
Local Area Transport (LAT)
Specification
Part No. AA-NL26A-TE

A simple, efficient, transparent model for exchanging data between terminals c=r.·
nected to terminal servers and host operating system processes is described. Tr.e
model Is termed Local Area Transport (LAn. LAT Is carefully tailored to take ac
vantage of the environment offered by Local Area Networks. such as the Ethernet
data link, but maintains much of the simplicity of traditional methods of connec~ing
terminals and hosts.

Digital Equipment CorporatlonIProprietary and Confidential

The information in this document is subject to change without notice and should not be construed as a commitment
by Digital Equipment Corporation. DigitaJ Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

June 1989

Copyright C1989 Digital Equipment Corporation

All rights reserved.

The following are trademarks of DIGITAL Equipment Corporation:

DEC ~T RT

pECmate MASSBUS ULTRIX
DECnet PDP UNIBUS

DECUS P/OS VAX
DECWiiter Profe.sional VAXcluater

DmOL Rainbow VMS

!amDDma- RSTS VT

DN,. RSX Work Processor

This Inanuat was P§dUcec(!!i Networks and Communications Publicati~

ii f Thit document was prepared using VAX DOCUMENT, Version 1.1

Contents

Preface

1 Introduction

1.1 Terminology . 1-5

2 Architecture Overview

2.1 Introduction .. 2-1
2.2 SLOT LAYER - USER INTERFACE 2-5
2.2.1 Connecting to the Host Service 2-6
2.2.2 Connecting to the Terminal Server Service 2-7
2.3 VIRTUAL CIRCUIT LAYER 2-9
2.4 Product Considerations 2-11
2.4.1 Host _./•...... 2-11
2.4.2 Ternlinal Server .. :' .. ·2-12

3 Naming and Translation

3.1 Naming Conventions ~• <i ••••.•• 3-1
3.1.1 Service Name Translation Process ;"'-.~ 3-1
3.1.2 Translation Process On A Source Node 3-4
3.1.3 Translation Process On A Destination Node 3-5
3.2 Service Advertising Mechanisms 3~6
3.2 .. 1 Host Advertising .. 3-6
3.2.2 Terminal Server Advertising 3-8
3.3 Specification of Nanles 3-9
3.4 Specification of Text ... 3-11

III

4 Circuit and Session Layers

iv

4.1
4.1.1
4.1.2
4.1.3
4.1.3.1
4.1.3.2
4.1.3.3
4.1.3.4
4.1.3.5
4.1.3.6
4.1.4
4.1.4.1
4.1.4.2
4.1.4.3
4.1.4.4
4.1.4.5
4.1.4.6
4.1.4.7
4.1.4.8
4.1.4.9
4.2
4.2.1
4.2.2
4.2.2.1
4.2.2.2
4.2.3
4.2.3.1
4.2.3.2
4.3
4.3.1
4.3.1.1
4.3.1.2
4.3.1.3
4.3.1.4
4.3.1.5
4.3.1.6
4.3.1.7
4.3.1.8

Architectural Model .. 4-1
Slot Data ... 4-1
Asynlnletry ... 4-1
Virtual Circuit Service 4-2

Virtual Circuit State 4-2
Architecturally Controlled Names and Variables 4-4
Message Types 4-11
Cirtual Circuit State Variables 4-12
Response Requested Flag and Balanced Mode 4-13
Message Mapping Onto State Diagram 4-13

User Connection Management And Data Flow 4-19
Service Classes 4-19
Host Session Management 4-19
Multiplexing Over A Virtual Circuit 4-20
Slot Ordering Within Messages 4-20
Slot State Variables 4-20
Ternlinal Server Slot Mapping Onto State Diagranl 4-22
Terminal Server Slot State Table 4-23
Host Slot Mapping Onto State Diagram 4-24
Host Slot State Table 4-25

Layer Illterfaces .. 4-26
Data Types .. 4-27
User/Slot Layer Interface 4-28

Summary Of Functions 4-28
Description Of Functions 4-29

Slot/Virtual Circuit Layer Interface 4-32
Summary Of Functions 4-32
Description Of Functions 4-33

Axioms And Algorithms ... , ' 4-35
Virtual Circuit Layer 4-37

Circuit Starter (Terminal Server Only) 4-37
Data_Volunteered 4-37
Credits Returned 4-38
Orcuit Ender ... 4-38
Message Receiver 4-38
Message Transnlitter 4-40
Circuit Tinler Policy 4-42
Buffering ... 4-42

4.3.2
4.3.2.1
4.3.2.2
4.3.2~3

4.3.2.4
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.2.9
4.3.3
4.3.3.1
4.3.3.2
4.4
4.4.1
4.4.1.1
4.4.1.2
4.4.1.3

Slot Layer ... 4-43
Host Systenl Management 4-43
Terminal Server System Management 4-43
Session Starter (Tenninal Server) 4-44
Session Starter (Host) 4-44
Slot Deolultiplexer 4-44
Slot Multiplexer 4-45
Sessioll Ellder ... 4-47
Flow Control ... 4-47
Protocol Versions And ECO Control 4-48

Otl,er Processes .. 4-49
Keep-Alive Process 4-49
Progress Process 4-49

Message Forolats ... 4-50
Virtual Circuit Message Header 4-51

Start Message Format 4-52
Run Message Forolat 4-55
Stop Message Fonnat 4-62

5 Connection Solicitation

5.1
5.1.1
5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.1.6
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.2
5.2.1
5.2.2

Architectural Model .. 5-1
Service Sharing•.................................... 5-2

Queue Coordination 5-4
Queue Access .. 5-5
Queue Structure .. 5-6
Queue Operations 5-7
Concatenating The Status Entries 5-12
Retranslnission And TiIne-out Policies 5-12

Connection Initiation , 5-13
Solicitation Process Message Flow 5-14
Solicitation process state-tables 5-24
Name And Inforolation Field Presentation 5-30

Message Formats ... 5-31
Command Message 5-32
Status Message ', 5-36

v

A Service Class 1 - Interactive And Application Terminals.

A.l
A.2
A.3
A.3.1
A.3.1.l
A.3.1.2
A.3.1.3
A.3.l.4
A.3.l.S
A.3.1.6
A.3.2
A.3.2.l
A.3.2.2
A.4
A.4.l
A.4.2
A.4.3
A.S
A.S.l
A.S.2
A.S.3
A.6
A.6.1
A.6.2
A.6.3
A.6.3.1
A.6.3.2
A.6.3.3

Local Area Directory Service A-l
Service Access Control A-2
Advertising Services Through Multicast Message A-6

Host .. A-6
Initialization .. A-6
Host Group Codes A-7
Host Node Nanles A-7
Multiple-Node Service Ratings. .. A-7
Steady-State Operation A-7
System Shutdown A-8

Ternlillal Server .. A-8
Initialization .. A-8
Building The Circuit Nanle Database A-9

Advertising Thr.ough Solicitation and Response Messages A-11
A Node Operating In Slave Mode A-12
A Node Operating In Master Mode A-13
Response Information Message Policy. .. A-14

Service Class 1 Messages A -15
Service Announcenlent Message A-1S
Solicit Infornlation Message .. A-19
Response Infornlation Message A-22

Service Class 1 Slot Format Extensions A-28
Start Slot Status Field A-29
Attention Slot Status Field A-31
Data_b Slot Extension A-33

Infornlation Exchange Using Data_b Slots A-33
Data_b Slot Fornlat A-34
Guidelines And Reconlnlendations For Data_b Slot ProcessingA-38

B Compatibility and Implementation

B.l Implementation Issues. .. B-1
B.l.l Possible Implementations of the LAT VS.l architecture B-1
B.l.2 Local Data Base .. B-3
B.l.3 Cluster Static Load Balancing. .. B-3
B.l.4 Multiprocessors, Gateways, Virtual Machines B-4
B.2 Conlpatibility Issues. .. B-4
B.2.l Virtua] Circuits Establishment. .. B-4
B.2.2 Data_b Slot Length Conlpatibility. .. B-5
B.2.3 Data_b Slot Data Conlpatibility. .. B-5

vi

B.2.4
B.205

Non-Unique Node Nanles .. 0 0 0•... 0 0 ..•. 0 0 0 B-6
Inlplenlentation Of The ethernet And 802 Protocols o. 0 0 0 0 0 . 0 0 0 0 B-7

C Algorithm For Assignment/Deassignment Request/Entry Identifiers

Col Interface to the Algorithnl 0 . 0 0 • 0 0 ..• 0 0 ••.•. 0 .•••.. 0 . • • . . . • C-2
Co2 Data Structures. 0 0 . 0 . 0 0 . 0 0 .• 0 •••• 0 ••. 0 ..• 0 0 ... 0 0 0 0 0 0 . 0 .•. 0 0 0 C-2
Co3 Algorithnl Operation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 •. 0 0 ..•.... 0 0 0 • 0 0 0 0 . 0 0 0 C-3

Figures

2-1 LAT Network Topology .. 0 0 . 0 ... 0 • 0 •..••• 0••. 0 0 0 0 . 0 • 0 00 0 0 02-2
2-2 Relations Between Layers 0 0 0 • 0 0 ••• 0 •••••.•••••.•.•.• 0 •••.•..••..• 2-3
2-3 Physical and Data Link Layers 0 ..•.•••••••••.••• 0 .• 0 ••.•••••••.• 0 02-4
2-4 Layered View of the LAT Architecture •• 0 ••••••.••.• 0 ••••.••••••.• 02-5
2-5 Connecting to Host Services 0 . 0 • 0 0 . 0 •••.• 0 •. 0 0 . 0 .. 0 0 •. 0 0 0 0 • 0 0 0 • 0 . 02-6
2-6 Connecting to Servers Services o. 0 0 0 0 0 00' . 0 0 0 o 0 ... 0 2-9
2-7 LAT Driver Organization 0 . '0' .. 0 .. 0 •... 0 0 0 0 .. 0 . 0 . 0 0 . 0 .2-12
3-1 Name Translation Process • 0 . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 03-2
3-2 A Combination of Services, Nodes and Ports 0 .•..•.......•••••....• 3-3
3-3 Name Translation Table (Source Node) .•.•••..•.• 0 •. 0 0 0 .••• 0 ..•... 3-4
3-4 Host Advertising ...•..•..•••• 0 •..••.••••..•••••.•..••.•••••.•. 0 3-6
3-5 Server Advertising•.••••.••••••••••••..••• 0 •....•••••••.••.. 3-8
4-1 LAT Layers Interface ••...•.....•••••••••••••••..•••••.•••...••. 4-36
4-2 Message Header Fornlat ••••..••••••••••.••• 0 0 ..••..•••••.• 0 ••. 0 4-51
4-3 Start Message Fornlat• 0 • 0 •.••• 0 0 ••• 0 ••.. 0 . 0 ••... 0 •.•.. 0 0 .. 0 4-53
4-4 Start Slot Fornlat 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 .•• 0 0 . 0 • 0 .. 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . 0 . 4-56
4-5 Data_a Slot Format 0 0 0 . 0 .. 0 0 0 . 0 0 0 0 .. 0 . 0 0 . 0 0 0 .. 0 0 0 0 .. 0 0 0 0 . 0 . 0 0 0 . 4-57
4-6 Data_b Slot Fornlat 0 0 . 0 0 . 0 0 0 0 0 . 0 . 0 0 0 0 . 0 0 0 0 0 0 . 0 . 0 0 • 0 0 0 0 . 0 ... 0 . 0 . 4-58
4-7 Attention Slot Format 0 • 0 • 0 .• 0 •.• 0 •• 0 • 0 0 . 0 ••. 0 0 .• 0 ••... 0 . 0 . 0 0 . 0 0 4-59
4-8 Reject Slot Format 0 ..•.• 0 . 0 0 •••••..••••.••.• 0 .•••••.•.•.••.... 0 4-60
4-9 Stop Slot Fornlat .. 0" •.•••. 0 ...••••••••.•...•..•. e • 0 ••••• 0 0 .. 0 0 4-61
4-10 Stop Message Format .•.••••.. 0 ••••••.•.••.•..•• 0 ••••• 0 •... 0 . 0 0 4-62
5-1 Queue Coordination .. 0 •.• 0 .••••• 0 ••• 0 . 0 0 •. 0 0 0 0 0 0 •.. 0 ...••• 0 ••. 0 5-5
5-2 Access Methods and Service Characteristics .•.•••.••.•..•••• 0 0 5-6
5-3 Queue and Request List Structure ••.• 0 0 •• 0 0 .•. 0 . 0 0 0 0 . 0 ... 0 0 . 0 0 0 . 0 • 5-7
5-4 Exchange Between Slave and Master . 0 ... 0 .. 0 . 0 . 0 .. 0 5-24
5-5 Command Message FOrlllat 0 ... 0 0 0 0 0 . 0 0 . 0 0 . 0 . 0 0 . 0 .. 0 5-32
5-6 Status Message Fornlat .. 0 .. 0 .. 0 . 0 0 • 0 0 .. 0 0 .. 0 0 0 . 0 .. 5-37
A-1 ACL and IDL Flow During Connection Establishment 0 A-3
A-2 ACLIIDL Connectivity Restriction Example o. 0 ... 0 0 .. 0 A-5
A-3 Service Announcement Message. 0 . 0 0 .. 0 . 0 0 0 A-16

vii

A-4 Solicit Infornlation Message A-20
A-5 Response Information Message A-23
A-6 Start Slot Fornlat .. A-29
A-7 Attention Slot Fonnat ... A-32
A-8 Data_b Slot FOrJnat ... A-34

Tables

3-1 Mu1ticasted Messages ... 3-7
3-2 Data Base on the Server ... 3-7
3-3 Infornlation Available To The Host 3-9
4-1 Ternlinal Server Virtual Circuit State Table 4-15
4-2 Host Virtual Circuit State Table ' 4-17
4-3 Ternlinal Server Slot State Table 4-23
4-4 Host Slot State Table ... 4-25
4-5 User/Slot Layer Functions 4-28
4-6 Slot/Virtual Layer Functions 4-33
5-1 Nat1le Translation Exanlples 5-10
5-2 Example of Connection Resolicitation 5-17
5-3 Exanlple of Slave Initiating Connection to Master 5-20
5-4 Example of Master Initiating Connection to Slave 5-21
5-5 Example of Connection Initiation Between Nodes Operating in Master/Slave

Mode 5-22
5-6 Subject (Slave) Node State Table 5-25
5-7 Object (Master) Node State Table 5-27
5-8 Subject (Master) Node State Table 5-28
5-9 Object (Slave) Node State Table 5-29
5-10 Nanle and Information Fields 5-31
A-1 ACLs and IDLs in Messages A-3
A-2 A Node Operating in Slave Mode A-12
A-3 Response Service Announcement Policy e e e.e • • • • • • •• • • • • • •• A-14
A-4 SRC_NODE_STATUS Bit Conlbinations A-25
B-1 LAT VS.l Implenlentations and LAT Messages B-2
B-2 Port Setting by Data_b Slots. .. B-6

viii

Preface

SCOPE

This document presents a communication architecture for an Ethernet local area
network. The architecture is called Local Area Transport (LAT). LAT is utilized
as a low level conlnlunication service upon which other higher level services are
layered.

LA T is structured as a communication service for terminal servers and host oper
ating systenls. The reason for presenting a specific nlodel is to provide a clear ex
anlple of how the architecture can be implemented. In fact, the architecture is ap
propriate to applications other than terminal to host communications. In general
the term "ternlinal" depending upon context means not only conventional inter
active terminal, but rather a port with equipnlent connected to it. Therefore, the
term "ternlinal" refers to a conventional terminal, application terminal, printer,
and even a computer.

The document assumes that the reader is fanliliar with the Ethernet, comnlllni
cations concepts, and practical problenls acconlpanying implenlentations of dis
tributed services.

The document describes a data transport service provided to the host and the ter
minal server. The level of detail is sufficient to allow the interoperability of hosts
and servers. Specific issues involved in building products that utilize LAT as a
transport service are addressed in detail by service classes.

Service classes are documented in appendices. Service classes define message for
nlats and algorithms which extend the basic services provided by the LA T architec
ture. These extensions address problems that are unique to the service class or to
the inlplementation of a product.

Ix

x

ASSOCIATED DOCUMENTATION

• "The Ethernet - A Local Area Network - Data Link Layer and Physical Layer
Specifications", DEC-INTEL-XEROX, V2.0, Septen\ber 30, 1980.

• DNA CSMA/CD Data Link Functional Specification, Version 1.0.1, 25 November
1985, Digital Equipnlent Corporation, Order No. AA-Y298A-TK.

• DDNA NI Node Product Architecture Specification, Version 2.0.1, 11 Novenlber
1988, Digital Equipnlent Corporation.

• DEC STD 169 (DEC multinational characters set), May 1982.

• DECnet Digital Network Architecture Phase IV, NSP Functional Specification

PURPOSE

The purpose of this document is to specify the LAT architecture in sufficient detail
to allow interoperable inlplenlentations to be built based on this document. The
purpose of the LA T protocol is to bias every design decision in favor of sinlplicity,
while silllultaneously preserving the goals of the LAT architecture.

DOCUMENT STRUCTURE

The LAT architecture document consists of the following chapters:

• Chapter 1 (Introduction) - states the assunlptions, goals and developnlent
history of the LAT protocol, defines the ternlino)ogy and notations used in
the doculllent.

• Chapter 2 (Architecture Overview) - describes main features, functions and
the characteristics of the LA T protocol.

• Chapter 3 (Nanling and Translation) - presents syntax and senlantic of
Nanles, used by LAT architecture, describes Name Translation Process.

• Chapter 4 (Circuit and Session Layers) - presents an architectural model
which describes state diagrams, axionlS and algorithnls, and nlessages for the
virtual circuit and session establishment and control.

• Chapter 5 (Connection Solicitation) - presents and architectural model which
describes connection initiation and queuing processes algorithms and mes
sages.

• Appendix A (Service class 1) - presents interactive and application ternlinals
services: describes the local area directory service, presents service access
control, describes algorithl11s and defines nlessages and extensions of the
slots used by the Service Class 1.

• Appendix B (Conlpatibility and lmplenlentation) - discusses conlpatibility is
sues between products inlplenlenting LAT 5.0 and LAT 5.1 versions of the
Architecture.

CONVENTIONS USED IN THIS MANUAL

All nunleric values are specified in decinlal.

Character string literals are quoted as in "DELPHI". OccasionaJly, phrases and
terms that are conceptually important to the architecture are quoted, "balanced
nlode II for instance.

Capitalized names are architecturally defined, an exanlple is SERVER_CIRCUIT_
TIMER. Lower case nanles are function names or events. For exanlple: transmiC
unacknowledged_queue is a function nanle and Send_data is an event.

xi

1

Introduction

Local area networks allow computing resources to be physically distributed through
out a facility, which satisfies the needs of the facility, instead of the needs of the
conlputing resources. Also local area networks dranlatically reduced cabling costs,
since all of the distributed computing resources connect to a conlmon cable.

An Ethernet can have as many as 1000 attachnlents on a single coaxial cable over
1 nlile in length. A potential problenl with so many attachnlents is the liIllited
bandwidth available on the Ethernet (about 7 usable nlegabits/second). For this
reason, communication architectures operating in this shared environment should
a1l0cate the available bandwidth efficiently I fairly and predictably anlong the nlany
systenls. This is an explicit goal of the LA T architecture.

A non-goal of the LAT architecture is to specify a transport mechanisnl sufficient
for the needs of a large number of applications. Instead, the architecture nlakes
sinlplifying assulllptions appropriate to a subset of possible applications. The
nlost inlportant 3ssunlptions are:

• Communication is local to a single (logical)Ethernet. This elinlinates the need
for any routing capability.

• The nature of the communication is inherently asymmetric. This sinlplifies
connection management, increases efficiency and greatly simplifies the host
inlplementation.

• The bandwidth of the Ethernet is much greater than the bandwidth needed by
an application. This assu~ption results in a timer based protocol.

Introduction 1-1

The above assumptions applied to the problem of connecting ternlinals to hosts
allow the following tradeoffs:

• Minimize the load on the host operating systems by transferring load to the
ternlinal server.

• Reduce ternlinal server complexity to allow very low cost hardware inlple
mentations, or increase the complexity to achieve a value added service in the
ternlinal server.

• Allow a user terminal to attach to any host in the local area, or restrict the
users view to a subset of the available hosts.

• Increase the level of performance at the terminal servers and limit the total
nUlllber of tenninal servers sinlultaneously using the Ethernet, or decrease
the level of perfornlance at the terminal servers allowing a greater number of
tenninal servers to utilize the shared Ethernet.

LAT views the Ethernet as a local device, not as a network. This approach allows
the inlplenlentation of the architecture to be confined to low levels of the host
operating systems. It also nlini1nizes the cost of installation and support of the
computing resources by requiring very little training on the part of the network
nlanager and users.

LAT assumes the Ethernet has very predictable attributes. LA T' s perfornlance
depends on "low probability" events occurring infrequently. LAT's correctness
depends on very "low probability events" not occurring at all. If "low probabil
ity" nleans less than one event every hour, and "very low probability" nleans less
than one event every year, then LAT assunles the Ethernet data link has the fol
lowing attributes:

• a low probability of datagranl duplication

• a low probability of datagrams being received in an order different from that
in which they were translnitted

• a low probability of datagrams being corrupted (and therefore not delivered)

• a low probability of datagrams being delayed more than 10 milliseconds be
tween source and destination ports

• a very low probability of datagrams being delayed more than 10 seconds be
tween source and destination ports

• a very low probability of datagranls being delivered to the wrong destination
address

1-2 LAT/Digital Equipment Corporation/Proprietary and Confidential

• a very low probability of datagranls being delivered which contain undetected
corrupted data

• a bandwidth greater than 1 lllegabit/second

• a broadcast/nlulticast capability (see above)

Another non-goal of this architecture is to provide any level of security beyond
that provided by the Ethernet itself. Extensions to this architecture in the areas of
authentication and data link encryption have been anticipated, but not realized.

LAT architecture development history is presented by two protocol versions: LAT
5.0 version and the LAT 5.1 version. The main characteristics provided by the
LAT 5.0 version (first version inlplemented in the actual products) are:

• nlultiplexing nlultiple sessions over one virtual circuit;

• asymnletry - master/slave relations between ternlinal server (nlaster) and host
(slave) where connection can be established only frolll nlaster to slave;

• services are offered only by hosts (hosts advertise offered services through
nlulticast nlessages and never listen to multicasts; servers listen to nlulticasts
and support data base of nodes and services).

The additional features of LAT architecture 5.1 (compared to LAT architecture 5.0)
consist of the following:

• support of application terminals (such as printers) that require connections
driven by the the hosts (slave) nodes. I.e. LAT 5.1 version allows host
(slave) nodes initiate connections to the server (nlaster) nodes.

• in addition to the host advertising, servers can advertise offered services
(such as printers) by listening to the solicit information request issued by host
nodes and responding with the nlessage containing required inforlllation;

• connections to the specific ports to allow users to set characteristics and con
nect to required ports;

• clarification of the Group Codes, ambiguously defined by the LAT 5.0 archi
tecture.

• compatibility between products ifl'lplementing 5.0 and 5.1 versions of the ar
chitecture.

Introduction 1-3

1-4

LAT 5.1 architecture was developed to satisfy the above nlentioned requirenlents.
The ll1ain features of the LAT 5.1 version discussed in this docull1ent are:

• preserving" asynlnletrical" nature of the nlaster-slave relations, the LAT 5.1
architecture allows hosts (slaves) to initiate connection to the ternlinal servers
(nlasters), providing connections to the application ternlinals;

• synlnletry of services was introduced (i.e. servers can advertise offered ser
vices as well as hosts). Special measures were included in the architecture
to allow hosts to choose 111eanS of processing service infornlation depending
upon available resources;

• " queued" access to the services allowing services queue connection request to
the currently active service for the future processing;

• port nanles were introduced, allowing a user to directly connect to the speci
fied port offering the requested service;

• usage clarification of the Group Codes as II connectivity restriction II nlecha
nisnl;

• clarification of the issues concerning session characteristics, data transparency
and port characteristics setting;

• discussion of the compatibility issues between products implenlenting LAT
5.0 and LAT 5.1 architecture.

The major goal of the new LAT architecture is to provide a reasonable compro
mise between the nunlber and complexity of the features included in the archi
tecture and requirements of the wide range of products based on the LA T archi
tecture. Another very inlportant issue in the process of the developnlent of the
LAT 5.1 architecture was to provide S11100th transition fronl the LAT 5.0 products
to the LAT 5.1 products. The main issue to resolve was to design the architec
ture which addresses needs of different products, allows products to satisfy their
tinle-to-nlarket requirenlents and preserves conlpatibility between products.

In pursuing these goals major attention in the design of the LAT architecture was
paid to two aspects: alto provide wide spectrum of the LAT products with the
architecture to satisfy their needs without necessity to invent ne\.\' mechanislTIS or
protocols for each product and b)produce a "nlodular" architecture that would
allow any specific product to implement any of new features without necessity to
implell1ent all of them and still preserve compatibility across the product space.

The above requirenlents dictated the architecture would have:

LAT/Digital Equipment Corporation/Proprietary and Confidential

• . features that can be "added" to the LAT products without need to re\·vrite the
whole inlplelnentation cOlllpletely (new state tables, changes in the protocol,
etc.);

• features that are "nlodular" (i.e. each product can decide what features
should be inlplenlented based on their schedule, resources etc.). It is not nec
essary to inlplenlent all features in order to be conlpatible with other prod
ucts;

• conlpatibility between products based on the LAT 5.0 version of the architec
ture and new products inlplenlenting features of the LAT 5.1 version.

, ., Terminology

• local area (network) - the topology defined by the set of logically equivalent
processors directly attached to a shared interconnect.

• ternlinal server - a dedicated function systen1 (processor, controller) provid
ing attachnlent points for ternlinals in the local area via a responsive virtual
circuit service spanning the shared interconnect.

• datagram - an atomic unit of information exchanged by local area networks.
In the Ethernet ilnplementation, datagranls are required to have a constant
fornlat consisting of: destination port address, source port address, protocol
type, data and an error detection code. Datagranls nlay get corrupted on the
Ethernet, and are therefore not always delivered to the destination address.

• message - a datagranl under virtual circuit error control.

• slot - a segnlent of a nlessage used to conlmunicate data between a terIllinal
on a terIllinal server and a host service. Messages l1lay have zero or 1110re
slots.

• session (connection) - a transient association which allows a ternlinal server
to exchange data reliably with a single host service utilizing an underlying
shared virtual circuit.

• flow control - a set of rules applied to processes which prevents a transnlit
ting process fronl sending data to a receiving process that is not prepared to
buffer the transnlitted data.

• broadcast - as applied to data links, broadcast capability refers to the ability
of anyone port to address all other ports sinlultaneously with a single data
gram.

Introduction 1-5

• multicast - as applied to data links, nlltlticast capability refers to the ability
of anyone port to address a sub-set of all other ports sinlultaneously with a
single datagranl,

• users - the consunlers of the services provided by this architecture. As ap
plied in this document, the ternl "user" is an abstraction that refers to the set
of routines interfacing to the highest level of the architecture, The services
provided to users are connection nlanagelllent and data transfer.

• Service class - a I-byte value in the range 0-255:

val ue 0 - reserved

value 1 - reserved for interactive and application ternlinals (serial byte
stream processing).

values in the range 2 to 127 reserved for DEC use

values in the range 128 to 255 reserved for custon1ers

• Nanle - a string of ASCII characters nleaningful in the context of a client us
ing it. NallleS are used to provide identification of entities within the LAT
architecture that can and need to be identified. Chat'acters within an ASCII
string representing the nanle are constrained as described in the section of
the LAT architecture entitled "Specification of Nanles."

• Resource - an entity or set of entities known to perform a certain set of func
tions that can be identified, nanled, and accessed within LAT.

• Master - an addressable process that provides conlnlunication attachnlent
points for virtual circuits. The nlaster initiates and controls activity over vir
tual circuits. The state-table of a nlaster process is defined in the LAT archi
tecture dOCUl1lent.

• Slave - an addressable process that provides the passive side of the conl
munication attacllnlent point for a virtual circuit, The slave responds to the
nlaster's request. The state-table of a slave process is defined in the LA T ar
chitecture document.

• Virtual circuit - a communication path between a master and a slave. A vir
tual circuit is a bidirectional, sequential, tinlely, and error-free logical streanl
of data. On Ethernet, a virtual circuit service is a value added service since
the Ethernet data link provides ~ datagranl service.

• Subject - a consumer of the resources, an active initiator of a connection. A
subject can initiate and support relations only with objects, not with other
subjects. A subject can be a master as well as a slave.

1-6 LAT/Digital Equipment Corporation/Proprietary and Confidential

• Object - a provider of the resources, a passive responder to requests for es
tablishing connections. An object does not initiate connections. An object
can be a l11aster as well as a slave.

• Session - a transient association that allows a subject to exchange data reli
ably with an object by utilizing an underlying shared virtual circuit.

• Service - the descriptive nanle of the resources; the name is used by users
to identify a resource and is used by LAT to establish an access path to the
resource.

• Node - the environnlent on the end of the virtual circuit that provides func
tioning of a nlaster and slave processes. A node can operate as slave, nlas
ter or both sillluitaneously. In this docuillent the expression /I slave (nlaster)
node" really nleans "a node operating in slave (nlaster) nlode. /I Each node is
uniquely identified by name.

• Advertising - the process that allows users to identify nanles and characteris
tics of the resources to be used. As applied in this docunlent, the ternl /I ad
vertising process /I refers to a certain l11essage-exchange nlechanisnl provided
by the LAT architecture. Each node, whether it is a slave, a nlaster or both,
can advertise services.

• Interactive terminal - a device that is under the control of the terminal user
connected to a node running in nlaster mode.

• Application terminal - a device that is under control of the application pro
cess running within a slave environnlent (in SOllle cases an application de
vice nlay not have a keyboard or even be a 'ternlinal' at all - it nlay be a line
printer, a video monitor, a display window etc.).

• Port - an access point that a node present to users. Each port serves as a
cOlnnlunication path between a user and a resource. Ports can be nal11ed.

Introduction 1-7

2

Architecture Overview

2.1 Introduction

The major components of the architecture are the terminal server, the host node,
the local area network and software 1110dules in the tenninal server and host.

The principal functional capability provided by the architecture is the logical con
nection of interactive and application ternlinals to host nodes. A vertical view of
the topology would reveal:

Architecture Overview 2-1

2-2

Figure 2-1: LAT Network Topology
-----,'-"----

+---+ Application ApplicAtion
H 0 S T S E R V ICE S I process process

+--------+-----+--------+-----+--------+--+ +--------+ +--------+
I Node 1 I I Node 2 I I Node 3 I I Node m I I Node n I

+--------+ +--------+ +--------+ +--------+ +--------+

v v v v v
Ether<--->net

V V V

+---------------+ +--------------+ +--------------+
Terminal Terminal I Terminal I
Server 1 Server 2 I Server n I

+---------------+ +--------------+ +--------------+
I I I I ... I I I I I I .. I I I
o 0 0 0 o o 0 * * * * 0 0

+----------------------+
Interactive Terminals Servers Services

+----------------------+
Application Terminals

LA T architecture provides symnletry of services offered by hosts as well as ter
nlinal servers. Users on the ternlinal servers have an access to the list of services
available on the hosts and can initiate the connections to the services. The san1e is
true for users (Le. application processes) on the hosts - they have an access to the
list of services offered by the terlllinal servers and can initiate connections to those
services (though because of asynlnletry in the algorithnls on the host and terIllinal
servers actual connection initiation processes are different as shown further).

Each of the users of the ternlinals on 1/ terminal server 1" could be connected to a
different host service sinlultaneously. Or they could all be utilizing the sanle host
service. The sanle holds true for all of the other ternlinal servers.

Symnletrically, each application process running on the host node (Le. "user")
can be connected to a different service offered by a ternlinal servers or several
users can utilize the sanle service.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Services are nanled resources within the LAT environnlent. Nanles are the pri
nlary nlechanisnl for users to identify required resources and provide LAT with
enough information to arrange an access path from the u~er to the resources. The
LAT architecture presents a II nallle translation process II that takes place when a
nanle is presented to the LAT session interface This process provides translation
of the descriptive nallle presented by a user into a physical path to a resource.

It is also possible for a single systenl to operate sinlultaneously as both a host
iInplenlentation and a terIllinal server inlplenlentation. If such a systenl wishes
to allow local ternlinal users to transparently connect to the local host services,
Ethernet messages translllitted by the local systelll nlust logically be delivered to
the local systenl.

The following diagranl shows the relations among nlaster/slave, subject/object,
user/resources, and nodes.

Figure 2-2: Relations Between Layers

Active Connection
element

data stream
User <--------------->

session
Subject <--------------->

virtual circuit
Master ---------------> Slave <---------------

datagrams
Node <--------------->

Architecture Overview

Passive
element

Resources

Object

Slave
Master

Node

Corresponding
ISO levels

level 6

level 5

level 4

level 3

2-3

2-4

The Ethernet itself is layered:

Figure 2-3: Physical and Data Link Layers

m u 1 tip 1 e com m u n i cat ion arc hit e c t u res

Data
Link
Layer
I
v

I
I

Physical
Layer
I
I
v

I I I
V v V

+---------------+ +----------------+ +----------------+
Iprotocol user 11 I protocol user 21 t protocol user nl
+---------------+ +----------------+ +----------------+

\ /
\ /

+--+
Ithe port delivers datagrams to the different protocol users I
I based upon the protocol type field in received datagrams I

+--+

v

<--- Ethernet datagrams --->

v v v
o the rEt her net p 0 r t s

As shown above, the Ethernet data link layer (the port hardware and driver) and
the Ethernet physical layer (the cable) can sinlultaneously support LAT and other
comnlllnication architectures. This is accon'plished by assigning each con,n'\unica
tion architecture a unique protocol type in the Ethernet datagranls. The Ethernet
ports use the Ethernet protocol type field of receive datagranls to distinguish be
tween the LAT protocol and other protocol users of the Ethernet.

LA T /Digital Equipment Corporation/Proprietary and Confidential

Datagrams are transmitted and received over the Ethernet by an ilnplenlentation
of the LAT architecture. The LAT architecture could be viewed as a layered archi
tecture:

Figure 2-4: Layered View of the LAT Architecture

Terminals Application Processes

+------+-------+------+ +------+-------+------+
luser-ll ••• luser-nl<- Users Services ->Iuser-al ••• luser-NI

->+------+-------+------+ +------+-------+------+
L Terminal Server I<-Terminal Server and Host->I Host

Slot Layer Iprocesses pass data & control I Slot Layer

A +---------------------+ +---------------------+
I Terminal Server I<-Terminal Server and Host->I Host I

T IVirtual Circuit Layerlprocessors exchange messages !Virtual Circuit Layer!
->+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+
E Terminal Server !<-Terminal Server and Host->! Host !
T Data Link Layer Iprocessors exchange datagramsl Data Link Layer I
H +-+-+-+-+-+-+-+-+-+-+-+ - - - - - - - - - - - +-+-+-+-+-+-+-+-+-+-+-+
E I
R I
N I
E I
T I

ETHERNET Physical Layer
(Physically shared)

I
I
I
I
I

->+---+

In practice, an implementation would collapse the Slot and Virtual Circuit Layers
into a single nlodule.

Functionally, the virtual drcuit layer establishes and maintains a shared virtual cir
cuit. The slot layer multiplexes one or more users connections over the underlying
shared virtual circuit.

2.2 SLOT LAVER - USER INTERFACE

The primary responsibility of the slot layer is user session establishnlent, data
transfer and nlultiplexing/denlltltiplexing over a conll11on underlying virtual cir
cuit maintained by the virtual circuit layer. The sessions are established between
terlllinals and host services.

Architecture Overview 2-5

The LAT protocol is specified in a way that allows each service class the freedon1
to define extensions to the basic connection nlanagenlent and data transfer ser
vices. These extensions to the foundation service can address problenls unique to
the type of service being provided.

2.2.1 Connecting to the Host Service

2-6

Each host service nlakes its presence known to the local area by advertising the
service in a datagranl which is periodically multicasted to aU terlllinal servers fronl
each host node. Both the host node nanle (SLAVE_NODE_NAME) and the host
service nanles (SERVICE_NAME) are represented in each I1lulticasted datagralll.
The ternlinal servers receive these nlulticast datagranls, to build up a list of avail
able host nodes and services, so as to provide the user a selection of the hosts
services. NOrIllally, these services would be presented at each ternlinal in a con
sole nlode local to the terIllinal server as shown in Figure 2-5.

Figure 2-5: Connecting to Host Services

+---------+ +---------+ +---------+ +---------+ +---------+
Iservic~-al IService-bl IService-cl IService-dl Iservice-el
IService-cl IService-cl 1 1 IService-cl IServic~-cl

++-------++ ++-------++ ++-------++ ++-------++ ++-------++
I Node AI 1 Node BI 1 Node CI I Node 01 I Node EI
+-------+ +-------+ +-------+ +-------+ +-------+

I I
These host nodes (A,B,C,O and E) multicast datagrams

periodically onto the Ethernet which name services a,b,c,d and e.
I 1 I 1 1
v v v v v

Ether<--->net
1 1

Terminal servers build up and present lists of available host services
to each user. The node names are not presented to users.

I 1
V v

+--------------------+ +--------------------+
1 Available services: 1 1 Available services: I
I a,b,c,d,e 1 1 a,b,c,d,e 1

+--------------------+ +--------------------+
1000000001 1000000001
1000000001 1000000001

+--------+ +--------+
Terminal at Terminal at

terminal server a terminal server b

A user can simply select the desired host service from the displayed list of avail
able host services. The slot layer translates the selected host service nanle into
the name of a host node which offers the service. After successfully establishing
a session with the desired host service, further input typed by the user at the ter
minal is transferred as if the terminal was, in fact, local to the host. On the other

LAT/Digital Equipment Corporation/Proprietary and Confidential

hand, the peculiarities (such as Illeaning of control-O, control-T, control-Y ...) of
a particular host service remain unknown to the ternlinal server.

Note that nlore than one host node can offer the sante host service (e .g. host ser
vice c). This is useful when the host services being offered are equivalent (e.g. an
interactive tinlesharing service offered by a V AXcluster).

For network nlanagenlent purposes, each tertllinal server can present a different
set of available host services based on group codes assigned to host nodes and
ternlinal servers. This capability is provided to allow segnlentation of the C0I11-
puting resources based on such criteria as departnlental ownership or physical
location. See the section "LOCAL AREA DIRECTORY SERVICE" (Appendix A)
for 1110re details.

2.2.2 Connecting to the Terminal Server Service

The case above presented a model for initiating a connection fronl the interactive
ternlinals (which are connected to ternlinal servers) to the services offered and
advertised by the host operating systems.

LA T architecture also allows the connection of application ternlinals to terminal
servers that offer services. Application ternlinals are defined as devices under the
control of an application process on a host operating systenl. A line printer con
nected to a ternlinal server is an example of an application terminal. An applica
tion process such as a line printer despooler can initiate the connection fronl the
host systenl to the terminal server for this device. Application ternlinals are not
constrained to be output-only devices.

Advertising services, host services periodically nlulticast advertising 111essages to
the local area network, and terIllinal servers receive these datagral11s to build up
a directory of available host nodes and services. A host node would not nornlaHy
listen to these nlessages unless it choose to inlplenlent both the ternlinal server
and LA T host functionality. In order to not burden host applications with imple
nlenting a directory service, LAT architecture provides also a different nlechanisnl
that allows host applications to solicit node and service infornlation. Host appli
cations use this nlechanisnl to get inforIllation about services and terIllinal server
nodes supporting application devices.

In order to connect an application process running on the host to the service of
fered by ternlinal server, the LAT architecture provides two functions:

• "connection solicitation". A nlechanism that allows host node to solicit con
nection requests frolll the ternlinal server which then actually starts the COI1-
nection.

Architecture Overview 2-7

2-8

• directory service. A 1l1echanisnl that allows advertising of services offered by
servers. That is, the LAT servers can offer services (for exa1l1ple, application
terminals) as well as host systenls. Advertising services offered by servers al
lows hosts to receive and process directory infonnation froIT\ servers thereby
avoiding n1anual input of the addresses.

An application on any of the host operating systen1s ll1ay solicit a connection to
an application ternlinal by either selecting a service offering the desired applica
tion ternlinal or by selecting a port on a specific tenninal server. A service nallle
provides an access path to one or 1110re application terll1inals 01' one or 1l10re
servers. An application terll1inal ll1ay belong to zero or 1110re services. Norn1aJly,
an application process selects the desired service, and the slot layer translates the
service na1l1e into the nanle of a ter1l1inal server node which offers that service.
The solicit connection request is sent to the target terll1inal server for evaluation,
and any port offering the requested service will satisfy the solicitation connection.
Port na1l1eS are not constrained to be unique within the local area network and
are only defined within the context of the port's node. The target tenninal server
ll1uSt validate the port nanle portion of a solicit connection request.

