
THE MULTI-TASKER
Volume 15, Number 9 April 1982

' The Newsletter of the RSX-11/IAS Special Interest Group

Contributions shouhi be sent to: Editor, The Multi· Tasker, c/o OECUS, One Iron Way, MR2-3/E55, Marlboro, MA 01752

European members should send contributions to: Colin A. Mercer, Tennant Post, High Street, FAREHAM6 P016 780,
Hants, England

Members in Australia or New Zealand should send contributions to: Clive Edington, CSIRO, Computing Research
314 Albert St., East Melbourne, VIC _3002, Australia

Letters and articles for publication are requested from members of the SIG. They may include helpful hints, inquiries to other
users, reports on SIG business, summarie's of SPR's submitted to Digital or other information for the members of RSX-I I /IAS
SIG.

All contributions should be "camera-ready copy" e.g. sharp black type in a 160x:!40 mm area (8 I 12" x 11" paper with I"
margins) and should not include xerox copies. If you use RUNOFF to prepare your contribution the following parameters
have been found to be satisfactory:

.Pf.PER SIZE 60,80 .LEFT MARGIN 8 .RIGHT MARGIN 72 .SPACING I

These parameters assume output on a lineprinter with a pitch of IO char/inch. Adjust the parameters to maintain the same
margins if another pitch is used.

TABLE OF CONTENTS
Columns

From the Edi tor. • • 2
From Five Years Ago. • • • 3
New Users. • • . • • • • • 4
DECUS/RSX SIG Library News • 6

TALK Program Corrections
Fall 1981 SIG Tape Distribution
Corrections to ICR Submissions

Hints and Things • • • • . • •• 20
Topological Walk to an ODL

Articles
Theory of Interactive Debuggers.
The DDT Debugger for PDP-11 •••
Make Use of Secondary Pool Under
How the RSX-llM Shuffler Works •

RSX-llM-Plus.

Special Section
Files-11 On-Disk Structure Specification

Copyright©. J 982, Digital Equipment Corporation
All Rights Reserved

21
26
35
37

1

It is a~med that all articles submitted to the editor of this newsletter are with the a.uthors' permissi~n to publish in_ any DEC US publication
Thi! articles are the responsibility of the authors and, t.herefore, DECUS, Oigit~I Equipment Corporation, and the editor assume no respons1•

bility or liability tor articles or information appearing m the document. The vtews herein expressed are those of the authors and do not
necessarily express the views of OECUS or Digital Equipment Corporation.

1

READ THIS FIRST

A serious error was made by the Multi-Tasker in publishing the article on
library compression article (December/January 1982 Multi-Tasker, Vol. 15, No.
6). The code fragment on page 46 as published:

.; COPY LIBRARY AND PREALLOCATE DISK BLOCKS
PIP 1 F'.'E'/PU . ;

should read as follows:

.; COPY LIBRARY AND PREALLOCATE DISK BLOCKS
PIP 'F' .'E'/CO/BL: 'B' ./NV='F'. 'E'

.; PURGE COMPRESSED AND BLOCK DEALLOCATED LIBRARY
PIP 'F' .'E'/PU . ;

Please pencil in the correction on the original article.
value of the blocks used by the newly compressed library
'B', arithmetic operations may be performed on 'B'
applications. For example, a user may wish to issue a
size of the library exceeds some predefined limit.

Also, since the actual
is known by the symbol
to handle special

warning message if the

From the Editor

The technical content of this issue is perhaps the best since became
editor. To start with, Digital has released the Files-11 On-Disk Structure
Specification (ODS-1) for publication. There are user papers on debugging
theory for PDP-ll's, use of secondary pool under RSX-llM-Plus, and an
explanation of how the RSX-llM shuffler works.

Also, a new
Anytime you use
There is so much
track of it all.

column on DECUS library and RSX SIG tapes debuts in this issue.
a library or SIG tape program, drop a note to the Multi-Tasker.
free software availdble out there, that no single site can keep

But by combining forces, we can start to get a handle on it.

Finally, about the time you read this, my group will be moving
address. Please address any correspondence to DECUS and they will
route it to me. Otherwise, there is a good chance the company mail
it. My phone number will be the same.

to a new
be able to
will lose

2

Ralph Stamerjohn
Multi-Tasker Editor

Phone: (314) 694-4252 (3-5 pm, CST)

From Five Years Ago

The December 1976 issue of the Multi-Tasker contained a brief questionnaire
requesting system profile information and data on operating ~yste~ proble~s.
The results appeared in the April 1977 issue. The hardware profile information
is summarized below. The memory sizes and amounts of mass storage listed are
median values.

IAS (12 responses) - 165KW memory, l20MB mass storage
9 ll/70s, 3 ll/45s

RSX-llD (108 responses) - llOKW memory, 20MB mass storage
9 ll/70s, 60 ll/45s, 35 ll/40s, 3 ll/3Ss, 1 11/34

RSX-llM, mapped (86 responses) - 56KW memory, 3.75MB mass storage
9 ll/70s, 15 ll/45s, 45 ll/40s, 12 ll/34s, 5 ll/35s

RSX-llM, unmapped (18 responses) - 24KW memory, 3.75MB mass storage,
3 ll/35s, 1 11/34, 5 ll/20s, 9 11/lOs, 1 11/05

RSX-llS (7 responses) - 24KW memory

Problems

Users were asked to report one problem that he or she would like to see
solved. The response summaries are listed below, by operating system.

The only IAS difficulty to be reported more than once was problems with the
spooler. Other reported problems were the failure of tasks to get at u~er
defaults, a too frequent need to reboot th7 system because of _problem~, time
scheduler slow-downs, and the inconvenient means for performing terminal I/O
from real-time tasks.

RSX-llD users complained most frequently about memory fragmentation, task
size limitations, and adequacy of documentation. Other problems reported by
more than one user included tasks getting stuck on the MRL, time-slicer
inadequacy problems involving contiguous disk space, and unexplained system
crashes. Dissatisfaction with the accounting package was expressed by two
users, while equal numbers complained about slow SPR response time and the
inability to use F4P (for floating point operations) on ll/40s.

The 104 RSX-llM users reported 37 separate problems. The most frequent
plea was for improved documentation, followed by complaints about ~ystem hang
ups occurring when pool space becomes exhausted. There were complaints about
the lack of shareable tasks, random system crashes, the need for a full duplex
terminal driver, and disk fragmentation. One user who reported random crashes
admitted they were usually caused by hardware or by software (drivers and/or
privileged tasks) that were added to the system. His major plea was for crash
dump and crash dump analyzer facilities.

3

•

Only two problems were reported for RSX-llS. One user complained about
sysgen and TKB when RSX-llS was run from an RSX-llD host. The other report was
a request for dynamic partitions for VMR.

Documentation Review

The SIG announced that it would be performing a review of the RSX-llM V3.0
documentation.

RSX-llD/IAS Batch working Group

Although DEC had announced the stabilization of RSX-llD, the BATCH working
group noted that BATCH could probably be changed without changing the exec, and
hoped that the following BATCH problem areas would still be improved: error
logging(llD), security(llD/IAS), unjustified incompatiblities with interactive
mode(llD), lack of conditional return capability(IAS), too restrictive command
language(llD). The working group solicited user comments about BATCH problems.

user-Written Utilities working Group

The re-activation of the User-Written Utilities Working Group was
announced. Its charter was expanded to include user m~int7nan~e of the
unsupported software that Digital was including with RSX/IAS_d~stribut~on~. The
working group also planned to address the problems of organizing subm1ss1ons to
the DECUS Program Library.

MULTI-TASKER Subscription Fees

Mark Lewis, the u.s. SIG Coordinator, reported that the DECUS
International Liason Committee was considering a plan to charge fees for SIG
newsletters that would both recover printing costs and subsidize other
DECUS-wide activities. Mark stated his objections to the plan and to the fact
that the SIGs had not been consulted on the proposal.

New Users

This column is for the quiet majority of the RSX-11/IAS SIG new users.
we would like to answer your questions, print hints on using RSX, and publish
your experiences. The best people to help new users.are new users. _Hel~ clear
up the confusion and send any comments, questions, or contr1but1ons to
Multi-Tasker - New users, c/o DECUS, One Iron Way, MR2-3/E55, Marlboro, MA
01752.

4

..

New Users Questions

How to You Get the Multi-Tasker?

Q. One old-timer at our site gets the Multi-Tasker, and by the time it gets to
me, it is so ragged I can hardly read it. Is there anyway I can get my own
copy?

A. You get the Multi-Tasker by joining DECUS and the RSX-11/IAS SIG. The
easist thing to do is call the DECUS membership number (617) 467-4168 and
ask for a membership kit to be sent to you. When it comes, make sure you
check box 17 (RSX-11/IAS SIG). The Multi-Tasker is automatically sent to
all members of the SIG.

Symposium Proceedings

Q. With the economy in trouble, money to attend the symposium is very hard to
come by. How can I find out what happens at the symposium without actually
attending?

A. The Symposium Proceedings for any or all five annual symposia (Europe, Fall
U.S., Canada, Spring u.s, or Australia) may be ordered from DECUS. Many
other back issues are also available. Typical cost is $15.00 for one
particular symposia and $75.00 for all five. Call the DECUS Publications
group at (617) 467-4143 for ordering information.

The Proceedings will have all the technical sessions. The Multi-Tasker will
try to suplement them with articles and transciptions of the interactive
sessions.

Waiting or Stopping?

Q. I am confused about the difference between waiting or stopping for an event
flag. How to I choose which version to use in my programs?

A. The choice depends on the answer to the question: "When the event flag is
set, must my program react in a timely (real-time) fashion?" If the answer
is "yes", use the wait form. Otherwise, the stop form is acceptable.

The crucial difference between waiting or stopping is based on priority and
memory. RSX-llM allocates all resources, including memory, based on a
task's priority. When a program enters a wait state, it no longer competes
for the CPU. But the task continues to compete for memory at its priority.
So unless higher-priority tasks cause the program to checkpoint, it remains
in memory and when the event flag is set, can immediately begin competing
for the CPU.

When a program stops, its effective priority is lowered to zero. Now any
task can cause the program to checkpoint. When the event flag is set, the
program regains its priority. But it could have been swapped out by lower

5

priority tasks, so sometimes it cannot immediately begin competing for the
CPU. Therefore stopping for an event flag should not be used when a timely
response is needed.

DECUS/RSX SIG Library News

over the years, DECUS, through the DECUS library, and the RSX-11/IAS SIG,
through the SIG tapes, have accumulated a huge set of useful software. If you
have news about any of this software, please send to the Multi-Tasker c/o this
column. This includes any problems discovered, patches to existing software,
short notes on library submissions you found useful, or any other information
you may have. Send submissions to Multi-Tasker - Library News, c/o DECUS, One
Iron Way, MR2-3/E55, Marlboro, MA 10752.

TALK Program Corrections

Bob Turkelson

NASA/Goddard Space Flight Center
Code 935

Greenbelt, Maryland 20771

The terminal emulation and inter-computer file transfer program TALK, found
in [352,2] on the Fall 1981 Los Angeles RSX SIG tape, should be modified as
described below if you are experiencing any character loss during file
transfers. This is most likely to occur at baud rates of 2400 or above. With
these changes we have had no trouble running TALK on a PDP-11/70 connected to a
VAX-11/780 at 9600 baud.

The SLP correction file printed below includes several other changes. The
TALK task is set non-privileged after the connection to the port is established.
Previously, any TALK user could have specified an input or output file in any
UIC. Also, if a user logs off the terminal after "detaching" from TALK with
command D, instead of exiting with command z, TALK will be aborted by BYE.
Previously, since TALK was privileged, the task simply remained in the stopped
state. The new version eliminates the extra null records at the beginning and
end of a file transferred from a VAX/VMS. Null records are not written to the
PDP-11 output file. Additionally, VAX and Sigma 9 files containing the monitor
prompt character ($ or !) at the beginning of records, may now be transferred to
the PDP-11 using command B. If you do not talk to a VAX or Sigma 9, you may
omit all modifications to BUILD.MAC and CONTRL.MAC from the SLP correction file.

Use this procedure to modify TALK:

1. Rename some of the Version 5.09 files as shown:

PIP TALKCMD.509/RE=TALK.CMD
PIP *.509/RE=TALK.MAC,BUILD,CNPRT,CONTRL

6

2. Create the file TALK.COR, shown below.

3. SLP @TALK.COR

4, @TALK

When prompted, specify that the new versions of TALK, BUILD, CNPRT, and
CONTRL are to be assembled. If TALK has not been built previously,
specify that ALL files should be assembled.

While testing TALK, we found that we could transfer files between a
PDP-11/23 and a VAX-11/780 without a direct link between these computers, by
running TALK on the 11/23 to connect to a PDP-11/70, and then running TALK on
the 11/70 to connect to the VAX. (TALK on the 11/23 was built as if it wer·e
communicating directly to a VAX, so that the correct COPY commands would be
generated,) In order to exit, TALK must be in command mode and this is entered
by typing a control-Won the user's terminal. Typing a control-Won the 11/23
would allow us to exit TALK on the 11/23, but the second TALK would be left
active on the 11/70. This demonstrates the need for command c, which sends
control-W to the host computer. We originally included command C simply for
completeness, in case someone connected to a computer on which control-W had
some meaning. Well, in this situation we needed to send a control-W to TALK on
the 11/70 in order to be able to exit the TALK program.

The file TALK.COR:

TALK.MAC=TALK.509/CS:037014
-,,/; 5.10/
-1,1
; TALK.MAC
-/.IDENT/,.+l

17MAR82

, ID ENT /VMS .10/

SLP UPDATE

INTRO:: .ASCII <15><12>/TLK: Version VM5.10 I
-/WT2FLG: :/,.
WT2FLG::. BYTE

' NLRFLG : : , BYTE
-/PTINTR:/

0

0

-/BICB ••• #100,@RCSR/,,
-/6$:/
-/BEQ,., 9$/

CLRB
-/@#$SETF/

PTISEF

-/MOVB •• ,#1,PTDATA/,.
-/9$:/,.
9$:
I

BUILD.MAC=BUILD.509/CS:051550
-, ,/; 5.10/
-1

NUMBER OF RECS TO IGNORE WHEN A HELP MODE
CMD IS ECHOED

FLAG INDICATING IF PREVIOUS PORT RECORD NULL

CLEAR INDICATOR

; BUILD.MAC 17MAR82 SLP UPDATE
-/BUILD::/
-/4$:/+l

7

..

,IF DF VAX
INCB WT2FLG
.ENDC
CLRB NLRFLG

I

CNPRT.MAC=CNPRT.509/CS:l64727
-,,/; 5.10/
-1
. ; CNPRT. MAC l 7MAR82 SLP UPDATE
-/.MCALL/,. +2

,MCALL CINT$ 1 TCBDF$

TCBDF$
CINT$

-/CNPRT: :/
-/QIOMAC ••• #CNMSG/

CALL $SWSTK,6$
MOV $TKTCB,Rl
BIC #T3.PRV,T.ST3(Rl)
RETURN

6$:
-/BR ... 1$/,.

JMP
-/DCNPRT: :/,.
DCNPRT::

CALL
MOV
BIS
RETURN

1$: DIR$
I

1$

$SWSTK,1$
$TKTCB,Rl
#T3.PRV,T.ST3(Rl}

#DCINTR

CONTRL.MAC=CONTRL.509/CS:001120
-, ,/; 5.10/
-1
; CONTRL.MAC 17MAR82 SLP UPDATE
-/PRTIN: :/
-/CLRB ••• WT2FLG/,.

DECB WT2FLG
-/12$:/
-/CMP ••• RO,#PROMPT/+l

.IF DF SIGMA VAX
TSTB NLRFLG
BEQ 14$
.ENDC

-/20$:/+l,.+l
.IF DF SIGMA ! VAX

~/BEQ ... 25$/
INCB

-/BEQ •• ,30$/
CLRB

I

NLRFLG

NLRFLG

8

ALSO IGNORE EXTRA <CR> ON VAX

CLEAR NULL RECORD FLAG

DEFINE TCB OFFSETS
DEFINE CINT$ OFFSETS (C.INVE}

SWITCH TO SYSTEM STATE
;; GET TCB ADDRESS
;; SET TASK NON-PRIVILEGED

RETURN FROM SYSTEM STATE

REQUEST ANOTHER PORT NUMBER

; SWITCH 'l'O SYSTEM STATE
;; GET TCB ADDRESS
;; SET TASK PRIVILEGED

RETURN FROM SYSTEM STATE
; DISCONNECT INTERRUPT FOR RECEIVE

IGNORED THIS RECORD - COUNT IT

IF LAST RECORD NOT NULL, ASSUME PROMPT
CHARACTER WAS IN THE FILE - CONTTNUE

DO NOT WRITE NULL RECORDS IF HELPING
AVOIDS NULL REC BEFORE PROMPT CHAR

ASSUME A NULL RECORD

INDICATE RECORD NOT NULL

•

TALK.CMD/-AU=TALKCMD.509/CS:ll7454
-1,1
.; TALK.CMD 17MAR82 SLP UPDATE
-/PIP ••. TALKPRE.TMP/,.
PIP TALKPRTMP.MAC=TALKSYS'SUF' .MAC,TALKPRE.MAC
-/PIP .•• TALKPRE,TMP;*/,,
PIP TALKPRTMP.MAC;*/DE
-/MAC,,, 'FILE'/,,
.SETF RSXMC
• IF FILE EQ "CNPRT" • SETT RSXMC
. IFT RSXMC PIP TALKMCTMP.MAC=LB: [11,lO]RSXMC.MAC,SY:'<UIC>'TALKPRTMP,MAC
.SETS PREFIL "TALKPRTMP"
• IFT RSXMC • SETS PREFIL "TALKMCTMP"
MAC 'OUTFIL' 'LST'=LB: [l,l]EXEMC/ML,SY: '<UIC>''PREFIL' ,'FILE'
.IFT RSXMC PIP TALKMCTMP.MAC;*/DE
I

Fall 1981 SIG Tape Distribution

Jim Neeland

RSX-11/IAS SIG Tape Coordinator
Hughes Research Labs

3011 Malibu Canyon Road
Malibu, California 90265

The RSX-11/IAS SIG Tape collections from the Fall 1981 Los Angeles
Symposium is now in distribution to Local User Groups through the SIG Tape Copy
Tree. Also, a copy is being place into the DECUS library that anyone can order.

The programs on this tape are from user submissions. The DECUS staff,
RSX/IAS SIG staff, and Digital are all in relative ignorance of the contents of
the tapes. No warranty of any kind is implied in the distribution of the tape.
The programs may or may not be well documented, they may or may not work, they
may even crash your system. If you have a problem with the content of the
tapes, contact the author of the particular program. Do not contact DECUS,
Digital, or the RSX-11/IAS SIG.

The tape contains about 36,000 blocks of software in 1900 files. Since
this will fit on a single 2400 foot, 800 BPI BRU tape, it will be distributed as
such. It is in a RK07 image, the smallest Digital disk it will fit on.

The UIC [300,l] contains several files of interest. The file RSXF81.DIR
contains a directory of the tape. The file RSXF81TPE.DOC contains an abstract
of the contents of the tape by UIC. The file README.ALL contains a concatenated
list of all the README files on the collection. The file UICSETF81.CMD contains
UFD commands to create all the needed UIC's on device XX:, Edit it to match
your needs before using BRU to extract the tape contents. Note, that a partial
extraction can be achieved by only creating the desired UIC's.

