dlilgliltiall

OpenVMS RTL Library (LIB$)
Manual

Order Number: AA-QSBHA-TE

December 1995

This manual documents the library routines contained in the LIB$ and
CVTS$ facilities of the OpenVMS Run-Time Library.

Revision/Update Information: = This manual supersedes the OpenVMS
RTL Library (LIB$) Manual,
OpenVMS AXP Version 6.1 and
OpenVMS VAX Version 6.1.

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety
and health of its employees, customers, and the community.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: Alpha, Bookreader, DEC, DEC

C, DECmigrate, DECnet, DECwindows, Digital, OpenVMS, PDP-11, VAX, VAX Ada, VAX BASIC,

VAX MACRO, VMS, and the DIGITAL logo.

The following are third-party trademarks.

BASIC is a registered trademark of the Trustees of Dartmouth College.

- CRAY is a registered trademark of Cray Research, Inc.

IBM is a registered trademark of International Business Machines Corporation.

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

Internet is a registered trademark of Internet, Inc.

Motif is a registered trademark of the Open Software Foundation, Inc.

All other trademarks and registered trademarks are the property of their respective holders.
ZK5932

This document is available on CD-ROM.

Contents

1 Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routinesoiiiirirennnnnnn.. 1-1
1.1.1 64-Bit Addressing Support i i e 1-1
1.1.2 The LIBS RoOUtINES . . o oot vv i it eii it it iieeeeeeeeeeaeeannn 1-2
1.2 Translated Version of LIB$ Facility (AlphaOnly) 1-8
1.3 Run-Time Library CVT$ Facilityciiirrinnennnenn. 1-8
LIB$ Reference Section
LB AD AW e e e e e LIB-3
L B AD DX . .ottt it e e e et LIB-5
LIBSADD_TIMESttt ittt iienienannnnn e LIB-8
LIBSANALYZE _SDESC ...ttt tt ittt et ittt inteeene e LIB-10
LIB$ANALYZE_SDESC_64 (AlphaOnly)., LIB-12
LIBSASN _WTH MBX ittt it ittt it i i, LIB-14
LIBSAST IN _PROGttt ittt it ittt e eneeeene e LIB-17
LIBS AT TACHttt e et e e e e LIB-19
LIBEBBCC I ittt et ettt e e e LIB—-21
L B BB S ST ..ttt it i e e e e e LIB-23
LIB$BUILD_NODESPECiiiitiiit it eiiie it ennenn LIB-25
127N 7 7 LIB-28
LIBSCALLG_64 (Alpha Only)cuuintineniinaenneennnn LIB-30
LIBECHAR ittt et et e e LIB-31
LIBSCOMPARE _NODENAME.cititiieiii it LIB-33
LIB§COMPRESS_NODENAME0 ittt i, LIB-35
LIB$CONVERT DATE_STRINGotiiiiiiiiiiienneennnennn LIB-38
LI BBCRC ..ttt it et e e e e e LIB—42
LIB$CRC_TABLE e e e LIB—44
LIBSCREATE DIR.cii ittt ittt ettt et ieeee e LIB—46
LIB$CREATE _USER_VM_ZONE.ttt iiii i LIB-50
LIB$CREATE_USER_VM_ZONE_64 (AlphaOnly) LIB-54
LIBSCREATE_ VM _ZONEttt ieie i . LB-57
LIB$CREATE_VM_ZONE_64 (AlphaOnly) e LIB-63
LIBECRE INS KEY ...ttt ettt it e ee e e e LIB-69
LIBSCRF INS REFttt ittt it ettt i, LIB-71
LIBSCRE _OUTPUTttt ittt ettt e et e e LiB-74

LIBSCURRENCY . . .ottt ittt it cie i e e e LIB-78

LIB$CVTF_FROM_INTERNAL TIMEcivvuvinvunnnnnn. LIB-80

LIB$CVTF_TO_INTERNAL TIMEeueneneneeennanennn. LIB-82
LIBSCVT_DX_ DX ..ot veeetene e e e et e e LIB-84
LIB$CVT_FROM_INTERNAL TIME\ v et ereeeeeeeeaannnn, LIB-90
LIB$CVT_TO_INTERNAL TIMEevreeneen s, LIB-93
LIBSCVT_VECTIMot ene e e e e e e e e LIB-95
LIBSCVT_XTB . .. oo et e e et e e e e e e LIB-97
LIB$CVT_XTB_64 (Alpha Only) . .« o v v v eee et e e LIB-99
LIB$DATE_TIMEt eetee et e e et e e LIB-101
LIBSDAYottt e e e e e e LIB-103
LIB$DAY_OF WEEK.............. S LIB-105
LIB$DECODE_FAULT . . . e v ettt e e e e e e e LIB-107
LIB$DEC_OVER . .. oottt e et e e e LIB-126
LIB$DELETE_FILE. . . . o\ e v ettt e e e e e LIB-128
LIB$DELETE_LOGICAL« v ettt ee et e e e LIB-136
LIB$DELETE_SYMBOLt v ettt et e e e LIB-138
LIB$DELETE_VM_ZONEot eeaaenenns e LIB~140
LIB$DELETE_VM_ZONE_64 (Alpha Only)o veeereennnnnn.. LIB-142
LIB$DIGIT_SEP . .. v ottt et e e e e LIB—144
LIB$DISABLE_CTRL . ..ot ettt et e e e e LIB-146
LIB$DO_COMMAND et eee et e e e e e LIB-148
LIBSEDIV ...ttt ettt et e e e e e e e LIB-150
C LIBSEMODD . .. ettt e e e e LIB-152
LIBSEMODFottt e e e e e e LIB-154
LIBSEMODG . . .o v ettt et e e et e e e e e e LIB-156
LIBSEMODH e ettt it e e e e e e e e e LIB-158
LIBSEMUL ..ottt ettt et e e e e e e e LIB-160
LIBSENABLE_CTRL . . . v e ettt ettt e e e e LIB-162
LIB$ESTABLISH ovveeen... S LIB-164
LIB$EXPAND_NODENAMEo\ voeeee et e LIB-167
LIBSEXTV . . .o e ettt e e e e e e e e e e LIB-170
LIBSEXTZV . . o oot ee et e e e e e e e e e e LIB-173
LIBSFFX .. oottt e e e e e e e e e LIB-175
LIB$FID_TO_NAMEttt e LIB-177
LIBSFILE_SCAN . . . o vt et ettt e e e e e e e e LIB-180
LIB$FILE_SCAN_END . ..o\ttt e e e e e LIB-182
LIBSFIND_FILE\ ovtetnte e e e e e LIB-184
LIB$FIND_FILE_END. . . . e .o ottt et et e LIB-188
LIB$FIND_IMAGE_SYMBOL . . . e\t ot ettt e e eee e LIB-189
LIB$SFIND_VM_ZONE e\ e ottt e e e e e LIB-192
LIB$FIND_VM_ZONE_64 (Alpha Only). . . .o v e v veeeaaeeeenenn. LIB-194
LIB$FIT_NODENAMEoveeneeea e, e LIB-196
LIBSFIXUP_FLT . ..o\t ovee et et e e e e e e e LIB-199
LIBSFLT_UNDERottt et e e e e e e e LIB-201
LIB$FORMAT _DATE_TIME etene e e, LIB-203
LIB$FORMAT_SOGW_PROT (VAX Only) . ..o veeeeereenennnn. LIB-206
LIB$FREE_DATE_TIME_CONTEXT. e LIB-209

LIBSFREE_EFot it it e e e LIB-210

LIBSFREE_LUN ...ttt ettt e e e e e e LIB—211
LIB$FREE_TIMERttt e LIB-212
LIBSFREE_VM . ..ot tttt e e et e LIB-213
LIB$FREE_VM_64 (Alpha Only) P LIB-216
LIBSFREE_VM_PAGEo oo e ettt e LIB-219
LIB$FREE_VM_PAGE_64 (Alpha Only)ouuuuunennennnn.. LIB—221
LIB$GETDVI [P LIB-223
LIBSGETIPL . oottt et e LIB-228
LIBSGETQUI e e vttt et e e e e e e LIB-233
LIBSGETSYT . . . vttt et e e e e e e e e e LIB-238
LIB$GET ACCNAM (VAXOnly)ououunn... e LIB-242
LIB$GET_ACCNAM_BY_CONTEXT (VAX OnLy). « . v v v veeeeeanenn LIB—244
LIBSGET COMMAND oottt et e e e e LIB-246
LIBSGET COMMON\ttt LIB-249
LIB$GET_CURR_INVO_CONTEXT (Alpha Only)ouveeennnnn.. LIB-251
LIB$GET DATE_FORMATo vttt et e e LIB-252
LIBSGET EFottt ee et e e e e e LIB-254
LIB$GET FOREIGN . ..\ttt ettt e e LIB—256
LIB$GET_FULLNAME_OFFSETvoveteee e LIB-260
LIBSGET_HOSTNAME . . . oottt ettt e e e LIB-262
LIBSGET INPUT . . . o vttt e et e e e e e e e e e LIB-265
LIB$GET_INVO_CONTEXT (Alpha Only) vvveveeneanennnn. LIB-268
LIB$GET_INVO_HANDLE (Alpha Only).o v veeeeeeeeeaeen LIB—270
LIBSGET_LUN ..ottt ettt e e e e LIB-271
LIB$GET MAXIMUM_DATE_LENGTHovoeeenenanennnnn. LIB-273
LIB$GET PREV_INVO_CONTEXT (Alpha Only)oveeennn... LIB-275
LIB$GET_PREV_INVO_HANDLE (Alpha Only)ouveenennenn.. LIB-276
LIBSGET SYMBOL . . . oo e ottt et e e e e e e LIB-277
LIB$GET USERS_LANGUAGEttt LIB-280
LIBSGET VM . .. v v vttt et e e e e e e e e e LIB-281
LIB$GET_VM_64 (Alpha Only) . . .o v v ve et eee e e e LIB-283
LIBSGET_VM_PAGE . . .o oottt et e e LIB-285
LIB$GET_VM_PAGE_64 (Alpha Only). . ..o \voveeeeeeee e LIB-287
LIBSICHAR . . . ot o ettt e e e e e e . LIB-289
LIBSINDEX . . . v ve ettt e e e e e e e e e e LIB-291
LIB$INIT_DATE_TIME_CONTEXT. . . .\ttt et e LIB-293
LIBSINIT_TIMER . . .« et ettt e et e e e e e e LIB-297
LIBSINSERT_TREE\ttt e LIB—299
LIB$INSERT_TREE_64 (Alpha Only)oovvneenaeennnn.. LIB-308
LIBSINSQHI . . .o e oottt et e e e e e LIB-317
LIBSINSQHIQ (AIpha Only) . .. v v v ee ettt e e e LIB-320
LIBSINSQTT . .. v v oottt e e e e e e e e e e LIB-323
LIBSINSQTIQ (Alpha Only) v v v veeeee e e e e e LIB-326
LIBSINSY & ottt et et e e e e e e LIB-329
LIBSINT OVERo o oeeeeeaeeenn. e LIB-331
LIBSLEN . .ottt ettt e e e e e e e LIB-333

vi

LIBSLOCC . . o ittt ittt et et LIB-334

LIBSLOOKUP.KEY.........c...... [LIB-337
LIBSLOOKUP_TREE e e ettt e e et e e e e LIB-341
LIB$LOOKUP_TREE_64 (Alpha Only)vvurreeeneenannnnns LIB-343
LIBSLP_LINES . ..ot ott ettt et e e e e e LIB—345
LIB$MATCHC F LIB~347
LIBSMATCH_COND . ..\t e sttt e e e e e et e LIB-349
LIBSMOVCS . vttt ettt e e e e e e e e LIB-352
L B MOV CS ottt e e e e e e e e LIB-354
LIBSMOVTC . . vttt e e e e e e e e e LIB-356
LIBSMOVTUC . o it ittt e et e et e e e e e e e e e e s e LIB-373
LIB$SMULTF DELTA TIME ... ittt e et e LIB-376
LIBSMULT_DELTA TIME-. . . o ettt et e e e LIB-377
LIB$PARSE_ACCESS_CODE (VAX Only) . « v v veeeeeeeaeean LIB-378
LIB$PARSE_SOGW_PROT (VAX Only)o vv ittt iie e eiiiiennn LIB-381
LIBSPAUSE . . . o ettt et e e e e e e e e LIB-384
LIBSPOLYD . . v et et e e e e e e e e e e e e e LIB-385
LIBSPOLYT . . o oot ettt e e e LIB-387
LIBPOLY G . .ottt et e e e e e e e e LIB-390
LIBSPOLYH . . . o ottt et e e e e e e e LIB-392
LIB$PUT_COMMONo ettt e e e et e e e e e LIB-394
LIB$PUT_INVO_REGISTERS (Alpha Only)vvvuneennnenn. LIB-396
LIBSPUT OUT PU T . . . ittt ettt et et et e e e e LIB—398
LIBSRADIX POINT . . . o e oot et e e e e e e e e e LIB-400
LIBSREMQHIo oottt e e e e LIB—402
LIB$SREMQHIQ (Alpha OnLY) vvee ettt e LIB-405
LB REMQT L. . ittt ettt e e e LIB-408
LIBSREMQTIQ (Alpha Only)o i it i e e e e e LIB—411
LIBSRENAME_FILE . . . o oottt e et LIB—414
LIBSRESERVE_EFttt e e e e LIB—423
LIBSRESET VM _ZONE ittt ittt ettt e LIB-425
LIB$RESET _VM_ZONE_64 (Alpha Only)ovvureeeneeeannnn.. LIB—427
LIBSREVERT . ..ottt e e LIB-429
LIBSRUN _PROGRAM ...ttt ettt et e e ettt LIB—430
LIBSSCANC . . . vttt e et e e e e e e e e e LIB—432
LIB$SCOPY_DXDX . . vt e ettt e e e e e e e e LIB—434
LIB$SCOPY R.DX .ot e ettt et e e e e LIB-436
LIB$SCOPY_R_DX_64 (Alpha Only)ouueeeeeeeaneaannn .. LIB—438
LIB$SET LOGICAL .. e oottt e et e e e e LIB—440
LIB$SET_SYMBOL v et ettt et et et . . LIB—444
LIBSSFREEL DD ...ttt ettt e ettt e e e e e LIB-447
LIBSSFREEN DD ...ttt ettt et e et et e e e et LIB—-448
LIBSSGET I DD . .t ittt ittt ettt e LIB-450
LIB$SGET1_DD_64 (Alpha Only)cuvveuirneninennnnn.. LIB-452
LIB$SHOW_TIMERot ettt e e e e LIB—454
LIBSSHOW VM. . . o oottt e et e e e e e e e e LIB-458
LIB$SHOW_VM_64 (AlphaOnly) S LIB-461

LIB$SHOW_VM_ZONE ittt ittt it e i ee e LIB—-464

LIB$SHOW_VM_ZONE_64 (Alpha Only) ouvveeeeeeeanennn.. LIB-470
LIBSSIGNAL . . . v v v et ettt e e e e e e e e e e - LIB-476
LIBSSIG_TO_RET . . . oo ettt e et e e e e LIB-480
LIBS$SIG_TO_STOP . . o e e oot e e et e e e e e e LIB—482
LIB$SIM_TRAP . . . o oottt e e LIB—484
LIBSSKPC . . vttt e et e e e e e e e e e e e LIB-486
LIBSSPANC . . . v ettt e et e e e e e e e e e e e LIB-488
LIBSSPAWN . . .t vt ettt e e e e e e e e e e e e LIB—492
LIB$STAT TIMER . . « o v et et et e e e e e e LIB-498
LIBSSTAT VM . . . v v vt et et e e e e e e e e e e e e e e LIB-502
LIB$STAT_VM_64 (Alpha OnLY)vvv et LIB-504
LIBSSTOP . . v ettt et e e e e e e e e LIB-506
LIBSSUBX . . . v vt ee e et e e e e e e e e e e LIB-508
LIB$SUB_TIMES. . .« vt ettt e e e e e e, LIB-510
LIBSSYS_ASCTIM . . . o oottt e e e e e e e e LIB-512
LIBSSYS FAO . . v e v et ettt e e e e e e e LIB-514
LIBSSYS_FAOL . . o oottt e et e e e e e LIB-516
LIB$SYS_FAOL_64 (AIpha Only). « . . oo oottt LIB-518
LIBSSYS_GETMSG . . oo eeeee e et e e e e e e e e e e LIB-520
LIB$TPARSE/LIBSTABLE PARSE @vvtteeeee e, LIB-523
LIBSTRAVERSE_TREE« oottt et e LIB-584
LIB$TRAVERSE_TREE_64 (Alpha Only). . .« oo uvvveeeeeeeeeeen.. LIB-586
LIBSTRA_ASC_EBC . ..o oottt e e e e LIB-588
LIBSTRA_EBC_ASC - .o oottt et e e e LIB-592
LIB$TRIM_FILESPEC. T LIB-595
LIB$TRIM_FULLNAMEottt et e e e LIB-598
LIB$VERIFY_VM_ZONEot o ettt e LIB-601
LIB$VERIFY_VM_ZONE_64 (Alpha Only)ooeuuunenan... LIB-602
LIBSWAIT . . et ettt e e e e e e e e LIB-603

CVTS$ Reference Section

Index

Figures

LIB—1
LiB-2
LIB-3

LiB-4
LIB-5
LIB-6

CVTSCONVERT _FLOATttt it ettt e e CVT-3

CV T T OF . .ttt e ettt e e e e et CVT-9
Structure of a Protection Mask LIB—47
Summary of Symbol Names and Values. LIB-76
Summary of Symbol Names, Values, and Names of Referring
Modules . ..ov it e e e e LIB-76
Summary Indicating Defining Modules LIB-77
Keyword Tableciiii i it ieeea LIB-338
LIBSAB_ASC_EBCttitiiteit et LIB-358

vii

LIB-7

LIB-8

LIB-9

LIB-10
LIB-11
LIB-12
LIB-13
LIB-14
LIB-15
LIB-16
LIB-17
LIB-18
LIB-19
LIB-20
LIB-21
LIB-22
LIB—23
LIB-24
LIB-25

Tables

viii

1-1
1-2
LIB-1

LIB-2
LIB-3

LIB—4
LIB-5
LIB-6
LIB-7
LIB-8
LIB-9
LIB-10
LiB-11
LIB-12

LIB-13

LIB-14

LIB$AB_ASC EBC_REV . ..o v et e LIB-359

LIBSAB EBC_ASCttt it et et e e LIB-360
LIBSAB_EBC_ASC_ REV ...ttt it et e e LIB-361
LIBSAB_.CVITPT O v e e e e e e LIB-362
LIBS3AB CVTPT U ...ttt ittt it et et e eieanns LIB-363
LIBSAB CVT TP _O ...ttt ittt et ettt et et LIB-364
LIBSAB_CVTITP U ..ttt ittt et ettt e e ieieeans LIB-365
LIBSAB CVT O U. ..ottt ettt et e et e LIB-366
LIBSAB CVT U _O. ..ottt ettt it et ie et et e ieeniaannns LIB-367
LIBSAB CVTPT Z ...ttt ittt ettt et e et e LIB-368
LIBSAB CVTTP Z . .. ittt ittt ettt et et e LIB-369
LIBSAB UPCASEot ci e e LIB-370
LIBSAB_ LOWERCASEottt it i it eieennn LIB-371
LIB$T[ABLE_JPARSE 32-bit Argument Block LIB-538
LIB$T[ABLE_JPARSE 64-Bit Argument Block (Alpha Only) LIB-539
Transition Diagram for a Hypothetical Utility LIB-544
Tabular Diagram of a Hypothetical Utility LIB-545
LIBSAB_ASC_EBC ...ttt et ettt e e e LIB-589
LIBSAB EBC_ASC ...ttt e ittt e e i e e LIB-593
LIBS ROULINGS . .ottt ii ettt ettt eeeeeeeeananeennn 1-2
Translated LIB$ Routines (Alpha Only)................covon.. 1-8
OpenVMS Descriptor Class and Data Type Combinations Accepted by
LIBSCVT DX DX ..ottt ittt et et et eiieeans LIB-86
LIB$CVT_DX_DX Destination NBDS Formats LIB-88
Symbols for Fields and Values for Operand Access and Data Types

Using LIBSDECODE_FAULTiittiiiinnnenns LIB-112
Formats Used for LIBSGETDVI Stringsccvovuterenn.n. LIB-226
Item Code Formats for LIBSGETJPI e LIB-230
Item Code Formats for LIBSGETQUIccoin... LIB-236
LIB$SHOW_VM_ZONE Error and Warning Messages LiB—466
LIB$SHOW_VM_ZONE_64 Error and Warning Messages LIB-472
The Alphabet of LIB$T[ABLE_JPARSEcovu... LIB-527
LIB$T[ABLE_]PARSE Argument Block Fields................... LIB-540
Keyword Abbreviation Flags i, LIB-554
Binary Representation of a LIB§T[ABLE_JPARSE State

TranSitionvutiiiit ittt et et e e LIB-560
ASCII Graphics Not Translated to EBCDIC Equivalent by

LIBSTRA_ASC EBCttt ittt et et e e 'LIB-589
EBCDIC Graphics Not Translated to ASCII Equivalent by

LIBSTRA_EBC_ASCottt ittt et e e e LIB-593

Preface

This manual provides users of the OpenVMS operating system with detailed
usage and reference information on library routines supplied in the LIB$ and
CVTS$ facilities of the Run-Time Library (RTL).

Intended Audience

This manual is intended for system and application programmers who want to
call Run-Time Library routines.

Document Structure

This manual is organized into three parts as follows:

* The overview chapter provides a brief overview of the LIB$ and CVT$ Run-
Time Library facility and lists the LIB$ routines and their functions. It also
provides guidelines and information on using the LIB$ facility with VAX and
Alpha platforms. '

* The LIB$ reference section describes each library routine contained in the
LIB$ Run-Time Library facility. This information is presented using the
documentation format described in OpenVMS Programming Interfaces:
Calling a System Routine. Routine descriptions appear alphabetically by
routine name.

* The CVT$ reference section describes the routines contained in the
CVT$ Run-Time Library facility. This information is presented using the
documentation format described in OpenVMS Programming Interfaces:
Calling a System Routine.

Related Documents

0

The Run-Time Library routines are documented in a series of reference manuals.
A description of how the Run-Time Library routines are accessed is presented in
OpenVMS Programming Interfaces: Calling a System Routine. A description of
OpenVMS features and functionality available through calls to the LIB$ Run-
Time Library appears in OpenVMS Programming Concepts Manual. Descriptions
of the other RTL facilities and their corresponding routines are presented in the
following books:

OpenVMS Alpha Guide to 64-Bit Addressing
* Digital Portable Mathematics Library ¢
* OpenVMS VAX RTL Mathematics (MTH$) Manual+
e OpenVMS RTL DECtalk (DTK$) Manual
* OpenVMS RTL General Purpose (OTS$) Manual

* OpenVMS RTL Parallel Processing (PPL$) Manual
* OpenVMS RTL Screen Management (SMG$) Manual
* OpenVMS RTL String Manipulation (STR$) Manual

Application programmers using any language can refer to the Guide to Creating
OpenVMS Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the language user’s guide provided with your
OpenVMS language software.

For a complete list and description of the manuals in the OpenVMS
documentation set, see the Overview of OpenVMS Documentation.