Before a host node solicits a connection to a service, it may l11ulticast a solicit ser
vice inforn1ation request. One or nlore nodes nlay respond to the request with
service infornlation. The host node evaluates the responses and selects a node to
solicit for a connection. If a request is accepted by the ternlinal server, the tenni
nal server initiates a connection.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 2-6: Connecting to Servers Services

A P P lie a t ion Pro c e sse s

+--------+ +--------+ +--------+ +--------+
I Node 1 I I Node 2 I I Node 3 I I Node m I
+--------+ +--------+ +--------+ +--------+

a,b c,d a,b,c I I a,b,c,dl available services

+--------+ +--------+ +--------+ +--------+
I

These host nodes solicit service information from the
terminal servers and process incoming responses.

I I I
v v v v

Ether<--->net

+------------~+
I Terminal
I Server 1
+-------------+

I I .. I I
o 0 0 0

Interactive
terminals only

(no services)

I I
These terminal servers respond with service information

I I
V v

+--------------+ +--------------+
Terminal Terminal
Server 2 Server n

+--------------+ +--------------+
I I
o 0

+ •• + I I + +
* * * * 0 0

+---------------------+ I . Services I
I p,q,r,s,t I
+---------------------+
Application Terminals

The slot layer of the LAT architecture allows" shared" services, (i.e. one service
can be shared by nlany users by nleans of queued access to services). This is par
ticularly desirable for services that can only be satisfied by a lilnited nU1l1ber of
'physical entities such as those services that offer access to application devices.
The principle of "service sharing" is based on a nlechanisnl of queues. Each ser
vice possesses "queued" or "non-queued" characteristics. Queues are accessed by
subjects through connection requests qualified by "queued" or "non-queued" ac
cess nlethods. The LAT . architecture defines nlethods for a user to request queued
or non-queued access to a particular service.

2.3 VIRTUAL CIRCUIT LAYER

The primary responsibility of the virtual circuit layer is to establish and nlaintain
virtual circuits between host nodes and ternlinal servers.

The virtual circuit allows messages to be reliably exchanged between the terminal
server and the host node. The fornlat and the rules· governing nlessage exchange
is specified by the Local Area Transport architecture. The virtual circuit layer is
responsible for translating node nalnes into 4S-bit Ethernet addresses. The data

Architecture Overview 2-9

2-10

necessary to 111ake this translation is nOrIllally supplied to the virtual circuit layer
by 111ulticast datagranls.

Transll1ission of messages fronl the ternlinal server to the host node is tinler
based. The host always responds to these Illessages frolll the terlllinal server.
Under certain conditions (see state diagral11) the host node nlay send an unso
licited nlessage.

The architecture nlininlizes the overhead of the virtual circuit by:

• using sinlple, asynlnletric connection l1lanagement. Only one virtual circuit
is established between any pairing of a ternlinal server and host node (l11ulti
pie nodes nlay be inlplenlented in a single processor or nlultiprocessor). The
virtual circuit service is always initiated at the request of the tertllinal server.

• procrastinating so there is nlore to do when things have to be done. Messages
are not nornlally exchanged when data is available to be transnlitted. Instead,
nlessages are exchanged periodically. The rate of exchange can be set to a
constant value or varied to suit the needs of the application. A typical value
for tertllinal servers is about 80 l1lilliseconds. As 1110re users are connected
over an existing virtual circuit, the nunlber of nlessages exchanged is held
constant, but the length of each nlessage is likely to increase.

• piggybacking virtual circuit control information and nlultiple users data in a
single nlessage. The virtual circuit sinlultaneously supports nlore than one
user, the messages are divided into an Ethernet header (which allows the
physical cable to be shared), a LAT header (which allows the virtual circuit
to be shared) and one or more slots. Slots contain a header, which identifies
a terlllinal and a host process offering the host service.

An Ethernet nlessage is limited in length to 1518 bytes:

+---------------+-------------+----------------+----------------+
IEthernet header I LAT message

I Frame check

+---------------+-------------+----------------+----------------+ 1<-- 14 bytes ->1<----- up to 1500 bytes ----->1<-- 4 bytes -->1

Maximum size of the LAT message is 1500 bytes. LAT message consists of
slots, where a LAT slot is lilllited to 255 bytes of data:

+-----------------+-----------------------+
1 LAT slot h •• der 1 slot data

+-----------------+-----------------------+ 1<--- 4 bytes --~>I<- 255 bytes maximum ->1

LAT/Digital Equipment Corporation/Proprietary and Confidential

• assuming a low loss, highly responsive, high bandwidth, point to point inter
connect. Messages are not pipelined; instead, each end of a virtual circuit
takes turns translllitting nlessages. This Iinlits the load a single virtual cir
cuit can present to the Ethernet. Since nlessages can be exchanged quickly,
it does not reduce the available bandwidth below useful levels for nlost appli
cations.

2.4 Product Considerations

2.4.1 Host

Hosts inlplenlent the passive (or slave) end of the virtual circuit because this end
of the virtual circuit is sinlpler (and therefore offers less load). The entire archi
tecture can be inlplemented in operating systenls by presenting the LAT user in
terface to the operating systenl ternlinal driver as though it were one or nlore
ternlinals. By encapsulating the architecture within this existing franlework, the
nlaxilllulll benefit can be gained with a nlininlunl effort.

An exanlple sequence of events when a user on the ternlinal server connects to
the service on the host node can be presented follows:

1. A terminal server "hears from" a host node and adds the host node to its
nlenu of available systems and the host service nanles to its lllenu of avail
able services.

2. The ternlinal server user requests a connection to a specific host service by
choosing one of the host service nanles displayed at the ternlinal server.

3. The terminal server connects to the host node.

4. The operating systenl ternlinal driver creates a "virtual" terIllinal.

5. The ternlinal server user "logs in" .

An exanlple sequence of events when an application process (user) on the host
node connects to the service on the ternlinal server node can be presented fol
lows:

1. The host sends a request, to solicit information about a desirable service fronl
all nodes. The host waits for the responses, processes the infornlation and
chooses one particular node.

2. A host sends a connection solicitation request to that particular node and
processes a response containing infornlation about status of the request.

Architecture Overview 2-11

3. The ternlinal server connects to the host node by creating a virtual circuit.

4. The application process starts transnlitting data.

Operating systems that inlplelnent the LAT architecture will benefit greatly if the
tenllinal driver is organized as a tertllinal "class driver" and 1/ port driver 1/. The
class driver embodies the control characteristics of the operating systelll termi-
nal interface, while one or 1l10re port drivers specialize in passing streanl data
between the (local) ternlinal hardware interface and a COlllnlon class driver inter
face. As a specific exalllple, consider the following exanlple (VAX/VMS operating
systenl).

Figure 2-7: LAT Driver Organization

+-----------------------------------+ Soft, OS specific, VMS Terminal Class Driver I Class Driver

interface -----------> +-----------------------------------+
DZ32 DZll DMF LAT I

I Port I Port I Port I Port I Port Driver
Hard, DEC specific, I Driver I Driver I Driver I Driver I
interface -----------> +-----------------------------------+

DZ32 DZll I DMF NI
I Port I Port I Port I Port I Local Interface

Hard, industry I Hardware I Hardware I Hardware I Hardware I
standard interface --> +-----------------------------------+

wires, fibers and other
assorted paraphernalia

+-----------------------------------+

Within the host, the inlplementation of the Local Area Ternlinal architecture is
confined to the box labeled "LAT Port Driver". In an actual iInplelllentation, the
"LAT Port Driver" would consist of a LAT protocol driver and an underlying, nOI"
nlally shared, NI Port Driver.

2.4.2 Terminal Server

2-12

The simplest terminal server can be implemented by using a inexpensive micro
conlputer. The LA T software nl0dules, and the rest of the operating systelll code
can be implenlented in read only nlenlories. A user friendly console interface, bet
ter than those found on large commercial ternlinaI switches, can be used to assist
the person trying to utilize a host service.

A more complex ternlinal server could utilize LA T to communicate nlore struc
tured data than the character streams described in this docunlent. Exanlples nlight
be workstations transferring files between the host and the workstation, or a ter
minal server that supported multiple windows at the ternlinal, each mapped to a
different session.

LAT/Digital Equipment Corporation/Proprietary and Confidential

3

Naming and Translation

3.1 Naming Conventions

Service names are the prinlary mechanisnl for users to identify required resources
and provide LAT with enough information to arrange an access path fronl the
user to the resources. When a service nanle is presented to the LA T environment,
processing takes place in the context of a request that allows the subject to estab
lish a connection with an object and associate the request with an access point
(port). Service name translation involves nlessage exchange between subject and
object nodes and translation of service names (coded within LAT nlessage fields
as ASOI strings) on both conlnlunicating nodes as described below.

The scope of the service name space is the local Ethernet or the extended local
Ethernet if bridges or repeaters are used to extend the Ethernet local area net
work.

3.1.1 Service Name Translation Process

A user initiates a connection by presenting a resource name to the nanle transla
tion process used by LAT. A resource nanle is based on a triplet of nanles: the
name of a destination node, the name of a requested service, and the nanle of a
port on a destination node. The general principles of the name translation process
are presented below, where a connection from the source node (SOURCE_NODE)
to the destination node (DESTINATION_NODE) is established based on a triplet
of names: SERVICE_NAME, DESTINATION_NODE_NAME, DESTINATION_
PORT_NAME. A model of the nanle translation process is presented in Figure 3-1
({} denote optional parameters).

Naming and Translation 3-1

3-2

Figure 3-1: Name Translation Process

user

{SERVICE_NAME}
{DESTINATION_NODE_NAME}
{DESTINATION_PORT_NAME}

I "
I
I
I
I 1

+---------1-------1---+
I I SOURCE_NODE
1 1
v 1

+-----------------------+ +-----------------+
SERVICE NAME into I 1 Local area 1

I DESTINATION_NODE_NAME !------>Idirectory service 1
1 translation and 1<------1 (advertising I
1 DESTINATION_NODE name 1 ! process) 1
1 validation 1 1 1
+------------ ----------+ +-----------------+

+-------------------- ------ -----------------------------------+

{DESTINATION_SERVICE_NAME}
{DESTINATION_PORT_NAME}

+-------------------- ------ -----------------------------------+

V

+-----------------------------+ +-------------+
mapping/defaulting Service name 1
SERVICE_NAME and 1----->1 translated 1
PORT NAME into 1 1 locally (newl
service/port pair 1<-----1 name may be 1

+---~-------------------------+ 1 created 1
+-------------+

DESTINATION_NODE

+---+

Figure 3-2 presents a possible combination of services, nodes and ports. Table
3-1 gives some exanlples of the rules of a SERVICE_NAME, NODE_NAME and
PORT_NAME translation based on the Figure 3-2.

Services 51 and S2 (denoted by + + + + + +) are offered" by Nodes N1 and N2
(denoted by ---). The ports are represented by the symbol " 0". There are two
services, two nodes, and three ports in each node. Ports PA on Nodes N1 and

LAT/Digltal Equipment Corporation/Proprietary and Confidential

N2 do not provide any services. Port PB on node Nl provides only service 51
and Port PB on node N2 provides only service 52. Ports PC on both nodes can
provide both services. Each node offers both services Sl and 52. Each node pro
vides a "default service." A default service is a service provided by a node if a
received connect request does not specify a destination service nal1le.

Figure 3-2: A Combination of Services, Nodes and Ports

1-----------------------1 1 NODE Nl 1
1 1
1 0 Port PA 1

1 1
1 +++++++++++++++++++++++++++++++++
1 + SERVICE Sl +
1 + Port PB +
1 + 0 +
1 + +

++++++++++++++++++++++++++++++ +
+ S 1 + + +
+ E 1 + + +
+ R 1 +Port PC+ +
+ v 1 + 0 + +
+ I 1 + + +
+ C 1 + + +
+ E 1------ +-------+------- +
+ + + +
+ S + + +
+ 2 1-------+-------+-------1 +
+ 1 + + 1 +
+ 1 Port + + 1 +
+ 1 PB + Port PC+ 1 +
+ 10 +0 + 1 +
+ 1 + + 1 +
++++++++++++++++++++++++++++++ 1 +

1 + 1 +
1 + 1 +
1 +++++++++++++++++++++++++++++++++

1
1 Port PA
1 0

I
I NODE N2 I
1-----------------------1

The process that translates the service name on the target node nlay either cause
no translation at all by using the default service nanle, or causes a conlplicated
translation process depending upon available resources, existing services, sched
ule, some special translating functions, etc. When it receives the destination ser
vice nanle, the destination node translates it and sends it back to the source node.
The source node should not reject the connection if a different service name was
returned by a destination node. The source node nlay use the result of a transla
tion to establish a connection.

Naming and Translation 3-3

Sonle exalnples of the translation process are presented in Figure 3-3. Those ex
anlples arc based on Figure 3-2. ASSU1l1e that the node translates the service nanle
Sl into 51 and that the default service nanle is also 51.

Figure 3-3: Name Translation Table (Source Node)

----------------------- ---1
input result of translation 1

--------- ------ ------ --------- ------ ------ -----------------------1
service node port service node port error I

--------- ------ ------ --------- ------ ------ -----------------------1
S1 S1 N1 PC(N1) I

or PB(N1) I
N2 PC(N2) I

--------- ------ ------ --------- ------ ------ -----------------------1
S1 Nl 51 Nl PC 1

or PB I
--------- ------ ------ --------- ------ ------ -----------------------1

S1 N1 PA port doesn't offer srvcl

--------- ------ ------ --------- ------ ------ -----------------------1
S1 N1 PB 51 N1 PB 1

--------- ------ ------ --------- ------ ------ -----------------------1
N1 51 N1 PC 1

or PB I
--------- ------ ------ --------- ------ ------ -----------------------1

N1 PB S1 N1 PB 1

--------- ------ ------ --------- ------ ------ -----------------------1

The translation rules, presented below, provide nallle translation for conlbinations
of nodes, services, and ports.

3.1.2 Translation Process On A Source Node

3-4

To initiate a connection, a user presents to a source node a Resource Nanle con-
sisting of: {SERVICE_NAME} {DESTINATION_NODE_NAME} {DESTINATION_
PORT_NAME}. The DESTINATION_PORT_NAME presented without the DESTINATION
NODE_NAME causes the source node to be chosen as a destination. If the DESTINATIO
NODE_NAME is specified, the DESTINATION_PORT_NAME is optional.

At the SOURCE_NODE only the DESTINATION_NODE_NAME is translated/validated.
If the DESTINATION_NODE_NAME is specified, no SERVICE_NAME translation
is done and the DESTINATION_NODE_NAME is used to initiate a connection (if
validation succeeded).

If no DESTINATION_NODE_NAME is specified, the DESTINATION_NODE_
NAME is determined based on translation of the SERVICE_NAME front the ad
vertised service database. The source node may reject the connection based on an
unknown node, or, if a node isn't specified, based on the inability to translate the
service to a node.

LAT/Digital Equipment Corporation/Proprietary and Confidential

3.1.3 Translation Process On A Destination Node

The SERV1CE_NAME is ahvayR tranRlnted on the DESTINATION_NODE. If the
DESTINATION_PORT_NAME· is specified, a port is selected and the service is se
lected at that port. If the service is not available at the specified port, the request
is rejected with the "port doesn't offer service" reason. If the DESTINATION_
PORT_NAME is not specified, an available port is selected by the DESTINATION_
NODE for the requested service. If a service nanle is not specified on a source
node and if a destination node does not have a default service (i.e., the default
service is unnanled), the destination node nlay choose to accept or reject a con
nection. If the destination node accepts a connection, it translates an unspecified
service nanle into a null-length nanle field. If the destination node rejects a con
nection, it returns the "no service available" reason.

The service nanle serves a dual role. The service nanle l11ay be used to select a
destination node at the source node, nlay be used to select a port at the destina
tion node, and nlay be used to select the data processing function at the destina
tion port (the latter describes the case of an application task running on a slave
and not necessarily advertised as a service). LAT VS.l provides a nlechanisnl that
allows a user to initiate a connection with an application task. In this case, an
other nanle (process nanle or task nanle) that uniquely identifies a task within a
node is used as the service name.

Discussed three types of nanles are interpreted by the circuit and session layers as
follows:

• NODE_NAME - Node nanles correspond to "service access points" (SAPs) or
II sockets" in the host node virtual circuit layer. Each virtual circuit between
a host node and a Ternlinal Server connects two of these virtual circuit layer
service access points together. Source and destination node nanles together
with source and destination Ethernet addresses uniquely identify each vir-
tual circuit. The virtual circuit (CIRCUIT _NAME) on the nlaster aSSUll1eS the
nanle of the host node (SLAVE_NODE_NAME). The virtual circuit (CIRCUIT_
NAME) on the slave assunles the name of the server node (MASTER_NODE_
NAME).

• SERVICE_NAME - Service nanles correspond to service access points in the
slot layer in the host. These nanles are supplied to ternlinal selVer users for
the purpose of providing a convenient nleans of identifying selVices. These
names are especially useful in establishing slot sessions when more than one
type of service is offered by a host node. The sanle service nanle n'\ight be
specified by nlore than one host node if equivalent selVices are offered by the
two different nodes. Destination selVice is specified by user is specified in the
start slot.

Naming and Translation 3-5

• PORT_NAME - Port nanles correspond to physical or virtual ports on the
host or server nodes. Connecting to the required service user can specify this
nanle to direct data flOYl to the particular port.

3.2 Service Advertising Mechanisms

The following sections describe two nlethods of service advertising inlplenlented
by the LAT architecture.

3.2.1 Host Advertising

3-6

To advertise availability of services, host nodes utilizes a single nluJticast nles
sage. This nlessage enables the virtual circuit layer to translate node nallles into
48-bit Ethernet destination addresses and the slot layer to translate host service
nanles into node nanles. The fornlat and usage of this Service Class 1 Inessage is
described in the Service Class 1 appendix.

All nlessages nlulticasted by host nodes are required to specify a a node nanle of
the host node. Systenls that wish to announce an available service send lllulticast
nlessages periodically.

In order to support the following environnlent:

Figure 3-4: Host Advertising

Host services: 1 2 3 4 1
\ / I \ /

\ / I \ /
\ / I \ /

Host nodes: NODEA NODEB NODEC
I / \ I
I / \ I
I / \ I

Host Ethernet ports: ETHERNET_ PORT_A ETHERNET_ PORT_B
I I
I I

Ethernet physical layer: <--->

LAT/Digital Equipment Corporation/Proprietary and Confidential

These 111ulticast 111essages could be trans111itted periodically:

Table 3-1: Multicasted Messages

Source PORT_A PROT_A or PORT_B PORT_B
Address:

Node Name: NODE A NODE B NODEC

SelVice 1 - rating 233 3 - rating 231 4 - rating 34
Nanles: 2 - rating 134 1 - rating 250

Which would cause the following database to be constructed in a server:

Table 3-2: Data Base on the Server

NODE SERVICE_
NODE_NAME ADDRESS NAME SERVICE_RATING

NODEA PORT_A 1 233
2 134

NODEB PORT_A 3 231
or PORT_B

NODEC PORT_B 4 34
1 250

And results in the following display to a server user:

Service Name Status Description

1 Available Description of selVice 1

2 Available Description of selVice 2

3 Available Description of selVice 3

4 Available Description of selVice 4

Note that the node names are not displayed to the user. If the user chooses ser
vice 1, . the service rating is used to choose between the equivalent services.

Naming and Translation 3-7

3.2.2 Terminal Server Advertising

3-8

The sen-rice advertising nlechanisll1 eJill1inCltes the need for nlanuaJ preparation of
a database. To advertise services offered by the tenninal servers two nlessages are
used:

• Solicit infornlation nlessage (nlltiticasted or physically addressed by a host
node);

• Response nlessage (physically addressed by the ternlinal server to the host
node that sent Solicit Inessage).

Figure 3-5: Server Advertising

Service 1
\

Service 3
I·

\ I
+----------+ I Terminal I
I server I
I TSl I
+----------+

+----------+ I Ethernet I
I port A I
+----------+

Service 3 Service 2
\ I
\ I

+------------+
Terminal
server

TS2
+------------+

+------------+
Ethernet
port B

+------------+

Service 3
\

\

Service 4
I

I
+-----------+

Terminal I
server I

TS3 I
+-----------+

+-----------+ I Ethernet
I Port C
+-----------+

-- Ethernet

+-----------------+
Host

+-----------------+
Application process (user)

LAT/Digital Equipment Corporation/Proprietary and Confidential

Host node multicast infornlation solicitation request for the Service 3. The re
sponse nlessages directed by all ternlinal servers to the host node will be:

Table 3-3: Information Available To The Host

Source Address

Node nanle

SelVice
lnfornlation

Port A

TS1

SelVice 3
rating 100

Port B

TS2

SelVice 3
rating 43

Port C

TS3

SelVice 3
rating 57

The above nlessages allow the host node to process requested service inforllla
tion and choose the terlllinai server· node to connect to. Type of processing 11lay
be chosen by the host node depending upon product requirenlents (building a
full data base the way servers do, linliting nUlllber of entries in the data base, or
pl·ocessing without caching any data).

3.3 Specification of Names

The NODE_NAME, SERVICE_NAME, PORT_NAME and other architecturally
specified naOles in the host olulticast message, Start slot, and Start nlessage are
constrained to contain the following characters (refer to the DEC Multinational
Character Set, STD 169):

• character code 2/4 ("$" - Dollar sign character).

• character code 2/13 ("-" - Hyphen or dash).

• character code 2/14 ("." - Period).

• character codes 3/0 to 3/9 ("0 through 9" -Numerals).

• character codes 4/1 to 5/10 C A through Z" - Upper case letters).

• character code 5/15 (" _" - Underscore).

• character codes 6/1 to 7/10 Ca through z" - Lower case letters).

• character codes 12/0 to 15/15.

These names user are upcased before they are conlpared. Upcasing means sub
tracting the value 32 fronl the lower case letters in the range 611 through 7/10 and
subtracting 32 from the character set in the range 14/0 through 15/15.

Naming and Translation 3-9

3-10

Notice that since these nanles are upcased before conlparison, advertising lower
case nanles is for display purposes only. If two different systenls advertise the
sanle nanle, one in lower case, and the other in uppercase, a nltlllber of different
scenarios can result. Two typical scenarios are:

• If the NODE_NAME in the two nlessages is the sanle (upper and lower case),
but the source address of the Ethernet packets are different, than the servers
will detect this as a conflict and increnlent the DUPLICATE_NODE_NAME
counter.

• If the NODE_NAME in the two nlessages is truly different, but one or nlore
SERVICE_NAMES are the same (upper and lower case), the servers will
"load balance 1/ between the services.

If characters are specified in the international character set for service nanles, only
those ternlinals that support the international character set will be able to select
those host services.

SOJlle inlplenlentations nlay not support the international character set. In local
area networks that include these cases, the international character set should not
be specified in nanles.

Note, that in the 5.1 version of the LAT protocol both - servers and hosts nodes
are uniquely named. If a node nanle has not been supplied, a unique default
node nanle must be created.

The physical address of each Ethernet port is guaranteed to be unique and can
be used reliably to fornl a unique node nanle. The reconll11ended procedure is to
fornl the nanle fronl the hunlan-readable fornl of the Ethernet address which is
derived based on the algorithnl described in the Ethernet specification dOCU111ent.
The node nanle can be formed by conlbiningo the facility codeo and· the hlul1an
readable fornl of the Ethernet address with the hyphens rel11oved.

For example if the Ethernet address corresponds to the following sequence of bits
on the Ethernet (bits are arranged fronl left to right):

0000 1111 0111 0100 1010 1000 0011 0110 1110 1110 1101 1001

the node name should be in the following human-readable fornl:

LAT _F02E156C779B

LA T IDigital Equipment Corporation/Proprietary and Confidential

Note, that this unique node nanle nlust not be used to deterIlline the Ethernet ad
dress. The real physical port address is present in the Ethernet nlessage itself.

3.4 Specification of Text

Sonle nlessages contain fields representing textual or descriptive infornlation.
Valid characters present in these fields are 2/0 to 7114 and 10110 to 15/15.

Naming and Translation 3-11

4

Circuit and Session Layers

4.1 Architectural Model

This section presents state diagranls for the underlying virtual circuit (Virtual
Circuit layer) and for slot session establishlllent (Slot layer).

Further discussion of many of the variables found in this section can be found in
the "AXIOMS AND ALGORITHMS" section.

4.1.1 Slot Data

The ternl "slot data"· means data supplied by any of the following functions:

• queue_rcv_slot_buffer (creates a credit to be transferred)

4.1.2 Asymmetry

The host and terminal server state diagrams differ significantly. For this reason,
they are presented separately. The state variables and mapping of received nles
sages into the state diagranls are so sinlilar that this nlaterial is presented' once for
the virtual circuit and once for the slot sessions. Frequently explicit notes point
out that an itenl is relevant only to the host or to the ternlinal server.

Circuit and Session Layers 4-1

4.1.3 Virtual Circuit Service

In order to establish a virtual circuit fronl a server to a host node, the Ethernet
address, the host node name, and desired service class of the target host node
must be known. The target host node name, Ethernet address and service class
are usually deternlined front a nlulticast datagranl received by the ternlinal server.

4.1.3.1 Virtual Circuit State

The state of a virtual circuit is captured in a data structure called the Circuit Block.
The host and the ternlinal server nlaintain a separate Circuit Block. Changes to
the Circuit Block are caused by events at the Ethernet port, events at the user in
terface and tinlers (counters) within the protocol state nlachine.

A general description of these variables follows. Algorithms for receiving and
transnlitting messages can be found in the "AXIOMS AND ALGORITHMS" sec
tion.

• CIRCUIT_NAME - the nanle of the virtual circuit

• REM_ADDRESS - the Ethernet address of the renlote systenl.

• LOC_ADDRESS - the Ethernet address of the local systenl.

• MSG_TYP - Message type. The high order six bits of this field distinguish be
tween different message types. The low order bit (bit 0) of this field is the
RRF (response requested flag) flag. Bit 1 of this field is the the Master flag. It
is always set in nlessages transnlitted by the ternlinal server and always clear
in nlessages transnlitted by the host node.

• RRF - The Response Requested Flag. This bit is always clear in nlessages
transnlitted by the ternlinal server. This bit is conditiol)ally set when Illes
sages are transnlitted by the host node.

• REM_ CIR_ID - Remote circuit identification

• LOC_CIR_ID - Local circuit identification (index to circuit block itself)

• NXMT - Next message number to transmit (modulo 256). This value is used
to guarantee message sequencing. Every new nlessage transmitted is num
bered one higher than the previous message nlodulo 256 (254,255,0,1 ...).

• ACK - Highest message number received in sequence (modulo 256). This
value is used to tell the session partner which sequenced message(s) have
been received by the local system. It is transnlitted in every message header
for the remote session partner's use.

4-2 LA T /Digital Equipment Corporation/Proprietary and Confidential

• DWF (ternlinal server only) - Data Waiting Flag. The flag is set by the virtual
circuit layer whenever the RRF flag is set in a nlessage received fronl the host
node. DWF is also set by the slot layer whenever slot data is supplied.

The DWF is cleared by the ternlinal server virtual circuit layer every tinle a
new nlessage is translllitted to the host that contains all of the available slot
data supplied by the local users. Thus the DWF is cleared when all slot block
Data Ready Flags are clear.

• DWF (host only) - Data waiting flag. This flag is set by the slot layer when
ever any slot data is supplied. The DWF is cleared by the host virtual circuit
layer every time a new nlessage is transnlitted to the ternlinal server that con
tains all of the slot data available fronl local users. Thus the DWF is cleared
when all slot block Data Ready Flags are clear.

• LXMT - Lowest unacknowledged message number transmitted (nlodulo 256)

• HXMT - Highest unacknowledged message nunlber transmitted (modulo 256)

• HOST_RETRANSMIT_TIMER (host only) - The host's retransmit tinler is an
interval timer which is started when the host node sends an "unsolicited"
nlessage to the ternlinal server. When this tinler expires all unacknowledged
nlessages are retransmitted.

• SERVER_CIRCUIT_TIMER (ternlinal server only) - This timer is used to ini
tiate the transmission of new data but is not used to retransnlit unacknowl
edged data.

• SERVER_RETRANSMIT_TIMER (Terminal server only) - This tinler is used to
retransmit unacknowledged nlessages. The ternlinal server retransnlit po]
icy is explained in the AXIOMS and ALGORITHMS section in the Message
Transnlitter section.

• HOST_RETRANSMIT_COUNTER, SERVER_RETRANSMIT_COUNTER
Count of nunlber of tinles the current Inessage number has been retransmit
ted. If this value reaches the LAT_MESSAGE_RETRANSMIT_LIMIT, one of
two different policies can be enforced:

1. The users of the circuit are notified that conlmunications has been lost.
The state of the virtual circuit is set to Halted.

2. The users of the circuit are notified that conlmunications has been tenl
porarHy interrupted. The state of the virtual circuit is not changed and
nlessages continue to be retransmitted.

Circuit and Session Layers 4-3

If the ternlinal server does not support multiple sessions, it is reCOln
nlended that policy #1 be enforced. If the host crashes, policy #2 would
"hang" all of the users until the host is rebooted and the ternlinal server
transits the virtual circuit state through Halted; even users that attenlpt
to disconnect would be "hung" in the disconnecting sub-state until a
message was successfully translllitted and acknowledged or until the
virtual circuit state reached Halted. If 11lultiple sessions are supported,
users can escape to a new virtual terminal.

• VC_QUALIn' - A rating of the virtual circuit quality. Circuit quality is either
acceptable or unacceptable.

• XMT _BUFFER_FREEQ - Linked list of available transmit buffers.

• UNACKED _XMTQ - Linked list of unacknowledged transnlit messages.
Messages are nunlbered fronl LXMT to HXMT consecutively, unless the
queue is enlpty. (On the tenllinal server the length of this queue does not
nornlally exceed one nlessage.)

• SECONDS_SINCE_LAST_ZEROED (optional) - Seconds since the following
counters were zeroed.

• MESSAGES_TRANSMITTED - Count of messages transmitted. The multicast
nlessages transnlitted by the host should be included in this total.

• MESSAGES_RECEIVED - Count of nlessages received.

• MESSAGES_RETRANSMITTED - Count of messages retransnlitted because
the nlessage was not acknowledged.

• OUT_OF _SEQUENCE_MESSAGES_RECEIVED - Count of nlessages received
which were not in sequence.

• ILLEGAL_MESSAGES_RECEIVED - Count"of illegal"nlessages received (see
next section).

• ILLEGAL_SLOTS_RECEIVED - Count of illegal slots received (see next sec
tion).

4.1.3.2 Architecturally Controlled Names and Variables

4.1.3.3 Virtual Circuit State Variables

There are four state variables maintained by each end of a virtual circuit in the cir
cuit block which are constrained by the architecture:

• LOC_CIR_ID - local circuit identification. This value is stored in the circuit
block when the circuit block is created. The value zero is reserved and is not

4-4 LA T IDigital EQuipment Corporation/Proprietary and Confidential

valid as a LOC_CIRJD. Each valid Run nlessage received by the local systen1
will have the DST _ CIR_ID field of the received nlessage equal to the LOC_
CIR_ID field in SOlne circuit block.

The LOC_CIR_ID value should be defined by the systel1l to help locate the
circuit block. If a virtual circuit to a partner should fail, and a new circuit to
the sallle partner is to be fornled, the values of LOC_CIR_ID used to forn1
the new circuit must be different than the value used in the previous circuit.
Nornlally this is accoIllplished by using a sequence nUl1lber.

• REM_CIR_ID - remote circuit identification. Initially the REM_CIRJD value is
zero in the circuit block. The source of this value is the SRC_CIR_ID field in
received lllessages. This non-zero value references the renlote systenl circuit
block.

• NXMT - next message nUlllber to translllit. This circuit block value is a
nlodulo-256 value that is used to assign the lllessage header field MSG_SEQ_
NBR.

• ACK - the nUIllber of the lllOst recent nlessage received in sequence. This cir
cuit block value is also a modulo-256 value. It is copied frolll the MSG_SEQ_
NBR field of any message received in sequence (including Start 111essages) to
the circuit block ACK field. Every tin1e a nlessage is transl11itted, this value is
copied into the message MSG_ACK_NBR field.

4.1.3.4 Slot State Variables

The LOC_SLOT_ID is a value assigned by the local illlplementation. Received Run
slot DST_SLOT_IDs will be identical to the value translnitted in the Start slot SRC_
SLOT_ID field used to establish the slot session. For this reason, the value should
be assigned as an index into an array of slot block addresses. The value LOC_
SLOT _ID is constrained to be non-zero.

REM_SLOT _ID is a value stored in the local slot block which is used to validate re
ceived Run slots. Initially the REM_SLOT_ID is zero in the slot block. The source
of this value is the SRC_SLOT JD field in received Start slots. This non-zero value
references the renlote system slot block.

4.1.3.5 Message Counters

The implementor of Digital products should read HDigitaJ Ethernet Node Product
architecture" specification. This docunlent specifies generic product requirenlents
for Digital Ethernet nodes.

The purpose of requiring counters is to identify hardware faults and software im
plenlentation errors.

Circuit and Session Layers 4-5

Required counters nlust be displayable on delnand by a privileged user on a termi
nal connected to the local system. The description of the displayed counters nlust
reselllble the descriptions used in this section.

These counters should be zeroed as infrequently as possible. Ideally, counters
should be zeroed by conlnland of a privileged user only. It nlay be desirable for
nonprivileged users to be able to display counters.

If a virtual circuit to a renlote system is halted, the associated counters nlust nlust
not be zeroed (although they may be deleted). An implementation should attenlpt
to retain counters even after conlnlunications with a remote systenl has ternli
nated so long as this requirelllent causes only idle resource consunlption.

Values must be unsigned 32-bit integers. The values must " latch " the highest pos
sible value if they overflow.

An inlplenlentations nlust collect and be capable of locally displaying the following
list of values:

• Those required in "Digital Ethernet Node Product Architecture"

• Total number of Illegal nlessages received (and associated Ethernet physical
address if possible)

• Total number of Illegal slots received (and associated Ethernet physical ad
dress if possible)

NOTE

Illegal nlessage and slot counters are nlaintained as a part
of the virtual circuit database listed above. If. these counter
databases are retained for sonle tinle after the virtual cir
cuits are terminated, a valuable piece of infornlation is
retained to diagnose the source of the illegal data - the
Ethernet physical address the remote system I A nlini
mum of one circuit block nlust be retained by an inlple
mentation after active circuits are terminated. This is to re
tain the circuit block counters for sonle mininlunl amount
of tinle for error diagnosis.

Inlplenlentations nlust collect and be capable of locally displaying the following list
of values for each currently active virtual circuit:

• (best effort) SECONDS_SINCE_LAST _ZEROED (optional)

4-6 LAT/Digital Equipment Corporation/Proprietary and Confidential

• MESSAGES_TRANSMIITED

• MESSAGES_RECEIVED

• MESSAGES_RETRANSMIITED

• OUT_OF_SEQUENCE_RECEIVED

• ILLEGAL_MESSAGES_RECEIVED (causing the virtual circuit to be aborted)

• ILLEGAL_SLOTS_RECEIVED (causing the virtual circuit to be aborted)

Renlenlber that messages are Ethernet franles under virtual circuit control. Multicast
datagranls are not nlessages.

4.1.3.6 Error Handling. Illegal Slots And Messages

Virtual circuits are ill1mediately stopped when illegal Illessages or slots are re
ceived.

Illegal 111essages and slots are those that do not conform to the defined message
fornlats or grossly violate the defined state transitions of a virtual circuit or user
slot sessions. These nlessages and slots should not occur, but if they do:

• Mininlally, a displayable counter must be increnlented. Ideally, the affected
users and the systenl lllanager should be i111nlediately notified of this unusual
event.

• As l1ltlCh of the message or slot as possible should be stored in order to diag
nose the failure. Optionally store the nUl11ber of the error (see below).

• The message should be discarded.

• The (underlying) virtual circuit must be stopped.

The term "ilIegal" should be distinguished from the term "invalid". Invalid mes
sages and slots are nornlal events and are usually caused by inlproper synchro
nization (resynchronization of virtual circuits and user sessions).

Examples of illegal messages are:

1. A received message with either the DESTINATION_ADDRESS or the SOURCE_
ADDRESS equal to zero.

2. An unknown MSG_TYPE in a received message.

Circuit and Session Layers 4-7

3. A non-zero SRC_CIRJD in a received Stop message.

4. A zero SRC_CIR_ID in a Start or Run nlessage.

5. A non-zero DST _ CIR_ID in a Start nlessage received by a host node.

6. A zero DST_CIRJD in a Run or Stop nlessage sent by the ternlinal server.

7. A zero DST_CIR_ID in a Start, Run or Stop Inessage sent by the host.

8. Others - please get thenl added to this list.

Examples of illegal slots are:

1. An unknown SLOT_TYPE value is received.

2. An unknown SERVICE_CLASS is received in a Start slot.

3. A non-zero SRC_SLOT_ID in a received Stop slot.

4. A zero SRC_SLOT _ID in a Start slot.

5. A non-zero DST_SLOT_ID in a Start slot received by a host node.

6. A zero DST_SLOT_ID in any slot but a Start slot sent by the ternlinal server.

7. An Attention slot specifying a non-zero value in the credit field (docunlented
as an MBZ field in the nlessage fornlat section).

8. a Start slot received in the Run state (without and intervening Stop slot)

9. a Reject slot received in the Run state.

10. a Data_a or Data_b slot arrives which contains data (consunled a renlote
credit), but no user buffer is available (no credit was extended).

11. a Run slot with a zero SRC_SLOT_ID.

12. Others - please get them added to this list.

4.1.3.7 Defined Parameters And Recommended Or Required Default Values

4-8

Some of the values defined in this section may be changed by the system man
ager. The name of the variable should be sinlilar to the nalne used below in com
mand interfaces.

LAT/Digital Equipment Corporation/Proprietary and Confidential

The follow values are architecturally defined constants:

• Protocol Type - 60-04 (hexadecinlal) or as a bit streanl, first bit on Ethernet at
left (0000.0110.0010.0000)

• Multicast Address - 09-00-2B-OO-00-OF (hexadecinlal) 01' as a bit streanl, first
bit on Ethernet at left (1001.0000.0000.0000.1101.0100.0000.0000.0000.0000.1111.000)

The following values nlust be specified before an inlplelllentation is operational.
1£ an inlplelllentation allows the values are settable within the ranges specified,
the names used to refer to the paranleters must be a reasonable facsinlile of the
nanle used below. If the parallleters are not settable, the reconlnlended default
values should be used. The architecture requires the values be within the ranges
specified:

• PROTOCOL_VERSION - The value 5.

• PROTOCOL_ECG - The value 1.

• SERVICE_NAME - must be specified by the host system manager before the
start of service can be announced.

• NODE_NAME - must be specified by the host systenl manager before the
start of service can be announced.

• SERVER_CIRCUIT_TIMER - In the range 1-100. This paranleter specifies 10
nlillisecond intervals. (The value 8 is recolllnlended - 80 nlilliseconds).

• SERVER_RETRANSMIT_TIMER - In the range 1 to 2 seconds.

• HOST_RETRANSMIT_TIMER - In the range 1 to 2 seconds.

• LAT_MESSAGE_RETRANSMIT_LIMIT - Four or more messages. Eight
messages reconlnlended for the terminal server (SERVER_RETRANSMIT_
COUNTER linlit), nlore than 60 nlessages recom111ended for the host node
(HOST_RETRANSMIT_COUNTER linlit).

• HOST_MULTICAST_TIMER - In the range 10 to 180 seconds (60 seconds rec
ommended). This value is supplied via the start_service_class function.

• LAT_MIN_RCV_DATAGRAM_SIZE - In the range 576 to 1518 (1518 reconl
mended) for both the host node and terminal server.

• LAT_MIN_RCV_SLOT_SIZE -In the range 1 to 255 (127 recomnlended) for
both the host and terminal server.

Circuit and Session Layers 4-9

• LAT_MIN_RCV_AIT_SLOT_SIZE - In the range 1 to 255 (31 recomnlended)
for both the host and ternlinal server.

• NBR_DL_BUFS - The nunlber of data link buffers assigned nlinus one. A
value of zero is reconullended.

• A Host inlplelllentation should enable ll1ulticast group a by default (unless
specified differently interactively).

• A Server inlplenlentation should enable nlulticast group a by default (unless
specified differently interactively).

• RESPONSE_TIMER - in the range 1 to 2 seconds.

• MULT_STAT_TIMER - in the range 10 to 100 nlilliseconds.

• STAT_REP_TIMER - in the range 10 seconds to 1 hour. The reconlnlended
value is 60 seconds.

• RETR_COMM_TIMER - is reconl111ended to be 1 second.

• RETR_COMM_COUNT - is reconlnlended to be a value of 3 or 4.

• RETR_ST AT_TIMER - is recommended to be 1 second.

• RETR_STAT_COUNT - is reconlmended to be a value of 3 or 4.

