	н
L	L	нх	н	L
L L	н	XL	L	н
L	н	хн	н	L

H = high level, L = low level, X = irrelevant

IC-0160

A.9 74S157 QUADRUPLE 2-LINE TO 1-LINE MULTIPLEXER

The 74S157 Quadruple 2-line to 1-line multiplexer is similar to the 74157 multiplexer described in paragraph A.8. The major difference is that the 74S157 is a faster multiplexer.

A.10 74174 HEX D-TYPE FLIP-FLOPS

The 74174 contains six flip-flops with single outputs. The flip-flops contain direct-clear inputs and buffered clock inputs.

IC-0017

A.11 74S174 HEX D-TYPE FLIP-FLOPS

The 74S174 D-type flip-flops are similar to the 74174 flip-flops described in paragraph A.10. The major difference is that the 74S174 are faster flip-flops.

A.12 74175 QUAD D-TYPE FLIP-FLOPS

The 74175 contains four D-type flip-flops with dual outputs. Each flip-flop has direct-clear and buffered clock inputs.

Pin (16)= V_{CC}, Pin (8)=GND

IC-0018

A.13 74180 PARITY CONTROL GENERATOR/CHECKER

The 74180 is an 8-bit parity generator/checker featuring odd and even outputs and control inputs to provide odd or even parity operation. Word length is expandable by cascading. The truth table, pin connection diagram, and functional block diagram are shown below.

	TRU	тΗ	TABLE	
--	-----	----	-------	--

INF	OUTR	PUTS		
ΣOF 1's AT O THRU 7	EVEN	DDD	Σ EVEN	Σ odd
EVEN	1	0	1	0
ODD	1	0	0	1
EVEN	0	1	0	1
OD D	0	1	1	0
x	1	1	0	0
×	0	0	1	1
L	L	L	L	L

X= IRRELEVANT

IC-0157

A.14 74191 4-BIT BINARY COUNTER

The 74191 is a 4-bit binary counter that counts in BCD or binary and can operate as an up/down counter. The counter can be preset by the load control and uses a ripple clock output for cascading.

DOWN/UP	ENABLE	LOAD	MODE
X	х	L	Parallel Load
X	н	н	No Change
L	L	н	Count Up
Н	L	Н	Count Down

H = high level, L = low level, X = irrelevant

Signal Name	Pin Designation
CLOCK	14
DOWN/UP	5
DATA INPUT A	15
DATA INPUT B	1
DATA INPUT C	10
DATA INPUT D	9
LOAD	11
RIPPLE CLOCK	13
MAX/MIN OUTPUT	12
OUTPUT O _A	3
OUTPUT O _B	2
OUTPUT O _C	6
OUTPUT O _D	7

Signal/Pin Designation

A-14

A.15 74193 4-BIT BINARY COUNTER

The 74193 Binary Counter has an individual asynchronous preset to each flip-flop, a fully independent clear input, internal cascading circuitry, and provides synchronous counting operations.

COUNT UP	COUNT DOWN	LOAD	MODE
x	х	L	Parallel Load
CLOCK	н	н	Count Up
н	CLOCK	н	Count Down

H = high level, L = low level, X = irrelevant

Signal Name	Pin Designation
DATA INPUT A	15
DATA INPUT B	1
DATA INPUT C	10
DATA INPUT D	9
CLEAR	14
LOAD	11
DOWN COUNT	4
BORROW OUTPUT	13
CARRY OUTPUT	12
UP COUNT	5
OUTPUT Q	3
OUTPUT Q _B	2
OUTPUT Q	6
OUTPUT O	7

Signal/Pin Designation

A-16

A.16 74298 QUADRUPLE 2-INPUT MULTIPLEXER

The 74298 Quadruple 2-input multiplexers with storage selects one of two four-bit data sources and stores the data synchronously with the system clock.

When the WORD SELECT input (pin 10) is low, word 1 (A1, B1, C1, and D1) is applied to the flipflops. When the WORD SELECT input is high, word 2 (A2, B2, C2, and D2) is applied to the flipflops. The selected word is clocked to the output terminals on the negative-going edge of the clock pulse.

INPL	ITS		OUTE	PUTS	
WORD SELECT	CLOCK	QA	Ъ	۹ _C	Q _D
L	+	a1	b1	c1	d1
н	ŧ	٥2	b2	c2	d2
X I	н	QAO	Q _{BO}	Q _{CO}	Q _{DO}

H = high level (steady state)

L = low level (steady state)

X = irrelevant (any input including transitions)

+ = transition from high to low level

a1, a2,etc. = the level of steady-state input at A1, A2, etc. Q_{AO} , Q_{BO} , etc. = the level of Q_A , Q_B , etc. entered on the most-recent \oint transition of the clock input.

FUNCTIONAL BLOCK DIAGRAM

A.17 75107 DIFFERENTIAL LINE DUAL RECEIVER

This chip is described in the Massbus transceiver portion of Chapter 5 in this manual.

A.18 75113 DUAL DIFFERENTIAL DRIVER

This chip is described in the Massbus transceiver portion of Chapter 5 in this manual.

A.19 8223 256-BIT BIPOLAR FIELD-PRO-**GRAMMABLE ROM (32 X 8 PROM)**

The 8223 is a TTL 256-bit read only memory, organized as 32 words with 8 bits per word. The words are selected by five binary address lines; fullword decoding is incorporated on the chip. A chip enable input is provided for additional decoding flexibility, which causes all eight outputs to go to the high state when the chip enable input is high.

V_{cc} = (16) GND=(8) () = DENOTES PIN NUMBERS

IC-0155

A.20 8234 2-INPUT 4-BIT DIGITAL MULTIPLEXER

This device is a 2-input, 4-bit digital multiplexer designed for general-purpose, data selection applications. The 8234 features inverting data paths. The 8234 design has open-collector outputs which permit direct wiring to other open-collector outputs (collector logic).

A.21 82S62 PARITY GENERATOR AND CHECKER

The 82S62 9-input parity generator/checker is an ultra high speed Schottky chip, used to detect errors during data transmission or data retrieval. Even and odd outputs are provided. An INHIBIT input is provided to disable both outputs. A logic 1 on the INHIBIT input forces both outputs to a logic 0. When used as a parity generator (during data transmission), the 82S62 supplies a parity bit which is transmitted along with the data word. When used as a parity checker (during data retrieval), the chip indicates that the data has been received correctly or that an error has been detected.

A, F PACKAGE

(C-0148

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulnes our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, w written, etc.? Is it easy to use?

What features are most useful?

CUT OUT ON DOTTED LINE

What faults do you find with the man	nual?	
		N B B
Does this manual satisfy the need you	u think it was intended to satis	
Does it satisfy your needs?	Why?	
••••••••••••••••••••••••••••••••••••••		
Would you please indicate any factua	l errors you have found.	
	<u></u>	
Please describe your position.		
Name	Organizatio	on
Street	Departmen	ıt
City S	state	Zip or Country

– ---- Fold Here ---- -

_ _

– – – Do Not Tear - Fold Here and Staple – –

FIRST CLASS PERMIT NO. 33 MAYNARD, MASS.

- -

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

- -

- -

- -

Digital Equipment Corporation Technical Documentation Department 146 Main Street Maynard, Massachusetts 01754