9

The file [300,l]SUBMIT.DOC contains the guidelines for submissions to the
RSX/IAS SIG Tape collection. This is must reading for everyone who desires to
submit a program to the SIG tapes. The more people that follow these
guidelines, the faster we can turn a tape around and distributed it.

The UIC account [300,2] contains the program that is used to copy this and
other tapes, BIGTPC. This is a new version of TPC with various new features.
See the .DOC file, also in [300,2], for further information. The source for
this version has been supplied courtesy of Glenn Everhart, UIC [312,315] on this
tape. To use BIG~'PC to make copies of this tape, one needs a disk with at least
38,000 blocks of free space, not necessarily contiguous •

The distribution is being made through the SIG tree-structured distribution
system. A geographically oriented distribution scheme is used, where each LUG
makes a few copies of the tape and sends them onto other LUGs, and so on. The
is a volunteer operation and DECUS is NOT paying for the postage or free copies
of the magnetic tapes. So it will take some time for the distribution to filter
down to every LUG.

The tree itself, for readability and clarity, has been split into three
parts. First is an errata sheet for changes in contacts names, address, or
phone numbers. Always consult this sheet before contacting someone. With the
number of people involved, things are always changing. Next is the tree with
all of its branches in three pages: EASTCOAST, MIDWEST, AND WESTCOAST. Find
you LUG on the appropriate sheet. From this you can learn the ZIP (and LUG and
contact name), This indexes into the final part, which is a complete list of
all participants with full addresses.

Good luck! I hope there are no glaring oversights in this undertaking, but
I have discovered the hard way mow much effort it takes to create, verify,
document, and distribute the SIG tape and tree. My congratulations to Phil
Cannon for managing to do it for as long as he did. The following people burned
the midnight oil to create the 1981 Fall RSX/IAS SIG Tape: Ken Radford, Steve
Lazarus, Phil Cannon, Glen Everhart, Bob Denny, and myself.

From the Edi tor

Following is the tree for the Fall 1981 SIG Tape.
To get your copy, find your Local user Group and
contact them. They are probably the contacts for
other SIG tapes. Also, RSXF81TPE.DOC is reprinted
so you have a brief idea of what is on the tape.

10

Linda A. Sla•son
Puerto Rico ~u; (chang of LU~ name>
~c..i. ~erv1ce Co.
P.O. Box 3935 USNS
~PO Mia~i, ~L 34C51
CdJ?> 365-7314

Ji:n 3arnes
:'.laytan l.:JG
4F ,.AL/ ~A~r>-3
~P Air Fore• Base, OH 45433 Cc~ange of zip)
<513> 2ss-0043

Jerry ~ray C16~0 bpi only)
Central lllinots LJG
Universit~ of Illinois
.:7 Loo•i~ Laboratory of Physics
1110 ~. ~r~~n St.
Jr~ana, :L ~13C1
(217> J3:-~922

?ete,.. Xein~cke
;raater ~ouston Area LUG
Te~~s Lnitru~~,ts
11~1J 5cJttsj1le Ct. (chan;e of street)
Staffora, TX 77477
(713> .t'i.J-3o91

Joug GlaJcan
Sautnern ~·~ ~exi~o LUG
~hite ~ands Missile aange
1 ·~R-;..,}-A

~s~~, ~M 3!002 (change of city abbr.)
cs.::s> 67:3-33:.::

~llan Leslie V3n Lahn
La•rence Livermore Natl. Lab LUG
La•rince l1ver~ore Natl. Lab Cchan~e of company name)
L-233 (Shipping address: '000 East Ave.)
P.C. 2ox eJE C Sldg. 151 Room 2323>
~iver~~re, C' 9455G
(i+1)) ~22-6652

J.;, :nt1 :> ~ .i.ne
Tuls.i Lu;;
~426 c. 2oth Place
Tu~sa, CK 74129
(916) b27-S49C (off ph: C913l 665-4477)

MartLn A. 3ooker (1620 boi only)
~outneastern Wisconsin LUG
Milwaukee School of EnJineering
1G25 N. Milw3uKee
~ilwauke~, W! 53201
Ci.14) 277-72 31 (corrected ohone #)

~ictor Johans•n Creplace~ent for Cou~las Brown)
Arizona LUG
AO~ ultrasound Cne~ addr1 etc.)
734 ~. Ala~eda Or.
Te'l!pe, AZ ::l52t2
(602) ~63-74J1

Larry Olin Horn
Chimneyville LUG
Mills;;ips College
Com;uter Services
1701 s. State St.
Jack~on, MS 39210
(601) 354-5201 Ext. 236 (add ex~.)

William Patterson C1600 bpi only)
Madison ~isconsin LUG
U. ~f Wisconsin Medical School
Div. of Neuro~urgery
500 Highland Ave.
Madison, WI 53792
<o08> 263-52:.?7

Steve Hansen
Kans3S City LUG
University of Missouri
CoT.~utinJ Services
510C Rockhill Rd.
Kansas City, MO 64110
(816) 276-1131 (change of phone II)

Paul Tompkins (change of person, address)
Brazosoort LUG
Do~ Chemic3l USA, O.C.O.
P.O. Box 83
Freeport, TX 77541
(713) 23 3-9004

Richard A. Baldwin
San Diego Commercial LUG
North County Comp. Svc.
2235 ~eyers Ave. (change of street)
Escondido,.CA 92025
(714) 745-6006

Bill Bagley C1600 bpi only)
Portland Area POP-11 LUG
Tektronix
MS ~ 6-037
P.0. aox SOC
Beaverton, OR 97077
(503) 642-,g936

Warren e. Weintraub (1600 bpi only)
Chic3go Area Commrc. Users Group
3500 Bayside Orive1 Apt. 6
Palatine, IL 60067
C312J 52C-3245 (new phone #)

Mark Paulk (replacement for Bill Welch)
North Alabama LU~
System DevelopMent Corp. (new addr, etc.>
4810 Bradford Blvd. NW
Huntsville, AL 35805
(205) 337-7610

11

•

Or. L. Michael Frazer
Washington Area LUG----------
Bethesda, MD 20814

-----------11---------------James K. Nee and
RSX/IAS SIG Tape Coordinator
Malibu, CA 90Z65

********** EAST COAST LUG TREE **********

John Guidi

Brian Hughes
--MIT POP-11 LUG

Cambrid~e, MA 02139

Thomas A. Viana
---------------·-·-----------------Haine POP•11 LUG -·-----------

Bar Harbor, HE 04609
--Naval Underwater Systems LUG

Newport, RI 02840

Glenn Everhart
--Cherry Hill1 NJ 08358 '!19-----

Douglas Bickford
--Vermont Install. ~ Assoc. LUG

Burlington, VT 05405-0125

Donald E. Merusi
--Connecticut Valley LUG

Rockville, CT 06066

Carl Friedberg
-----------------------------------Neu York Metro LUG

New York, NY 10038

Mary Anne Feerick
--New York Education LUG

Bronic1 IH 10471

Richard Marisa Alfred H. Scholldorf
••Greater Rochester LUG--------- --Long Island LUG

Rochester; NY 14627 Stony Brook, NY 11794

Edward F. eeadel, Jr.
--Lakeshore LUG

Oswego, NY 13126

Rick Cochran
-----------------------------------Ithaca Minicomputer LUG

Ithaca, NY 14553

John F. Stitzinger
--Penn State LU:;

State College, PA 16801

Tom Hunter ~obert F. Curley
-----------------------------------Pittsburgh Area L1u5G-3 -6--------- --Delaware Valley IAS LUG

Pittsburgh, PA 2 Flourtown, PA 19031-0322

R. E. Grandle
--T ide111 lter LUG

H3mpton, VA 23665

J3net Anderson
--Res~arch Trian~l• Park LUG

Chapel Hill1 NC 27514

Le Huu Nguyen James C. Soyt
-----------------------------------Florida PDP-11 LUG------------ --Atlanta LUG

Gainesville, FL 32611 Atlanta, GA 30340

12

Linda A. Slawson
--Puerto Rico LUG

FPO Mia•i1 FL 34051

********** WEST COAST LUG TREE **********

Julie Cibelli
OECUS USA---
Marlboro1 MA 01752

Jose R. Cen-Zubieta
--oecus Mexico LUG

____________ ,, _______________ _

Jame5 K. Nee and
RSX/IAS SIG Tape Coordinator-·
Southern Calif. LUG CRSX/IAS)

~!l!~~~-~~--:1~~~-------------

Teri Wise
Bay Area RSX/IAS LUG---------
Palo Alto1 CA 94103

..

Bradford A. Lubell -------------------·--··-----------UCLA Bio~edical LUG-----------
Los Angeles, CA 90024

Douglas Brown
-------------------•--------~------Arizona LUG·------------------

Phoenixr AZ 85027

Mexico 20 OF, ~cXICO

Carlos Mario Hugueney
--Brazil RSX/!AS LUG

Campinas SP 131001 BRAZIL

M::irk Bartelt
--C::iltech/JPL LUG

Pasadena, CA 91125

Michael N. Levine
--China Lake LUG

China Lake1 CA 93555

Ronald L. Webster
--Phoenix LUG

Tempe1 AZ 85267

Sam Westmoreland
--Tucson LUG

TJcson, Al 85713

J~mes F. Harrison
--Los Alamos Us9rs of RSX

Los Alamos, N~ B7545

Doug Gl3dden
--Southern New Mexico LUG

~HMq, NM 830:)2

Jim Sagaman9
--Southern California RSX LUG

Corona, CA 91720

Edward H. Mueller Richard A. Baldwin
-----------------------------------San Diego POP-11/VAX LUG----- --San Diego Commercial LUG

Rancho Bernardo, CA 92127 Escondido, CA 92025

Dr. Sidney Karin
--Baja <10/20> LUG

San Diego, CA 92138

Allan Leslie Van Lehn Robert walraven
---------------------------------~-Lawrence Livermore Natl. Lab LUG-U. C. Davis LUG

Livermore, CA 94550 Oavisr CA 95616

Max w. Starr Or. Donald L. Mickey
-----------------------------------Hilo LUG-------------------------Maui POP-11 LUG

Honolulu, HI 96846 Kula, HI 96710

Raymond French Bill Bagley Ron Tenison
--Seattle Area LUG-------------- --Portland Area POP-11 LUG------ --Northwest LSI Educational LUG

Seattle, WA 98124 Beaverton, OR 97077 Portland, O~ 97225

•

Sheldon Cle111
--Pacific LUG

Corvallis, OR 97330

-----------------------------------~~~~~ tG~leman
8oise1 ID 33705

13

Ro9er s. Miles
Ch1cago Area Real Ti•• Society
Hoffman Estates, IL 60195

------------11--------------1 James K. Nee and
RSX/IAS SIG Tape Coordinator
Malibu1 CA 90265

•
*********** MIDWIST LUG TREE **********

..

Bil 1 Welch
--North Alabama LUG

Huntsville, AL 35805

Robert w. Hayes
--East Tennessee POP-11

Oak Ridge, TN 37830 LUG----- --------------------------------
Ray Stiles

--Tennessee POP-11/VAX Users Group
Gallatin, TN 370~6

John K. Ooyle1 Jr.
--Kentucky POP-11 LUG

Louisville, KY 40232

John w. Nunnally Larry Olin Horn
--Arkansas LUG---------------------Chimneyville LUG

Searcy1 AR 72143 Jackson1 MS 39210

Jim Downward H. E. Chadwick Dean Goranson
--Southeastern Michi8an LUG----- --Central Ohio LUG-------------- --Tri-State LUG

A~n Arbor, HI 481 6 Columbus, OH 43213 Cincinnati, OH 45227

Jim Barnes
--Dayton LUG

WP Air Force 8ase1 OH 45434

Douglas W. Fair Warren H. March
--Western Reserve LUG--------------west ~ichigan LUG

Berea, OH 44017 Grand Rapids, MI 49503

Warren B. Weintraub William Patterson M3rtin A. Eooker
--Chica90 Area Commrc. Users Group-Madison Wisconsin LUG--------- --Southeastern Wisconsin LUG

Palat1ne1 IL 60067 Madison, WI 53792 Milwaukee, WI 53201

Randall Erown
--Southeest Minnesota LUG

Rochester, MN 55905

Jerry Wray Naren T. Sanghvi
--Central Illinois LUG-------------Indiana POP-11 LUG

Urbana, IL 61801 Indianapolis, IN 46223

Dennis V. Jensen Robert A. Horick
--Skunk River Small Systems LUG----Bi-State LUG

Ames1 IA 50011 Cddar Rapids1 IA 52402

Richard F. Wrenn Steve Hansen Robert B. Hack
--St. Louis LUG----------------- --Kansas City LUG------------------Midlands LUG

St. Louis1 HO 63110 Kansas City, MO 64110 Omaha, NE 68147

Thomas Barnum J3mes Fine
--Central Oklahoma LUG-------------Tulsa LUG

Oklahoma City, OK 73105 Tulsa, OK 74129

John Jenkinson Douglas H. Threatt Peter Reinecke
--The North Texas Lu50G0--6--------- --Alamo POP-3/POP-11 LUG-------- --Greater Houston Area LUG

Carrollton, TX 7 San Antonio, TX 78235 Stafford, TX 77477

Robert W. Hutchinson
--Brazosport LUG

Freeport, TX 77541

Margaret H. Knox Paul Painter
--Austin Minicom~uter LUG------- --Texas A & H LUG

Austin1 TX 78712 College Station, TX

14

R. R. Rodri']uez
--LOTA LUG

San ~arcos, TX 78666

77843

•••••••••• RSX/IAS SiG TAPE PARftfiPATiNG LUGS - SdRtED BY tlP ••••••••••
Carlos Mario Hugueney
3razil RSX/IAS local Users
Tele bras
C.P. 1579
Ca~pinas SP 13100
BRAZIL

Group

Thomas A. Viana
~aval Underwater Systems
Naval Underwater Systems
Code 35111 CldJ. 1117-1
~e~port, RI 02840

LUG
Ctr.

(401) 341-3354

Glenn Everhart
~CA Government Syste~~ Div.
"!ail !;top 206-1
Route 58
Cher~y Hill, NJ 08358
C609 > BB-6022

Edward F. Beadel1 Jr.
Lakeshore LUG
SUNY at Osae~c.
Cherr.istry Oept.
Oswe~o, NY 13126
C315J 341-2340

John F. Stitzinger
Penn State LUG
HR3 Singer
P.O. fl()x 60
300 Science Park Rd.
State College, PA 16801
(814> 23'3-4311

Ja"et b.;1d4'>rson
Re3earch Tr1an~le Park LUG
~pc kwe ll In tPrnation31l
300 Eastowne Or., Suite 200
Chapel Hill, NC 27514
(919) 493-2471

Sill Welch
~orth Alabama LUG
General Digital Industries
500 ~ynn Orive1 Suite 504
rluntsville1 AL 35805
<2J5) 337-8305

John K. Joyle, Jr.
Kentucky PDP-11 LUG
The Federal Land Bank
?.D. eox 32390
Louisv1lle1 KY 40232
(502) 560-7164

Ji:11 3arnes
Ja,.tan LUG
AF•AL/AAAN-3
•P Air Force Base1 OH 45434
CS13> 255-6843

::lennis v. Jensen
Skunk ~i~•r 5mall Systems LUG
Ames Laboratory ISU/USDOE
310 Metallurgy
~mes, IA 50011
(515> 29•-4823

Jose R• Cen-Zubieta
DECUS.Mexico LUG
El Cole~io de Mexico
Unidad de Computo
Camino al Ajusco 20
Mexico 20 OF, MEXICO
C5e8) 60--33 Ext.

John Guidi
Maine PDP-11 LUG
The Jackson Laborator)
The Computing Servico
Otter Creek Rd.
Bar Harbor, M~ 04609
C207> 288-3371 Ext.

Carl Friedberg
New York Metro LUG
In House Systems
165 William St.
New York, NY 10038
C212> 233-5470

Richard Marisa

393

306

Greater Rochester LUG
University of Rochester
Production Automation Project
River C3mpus1 Hopeman 409
Rochester, NY 14627
C716) 275-5342

Robert F. Curley
Del3ware Valley IAS LUG
University of Pennsylvania
P.O. Box 322
Flourto~n, PA 19031-0322
<215) 662-3'J83

James C. ~oyt
Atlanta LUG
Scientific-Atlanta Inc.
3d45 Pleasantdale Rd.
Atlanta, GA 30340
C404> 449-2 :mo

R'iy Stiles
Tennessee POP-11/VAX Users Group
Volunteer State Communty College
Nashville Pike
Gallatin, TN 37066
C615) 452-8600 Ext. 317

H. E. Chadwick
Central Ohio LUG
Western Electric Co., Inc.
Dept. 42330
620J E. Broad St.
Colu~bus, OH 43213
(614) 860-209'3

Naren T. San']hvi
Indiana PDP-11 LUG
University Hospital
U.H. A-32
1100 w. MichiJan St.
Indianapolis, IN 46223
(317) 264-4613

Rob.?rt A. Horick
ai-State LUG
CMC Colleges Associated
1220 First Avenue NE
Cedar Rapids, IA 52402
(319) 399-8560

Juiie CibeiH
OECUS USA
MR2-3/E55
One Iron Way
Marlboro, MA 01752

Douglas Sickfot'd
Vermont Install. & Assoc. LUG
Uni~ersitr of Vermont
Ac3demic Computing Center
Cook Physical Science Building
Burlington, VT 05405-0125
(802) 656-3190

Mary Anno! Feerick
New York Education LUC
Riverdale Country School
5250 Fieldston Rd.
Bron!(, NY 10471
<212> 549-6044

Rick Cochran
Ithaca Minicomputer LUG
Cornell Universitr
Theoretical s App ied Mechanics
301 Thurston Hall
Ithaca, NY 14853
(607> 256-7344

Brian Hughes.
MIT POP-11 LUG
HOS1 Inc.
121 Magazine St ..
Camoridge, MA 02139
<617) 661-5851

Dor131ld E. Meru,i
Connecticut Valley LUG
171 South St., ~46
R~ckville1 CT 06066
<203) 565-5444

Alfred H. Scholldorf
long Island LUG
SUN1 at Stonybrook
Physics Oept.
Stony Bro3k1 NY 11794
(510> 246-7110

Tom Hunter
Pittspurgh Area LUG
U.S. Dept. of Energy
58-M 209
P.O. Box 10940
Pittsburgh, PA 15236
(412> 675-600!1

R. E. Grandle
Tido!111ater LUG

Or. l. Michael Frazer
Washington Area LUG
Armed Forces Radiobiol.
Computer Science Dept.
Bethesda, MO 20814
(202) 295-1372

Res Inst NASA
MS 461

Le Huu Nguven
Florida Po?-11 LUG
University of Florida
Cent~r for Instr. & Res. Comp.
411 Weil Hall
Gainesville, FL 32611
(904) 392-0906

Robert W. Hayes
East Tennessee POP-11 LUG
Oak Ridge National Laboratory
BldJ. 3500
P.O. Box X
Oak Ridge, TN 37810
(615) 574-5726

Douglas W. Fair
Western Reserve LUG
Ohio Turnpike Commission
682 Prospect St.
8ere31, OH 44017
C216) 234-2081 Ext. 310

Jim Downward
Southeastern Michigan LUG
IOIS Fusion Inc.
P.O. Box 1567
3621 s. State St.
Ann Arbor, MI 48106
<313) 769-3500

Martin Jl.. Booker
Southeastern Wisconsin LUG
Milw3ukee School of Engineering
1025 N. Milwaukee
Milwaukee, WI 53201
(414) 277-2731

Langley Research Ctr.
H31mpton1 YA 23665
(804) 827-2645

Linda A. Slawson
Puerto Rico LUG
RCA Service Co.
P.O. Box 3935 USNS
FPO Miami, FL 34051
(~09) 865-7314

Larry Olin Horn
Chimneyville LUG
Millsaps College
Com~uter Services
1701 S. State St.
Jackson, MS 39210
(601) 354-5201

Dean Goranson
Tri-State LUG
Cincinnati Ge31r Co.
5657 ~ooster Pike
Cincinnati, OH 45227
(513) 271-7700

Warren ti. March
West Michigan LUG
H. ti. Cutler Co.
120 Ionia S W
Grand Rapids, Ml 49503
(61 6) 4 5 9-9101

William Fatters3n
Madison Wisconsin LUG
u. of Wisconsin Medical School
Div. of Neurosurgery
600 Hi9hland ~va.
Madison, WI 53792
(603) 263-5221

15
~·~

\,

~
' !