• PRODUCT_TYPE_CODE -

1. Ethernet terminal server

2. Decserver 100

3. VAX/VMS

4. RSX11-M

5. RSXI1-M+

6. TOPS-20

7. TOPS-10

8. ULTRIX-l1

9. LAT-11

10. RSTS/E

11. UL TRIX-32

4-10 LAT/Digital Equipment Corporation/Proprietary and Confidential

12. ELN

13. MS/DOS

14. PIOS

15. PCSG-LAT

16. DELIX

17. DECserver 200

18. DECserver 500

19. Actor

• PRODUCT_VERSION_NUMBER - version nUlllber of a product.

The following value must be supplied before an illlple1l1entation is convenient to
use:

• LAT_KEEP _ALIVE_TIMER - In the range 10 to 255. A value of 20 seconds is
recolllmended.

The parallleters that are optional are:

• FACILITY_NUMBER - A value supplied via the local cOlllmand interface.

• SERVER_NAME - A name supplied via the local cOlllllland interface.

• LOCATION_TEXT - Text supplied via the local C01l1111and interface.

• Parameter data supplied by an inlplementation' s software 11lodules or via the
local cOlllmand interface. See individual service classes for a description of
these paranleters.

4.1.3.8 Message Types

There is a comnlon virtual circuit header format for LA T nlessages documented
in the section "MESSAGE FORMATS" (other nlessage fornlats are defined by the
different service classes). This virtual circuit message format is one of three differ
ent types:

1. start message - Start messages are used to establish new virtual circuits.

2. run message - Run nlessages convey state and slot data between systenls.

Circuit and Session Layers 4-11

3. stop ll1essage - Stop 11lessages are used to end a virtual circuit session.

A stop n1essage is also used as a II no circuit" nlessage to reply to a received nles
sage which references a nonexistent or invalid virtual circuit (see state diagran1s
HSend Stop"). An ill1plelnentation should ll1ake a best effort to send these fIno
circuit" 11lessages. Occasionally, due to lack of resoyrces or Ethernet data link er
rors, these 1/ no circuit" ll1essages 11lay fail to get delivered. Failure to send these
1/ no circuit" Inessages can result in slO\l\r resynchronization after the host node 01'

server crashes.

4.1.3.9 Cirtual Circuit State Variables

4-12

There are three virtual circuit states: Halted, Starting and Running. Once the
systenl to systell1 virtual circuit has started successfully, the circuit reaches the
Running state.

These events deterll1ine state transitions:

1. VC_start (server only) - user requests virtual circuit startup. An irnplenlenta
tion would allocate a Circuit Block at this point if none existed.

2. VC_halt - user requests that the virtual circuit be halted imn1ediately

3. StarCrcv - Start ll1essage received. An implenlentation would allocate a
Circuit Block at this pOint, if one did not exist froll1 a previous circuit, and
initialize all state variables.

4. Inv_starCrcv - invalid Start received (see 11lessage 111apping section)

5. Stop_rev - Stop 11lessage received.

6. Inv_stop_rcv - invalid Stop received (see next section)

7. Run_rev - Run message received with valid connection identification. The
11lessage is in sequence if MSG_SEQ_NBR of received nlessage equals the
value ACK + 1 in the circuit block (modulo 256).

8. Inv_run_rcv - invalid Run received (see next section)

9. CircuiCtimer - the SERVER_CIRCUIT_TIMER expires.

10. Rexn1it_timer - The SERVER_RETRANSMIT_TIMER or HOST_RETRANSMIT_
TIMER expires.

11. ResendJin1it - The retransn1it counter reached the linlit LAT_MESSAGE_
RETRANSMIT_LIMIT.

LAT/Digital Equipment Corporation/Proprietary and Confidential

12. Send_data (host only) - A user supplies slot data and the RRF flag in the cir
cuit block is dear. Note that this event is blocked if the RRF is set.

4.1.3.10 Response Requested Flag and Balanced Mode

When the nlost recent message received from the host node has the RRF dear (no
response requested), and this nlessage acknowledges the last nlessage transnlitted
froln the terIllinal server, the virtual circuit is said to be "balanced". When in this
state, the host node has penllission to send one "unsolicited" nlessage and the
ternlinal server will not send messages if the DWF (data waiting flags) is dear.

This state will persist until either the Send_data event occurs in the host or the
DWF is set in the ternlinal server (possibly due to the keep alive tinler).

"Balanced mode" prevents the LAT protocol from consunling unnecessary Ethernet
bandwidth. Without balanced nlode, LAT Jllessages would be exchanged at
SERVER_CIRCUIT_TIMER nlillisecond intervals, even though no useful data was
being exchanged.

There is a sub-state that is not evident fronl a cursory inspection of the state di
agraJlls. This sub-state is entered when the event Send_data occurs. Notice that
this event causes the HOST_RETRANSMIT_TIMER to be started and nlay cause
the Circuit Block RRF flag to be set. Also notice that this event cannot occur if
the RRF flag is already set. This sub-state retransmits all unacknowledged nles
sages whenever the HOST_RETRANSMIT_TIMER expires. This sub-state is exited
when the host node receives a nlessage that acknowledges all of the currently un
acknowledged l11essages. At this point and the HOST_RETRANSMIT_TIMER is
stopped. The purpose of this sub-state is to guarantee II unsolicited" l11essage de
livery.

4.1.3.11 Message Mapping Onto State Diagram

Received messages nlust be validated.

The Ethernet data link layer verifies that the Ethernet DESTINATION_ADDRESS
field in the received message nlatches the address assigned to the local systenl and
that the PROTOCOL_ TY.PE field in the received l11essage is equal to the LA T pro
tocol type.

On the slave end the LAT virtual circuit layer maps Start nlessages onto circuit
blocks based on the value of the MASTER_NO DE_NAME field and the SOURCE_
ADDRESS field of the received Start message. A match to a circuit block is found
if the MASTER_NO DE_NAME field of the received Start nlessage equals the
CIRCUIT_NAME field in the circuit block AND the SOURCE_ADDRESS field of
the received Start nlessage equals the REM_ADDRESS field in the circuit block.

Circuit and Session Layers 4-13

A Start nlessage can nlatch a circuit block even if it is in the Running state (as
shown in the state diagranls).

On the nlaster end the LAT virtual circuit layer maps Start 111essages onto circuit
blocks based on the value of the DST_CIR_ID. The SLAVE_NODE_NAME field
and the SOURCE_ADDRESS field of the received Start 111essage nlust I'natch to
the CIRCUIT_NAME field AND the REM_ADDRESS field in the referenced circuit
block.

In the case of the first Start_rev event in the host node, no circuit block will exist
to reference. A circuit block should be allocated and the state variables should be
initialized as described below the host virtual circuit state table. The DST _ CIRJD
of the received nlessage should be considered a nlatch to the LOC_ CIR_ID of the
circuit block in this case. If a circuit block cannot be allocated, the inlplenlentation
should attenlpt to send a Stop lllessage that indicates no resources.

Note that it is possible for a pair of nodes that each inlplenlent ternlinal server
and host capabilities (ll1aster and slave capabilities) to establish exactly one virtual
circuit in each direction, but not nlOl'e.

Run messages and Stop nlessages are nlapped onto a circuit block based solely
on the value of the DST_CIRJD field of the received nlessage. The value DST_
CIR_ID must nlatch the value LOC_ CIR_ID in the referenced circuit block and the
value SRC_CIR_ID nlust nlatch the REM_CIRJD value in the circuit block. Run
nlessages that do not nlap onto a circuit block in the Running state are discarded
and a Stop nlessage is sent to the renlote systenl.

Next, the nlessage type is detenl1ined fron, the LAT header MESSAGE_TYPE
field. The received nlessage is then 111apped into the state diagranl based on the
following rules:

• Start_rcv - The DST _ CIRJD of the received message must equal the LOC_
CIR_ID in the referenced circuit block (except as noted above). The SRC_CIR_
ID of the nlessage nlust not be zero, and is copied to the REM_ CIR_ID of the
referenced circuit block.

• Inv_start_rcv - The DST_CIR_ID of the received message is non-zero and is
not equal to the LOC_CIR_ID in the referenced circuit block.

• Run_rev - The DST _ CIR_ID of the received nlessage equals the LOC_ CIR_ID
of the circuit block, and the SRC_CIR_ID of the received message equals the
REM_ CIR_ID of the circuit block. The nlessage is in sequence if the MSG_
SEQ_NBR of the received message equals the value ACK + 1 in the circuit
block (nlodulo 256).

4-14 LAT/Digital Equipment Corporation/Proprietary and Confidential

• Inv_run_rcv - The DST_CIR_ID of the Inessage is not equal to the LOC_CIR_
ID in the circuit block, or the SRC_CIR_ID of the nlessage is not equal to the
REM_CIRJD of the circuit block.

• Stop_rev - The DST_CIRJD of the nlessage equals the LOC_CIR_ID of the cir
cuit block, and the SRC_CIR_ID of the nlessage equals zero.

Invalid messages are the result of inlproper synchronization between the host
node and ternlinal server. These events are nOflllal; the 1l1essage is treated as de
scribed in the state diagranls.

4.1.3.12 Terminal Server Virtual Circuit State Table

Table 4-1: Terminal Server Virtual Circuit State Table

State Event(s) Action(s) Next State

Halted VC_start Initialize, Send Start. Starting

Stop_rev No action. Halted

Inv_stop_rev No action. Halted

any other nlsg Process Start Send Stop. Halted

any other No action. Halted

Starting Start_rev Process Start, send Run. Running
(typically including Start slot)

Resend_limit Notify users, send Stop. Halted

Rexmit_tinler Resend Start. Starting

Stop_rev Notify users. Halted

VC_halt Send Stop Halted

Inv_stop_rev No action. Starting

any other nlsg Process Start, send Start. Starting

Running Run_rev If msg is out of sequence: Running
zero NBR_SLOTS in msg
hdr. If RRF flag is set: set
DWF. Process received ack;
process message.

Rexmit_timer If messages remain unac-
knowledged: res end all un-
acked nlessages.

Circuit and Session Layers 4-15

4-16

Table 4-1 (Cant.): Terminal Server Virtual Circuit State Table

State Event(s) Actlon(s) Next State

Running Circuit_ tilner If nlessages acked and DWF Running
(cont.) set: send nlessage; clear

DWF if all slot data has been
sent. If nlessages acked and
DWF clear: no action.

Resend_limit Notify users (or optionally
halt via VC_halt event).

Running (Halted)

VC_halt Send Stop Halted

Stop_rev Notify users Halted

any other set DWF Running

Note that the server slot state table also specifies that DWF be set.

Ternlinal Server Virtual Circuit State Table Notes

"Process Start" means copy the SRC_CIR_ID field fronl the received Start nles
sage to the REM_CIR_ID field in the circuit block. Verifies circuit block by nlatch
ing SLA VE_NODE_NAME and the SOURCE_ADDRESS fronl the start Illessage
against CIRCUIT_NAME and REM_ADDRESS.

The " Initialize " nleans the values .in the Circuit Block are initialized as:

1: CIRCUIT_NAME < - < the nanle passed by the VC_start function>

2. REM_ADDRESS < - < value passed in -the VC_start caU>

3. LOC_ADDRESS< - < value assigned to the local systenl>

4. REM_CIR_ID< - 0 (later copied fronl received Start Inessage)

5. LOC_ CIR_ID < - < unique virtual circuit connection id >

6. NXMT < - 0 - Next nlessage nunlber to transmit

7. ACK <- 255 - message nunlber most recently received in sequence

8. LXMT < - 0 - Lowest unacknowledged message nunlber tranSlllitted

9. HXMT < - 0 - Highest unacknowledged nlessage nunlber transmitted

LAT/Digital Equipment Corporation/Proprietary and Confidential

10. SERVER_CIRCUIT_TIMER<- <reset to - 80 n1S> (count-doVln to zero)

11. SERVER_RETRANSMIT_COUNTER<-O (count-up to LAT_MESSAGE_
REXMIT _LIMIT)

12. UNACKED_XMTQ<- <en1pty>

13. RRF and DWF are cleared

4.1.3.13 Host Virtual Circuit State Table

Table 4-2: Host Virtual Circuit State Table

State

Halted

Starting

Running

Event(s)

Start_rev or
Inv _stop_rev

Stop_rev or
lnv _stop_rev

any other msg,
or no resources

VC_halt

Stop_rev

lnv _stop_rev

Start_rev

any other nlsg

Run_ms&-rev

Circuit and Session Layers

AcUon(s) Next State

Initialize; process Start; Starting (or Halted)
Send Start (or Stop).

No action. Halted

Process Start; send Stop. Halted

If nlsg is out of sequence: Running
zero NBR_SLOTS in msg
header. Process revd
ACK. Process revd nles-
sage.

Send Stop Halted

No action.

No action.

Initialize: process Start;
send Start

send Start

Halted

Starting

Starting

Starting

If nlsg is out of sequence: Running
zero NBR_SLOTS in
nlsg header. Process
revd A CK; if all nlsgs
are acked: stop tinler.
Process revd message;
queue_ transmit_message:
transnlit_ unacknowledged_
queue.

4-17

4-18

Table 4-2 (Cont.): Host Virtual Circuit State Table

State Event(s) Action(s) Next State

Running Send_data Start Hnler; queue_ Running
(cont.) tmnslllit_lllessage; trans-

lllit_unacknowledged_
queue.

Rexnlit_ Tinler Resend unacked nlsgs; Running
reset tinler.

Resend_lilllit Notify users (or optionally
halt via VC_halt event).

Running (Halted)

VC_halt Send Stop. Halted

Stop_rev Notify users. Halted

Start_rev Initialize; process Start; Starting
send Start

any other Transmicunacknowledged_ Running
queue.

"Process Start" nleans copy SRC_CIR_ID fronl the received Start nlessage into
the circuit block field REM_ CIR_ID; copy the SRC_ADDRESS fronl the 111essage
into the REM_ADDRESS field in the circuit block and copy the MASTER_NODE_
NAME fronl the received Start nlessage into the circuit block CIRCUIT_NAME
field.

"Initialize 1/ nleans the values in the Circuit Block are initialized as:

1. REM_ADDRESS < - < SOURCE_ADDRESS fronl the received Start nlessage>

2. LOC_ADDRESS< - < value assigned to the local systell1 >

3. REM_ CIR_ CID < - < copied from received Start nlessage >

4. LOC_CIR_ID<- <unique connection id>

5. NXMT < - a - Next nlessage number to transnlit

6. ACK < - a - most recent message nunlber received in sequence

7. LXMT < - a - Lowest unacknowledged nlessage nunlber transmitted

8. HXMT < - a - Highest unacknowledged message nunlber transnlitted

9. HOsT_RETRANSMIJ"_TIMER<- <stopped>

LAT/Digital Equipment Corporation/Proprietary and Confidential

10. HOST_RETRANSMIT_COUNTER<- 0 (counts up to LAT_MESSAGE_REXMIT_
LIMIT)

11. UNACKED_XMTQ<- <enlpty>

12. RRF flag is cleared

13. DWF is cleared

HStart rexn1iCtimer" starts a one to two second interval timer. This tin1er is used
to retransll1it n1essages that do not get acknowledged by the tern1inal server
within the expected tin1e Iin1it. One second is arbitrarily larger than the tin1er
value used by the terminal server (SERVER_CIRCUIT_TIMER). If this HOST_
RETRANSMIT_TIMER expires, n10st likely the terll1inal server has crashed or the
Ethernet data link has failed.

4.1.4 User Connection Management And Data Flow

Variables in this section are described in sufficient detail to explain the slot state
transitions necessary to establish and ll1aintain slot sessions.

4.1.4.1 Service Classes

It is the responsibility of the slot layer to deliver start slots (connect requests) to
the appropriate service class in the host. Each service class has the freedoll1 to
define the capabilities utilized by that service class independently. For instance,
the service class A ll1ight utilize attention slots while the service class B ll1ight not.

After the start slot has been accepted by the service class, and a start slot sent in
response, all subsequent slots associated with that session are delivered to the
sa111e service class.

Therefore the virtual circuit service can be shared by one or 1110re service classes,
while each service class utilizes different slot types and slot fonnats.

4.1.4.2 Host Session Management

The host i111plementation 111ay choose to always accept or reject a connection (re
spond to a start slot received by the host service with a start or reject slot) based
solely on currently available resources. (Lack of resources might include such
criteria as nonavailability of ll1emory, too 111any users or system shutdown in
progress). This type of implementation is appropriate if the connect request con
tains insufficient information for the host service to 111ake a decision to reject the
connection. Interactive tern1inal login is an example of such a host service. The
account name and password must be supplied within the context of the session
before the host service can reject the session.

Circuit and Session Layers 4-19

Alternatively, a host inlplenlentation JllC1~' offer the host service a chance to reject
or accept directly. This is the behavior 1l10delea in the host slot state table.

4.1.4.3 Multiplexing Over A Virtual Circuit

To provide multiple users connection nlanagelnent and data transfer service si
nlultaneously, the underlying virtual circuit can be shared by all active users. This
sharing is accoJ1'\plished by dividing each nlessage into a header and one or Jll0re
slots. Whenever Jll0re than one user has volunteered data to be transnlitted, an
individual user's ability to transnlit data is restricted by the following rules, which
guarantee each user gets treated fairly:

• limiting the slot size - the nlaxin1l1m slot size is the slot header size (4 bytes)
plus the nlaxinlunl data size (255 bytes), or 259 bytes. Thus one 1518 byte
nlessage has enough roonl for at least five, and usually nlore slots.

• slot flo"v control - Data_a and Data_b slots cannot be transnlitted unless a
tranS111it slot credit (LOCAL_CREDITS) is owned by the liseI'.

• lilniting each user "to one slot until all other users have been considered

• not starting with sanle user each tinle - if not all of the slot data fit into a
nlessage, the next scan for slot data should reSUll1e with the users that did
not get slot data into the nlessage the previous tinle.

As with frames on the Ethernet, slots are divided into a header and a data section.
Connection managenlent is acconlplished by defining the state transitions of the
slot headers as described in the following sections.

4.1.4.4 Slot Ordering Within Messages

Slot ordering within a nlessage is not arbitrary;" If two or nlore slots in a buffer
are addressed to the sallle user, the slots are processed frolll the beginning of the
buffer to the end.

For instance, an "abort" slot received by a ternlinal server will abort any output
data in slots received before it within the 111essage (and in previous nlessages), but
will not affect a slot in the buffer following it.

4.1.4.5 Slot State Variables

4-20

The state transitions for slots are sinlilar to those for the underlying virtual circuit
itself. Any of the slot transitions shown in the slot state tables assunle an un
derlying virtual circuit in the Running state. If the virtual circuit should exit the
Running state, the slot sessions immediately transfer to the halted state.

LAT/Digital Equipment Corporation/Proprietary and Confidential

The state of a slot session is captured by each end in a data structure called the
Slot Block. Changes to the Slot Block are caused by events at the Ethernet port
and events at the user interface.

The virtual circuit layer delivers to the slot layer nlessages that contain one or
nlore slots. Slot validation is the responsibility of the slot layer.

The slot block contains the following fields:

• REM_SLaT_NAME - the nanle of the renlote slot block. Required to be the
nallle of the renlote service selected.

• LaC_SLaT_NAME - the nallle of the local slot block

• REM_SLOT _ID - Remote slot connection identification

• LaC_SLOT _ID - Local slot connection identification

• REMOTE_CREDITS - credits being extended to the session partner. This
credit total is zeroed by the slot layer each time the slot nlultiplexer copies
the slot into a message buffer. This total is increnlented every tinle the user
adds a receive buffer via the queue_rev _slot_buffer function.

• LOCAL_CREDITS - available credits to transmit slots. This field is initial-
ized to zero when the slot block is created. The slot layer slot denlultiplexer
adds any credits extended in the received slot CRED field to this slot block
LOCAL_CREDITS field. The slot layer slot nlultiplexer decrenlents this field
whenever a Data_a or Data_b slot is copied into a nlessage buffer with a non
zero SLOT _BYTE_COUNT. Data_a and Data_b slots do NOT conSllllle credits
if the SLOT_BYTE_COUNT is zero (to prevent infinite looping I). Start, Stop
and Attention slots do not consunle credits.

• SLOT_TYPE - slot type. One of Start, Data_a, Data_b, Attention, Reject or
Stop.

• DRF - Data Ready Flag. Set whenever slot data is available. Cleared by the
slot layer whenever all slot data is under virtual circuit control.

• SLOT_COUNT - byte count of next field (which could be zero)

• SLOT _DATA_BUFFER - This buffer is used to store Data_a received over the
session as the result of extending slot credits.

• ATTENTION_DATA_BUFFER - This buffer is used to deliver Attention data to
the user. A senlaphore (not shown in the slot block) is used to arbitrate own
ership of the buffer. Since Attention data is not flow controlled, Attention
data is discarded if new data is delivered and the buffer is not available.

Circuit and Session Layers 4-21

These events deternline state transitions:

1. ConnecCreq (terJllinal server only) - user requests connection.

2. Disconnect_req - user requests disconnection.

3. Reject_req (host only) - user rejects a requested connection.

4. Accept_req (host only) - user accepts a requested connection.

5. Start_rev - start slot received.

6. Stop_rev - stop slot received.

7. RejecCrev - reject slot received.

8. Run_rev - Data_a, Data_b or Attention slot received.

9. User_data - user supplies data via volunteer_data_a or volunteer_data_b.

10. User_rev - user supplies receive slot buffer via queue_rcv_sloCbuffer.

11. Stop_sent - Stop slot under virtual circuit control.

4.1.4.6 Terminal Server Slot Mapping Onto State Diagram

Received slots are mapped onto the events based on the values received in the
received slot DST_SLOT_ID and SRC_SLOT_ID fields, and the current slot block
values of REM_SLOT_ID and LOC_SLOT_ID.

The key for the synlbols in the table:

• L - DST _SLOT _ID fronl the received slot equals LaC_SLOT _ID in the refer
enced slot block

• R - SRC_SLOT_ID fronl the received slot equals REM_SLOT_ID in the refer
enced slot block

• I - DST _SLOT _ID from the received slot does not equal LaC_SLOT _ID in the
referenced slot block

• J - SRC_SLOT_ID from the received slot does not equal REM_SLOT_ID in the
referenced slot block

4-22 LAT/Digital Equipment Corporation/Proprietary and Confidential

• D - Doesn't nlatter what SRC_SLOT JD in the received slot is

OST _SLOT _10 SRC_SLOT _10 State Type of slot or action to be taken

L R Running Data_a, Data_b or Attention slot

L 0 Starting Start slot (0 cannot be zero)

L 0 any Stop or Reject slot

L J Running send Stop to SRC_SLOT _10

D Starting ignore slot (session shutting down)

0 Running ignore slot (session shutting down)

Events shown in this list but not in the table below are either invalid or are events
that occur as a session shuts down. The list suggests an appropriate action.

4.1.4.7 Terminal Server Slot State Table

Table 4-3: Terminal Server Slot State Table

State Event Action Next State

Halted connect_req Initialize, Send Start. Starting

any other No action. Halted

Starting disconnect_req No action. Abort_start

RejecCrev No action. Halted

Start_rev process SRC_SLOT _ID; Running
update credits; process
Start.

any other No action. Starting

AborCstrt RejecCrev No action. Halted

Start_rev Send Stop Halted

any other No action. Abort_start

Running disconnect_req Send Stop (see note be-
low).

Stopping

Stop_rev Notify user. Halted

Circuit and Session Layers 4-23

Table 4-3 (Cont.): Terminal Server Slot State Table

State Event Action Next State

Running Reject_rev Illegal slot (Declare VC_ Halted
(cant.) halt)

Start_rev Illegal slot (Declare VC_ Halted
halt)

Run_rev Update credits and pro- Running
cess slot.

User_data or Set DWF and DRF. Running
User_rev

any other No action. Running

Stopping Stop_sent No action. Halted

any ot~er No action. Stopping

A StarCrcv event need not be distinguished fronl a Run_rcv except in the Starting
state. In the Starting state the Start slot should be validated based on Slot_type to
be sure a Run slot is not being received.

"process SRC_SLOTJD" lneans copy the SRC_SLOTJD field from the received
slot into the REM_SLOT _ID field of the slot block.

"Update credits" means add the CREDIT field in the received slot into the LOCAL_
CREDITS field of the slot block.

The "Send stop" action in the table may involve queue delays until the virtual cir
cuit layer accepts the Stop slot. Until the Stop slot is accepted under virtual circuit
control, all other received nlessages should be ignored, and the transition to the
Halted state must be delayed. This prevents the connect_req event fronl reusing a
slot state table until a queued stop has been accepted by the virtual circuit layer.

4.1.4.8 Host Slot Mapping Onto State Diagram

Slots are mapped onto the events based on the values received in the slot DST_
SLOT _ID and SRC_SLOT _ID fields, and the current slot block state variables LOC_
SLOT _ID and REM_SLOT _ID. The key for the synlbols in the table:

• L - DST _SLOT _ID fronl the received slot equals LOC_SLOT _ID in the refer
enced slot block

• R - SRC_SLOT_ID fronl the received slot equals REM_SLOT_ID in the refer
enced slot block

4-24 LAT/Digital Equipment Corporation/Proprietary and Confidential

4.1.4.9

• I - DST _SLOT JD frolll the received slot does not equaJ LaC_SLOT _ID in the
referenced sJot bJock

• J - SRC_SLOT _ID frolll the received slot does not equal REM_SLOT _ID in the
referenced slot block

• D - Doesn't nlatter what SRC_SLOT_ID in the received slot is

• 0 - DST_SLOTJD or SRC_SLOT_ID in received slot is zero

OST_SLOT_IO SRC_SLOT _10 Type of slot or action to be taken

L R Data_a, Data_b or Attention slot

L J Ignore (stop slot followed by reassignnlent of
LOC_SLOT_ID.)

L 0 Stop or Reject slot

0 D Start (D cannot be zero).

D ignore slot (session shutting down)

The Start_rev event < 0 D> can occur in any state, but the event is always nlapped
onto a new slot block in the halted state.

Events shown in this list but not in the table below are either invalid or are events
that occur as a session shuts down. The list suggests an appropriate action.

Host Slot State Table

Table 4-4: Host Slot State Table

State Event Action Next State

Halted start_rev Init; request session of Starting
user.

Any other No action. Halted

Starting reject_req Send Reject. Halted

accept_req Send Start. Running

Any other No action. Starting

Running Disconnect_req Send Stop. Stopping

Circuit and Session Layers 4-25

Table 4-4 (Cont.): Host Slot State Table

State Event Action Next State

Running Stop_rev No action. Halted
(cont.)

Run_rev Process slot. Running

U seT_data or Set DWF and DRF. Running
User_rev

last

Any other No action. Running

Stopping Stop_sent No action. Halted

Any other No action. Stopping

A host inlplenlentation nlay choose to always accept a requested session. In this
case the Starting state in the table would not exist. The start_rcv event would es
tablish a session (assunling sufficient resources). A host service (the ternlinal class
driver) lllight then later reject the session via the disconnect_req. This exanlple
would occur during a terlllinal server user login failure.

4.2 Layer Interfaces

4-26

The interfaces presented in this section are not nleant to be inlplemented. The
purpose is to present the control and data flowing through the LAT layers be
tween the users in a way that unanlbiguously describes what is required at the
interfaces, but allows inlplenlentations the freedonl necessary to i11'lplenlent the
functions appropriately for ea,ch different systenl.

The nlodel presented inlplies that each side of the -interface both 'provides ser
vice entry points and utilizes service entry points provided to it. Synchronization
across interfaces is the responsibility of the inlplenlentation. Specifically, the inl
plenlentation nlust assure that aU user and Ethernet data link interface events are
processed serially and atolllicaIly, in both directions. This requirenlent arises pri
nlarHy from the need to nlaintain predictable states in the shared Circuit and Slot
blocks.

The polling model is used to show correspondence of functions and to reduce
the anlount of text necessary to describe the interfaces. Only one interface is de
scribed at each layer. In fact, inlplementations would offer only a subset of the
functions described, one subset corresponding to the ternlinal server and another
corresponding to the host.

LAT/Digital Equipment Corporation/Proprietary and Confidential

In interface calls:

• input paran1eters are specified first

• input paran1eters are separated fron1 output paran1eters by a senlicolon

• paran1eters are separated by con1n1as

• H 5- H , "H-", and "SH-" indicate that a function is available at the terlninal
server ("5-"), host ("H-") or both ("SH-").

Within the interface calls, the "reason" arglllnent is defined separately for each
different service class (see the appendices).

4.2.1 Data Types

There are two distinct types of data that can be transferred between session part
ners: Data strean1S (Data_a and Data_b) and attention dAta. The data streanlS are
flow controlled and error controlled. The attention data is error controlled, but is
not flow controlled. IdeJnpotent operations and data not requiring delivery can be
transferred in attention slots.

The purpose of having both Data_a and Data_b data strean1S is:

• Status and control infornlation (Data_b) can be transferred as a separate data
stream. An itnplenlentation does not have to elnbed the status and control
infornlation in the data streanl or operate a separate virtual circuit.

• Status and control (Data_b) transfers are phase locked relative to Data_a
transfers. If the Data_b slot indicates a change is to be applied to the Data_a
streanl, the change is unalnbiguously applied to the subsequent Data_a slots.

• The implenlentation is free to define the entire fornlat of the Data_b slots.
This provides nluch greater flexibility since the Data_a channel is nonnally
unfornlatted.

The rules governing Attention data are different than those governing Data_a and
Data_b. Attention data can be transn,itted even though the LOCAL_CREDIT total
in the slot block is zero. The purpose of Attention data is:

• to allow a control slot to preelnpt any data waiting to be transll1itted at the
local system

Circuit and Session Layers 4-27

• to alI 0"' a control inforJnation to be transferred to the session partner even
though the nOrtllal Data_a and Data_b paths arc blocked due to lack of flow
control credits

Each service class nlust define the l1laxinlum size of attention data slots. The slot
block nlust reserve a buffer of this size dedicated to the delivery of Attention data.
A semaphore is set by the slot layer when Attention data is delivered into this
buffer and cleared when the user has process the data. If the sel1laphore is set
when Attention data is delivered, the Attention data is discarded by the slot layer.

4.2.2 User/Slot Layer Interface

This interface allows users to advertise service, establish user (slot) sessions, and
transnlit and receive data. These three categories of service are referred to as di
rectory services, session control services and data transfer services.

The slot layer itself forlnats slots for translllission and validates received slots be
fore passing the data to the user. The slot layer is also responsible for flow con
trol and periodic service advertiselllents.

4.2.2.1 Summary Of Functions

4-28

The slot layer offers the following hierarchy of functions to the user layer:

Table 4-5: User/Slot Layer Functions

Function offered:

H-

5-

5-

H

H

H

SH

SH

SH

SH

SH

SH-

start_service_ class

poll_service_ class

start_session (connect)

new _session_poll

accept_new _session

reject_new _session

poll_session

queue_rev _sloCbuffer

poll_rev _done

queue_attention_buffer

poll_attention_done

volunteer _xmt_ data_a

---~~---~£~ .. --.-. --,~
Type of function:

directory service

directory service

session service

session service

session service

session service

session service

data service

data service

data service

data service

data service

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 4-5 (Cant.): User/Slot Layer Functions

Function offered: Type of function:

SH

SH

SH

SH

H-

volunteer_xmt_data_b

volunteer_attention_data

poll_xnlt_ done

end_session (disconnect)

end_service_c1ass

data service

data service

data service

session service

directory service

4.2.2.2 Description Of Functions

The functions offered to the user by the slot layer are:

• H-starCservice_class(class, tinler;status),
H-end_service_class(class, reason;status),
S-poll_service_class(class;status)

These functions are used to advertise availability and to deternline availability
of particular service classes (such as interactive ternlinals) in the local area.
Conceptually, these functions bracket all of the other services offered to the
users by the slot layer. These are directory services, and are not an integral
part of an implel11entation. These functions nornlally control the transillis
sion and reception of ll1ulticast addresses.

• class - service class (see appendicies)

• tinler (optionaJ) - specified in seconds, deternlines frequency of ll1Ulti
cast nlessage translllission HOST_MULTICAST_TIMER (see DEFINED
PARAMETERS AND RECOMMENDED OR REQUIRED DEFAULT
VALUES).

• status - one of: class enabled, class disabled.

• S-starCsession(renl_srv _nnl,loc_srv _nm, class, nlin_slot_size; handle, status)
SH-end_session(handle,reason;status)

These functions are used to establish a new session and to disestablish an ex
isting session. These functions bracket the renlaining functions offered to a
user by the slot layer; data services cannot be invoked unless the user has
successfully established a session.

• address - Ethernet address of host

Circuit and Session Layers 4-29

• renl_service_nanle - The nall1e of the host service selected by the user.
This field nlay not be null.

• loc_service_nanle - The nanle of the local service (usernanle) or null.

• class - service class

• handle - used to reference the session locally

• sloCsize - the Il1ininlU111 slot size queued by queue_rcv_slot_buffer for
Data_a, Data_b and Attention slots.

• status - one of: requesCactive, request_rejected (see service class ap
pendix), insufficient resources to cOlnplete request, no such session.

• reason - the reason can be an integer value, a byte counted ASCII string
or both. This reason Ina), be supplied to the users if that is appropri
ate to the inlplenlentation. The reason is conveyed to the renlote half
session by the Stop nlessage and/or a 11lulticast Jl1essage.

• H-new _session_pol1(; handle, status),
H -accept_new _session
(hndl,re1l1_slt_n1l1,loc_slCnnl,min_slt_size,nlode; status),
H-reject_ne",T_session(handle,reason;status)

These functions are used to accept or reject a request to establish a session.

• handle - used to reference the session locally

• rem_slot_nanle - The slot_name received in the start slot or null.

• loc_slot_name - The nanle of the local slot block (could be the host ser
vice na1l1e or sonle other nanle) or null.

• slot_size - the nlininlunl slot size queued by queue_rev _slot_buffer for
Data_a, Data_b and Attention slots.

• status - one of: request active, request_rejected(see service class ap
pendix), insufficient resources to conlplete request, no such session.

• reason - the reason can be an integer value, a byte counted ASCII string
or both.

4-30 LAT/Digital Equipment Corporation/Proprietary and Confidential

• SH-poll_session(handle;status, quality)

This function is used to deternline the status of existing sessions.

• handle - used to reference the session locally

• status - Starting, Running or Halted (with reason code).
•

• quality - the quality of the virtual circuit, one of: VC_ok, VC_suspect,
transport disabled.

• S H -queue_rev _sloCbuffer(ha ndle, buffer; status),
SH-poll_rcv_done(handle;buffer, status)

These functions aBo\·v slot buffers to be queued and received slot data to be
delivered. The nlinimunl length of this receive buffer is specified in the Start
slot MINIMUM_A TIENTION_SLOT _SIZE and MINIMUM_OAT A_SLaT_SIZE
fields. Since slot credits are used for both Data_a and Data_b slots, these slot
receive buffers nlust be the sanle ll1ininlull1 size.

• handle - a reference to a local session

• buffer - the starting address and length of a buffer.

• status - one of: buffer queued, no slot data available, slot data available
(Start, Stop, Data_a, Data_b or Reject).

• SH-queue_attention_buffer(handle, buffer; status),
SH-poll_attention_done(handle;buffer , status)

These functions allow the user to receive out of band data. Data delivered by
this function is not sequenced relative to the data delivered via poll_rev _done.
If the data delivered by this function is not received faster than it is delivered,
new data nlay be discarded by the slot layer.

• handle - a reference to a local session

• buffer - the starting address and length of a buffer.

• status - one of: buffer queued, no data available, data available, data
available and data nlissed.

• SH-volunteer_xnlt_data_8(handle, buffer;status),
SH-volunteer_xnlt_data_b(handle, buffer; status),
SH-volunteer_xnlt_attention(handle, buffer; status),
SH-poll_xmCdone(handle;buffer,status)

Circuit and Session Layers 4-31

These functions allo'N data and attention slots to be transnlitted to the session
partner. Attention data is not flov. r controlled. Attention data (out of band) is
not blocked by the nonnal data (in band).

• handle - a reference to a local session

• buffer - the starting address and length of a buffer.

• status - one of: buffer queued, data transl11itted.

4.2.3 Slot/Virtual Circuit Layer Interface

This interface allows the slot layer to establish virtual circuits and to translllit and
receive 111essages and 111ulticast datagranls.

The virtual circuit layer maintains virtual circuits to one or nlore renlote systenls,
transnlits and receives nlessages, runs a tinler, transJ11its and receives nlulticast
datagrallls and notifies the slot layer about changes in service.

4.2.3.1 Summary Of Functions

4-32

In sunlnlary, the virtual circuit layer offers the following hierarchy of functions to
the slot layer:

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 4-6: Slot/Virtual Layer J:=unctions

Function offered:

SH- queue_rcv_datagranl

SH- poll_rcv_done

SH- queue_transmit_datagranl

SH- polttransnlit_done

5- VC_start

H- accept_virtual_circuit

SH- polt virtuatcircuit

SH- poll_receive_lnessage_done

SH- queue_transnlit_nlessage

SH- poll_transmit_nlessage_acked

SH- transmit_unacknowledged_queue

SH- VC_stop

4.2.3.2 Description Of Functions

The specific functions offered to the slot layer by the virtual circuit layer are:

• 5-Virtual_ Circuit_sta rt(node_nanle, max_sessions; handle, status),
H -accepC virtuaCcircuit(handle; status),
SH -VirtuaC Circuit_stop(handle; status)

These functions allow the slot layer to establish and disestablish virtual cir
cuits. The slot layer nlltst p<;>ll the ,virtual circuit layer to discover the state
of virtual circuits and the state of the underlying data link itself. The host
node must not dally in responding to a request to start a virtual circuit. If the
host node wishes not to have any new circuits established, all service classes
should be disabled and the appropriate status should be indicated in the Inul
ticast nlessage transnlitted by the host periodically. This nlulticast nlessage
should be transmitted at least once before host services are discontinued.

• address - Ethernet address of destination systenl

• node_name - The nanle of the target node. Used as the virtual circuit
nanle CIRCUIT_NAME.

Circuit and Session Layers 4-33

• nlax_sessions (optional) - the I1laxinlunl nU111ber of session that wiIJ ever
be active sinlultaneously. If supplied by the tenllinal server, a host inl
plenlentation nlight avoid allocating unnecessarily large data structures.

• handle - handle used to reference the virtual circuit locally (a reference
to the circuit block)

• status - one of: insufficient resources to conlplete request, no such cir
cuit.

• H-poll_ virtual_circuit(; handle, status, quality),
SH-poll_virtual_circuit(handle;status, quality)

These functions allow the existence of new sessions and the status of existing
sessions to be detenllined.

• handle - handle" used to reference the virtual circuit locally

• status - one of: Starting, Running or Halted (with reason).

• quality - the virtual circuit quality, one of: VC_ok, VC_suspect, Ethernet
data link disabled.

• SH-queue_receive_datagranl(buffer;status},
SH-poll_rcv_done(;handle,buffer,status}

This function gives the virtual circuit layer datagranl buffers which are in turn
queued to the Ethernet data link. These datagranl buffer are filled by nlulti
cast datagranls and by virtual circuit nlessages.

• buffer - address and length of a buffer.

• status - one of: buffer queued, no data available, nlulticast datagranl
available.

• H-queue_transmit_datagranl(buffer;status},
H-poll_transnlit_done(;buffer,status)

These functions queue datagranls to the Ethernet data link for transnlission
and poll for the transmit conlpletion. These functions are used to transnlit
the lllulticast (or possibly other types) of datagranls.

• buffer - address and length of a buffer.

• status - one of: buffer queued, transnlitter error.

4-34 LAT/Digital Equipment Corporation/Proprietary and Confidential

• SH-ql1eue_transnliCnlessage(handle,buffer;status),
SH -poll_transnlit_111essage_acked (handle; buffer; sta tus)

These functions alIo"' the slot layer add nlessages to the virtual circuit IClyer
unacknowledged nlessage queue and to receive thenl back after they ha\'~
been acknowledged.

• handle - handle used to reference the virtual circuit locally

• buffer - address and length of a nlessage.

• status - one of: message queued for transl11ission or nlessage
translllitted.

• SH-transnlit_unacknowledged_ql1eue(handle)

This function caused all outstanding unacknowledged messages to be retrans
l1litted.

• handle - handle used to reference the virtual circuit locally

• SH-poICreceive_nlessage_done(handle ; buffer, status)

This function allows the slot layer poll the transport layer for any received
messages.

• handle - handle used to reference the virtual circuit locally

• buffer - address and length of a nlessage.

• status - one of: no data available, nlessage available.

4.3 Axioms And Algorithms

This section details a set of algorithms that would produce the correct behavior at
the user and Ethernet data link interfaces. While these algorithnls would produce
the desired result, any nunlber of equivalent algorithnls that produce an equiva
lent result at the sante two interfaces would serve equally well.