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com
Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08
Mail OpenVMS Documentation Group, ZK03-4/U08

110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Location Cali Fax Write

U.S.A. DECdirect Fax: 800-234-2298 Digital Equipment Corporation
800-DIGITAL P.O. Box CS2008
800-344-4825 Nashua, NH 03061

Puerto Rico 809-781-0505 Fax: 809-749-8300 Digital Equipment Caribbean, Inc.

3 Digital Plaza, 1st Street, Suite 200
P.O.Box 11038

Metro Office Park

San Juan, Puerto Rico 009102138

Canada 800-267-6215 Fax: 613-592-1946 Digital Equipment of Canada, Ltd.
Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

International - - Local Digital subsidiary or
approved distributor
Internal Orders DTN: 2644446 Fax: 603-884-3960 U.S. Software Supply Business
603-884—4446 Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260
ZK-7654A-GE
Conventions

The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS
Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

The VAX icon denotes the beginning of information

@ specific to OpenVMS VAX.
The diamond symbol denotes the end of a section of

¢ information specific to OpenVMS Alpha or to OpenVMS
VAX.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

Xi

The following conventions are also used in this manual:

Ctrl/x

PF1 x or
GOLD x

O

[]

{}

boldface text

italic text

UPPERCASE TEXT

Monospace type

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (-), or
underscore (_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

Horizontal ellipsis points in examples indicate one of the
following possibilities:

¢ Additional optional arguments in a statement have been
omitted.

® The preceding item or items can be repeated one or more
times.

¢ Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

numbers

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Xiii

1

Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines

This manual discusses the Run-Time Library (RTL) LIB$ routines that perform
general purpose (library) functions. One of the functions of the LIB$ facility is to
provide a callable interface to components of OpenVMS operating systems that
are difficult to use in a high-level language. LIB$ routines allow access to the
following:

* System services

¢ The command .language interpreter (CLI)

e Some VAX machine instructions or the equivalent Alpha instructions
In addition, LIB$ routines allow you to perform the following operations:

¢ Allocate the resources that your process needs, such as virtual memory and
event flags

¢ Convert data types for I/O
@ * Enable detection of hardware exceptions ¢
@ ¢ Establish condition handlers+
* Generate and display timing statistics while your program is running
* Get and put strings in the process common storage area
* Obtain records from devices
¢ Obtain the system date and time in various formats
* Process cross-reference data
@ * Process DECnet/OSI full names for OpenVMS VAX systems ¢
* Search for specified files
¢ Set up and use binary trees

* Signal exceptions

1.1.1 64-Bit Addressing Support

m On Alpha systems, the Run-Time Library (LIB$) routines provide 64-bit virtual
addressing capabilities as follows:

¢ Most routines now accept 64-bit addresses for arguments passed by reference.
Footnotes in the Reference Section of this manual indicate those routines that
do not.

* Most routines also accept either 32-bit or 64-bit descriptors for arguments
passed by descriptor. Footnotes in the Reference Section of this manual
indicate those routines that do not.

Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines

* In some cases, a new routine was added to support a 64-bit addressing or
data capability. These routines carry the same name as the original routine
but with a _64 suffix. In general, both versions of the routine support 64-bit
addressing, but the routine with the _64 suffix also supports additional 64-bit
capability. The 32-bit capabilities of the original routine are unchanged.

* Specialized routines create and manipulate storage zones in the 64-bit virtual
address space. The names of these routines are the same as their 32-bit
counterparts but with a _64 suffix. One example is LIBSCREATE_VM_
ZONE and LIB$CREATE_VM_ZONE_64. LIB§CREATE_VM_ZONE creates
a storage zone in the 32-bit vitual address space, and LIBSCREATE_VM_
ZONE_64 creates a storage zone in the 64-bit virtual address space. The
function of the original routine is unchanged.

See the OpenVMS Alpha Guide to 64-Bit Addressing for more information about
64-bit virtual addressing capabilities. ¢

1.1.2 The LIB$ Routines

Table 1-1 lists all of the LIB$ routines and their functions.

Table 1-1 LIB$ Routines

Routine Name

Function

LIB$ADAWI

LIB$ADDX

LIB$ADD_TIMES
LIBSANALYZE_SDESC
{LIB$ANALYZE_SDESC_64
LIB$ASN_WTH_MBX
LIB$AST_IN_PROG
LIB$ATTACH

LIB$BBCCI

LIB$BBSSI
LIB$BUILD_NODESPEC
LIB$CALLG

LIB$CALLG_64

LIB$CHAR .
LIB$COMPARE_NODENAME
LIB$COMPRESS_NODENAME
LIB$CONVERT_DATE_STRING
LIB$CRC

LIB$CRC_TABLE
LIB$CREATE_DIR
LIB$CREATE_USER_VM_ZONE
LIB$CREATE_USER_VM_ZONE_64

Add adjacent word with interlock.

Add two multiple-precision binary numbers.

Add two quadwords times.

Analyze a string descriptor.

Analyze a string descriptor.

Assign a channel to a mailbox.

Check for active AST.

Attach a terminal to a process.

Test and clear a bit with interlock.

Test and set a bit with interlock.

Build a node-name specification.

Call a procedure with a general argument list.
Call a procedure with a general argument list.
Transform a byte to the first character of a string.
Compare two node names.

Compress a node name to its short form equivalent.
Convert a date string to a quadword.

Calculate a cyclic redundancy check (CRC).
Construct a cyclic redundancy check (CRC) table.
Create a directory.

Create a user-defined storage zone.

Create a user-defined storage zone.

fAlpha specific.

(continued on next page)

Table 1-1 (Cont.) LIB$ Routines

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$CREATE_VM_ZONE
{LIB$CREATE_VM_ZONE_64
LIB$CRF_INS_KEY
LIB$CRF_INS_REF
LIB$CRF_OUTPUT
LIB$CURRENCY
LIB$CVTF_FROM_INTERNAL_TIME
LIB$CVTF_TO_INTERNAL_TIME
LIB$CVT_DX_DX
LIB$CVT_FROM_INTERNAL_TIME
LIB$CVT_TO_INTERNAL_TIME
LIB$CVT_VECTIM

LIB$CVT _xTB

fLIB$CVT_xTB_64
LIB$DATE_TIME

LIB$DAY

LIB$DAY_OF_WEEK
LIB$DECODE_FAULT
LIB$DEC_OVER
LIB$DELETE_FILE
LIB$DELETE_LOGICAL
LIB$DELETE_SYMBOL
LIB$DELETE_VM_ZONE
fLIB$DELETE_VM_ZONE_64
LIB$DIGIT SEP
LIB$DISABLE_CTRL
LIB$DO_COMMAND

LIB$EDIV

LIB$EMODD

LIB$EMODF
LIBSEMODG
LIB3EMODH

LIBSEMUL
LIB$ENABLE_CTRL

Create a new storage zone.

Create a new storage zone.

Insert a key in the cross-reference table.

Insert a reference to a key in the cross-reference table.
Output some cross-reference table information.

Get the system currency symbol.

Convert internal time to external time (F-floating value).
Convert external time to internal time (F-floating value).
Convert the specified data type.

Convert internal time to external time.

Convert external time to internal time.

Convert 7-word vector to internal time.

Convert numeric text to binary.

Convert numeric text to binary.

Return the date and time as a string.

Return the day number as a longword integer.

Return the numeric day of the week.

Decode instruction stream during a fault.!

Enable or disable decimal overflow detection.!

Delete one or more files.

Delete a logical name.

Delete a CLI symbol.

Delete a virtual memory zone.

Delete a virtual memory zone.

Get the digit separator symbol.

Disable CLI interception of control characters.
Execute the specified command. ‘

Perform an extended-precision divide.

Perform extended multiply and integerize for D-floating
values.

Perform extended multiply and integerize for F-floating
values.

Perform extended multiply and integerize for G-floating
values.

Perform extended multiply and integerize for H-floating
values.!

Perform an extended-precision multiply.

Enable CLI interception of control characters.

1Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha systems.

}Alpha specific.

(continued on next page)

Overview of the LIB$ Facility

1.1 Run-Time Library LIB$ Routines

Table 1-1 (Cont.) LIB$ Routines

Routine Name

Function

LIB$ESTABLISH
LIB$EXPAND_NODENAME
LIB$EXTV

LIB$EXTZV

LIB$FFx
LIB$FID_TO_NAME
LIB$FILE_SCAN
LIB$FILE_SCAN_END
LIB$FIND_FILE
LIB$FIND_FILE_END
LIB$FIND_IMAGE_SYMBOL
LIB$FIND_VM_ZONE
LIBFIND_VM_ZONE_64
LIB$FIT_NODENAME
LIB$FIXUP_FLT

LIB$FLT UNDER
LIB$FORMAT_DATE_TIME
tLIB$FORMAT_SOGW_PROT
LIB$FREE_DATE_TIME_CONTEXT
LIB$FREE_EF
LIB$FREE_LUN
LIB$FREE_TIMER
LIB$FREE_VM
LIBFREE_VM_64
LIB$FREE_VM_PAGE
LIBFREE_VM_PAGE_64
LIB$GETDVI

LIB$GETJPI

LIB$GETQUI

LIB$GETSYI
+LIB$GET_ACCNAM
1LIB$GET_ACCNAM_BY_CONTEXT

LIB$GET_COMMAND
LIB$GET_COMMON
1LIB$GET_CURR_INVO_CONTEXT

Establish a condition handler.! 2

Expand a node name to its full name equivalent.
Extract a field and sign-extend.

Extract a zero-extended field.

Find the first clear or set bit.

Convert a device and file ID to a file specification.
Perform a file scan.

End a file scan.

Find a file.

End of find file.

Merge activate an image symbol.

Find the next valid zone.

Find the next valid zone.

Fit a node name into an output field.

Fix floating reserved operand.!

Detect a floating-point underflow.!

Format a date and/or time.

Format protection mask.

Free the context used to format a date.

Free an event flag.

Free a logical unit number.

Free timer storage.

Free virtual memory from the program region.
Free virtual memory from the program region.
Free a virtual memory page.

Free a virtual memory page.

Get device/volume information.

Get job/process information.

Get queue information.

Get systemwide information.

Get access name table for a security object identified by name.

Get access name table for a security object identified by
$GET_SECURITY or $SET_SECURITY context.

Get line from SYS$COMMAND.
Get string from common area.

Get current invocation context.

LAvailable only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha systems.
2This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha systems.

TVAX specific.
FAlpha specific.

1-4

(continued on next page)

Table 1-1 (Cont.) LIB$ Routines

Overview of the LIBS$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$GET_DATE_FORMAT
LIB$GET_EF
LIB$GET_FOREIGN
LIB$GET_FULLNAME_OFFSET

LIB$GET_HOSTNAME
LIB$GET_INPUT
{LIB$GET_INVO_CONTEXT
LIB$GET_INVO_HANDLE
LIB$GET_LUN
LIB$GET_MAXIMUM_DATE_LENGTH
{LIB$GET_PREV_INVO_CONTEXT
LIBGET_PREV_INVO_HANDLE
LIB$GET_SYMBOL
LIB$GET_USERS_LANGUAGE
LIB$GET_VM

LIBGET_VM_64
LIB$GET_VM_PAGE
{LIB$GET_VM_PAGE_64
LIB$ICHAR

LIB$INDEX
LIB$INIT_DATE_TIME_CONTEXT
LIB$INIT_TIMER
LIB$INSERT_TREE
{LIB$INSERT_TREE_64
LIB$INSQHI

{LIB$INSQHIQ

LIB$INSQTI

LIB$INSQTIQ

LIB$INSV

LIB$INT_OVER

LIB$LEN

LIB$LOCC

LIB$LOOKUP_KEY
LIB$LOOKUP_TREE
{LIB$LOOKUP_TREE_64
LIB$LP_LINES

Return the user’s date input format.
Get an event flag.
Get foreign command line.

Get the offset to the starting position of the most significant
part of a full name.

Get host node name.

Get, line from SYS$INPUT.

Get invocation context.

Get invocation handle.

Get logical unit number.

Get the maximum possible date/time string length.
Get previous invocation context.

Get previous invocation handle.

Get the value of a CLI symbol.

Return the user’s language choice.

Allocate virtual memory.

Allocate virtual memory.

Get a virtual memory page.

Get a virtual memory page.

Convert the first character of a string to an integer.
Index to relative position of substring.

Initialize the context used in formatting date/time strings.
Initialize times and counts.

Insert entry in a balanced binary tree.

Insert entry in a balanced binary tree.

Insert entry at the head of a queue.

Insert entry at the head of a queue.

Insert entry at the tail of a queue.

Insert entry at the tail of a queue.

Insert a variable bit field.

Detect integer overflow.!

Return the length of a string as a longword.
Locate a character.

Look up keyword in table.

Look up an entry in a balanced binary tree.
Look up an entry in a balanced binary tree.
Specify the number of lines on each printer page.

1Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha systems.

$Alpha specific.

(continued on next page)

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Table 1-1 (Cont.) LIB$ Routines

Routine Name

Function

LIB$MATCHC
LIBSMATCH_COND
LIB$MOVC3

LIB$MOVC5

LIB$MOVTC
LIB$MOVTUC
LIB$MULTF_DELTA_TIME
LIB§MULT_DELTA_TIME
tLIB$PARSE_ACCESS_CODE
tLIB$PARSE_SOGW_PROT
LIB$PAUSE

LIB$POLYD

LIB$POLYF

LIB$POLYG

LIB$POLYH
LIB$PUT_COMMON

LIBPUT_INVO_REGISTERS

LIB$PUT_OUTPUT
LIB$RADIX_POINT
LIB$REMQHI
fLIB$REMQHIQ
LIB$REMQTI
LIBREMQTIQ
LIBSRENAME_FILE
LIB$RESERVE_EF
LIB$RESET_VM_ZONE
+LIB$RESET_VM_ZONE_64
LIB$REVERT
LIB$RUN_PROGRAM
LIB$SCANC
LIB$SCOPY_DXDX
LIB$SCOPY_R_DX
LIBSCOPY_R_DX_64
LIB$SET _LOGICAL
LIB$SET SYMBOL
LIB$SFREE1_DD

Match characters, return relative position.
Match condition values.

Move characters.

Move characters with fill.

Move translated characters.

Move translated until character.

Multiply delta time by F-floating scalar.
Multiply delta time by scalar.

Parse access-encoded name string.

Parse protection string.

Pause program execution.

Evaluate polynomials for D-floating values.
Evaluate polynomials for F-floating values.
Evaluate polynomials for G-floating values.
Evaluate polynomials for H-floating values.!
Put string into common area.

Put invocation registers.

Put line to SYS$OUTPUT.

Radix point symbol.

Remove entry from head of queue.

Remove entry from head of queue.

Remove entry from tail of queue.

Remove entry from tail of queue.

Rename one or more files.

Reserve an event flag.

Reset virtual memory zone.

Reset virtual memory zone.

Revert to the handler of the procedure activator.!

Run new program.

Scan for characters and return relative position.
Copy source string by descriptor to destination.
Copy source string by reference to destination.
Copy source string by reference to destination.
Set logical name.

Set the value of a CLI symbol.

Free one or more dynamic strings.

1 Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha systems.

2This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha systems.

TVAX specific.
FAlpha specific.

1-6

(continued on next page)

Table 1-1 (Cont.) LIB$ Routines

Overview of the LIB$ Facility
1.1 Run-Time Library LIB$ Routines

Routine Name

Function

LIB$SFREEN_DD
LIB$SGET1_DD
{LIB$SGET1_DD_64
LIB$SHOW_TIMER
LIB$SHOW_VM
{LIB$SHOW_VM_64
LIB$SHOW_VM_ZONE
{LIB$SHOW_VM_ZONE_64
LIB$SIGNAL
LIB$SIG_TO_RET
LIB$SIG_TO_STOP
L1B$SIM_TRAP
LIB$SKPC

LIB$SPANC
LIB$SPAWN
LIB$STAT_TIMER
LIB$STAT_VM
{LIB$STAT_VM_64
LIB$STOP

LIB$SUBX
LIB$SUB_TIMES
LIB$SYS_ASCTIM
LIB$SYS_FAO
LIB$SYS_FAOL
{LIB$SYS_FAOL_64
LIB$SYS_GETMSG
LIB$TABLE_PARSE
LIB$TPARSE
LIB$TRAVERSE_TREE
{LIB$TRAVERSE_TREE_64
LIB$TRA_ASC_EBC
LIB$TRA_EBC_ASC
LIB$TRIM_FILESPEC
LIB$TRIM_FULLNAME
LIB$VERIFY_VM_ZONE
{LIB$VERIFY_VM_ZONE_64
LIB$WAIT

Free n dynamic strings.

Get one dynamic string.

Get one dynamic string.

Show accumulated times and counts.

Show virtual memory statistics.

Show virtual memory statistics.

Display information about a virtual memory zone.
Display information about a virtual memory zone.
Signal exception condition.

Convert a signaled message to a return status.
Convert a signaled condition to a signaled stop.
Simulate floating trap.

Skip equal characters.

Skip selected characters.

Spawn a subprocess.

Return accumulated time and count statistics.
Return virtual memory statistics.

Return virtual memory statistics.

Stop execution and signal the condition.

Perform multiple-precision binary subtraction.
Subtract two quadword times.

Invoke $ASCTIM to convert binary time to ASCII.
Invoke $FAO system service to format output.
Invoke $FAOL system service to format output.
Invoke $FAOL system service to format output.
Invoke $GETMSG system service to get message text.
Implement a table-driven, finite-state parser.
Implement a table-driven, finite-state parser.!
Traverse a balanced binary tree.

Traverse a balanced binary tree.

Translate ASCII to EBCDIC.

Translate EBCDIC to ASCII.

Fit a long file specification into a fixed field.

Trim a full name to fit into a desired output field.
Verify a virtual memory zone.

Verify a virtual memory zone.

Wait a specified period of time.

1 Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha systems.

fAlpha specific.

Overview of the LIB$ Facility
1.2 Translated Version of LIB$ Facility (Alpha Only)

1.2 Translated Version of LIB$ Facility (Alpha Only)

The RTL LIB$ facility exists in two forms on OpenVMS Alpha systems: native
and translated. The translated LIB$ library contains routines specific to VAX
systems only, and are executed in the Translated Image Environment (TIE).
These routines are not available to native OpenVMS Alpha programs. See
DECmigrate for OpenVMS AXP Systems Translating Images for additional
information on using translated images and the TIE.

Table 1-2 lists the translated LIB$ routines.

" Table 1-2 Translated LIB$ Routines (Alpha Only)

Routine Name Restriction

LIB$DECODE_FAULT Decodes VAX instructions.

LIB$DEC_OVER Applies to VAX PSL only.

LIB$ESTABLISH Supported by compilers on OpenVMS Alpha systems.
LIB$FIXUP_FLT Applies to VAX PSL only.

LIB$FLT;UNDER Applies to VAX PSL only.

LIB$INT OVER Applies to VAX PSL only.

LIB$REVERT Supported by compilers on OpenVMS Alpha systems.
LIB$SIM_TRAP Applies to VAX code.

LIB$TPARSE Requires action routine interface changes. Replaced by

LIB$TABLE_PARSE.

LIB$ routines that are called using JSB linkages may function differently on
OpenVMS VAX and OpenVMS Alpha systems. See OpenVMS Programming
Interfaces: Calling a System Routine for more information on using JSB
linkages. ¢

1.3 Run-Time Library CVT$ Facility

This manual describes the Run-Time Library CVT$ facility and its
CVT$CONVERT_FLOAT routine. The CVT$ facility lets you convert data
stored in one OpenVMS data type into data for another data type. For example,
CVT$CONVERT_FLOAT converts data in one of several floating-point data types
to another floating-point data type.

LIB$ Reference Section

This section contains detailed discussions of the routines provided by the
OpenVMS RTL Library (LIB$) Facility.

LIB$ Routines
LIBSADAWI

LIBSADAWI
Add Aligned Word with Interlock

Format

Returns

Arguments

The Add Aligned Word with Interlock routine allows the user to perform an
interlocked add operation using an aligned word.

LIBSADAWI add ,sum ,sign

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

add

OpenVMS usage: word_signed

type: word (signed)
access: read only
mechanism: by reference

The addend operand to be added to the value of sum. The add argument is the
address of a signed word that contains the addend operand.

sum

OpenVMS usage: word_signed

type: word integer (signed)
access: modify

mechanism: by reference

The word to which add is added. The sum argument is the address of a signed
word integer containing this value. The add operand is added to the sum
operand, and the value of the sum argument is replaced by the result of this
addition. The sum argument must be word-aligned; in other words, its address
must be a multiple of 2.

sign

OpenVMS usage: word_signed

type: word integer (signed)
access: write only
mechanism: by reference

Sign of the sum argument. The sign argument is the address of a signed word
integer that is assigned the value —1, 0, or 1, depending on whether the new
value of sum is negative, 0, or positive.

LIB-3

LIBS Routines
LIBSADAWI

Description

LIB$ADAWI allows the user to perform an interlocked add operation using an
aligned word, and makes the VAX ADAWI! instruction available as a callable
routine. This routine also enables the user to implement synchronization
primitives for multiprocessing.

The add operation is interlocked against similar operations on other processors in
a multiprocessor environment. This provides an atomic addition operation. The
destination must be aligned on a word boundary; that is, bit 0 of the address of
the sum operand must be 0.

If the addend and the sum operand overlap, the result of the addition, the value
of the sign argument, and the associated condition codes are unpredictable.

The value of the sign argument is useful when LIB$ADAWI is used to implement
locking in a multiprocessing program. For example, a process that is waiting to
seize a lock or a resource calls LIBSADAWI to add 1 to the sum. When the call
returns, the waiting process checks the value of sign.

One possible algorithm would interpret the value of sign as follows:

Value of sign

Argument Status of Lock or Resource

-1 Open lock or free resources

0 Closed lock or no free resources, with no processes waiting
+1 Closed lock or no free resources, with processes waiting

In this algorithm, if the value of the sign argument is -1, that indicates that
the process successfully seized the lock or resource, and other free resources are
available. A value of 0 indicates that the process successfully seized the lock or
the last available resource. A value of 1 indicates that the process was unable to
seize the lock.

It is not sufficient for a waiting process to test the value of sum. The result
is unpredictable because other processes can alter the value of sum after the
original process executes the ADAWI instruction but before it tests the value
of sum. However, a process can safely test the value of sign because its value
is determined by the ADAWI instruction and is unaffected by other processes’
activities.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INTOVF Integer overflow error.

! On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB—+4

LIBS Routines
LIBSADDX

LIBSADDX
Add Two Multiple-Precision Binary Numbers

The Add Two Multiple-Precision Binary Numbers routine adds two signed two’s
complement integers of arbitrary length.

Format

LIBSADDX addend-array ,augend-array ,resultant-array [,array-length]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

addend-array
OpenVMS usage: vector_longword_signed

type: unspecified
access: read only
mechanism: by reference, array reference

First multiple-precision, signed two’s complement integer, which LIB§ADDX adds
to the second two’s complement integer. The addend-array argument is the
address of the array containing the two’s complement number to be added.

augend-array

OpenVMS usage: vector_longword_signed
type: unspecified

access: read only

mechanism: by reference, array reference

Second multiple-precision, signed two’s complement integer, which LIBSADDX
adds to the first two’s complement integer. The augend-array argument is the
address of the array containing the two’s complement number.

resultant-array
OpenVMS usage: vector_longword_signed

type: unspecified
access: write only
mechanism: by reference, array reference

Multiple-precision, signed two’s complement integer result of the addition. The
resultant-array argument is the address of the array into which LIBSADDX
writes the result of the addition.

array-length
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

LIB-5

LIB$ Routines

LIBSADDX

Description

Length.in longwords of the arrays to be operated on; each array is of length len.
The len argument is the address of a signed longword integer containing the
length. The len argument must not be negative. This is an optional argument. If
omitted, the default is 2.

