
volume 3 number I april 1984

TOOLKIT
the UNISIG newsletter

~.s/_
~
CDECUS

US CHAPTER

Printed in the U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL
DECnet Digital Logo
DECsystem-10 EduSystem
DECSYSTEM-20 IAS
DECUS MASSBUS
DECwriter PDP

UNIX is a trademark of Bell Laboratories.

Copyright© Digital Equipment Corporation 1984
All Rights Reserved

PDT
RSTS
RSX
UNIBUS
VAX
VMS
VT

It is auumed that all articles submitted to tha editor of this newsletter are with the authors' permission to publish In any DECUS
publication. The articles are the responsibility of the authors and, therefore, DECUS, Digital Equipment Corporation, and the
editor assume no responsibilltY or liability for articles or Information appearing In the document. The views herein expressed are
those of the authors and do not necessarily express the views of DECUS or Digital Equipment Corporetlon.

TOOLKIT is the newsletter of UNISIG, the DECUS UNIX-oriented
special interest group. TOOLKIT articles range widely over
UNIX topics: DEC's UNIX/v7m and UL TRIX, BSD 2. 9 and BSD 4. 2,
device drivers, operating systems comparisons, varieties of
user interfaces, performance analysis, multi-operating sys tern
applications, UNIX standards, local area networking, long haul
networking, uucp, USENET, UNIX communication with DEC and IBM
operating systems, UNIX hints and kinks, C, r77, rat for, lex,
yacc, nroff/troff, developments in the Software Tools movement,
site surveys, DECUS Symposia, and more.

The editors are:

Don Crabb
University of Chicago
Computation Center
5737 South University Avenue
Chicago, IL 60637

312-962-7173

William Toth
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, P-353
Cambridge, MA 02138

617-495-7181
{ihnp41allegralgenradlamd70lima}!wjh12!hscfa!toth

We invite readers to submit articles, book reviews, software
reviews, and thoughtful letters for publication in TOOLKIT.
Text should be submitted in machine-readable form, if possible.
We can read RX02 floppy disks and 9-track ma gt ape (800 bpi or
1600 bpi); computer-to-computer text transfers via telephone
can be accomplished by using uucp or by arranging ordinary
dialups with either of the editors.

l

In this issue •••

we reproduce a classic of the DECOS literature, Martin Minow's
A C Style Sheet [page 3]. Minow probably is best known to most
of us as the man who wrote the DECOS C compiler. His notes on
style are filled with programming wisdom.

From the St. Louis Spring 1983 DECUS Symposium we have three
articles. UNIX Hints and Kinks [page 35] summarizes a general
panel discussion led by Armando Stettner. David Moore's and
John Livingston's Writing C Code for VAX/VMS and UNIX Systems
[page 37] details portability issues of special interest to C
programmers who work in both UNIX and VAX/VMS ':!nvironments.
Networking with UNIX in Tokyo [page 39] by Ishida, Adachi,
Kimura, and Takano, records how technical problems (some of
them amusing) were handled in a rather difficult project.

This issue's back matter includes a transcript of the operating
principles of UNISIG, a listing of the UNISIG steering commit­
tee membership, and, of course, a subscription form.

In the coming issues we will feature an article on uucp and

USENET, an article on UNIX in local area networks, and a review
of the new book, The UNIX Programming Environment, by Brian
Kernighan and Rob Pike.~--

2

1.0 Introduction

AC Style Sheet

Martin Minow
Digital Equipment Corp.
146 Main St. MLO 3-3/U8

Maynard MA 01754

This document presents a common set of coding standards, as well
as a series of hints to aid in producing maintainable C
software. It is abstracted from a number of sources:

Brian Kernighan and Dennis Ritchie. The C Programming
Language.

Indian Hill C Style and Coding Standards (Bell
Labs unpublished Technical Memorandum 78-5221,

Telephone
March 29,

Spencer 1978). (with annotations by Henry
(utzoo!henry), University of Toronto.)

Joe Kalish. "Ingres Coding Conventions
Programming" (INGVAX.kalish @ Berkeley)

for C/Unix

Dan Franklin. BBN Programming Standards for C. (Dan @
BBN-UNIX)

Andrew Shore, et al. Network Graphics C Style Sheet.
Stanford University, (from CSL.LANTZ@ SU-SCORE).

Ray Van Tassle. C Language Programming
Motorola DCS. Motorola, Inc. 1301 E.
Room 4135, Schaumburg, IL 60196.

It is also based heavily on my own experience in
number of large, transportable applications in C,
Vax-11 C, and several varieties of Unix c. (Unix
of Bell Laboratories).

Standards for
Algonquin Road,

developing a
using Decus C,
is a trademark

As could be expected, the suggested style does not totally agree
with any of the referenced documents.

The reason a you should maintain a consistent coding style is
that good programs will evolve. When writing a new program, you
will often take routines and data structures from old -- working

software. This is much easier to do if the old software is

3

A C Style Sheet

understandable. Unreadable software is unusable, no matter how
well it works.

The single most important thing about a typographical style is
sticking to it consistently. There are many good styles, but
the differences among them are totally drowned out by the
difficulty of reading a program with pieces in different styles.
If you modify a program, stick to its original style. If you
must change things -- you really cannot live with the old style
:-:-Change the whole program, or at least all the parts logically
related to what you are changing.

In recommending against automatic beautifiers (prettyprinters),
the Indian Hill standards committee noted:

"First, the main person who benefits from good program style
is the programmer himself. This is especially true in the
early design of handwritten algorithms or pseudo-code.
Automatic beautifiers are not available when the need
for attention to white space and indentation is greatest.
It is also felt that programmers can do a better job of
making clear the complete visual layout of a function or a
file with the normal attention to detail of a careful
programmer."

These comments are relevant to any rigid application of a
programming or typographical style. There will always be cases
where the automatic rule is unsatisfactory and you, as the
person responsible, must be able to understand that your primary
goal is to achieve clarity and understandability.

2.0 File Organization

A file consists of several sections separated by blank lines or
a form-feed (<FF>). If you use a form-feed, it should be the
only character on the line.

In general, source files should not be much longer than 1000
lines. Larger files are often difficult to edit and -- if too
large -- cannot be processed by the diff (differences) program.
1000 lines translates to about 12-15 pages of text. Source
lines should not be longer than 78 characters long.

A source file should be organized as follows:

1. A prologue comment gives the file name and one or two
sentences telling what is in the file. This is followed, if
necessary, by copyright and license "boilerplate." The
prologue tells the reader the purpose of the text of the
file, whether it contains functions, data definitions,
tables, or support code. It should not generally be a list
of function names.

4

A C Style Sheet

In some programs, C source files may be created by program
generators. For example, a dictionary may be compiled into
a keyword vector (one file) and a definition vector (one
file). In this case, the program generating the files
should write the date of generation {as a comment) into the
C file source. If the generated program file may require
editing, consider including the source of the generated
information, either as comments or as text bracketed by
#ifdef's, as an aid to the debugger.

2. Usage and operating instructions follow next. Decus C
programs should use the format accepted by the "getrno"
utility program. This allows the program source file to
contain the source of its documentation and lessens the
burden of keeping the documentation in synchronization with
the program itself.

Program compilation instructions are included in this
section. Decus C programs should use the build utility to
maintain compilation instructions. Unix programs should
include a source copy of the program's makefile. Again,
this centralizes everything relevant to maintenance of a
program in one place.

3. Header files are specified {using the #include preprocessor
directive). The suggested header file order is

4.

5.

#include <stdio.h>
#include <other system headers>
#include "user header files"

Note that header files should be given the ".h"
while all C source files should be given the ".c"

filetype,
filetype.

In allocating header files for large packages of programs,
you should avoid absolute pathnames for header files. Use
the <name> construction for system files, relative
directories for Unix and VMS systems, and externally defined
logical devices for RSTS/E and RT11. If the subsystem is
reasonably small, put all source files in one directory.

Typedefs, #defines and structure
the file as a whole are next.
defined as "typedef struct {
should be grouped functionally.

Global data definitions are next.

definitions that apply to
Structures should always be

} NAME;". Definitions

The suggested order is

1. Global variables defined in this file.

2. Static (file global) variables.

3. External variables and functions.

If a program is large enough to require multiple source

s

A C Style Sheet

files, all global data should be defined by a "data.c" file
which only contains data definitions, while all other source
files contain extern references. Alternatively, the file
containing the main program, documentation, and build
instructions should contain data definitions.