********** RSX/IAS SIG TAPE PARTICIPATING ~UG! • SORTED BY ZIP **********
~andall !3romn
iouthmest Minn•sota LUG
'1ayo Foundation
iection of Engineering
ZOJ First Street SW
~ochester, MN 55905
(507) ~84-25J9

<ichard F. Wrenn
it. Louis LUG
~a;hinJton Univ. School of Med.
Jept. of 6ioloJical Che~istry
)60 S. Euclid Ave.
it. Louis, HG 63110
C314) 454-2179

Thomas Barnum
~~ntral Oklahoma LUG
)klahcma Real Estate Com~ission
~O~O N. Lincoln, Suite 100
Jklahoma City, OK 73105
(405) 521-2137

~ohert w. Hutchinson
3razospor-t LUG
Jo~ Chemical U.S.A.
feKas :>ivision
~ P Beutel Building
Fi:,:epor-t, TX 77541
Cr13> ZB-1737

~ar!f'aret H. Knox
~u~tin ~inicomputer- LUG
'Jd1ver-s1ty of Tellas
~11putation Center
~ustin, TX 78712
(512> 471-3241

)a'11 Westmor-eland
Tucson LUG
:holla High School
l001 w. 22nd Str-eet
Tucson, AZ 55713
(602> 791-67d9

Ja11es K. Neeland
~outher-n Calif. LUG (RSX/IA$)
~ughes Research Laos
~01i Malibu Canyon Rd.
~alibu, CA 90265
C213> 456-6411 Ellt. H3

=d~ar-d H. Mueller
San Diego POP-11/VAX LUG
:lak Industr-ies
16~35 ~. Ber-nardo Or.
~ancho 8er-nardo, CA 92127
(714) 485-9300

Warren a. Weintraub
Chica90 Ar-ea Co•mrc. Users
3500 Bayside Drive, Apt. 6
Palatine, IL 60067
(312> 640-4530

Steve Hansen
Kansas City LUG
University of Missouri
C~mputin9 Services
5100 Rockhill Rd.
Kansas City, MO 64110
(816) 276-158:3

James Fine
Tulsa LUG
9426 E. 26th Place
Tulsa, OK 74129
OB> 627-6493

Paul Painter
Texas A & M LUG

Group

Texas A & M University
Dept. of Electr-ical Engineering
College Station, TX 77843
(713> 845-7530

Roger- Engleman
Idaho LUG
USDA ARS
1175 S. Orchard, Suite 116
Boise, ID 33705
CZOS> 334-1363

Jam•s F. Harrison
Los Alamos Users ~f RSX
Los Ala~os National Lab
MP-1, MS 323
P.O. Boll 1663
Los Alamos, N~ 87545
(505) 667-5683

Harl< Bar-telt
Caltech/JPL LUG
Calif. Institute of Technology
HS 356-48
1201 E. California Blvd.
Pasadena, CA 91125
<211> 356-6663

Or. Sidney Karin
Baja (10120> LUG
General Atomic Co.
P.O. 8011 31608
San Oie10, CA 92138
C714> 455-4474

Robert '.4alraven ~llan Leslie Van Lehn
La~r-ence Livermor-e Natl.
La~r-ence Liver-more Labs
L-233

Lab LUG U. C. Davis LUG

P.O. Boll 808
Livermore, CA 94550
<415) 422-6652

Hll BaQley
Portland Area POP-11 LUG
Tektronill
'15 56-0H
P.O. Box 500
~eaver-ton, OR 97077
(5J3) 642-8936

University of California Davis
Applied Scienc•
Davis, CA 95616
(916) 752-0360

Ron Tenison
Northwest LSI Educational
Catlin Gabel School
8825 s.w. Barnes ~d.
Portland£ OR 97225
<503) 297-1894 Ext.

LUG

Rodger s1 Miles
Chicago rea Real Ti•e Society
Telemed Cardio-Pulmonary Systems
2345 Pembroke Ave.
Hoffman Estates, IL 60195
012) 884-5900

Robert B. Mack
Midlands LUG
Informaticsr Inc.
2806 Emeline St.
Omah:i, NE 68147
(402) 291-3300

John Jenkinson
The North fellas LUG
Mostek Corp.
MS 32
1215 w. Crosby Rd.
Carrollton, TX 75006
(214> 323-6401

Douglas H. Threatt
Alamo POP-8/POP-11 LUG
School of Aer-ospace Medicine
SA14/8RS
Brooks Air Force Base
San Antonio, TX 78235
(512) 536-3886

Douglas Brown
Arizona LUG
GTE Automatic Electric Labs
250C Utopi~ Rd.
Phoenill1 AZ 85027
(602) 582-7570

Doug Gladden
Southern Neu Mexico LUG
White Sands Missile Range
NR-AD-A
'.IHMR, NM 88002
(505) 678-3348

Jim Sagamang
Southern California RSX LUG
Fleet Analysis Center
CODE 84C1
Corona, CA 91720
(714> 736-4632

Michael N. Levine
China Lake LUG
Naval We3pons Center
Code 3513
China Lake, CA 93555
C714) 939-2417

Or. Donald L. Mickey
Maui POP-11 LUG
Univarsity of Hawaii
Institute for Astronomy
P.O. Box 209
Kula, HI 96790
(808) 244-5565

Sheldon Clem
Pacific LUG
CH2M HILL
1600 SW W•St•rn
Corvallis, OR 97330
(503) 752-4271

16

Jerry wrar
Central I linois LUG
University of Illinois
487 Loomis Laboratory of
1110 w. Gr-een St,
Ur-b3n:i, IL 61801

Physics

CZ17> 333-4H2

John II. Nunnally
Arkansas LUG
Harding Univer-sity
Boll 8~0, Station A
Searcy, AR 72143
<501) 268-6161 Ext. 440

Peter Reinecke
Gr-eater- Houston Area LUG
Texas Instruments
4000 Greenbriar
Stafford, TX 77477
(713) 490-3691

R. R. Rodriguez
LOTA LUG
South~est Texas State University
Computer- Services
San Mar-cos, TX 78666
(512) 245-2501

Ronald L. Webster
Phoenill LUG
Arizona State University
EC A 108
Comouter- Ser-vices
Tempe, AZ 3S287
<o02> 905-1203

Bradford A. Lubell
UCLA Biomedical LUG
L.A. Cardiovascular Research lab
A3-381 CHS
UCLA
Los Angeles, CA 90024
(213> 825-670

Richard A. Bald•in
San Die~o Commercial LUG
North County Comp. Svc.
2235 '1yers Ave.
Escondido, CA 92025
(714) 745-6006

Teri Wise
Bay Ar-ea RSX/IAS LUG
Ford Aerospace
MS X-90
3939 Fabian Way
Palo Alto, CA 94303
(415) 494-7400 Ext. 5015

Max W. St3rr
Hilo LUG
East-west Center
Fin3nce & Man•ge•ent Syste•s
1777 East-West ~d.
Honolulu, HI 96848
< 303> 944-?'HO

Ra1111ond French
Seattle Ar-ea LUG
Boein1 Commercial Airplane
MS 9W-31
P.o·. Soll 3707
Seattle1 ~A 98124
<206) 237-6192

Co.

Brief
[005,005]

[300,001]
[300,101]
[300,102]
[300,lll]

[300,ll2]
[300,ll3]
[300,120]
[300,121]
[300;123]
[300 ,125]
(300,126]
(300,130]
[300,131]
(300,132]
(301,062]
(301,063]
[301,064]
(302 ,2121
[305 ,!02]
(307 ,020)

(307 ,022)
(307,036]

• (307,100]
., 101)

\ 105)
131)

~·~
(312,316]
(312,317)
(314,001)
(315,100)

(315,lll]

RSXF81TPE,DOC

description of tape contents by directory.
c Runtime I/O library fixes for Structured Languages SIG Spring 1981
tape
General information about this tape
RUNOFF fixes and enhancements (for which version??)
Mods to TECO V36 - default directory for EI, llD/IAS fixes, etc.
copy of Fall 81 DECOS paper on RSX-llM System operations using SIG
tapes
Fixes for WHO from Chicago Spring 80 SIG tape (307,20)
C File utilities, DIR, OD (Dump), and GREP
VS: driver for intertask communications
Fortran-callable routines for VTlOO, VT105 features
Multi-Tasker Articles on non-standard AST's, an error-logger task
PARSIZ - shrink any partition (e.g. GEN) on a running system
Archive system for moving files to/from tape automatically
Pinochle (in PASCAL)
MTREK - multi-player Startrek with robot ships, etc,
FCB list for a volume, LUT display, Receive Queue list
VAL - Fortran terminal I/O w/ defaults, range-checking, etc.
CLONE - Multi-user interpretive command language
ERN - Error-logger current error count display for M, M+
Fortran Symbolic Debugger - main program stub and 2nd debugger task
RUNOFF (Standard) + better hyphenation and Dill's TEXT.support
M+ Multiuser FllACP, fast Fortran block I/O, Checkpoint space
contents, Versatec M+ driver, STTY - set many terminal charac.
Disk Disaster Recovery programs and documentation
Home directory for privilege users, M Multiuser FllACP, FCSRES
command files for utilities
Virtual Disk (VD:) for Mor M+, DECOS CALC for EIS only
Starfleet - startrek w/ performance records, mail, etc •
FllACP for Dual-ported disks w/ two processors!
Slides from RSXllM Device Commons paper - Fall 81 DECOS
DISASM disassembler for task images, CAM another one from
Amsterdam DECOS tape, BASH - allows task to have previous mode be
kernel (sneaky!), CS! parser skeleton, DDT22 a symbolic macro
debugger w/ separate main and debugger tasks, IBM to PDP-11
floating-point conversion, update to XMITR from Spring submission,
FPEM latest floating-point emulator, DISOWN+ TSKREN to transfer
task ownership to co:, new FFL (fast FLX), new multicolumn lister
PLOTA - subs for histograms, etc. on HP 4/8 pen plotters
TREAD/TWRITE to handle IBM RECFM=FB labelled/unlabled tapes
RATFOR from Structured Language Working Group of RSX SIG
Add bad blks to [O,O)BADBLK.SYS, find files modified after some
time, modify task lun assigns w/o rebuild, ASN capability for IAS,
find file which has given LBN, cancel all copies of IAS multiuser
task, block-mode file compare, faster-than-PIP copy, task dump ala
CDA, disk-space/UIC, delete by FID w/ bad headers, !AS device info,
reconstruct locked files, new FRG, enhanced GREP, graceful exit if
I/O rundown fail (!AS), MCM/ MCX to switch to real MCR/DCL terminal
on !AS, a file dump utility, fast magtape ops w/ multibuffering, CRT
bargraph display of !AS system, tape copy utilities, !AS task timer,
translate RT tapes to RSX files, file undelete, etc, etc.
Triangle LUG RUNOFF, supports INCLUDE files, etc.

17

• (~)

(330,001]
(330,002)
(330,003)
[330,004]
(330 ,005]
(330,006)
(330 ,010]
(330,011)
(330 ,012]
[330,013)
[330,014]

(330,015]
(330,016)
(332,060]
(332,100)
[336,300]
(337 ,030)
[343,001)

File lister/scanner w/ string searches, wild-chararacter file names
F4P Symbolic Debugger
Compile only newly changed modules and insert them in .OLB
Generate command lines from SRD output
Enhanced SRD with: /RVision-date,/OWner, etc.
TAPE read/write utility for variOus foreign tape formats
Burst concatenated FORTRAN subroutines into individual modules
Resequence F4P source programs
Truncate only those files needing truncation, don't touch others
IAS program to search directories for file to XEQ (RUN)
(!AS) restrict game-playing hours, run task on NL:, schedule
programs
RATFIV V2, enhanced RATFOR - FORTRAN pre-processor language
Multitrek - in RATFIV, support for different terminal types
Enhanced version of Jim Downward's CCL
DSC tape directory, selective restore, tape format information
RSX Network Mail
SFGL70 - latest version of Tektronix graphics subroutines
Probe - % intrrupt, kernel, user, null + Fortran task subroutine
history

[343,010) Who has mounted non-public device(s)
[343,011) Write RXOl,02 with bootable task image
(343,012) UNDELETE
(343,013) Downline load of LSI via TT: line
(343,014] KILLER - BYE on another terminal w/ confirmation
[343,021) Updated FORTH from prior SIG tape
[343,022] VTl00/52 subroutines for direct cursor output
(343,023] RT-tape read/write
(343,025] All the Data Management SIG Newsletter articles
(343,026) OMS! Pascal to RMS-11 interface routines ·
(343,031-33) IFTRAN Fortran pre-compiler
(343,034] M+ HELLO mods .for custom banner, pswd strikeover, nolog message
(343,035] A VTlOO film! A MUST if you have a VTlOO or equivalent at 9600 baud
(343,040) Foreign Tape Processor to read, write, dump non-RSX tapes
(343,050) LIST - screen-at-a-time TYPE for VTl00/52, Tektronix terminals
(343,051) ASCII file transfers via async ports from VAX to VAX or RSX
(343,052) EDT V2 as a TECO macro, also TECO DRAW macro (useful for RT)
(343,053) PONG for VT52, VTlOO
(343,054] RSX Directive or I/O Error code message dispiay
(343,060) !AS dynamic task scan display, dynamic node usage, corrected SRO
(343,070) SEE - real-time memory display on VT52
(344,062] Jim Downward's CCL for llM version 4.0
(347 ,101) Enhancements to FMS-11 Form Driver
[350,200) Convert file read from RT tape via PIP to RSX format (ASCII)
[352,002] TALK for terminal emulator to another computer, w/ file transfer
[352,004] Corrections to SRD V6.0 of RSX SIG tape S81 (373,4]
(360,235] Modified Triangle RNO for Greek characterss, super/subscripts, etc.
[370,130) FOR/F4P Cross-reference, claims most complete of all on SIG tapes,

(374,001)
subroutines to profile instruction execution, MAZE (30) for VTlOO.
Games BOGGLE, HANOI, utilities (source in C) for SORT, TODAY,
Superdump, dictionary of computer JARGON

18

..

•

Corrections to ICR Fall 1981 Tape Submissions

William P. Wood, Jr.

Institute for Cancer Research
Philadelphia, Pennsylvania

At the Fall 1981 DECUS symposium, the latest version of "The Best of ICR"
was submitted to the RSX/IAS SIG tape (UIC's [330,1] through [330,16]). Also,
the RATFIV preprocessor was submitted to the Structured Languages SIG tape.
Since then, a bug has been found which causes LIST, BURSTF, SRDCMD, and RATFIV
to abort with an open error. This bug only occurs on RSX systems (not IAS).

The problem is that these programs try to open the terminal as 'TO:', a
device not available on RSX systems. The fix is to change every occurance of
'TO:' in the Fortran sources and in SYMBOLS.* to 'TI:'. I believe that the
following sources are the only ones which need changing:

1. LIST - LIST.FTN and SYMBOLS.RAT

_ 2. BURSTF - IO. FTN, GETARG. FTN, and SYMBOLS. ,-'y SRDCMD - IO. FTN, GETARG. FTN, and SYMBOLS.

F'4. RATFIV - IO.FTN, GETARG.FTN, and SYMBOLS.

however you have built RATFIV, the the Ratfiv sources corresponding to the
above Fortran sources for LIST, SRDCMD, and BURSTF may be recompiled with RATFIV
- after modifying the SYMBOLS files.

Another problem was that some of the TKB command files used an IAS switch,
/RW. This should be removed before task building on RSX systems.

Finally, if you are using Fortran-77 and get errors from Fortram because
the INDEX function has incompatible arguments, ignore them. In this case, INDEX
is a user-supplied function.

Hints and Things

"Hints and Things" is a monthly potpouri of helpful tidbits and rumors.
Readers are encouraged to submit items to this column. Any input about any way
to make life easier on RSX/IAS is needed. Please beware that items in this
column have not been checked for accuracy. Send any contributions to
Multi-Tasker - Hints and Things, c/o DECOS, One Iron Way, MR2-3/E55, Marlboro,
MA 01752.

19

Topological Walk to an ODL

John Covert

Digital Equipment Corporation
Nashua, New Hampshire

A graphic method may be used to convert a memory allocation diagram into
the correct task builder overlay descriptor language. Consider the following
diagram (taken from the Task Builder Manual, page 4-6).

1---1 I I -------1
-------1 I

., ·:'-=----- i--:;--- ~ :

-::::::::·'.:::::::::~;:::;;_'"-----------~\
I

---1

The solid line drawn is the topological walk. The rules for drawning this
line are quite simple:

1. Start in the lower left corner of the root segment.

2. Proceed up as far as you can go without hitting the top or empty space.
Cross into new segments as needed.

3. Proceed to the right until you hit a vertical line.

4. If you are at the lowest segment of the vertical line, cross it and go
back to step 2.

5. If not at the lowest segment, proceed downward the vertical line until
you are adjacent to the lowest segment.

6. If you are not in the root, cross the vertical line and go back to step
2.

20

-

7. When you reach the root, you have finished the walk.

once the line has been drawn, you should go back over it and verify all the
above rules were followed. While doing this, draw arrows at each point a line
was crossed to indicate the direction.

You are now ready to write down the ODL file:

1. Write ".ROOT root-segment".

2. Follow the walk. Write down the next ODL element each time the walk
crosses a segment boundary, based on the direction of the arrows:

® write "-(name-of-new-segment"

@ write ",name-of-new-segment"

@ write "l"

3. When you return to the root you are done. The result for the example:

• ROOT CNTRL-(A0-(Al,A2-(A21,A22)) ,BO-(Bl,B2) ,C)

Theory of Interactive Debuggers

Glenn c. Everhart

RCA
Cherry Hill, New Jersey

we deal here with 3 classes of issues in debuggers: capabilities the
debuggers offer to users (with random illustrations of their uses), support
facilities needed to implement debuggers (hardware support and what it can do
for you, and software support in terms of what language processors may provide,
including strategies for source code replication), and effects of a debug aid on
the context of the process being debugged (also the multi-task context, treating
a multitasked application as a context to be debugged). This talk is a survey
of selected debuggers and is not intended to be exhaustive or to teach anyone to
use a particular debug aid.