LIB$ADDX adds two signed two’s complement integers of arbitrary length.

The integers are located in arrays of longwords. The higher addresses of

these longwords contain the higher precision parts of the values. The highest-
addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords in each
array is specified in the optional argument len. The default length is two (2),
which corresponds to the OpenVMS quadword data type.

Any two or all three of the first three arguments can be the same.

Condition Values Returned

Example

LIB-6

SS$_NORMAL Routine successfully completed.

SS$_INTOVF Integer overflow. The result is correct, except
that the sign bit is lost.

C+
C This Fortran example program shows the use
C of LIBSADDX.

C-
INTEGER A(2),B(2),C(2),RETURN
DATA A/'00000001'x, ' 7FFF407F'x/
DATA B/'FFFFFFFF’'x,'8000BF80'x/
C+

C The highest addressed longword of "A" is A(2).

C So, "A" represents the integer value ('7FFF407F'x) * 16**7 + 1,
C That is, A(2) is 576447592255193089.

C "B" is the twos complement representation of "-A".

C-

RETURN = LIB$ADDX(A,B,C)
TYPE *,'Let A = 576447592255193089.'
TYPE *,'Then A + B is 0.’
TYPE 1,C(2),C(1)
1 FORMAT(' "A" - "A" is ’,1H’,I1,I1,3H'X.)
TYPE *,’'Note that C is C(2) concatenated with C(1).’

C+
C Let "A" have the value 72057594037927937
C Let "B" have the value 4294967295

'1000000000000001"x.
'00000000FFFFFFFF'X.

C-
A(1) = '00000001'x
A(2) = '10000000'x
B(1) = 'FFFFFFFF'x
B(2) = '00000000'x
c+
C Then "A" + "B" is 72057598332895232.
C-

LIBS$ Routines
LIBSADDX

RETURN = LIBSADDX(A,B,C)
TYPE *,' !
TYPE *,'LET A = 72057594037927937 and B = 4294967295
TYPE *,'Then A + B is ',C
TYPE 2,C(2),C(1)
2 FORMAT(' 72057598332895232 is represented as ‘,1H’,%8.8,28.8,3H'x.)
TYPE *,'Recall that 72057598332895232 is C(2) concatenated
1 with C(1).'
END

This Fortran example demonstrates how to call LIBSADDX. The output generated
by this program is as follows:

Let A = 576447592255193089.

Then A + B is 0.

IIAII - "A" iS IOOIX.

Note that C is C(2) concatenated with C(1).

LET A = 72057594037927937 and B = 4294967295

Then A + B is 0 268435457

72057598332895232 is represented as ‘10000001 0'x.
Recall that 72057598332895232 is C(2) concatenated with C(1).

LIB-7

LIB$ Routines
LIBSADD_TIMES

LIBSADD TIMES
Add Two Quadword Times

Format

Returns

Arguments

LIB-8

The Add Two Quadword Times routine adds two internal format times.

LIBSADD_TIMES time1 ,time2 ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

time1

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

First time that LIBSADD_TIMES adds to the second time. The timel argument
is the address of an unsigned quadword containing the first time to be added.
The timel argument may be either a delta time or an absolute time; however, at
least one of the arguments, timel or time2, must be a delta time.

time2

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Second time that LIBSADD_TIMES adds to the first time. The time2 argument

is the address of an unsigned quadword containing the second time to be added.

The time2 argument may be either a delta time or an absolute time; however, at
least one of the arguments, timel or time2, must be a delta time.

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The result of adding timel and time2. The resultant-time argument is the
address of an unsigned quadword containing the result. If both timel and time2
are delta times, then resultant-time is a delta time. Otherwise, resultant-time
is an absolute time.

LIB$ Routines
LIBSADD_TIMES

Description

LIB$ADD_TIMES adds two OpenVMS internal times. It can add two delta times
or a delta time and an absolute time. LIB$ADD_TIMES cannot add two absolute
times. Delta times must be less than 10,000 days.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.

LIB$_ONEDELTIM At least one delta time is required.
LIB$_WRONUMARG Incorrect number of arguments.

LIB-9

LIB$ Routines
LIBSANALYZE_SDESC

LIBSANALYZE_SDESC
Analyze String Descriptor

The Analyze String Descriptors routine extracts the length and the address at
which the data starts for a variety of 32-bit string descriptor classes.

Format
LIBSANALYZE_SDESC input-descriptor ,data-length ,data-address

Corresponding JSB Entry Point:
LIBSANALYZE_SDESC_R2

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

input-descriptor
OpenVMS usage: descriptor

type: quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIBSANALYZE_SDESC extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data.

data-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the data; LIBSANALYSE_SDESC extracts this length value from the
input descriptor. The data-length argument is the address of an unsigned word
integer into which LIBSANALYZE_SDESC writes the length.

data-address
OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIBSANALYZE_SDESC extracts this address from
the input descriptor. The data-address argument is the address of an unsigned
longword into which LIBSANALYZE_SDESC writes the starting address of the
data.

LiIB-10

LIB$ Routines
LIBSANALYZE_SDESC

Description

LIB$ANALYZE_SDESC extracts the length and the address at which the data
starts for a variety of 32-bit string descriptor classes. Following is a description
of the classes of string descriptors.

Class Description Restrictions/Notes

A Array DSC$L_ARSIZE must be less than
65,536 bytes.

D Decimal string Treated as class S.

NCA Noncontiguous array Same as class A.

S Scalar, string None.

SD Decimal scalar Treated as class S.

VS Varying string Length returned is CURLEN.

Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC for a similar routine that signals an error rather
than returning a status.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_INVSTRDES Invalid string descriptor. An array descriptor
has an ARSIZE greater than 65,535 bytes, or the
class is unsupported.

LIB-11

LIB$ Routines
LIBSANALYZE_SDESC_64 (Alpha Only)

LIBSANALYZE_SDESC_64 (Alpha Only)
Analyze String Descriptor

Format

The Analyze String Descriptor routine extracts the length and the address at
which the data starts for a variety of 32-bit and 64-bit string descriptor classes.

LIBSANALYZE_SDESC_64 input-descriptor ,data-length ,data-address [descriptor-type]

Corresponding JSB Entry Point:

Returns

Arguments

LiB-12

Refer to the LIBSANALYZE_SDESC routine for information about the JSB entry
point, LIBSANALYZE_SDESC_R2. This JSB entry point returns 64-bit results on
Alpha systems.

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

input-descriptor
OpenVMS usage: descriptor

type: longword (unsigned) or quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIBSANALYZE_SDESC_64 extracts the length of the
data and the address at which the data starts. The input-descriptor argument
is the address of a descriptor pointing to the input data. The input descriptor can
be a longword (unsigned) or a quadword (unsigned).

data-length

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Length of the data; LIBSANALYSE_SDESC_64 extracts this length value from
the input descriptor. The data-length argument is the address of an unsigned
quadword integer into which LIB§ANALYZE_SDESC_64 writes the length.

data-address

OpenVMS usage: address

type: quadword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIBSANALYZE_SDESC_64 extracts this address
from the input descriptor. The data-address argument is the address of an
unsigned quadword into which LIBSANALYZE_SDESC_64 writes the starting
address of the data.

Description

LIB$ Routines
LIBSANALYZE_SDESC_64 (Alpha Only)

descriptor-type

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Flag value indicating the type of input descriptor. The descriptor-type
argument contains the address of an unsigned longword integer to which
LIB$ANALYZE_SDESC_64 writes a zero (0) for a 32-bit input descriptor or a
one (1) for a 64-bit descriptor.

This argument is optional.

LIB$ANALYZE_SDESC_64 extracts the length and the address at which the data
starts for a variety of 32-bit and 64-bit string descriptor classes. Following is a
description of the classes of string descriptors:

Class Description Restrictions/Notes

A Array For 32-bit descriptors, DSC$L_ARSIZE
must be less than 218, or 65,536, bytes.
For 64-bit descriptors, DSC64$Q_
ARSIZE must be less than 264 bytes.

D Decimal string Treated as class S.

NCA Noncontiguous array Same as class A.

S ~ Scalar, string None.

SD Decimal scalar Treated as class S.

VS Varying string Length returned is CURLEN.
Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC_64 for a similar routine that signals an error rather
than returning a status.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_INVSTRDES Invalid string descriptor. An array descriptor
has an ARSIZE greater than 65,535 bytes, or the
class is unsupported.

LIB-13

LIB$ Routines
LIBSASN WTH_MBX

LIBSASN_WTH_MBX
Assign Channel with Mailbox

Format

Returns

Arguments

LIB-14

The Assign Channel with Mailbox routine assigns a channel to a specified device
and associates a mailbox with the device. It returns both the device channel and
the mailbox channel.

LIBSASN_WTH_MBX device-name [,maximum-message-size] [,buffer-quota] ,device-channel
,mailbox-channel -

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

device-name
OpenVMS usage: device_name

type: character string
access: read only
mechanism: by descriptor

Device name that LIBSASN_WTH_MBX passes to the $ASSIGN service. The
device-name argument is the address of a descriptor pointing to the device
name.

maximum-message-size
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Maximum message size that can be sent to the mailbox; LIBSBASN_WTH_MBX
passes this argument to the $CREMBX service. The maximum-message-size
argument is the address of a signed longword integer containing this maximum
message size.

buffer-quota

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of system dynamic memory bytes that can be used to buffer messages
sent to the mailbox; LIBSASN_WTH_MBX passes this argument to the
$CREMBKX service. The buffer-quota argument is the address of a signed
longword integer containing this buffer quota.

Description

LIB$ Routines
LIBSASN_WTH_MBX

device-channel
OpenVMS usage: word_unsigned

type: word integer (unsigned)
access: write only
mechanism: by reference

Device channel that LIBSASN_WTH_MBX receives from the $ASSIGN service.
The device-channel argument is the address of an unsigned word integer into
which $ASSIGN writes the device channel.

mailbox-channel
OpenVMS usage: channel

type: word integer (unsigned)
access: write only
mechanism: by reference

Mailbox channel that LIBSASN_WTH_MBX receives from the $CREMBX service.
The mailbox-channel argument is the address of an unsigned word integer into
which $CREMBX writes the mailbox channel.

A mailbox is a virtual device used for communication between processes. A
channel is the communication path that a process uses to perform I/O operations
to a particular device. LIBSASN_WTH_MBX assigns a channel to a device and
associates a mailbox with the device. It returns both the device channel and the
mailbox channel to the mailbox.

Normally, a process calls the $CREMBX system service to create a mailbox and
assign a channel and logical name to it. Any process running in the same job and
using the same logical name uses the same mailbox.

LIB$SASN_WTH_MBX associates the physical mailbox name with the channel
assigned to the device. To create a temporary mailbox for itself and other
processes cooperating with it, your program calls LIBSASN_WTH_MBX. The
Run-Time Library routine assigns the channel and creates the temporary mailbox
by using the system services $§GETDVIW, $ASSIGN, and $CREMBX. Instead of
a logical name, the mailbox is identified by a physical device name of the form
MBcu. The physical device name MBcu is made up of the following elements:

MB Indicates that the device is a mailbox

c Is the controller

u Is the unit number

The routine returns the channel for this device name to the calling program,
which then must pass the mailbox channel to the other programs with which

it cooperates. In this way, the cooperating processes access the mailbox by its
physical name, instead of by a logical name.

The calling program passes the routine a device name, which specifies the device

to which the channel is to be assigned. For this argument (called device-name),

you may use a logical name. If you do so, the routine attempts one level of logical
name translation.

The privilege restrictions and process quotas required for using this routine are
those required by the $GETDVIW, $CREMBX, and $ASSIGN system services.

LIB-15

LIBS Routines
LIBSASN_WTH_MBX

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Any condition value returned by the called system services $ASSIGN, $CREMBX,
$GETDVI, or the RTL routines LIB$§GET_EF and LIB$FREE_EF.

LIB-16

LIB$ Routines
LIBSAST _IN_PROG

LIBSAST_IN_PROG
AST in Progress

Format

Returns

Arguments

Description

The AST in Progress routine indicates whether an AST is currently in progress.

LIBSAST_IN_PROG

OpenVMS usage: boolean

type: boolean
access: write only
mechanism: by value

Truth value that indicates whether an AST is currently in progress (value = 1) or
not (value = 0).

None.

An asynchronous system trap (AST) is an OpenVMS mechanism for providing

a software interrupt when an external event occurs, such as the user entering
Ctrl/C. When an external event occurs, the OpenVMS operating system interrupts
the execution of the current process and calls a routine that you supply. While
that routine is active, the AST is said to be in progress, and the process is said to
be executing at AST level. When your AST routine returns control to the original
process, the AST is no longer active, and execution continues where it left off.

LIB$AST IN_PROG indicates to the calling program whether an AST is currently
in progress. Your program can call LIBSAST_IN_PROG to determine whether it
is executing at AST level and then take appropriate action. This routine is useful
if you are writing AST-reentrant code, which takes different actions depending
on whether an AST is in progress. For example, the routine might have two
separate statically allocated storage areas, one for AST level and one for non-AST
level.

LIB$AST _IN_PROG calls the LIB§FREE_EF, LIB§GET_EF and SYS$GETJPI
routines. If LIBSAST_IN_PROG or any of these routines encounters an error,
LIB$AST IN_PROG calls LIB$STOP.

Condition Values Returned

None.

LIB-17

LIBS$ Routines
LIBSAST_IN_PROG

Example

PROGRAM AST_IN_PROGRESS(INPUT, OUTPUT);
FUNCTION LIBSAST IN PROG : INTEGER; EXTERN;

VAR
ASTVALUE : INTEGER;

BEGIN
ASTVALUE := LIBSAST IN PROG;
CASE ASTVALUE OF
0 ¢ WRITELN('AN AST IS NOT IN PROGRESS');
1 : WRITELN('AN AST IS IN PROGRESS');
END { of the case statement }
END.

This Pascal program determines whether or not an AST is in progress.

LIB-18

LIBS$ Routines
LIBSATTACH

LIBSATTACH
Attach Terminal to Process

Format

Returns

The Attach Terminal to Process routine requests the calling process’s command
language interpreter (CLI) to detach the terminal of the calling process and to
reattach it to a different process.

LIBSATTACH process-id

OpenVMS usage: cond_value

Argument

Description

type: longword (unsigned)

access: write only

mechanism: by value

process-id

OpenVMS usage: process_id

type: longword integer (unsigned)
access: read only

mechanism: by reference

Identification of the process to which LIBSATTACH requests the calling process
to attach its terminal. The process-id argument is the address of an unsigned
longword integer containing the process identification. The specified process must
be currently detached (by means of a SPAWN or ATTACH command or by a call
to LIB$SPAWN or LIBSATTACH) and must be part of the caller’s job.

LIB$ATTACH requests the calling process’s command language interpreter (CLI)
to detach the terminal of the calling process and reattach it to a different process.
The calling process then hibernates. LIBSATTACH provides the same function
as the DCL command ATTACH. For more information on ATTACH, see the
OpenVMS DCL Dictionary.

LIB$ATTACH is supported for use with the DCL CLIL. If used with the Monitor
Control Routine (MCR) CLI, the error status LIB$_NOCLI is returned. If an

image is run directly as a subprocess or detached process, no CLI is present to
perform this function. In such cases, the error status LIB$_NOCLI is returned.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_NONEXPR Nonexistent process. The process specified by
process-id does not exist.

LIB$_ATTREQREF Attach request refused. The specified process

could not be attached to. Either it was not
detached or it did not belong to the caller’s job.

LiB-19

LIB$ Routines
LIBSATTACH

LIB-20

LIB$_NOCLI

LIB$_UNECLIERR

No CLI present to perform function. The calling
process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

Unexpected CLI error. The CLI returned an
error status, which was not recognized. This
error may be caused by use of a nonstandard
CLL If this error occurs while using the DCL
CLI, please report the problem to Digital by
means of a Software Performance Report (SPR).

LIB$ Routines
LIB$BBCCI

LIB$SBBCCI
Test and Clear Bit with Interlock

Format

Returns

Arguments

Description

The Test and Clear Bit with Interlock routine tests and clears a selected bit under
memory interlock. LIB$BBCCI makes the VAX BBCCI! instruction available as
a callable routine.

LIB$BBCCI position ,bit-zero-address

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

State of the bit before it was cleared by LIB$BBCCI: 1 if the bit was previously
set, and 0 if the bit was previously clear.

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB§BBCCI tests and
clears. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of the
byte base. The bit position is equal to the offset of the bit chosen from the base
position. This offset may span the entire range of a signed longword integer;
negative offsets access bits in lower addressed bytes.

bit-zero-address
OpenVMS usage: unspecified

type: address
access: modify
mechanism: by reference

Address of the byte containing bit 0 of the field that LIB$BBCCI references.
The bit-zero-address argument is the location of the base position. The bit
that LIB$BBCCI tests and clears is position bits offset from the low bit of

bit-zero-address.

The single bit specified by position and bit-zero-address is tested, the previous
state of the bit remembered, and the bit cleared. The reading of the state of the
bit and its clearing are interlocked against similar operations by other processors
or devices in the system. The remembered previous state of the bit is then
returned as the function value of LIB§BBCCI.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB-21

LIB$ Routines
LIB$BBCCI

Condition Values Returned

None.

Example

c+
C This Fortran program demonstrates the use of -
C LIBSBBCCI.
C-
INTEGER*4 STATES(4) ! 128 shared state bits

COMMON /STATES/ STATES ! Could be shared memory
LOGICAL*4 LIB$BBCCI

IF (LIB$BBCCI (42, STATES)) THEN
TYPE *,’State bit 42 was set’
ELSE
TYPE *,’State bit 42 was clear’
END IF
END

This Fortran example tests and clears bit 42 of array STATES, which is in a
COMMON area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATE
State bit 42 was clear.

LIB-22

LIB$ Routines
- LIB$BBSSI

LIB$BBSSI
Test and Set Bit with Interlock

Format

Returns

Arguments

Description

The Test and Set Bit with Interlock routine tests and sets a selected bit under
memory interlock. LIB§BBSSI makes the VAX BBSSI instruction available as a
callable routine.l

LIB$BBSSI position ,bit-zero-address

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

The state of the bit before it was set by LIB§BBSSI: 1 if it was previously set,
and 0 if it was previously clear.

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB$BBSSI tests
and sets. The position argument is the address of a signed longword integer
containing the bit position. A position of zero denotes the low-order bit of the
byte base. The bit position is equal to the offset of the bit chosen from the base
position. This offset may span the entire range of a signed longword integer;
negative offsets access bits in lower addressed bytes.

bit-zero-address
OpenVMS usage: unspecified

type: address
access: ‘modify
mechanism: by reference

Address of the byte containing bit 0 of the field that LIB$BBSSI references.
The bit-zero-address argument is the location of the base position. The
bit that LIB$BBSSI tests and sets is position bits offset from the low bit of
bit-zero-address.

The single bit specified by position and bit-zero-address arguments is tested,
the previous state of the bit remembered, and the bit set. The reading of the
state of the bit and its setting are interlocked against similar operations by other
processors or devices in the system. The remembered previous state of the bit is
then returned as the function value of LIB§BBSSI.

! On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB-23

LIBS$ Routines
LIB$BBSSI

Condition Values Returned

None.

Example

C+

C This Fortran example program demonstrates
C the use of LIB$BBSSI.

C-

INTEGER*4 STATES(4) ! 128 shared state bits
COMMON /STATES/ STATES ! Could be shared memory
LOGICAL*4 LIB$BBSSI

IF (LIB$BBSSI (104, STATES)) THEN
TYPE *,’State bit 104 was set’
ELSE

TYPE *,’State bit 104 was clear’
END IF

END

This Fortran example tests and sets bit 104 of array STATES, which is in a
COMMON storage area (possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATEB
State bit 104 was clear.

LIB-24

LIB$ Routines
LIB$BUILD NODESPEC

LIB$BUILD_NODESPEC
Build a Node-Name Specification

The Build a Node-Name Specification routine builds a node-name specification
from the primary node name. The output node-name specification can be used for
other node-name parsing operations.¥

Format

LIB$BUILD_NODESPEC primary-nodename, nodespec [,acs] [,secondaranodename] [;nodespec-length]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

primary-nodename
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Primary node name. The primary-nodename argument contains the address of
a descriptor pointing to this node-name string. The primary node name should
not contain unnecessary double quotation marks (that is, double quotation marks
() that are not part of a simple name within the node name).

The error LIB$_INVARG is returned if primary-nodename points to a null
string. The error LIB$_INVSTRDES is returned if primary-nodename is an
invalid descriptor.

nodespec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Node-name specification. The nodespec argument contains the address of a
descriptor pointing to this output node-name specification string. LIB§BUILD_
NODESPEC writes the output node-name specification into the buffer pointed to
by the nodespec descriptor. '

The error LIB$_INVSTRDES is returned if nodespec is an invalid descriptor.

The length field of the nodespec descriptor is not updated unless nodespec is a
dynamic descriptor with a length less than the resultant node-name specification.
Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The nodespec argument contains an unusable result when LIB$BUILD_
NODESPEC returns in error.

1 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-25

LIB$ Routines
LIB$SBUILD_NODESPEC

Description

LIB-26

acs

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Access control string. The acs argument contains the address of a descriptor
pointing to this access control string. The access control string must be a quoted
string.

The error LIB$_INVSTRDES is returned if acs is an invalid descriptor.

secondary-nodename
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Secondary node name. The secondary-nodename argument contains the
address of a descriptor pointing to this secondary node-name string.

The error LIB$_INVSTRDES is returned if secondary-nodename is an invalid
descriptor.

nodespec-length
OpenVMS usage: unsigned_word

type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node-name specification. The nodespec-length argument
is the address of an unsigned word that contains this length in bytes.

The nodespec-length argument contains an unusable result when LIB$BUILD_
NODESPEC returns in error.

This routine builds the parsable form of a node name as the output node-name
specification from the network usable form. Refer to LIB$GET_HOSTNAME for
the definitions of both the parsable form and the network usable form.

The network usable form is specified by the argument primary-nodename. If
primary-nodename contains special characters, it is enclosed by a pair of double
quotation marks (" ") to build the node-name specification. The double quotation
marks prevent the special characters from being recognized as terminator
characters and enables correct parsing of the node-name syntax.

If you enclose primary-nodename in a pair of double quotation marks, any
double quotation marks that are part of any simple names within primary-
nodename are doubled (that is, each double quotation mark (") is turned into
two double quotation marks (*")). LIB$BUILD_NODESPEC checks if the fully
quoted primary node name exceeds 1024 characters. The error condition LIB$_
NODTOOLNG is returned if this is the case.

To form the output node-name specification, the fully quoted primary node name
is concatenated with the access control string (if supplied) and the double colons
and is followed by the secondary node name (if supplied).

LIB$ Routines
LIB$BUILD_NODESPEC

This routine does not validate any of the input arguments to ensure they can
form a syntactically valid node name when they are concatenated.