The whole architecture can be characterized as two (host and terminal server)
two-port black boxes. Conlpressing both the host and the ternlinal server into
single diagranl, one nlight visualize the internal structure of the LAT architecture
as:

Circuit and Session Layers 4-35

Figure 4-1: LAT Layers Interface

USE R LAY E R

v 0 I u n tee r +--------+ r e c e i v e
slot data 1 SLOT slot data

------------------------------------1 BLOCK 1----------------------------------
1 1 (shared) 1 . "
V +--------+

+-----------------+ +-----------------+
timer \ slot pass credits slot 1

---------->1 multiplexer 1<----------------------\ demultiplexer 1
+--1 (slots into msg)1 pass control (in host) 1 (msg into slots)1
1 +-----------------+ +-----------------+
1 1 " A 1 queue
1 transmit I 1 +-----------+ 1 Ireceive
v message v I 1 CIRCUIT 1 1 vbuffer

E C
a L
N A

N N Y
E E
C R

o T

--------+----------+-+-------------1 BLOCK 1--------------+-+---------------
transmit 1 1 ,.. 1 (shared) I " 1

unackedl 1 Ireturn +-----------+ 1 1
queue 1 1 lacknowledged deliverl 1

I v Imessage message 1 v
1 +-----------------+ +-----------------+
I 1 message remove acked message message
+->1 transmitter 1<----------------------1 receiver I

1 (virtual circuit 1<----------------------1 (virtual circuit I
I maintenance) I transmit unacked queue I maintenance) 1
+-----------------+

transmit I transmit"
datagram v complete I

ETHERNET DATA LINK

+-----------------+
receive " queue 1

datagram 1 receive v

LAYER

T
R
A L
N A
S y
P E
a R
R
T

The following process abstractions are (solllewhat arbitrarily) created within the
slot layer to help present a detailed 1l10del of the internal fJow of control and data
within the layer:

• slot_demultiplexer - turns a Jllessage into one 01' JllOre slots

• slot_multiplexer - turns one or nlore slots into messages

• session_starter - allocates a SLOT_BLOCK and initializes a half-session

• session_ender - closes a half-session and de allocates the SLOT_BLOCK

• adnlinistrator - advertises service (in host) and builds lists (in terminal server)

The following process abstractions are (again sonlewhat arbitrarily) created within
the virtual circuit layer to help present a detailed nlodel of the internal flow of
control and data within the layer:

• circuit_starter (terminal server only) - starts new virtual circuits

4-36 LAT/Digital Equipment Corporation/Proprietary and Confidential

• circuit_ender - stops an existing virtual circuit

• nlessage_receiver - receives datagranls fron1 the Ethernet data link, validates
the received datagranls (turning each into a 11lessage) and passes the Inessage
on to the slot layer

• nlessage_translllitter - receives nlessages froll1 the slot layer, nlaintains a
queue of unacknowledged 11lessages, and translllits datagranls on the Ethernet
data link.

4.3.1 Virtual Circuit Layer

The algorithms described in this section correspond to the state table actions, not
the state table events.

4.3.1.1 Circuit Starter (Terminal Server Only)

When a request is received to start a new virtual circuit (via the VC_start func
tion), the ternlinal server:

• allocate a circuit block (see state diagranl) and buffers. Allocate NBR_DL_
BUFS + 1 receive nlessage buffers and one translllit nlessage buffer where
NBR_DL_BUFS is the value sent in the Start nlessage.

• queue the receive nlessage buffer(s) to the Ethernet data link via the queue_
rev _datagranl function

• store the translllit nlessage buffer in the circuit block

• Translate the CIRCUIT_NAME into a 48-bit Ethernet address and load this
address into the REM_ADDRESS field of the Circuit Block.

• generate a Start nlessage (using the transnli.t. 11lessage buffer) and queue it to
the Message Transnlitter via the queue_transnliC1l1essage function

4.3.1.2 Data_Volunteered

If Slot Data is volunteered:

• Set DRF in the coresponding slot block.

• 1£ a credit exists to transmit the Slot Data, set the corresponding Circuit Block
DWF.

Circuit and Session Layers 4-37

4.3.1.3 Credits Returned

If:

• the current credit total is zero and

• a credit is being added to the Slot Block and

• the DRF is set in the Slot Block

then set the corresponding Circuit Block DWF.

4.3.1.4 Circuit Ender

When a request is received to stop an existing virtual circuit (via the VC_stop func
tion), the Circuit Ender generates a Stop nlessage and queues it to the Message
Translnitter via the queue_transnlit_nlessage function and indicates in the circuit
block that the virtual circuit is in the Halted state.

In the host, if service is being ternlinated, the Circuit Ender should also send at
least one 111ldticast datagranl to indicate that service has been ended.

4.3.1.5 Message Receiver

The nlessage receiver validates received nlessages. The Ethernet data link verifies
the:

• Ethernet destination address of the franle Inatches that of the local systenl

• LAT protocol type (depending on ilnplenlentation)

After these fields are checked, the nlessage type- is'- deternlined fron1 the LA T
header MESSAGE_TYPE field. The received nlessage is then mapped as one of
the nlessage types (see STATE DIAGRAMS section). If any of the actions de
scribed fails, the Inessage is discarded without perturbing the existing circuit state.
In any case, the receive buffer is always queued back to the Ethernet data link
quickly with respect to SERVER_CIRCUIT_TIMER.

• Start nlessage (slave) -

• discard message if the SRC_CIR_ID field of nlessage is zero.

• Match to an existing circuit block or, if no circuit block exists, allocate
a circuit block and buffers. If insufficient resources exist to acconlplish
this, a best effort attelnpt is nlade to send a Stop nlessage. Nornlally
one receive nlessage buffer is allocated. If the NBR_DL_BUFS field in the

4-38 LAT/Digital Equipment Corporation/Proprietary and Confidential

Start nlessage response will be non-zero, that nlany additional receive
buffers are allocated. Two transnlit 1l1essage buffers plus (optionally) the
value in the NBR_DL_BUFS in the received Start nlessage are allocated.
(One translllit Illessage buffer is consul1led by a Inessage containing data
with the RRF flag clear since it will not be acknowledged; so a second
buffer is required which, if it is the last, will always have RRF set to force
a tenninal server response).

• queue the receive Illessage(s) to the Ethernet data link via the queue_rcv_
datagranl function

• store the available transnlit nlessage buffers in the circuit block

• copy the SRC_CIR_ID field from the received message to the REM_CIR_
ID field of the circuit block, copy the SRC_ADDRESS frolll the received
message into the Circuit Block and copy the MASTER_NODE_NAME
fronl the Start Inessage in to the Circuit Block.

• generate a Start Illessage (norlllal1y) or generate a Stop nlessa~e (with a
reason specified) and queue it to the Message Translnitter via the queue_
translniClnessage function

• Start nlessage (terminal server) -

• If the SRC_CIR_ID is non-zero, match to an existing circuit block. If no
circuit block is referenced (invalid message) discard the nlessage and
send a Stop message addressed too SRC_CIR_ID. If the SRC_CIRJD is
zero it is an illegal message. If a valid Start nlessage is received, SRC_
CIR_ID of the received nlessage should be copied to the REM_ CIR_ID
field of the referenced circuit block.

• if the NBR_DL_BUFS field in the received Start Illessage is nOll-zero, op
tionally allocate that nlany additional translllit buffers and store then1 in
the circuit block.

• Run_mss-rev (Host and tenninal server) -

• If the MSG_SEQ_NBR is not equal to ACK+ 1 (modulo 256) in the circuit
block, set the NBR_SLOTS in the nlessage header to zero. In the ternli·
na1 server only, if the MSG_SEQ_NBR is not equal to ACK+ 1, copy the
SOURCE_ADDRESS of the received Inessage into the CIRCUIT_BLOCK
REM_ADDRESS field· this will allow dynanlic path faHover if a host
node has access to two different Ethernet ports.

• In terminal server, if RRF is set, set DWF.

Circuit and Session Layers 4-39

• request the Message Translllitter to return all ll1essages acknowledged by
the value MSG_ACK_NBR received in the 111essage. This algorithl11 ll1USt
be done 111odulo 256.

• In the host node, stop the HOST_RETRANSMIT_TIMER if all 111essages
are acknowledged.

• If the MSG_SEQ_NBR is equal to ACK + 1 (nlodulo 256) in the circuit
block then inCrell1ent ACK in the circuit block.

• pass the message to Slot den1ultiplexer

• Stop_rev (or RejecCrcv) -

• notify slot demultiplexer of circuit state transition

• indicate state of circuit block is Halted

• requeue the datagrall1 buffer to the Ethernet data link

Any time the circuit goes into the Halted state, the circuit block can be deallo
cated along with its associated resources.

A special use of the DST _ CIRJD field occurs whenever the host node and ternli
nal server are out of synchronization due to crashes, prolonged COlll111unication
link failures or nonsequential nlessage delivery. In these cases, the ren10te systen1
nlight ignore the nlessage (possibly a delayed Stop message) in order to preserve
the currently Running virtual circuit. In order to close this half established (half
open session), the SRC_CIRJD field is copied fronl the Running lllessage into the
REM_CIR_ID field of the circuit block and a Stop nlessage is generated. This will
cause the ren10te systen1 to reinitialize.

Any fields not defined by the LAT architecture (labeled UNPREDICTABLE in the
lllessage forn1ats) are ignored.

4.3.1.6 Message Transmitter

The terminal server n1essage transmitter norn1all), maintains an unacknowledged
transnlit queue of one entry, while the host node normally ll1aintains a queue of
one or two entries. If extra data link buffers are allocated, these queues can be
longer.

The Message transmitter gets three types of requests:

• transnlit unacknowledged transnlit queue - this causes the Message Transnlitter
to start transmitting the head of the queue, wait for the translllit complete

4-40 LAT/Digital Equipment Corporation/Proprietary and Confidential

event, and transmit the next n,essage until the entire queue has been emp
tied. If this was in progress when the request to retranslnit the queue is
made, the request is ignored.

Before a nlessage is retransnlitted, the MSG_ACK_NBR field in the n,essage
header is copied fron, the circuit block field ACK.

The Retransnlit linliter is a part of the n,essage translllitter. Every tinle the
head of the unacknowledged transnlit queue is transnlitted, the retransnlit
counter is increnlented (either HOST_RETRANSMIT_COUNTER or SERVER_
RETANSMIT_COUNTER). Every tinle the head of the unacknowledged trans
nlit queue changes, RetransnliCCounter is zeroed. If the retransnlit counter
reaches LAT_MESSAGE_RETRANSMIT_LIMIT, the ResendJinlit event oc
curs. This event (ResendJimit) should cause users to be notified of the unac
ceptable virtual circuit quality.

• queue/dequeue transnlit nlessage - this adds and deletes entries fron, the UIl

acknowledged transnlit queue. As each new n,essage is added to the queue,
via the queue_transnliCmessage function, the nlessage the header is created
by:

• copying the REM_ CIRJD fronl the circuit block to the n,essage field
DST_CIR_ID

• copying the LOC_CIR_ID fronl the circuit block to the message field
SRC_CIR_ID

• (host only) the RRF flag is:

• set if:

1. the Circuit Block DWF is set or

2. this is the last transmit message buffer

3. credit consuming slots were sent in last message

4. (optionally) if new data is expected via the volunteer functions
- this may cause better behavior under load by preventing un
necessary "unsolicited" nlessages from being sent by the host.
This state could be anticipated if data were delivered but not
echoed for instance.

• cleared otherwise.

• (host only) copying the RRF flag state into the message header fron, the
circuit block

Circuit and Session Layers 4-41

• copying the NXMT circuit block field into the nlessage header MSG_
SEQ_NBR and increlllenting NXMT

• transll1it datagranl - this function transnlits the buffer and returns the trans
nlit cOlllplete event, along with the buffer, to the requestor.

Retransnlission of the unacknowledged transnlit queue (the first of the three
types of request described above) in the host node occurs at the rate HOST_
RETRANSMIT_TIMER seconds. This causes 111essages to be retransnlitted about
everyone or two seconds.

In the terminal server, this would be an unsatisfactory arrangenlent due to the
rate at which retransnlissions would occur (the value used by SERVER_CIRCUIT_
TIMER is typically 80 lllilliseconds). Because the 1110St likely reason a nlessage
is being retransnlitted is that the host node has not had a chance to process the
received nlessage, the ternlinal server retranslllission of 111essages nlust occur at
dranlatically reduced rates. One acceptable policy is to retransnlit at SERVER_
RETRANSMIT_TIMER intervals after the original lllessage was sent.

NOTE

In an actual implementation, the host node nlay be over
loaded and unable to respond to received buffers. The re
transnlit policy is based on the assunlption that the host
node has not responded because it has not processed
the buffer. This policy assures that the host node is not
swanlped with duplicate buffers during heavy host load
ing.

4.3.1.7 Circuit Timer Policy

The circuit tinlers, in both the ternlinal server and the host node, should be re
set both when the l1lessage is queued for tranSlllission and when the tranSlllit
conlpletes. This policy prevents 111ultiple tertllinal servers froll' synchronizing by
utilizing the Ethernet backoff algorithnl.

4.3.1.8 Buffering

4-42

The LAT architecture assumes that any receive buffers assigned to the Ethernet
data link cannot be preempted by other architectures that nlight share the data
link. Failure to adhere to this policy may cause LAT to be unable to deliver data
in a timely fashion.

In the case of a host inlplenlentation, the initial processing of received data link
buffers should occur at high priority. Received nlessages that are out of sequence
or received start nlessages tI~at cause the current total to exceed the value LAT_

LAT/Digital Equipment Corporation/Proprietary and Confidential

MAX_SERVERS, nlltst be rejected imnlediately and requeued to the Ethernet data
link to aIlo,,\' new data nlessagesto be stored until they can be processed. Failure
to adhere to this policy can cause long delays since host buffers can be filled by
duplicates causing non-duplicates to not be delivered. If the retranslllission policy
is to wait one second, this failure l1lode will cause one second delays as perceived
by the user.

4.3.2 Slot Layer

The algorithms described in this section correspond to the state table actions, not
the state table events.

4.3.2.1 Host System Management

When the start of service is announced in the host (starCservice_class function),
a transnlit datagral11. nlust be allocated and reserved foJ' the purpose of translllit
ting the nlulticast datagranl periodically. In addition, LAT _MAX_SERVERS receive
datagranl buffers nlust be allocated and queued via the queue_receive_datagranl
function. The value LAT _MAX_SERVERS is equal to the nlunbeJ' of ternlinal
servers that the host node wishes to allow to startup sinlultaneously.

These sanle resources nlust be recovered when the end of service is announced.

• Start nlulticast transnlit and start multicast tinler for retransnlission.

• Stop the HOST_RETRANSMIT_TIMER (the timer could not be active since no
virtual circuits are active).

4.3.2.2 Terminal Server System Management

When service is started in the ternlinal server:

• at least one buffer should be queued to the data link to receive multicast ad
dresses.

• start the server circuit timer in anticipation of virtual circuit~ being activated
(it should already be running).

Policies might reasonably be modified or extended by each different service class.

Circuit and Session Layers 4-43

4.3.2.3 Session Starter (Terminal Server)

This process allocates and initializes a slot block upon receiving a call fronl the
starCsession function.

One inlportant responsibility of the session starter of the tern'linaJ server is trans
lating the REM_SERVICE_NAME supplied in the start_session function into a
node_nan'le to be passed in the VC_START function when a new virtual circuit
nlust be established.

4.3.2.4 Session Starter (Host)

A host service inlplementation can choose between two nlodels. In one nlodel,
received Start slots cause the user to receive a request to start a new session. The
user can then either accept or reject the session. The user should not procrasti
nate in Illaking this decision.

The second nlodel does not give the host service this choice, but instead accepts
or rejects the session without notifying the service. Later the host service 111ay
stop the session with a reason.

If a DST_SLOT_NAME is specified in the start slot, the host session can be bound
to a specific host service (host port such a specific controller or unit) associated
with the slot nanle or can be bound to a nlore abstract service, such as electronic
ll'lail.

4.3.2.5 Slot Demultiplexer

4-44

This process receives its input and control frotTI the poll_rev_done function. Each
sllch l1lessage received has been validated on the virtual circuit by the 11leSsage
receiver.

Messages contain zero or more slots. A slot can be a Start, Data_a, Data_B,
Attention, Reject, or Stop slot.

Slots are validated by using the received slot's DST _SLOT _ID field to reference
a slot block. The referenced slot block's LOC_SLOT_ID field nlust equal the re
ceived slot's DST_SLOT_IO field. Additionally, the received slot's SRC_SLOT_IO
field must equal the slot block's REM_SLOT_IO field. The slot type field must be
consistent with the state block receiving the slot. (See the section on slot lllapping
onto state diagranl.)

If the ternlinal server receives a start slot, the slot's SRC_SLOT JO field is copied
into the referenced slot block's REM_SLOT_IO field.

LAT/Digital Equipment Corporation/Proprietary and Confidential

In the host, the sloCdenlultiplexer creates and initializes a slot block if a start slot
is received and passes the slot block to the appropriate class of service via the
new_session_poll function. The slot block is a data structure shared by aJl slot
layer processes and is accessed by the user processes. (see slot state variables sec
tion).

The host nlay use the DST _SLOT _NAME supplied in the Start slot to bind the ses
sion to a particular service access point.

If any credits are received in a slot, the credit field value is added into the LOCAL_
CREDIT field of the referenced slot block to create a new total.

Data_a and Data_b slots are delivered via the poll_rcv _done; Attention slots are
delivered via poll_attention_done; Start and Stop slots are delivered via the poll_
session function.

A Stop slot causes the slot block to be deallocated and the event is delivered to
the user via the poll_session function.

In the host, after the slot denlltltjplexer has finished processing the received nles
sage, the message is requeued to the virtual circuit layer and control is passed to
the slot multiplexer.

4.3.2.6 Slot Multiplexer

In the host, this process receives control soon after the slot denlltltiplexer exe
cutes. This transfer of control can be illlnlediate or can be delayed in an effort to
return nlore data in the response. This transfer of control between the slot de
nlultiplexer and the slot nlultiplexer in the host does not have to preserve the "se
rial and atonlic" requirenlent stated in the layer interface introduction. This delay
should never exceed about 1/2 the SERVER_CIRCUIT_TIMER; the response gen
erated nlust be received by the ternlinal server before SERVER_CIRCUIT_TIMER
expires a second time.

In the ternlinal server, this transfer of control is tinler based and cannot be less
than SERVER_CIRCUIT_TIMER nlilliseconds.

When reading the algorithms, keep in nlind that" slot data" can be Data_a, Data_
b, Attention data or REMOTE_CREDITS waiting to be transferred.

Before accepting any data from users, the process verifies that at least one trans
mit nlessage buffer is available in the circuit block. If none is available, then
execute the transnlit_unacknowledged_transnlicqueue function. The follow-
ing algorithnl is executed by the ternlinal server whenever control is received

Circuit and Session Layers 4-45

4-46

frotn the tinler event and by the host whenever control is received fronl the s)ot_
denlltltiplexer. In the host, transfer of control is also received fronl the volunteer
functions if the circuit block RRF flag is clear (the Send_data event):

• In the host, if the DWF is clear:

• dequeue a transnlit nlessage buffer fronl the circuit block XMT _BUFFER_
FREEQ (if it is enlpty, execute the translllit_unackno\·vledged_queue func
tion and exit)

• generate a new nlessage header

• execute queue_ transnliCnlessage

• execute transn1iCunacknowledged_queue

• In the ternlina) server, if the DWF is clear, exit.

• if the DWF is set:

1. dequeue a transnlit nlessage buffer from the circuit block XMT _BUFFER_
FREEQ (if it is empty, go to step 8 - EXIT)

2. generate a new nlessage header

3. UNTIL the message buffer is filled or UNTIL all slots have DRF dear or
UNTIL all slots with DRF set have no LOCAL_CREDITS left: Find the
next slot block with DRF set in a round-robin fashion and:

if Attention data is volunteered, fornlat attention slot in Jllessage
buffer, dear DRF if no slot data is left. Exit back to UNTIL loop.

if Data_a or Data_b is signcded, decrenlent LOCAL_CREDITS (if
none available, go to next step), fornlat Data~a or Data"_b slot
header in message buffer, copy REMOTE_CREDITS field fron, slot
block into slot header and zero and REMOTE_CREDITS field, copy
data into slot and dear DRF if no slot data is left. Exit back to
UNTIL loop.

if REMOTE_CREDITS is non-zero (because LOCAL_CREDITS is
zero in previous step or because no Data_a or Data_b has been
volunteered), fonnat Data_a slot header in nlessage buffer, copy
REMOTE_CREDITS field from the slot block into slot header and
zero the slot block REMOTE_CREDITS field, and dear DRF if no
slot data is left. Exit back to UNTIL loop.

4. queue the buffer via queue_transnliCnlessage

LAT/Digital Equipment Corporation/Proprietary and Confidential

5. if all slot block DRF flags are clear, clear DWF.

6. In the host, if control ',va~ received via a volunteer function, the HOST_
RETRANSMIT_TIMER is started. (Whenever this tinler expires, all unac
knowledged lllessages are retranslllitted.)

7. If Jllore slot data is available, go to step 1.

B. Exit - execute the transnlit_unacknowledged_queue function.

4.3.2.7 Session Ender

The ternlinal server cannot stop a session while it is in the Starting state. This is
because the handle on the renlote slot block is not known until a response to the
start slot is received. Thus the special state Abort_start is entered upon receiving a
disconnecCreq. A slot block in this state cannot be used to start a new session.

Otherwise, either the host service or the ternlinal server user can issue an end_
session (disconnect) function call.

4.3.2.8 Flow Control

There are two levels of flow control: One in the slot layer and one in the virtual
circuit layer.

4.3.2.9 Slot Flow Control

The session user that owns a flow control credit (credit is held on user's behalf
by the slot layer), is guaranteed that the session partner will be able to receive
(and buffer) at least one Data_a or Data_b slot. In an inlplenlentation, slot data
is copied from a receive nlessage buffer in the virtual circuit layer into slot buffers
supplied by the users. This is the nlodel described in this doclullent.

These flow control credits are consllnled by Data_a and Data_b slots if, and only
if, the SLOT_BYTE_COUNT field is non-zero.

As a CPU performance optinlization, this can be inlplelllented in different way.
CPU usage can be traded for menlol}' usage. The users can supply data link sized
slot buffers (LAT_MIN_RCV _DATAGRAM_SIZE), and the entire buffer can be
passed to the user without copying data. This nlethod requires that an occupancy
count be nlaintained for each buffer since buffers can be occupied by one 01' nlore
slots destined for different users. In this way received slot data does not have to
be copied. However prodigious anlounts of 111enlory is consunled. For instance,
to extend two slot credits for each of B users, 2xBx151B (24,288) bytes of buffering
is used instead of 2x8x255 (4080) bytes of buffering.

References are nlade to "slot" flo"" control throughollt the docul1'lent. The sec
tions SLOT MULTIPLEXER and SLOT DEMULTIPLEXER in the AXIOMS and
ALGORITHMS section define how slot flo"' control is applied to a running slot
session.

4.3.2.10 Message Buffer Flow Control

In the virtual circuit layer, when a ne"7 circuit is to be established, a fixed nunlber
of datagranl buffers is allocated before the Start nlessage is sent. These buffers are
queued as receive buffers to the Ethernet data link layer. The nurnber of buffers
queued as receive buffers nlinus one is then transl11itted in the Start nlessage
NBR_DL_BUFS field.

In the ternlinal server, the nunlt?er of transnlit buffers allocated should be equal to
the value NBR_DL_BUFS received in the Start l11essage plus one.

In the host, the nunlber of transnlit buffers allocated should be equal to the value
NBR_DL_BUFS received in the Start ll1essage plus two. This extra buffer is used
to sent the one possible "unsolicited" ll1essage when the virtual circuit is balanced
(RRF dear).

In general, this docunlent does not directly refer to flow control at the virtual cir
cuit level (references to the ternl "flow control" are nornlallv references to slot
flo"' control). Instead, references are nlade to the availability of data link buffers
(XMT_BUFFER_FREEQ in the circuit block). Availability of a data link 11leSsage
buffer corresponds to the availability of a credit to transnlit a nlessage buffer
since these buffers renlain on the unacknowledged transnlit queue until they are
acknowledged by the receiving process. This acknowledgnlent guarantees that
the renlote systenl has enlptied and requeued the data link buffer to receive a
ne"T nlessage. See the AXIOMS and ALGORITHMS section titled MESSAGE
TRANSMITTER and MESSAGE RECEIVER.

4.3.2.11 Protocol Versions And ECO Control

Multicast nlessages for each service class specify LOW _PRTCL_ VER, HIGH_
PRTCL_ VER, CUR_PRTCL_ VER, CUR_PRTCL_ECO.

The start nlessage specifies PRTCL_ VER and PRTCL_ECO.

The HIGH_PRTCL_VER specifies the highest (most recent) protocol version that
the systen1 supports.

The LOW _PRTCL_ VER specifies the lowest (oldest) protocol version that the sys
tenl supports.

The CUR_PRTCL_ VER specifies the protocol version of the nlessage. In the case
of the Start nlessage, it also guarantees that all other I1lessages will also be of the
sanle protocol version as the Start nlessage.

The PRTCL_ECO specifies the Engineering Change Order level of the nlessage.
Again, in the case of the Start lllessage, it also guarantees that all Run and Stop
I1lessages will also be of the Sal1le ECO level ,as the Start lllessage. ECOs are
nlade to a protocol version only if the change will not adversly affect the un
changed systenls already in the field. This nleans that existing systenls should
continue to perfornl illlplenlented functions, but fronl the point of view of the sys
tenl illlplenlenting higher ECO level, not all of its functionality will be supported
by the lower level systenl.

For an~' given protocol version, ECOs are backward cOlnpatible. If a change will
nlake systenls inconlpatible in the field, then a new (higher) protocol version
nlllllber lllUSt be allocated.

4.3.3 Other Processes

4.3.3.1 Keep-Alive Process

The keep-alive process is relevant to the ternlinal server only - the host does not
il1lplenlent a keep-alive process. The purpose of the keep-alive process is to no
tify the users of an idle virtual circuit that the circuit is suspected to be inopera
ble. This is is accomplished by causing data to be transnlitted at least every LAT_
KEEP _ALIVE_TIMER seconds. The keep-alive process accolllplishes this by sinl
ply guaranteeing that the data waiting flag (DWF) is set at least every LAT_KEEP_
ALIVE_TIMER seconds.

Setting DWF causes a sequenced Illessage to be sent. If the 1l1essage repeat
edly fails to be acknowledged, the LAT _MESSAGE_RETRANSMIT _LIMIT will be
reached, and the users notified of. the, unacceptable· circuit quality.

4.3.3.2 Progress Process

In theory, the virtual circuits described in this docunlent cannot" deadlock II •

However, cosnlic radiation, UNIBUSes and other equally defenseless culprits are
often blanled for events that "cannot" happen.

As insurance against such unlikely events, a ternlinal server can illlpienlent a
progress process. After the LAT_MESSAGE_RETRANSMIT _LIMIT is reached,
an implementation may choose to continue sending messages every LAT _KEEP _
ALIVE_TIMER seconds. If the value of LAT_MESSAGE_RETRANSMIT_LIMIT
should reach a ridiculous value, such as 500 messages, or if nlore than an hour
of real time has elapsed, the circuit should be stopped by transnlitting a stop nles
sage with an appropriate reason.

Circuit and Session Layers 4-49

A host in1plen1entation nlust run an additional tin1er when the RRF flag is clear in
the circuit block. If a 111essage is not received within a reasonable time (as little as
2 or :1 tinles the LAT _KEEP _ALIVE tinler seconds or as long afi a fe\·v days), the
host Inay wish to generate a Stop 111essage to stop the circuit. If host inlplenlen
tation lacked this tin1er, it would not discover that a terJ1'linal server had crashed
if the crash occurs while the host RRF flag was clear. The hazard is that host re
sources are dedicated to the virtual circuit until a user fronl the san1e ternlinal
server again requests service fron1 the host.

4.4 Message Formats

4-50

Bits are transn1itted onto the Ethernet low order bit first. When fields are con
catenated, the right hand field is transnlitted first. NUlneric fields 1110re that 8-bits
long are trans111itted least significant byte first.

Fields are represented as bit streanls, right to left. Al1 fields are an integer multiple
of eight bits. The synlbol "= II is used to indicate fields of varying or indetenninate
length.

A n1essage transnlitted fron1 a Inaster to a slave (fron1 a tern1inal server to a host
node) always has the MASTER bit of the nlessage type field set to 1. A message
transnlitted fronl a slave to a master always has the MASTER bit of the nlessage
type field set to O. Notice that this nlakes it possible to inlplenlent both ends of
the asynunetric LAT architecture sinlultaneously in a single systelll.

Legal values of the LA T Inessages are restricted by the LAT architecture to be in
the range of 576 through 1518 bytes. Node Ina), receive an unsolicited LAT nles
sage (Start) of nlaxinlum LAT Inessage length and is responsible for allocating
enough buffers to acconlodate this J11essage. Sizes of the solicited J11essages are
specified during the virtual circuit establishn1ent process· through the LA T _MIN_
RCV_DATAGR_SIZE value in Start n1essages. Once a circuit is established, all
nlessages exchanged between those nodes are linlited by the specified values.
Note that specified sizes can be different on both sides of the connection. Nodes
can also receive unsolicited Conlnland and Solicit infornlation lllessages. The
size of the nlessage that can be processed by the sending node is specified in the
DATA_LINK_RCV_FRAME_SIZE value.

A LAT nlessage is defined as only those fields specified in this specification;
datalink fields are not included. I.e. the actual length of the LAT nlessage that
can be sent to the transnlitting node equals the value given in those fields nlinus
18. (18 is the anlount of overhead required by the standard Ethernet datagranl.
The Ethernet datagranl is no longer part of the LAT specification, but conlpatibil
ity requires addition of this value.)

LAT/Digital Equipment Corporation/Proprietary and Confidential

Following rules define the value of the slot count byte field in the slot header:

• value of the slot count byte nll1st include all bytes present in the slot;

• all fields defined by the architecture ITIUst be present in the slot;

• paranleter code 0, indicating the end of the paranleters list, must be present
in the slot.

Exceptions to these rules are noted in the relevant sections.

When an error reason value of zero is specified, no reason has been supplied.

4.4.1 Virtual Circuit Message Header

All messages have the sanle header format:

Figure 4-2: Message Header Format

1
5 o

+============-----------------==+
+---------------+---------------+

DST_CIR_ID 1
+-------------------------------+ I SRC_CIR_ID

+-------------------------------+ I MSG_ACK_NBR MSG_SEO_NBR

+-------------------------------+

• R (1 bit) - RRF flag. This flag is clear for all nlessage types except for Run
nlessages translllitted fronl the host node to the terlllinal server which require
responses. This flag is never set in any lllessage translnitted by the tenninal
server.

• M (1 bit) - MASTER flag. This flag is set in all lllessages sent by the termi
nal server to the host node. Messages sent by the host node to the tenninaI
server always clear this flag.

• MSG_TYPE (6 bits) - the nlessage type field:

• Start message have this field set to 1.

• Run message have this field set to O.

• Stop nlessage have this field set to 2.

• NBR_SLOTS - number of slots in the message

Circuit and Session Layers 4-51

• DST_CIRJD - one of the virtual circuit identifications

• SRC_CIR_ID - one of the virtual circuit identifications

• MSG_SEQ_NBR - ll1essage sequence nun1ber (1110dulo 256)

• MSG_ACK_NBR - n1essage acknowledglllent nltJllber (n10dulo 256)

4.4.1.1 Start Message Format

4-52

Start ll1essage headers have MSG_TYPE fixed at 1, the NBR_SLOTS equal to zero.
Additionally, start 111essages trans111itted by the tern1inal server n1usl specify the
DST_CIR_ID as zero and the SRC_CIRJD as non-zero. Start 111essages tranSlllitted
by the host node 111ust specify these san1e two fields as nOll-zero.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 4-3: Start Message Format

1
5 o

+-------------------------------+
LAT_MIN_RCV_DATAGRAM_SIZE I

+---------------+---------------+
PRTCL_ECO PRTCL_VER I

+---------------+---------------+
NBR_DL_BUFS I MAX_SIM_SLOTS I

+---------------+---------------+
IKEEP_LIVE_TIMERI SRV_CIRCT_TMR I

+---------------+---------------+
FACILITY_NUMBER

+-------------------------------+
IPROD_VERS_NUMB I PROD_TYPE_CODEI

+---------------+---------------+
I SLAVE_NAME_LENI
+---------------+

SLAVE_NODE_NAME

+---------------+---------------+ I MASTER_NAME_LEN I

+---------------+
MASTER_NODE_NAME

+---------------+---------------+
I LOCATION LEN
+---------------+

LOCATION_TEXT

+---------------+---------------+
PARM_LEN PARM_CODE

+---------------+---------------+
PARM_DATA

+-------------------------------+ I PARM_CODE, PARM_LEN, and I
- PARM DATA repeated until =
I PARM_CODE is equal to zero. I
+-------------------------------+

UNPREDICTABLE

+-------------------------------+

• LAT_MIN_RCV_DATAGRAM_SIZE (2 bytes) - an inlplenlentation nlust spec
ify the nlaxinlunl LAT message size it is capable of processing. Actual length
of a LAT message is LAT_MIN_RCV_DATAGRAM_SIZE-18.

• PRTCL_ VER (1 byte) - The protocol version of this nlessage and of all nles
sages transnlitted during this session (current version is 5).

• PRTCL_ECO (1 byte) - The protocol version EeO (Engineering Change
Order) of this nlessage and of all nlessages translllitted during this session
(current ECO is 1).

Circuit and Session Layers 4-53

• MAX_SIM_SLOTS (1 byte) - nlaxinlunl number of sinlttltaneous sessions
that can be opened on this virtual circuit. Value is suggested by the tenni
nal server. Value supplied by the host lllust be used a~ the lllaxinlU1l1 by the
tenninal server.

• NBR_DL_BUFS (1 byte) - l1unlber of extra data link buffers queued. This cor
responds to the nunlber of additional nlessages (beyond the nornlal one nles
sage) that can be generated by the slot nlultiplexer on the systenl receiving
this start 111essage.

• SERVER_CIRCUIT_TIMER (1 byte unsigned) - Circuit tinler in 10 nlillisecond
intervals. Specified by ter1l1inal server. This field is ignored when received
fronl the host. A value of zero in this field is illegal.

• KEEP _ALIVE_TIMER (1 byte unsigned) - Value specified in seconds by ter1l1i
nal server. This field is ignored when received fronl the host by the tenninal
server. A value of zero indicates that no keep-alive nlessage \·vill be sent.

• FACILITY_NUMBER (2 bytes) - Value specified by the server and host. This
value is not restricted. It is intended to a II 0 ",r ternlinal servers and hosts to be
uniquely nunlbered within a local area. A privileged user should supply this
value to the inlplenlentation.

• PROD_TYPE_CODE (1 bytes unsigned) - The product type codes are assigned
by Digital Equipnlent Corporation.

• PROD_ VERS_NUMB (1 byte unsigned) - Product version nunlber.

• SLA VE_NAME_LEN (1 byte unsigned) - The byte count of the next field. A
value of zero in this field is illegal.

• SLA VE_NODE_NAME (SLAVE_NAME_LEN bytes) - Nanle of the slave node
of the connection.

• MASTER_NAME_LEN (1 byte unsigned) - The byte count of next field. A
value of zero in this field is illegal.

• MASTER_NODE_NAME (MASTER_NAME_LEN bytes) - Nanle of the nlaster
node of the connection.

• LOCATION_LEN (1 byte unsigned) - Byte count of LOCATION_TEXT field.
This field nlay be zero.

• LOCATION_TEXT (LOCATION_LEN bytes) - The text within this field should
describe the physical location of the systenl that transnlits this 111essage.

4-54 LAT/Digital Equipment Corporation/Proprietary and Confidential

• PARM_CODE (1 byte) - A paranleter code. No parall'leter codes are currently
defined. The value zero indicates the end of the list (which nleans the follow
ing fields are unpredictable). A non-zero value in this field indicates the next
two fields are valid. Parall'leter codes 0 through 127 are reserved for use by
Digital Equipll'lent Corporation, while parall'letel' codes 128 through 255 are
reserved for users.

• PARM_LEN (1 unsigned byte) - the length of the following field in bytes.

• PARM_DATA (PARM_LEN bytes) - the fonnat of this field is defined by the
associated PARM_CODE.

4.4.1.2 Run Message Format

Run messages have MSG_TYPE set to O. If the NBR_SLOTS (nun'lber of slots in
the n'lessage) is zero, then the message header is the entire nlessage. NBR_SLOTS
is equal to the nUll'\ber of slots within the ll1essage. The DST _CIR_ID and SRC_
CIRJD n'lust always be non-zero in Run ll1essages.

Each slot is aligned on word (16-bit) boundaries. The first slot is contiguous to
the n'lessage header. The second slot is contiguous to the first if the slot's total
length is even. If a slot's total length is odd, then one byte of UNPREDICTABLE
data is used as a pad byte between the slot to force the following slot to a word
boundary.

Run n'lessages can contain Start, Data_a, Data_b, Attention, Reject and/or Stop
slots.

Note that the slot type assignll1ent are done to assist an inlplell1entation in detect
ing a Data_a slot. Specifically Data_a slots are assigned the value zero while all
other slots (and all future slot type assignll'lents) are assigned a four bit value with
the left-n'lost bit set. Thus Data_a slots are' easily recognized since the byte value is
always zero or positive and credits are conveyed by Data_a slots as a byte value.

4.4.1.3 Start Slot

If a start slot is received (see slot state tables), the format of the slot is:

Circuit and Session Layers 4-55

Figure 4-4: Start Slot Format

7 o
+-------------------------------+ I DST_SLOT_ID

+-------------------------------+ I SRC_SLOT_ID I
+-------------------------------+

STATUS_BYTE_COUNT I
+---------------+---------------+

SLOT_TYPE CREDITS
+=-=====-====-==+====-==-==-====+

I <-- start of STATUS field

+-------------------------------+
MINIMUM_ATTENTION_SLOT_SIZE I

+-------------------------------+
MINIMUM_DATA_SLOT_SIZ I

+-------------------------------+
OBJ_SRVC_LEN

+-------------------------------+
+-------------------------------+
+-------------------------------+

SUBJ_DSCR

+-------------------------------+
remainder of STATUS field

+-------------------------------+
UNPREDICTABLE (only exists if

+-------------------------------+ STATUS_BYTE_COUNT is odd)

• DST _SLOT _ID - a reference to a slot block

• SRC_SLOT _ID - a reference to a slot block

• STATUS_BYTE_COUNT - an unsigned integer count of the length of the
STATUS field.

• CREDITS (4 bits) - a 4-bit integer equal to the nlllllber of credits being trans
ferred.

• SLOT_TYPE (4 bits) - the value 9 (1001).

• SERVICE_CLASS - see appendices

• MINIMUM_A ITENTION_SLOT _SIZE (1 byte) - The nlininlllnl slot size queued
to receive Attention slot data (not including the slot header). The systenl
receiving this message nlllst linlit transnlitted Attention slots to this size. A
value of zero indicates Attention slots are not supported.

4-56 LAT/Digital Equipment Corporation/Proprietary and Confidential

• MINIMUM_DATA_SLOT_SIZE (1 byte) - The Inininlum slot size queued to
receive Data_a and Data_b slots (not including the slot header). The systenl
receiving this nlessage nlust liInit transnlitted Data_a and Data_b slots to this
size.

• OBLSRVC_LEN (1 byte unsigned) - The byte count of the next field.

• OBLSRVC - The nal11e of the destination service.

• SUBJ_DSCR_LEN (1 byte unsigned) - The byte count of the next field.

• SUBJ_DSCR - The description of the source service.

• STATUS - The remainder of the status field nleanings are defined separately
for each service class.

4.4.1.4 Data_a Slot

Figure 4-5: Dats_s Slot Format

7 o
+-------------------------------+

DST_SLOT_ID

+-------------------------------+
SRC_SLOT_ID

+-------------------------------+ I SLOT_BYTE_COUNT

+---------------+---------------+
SLOT_TYPE CREDITS

+=--------------+--------------=+
+-------------------------------+

UNPREDICTABLE (only exists if
+-------------------------------+ SLOT_BYTE_COUNT is odd)

• DST_SLOT_ID - a 'reference to a slot block

• SRC_SLOT_ID - a reference to a slot block

• SLOT_BYTE_COUNT - an unsigned integer count of the length of the SLOT_
DATA field.

• CREDITS (4 bits) - a 4-bit positive integer equal to the nun,ber of credits be
ing transferred.

• SLOT_TYPE (4 bits) - the value O.

• SLOT_DATA - SLOT_BYTE_COUNT bytes of slot data.

Circuit and Session Layers 4-57

4.4.1.5 Data_b Slot

Figure 4-6: Data_b Slot Format

7 o
+-------------------------------+

DST_SLOT_ID

+-------------------------------+
SRC_SLOT_ID I

+-------------------------------+
SLOT_BYTE_COUN'I' I

+---------------+---------------+
SLOT_TYPE CREDITS I

+==--====-======+===--------====+

+-------------------------------+
UNPREDICTABLE (only exists if

+-------------------------------+ SLOT_BYTE_COUNT is odd)

• DST _SLOT _ID - a reference to a slot block

• SRC_SLOT _ID - a reference to a slot block

• SLOT _BYTE_COUNT - an unsigned integer count of the length of the SLOT_
DATA field.