A very large program would contain global references in an
"extern.h" include file in addition to a "data.c" definition
file.

6. Functions come last. If the file is a main program, the
main() function is first.

2.1 Header Files

Header files are included in other files during compilation.
Some, such as "stdio.h" are defined system-wide, and must be
included by any C programs that use the standard I/O library.
Others are used within a single program or suite of programs.

Header files should be functionally organized. Declarations for
separate subsystems should be in separate header files.

Header files should not be nested. This is not permitted by
Decus C and some objects, such as typedefs and initialized data
definitions must not be seen twice by the compiler in one
compilation.

Header files should contain all #defines, typedefs, and extern
declarations necessary for a given program and shared among two
or more of its files.

Header files should not declare variables. This is frequently a
symptom of poor partitioning of code between files. One header
organization that has worked well for several medium-sized
projects is:

o Definitions, including common data structures go in one
header file. Things defined in this file are common to the
entire package.

0 All external (global) data is defined in a second header
file.

0 This file is paralleled by a data.c file containing all
global data allocations.

0 Definitions required by bounded subsystems go in separate
files.

6

A C Style Sheet

3.0 Declarations and Definitions

The use of the #define preprocessor command is especially
recommended. In general, numerical constants and array
boundaries should never be coded directly. They should be
assigned a meaningful name and assigned their permanent value by
the #define. This will make it much easier to administer large
and evolving programs as the constant value can be changed
uniformly by changing the #define and recompiling.

The enumeration data type (not in Decus C)
manner of managing constant definitions
checking is then available.

offers an improved
as additional type

In general, all constant values which are not strictly numeric
should be specified by #defines. Exceptions to this rule are
the values O and 1 when used as the lower boundary of an array,
relative indices (if pis a pointer to an array element, p[1] is
the next element, while p[-1] is the previous element). and
strictly numeric quantities. #defines may even be useful in the
latter situation as well:

#define SPEED LIMIT 55

Note that defined quantities should always be in upper-case.

Directly-coded numerical constants must
explaining the derivation of the value.

have a

It is generally poor practice
syntax. for example, the
recommended:

#define reg
Udefine begin
#define end

register
{
}

to use #defines to
following definitions

comment

modify C
are not

In certain circumstances, however, this may be necessary for
proper compilation or fastest possible execution:

#define DIV 2
#define DIV-~

>> 1
>> 2

Replacing divides by right-shifts cannot be done by the compiler
as it would yield incorrect results if the divisor were
negative. If the programmer knows that the divisor must be
positive (which fact being duly documented), this optimization
becomes possible.

Also, the programmer may need to conceal non-portable quirks by
means of centrally-placed definitions:

#ifdef decus
#define UNSIGNED LONG
Uelse

long

7

A C Style Sheet

#define UNSIGNED LONG
llendif

unsigned long

As will be noted under portability,
small number of variables that
compile machine or operating-system
one program run on multiple systems

most C compilers predefine a
may be used to conditionally
specific code.· This allows
without hand-editing.

It is highly recommended that you use the following definitions
freely and consistently:

lldefine
Ode fine
I/define
#define

NULL
EOS
FALSE
TRUE

0
'\O'
0
1

NULL is defined by <stdio.h> and generally need not be
explicitly specified by your program. EOS marks the end of a C
string, while FALSE and TRUE are used for Boolean testing. You
will probably get in the habit of only referring to FALSE in
your if statements:

if (test !: FALSE) {

This generates the best possible code. TRUE is usually used to
return a "success" value from a function. Don't use both TRUE
and YES in the same program to mean the same thing.

If a structure contains a data element that can take on one of
several values, it is a good practice to put the #define's for
that element within the structure definition. For example, here
is a fragment (slightly reorganized to fit on the documentation
page) from a Vax-11 C header files that defines a VMS system
structure:

1•
• XABSUM -- Summary Extended Attribute Block
•1

struct XABSUM {
char xab$b cod;

I/define XAB$C SUM 22
char xab$b bln;

lldef ine XAB$C SUMLEN OxOC
#define XAB$K=SUMLEN OxOC

I* type code *I

I* block length *I

Note that the information that would be placed in each field is
#define'd following that field. The definitions and structure
fields follow standard VMS syntax conventions.

The empty initializer"{}" should never be used. Initialized
structures should be fully delimited with braces. Constants
used to initialize longs should be explicitly long.

8

A C Style Sheet

In any file which is part of a larger context, all local
information should be identified by use of the static keyword.
Variables, in particular, should not be accessible outside the
file unless there is an overriding need for global access. If
these variables are shared by only one or two other files, you
should name these files in a comment.

4.0 Comments

The importance of comments cannot be overemphasized. In any
professional environment, many people will have to read your
code, trying to understand what you have done. Sometimes, they
wish to modify it to do other things; sometimes they need to
modify it to do what you originally intended to do. "Try to
make life easy for them and maybe they will be nice to you
someday."

The purpose of a comment is to describe your intention. If
properly written, the code itself will adequately tell what you
actually did. There are two general types of comments:

Block comments are narratives describing the purpose of a
portion of the program text. They are written in the following
format:

I*
* The comment text is written
* here in complete sentences.
*I

The comment text should be at the same level of indentation as
the source code it discusses. You should never write a comment
that could be interpreted as a C statement (unless the comment
is blocking out temporary debugging code). A block comment
should always be included at the beginning of a major segment of
the program.

Very short comments may appear on the same line as the code they
describe. They should be tabbed over far enough to separate
them from the statements. if more than one short comment
appears in a block of code, they should all start at the same
tab position:

while (!finish()) {
inquire();
process();

}

I* Main sequence: *I
I* Get user request */
I* And carry it out *I
I* As long as possible. *I

Note that all single-line comments start at some specific column
and end with the closing "*/" tabbed to column 72 on the line.
Closing the comment at the right-hand margin makes it more
readable than if the "*/" were next to the comment text itself:

9

A C Style Sheet

while (!finish()) {
inquire();
process();

}

I* Main sequence: *I
I* Get user request *I
I* And carry it out *I
I* As long as possible. *I

In general, you should use one-line comments to document
variable definitions and block comments to describe the
computation processes. The above comments should actually have
been written as a block comment:

I* * Main sequence: get and process
* all user requests.
*I

while (!finish()) {
inquire();
process();

}

5.0 Function Declarations

Each function should be
simplify searches for
function returns a value
the proceeding line.

defined beginning in column 1
the function's definition). If
or is static, that should be alone

(to
the

on

Each formal parameter should be declared, with a comment, on a
separate line. If the function uses any external variables or
functions (that do not return integers), these should be
declared with other local variables. This is particularly
beneficial to someone reading code written by another.

The format for the function declaration may be illustrated as
follows:

char *
savest(string)
char *string; I* String to save *I
I*

{

}

* Savest saves its argument string in free storage,
* returning a pointer to the allocated datum.
* It returns NULL if the allocation fails.
*I

register char
extern char

*ptr;
*malloc();

if ({ptr = m~lloc(strlen(string) + 1)) !: NULL)
strcpy(ptr, string);

return (ptr);

10

A C Style Sheet

Note that, in the example above, the function description
followed the formal definition itself. Another acceptable style
precedes the function by a block comment.

1•
• match(string, pattern)

* * If the pattern is an initial substring of string,
* return a pointer to the first character of the
* string s beyond those matching the pattern,
* Otherwise, return NULL. Thus:
* match("abcde","abc")
* returns a pointer to the 'd' in the first string;
* match("abcde","bc")
* returns NULL.
*I

char *
match(string,
register char
register char
{

pattern)
*string;
•pattern;

I* Source
I* for match

while (*string -- *pattern && •string != EOS) {
pattern++;
st ring++;

}

return ((•pattern== EOS) ? string : NULL);

•1
*I

Note that, in this format, the block comment is separated from
the function definition by a blank line.

6.0 Structure and Variable Declarations

Structures are one of the most important features of C. They
enhance the logical organization of your code, offer consistent
addressing, and will generally increase the efficiency and
performance of your programs by a significant amount.