If the routine overflows the output buffer pointed to By nodespec, the output
node-name specification is truncated, and the alternate successful status LIB$_
STRTRU is returned.

The nodespec-length argument, if supplied, is always set to the length of the
node-name specification that.is written into the output buffer pointed to by
nodespec.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by the
nodespec argument.

LIB$_INVARG Invalid argument. The primary-nodename
argument points to a null string.

LIB$_INVSTRDES Invalid string descriptor.

LIB$ WRONUMARG Wrong number of arguments.

LIB$_NODTOOLNG The primary node name after quoting exceeds
1024 characters.

Any condition value returned by LIB$SCOPY_DXDX.

LIB-27

LIB$ Routines

LIBSCALLG

LIBSCALLG
Call Routine with General Argument List

Format

Returns

Arguments

LIB-28

The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of longwords, the first of which is a count of
the remaining longwords. LIB$CALLG is a callable version of the VAX CALLG
instruction.l

LIB$CALLG argument-list ,user-procedure

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine. This value is not changed by
LIB$CALLG.

argument-lisf
OpenVMS usage: arg list

type: unspecified
access: read only
mechanism: by reference, array reference

Argument list that LIB§CALLG uses to call the specified routine. The
argument-list argument is the address of an array of longwords containing
the argument list. The first longword must contain the count of the remaining
longwords. The maximum value of the count is 255.

user-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB§CALLG calls with the specified argument list.

! On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB$ Routines
LIBSCALLG

Description

LIB$CALLG is useful for calling routines that accept variable-length argument
lists when the number of arguments to be passed is not known until execution
time. LIB$CALLG can also be used to call such routines from strongly typed
languages, which require routines to be declared as having a fixed number of

arguments.

Condition Values Returned

None.

LIB-29

LIB$ Routines
LIBSCALLG_64 (Alpha Only)

LIBSCALLG_64 (Alpha Only)
Call Routine with General Argument List

Format

Returns

Arguments

Description

The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of quadwords, the first of which is a count of
the remaining quadwords.

LIBSCALLG_64 argument-list ,user-procedure

OpenVMS usage: quadword_unsigned

type: quadword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine. This value is not changed by
LIB$CALLG_64.

argument-list
OpenVMS usage: arg_list

type: unspecified
access: read only
mechanism: by reference, array reference

Argument list that LIB§CALLG_64 uses to call the specified routine. The
argument-list argument is the address of an array of quadwords containing
the argument list. The first quadword must contain the count of the remaining
quadwords. The maximum value of the count is 255.

user-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB§CALLG_64 calls with the specified argument list.

LIB$CALLG_64 is useful for calling routines that accept variable-length
argument lists when the number of arguments to be passed is not known

until execution time. LIB§CALLG_64 can also be used to call such routines from
strongly typed languages, which require routines to be declared as having a fixed
number of arguments.

Condition Values Returned-

LIB-30

None.

LIB$ Routines
LIBSCHAR

LIBSCHAR

Transform Byte to First Character of String

Format

Returns

Arguments

Description

The Transform Byte to First Character of String routine transforms a single 8-bit
ASCII character to an ASCII string consisting of a single character followed by
trailing spaces, if needed, to fill out the string. The range of the input byte is 0
through 255.

LIBSCHAR one-character-string ,ascii-code

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

one-character-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

ASCII character string consisting of a single character followed by trailing spaces,
if needed, that LIB§CHAR creates when it transforms the ASCII character code.
The one-character-string argument is the address of a descriptor pointing to .
the character string that LIB§CHAR writes.

ascii-code

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Single 8-bit ASCII character code that LIB§CHAR transforms to an ASCII string.
The ascii-code argument is the address of an unsigned byte containing the
ASCII character code.

LIB$CHAR is the inverse of LIBSICHAR. (See the description of LIB$ICHAR.)
LIB$CHAR is not a binary-to-ASCII conversion routine. LIB§CHAR merely
interprets ascii-code as an ASCII character code and converts it to a string.

LIB-31

LIB$ Routines
LIBSCHAR

Condition Values Returned
SS$_NORMAL

LIB$_STRTRU

LIB$_FATERRLIB

LIB$_INSVIRMEM

LIB$_INVSTRDES

LIB-32

Routine successfully completed.

Routine successfully completed, but the string
was truncated. The destination string could not
contain all of the characters.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

LIB$ Routines
LIBSCOMPARE_NODENAME

LIBSCOMPARE_NODENAME
Compare Two Node Names

The Compare Two Node Names routine compares two node names to see if they
resolve to the same full name.}

Format
LIBSCOMPARE_NODENAME nodenamel ,nodename2 ,comparison-result
Returns
OpenVMS usage: cond_value
type: . longword (unsigned)
access: write only
mechanism: by value
Arguments
nodenamei
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First node name to be compared. The nodenamel argument contains the
address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodenamel contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodenamel is an invalid descriptor.

nodename2

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second node name to be compared. The nodename2 argument contains the
address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename2 contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename2 is an invalid descriptor.

comparison-result
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

Result of the comparison. The comparison-result argument is the address of an
unsigned longword that contains the comparison result. If the two node names
are equal, 0 is returned. If they are not equal, 1 is returned.

+ No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-33

LIB$ Routines
LIBSCOMPARE_NODENAME

Comparison-result contains an unusable result when LIB§COMPARE_
NODENAME returns in error.

Description

This routine compares two node names and checks to see if they resolve to the
same full name. The two node names are first expanded using LIBSEXPAND_
NODENAME. Any errors that result from expanding the input node names are
propagated and returned as condition values. A string comparison is performed
on the expanded node names to check if they resolve to the same full name. The
result of the comparison is returned in comparison-result as follows:

comparison-result Value Meaning
0 Node names are equal.
1 Node names are not equal.

Condition Values Returned

'SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument:
* nodenamel or nodename? is an invalid
node name.

* nodenamel or nodename2 points to a null
string.

* The length of the node name is more than
1024 characters.

* The expanded DECnet/OSI node name is
invalid in a DECnet Phase IV system.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX.
Any condition value returned by the $IPC DECnet service.

LIB-34

LIB$ Routines
LIBSCOMPRESS_NODENAME

LIBSCOMPRESS_NODENAME
Compress a Node Name to Its Short Form

Format

Returns

Arguments

The Compress a Node Name to Its Short Form Equivalence routine compresses a
node name to an unambiguous short form usable within the naming environment
where the compression is performed.

LIBSCOMPRESS_NODENAME nodename ,compressed-nodename [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

nodename

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Node name to be compressed. The nodename argument contains the address of
a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if the nodename descriptor is invalid.

compressed-nodename

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Compressed node name. The compressed-nodename argument contains
the address of a descriptor pointing to the compressed node-name string.
LIB$COMPRESS_NODENAME writes the compressed node name into the
buffer pointed to by compressed-nodename.

The error LIB$_INVSTRDES is returned if compressed-nodename is an invalid
descriptor.

The length field of the compressed-nodename descriptor is not updated
unless compressed-nodename is a dynamic descriptor with a length less
than the resulting compressed node name. Refer to the OpenVMS RTL String
Manipulation (STR$) Manual for dynamic string descriptor usage.

The compressed-nodename argument contains an unusable result when
LIB$COMPRESS_NODENAME returns in error.

1 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-35

LIBS$ Routines
LIBSCOMPRESS_NODENAME

Description

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the compressed node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when
LIB$COMPRESS_NODENAME returns in error.

This routine compresses a given node name to a short form that is usable within
the local naming environment in which the compression is performed. The local
naming environment is defined by the underlying network directory services. Be
careful when using the compressed node name for making network connections.
Using the compressed node name outside the intended local naming environment
may result in an ambiguous reference. Use the full name whenever you need to
eliminate ambiguity.

The nodename argument is validated against the supported form of node names.
The error LIB$_INVARG is returned if the input node name is invalid.

When calling LIB$COMPRESS__NODENAME in a DECnet/OSI environment,
the underlying network layer verifies the existence of the input node name. If
the input node name does not resolve to an existing node name in the naming

environment, an error condition is returned by the underlying network layer and
propagated back to the caller of LIBSCOMPRESS_NODENAME.

If the returned compressed node name overflows the buffer pointed to by
compressed-nodename, the compressed node name is truncated, and the
alternate successful status LIB$_STRTRU is returned.

The actual length of the compressed node name written to the output buffer
compressed-nodename is returned in resultant-length if this argument is
supplied.

On a DECnet Phase IV system, compressing a DECnet/OSI node name results in
the error condition LIB$_INVARG.

Condition Values Returned

LIB-36

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by
compressed-nodename.

LIB$ Routines
LIBSCOMPRESS_NODENAME

LIB$_INVARG Invalid argument:
* nodename is invalid.
* nodename points to a null string.

* The length of the node name is more than
1024 characters.

¢ The compressed DECnet/OSI node name is
invalid in a DECnet Phase IV system.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB§SCOPY_R_DX.
Any condition value returned by the $IPC DECnet service.

LIB-37

LIB$ Routines
LIBSCONVERT_DATE_STRING

L|B$CONVERT_DATE_STRING
Convert Date String to Quadword

Format

Returns

Arguments

LIB-38

The Convert Date String to Quadword routine converts an absolute date string
into an OpenVMS internal format date-time quadword. That is, given an input
date/time string of a specified format, LIBSCONVERT_DATE_STRING converts
this string to an OpenVMS internal format time.

LIBSCONVERT_DATE_STRING date-string ,date-time [,user-context] [,flags] [,defaults] [,defaulted-fields]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

date-string

OpenVMS usage: time_name

type: character-coded text string
access: read only

mechanism: by descriptor

Date string that specifies the absolute time to be converted to an internal system
time. The date-string argument is the address of a descriptor pointing to this
date string. This string must have a format corresponding to the currently
defined input format, or it must be one of the relative day strings YESTERDAY,
TODAY, or TOMORROW, or their equivalents in the currently selected language.

date-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

Receives the converted time. The date-time argument is the address of an
unsigned quadword that contains this OpenVMS internal format converted time.

user-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write directly to the cell.

LIB$ Routines
LIBSCONVERT_DATE_STRING

The user-context parameter is optional. However, if a context cell is not
passed, the routine LIBSCONVERT_DATE_STRING may abort if two threads of
execution attempt to manipulate the context area concurrently. Therefore, when
calling this routine in situations where reentrancy might occur, such as from
AST level, Digital recommends that users specify a different context cell for each
calling thread.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies which date or time fields of the date-string argument might be omitted
so that default values are applied. The flags argument is the address of a
longword bit mask that contains these flags. A set bit indicates that the field
may be omitted. The bit definitions for the mask correspond to the fields in a
$NUMTIM “timbuf” structure as follows:

Field Bit Number Mask
Year 0 1
Month 1 2
Day of month 2 4
Hours 3 8
Minutes 4 16
Seconds 5 32
Fractional seconds 6 64

Bits 7 through 31 must be zero and are reserved for use by Digital. If this
parameter is omitted, a default value of 120 (78H) is used, indicating that the
time fields may be defaulted but the date fields may not.

defaults

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Supplies the defaults to be used for omitted fields. The defaults argument is the
address of an array of unsigned words containing these default values. This array
corresponds to a 7-word $NUMTIM “timbuf” structure. If the defaults argument
is omitted, the following defaults are applied:

o For the date group, the default is the current date.
* For the time group, the default is 00:00:00.00.

LIB-39

LIBS$ Routines
LIBSCONVERT_DATE_STRING

Description

LIB—40

defaulted-fields :
OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Indicates which date or time fields have been defaulted. The defaulted-fields
argument is the address of a longword bit mask that specifies these fields. The
bit definitions are identical to those of the flags bit mask. A set bit indicates that
the field was defaulted. Bits 7 through 31, which are reserved for use by Digital,
are zeroed.

LIB$CONVERT _DATE_STRING converts an absolute date string into an
OpenVMS internal format date-time quadword. The input date string can
either correspond to the format specified, or it can be the language equivalent
of one of the relative date strings YESTERDAY, TODAY, or TOMORROW. The
language to be used and the format in which to interpret the information are
programmable using either of the following methods:

* The language and format are programmable at compile time through the use
of the routine LIB$INIT_DATE_TIME_CONTEXT.

* The language and format can be determined at run time through the
translation of the logical names SYS$LANGUAGE and LIB$DT_INPUT_
FORMAT.

In general, if an application is reading text from internal storage, the language
and input format should be specified at compile time. If this is the case, use the
routine LIB$INIT_DATE_TIME_CONTEXT to specify the language and input
format of your choice.

If an application is accepting text from a user, the logical name method of
specifying language and format should be used. In this method, the user assigns
equivalence names to the logical names SYS$LANGUAGE and LIB$DT_INPUT_
FORMAT, thereby selecting the language and input format of the date and time
at run time.

The calling program can choose to apply defaults for omitted fields in the date
string. To do this, the flags argument is used to indicate which fields are to be
defaulted, and the defaults argument is used to supply the default values. If the
defaults argument is not supplied, the following default values are applied:

* For the date group, the default is the current date.
¢ For the time group, the default is 00:00:00.00.
Optionally, you can use the defaulted-fields argument to receive information on

which input fields were omitted and thus accepted default values.

Note

Because the default is the current date for the date group, if you specify
a value of 00 with the 'Y2 format, the year is interpreted as 1900. After
January 1, 2000, the value 00 will be interpreted as 2000.

LIB$ Routines
LIBSCONVERT_DATE_STRING

See the OpenVMS Programming Concepts Manual for a description of system
date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL
LIB$_DEFFORUSE

LIB$_ENGLUSED

LIB$_AMBDATTIM
LIB$_INCDATTIM

LIB$_ILLFORMAT
LIB$_INVARG

LIB$_INVSTRDES
LIB$_IVTIME
LIB$_REENTRANCY
LIB$_UNRFORCOD
LIB$_WRONUMARG

Routine successfully completed.

Default format used; unable to determine desired
format.

English used by default; unable to translate
SYS$LANGUAGE.

Ambiguous date or time.

Incomplete date or time; missing fields with no
defaults.

Illegal format string; too many or not enough
fields.

Invalid argument; a required argument was not
specified.

Invalid input string descriptor.
Invalid date or time.
Reentrancy detected.
Unrecognized format code.
Wrong number of arguments.

Any condition value returned by LIBGET_VM, LIBFREE_VM, LIB$FREE1_
DD, LIB$SCOPY_R_DX, SYS$NUMTIM, and SYS$GETTIM.

LIB—41

LIBS$ Routines

LIBSCRC

LIBSCRC

Caiculate a Cyclic Redundancy Check (CRC)

Format

Returns

Arguments

LIB—42

The Calculate a Cyclic Redundancy Check routine calculates the cyclic
redundancy check (CRC) for a data stream.

LIBSCRC cre-table ,initial-crc ,stream

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

The computed cyclic redundancy check.

crc-table

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only

mechanism: by reference, array reference

The 16-longword cyclic redundancy check table created by a call to LIBSCRC_
TABLE. The crc-table argument is the address of a signed longword integer
containing this table. Because this table is created by LIBSCRC_TABLE and
then used as input in LIB$CRC, your program must call LIBSCRC_TABLE before
it calls LIB$CRC.

initial-crc

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Initial cyclic redundancy check. The initial-ere argument is the address of a
signed longword integer containing the initial cyclic redundancy check.

stream

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data stream for which LIB$CRC is calculating the CRC. The stream argument
is the address of a descriptor pointing to the data stream.

Description

LIB$ Routines
LIB$CRC

Before your program can call LIB§CRC, it must call LIBSCRC_TABLE.
LIB$CRC_TABLE takes a polynomial as its input and builds the table that
LIB$CRC uses to calculate the CRC.

LIB$CRC allows your high-level language program to use the CRC instruction,
which calculates the cyclic redundancy check.! This instruction checks the
integrity of a data stream by comparing its state at the sending point and the
receiving point. Each character in the data stream is used to generate a value
based on a polynomial. The values for each character are then added together.
This operation is performed at both ends of the data transmission, and the two
result values compared. If the results disagree, then an error occurred during the
transmission.

Condition Values Returned

Example

None.

For an exémple on how to use LIB$CRC, refer to the BASIC example at the end
of the description of LIBSCRC_TABLE.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB—43

LIB$ Routines
LIBSCRC _TABLE

LIBSCRC_TABLE
Construct a Cyclic Redundancy Check (CRC) Table

Format

Returns

Arguments

Description

The Construct a Cyclic Redundancy Check Table routine constructs a 16-longword
table that uses a cyclic redundancy check polynomial specification as a bit mask.

LIBSCRC_TABLE polynomial-coefficient ,crc-table
None.

polynomial-coefficient
OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask indicating which polynomial coefficients are to be generated by
LIB$CRC_TABLE. The polynomial-coefficient argument is the address of an
unsigned longword integer containing this bit mask.

crc-table

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: write only

mechanism: by reference, array reference

The 16-longword table that LIB§CRC_TABLE produces. The cre-table argument
is the address of a signed longword integer containing the table.

The table created by LIBSCRC_TABLE can be passed to the LIB§CRC routine for
generating the cyclic redundancy check value for a stream of characters.

Condition Values Returned

Example

LIB-44

None.

1 $TITLE "Demonstrate LIB$CRC and-LIB$CRC_IABLE"
$SBTTL "Declarations"
$IDENT "1-001"

OPTION TYPE = EXPLICIT

DECLARE LONG CRC_TABLE(15), ! CRC table array &
LONG CRC_VAL 1, ! CRC for first stream &
LONG CRC_VAL 2, ! CRC for second stream &
STRING DATA 1, ! First data stream &
STRING DATA 2 ! Second data stream

LIBS$ Routines
LIBSCRC_TABLE

EXTERNAL LONG FUNCTION LIB$CRC ! Rtn to calculate CRC
EXTERNAL SUB LIBSCRC TABLE ! Rtn to set up table for CRC

OPEN "SYSSINPUT:" FOR INPUT AS FILE 1%

t+ .
! Initialize the CRC table. Use the CRC-16 polynomial (refer to the

! "VAX Architecture Reference Manual"). This is the polynomial used by
! DDCMP and Bisync.
|-

CALL LIB$CRC TABLE(0'120001’'L, CRC TABLE() BY REF)

I+
! Get data from user.

LINPUT #1%, ’'Enter string: ’';DATA 1

I+

! Calc the CRC for the user’s input. This CRC polynomial needs

! an initial CRC of 0 (refer to the "VAX Architecture Reference Manual").
! LIB$CRC returns a longword, but only the low-order word is valid

{ for this polynomial.

1-

CRC_VAL_1 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA 1)
CRC_VAL_1 = CRC_VAL 1 AND 32767%
1+

! Get more data from user.

oo

LINPUT #1%, ’'Enter a second string: ’;DATA 2

CRC_VAL_2 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA 2)
CRC_VAL_2 = CRC_VAL_2 AND 32767%
1+

! Tell the user the results of the CRC comparison.

IF CRC_VAL 1 = CRC_VAL 2
THEN

PRINT "The two CRCs";CRC VAL 1;" and ";CRC VAL 2;" were the same"
ELSE

PRINT "The two CRCs";CRC_VAL 1;" and ";CRC_VAL 2;" were different"
END IF

IF DATA 1
THEN
PRINT “The two strings were the same"
ELSE
PRINT "The two strings were different"
END IF

END

DATA 2

This BASIC example program shows the use of LIBSCRC and LIB§CRC_TABLE.
One example of the output generated by this program is as follows:

$ RUN CRC

Enter string: DOVE

Enter a second string: HOSE

The two CRCs 29915 and 29915 were the same
The two strings were different

LIB—45

LIB$ Routines
LIBSCREATE_DIR

LIBSCREATE_DIR
Create a Directory

Format

Returns

Arguments

LIB-46

The Create a Directory routine creates a directory or subdirectory.

LIBSCREATE_DIR device-directory-spec [,owner-UIC] [,protection-enable] [,protection-value]
[;maximum-versions] [,relative-volume-number] [,initial-allocation]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

device-directory-spec
OpenVMS usage: device_name

type: character string
access: read only
mechanism: by descriptor

Directory specification of the directory or subdirectory that LIB§CREATE_DIR
will create. The device-directory-spec argument is the address of a descriptor
pointing to this directory specification.

The format of the device-directory-spec string conforms to standard OpenVMS
Record Management Services (RMS) format. This specification must contain

a directory or subdirectory specification. It may contain a disk specification.
SMD$:[THIS.IS.IT] is an example of a standard RMS file specification, where
SMD$ is the disk specification and [THIS.IS.IT] is the subdirectory specification.

This specification cannot contain a node name, file name, file type, file version, or
wildcard characters. The maximum size of this string is 255 characters.

owner-UIC

OpenVMS usage: uic

type: longword (unsigned)
access: read only
mechanism: by reference

User Identification Code (UIC) identifying the owner of the created directory or
subdirectory. The owner-UIC argument is the address of an unsigned longword
that contains the UIC. If owner-UIC is zero, the owner UIC is that of the parent
directory. The specified value for owner-UIC is interpreted as a 32-bit octal
number, with two 16-bit fields:

bits 00-15 — Member number
bits 16-31 — Group number

This is an optional argument. The default is the UIC of the current process
except when the directory is in UIC format. For a directory in UIC format, for
example [123,321], the UIC of the created directory is used.

LIB$ Routines
LIBSCREATE_DIR

protection-enable
OpenVMS usage: mask_word

type: word (unsigned)
access: read only
mechanism: by reference

Mask specifying the bits of protection-value to be set. The protection-enable
argument is the address of an unsigned word containing this protection mask.

Figure LIB-1 shows the structure of a protection mask. Access is allowed for bits
set to zero.

Figure LIB-1 Structure of a Protection Mask

World 7 Group Owner System
olelwlnlolelwlalolelwlalolelwla
E X R E E X R E EX R E E X R E
L EI A LE Il A LEIT A LE I A
ECTD ECTD ECTWD ECTD
T U E T U E T U E T U E
E T E T E T E T

E E E E
15 0

ZK-1979-GE

Set bits in the protection-enable mask cause corresponding bits of protection-
value to be set. Clear bits in the protection-enable mask cause corresponding
bits of protection-value to take the value of the corresponding bit in the parent
directory’s file protection. Bits in the parent directory’s file protection that
indicate delete access do not cause corresponding bits of protection-value to be
set, however.

Following is an example of how the protection-value protection mask is defined:

Hexadecimal
Mask Name Number Value
Protection enable %XDBFF S:None, O:None, G:E, W:W
Parent directory %X13FF S:RWED, O:RWED, G:RW, W:R
Protection value - %X37TFF S:RWE, O:RWE, G:RWE, W:RW

The protection-enable argument is optional. It should be used only when
you want to change protection values from the parent directory’s default file
protection. The default for protection-enable is a mask of all zero bits,
which results in the propagation of the parent directory’s file protection. If
the protection-enable mask contains zeros, protection-value is ignored.

LIB-47

LIB$ Routines
LIBSCREATE_DIR

LIB-48

protection-value
OpenVMS usage: file_protection

type: word (unsigned)
access: read only
mechanism: by reference

System/Owner/Group/World protection value of the directory you are creating.
The protection-value argument is the address of an unsigned word which
contains this protection mask.

The bits of protection-value are set or cleared in the method described in the
definition of protection-enable above.