• CREDITS (4 bits) - a 4-bit positive integer equal to the nun1ber of credits be
ing transferred.

• SLOT_TYPE (4 bits) - the value 10. (1010)

• SLOT_DATA - SLOT_BYTE_COUNT bytes of slot data.

4.4.1.6 Attention Slot

4-58 LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 4-7: Attention Slot Format

7 o
+-------------------------------+

DST_SLOT_ID I
+-------------------------------+

SRC_SLOT_ID I
+-------------------------------+

SLOT_BYTE_COUNT I
+---------------+---------------+

SLOT_TYPE MBZ I
+=====-----==-==+==--=----=-----+
+-------------------------------+

UNPREDICTABLE I (only exists if
+-------------------------------+ SLOT_BYTE_COUNT is odd)

• DST _SLOT _ID - a reference to a slot block

• SRC_SLOTJD - a reference to a slot block

• SLOT_BYTE_COUNT - an unsigned integer count of the length of the SLOT_
DATA field.

• MBZ (4 bits) - must be zero.

• SLOT_TYPE (4 bits) - the value 11. (1011)

• SLOT_DATA - SLOT_BYTE_COUNT bytes of slot data.

Circuit and Session Layers 4-59

4.4.1.7 Reject Slot

4-60

Figure 4-8: Reject Slot Format

7 o
+-------------------------------+

DST_SLOT_ID

+-------------------------------+
+-------------------------------+

STATUS_BYTE_COUNT

+---------------+---------------+
REASON

+---------------+---------------+
STATUS

+-------------------------------+
UNPREDICTABLE (only exists if

+-------------------------------+ STATUS_BYTE_COUNT is odd)

• DST _SLOT _ID - a reference to a slot block

• SRC_SLOT _ID - a reference to a slot block

• STATUS_BYTE_ COUNT - an unsigned integer count of the length of the
STATUS field.

• REASON - an unsigned 4-bit integer (see following section entitled "Slot rea
son codes").

• SLOT_TYPE - the value 12. (1100)

• STATUS - STATUS_BYTE_COUNT bytes of status. The status field Jlleanings
are defined separately for each service class.

This slot can only be transnlitted fronl the host.

LAT/Digital Equipment Corporation/Proprietary and Confidential

4.4.1.8 Stop Slot

Figure 4-9: Stop Slot Format

7 o
+-------------------------------+ I DS1'_SLOT_ID

+-------------------------------+ I SRC_SLOT_ID I
+-------------------------------+

STATUS_BYTE_COUNT

+---------------+---------------+
SLOT_TYPE REASON

+====------===-=+===============+
STATUS

+-------------------------------+
UNPREDICTABLE (only exists if

+-------------------------------+ STATUS_BYTE_COUNT is odd)

• DST _SLOT _ID - a reference to a slot block

• SRC_SLOTJD - a reference to a slot block (lllust be zero)

• STATUS_BYTE_COUNT - an unsigned integer count of the length of the
STATUS field.

• REASON - an unsigned 4-bit integer (see following section entitled "Slot rea
son codes").

• SLOT_TYPE - the value 13. (1101)

• STATUS - STATUS_BYTE_COUNT bytes of status. The status field 11leanings
. are defined separately for each service class.

4.4.1.9 Slot Reason Codes

Reason codes used in the Reject slot and Stop slot are defined below. These
codes are also used by Status nlessage (see section on the connection solicitation).

1. reason is unknown

2. user requested disconnect

3. system shutdown in progress

4. invalid slot received

5. invalid service class

Circuit and Session Layers 4-61

6. insufficient resources to satisfy request

7. service in use

8. no such service

9. service is disabled

10. service is not offered by the requested port

11. port name is unknown

12. invalid password

13. entry is not in the queue

14. illlnlediate access rejected

15. access denied

16. corrupted solicit request

Note: all reason codes have been assigned.

4.4.1.10 Stop Message Format

4-62

Stop nlessage headers have MSG_TYPE equal to 2. The SRC_CIR_ID field nlust
always be zeroed in Stop nlessages.

Figure 4-10: Stop Message Format

7 o
+-------------------------------+

CIRCUIT_DISCONNECT_REASON

+-------------------------------+
+-------------------------------+
I .. REASON_TEXT
I
+-------------------------------+

• CIRCUIT_DISCONNECT_REASON (1 byte unsigned) - A zero value nleans
no reason is given. The currently defined reasons are:

1. reason is unknown

2. No slots conne"cted on virtual circuit.

3. Illegal 111essage or slot fonnat received.

LAT/Digital Equipment Corporation/Proprietary and Confidential

4. VC_halt fronl user.

5. No progress is being nlade.

6. TiIne linlit expired.

7. LAT_MESSAGE_RETRANSMIT_LIMIT reached.

8. Insufficient resources to satisfy request.

9. SERVER_CIRCUIT_TIMER out of desired range.

10. Number of virtual circuits is exceeded.

11. (nlake up your own reasons, but please get thenl added to this docu
nlent).

• REASON_BYTE_COUNT (1 byte) - Byte count of REASON_TEXT field.
Nornlally specified as zero.

• REASON_TEXT (REASON_BYTE_COUNT bytes) - This field of ASCII charac
ters contains the reason the stop lllessage was sent.

Circuit and Session Layers 4-63

5

Connection Solicitation

5.1 Architectural Model

This section describes how an application process running \·"ithin a host (slave)
environnlent can initiate a connection to application terJllinals that are connected
to the tern'linal server (n'laster).

The prinlary difference between interactive and application tenllinals is that inter
active tern'linals require a 111echanisnl for master-initiated connections to slaves,
while application tern'linals require a nlechanisnl for slave-initiated connections
to nlasters. Since the LAT protocol requires that only a n'laster can actually start
a connection to a slave, different processes are required to allow a slave to for
nlltlate a request to a master to start a connection. During that process, a slave
initiates a connection by issuing a solicitation request to a nlaster, which actually
starts a connection (the connection solicitation process). The connection solici
tation process also allows "queued" services, where connection requests can be
stored in the service's queue for future processing. The architecture of the connec
tion solicitation process inlplen'lented by LAT architecture not only allows slaves
to initiate connections to nlasters, but also allows nlasters to use the connection
solicitation process to initiate connections to slaves, thereby providing queued ser
vices on slave nodes.

To implement the mechanisnl providing the connection solicitation process, two
aspects of the LA T architecture are discussed in the following chapter and in the
Appendix A: local area directory service and connection initiation. Local area di
rectory service includes the advertising process, which allows advertising of ser
vices offered by the masters. The connection initiation process supports connec
tion solicitation and queued services.

Connection Solicitation 5-1

5.1.1 Service Sharing

5-2

The principle of "service sharing" is hased on a n1echanism of queues. Each ser
vice possesses "queued" or "non-queued" characteristics. Queues are accessed by
subjects through connection requests qualified by "queued" or "non-queued" ac
cess 11lethods. When a subject nlakes a request for usage of a service, the subject
specifies the access nlethod to be used. The object returns an acknowledgl1lent,
where it specifies the status of the request. A request for "queued" access I1lay
be re.,ected, or it I1lay be accepted in the service's queue for future processing. If
the service is busy with another user, arld the service possesses characteristics that
pernlit queuing, and the user requests "queued" access, the connection request is
placed in a queue associated with the service. The subject node stores the connec
tion request in its context area and the object node that receives the connection
request creates a corresponding entry in its queue. The LAT architecture provides
a nlethod of correlating the request fron1 the subject· with an entry in the object's
queue using two values: the request identifier and the queue entry identifier. The
queue status and entry infonnation are passed back to the subject requesting the
connection. Subject node operations are available to the subject to request the
status of the whole queue and individual entries, cancel the queued entry, etc.

Service characteristics, available to a user through the Advertising process and
the specification of an access type supplied by the subject during the connection
request, allow a user to organize usage of services.

• Service characteristics are:

queued

non-queued

disabled

• Access types used by subjects are:

queued

non-queued

Allowed service access-service characteristics conlbinations are:

• Queued or non-queued access to a disabled service:

Any type of access to a disabled service will result in the "service dis
abled" reject reason returned.

LAT/Digital Equipment Corporation/Proprietary and Confidential

• Queued access to a non-queued service:

If service is availnble, then access is granted and connection is nlade.
If service is not available, then "inunediale access re.jected" error is re
turned.

• Queued access to a queued service:

A service is available for use potentially by nlany users. For this reason,
request arbitration in the fonn' of request queuing is provided by an ob
ject. This scheole provides an eleolent of fairness since requests frool
the users are queued to the service on a first COllle, first served basis.

As requests arrive fronl subject nodes, they are queued to the service.
They are then dequeued on a first-coole, first-served basis. When its re
quest is dequeued, the subject has exclusive use of the service until either
the user disconnects fronl the service (Le., finishes using it) or the server
disconnects frOlll the user's node.

When the current session completes, the next request is dequeued and
causes an attenlpt to establish a connection between the subject and the
object. Subject and object nodes exchange Start nlessages (Start slots)
establishing a session between the user and the service.

When a session is established, data transnlission occurs by means of
Data Slots after the Start Slots are exchanged.

The subject that requested the connection can always refuse to start the
connection or cancel the queued request. Such a situation olay occur
if the node found another service available to satisfy the request after it
sent the original request. Note that a olechanisol is provided to the node
that requested a connection to cancel a queued request.

• Non-queued access to a queued service:

Non-queued access to a queued service will be accepted only if the
queue is empty. If there are other entries in a queue an "io1n1ediate ac
cess rejected" error will be returned by the subject. After the connec
tion is started, a user has exclusive access to a service. All requests for
queued access will be queued, and for non-queued access will be re
jected. An active user retains exclusive access to the service until the
connection to the service is broken.

• Non-queued access to a non-queuetl service:

A "service in use" error will be returned in a Status message if the ser
vice is being currently used. Otherwise, an attempt to establish a con
nection will be n1ade by the solicited node.

Connection Solicitation 5-3

The connection solicitation process allows a subject to queue a connection request
to a service that possesses characteristics allowing queuing. A subject requests
queued access to a service, and the queued service places the connection request
in the queue for future processing. The connection solicitation process provides
coordination between the subject and the object, allows correlation of the request
(subject) and corresponding queue entry (object),and provides the subject with
set of functions to handle the queue. Conlnlunication between a subject and an
object that provides queuing of a connection request is inlplenlented using two
nlessages - the Conlnland nlessage and the Status nlessage. For specific details on
nlessages flow and object/subject state-tables during the solicitation process, see
H Connection Initiation. II

5.1.1.1 Queue Coordination

5-4

Coordination of a connection request between a subject and an object is inlp)e
nlented using two values that identify local data structures within each of the conl
nlunicating nodes - the requestjdent and the entry jdent. The requestjdent and
the entry jdent are unique in the node in which they where assigned and nlust
not be O. When systenl is booted, initially these identifiers nlust be chosen as ran
donl nunlbers. These identifiers nlay be reused by the node. The algorithnl for
assigning and deassigning of these identifiers is presented in the Appendix C.

To solicit a connection, the subject node assigns a requestjdent (a handle on the
local data structure) and sends it to the object node in a Conlnland lnessage .. The
object node that receives the solicitation request (and decides to queue it to a spe
cific service) assigns an e~try jdent to its local data structure that corresponds
to the solicitation request, and sends the entryjdent back to the solicitor in the
Status 111essage. State-tables that fully describe the request-queue entry coordina
tion process through nlessage flow are defined in a later section.

The above identifiers allow comnlunicating nodes to coordinate solicitation re
quests. Many requests can be queued to' the service- ·simul taneously, and each
request is uniquely identified by the nanle of the node that queued the entry and
a pair of the request-entry identifiers. Any request fronl the subject and any re
sponse froln the object nlust supply in the corresponding nlessages the requesC
ident-entry jdent pair that uniquely defines the connection request. The request
from the subject can be rejected by the object. The reason for the rejection is re
turned to the subject in the Status nlessage (see LAT nlessages).

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 5-1: Queue Coordination

+----------------+ +-------------------+ 1 request_identl
SUBJECT 1------------->1 OBJECT

1 1
1 entry_ident 1

1<-------------1
+----------------+ +-------------------+

When resources to satisfy an entry in the queue becon1e available on the object
node, the corresponding connection can be started. When a 1118stel' node starts
a connection using a Start slot, it supplies a request or entry identifier that was
uniquely identified on the node to which the Start slot is directed.

5.1.1.2 Queue Access

Queued and non-queued access methods can be used by a subject to initiate a
connection to 8n object. Access froll1 a subject to an object is established llsing
Start Messages/Start slots and COJllll1and/Status messages. Figure 5-2 correlates
access nlethods and service characteristics.

Connection Solicitation 5-5

Figure 5-2: Access Methods and Service Characteristics

S
e
r
v
i S
c L
e A

V
E

A
c
c
e
s M
s A

S
T
E
R

Service Characteristics

+-------------------------------+-------------------------------+
Master Slave I

+---------------+---------------+---------------+---------------+
queued non-queued queued non-queued I

+------+---------------+---------------+---------------+---------------+ I queuedl send: COllulland I send: COllunand I I
I I receive: I receive: I I
I I Status (queued I Status (inulled. I I
I I or rejected) laccess rejectedl I
I I or Start I or Start) I I
+------+---------------+---------------+ no slave-to-slave

connection possible
I
I
I
I

, non- I send: Conunand
Iqueuedlreceive: Status(reject)
I I or Start
+------+-------------------------------+----------------+--------------+
, queued I I send: Conunand I send: Conunand
I I I receive: 'receive: I
I I I Status (queued) 'Status (accept I
, I lor (rejected) I or reject) I
+------+
I non- I
Iqueuedl
I I

no master-to-master
connection possible

+----------------+--------------+ I send: Start ISend: Start I
I receive: I receive: Start I
Istart or Reject I or Reject I

+------+-------------------------------+----------------+--------------+

Note that there is the difference between connection initiation fronl a nlaster to a
slave and connection initiation from a slave to a nlaster. A slave can use only a
Conlnland nlessage to provide queued and non .. queued access, but a nlaster can
provide queued and non-queued access using a Start nlessage/Start Slot as well as
a COll1111and ll1essage.

5.1.1.3 Queue Structure

5-6

In Figure 5-3 the structure of the request-blocks list '011' the subject node and the
queue-structure on the object node do not attelllpt to dictate an inlplen1entation,
but rather serve as an exan1ple of requestjdent-entryjdent usage. Other paran,
eters that define data used by operations available for queue control are shown
united in the Queue Entry Control Block.

The structure of the queue in the object node is assumed to be a node-wide queue
to provide uniqueness of the request and entry identifiers a1110ng all entries.
Actual queuing is done to the services and ports. Queue position parallleters at
tached to each request denote the pOSition of the entry within the queue directed
to a particular service and port. Each entry can be designated for a particular port
or all ports offering this service. Queuing of requests depends upon the service
and port name translation.

LAT/Digital Equipment Corporation/Proprietary and Confidential

In Figure 5-3, the subject stores in the list of the request control blocks (RCB) all
requests that are currently being queued. A unique requestjdent (rn) is provided
for each block in the list. The object has a node-wide queue that includes entries
queued to all services. Each entry is represented by a Queue Entry Control Block
(ECB). Uniqueness of the entry in the queue is provided by the entry and request
identifiers and nall1e of the soliciting node. Conlnland/Status nlessage exchange
allows creation of a corresponding ECB entry (qn) for each request (rn). Each
ECB in the queue and each RCB are identified by the san1e pair of requestjdent
and entryjdent. All entries in the queue are linked into a list that is queued to a
specific service. Each entry changes its queue depth n10ving up in the queue ac
cording to the processing of the requests. On the figure below service Sl is of
fered by the ports PB and PC and service 52 is offered by the port PC.

Figure 5-3: Queue and Request List Structure

+----------------+ +-------------------+
I . I request_identl
I SUBJECT 1------------->1 OBJECT
I 1 1

+------1 I entry_ident 1 (Node N1)
1 1 1<-------------1
I +----------------+ +-------------------+
I
1

I
I
I
I ,
+----->+--------+

I RCB I
, rl,ql,

+------+--------+
1

+----->+--------+
I RCB ,
, r2,q2 I

+------+--------+
I
+----->+--------+

I RCB I
, r3,q3 I
+--------+

5.1.1.4 Queue Operations

+---------------+ +-------1 Service Sl
I +---------------+ Node-wide Queue
I I Service S2 1--+ +-------------------+
I +---------------+ I IEee rl,ql,node name'
I I +-------------------+
I I IEeB r2,q2,node name I
, +---------------+ 1 +-------------------+
, Port PA I IEeB r3,q3,node name 1

, +---------------+ 1 +-------------------+ +------>1 Port PB I
I +---------------+. I +------>1 Port PC 1<-+

+---------------+

LAT provides a set of operations that a subject can perform in order to oper-
ate with a service's queue: insert an entry into a service's queue, delete an en
try, acquire information about any particular entry in the service queue, etc. The
Command nlessage and the Status message contain fields that allow an exchange

Connection Solicitation 5-7

of operation codes and paranleters between the subject and the object (see LAT
Message fonnats). A subject defines an operation code in the COMMAND_TYPE
in the COlll1nand ll1essage.

Operations perfornled by a subject can be viewed as "access" operations and
"status request" operations which are specified by the COMMAND_TYPE and
COMMAND_MODIFIER fields of the Conlnland nlessage. "Access" type opera
tions always define an entry and allow inclusion or cancellation of an individual
entry in the queue. "Status request II type operations allow request of the status
of the individual or multiple entries in the queue. A COll1nland nlessage type is
defined by an operation code (value) and a specifier (bit nlask). The following
operation codes are specified:

• non-queued access operation

• queued access operation

• cancel entry operation

• individual status operation

• nlultiple status operation

• queue status operation

There is also a possibility of a "loca)" operation - an object node can delete an en
try in the local queue without request from the sUb.iect. In that case, a Status nles
sage is sent by the object to the corresponding subject to inforn1 the subject about
deletion of an entry.

A side fronl the local operation described above, any operation on an "existing
entry in the queue can be perfornled only by the node that queued' the entry.
The object node that contains the queue must always validate the subject node
nanle to verify whether the specified entry was queued by the node issuing the re-'
quest. If not, the object node nlust return a Status n1essage with the error reason
"Inconsistent or illegal request."

5.1.1.5 Connection Solicitation Operations

" Access" operations allow a subject to request access to a service or delete an en
try in the service's queue. Defined access operations are:

• Solicit queued access to the service - the subject supplies a REQUEST_IDENTIFIER
and, if the object accepts the request for queuing, it builds and queues an
ECB and sends a Status nlessage to the subject. The Status nlessage includes
an ENTRY_IDENTIFIER along with other paran1eters (see " Status" Message").

5-8 LAT/Digital Equipment Corporation/Proprietary and Confidential

If the queue request is not accepted, the Status Illessage returns with a reject
reason.

• Solicit non-queued access to the service - if the request can't be accepted ill1-
ll1ediately, a Status ll1essage with a reject reason is returned by the object.

• Delete an entry in the queue - a subject can cance1 an entry in the queue.
A subject identifies the entry in the queue using ENTRY_IDENTIFIER and
REQUEST JDENTIFIER values. An object node ll1USt verify a subject node
nanle against the nalne of the node that queued an entry.

When the Con1111and ll1essage is sent to the solicited node, the solicited node's
decision as to how to queue the request to the service and port is based on the
service/port nalne inforll1ation supplied in the Conl1nand ll1essage:

• if only the service nanle is provided - the request is queued to the service and
the first available port offering this service is chosen. An error is returned if
the node does not offer the requested service.

• if only the port name is provided - the request is queued to the default ser
vice. An error is returned if the requested port does not offer the specified
service. The default service nall1e is returned in the SRVC_NAME field of the
Status ll1essage. A null nall1e (the nalne length counter = 0) is returned if no
default service is defined.

• if both the service and port names are provided - the request is queued to the
requested service for the specified port. An errol' is returned if the node does
not support the requested service or the port does not offer the requested
service.

• if neither the service nor the port nalne is provided - the request is queued to
the default service on the node and the first available port offering the default
service is chosen. The default service nall1e is returned in the SRVC_NAME
field of the Status 111essage.

An exall1ple of request queuing is presented below (refer to "Name Translation
Process") The source node that 111ade a solicitation request translated the source
< NODE_NAME> < SERVICE_NAME> and sent a solicitation request to the
node N1. Table 5-1 shows how the nall1e translation process results in a queue
structure on the object node N1 depending upon the given < SERVICE_NAME> < PORT_
NAME> combinations.

Connection Solicitation 5-9

Table 5-1: Name Translation Examples

service nOde-wide
presented entry queued port service-wide queue posi-
name ident to used queue position tion

"----"'''''--", ,--
<51> <PB> r1,q1 51 PB queue_posit .. 1 queue_

posit -1

<51> r2,q2 51 undef. queue_posit - 2 queue_
posit-2

<PB> r3,q3 51 PB queue_posit - 3 queue_
posit - 3

none r4,q4 51 undef. queue...;posit - 4 queue_
posit-4

<PC> r5,q5 S1 PC queue_posit - 5 queue_
posit - 5

<52> r6,q6 52 PC queue_posit -1 queue_
posit ... 6

<52> <PC> r7,q7 52 PC queue_posit - 2 queue_
posit -7

Service-wide and node-wide queue_position values give the user the position of an
entry by defining its positions in the service and node queues. This is an approx
inlate position and not necessarily an order in which an entry will be taken for
processing. An entry is taken for processing when it beconles the highest entry in
the node-wide queue for which resources beCOllle available.

5.1.1.6 Status Solicitation Operations

An object node returns the status of only those entries that were queued by the
subject node issuing a COlllmand message (Le., an object node has to check an
entry against the soliciting node nanle). There are three types of status solicitation
requests as defined by the COMMAND_TYPE operation code:

• Individual entry status - this type of operation requires an object node to re
turn the status of a particular entry to the subject node. Request and entry
identifiers both are not O. Note that the object node can still respond with a
Status message containing a multiple-entries status (to provide concatenating
of the entries in one Status 11leSsage).

• Multiple entries status - a subject node can inquire about all queued entries.
Request and entry identifiers both nlust be O. When this operation is per
formed, all entries queued by the subject node (and only those) are included
in the Status message and sent ba~k by the object node.

5-10 LAT/Digital Equipment Corporation/Proprietary and Confidential

• Queue status - a subject node can query the status of the queue. Request and
entry identifiers both nlust be O. When a message has to be returned by an
object node, the ENTRIES_COUNTER field in the Status message must be 0,
and no entry infornlation will be included in the nlessage. In the future, ex
tensible paranleter fields in the Status nlessage can be used to return different
types of infortllation about the queue status on the object node.

As stated above, the solicited node can always concatenate the status of several
entries in one Status nlessage in order to nlinitllize Inessage traffic when the solic
iting nodes require status reports on a tinler or queue-depth change basis (see the
following sections). That is, the soliciting node can always receive a Status mes
sage that includes nlore entries than the soliciting node requested. The soliciting
node should provide the necessary filtering of entries.

The COMMAND_MODIFIER bit mask specifies how the status of an individual
entry is to be sent by an object node. The defined nlodifiers are the periodic sta
tus request and the queue-depth-change status request. The specifier creates a re
quest state for an individual entry. That request state cannot be changed during
an entry's life-tiIne in the queue.

An object node that is queuing connection requests specifies the optional paranl
eters, destination port nanle and destination service nanle. Those paranleters are
preserved in the Entry Control Blocks for each entry.

When a subject node requests the status of one particular entry, no filtering is
performed because each entry is uniquely identified by request-entry identifiers.
When a subject node requests multiple-entries status, an object node can use the
destination port and service nalnes to filter entries included in the queue as fol
lows:

• if no destination port or service name is specified, the object node includes in
the Status Inessage all entries queued by the subject node.

• if only the destination service name is specified, the object node includes in
the Status nlessage only those entries that are queued to the specified service.

• if only the destination port name is specified, the object node includes in the
Status nlessage only entries queued to the specified port (the name of the
destination port was explicitly specified in a Conlnland nlessage).

• if both the destination service and port names are specified, the object node
includes in the Status nlessage only entries queued to the specified port and
the specified service.

Connection Solicitation 5-11

5.1.1.7 Concatenating The Status Entries

The Status nlessage aHo\vs sending of the status of ",ort"' than one queue entry in
one status Inessage. Concatenating 111ulliple status entries in one status nlessage
allows nlinilllization of nlessage traffic. The object node can concatenate in one
111essage all entries that were queued by the subject node when:

• The subject node requests nlultiple-entries status.

• The queue depth changes and several entries have a request-state requiring a
status nlessage to be sent to the saine subject node.

• The tiIner expired on an entry with a "periodic" request state, and the status
of several entries have to be reported to the sanle subject node.

One note is necessary abQut the expected behavior of a subject node when it re
ceives nlltltiple status entries in the Status 111essage. If nlllitiple status entries do
not fit in the Status lllessage, the object node can send several Status lllessages
to the subject node. Actually, the subject node can't be sure that all entries are
included in the Status nlessage. The rule is that the subject node cannot use the
absence of an entry in the Status nlessage to nlake any conclusions about whether
an entry is still pending in the object node's queue. The subject node can tinle-out
the queued state of the entry if no entry status infonnation has been returned in
the Status nlessage(s) during the tinle-out period.

5.1.1.8 Retransmission And Time-out Policies

Since the Comnland-Status/Start message exchange is going outside virtual cir
cuit context policies that govern event tinle-outs, tinler values and retranslnis
sion counters play an important role. Values recoll1111ended or required for those
tinlers and counters are presented in the section entitled "Defined paranleters and
reconl111ended or required default values" .

• MULT _STAT_TIMER defines the tinle interval between Status nlessages when
nlltltiple Status messages have to be sent by the object node to provide infor
nlation on all queued entries.

• STAT_REP _TIMER is used by an object node as a retransmit interval to report
the status of entries in the queue when it is requested by a subject node.

• A node queues an entry using a Comnland nlessage. The node that receives
the request for queuing responds with a Status message (see "State Tables"
below). RETR_COMM_TIMER parameter defines tinle interval for a node to
retransnlit an unanswered Conunand nlessage. RETR_COMM_COUNT de
fines nunlber of times this process nlust be repeated before tinling-out the
request.

5-12 LAT/Digital Equipment Corporation/Proprietary and Confidential

• When a ll1aster node queues an entry to a slave node, the ll1aster node has
to respond with the Start ll1essage upon receiving froll1 the slave node the
Status 111essage inforllling the 111aster that the entry has been chosen for pro
cessing (see "State Tables" below). RETR_STAT_TIMER and RETR_STAT_
COUNT parall'leters define a tiIl1e interval forretranslllission of an unan
swered Status nlessage fronl the slave where an entry is queued and nUll1ber
of tinles that process 111USt be repeated before entry is tinled-out.

5.1.2 Connection Initiation

On the virtual circuit level a connection can be established only fronl a ll1aster to
a slave. That is, a lllaster always behaves as a subject and a slave always behaves
as an object. hl1plenlented connection solicitation process allows connection ini
tiation fronl slave nodes to nlaster nodes and provides cOlllll1unication of data to
the nlaster nodes (and to the application terll1inals) using the underlying LA T pro
tocol. The connection initiation process allows arbitration of conflicting requests
for use of services by queuing concurrent requests, acquiring inforll1ation about
queued requests, and canceling a solicitation. Because of the aSYJlll11etrical nature
of the LAT architecture, the connection solicitation process allows slaves to initiate
connections to services offered by ll1asters by requesting a 111aster to actually start
a connection.

To:

• preserve the investnlent in the slave and master node implementations

• allow shared services offered by slave and master nodes to be arbitrated

• anow slave node application processes to initiate sessions to nlaster node
ports

• 111ultiplex all data over a single virtual circuit

• provide access to the status of queued processes

The LA T architecture allows both slaves and nlasters to behave as subjects and
objects (Le., both slave and nlaster nodes can "solicit" connections to services).

The LAT architecture allows slaves to use the connection solicitation process to
connect to masters. Correspondingly, the nlasters that support this version of
the architecture also can use the connection solicitation process to arbitrate COll

nection requests and acquire queue infornlation about th·: slaves that support this
version of the architecture Depending upon the status of the node that offers the
service and the service characteristics, a nlaster can directly connect to a slave 01'

initiate connection by using the connection solicitation process. See Figures 6-4

Connection Solicitation 5-13

through 6-7 for connection initiation exalllpies and Tables 6-2 through 6-6 for the
state tables.

LAT il11plelllents two 111essages to allo\,v slave-initiated connections to 1l1asters -
a C0l1ll11and 1l1essage and a Status 111essage. Both 1l1essages are physically ad
dressed. Once the decision is 1l1ade by the solicitor to establish a connection using
the solicitation process, it forlllats and sends a COlll1l1and 111essage to the node
that provides the service. Such a C01l11l1and Illessage (specified below) infol'lllS
the solicited node of the solicitor's desire to use the service. As discussed before,
this 1l1essage has two additional uses: a) to cancel a previous solicitation, and b)
to inquire about service status and queue position.

The connection solicitation 1l1echanislll allows a slave node to solicit a connection
across an already existing virtual circuit 1l1ade in the "wrong" direction. In order
to do that, the slave node should know that such a virtual circuit already exists.
SLA VE_NODE_NAME and MASTER_NODE_NAME fields contained in "the Start
nlessage allow the soliciting node to identify the naJl1e of the node connected to
the virtual circuit. That l11akes it possible to solicit a connection using an already
established virtu a] circuit.

5.1.2.1 Solicitation Process Message Flow

5-14

To clarify how the node status and virtual circuit direction influence connection
solicitation, SOllle exanlples of establishing a connection between 1l1aster and slave
nodes are shown in Figures 6-3 through 6-5. the service that is being connected
to possesses "queued" characteristic. Message flo"' diagrallls are presented to
gether with explanations to clarify those examples. In the 1l1essage flo"' diagrallls,
Start n1essages are not shown. In these exan1ples, rN Jl1eanS the l'equestjdentifier
N, which is assigned by a soliciting node, and qN 111eans the entl);jdentifier N,
which is assigned to the request by a solicited node.

Initiation:

How connection is initiated between nodes depends upon service characteristics,
the nlethod of initiating connections to the node (inbound/outbound bits in the
NODE_STATUS field of the Response message) and the direction of the already
established virtual circuit (see Tables 5-2 through 5-5 for the connection solicita
tion state tables). The rules that define possible access nlethods to services are
described in Figure 5-2.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Queuing:

If the service is already in use, the solicitor Illay still altelllpt to initiate a connec
tion to the service. The request I1lay be placed in a queue of requests to the ser
vice for servicing at a later tillle, provided that the service characteristics pernlit
stich queuing. Note that a ll1echanislll exists to cancel a previously issued solicita
tion should the solicitor later decide not to use the service.

Upon receipt of the COlllllland nlessage", the Master replies with a) a Status
Message or b) a Start Message or c) a Run Message containing a Start Slot.

The Status nlessage is sent by a nlaster only in two cases: if the solicitation is re
jected by the node or if the solicitation is accepted but the service is currently be
ing used by sonle other process and the service characteristics allow queuing of
requests. Upon receipt of the COll1111and 111essage, a slave always responds with
the Status nlessage.

The Status I1lessage indicates the acceptance of the solicitation if the service is
busy with another user, the service possesses characteristics that perlllit queuing,
and the user requested" queued" access. In this case, a "queue-entry" identifier
is assigr,ed by the solicited node and the solicitation request is placed in the node
queue. This entry identifier and its position in the queue are passed back to the
soliciting node in the Status Message.

The solicitor has the ability to inquire about the status of queued entries. The
Conl111and nlessage with a ceit~in COMMAND_TYPE (see "Conl111and Message")
is issued by the soliciting node to perfornl this inquiry. The solicited node re
sponds with a Status Message supplying inforlllation about queued entry.

Rejection:

The Status nlessage returned by a solicited node nlay indicate rejection for a vari
ety of reasons; for exanlple, a resource probleol at the solicited node, authoriza
tion failure, the service is busy and its characteristics do 110t support queuing, etc.
See the Status olessage rejection codes.

Rejection of.the solicitation request by the solicited node causes the soliciting node
to delete the corresponding request fronl its context. It also can happen that the
request frool the soliciting node has been accepted and the solicited node re
sponded with a Start slot, but the soliciting node nlay decide not to use the con
nection. A typical reason l11ay be that the solicitor has insufficient resources to
cOll1plete the connection. In this case, the soliciting node deletes the request from
its context and sends a reject slot that causes the solicited node also to delete the
corresponding entry in its queue.

Connection Solicitation 5-15

5-16

Note that the solicited node itself also can delete a queue entry created by a solic
itation request fro11"\ a soliciting node. The solicited node in that case should send
a Status n\essage with a reject reason back to the solicitor and the solicitor will
delete the request fronl its context.

Acceptance:

If the service on a Inaster node can accept a connection request in\l11ediateJy, no
Status lnessage is returned on success. lnstead, the lllaster attelllpts to establish
the connection between the soliciting and solicited nodes. The underlying virtual
circuit 1"ay not already exist between the 111astel' and the slave nodes. If it already
exists, the connection uses the existing virtual circuit and a Run 111essage contain
ing a Start slot is sent by the lllaster to the slave node. If it doesn't exist, the vir
tual circuit 1l1ust sOlllehow be established. There is an inherent aSyllln'letry in the
virtual circuit establishlllent process as defined by the LAT Architecture, nanlely
that the establishn1ent nlust be initiated by the 111aster. Consequently, the ll1aster
111ust initiate the creation of the virtual circuit by sending a Start 111essage to the
slave node.

The service on a slave node always responds with a Status 111essage to the J118S
ter's request. The n,aster node can see whether the request is queue'..\ frolll the
ENTRY_STATUS bit in the Status 1l1essage. When the entry reaches the top of
the queue, the slave node sends a Status nlessage with the "entry accepted (or
processing" bit set in the ENTRY_STATUS field of the Status 111essage. When the
lllaster node receives a Status 1l1essage with this bit set, the 111aster node can initi
ate a connection using a Start slot or create a virtual circuit using a Start ll,essage.
An attel1lpt by a l11aster node to start a connp.ciion on a queued entry will be re
jected by a slave node using a Reject slot With a "request is queued H error code.

Resolicitation:

Should a C0l1l1nand l11essage fron1 the subject -node -becolne-Iost in transll,ission
to the object node, the solicitor can retransn,it the Solicit Message at a rate de
fined by the corresponding tilllel'. No problen, can arise fronl duplicate requests
being received by the solicited node on behalf of the sallle session because each
request is 'tagged' with the requestjdent assigned by the solicitor. Only one
COlllmand lllessage froll1 a given soliciting node with a given requestjdelit is al
lowed.

Resolicitation nlay be also caused by events such as the following:

1. the subject node queues the request to the object node;

2. the subject node crashes;

LAT/Dlgl!al Equipment Corporation/Proprietary and Confidential

3. the subject node inlnlediately restarts while request is still in the queue on the
object node.

If the subject node queues a ne\,\' entry using the sanle request identifier that was
used for the entry which is still queued on the object node, the object node has
no way of knowing that it is actually a different request; the second request I1lay
specify a totally different object. If this connection is allowed to be started, un
intended results lllay occur. For exanlple, ASCII text I1lay be sent to a graphic
plotter instead of a printer.

To avoid this situation, the service and port nanles in the Conlnland nlessage,
Status 11lessage and Start slot lllUSt be consistent in order to start a connection.

If the object node receives a Conul1and J1lessage specifying the sanle request iden
tifier as an existing queue entry and the sanle object is specified (service and port
nanles are the sanle), the object node returns a Status 111eSSage with the reason
code "request already queued". If the object specified is different, then the object
node deletes the existing entry fronl the queue, queues new entry, and then sends
a Status lllessage specifying success.

When the object is available and the connection starts, alJ parameters of the
queued entry (service and port nanles) are included in the Start slot by the nluster
node and verified against stored paran1eters of the request by the slave. If this
verification fails, the error "solicitation request is corrupted II is returned to the
user and the entry is deleted froln the queue as shown in Tnble 5-2 below.

Table 5-2: Example of Connection Resolicitation

Subject
(Master)

Connection Solicitation

cOlnnland msg (access rl ,O)
-------->

status nlsg (rl,ql) (accepted)
<--------

conlnland nlsg (access rl,O)
-------->

Object
(Slave) Action

Subject· queues an en-
try. Entry is accepted and
queued. All paranleters
saved

Status message is not re
ceived by the subject or
subject went down, canle
up again and acciden
tially chooses the sanle
identifier

Subject queues an entry.
Object verifies paranle
ters.

5-17

5-18

Table 5-2 (Cont.): Example of Connection Resolicitation

Subject
(Master)

status (rl,q1) (already queued)

<--------

status nlsg (r1,ql) (success)
<--------
status msg (rl,ql ready)
-------->

start slot (r1)
-------->
start (accept/reject)
<--------

command msg (access r1,0)
------~.>

status msg (r1,q1) (accepted)
<--------

command nlsg (access r1,0)
-------->

status msg (r1,ql)(entry al
ready queued)
<--------
start slot (1'1)
<--------

Object
(Slave) Action

Paranleters nlatch: Object
returns status "entry al
ready queued"

Paranleters don't nlatch:
Object deletes old entry
and queues new one. AJI
paranleters saved.

Status message returned.

When resourse is avail
able slave sends status
nlessage

Subject (nlaster) starts
connection.

Object verifies paraJneters
in the Start slot against
stored paranleters of the
entry and responds with
start (if verification suc
ceeds) or reject.

Subject queues an en-
try. Entry is accepted and
queued. All paranleters
saved

Status message is not re
ceived by the subject or
subject went down, caIne
up again and acciden
tially chooses the sanle
idel,tifier

Subject queues an entry.
Object deletes old entry
and queues new one. All
paranleters saved.

Status nlessage returned.

Object (nlaster) starts con
nection. Subject verifies
paranleters in the Start
slot

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-2 (Cont.): Example of Connection Resolicitation

Subject
(Master)

Connection Solicitation

start (accept/reject)
-------->

Obiect
(Slave) Action

against stored parameters
of the entry and responds
with start (if verification
succe~ds) or reject.

5-19

5-20

Table 5-3: Example of Slave Initiating Connection to Master

Slave

conulland IllSg (rl,O)
-------->

start slot (rl)
<--------
start/reject slot
-------->
conlmand msg (rl,O)
-------->

status nlsg (rl,O) (reject rea
son)
<--------
Comnland msg (rl,O)
-------->

Status nlsg (rl,ql,)
-------->

Comnland (rl,ql) (status).
-------->
Status (rl,ql) (status)
<--------

Master Action

Slave sends con,nland
nlessage. Setvice is avail
able. Master responds
with Start nlessage es
tablishing connection
between nlaster and slave.

No queue has been estab
lished for that request.

Slave responds with Start
or Reject.

Slave sends conlnland
nlessage. Solicitation is
rejected.

No queue entry has been
established for that re
quest.

Slave sends conlnland
ll'\essage. Solicitation is
accepted. Setvice is busy
and queued. Queue entry
created,

entT)'_ident and queue
position returned to solic
iting node.

Slave can solicit again to
inquire queue status.

Master responds with sta
tus inforIllation.

Several solicitation re
quests can be queued
uniquely identified by
r2q2,r3q3, etc.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-3 (Cont.): Example of Slave Initiating Connection to Master

Slave

Start slot (rl)
<--------
Start/reject slot
-------->
Command msg (rl,O)
-------->

Status msg (rl,ql)

Status nlsg (rl,O) (reject rea
son)
-------->

Master Action

When reaches top of the
queue, nlaster sends Start.

Slave responds with Start
or Reject.

Slave sends command
nlessage. Solicitation is
accepted. Service is busy
and queued. Queue entry
created.

Entry _ident and queue
position returned to solic
iting node.

Some time later solicited
node decided to delete
entry fron1 the queue and
reports that to solicitor.

Table 5-4: Example of Master Initiating Connection to Slave

Master

Start slot
-------->

start/reject slot
<--------

Command msg (rl,O)
<--------
Status msg (rl,ql)
<--------

Connection Solicitation

Slave Action

Master establishes direct
connection to the slave by
sending a Start slot.

Slave accepts request (if
queue is en1pty) or rejects
it (if queue is busy).

Master solicits queued
connection to the slave.

Slave returns Status
msg. Master can send
Con1mand n1essage again
or request slave to send
entry status periodically
or when queue depth
change.

5-21

5-22

Table 5-4 (Cont.): Example of Master Initiating Connection to Slave

Master

Status IllSg (r1,q1)
------_.>

Status msg (r1,q1)
<--------

Start slot (q1)
------_.>

Start/reject slot
<--------

Slave Action

When entry reaches top of
the queue, Status Illessage
reports this event to the
Master.

Now Illaster can start con·
necttion by sending Start
slot.

Slave responds with Start
or Reject slot.

Table 5-5: Example of Connection Initiation Between Nodes Operating
in Master/Slave Mode

Master/Slave

virtual circuit direction
------_.>

Command msg (r1,O)
-------->
Status msg (r1,q1)
<--------

Status msg (r1,q1) (chosen)
-------->

Master/Slave Action

Virtual circuit already
established as shown.
Connection can be es·
tablished in the sallle dj·
rection using solicitation
orland direct connection.