In general, if there are two or more "things" in your program
that are addressed by the same index, they should be defined by
a common structure. This gives you great freedom to allow the
program to evolve (by adding another "thing" to the structure,
for example), or to modify storage allocation (from pre-compiled
to dynamic allocation).

For example, if your program processes symbols where each
symbol has a name, type, flags, and an associated value, you
shouldn't define separate vectors:

char *name[NSYMB];
int type[NSYMB];

11

A C Style Sheet

int flags[NSYMB];
int value[NSYMB];

but, rather,

typedef struct symbol {
char •sy name;
int sy type;
int sy-flags;
int sy-value;

SYMBOL; -

SYMBOL symboltable[NSYMB];

All structures should be defined by typedef's. Note, also, the
use of a header ("sy ") to identify members of the SYMBOL
structure. -

The local variables used by a function should have names that do
not duplicate global names.

7.0 Compound Statements

Compound statements carry out the calculations required by the C
program. They are lists of statements enclosed in braces. They
should be tabbed over one more than the tab position of the
compound statement introducer itself. (Four space indentation
is recommended, although it is certainly more convenient to use
the hardware-provided eight position tab stops. If you change
your mind in the middle of a program, you should have the
courtesy to re-edit the rest of the file so it is consistent.)

The opening left brace should be at the end of the line
beginning the compound statement and the closing right brace
should be alone on a line, tabbed under the beginning of the
compound statement. Note that the left brace beginning a
function body is the only occurrence of a left brace which is
alone on a line. This is the "Indian Hill" style, also present
in Kernighan and Ritchie's book. (Other style sheets recommend
placing the opening left brace alone on the line following the
statement opener. Choose one style; be consistent. This
subject will be discussed further in a subsequent section.)

The right brace before the while of a do-while statement is the
only place where a closing right brace is not alone on a line:

do {
stuff();

} while (cond !: FALSE);

It is good practice always to provide braces, even when they are
are not required by the language:

12

A C Style Sheet

if (abc < def) {
lesser();

}
else if (abc == def) {

equal ();
}
else {

greater();
}

This prevents surprises when you add debugging statements.

Never, never, write nested conditionals or loops without braces:

for (dp = &values[O]; dp < top value; dp++)
if (dp->d value == arg value

&& (dp->a flag & arg Tlag) !: O)
return-(dp); -

return (NULL);

While the above is correct C, it is
unmaintainable. It should always be written as

for (dp = &values[O]; dp < top value; dp++) {
if (dp->d value == arg value

&& (dp->d flag & arg ?lag) !: 0)
return-(dp); -

}
}
return (NULL);

13

If the span of a block is large (more than about 40 lines) or
there are several nested blocks, closing braces should be
commented to indicate what part of the process they delimit:

for (sy = sytable; sy !: NULL; sy = sy->sy_link) {
if (sy->sy_flag -- DEFINED) {
} I* if defined
else {

} I* if undefined
I* for all symbols

*I

*I
*I

Each line should contain one and only one statement. The only
exception to this is the "else if" construction as shown above.
In a sequence of "if ••. else if ••• " statements, there should
always be a terminating "else" even if it is merely a dummy
statement. Note especially that an if statement and its
associated conditionally executed statement appear on separate
lines.

If a for or while statement has a dummy body, the
the next line:

I • I

' must go on

A C Style Sheet

1•
• Locate end of string
•1

for (charp = string; *charp !: EOS; charp++)

There are few more insidious bugs than an extra ';' tacked on
the end of a for loop statement. Everything will compile
normally and the code might even work for some cases, but
because of the invisibility of the ';' -- the bug will be very
difficult to track down.

There should always be a blank between reserved words and
opening parentheses, e.g., "if (condition)" rather
"if(condition)". There should also be parentheses around
objects of sizeof and return.

their
than
the

If the conditional test in an if statement is so complex that it
requires more than one line, break it at an && or I I, and line
up the expressions so the tests line up as well:

if Ca == b
&& b == c) {

printf("a == c");

If the conditional test extends over one line, always enclose
the conditionally-executed statement in braces.

The above is a special case of a more general recommendation
that you break statements across lines at meaningful boundaries,
and attempt to align the components to make the meaning clear.
For example, the following sequence computes the length of an
RMS logical record.

r->lrecl = r->rab.rab$w rsz /*
+ ((hbyte !: EOS) ? 1 T 0) /I
+ ((tbyte !: EOS) ? 1 : 0) I*
- offset 1•
+ hnewline
+ tnewline;

1•
1•

Record size from RAB */
If header byte */
If trailer byte */
For Fortran hacking */
For VFC hacking */
For VFC hacking */

Switch statements offer a good alternative to multiple if •.. else
sequences. Each case appears by itself on a line, tabbed under
the switch itself. The break that terminates a case should be
followed by a blank line. The "fall through" feature of C's
switch statement should rarely, if ever, be used. If it is
needed, it must be commented for further reference:

count = O;
while ((c = getchar()) !: EOF) {

switch (c) {

case '\n':
lines++;

I* Newline,
I* count lines

*I
*I

14

A C Style Sheet

1•
* Fall through to "end of word" case
*I

15

case '\t': I* Tabs, newlines, and blanks */
case ' ': I* Form words. *I

words += count;
count = O; I* Don't count multiple runs */
letters++; I* But count all "white space" *I
break;

}

default:
letters++;
count = 1;
break;

words += count;

I* All the rest form a word *I

I* Fix count of last word *I

The above implements the central algorithm of a "word count"
routine where a newline, blank, or tab terminates a word, but
multiple blanks do not increase the number of words.

Note that the break following the last case is redundant, but
should be provided to make the programmer's intent clear. In
general, the default case should be last.

All switch statements should have a default case, which may
merely be a "fatal error" exit.

8.0 Expressions and Operators

C is an expression language. This means -- in essence that
the assignment statement "a = b" itself has a value which can be
embedded in a larger context. This should be used very
sparingly. For example,

while ((value= *pointer++) !: 0) {
process(value);

}

shows a standard C idiom which all programmers should recognize.
It is essential, however, that you do not carry this to extremes
by embedding multiple assignments (or other side-effects) in a
statement.

Blanks should surround all binary operators except those which
compose primaries, (".", "->"). No blanks should separate a
unary operator (such as '-', '&', '[]', '! ') from its operand.
Sizeof and return are exceptions to this rule.

Some judgement is called for here as there are a few situations
when complex expressions become clearer when inner constructions
don't have spaces. For example,

A C Style Sheet

x = (a*b) + (c*d);

Blanks should appear after commas in argument lists to help
separate the arguments visually. On the other hand, macros with
arguments and function calls should not have a blank between the
name and the left parenthesis.

Side effects within expressions should be used sparingly. No
more than one operator with a side-effect ("=", "op:", "++",
"--") should appear within an expression. It is very easy to
misunderstand the rules for C compilation and get side-effects
compiled in the wrong order. For example,

func(*ptr++, *ptr++);
*ptr = *ptr++;
*ptr++ = *ptr;

Are not necessarily going to do what you expect.

The old versions of the assigned operators ("=+", etc.) must not
be used. Always surround assigned operators by spaces.
"x=*foo" is interpreted as "x = x * foo" (even if foo is a
pointer).

The comma operator should be used exceedingly sparingly. One of
the few appropriate places is in a for statement:

for (sum= O, ptr = &array(OJ;
ptr < &array[A MAX];) {

sum += *ptr++; -

Since C has some unexpected operator precedence rules, all
expressions involving mixed operators should be fully
parenthesized. This is especially true when mask operators (&,
I, and ~) are combined with shifts.

9.0 Naming Things

When a program must be used as part of a larger context, whether
it be a subroutine library, or an independent program within an
application package, the programmer's creativity in defining
mnemonic names must be subservient to the needs of the group as
a whole. The following suggestions for program and variable
names in large projects were taken from a C programming
standards manual by Ray Van Tassle:

16

A C Style Sheet

9.1 Naming Rules

o Application program names should follow a standard format,
such as:

The 1st 2 or 3 characters = subsystem code
The rest = unique meaningful identifier

o Names (variables, structs, unions, and procedures) are
lower-case, unique in the first eight characters. (Some C
systems require names to be unique in the first six
characters.)

External names must be unique in the first six characters.