The protection-value argument is optional.The default is a word of all zero bits,
which specifies full access for all access categories. Typically, protection-value
is not omitted unless protection-enable is also omitted. If protection-enable
is omitted, protection-value is ignored.

maximum-versions
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

Maximum number of versions allowed for files created in the newly created
directories. The maximum-versions argument is the address of an unsigned
word containing the value of the maximum number of versions.

The maximum-versions argument is optional. The default is the parent
directory’s default version limit. If maximum-versions is zero, the maximum
number of versions is not limited.

relative-volume-number
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

Relative volume number within a volume set on which the directory or
subdirectory is created. The relative-volume-number argument is the address
of an unsigned word containing the relative volume number. The relative-
volume-number argument is optional. The default is arbitrary placement
within the volume set.

initial-allocation
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Initial number of blocks to be allocated to the directory. This argument is
useful for creating large directories, for example MAIL.DIR;1. It can improve
performance by avoiding the need for later dynamic expansion of the directory.

LIB$ Routines
LIBSCREATE_DIR

The initial-allocation argument applies only to Files—11 Level 2 volumes; it is
ignored for other volumes.

This argument is the address of an unsigned longword that contains the initial
number of blocks to be allocated to the directory.

The initial-allocation argument is optional. The default allocation is 1 block.

Description
LIB$CREATE_DIR creates a directory. You can specify:
¢ The owner and protection of the directory.

* The maximum number of different versions of a file that can exist in the
directory.

¢ The relative volume number of the volume set member in which the directory
is to be created.

¢ The number of blocks to be allocated initially to the directory.

Condition Values Returned

SS$_CREATED Routine successfully completed; one or more
directories created.

SS$_NORMAL . Routine successfully completed; all specified
directories already exist.

LIB$_INVARG Invalid argument to Run-Time Library. Either

the required argument was omitted, or device-
directory-spec is longer than 255 characters.

LIB$_INVFILSPE Invalid file specification. Either the file
specification did not contain an explicit directory
and device name, or it contained a node name,
file name, file type, file version, or wildcard. This
error is also produced if the device specified was
not a disk.

Any condition values returned by $ASSIGN.
Any condition values returned by $DASSGN.
Any condition values returned by $PARSE.
Any condition values returned by $QIO.

Any condition values returned by LIBSANALYZE_SDESC or LIBSANALYZE_
SDESC_64.

Any condition values returned by LIB§GET_EF.

LIB—49

LIBS Routines
LIBSCREATE_USER_VM_ZONE

LIBSCREATE_USER_VM_ZONE
Create User-Defined Storage Zone

Format

Returns

Arguments

LIB-50

The Create User-Defined Storage Zone routine creates a new user-defined storage
zone in the 32-bit virtual address space.}

LIBSCREATE_USER_VM_ZONE zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure]
[,user-delete-procedure] [,zone-name)

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that receives
the identifier of the newly created zone.

user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned
longword containing the user argument. LIB§CREATE_USER_VM_ZONE copies
the value of user-argument and supplies the value to all user procedures
invoked.

user-allocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

¥ No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Description

LIB$ Routines
LIBSCREATE_USER_VM_ZONE

user-deallocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

user-reset-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIBJRESET VM_ZONE is called for the zone.

user-delete-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB$DELETE_VM_ZONE is called for the zone.

zone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

LIB$CREATE_USER_VM_ZONE creates a user-defined zone in the 32-bit virtual
address space. If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIB$GET_VM,
LIB$FREE_VM, LIBSRESET_VM_ZONE, or LIB$DELETE_VM_ZONE) is
called to perform an operation on a user-defined zone, the corresponding user
routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine
and later call the corresponding heap management routine, the error status

" LIB$_INVOPEZON will be returned.

LIB-51

LIB$ Routines
LIB$CREATE_USER_VM_ZONE

LiB-52

Call Format for User Routines

The user routines are called with arguments similar to those passed to LIB$GET _
VM, LIB$FREE_VM, LIB$RESET_VM_ZONE, or LIB$DELETE_VM_ZONE. In
each case, the user-argument argument from LIBSCREATE_USER_VM_ZONE
is passed to the user routine rather than a zone-id argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a longword integer containing the number of bytes. The value of
num-bytes must be greater than zero.

base-adr

OpenVMS usage: address

type: longword (unsigned)
access: modify

mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned longword containing this base
address. (This argument is write-only for a get routine and read-only for a free
routine.)

user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB§CREATE_USER_VM_ZONE copies user-argument as it is
supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSGET_VM or LIB$FREE_VM.

The zone-id value that is returned can be used in calls to LIB§SHOW_VM_
ZONE and LIB$VERIFY_VM_ZONE.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB§CREATE_USER_VM_ZONE copies user-argument as it is
supplied to all user routines invoked.

LIBS Routines
LIBSCREATE_USER_VM_ZONE

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSRESET VM_ZONE or LIB$DELETE_VM_ZONE.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB-53

LIBS$ Routines A
LIBSCREATE_USER_VM_ZONE_64 (Alpha Only)

LIBSCREATE_USER_VM_ZONE_64 (Alpha Only)
Create User-Defined Storage Zone

Fofmat

Returns

Arguments

LIB-54

The Create User-Defined Storage Zone routine creates a new user-defined storage
zone in the 64-bit virtual address space.

LIBSCREATE_USER_VM_ZONE_64 zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure]
[user-delete-procedure] [,zone-name]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that receives
the identifier of the newly created zone.

user-argument

OpenVMS usage: user_arg

type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned
quadword containing the user argument. LIB§CREATE_USER_VM_ZONE_64
copies the value of user-argument and supplies the value to all user procedures
invoked.

user-allocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

user-deatlocation-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

Description

LIB$ Routines
LIBSCREATE_USER_VM_ZONE_64 (Alpha Only)

user-reset-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIB$RESET VM_ZONE_64 is called for the zone.

user-delete-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB$DELETE_VM_ZONE_64 is called for the zone.

Zzone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional Zzone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

LIB$CREATE_USER_VM_ZONE_64 creates a user-defined zone in the 64-bit
virtual address space. If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIB§GET_VM_64,
LIB$FREE_VM_64, LIBSRESET _VM_ZONE_64, or LIB§SDELETE_VM_ZONE_
64) is called to perform an operation on a user-defined zone, the corresponding
user routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine
and later call the corresponding heap management routine, the error status
LIB$_INVOPEZON will be returned.

Call Format for User Routines

The user routines are called with arguments similar to those passed to LIB§GET_
VM_64, LIB$FREE_VM_64, LIB$RESET_VM_ZONE_64, or LIB$DELETE_VM_
ZONE_64. In each case, the user-argument argument from LIB§CREATE_
USER_VM_ZONE_64 is passed to the user routine rather than a zone-id
argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: ‘ read only

mechanism: by reference

LIB-55

LIBS Routines
LIBSCREATE_USER_VM_ZONE_64 (Alpha Only) '

Number of contiguous bytes to allocate or free. The num-bytes argument is
the address of a quadword integer containing the number of bytes. The value of
num-bytes must be greater than zero.

base-adr

OpenVMS usage: address

type: quadword (unsigned)
access: modify

mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The
base-adr argument is the address of an unsigned quadword containing this base
address. (This argument is write-only for a get routine and read-only for a free
routine.)

user-argument
OpenVMS usage: user_arg

type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIBSCREATE_USER_VM_ZONE_64 copies user-argument as
it is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIB§GET_VM_64 or LIBS$FREE_VM_64.

The zone-id value that is returned can be used in calls to LIB$SHOW_VM_
ZONE_64 and LIB$VERIFY_VM_ZONE_64.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument

OpenVMS usage: user_arg

type: - quadword (unsigned)
access: read only
mechanism: by reference

User argument.LIB§CREATE_USER_VM_ZONE_64 copies user-argument as it
is supplied to all user routines invoked.

The status value returned by your routine is returned as the status value for the
corresponding call to LIBSRESET_VM_ZONE_64 or LIB$DELETE_VM_ZONE_
64.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB-56

LIB$ Routines
LIBSCREATE_VM_ZONE

LIBSCREATE_VM_ZONE
Create a New Zone

Format

Returns

Arguments

The Create a New Zone routine creates a new storage zone in the 32-bit virtual
address space, according to specified arguments.{

LIBSCREATE_VM_ZONE zone-id [,algorithm] [,algorithm-argument] [,flags] [,extend-size] [,initial-size]
[,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name]
[.get-page] [free-page]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that is set to
the zone identifier of the newly created zone.

algorithm

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Algorithm. The algorithm argument is the address of a longword integer that
contains a value representing one of the LIB§VM algorithms. Use one of the
predefined symbols to specify this value.

Symbol Value Algorithm

LIB$K_VM_FIRST FIT 1 First fit
LIB$K_VM_QUICK_FIT 2 Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES 3 Frequent sizes, lookaside list
LIB$K_VM_FIXED 4

Fixed size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

1 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-57

LIB$ Routines
LIBSCREATE_VM_ZONE

LIB-58

algorithm-argument
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a longword integer that contains a value specific to the particular allocation
algorithm as shown in the following table.

Algorithm Value

First fit Not used, may be omitted.

Quick fit The number of lookaside lists used. The number of lists
must be between 1 and 128.

Frequent sizes The number of lookaside lists used. The number of lists
must be between 1 and 16.

Fixed size blocks The fixed request size (in bytes) for each get or free

request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this argument
is optional, but ignored, if you are using the first-fit algorithm.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword integer that contains flag
bits that control various options, as follows:

Bit Value Description

0 LIB$M_VM_BOUNDARY_TAGS Boundary tags for faster freeing.
Adds a minimum of 8 bytes to each
block.

1 LIB$M_VM_GET_FILLO LIB$GET_VM,; fill with bytes of 0.

2 LIB$M_VM_GET_FILL1 LIB$GET_VM,; fill with bytes of FF
(hexadecimal).

3 LIB$M_VM_FREE_FILLO LIB$FREE_VM,; fill with bytes of 0.

4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM,; fill with bytes of
FF (hexadecimal).

5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if
possible.

LIB$ Routines
LIBSCREATE_VM_ZONE

Bit Value Description

6 LIB$M_VM_NO_EXTEND Prevents zone from being extended
beyond its initial size. If you specify
this flag, you must also specify
an initial-size. The extend-size

“argument is not used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added
to the end of the area list. (This
provides better memory reuse when
allocating small and very large
blocks from the same zone.)

Bits 8 through 31 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no
boundary tags) is used.

extend-size
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Zone extend size. The extend-size argument is the address of a longword integer
that contains the number of (512-byte) pages on VAX systems or pagelets on
Alpha systems to be added to the zone each time it is extended.

The value of extend-size must be greater than or equal to 1.
This is an optional argument. If extend-size is not specified, a default of 16
pages on VAX systems or pagelets on Alpha systems is used.

Note

The extend-size argument does not limit the number of blocks that can
be allocated from the zone. The actual extension size is the greater of
extend-size and the number of pages on VAX systems or pagelets on
Alpha systems needed to satisfy the LIBSGET_VM call that caused the

extension.
initial-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a longword
integer that contains the number of (512-byte) pages on VAX systems or pagelets
on Alpha systems to be allocated for the zone as the zone is created.

LIB-59

LIB$ Routines
LIBSCREATE_VM_ZONE

LIB-60

This is an optional argument. If you specify a value for initial-size, the value
must be greater than or equal to 0; otherwise, LIB$_INVARG is returned. If
initial-size is not specified or is specified as 0, no pages on VAX systems or
pagelets on Alpha systems are allocated when the zone is created. The first call
to LIBSGET_VM for the zone allocates extend-size pages on VAX systems or
pagelets on Alpha systems.

block-size

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Block size of the zone. The block-size argument is the address of a longword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value jof block-size must be a power of 2 between 8 and 512. This is an
optional argument. If block-size is not specified, a default of 8 is used.

alignment

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Block alignment. The alignment argument is the address of a longword integer
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 4 and 512. This is an
optional argument. If alignment is not specified, a default of 8 (quadword
alignment) is used.

page-limit

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Maximum page limit. The page-limit argument is the address of a longword
integer that specifies the maximum number of (512-byte) pages on VAX systems
or pagelets on Alpha systems that can be allocated for the zone. The value of
page-limit must be greater than or equal to 0. Note that part of the zone is used
for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
OpenVMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
longword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

Description

LIB$ Routines
LIBSCREATE_VM_ZONE

If smallest-block-size is not specified, the default of block-size is used. That is,
lookaside lists are provided for the first n multiples of block-size.

Zzonhe-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

get-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this
routine must match those of the LIB§GET_VM_PAGE routine. If get-page is not

specified or is specified as 0, the LIB§GET_VM_PAGE routine is used to allocate
memory.

free-page

OpenVMS usage: procedure

type: procedure value
access: ‘ read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this
routine must match those of the LIBSFREE_VM_PAGE routine. If free-page is
not specified or if free-page is specified as 0, the LIBSFREE_VM_PAGE routine
is used to deallocate memory. ’

LIB$CREATE_VM_ZONE creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIB§GET VM, LIB$FREE_VM,
LIB$RESET VM_ZONE, LIB$DELETE_VM_ZONE, LIB$SHOW_VM_ZONE,
LIB$VERIFY_VM_ZONE, and LIB§CREATE_USER_VM_ZONE.

The following restrictions apply when you are creating a zone:

e If you want the zone to be accessible from another process or processes, you
must map the global section into the same virtual addresses in all processes.
You can use PPL$CREATE_SHARED_MEM to map to a global section after
you have first called PPL$INITIALIZE.

e The zone cannot expand; in other words, additional areas cannot be added to
the zone.

¢ The restrictions for LIBSRESET _VM_ZONE also apply to shared zones. That
is, it is the caller’s responsibility to ensure that the caller has exclusive access
to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

LiB-61

LIB$ Routines
LIBSCREATE_VM_ZONE

Condition Values Returned

LIB-62

SS$_NORMAL
LIB$_INSVIRMEM
LIB$_INVARG
LIB$_INVSTRDES

Routine successfully completed.
Insufficient virtual memory.

Invalid argument.

Invalid string descriptor for zone-name.

LIB$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha Only)

LIBSCREATE_VM_ZONE_64 (Alpha Only)
Create a New Zone

Format

Returns

Arguments

The Create a New Zone routine creates a new storage zone in the 64-bit virtual
address space, according to specified arguments.

LIBSCREATE_VM_ZONE_64 zone-id [,algorithm] [,algorithm-argument] [,flags] [,extend-size] [,initial-size]
[,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name]

[.get-page] [free-page]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that is set to
the zone identifier of the newly created zone.

algorithm :

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

.mechanism: by reference

Algorithm. The algorithm argument is the address of a quadword integer that
represents the code for one of the LIB§VM algorithms. Use one of the following
predefined symbols to specify this value:

Symbol Value Algorithm

LIB$K_VM_FIRST FIT 1 First fit
LIB$K_VM_QUICK_FIT 2 Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES 3 Frequent sizes, lookaside list
LIB$K_VM_FIXED 4 Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

LIB-63

LIB$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha Only)

LIB-64

algorithm-argument
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of
a quadword integer that contains a value specific to the particular allocation
algorithm.

Algorithm Value

First fit Not used, may be omitted.

Quick fit The number of lookaside lists used. The number of lists
must be between 1 and 128.

Frequent sizes The number of lookaside lists used. The number of lists
must be between 1 and 16. .

Fixed size blocks The fixed request size (in bytes) for each get or free

request. The request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the
quick-fit, frequent-sizes or fixed-size-blocks algorithms. However, this argument
is optional, but ignored, if you are using the first-fit algorithm.

flags

OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Flags. The flags. argument is the address of a quadword integer that contains ‘
flag bits that control various options, as follows:

Bit Value Description

0 LIB$M_VM_BOUNDARY_TAGS Boundary tags for faster freeing.
Adds a minimum of 16 bytes to each
block.

1 LIB$M_VM_GET_FILLO LIB$GET_VM_64; fill with bytes of
0.

2 LIB$M_VM_GET _FILL1 LIB$GET_VM_64; fill with bytes of
FF (hexadecimal).

3 LIB$M_VM_FREE_FILLO LIB$FREE_VM_64; fill with bytes
of 0.

4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM_64; fill with bytes
of FF (hexadecimal).

5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if
possible.

¢

LIB$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha Only)

Bit Value Description

6 LIB$M_VM_NO_EXTEND Prevents zone from being extended
beyond its initial size. If you specify
this flag, you must also specify an
initial-size. Extend-size is not
used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added
to the end of the area list. (This
provides better memory re-use when
allocating small and very large
blocks from the same zone.)

Bits 8 through 63 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no
boundary tags) is used.

extend-size

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only "
mechanism: by reference

Zone extend size. The extend-size argument is the address of a quadword
integer that contains the number of Alpha pagelets to be added to the zone each
time it is extended.

The value of extend-size must be greater than or equal to 1.
This is an optional argument. If extend-size is not specified, a default of 16
Alpha pagelets is used.

Note

The extend-size argument does not limit the number of blocks that can
be allocated from the zone. The actual extension size is the greater of
extend-size and the number of Alpha pagelets needed to satisfy the
LIB$GET _VM_64 call that caused the extension.

initial-size

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a quadword
integer that contains the number of Alpha pagelets to be allocated for the zone as
the zone is created.

LIB-65

LIBS Routines
LIBSCREATE_VM_ZONE_64 (Alpha Only)

LIB-66

This is an optional argument. If you specify a value for initial-size, the value
must be greater than or equal to 0; otherwise, LIB$_INVARG is returned. If
initial-size is not specified or is specified as 0, no Alpha pagelets are allocated
when the zone is created. The first call to LIB§GET_VM_64 for the zone allocates
extend-size pagelets on Alpha systems.

block-size

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Block size of the zone. The block-size argument is the address of a quadword
integer specifying the allocation quantum (in bytes) for the zone. All blocks
allocated are rounded up to a multiple of block-size.

The value of block-size must be a power of 2 between 16 and 512. This is an
optional argument. If block-size is not specified, a default of 16 is used.

alignment

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Block alignment. The alignment argument is the address of a quadword integer
that specifies the required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 8 and 512. This is an
optional argument. If alignment is not specified, a default of 16 (octaword
alignment) is used.

page-limit

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Maximum page limit. The page-limit argument is the address of a quadword
integer that specifies the maximum number of Alpha pagelets that can be
allocated for the zone. The value of page-limit must be greater than or equal to
0. Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as
0, the only limit is the total process virtual address space limit imposed by
OpenVMS. If page-limit is specified, then initial-size must also be specified.

smallest-block-size
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a
quadword integer that specifies the smallest block size (in bytes) that has a
lookaside list for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That is,
lookaside lists are provided for the first » multiples of block-size.

Description

LIB$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha Only)

Zone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name
argument is the address of a descriptor pointing to the zone name. If zone-name
is not specified, the zone will not have an associated name.

get-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this
routine must match those of the LIBSGET _VM_PAGE_64 routine. If get-page is
not specified or is specified as 0, the LIBSGET_VM_PAGE_64 routine is used to
allocate memory.

free-page

OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this
routine must match those of the LIBSFREE_VM_PAGE_64 routine. If free-page
is not specified or if free-page is specified as 0, the LIBSFREE_VM_PAGE_64
routine is used to deallocate memory.

LIB$CREATE_VM_ZONE_64 creates a new storage zone. The zone identifier
value that is returned can be used in calls to LIBS§GET_VM_64, LIB§FREE_VM_
64, LIBSRESET_VM_ZONE_64, LIB$DELETE_VM_ZONE_64, LIB§SHOW_VM_
ZONE_64, LIB$VERIFY_VM_ZONE_64, and LIBSCREATE_USER_VM_ZONE_
64.

The following restrictions apply when you are creating a zone:

e If you want the zone to be accessible from another process or processes, you
must map the global section into the same virtual addresses in all processes.

¢ The zone cannot expand; in other words, additional areas cannot be added to
the zone.

* The restrictions for LIBSRESET_VM_ZONE_64 also apply to shared zones.
That is, it is the caller’s responsibility to ensure that the caller has exclusive
access to the zone while the reset operation is being performed.

If an error status is returned, the zone is not created.

LIB-67

LIB$ Routines
LIBSCREATE_VM_ZONE_64 (Alpha Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.

LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB-68

LIB$ Routines
LIB$CRF_INS_KEY

LIBSCRF_INS_KEY
Insert Key in Cross-Reference Table

Format

Returns

Arguments

The Insert Key in Cross-Reference Table routine inserts information about a key
into a cross-reference table.t

LIBSCRF_INS_KEY control-table ,key-string ,symbol-value flags
None.

control-table
OpenVMS usage: vector_longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Cross-reference table into which LIB§CRF_INS_KEY inserts information about
the key. The control-table argument is the address of a signed longword integer
pointing to the cross-reference table. You must name this table each time you call
a cross-reference routine because you can accumulate information for more than
one cross-reference table at a time.

key-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

A counted ASCII string that contains a symbol name or an unsigned binary
longword. The key-string argument is the address of a descriptor pointing to the
key.

symbol-value
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Symbol value, the address of which LIB$CRF_INS_KEY inserts in the cross-
reference table. The symbol-value argument is the address of a signed
longword integer containing this value. Both the key and value addresses
must be permanent addresses in the user’s symbol table.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-69

LIBS$ Routines
LIBSCRF_INS_KEY

Description

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Value used in selecting the contents of the KEY2 and VAL2 fields; flags is stored
with the entry. The flags argument is the address of an unsigned longword
containing the flags. When preparing the output line, LIBSCRF_OUTPUT uses
flags and the 16-bit mask in the field descriptor table to extract the data. The
high-order bit of the word is reserved for LIB§CRF_INS_KEY.

LIB$CRF_INS_KEY stores information to be printed in the KEY1, KEY2, VAL1,
and VAL2 fields. When you call this routine, an entry for the key is made in the
cross-reference table if the key is not present in the table. If the key is present,
only the value address and value flag fields are updated.

Using LIB$CRF_INS_KEY involves the following steps:
1. Define a table of control information using the $CRFCTLTABLE macro.
2. . Define each field of the output line using the $CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that
define a field in the output line.

4. Provide data by calling LIBSCRF_INS_KEY to insert an entry for the specify
key in the specified symbol table. This data is used to build tables in virtual
memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIBSCRF_OUTPUT calls to print
each line in the output file. Because you supply this routine, you can control
the number of lines per page and the header lines.

Condition Values Returned

LIB-70

None.

LIB$ Routines
LIBSCRF_INS_REF

LIBSCRF_INS_REF
Insert Reference to a Key in the Cross-Reference Table

Format

Returns

Arguments

The Insert Reference to a Key in the Cross-Reference Table routine inserts a
reference to a key in a cross-reference symbol table.¥

LIB$CRF_INS_REF control-table ,longword-integer-key ,reference-string ,longword-integer-reference
ref-definition-indicator

None.

control-table)
OpenVMS usage: vector_longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with this cross-reference. The control-table argument
is the address of an array containing the control table.

longword-integer-key
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Key referred to by LIB§CRF_INS_REF. The longword-integer-key argument is
the address of a signed longword integer containing the key. The key is a counted
ASCII string that contains a symbol name or an unsigned binary longword. It
must be a permanent address in the user’s symbol table.

reference-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Counted ASCII string with a maximum of 31 characters, not including the byte
count. The reference-string argument is the address of a descriptor pointing to
the counted ASCII string.