Master can solicit queued
connection froll'\ the slave.

Slave can return Status
(accept) Illessage.

When Status Illessage
with "entry is chosen"
COllles back

LA T /Digital Equipment Corporation/Proprietary and Confidential

Table 5-5 (Cont.): Example of Connection Initiation Between Nodes
Operating In Master/Slave Mode

Master/Slave

Start slot (ql)
-------->
Start/reject slot
-------->
virtual circuit direction
-------->

Conlmand nlsg (rl,O)
<--------

Status nlsg (rl,ql)
<--------

Start slot (rl)
<--------
Start/reject slot
-------->

Master/Slave Action

Master can start a a con
nection.

Virtual circuit already
established as shown.
Connection 11lay be estab
lished in reverse direction
on the saine VC using
solicitation.

Solicitation is accepted.
SeJVice is busy and
queued.

Queue entry has been
created entry_ident and
queue position returned to
soliciting node.

When request can be sat
isfied, start sent.

Start/reject sent.

Table 5-5 presents one specific exalllple of the nlessage flo"' for a slave node so
liciting a print service on a nlaster node that has other sessions already queued to
the service.

Connection Solicitation 5-23

Figure 5-4: Exchange Between Slave and Master

User issues
'CONNECT'

User issues
'SHOW QUEUE'

Slave Master

1 Solicit information 1
1------------------------------->1 1 1
1 Response information 1

1<-------------------------------1 I 1
= =
1 Conunand Message (solicit) 1

1------------------------------->1
1 Status Message (accept) 1 Request is
1<-------------------------------1 queued

1 Command Message (status) 1

1------------------------------->1
1 Status Message (status) 1 Session status
1<------------------------------- is returned

1 Start Message Master
1<------------------------------- starts VC
1 Start Message

1------------------------------->
1 Run Message (Start Slot) Master
1<------------------------------- starts connect
1 Run Message (Start Slot)

1------------------------------->
1 Run Message (Data) Data flow starts

1------------------------------->1
Session finishes 1 Run Message (Stop Slot) 1

1------------------------------->1
VC is killed 1 Stop Message 1

1<-------------------------------1

The above diagranl shows an exchange behveen -the slave and the nlaster in which
the slave solicits the service, the nlaster accepts the solicitation, and the slave later
accepts the connection to the service.

5.1.2.2 Solicitation process state-tables

The solicitation process exists sinlultaneously as a position on a state-table on
both ends of the connection - the soliciting node and the solicited node. Events
on one end change the state on both ends of the connection. Soliciting and so
licited node state-tables are shown in Tables 6-6 through 6-10.

Notes:

• The tinleout algorithm presumes a retransnlit_tinler and a retransnlit_count
or tinleout and global_tinleout events to avoid looping within the soliciting
state. Tinlers should start every time a state changes. If a Status nlessage

5-24 LAT/Digital Equipment Corporation/Proprietary and Confidential

or a Start nlessage is not received when the retransmit_tinler expired, a re
transnlit_counter (or a globattinler) can be used to repeat that process. If
that fails, the solicited node is preslllned to be down.

• The state tables below describe the establishing of a session through the so
licitation and queuing process. There is a transition frolll these tables to
the Host/Server slot state tables presented in the previous chapter entitled
"Circuit and session layers". "Next state" in this case references to corre
sponding state in one of the host or server slot state tables in the sections
nalned "Host Slot State Table and "Ternlinal Selver Slot State Table".

• Note that the entry taken for processing nlust stay in the queue. This entry is
deleted frolll the queue and the request-entry identifiers reused only after the
session is started.

• To sinlplify the state transitions, multiple status nlessages are not shown.
Transition fronl one state to another is Inade based on the presence (absence)
of a particular entry status.

• When a resource allocation failure happens, the node should 1l1ake its best
attelllpt to infornl a partner about the allocation failure.

• Request and entry identifiers can not be recycled faster then the node con
sunles the queue requests. That llleans the node is liIllited to 65534 outstand
ing requests.

• In the state tables below, a value of 0 is used when no identifier exists.

• The request and entry identifiers can not be zero.

Table 5-6: Subject (Slave) Node State Table

State Event Action Next State

halted user solicit send Conlmand soliciting
(access r1,0)
create an entry (r1)

Status received (r1,q1) no action halted

Start received (r1) send Reject halted

any other user event return error to user halted

soliciting tioleout send Conlmand soliciting
(access r1,0)

global timeout delete entry (r1) halted

Connection Solicitation 5-25

Table 5-6 (Cont.): Subject (Slave) Node State Table

State Event Action Next State

Soliciting Status received (accept update queue state queued
(cont.) entry r1,ql)

Status received (reject delete entry (r1) halted
entry r1)

Start received (r1) Verify parallleters

if Inatch: start-rev
delete queue state Table 5-4
session starts

if not nlatch: send reject
delete queue state (corrupted entry)

User cancel entry (r1) update queue state cancel

queued user cancel entry send Comnland cancel
(r1) (cancel r1,q1)

user status request send Comnland queued
(r1) (status r1,q1)

entry timed out (r1) delete entry (r1) halted
(no status returned)

Status received (queued update queue state queued
r1,q1)

Status received (rl,q1 delete entry (r1) halted
deleted)

Start received (r1) Verify paranleters

if match: delete start-rev
queue state Table 5-4
(session starts)

if not ·nlatch: send reject (corrupted en-
delete queue state try)

cancel Status received (r1,q1 delete entry (r1) halted
deleted)

timeout send Command cancel
(cancel rl,q1)

global time out delete entry (r1) halted

Status received (r1,q1 send Command cancel
accepted) (cancel r1,q1)

Status received (r1 re- delete entry (r1) halted
jected)

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-6 (Cont.): Subject (Slave) Node State Table

State

Cancel
(cont.)

Event

Start received (r1)

Action Next State

send Reject delete halted
entry (rl)

Table 5-7 describes the case where the host (slave) node attenlpts to queue a re
quest to the queued service offered by the server (lnaster) node.

Table 5-7: Object (Master) Node State Table

State Event Action Next State

halted Conlmand received send Status (queued queued
(access rl,O) rl,ql create an entry)

(rl,ql)

send Status halted
(reject rl)

send Start (r1) connecl_req Table 5-3

other Command mes- return Status (rl,O) halted
sage received (rlql) (unknown entry)

any other user event return error to user halted

queued Conlmand received send Status halted
(cancel rl,ql) (rlql deleted)

delete entry

Comnland received send Status (rl,ql) queued
(status rl,ql)

COlllmand received Verify parmllet~rs
(access rl,O)

if nlatch: queued
Send Status
(already queued rl,ql)

if don't nlatch:
delete old, queue new
Send Status
(queued rl,ql)

send status event (tinler send Status (rl,ql) halted
or queue-depth) (rl,ql deleted) delete

entry

user delete entry (rl) send Status (rl,ql halted
deleted)
delte entry

Connection Solicitation 5-27

5-28

Table 5-7 (Cont.): Object (Master) Node State Table
.--. ~.~.-

State Event Action Next State -----
Queued resources available send Start (rl) connect_req
(cont.) delete queue state Table 4-3

resources available send Status halted
can't start (delete r1,q1)

delete entry
~,,_~ __ ·_01_"''''' .. ,.-_,..,, __

Table 5-8 describes a case, where the server (nlaster) acts as an object, and re
ceives a request to queue an entry to one of the offered services.

Table 5-8: Subject (Master) Node State Table

State Event Action Next State

halted user solicit send Conlnland (access soliciting
rl,O)
create entry (rl)

any other user request return error halted

Status received (rl,ql) no action halted

soliciting tinleout send Conlnland (access soliciting
rl,O)

global tinleout delete entry (rl) halted

Status received update queue state queued
(accept entry rl,ql)

Status received delete entry (rl) halted
(reject entry rl)

user cancel entry (r1) update queue state cancel

queued user cancel entry send COlnmand· cancel
(rl) (cancel rl,ql)

user status request send Command queued
(rl)

entry tinled out delete entry (rl,ql) halted
(no status returned)

Status received update queue state queued
(queued rl,ql)

Status received delete entry (rI,ql) halted
(rI,qI deleted(

LAT/Digital Equipment Corporation/Proprietary and Confidential

Table 5-8 (Cont.): Subject (Master) Node State Table

State Event Action Next State

Queued Status received send Start (r1) conneccreq
(cont.) (process entry r1,ql) (session starts) Table 5-3

delete queue state

cancel Status received delete entry (rl,ql) halted
(r1,ql deleted)

tinleout send COI1l1nand cancel
(delete rl,ql)

global tinle out delete entry (rl,ql) halted

Status received send Conlnland cancel
(rl,q1 accepted/queued) (cancel r1,ql)

Status received delete entry (rl,ql) halted
(r1 rejected)

Table 5-9 describes the case where server (nlaster) node acts as a subject and at
telllpts to queue a request for queued services offered by the host node (slave).

Table 5-9: Object (Slave) Node State Table

State Event Action Next State

halted Conlmand received send Status queued
(access rl,O) (queued rl,ql)

create an entry
(rl,ql)

send Status halted
(rejected rl) .

other Conlnland send Status (r1,0) halted
nlessage received (unknown entry)
(rl,ql)

any other user event return error halted

Start received (rl) send Reject halted

queued Command received send Status halted
(cancel rl,ql) (rl,ql deleted)

delete entry

Comnumd received Verify pareameters
(status rl,ql)

Connection Solicitation 5-29

Table 5-9 (Cont.): Object (Slave) Node State Table

State Event Action Next State

Queued if match: queued
(cont.) Send Status

(already queued
rl,ql)

if don't ll1atch:
delete old, queue
new
Send Status
(queued rl,ql)

send status event send Status (rl,ql) queued
(tinler orqueue-depth) update queue state

user delete entry send Status halted
(rl) (deleted rl,ql)

delete entry

resources available send Status ready
(process entry
r1,ql)

ready timeout send Status ready
(process entry
rl,ql)

global tinleout send Status halted
(deleted rl,ql)
delete entry

Start received (rl) Verify paran1eters

if nlatch: start-rev
delete queue state Table 5-4
(session starts)

if not match: send reject
delete queue state (corrupted entry)

Table 5-10 describes a case where a host node (slave) offers services that posess
queued characteristics. Node acts as an object and receives a request to queue an
entry to one of the services it offers.

5.1.2.3 Name And Information Field Presentation

5-30

A subject that requests usage of the resources on an object initiates an exchange
of Conlnland-Status nlessages, and Start(initiate)-Start(response) slots. Those
nlessages contain object nallles (nodes, services, ports) that are translated, and
subject description fields designated for infornlational purposes. Table 5-10 sho\vs

LAT/Digital Equipment Corporation/Proprietary and Confidential

the rules that subject and object nodes should follo",' in filling those fields in order
to provide nanle translation and infonnation caching support.

Table 5-10: Name and Information Fields

Messages Flow

Start (init) -

-Start (resp)

Command -

-Start (init)

Start (resp) -

Conulland -

-Status

Start (init) -

-Start (resp)

Conlnland -

-Status

- Start (init)

Start (resp) -

5.2 Message Formats

Name and Information Fields

object nanle fields (source)
subject infornlation fields

object name fields (translated)
subject infornlation fields - 0 on send, ignored on receive.

unique request identifier
object nalne fields (source)
subject infoflllation fields

request identifier
object nallle fields (translated)
subject infornlation fields - 0 on send, ignored on receive.

nanle/information fields nlust be 0 on send, ignored on receive.

unique request identifier object nanle fields (source)

unique entry identifier
object nanle fields (translated) optional subject information fields

entry identifier
object nanle fields same as in the received Status nlessage

name/information fields nlust be 0 on send, ignored on receive.

unique request identifier
object natlle fields (source)
subject infornlation fields

unique entry identifier
object nanle fields (translated)
optional subject infoflllation fields

request identifier
object nanle fields same as in the sent Status message

name/information fields must be 0 on send, ignored on receive.

This section presents fortnats, layouts and contents of the nlessages used by the
connection solicitation nlechanisnl.

Connection Solicitation 5-31

Node may receive an unsolicited LAT 111essage (CoI11111and) of nlaxill1UI11 length
and is responsible for allocating enough buffers to accoJllodate it. Command 111es
sage contains a DATA_LINK_ReV _FRAME_SIZE field that defines the nlaxinlunl
size of the solicited LAT 111essage (Status) that can be send to this node.

5.2.1 Command Message

5-32

A Conlnland l1lessage is a physical1y addressed l1lessage used to initiate a connec
tion fronl the slave to the nlaster node and to provide queued services. Figure 5-5
presents the fornlat of the COlllll1and 11lessage. A detailed description of each field
in the nlessage follows.

Figure 5-5: Command Message Format

1
5

PRTCL_FORMAT

o

+-----------------------+---------------+-+-+ I LOW_PRTCL_VER I HIGH_PRTCL_VER

+-----------------------+-------------------+
1 CUR_PRTCL_ECO 1 CUR_PRTCL_VER

+-----------------------+-------------------+
1 DATA_LINK_RCV_FRAME_SIZE 1

+---+
REQUEST_IDENTIFIER 1

+---+
ENTRY_IDENTIFIER

+-----------------------+-------------------+
1 COMMAND_MODIFIER COMMAND_TYPE
+-----------------------+-------------------+<-- destination
1 OBJ_NODE_NAME 1 OBJ_NODE_NAME_LEN 1 node info

1 +-------------------+
OBJ_NODE_NAME_LEN ascii characters

+-----------------------+-------------------+<-- source node
SUBJ_GROUP SUBJ_GROUP_LEN info

+-------------------+
SUBJ_GROUP_LEN bytes

+---+
SUBJ_NODE_NAME ISUBJ_NODE_NAME_LEN 1

+-------------------+
SUBJ_NODE_NAME_LEN ascii characters

+---+<-- source
SUBJ_PORT_NAME 1 SUBJ_PORT_LEN service/port

+-------------------+ info
SUBJ_PORT_NAME ascii characters

+-----------------------+-------------------+
SUBJ_DSCR SUBJ_DSCR_LEN

+-------------------+
SUBJ_DSCR_LEN ascii characters

+---+<-- destination
OBJ_SRVC_NAME 1 OBJ_SRVC_LEN 1 service/port

+-------------------1 nantes

Figure 5-5 Cont'd. on next page

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 5-5(Cont.): Command Message Format
OBJ_SRVC_NAME ascii characters

+-----------------------+-------------------+
OBJ_PORT_NAME I OBJ_PORT_NAME_LEN 1

+ +-------------------1
OBJ PORT NAME LEN ascii characters + ________ = ____ = ____ = ____ + ___________________ +<__ extensible

PARAM_LENGTH I PARAM_CODE I fields
+-----------------------+-------------------+

PARAM_DATA 1
(PARAM_LENGTH bytes)

+---+ PARAM_CODE,
PARAM_LENGTH,
PARAM DATA
repeat until

PARAM_CODE equal 0

• Rand M (2 bits) - Must be O.

• MSG_TYP (6 bits) - Fixed at 12. (Conln-land 111essage).

• PRTCL_FORMAT (1 byte) - Protocol Fornlat flag.

• Bits 0 through 7 - Must be 0 on transmit; ignored on receive.

• HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by the
node.

• LOW_PRTCL_VER (1 byte) - Lowest protocol version supported by the node.

• CUR_PRTCL_VER (1 byte) - Protocol version of this nlessage (current version
is 5).

• CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_ VER for this message
(current ECO is 1).

• DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - Maxinlunl size of the
LA T message that can be sent to this node. Actual length of a LA T message
is DATA_LINK_RCV_FRAME_SIZE-18.

• REQUEST_IDENTIFIER (2 bytes unsigned) - Request identifier. This field con
tains a solicit request identifier that is assigned by the node soliciting the con
nection to the service. This value is used by the soliciting node to correlate
Status nlessages arriving fronl the solicited node with Conlnland nlessages
sent by the soliciting node.

• ENTRY_IDENTIFIER (2 bytes unsigned) - Entry identifier. This field contains
the identifier of a previously issued Comnland nlessage (Le., one in which
COMMAND_TYPE was set to 2).

Connection Solicitation 5-33

• COMMAND_TYPE (1 byte unsigned) - COJllllland ll1essage operation code.
The COJl1Jl1and n1essage is issued by the solicited node for various reasons
which are SUln111arized by the codes below as a set of values:

• value == 1 (access) - Solicit non-queued access to the service. If the ser
vice cannot ill1111ediate)y satisfy that request, an error is returned; other
wise connection initiation is attelllpted.

• value == 2 (access) - Solicit queued access to the service. This value is
passed if the Jllessage is used to solicit queued access to the service.
The request ll1ay be queued if the service is busy. The service 111ust have
1/ queued" characteristics, otherwise an error is returned. This cOll111land
requires REQUEST JDENTIFIER to be non-zero.

• value == 3 (access) - Cancel entry in the queue. This value is passed
if the nlessage is used to cancel an entry in the queue that was cre
ated as a result of a previously issued solicitation (Colll1lland 11leSsage
with COMMAND_TYPE set to 2). This C011111land requires ENTRY_
IDENTIFIER and REQUESTJDENTIFIER values to be non-zero.

• value == 4 (status) - Send status of the entry. This value requires the so
licited node to return a Status rnessage with infornlation about an entry
queued as a result of a previously issued solicitation (Conlnland nlessage
with COMMAND_TYPE set 2). ENTRYJDENTIFIER and REQUEST_
IDENTIFIER nlust not be O.

• value == 5 (status) - Send status of the queue. The solicited node re
turns infornlation about its node queue in the Status nlessage. ENTRY_
IDENTIFIER and REQUEST_IDENTIFIER lllust be O.

• value == 6 (status) - Send status of Inultiple entries. An object node will
return all entries queued by the soliciting node. ENTRY JDENTIFIER
and REQUEST_IDENTIFIER 111USt be O.

• COMMAND_MODIFIER (1 byte unsigned) - Bit nlask that specifies how the
status nlessage should be sent by the solicited node. The 1l1eaning of the bits
(when set)is:

• bit 0 - Send status of the entry (entries) periodica1ly. This value requires
an object node to periodically send the status of the entry in the Status
nlessage. This bit can be used with COMMAND_TYPE operation code
equal to 2. .

• bit 1 - Send status of the entry (entries) every time the queue depth
changes. This value requires the solicited node to return a Status nles
sage every tinle the node-wide queue depth changes. This bit can be
used with COMMAND_TYPE operation code equal to 2.

5-34 LAT/Digital Equipment Corporation/Proprietary and Confidential

• bits 2-7 - Must be zero.

The next fields represents subject and object node inforInation.

• OBJ_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the OBJ_NODE_NAME field in bytes. A value of
zero is illegal.

• OBJ_NODE_NAME (OBLNODE_NAME_LEN bytes) - Destination node
nalne. An array of ASCII characters describing the nalne of the destination
node. These characters are constrained as described in the section of the LAT
Architecture Specification entitled "Specification of Nanles. "

• SUBJ_GROUP _LEN (1 byte unsigned) - Subject group code byte length. A
byte count of the SUBJ_GROUP field. A value of zero is legal and indicates
that the subject can ~ccess any services. Maxinlunl value is 32 (- > 256 bits).

• SUBLGROUP (SUBJ_GROUP _LEN bytes) - Subject group code nlask. This
field is specified as a bit-lllask of up to 256 bits. A bit set to 1 indicates the
subject belongs to that group. The first bit of the nlask (bit 0) corresponds to
group O. This group code Inask represents an Identifier List (IDL).

• SUBJ_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the SUBJ_NODE_NAME field in bytes. A value of
zero is illegal.

• SUBJ_NODE_NAME (SUBJ_NODE_NAME_LEN bytes) - Soliciting node
naOle. An array of ASCII characters describing the nanle of the node issu
ing the CO)1'ulland nlessage. These characters are constrained as described
in the section of the LAT Architecture Specification entitled "Specification of
Nanles."

The next fields represent subject infornlation.

• SUBJ_PORT_LEN (1 byte unsigned) - A byte containing the length in bytes
of the SUBJ_PORT_NAME field. A value of 0 Ineans that no port nanle is
provided.

• SUBJ_PORT_NAME (SUBJ_PORT_LEN bytes) - Soliciting node port naOle.
An array of ASCII characters that fornls the naOle of the source port.

• SUBJ_DSCR_LEN (1 byte unsigned) - Subject description length. A byte con
taining the length in bytes of the SUBJ_DSCR field. A value of 0 Oleans that
no description is provided.

Connection Solicitation 5-35

• SUBLDSCR (SUBLDSCR_LEN bytes) - An array of ASCll characters that
fOrIlls the textual description of the subject.

The next fields represent destination service/port names.

• OBJ_SRVC_NAME_LEN (1 byte unsigned) - Destination service nanle length.
A byte containing the length in bytes of the OBJ_SRVC_NAME field. A value
of 0 nleans that no nanle is provided.

• OBJ_SRVC_NAME (OBJ_SRVC_NAME_LEN bytes) - Destination service
nanle. An array of ASCII characters that fornls the nanle of the service. This
is a service nallle as advertised previously by the Service nlessage.

• OBJ_PORT _LEN (1 byte unsigned) - Destination service port nanle length. A
byte containing the length in bytes of the next field. A value of 0 ll1eans that
no nanle is provided.

• OBLPORT_NAME (OBLPORT_LEN bytes) - Destination service port nanle.
The solicited node port nanle requested by the soliciting node.

The next field marks the beginning of the optional infornlation.

• PARAM_CODE (1 byte) - Parameter code. The following codes are defined:

• Paranleter code 0 - Denotes the end of the paranleter list.

• Parameter code 1 - Required service class. P ARAM_DAT A field specifies
service class to be used. If this PARAM_CODE is not present Service
Class 1 is requested.

• Paranleter codes 2-127 - Reserved for DEC.

• Parameter codes 128-255 - Reserved for users.

• P ARAM_LEN (1 byte) - Length of the next field in bytes.

• PARAM_DATA (PARAM_LEN bytes) - Paranleter data.

5.2.2 Status Message

5-36

A Status ",essage is used to return infornlation about acceptance/rejection of the
solicitation request. A Status l11essage is physically addressed. Figure 5-6 presents
the format of the Status Message. A detailed description of each field in the nles
sage follows.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure 5-6: Status Message Format

this field
is padded
by 1 byte
if ENTRY_
LENGTH is
even

1
5

o

+===============-===========================+

+-----------------------+---------------+-+-+
LOW_PRTCL_VER I HIGH_PRTCL_VER I

+-----------------------+-------------------+
I CUR_PRTCL_ECO I CUR_PRTCL_VER I
+-----------------------+-------------------+
I DATA_LINK_RCV_FRAME_SIZE
+---+
I STATUS_RETRANSMIT_TIMER I
+---+
I SUBJ_NODE_NAME_LEN ENTRIES_COUNTER I
+-----------------------+-------------------+ this field is
I SUBJ_NODE_NAME I padded by one
I I byte if it has

SUBJ_NODE_NAME_LEN ascii characters = an odd length
+-----------------------+-------------------+<----+

ENTRY_STATUS I ENTRY_LENGTH I
+-----------------------+-------------------+ I

RESERVED I ENTRY_ERROR I
+-----------------------+-------------------+ I

REQUEST_IDENTIFIER I I
+---+ I
I ENTRY_IDENTIFIER I I
+---+ ENTRY_LENGTH+l
I ELAPSED_QUEUE_TIME bytes
+---+

MIN_QUEUE_POSITION
+---+

MAX_QUEUE_POSITION
+---+

OBJ_SRVC_NAME I OBJ_SRVC_NAME_LEN I
+-------------------+

OBJ_SRVC_NAME_LEN ascii characters
+---+

OBJ_PORT_NAME I OBJ_PORT_NAME_LEN I
+-------------------+

OBJ_PORT_NAME ascii characters
+-----------------------+-------------------+

SUBJ_DSCR SUBJ_DSCR_LEN
+-------------------+

SUBJ_DSCR_LEN ascii characters
+-----------------------+-------------------+<----+

previous ENTRY_LENGTH+l bytes
can repeat

+-----------------------+-------------------+
I ENTRIES_COUNTER times
+---+
I PARAM_LENGTH PARAM_CODE
+-----------------------+-------------------+

PARAM_DATA
(PARAM_LENGTH bytes)

Figure 5-6 Cont'd. on next page

Connection Solicitation 5-37

Figure 5-6(Cont.): Status Message Format

~---+ PAR~_CODE,
PARAM_LENGTH,
PARAM DATA
repeat until

PARAM_CODE equal 0

• Rand M (2 bits) - Must be zero.

• MSG_TYP (6 bits) - Fixed at 13. (Status Message).

• PRTCL_FORMA T (1 byte) - Protocol FOrl1lat flag.

• Bit 0 through 7 - Must be 0 on send; ignored on receive.

• HIGH_PRTCL_ VER (1 byte) - Highest protocol version supported by the
node.

• LOW _PRTCL_ VER (1 byte) - Lowest protocol version supported by the node.

• CUR_PRTCL_ VER (1 byte) - Protocol version of this nlessage (current version
is 5).

• CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_ VER for this I1lessage
(current ECO is 1).

• DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - This field nlust be zero
on send, and is ignored on receive.

• STATUS_RETRANSMIT_TIMER (2 bytes unsigned) - Value of status retrans
nlit tinler. The soliciting node can request the solicited node to use this value
to periodically return the entry status. A value of 0 11leans that no local tinler
is supported. The required value is between 10 seconds and 1 hour. The ree
ol1unended value is 60 seconds.

• ENTRIES_COUNTER (1 byte unsigned) - NUl1lber of entries whose status is
reported in the message. This field equals 0 for a node queue status request
(COMMAND_TYPE equals 5).

• SUBJ_NODE_NAME_LEN (1 byte unsigned) - Length of the next field in
bytes. A value of 0 is illegal.

• SUBLNODE_NAME (SUBLNODE_NAME_LEN bytes) - Nanle of the node
that queued the solicitation request. A string of ASCII characters describ
ing the nanle of the node that issued the Comnland nlessage. These char
acters are constrained as described in the section of the LAT Architecture

5-38 LAT/Digital Equipment Corporation/Proprietary and Confidential

Specification entitled "Specification of Nal1les." Note that this field nlust be
padded by one byte if NODE_NAME has an odd length.

The following field Inarks the beginning of the entry status infornlation.

• ENTRY_LENGTH (1 byte unsigned) - Sunlnlary length of all following fields
that describe this entry (length in bytes).

• ENTRY_STATUS (1 byte unsigned) - Bit l1lap defining the status of an indi
vidual entry. Bit 7 clear nleans success (the operation is cOInpleted with suc
cess). Possible additional inforn1ation is provided by bits 0-6 (when set) as
follows:

• 0 - No additional inforn1ation is provided.

• 1 - Request is already queued.

• 2 - Entry is accepted for processing (sent by slave node when entry is
chosen froln the queue for processing).

• 3 - Periodic status return is not supported.

• 4 - Queue-depth status report is not supported.

• other values - TBD

If bit 7 is set, the solicitation request presented in the Command message was
rejected, and the following byte contains the rejection reason.

• ENTRY_ERROR (1 byte unsigned) - Solicitation rejection reason. A byte con
taining a solicitation rejection reason code. This field l1Ulst be 0 if bit 7 of the
ENTRY_STATUS field is clear. If bit 7 of the ENTRY_STATUS field is set, the
request is rejected and the ENTRY_ERROR field contains rejection reason val
ues as follows:

• 0 to 15 - see slot reason codes.

• 16 - COMMAND_TYPE code is illegal/not supported.

• 17 - Start slot can't be sent.

• 18 - Queue entry deleted by local node.

• 19 - Inconsistent or illegal request paran1eters.

• other values - to be defined

• RESERVED (1 byte) - this is reserved byte (zero on send, ignored on receive).

Connection Solicitation 5-39

• REQUEST JDENTIFIER (2 bytes unsigned) • Request identifier. This field con·
tains the identifier of the Conl111and nlessage assigned by the soliciting node.
The REQUEST JDENTJFJER is returned here in order to provide the solie·
iting node with a 111eans of identifying the solicitation request that is being
responded to.

• ENTRY_IDENTIFIER (2 bytes unsigned) - Session identifier. This field con·
tains the identifier of the C0111111and nlessage as assigned by the solicited
node. This value 111Ust be unique on the node.

• ELAPSED_QUEUE_TIME (2 bytes unsigned) • Elapsed tinle. The tinle that
this particular entry has been kept in the queue in nlinutes. When SUnll1lary
infornlation is requested, this value contains ELAPSED_QUEUE_TIME of the
active entry ECB. When all bits in this word are set to 1, no tinle is provided.

• MIN_QUEUE_POSITION (2 bytes unsigned) • Mininlunl queue position. This
value is equal to the 'entry position in the solicited node service queue. When
a sunlnlary status of the queue is requested, this value represents nUlllber of
entries in the service queue.

• MAX_QUEUE_POSITION (2 bytes unsigned) • Maxinlunl queue position.
This value is equal to the entry position in the solicited node node-wide
queue. When a sunlmary status of the queue is requested, this value repre
sents nunlber of entries in the node-wide queue.

• OBJ_SRVC_NAME_LEN (1 byte unsigned) - Service name length. A byte con
taining the length in bytes of the next field. A value of 0 llleans that no nanle
is provided.

• OBLSRVC_NAME (OBJ_SRVC_NAME_LEN bytes) - Service nanle. An array
of ASCII characters that forms the nall1e of the service provided by a solicited
node.

• OBJ_PORT_NAME_LEN (1 byte unsigned) - A byte containing the length in
bytes of the next field .. A value of 0 nleans that no port nanle is provided.

• OBJ_PORT_NAME (OBJ_PORT_LEN bytes) • Nanle of the port, provided by a
solicited node. An array of ASCII characters.

• SUBLDSCR_LEN (1 byte unsigned) - Length of the next field in bytes. A
value of zero is legal and indicates that no service description is provided.

• SUBJ_DSCR (SUBLDSCR_LEN bytes) - ASCII string of characters represent
ing the textual description of the source service (copied fronl the SUBJ_DSCR
field of the COlllnland nlessage).

5-40 LAT/Digital Equipment Corporation/Proprietary and Confidential

The previous field nlarks the end of the entry status infornlatioJ1. One byte
should be added after the 5UBL,DSCR field if the ENTRY_LENGTH value
is even. If there is nlore than one entry, the previous fields are repeated
ENTRIES_COUNTER tilnes.

• PARAM_CODE (1 byte) - Paranleter code. The following codes are defined:

• Paranleter code 0 - Denotes the end of the paranleter list.

• Paranleter codes 1-127 - Reserved for DEC.

• Paranleter codes 128-255 - Reserved for llsers.

• PARAM_LEN (1 byte) - Length of the next field in bytes.

• PARAM_DATA (PARAM_LEN bytes) - Paralneter data.

Connection Solicitation 5-41

A

Service Class 1 -Interactive And
Application Terminals.

While different classes of service share the same underlying data transport ser
vice, each class of service defines a different directory service appropriate to the
needs of that particular class of service. This service class allows data ternlinal
equipnlent to be remoted from a host over an intervening Ethernet. Except for
the latency associated with reading and writing to the device, the host and ter
nlinal server user should find that the renloted tertllinal perfornls sinlilarly to a
locally connected terminal.

A.1 Local Area Directory Service

The LAT directory service exists to facilitate connections to services within a dy
nanlic Local Area Network by providing an autonlatic nlechanisnl to nlap node
nanles, Ethernet addresses, and service names into unique entities. The slot layer
of the LAT architecture translates service nanles into node nal11eS and the virtual
circuit layer translates node names into'48-bit Ethernet addresses. These transla
tions can be accomplished by utilizing the infornlation provided by the directory
service nlessages. The directory service utilizes the multicast nlechanisnl provided
by the Ethernet. It is very responsive to sudden changes in the local area topol
ogy.

Implementations are not required to support the directory service nlessages. A'
possible alternate strategy which could be inlplenlented by products would be
to require that the directory database be entered manually. A significant draw
back to this strategy (in addition to the requirement of manual intervention) is
that the availability of the service is not known until the connection to it is actually
attempted.

Service Class 1 • Interactive And Application Terminals. A-1

The Directory Service for Service Class 1 is supported through the following three
Inessages:

• Service annOl1nCenlent Inessage - a nlulticasl nlessage used by nodes to ad
vertise services.

• Solicit infonnation nlessage - a 111ulticasted or physically addressed nlessage
used by nodes to solicit an advertisell1ent.

• Response infornlation ll1essage - a physically addressed 111essage used by
nodes to respond to the received Solicit inforlnation nlessage.

The LAT V5.0 architecture provides the service announcenlent nlessage to auto
nlate the directory service function. Host nodes nllilticast service announcenlents
at regular intervals while tenninal servers listen to these announcelllents and build
a database of services to present to users. The LAT V5.1 architecture supplell1ents
the directory service function with the solicit and response infornlation Inessages.
The solicit infornlation nlessage allows nodes which do not listen to ll1ulticasted
service annOUnCell1ents to still acquire advertiselllent inforll1ation without entering
the database nlanually.

A.2 Service Access Control

A-2

Users (subjects, consumers of resources, or active initiators of a connection) nlay
be restricted frolll accessing certain resources (objects, providers of resources,
or passive responders to connections) through the lise of group codes. This re
striction allows COlllputing resources to be seglllented based on such criteria as
departlnental ownership 01" physical location. Group codes do not solve security
problellls.

It is not the intention of the LAT V5.1 architecture to change either the intent or
the nleaning of group codes as they were defined by the LAT V5.0 architecture.
However, the ternl 'group codes' can be anlbiguous and confusing. Therefore,
new terminology is introduced with LAT V5.1: Access Control List (ACL) and
Identifier List (IDL). Resource (ob.ject) group codes are referred to as ACLs and
user (subject) group codes are referred to as IOLs.

Figure A-1 illustrates the usage of ACLs and IOLs during the process of connec
tion establish.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure A-1: ACL and IDl Flow During Connection Establishment

advertising (ACL)
SUBJECT <s===s====s==~_=_======== OBJECT

request (IDL)

SUBJECT ==---------=---=-------=> OBJECT
response(accept/reject)

SUBJECT <===------=-=------------ OBJECT

The algorithm which grants or denies a subject access to an object is based upon
cOll1paring ACLs and IDLs. If the intersection between a subject's IDL and an ob
ject's ACL is not ell1pty, the subject is granted access to an object. If that intersec
tion is enlpty, access is denied. hllplenlentations l1lay choose how ACLs and IDLs
are lllanaged.

There are three types of group-code fields in LAT l1lessages: node group code(s),
service group code(s), and user group code(s). User group codes are IDLs. Service
group codes are ACLs. Node group codes is an "OR" function of an IDLs OJ'

ACLs group code fields presented in the messages according to the table A-l. The
group code field consists of a counter followed by a string of bytes representing
a group code n1ask. This field is specified as a bit-nlask of up to 256 bits. A bit
set to 1 in a node group code indicates the node belongs to that group (i.e., pos
sesses the corresponding identifier value). The first bit of the nlask (bit 0) corre
sponds to group O.

LAT V5.1 n1essages present an IDL or an ACL in a group code field depend
ing upon the nlessage type (Le., the perfornled function - advertising or access).
Table A-l defines the group-code fields in the LAT 111essages.

Table A-1: ACls and IDls in Messages

Message

Response information

Multicast Service announcement

Solicit information

Command nlessage

Start slot

Access-list

ACL

ACL

IOL

IOL

IOL

Before a node can solicit the use of a service, the name and characteristics of the
service nlust be n1ade available to the soliciting node, and the soliciting node nlust
have the authority to use the service. As described above, that infornlatiol1 can be

Service Class 1 - Interactive And Application Terminals. A-3

A-4

acquired through a Response service ann0l1nCen1ent n1essage which contains the
characteristics and status of the service (nan1e, availability, rating, etc.).

A subject process, no matter how privileged within the context of its own envi
rOnIl1ent, cannot use an object unless the intersection between its IDL and the
object's ACL is not en1pty. In other words, access to a service is allowed if any
group code(s) assigned to the solicitor of a service nlatches any group code as
signed to the service on the solicited node.

The set of rules that control service access with the group code nlechanisll1 is as
follows:

• Nodes ignore Solicit information nlessages fronl nodes whose group codes
do not intersect their group codes.

• Nodes ignore nlltiticast advertising nlessages froll1 nodes whose node group
code do not intersect their group codes. Therefore a node 11lay provide ser
vice announcell1ent nlessage filtering based on group codes.

• If the object node receives a Con1nland message fronl a subject node whose
group code do not intersect with its own group codes, the object node nlllst
respond with a Status Illessage specifying "access denied" error code.

The following example illustrates connectivity restriction nlechanisnl of group
codes. Services on the host nodes are assigned to one or nlore groups. Ternlinals
(or ternlinal servers) are a·lso assigned to one or nlore groups. Whenever a tern1i
nal (subject) and a host node service (object) share the sanle ACL and IDL (saIne
group code) those two systelll can interact. For exanlple:

LAT/Digltal Equipment Corporation/Proprietary and Confidential

Figure A-2: ACL/IDL Connectivity Restriction Example

+--+
H 0 S T S E R veE S I

+------+------+-----+------+-----+------+-----+------+-----+------+------+
I

Service SAl
(groups 1) I
Service sel
(group 2) I

I

I I
I Service SC I
I (groups 1, 9) I
I I
I I
I I

ServicE" se
Service SO
(group 4)

I I I
Service sci IService SEI
Service sel I (group 5) I

I I Service SFI
I I (group 3) I
I I Service SO I

+--+------+-+ +-+------+---+ +--+------+--+ +-+------+--+ ++------+--+
INode al INode bl INode cl INode dl INode el
+------+ i------+ +------+ +------+ +------+
I groups I I groups I I groups I I groups I I groups I
I 1,2 I I 1,9 I I 2,4 I I 1,2,91 I 5,4,31
+------+ +------+ +------+ +------+ +------+

I I I I
v v v v v

These host nodes multicast datagrams periodically onto the Ethernet
I I I I I
v v v v v

Ether<-->net
I I
v v

Terminal servers build up and present lists of available
host nodes and host services at each terminal based on group codes

I I
v

/ Available services: \
I SB,SC,SE,SO I
+----------------------+ +--------+

1000000001

+--------+
Terminal at

tenninal server a
(groups-2,4,5,9)

Visible nodes - a,b,c,d,e

v

/ Available services: \
I SC,SE I

+---------------------+ +--------+
1000000001

+--------+
Terminal at

terminal server b
(groups-5,9)

Visible nodes - b,d,e

The NODE_GROUPS field is a bit nlask of 256 bits. If a bit is set, then the node
is a nlember of that group. The first bit of the nlask (bit 0) corresponds to group
O. A maxinlunl of 256 groups can be specified (0-255) and therefore this field's
nlaxinlunl length is 32 bytes.

A terminal server implementation should provide a privileged user with a single
conlnland which enables all group codes.

Service Class 1 - Interactive And Application Terminals. A-5

A.3 Advertising Services Through Multicast Message

This service class provides a local area direC'tory service to al1o",' users at a tern,i
nal server to address host services without the Inanual intervention of a network
Inanager.

The directory service is very responsive to sudden changes in the local area topol
ogy. All tenninal servers discover that a particular host node is available within
lllilliseconds of the host node announcing the service. If a host node should
crash, the ternlinal servers can notify the users within a few seconds that the host
node nlay have crashed.

The directory service is based on the nlulticast nlechanisnl built into the Ethernet.

A.3.1 Host

A.3.1.1 Initialization

A-6

A host systenl nlanager nlay specify:

• group codes (R)

• host node nanle (R)

• host service nantes and ratings (R)

• the guaranteed minimum Ethernet data link receive buffer size (R)

• the nlaxinlunl slot size that can be received (R)

• the Inaxinlunl slot size that can be transnlitted (R)

• the physical location of the host node

• a facility number

• host characteristics and status as defined by the particular service class to
which the host belongs

It is recommended that the systenl nlanager be required to specify none of these
parameters in order to conlnlunicate with terminal servers that belong to group
O. To accomplish this, LAT host implementations nlust supply reasonable de
fault values for those parameters labeled (R) (see DEFINED PARAMETERS AND
RECOMMENDED OR REQUIRED DEFAULT VALUES).

LAT/Digital Equipment Corporation/Proprietary and Confidential

A host node that has no assigned NODE_NAME or assigned SERVICE_NAtv1E
111ay not announce start of service. Instead, an error should be returned to the
systen1 Inanager.

A.3.1.2 Host Group Codes

Coordination of the access froll1 the certain terillinal servers to the host services
is provided by usage of the facility-wide group codes arranged by the facility ll1an
ager.

A.3.1.3 Host Node Names

One or more ASCI1 nan1es are specified in the nlulticast nlessage transnlitted peri
odically by each host node.

Although an ASCII names can be up to 127 characters in length, a nanle should
be convenient for a lIser to renlenlber and type. Hosts should not specify nanles
that are hard (or inlpossible) for ternlinal seJver users to specify. Tel'nlinal servers
nlust support a nliniIllum ASCII nanle length of 16 bytes.