If the first letter in an external name is an underscore ' '
it indicates a system-internal name, (such as a routine
within a file-management I/O system). Applications programs
should not use this; as it implies system-level
programming. Trailing underscores should also be avoided.

(Note that this may conflict with variables defined by your
operating systems. For example, on RSX-11M, the operating
system file management routines use in effect a
leading underscore.

Longer names and underscore should be used freely to improve
readability and understandability.

Upper-case and lower-case may not be mixed in a name.

Names more than four characters long should differ by at
least two characters:

systst, sysstst 1• are easily confused •/
Constants (things that are in a "#define") should be in all
upper-case.

All names must be unique, ignoring case. In other words,
even though C knows that "this" is different from "THIS", do
not do it. Also, do not have a variable and a typedef (or
struct) with the same name, even though C also allows this.
These make the program very difficult to follow.

9.2 Choosing names

Names should be
meaningful, and
scheme.

meaningful. Abbreviations should also be
should be chosen by some uniform, rational

o Each variable and name must have an invariant usage and
meaning throughout the program.

17

A C Style Sheet

o Names should not be re-defined in inner blocks. Nor should
global names be redeclared within a function.

o Standard meaningful names for local (temporary) variables
include:

i, j, k indexes

c, ch character

n, m counters

p, q, a, b pointers

s strings

9.3 Names for structs, unions, and defines

Consider using "typedef" for struct's and union's. This helps
both reader of the code and type checking programs such as LINT.

The name is composed of three parts:

prefix: 1, 2, or 3 characters, related to the sub-system,
data-base, or struct.

body: the name of the entity.

suffix: indicates the "type" of the name:

A = array
T = type
s = size
N = number of elements (in an array)
L = limit (other than array elements)
D = "type has been defined" flag
TD = same as D

For a member of a struct, the prefix should be related to the
body of the struct name.

These rules are more restrictive for structs and unions that are
system-wide. Internal structs, for example, might have only a
single character prefix.

A define with the "D" or "TD" suffix is required for all structs
that are in an include file. For example~

18

A C Style Sheet

Hifndef VH UNR D
Udefine VH-UNR-D
struct VH-UNR-T {

1• declare this only once •1

int unr=:unst;

}
Rend if

Try to use an underscore between prefix, body, and suffix.

9.4 Pointers

Pointers should be declared and used as "pointer to a thing of
type X". Do not, for example, use a variable which is declared
as "pointer to int" to point to a char, even though the compiler
and/or machine will let you do it.

9.5 Standard Defined-names

In writing a program composed of a number of files, a
package-wide header file simplifies program maintenance. The
following is extracted (with a few changes) from a header file
defined by Ray Van Tassle:

GLOBAL
IMPORT
LOCAL
VOID

TINY
UT I NY

BOOL

TRUE
FALSE

NULL
EOS
EOF
NO I NIT

TRYOUT
DEBUG

I*

- The defining instance of a global variable
- Reference to an external defined in another module
- Static, defined either inside or outside function
- For functions returning nothing

- An 8-bit signed integer
- An 8-bit unsigned integer

- A Boolean quantity, tested for only zero/non-zero

- Boolean true
- Boolean false

- For comparison or assignment of pointers
- The end of string marker
- End-of-file
- For extern's that don't need initialization

- Switch for compiling a main routine for testing.
- Switch for compiling debugging code.

• The following define the largest number that
• can be stored in a variable of a specified type.
•1

MAX INT
MIN-INT

The largest positive number stored in an int
- The largest negative number stored in an int

19

A C Style Sheet

MAX UINT - The largest positive number (unsigned int)
MAX-LNG - The largest positive number (long int)
MIN-LNG - The largest negative number (long int)
MAX-ULNG - The largest positive number (unsigned long)

/I
* The following should be used ONLY when unavoidable
•1

BITS8 - A variable that MUST be exactly 8 bits wide
BITS16 - A variable that MUST be exactly 16 bits wide
BITS32 - A variable that MUST be exactly 32 bits wide

1•
I The following should be used ONLY in "system-level"
I that must be machine dependent.
•1

BITS CHR - The number of bits in a char
BITS-INT - The number of bits in an integer
BITS-LNG - The number of bits in a long int
BITS-FLT - The number of bits in a float
BITS-DBL - The number of bits in a double-float

routines

All binary bitwise operations must be done on one of the "BITS"
data-types.

10.0 Portability

Portability means that a source file can be compiled and
executed on different machines, operating systems, and/or
compilers with either no source file changes or, at most,
changes to system-specific header files. In writing portable
software, the following should be understood:

o Most C compilers predefine
isolate machine-dependent
helpful:

symbols that may be used to
code. The following list may be

o Decus C defines "pdpll", "decus", "rsx" (or "rt11").

o Vax-11 C defines "vax", "vms", and "vax-llc"

o Venix defines "pdpll", and "unix"

o A compiler for the Dec-20 defines "TOPS20" and "PDPlO"

20

o Some things are inherently non-portable. For example, a
hardware device handler can, in general, not be transported
between operating systems.

A C Style Sheet

o Different machines have different word sizes. While the
language standard guarantees that "long int" is at least as
long as "int" and "short int" are never longer than "int",
it does not guarantee any specific word length. Note also
that pointers and integers are not necessarily the same
size; nor are all pointers the same size.

o Word size and constants can interact in unpleasant ways.
For example,

int x;
x &: 0177770;

Clears the low-order 3 bits of an integer on a PDP-11.
However, on a Vax, it will also clear the upper half-word.
Instead, you should use:

Which is portable.

o Beware of code that takes advantage of two's complement
arithmetic. In particular, optimizations that replace
division or multiplication with shifts should be avoided.

o Watch out for the PDP-11 signed character, which becomes
unsigned on other machines. Also, do not presuppose any
specific byte ordering within words.

o Do not default Boolean tests. Use

if (func() !: FALSE) {

Instead of

if (func()) {

A particularly insidious example of incorrect code is:

if (strcmp(s1, s2)) {
1• different *I

}

Always write

if ((strcmp(s1, s2) !: 0) {
1• different *I

Decus C provides streq() for this purposes.
systems, you can easily write a macro:

#define STREQ(a, b) (strcmp((a), {b)) == 0)

One counter example to this is generally

On other

made fur

21

A C Style Sheet
22

predicates, functions
return TRUE or FALSE,
meaning of a TRUE
example, a routine
"checkvalid()".

which have no other purpose than to
and which are named so that the

return is absolutely obvious. For
should be named "isvalid()", not

o Be very suspicious of numeric values appearing in the code.

0

Almost all constants would be better expressed as #defined
quantities.

Any unsigned type other than unsi~ned int should be
identified by a typedef, as these are highly compiler
dependent. As noted above, large programs should have a
central header file which encapsulates machine-dependent
information.

o Become familiar with the standard library and use it for
string and character manipulation. Do not reimplement
standard routines as the person reading your code must then
figure out whether you're doing something special in the
reimplemented stuff. Home-brew "standard" routines are a
fruitful source of bugs as your routines might be called by
other parts of the library. Also, the standard library
hides non-portable details that you might not (and generally
should not) be aware of.

11.0 Miscellaneous

This section contains a fairly disorganized list of hints, some
of which appear in other sections of this style sheet. They are
not in any specific order.

o Don't change syntax via macro substitution. It makes the
program unintelligible to all who come after.

o There is a time and place for embedded assignment
statements. In some cases, this is the best way to specify
the algorithm. However, it is not your responsibility to
second-guess the compiler by packing code as tightly as
possible. For example:

a = b + c;
d = a + r;

should not be rewritten as:

d = (a = b + c) + r;

Even though the latter may save one instruction.

A C Style Sheet
23

o Don't overuse the ternary "(cond) ? a : b" operator The
condition should always be enclosed in parentheses. Nested
ternary operators should be avoided if possible.

o Goto statements should be used sparingly. The main place
where they are useful is in breaking out of several levels
of switch/for/while nesting. If a goto is needed, the
accompanying label should be at the left margin with a
comment explaining who jumps here. The continue statement
is also a source of bugs.

But, don't be afraid that evil spirits will haunt you if you
write the dreaded goto. It is often much clearer to use
goto's to escape from an inner loop than by using seemingly
random combinations of break, continue, return and default
exits from switch statements. To some extent, the lack of a
rich set of exit operations is a failure of C, requiring
discipline on the part of the programmer.