1 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-71

LIB$ Routines
LIBSCRF_INS_REF

Description

LIB-72

longword-integer-reference
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The 16-bit value used in selecting the contents of the REF1 field. The longword-
integer-reference argument is the address of a signed longword integer
containing this value. When preparing the output line, LIBSCRF_OUTPUT uses
longword-integer-reference and the bit mask in the field descriptor table to
extract the data. The high-order bit of the word is reserved for LIB$CRF_INS_
REF.

ref-definition-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Reference/definition indicator that LIBSCRF_INS_REF uses to distinguish
between a reference to a symbol and the definition of the symbol. The ref-
definition-indicator argument is the address of a signed longword integer
containing this indicator. The only difference between processing a symbol
reference and a symbol definition is where LIBSCRF_INS_REF stores the
information.

The reference/definition indicator can have either of the 'following values:

Symbolic Name Description
CRF$K_REF Reference to a symbol
CRF$K_DEF Definition of a symbol

LIB$CRF_INS_REF inserts a reference to a key in the cross-reference symbol
table. If you attempt to insert reference information for a key that was not
specified in a call to LIBSCRF_INS_KEY, LIB§CRF_INS_REF uses the address
of the key to locate the symbol name and set the KEY1 field. Once set, either as
a result of LIB$CRF_INS_KEY or LIB$CRF_INS_REF, the KEY1 field is never
changed. A KEY1 field set by LIB§CRF_INS_REF has a space-filled VAL field
associated with it unless it is overridden by a subsequent call to LIB$CRF_INS_
KEY.

Using LIB$CRF_INS_REF involves the following steps:
1. Define a table of control information using the $CRFCTLTABLE macro.
2. Define each field of the output line using the $§CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that
define a field in the output line.

LIB$ Routines
LIBSCRF_INS_REF

4. Provide data by calling LIBSCRF_INS_REF to insert a reference to a key
in the specified symbol table. This data is used to build tables in virtual
memory.

5. Call LIB§CRF_OUTPUT, the cross-reference output routine, to summarize
and format the data. Supply a routine that LIB§CRF_OUTPUT calls to print
each line in the output file. Because you supply this routine, you can control
the number of lines per page and the header lines.

Condition Values Returned

None.

LIB-73

LIB$ Routines
LIBSCRF_OUTPUT

LIBSCRF_OUTPUT }
Output Cross-Reference Table Information

Format

Returns

Arguments

LIB-74

The Output Cross-Reference Table Information routine extracts the information
from the cross-reference tables and formats the output pages.¥

LIBSCRF_OUTPUT control-table ,output-line-width ,page1 ,page2 ,mode-indicator ,delete-save-indicator

None.

control-table
OpenVMS usage: vector_longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with the cross-reference. The control-table argument
is the address of an array containing the control table. The table contains the
address of the user-supplied routine that prints the lines formatted by LIB§CRF_
OUTPUT.

output-line-width
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Width of the output line. The output-line-width argument is the address of a
signed longword integer containing the width.

page1

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of lines on the first page of the output. The pagel argument is the
address of a signed longword integer containing this number. This allows
the user to reserve space to print header information on the first page of the
cross-reference.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB$ Routines
LIB$CRF_OUTPUT

page2

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of lines per page for the other pages. The page2 argument is the address
of a signed longword integer containing this number.

mode-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Output mode indicator. The mode-indicator argument is the address of a signed
longword integer containing the mode indicator.

This indicator allows the user to select which of three output modes is desired.

Output Mode Description

CRF$K_VALUES Only the value and key fields are to be printed.
LIB$CRF_OUTPUT creates multiple columns across
the page. Each column consists of the KEY1, KEY2,
VAL1, and VALZ2 fields. A minimum of one space
between each column is guaranteed.

CRF$K_VALS_REFS Requests a cross-reference summary that has no
column space saved for a defining reference. If the user
inserted a reference with the CRF$K_DEF indicator,
the entry is ignored.

CRF$K_DEFS_REFS Requests a cross-reference summary with the first
REF1 and REF2 fields used only for definition
references. If no definition reference is provided,
the fields are filled with spaces. .

delete-save-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Delete/save indicator, which LIB§CRF_OUTPUT uses to determine whether the
table’s built-in accumulating symbol information is to be saved or deleted once the
cross-reference is produced. The delete-save-indicator argument is the address
of a signed longword integer containing the delete/save indicator.

The indicator can be either of the following:

CRF$K_SAVE To preserve the tables for subsequent processing
CRF$K_DELETE To delete the tables

LIB-75

LIB$ Routines
LIBSCRF_OUTPUT

Description

LIB$CRF_OUTPUT can format output lines for three types of cross-reference
listings:

* A summary of symbol names and their values, as shown in Figure LIB-2.

e A summary of symbol names, their values, and the names of modules that
refer to each symbol, as shown in Figure LIB-3.

e A summary of symbol names, their values, the names of the defining modules,
and the names of those modules that refer to each symbol, as shown in
Figure LIB—4.

Figure LIB-2 Summary of Symbol Names and Values

Symbol Value Symbol Value

BAS$INSTR 000020B0-RU BAS$SCRATCH 00002308-RU
BAS$IN D R 000021F0-RU BASS$STATUS 00002338-RU
BASSIN F R 000021E8-RU BAS$STR D 000020C0-RU
BASSIN L R 000021E0-RU BAS$STR F 000020B8-RU
BAS$IN T DX 000021F8-RU BAS$STR L 000020C8-RU
BASSIN W R 000021D8-RU BASSUNLOCK 00002310-RU
BASSIO_END 000021D0-RU BAS$UPDATE 000022E8-RU
BAS$LINKAGE 00001674-R BASSUPDATE_COUN 000022F0-RU
BASSLINPUT 000021A8-RU BASSVAL D 00002110-RU
BAS$SMAT INPUT 00002268-RU BASSVAL F 00002108-RU

ZK-1973-GE

Figure LIB-3 Summary of Symbol Names, Values, and Names of Referring

LIB-76

Modules
Symbol Value Referenced By ...
BAS$K_DIVBY ZER 0000003D ALLGBL BASSERROR
BAS$POWDJ BASSPOWII
BASS$POWRJ BASSPOWRR
BAS$K DUPKEYDET 00000086 ALLGBL BAS$$SIGNAL_IO
BAS$K ENDFILDEV 0000000B ALLGBL BAS$$REC_PROC
BAS$$UDF_RIL
BAS$K ENDOF_STA 0000006C ALLGBL

ZK-1974-GE

LIB$ Routines
LIBSCRF_OUTPUT

Figure LIB-4 Summary Indicating Defining Modules

Symbol Value Defined By Referenced By ...
LIBSFREE_VM 0001E185-R LIB$VM ALLGBL
BASSMARGIN
BASS$XLATE
FOR$VM
STR$SAPPEND
STR$DUPL_CHAR
STR$REPLACE
LIB$GET__COMMAND 0001E2B0-R LIBSGET INPUT ALLGBL
LIB$GE’1‘_COMMON 0001E4D6-R LIB$COMMON ATLGBL

ZK-1971-GE

Regardless of the format of the output, LIBSCRF_OUTPUT considers the output
line as consisting of six different field types:

KEY1 Is the first field in the line. It contains a symbol name.

KEY2 Is the second field in the line. It contains a set of flags (for
example, -R) that provide information about the symbol.

VAL1 Is the third field in the line. It contains the value of the symbol.

VAL2 Is the fourth field in the line. It contains a set of flags describing
VALL.

REF1 and Within each REF1 and REF2 pair, REF1 provides a set of flags,

REF2 fields and REF2 provides the name of a module that references the
symbol.

Any of these fields can be omitted from the output.

For example:

" BASS$INSTR 000020B0-RU BAS$SCRATCH 00002308-RU

KEY1 VAL1 VAL2 KEY1 VAL1 VAL2
Symbol Value Defined By Referenced By ...
LIB$FREE_VM 0001E185-R LIBSVM ALLGBL

KEY1 VALl VAL2 REF2 REF2
: (CRF$K_DEF) (CRF$K REF)

Condition Values Returned

None.

LIB-77

LIBS Routines
LIBSCURRENCY

LIBSCURRENCY
Get System Currency Symbol

The Get System Currency Symbol routine returns the system’s currency symbol.

Format
. LIBSCURRENCY currency-string [,resultant-length]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

currency-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Currency symbol. The currency-string argument is the address of a descriptor
pointing to the currency symbol.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of characters that LIBSCURRENCY has written into the currency-
string argument, not counting padding in the case of a fixed-length string.

The resultant-length argument is the address of an unsigned word containing
the length of the currency symbol. If the input string is truncated to the size
specified in the currency-string argument, resultant-length is set to this size.
Therefore, resultant-length can always be used by the calling program to access
a valid substring of currency-string.

Description

LIB$CURRENCY attempts to translate the logical name SYS$CURRENCY as

a process, group, or system logical name, in that order. If the translation fails,
the routine returns the United States currency symbol ($). If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$CURRENCY as a systemwide logical name to provide a default for all users,
and an individual user with a special need can define SYS§CURRENCY as a
process logical name to override the system default.

For example, if you want to use the British pound sign (£) as the currency symbol
within your process but you want to leave the dollar sign as the system’s default,
define SYSSCURRENCY to be the pound sign in your process logical name table.
After this, any call to LIBSCURRENCY within your process returns the pound
sign (£), while any call outside your process returns the dollar sign ($).

LIB-78

Condition Values Returned

Example

SS$_NORMAL
LIB$_STRTRU

LIB$_FATERRLIB

LIB$_INSVIRMEM

LIB$_INVSTRDES

10 1+

LIB$ Routines
LIBSCURRENCY

Routine successfully completed.

Successfully completed, but the currency string
was truncated.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital in a Software
Performance Report (SPR).

Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

! This BASIC program uses LIB$CURRENCY to
! return the default system currency symbol.

1=

CALL LIB$SCURRENCY (CURR$, OUTLEN)

OUTLEN = 1
PRINT CURRS$
99 END

This BASIC program uses LIBSCURRENCY to display the system currency
symbol default. The output generated by the program is a dollar sign ($).

LIB-79

LIBS Routines
LIBSCVTF_FROM_INTERNAL_TIME

LIBSCVTF_FROM_INTERNAL_TIME
Convert Internal Time to External Time (F-Floating-Point Value)

The Convert Internal Time to External Time (F-Floating-Point Value) routine
converts a delta internal OpenVMS system time into an external F-floating time.

Format
LIB$CVTF_FROM_INTERNAL_TIME operation ,resultant-time ,input-time
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: ~ write only
mechanism: by value
Arguments
operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the

following:

Operation Interpretation
LIB$K DELTA WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

resultant-time
OpenVMS usage: floating_point

type: F_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an F-floating-point value containing the result.

LIB-80

LIB$ Routines
LIBSCVTF_FROM_INTERNAL_TIME

input-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time.

Description

LIB$CVTF_FROM_INTERNAL_TIME converts a delta internal OpenVMS system
time into an external F-floating-point time. The operation argument specifies
the conversion. LIB$_CVTF_FROM_INTERNAL_TIME converts the value of
input-time into one of the external formats listed in the operation argument
description. LIB$_CVTF_FROM_INTERNAL_TIME then places the result into
resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_IVTIME Invalid time.

LIB$_WRONUMARG Incorrect number of arguments.

LIB$ INVOPER Invalid operation.

LIB-81

LIB$ Routines
LIBSCVTF_TO_INTERNAL_TIME

LIBSCVTF_TO_INTERNAL_TIME
Convert External Time to Internal Time (F-Floating-Point Value)

Format

Returns

Arguments

LIB-82

The Convert External Time to Internal Time (F-Floating-Point Value) routine
converts an external time interval into an OpenVMS internal format F-floating
delta time.

LIBSCVTF_TO_INTERNAL_TIME operation ,input-time ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

operation

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following: '

Operation Interpretation
LIB$K_DELTA WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds
input-time .

OpenVMS usage: varying_arg

type: F_floating

access: read only

mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must not be negative, zero, or
greater than 10,000 days.

Description

LIB$ Routines
LIBSCVTF_TO_INTERNAL_TIME

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

LIB$CVTF_TO_INTERNAL_TIME converts an external time interval, such as 3.5
weeks, into an OpenVMS internal format F-floating delta time. The operation
argument specifies the conversion. LIB$_CVTF_TO_INTERNAL_TIME converts
the value of input-time into one of the internal format delta times listed in

the operation argument description. LIB$_CVTF_TO_INTERNAL_TIME then
places the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.
LIB$_INVOPER Invalid operation.

LIB-83

LIB$ Routines
LIBSCVT_DX DX

LIB$CVT_DX_DX
General Data Type Conversion Routine

Format

Returns

Arguments

LIB-84

The General Data Type Conversion routine converts OpenVMS standard atomic
or string data described by a source descriptor to OpenVMS standard atomic or
string data described by a destination descriptor. This conversion is supported
over a subset of the OpenVMS standard data types.

LIBSCVT_DX_DX source-item ,destination-item [word-integer-dest-iength]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

source-item
OpenVMS usage: unspecified

type: unspecified
access: read only
mechanism: by descriptor

Source item to be converted by LIBCVT_DX_DX. The source-item argument is
the address of a descriptor pointing to the source item to be converted. The type
of the item to be converted is contained in the descriptor.

The combination of source descriptor class and data type is restricted as described
in Table LIB-1 and Table LIB-2,

destination-item
OpenVMS usage: unspecified

type: unspecified
access: write only
mechanism: by descriptor

Destination of the conversion. The destination-item argument is the address of
a descriptor pointing to the destination item. The destination descriptor specifies
the data type to which the source item is converted.

The combination of destination descriptor class and data type is restricted as
described in Table LIB-1 and Table LIB-2.

word-integer-dest-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the destination item (when that item is a string) that has
been converted by LIB§CVT_DX_DX, not including any space filling. The
word-integer-dest-length argument contains the address of an unsigned word
containing this length.

Description

LIB$ Routines
LIBSCVT_DX_DX

If the destination string is truncated, the returned length reflects the truncation.
This word can be used by the calling program to determine if truncation has
occurred or to extract the exact length of the string when the string contains
space filling.

LIB$CVT_DX_DX is a universal conversion utility routine. Table LIB-1 shows
the complete matrix of data type and descriptor class combinations (as specified
in the fields of the descriptor) supported by LIB§CVT_DX_DX.

Conversion is defined over three sets of data types: atomic, string, and numeric
byte data strings. Although some of the functions of this routine may be found
in other Run-Time Library routines, LIB§CVT_DX_DX packages the conversion
functions with a general interface. Because of this general interface, the calling
program does not have to specify what conversion should be done for which data
type.

Refer to LIB$CVT xTB if you want to convert the ASCII text string
representation of a decimal, hexadecimal, or octal number into a binary
representation.

The description of this routine has been divided into the following parts:
* Guidelines for Using LIB$CVT_DX_DX
¢ Use of Numeric Byte Data Strings (NBDS)

For more information about numeric byte data strings, see the section called Use
of Numeric Byte Data Strings (NBDS). Although the set of data types in NBDS is
actually a subset of the atomic and string data types, the three sets are mutually
exclusive in this routine. For more information on the OpenVMS atomic and
string data types and the argument descriptor classes supported by this routine,
see the OpenVMS Calling Standard manual.

LIB-85

LIB$ Routines
LIBSCVT_DX_DX

LIB-86

Table LIB-1 OpenVMS Descriptor Class and Data Type Combinations Accepted

by LIBSCVT_DX_DX

Descriptor Class

DSCSK_

DTYPE_yyy A D NCA s SD Vs
B Non-NBDS Non-NBDS
BU NBDS NBDS Non-NBDS

D Non-NBDS Non-NBDS
F Non-NBDS Non-NBDS
FS Non-NBDS Non-NBDS
FT Non-NBDS Non-NBDS
G Non-NBDS Non-NBDS
H Non-NBDS Non-NBDS
L Non-NBDS Non-NBDS
LU Non-NBDS

NL Non-NBDS Non-NBDS
NLO Non-NBDS Non-NBDS
NR Non-NBDS Non-NBDS
NRO Non-NBDS Non-NBDS
NU Non-NBDS Non-NBDS
NZ Non-NBDS Non-NBDS
P Non-NBDS Non-NBDS
Q Non-NBDS Non-NBDS
T NBDS NBDS NBDS NBDS NBDS

vT NBDS
w Non-NBDS Non-NBDS
wuU Non-NBDS

Invalid combinations are blank. Any source data can be converted into any other destination data as
long as they are both represented by one of the valid combinations.

Note: LIBSCVT_DX_DX treats an array, described by a CLASS_A or CLASS_NCA descriptor, as a
character string. NBDS must have the format defined in table Table LIB-2.

Guidelines for Using LIB$CVT_DX_DX

The data type and descriptor class of the source and destination arguments
determine how LIB$CVT_DX_DX performs the conversion, according to the

following rules:

* Scale is applied when indicated in the descriptor (descriptor CLASS_SD only),

and scaling is defined for the data type.

¢ No language-specific semantics are applied, such as BASIC scale for DSC$K_

DTYPE_D.

¢ Some conversions must use intermediate values to arrive at the destination
requested. Although some loss of speed is inevitable, intermediate values will

not cause a loss of precision.

LIB$ Routines
LIBSCVT_DX_DX

* Results are always rounded instead of truncated, except for the case described
below. Note that loss of precision or range may be inherent in the destination
data type or in the NBDS destination size. No errors are reported if there is
a loss of precision or range as a result of destination data type.

¢ When the destination is an NBDS and has fixed-string semantics, then if the
source does not fill the destination, the destination is padded with blanks.

e When the source and destination are both NBDS and no scaling is requested,
then a straight copy is done without translation or conversion, and truncation
is possible. If scaling is requested, then a conversion takes place as defined in
Table LIB-2.

* When the source is an NBDS and the destination is non-NBDS, if there is an
invalid character in the source or the value is outside the range that can be
represented by the destination, then LIB$_INVNBDS is returned.

¢ Attempts to convert a negative value to an unsigned data type cause the
LIB$_INVCVT error to be returned.

e If the destination is an NBDS of descriptor CLASS_D, then a new string of
appropriate size is allocated for it, if necessary.

e Invalid conversions resulting in an error produce an unpredictable result.

Use of Numeric Byte Data Strings (NBDS)

For simplicity, and to define a generic numeric string that LIB$CVT_DX_DX
understands to be a numeric string, the set Numeric Byte Data String (NBDS) is
defined to be the set of NBDS descriptors shown in Table LIB-1.

The combination of data type and descriptor class determines whether an
argument is an NBDS. For example, LIB§CVT_DX_DX treats the combination
DSCK_DTYPE_B/DSCK_CLASS_S (unsigned byte scalar) as an atomic data

type. However, the routine considers DSCK_DTYPE_BU/DSCK_CLASS_NCA
(noncontiguous array of unsigned bytes) to be an NBDS.

A destination NBDS is always left-justified.

If a destination NBDS ‘requires more than 50 digits for its format (including the
sign, if any), then it is expressed in exponential format.

For a conversion of NBDS to NBDS, this format is used if scaling is requested.
Otherwise, a straight copy is done. The format of a source NBDS is the same as
the format defined for the input argument inp in OTS$_CVT_T_z, with bits 0, 2,
and 4 set in the flags argument. That is, blanks are ignored, underflow causes
an error, and tabs are ignored.

Table LIB-2 defines the format of a destination NBDS.

LIB-87

LIBS Routines
LIBSCVT_DX DX

LIB-88

Table LIB-2 LIB$CVT_DX_DX Destination NBDS Formats

Source Data Type

Destination NBDS Format

Byte integer (signed)
Byte (unsigned)

Word integer (signed)
Word (unsigned)
Longword integer (signed)
Longword (unsigned)
Quadword integer (signed)
D_floating

F_floating

G_floating

H_floating

FS_floating (IEEE)

FT floating IEEE)

NBDS

Decimal string

sdigits

digits

sdigits

digits

sdigits

digits

sdigits
s$0.min(16,w-7)Exnn
s0.min(7,w-7)E+nn
s0.min(15,w-8)E+nnn
s0.min(33,w-9)E+nnnn
s0.min(7,w-7)E+nn
s0.min(15,w-8)E+nnn
s0.min(33,w-9)E+nnnn
sdigits (as defined by VAX architecture)

Key to Destination NBDS Formats

» digits: Digits 0 through 9, and a decimal point only if source descriptor specifies the value of the

SCALE field as less than 0.

e w: Width of destination in bytes.

* s: Sign. For positive numbers, the sign is implied.

¢ min: Minimum of two values.

The A and NCA array descriptor classes are supported with the following

restrictions:

An array is written with the semantics of a fixed string.
DIMCT =1 Only one-dimensional arrays are recognized.

LENGTH =1
ARSIZE < 65,535

The length of each array element must be a byte.
The total size of the array must be less than 65,535 bytes.

If ARSIZE = 0, the array has a length of zero.

S1=1 The stride of an array passed by a noncontiguous array
descriptor must be 1. That is, even if the class of the
array’s descriptor is noncontiguous array (NCA), the array
itself must be contiguous.

For more information about the semantics of writing output strings, see the
OpenVMS RTL String Manipulation (STR$) Manual.

If the calling program passes a descriptor to LIB$CVT _DX_DX that does not
comply with Table LIB—1, one of the following error messages is returned:

LIB$_INVDTYDSC
LIB$_INVCLADSC
LIB$_INVCLADTY
LIB$_INVNBDS

Condition Values Returned

SS$_NORMAL
LIB$_DECOVF
LIB$_FLTOVF
LIB$_FLTUND
LIB$_INVCLADSC

LIB$_INVCLADTY

LIB$_INVCVT

LIB$_INVDTYDSC

LIB$_INTOVF
LIB$_INVNBDS

LIB$_OUTSTRTRU

LIB$_ROPRAND

LIBS Routines
LIBSCVT_DX_DX

Routine successfully completed.

Packed decimal overflow error. Severe error.
Floating overflow error. Severe error.
Floating underflow error. Severe error.

Invalid class in descriptor. This class of
descriptor is not supported. Severe error.

Invalid class and data type in descriptor. This
class and data type combination is not supported.
Severe error. '

If the source value is negative and the
destination data type is unsigned, this error
is returned.

Invalid data type in descriptor. This data type is
not supported. Severe error.

Integer overflow error. Severe error.

Invalid NBDS. There is an invalid character

in the input, or the value is outside the range
that can be represented by the destination, or
the NMDS descriptor is invalid. This error is
also signaled when the array size of an NBDS is
larger than 65,535 bytes or the array is multi-
dimensional.

Output string truncated. This is returned only
when NBDS is both source and destination and
no scaling is requested. The result is truncated.

Reserved operand error. Severe error.

LIB-89

LIB$ Routines
LIBSCVT_FROM_INTERNAL_TIME

LIBSCVT_FROM_INTERNAL_TIME
Convert Internal Time to External Time

The Convert Internal Time to External Time routine converts an internal
OpenVMS system time (either absolute or delta) into an external time.