A host node nlust specify one NODE_NAME in the nlulticast nlessage.

A host can specify more than eight SERVICE_NAMES, a ternlinal server is re
quired to buffer a nlininluln of eight SERVICE_NAMES. A terl11inal server is re
quired to update all of the infornlation in a nlltlticast nlessage or ignore it.

A.3.1.4 Multiple-Node Service Ratings

In the case where a given service is offered by 1110re than one node, the server
selects the node to establish a session based on the service with the highest rating.

A.3.1.S Steady-State Operatl~n

The host node should periodical1y nllllticast the nlulticast datagranl. This interval
is nleasured in seconds and is specified in the HOST_MULTICAST_TIMER field.

Whenever any of the information in the multicast datagral11 changes, the MSG_
INCARNATION must be increnlented (nlodulo 256) and the CHANGE_FLAGS
field should reflect which field was changed. The CHANGE_FLAGS field bits are
toggled each tinle the associated field is changed. The flag renlains in the new
state until the field is changed a second tinle.

Service Class 1 - Interactive And Application Terminals. A-7

A.3.1.6 System Shutdown

When a ho~t node is "sht1ttin~ dow'n", the NonE_STATUS field in the 111ltiticast
datagranl should reflect the fact the the host is not accepting new sessions.

If service is ternlinated by the host systenl 111anager, at LEAST one addition nlu)ti
cast nlessage should be transll"litted to reflect this change of state.

A.3.2 Terminal Server

A.3.2.1 Initialization

Whenever a ternlinal seNer is initialized, and no paralneters are supplied interac
tively, the following default values lllust be supplied by illlplelllentations:

• Group code 0 is enabled.

• AS and AQ are used as the output flo\-\T control characters

• AS and AQ are used as the input flow control characters

• These flow control defaults are used when a slot session is established.
Questions related to setting of the flow control characteristics are discussed
in the Appendix B of the docunlent.

An implenlentation might allow a privileged ternlinal seNer user to specify:

• group codes (R)

• the guaranteed 111ininlU111 Ethernet data link receive buffer size (R)

• the circuit timer value (R)

• the maxinlunl slot size that can be received (R)

• the Inaxinlunl slot size that can be transnlitted (R)

• the physical location of the terlninal seNer

• a facility number

• a nicknanle used to refer to the terminal seNer

• seNer characteristic and status as defined by the particular seNice class to
which the tenninal seNer belongs

A-a LAT/Digital Equipment Corporation/Proprietary and Confidential

It is recomnlended that an iIllplenlentation not require a privileged ternlinal server
user to specify any of these paranleters in order to conlnlunicate with host nodes
that belong to group o. In order to acconlplish this, an inlplenlentation n,u~t
supply reasonable default values for those paranleters labeled (R) (see DEFINED
PARAMETERS AND RECOMMENDED OR REQUIRED DEFAULT VALUES).

An inlplenlentation of a ternlinal server l11ight aIlo\o\' all group codes to be enabled
with a single conl11land.

A.3.2.2 Building The Circuit Name Database

Each Terlllinal Server builds a database fronl the inforlllation received in l11ulti
cast datagranls. A terminal service is require to process all of the infonnation in a
nlulticast datagralll, or ignore the datagrall1.

Ternlinal servers receive multicast datagranls periodically fronl each host node.
Each tinle a nlulticast datagranl is received, the ternlinal servers scan a list of
enabled group codes, and if one of the group codes in the nlulticast datagranl
nlatches one of those assigned to the terJninal server (user), then the inforllla
tion in the nlulticast nlessage is added to the local server database (see section
on LOCAL AREA DIRECTORY SERVICE). All nlulticast nlessages specifying the
NODE_GROUP _LENGTH field as zero inlply that the host is not offering any ser
vices.

If the nlulticast nlessage contains a NODE_NAME which is not already in the
list, a new node entry is created and the infornlation in the nlltlticast datagranl
is parsed into the entry. If the NODE_NAME has associated SERVICE_NAMES,
these too are added to the database.

If the NODE_NAME is already entered, the datagranl MSG_INCARNATION field
is conlpared with the MSG_INCARNATIONfield·stored in the list entry to see if
the information in this multicast datagram is identical to the data receive previ
ously from the host node. If this field has changed, then the infornlation in the
nlulticast datagranl is reparsed into the list entry corresponding to the NODE_
NAME. The CHANGE_FLAGS field should be used to reduce the CPU time nec
essary to parse the entry.

If the NODE_NAME is already entered in the list, but as the message is parsed
into an existing entry it is detennined that the nlessage was received fronl a dif
ferent Ethernet address, the TOTAL_DUPLlCATE_NODE_NAME counter should
be increnlented. The newly received nlulticast datagranl should replace the exist
ing entry. This behavior is possible if a host node has access to more than one
Ethernet port and the port that was being used failed. The host node might then
start transmitting the same multicast datagram fronl a different port. Of course,
the nanle could be nlistakenly shared by nlore than one host systeln. For this

Service Class 1 - Interactive And Application Terminals. A-9

reason, the TOTAL_DUPLICATE_NODE_NAME counter is nlaintained. The facil
ity Inanager can diagnose this second aberrant condition by 1110nitoring the node
nall1e frOll1 a tenninal server and observing the changing Ethernet 48-bit address.

Servers nlaintain the list of all nalnes in 111enlory.

If a terJninal server has insufficient nlenl0ry to buffer all of the received 111ulticast
data, NODE_NAME entries are purged froll'\ this database in the following order:

1. Ti111ed-out - these are nodes that are known to be unavailable because the
LAT_MESSAGE_RETRANSMIT_LIMIT was reached on an active virtual circuit
associated with the host node.

2. Unknown - these nodes have stopped transnlitting ll1ulticast n1essages for
nlore than 5 tinles the HOST_MULTICAST_INTERVAL seconds, and are
therefore assullled to be in an unusual state (crashed).

3. Shutdown - these are host nodes that have indicated that they are no longer
accepting new virtual circuits.

4. Reachable (optional) - these are host nodes that are available, but no virtual
circuit is currently established to the node NODE_NAME. If these nallles are
purged frool the server database, an unacceptable CPU penalty nlay be ex
acted due to the high turnover rate of entries in SOl1le inlplelnentations.

If after all of the above entries have been purged fron, the NODE_NAME database,
no entries are available, the olulticast Inessage is discarded. Nodes associated
with active virtual circuits are never purged fron, the node data base.

A.3.2.2.1 Error Recovery

A-10

If a connect to a SERVICE_NAME name fails, the list of SERVICE_NAMEs is
searched for an alternate NODE_NAME path to the SERVICE_NAME. If one is
found, a connection is attempted. This continues until a connection succeeds or
until all possible NODE_NAME paths to the selected SERVICE_NAME have failed.

If 5 times the HOST_MULTICAST_TIMER seconds elapse in the terminal server,
and a ternlinal server has not received the multicast datagran, corresponding to a
list entry, the entry status field is set to unknown.

LAT/Digital Equipment Corporation/Proprietary and Confidential

A.4 Advertising Through Solicitation and Response Messages

While preserving the LAT V5.0 directory service, the LAT VS.l architecture defines
another lllethod for a node to collect inforrnation it needs to initiate a connection
to other nodes. Before attelnpting to establish a connection, a node lllay request
infonnation needed for establishing a connection using a Solicit infornlation nles
sage. A soliciting node nlay nlulticast this lllessage or send it physically addressed
to a specific node (if this node is known as a provider of a required service). A
Solicit infonllation nlessage can solicit infornlation about all services, one specific
service, or node infornlation using paranleters in the Solicit infornlation 111essage.
See the section entitled "LAT Messages."

All nodes (or one specified by a nal1le or address) that satisfy access control re
quirenlents (see " Service Access Control") and are able to process a Solicit infor
nlation nlessage, reply with a Response infonnation l1lessage physically addressed
to a soliciting node. The solicited node nlay respond with a Response infornlation
nlessage that includes the following infonnation:

• the node and all offered services

• one explicitly-requested service

• the node only (Ethernet address and sonle node paranleters)

The soliciting node processes inconling nlessages and collects enough inforlnation
to initiate a connection.

A node can use both methods of acquiring infornlation about nodes and services:
listening to nlulticasted Service announcenlent 111essages and llsing the Solicit
inforlllation nlessage. There is no coordination nlechanisnl between Service an
nouncenlent nlessages and Response infornlation I1lessages that would allow such
a node to support a unified local cache using inforlllation frOl1l both nlessages.
Such a node must support two separate local caches of infOrlllation and update
both caches separately.

More than one solicit nlessage request 111ay be outstanding on a soliciting node.
A solicitation identifier is provided to correlate Solicit infornlation requests with
Response messages. A soliciting node inserts this identifier into the Solicit mes
sage and all replying nodes insert the sanle identifier into the Response nlessage.
So, all Response olessages that are sent in response to this Solicit olessage will
have the same solicit identifier.

Service Class 1 - Interactive And Application Terminals. A-11

A.4.1 A Node Operating In Slave Mode

Operations perfornled by a slave node n1C'y be defined as:

• The node does not listen to Inulticast Inessages.

• The node nlay nllliticast Service annOllncenlent nlessages containing infornla
tion about services offered by that node. Multicasting is based on the 111Ulti
cast tinler.

• The node nlay nlll1ticast (or send physically addressed) Solicit infornlation
Inessages whenever the node needs to collect inforl1lation about nlaster
nodes and the services they offer.

• The node nlay receive and process Response inforl1lation nlessages sent by
nlaster nodes in response to a Solicit infornlation 1l1essage.

• The implenlentation chooses an algorithnl for processing Response infornla
tion 111essages and I1lethods for caching/updating a local database.

Table A-2: A Node Operating in Slave Mode

State Event Action State

Halted or Multicast tinler expired Multicast SeIVice Return to existing
Soliciting announcenlent lllessage state

Halted solicit infornlation: Multicast Solicit Soliciting nlultiple
- destination node infornlation nlessage nodes
address unknown

solicit information: Send addressed Solicit Soliciting specific
- destination node infornlation tnessage node
address is known

response nlessage rec. no action halted

Soliciting spe- Response time-out Resolicit Soliciting
cific node

Global time-out Abort solicitation Halted

Response nlessage re- Process nlessage Halted
ceived

Soliciting mul- Response timeout Resolicit Soliciting
tiple nodes

Global tinle-out Abort solicitation Halted

Response message re- Process nlessage Soliciting
ceived

A-12 LAT/Digltal Equipment Corporation/Proprietary and Confidential

Table A-2 aSSUllles that each Response lllessage is correlated to a corresponding
Solicit lllessage by 111eans of solicitation identifiers to provide the correct state
transitions.

A 111l1lticasted Solicit inforJllation 111essage Jllay result in S0111e unknown nUlllber
of responses. A l1lulticasted or physically addressed Solicit inforIllation 111essage
is not guaranteed to be delivered. Therefore, a node ll1USt in1plenlent sonle pol
icy for retransll1itting and tinling out Solicit inforn1ation 111essage requests. A re
sponse ti11ler and a global ti111er can be used to retransn1it a Solicit infol'111ation
Inessage. The suggested 11lethod is to retranslnit a Solicit infornlation 111eSsage 2
to 3 tin1es with 1- to 2-second intervals.

A.4.2 A Node Operating In Master Mode

Operations perfor111ed by a 111aster node can be defined as:

• The node may listen to l1lulticast messages and support local data cache.

• The node does not nlulticast service announce11lent nlessages.

• After receiving a Solicit information nlessage, the node responds with a
Response infornlation 11leSsage physically addressed to a soliciting node. A
Response infor111ation 111essage can contain node inforn1ation only, specified
service infornlation, or infor111ation about all services offered by the n'ode (see
"Response lnfornlation Message Policy").

To avoid a Si111ultaneous response by al1 nodes, each responding node should not
nlake its response event-driven, but rather i11lplenlent a delay that will cause the
node to reply within a certain ti11le interval. The RESPONSE_TIMER para111eter in
the Solicit infonnation 111essage and S0111e randonl nU111ber 111USt be inlplelnented
by the solicited nodes to distribute the reply within the soliciting node's retranSll1it
tilne interval.

One of possible algorith111s of getting a randonl nunlber is presented as follows:
add all bytes within the unique Ethernet address resulting in a 16-bit value; use
this value to initialize a counter; use the counter to count seconds since sys
tenl boot; take low-order bits of the result as a random value to respond within
RESPONSE_TIMER interval.

It is the responsibility of the soliciting node to i111plenlent a resolicitation algorith111
as needed.

Service Class 1 - Interactive And Application Terminals. A-13

A.4.3 Response Information Message Policy

A-14

A Solicit infornlAtion nlessage C;ttl be directed to one node using a physical ad
dress or to all nodes by using a Illulticast address. The soliciting node can specify
in the request a destination node nallle, the requested service nallle, and the re
quested port nanle. A soliciting node can request inforInation about a node, one
specific service, or all services offered by a destination node. Using the Response
1l1essage, the solicited node ll1ay respond with node inforll1ation only (SRVC_
COUNT is 0), node and all offered services infornlation, or node and specified
service inforIllation only. The policies that govern the request/response inforJl1a
tion flow between a soliciting node and a solicited node are presented in Table
A-3. A null nallle n1eans that no natne is provided in the Solicit inforlllation Illes
sage.

Table A-3: Response Service Announcement Policy

destination
service name

null

null

not null

not null

destination
node name

null

not null

null

not null

Solicit service
message
multicasted

Any node nlClY re
spond with node
info and optionally
all selVices.

Nanled node must
respond with node
info and optionally
all selVices.

If node offers ser
vice, it must reo
spond with node
and service infornlCl
tion.

If nanled node. of·
fers selVice, it nlust
respond with node
and selVice infor
nlation. Else node
returns error "node
doesn't offer ser
vice",

Solicit service message
physically addressed

Addressed node n",y respond
with node info an optionally
all selVices,

If node name is correct, node
nlllst respond with node and
optionally all selVices info.

If node offers selVice, it nlust
respond with node and selVice
info. Else returns error "node
doesn't offer selVice".

If node n8111e .is correct and
node offers selVice, it nlust
respond with node service
info. Else return error "node
doesn't offer selVice" .

Note that the node responds only if access control requirements are satisfied (see
" Access Control H).

LAT/Digital Equipment Corporation/Proprietary and Confidential

A.5 Service Class 1 Messages

Advertisenlent nlessages can be solicited or unsolicited. The Solicit infornlation
and Service announcenlent Illessages are unsolicited. The Status and Response
nlessages are solicited nlessages. Each node is responsible for al10cating buffers
to receive maxinlun1 length unsolicited LAT l11essages. Unso1icited 111essages con
tain a DATA_LINK_RCV_FRAME_SIZE field that defines the 111axil11Ul11 size of the
solicited LAT n1essages which can be se.nt to the node.

Each service class can define extensions to the 111essages in the l11ain body of the
doclunent.

If the slot byte count is in conflict with a field byte count, the slot is invalid. If the
slot byte count truncates an extension to the slot, the slot is valid and the exten
sion is not supplied. If a byte counted field within a slot status field is specified as
zero length, the next byte following the byte count is the first byte of the following
field.

Bits are transn1itted low order bit first onto the Ethernet. When fields are con
catenated, the right hand field is transn1itted first. NUllleric fields n10re that 8-bits
long are transmitted least significant byte first.

Fields are represented as bit strealns, right to left. All fields are an integer nlultiple
of eight bits. The symbol "Ie /I is used to indicate fields of varying or indeternlinate
length.

A.S.1 Service Announcement Message

This service class defines the following additional 111essage (this is a multicast n1es
sage used in the LAT 5.0 version):

Service Class 1 - Interactive And Application Terminals. A-15

Figure A-3: Service Announcement Message

1
5 o

I SRV_CIRCT_TMR / MSG_TYP IMIRI
+---------------+-----------+-+-+
/ LOW_PRTCL_VER I HIGH_PRTCL_VERI

+---------------+---------------+
I CUR_PRTCL_ECO I CUR_PRTCL_VER I

+---------------+---------------+
I CHANGE_FLAGS I MSG_INCARNATIONI

+---------------+---------------+
DATA_LINK_RCV_FRAME_SIZE

+---------------+---------------+
I NODE_STATUS I NODE_MULTI_TIMRI

+---------------+---------------+
I NODE_GROUPS /NODE_GROUP_LEN I

/ +---------------+
== NODE_GROUP_LEN group numbers ..

+---------------+---------------+
I NODE_NAME_LEN I

+---------------+
NODE_NAME_LEN ascii characters=

+-------------------------------+
/ NODE_DESC_LEN /

+---------------+
NODE_DESC_LEN ascii characters==

+---------------+---------------+
I SRVC_RATING ISRVC_NAME_COUNT/

+---------------+---------------+
I I SRCV _NAME_LEN I
I +---------------+
.. SRCV_NAME_LEN ascii characters=

+-------------------------------+
I SRVC_DESC_LEN I

+---------------+
SRVC_DESC_LEN ascii characters=

+-------------------------------+
/ if SRVC_NAME_COUNT is greater /
= than one, then the previous ==
I five field are repeated here /

+---------------+---------------+
I NODE_SER_CLASES/ NODE_SER_LEN

I +---------------+ = NODE_SER_LEN service classes =
+-------------------------------+

UNPREDICTABLE

+-------------------------------+

• R (1 bit) - Response requested flag. Must be zero.

• M (1 bit) - Master flag. Must be zero.

• MSG_TYP (6 bits) - fixed at 10.

A-16 LAT/Digital Equipment Corporation/Proprietary and Confidential

• SERVER_CIRCUIT_TIMER (1 bvte) - Desired value in 10 l11i1lisecond inter
vals. The node suggests a valu~ in this field. The value 111ay be ignored by
the ternlinal server. A zero specifies no preferred value.

• HIGH_PRTCL_VER (1 byte) - Highest protocol version supported by node.

• LOW _PRTCL_ VER (1 byte) - Lowest protocol version supported by node.

• CUR_PRTCL_VER (1 byte) - Protocol version of this nlessage (current version
is 5).

• CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_VER for this l11essage
(current ECO is 1).

• MSG_INC (1 byte) - Message incarnation. This multicast datagralTI is trans
nlitted periodically by each node. Any thlle ANY field within this nlessage
changes value relative to the previous nlessage, the MSG_INCARNATION
OlUst be increl1lented by one. When the node assigns this value to the first
nluiticast l11essage, a rando111 value should be chosen.

• CHANGE_FLAGS (1 byte) - Each bit in this byte corresponds to a field in the
nlulticast olessage that can change:

• bit 0 - Node group codes changed

• bit 1 - Node descriptor changed.

• bit 2 - Service names (andl or number of names) changed

• bit 3 - Service ratings changed.

• bit 4. - Service descriptors changed.

• bit 5 - Service classes changed.

• bit 6 - unpredictable

• bit 7 - Other paraoleters changed.

If a field changes, the bit value toggles (0 - > 1 or 1 - > 0) and then reolains
at that value as multicast olessages are transmitted until the field changes
again. Only the bit(s) associated with the field(s) that have actually changed
may be toggled in this way.

• DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - Maxioluol size of the
LAT olessage that can be sent to this node. Actual length of a LAT l11essage
is DATA_LINK_RCV_FRAME_SIZE-IB.

Service Class 1 • Interactive And Application Terminals. A-17

• NODE_MULTICAST _TIMER (1 byte unsigned) - The nlininlulll rate at which
the node will send nlulticast 1l1essages in seconds.

• NODE_STATUS (1 byte bit 1l1ask) - Node status flags byte.

• Bit 0 - Set to 1 if the node is not accepting ne\l\' sessions.

• Bits 1 through 7 - zero on send, ignored on receive.

• NODE_GROUP _LEN (1 byte unsigned) - A b~,te count of the NODE_GROUP
field. A value of zero is legal and indicates that the node does not offer any
services.

• NODE_GROUPS (NODE_GROUP _LEN bytes) - This field is specified as a bit
lnask of 256 bits. A bit set to 1 indicates the node belongs to that group. The
first bit of the 1l1ask (bit 0) corresponds to group O.

• NODE_NAME_LEN (1 byte signed) - A byte count of the NODE_NAME field.
A value of zero is illegal.

• NODE_NAME (NODE_NAME_LEN bytes) - These characters are constrained
as described in the section entitled "Specification of nanles" .

• NODE_DESCRIPTOR_LEN - (1 byte unsigned) - A byte count of the NODE_
DESCRIPTOR field. A value of zero indicates that no node description is
available.

• NODE_DESCRIPTION (NODE_DESCRIPTION_LEN bytes) - An ASCII string
of characters that describes the node.

• SERVICE_NAME_COUNT (1 byte unsigned) - This field is equal to the nUlll
bel' of service names offered. The next five fields are repeated SERVICE_
NAME_COUNT tilnes.

• SERVICE_RATING (1 byte unsigned) - the rating of the associated service
nanle.

• SERVICE_NAME_LEN (1 byte signed) - A byte count of the SERVICE_NAME
field. A value of zero is illegal.

• SERVICE_NAME (SERVlCE_NAME_LEN bytes) - These characters are con
strained as described in the section entitled "Specification of nanles" .

• SERVICE_DESCRIPTOR_LEN - (1 byte unsigned) - A byte count of the
SERVICE_DESCRIPTOR field. A value of zero indicates that no service de
scription is available.

A-18 LAT/Digital Equipment Corporation/Proprietary and Confidential

• SERVICE_DESCRIPTION (SERVICE_DESCRIrTION_LEN bytes) - An ASCII
string of characters that will help the terminal server user identify the service
being offered. The node shol1ld not load control characters into this field.
Tenninal servers l1lust support a l1linill1UIll SERVICE_NAME length of 64
characters.

• NODE_SERVICE_LEN (1 byte unsigned) - A byte count of the NODE_SER_
CLASES field. A value of zero is illegal.

• NODE_SERVICE_CLASSES (NODE_SERVICE_LEN bytes) - A node ll1ight
sill11tltaneously support l1lultiple service classes. A service class is coded as
a byte value in the range 0 to 255. The value zero is reserved. This field is
specified to l1lake the architecture extensible. A node nlust specify the service
classes it supports. The service classes defined at present are:

• CLASS 1 - Interactive terlllinals and Application tenninals

A.S.2 Solicit Information Message

The Solicit infonnation l1lessage can be used by a node to solicit a Response infor
Illation Inessage(s) froln another node(s). The Solicit inforInation rnessage can be
ll1ulticasted or physicalJy addressed.

Figure A-4 presents the format of the Solicit inforlllation l1lessage. Detailed de
scriptions of each field in the 111essage follow.

Service Class 1 - Interactive And Application Terminals. A-19

Figure A-4: Solicit Information Message

1
5 o
+=====c==================_=== __ ======+
I PRTCL_fORMAT MSG_Tyr IMIRI
+------------------+-------------+-+-+
1 LOW_PRTCL_VER 1 HIGH_PRTCL_VER

+------------------+-----------------+
CUR_PRTCL_ECO 1 CUR_PRTCL_VER

+------------------+-----------------+
OATA_LINK_RCV_FRAME_SIZE

+------------------------------------+
SOLICIT_IDENTIfIER 1

+------------------------------------+
RESPONSE_TIMER 1

+------------------------------------+
DST_NODE_NAME I DST_NODE_NAME_LENI

+------------------1
OST_NODE_NAME_LEN ascii char.

+------------------------------------+
1 SRC_NODE_GROUP ISRC_NODE_GROUP_LENI

1 +------------------+
+-----------------+------------------+
I SRC_NOOE_NAME ISRC_NODE_NAME_LEN I
I +------------------1

SRC_NODE_NAME_LEN ascii char.
+------------------------------------+
I OST_SRVC_NAME IDST_SRVC_NAME_LEN 1

1 +------------------1
1 OST_SRVC_NAME_LEN ascii char. I

+-----------------+------------------+
PARAM_LENGTH PARAM_COOE I

+-----------------+------------------+
PARAM_OATA 1

(PARAM_LENGTH bytes)
+------------------------------------+ PARAM_CODE,

PARAM_LENGTH,
PARAM_DATA repeat
til PARAM_COOE equal 0

• RM (2 bits) - Must be O.

• MSG_TYP (6 bits) - fixed at 14.

• PRTCL_FORMAT (1 byte) - Protocol Format flag.

Bit 0 through 7 - Must be 0 on transn'lit, ignored on receive.

• HIGH_PRTCL_ VER (1 byte) - Highest protocol version supported by the
node.

• LOW _PRTCL_ VER (1 byte) - Lowest protocol version supported by the node.

A-20 LAT/Digital Equipment Corporation/Proprietary and Confidential

• CUR_PRTCL_ VER (1 byte) - Protocol version of this message (current version
is 5).

• CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_ VER for this nlessage
(current ECO is 1).

• DATA_LINK_RCV _FRAME_SIZE (2 bytes unsigned) - Maxinlunl size of the
LAT nlessage that can be sent to this node. Actual length of a LAT nlessage
is DATA_LINK_RCV_FRAME_SIZE-1B.

• SOLICIT_IDENTIFIER (2 bytes unsigned) - Identifier produced by the solicit
ing node that uniquely identifies the Solicit infornlation nlessage. The solidt
ing node uses this identifier to correlate corresponding Solicit and Response
infofll1ation nlessages.

• RESPONSE_TIMER (2 bytes unsigned) Retransnlit tinler (seconds) that starts
when a Conlnland nlessage (access) is sent. The soliciting node uses this
tilller to time-out waiting state for the responses. The responding node
should use that value as a IllaxinlUlll for its local response tinler.

• DST_NODE_NAME_LEN (1 byte unsigned) - length of the next field. A byte
containing the length of the DST_NODE_NAME field in bytes. A value of
zero is legal.

• DST_NODE_NAME (DST_NAME_LEN bytes) - Destination node nanle. An
array of ASCII characters describing the nanle of the node known to be a
provider of services. These characters are constrained as described in the sec
tion of the LAT Architecture Specification entitled "Specification of Names. 1/

• SRC_NODE_GROUP _LEN (1 byte unsigned) - Node group code byte length.
This byte denotes the lengths of the next field. A value of ,0 is legal and indi
cates that node can access any services. Maxinlulll value is 32 (256 bits).

• SRC_NODE_GROUPS (SRC __ NODE_GROUP_LEN bytes) - Soliciting node
group code nlask. This field is specified as a bit-nlask of up to 256 bits. A bit
set to 1 indicates the node belongs to that group. The first bit of the mask
(bit 0) corresponds to group O. This group code nlask represents Identifiers
List (IDL).

• SRC_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the SRC_NODE_NAME field in bytes. A value of
zero is illegal.

• SRC_NODE_NAME (SRC_NODE_NAME_LEN bytes) - Soliciting (source)
node nanle. An array of ASCII characters describing the nanle of the node
soliciting a response message. These characters are constrained as described
in the section of the LAT Architecture Specification entitled 1/ Specification of
Nanles."

Service Class 1 - Interactive And Application Terminals. A-21

• DST_SRVC_NAME_LEN (1 byte unsigned) - Service name length. A byte
containing the length in bytes of the DST_SRVC_NAME field. A value of zero
indicates no Service nan'le is requested.

• DST_SRVC_NAME (DST_SRVC_NAME_LEN bytes) - Requested service
nalne. An array of ASCII characters that forl1'ls the nalne of the requested
service. These characters are constrained as described in the section of the
LAT Architecture Specification entitled "Specification of Nal1'les." This nan'le
is not constrained to be unique in the Local Area Network because the san'le
service nan'le can be offered by different nodes.

• PARAM_CODE (1 byte) - Parameter code. The following codes are defined:

• Parameter code 0 - Denotes the end of a paranleter list.

• Paran'leter codes 1-127 - Reserved for DEC use.

• Paranleter codes 128-255 - Reserved for users.

• PARAM_LEN (1 byte) - Length of the next field in bytes.

• PARAM_DATA (PARAM_LEN bytes) - Paranleter data.

A.S.3 Response Information Message

A-22

The Response information message is physically addressed to the soliciting node.
The Response nlessage nlust fit in the receive buffer provided by the soliciting
node (see "Solicit Information Message"). The more general solution needed in
the case when the Response lllessage does not fit in the provided buffer is outside
the scope of the LAT V5.1 architecture.

Figure A-5 presents the fornlat of the Response inforn'lation l1'lessage. A detailed
description of each field in the nlessage follows.

LAT/Dlgital Equipment Corporation/Proprietary and Confidential

Figure A-5: Response Information Message

1
5 o

Start of ----->+=======-============-=====-===-=====-+
Protocol info
area

Start of the

PRTCL_FORMAT

+-----------------+---------------+-+-+
I LOW_PRTCL_VER I HIGH_PRTCL_VER

+-----------------+-------------------+
I CUR_PRTCL_ECO I CUR_PRTCL_VER

+-----------------+-------------------+ I DATA_LINK_RCV_FRAME_SIZE

+-------------------------------------+
SOLICIT_IDENTIFIER

+-------------------------------------+
node RESPONSE_STATUS I
info area ----->+-------------------------------------+

I
+-------------------------------------+
I
I SOURCE_NODE_ADDR
I
+-------------------------------------+ I NODE_MC_TIMER

+-------------------------------------+ I DST_NODE_NAME I DST_NODE_NAME_LEN I
I +-------------------+
I DST_NODE_NAME_LEN ascii char

+-------------------------------------+ . I SRC_NODE_GROUP ISRC_NODE_GROUP_LEN I
I +-------------------+

SRC_NODE_GROUP_LEN bytes

+-----------------+-------------------+ I SRC_ NODE_NAME I SRC_NODE_NAME_LEN I
I +-------------------+

SRC_NODE_NAME_LEN ascii chars

+-----------------+-------------------+
SRC_NODE_DESC I SRC_NODE_DESC_LEN I

Start +-------------------+
of service SRC_NODE_DESC_LEN ascii characters Start of the
descriptor ---->+-----------------+-------------------+<---- services area

I SRVC_ENTRY_LEN I SRVC_COUNT'

+-----------------+-------------------+
1 SERVICE_CLASS 1 SRVC_CLASS_LEN

+ +-------------------+
SERVICE_CLASS_LEN ascii characters =

+-----------------+-------------------+
1 SRVC_RATING 1 SRVC_STATUS

+-----------------+-------------------+
I SRVC_GROUPS SRVC_GROUP_LEN

+ +-------------------+
SRVC_GROUP_LEN bytes

+-----------------+-------------------+
SRVC_NAME 1 SRVC_NAME_LEN 1

+-------------------1 SRVC_NAME_LEN ascii characters 1

Figure A-5 Cont'd. on next page

Service Class 1 - Interactive And Application Terminals. A-23

Figure A-5(Cont.): Response Information Message

+-----------------+-------------------+
SRVC_DESC I SRVC_DESC_LEN

+-------------------+
SRVC_DESC_LEN ascii characters

End of ----->+-------------------------------------+
Service I if SRVC_COUNT is greater
descriptor = than one, then the Service

Idescriptor fields are repeated

End of ----->+-----------------+-------------------+
Services area PARAM_LENGTH I PARAM_CODE

+-----------------+-------------------+
PARAM_OATA

(PARAM_LENGTH bytes)
+-------------------------------------~ PARAM_CODE,

PARAM_LENGTH,
PARAMOATA repeat
til PARAM_CODE equal 0

• RM (2 bits) - Must be zero.

• MSG_TYP (6 bits) - Fixed at 15.

• PRTCL_FORMAT (1 byte) - Protocol Fornlat flag. Bits 0 - 1 define nlode of
operation of the node as follows:

• 00 - node can operate in the Ethernet fornlat only

• 01 - node can operate in the 802 fornlat only

• 10 - node can operate in both - 802 and Ethernet fonnats

• 11 - reserved

• Bits 2 through 7 - Must be 0 on transnlit, ignored on receive.

• HIGH_PRTCL_ VER (1 byte) - Highest protocol version supported by the
node.

• LOW _PRTCL_ VER (1 byte) - Lowest protocol version supported by the node.

• CUR_PRTCL_ VER (1 byte) - Protocol version of this nlessage (current version
is 5).

• CUR_PRTCL_ECO (1 byte) - ECO level of CUR_PRTCL_ VER for this message
(current ECO is 1).

• DATA_LINK_RCV_FRAME_SIZE (2 bytes unsigned) - This field must be zero
on send; ignored on receive.

A-24 LAT/Digital Equipment Corporation/Proprietary and Confidential

• SOLICIT JDENTIFIER (2 bytes unsigned) - This value is equal to the value of
the SOLICITJDENTIFIER field of the received Solicit information 111essage
that is being replied to by this Response infornlation nlessage.

• RESPONSE_STATUS (2 bytes unsigned) - Response status. Bit 11lask repre
senting status of the Response infortllation nlessage. Meaning of bits (when
set):

• Bit 0 - reserved

• bit 1 - Node does not offer requested service.

• bits 2-15 - Must be zero.

The next field nlarks the start of the node infornlation area.

• SRC_NODE_STATUS (2 byte bit mask) - Responding node status flag word
represented by a bit 11lask as follows:

• Bit 0 set - the node is disabled (node is not accepting new connections to
its' services).

• bit 1 set - Start message can be sent by the subject node to the object
node that issued the Response inforlllation Illessage.

• bit 2 set - Comnland nlessage can be send by the Subject node to the
Object node that issued the Response inforJllation nlessage.

• Renlaining bits - nlust be 0 on send, ignored on receive.

Bits 1 and 2 in the SRC_NODE_STATUS field define functional capabil
ities of the solicited node. Using those two bits in the NODE_STATUS
byte of the Response message, a responding node reports to the solicitor
what nlessages the subject can use to initiate a connection to the object.
Table A-4 explains the nleaning of those bits and conlbinations.

Table A-4: SRC_NODE_STATUS Bit Combinations

Bits
2 1 Meaning

o 0 Object does not accept either Conlmand or Start n,essage. No connection
can be nlade to this object (5.0 selVer is an exanlple of a such node).

o 1 Subject can send a Start message. Object will respond with Start/Reject
nlessage only. (5.0 host is an example of a such node).

Service Class 1 - Interactive And Application Terminals .. A-25

Table A-4 (Cont.): SRC_NODE_STATUS Bit Combinations

Bits
2 1 Meaning

1 0 Subject can send Conlnland nlessage. Object can respond with Start/Reject
or Status lllessages. (5.1 server that offers services is an exalllple).

1 1 Subject can send both Start and COlllnland nlessages. Object can respond
with both Start and Status 1l1essages. By advertising ability to receive a
Start nlessage. object announces itself to be at least a slave. (5.1 slave
which provides queuing to the services and sYlllnletric node are exanlples
of such nodes).

• SOURCE_NODE_ADDR (6 byte field) - transn,itting node nlust filJ this field
with the value equal to the data link source address of the node. Receiving
node nlust reference this field and 111ust ignore the actual source address of
the nlessage. .

• NODE_MC_ TIMER (2 bytes unsigned) - Slave node nlulticast tinler (the nlax
inlunl til1le between transnlitted Service 11leSsages in seconds). The value
111ust be in the range 1 to 3600 seconds.

• DST_NODE_NAME_LEN (1 byte unsigned) - Length of the next field. A byte
containing the length of the DST_NODE_NAME field in bytes. A value of
zero is legal.

• DST_NODE_NAME (DST_NAME_LEN bytes) - Destination node nanle.
An array of ASCII characters describing the nanle of the node to which the
Response nlessage is directed. These characters are constrained as described
in the section of the LAT Architecture Specification entitled II Specification of
Nanles. II

• SRC_NODE_GROUP_LEN (1 byte unsigned).- Node.group.code byte length.
This byte denotes the length of the next field. A value of 0 is legal and in
dicates that the node is offering no services. The nlaxinlum value is 32 (256
bits).

• SRC_NODE_GROUPS (SRC_NODE_GROUP_LEN bytes) - Node group code
nlask. This field is specified as a bit-nlask of up to 256 bits. A bit set to 1 in
dicates the node belongs to that group. The first bit of the nlask (bit 0) corre
sponds to group O. This group code mask represents an Access Control List
(ACL).

• SRC_NODE_NAME_LEN (1 byte unsigned) - Node name length. A byte
count of the following field. A value of zero is illegal.

A-26 LAT/Digital Equipment Corporation/Proprietary and Confidential

• SRC_NODE_NAME (SRC_NODE_NAME_LEN bytes) - Node nanle. An
ASCII string of characters that contains the nanle of the node for which the
infornlation applies. These characters are constrained as described in the sec
tion of the LAT Architecture Specification entitled /I Specification of Nanles. "
This nalne lllUst be unique to the Local Area Network.

• SRC_NODE_DESC_LEN (1 byte unsigned) - Node description length. A byte
count of the following field. A value of zero indicates that no node descrip
tion is available.

• SRC_NODE_DESC (SRC_NODE_DESC_LEN bytes) - Node description. An
ASCIl string of characters representing the textual description of the node.

The next field nlarks the start of the Services area.

• SRVC_COUNT (1 byte unsigned) - Service count. This is the total nUlllber of
service entries included in the 1l1essage.

The next field Inarks the start of the Service entry.

• SRVC_ENTRY _LEN (1 byte unsigned) - Number of bytes in this service entry.
It is used to speed the search through the entries presented in the list.

• SRVC_CLASS_LEN (1 byte) - length of the following field in bytes. A value
of zero is legal and nleans that service belongs to class 1.

• SERVICE_CLASS (SRVC_CLASS_LEN bytes) - class of the described service
(service can belong to nlore then 1 class). Equal 1 for the interactive and ap
plication ternlinals.

• SRVC_STATUS (1 byte unsigned) - Service status. This field is specified as a
bit Inask of 8 bits. The bits are defined as follows: .

• Bit 0 set - Service is enabled.

• Bit 1 set - Service supports queuing (see "Service Sharing").

• Remaining bits - must be 0 on send, ignored on receive.

• SRVC_RATING (1 byte unsigned) - The rating of the associated Service. This
value changes dynamically depending upon type of service, system resources,
number of users, etc.

• SRVC_GROUP_LEN (1 byte unsigned) - Service group code length. A byte
count of the SRVC_GROUP field. A value of 0 is legal and indicates that the
service group codes are not available (use node group codes). The nlaxinlU111
value is 32 (- > 256 bits).

Service Class 1 - Interactive And Application Terminals. A-27

• SRVC_GROUPS (SRVC_GROUP _LEN bytes) - Service group codes. This
field is specified as a bit-Illask of 256 bits. A bit set to 1 indicates the service
belon~s to that group. The first bit of the nlask (bit 0) corresponds to group
O. This group code 111ask represents an Access Control List (ACL).

• SRVC_NAME_LEN (1 byte unsi~ned) - Service nanle length. A byte contain
ing the length in bytes of the SRVC_NAME field. A value of zero is illegal.

• SRVC_NAME (SRVC_NAME_LEN hytes) - Service nanle. An array of ASCII
characters that fOrIllS the l1aIlle of the service. These characters are con
strained as described in the section of the LAT Architecture Specification en
titled" Specification of Nanles." This na111e is not constrained to be unique in
the Local Area Network.

• SRVC_DESC_LEN - (1 byte unsigned) - Service description length. A byte
count of the SRVC_DESC field. A value of zero indicates that no description
is available.

• SRVC_DESCRIPTION (SRVC_DESC_LEN bytes) - Service description. An
ASCII string of characters that describes the service. For an application ter
nlinal service, this is typically the device location.

The previous field marks the end of the Service description entry.

• PARAM_CODE (1 byte) - Parameter code. The following codes are defined:

• Parameter code 0 - Denotes the end of the parallleter list.

• Parameter codes 1-127 - Reserved for DEC.

• Paranleter codes 127 - 255 - Reserved for users.

• PARAM_LEN (1 byte) - Length of the next field in bytes.

• PARAM_DATA (PARAM_LEN bytes) - Paranleter data.

A.6 Service Class 1 Slot Format Extensions

A-28

To accommodate functionality and features of the Class 1 service some slots are
extended by this service class.

LAT/Digital Equipment Corporation/Proprietary and Confidential

A.6.1 Start Slot Status Field

Start slot status field is extended by this service class.

As was nlentioned before, a node using a Solicit service nlessage to request
Response service announcenlents can use different nlethods to process responses
(lilnited caching, filtering, etc.). Other nodes can use Start slots to initiate connec
tions. To provide nanling conventions as specified by the LAT architecture, the
Start slot contains destination and source service and port nanles.

To preserve conlpatibility with the LAT 5.0 inlplenlentations and provide easy
ECOing, new fields have been incorporated into the Start slot within the paranl
eter field.

Figure A-6: Start Slot Format

Start Slot format
7 o
+-------------------------------+ I DST_SLOT_ID

+-------------------------------+ I SRC_SLOT_ID

+-------------------------------+ I STATUS_BYTE_COUNT

+---------------+---------------+ I SLOT_TYPE CREDITS I
+---------------+---------------+

SERVICE_CLASS I
+-------------------------------+ I MINIMUM_ATTENTION_SLOT_SIZE I
+-------------------------------+ I MINIMUM_DATA_SLOT_SIZ

+-------------------------------+ I OBJ_SRVC_LEN

+-------------------------------+
OBJ_SRVC

+-------------------------------+
SUBJ_DSCR_LEN

+-------------------------------+
SUBJ_DSCR

+-------------------------------+
PARM_CODE

+-------------------------------+
PARM_LEN

+-------------------------------+
PARM_DATA

+-------------------------------+
remainder of STATUS field repeats until paranl_ code-O

+-------------------------------+
unpredictable I exists only if

+-------------------------------+ STATUS_BYTE_COUNT is odd

• DST_SLOT_ID (1 byte) - A reference to a slot block.