1.0 INTRODUCTION

Interactive debuggers work by allowing partial execution of programs and
selective examination of a program, replacing the dumps of yesterday. They do
not substitute for compiler error checkers, strongly typed languages, etc., but
are a necessary part of the real world of getting code to work as designed.

21

0 .. \
)

The idea of partial execution of programs with intermediate examination is
that a small part of a program is easier to understand than the whole and if
enough informa~ion is a~ailable.about the state of each part, the whole 'may be
understood a bit at a time. This may mean state information not a part of usual
language_r~les (e.g., who called a routine) is needed in the debug process, but
at a minimum one needs to control execution and examine data. Additional
complications arise where tracing the source of a fault is needed. sometimes
extra state information is used to track backwards to the source of the error.
Where this is impossible, stepping forward may be the only way to find a
problem. The most common use of code modification is to avoid the long edit /
recompile I relink cycle after every fault that slows the rate of fault
isolation to th~ rate of this cycle. There are cases of complier errors or
undetected types in programs that are easiest to see where code can be viewed
during the debug cycle, though.

2.0 DEBUG FACILITIES

There are several facilities a
programmer. In a rough priority
following:

debug
order

aid needs to
of importance,

be useful to
they include

the
the

1. Instruction Breakpoints' (stops on a given instruction) •
preferable to allow more than one of these.

It is

2. Data Memory Display (the more data types known to the debugger, the
be~ter; a good debu~ger should know about all types in the language
being debugged). The first 2 list items provide the most basic debug
features needed, allowing partial execution of programs to examine
intermediate results for errors.

3. Instruction Memory Display (preferably in the language being debugged).

4. Data Memory Modification {again many data types should be usable).

5. Instruction Memory Modification (preferably at least in assembly).

6. Machine State Display (registers, PSWs, etc.).

7. Memory Breakpoints (with subtypes allowing breaks on only writes, any
ac~es~es, modification accesses, instruction memory, or data memory).
This is ~andy where your program is clobbering some memory location
before it dies and you.need to find out what is clobbering memory, and
not that zeroed memory is not your program. Without something like
this, locating such a bug is a matter of trial and MUCH error.

8. Single Stepping (which is handy where logic
inserting/removing breakpoint wastes time).

9. Tracebacks and History Displays.

22

•

is complex and

It is also desirable to support any unusual features of the system such as
overlays, when these might affect the status of viisble memory. These are the
basic features a good debug aid will offer, To be most useful, they should work
in whatever language the program being debugged is written in. The further the
debugger is from this, the harder it is to use, Thus, a purely numeric (e,g.,
octal) debugger is inferior to one that allows code to be displayed or entered
in assembler, and that is inferior to one allowing display or entry in, say,
PASCAL (where PASCAL is the language in use; it is worse to have a pascal
debugger when your program is written in, say, PL/I, than one showing you
assembler and at least not misinterpreting your data structures).

Another desirable feature is to allow user symbols to be known to the
debugger, t'o permit him to avoid magic numbers as his references.

Symbolic debuggers for HOLs generally do not display HOL code from memory,
since the translator would be expensive even if feasible, What they normally
offer is the ability to work with named symbols and some compiler constructs
(such as line numbers) to control execution. Consider FDT and FOOT from the RSX
SIQ tapes; they allow symbols to be accessed and execution of programs to
proceed a line at a time or to stop on a given line number. They never attempt
to show FORTRAN code, but assume a listing is available. ADT under UNIX knows
how to display symbols used in c. and also understands the C stack frames so it
can s~w calling traceback sequences and arguments. Display is in assembler for

· instrll"ctions however, Very little is really needed to support a language where l lers and linkers preserve symbols and some uniform code identifiers (line
rs, for instance). Some debuggers have differing command features
ding on language too, but the point is that a set of minimal features can

· · rt HOL debugg.ing as well as assembler debug, so long as this is understood
~ ean symbol access, not interactive compiling / decompiling. A general
.,,,,. debugger might have any of the features mentioned above, though. These features

each have costs; I will now discuss how some are imlemented on various
machines, with special attention to PDPll.

3.0 SUPPORT NEEDED

Even providing simple instruction breakpoints can be a tough job on a
machine without a breakpoint trap. Machines like the PDP9 and PDPlO enter
breakpoints by overwriting instructions with subroutine calls. This traps the
execution of that instruction all right, but when one tries to proceed from the
break, the debugger must emulate the instruction in software. On the PDPll the
debugger needs only to replace the instruction and execute it IN PLACE with the
T bit set to trap after it finishes, then replace its trap and go on, The
versions of DDT on the PDP9 and PDPlO therefore cannot breakpoint jumps and
subroutine calls because they cannot emulate them; on the 11, the only
instructions that cause trouble are the RTI and RTT instructions, which are
(fortunately) rare in user code. Machines with a hardware breakpoint register
may act either way, depending on details of how it works. In the worst case, it
may not be possible to have more than one breakpoint - a real disadvantage.

Display of data and instruction memory by address is usually not difficult,
and display of multiple formats requires only that memory for suitable
conversion routines be available, Anyone who has tried debugging programs that
contain floating point numbers with DDT (Octal Debugging Tool) will see the

23

• ...

value of a debugger that can display data in multiple formats. If a language
supports some strange packed formats, it is desirable that its debugger be able
to make them human readable. There are places where this can be a problem
though. Consider the new MIL-STD 1862 architecture. It has protection modes
which make certain parts of the process's status (e.g. context stack)
unavailable to the rest of the process. A debugger that must display this
information must hope an operating system call is available to allow it to
obtain the information. This sort of problem can arise whenever
process-relevant information is forced to be hidden; the normal process code
will not normally have any business obtaining this information, but a debugger
often must be able to. (This is a caution to machine designers not to try too
hard to protect users against themselves; it can result in protecting the
machine against being used.)

Modification of memory is not much of a problem unless there are access
protections to memory, but modification in a HOL may interact with display in
that HOL since parts of a compiler and code generator would be needed to insert
code in anything higher than assembler, and optimization data is not available.
I have never seen a debugger that goes much higher than assembler in inserting
code, I also do not believe such entry will often be, worth while in any higher
level than assembler. Where provision is made for display of source code, it
may be necessary to flag areas modified by the user to show where new code has
been inserted if code is allowed to change. (Changing code can reduce debug
time considerably to one who is knowledgeable, though, by making it possible to
defer a re-assembly/relink sequence. Entering data to correct the flow of a
program that depends on it is easier, and this is far more common. The same
considerations as mentioned in display apply. Display of machine state is
generally no harder (or easier) than memory display and again, hardware
protection can make life difficult,

Memory breakpoints of most types are very nearly impossible without some
Hardware assist, and even with some forms of assisting hardware (which may
interrupt when the memory bus sees a particular address), cache can make read
breakpoints occur imperfectly. Write breakpoints are easier (since most chache
systems use write-through) and are more interesting. A true write breakpoint
will detect writing the same value as was in a location. This really can ONLY
be handled with hardware. Another type of pseudo-breakpoint is the "watchpoint"
as implemented in DDT-11. This is really an automated single step program which
will stop execution if the value at an address changes. Because every
instruction must be stepped, the debugger must be sure not to lose control (an
RTI will do it in). The main effect is to GREATLY slow down the program. On
machines like the PDPll there is little choice, though. Notice that on machines
like PDP9 this would have been much harder because breaks cannot be placed on
calls there,

Single stepping is a shorthand for inserting breakpoints and proceeding
from old ones, Where there is a trace bit (a la PDPll) it's easy. Without one,
it may require interpretive execution of an assembly language program. Some
refinements on single steps which do simple decisions about whether to actually
allow user interaction with the debugger are fairly common too. These may
include repeat counts or tests of special conditions (e.g., break if address
foobar is negative, not otherwise), or whatever seems reasonable. A
particularly flexible way to handle these conditions is to allow a set of stored
commands to be run at a break to do the decision, However, very general
facilities of this kind are hard to find that help more than a few real life

24

problem~. Tracebacks or code profiles are usually easy to produce provided
there is space for them: every breakpoint facility I know os gives access to
the program location at a break, and that is enough to construct histograms of
how often each was reached.

4.0 SYMBOLIC DISPLAYS

To allow display of instructions or variables symbolically, there have been
several methods proposed. The most common way to access user symbols is to have
language processors save them in files the debugger can access, either by having
them produce data structures in the debugger or by having them read off disk.
On the PDPll this has not been well supported. The taskbuilder outputs global
symbols, but local ones are not output by the more common DEC languages. Some
DECUS workarounds, have been written (most notable FDT which produces symbol
files from listings and maps), but the problem remains that even where the
languages save internal symbols, TKB does not. Since most 11 users cannot run
LINKll on a PDPlO, this defeats all but the workarounds that use map files. On
other machines, symbols are very often available. Program code is generally
displayed either in a numeric radix or as assembly code via a disassembler,
which is usually not too hard to write. Where a higher order language is
required, much cooperation is needed with that language's compiler. One method
of code reconstruction has compilers placing tokens in the output to tell what
kind of statement is in use. Compiled code then has constructs (possibly
switchable) which let a debugger know it is, say, in the middle of a DO-WHILE
construct. Another proposal suggested the compiler save the actual source file

. in indexed form and generate pointers to that form, so a debugger could extract
•''..,.t.he complete source text, with comments. Obviously, changing the program would
IF ll!iihvalidate this display.

-:-.
• CONTEXT

~st of us have probable had the experience of loading a debugger into a
task and have it not fit, or having the problem that made us load the debug aid
go away mysteriously. These are context effects. The context of a process as
used here means the machine resources relevant to its computation, which may
include memory, proccessors, trap vectors, and so forth. The context of a
debugger depends on machine and operating system. in RSX-11, debuggers are
normally part of the space of a task and share the traps of that task, and in
single user systems like DOS-ll and RTll this is necessarily the case when no
mapping is available. However, UNIX has debuggers normally outside a process'
space and traps are seen by the OS first, then passed to a debugger (larger
context objects than single tasks are known). VAX can also handle larger
objects than tasks. As distributed applications evolve, a context may encompass
more than one task and moe than one CPU. Debugging such applications can be
quite complicated because the idea of a debug aid is to allow examination of any
part of the application, which is not feasible in some cases.

Where a debug aid is part of the space of a normal task, linking it into
the task will often change addresses of tasks even if it fits. This can create
of mask problems. Where the debug aid can be in a separate area of memory,
these effects can be minimized. This can usually be done given some sort of

25

reasonable multiprogramming environment with some intertask commuication,
because. th~ am?unt of information that must be sent to a debug aid at a
breakpoint is fairly small. DDT can get by easily with the 13-word RSX packets
and use a small "kernel" of debug features built into the task with the bulk of
the debugger in a separate task. Given a transport mechanism for the packets,
target and debugging tasks could even be in different machines. The way this
works is.that task-~ocal contexts are saved locally, so only the PC and PS and
some pointers neea be passed. Data can be moved each way be sending packets
coi:itaining "MOV" ~n~tru<;>tions which. minimizes the size of the "kernel". By
s~itable ex~c modifications, even this kernel can be eliminated, at least on any
single machine, since RSX saves all the information needed also. Where the
~ebugger is ~lready separate in context (consider the old PDPll ID debugger),
interference with add:e~s doe~ not occur. This is less disturbing, but does
us~aly have some timing disadvantages where single stepping should be kept
quickly more system context swapping is needed.

In the case of multitask applications, a useful kind of debug aid would
allow seve:al communicating tasks ta be debugged. I have heard of 2 ways to
approach this. The approach taken by DDT and by SPEX ODT is to serially debug
one task at a time in orders determined by breakpoints in several at a time.
This means that a breakpoint in one task halts that task and allows examination
of its actions, but allows others to keep running. This is not a faithful
stopping of time for the system, but may be better than such for finding
intertask data. The other, approach was taken by a specially modified XDT
called MDT which stops all other processes (except some I/O) whenever any
breakpoint is seen. This really does prevent errors due to improper timing
relationships, but can have some problems where some parts of an application
must run continously (e.g., watchdog server processes, to keep another processor
from cutting out). The first scenario is far easier to arrange in distributed
systems, but at times the seco.nd may be needed.

The DDT Debugger for PDP-11

Glenn c. Everhart

RCA
Cherry Hill, New Jersey

~his document is a beginner's introduction to using DDT. It does not
contain all DDT commands, but a "novice subset" sufficient to be useful. DDT is
found on the RSX SIG tapes in account [312,315]. The latest version is on the
Fall 1981 SIG tape (Los Angeles).

1.0 WHAT IS DDT?

DDT is a symbolic debug aid. With existing debug aids like ODT, you can
execute programs a bit at a time, but you can display programs only in octal and
need to refer continually to maps and listing files. Also there are some
numbers (e.g. floating point) that are hard to display: the octal radix is not
meaningful. With DDT you can display or enter MACR0-11 instructions octal or
decimal numbers, text, floating point, or other formats, do all DDT functions,

26

and refer to your symbols by name rather than as octal mystery numbers. This
allows debugs with only source listings, which need not be recreated with EVERY
edit since DDT's instruction display makes it easy to find code sequences you
know. Since debug aids sometimes don't fit, a special DDT kernel (DDTKNL) can
be built into your program, taking as little as 128 words (more typically 200),
and you can debug with DDT in a separate task, Or you can just include DDT in
your task's space as you do with DDT, DDT works in any PDPll on any DEC
operating system (even has code for user mode I and D space for RSXllM+ V2.0),
though under RSTS using RTll or RSX emulation its operation is not tested. The
debugging from a separate task works under RSXllM, M+, or IAS (though under IAS
the tasks must run realtime). Descriptions here will be RSX oriented,

2.0 GETTING STARTED WITH DDT

To first use DDT, you must include a copy of DDT into your task with the
taskbuilder (TKB). We will assume it fits first.

You include DDT as a debug aid by specifying it with the /DA switch on the
INPUT side of your taskbuild command line (or, with the /DA switch in the root
of your ,ODL file). That is, you would use a command like

TKB>myfile,tsk,myfile,map,myfile.stb=myfile,subl, ••• ,[l,l]DDT/DA

which will include DDT from [1,1] (substitute another UIC if that is where
'DDT.OBJ is) and set (it up as a debug aid. Note you do NOT specify /DA on the
output side of the TKB command line: that will load DDT and cause conflicts.

DDT is built by running DDTBLD.CMD and answering questions: it is assumed
your system manager has done this and the DDT.OBJ is your "system standard" DDT,
a "1-task" DDT version. Since DDT can be rather large, if you get an error
message like "ADDRESS SPACE OVERFLOW - ALLOCATION DELETED" on large programs,
there is a special DDT kernel called (mysteriously enough) DDTKNL which will
allow your task to be built and debugged with most of DDT in a separate task.
If you use DDTKNL, just replace the "[l,l]DDT/DA" with "[l,l]DDTKNL/DA" in your
command lines.

When TKB finishes, if DDT is in your task space you can just run the task
and DDT will be active, If DDTKNL is used, you must activate DDT22M first. To
run DDT22M, type:

RUN [l,l]DDT22M/TASK=DDT22M

(or the equivalent if DDT22M is either an installed task or in another UIC).
Then type <esc>UM and then <esc>Q to start DDT22M. The "<esc>" means the ESCAPE
key (octal 33), echoing as $, not the 5 characters shown. In the following, the
"$" character will be used to mean ESCAPE, and NOT the literal "$" character
(that is, it will represent ASCII code 33, not ASCII code 44). Now your task is
ready to run, (Note some versions of DDT22M auto-start). Then run your task.
Once DDT22M types out a message, type $UM (escape, UM) to ensure DDT22M is
looking at the target task, Now you can pretend you are debugging from within
your task: most things will be the same. The $UM command tells DDT to use the
remotely mapped task's space for areas to examine/modify. It is undone by the
$UM command which tells DDT to use its own virtual address space. These

27

•

commands switch address spaces.

3.0 GENERAL CONSOLE FEATURES

DDT handles the console in a somewhat nonstandard way. When it starts, it
types a message out, but does NOT prompt! That is, it will NOT type •-• the way
ODT does to say it is waiting for input: it just waits. You type to it (in
either case: DDT is not case sensitive) and DDT acknowledges correct actions by
typing a tab (actually it types from 1 to 7 spaces). Thus, several lines may be
placed on a line. If you type a "delete• or "rubout" (ASCII 177) character, DDT
will type a "xxx• and wait for you to retype the whole command. It will NOT
allow single character corrections as RSX does: its parser is much too simple
for that,

It is importa~t that you realize DDT will act as soon as you enter a
command. There is no "command terminator• such as a carriage return or double
escape to start the command, All you have is the DDT standard acknowledgement
of completion by typing a tab (actually, some spaces). If DDT didn't type the
tab, most likely something went wrong. DDT is picky about syntax and not very
helpful about errors, It types u for an undefined symbol, and ? for most other
errors.

4.0 FURTHER SETUP

Your program is permitted to use the TRAP or EMT or other trap
instructions. If it does, zero locations DDTTRP, DDTEMT, or similar names.
Some versions of DDT will not catch TRAP instructions automatically since
FORTRAN and F4P use them. (If using DDTKNL, forget this: you change what traps
DDTKNL gets by editing and reassembling DDTKNL). Use one of the commands below
to put a zero into the location named DDTTRP or DDTEMT for TRAP and EMT
respectively.

5,0 EXAMPLES

If you run DDT as part of your task, your input might look like this,
assuming you have a map and subroutine MUMBLE is the one to be debugged,
Comments at the right are not typed, but are here to explain individual steps.
The <CR>, <LF>, or <EBC> symbols are used to represent the RETURN, LINEFEED, or
ESCAPE keys.

Notice that the commands "/" (open in current mode, default instruction
mode), • [" (open as numeric, default octal), and <LF> (close, open next) are
used with some other commands below. We will describe these commands in detail
later. For the present, the comments describe what is happening.

>RUN MYPROG

DDT-11 V004A RSX/FPU

Run the task to be debugged

DDT prints identifier. (This tells some
available features in DDT, in this

28

31642<MUMBLE:
MUMBLE+62<ESC>B
<ESC>G

MUMBLE+62 » lB
R2[3274
Rl (1
RS (32740 (31

case that floating point display is
available.)

Define address of MUMBLE as 31642
Set a breakpoint at MUMBLE+62
Start the task

Eventually reach the breakpoint
Examine R2 in octal, find 3274
Examine Rl in octal, find 1
Examine RS, find it contains 32740.
Next "(" examines location 32740 and
finds it contains 31.

MUMBLE+62/ MOVB (R4)+,(RO)+<LF> Examine 3 instructions starting at
MUMBLE+64/ JSR PC,3S776<LF> the breakpoint address to check the
MUMBLE+70/ SOB RO,MUMBLE+20<CR> code at breakpoint

<ESC>P Proceed from the breakpoint.