Format
LIBSCVT_FROM_INTERNAL_TIME operation ,resultant-time [,input-time]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
operation
OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword containing the operation. The following table shows valid
values for operation:

Operation Return Range Type
LIB$K_MONTH_OF_YEAR 1to 12 Absolute
LIB$K_DAY OF_YEAR 1 to 366 Absolute
LIB$K_HOUR_OF_YEAR 1 to 8784 Absolute
LIB$K_MINUTE_OF_YEAR 1 to 527,040 Absolute
LIB$K_SECOND_OF_YEAR 1 to 31,622,400 Absolute
LIB$K_DAY_OF_MONTH 1to 31 Absolute
LIB$K_HOUR_OF_MONTH 1 to 744 Absolute
LIB$K_MINUTE_OF MONTH 1 to 44,640 Absolute
LIB$K_SECOND_OF_MONTH 1 to 2,678,400 Absolute
LIB$K_DAY_OF WEEK 1to7 Absolute 1
LIB$K_HOUR_OF_WEEK 1 to 168 Absolute 2
LIB$K_MINUTE_OF WEEK 1 to 10,080 Absolute 3
LIB$K_SECOND_OF_WEEK 1 to 604,800 Absolute 4
LIB$K_HOUR_OF_DAY 0 to 23 Absolute
LIB$K_MINUTE_OF_DAY 0 to 1439 Absolute

IDay 1 is Monday.

2Hours since midnight on previous Monday.
3Minutes since midnight on previous Monday.
4Seconds since midnight on previous Monday.

LIB-90

Description

LIB$ Routines
LIB$CVT_FROM_INTERNAL_TIME

Operation Return Range Type
LIB$K SECOND_OF_DAY 0 to 86,399 Absolute
LIB$K_MINUTE_OF_HOUR 0 to 59 Absolute
LIB$K_SECOND_OF HOUR 0 to 3599 Absolute
LIB$K_SECOND_OF MINUTE 0 to 59 Absolute
LIB$K_JULIAN_DATE Julian date Absolute °
LIB$K_DELTA_WEEKS Delta 6
LIB$K_DELTA_DAYS Delta 7
LIB$K_DELTA_HOURS Delta 8
LIB$K_DELTA_MINUTES : Delta 2
LIB$K_DELTA_SECONDS Delta 10
5Number of days since system zero time (17-Nov-1858).

6Whole weeks.

TWhole days.

8Whole hours.

9Whole minutes.
10Whole seconds.

resultant-time
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time
argument is the address of an unsigned longword containing the result.

input-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Optional absolute or delta time to be converted. The input-time argument is
the address of an unsigned quadword containing the time. If you do not supply a
value for input-time, the current system time is used.

LIB$CVT_FROM_INTERNAL_TIME converts an internal OpenVMS system
time (either absolute or delta) into an external time. The operation argument
specifies the conversion. LIB§CVT_FROM_INTERNAL_TIME converts the value
of input-time (or the current system time if input-time is not supplied) into one
of the external formats listed in the operation argument description. LIB§CVT_
FROM_INTERNAL_TIME then places the result into resultant-time.

See the OpenVMS Programming Concepts Manual for a description of system
date and time operations as well as a detailed description of the format
mnemonics used in these routines.

LIB-91

~ LIB$ Routines :
LIB$CVT_FROM_INTERNAL_TIME

Condition Values Returned

LIB-92

LIB$_NORMAL
LIB$_IVTIME
LIB$_WRONUMARG
LIB$_INVOPER
LIB$_ABSTIMREQ
LIB$_DELTIMREQ

Routine successfully completed.

Invalid time.

Incorrect number of arguments.

Invalid operation.

Absolute time required but delta time supplied.
Delta time required but absolute time supplied.

LIB$ Routines
LIBSCVT_TO INTERNAL_TIME

LIBSCVT _TO INTERNAL_TIME
Convert External Time to Internal Time

Format

Returns

Arguments

The Convert External Time to Internal Time routine converts an external time
interval into an OpenVMS internal format delta time.

LIBSCVT_TO_INTERNAL_TIME operation ,input-time ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

operation

OpenVMS usage: function_code

type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an
unsigned longword specifying the operation. Valid values for operation are the
following:

Operation Interpretation
LIB$K_DELTA_WEEKS Whole weeks in delta time
LIB$K_DELTA_DAYS Whole days in delta time
LIB$K_DELTA HOURS Whole hours in delta time
LIB$K_DELTA_MINUTES Whole minutes in delta time
LIB$K_DELTA_SECONDS Whole seconds in delta time
input-time

OpenVMS usage: varying arg

type: longword (signed)

access: read only

mechanism: by reference

Delta time to be converted. The input-time argument is the address of this
input time. The value you supply for input-time must not be negative, zero, or
greater than 10,000 days.

LIB-93

LIB$ Routines
LIBSCVT_TO_INTERNAL_TIME

Description

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The
resultant-time argument is the address of an unsigned quadword containing the
result.

LIB$CVT_TO_INTERNAL_TIME converts an external time interval, such as
three weeks, into an OpenVMS internal format delta time. The operation
argument specifies the conversion. LIB$_CVT_TO_INTERNAL_TIME converts
the value of input-time into one of the internal format delta times listed in the
operation argument description. LIB$_CVT_TO_INTERNAL_TIME then places
the result into resultant-time.

See the OpenVMS Programming Concepts Manual for a description of system
date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

LIB-94

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.
LIB$_INVOPER Invalid operation.

LIB$ Routines
LIB$CVT_VECTIM

LIBSCVT_VECTIM
Convert 7-Word Vector to Internal Time

Format

Returns

Arguments

The Convert 7-Word Vector to Internal Time routine converts a 7-word vector into
an OpenVMS internal format delta or absolute time.

LIBSCVT_VECTIM input-ime ,resultant-time

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

input-time

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Time to be converted. The input-time argument is the address of a 7-word
structure containing this time. This vector directly corresponds to a $SNUMTIM
timbuf structure. The following diagram depicts the fields in this structure:

31 15 0
Month of Year Year Since 0
Hour of Day Day of Month
Second of Minute Minute of Hour
Hundredths of Second
ZK-7968-GE

The input-time argument can represent an absolute or a delta time. In order
for input-time to represent a delta time, the year since 0 and month of year
fields must equal zero. If those fields do not equal zero, an absolute time is
returned.

resultant-time
OpenVMS usage: date_time

type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta or absolute time that results from the
conversion. The resultant-time argument is the address of an unsigned
quadword containing the result.

LIB-95

LIB$ Routines
LIBSCVT_VECTIM

Description

LIB$CVT_VECTIM converts a 7-word vector (in the format output by the system
service SYS$NUMTIM) into an OpenVMS internal format delta or absolute time.
LIB$CVT_VECTIM then places the result into resultant-time.

See the OpenVMS System Services Reference Manual for more information about
SYS$NUMTIM.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME : Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB-96

LIB$ Routines
LIBSCVT_xTB

LIBSCVT_xTB
Convert Numeric Text to Binary

The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

Format
LIB$CVT_DTB byte-count ,numeric-string ,result
LIBSCVT_HTB byte-count ,numeric-string ,result
LIBSCVT_OTB byte-count ,numeric-string ,result
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
byte-count
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed
longword integer containing the byte count of the input string.

numeric-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number that
LIB$CVT_xTB converts to binary representation. The numeric-string argument
is the address of a character string containing this input string to be converted.

The syntax of a valid ASCII text input string is as follows:
[i } <radix-characters>

LIB$CVT_xTB allows only an optional plus (+) or minus (-) sign followed by a
string of decimal, hexadecimal, or octal characters appropriate to the routine

being called.

result

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only

mechanism: by reference

LIB-97

LIB$ Routines
LIBSCVT_xTB

Binary representation of the input string. The result argument is the address of
a signed longword integer containing the converted string.

Description

LIB$CVT_DTB converts the ASCII text string representation of a decimal
number into binary representation. LIB$CVT_HTB converts the ASCII text
string representation of a hexadecimal number into binary representation.
LIB$CVT_OTB converts the ASCII text string representation of an octal number
into binary representation.

Note

LIBCVT_DTB, LIBCVT_HTB, and LIB$CVT_OTB are intended to

be called primarily from BLISS and MACRO programs. Therefore, the
routines expect input scalar arguments to be passed by value and strings
by reference.

Condition Values Returned

1 Routine successfully completed.

0 Nonradix character in the input string or a sign
in any position other than the first character. An
overflow from 32 bits (unsigned) causes an error.

LIB-98

LIB$ Routines
LIBSCVT_xTB_64 (Alpha Only)

LIBSCVT_xTB_64 (Alpha Only)
Convert Numeric Text to Binary

Format

Returns

Arguments

The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

LIBSCVT_DTB_64 byte-count ,numeric-string ,result
LIBSCVT_HTB_64 byte-count ,numeric-string ,result
LIBSCVT_OTB_64 byte-count ,numeric-string ,result

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

byte-count :

OpenVMS usage: longword_signed

type: longword integer (signed)
access: ‘ read only

mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed
longword integer containing the byte count of the input string.

numeric-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number
that LIB$CVT _xTB_64 converts to binary representation. The numeric-string
argument is the address of a character string containing this input string to be
converted.

The syntax of a valid ASCII text input string is as follows:

[i] <radix-characters>
LIB$CVT _xTB_64 allows only an optional plus (+) or minus (-) sign followed by

a string of decimal, hexadecimal, or octal characters appropriate to the routine
being called.

LIB-99

LIB$ Routines
LIBSCVT_xTB_64 (Alpha Only)

Description

result

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: write only

mechanism: by reference

'Binary representation of the input string. The result argument is the address of

a signed quadword integer containing the converted string.

LIB$CVT_DTB_64 converts the ASCII text string representation of a decimal
number into binary representation. LIB§CVT_HTB_64 converts the ASCII
text string representation of a hexadecimal number into binary representation.
LIB$CVT_OTB_64 converts the ASCII text string representation of an octal
number into binary representation.

Note

LIBCVT_DTB_64, LIBCVT_HTB_64, and LIB$CVT_OTB_64 are
intended to be called primarily from BLISS and MACRO programs.
Therefore, the routines expect input scalar arguments to be passed by
value and strings by reference.

Condition Values Returned

LIB-100

1 Routine successfully completed.

0 Nonradix character in the input string or a sign
in any position other than the first character. An
overflow from 64 bits (unsigned) causes an error.

LIB$ Routines
LIBSDATE_TIME

LIBS$DATE_TIME
Date and Time Returned as a String

The Date and Time Returned as a String routine returns the OpenVMS system
date and time in the semantics of a user-provided string.

Format
LIBSDATE_TIME date-time-string
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Argument

date-time-string
OpenVMS usage: time_name

type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB§DATE_TIME writes the system date and time.
The date-time-string argument is the address of a descriptor pointing to the
destination string. This string is 23 characters long; its format is as follows:

dd-mmm-yyyy hh:mm:ss.hh

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU Success, but destination string was truncated.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has

an invalid value in its CLASS field.

LIB-101

LIB$ Routines
LIBSDATE_TIME

Example

10 !+
! This BASIC program demonstrates the
! use of LIBSDATE TIME.

CALL LIBSDATE_TIME(DSTSTRS)
PRINT DSTSTR$
99 END

This BASIC program uses LIB§DATE_TIME to display the current system date
and time. The output generated by one run of this program follows:

26-JUL-1995 13:41:22.67

LIB-102

LIB$ Routines
LIB$DAY

LIBSDAY
Day Number Returned as a Longword Integer

The Day Number Returned as a Longword Integer routine returns the number
of days since the system zero date of November 17, 1858, or the number of days
from November 17, 1858, to a user-supplied date.

Format
LIB$DAY number-of-days [,user-time] {,day-time]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

number-of-days
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Number of days since the system zero date. The number-of-days argument is
the address of a signed longword integer containing the day number.

user-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

User-supplied time, in 100-nanosecond units. The user-time argument is the
address of a signed quadword integer containing the user time. A positive value
indicates an absolute time, while a negative value indicates a delta time. This
is an optional argument. If user-time is omitted, the default is the current
system time. This quadword time value is obtained by calling the system service
SYS$BINTIM.

If time is passed as zero by value, the numeric value for the current day
is returned. If time is passed as a zero by reference, the number returned
represents the day of November 17, 1858, rather than the current day.

day-time

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only

mechanism: by reference

Number of 10-millisecond units since midnight of the user-time argument.
The day-time argument is the address of a signed longword integer into which
LIB$DAY writes this number of units.

LIB-103

LIB$ Routines

LIBSDAY

Description

LIB$DAY returns the number of days since the system zero date of November 17,
1858. Optionally, the caller can supply a time in system time format to be used
instead of the current system time. In this case, LIB$DAY returns the number of
days from November 17, 1858, to the user-supplied date.

The number of 10-millisecond units since midnight is an optional return
argument.

Note

If the caller supplies a quadword time, it is not verified. If it is negative
(bit 63 on), the number-of-days value returned is negative.

The Run-Time Library provides the date/time utility routines for languages that
do not have built-in time and date functions and for particular applications that
require the time or date in a different format from the one that the language
supplies. In general, it is simpler to call the Run-Time Library routines for the
system date and time than to call a system service.

Condition Values Returned

Example

LIB-104

SS$_NORMAL Routine successfully completed.

PROGRAM DAY (INPUT, OUTPUT);
{*}

{ This is a VAX Pascal example program showing
{ the use of LIBSDAY.

{-}
VAR
DAYNUMBER : INTEGER;

routine LIB$DAY(VAR DAYNUM : INTEGER);
EXTERN;

BEGIN

LIBSDAY(DAYNUMBER);

WRITELN('The day number is ', DAYNUMBER);
END.

This Pascal program retrieves and prints the day number. A sample of the output
generated by this program is as follows.

The day number is 46738

LIB$ Routines
LIBSDAY_OF_WEEK

LIBSDAY_OF_WEEK
Show Numeric Day of Week

Format

Returns

Arguments

The Show Numeric Day of Week routine returns the numeric day of the week for
an input time value. If 0 is the input time value, the current day of the week

is returned. The days are numbered 1 through 7, with Monday as day 1 and
Sunday as day 7.

LIB$DAY_OF_WEEK [user-time,] day-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

user-time

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

Time to be translated to a day of the week, or zero. The optional user-time
argument is the address of an unsigned quadword containing the value of time.
Time must be supplied as an absolute system time. To obtain this time value in
proper quadword format, call the system service SYS$BINTIM.

If time is passed as zero by value, the numeric value for the current day is
returned. If time is passed as a zero by reference, the number returned
represents the day of November 17, 1858, rather than the current day. If the
user-time argument is omitted, it is equivalent to passing a zero by value.

day-number

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Numeric day of week. The day-number argument is the address of a longword
into which LIB$DAY_OF_WEEK writes the integer value representing the day of
the week.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB-105

LIB$ Routines
LIBSDAY_OF_WEEK

Example

PROGRAM DAYOFWEEK (INPUT, OUTPUT);

{t}
{ This is an example showing
{ the use of LIB$DAY OF WEEK.

{-}
VAR
OUTDAT : INTEGER;

routine LIB$DAY OF WEEK(TIM : INTEGER; $REF OUTDA : INTEGER); EXTERN;
BEGIN

LIBSDAY OF WEEK(®IMMED 0, OUTDAT);
WRITELN(OUTDAT);

END.

This Pascal program shows the use of LIB$DAY_OF_WEEK. This example was
tested on a Monday, and the output generated was 1.

LIB-106

LIB$ Routines
LIBSDECODE_FAULT

LIBSDECODE_FAULT
Decode Instruction Stream During Fault

Format

Returns

Arguments

The Decode Instruction Stream During Fault routine is a tool for building
condition handlers that process instruction fault exceptions. It is called from
a condition handler.t

This routine is not available to native OpenVMS Alpha programs but is available
to translated VAX images. ¢ '

LIBSDECODE_FAULT signal-arguments ,mechanism-arguments ,user-procedure
[,unspecified-user-argument] [instruction-definitions)

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Signal arguments array that was passed from the OpenVMS operating system to
your condition handler. The signal-arguments argument is the address of the
signal arguments array.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism arguments array that was passed from OpenVMS to your condition
handler. The mechanism-arguments argument is the address of the mechanism
arguments array.

user-procedure
OpenVMS usage: procedure

type: procedure value
access: call after stack unwind
mechanism: by descriptor, procedure descriptor

User-supplied action routine that LIBSDECODE_FAULT calls to handle the
exception. The user-procedure argument is the address of a descriptor pointing
to your user action routine. The user-procedure argument may be of type

t No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-107

LIB$ Routines
LIBSDECODE_FAULT

Description

LIB-108

“procedure value” when called by languages with up-level addressing. If user-
procedure is not of type “bound routine value,” it is assumed to be the address
of an entry mask. a

For further information on the user action routine, see Call Format for a User
Action Routine in the Description section.

unspecified-user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Additional information passed from your handler without interpretation to your
user action routine. The unspecified-user-argument argument contains the
value of this additional information. The unspecified-user-argument argument
is optional; if it is omitted, zero is used as the default.

instruction-definitions
OpenVMS usage: vector_byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Array of bytes specifying instruction opcodes and operand definitions that are
to replace or supplement the standard instruction definitions. The instruction-
definitions argument is the address of this array.

If instruction-definitionsis omitted, only the standard instruction definitions
are used. If supplied, instruction-definitions is searched first, followed by the
standard definitions.

Each instruction definition consists of a series of bytes, the first one or two of
which is the instruction opcode. If the instruction is a 2-byte opcode, the escape
byte, which must be hex FD, FE, or FF, is placed in the first of the two bytes.
Following the opcode may be from 0 to 16 operand definition bytes. These bytes
indicate the operand’s access type and data type.

The end of each instruction definition is denoted by a byte containing the value
LIB$K_DCFOPR_END (zero). The list of instruction definitions is terminated
by two bytes, each of which contains the value —1 (hexadecimal FF). For further
information, see Instruction Operand Definition Codes in the Description section.

The Description section of the LIBSDECODE_FAULT routine is divided into five
parts:

* Guidelines for Using LIBSDECODE_FAULT

* Exceptions Recognized by LIB§DECODE_FAULT
* Instruction Operand Definition Codes

e Call Format for a User Action Routine

¢ (Call Format for a Signal Routine

LIB$ Routines
LIBSDECODE_FAULT

Guidelines for Using LIBSDECODE_FAULT]
LIB$DECODE_FAULT is a tool for building condition handlers that process
instruction fault exceptions. Called from a condition handler, LIB$DECODE_
FAULT performs the following actions:

1. Unwinds intermediate stack frames back to that of the exception
2. Decodes the instruction stream to determine the operation and its operands

3. Calls a user-supplied action routine and passes it a consistent and easy-to-
access description of the instruction’s context

Your user action routine performs whatever tasks are necessary to handle the
fault and returns to LIBSDECODE_FAULT. LIB§DECODE_FAULT then restores
the context as modified by your user action routine and continues execution.

Your condition handler must first decide whether or not it wants to handle the
exception. The signal arguments list contains the exception code and the address
of the program context (PC) that is usually sufficient for this determination. Once
LIB$DECODE_FAULT is called, if the exception is a fault LIBSDECODE_FAULT
can analyze, control does not return to the condition handler. Therefore, your
handler must not depend on regaining control by a routine return once it has
called LIB§DECODE_FAULT. With your user action routine, LIBSDECODE_
FAULT makes the original fault disappear.

Note

Your user action routine is capable of generating a new exception,
including one that looks identical to the original exception. Your user
action routine may also resignal, but if the decision to resignal is made
inside the user action routine, all post-signal stack frames are lost.

Once your condition handler has decided that it wants to handle the exception,

it calls LIB$DECODE_FAULT, passing as arguments the addresses of the signal
and mechanism argument lists and a descriptor for your user action routine entry
point. LIBSDECODE_FAULT then performs the following actions:

1. Determines if the exception is a fault it understands. If not, it returns SS$_
RESIGNAL.

2. Determines the context in which the exception occurred, including register
and processor status longword (PSL) contents, and saves it.

Unwinds all stack frames back to that frame in which the exception occurred.

4. Evaluates each operand’s addressing mode, computing the resulting location
for the operand. Immediate mode operands are expanded into their full form.
If an invalid addressing mode is found, an SS$_RADRMOD exception is
generated.

5. Unless the original exception was SS$_ACCVIO, tests each operand for
accessibility. If necessary, an access violation is signaled as if the instruction
had tried to execute normally. See the paragraph following this list for more
information.

6. Unless the original exception was SS$_ROPRAND, tests each floating-point
operand that is to be read for a reserved floating operand. If necessary, a
reserved operand fault is signaled. See the paragraph following this list for
more information.

LIB-109

LIB$ Routines
LIBSDECODE_FAULT

LIB-110

Determines the address of the next sequential instruction.
Calls your user action routine with arguments as described below.

9. Upon return from your user action routine, reflects changes to the registers
and PSL and continues execution at the instruction address specified by your
user action routine. Optionally, your user action routine may resignal the
original exception.

Some instructions can generate more than one fault if evaluation of one operand
causes a fault that occurs before a later operand (which would also cause a fault).
An example of this is the possibility that a floating-point divide instruction might
report a divide-by-zero fault upon seeing a zero divisor before noticing that the
dividend was a reserved operand or was inaccessible.

In these cases, operand-specific faults are signaled immediately by
LIB$DECODE_FAULT in the expectation that another condition handler (or the
same one) can repair the situation. This may reorder the sequence of exceptions
as seen by a program. If the operand exception is corrected, the original exception
reoccurs, and the proper action is taken.

If at all possible, try to determine if a resignal is necessary inside the condition
handler that calls LIBSDECODE_FAULT, rather than inside your user action
routine. The reason for this is that LIBSDECODE_FAULT removes all post-signal
stack frames before calling your user action routine.

Your user action routine may fetch and store the operands, registers, and PSL
as necessary for handling the exception. You should follow the VAX architecture
rule of reading all input operands in left-to-right order, then writing all output
operands in left-to-right order, to avoid inconsistent results with overlapping
operands. This is especially necessary with register operands.

PSL may be modified in a manner consistent with the VAX architecture. If the
T-bit in the PSL was set at the beginning of the instruction, LIBSDECODE_
FAULT sets the TP bit. To initiate tracing, you must set only the T bit. To
disable tracing, you must clear both the T and TP bits. See the VAX Architecture
Reference Manual for more information.

If the first-part-done (FPD) bit in the PSL was set when the instruction faulted,
LIB$DECODE_FAULT only advances the PC over the instruction; it does not
reevaluate the operands, and it sets operand-count to zero. It is assumed that
if FPD is set, the operands are in known locations (typically the registers).

For the CASEB, CASEW, and CASEL instructions, only the selector, base,

and limit operands are represented in operand-count and read-operand-
locations. The element of registers that corresponds to the PC, described in the
following text as R15, points to the first of the word-length displacements. Your
user action routine must modify R15 to reflect the location of the next instruction
to execute.

The standard instruction definitions used by LIBSDECODE_FAULT specify the
XFC instruction (which causes an SS$_OPCCUS fault) as having zero operands.

You may redefine XFC if needed using the instruction-definitions argument to
LIB$DECODE_FAULT.

If you do not want instruction execution to resume with the next sequential
instruction, you must modify R15 appropriately. Your user action routine then
returns to LIB$DECODE_FAULT, which restores the registers and PSL, and
resumes instruction execution. See also the LIB$_RESTART condition value in
the section called Condition Values Returned from the User Action Routine.

LIB$ Routines
LIBSDECODE_FAULT

Note

Vector context is not saved or restored.

Exceptions Recognized by LIBS$DECODE_FAULT
LIB$DECODE: FAULT recognizes the following VAX faults:

* SS$_ACCVIO, access violation.

e SS$_BREAK, breakpoint fault.

e SS$_FLTDIV_F, floating divide by zero.

e SS$_FLTOVF_F, floating overflow.