Often, the need for goto's and complicated exit conditions
is an indication that the inner constructions ought to be
redone as a separate function with a success/failure return
code.

o In declarations (#defines, structure definitions, or
variable definitions), various components should line up.
Thus:

0

#define TESTING 1
#define PRODUCTION 2

The components of a structure should be uniquely
using a one-or two character marker followed by
example,

typedef struct list element
struct list element •1 next;
int l:value;

LIST_ELEMENT;

"tagged"
' ' For

o When the storage structure or type of a variable is
important, always state it explicitly. In particular, use
"auto" if you are going to use the address of a variable
using '&'. Declare integer parameters as "int", rather than
letting them default.

o Sometimes it is impossible to avoid doing something tricky.
(And sometimes you just can't resist the temptation.) At the
very least, put enough documentation in the code to warn the
poor soul who comes after you.

A C Style Sheet

o Try to write code that is clear and safe, rather than
something that "seems" easier to compile. Make sure local
variables are local (or static) so things won't blow up when
you compile with other modules.

o Try to keep the flow of control" through your program
apparent. Where this is governed by separately-compiled
tables (such as a finite-state parser), embed comments in
the parser table to aid the maintainer.

o Use register variables wherever possible. They are
especially efficient when used as structure or array
pointers. Since offsets within a structure are known at
compile time, the compiler can generate extremely efficient
code.

24

For example, suppose a program is processing a collection of
elements which have a value and a set of flag bits. The
"simple" solution would be:

int
long
int

int

value [MAX];
flags[MAX];
array_max;

lookfor{arg val, arg flag)
int arg val; -
long arg-flag;
1• -

{

}

• Return index to the element with the same
• value and at least one matching flag bit.
• Return -1 on failure.
•1

int i;

for Ci = O; i < array max; i++) {
if (value[i] == arg val

}
}

&& (flag[i] & arg Tlag) !: 0)
return (i); -

return { -1) ;

The inner loop of the above requires turning the index "i"
into a pointer twice. The above should generally be
rewritten as:

typedef struct data {
int d value;
long d=flag;

} DATA;
DATA
DATA

values[MAX];
•top_ value;

A C Style Sheet
25

DATA *
lookfor(arg value, arg flag)
int -arg value;-
long arg-flag;
1• -

• Return a pointer to the element with the same
• value and at least one matching flag bit.
• Return NULL on failure.
•1

{
register DATA *dp;

for (dp = &values[O]; dp < top value; dp++)
if (dp->d value == arg value

&& (dp->d flag & arg flag) !: 0) {
return-(dp); -

return (NULL);

Note the use of redundant braces in the above programs.

o If a function manipulates a database stored in a separate
file, the routines that manipulate (generate and access)
this database should be isolated from other routines. The
internal structure of the data base should also be defined.
If the database format is likely to change, a release date
or version should be buried in the database and precompiled
into the manager software. The program should check the
validity of the release date when the package opens the
database.

o If a file contains the main routine of a program, that
should be the first function in the file. On Unix and VMS,
where programs may be called as sub-processes, it is
important that all programs exit by calling exit(). On
Unix, use "exit(O)" for success and a non-zero value for
failure. The following construction may be useful:

#ifdef
#include
#endif

vms
<ssdef .h>

#ifdef vms
exit(SS$ NORMAL);
#else -
exit(O);
#end if

o In the condition portion of an if, for, while, etc., side
effects whose effect extends beyond the extent of the
guarded statement block should be avoided. For example,
consider:

A C Style Sheet 26
if ((c = getchar()) != EOF) {

guarded-statements
}
other-statements

It is natural to think of variable "c" being "bound" to a
value only within "guarded-statements." Its value should not
be presumed upon entrance to "other-statements." Use of a
variable set or modified inside a condition outside the
range of statements guarded by the condition is in general
quite distracting.

o You should not use I I and && with right-hand operands having
side-effects. For example,

if ((fildes = fopen("file.nam", "r")) ==NULL
I I readin(fildes) !: SUCCESS) {

bug("something's wrong somewhere.);

Whenever sequences contain both I I and &&, parentheses
should be used for clarity.

o Routines should be kept reasonably short. It is important
for the maintainer to be able to read and comprehend all of
the routine at one glance. In general, a routine processes
one or more inputs and generates one or more outputs, where
each of the inputs and outputs can be concisely described.

Signs that a routine is too long, and ought to be split up,
are: length greater than 100 lines (two pages), heavy use
of localized variables (whose active scope is less than the
entire routine), or conditional or loop statements nested
more than four levels.

Even when processing is linear (do first part, do second
part, etc.), it is often helpful to the maintainer to break
the routine into separate pieces:

main(argc,
int

argv)
argc;
*argv[]; char

{
setup(argc, argv);
process();
finish();

On many Dec operating systems, the setup() and finish()
modules can be compiled into overlay structures, leaving
more room for in-memory data.

o Use of globals should be minimized by judicious use of
parameters.

A C Style Sheet

o In general, a routine should be designed with a "natural",
easily-remembered calling sequence. Routines with more than
five arguments are not recommended. Routines with "op-code"
arguments, where one argument determines the interpretation
and functions of the others, are also not recommended
(though they often prove useful as internal routines to a
package, they should not be part of a package's documented
interface.) ~-

o Datatype compatibility should be practiced where possible.
This can be facilitated by use of C's typedef facility, by
explicit type casting, or by the use of the union datatype.

A package which returns a pointer to a structure whose
format need not be known outside of that package may return
a "generic pointer" (char*). The C language specifically
guarantees that any pointer may be converted to a char * and
back again without harm.

o Use #defines to eliminate magic numbers. Use compile-time
computation to combine magic numbers into others:

Udefine ARRAY A SIZE 123
Udefine ARRAY-B-SIZE 456
Udefine BOTH -(ARRAY A SIZE + ARRAY B SIZE)

If you change ARRAY A SIZE, the compiler with change BOTH
without your further Intervention.

o Some experience is needed to decide what to put in a for
statement and what to put in the loop body. In general, you
should put what is needed to control the loop in the for,
and the process itself in the body. Also, you should be
disciplined about using break, continue, and goto to control
"unusual" break-out cases. For example, the following code
searches a symbol table for an unused element:

for (sp = &sym[O]; sp < &sym[MAXSYM]; sp++) {
if ((sp->sy flag & UNUSED) !: 0)

goto found;
}
error message("No room in symbol table");
return (FALSE);

found:
I* here to process symbol *I
return (TRUE);

In this case, the most natural way to write the code is to
use a goto for the "normal" case. While the above could be
handled by a flag (or auxiliary test), the solution seems
less intuitive:

for (sp = &sym[O]; sp < &sym[MAXSYM]; sp++) {

if ((sp->sy_flag & UNUSED) !: 0)

27

A C Style Sheet

break;
}
if (sp >= &sym[MAXSYM]) {

}

error message("No room in symbol table");
return (FALSE);

else {
I* here to process symbol
return (TRUE);

28

*I

o The first three register variables, in lexicographic order,
should be ones for which the most gain can be gotten.

o While C distinguishes between upper- and lower-case in
variables and keywords, the programmer should maintain
discipline. Global symbols should never require case
distinction as they will not work properly on many operating
systems. You should also avoid using the same name for
different quantities.

Never require the reader to see difference between "1", "l"
(letter), and "!", or "0", "Q", and "O". The C language
"long constant" identifier (" 11" is a long integer if the
second character is the letter 'L') offers a good example of
a practice to avoid (use "1L" instead).

12.0 Other Issues

The style sheet presented here differs in a few minor respects
with other suggested C styles:

o I have recommended writing the closing "*/" of a single line
comment at column 72 to enhance readability. The eye need
not "read" and "understand" the content of the comment
terminator, but can treat it as the edge of a page.

o Several other style sheets recommend the brace syntax:

if (cond)
{

statements;

Another recommendation is similar to the above except that
the braces are aligned with the conditionally-executed
statements:

if (cond)
{
statements;
}

A C Style Sheet
29

This follows the structured programming methodology that
"begin" and "end" are at the same indentation level. It
will be discussed further in the next section.