If using DDTKNL, you will operate similarly, but the first faw steps of a debug
session will look like this (assuming there is a runnable DDT22M in LB:[l,l]):

>RUN LB:[l,l]DDT22M/TASK=DDT22M
DDT-11 V004A RSX/FPU/MTSK
<ESC>UM

<ESC>G

<CR>

>ACT
••• MCR
DDT22M

>RUN MYPROG
TT7 BGN22M+l536 >> BPT!
31642<MUMBLE:
MUMBLE+62<ESC>B
<ESC>G

The "/TASK=DDT22M" MUST be there!
DDT22M identifies itself
set up DDT22M to examine the target
task space once it gets a breakpoint
start up DDT22M. Note the terminal is
not attached, so you can now proceed.

Check that DDT22M is really active

Run your task as above
Startup message of a DPT to DDT
Define address of MUMBLE as 31642
Set a breakpoint at MUMBLE+62
Start the task

The rest of
"ABORT DDT22M"
possible to use
issue a command

the session goes as above. When done with the session, type
to kill the debugger. With DDT22M, it will frequently be

a STB file to define locations automatically. Thus one would
like:

<ESC>UO .STB FILE:MYPROG<CR> You just type MYPROG<CR> (STB assumed)

Note that the STB file is closed when DDT cannot find a value for a named
symbol. It may be re-opened with the <ESC>UO command, and symbols are cached.

29

6.0 BASIC DDT COMMANDS

The following are a "basic subset" of DDT commands. DDT has a large set of
commands, most of which are not needed for basic user interaction. A number of
these set "modes" governing some details of other commands {e.g., default
typeout format).

6 .1 LABELS

A DDT label is any 6 or less alphanumeric characters (with and $ permitted
also). You may refer to a location in several ways:

*
*
*

LABEL or LABEL+nnn or LABEL-nnn (nnn a number)

nnnnnn (an octal number)

nnnnnn. (a decimal number)

Where the term "address" is used below, it means any of the above.
LABEL is used, it must be defined first: DDT is not prescient.

Where a

6.2 DDT Commands That Display Or Modify Memory

1. address/ (open address in current mode)

This command will display the contents of the word (or up to 3 words in
instruction mode) viewed in the current mode. These modes may be
MACR0-11 instructions, octal numbers, decimal numbers, ASCII text, or
RAD50 packed text (as the most common selections). The default when
DDT starts is to display instructions. DDT will tab over to the right
when the location is displayed, awaiting a further command. The normal
ones are to possibly insert a new value, then type either <CR> or <LF>
to close the location (and open the next if <LF>). New values are
specified as one of:

1. MACR0-11 instruction.

2.

3.

4.

5.

Octal number (if default radix is unchanged).

Decimal number (period after a number means it is in decimal).

"'cc' (double quote, delimiter, 2 ASCII characters, then
delimiter again, inserts the 2 characters in ASCII
location.

the same
into the

"<ESC>'ccc' (double quote, escape, delimiter, 3 RAD50 characters in
RAD50 into the location.

several commands change the modes used for the / command. (Note that
using a single <ESC> will allow reopen in a new mode until a <CR> is

30

2.

3.

4.

5.

entered: the forms given are effective until changed.)

<ESC><ESC>S (Symbolic mode)

This command changes the mode to symbolic instruction
MACR0-11 instructions. DDT starts in this mode.

<ESC><ESC>A (Absolute addresses)

mode, i.e.,

This command causes any numeric symbol type outs to appear as "pure"
numbers instead of offsets from the next lower defined label if there
is a label whose value is "close" to that number (this is defined as
128 or less at start.)

<ESC><ESC>R (Relative addresses)

This command causes numbers to be typed relative to the next lower
symbol if that symbol is "close" (within 128) before the number. Note
that the numeric value may always be seen by typing "=" (equal sign) to
print as (normally) pure octal.

<ESC><ESC>T (Text type out)

This command causes the / command to display memory as ASCII text.

6. <ESC><ESC>H (Halfword typeout)

This command causes / to display bytes. It is reset by the <ESC><ESC>S
or the <ESC><ESC>ST commands. Normally the address for / is expected
to be even unless in this mode.

7. <ESC><ESC>5T (RAD50 typeout)

This command causes / to display memory as unpacked RAD50.

8. address [(Open address as numeric)

This command displays the
normally octal. A second
contents of where it points.

contents of address in numeric radix,
[to a displayed address will display the

The command <ESC><ESC>lOR will change the display radix to decimal and
the command <ESC><ESC>BR will change it to octal. The <ESC><ESC>l6R
changes the radix to hex, but not all numbers can be handled. This
arises due to DDT's inability to distinguish symbols from hex numbers
beginning in A through F. There are extended commands able to handle
hex more consistently.

9. address? (Display address in RAD50)

This command displays the address in RAD50. It also forces the address
to be even by zeroing the low bit.

Another group of display commands are used to terminate the display and
modify sequence. The most commonly needed are the following:

31

•

10. [number]<CR> (modify and close location)

11.

This command will insert the number (instruction, ASCII or RAD50 text,
or whatever) in the location given and close the location, terminating
the command. If no number is entered, the location is simply closed.
THIS IS IMPORTANT! If you could not close a location, the next address
you wished to examine might be inadvertently placed in the last
location. It is essential to close a location before beginning work on
another one.

[number] <LF> (modify and close location, open next location)

This command first performs the function of <CR>, i.e., optionally
modifies the currently open location and then closes it. It then opens
the next location in the same way as the last and displays it and it5
contents. Note that the "next" location depends somewhat on how the
display is set up. A byte display will advance by 1. word displays by
2, and instructions may show a next location that is 1, 2, or 3 words
later. The insertion of an instruction is not done until a terminating
command is given, even if it is 2 or 3 words long. Thus, a "delete"
(rubout) keyin will abort it even if most of the instruction is typed
in. As an aside, use of Rather than <LF> will back up but always by 1
word or byte.

12. @ (close location, open location addressed)

This command closes the current address an opens the address it points
to. This is handy for following a pointer and quickly examing a table
it points to.

6.3 DDT Commands That Control DDT Options

1. address<LABEL: (define address to have name LABEL)

This command assigns the symbolic name LABEL to the given address. The
LABEL literal may have up to 6 characters legal in RAD50 (i.e., A-2,
0-9, ., and$) and must begin in ann aloha. Note you can enter LABEL:
whenever you have a location open too, to assign the name: the colon
is the operator. Up to 160 user defined labels may be entered. One
uses these much as one uses DDT "relocation registers", as bases for
addresses. Thus, it is legal to specify an address as LABEL+const
(e.g., "LABEL+l026") and normal to do so. One may use a form like
"LABEL-const" too.

2. <ESC>UO (Prompt for symbol table file)

This command allows DDT to read symbol table files to try to resolve
symbols. The files are closed by <ESC>UQ or when an undefined symbol
occurs. Thus, it is good practice to use the <ESC>UO command and
answer the "STB FILE:" prompt with the name of your STB file, when
immediately use the = command to get DDT to evaluate symbols. An

32

example would be something like this:
$UO

STB FILE:msx.stb
s.rsav=23442
s. r res=23 46 2
mx.stl=l076 mx.tbl-1104 stated4=13206

At this point, the named symbols are known to DDT and can be used. DDT
caches about 20 symbols from the .STB file in memory, permitting this.

6.4 Commands To DDT For Controlling Program Execution

1.

2.

3.

4.

address<ESC>B (Insert Breakpoint)

This command sets a breakpoint at the given address. That is, the
program will stop execution when it.re~ches that instruction ~nd ~DT
will print a message indicating where it is and allow user .exam1nat1on
or modification of memory. Note further that DDT breakpoints must be
on instructions. Breakpoints on data, or on instruction words other
than the first of an instruction, will not ever be effective, and will
probably result in incorrect execution as well. (DDT replaces the
instruction with a trap unless in single step mode, so the trap must be
executed to be effective.) Breakpoints may be on any instruction except
an RTT or RTI instruction. Note that you hit a breakpoint BEFORE the
instruction you "break" is executed. It will be executed when you
proceed.

<ESC>B (Remove all breakpoints)

This command removes all breakpoints. Note that to
breakpoint o to 7, setting its address to 0 does
would be O<ESC>3B to remove breakpoint 3 only.)
breakpoints after number 7 and this lets you clear
them at other addresses.

<ESC>P (Proceed from breakpoint)

remove a single
this (the command
You run out of
them out to reuse

This command resumes execution of a program after a breakpoint. There
is a variant to allow n passes through the break before any type-out is
done. You cannot proceed after a fatal error however; you can only
use the Go command (below) •

<ESC>G (Start Program at default start address)

This command just starts the program at its default start address from
the taskbuilder (recorded in the cell JOBSA in DDT an available in that
name. Normally this address is labelled BON too and can be examined in
that form. It may be called BONTnn at times as well.

33

5. address<ESC>G (Start program at address)

6.

The address$G command (Go) starts execution of a program at the address
given. It is legal anytime the program is stopped for any reason.

<ESC>lUT (Turn on single stepping)

This $1UT command turns on single stepping by arranging a breakpoint
after every instruction. (It executes all instructions with the T bit
set.) You get a breakpoint message for ficticious breakpoint 8 after
each instruction and use the Proceed command to execute the next
instruction. This mode is handy if you know the program is leaping off
into space somewhere and you want to find out where it does it.

7. <ESC>UT (Turn off single stepping)

This command restores normal operation and turns off single step mode.
You need to be in the normal mode for exiting to work normally.

6.5 Other Useful Features Not Described

DDT is able to watch up to 8 locations (more by reassembly) while executing
a program and generate a memory breakpoint whenever any of the locations changes
vale. If something in your program is clobbering a part of memory, this command
(the UZ command) allows you to find the culprit provided it doesn't clobber DDT
first.

There is logic in DDT to check some memory address when a break is reached
and skip the breakpoint unless that address, ANDed with a mask, is equal to a
test pattern. This is good for breaking on a single bit or a few bits changing
where the content of a full word is not of interest. Obviously, one can go very
far providing conditional breaks, but DDT does only this, a fairly simple test.

DDT can display or enter 2 or 4 word floating point numbers if built with
that support, and can examine or modify floating accumulators (internally named
ACO through ACS) • There are several control words to control this.

DDT is able to display 32 bit integers in any radix, or enter them in any
radix (up to 36: beyond radix 36 it gets silly). The storage convention it
uses is that of FORTRAN.

DDT can examine any area of physical memory or any file on disk as though
that file were memory, providing a symbolic ZAP. It can also do nonfile
structured modifications of disks, or open files or disks in read-only mode.

DDT has support for a special breakpoint in overlay load code (symbolic
location $ALBP2) that will not modify overlays, allowing that (and only that)
break to signal the user to remove old breakpoints and insert some that are
meaningful to the new overlay.

34

6,6 Automatically Defined Variables In DDT

When you start in DDT a number of variables are defined for you
automatically. Among them are the following, which are examined or modified
with ordinary memory examine/modify commands as shown above:

RO through R5, SP, and PC These are the PDPll general registers

$DSW

<ESC>I
<ESC>21
ACO through AC5
JOB SA
BYE

D.FILV

<TASK NAME>
DDTEMT

DDTRES

DDTTRP

DDTIOT

DDTODD

DDTBQN

as normal in MACR0-11.
The RSX Directive Status word at the
break
The program's PSW
DDT' s PSW
FPU accumulators
Word holding program start address
Address in DDT to start at to exit
program. (Also may be reached by
typing control Z).
Word holding pattern (initially 0) to
be filled in by the $Z (memory Zero)
command.
The start address of the task
Address for DDT to use for non-RSX EMTs.

Zero to allow task access to these.
Address for trapping reserved instructions

Zero to allow task access to these.
Address for trapping task TRAP instructions.

Zero to allow task access to these.
Address for trapping task IOT instructions.

Zero to allow task access to these.
Address for handling odd address errors.

Zero to allow task access to these.
Start address of DDT itself.

Making Use of Secondary Pool Under RSX-llM-Plus

Glen Hoffing

RCA Government Communcations Systens
Camden, New Jersey

One of the nice enhancements of RSX-11-PLUS was the creation of secondary
pool space. Its primary benefit is to offload much of the work from primary
pool space, so that the pool space problems endemic to RSX-llM are no longer a
worry. Another benefit that may not have occurred to many M-PLUS users is that
the secondary pool, in conjunction with the variable send/receive data packet
directives also implemented in M-PLUS, can now become a very useful tool for
memory buffering of significant amounts of data,

An example of this is two applications tasks, one of which provides data
acquisition and the other of which performs data reduction on the acquired data.
Under normal operating circumstances, the reduction task is more than able to
keep up with the acquisition task, but under peak loading conditions it is not.

35

The solution, of course, is to provide a data buffering capability between the
two tasks. One way, slow but simple, is to buffer the data to disk. A more
efficient way is to buffer the data in memory. The user can set up his own
shared common region for the data, complete with a circular queueing mechanism
and "overflow valve" checks, but it is the message of this article that
secondary pool can provide everything that is needed without having to create
these data structures.

The first step in using secondary pool in this manner is to make the
secondary pool area big enough to serve as an effective buffer. It is not
necessary to perform a new SYSGEN in order to do this, but it is necessary to
build a new system image from the virgin RSXllM.TSK file, using the SYSVMR.CMD
file (which I am sure we have all kept up to date). The command in the
SYSVMR.CMD file which sets up the secondary pool partition will typically be SET
/PAR=SECPOL:*:lOO:POOL, which will create a secondary pool of 100 octal, or 64,
blocks of 32 words each. We have increased the size of our secondary pool to
2000 octal, or 1024 32-word blocks, for a total size of 32k words. Those of you
weaned on ll/34s (or smaller) may gasp, but this is a relativedly small
investment out of our megabyte of memory. It is assumed that most M-PLUS users
running dedicated applications can afford to allocate at least some extra memory
to secondary pool.

Once we have a secondary pool of the desired size, it is a fairly simple
matter to put it to use. The user who is sure he will never exhaust his
dedicated amount of secondary pool need only issue variable send and receive
data calls to his heart's content. In the real world, it is necessary to take
some precautions against the exhaustion of secondary pool space. The simplest
way is to check the directive status word on each send data directive issued. A
return status of -1 indicates no secondary pool space available, and the user
can wait for a significant event and reissue the directive. (A note of caution
- those of you who have not applied the patch to SYSLIB described in the
February 81 Software Dispatch, page 21-22, should clear the directive status
word whenever it becomes set to -1, otherwise it will "latch" at that value
forever).

There is a drawback to this approach. Secondary pool is a common resource
and other users or tasks may not appreciate having it depleted. For instance,
Fortran file opens will fail if there is no secondary pool available. A more
sophisticated approach is to keep a global counter of secondary pool usage,
which is incremented on each send data directive and decremented on each receive
data directive. This counter can be compared to a threshhold of, say 90% of
available secondary pool, and whenever that threshold is exceeded, the sending
tasks can be instructed to mark time until the counter falls below the
threshold. This will assure that at least 10% of seondary pool is always
available for other system users,

In order to implement this it is necessary to calculate the amount of
secondary pool space used for any given send data directive. Fortunately, this
turns out to be an easy exercise. Secondary pool is always allocated in units
of 32-word blocks for send data packets, and there is a fixed 8-word overhead in
addition to the size of the packet. In our application we devine two global
variables, a secondary pool counter SPOOLC, and a threshold, SPOOLT, which we
set to 900. (approximately 90% of our 1024 32-word blocks of secondary pool).
Whenever we issue a send data directive for a packet of size NSIZE words, we
increment SPOOLC by ((NSIZE+?)/32)+1. The received packet is always two words

36

longer than the sent packet, as the operating system appends the sending task
name to it, so whenever we receive a packet we decrement SPOOLC by
((NSIZE+5)/32)+1. SPOOLC thus always reflects the number of 32-word blocks
currently in use, and as such is a useful tool in monitoring system bottlenecks,
special care must be taken if a given task issues both send and receive data
directives. Its threshold test for a send data must be slightly higher that
other tasks' threshold, lest it become locked out of sending data and thus also
out of receiving data, which could cause a system deadlock.

when implemented correctly, this approach would seem to alleviate the need
to check the directive status word for an error status of -1, as we cannot by
definition run out of secondary pool, In cases where all send data packets only
require one block of secondary pool (24 words or less of data in the packet)
this is true, However, packets requiring more than one block of 32-words
apparently must find a contiguous set of blocks, as we have found that we can
get a return status of -1 even when there is ample available secondary pool,
when we send data packets of more that 24 words. Our experience is that
secondary pool becomes fragmented very quickly when sending packets of varying
32-word block lengths, and our only solution to date is to check the directive
status word and reissue the send data directive as described above, Although
not the best of all possible worlds, this seems to work well enough in our
application and would appear adequate for most other applications,

In summary, secondary pool has proved an excellent buffering mechanism for
our application, which consists.of a~out twelve application~ tasks ~unning.in a
dedicated fashion and communicating with each other extensively via variable
send and receive data packets. The ability to size secondary pool to fit the
application and to monitor its usage in software should make it a useful tool to
anyone in a similar position.

How the RSX-llM Shuffler Works
Brian Donoghue

MCC Powers
Northbrook, Illinois

This paper is a hierarchy of discussions about the shuffler. First is a
basic explanation. Though not totally accurate, it is rather easy to read. An
intermediate discussion follows which goes into more detail, though accuracy is
still slightly compromised. The third discussion leads u~ to the flowchart by
pointing out the inaccuracies in the previous discussion. The flowchart
contains no intentional inaccuracies.

1,0 THE SHUFFLER'S ALGORITHM -- A BASIC DESCRIPTION

1. Find the partition in trouble - the one which has a task waiting for
memory.

37

0 •

2. Checkpoint/shuffle the tasks in that partition, thus creating a large
hole of free space at the high end of the partition.

3. Find out if the waiting task can be satisified now.
shuffler may exit. Otherwise, go to the final step.

If so, the

4. Checkpoint tasks of a lower priority than the waiting task to create
even more free space. Shuffle the leftovers to merge free space into
one giant hole. Exit.

2.0 THE SHUFFLER'S ALGORITHM -- AN INTERMEDIATE DESCRIPTION

This discussion begins in the Executive •••

Executive: "Gee, I sure would like to allocate some main memory to this
task I have got here waiting out on disk. Let's see, he wants to run in a
particular system-controlled partition. Is there enough free space in the
partition to just load the task? No. Shucks. If I checkpoint a continuous
block of lower priority tasks which do not have any outstanding I/O, would a
sufficient amout of memory appear? Nope. What if I try the same thing but
ignore outstanding I/O? Still no room. Damn. There is only one guy who can
help me out of this jam: the Shuffler!"

Upon being requested to run by the Executive, the shuffler follows the
algorithm below:

1. First it scans the list of partition control blocks (PCBs), searching
for a system-controlled partition with at least one task waiting for
main mamory. When such a partition is found, the shuffler begins its
first pass algorithm by going to step t2. If, however, the PCB list is
exhausted before finding a partition in need, the shuffler exits.

2. The shuffler examines each task within the partition in order of
increasing address and performs the following test:

Is the task checkpointable and either stopped or blocked?