Service Class 1 - Interactive And Application Terminals. A-29

A-30

• SRC_SLOT_ID (1 byte) - A reference to a slot block.

• STATUS_BYTE_COUNT (1 byte) - An unsigned intege!' count of the length of
the STATUS field.

• CREDITS (4 bits) - A 4-bit integer equal to the nunlber of credits being trans
ferred.

• SLOT_TYPE (4 bits) - The value 9 (1001).

• SERVICE_CLASS (1 byte) - The value 1 for application and interactive ternli
nals.

• MINIMUM_AITENTJON_SLOT_SIZE (1 byte) - The lllinil1lulll slot size queued
to receive Attention slot data (not including the slot header). The systel1l
receiving this l1lessage nlust linlit transnlitted Attention slots to this size. A
value of zero indicates Attention slots are not supported.

• MINIMUM_DATA_SLOT_SIZE (1 byte) - The l1linilllUJ1l slot size queued to
receive Data_a and Data_b slots (not including the slot header). The systelll
receiving this lllessage nlust linlit transnlitted Data_a and Data_b slots to this
size. A value of 0 is illegal.

• OBJ_SRVC_LEN (1 byte unsigned) - The byte count of the next field. A value
of zero indicates that no service nanle is provided.

• OBJ_SRVC (OBJ_SRVC_LEN) - When a Start slot is sent by the initiator, this
field specifies the destination service naO'le. When a Start slot is sent by a
responder, this field is the result of the destination service nallle translation
process.

• SUBJ_DSCR_LEN (1 byte unsigned). - The byte COllnt of the next field. A
value of zero indicates that no textual description is provided.

• SUBJ_DSCR (SUBLDSCR_LEN bytes) - When sent by an initiator, this field
specifies the subject textual description. When sent by a responder, this field
must be 0 on send and ignored on receive.

• The following Start Slot parameters are defined:

• Parameter code 0 is reserved.

• Parameter code 1(2 bytes) - Flag word; bits when set are:

Bit 0 - If set indicates a dialup line. If cleared indicates a local line.
Intendent to be settable by a server lllanager to indicate a dialup
line.

LAT/Digital Equipment Corporation/Proprietary and Confidential

Bit 1 - if set this line does not auto111atically initiate a login sequence
in the Start slot.

Bits 4-15 - Zero on send ignored on receive.

• Parameter code 2 - identifier of the particular entry in the queue (2 bytes
unsigned) - This field contains the unique identifier assigned to the queue
entry by the node to which the Start is directed. This value correlates
the connection request with the service queue. If the session was not
solicited, this paral11eter should not be specified.

• Paranleter code 3 (2 bytes) - reserved (zero on send, ignored on receive).

• Parameter code 4 - OBLPORT _NAME (string of bytes PARM_LEN long)
- Destination node port nallle. This paranleter is used to designate a
particular port on a destination node.

• Paral1leter code 5 - SUBJ_PORT _NAME (string of bytes P ARM_LEN
long) - Source node port nanle. This paranleter is used to designate a
particular port on a source node.

• Paranleter code 6 - SUBJ_GROUP _CODES (string of bytes PARM_LEN
long) - Source service group codes. This field is specified as a bit-lnask
up to 256 bits. A bit set to 1 indicates the subject belongs to that group.
The first bit of the nlask (bit 0) corresponds to group O. This group code
nlask represents an Identifier List (IDL). It l1lust not be present in the
Start (response) slot.

• Parameter code 7 - OBJ_SRVC_PASS (string of ASCII characters PARM_
LEN long) - Service password. This paranleter is used to pass a per
service password to the object node (for iInplenlentations that use ser
vice passwords).

• Paralneter codes 8-127 - Reserved for'DEC.

• Parameter codes 128-255 - Reserved for users.

Note that no queue depth indicator is returned in the Start Slot since the estab
lishnlent of the connection l11eanS that the service is 'online' to the solicitor.

A.6.2 Attention Slot Status Field

The Attention slot is extended by this service class to include 1 byte of control
flags, and within the byte a single "abort" flag. It's purpose is to discard all
buffered data renlaining to be delivered to the user. The slot can be sent by either
the host or the terlninals server.

Service Class 1 - Interactive And Application Terminals. A-31

Host inlplenlentation is optional for both transnlission and reception of the slot.

The ternlinal server 11lUSt process this slot if it is received, but translllission of this
slot is optional.

Note that this slot is not flow controlled.

The nlininlunl Attention slot size is 1 byte. The fornlat of the Attention slot is:

Figure A-7: Attention Slot Format
--."""--""---------~"

7 o
+-------------------------------+
+-------------------------------+ I SRC_SLOT_ID I
+-------------------------------+ I SLOT_BYTE_COUNT I
+---------------+---------------+
I SLOT_TYPE MBZ I
+===============+--===----====-=+
I CONTROL_FLAGS I
+-------------------------------+ I UNPREDICTABLE

+-------------------------------+

• DST _SLOT _ID - a handle on the renlote slot block

• SRC_SLOT _ID - a handle on the local slot block

• SLOT _BYTE_COUNT - an unsigned integer count of the length of the SLOT_
DATA field - the value 1.

• MBZ (4 bits) - nlust be zero

• SLOT_TYPE (4 bits) - the value 11.

• CONTROL_FLAGS (8 bits) :

• (bit 0 through bit 4) - Unpredictable.

• (bit 5) - Abort. Causes buffered output data pipe to be flushed of all
data. Credits are returned as if the data had been nornlally delivered.

• (bit 6 and bit 7) - Unpredictable.

A-32 LAT/Digital Equipment Corporation/Proprietary and Confidential

A.6.3 Data_b Slot Extension

The data_b slot is extended by this service class to provide port control and infor
nlation, session control and data streanl inforInation functions.

The flow control discussed in this chapter concerns only the conlnlunication be
tween the DTE and the session and not the LAT session flow control which is
credit based as described in the previous chapters.

The LAT VS.1 architecture supports only XON/XOFF flo",' control (DEC STD 110).
Other flow control lllechanisnls are outside the scope of this architecture.

A.6.3.1 Information Exchange Using Data_b Slots

The LAT architecture defines two types of a data_b slots - HSet" and "Report".
By using different types of data_b slots each of the sessions 1l1ay coordinate the
setting and display of renlote port characteristics and data transparency nlode.
This design does not require a specific inlplelnentation. Actual iInplenlentation
of the set/report data_b slots is a product specific issue. Products can choose to
ilnplelllent or not to inlplelnent this functionality.

lnfornlation about physical port characteristics, the status of the data stream and
the setting of the data transparency nlode (described below) is comnlunicated be
tween connecting nodes using Data_b slots. The following infornlation is included
in Data_b slots:

Port

Receive Speed
Transnlit Speed
Parity Type
Data Length
Input Flow Control
Output Flow Control
Bell on Discard

Session

Transparency Mode:
- none
- passall
- pasthru

Data Stream

Break Condition
Data Error Detected

Each end of the communication session can be conveniently described as having
three databases. One database describes the characteristics of the physical port on
the local end (if one exists), one database is the inlage of physical characteristics of
the port on the renlote end of the connection (if one is needed), and one database
describes the current session characteristics.

Service Class 1 - Interactive And Application Terminals. A-33

"Set,t and "report" data_b slot types are represented by bits 5 and 6 in the CONTROL_
FLAGS byte of the Data_b slot as follows:

• bit 5 and bit 6 are both cle<,lred - VS.O conlpatibility (in nlost cases, the data_b
slot of this type will be processed as "set" if the physical port is present).

• bit 5 is set, bit 6 is cleared - "Set" type of data_b slot.

• bit 5 is cleared, bit 6 is set - "Report" type of data_b slot.

• both bits set - this combination must not be specified on transnlit, and a
data_b slot with this cOlllbination nlust be ignored on receive.

The 'report' data_b slot contains all the infornlation about the local port charac
teristics and the transparency nlode setting regardless of what infornlation has
been changed. A node sends a 'report' data_b slot when inforIllation in the lo
cal database has been changed. The' set' data_b slot contains inforIllation on only
those paranleters that are being changed. It is sent by the node which is attelllpt
ing to modify renlote physical port characteristics or the transparency nlode set
ting for a session.

A.6.3.2 Dats_b Slot Format

The format of the data_b slot is shown in Figure 6-1.

Figure A-a: Data_b Slot Format

Figure A-a Cont'd. on next page

A-34 LAT/Digital Equipment Corporation/Proprietary and Confidential

Figure A-8(Cont.): Data_b Slot Format

7 o
+-------------------------------+

DST_SLOT_ID

+-------------------------------+ I SRC_SLOT_ID

+-------------------------------+ I SLOT_BYTE_COUNT I
+---------------+---------------+

SLOT_TYPE I CREDITS I
+===--=-=-======+==========--===+ <- Start SLOT_DATA field
I CONTROL_FLAGS I
+----------------------------~--+ I STOP_OUTPUT_CHANNEL_CHAR I
+-------------------------------+

START_OUTPUT_CHANNEL_CHAR I
+-------------------------------+

STOP_INPUT_CHANNEL_CHAR I
+-------------------------------+

START_INPUT_CHANNEL_CHAR I
+--'-----------------------------+ I PARAMETER_CODE I Repeated
+-------------------------------+ until I PARAMETER_LENGTH I PARAMETER_CODE
+-------------------------------+ equal I PARAMETER_DATA I zero

+-------------------------------+ I UNPREDICTABLE I (only exists if
+-------------------------------+ SLOT_BYTE_COUNT is odd)

• DST_SLOT_ID (1 byte) - A handle on the renlote slot block.

• SRC_SLOT_ID (1 byte) - A handle on the local slot block.

• SLOT_BYTE_COUNT (1 byte) - An unsigned integer count of the length of the
SLOT_DATA field.

• CREDITS (4 bits) - A positive integer equal to the nUll1ber of credits being
extended.

• SLOT_TYPE (4 bits) - The value 10.

• CONTROL_FLAGS (8 bits) - Control flags. The bit settings are as follows.

bit 0 - Enable usage of input flow control characters. This bit changes
the meaning of STOP _INPUT _ CHANNEL_CHAR and START_INPUT_
CHANNEL_CHAR in the terminal output streanl. If the terll1inal server
is about to overflow the ternlinal input streanl buffer, it should insert
the STOP _INPUT_CHANNEL_CHAR into the ternlinal output streanl.
When sufficient input buffering is again available, the START JNPUT_
CHANNEL_CHAR must be inserted into the terminal output streanl.

Service Class 1 - Interactive And Application Terminals. A-35

bit 1 - Disable recognition of input flow control characters. No charac
ters are generated by the ternlinal server and inserted into the output
streanl to control the input data flow (e.g., when the server input buffer
is overflowing).

bit 2 - Enable recognition of output flow control characters. This bit
changes the ll1eaning of STOP_OUTPUT_CHANNEL_CHAR and START_
OUTPUT _CHANNEL_CHAR in the tennina) input strean1. Upon detect
ing one of these characters, the ternlinal server should disable/enable the
tern1inal output streanl as indicated. The STOr _()UTPUT _CHANNEL_
CHAR and START_OUPUT_CHANNEL_CHAR flow control characters
are discarded by the tenninal server fronl the input streanl (i.e., they are
not passed to the host).

bit 3 - Disable recognition of output flow control characters. All charac
ters in the terll1inal input streanl are passed directly through to the host
without interpretation by the ternlinal server.

bit 4 - Break condition detected. Paranleter code 6 in the parall1eter list
defines a long or short break signal. Paran1eter code 6 is used only if
long/short break signal can be distinguished.

bit 5 - Set port characteristics The characteristics are represented by the
specific parameter codes 1 through 5 in the paranleter list.

bit 6 - Report port characteristics. the characteristics are represented by
the specific paranleter codes 1 through 5 in the paranleter list.

bit 7 - must be 0 on send; ignored on receive.

Pairs of bits that cannot be sinlultaneously set in the saIne data_b slot are:
bits 0 and 1, bits 2 and 3, bits 5 and 6.

• STOP_OUTPUT_CHANNEL_CHAR (1 byte) -- The value assigned to stop the
ter1llinal output streanl if output flow control characters are enabled. The
value assigned is always control-So When the tern1inal server detects this
character in the input streanl, it imnlediately stops any output to the ternli
na1. The terminal server discards this flow control character fronl the input
streanl (Le., it does not pass it to the host). The ternlinal server interprets
this character as a flow control character only if bit 2 is set in the CONTROL_
FLAGS byte.

• START_OUTPUT_CHANNEL_CHAR (1 byte) - The value assigned to start
the output channel if output flow control characters are enabled. The value
assigned is always control-Q. When the ternlinal server detects this charac
ter in the input streanl, it resunles any output that was previously stopped
because the STOP _OUTPUT _ CHANNEL_CHAR character was seen in the
input streanl. The ternlinal server discards this flow control character fronl

A-3S LAT/Digltal Equipment Corporation/Proprietary and Confidential

the input stream (Le., it does not pass it to the host). The ternlinal server
interprets this character as a flow contro] character only if bit 2 is set in the
CONTROL_FLAGS byte.

• STOP_INPUT_CHANNEL_CHAR (1 byte) - The value assigned to stop the
tertl1inal input channel if input flow control characters are enabled. The value
assigned is always control-S. The terminal server outputs this character when
its local buffer for the input data strean, begins to overflow. The ternlinal
server uses this character as a flow control character only if bit 0 is set in the
CONTROL_FLAGS byte.

• START_INPUT _ CHANNEL_ CHAR (1 byte) - The value assigned to start the
ternlinal input channel if input flo,"' control characters are enabled. The
value assigned is always control-Q. The tertl1inal server outputs this charac
ter when sufficient local buffering for the input strean, exists to resunle input
previously suspended by the STOP _INPUT _ CHANNEL_ CHAR. The tern,inal
server uses this character as a flow control character only if bit 0 is set in the
CONTROL_FLAGS byte.

• PARAMETER_CODE (1 byte) - The following codes are defined:

1. code 0 - Denotes the end of the paralneter list.

2. code 1 (1 byte) - the parity and the frame size.

• bits 0-3 .. Bits per character (not counting parity bits).

• bit 4 .. Parity enabled if set; parity disabled if cleared.

• bits 5-6 .. Type of parity (00 == space, 01 = odd, 10 = even, 11 == mark).

• bit 7 - Reserved; must be 0 on send; ignored on receive.

3. code 2 .. INPUT_SPEED (2 bytes unsigned) .. The -approxinlate input data
rate of the service in bits per second. This field only has nleaning for
services that are application ternlinals. A value of zero indicates that the
speed is unknown. An octal value of 177777 is taken to nlean that the
speed is in excess of 64k bits.

4. code 3 .. OUTPUT_SPEED (2 bytes unsigned) - The approximate output
data rate of the service in bits per second. This field only has n,eaning
for services that are application ternlinals. A value of zero indicates that
the speed is unknown. An octal value of 177777 is taken to mean that
the speed is in excess of 64k bits.

5. code 4 (1 byte) .. User preference feature, which has a value of:

• 0 .. Disable bell-on-discard.

Service Class 1 - Interactive And Application Terminals. A-37

• 1 - Enable bell-on-discard.

6. code 5 (1 byte) - Transparency nlode, which has a value of:

• 0 - Nornlal nl0de (passall and pasthru are disabled).

• 1 - Enable passall nlode.

• 2 - Enable pasthru mode.

7. code 6 (2 bytes) - Status. The first byte is a status code as follows:

• 0 - Unknown error.

• 1 - Short break detected.

• 2 - Long break detected.

• 3 - Franling error.

• 4 - Data overrun.

• 5 - Parity error.

For status codes 3, 4, and 5, the second byte is an inlage of the received
byte.

• codes 7-127 - Reserved for DEC use.

• codes 128-255 - Reserved for users.

Note, that parameter codes 1-5 can be present in both - 1/ set " and " report" data_b
slot types. Paranleter code 6 can be present only in the " report 1/ data_b slot type.

A.6.3.3 Guidelines And Recommendations For Data_b Slot Processing

A-38

The following section does not present a requirenlent for implenlenting data_b
slots processing in products. It represents S01l1e guidelines and ideas of how to
deal with flow control and transparency nlode using data_b slots. Each inlple
Dlentation can use data_b slots in designing the behavior nlost appropriate for the
particular product. The guidelines and inlplementation examples given below clar
ify possible usage of data_b slots allowing cooperating products to distribute the
control of the physical port and session characteristics, change transparency nlode
and update the displayed port characteristics.

LAT/Digital Equipment Corporation/Proprietary and Confidential

A.6.3.3.1 Port Characteristics

There are a nunlber of chcuClcteristics that are considered to be attributes of the
port and not of the session:

• Receive Speed

• Transnlit Speed

• Parity Type

• Data Length

• Input Flow Control Method

• Output Flow Control Method

• Bell on Discard

These characteristics define the nlanner in which the port interacts with the equip
nlent at the other end of the line. Port characteristics are visible on the server side
as well as on the host. After the session has been established, the current port
characteristics must be reported to the connected node. Also, any tinle any of the
port characteristics are changed, any connected session nlust be notified of the
change. Architecturally port characteristics are settable not only fronl the server,
but also from the host over the currently active session by using mechanisnls de
fined in the architecture.

Following presumtions allow to organize flow control, port characteristics setting
and data transfer:

• Flow control concerns only the cOlnnutnication between the ternlinal and the
server port, and is restricted to an enabling/disabling XON/XOF. Recognition
of the switch characters (XON/XOFF), the BREAK key, and flow control char
acters, and insertion of those characters in a data streanl is dealt with by
transparency mode (see below).

• Flow control is a port rather than a session characteristic. Characteristics of
the port, once set, will stay that way until another SET CHARACTERISTICS
command is issued from a local terminal or from a renlote node. That is,
flow control characters set within one session will not be changed or restored
when the user switches to another session (including switching to a local ses
sion). Setting flow control fronl a local ternlinal has the same effect as a flow
control conlmand received front a renlote node.

Service Class 1 - Interactive And Application Terminals. A-39

A.6.3.3.2 Session Management

The setting of switch charActers, including the BREAK key, is part of the session
nlanagelnent context. Transparency Illode is a characteristic of the session. The
transparency l1lodes are:

• none - No transparency nlode. The BREAK key 111ay be set to be LOCAL
(Le., switch character), REMOTE (Le., signaled to the host), or ignored de
pending on the product and user requirelllents.

• passall - All characters including XON/XOF, forward and local switch char
acters, and BREAK are transferred through the data streanl. Intent is to pro
vide uninterraptable channel for binary data COnl111Unication purposes be
tween COlllputers. Confonnance with this l1l0de is a product specific issue.

• pasthru - XON/XOF are still flow control characters, but aU other characters,
including BREAK mid forward and local switch characters, are transferred
through the data streanl.

Data transparency is provided on three levels:

• Disabling filtering of the switch characters in the input stream and insertion
of the switch characters in the output stream.

• Disabling recognition and interpretation of the in-band flow control charac
ters.

• Setting the BREAK key in REMOTE nlode.

The duration of the data transparency setting will be fron, the til1le transparency
l1lode is enabled until either transparency lllode is disabled or the session is in
terrupted. Possible ways of dealing with an 'interrupted session include session
ternlination, error indication, and the possibility of resltl1ling a session. The con
trol and visibility of the data transparency is the sanle as for port characteristics.
Other nlethods of interrupting a session in transparency lllode are product or user
requirenlents issues.

A.6.3.3.3 Data_b Slot Processing

A-40

The local database represents characteristics of the local port and is shared anlong
all connected sessions. Therefore when port characteristics change, all connected
sessions must be notified about the change. The data transparency nlode setting
and the renlote database (Le. characteristics of the renlote port) are part of the
session context and therefore applicable only to a particular session.

LAT/Digltal Equipment Corporation/Proprietary and Confidential

Sending of a data_b slots:

• A node sends a 'Report' data_b slot to infornl the renlote node of it's cur
rent port and session characteristics when the port characteristics in the lo
cal database are 1110dified by a user through a local cOll1111and. All connected
sessions should be notified about the change.

• When a characteristic belonging to the renlote database is modified, a "set"
type data_b slot Inay be sent in order to 1110dify port characteristics on the
rel1lote node (result of this operation depends upon illlplelllentation on the
renlote node).

• Each node nlust send a 'report' type data_b slot after a session is started to
inforlll the partner about the current port characteristics and desired data
transparency l1lode.

• When the session database is 11lodified (by a user C01l1nland), both ends of
the connection are affected, and the local node should send a "Set" type
data_b slot. When session characteristics are specified in a "Set" data_b slot,
the receiving node interprets the request to nlean that the requesting has
changed the characteristic and the object should also change it. The send
ing node should update the renlote database if one exists. The receiving
node should change session characteristics when it receives this slot if it has
a physical port. However, nodes without physical ports nlay not be able to
change session characteristics, and thus this operation is not guaranteed.

• A node sending a ~ Set' type data_b slot nlust not go to a waiting state for the
return of the report slot. All processing of the inforl1lation is done whenever
the 'Report' slot is actually received. Since slots are only processed for cur
rent sessions, a 'Set' slot sent to a dOrlllant (non-current) session nlay not be
processed for some tinle or the partner node lllay not the il1lplelllent func
tionality to change its local database.

Receiving of a data_b slots:

• The node which receives a 'set' data_b slot should issue a command the lo
cal physical port (if applicable) and update the local database. In order to
insure proper operation 'report' data_b slot l1lust be sent by the node when it
receives and reacts to a 'set' data_b slot.

• If a "report" data_b slot is received, the node updates the remote database
(if applicable). Though renlote database was updated, node nlust not send a
" set" data_b slot to avoid a "set" -" report" loop.

Service Class 1 - Interactive And Application Terminals. A-41

A.6.3.3.4 Implementation Examples

• A "Host" node would not have a local database (local port does not exist)
but does have a renlote database (inlage of the port on the server). Executing
"set ternlinal" conllllands node would nlodify the relllote database and
would send a 'Set' data_b slot. TerIllinal server on the receiving end end
could elect to change or not to change the port characteristic, depending on
the desired results of the server. The server would respond with a 'Report'
data_b slot. When a "report I' data_b slot is received, the host will 11l0dify its
renlote database. A "show ternlinal" cOllllllands display data fron1 the re
nlote set.

• A server has a local database (real physical port) and does not have a renlote
database. Local "Set" and "Sho"'" conlnlands operate on the local database.
After a local "Set " cOlllnland, the server updates it's local database and
should send a 'Report' DATA_B slot to all sessions associated with that port
(therefore nlaking new characteristics available to all connected sessions).

• When both a local and a rerllote database exist (port-to-port connection),
a different type of SET ISHOW conunand can be inlplenlented to control
characteristics of cOlllnlunicating physical ports and their inlage in a relllote
database.

• A server user issues a local "Set Session" conulland to change the data trans
parency nlode of that session. The server does not kno"' if it is conlllluni
eating with a "host" systenl or with a "reverse server". The server issues a
'Set' DATA_B slot (for that session only). The receiving node updates it's
session characteristic database and sends a 'Report' DATA_B slot in return.
Note that in the case of a "reverse server", this action is essential to allow
transparent data transfer operate properly.

• A server user has the BREAK characteristic set to REMOTE and, while in host
nlode, enters a break character. The server sends a 'Report' type DATA_B
slot (to the current session only) with the break detected bit set.

• A session is created on a server. The server sends a 'Report' type DATA_B
slot after receiving the slave start slot. This 'Report' slot contains cOlllplete
information on all port and session characteristics.

• A user on a server issues a local "Set session passalJ" conlnland to change
the data transparency mode of a session connected through a reverse server.
The local server is using LA T V5.1 and the relllote server is using LA T VS. O.
The DATA_B slot is sent with the disable input and output flow control bits
set.

A-42 LAT/Digital Equipment Corporation/Proprietary and Confidential

B

Compatibility and Implementation

Following chapter discusses sonle of the conlpatibility and inlplenlentation issues
between products inlplelllenting LAT 5.0 and LAT 5.1 versions of the architecture.

B.1 Implementation Issues

A number of different seJVices can be presented using messages defined by the
SeJVice Class 1 architecture. Sonle of the inlplenlentation issues are discussed be
low.

8.1.1 Possible Implementations of the LAT VS.1 architecture

LAT architecture is build on the principle of " modularity" . That nleans product
iInplenlentators can choose what features of the LAT 5.1 architecture to ilnple
nlent to build a product with desirable characteristics. Three lllajor architectural
fWlctions introduced by LAT 5.1 architecture are:

• infornlation solicitation/response

• connection solicitation

• queuing

Any of these features can be inlplemented independently of others in each partic
ular product (for example host node can provide initiate connection to the ternli
nal server services without supporting information solicitation, or terminal server
can avoid implementing queuing, etc). Different products can choose an inlple
n,entation that combines some of those features to achieve required product func
tionality:

• connection solicitation will be always supported by the LAT 5.1 products in
order to provide host-driven connection to services on ternlinal servers.

Compatibility and Implementation B-1

• if host node does not inlplenlent infornlation solicitation/response algorithnl,
then Ethernet addresses nlust be nlanually introduced into the systenl, and
this inforll1ation ll1ust be constantly updated keeping the database in order.

• terll1inal server that doe~ not support infornlation response will be invisible
to the soliciting host nodes, i.e. host nodes should be provided with this in
fOrtllation in SOllle other fashion (nlanually);

• if the host node does not inlplenlent connection solicitation algorithnl then
node can't access services on the servers (LAT 5.0);

• ternlinal server that does not support queuing will reject connection to the
busy resource and queuing node will have to repeat connection request in
order to get connection.

• queuing also can be inlplenlented in a fashion where hosts can queue re
quests to the provided services and servers can use connection solicitation
nlechanisnl to queue requests. That would allow the host node also queue
requests to the offered services.

Table B-1 presents sonle possible inlplenlentations of the LAT V5.1/5.0 products
and their relations in tenllS of listening and reacting upon LAT nlessages on the
Ethernet.

Table B-1: LAT VS.1 Implementations and LAT Messages

1

2

3

4

5

6

7

8

B-2

Listens
Listens Responds to start
to mul- Sends Solicits & Listens to -status, & re-
ticast multicast listens to solic. & Solicits provides Initiates sponse
msgs msgs response responds connect queues start start

+ +

+ +

+ + + +

+ + + + +

+ + + +

+ + + + +

+ + + +

+ + + + + + + +

In the table above sign "+" means "feature is implenlented" and sign "-" nleans
"feature is not inlplenlented". Short description of the products described in the
table is given below:

LAT/Digital Equipment Corporation/Proprietary and Confidential

• 1 - 5.0 host

• 2 - 5.0 server

• 3 - 5.1 host without queued services

• 4 - 5.1 host with queued services

• 5 - 5.1 server without queuing to hosts

• 6 - 5.1 server with queuing to hosts

• 7 - 5.0 synlnletric server (slave and nlaster within one node)

• 8 - 5.1 synlnletric server (slave and nlaster within one node)

B.1.2 Local Data Base

Ternlinal servers in the LAT 5.0 architecture may support the fuJI data base of
nodes and advertised services. It is reconlnlended that LAT products support full
data base. If LAT S.l-based product is not able to support full data base for the
lack of resources, advertising nlechanisnl architectured into the LAT 5.1 version
allows this node to use Solicitation/Response nlessages to acquire inforJllation
needed for the connection establishnlent. Soliciting of infornlation allows different
products to implenlent different nlechanisnls of keeping local cache, for exanlple:

• Multicasting Solicit infornlation messages "on denland" and supporting a full
service data base.

• Keeping a cunlltlative data base on a per-request basis and restricting the
nunlber of entries in a data base.

• Processing Response information messages without caching data.

• Using a directed Solicit information nlessage when the provider of services is
known or when nlulticasting is restricted or not pernlitted at all.

B.1.3 Cluster Static Load Balancing

Clusters of machines might choose to present the same SERVICE_NAME in their
nlultiple multicast nlessages if they offer equivalent services. By cooperating
anlong themselves to establish a common SERVICE_NAME with appropriate inde
pendent SERVICE_RATINGs, duster nlenlbers can arrange to share the terminal
user load. Digital Equipment VaxCluster present this type of nanle space to LAT
terminal servers.

Compatibility and Implementation B-3

B.1.4 Multiprocessors, Gateways, Virtual Machines

Multiprocessors J11ay ""ish to present individual host systenl processors as unique
systell1s through a shared Ethernet port. More specificaJly, they ll1ay require that
n1essages arriving at the single Ethernet port contain slots all destined for the
saIne physical (virtual) processor.

This can be accon1plished by assigning n1ultiple NODE_NAMEs to a single ll1Ulti
processor systell1 which shares a single Ethernet port. This will cause a terl11inal
server to establish a ne",' virtual circuit to each different NODE_NAME. Nall1e
of a destination node is included in all LAT 5.1 n1essages to allo",' addressing of
each of the node hidden behind the con11110n Ethernet address. In general desti
nation/source node nallles and destination/source node addresses allow cOlllplete
identification of subjects and objects.

Each NODE_NAME can still specify one or n10re SERVICE_NAMES. This would
allow piggybacking of sessions as usual. The san1e SERVICE_NAME can be as
signed to 1110re than one NODE_NAME to achieve static load balancing.

B.2 Compatibility Issues

Con'patibility issues between LAT 5.0 and LAT 5.1 based products are discussed
below.

B.2.1 Virtual Circuits Establishment

B-4

In the LAT 5.0 architecture master is always a subject and slave is always an ob
ject of a connection. LAT V5.1 architecture allows both a slave and a ll1aster node
to be a subject and an object of a connection. A LAT 5.1 111aster/slave node can
use a virtual circuit established in a "wrong II direction to solicit a session over
the same virtual circuit, as opposed to starting a new virtual circuit. To achieve
this, the NODE_NAME and SYSTEM_NAME presented in the Start 111essage are
defined by the LAT 5.1 architecture as follows:

• The NODE_NAME field in the Start n1essage is redefined as SLY _NODE_
NAME (nan1e of the slave node).

• the SYSTEM_NAME field in the Start message is redefined as MST_NODE_
NAME (n~me of the master node).

In order to provide compatibility between LAT 5.0 and LAT 5.1 products, in,
plementations of the LAT V5.1 architecture nlust provide valid slave and master
nanles. The MST_NODE_NAME field received fron1 a LAT V5.0 node must be
ignored.

LAT/Digital Equipment Corporation/Proprietary and Confidential

8.2.2 Data_b Slot Length Compatibility

The paran'leter code field nUl)' not he present in SOl1'le impl~n'lentations of the S.O
version. Therefore the presence of this field 111USt be deterl11ined based on the slot
length.

Sonle inlplementations do not include any trailing zero-valued fields. For exanl
pie, if flow control is being disabled, TOPS does not include the four uninter
preted flow control characters in the data_b slot. However, SOlne inlplenlentations
do not use the slot length in interpreting slots, which 111ay result in unintended re
sults because the following slot header will be interpreted as slot data. We do not
believe any serious inconlpatibility exists at this tinle.

If inlplenlentations do ·not process slots using the slot length field, future inconl
patibility problenls nlay be nlore severe. For this reason the architecture requires
all architecturally specified field to be present in the slot. This Silllplifies slot pro
cessing because all fields nOflllally will be present.

8.2.3 Data_b Slot Data Compatibility

Existing versions of the LAT host impJenlentation use the VS.O data_b slot format.
Therefore, they provide bell-on-discard by enabling HOSTSYNC with null/bell in
the START/STOP characters; and provide transparency nlode by disabling both
HOSTSYNC and TTSYNC. For conlpatibility with existing implementations, the
following rules apply to the setting of flow control, user preference, and trans
parency nlode in a VS.l node conlmunicating with a VS. 0 node.

• LAT VS.l STOP/START and INPUT/OUTPUT characters can be only XON/XOF.
A V5.1 node that receives a data_b slot with the input and output flow con
trol characters specified does not change flow control characters.

• Bell-on-discard:

LAT V5.1 implementations must not use null/bell in the START/STOP
character.

If ENABLE HOSTSYNC is received from a host with null/bell in the
START/STOP character, the server sets the port to belJ-on-discard and
enables HOSTSYNC. In this case, no user_preference paranleter field
should appear in the data_b slot.

If The user_preference parameter field is present, the server should
set the user preference to whatever is specified, independent of the
HOSTSYNC setting.

Compatibility and Implementation 8-5 '

• Transparency nlode:

If DISABLE l·JOSTSYNC and DlSAHl.E TTSYNC settings canle fl'onl the
host, the server sets the session into passaU 111ode.

If passal1 nlode is found in the transparency paranleter, it overrides
HOSTSYNCITTSYNC setting.

A node inlplenlenting VS.l of the LAT Architecture nlay set the enablel
disable input/output flow control bits (0-3 of control flag) in the 'Set'
DATA_B slot to sitnulate PASSALL and NORMAL J110de as shown be
low:

input flow

disable
enable

output flow

disable
enable

desired mode

passall
normal

Table B-2 represents the settin~ of the port on the 5.1 node by an inconling data_b
slot fronl the 5.0 node (no user preference 01' transparency 1l10de paranleters are
present).

Table B-2: Port Setting by Dats_b Slots

HOSTSYNC TTSYNC Port Setting

Enable Enable HOSTSYNCmSYNC
(XON/XOF)

Enable Disable HOSTSYNC/NOTISYNC
(XON/XOF)

Enable Enable HOSTSYNC/TISYNC Bell-on-discard
(null/bell)

Enable Disable HOSTSYNC/NOTISYNC Bell-on-discard
. (null/bell)

Disable Enable NOHOSTSYNCITTSYNC

Disable Disable NOHOSTSYNC/NOTTSYNC

8.2.4 Non-Unique Node Names

8-6

Server nodes implementing version 5.0 of the architecture do not guarantee
uniqueness of the node nanles (because no nlaster node name concept exists in
the 5.0 version of the LAT protocol). To preserve conlpatibility between 5.1 and
5.0 products, 5.1 node must provide for the case where the same node nanle with
different Ethernet address is used by multiple 5.0 nodes. When this happens, the
5.1 node must create and enter in its data base a unique nanle for these 5.0 nodes
using the Ethernet addresses according to the rules, presented in the sectiol1 of
the document entitled "Specification of nanles" in the paragraph which describes

LAT/Digital Equipment Corporation/Proprietary and Confidential

creation of the default node names. In other words, the 5.1 nodes 1l1USt operate
cOlllpatibly with the 5.0 nodes.

8.2.5 Implementation Of The ethernet And 802 Protocols

The LAT architecture supports both Ethernet and 802 protocols. LAT products
can support Ethernet only, 802 only, or both. S01l1e i1l1pol'tant asslllllptions Inade
by the LAT architetcure that allow LAT products to use both protocols are:

• Ethernet-only products can discard an 802 1l1essage only in software (Le.
nlay fail to process an illllnediately following Ethernet 1l1essage). 802 only
products discard an Ethernet 1l1essage in the hardware. Therefore when 1l1eS
sages are transmitted in both forn-lats, the Ethernet message 1l1USt be sent
first.

• Cost of processit=lg either 1l1essage is the sallle i.e. if nodes can COlll111unicate
in both protocols it is not iJnportant which one is used.

• Knowledge about datagralll' s protocol is available to the virtual circuit layer
when it operates in both protocols.

Based on these assulllptions, the following rules of operation are defined:

• When a node advertises services using the Advertising 1l1essage it translllits
this 1l1essage in all protocols it supports. If the node can operate in both pro
tocols, it transnlits two Advertising nlessages back to back, the first 1l1essage
in Ethernet forlllat and the second in 802 forlllat.

• When the subject node operates in both protocols and has no infortnation
about the protocols supported by the object node, the subject always sends
Solicit information, Start, and CO~lnland lllessages in both protocols back to
back, the first Inessage in Ethernet fOrInat, the second 1l1essage in 802 fornlat.

• The node that receives one of these nlessages responds with a nlessage in
the sanle protocol. Note, that if both nodes operate in both protocols, then
either one of the protocols can be chosen by the nodes for COllllllunication.

Compatibility and Implementation B-7

c
Algorithm For

Assignment/Deassignment
Request/Entry Identifiers

Following algorithn'l is taken from the NSP Functional Specification document
(DECnet Digital Network Architecture).

An identifier is a 16-bit value. When a request is queued, an identifier is assigned.
When connection actually starts, the identifier is deassined. The algorithn'l that
assigns and deassigns these identifiers is inlplenlentation-dependent. There are
two requirenlents for this algorithm:

• It must not assign a given identifier to two entries in the queue concurrently;

• It n'lust not reassign a given ident~fier for a long period following its deassign
ment.

In addition, the algorithm should operate with a n'lodest amount of menlory, trad
ing off the amount of nlenlory for the period of reassignlnent.

The algorithm described in this appendix is a sample algorithn'l that meets these
requirements. No inlplementation of LAT is required to use this algorithm, how
ever. Any algorithm that meets the two requirements stated above is acceptable.
The sample algorithm restricts the number of outstanding, assigned identifiers.

Algorithm For Assignment/Deassignment Request/Entry Identifiers C-1

C.110terf,~.e·eJtf.the Algorithm
"' .•... ~.~"'.,,.._:.:.~~ . c~··

• ; f'

The sanlple algorithn1 is ilnplenlented by a module that accepts three calls: one to
assign an identifier, one to deassign an identifier and one to initialize the nlodule.

The following routine assigns an identifier
" -y.<"",\,

1 ... ~ ":'; •

~~ .. : ,·GET-ADDRESS

returns: success - an identifier is returned
failure - too many identifiers are currently assigned

The following routine deassigns an identifier.

RELEASE-ADDRESS (address)

address: the identifier to be deassigned

returns: success
tailure - identifier was not assigned

The following routine initializes the algorithm nlodule.

INITIALIZE-ADDRESS

The routine is called during initialization and allows the algorithnl nlodule to nleet
the second requirenlent

C.2 Data Structures

This algorithn\ fonns identifiers of the following form:

where:
r+i = 16

random part

r bits

index part

i bits

No two concurrently assigned identifjers will contain the sanle value in the low i
bits.

Furthernlore, the algorithm restricts the nun1ber of identifiers that can be assigned
concurrently

The data base consists of two vectors and three variables. These are the following.

• Boolean vector INUSE

&-&t2 LAT/Digital Equipment Corporation/Proprietary and Confidential

This vector contains 2Ai bits. There is one bit for each po~;sil;\l' ~.C}lt:,:.jt~\ tl1e:
index part of an identifier. A bit is set to "true" if the corres~"'ollati1g iJl&ex
is in use (Le., is in the lower i bits of an assigned identifier). Th~ bitjs set to
"false" otherwise.

• Vector RANDOM

This vector contains 2Aj entries, each r bits wide. An elelllent of the vector
contains the randoll1 part of the last identifier assigned with the index part
equal to the index of this elenlent ill the vector.

• Variable NUMBER-ASSIGNED

This variable contains the nUl11ber of identifiers currently assigned. It has a
value in the following range:

o <= NUMBER-ASSIGNED <= 2~i-l

When NUMBER-ASSIGNED -= 2Ai-l, then no 1l10l'e identifiers 111ay be as
signed.

• Variable INDEX

This variable contains the index value portion of the last identifier that was
assigned.

• Variable TEMP

This variable is used to temporarily hold the index value portion of an identi
fier that is being deassigned and in J110dule initialization.

C.3 Algorithm Operation

GET-ADDRESS:

If (NUMBER-ASSIGNED < 2~i-l) then
Beginwhile

NUMBER-ASSIGNED <-- NUMBER-ASSIGNED + 1
While (INUSE(INDEX) true) do

INDEX <-- INDEX + 1 (mod 2~i)
Endwhile
RANDOM(INDEX) <-- RANDOM (INDEX) + 1 (mod 2~r)
INUSE(INDEX) <-- true
random part of identifier <-- RANDOM(INDEX)
index part of identifier <-- INDEX

While (identifier - 0)
return success

Else
return failure

Endif

RELEASE-ADDRESS:

Algorithm For Assignment/Deassignment Request/Entry Identifiers

'l.'~MP.'-S-- index part of the identifier
'If.fINUSE(TEMP) true

. al1d RANDOM(TEMP) = random part of identifier) then
: INUSE(TEMP) <-- false

. , NUMBER-ASSIGNED <-- NUMBER-ASSIGNED - 1
return success

Eise
.return failure

Endif

INITIALIZE-ADDRESS:

·TEMP <-- 0
Wllile (TEMP < 2"i) do

.. INUSE(TEMP) <-- false
RANDOM(TEMP) <-- random number (mod 2"'r)
TEMP <-- TEMP + 1

Endwhile
INDEX <-- random number (mod 2"i)
NUMBER-ASSIGNED <-- 0

LAT/Digltal Equipment Corporation/Proprietary and Confidential

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04