The syntax recommended in this manual (with the left brace
on the same line as the conditional) seems, in the author's
eyes, to bind the left brace closer to the conditional than
does the "left brace on a new line" format. Also, Left
braces don't appear in the same column as right braces and
are, hence, more visually distinctive. Finally, the right
brace is aligned vertically with the clause introducer
(if/while/etc.) with no intruding text. This seems to make
things more visible.

13.0 Reexamining Indentation

When an early draft of this style sheet was reviewed, a
colleague, Jeff Lomicka, took exception the the recommendations
for indentation.

Here is an alternative indentation style presented with its own
rationale. You may choose your style accordingly, but be
prepared to defend it.

A program is a sequential execution of simpler functions, each
of which is broken up into more primitive functions until the
primitives become directly executable. A compound statement is
the same kind of entity as is a single statement or a function
call, and should therefore be treated equally.

The goal of proper indentation is to separate visually the level
of detail at which the program is viewed, and to permit the
reader easily to associate related elements of the program with
each other. For example, we need to associate an "if" with its
"else", and to be able to determine what are the contents of the
if-clause and else-clause.

The general formatting rules are:

o Statements executed sequentially are all at the
indentation level.

same

o If a statement includes other statements, such the "while"
loop body or the "then" and "else" clauses of a conditional,
these statements are indented to the next block level.

o Braces are part of the statement, and are always displayed
at the same indentation level as the code they contain.

o This improves the readability of the program, since each
compound statement easily identified as a primitive
function, separate from the control structure that controls

A C Style Sheet

its execution. In traditional top-down fashion

if (conditional)
statement;

else
statement;

is seen when reading a passage of code at one level of
detail, and a close look can reveal the details of the
statements:

if (conditional)
{ !• when executed and what is done here •/
statements;
}

else
{ !• when executed and what is done here •!
statements;
}

A reader is therefore not forced to see the inner block
details when trying to understand only the outer block.
Note that when reading the code at the outer block's level
of detail, only the introducing comment needs to be read to
discern the purpose of a compound statement.

These rules are modified according to the same considerations as
listed earlier, as seen in the else-if. For example:

while (conditional)
{ 1• when executed and what is done here
statements;
}

for (s1; s2; s3)
{ 1• when executed and what is done here
statements;
}

if (conditional)
{ 1• when executed and what is done here
statements;
}

else if (conditional)

else

{ 1• when executed and what is done here
statements;
}

{ /* when executed and what is done here
statements;
}

Note how these rules effect switch statements:

switch (c)

•1

•1

*I

'It/

*I

30

A C Style Sheet

{
case 1: /* when executed and what is done here •/

statements;
break;

case 2: 1• when executed and what is done here •/
statements;
break;

}

The purpose of a typographical style is to present the semantic
elements of your program in a way that is understandable by your
readers.

The C programming language can be very deceptive. Although it
has every characteristic of other block structured languages,
because of the way it "looks", it must be treated differently.
Many programmers started using Algol derivatives, such as
Simula: languages with BEGINs and ENDs. In such languages,
BEGIN and END must be prominent as any declaration -- even a
function -- could follow any BEGIN. (Later versions of C,
though not Decus C, permit variables to be declared following a
'{'.)There was thus little difference between single statements
and whole programs. In thes~ languages, keywords were always in
upper case, library routines would have their first letter
capitalized, and user defined variables and functions were in
lower case. Everybody did things that way.

While, superficially, C doesn't look very different, it is so in
some deeper sense. Those curly braces look like they want to
disappear. The blocking appears to want to be done with
indentation alone. Since you cant see the braces anyway, it
probably doesn't make that much difference where they are, so
long as the contents of the blocks are properly indented. There
doesn't seem to be any real difference in readability.

Note also that C has at least four separate "flavors" of braces:
structure definition delimiters, function delimiters,
if/for/while/do delimiters, and switch block delimiters. Since
there is only one construct terminator, '}', it becomes more
important for the reader to be able to scan up and immediately
locate the construct initiator. (In some other languages, such
as Bliss, each construct, such as IF, has an unique terminator,
such as FI. While this helps prevent runaway syntax errors, it
also requires the programmer to remember more information.)

31

Responding to the difference in language syntax, programmers
develop different programming habits. For example, an Algol
programmer might think of an IF statement, in general, as:

IF condition THEN statement ELSE statement;

(with one statement in each clause), while a C programmer might
think of an IF statement as:

IF condition THEN statements ELSE statements END-IF;

A C Style Sheet 32
Where in C, the THEN is implied by the end of the condition, the
braces around the THEN clause are a syntatic nuisance, and the
ENDIF is represented by the closing brace on the ELSE clause.

We can do the same with loops.

Algol: WHILE condition DO statement;
C: WHILE condition DO statements END-WHILE;

Here too, the patterns we look for when reading the code are
different. The END-IF and END-WHILE are represented, in C, by
'}'which requires typographical prominence and must be kept
visually distinct from the visually similar '{'. The C style:

if (condition) {
statements;

is thus more understandable.

But, of course, programmers are different in their needs,
backgrounds, and motivations. Essential, however, is the need
to define a style, understand it, use it, and know when to
violate it to attain the overriding goal of clarity and
communication.

14.0 Summary

The following extended -- and artificial -- example shows most
of the recommended decisions.

1•
• A C Style Summary Sheet
• abstracted from one
* by Henry Spencer,
• University of Toronto,
• Department of Zoology
*I

#include <stdio.h>
#include "local.h"

typedef int SYTYPE;
typedef struct symtab {

struct symtab *s next;
char *s name; -
SYTYPE s-type;

#define TY UNK O
#define TY-INT 1
#define TY-STR 2

union
int
char

i;
*s;

Block comment
describes a file
or section of
code.

Header files
don't nest

Global definitions
struct's use typedef's

I* Link entries */
I* Symbol name *I
I* Symbol type *I
I* unknown *I
I* integer *I
I* char * *I

I* Integer
I* String

*I
*I

A C Style Sheet

} svalue;
} SYMBOL;
SYMBOL *sy_head = NULL;

I*
* sylookup(text)

* * Look for a word in the symbol table,

Typdef's capitalized
Explicit initialization

* return a pointer to the symbol if found.
* return NULL if not found.
*I

static SYMBOL If

sylookup(text)
What is returned
Name at first column
*I char *text; I* Symbol name

{
register SYMBOL *syp;

for (syp = sy head; syp !: NULL; syp = syp->s next)
if (strcmp(text, syp->s name) -- 0) -

return (syp); -

return (NULL);
}

I*
* syprint(text)
* * If the argument is in the symbol table, print
* the associated value, else print "not found".
*I

syprint(text) Doesn't return a value
*I char *text; I* Symbol name

{
register SYMBOL *syp;

printf("%s: ", text);
The following shows
an acceptable embedded
assignment, but don't
default the NULL test.
Use braces even for a
single statement.

if ((syp = sylookup(text)) ==NULL) {
printf("%s: not found\n", text);

}
else { Braces here, too.

switch (syp->s type) {
case TY UNK: -

pri~tf("unknown");
break;

Blank line after break
case TY INT:

33

A C Style Sheet

printf("%d", syp->s_value.i);
break;

case TY STR:
pri~tf("%s", syp->s_value.s);
break;

default: Always have a default
Message before abort

printf("? bad type Jd\n", syp->s_type);
abort();

}
printf("\n");

34

UNIX Hints and Kinks

Armando P. Stettner
Digital Equipment Corporation

Merrimack, NH
Dorothy Geiger, Session Chairperson

Cal Poly
San Luis Obispo, CA

Reported by Dorothy Geiger, DECUS Scribe Service

The UNIX Hints and Kinks session was led by Armando P.
Stettner and included panelists Joe Sventek, Norman Wilson, Bill
Burns, and Vance Vaughn. Questions were as follows:

Q.
A.

Does UNIX have support for networking?
VMS/UUCP is being examined, as is DECnet
Software is available to support "tar" under
under UNIX.

for VAX/UNIX.
VMS and TCP/IP

Q. Does 4.2Bsd have new networking software?
A. 4.2Bsd provides rich support for interprocess communications

between machines, including named sockets for servers,
TCP/IP, and Ethernet. In addition, processes do not require
the same parent for interprocess communications.