YES Checkpoint it
NO -- Shuffle it to a lower address if any free space

lies below the task

After a task is operated on in this fashion, a test is made to see if
the partition is satisfied (by •satisfied", I mean no tasks are
competing for memory in the partition). If not, the shuffler operates
again on the next task residing in the partition. If the partition is
satisfied, the shuffler goes back to step tl to see if any other
system-controlled partitions need help.

When there are no more tasks to examine in the partition and a task is
still waiting for main memory, the shuffler goes onto step 13 to begin
its •second-pass algorithm.•

38

• 0

•

3. The shuffler creates a list of all tasks currently resident in the
partition in order of increasing priority. (Actually, the list is made
for each fragment in the partition, where a fragment is a contiguous
portion of memory bounded by unshufflable things such as partition
boundaries, drivers, tasks fixed by parity errors, and such).

From this list, the shuffler determines whether the waiting task may
fit if lower priority tasks are checkpointed. If so, checkpointing
occurs and the first pass algorithm (step #2) is reexecuted. If not,
the partition is declared to have reached a stable state and the
shuffler fors back to step #1 to see if any other system-controlled
partitions need help.

3.0 COMMENTS REGARDING THE ACCURACY OF THE INTERMEDIATE DISCUSSION

First, outstanding I/O was not treated at all. During the first pass,
outstanding I/O is ignored when considering whether or not to checkpoint a task.
However, when shuffling a task to a lower memory location, the shuffler waits
for up to a half-a-second for the I/O to complete. If the I/O count is still
non-zero at the end of that time, the shuffler leaves the task where it found it
and proceeds to the next task. Because the shuffler allocates the free space
below the task in advance, that free space may be tied up (wasted) for up to a
half-a-second.

Second, the intermediate discussion does not make clear the shuffler's
extreme devotion to iteration. So that this is clear when you inspect the
flowchart, I have simplified the shuffler's algorithm to the base essentials
below:

1. Find a partition in trouble.

2. Find the first task within that partition which can be either be
checkpointed or shuffled.

3. Checkpoint or shuffle that single task as desired.

4. Start all over again. Do not bother remembering anything - just start
over from the beginning.

See how simple that is? In fact, it may remind you of recursion.

4.0 THE SHUFFLER'S ALGORITHM·-- FLOWCHART FORM

see the attached flowchart. I have no particular comments at this point.

39

5.0 NEW FEATURE: THE SHUFFLER NOW HAS A RUN LIMITER (RSX-llM V4.0)

There is a location in the Executive which contains the minimum delay (in
ticks) between calls to the shuffler ($SHFCT). Before calling the shuffler, the
executive must first determine whether the delay has expired. If it has not,
the Executive graciously accepts the hardship, does not call the shuffler, and
gets on with its work.

6.0 CONCLUSIONS

These facts are evident:

1. The shuffler runs only when needed.

2. The shuffler does not blindly charge through GEN during its first pass.
If all waiting tasks are satisfied early, the first pass is left
incomplete.

The following statement seems reasonable:

The consequence of not using the shuffler on a busy system is that low
priority tasks may not have a timely response. The shuffler tends to
give low priority tasks more chance to get into memory at the expense
of burdening the system with more overhead.

Therefore:

If you want low priority tasks to have a timely response, use the
shuffler on your system. If on the other hand, low priority task can
suffer, do not use the shuffler. In gray situations, use the shuffler
but set is run limiter up from the default to prevent excessive
overhead.

7.0 REFERENCES

Suffler source code (SHUFL.MAC) for RSX-llM V4.0.

Executive source code (TOSCH.MAC, REQSB.MAC) for RSX-llM V4.0.

RSX-llM System Generation Manual, V4.0 field test version, pages 4-33 to
4-35.

40

THI SHufF a.a:R "s A-.GoR1TMM
RSX·JJM VI./. 9J

STAllT
A. l'ftESM 18 >------.

5TART

SCAN·

A>----~

U>ur1t.1U£ SulttH
Wll£R£ Wli l..!f'r
OF1'.

PU.P'ofUI\ lNITIAL1i.AT10N

f111.n PAss: Sc.AtoJ 1..1ST of' P. c. a.~. I.DOK Foit A

S.'l'SUM-~Ou.1'.b PAATITJOA) WITH A 'TASI< IN 1T.r

WAl'T Q~LI.&: WHICH IS Nll'THER BL.DCJCl!r2>2. NOif

STOl'P&:J):"

YU NO

Sc.l'IM US"r "" SIJISPAll.TITION.S

c)----1 (ia., TAsKS CUIUISNTl.Y "011)D&T

C.ONTINUe: SuiKM
111111£U WI. l..IPT

Ol'lt.

IN TMll *IN M"1'1T1CIN)•

i
Ill '=
15 ...
-~

SaT MINIMUM
MLAY UNTIL
'TM! SHUfn.IR
aw R CAI.I.El)
A6A1t.1,.S.

• SICAN/j MU"

NO

* A STOl'PO T.\!k WI.,,.
~ "5.T GWI~, ~a,
Jl. c.cms1MaU ll.J618&.E
FOil Ma'40itY.

i 'THIS i=:.A"fUll& ONl..Y

.tnV.tU IM 'JlltSlQt.i "·P
OF llS'll• II t"I.

2. VIWON ~.~ aJ1 RS'J.·IJM
°'"•R~ 'T'U• AAILl'TY "7'tl
Elt'T&RNAl.LY' .11.0CJC. A
"fASlC US/Alfi 1'Hli H 41.1(..

---...8

.! bON06>lt1£
J-22-12

CR.UT!& A US'T Of TASKS

C.HllC:>C.POIMT
'TMll TASIC. .ANI>
R.Uc:.Ml.blJL.&.
i\4E SHU.FFU:R
FOil.THiS
PARTITIOlll.

I
F-. A 'llMH!NT t1' T~a l NO ~
OIAA....,. PACl'ITIONJ OIUlllt l'ltA_,,,.Nf'S

~ ...
IT 8.V ASC.ll\llwt.11. PAlolttT'f,

WAIT tt S1&com

'l:ll!.C.L..AR.~ Pfl\A.TlTIO!ll To

HAVE L.or.16 ~llTSTlllNl>IN&

~.])ow'°r SMUFFLS 'NI

iASK.

CllNTIMll lC
s.~11.n-rlOll
~CAN

!.Hum.& 'nlll TASK.
(~D.ll1 A un' QI

c.oJ>e M!lla!)

CAI.I. 'TME !XEC.

($NlCT.SK) 'TO SE!.
IF~!£ WAITIM6

TASIC. CAN FIT
INTO l'\CMORY.

FlflSN
,ART I Tl ON
SCA/II

~ :: ..
"' •
I;
Ill

41

5oT A l'MAMINT

SUM • Siu °" woi.a AT
EMb Oii FM6MUIT

YtS

FtNb NElT OllCK">IU\'AIL&.
TAllC. IN Olballl'b un .

..... "'TMK

.Sift °' SUM'4=SUM + i..awc1t
llltlOltlT'f
TA'K

C.14Etl<.Pol~T AU. 'TASKS
CONSll>l!Rllb. RUc.Mll>Ut.E
~IE SHUl'l'l.ER FoA Tio!IS

PAATl'TION.

CDNTWU6
PA1tr1r1tw
SCAN

··t

..

•

()

•

Files-11 On-Disk Structure Specification

19-June-1975

Revised 15-June-1977

Revised 15-April-1981

Copyright (C) 1975, 1977, 1981
Digital Equipment Corporation, Maynard, Mass.

The material included in this functional specification,
including but not limited to instruction times and operating
speeds, is for information purposes only. All such material
is subject to change without notice. Consequently Digital
Equipment Corporation makes no claim and shall not be liable
for its accuracy.

This software is furnished under a license for use only on a
single computer system and may be. copied only with the
inclusion of the above copyright notice. This software, or
any other copies thereof, may not be provided or otherwise
made available to any other person except for use on such
system and to one who agrees to these license terms. Title
to and ownership of the software shall at all times remain
in Digital Equipment Corporation.

The information in this document is subject to change
without notice and should not be construed as a commitment
by Digital Equipment Corporation,

Digital Equipment Corporation assumes no responsibility for
the use or reliability of its software on equipment which is
not supplied by Digital Equipment Corporation.

Files-11 on-Disk Structure Page 2

1.0 Scope

This document is a specification of the on-media
structure that is used by Files-11. Files-11 is a general
purpose file structure which is intended to be the standard
file structure for all medium to large PDP-11 systems.
Small systems such as RT-11 have been specifically excluded
because the complexity of Files-11 would impose too great a
burden on their simplicity and small size.

This document describes structure level 1 of Files-11,
also referred to as ODS-1 (on-disk structure version 1).
This has been implemented on the RSX-11 family, (RSX-llM,
RSX-llM-PLUS, !AS, and RSX-llD) and on VMS. This document
describes the final level of functionality for ODS-1.
Structure level 2 (ODS-2) has been implemented on VMS and is
the basis for all new disk structure enhancements.

1.1 Summary of revisions made to this specification

1. Expanded File Characteristics to include most ODS-2
options.

2. Corrected H.FPRO to H.DFPR.

3. Added new fields to home block for date and count of
home block modifications.

4. Added Single Directory Support description and home
block field.

5. Added field in home block for pack serial number
(H.PKSR).

6. Added description of modified storage control block
format to support large disks.

7. Restricted maximum number of blocks supported on a
volume to 1,044,480.

8. Restricted ODS-1 to one block "clusters•.

9. Restricted ODS-1 to single volume structures.

10. Clarified and expanded references to operating system
support and relationship to ODS-2.

11. Removed RMS-11 definitions, to be provided in separate
specification common to ODS-1 and ODS-2.

Files-11 On-Disk Structure Page 3

2.0 Medium

Files-11 is a structure which is imposed on a medium.
That medium must have certain properties, which are
described in the following section. Generally speaking,
block addressable storage devices such as disks and Dectape
are suitable for Files-11; hence Files-11 structured media
are generically referred to as disks.

2.1 Volume

The basic medium that carries a Files-11 structure is
referred to as a volume. A volume (also often referred to
as a unit) is defined as an ordered set of logical blocks.
A logical block is an array of 512 8-bit bytes. The logical
blocks in a volume are consecutively numbered from 0 to n-1,
where the volume contains n logical blocks. The number
assigned to a logical block is called its logical block
number, or LBN. Files-11 is theoretically capable of
describing volumes up to 232 blocks in size. In practice, a
volume should be at least 100 blocks in size to be useful;
current implementations of Files-11 will handle volumes up
to 224 blocks.

The logical blocks of a volume must be randomly
addressable. The volume must also allow transfers of any
length up to n5k bytes, in multiples of four bytes. When a
transfer is longer than 512 bytes, consecutively numbered
logical blocks are transfered until the byte count is
satisfied. In other words, the volume can be viewed as a
partitioned array of bytes. It must allow reads and writes
of arrays of any length less than ~5k bytes, provided that
they start on a logical block boundary and that the leng~h
is a multiple of four bytes. When only part of a block is
written, the contents of the remainder of that logical block
will be undefined.

2.2 Volume Sets

This section is of historical interest only. ODS-1
does not and will not support volume sets. A volume set is
a collection of related units that are normally treated as
one logical device in the usual operating system concept.
Each unit contains its own Files-11 structure; however,
files on the various units in a volume set may be referenced
with a relative volume number, which uniquely determines
which unit in the set the file is located on. Other
sections in this specification will make occasional
reference to volume sets and relative volume numbers where
hooks for their implementation exist. Since volume sets
have not been implemented as yet, however, no complete
specification is provided here.

Files-11 On-Disk Structure Page 4

3.0 Files

Any data in a volume or volume set that is of any
interest (i.e., all blocks not available for allocation) is
contained in a file. A file is an ordered set of virtual
blocks, where a virtual block is an array of 512 8 bit
bytes. The virtual blocks of a file are consecutively
numbered from 1 to n, where n blocks have been allocated to
the file. The number assigned to a virtual block is called
(obviously) its virtual block number, or VBN. Each virtual
block is mapped to a unique logical block in the volume set
by Files-11. Virtual blocks may be processed in the same
manner as logical blocks. Any array of bytes less than ~5k
in length may be read or written, provided that the transfer
starts on a virtual block boundary and that its length is a
multiple of four.

3.1 File ID

Each file in a volume set is uniquely identified by a
File ID. A File ID is a binary value consisting of 48 bits
(3 PDP-11 words). It is supplied by the file system when
the file is created, and must be supplied by the user
whenever he wishes to reference a particular file.

The three words of the File ID are used as follows:

Word 1

Word 2

Word 3

File Number

Locates the file within a particular unit of the
volume set. File numbers must lie in the range 1
through 65535. The set of file numbers on a unit
is moderately (but not totally) dense; at any
instant in time a file number uniquely identifies
one file within that unit.

File Sequence Number

Identifies the current use of an individual file
number on a unit. File numhers are re-used; when
a file is deleted its file number becomes
available for future use for some other file.
Each time a file number is re-used, a different
file sequence number is assigned to distinguish
the uses of that file number. The file sequence
number is essential since it is perfectly legal
for users to remember and attempt to use a File ID
long after that file has been deleted.

Relative Volume Number

Identifies which unit of a volume set the file is
located on. Volume sets are at present not
implemented; the only legal value for the

Files-11 on-Disk Structure Page 5

relative volume number in any context is zero.

3.2 File Header

Each file on a Files-11 volume is described by a file
header. The file header is a block that contains all the
information necessary to access the file. It is not part of
the file; rather, it is contained in the volume's index
file. (The index file is described in section 5.1). The
header block is organized into four areas, of which the
first three are variable in size.

3.2.1

3. 2. 2

3.2.3

3.2.4

Header Area

The information in the header area permits the
file system to verify that this block is in fact a
file header and, in particular, is the header
being sought by the user. It contains the file
number and file sequence number of the file, as
well as its ownership and protection codes. This
area also contains offsets to the other areas of
the file header, thus defining their size.
Finally, the header area contains a user attribute
area, which may be used by the user to store a
limited amount of data describing the file.

!dent Area

The ident area of a file header contains
identification and accounting data about the file.
Stored here are the primary name of the file, its
creation date and time, revision count, date, and
time, and expiration date.

Map Area

The map area describes the mapping of virtual
blocks of the file to the logical blocks of the
volume. The mapping data consists of a list of
retrieval pointers. Each retrieval pointer
describes one logically contiguous segment of the
file. The map area also contains the linkage to
the next extension header of the file, if such
exists.

End Checksum

The last two bytes of the file header contain a 16
bit additive checksum of the remaining 255 words
of the file header. The checksum is used to help
verify that the block is in fact a file header.

•

Files-11 On-Disk Structure Page r;

3.3 Extension Headers

Since the file header is of fixed size, it is
inevitable that for some files the mapping information will
not fit in the allocated space. A file with a large amount
of mapping data is therefore represented with a chain of
file headers. Each header maps a consecutive set of virtual
blocks; the extension linkage in the map area links the
headers together in order of ascending virtual block
numbers.

Multiple headers are also needed for files that span
units in a volume set. A header may only map logical blocks
located on its unit; therefore a multi~volume file is
represented by headers on all units that contain portions of
that file.

3.4 File Header - Detailed Description

This section describes in detail the items contained in
the file header. Each item is identified by a symbol which
represents the offset address of that item within its area
in the file header. Any item may be located in the file
header by locating the area to which it belongs and then
adding the value of its offset address. Users who concern
themselves with the contents of file headers are strongly
urged to use the offset symbols. The symbols may be defined
in assembly language programs by calling and invoking the
macro FHDOF$, which may be found in the macro library of any
system that supports Files-11. Alternatively, one may find
the macro in the file FllMAC.MAC, which may be obtained from
the author.

3.4.1 Header Area Description

The header area of the file header always starts at
byte 0. It contains the basic information needed for
checking the validity of accesses to the file.

3,4.1.1

3.4.1.2

H.IDOF Byte Ident Area Offset

This byte contains the number of 16 bit words
between the start of the file header and the start
of the ident area. It defines the location of the
ident area and the size of the header area.

H.MPOF 1 Byte Map Area Offset

This byte contains the number of 16 bit words
between the start of the file header and the start
of the map area. It defines the location of the
map area and, together with H.IDOF, the size of
the ident area.

Files-11 On-Disk Structure Page 7

3.4.1.3

3.4.1.4

3.4.1.5

3.4.1.7

H.FNUM 2 Bytes File Number

This word contains the file number of the file.

H.FSF.Q 2 Bytes File Sequence Number

This word contains the file sequence number of the
file.

H.FLEV ?. Bytes File Structure Level

The file structure level is used to identify
different versions of Files-11 as they affect the
structure of the file header. This permits
upwards compatibility of file structures as
Files-11 evolves, in that the structure level word
identifies the version of Files-11 that created
this particular file. This document describes
version 1 of Files-11; the only legal contents
for H.FLEV is 401 octal.

H.FOWN
H. PROG
H.PROJ

2 Bytes
H.FOWN+0
H.FOWN+l

File Owner UIC
Programmer (Member) Number
Project (Group) Number

This word contains the binary user identification
code (UIC) of the owner of the file. The file
owner is usually (but not necessarily) the creator
of the file.

H.FPRO 2 Bytes File Protection Code

This word controls what access all users in the
system may have to the file. Accessors of a file
are categorized according to the relationship
between the UIC of the accessor and the UIC of the
owner of the file. Each category is controlled by
a four bit field in the protection word. The
category of the accessor is selected as follows:

System

Owner

Bi ts 0 - 3

The accessor is subject to system
protection if the project number of the
UIC under which he is running is 10
octal or less.

Bi ts 4 - 7

The accessor is subject to owner
protection if the UIC under which he is
running exactly matches the file owner
urc.

Files-11 On-Disk Structure Page 8

3.4.1.8

Group

World

Bi ts 8 - 11

The accessor is subject to group
protection if the project number of his
UIC matches the project number of the
file owner urc.

Bits 12 - 15

The accessor is subject to world
protection if he does not fit into any
of the above categories.

Four types of access intents are defined in
Files-11: read, write, extend, and delete. Each
four bit field in the protection word is bit
encoded to permit or deny any combination of the
four types of access to that category of
accessors. Setting a bit denies that type of
access to that category. The bits are defined as
follows (these values apply to a right-justified
protection field) :

FP.RDV
FP.WRV
FF.EXT
FF.DEL

Deny read access
Deny write access
Deny extend access
Deny delete access

When a user
checks are
which he is

attempts to access a file, protection
performed in all the categories to

eligible, in the order system - owner
world. The user is granted access to

if any of the categories to which he is
grants him access.

group
the file
eligible

H.FCHA
H. UCHA
H.SCHA

2 Bytes
H.FCHA+0
H.FCHA+l

File Characteristics
User Controlled Char.
System Controlled Char.

The user controlled characteristics byte contains
the following flag bits:

UC.NID

UC.WBC

1 Bit, Reserved.

Set if incremental dump (backup)
be disabled for this file.

is to

Set if the file is to be write-back
cached; i.e., if a cache is used for
the file data, data written by a user is
only written back to the disk when is it
removed from the cache. Clear for
write-through cache operation •

,. •

Files-11 On-Disk Structure Page 9

UC. RCK

UC.WCK

UC.CNB

UC.DLK

UC.CON

Set if the file is to be read-checked.
All read operations on the file,
including reads of the file header{s),
will be performed with a read,
read~compare to assure data integrity.

Set if the file is to be write-checked.
All write operations on the file,
including modifications of the file
header{s), will be performed with a
write, read-compare to assure data
integrity.

Set if the file is allocated contiguous
best effort; i.e., as contiguous as
possible.

Set if the file is deaccess-locked.
This bit is used as a flag warning that
the file was not properly closed and may
contain inconsistent data. Access to
the file is denied if this bit is set.

Set if the file is logically contiguous;
i.e., if for all virtual blocks in the
file, virtual block i maps to logical
block k+i on one unit for some constant
k. This bit may be implicitly set or
cleared by file system operations that
allocate space to the file; the user
may only clear it explicitly.

The system controlled characteristics
contains the following flag bits:

byte

SC.SPL

3 Bits, Reserved.

Reserved {Access Control List).

Set if the file is an intermediate file
for spooling.

Files-11 On-Disk Structure Page 10

3.4.1.9

3.4.1.10

3. 4. 2

H.UFAT 32 Bytes IJser Attribute Area

This area is intended for the storage of a limited
quantity of- 11 user file attributes", i.e., any data
the user deems useful for processing the file that
is not part of the file itself. An example of the
use of the user attribute area is presented in
section !i. l {FCS File Format).

S.HDHD 46 Bytes Size of Header Area

This symbol represents the total size of the
header area containing all of the above entries.

Ident Area Description

The ident area of the file header begins at the word
and indicated by H.IDOF. It contains identification

accounting data about the file.

3. 4. 2.1 I.FNAM 5 Bytes File Name

These three words contain the name of the file,
packed three Rad ix-50 characters to the word.
This name usually, but not necessarily,
corresponds to the name of the file's primary
directory entry.

3. 4. 2. 2 I.FTYP 2 Bytes File Type

This word contains the type of the file in the
form of three Rad ix-50 characters.

3. 4. 2. 3 I. FVER 2 Bytes Version Number

This word contains the version number of the file
in binary form.

3. 4. 2. 4 I. RVNO 2 Bytes Revision Number

SC. DIR
This word contains the revision count of the file.

Set if the file is a directory. The revision count is the number of times the file

SC.BAD

SC.MDL

Set if there is
file. This bit
It is intended
handling.

a bad data block in the
is as yet unimplemented.
for dynamic bad block

Set if the file is marked for delete.
If this bit is set, further accesses to
the file are denied, and the file will
be physically deleted when no users are
accessing it.

3. 4. 2. 5

has been accessed for write.

I .RVDT 7 Bytes Revision Date

The revision date is the date on which the file
was last deaccessed after being accessed for
write. It is stored in ASCII in the form
11 DDMMMYY", where DD is two digits representing the
day of the month, MMM is three characters
representing the month, and YY is the last two
nigits of the year.

Files-11 On-Disk Structure Page 11

3. 4. 2. ~

3.4.2.7

3.4.2.B

3. 4. 2. 9

3.4.2.10

I. RVTI Ii Bytes Revision Time

The revision time is the time of day on which the
file was last deaccessed after being accessed for
write. It is stored in ASCII in the format
"HHMMSS", where HH is the hour, MM is the minute,
ano SS is the second.

I.CRDT 7 Bytes Creation Date

These seven bytes contain the date on which the
file was created. The format is the same as that
of the revision date above.

I. CRTI 6 Bytes Creation Time

These six bytes contain the time of day at which
the file was created. The format is the same as
that of the revision time above.

I.EXDT 7 Bytes Expiration Date

These seven bytes contain the date on which the
file becomes eligible to be deleted. The format
is the same as that of the revision and creation
dates above.

Byte (unused)

This unused byte is present to round up the size
if the ident area to a word boundary.

3.4.2.11 S.IDHO 46 Bytes Size of !dent Area

3. 4. 3

This symbol represents the size of the ident area
containing all of the above entries.

Map Area Description

The map area of the file header starts at the word
indicated by H.MPOF. It contains the information necessary
to map the virtual blocks of the file to the logical blocks
of the volume.

3.4.3.1

3. 4. 3. 2

M.ESQN 1 Byte Extension Segment Number

This byte contains the value n, where this header
is the n+lth header of the file; i.e., headers of
a file are numbered sequentially starting with 0.

M.ERVN l Byte Extension Relative Volume No.

This byte contains the relative volume number of
the unit in the volume set that contains the next

Files-11 on-nisk Structure Page 1/.

3.4.3.3

3.4.3.4

3.4.3.5

3. 4. 3. Ii

3.4.3.7

3.4.3.8

3.4.3.9

sequential extension header for this file. If
there is no extension header, or if the extension
header is located on the same unit as this header,
this byte contains 0.

M.EFNU 2 Bytes Extension File Number

This word contains the file number
sequential extension header for
there is no extension header, this
0.

of the next
this file. If
word contains

M.EFSQ 2 Bytes Extension File Sequence Number

This word contains the file sequence number of the
next sequential extension header for this file.
If there is no extension header, this word
contains 0.

M.CTSZ 1 Byte Block Count Field Size

This byte contains a count of the number of bytes
used to represent the count field in the retrieval
pointers in the map area. The retrieval pointer
format is described in section 3.4.3.9 below.

M.LBSZ 1 Byte LBN Field Size

This byte contains a count of the number of bytes
used to represent the logical block number field
in the retrieval pointers in the map area. The
contents of M.CTSZ and M.LBSZ must add up to an
even number.

M.USE l Byte Map Words In Use

This byte contains a count of the number of words
in the map area that are presently occupied by
retrieval pointers.

M.MAX 1 Byte Map Words Available

This byte contains the total number of words
available for retrieval pointers in the map area.

M.RTRV variable Retrieval Pointers

This area contains the retrieval pointers that
actually map the virtual blocks of the file to the
logical blocks of the volume. Each retrieval
pointer describes a consecutively numbered group
of logical blocks which is part of the file. The
count field contains the binary value n to
represent a group of n+l logical blocks. The
logical block number field contains the logical

...

Files-11 On-Disk Structure· Page 13

block number of the t'irst log-ical block' in the
group Thus . each. retrieval pointer maps virtual
blocks j through j+n into logical blocks k through
k+n, respectively, where j is the total number
plus one of virtual blocks represented' by all
pre.ceding retrieval po-inters in this. and all
preceding headers of the file, n is the val_ue
contained in the count fie1d, and k is the value'
contained in the logical block number field.

Al though the data in the map area provides for
arbi trar i.ly extensible retrieval pointer formats;
Files-11 has defined only three. Of these, only
the. first is .currently. implemented; the other two
are presented out of historical interest; they
will never be supported.

Format 1: M.CTSZ 1
M.LBSZ = 3

The total retrieval
four bytes. Byte
order bits of the 24
contains the count
<;1nd 4 contain the. low
LBN.

pointer length is
1 contains the high
bit LBN. Byte 2
field, and bytes 3

16 bits of the

1----------1----------1 I Count I High I
1----------1- -I I Low Order LBN I

1---------------------1
Format 2: M.CTSZ 2

M. LBSZ 2

The total retrieval pointer length is
four bytes. The first word contains a
16 bit count field and the second word
contains a 16 bit LBN field.

1---------------------1 I Count I
1---------------------1 I LBN I
1---------------------1

Format 3: M.CTSZ 2
M. LBSZ 4

The total retrieval pointer length is
six bytes. The first word contains a 16
bit count field and the second and third

• •

Files-11 On-Disk Structure Page 14

3.4.3.10

3.4.4

words contain a 32 bit LBN field.

1---------------------1 I ·Count +·
:1 ~-----~----.,.--.-,-'";.----I
I High I
1-- LBN --1
I Low I
1---------------------1

S.MPHD 10 Bytes Size of Map Area

This symbol represents the size of the map area,
not including the space used for the retrieval
pointers.

End Checksum Description

The header check sum occupies the last two bytes of the
file header. It is verified every time a header is read,
and is recomputed every time a header is written.

3.4.4.1 H.CKSM 2 Bytes Block Checksum

This word is a simple additive checksum of all
other words in the block. It is computed by the
following PDP-11 routine or its equivalent:

10$:

MOV
CLR
MOV
ADD
SOB
MOV

Header-address,R0
Rl
#255. ,R2
(Rfl)+,Rl
R2, 11'1$
Rl, (Rll)

Files-11 On-Disk Structure

3.~.A File Header Layout

Header Area

H.MPOF
1-------------------1-------------------1 I Map Area Offset I Ident Area Offset I
1-------------------1-------------------J
I File Number

1---------------------------------------1 File Sequence Number

l------------~--------------------------1 File Structure Level

1---------------------------------------
H.PROJ 1 File Owner UIC

l--------~------------------------------1 File Protection

1-------------------1-------------------
1 System Char. I user Char.

1-------------------1-------------------1
H.SCHA

I I
I I
I I
I User Attribute Area I
I I
I I
I I
1---------------------------------------1

Ident Area

!-----------------------~---------------! I I
1-- --1
I File Name I
1-- --1
I I
1---------------------------------------1 I File Type f
!---------------------------------------!

Version Number I
---------------------------------------!

Revis ion Number .I ________________ ; ____ ~-----------------!
I

--1
I Revision Date 1
1-- --1
I 1
·1-------------------1 --1

I.RVTI j I I
f-- 1-----------------~1
I J
1-- Revision Time --1

Page 15

H. IDOF

H.FNUM

H.FSEQ

H.FLEV
H.FOWN
H. PROG

H.FPRO
H.FCHA
A.UCHA

H.UFAT

S.HDHD

I.FNAM

I.FTYP

I .FVER

I .RVNO

I .RVDT

Files-11 On-Disk Structure

I I
1-------------------1 --1

I.CRDT I I I

Map Area

M.ERVN

M.LBSZ

M.MAX

4. 0

1-- 1-------------------1
I I
I--
I Creation Date
1-~
I
!---------------------------------------
!
I--
I Creation Time

1-- --1
I I
1---------------------------------------1
I I
1-- --1
1 Expiration Date I
,__ --!
I I
1-------------------1 --1
I (not used) I I
1-------------------1-------------------1

1-------------------1-------------------1 I Extension .RVN I Ext. Seq. l\lum. 1:
!------------------- t----------------·---1
I Extension. File Number I
1---------------------------------------1
I Extension File Seq. Num. 1

1-------------------1-------------------1
J LBl\I Field Size I Count Field Size I
1-------------------1-------------------1 I Map Words Avail. I Map Words in Use I
1-------------------1-------------------1 I I
I I
f I
I Retrieval Pointers I
I 1
I I
I I
l---------------------------------------1 I File Header Checksum I
1----~---------------------------------1

!lirectorLes

..

Page ln

I.CRTI

I. EXDT

S. IDHD

M'.ESQN

M.EFNU

M. EFSQ

M.CTSZ

M.USE
S.MPHD
M.RTRV

H.CKSM

Files-11 On-Disk Structure Page 17

Files-11 provides directories to allow the organization
of files in a meaningful way. While the File ID is
sufficient to locate a file uniquely on a volume set, it is
hardly mnemonic. Directories are files whose sole function
is to associate file name strings with File ID's.

4.1 Directory Heirarchies

Since directories are files with no special attributes,
directories may list files that are in turn directories.
Thus the user may construct directory heirarchies of
arbitrary depth and complexity to structure his files as he
pleases.

4.1.1 User File Directories

Current implementations of Files-11 all support a two
level directory heirarchy which is tied in with the user
identification mechanism of the operating system. Each UIC
is associated with a user file directory (UFD). References
to files that do not specify a directory are generally
defaulted to the UFD associated with the user's UIC. All
UFD's are listed in the volume's MFD under a file name
constructed from the UIC. A UIC of [n,m] associates with a
directory name of 11 nnnmmm.nIR;l", where nnn and mmm are n
and m padded out to three digits each with leading zeroes.
Note that all number conversions are done in octal.

Two points should be noted here. The UFD structure
described here is not intrinsically part of the Files-11
on~disk structure; rather, it is a convenient cataloging
system applied by various operating systems. Also, there is
no hard and fast relationship between the owner UIC of a
file and the UFD in which it is listed. Generally, they
will correspond, but not necessarily.

4.2 Directory Structure

A directory is a file consisting of 16 byte records.
It is structured as an FCS fixed length record file, with no
carriage control attributes (see section n for a description
of FCS files). Each record is a directory entry. The
entries are not required to be ordered, or densely packed,
nor do they have any other relationship to each other,
except that no two entries in one directory may contain the
same name, type, and version. Each entry contains the
following:

Fi le ID The three word binary File ID of the file that
this directory entry represents. If the file
number portion of the File ID field is zero, then
this record is empty and may be used for a new

Files-11 On-Disk Structure Page 18

Name

Type

Version

4.3

directory entry.

The name of the file may he up to 9 characters.
It is stored as three words, each containing three
Radix-50 packed characters.

The type of the file (also historically
to as the extension) may be up
characters. It is stored as one word of
packed characters.

referred
to three

Rad ix-5111

The version number of the file is stored in binary
in one word.

!---------------------!
I I
1-- --1
I File ID I
1-- __ ,
I I
1---------------------1
I I
1-- --1
I Name I
I--
I
!---------------------
' Type
1---------------------1 Version

1---------------------
Directory Protection

Since directories are files with no special
characteristics, they may be accessed like all other files,
and are subject to the same protection mechanism. However,
implementations of Files-11 support three special functions
for the management of directories, namely FIND, REMOVE, and
ENTER. A user performing such a directory operation must
have the following privileges to be allowed the various
functions:

Find:
Remove:
Enter:

READ
READ, WRITE
READ, WRITE

Note that the same privilege is required for both enter and
remove. The recovery for an operation that involves a
remove at the beginning of the sequence is an enter.

Files-11 On-Disk Structure Page 19

5.0 Known Files

Clearly any file system must maintain some data
structure on the medium which is used to control the file
organization. In Files-11 this data is kept in five files.
These files are created when a new volume is initialized.
They are unique in that their File ID's are known constants.
These five files have the following uses:

File ID 1,1,0 is the index file. The index file is the
root of the entire Files-11 structure. It contains the
volume's bootstrap block and the home block, which is used
to identify the volume and locate the rest of the file
structure. The index file also contains all of the file
headers for the volume, and a bitmap to control the
allocation of file headers.

File ID 2,2,0 is the storage bitmap file. It is used
to control the allocation of logical blocks on the volume.

File ID 3,3,0 is the bad block file. It is a file
containing all of the known bad blocks on the volume.

File ID 4,4,0 is the
MFD). It forms the
structure. The MFD lists
level user directories,
chooses to enter.

volume master file directory (or
root of the volume's directory
the five known files, all first
and whatever other files the user

File ID 5,5,0 is the system core image file. Its use
is operating system dependent; its basic purpose is to
provide a file of known File ID for the use of the operating
system.

5.1 Index File

The index file is File ID 1,1,0. It is listed in the

MFD as INDEXF. SYS; 1. The index file is the root of the
Files-11 structure in that it provides the means for

identification and initial access to a Files-11 volume, and

contains the access data for all files on the volume

(including its elf) •

5.1.1 Bootstrap Block

Virtual block 1 of the index file is the volume's boot
block. It is always mapped to logical block 0 of the
volume. If the volume is the system device of an operating
system, the hoot block contains an operating system
dependent program which reads the operating system into
memory when the boot block is read and executed by a
machine's hardware bootstrap. If the volume is not a system
device, the boot block contains a small program that outputs

e

Files-11 On-Disk Structure Page ?.0

a message on the system console to inform the operator to
that effect.

5.1. 2 Home Block

Virtual block 2 of the index file is the volume's home
block. The logical block containing the home block is the
first good block on the volume out of the sequence 1, 25~,
512, 768, 1024, 1280, •• • • 256n. The purpose of the home
block is to identify the volume as Files-11, establish the
specific identity of the volume, and serve as the ground
zero entry point into the volume's file structure. The home
block is recognized as a home block by the presence of
checksums in known places and by the presence of predictable
values in certain locations.

Items contained in the home block are identified by
symbolic offsets in the same manner as items in the file
header. The symbols may be defined in assembly language
programs by calling and invoking the macro HMBOFS, which may
be found in the macro library of any system that supports
Files-11. Alternatively, one may find the macro in the file
FllMAC.MAC, which is available from the author.

5.1.2.1

5.1.2.2

5.1.2.3

5.1.2.4

H. IBSZ Bytes Index File Bitmap Size

This 16 bit word contains the number of blocks
that make up the index file bitmap. (The index
file bitmap is discussed in section 5.1.3.) This
value must be non-zero for a valid home block.

H. IBLB 4 Bytes Index File Bitmap LBN

This double word contains the starting logical
block address of the index file bitmap. Once the
home block of a volume has been found, it is this
value that provides access to the rest of the
index file and to the volume. The LBN is stored
with the high order in the first 16 bits, followed
by the low order portion. This value must be
non-zero for a valid home block.

H.FMAX 2 Bytes Maximum Number of Files

This word contains the maximum number of files
that may he present on the volume at any time.
This value must be non-zero for a valid home
block.

H. SBCL 2 Bytes Storage Bitmap Cluster Factor

This word contains the cluster factor used in the
storage bitmap file. The cluster factor is the
number of blocks represented by each bit in the

•

Files-11 On-Disk Structure Page 21

5.1.2.5

s. i.2.r;

5.1.2.7

5.1.2.8

5.1. ?.. 9

storage bitmap. Volume clustering can
implemented in ODS-1; the only legal value
this item is 1.

H.DVTY 2 Bytes Disk Device Type

not
for

This word is an index identifying the type of disk
that contains this volume. It is currently not
used and always contains 0.

H.VLEV 2 Bytes Volume Structure Level

This word identifies the volume's structure level.
Like the file structure level, this word
identifies the version of Files-11 which created
this volume and permits upwards compatibility of
media as Files-11 evolves. The volume structure
level is affected by all portions of the Files-11
structure except the contents of the file header.
This document describes Files-11 version l; the
only legal values for the structure level are 401
and 402 octal. The former (401) is the standard
value for most volumes. The latter (402) is an
advisory that the volume contains a multiheader
index file. (A multiheader index file is required
to support more than about 26,000 files. The
index file may in fact be multiheader without the
volume having a structure level of 402) •

H. VNAM 12 Bytes Volume Name

This area contains the volume label as an ASCII
string. It is padded out to 12 bytes with nulls.
The volume label is used to identify individual
Files-11 volumes.

4 Bytes Not Used

H.VOWN 2 Bytes Volume owner UIC

This word contains the binary UIC of the owner of
the volume. The format is the same as that of the
file owner UIC stored in the file header.

5.1.2.10 H.VPRO 2 Bytes Volume Protection Code

This word contains the protection code for the
entire volume. Its contents are coded in the same
manner as the file protection code stored in the
file header, and it is interpreted in the same way
in conjunction with the volume owner UIC. All
operations on all files on the volume must pass
both the volume and the file protection check to
be permitted. (Refer to the discussion on file
protection in section 3. 4.1. 7).

..

Files-11 on-Disk Structure Page 22

5.1.2.ll H.VCHA 2 Bytes Volume Characteristics

This word contains bits which provide additional
control over access to the volume. The following
bits are defined:

CH.NOC

CH.NAT

CH.SDI

Obsolete, used by RSX-110/IAS. Set if
device control functions are not
permitted on this volume. Device
control functions are those which can
threaten th7 integrity of the volume,
such as direct reading and writing of
logical blocks, etc.