Q. What is the Software Tools Group's Virtual Operating System?
A. VOS is NOT UNIX, it is an entire program development

environment which is based on the Software Tools book by
Kernighan and Plauger. It provides a variety of shells,
tools and utilities, and has been implemented for various
operating systems such as RSX and VMS. The VOS software is
available on the DECUS SIG tapes.

Q. Will DIGITAL's release of UNIX have system performance and
monitoring tools?

A. DIGITAL's current release includes "vmstat", "iostat" and
kernel profiling. There are no firm current plans for more.

Q. Can files be accessed across the Network?
A. 4.2Bsd provides for symbolic "links" across network nodes.

In addition, work has been done elsewhere to allow file
systems to be "mounted" across nodes. 4.3Bsd has
transparent file access as a design goal.

35

Q.

A.

Will DIGITAL's VAX/UNIX release have
"goodies" as 4.2Bsd?
No decision has been made on 4.1Bsd vs
4.2Bsd is a new release, assessments
reliability are premature at this time.

,36
the same basic

4.2Bsd. Because
of suitability and

Q. How does one get 4.xBsd?
A. 4.xBsd may only be supplied to holders of Bell UNIX source

licenses.
Q.
A.
Q.
A.
Q.

A.
Q.
A.

Q.

A.
Q.
A.

Q.
A.

Q.
A.

Q.
A.

Q.
A.
Q.
A.

Is DIGITAL shipping UNIX source licenses?
No, pending resolution of legal questions with Bell.
Does DIGITAL support UNIX in the VAX cluster world?
Not at the present time.
It would be highly desirable for DIGITAL to provide support
in this area.
Noted. CAPS)
Are there bugs in the 4.2Bsd DMF-32 driver?
None are known to the panel. However, be aware
DMF-32 driver only uses the serial asynchronous
the DMF-32, and that the DIGITAL board have modem
only two lines of the eight on the board.
Will DIGITAL continue to provide free source
drivers as has been done in the past?
Hopefully.
What is the state of Berkeley INGRESS?

that the
portion of
control on

to device

Good. The VAX architecture necessitates fewer processes per
user than the PDP-11 architecture. This greatly enhances
performance. INGRESS is available on the current 4.xBsd
tape.
Are there any changes in 4.2Bsd from 4.1Bsd?
Many. For example, Bsd4.2 has a new file system which is
much better for high I/O bandwidth applications such as VLSI
design graphics.

What about the new F77 compiler on 4.2Bsd?
The old compiler produced code which executed about half as
fast as the VMS Fortran compiler. With the new compiler,
execution speed is about the same as VMS Fortran, but
compile times are SLOW.
Are there incompatibilities between 4.2Bsd and 4.1Bsd?
Executable images will run on both systems. Problems arise
when munging on directories, since directory formats have
changed.
Does 2.9Bsd include job process control via C shell?
Yes.
How does System V differ from 4.xBsd?
System V supports a two UNIBUS configuration on the
VAX-11/780 with distinct restrictions on device placement.
4.2Bsd supports a four UNIBUS configuration with no
restrictions on device placement. In addition, VAX-11/750
support is new on System V but not on 4.2Bsd.

Writing C Code for VAX/VMS and UNIX Systems

David Moore
Digital Equipment Corporation

Nashua, NH
Jim Livingston, Session Chairperson

Measurex Corporation
Cupertino, CA

Reported by Todd Spangler, DECUS Scribe Service

There are several problems when writing portable C code.
There is no formal standard for C. Confusion exists between
boundaries of C and UNIX and there is a general lack of
awareness of the problem. David Moore of Digital Equipment
Corporation described the differences between UNIX C and VAX/VMS
C. VAX/VMS does not use UNIX-style file specifications, fork
and exec sort utilities on standard I/O, command line parsing
(piping and file redirection), and other routines not in the
emulation set. On VMS, RMS provides an RTL stream which is
compatible with that of the UNIX stream system. Exec-family RTL
routines only provide sharable reads between parent/child
directories and only initialization with "=" is supported. Also
supported are the += and •= operators.

To help maintain the portability of C code, it is advisable
to keep track of size of data items. On the PDP-11, a long
variable is equivalent to a short variable as far as memory is
concerned. On VAX, a short variable is half the size of a long
variable. The memory order and continuity must also be kept
track of as VMS can have variables that exist but that do not
exist in storage. When referring to this variable with a
pointer, there will be an error message created since the
variable cannot be found. On VMS, the layout of program address
space is important, especially uninitialized pointers, end,
edata, and etext. In UNIX, there is a zero pointer, but on VMS
this pointer is protected. Unlike UNIX, characters are signed
on VMS. Pointer/integer exchanges are possible, but not
portable due to size conflicts. External identifiers on VMS are
31 bits long and on UNIX are 6 to 8 bits long. Unlike VHS, it
is possible to have holes in the structure alignment. The order
of operation on VMS is only forced when using the COMMA, logical
AND,and bitwise or logical OR. To be safe, one should not rely
on character set dependencies (VMS uses 7 bit ASCII). VMS does
not have an ASH program.

37

Basically, rules to follow in making C code as portable as
possible are to use DEFINE as much as possible and stay away
from manifest constants. Make use of common header (.h) files
in order to keep some record of system dependent constructs, use
SIZE OF to keep track of data, and use common routines with all
C libraries.

When writing non portable C, one should choose the right
support environment. Making use of all the compiler
capabilities is important. Using symbols like 'vax', 'vms', and
using include text libraries will improve optimization.
Allowing the compiler to manage temporary files and assign
registers will increase portability. Using constant folding,
DEFINE, MODULE, I~CLUDE libraries, passing constants by
reference, compiler listings including symbol tables, cross
references, and preprocessor substitutions will also be helpful.
The proper use of PERROR RTL routines to diagnose errors is
desirable. With these things in mind, one can consider the
system, use the suggestions, and be on the road to writing
portable and non-portable C code.

38

Networking With UNIX in Tokyo

H. Ishida, J. Adachi, T. Kimura, K. Takano
University of Tokyo

Tokyo, Japan
Mark Bartelt, Session Chairperson

HSC Research Development Corporation
Toronto, Ontario

Reported by Jeff Stapleton, DECOS Scribe Service

At the University of Tokyo, the main computer system is a
HITACHI main frame. It supports eight processors, each of
which is faster than IBM's fastest machine. The system
contains 96 megabytes of main store, and supports over five
thousand graduate students and faculty members.

The HITACHI has access to over 100 disk storage devices.
A laser printer is the only output device, since it is the only
printer fast enough for the system. A switching packet
designated DDX is used for communications over telephone lines
to other university systems. Although the HITACHI is highly
flexible, it is not user-friendly. To help alleviate this
problem, four UNIX systems have been added. These include a
VAX-11/780, a VAX-11/730, an LSI-11/23, and an Intel MDS.

The 780 has four megabytes of memory, the 730 has one
megabyte, while the LSI-11 supports 256 kilobytes and the Intel
has 64 kilobytes. Users of the system seem to prefer the VAX.
The main features of the HITACHI are the large number of
available disks, the laser printer, the DDX network packet
switching, and the substantial computing power of the system.

In Japan, UNIX is becoming so popular that several
manufactures are implementing. These include such familiar
names as Toshiba, Sharp, Sard, Densam, CEC and ASR. Most
manufacturers use Kanji word processing. Because of this, a
standard is being worked on for this.

In Tokyo, electricity is extremely expensive. For this
reason, the university system is shut down on weekends and
holidays. A complaint on the VAX was that the power up has to
be done with three different switches. They wanted to be able
to turn the VAX on and off by only throwing one switch and to
make this automatic. Digital would not allow the university to
change the circuitry on the VAX, so they use a remote physical
plunger to throw the switches.

39

automatic operation of the VAX/UNIX system works as

set up the weekly schedule

The
follows:

1.
2. the timer activates a sequence controller that turns

on; (a) the air conditioner, (b) magnetic tape and
disk drives, (c) and finally the CPU.