Obsolete, used by RSX-llD/IAS. Set if
the volume may not be attached, i.e.,
reserved for the sole use by one task.

Set if the volume contains only a single
directory. If this bit is set, no
directories should be created on the
volume other than the MFD. The access
methods should also be informed of this
situation, e.g. by setting the DV.SDI
bit in the device characteristics word.

5.1.2.12 H.DFPR 2 Bytes Default File Protection

5.1.2.13

This word contains the file protection that will
be assigned to all files created on this volume if
no file protection is specified by the user.

6 Bytes Not Used

5.1.2.14 H.WISZ Byte Default Window Size

This byte contains the number
pointers that will be used for
core file access data) when files
the volume, if not otherwise
accessor.

of retrieval
the 11 wi ndow 0 (in
are accessed on
specified by the

5.1.2.15 H.FIEX 1 Byte Default File Extend

5.1.2.16

This byte contains the number of blocks that will
be allocated to a file when a user extends the
file and asks for the system default value for
allocation.

H.LRUC Byte Directory Pre-access Limit

This byte contains a count of the number of
directories to be stored in the file system's
directory access cache. More generally, it is an
estimate of the number of concurrent users of the

Files-11 On-Disk Structure Page 23

5.1.2.17

5.1.2.17

5.1.2.17

volume and its use may
future.

H.REVD 7 Bytes Date
Revision

be

of

generalized in the

Last Horne Block

This field ill defined field is in the standard
ASCII date format and reflects the date of the
last modifications to fields in the home block.

H.REVC 2 Bytes Count of Horne Block Revisions

This field reflects the number of above mentioned
modifications.

2 Bytes Not Used

5.1. 2.18 H.CHKl 2 Bytes First Checksum

This word is an additive checksum of all entries
preceding in the home block (i.e., all those
listed above). It is computed by the same sort of
algorithm as the file header checksum (see section
3.4. 4.1).

5.1.2.19 H.VDAT 14 Bytes Volume Creation Date

5.1. 2. 21/J

This area contains the date and time
volume was initialized. It is in
"DDMMMYYHHMMSS", followed followed by
null. (The same format is used in the
of the file header, section 3.4.2).

382 Bytes Not Used

that the
the format

a single
ident area

This area is reserved for the relative volume
table for volume sets. This field will not be
used, although some versions of DSC referenced
this area.

5.1. 2. 21 H. PKSR 4 Bytes Pack Serial Number

This area contains the manufacturer supplied
serial number for the physical volume. For last
track devices, the pack serial number is contained
on the volume in the manufacturer data. For other
devices the user must supply this information
manually. The serial number is contained in the
home block for convenience and consistency.

5.1.2.22 12 Bytes Not used

Files-11 on-Disk Structure Page 24

5.1.2.23

5.1.2.24

H.INDN 12 Bytes Volume Name

This area contains another copy of the ASCII
volume label. It is padded out to 12 bytes with
spaces. It is placed here in accordance with the
volume identification standard (STD 167).

H.INDO 12 Bytes Volume Owner

This area contains an ASCII expansion of the
volume owner UIC in the form "[proj,prog]". Both
numbers are expressed in decimal and are padded to
three digits with leading zeroes. The area is
padded out to 12 bytes with trailing spaces. It
is placed here in accordance with the volume
identification standard (STD 167).

5.1. 2. 25 H. INDF 12 Bytes Format Type

5.1.2.26

5.1. 2. 27

This field contains the ASCII string "DECFILEllA"
padded out to 12 bytes with spaces. It identifies
the volume as being of Files-11 format. It is
placed here in accordance with the volume
identification standard (STD 167).

2 Bytes Not Used

H.CHK2 2 Bytes Second Checksum

This word is the last word of the home block.
contains an additive checksum of the preceding
words of the home block, computed according to
algo~ithrn listed in section 3.4.4.1.

.. .

It
255
the

,,

Files-11 On-Disk Structure Page 25

5.1.2.A Home Block Layout

1---------------------------------------1 I Index File Bitmap Size I H. IBSZ

1---------------------------------------1 I Index File I H. IBLB

1-- --1
I Bitmap LBN I

1---------------------------------------1 I Maximum Number of Files I H.FMAX

1---------------------------------------1 I Storage Bitmap Cluster Factor I H.SBCL

1---------------------------------------1 I Disk Device Type I H.DVTY

1---------------------------------------1 I Volume Structure Level I H.VLEV

1---------------------------------------1 I I H. VNAM

1-- --1
I I
1-- --1
I Volume Name I
1-- --1
I I
1-- --1
I I
1-- --1
I I
1---------------------------------------1 I I
I-- (not used) --1
I I
1---------------------------------------1 I Volume Owner UIC I H.VOWN

1---------------------------------------1 I Volume Protection I H.VPRO

1---------------------------------------1 I Volume Characteristics I H.VCHA

1---------------------------------------1 I Default File Protection I H.DFPR

1---------------------------------------1
I I
1-- --1
I (not used) I
1-- --1
I I
1-------------------1-------------------1 H.FIEX I Def. File Extend I Def. Window Size I H. WISZ

1-------------------1-------------------1
H.REVD I I Directory Limit I H.LRUC

1-- 1-------------------1
I I
1-- --1
I Volume Modification Date I

Files-11 On-Disk Structure

1-- --1
I

---------------------------------------1
Volume Modification Count I

---------------------------------------1

I
I-
I
1--

(not used)

First Checksum

Volume Creation Date

(not used)

I
--1

I
--1

I
--1

I
--1

I

I

---------------------------------------1 I
Pack Serial Number --1

I I

:::
I
I-
I
I--
I (not used)
1-- --1
I I
1-- --1
I I
1-- --1
I I
1---------------------------------------1
I I
1-- --1
I I
1-- --1
I Volume Name I

Page 2fi

H.REVC

H.CHKl

H.VDAT

H.PKSR

H.INDN

Files-11 On-Disk Structure

5.1. 3

1-- --1
I

--1
I

--1
I

---------------------------------------1

I-
I
I--
I

Volume Owner

I
--1

I
--1

I
--1

I
--1

I

1---------------------------------------
1
1--

--1
Format Type I

--1
I

--1
I

--1
I

---------------------------------------1 (not used) I

---------------------------------------1 Second Checksum I

---------------------------------------1
Index File Bitmap

Page 27

H. INDO

H, INDF

H.CHK2

The index file bitmap is used to control the allocation
of file numbers (and hence file headers). It is simply a
bit string of length n, where n is the maximum number of
files permitted on the volume (contained in offset H.FMAX in
the home block). The bitmap spans over as many blocks as is
necessary to hold it, i.e., max number of files divided by
4096 and rounded up. The number of blocks in the bitmap is
contained in offset H.IBSZ of the home block.

The bits in the index file bitmap are numbered
sequentially from 0 to n-1 in the obvious manner, i.e., from
right to left in each byte, and in order ?f increasi~g by~e
address. Bit j is used to represent file number J+l: 1f
the bit is 1, then that file number is in use; if the bit
is 0, then that file number is not in use and may be
assigned to a newly created file.

, ..

Files-11 On-Disk Structure Page 2R

The index file bitmap starts at virtual block 1 of the
index file and continues through VBN 2+m, where m is the
number of blocks in the bitmap. It is located at the
logical block indicated by offset H.IBLB in the home block.

5.1. 4 File Headers

The rest of the index file contains all the file
headers for the volume. The first 16 file headers (for file
numbers 1 to 16) are logically contiguous with the index
file bitmap to facilitata their location; the rest may be
allocated wherever the file system sees fit. Thus the first
16 file headers may be located from data in the home block
(H.IBSZ and H.IBLB) while the rest must be located through
the mapping data in the index file header. The file header
for file number n is located at virtual block 2+m+n (where m
is the number of blocks in the index file bitmap).

5.2 Storage Bitmap File

The storage bitmap file is File ID 2,2,0. It is listed
in the MFD as BITMAP.SYS;l. The storage bitmap is used to
control the available space on a unit. It consists of a
storage control block which contains summary information
about the unit, and the bitmap itself which lists the
availablilty of individual blocks.

5.2.l Storage Control Block

Virtual block 1 of the storage bitmap is the storage
control block. It contains summary information intended to
optimize allocation of space on the unit. The storage
control block has the following format for disks with less
than 4091il21i, (516,096 blocks):

(3 bytes)
(1 byte)
(2 bytes)
(2 bytes)

Not used (zero)
Number of storage bitmap blocks (less than 127)
Number of free blocks in 1st bitmap block
Free block pointer in 1st bitmap block

(2 bytes) Number of free blocks in nth bitmap block
(2 bytes) Free block pointer in nth bitmap block
(4 bytes) Size of the unit in logical blocks

For larger disks the following format is used:

(3 bytes) Not used (zero)
(1 byte) Number of storage bitmap blocks (greater than 126)
(4 bytes) Size of the unit in logical blocks
(246 bytes) Not used (zero)

Files-11 On-Disk Structure Page 29

Note: Current implementations of Files-11 do not correctly
initialize the word pairs containing number of free blocks
and free block pointer for each bitmap block, nor are these
values maintained as space is allocated and freed on the
unit. They are therefore best looked upon as 2n garbage
words and should not be used by future implementations of
Files-11 until the disk structure is formally updated.

5.2.2 Storage Bitmap

Virtual blocks 2 through n+l are the storage bitmap
itself. It is best viewed as a'bit string of length m,
numbered from II to m-1, where m is the total number of
logical blocks on the unit rounded up to the next multiple
of 409n. The bits are addressed in the usual manner (packed
right to left in sequentially numbered bytes). Since each
virtual block holds 4096 bits, n blocks, where n m/4096,
are used to hold the bitmap. Bit j of the bitmap represents
logical block j of the volume; if the bit is set, the block
is free; if clear, the block is allocated. Clearly the
last k bits of the bitmap are always clear, where k is the
difference between the true size of the volume and m, the
length of the bitmap.

The size of the bitmap is limited to 256 blocks. In
fact, due to existing implementations on all RSX systems,
the retrieval pointers must be in one of the following two
forms:

1. A single retrieval pointer mapping the entire BITMAP.SYS
file.

2. Two retrieval pointers, the first mapping the storage
control block only, and the second mapping the entire
bitmap proper.

This restriction limits ODS-1 to a volume of 409~255 blocks
(1,044,480 blocks or about 500 megabytes).

5.3 Bad Block File

The bad block file is File ID 3,3,11. It is listed in
the MFD as BADBLK.SYS;l. The bad block file is simply a
file containing all of the known bad blocks on the volume.

5.3.1 Bad Block Descriptor

Virtual block 1 of the bad block file is the bad block
descriptor for the volume. It is always located on the last
good block of the volume. This block may contain a listing
of the bad blocks on the volume produced by a bad block scan
program or diagnostic. The format of the bad block data is

•

Files-11 On-Disk Structure Page 311

identical to the map area of a file header, except that the
first four entries (M.ESQN, M.ERVN, M.EFNU, and M.EFSO) are
not present. The last word of the block contains the usual
additive checksum. (See section 3.4.3 for a description of
the map area.) This block is included in the bad block file
to save the data it contains for future re-initialization of
the volume.

Bad Block Descriptor Layout

5.4

-------------------1-------------------1 LBN Field Size I Count Field Size I

-------------------1-------------------1 Map Words Avail. I Map Words in use I

-------------------1-------------------1 I
I
I

Retrieval Pointers I
I
I
I

---------------------------------------1
Block Checksum I

---------------------------------------1
Master File Directory

The master file directory is File ID 4,4,11. It is
listed in the MFD (itself) as 00011011.DIR;l. The MFD is the
root of the volume's directory structure. It lists the five
known files, plus whatever the user chooses to enter. In
the two level UFD structure described in section 4.1.1, the
MFD contains entries for all user file directories.

5. 5 Core Image File

The core image file is File ID 5,5,11. It is listed in
the MFD as CORIMG.SYS;l. Its use is operating system
dependent. In general, it provides a file of known File ID
for the use of the operating system, for use as a swap area,
for example, or as a monitor overlay area, etc.

FCS File Structure

File Control Services (FCS) is a user level interface
to Files-11. Its principal feature is a record control
facility that allows sequential processing of variable
length records and sequential and random access to fixed
length record files. FCS interfaces to the virtual block

Files-11 On-Disk Structure Page 31

facility provided by the basic Files-11 structure.

~.l FCS File Attributes

FCS stores attribute information about the file in the
file's user attribute area (H.UFAT - see section 3.4.1.9).
It uses only the first 7 words; the rest are ignored by
FCS, but are reserved by DEC. (RMS uses an additional 3
words, 10 words in all, for relative and indexed file
attributes.) The following items are contained in the
attribute area; they are identified by the usual symbolic
offsets (relative to the start of the attribute area). The
offsets may be defined in assembly language programs by
calling and invoking the macro FDOFFS DEF$L. Flag values
and bits may be defined by calling and invoking the macro
FCSBTS. These macros are in the system macro library of any
operating system that supports Files-11. Alternatively, all
these values are defined in the system object library of any
system that supports Files-11, and may be obtained at link
time.

6.1. l

6.1. 2

F.RTYP 1 Byte Record Type

This byte identifies which
contained in this file.
values are legal:

type of records are
The following three

R.FIX
R.VAR
R.SEO

F.RATT

Fixed length records.
variable length records.
Sequenced Variable Length records

1 Byte Record Attributes

This byte contains record attribute bits that
control the handling of records under various
contexts. The following flag bits are defined:

FD.FTN

FD.CR

FD.PRN

Use Fortran carriage control if set.
The first byte of each record is to be
interpreted as a standard Fortran
carriage control character when the
record is copied to a carriage control
device.

Use implied carriage control if set.
When the file is copied to a carriage
control device, each record is to be
preceded by a line feed and followed by
a carriage return. Note that the FD.FTN
and FD.CR bits are mutually exclusive.

Used to indicate that the two byte
sequence number field for R.SEQ record
format is to be interpreted as print

...

Files-11 On-Disk Structure Page 32

6.1. 3

6.1. 4

6.1. 5

t;. l. 6

6.1. 7

t;. l.A

FD.BLK

F.RSIZ

control information (see Section 6.2.3.1
for format of print information).

Records do not cross block boundaries if
set. Generally, there will be dead
space at the end of each block; how
this is handled is explained in the
description of record formats in section
6.2.

2 Bytes Record Size

In a fixed length record file, this word contains
the size of the records in bytes. In a variable
or sequenced variable length record file this
word contains the size in bytes of the iongest
record in the file.

F.HIBK 4 Bytes Highest VBN Allocated

This 32 bit number is a count of the number of
virtual blocks allocated to the file. Since this
value i~ maintained by FCS, it is usually correct,
but it is not guaranteed since FCS is a user level
package.

F.EFBK 4 Bytes End of File Block

This 32 bit number is the VBN in which
file is located. Both F.HIBK and
stored with the high order half in the
bytes, followed by the low order half.

the end of
F.EFBK are
first two

F.FFBY 2 Bytes Fir st Free Byte

This word is a count of the number of bytes in use
in the virtual block containing the end of file·
i:e., it_ is the offset to the first byte of th~
file available for appending. Note that an end of
file that falls on a block boundary may be
represented in either of two ways. If the file
contains precisely n blocks, F.EFBK may contain n
and F.FFBY will contain 512, or F.EFBK may contain
n+l and F.FFBY will contain 0.

S.FATT 14 Bytes Size of Attribute Block

This symbol represents the total number of
in the FCS file attribute block.

FCS File Attributes Layout

1-------------------1-------------------1

bytes

Files-11 On-Disk Structure

F.RATT I Record Attr. I Record Type

1-------------------1-------------------1 Record Size (Bytes)

1---------------------------------------
1 Highest VBN
1-- --1
I Allocated I

1---------------------------------------1
End of File I

--1
VBN I

---------------------------------------! First Free Byte I
---------------------------------------!

Record Structure

Page 33

F.RTYP

F.RSIZ

F.HIBK

F.EFBK

F.FFBY
S.FATT

This section describes how records are packed in the
virtual blocks of a disk file. In general, FCS treats a
disk file as a sequentially numbered array of bytes.
Records are numbered consecutively starting with 1.

6. 2. 1 Fixed Length Records

In a file consisting of fixed length records, the
records are simply packed end to end with no additional
control information. If the record length is odd, each
record is padded with a single byte. The content of the pad
byte is undefined. For direct access, the address of a
record is computed as follows:

Let:

then

n
k
m
q
j
i

h
m

record number
record size (in bytes)
byte address of record in file
number of records per block
VBN containing the start of the record
byte offset within VBN j

((k+l)/2)2 (rounded up record length)
(n-l)h
m/512+1 (truncated)
m mod 512

The previous discussion assumes that records cross block
boundaries (that is, FD.BLK is not set). If records do not
cross block boundaries, they are limited to 512 bytes, and
the following equations apply (the variables are defined as
above):

h ((k+l)/2) 2 (rounded up record length)
q 512/k (truncated)
j (n-1)/q+l (truncated)
i ((n-1) mod q)h

..

Files-11 On-Disk Structure Page 34

6. 2. ::> Variable Length Records

In a file consisting of variable length records,
records may be up to 32767 bytes in length. Each record is
preceded by a two byte binary count of the bytes in the
record (the count does not include itself). For example, a
null record is represented by a single zero word. The byte
count is always word aligned; i.e., if a record ends on an
odd byte boundary, it is padded with a single byte. The
content of the pad byte is undefined.

If records do not cross block boundaries (FD.BLK is set),
they are limited to a size of 510 bytes. A byte count of -1
is used as a flag to signal that there are no more records
in a particular block. The remainder of that block is then
dead space and the next record in the file starts at the
beginning of the next block.

6.2.3 Sequenced Variable Length Records

The format of a sequenced file is identical to a
variable length record file except that a two byte sequence
number field is located immediately after the byte count
field of each record. This field contains a binary value
which is usually interpreted as the line number of that
record (see section 6.1.2 FD.PRN ancl Section li.::>.3.1). The
sequence number is not returned as part of the data when a
record is read, but is available separately. Note that the
record byte count field counts the sequence number field as
well as the data of the record.

~.2.3.1 Format of Two Byte Print Control Field in R.SEO
Records

If the FD.PRN bit is set in the record attribute then
the two byte "sequence number 11 field is used to contain
carriage control data for the record. Byte 0 is print
control information to act upon before the record data is
output to a unit record device; byte is print control
information to act upon after the record data has been
output to a unit record device.

The format of each byte is as follows:

Bit 7 Bits 6-0 Meaning

0 0 No carriage control
0 count(l-127) 11 count 11 new lines (CR/LF)

Bit 7 Bit 6 Bit 5 Bits 4-0 Meaning

--'!1191"

Files-11 on-Disk Structure Page 35

1 " A l\SCII C!'f set l\SCII char to
output (CR,FF etc.)

1 {I) 1 ASCII Cl set ASCII char (8 bit code)

1
1

to output
1 ~ CODE (!'f-63) Device specific code
1 1 Reserved

NOTE

The print control field is not currently supported
by FCS or RMS-11.

. -- -'~.,

#/'~,

"'