The automatic shutdown is as follows:
1. stop UNIX,
2. stops the disk and magnetic tape drives,
3. and turns off the air conditioner.
The speaker suggested that this automatic procedure should

be standard on all VAXs.
The networking system supports two specific packages, CVOS

and CVOS2. CVOS calls vos3, which is the operating system of
the host computer, (the HITACHI). CVOS uses a single
asynchronous line and is designed for a single user. It allows
communication to the laser printer and the Kanji word processor.
CVOS2 is similar to CU (call UNIX) and is a cluster controller
emulator. This package uses a bi-synchronous line and is
designed for several users. Both CVOS and CVOS2 are used for
interactive computing.

As an example of interactive programming, suppose you
on the University of Tokyo's system and want to access a
base at the University of Tohoku. The schematic would
like:

------ cvos ------ ------------- ------ -----------
I UNIX I<----> IVOS3 I<--> I package netl<-->IACOSl<-->ldata basel

The command example given was:
CVOS < TOHOKU > logfile

where the Tohoku file would appear as:

(ntss)

logon
ntss
uid2
pwd2
dbname

uid1/pwd1
TOHOKU

<--
<--
<--
<--
<--

are
data
look

VOS3
II

ACOS
II

II

then, the system would automatically switch to terminal input.
The batching capacity of CVOS for UNIX can be done either

from the terminal or by copying a file. A daemon process in
UNIX allows CVOS to spool programs. It can receive batch jobs,
output to a log file, output the users job to a file or spool
back to vos3.

Outside users wanted to access the VAX from the DDX. An
attempt was made to arrange this, but there were so many
problems that the university finally had to give up. Full
duplexing was impossible because of unfriendly hardware. The
IBM-like OS was difficult to program. Another problem was how
to transmit a BREAK to the UNIX environment. The biggest
problem was the need to add a carriage return to the
transmission. A CR could be added to the end of a data
transmission, but no way was found to add the carriage return to
a UNIX message. The difficulties involved finally overcame the
effort and the project was abandoned.

40

UNISIG Operating Principles

1 September 1983

1. Name and Purpose
The name of the SIG is "UNISIG" (formerly the "Special Software
and Operating Systems Special Interest Group"). The group will
deal with, and provide opportunities for, user-user and user­
Digi tal communications about issues related to (1) use of the
UNIX* operating system on PDP- 11' s and VAXes, and (2) UNIX­
inspired software (any set of tools providing a UNIX-like
environment) which runs under Digital operating systems.

2. Membership
Membership in UNISIG is open to all DECUS members with an
interest in UNIX or UNIX-related issues.

3. Steering Committee
The UNISIG steering committee is responsible for the ongoing
operation of UNISIG, and for any long-range planning necessary
to enhance UNISIG 's abi 1 i ty to meet the needs of its members.
The steering commit tee wi 11 include, but not necessarily be
limited to, the following officers:

Chairman. Interfaces with DEC US on UNISIG-rela ted
matters; chairs steering committee meetings and UNISIG
business meet in gs; has responsib i 1 i ty for the orderly
operation of UNISIG.

Librarian. Maintains library or user-contributed
software; coordinates distribution of UNISIG tapes.

LUG Coordinator. Assists DECUS members in the forma­
tion of UNISIG-related local user groups.

Newsletter Editor. Solicits material for UNISIG
newsletters; edits and produces newsletters.
Site Survey Coordinator. Maintains a database of site
configurations, making information available to members
on an as-needed basis.
Standards Coordinator. Deals with any standards­
rela ted issues relevant to UNISIG; keeps membership
apprised of status of interesting developments.

Symposia Coordinator. Works with DECUS symposia com­
mittee during symposium scheduling, to handle all
UNISIG-related sessions; writes UNISIG's submissions
for the "Call for Papers" and the preliminary program.

*UNIX is a trademark of Bell Laboratories.

41

Usenix Liaison. Reports to UNISIG on activities of the
USENIX Organization, as well as other UNIX-related user
groups.

In addition, UNISIG's Digital counterpart is a de facto member
of the UNISIG steering committee.

4. Appointment of Officers
Whe·n a steering committee vacancy exists, the chairman may
appoint one or more persons to fill the posit ion, subject to
the approval of the UNISIG steering committee. New steering
commit tee posit ions may be created in a similar fa sh ion if a
need for such positions is deemed to exist.
If the position of chairman should become vacant, a new chair­
man may be appointed by the steering committee.

5. Removal of Officers
UNISIG officers may be removed by a sixty percent vote of the
UNISIG steering committee, or by a majority vote of the UNISIG
membership in an election.

6. Elections

In the event that there are multiple volunteers for one or more
steering committee positions, and if the possibility of a
shared posit ion appears to be be impractical or unworkable, an
elect ion may be held to f i 11 those posit ions. An elect ion may
also be held to remove a steering committee member from office,
or to amend these operating principles.

An elect ion will be held upon a majority vote of the steering
commit tee, or upon pet it ion of five percent of the membership.
A member wishing to call an election will be permitted to use
the UNISIG newsletter for the purpose of circulating cal 1-for­
e lect ion petitions.

Informal referendums or polls may be used by UNISIG officers to
attempt to gauge the feelings of the UNISIG membership on vari­
ous issues.

7. Amendments
These operating principles may be amended, modified, or super­
seded by a majority vote of the UNISIG membership.

42

UNISIG Steering Committee

Chairman Mark Bartelt
HSC Research Development Corporation
555 University Avenue
Toronto, Ontario M5G 1X8 CANADA

416-594-5955

Newsletter Don Crabb
Editors University of Chicago

Computation Center
5737 South University Avenue
Chicago, IL 60637

312-962-7173

William Toth
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, P-353
Cambridge, MA 02138

617-495-7181
{ihnp41allegralgenradlamd701ima}!wjh12!hscfa!toth

Librarian Carl Lowenstein
UCSD P-001
La Jolla, CA 92093

619-294-3678
ucbvax!sdcsvax!mplvax!cdl

Symposia Dorothy Geiger
Coordinator Amdahl Corporation

P.O. Box 3470, MS 316
Sunnyvale, CA 94088-3470

Site Survey Paul Graham
Coordinator Sage Computer Technology

4905 Energy Way
Reno, NV 89502

702-322-6868

Handout Don Crabb
Editor University of Chicago

Computation Center
5737 South University Avenue
Chicago, IL 60637

312-962-7173

43

USENIX
Liaison

Standards
Coordinator

LUG
Coordinator

Digital
Counterpart

William Toth
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, P-353
Cambridge, MA 02138

6 17- 4 9 5- 7 18 1
{ihnp41allegralgenradlamd70lima}!wjh12!hscfa!toth

Vacant

Vacant

Jim Barclay
Digital Equipment Corporation
MK2-1/H10
Merrimack, NH 03054

603-884-7256
decvax ! jmb

Digital Armando Stettner
UNIX Guru Digital Equipment Corporation

MK2-1/H10
Merrimack, NH 03054

603-884-2914
decvax!aps

44


~~~~~~~~~~~~~~~~~~~~~~~~~~~~, 

MOVING OR REPLACING A DELEGATE? I I Ll 
Please notify us immediately to guarantee continuing 
receipt of DECUS literature. Allow up to six weeks 
for change to take effect. 

( ) Change of Address 
( ) Delegate Replacement 

DECUS Membership No.:--------

Name : -------------~ 

Company : ~------------­

Address : ---------------

State/Country: -----------­

Zip/Postal Code:-----------

Mail to: DECUS ·ATTN: Subscription Service 
249 Northboro Road, BP02 
Marlboro, Massachusetts 01752 USA L..! 

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~J 

l>coe>~ s:~20 ~[O] 
:cz::jc 
Gi 0 )> (/) 
0 :c r- (/) 
:c -I m C 
o::i::oco 
•COCCI) 
3': 0 - ("'):c 
)> :c .,, 
(/) 0 3': :ti 
(I) :c m -I 
)> 0 z 0 
C"'>l>-IZ 

C
::c 0 ("') (/) 

. 0 m 
~coS::c 
-I .,, .,, < 
-I 0 c -
(l)N-IC"'> 

mm 
0 :c 
... c 
.... (I) 
CJ1 m 
N :C 

(/) 

(I) 

0 
("') 

m 
-I 
-< 

r 
~ ';f c 3 ... . ~ :;· ~ . .,, ~ gi 

~ ~ - ~ ""O ~ 
c.>CD z 0 o :II 

.:"? ~I» 
s:: - ~ <ii > CX> CD 