* SS$_FLTUND_F, floating underflow.

e SS$_OPCCUS, opcode reserved to customers.
e SS$ _OPCDEC, opcode reserved to Digital.

* SS$ ROPRAND, reserved operand.

* SS$_TBIT, T-bit pending trap. This is actually a fault caused by the TP bit
being set at the beginning of instruction execution. It allows you to interpret
all instructions by setting the PSL T-bit and allowing each instruction to
trace-fault. :

All other exceptions, including SS$_COMPAT and SS$_RADRMOD, cause
LIB$DECODE_FAULT to return immediately with the return status SS$_
RESIGNAL.

SS$_COMPAT is generated by compatibility-mode instructions. LIBSDECODE_
FAULT does not handle compatibility-mode instructions.

SS$_RADRMOD is generated by a reserved addressing-mode fault.
LIB$DECODE_FAULT assumes that all instructions follow VAX addressing-mode
specifications.

Instruction Operand Definition Codes

Each instruction operand has an access type (read, write, . ..) and a data type
(byte, word, . ..) associated with it. The operand definition codes used in both
the instruction-definitions argument passed to LIBSDECODE_FAULT and
in the operand-types argument passed to the user action routine encode the
access and data types in a byte. The fields and values for operand access and
data types are described using the symbols in Table LIB-3. These symbols are
defined in Digital-supplied symbol definition libraries as macro or module name
$LIBDCFDEF.

LIB-111

LIB$ Routines
LIBSDECODE_FAULT

LiB-112

Table LIB-3 Symbols for Fields and Values for Operand Access and Data
Types Using LIBSDECODE_FAULT

Symbol

Description

LIB$V_DCFACC

LIB$S_DCFACC
LIB$M_DCFACC

LIB$V_DCFTYP

LIB$S_DCFTYP .

The field of the operand description code that describes the
operand access type (bits 0-2).

The size of the access type field (3 bits).

The mask for the access type field. This is a 3-bit field that
can contain any binary value from 000 through 111. The
integer value of these bit settings defines the operand access
type code for the LIB$M_DCFACC field. Currently, six codes
are defined. These codes have symbolic names and are
explained below. It is important to remember that LIB$M_
DCFACC is not a bit mask. The values 0 through 6 do not
refer to bits 0 through 6. They represent the binary values
001 through 110 as contained in the 3-bit field.

The operand access type codes defined for the LIB$M_
DCFACC field are:

LIB$K_DCFACC R =1 Operand is read-only.
LIB$K DCFACC_M =2 Operand is to be modified.
LIB$K DCFACC_W =3 Operand is write-only.

LIB$K_DCFACC_A =4 Operand is an address (must
not be a register).

LIB$K_DCFACC_V =5 Operand is the base of a bit
field (same as address except
that it may be a register).

LIB$K_DCFACC_B = 6 Operand is a branch address.

The field of the operand descriptor code that describes the
operand data type (bits 3-7).

The size of the operand data type field (5 bits).

(continued on next page)

LIB$ Routines
LIBSDECODE_FAULT

Table LIB-3 (Cont.) Symbols for Fields and Values for Operand Access and
Data Types Using LIBSDECODE_FAULT

Description

Symbol
LIB$M_DCFTYP

The mask for the operand data type field. This is a 5-bit
field (bits 3—7) that can contain any binary value from 00000
through 11111. The integer value of these bit settings defines
the operand access type code for the LIB$M_DCFACC field.
Currently, nine codes are defined. These codes have symbolic
names and are explained below. It is important to remember
that LIB$M_DCFTYP is not a bit mask. The values 0
through 9 do not refer to bits 0 through 9. They represent
the binary values 00001 through 01001 as contained in the
5-bit field. The operand access type codes defined for the
LIB$V_DCFTYP field are:
LIB$K DCFTYP_ B =1
LIB$K_DCFTYP_W =2
LIB$K_DCFTYP_L =3
LIB$K_DCFTYP_Q =4
LIB$K_DCFTYP O =5

Operand is a byte.
Operand is a word.
Operand is a longword.
Operand is a quadword.
Operand is an octaword.

LIB$K _DCFTYP_F = 6
LIB$K _DCFTYP_D =7
LIB$K_DCFTYP_G = 8

Operand is F_floating.
Operand is D_floating.
Operand is G_floating.

LIB$K_DCFTYP_H =9 Operand is H_floating.

Symbols of the form LIB$K_DCFOPR_xy, where x is the access type and y is the
data type, are also defined. These combine the notions of access and data type.
For example, LIBSK_DCFOPR_MF has the following value:

50 (2+(6*8))

It denotes modify access of an F_floating item. For the branch access type, only
the types BB, BW, and BL are defined; otherwise, all combinations are available.

Call Format for a User Action Routine

LIB$DECODE_FAULT calls the user action routine when it finds an exception to
be handled. Your user action routine handles the exception in any manner that
you specify and then returns to LIB$DECODE_FAULT.

action-routine opcode ,instr-PC ,PSL ,registers ,operand-count
,operand-types ,read-operand-locations
,write-operand-locations ,signal-arguments
,signal-procedure ,context
,unspecified-user-argument ,original-registers

opcode
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

LIB-113

LIB$ Routines
LIBSDECODE_FAULT

LIB-114

Opcode of the instruction that caused the fault. The opcode argument is the
address of a longword that contains this opcode. LIBSDECODE_FAULT supplies
this opcode when it calls the user action routine.

For 2-byte opcodes, the escape code (for example, hex FD) is in the low-order byte.
You must use this argument to examine the opcode instead of reading the bytes
pointed to by instr-PC. This is because if a debugger breakpoint has been set on
the instruction, only opcode contains the original instruction. '

instr-PC

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Value of the PC for the instruction that caused the fault. The instr-PC argument
is the address of a longword that contains the PC value.

Note the difference between this value and the contents of the registers array
element that corresponds to the PC. R15 of the registers array element contains
the address of the byte after the instruction that caused the fault.

PSL

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: modify

mechanism: by reference

Processor status longword (PSL) at the time of the fault. The PSL argument is
the address of a longword that contains this PSL. Your user action routine may
modify this PSL within the restrictions of the VAX architecture.

registers

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)

access: modify

mechanism: by reference, array reference

Contents of registers RO through R15 (PC) at the time of the fault but after
operand addressing-mode processing. This includes any autoincrements or
autodecrements. The registers argument is the address of this 16-longword
array. Each longword of the registers array contains the contents of one register.

Your user action routine may modify these values. If it does, the new values will
be reflected when instruction execution continues.

To modify vector registers, execute a vector instruction. Executing a vector
instruction in the handler modifies the state of the vector processor. The state
of the vector processor is not restored when the handler returns. This has the
effect of altering the state when the execution continues.

R15 denotes the sixteenth longword in the registers array, which corresponds to
the PC. R15 contains the address of the next byte after the current instruction.
Unless this value is modified by your user action routine, instruction execution
will resume at that address. An exception is for the CASEB, CASEW, and CASEL
instructions; R15 contains the address of the first displacement word. For these
instructions, your user action routine must modify R15 to point to the next
instruction to execute.

LIB$ Routines
LIBSDECODE_FAULT

Upon instruction completion, registers R0O-R15 are restored from this array.
However, if signal-procedure is used to cause a fault or if instruction restart
is specified by returning LIB$_RESTART, original-registers is used instead.

operand-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of operands in the instruction currently being decoded. The operand-
count is the address of a longword that contains this number.

operand-types
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the type codes
for the associated operand. The operand-types argument is the address of this
array.

The operand type codes are further defined in the section Instruction Operand
Definition Codes, which appeared previously in this Description section.

read-operand-locations
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses of
the operands to be read. The read-operand-locations argument is the address
of this array.

The address given in the array may not be the actual address of the operand if
the operand is not a memory location. If the operand is a register, the address
indicates a copy of the register values at the time of operand evaluation. If the
operand access type is ADDRESS or FIELD and the operand is not a register,
the address is the address of the item. If the operand access type is FIELD
and the operand is a register, the address refers to the appropriate element in
the registers array. If the operand access type is BRANCH, the address is the
destination PC of the branch. For WRITE access operands, the address value is
Zero.

write-operand-locations
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses
of operands that are to be written. The write-operand-locations argument is
the address of this array. If the operand access type is not MODIFY, WRITE
ADDRESS, or FIELD, the pointer value is zero.

LIB-115

LIB$ Routines
LIBSDECODE_FAULT

LIB-116

signal-arguments
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments list of the original exception, as passed from OpenVMS to your
condition handler and then to LIBSDECODE_FAULT. The signal-arguments
argument is the address of an array of longwords that contains these signal
arguments.

signal-procedure
OpenVMS usage: procedure

type: procedure value
access: call without stack unwinding
mechanism: by reference

Entry mask of a routine that your user action routine must call if it wants to
report an exception for the instruction that faulted. The signal-procedure
argument is the address of this entry mask.

For further information, see Call Format for a Signal Routine in the Description
section. '

context

OpenVMS usage: context
type: unspecified
access: read only
mechanism: by value

Context in which the exception occurs, including the register and PSL contents, to
be used when calling the signal-procedure. The context argument contains the
value of this context.

unspecified-user-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Optional argument passed to LIBSDECODE_FAULT. If the argument was
not specified, the value zero is substituted. The unspecified-user-argument
argument contains the value of this optional argument.

original-registers
OpenVMS usage: vector_longword_unsigned

type: longword (unsigned)
access: modify '
mechanism: by reference, array reference

Array containing the values of registers RO through R15 (PC) at the time of the
fault, before operand processing. The original-registers argument is the address
of this 16-longword array.

If the action routine specifies that the instruction should restart or that a fault
should be generated, the registers are restored from original-registers. See also
the description of registers above.

LIB$ Routines
LIBSDECODE_FAULT

Condition Values Returned from the User Action Routine The user action
routine can return the following condition values to LIBSDECODE_FAULT:

Condition Value Description

SS$_CONTINUE If the user action routine returns a value of SS$_
CONTINUE, instruction execution will continue as
specified by the current contents of the registers
element for the PC.

SS$_RESIGNAL If the user action routine returns SS$_RESIGNAL, the
original exception is resignaled, with the only changes
reflected being those specified by registers elements
for RO and R1 (which are stored in the mechanism
arguments vector), PC, and PSL. All other registers are
restored from original registers.

LIB$_RESTART If the user action routine returns LIB$_RESTART, the
current instruction is restarted with registers restored
from original-registers and a PSL from PSL. This
feature is useful for writing trace handlers.

Call Format for a Signal Routine
Your action routine calls the signal routine using this format:

signal-procedure fault-flag ,context ,signal-arguments

fault-flag

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Longword flag whose low-order bit determines whether the exception is to be
signaled as a fault or as a trap. The fault-flag argument contains the address of
this longword.

If the low-order bit of fault-flag is set to 1, the exception is signaled as a fault.
If the low-order bit of fault-flag is set to 0, the exception is signaled as a trap;
the current contents of the registers array are used. In either case, the current
contents of PSL are used to set the exception PSL.

context

OpenVMS usage: context
type: unspecified
access: read only
mechanism: by reference

Context in which the new exception is to occur, as passed to your user action
routine by LIBSDECODE_FAULT. The context argument is the address of this
context value.

signal-arguments
OpenVMS usage: arg_list

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

LIB-117

LIBS Routines
LIBSDECODE_FAULT

Signal arguments to be used. The signal-arguments argument is the address of
an array of longwords that contains these signal arguments.

The first longword contains the number of following longwords; the remainder of
the list contains signal names and arguments. Unlike the signal argument list
passed to a condition handler, no PC or PSL is present.

Before the exception is signaled, the stack frames are unwound back to the
original exception. You should be careful when causing a new signal that a loop
of faults is not inadvertently generated. For example, the condition handler that
called LIBSDECODE_FAULT will usually be called for the second signal. If the
handler does not analyze the second signal as such, it may cycle through the
identical path as for the first signal.

To resignal the current exception, have the user action routine return a value of
SS$_RESIGNAL instead of calling the signal routine (unless you want previously
called condition handlers to be called again).

Condition Values Returned

SS$_RESIGNAL Resignal condition to next handler. The exception
described by signal-arguments was not an
instruction fault handled by LIB§DECODE_
FAULT. If LIB$DECODE_FAULT can process the
fault, it does not return to its caller.

Condition Value Signaled

Example

LIB-118

LIB$_INVARG Invalid argument to Run-Time Library. The
instruction definition contained more than 16
operands or an operand definition contained an
invalid data type or access code. This message
is signaled after the stack frames have been
unwound so that it appears to have been signaled
from a routine that was called by the instruction
that faulted.

The following Fortran example implements a simple recovery scheme for floating
underflow and overflow faults, replacing the result of the instruction with the
correctly signed, smallest possible value for underflows or largest possible value
for overflows.

LIBS Routines
LIBSDECODE_FAULT

+

Example condition handler and user-action routine using
LIBSDECODE FAULT. This example demonstrates the use of
most of the features of LIBSDECODE FAULT. Its purpose

is to handle floating underflow and overflow faults,
replacing the result of the instruction with the correctly
signed smallest possible value for underflows, or greatest
possible value for overflows.

For simplicity, faults involving the POLYx instructions are
not handled.

[eNeNeNoRoEeNeNoReNo R Xe!

Cr*k

C FIXUP RESULT is the condition handler enabled by the program
C desiring the fixup of overflows and underflows.

Ck*x%
C-
INTEGER*4 FUNCTION FIXUP_RESULT(SIGARGS, MECHARGS)
IMPLICIT NONE
INCLUDE ' ($SSDEF)’ ! §S§_ symbols
INCLUDE ' ($LIBDCFDEF)’ ! LIBSDECODE FAULT symbols
INTEGER*4 SIGARGS(1:*) ! Signal arguments list
INTEGER*4 MECHARGS(1l:*) ! Mechanism arguments list
c+
C This is a sample redefinition of MULH3 instruction.
C-
BYTE OPTABLE(8) /'FD'X,’65'X, ! MULH3 opcode
1 LIBSK_DCFOPR RH, ! Read H_floating
2 LIB$K _DCFOPR RH, ! Read H floating
3 LIBSK DCFOPR WH, ! Write H_floating
4 LIBSK _DCFOPR_END, ! End of operands
5 "FF'X, 'FF'X/ ! End of instructions
INTEGER*4 LIB$DECODE_FAULT ! External function
EXTERNAL FIXUP ACTION ! Action routine to do the fixup
Cc+
o Determine if the exception is one we want to handle.
C-
IF ((SIGARGS(2) .EQ. SS$_FLTOVF F) .OR.
1 (SIGARGS(2) .EQ. SS$_FLTUND F)) THEN
C+
o We think we can handle the fault. Call
c LIB$DECODE_FAULT and pass it the signal arguments and
C the address of our action routine and opcode table.
C-
FIXUP_RESULT = LIBSDECODE_FAULT (SIGARGS,
1 MECHARGS, %DESCR(FIXUP_ACTION),, OPTABLE)
RETURN
END IF
C+
c We can only get here if we couldn’t handle the fault.
C Resignal the exception.
C~
FIXUP_RESULT = SS$_RESIGNAL
RETURN
END

LIB-119

LIB$ Routines
LIBSDECODE_FAULT

LIB-120

C+
C User action routine to handle the fault.
c-
INTEGER*4 FUNCTION FIXUP ACTION (OPCODE,INSTR PC,PSL,
1 REGISTERS,OP_COUNT,
2 OP_TYPES,READ_OPS,
3 WRITE_OPS,SIGARGS,
4 SIGNAL ROUT,CONTEXT,
5 USER_ARG,ORIG_REGS)
IMPLICIT NONE
INCLUDE ' ($SSDEF)’ | 58$ definitions
INCLUDE ' ($PSLDEF)’ ! PSL§ definitions
INCLUDE ' ($LIBDCFDEF)’ ! LIBSDECODE_FAULT
! definitions
INTEGER*4 OPCODE ! Instruction opcode
INTEGER*4 INSTR PC ! PC of this instruction
INTEGER*4 PSL ! Processor status
! longword
INTEGER*4 REGISTERS(0:15) ! RO-R15 contents
INTEGER*4 OP_COUNT ! Number of operands
INTEGER*4 OP TYPES(1:*) ! Types of operands
INTEGER*4 READ OPS(1:*) ! Addresses of read operands
INTEGER*4 WRITE OPS(1:%*) ! Addresses of write operands
INTEGER*4 SIGARGS(1:*) ! Signal argument list
INTEGER*4 SIGNAL ROUT ! signal routine address
INTEGER*4 CONTEXT ! Signal routine context
INTEGER*4 USER_ARG ! User argument value
INTEGER*4 ORIG_REGS(0:15) ! Original registers
C+
C Declare and initialize table of class codes for each of the
C "real" opcodes. We’ll index into this by the first byte of
C one-byte opcodes, the second byte of two-byte opcodes. The
C class codes will be used in a computed GOTO (CASE). The
C codes are:
C 0 - Unsupported
C 1 - ADD
c 2 - SUB
c 3 - MUL,DIV
C 4 - ACB
c 5 - CVT
C 6 - EMOD
C
C The class mainly determines how we compute the sign of the
C result, except for ACB.
c_ .
BYTE INST CLASS TABLE(0:255)
DATA INST CLASS TABLE /
1 48%0, ! 00-2F
2 0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0, ! 30-3F
3 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 40-4F
4 0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0, ! 50-5F
5 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 60-6F
6 0,0,0,0,6,0,5,0,0,0,0,0,0,0,0,0, ! 70-7F
7 112*0, ! 80-EF
8 0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0/ ! FO-FF
C+

C Table of operand sizes in 8-bit bytes, indexed by the
C datatype code contained in the OP_TYPES array. Only floating

C types matter.
C-

BYTE OP_SIZES(9) /0,0,0,0,0,4,8,8,16/

INTEGER*4
INTEGER*4

LIBSEXTV
RESULT NEGATIVE

LIBS Routines
LIBSDECODE_FAULT

External function
-1 if result negative,
0 if positive

INTEGER*4 SIGN1,SIGN2,SIGN3 Signs of operands

INTEGER*4 INST BYTE Current opcode byte

INTEGER*4 INST CLASS Class of imstruction
from table

INTEGER*4 OP_DTYPE Datatype of operand

INTEGER*4 OP_SIZE Size of operand in

8-bit bytes

Position of result

in WRITE OPS array

TRUE if SS§_FLTOVF F

Function which

compares operands

First byte of G,H instructions

Smallest F_floating

INTEGER*4 RESULT OP

LOGICAL*4
LOGICAL*4

OVERFLOW
SMALLER

G 4 s ss tm s b b= tem G S 4 b= o= o o

PARAMETER ESCD = 'QFD'X

INTEGER*2 SMALL F(2) !
DATA SMALL F /'0080'X,0/
INTEGER*2 SMALL D(4) !
DATA SMALL D /'0080'X,0,0,0/
INTEGER*2 SMALL G(4) !

DATA SMALL G /’0010'X,0,0,0/

INTEGER*2 SMALL H(8) ! smallest H floating

DATA SMALL H /’0001'%,0,0,0,0,0,0,0/

INTEGER*2 BIGGEST(8) ! Biggest value (all datatypes)
DATA BIGGEST /'7FFF'X,7*'FFFF'X/

INTEGER*4 SIGNAL ARRAY(2)

Smallest D_floating

Smallest G_floating

! Array for signalling new
! exception

-+

NOTE: Because the operands arrays contain the locations of
the operands, rather than the operands themselves,
we must call a routine using the %VAL function to
"fool" the called routine into considering the
contents of an operands array element as the address
of an item. This would not be necessary in a
language that understood the concept of pointer

variables, such as PASCAL.

a0

C If FPD is set in the PSL, signal SS$_ROPRAND (reserved operand). In
C reality this shouldn’t happen since none of the instructions we
C handle can set FPD, but do it as an example.

C-
IF (BTEST(PSL,PSL$V_FPD)) THEN
SIGNAL ARRAY(1l) =1 ! Count of signal arguments
SIGNAL ARRAY(2) = SS$_ROPRAND ! Error status value
CALL SIGNAL ROUT (
1 1, ! Fault flag - signal as fault
2 SIGNAL ARRAY, ! Signal arguments array
3 CONTEXT) ! Context as passed to us
! Call will never return
END IF
Cc+

C Set OVERFLOW according to the exception type. We assume that
C the only alternatives are §S§_FLTOVF F and SS$_FLTUND F.
Cc- .

OVERFLOW = (SIGARGS(2) .EQ. SS$ FLIOVF F)

LIB—-121

LIB$ Routines
LIBSDECODE_FAULT

c+

C Determine the datatype of the instruction by that of its
C second operand, since that is always the type of the

C destination.
C

~ OP_DTYPE = IBITS(OP TYPES(2),LIB$V DCFTYP,LIB$S DCFTYP)

c+
C Get the size of the datatype in words.
C-
OP_SIZE = OP_SIZES (OP_DTYPE)
C+

C Determine the class of instruction and dispatch to the
C appropriate routine.

INST BYTE = IBITS{OPCODE,0,8) ! Get first byte

IF (INST BYTE .EQ. ESCD) INST BYTE = IBITS(OPCODE,S8,8)
INST CLASS = INST CLASS TABLE(INST_ BYTE)

GO TO (1000,2000,3000,4000,5000,6000),INST CLASS

If we get here, the instruction’s entry in the

INST CLASS_TABLE is zero. This might happen if the instruction was
a POLYx, or was some other unsupported instruction. Resignal the
original exception.

aQaaaaaan

FIXUP_ACTION = SS$_RESIGNAL ! Resignal condition to next handler
RETURN ! Return to LIB$DECODE FAULT

1000 - ADDF2, ADDF3, ADDD2, ADDD3, ADDG2, ADDG3, ADDH2, ADDH3
Result’s sign is the same as that of the first operand,

unless this is an underflow, in which case the magnitudes of
the values may change the sign.

eNoEoRo oo Ne!

1000 RESULT NEGATIVE = LIBSEXTV (15,1,%VAL(READ OPS(1)))
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,3VAL(READ OPS(1)),
$VAL (READ OPS(2))))
2 RESULT NEGATIVE = .NOT. RESULT NEGATIVE

END IF

GO TO 9000
c+ .
C 2000 - SUBF2, SUBF3, SUBD2, SUBD3, SUBG2, SUBG3, SUBH2, SUBH3
c
C Result’s sign is the opposite of that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
C-

2000 RESULT NEGATIVE = .NOT. LIB$EXTV (15,1,%VAL(READ OPS(1)))
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP_SIZE,SVAL(READ OPS(1)),

1 $VAL(READ O0PS(2))))

2 RESULT NEGATIVE = .NOT. RESULT NEGATIVE
END IF

GO TO 9000

LIB-122

LIB$ Routines
LIBSDECODE_FAULT

C+

Cc 3000 - MULF2, MULF3, MULD2, MULD3, MULG2, MULG3, MULH2, MULH3,
C DIVF2, DIVF3, DIVD2, DIVD3, DIVG2, DIVG3, DIVH2, DIVH3,
C

C 1If the signs of the first two operands are the same, then the
C result’s sign is positive, if they are not it is negative.
C-

3000 SIGNl = LIBSEXTV (15,1, $VAL(READ OPS(1))
SIGN2 = LIBSEXTV (15,1,3VAL(READ _OPS(2))
RESULT NEGATIVE = SIGN1 .XOR. SIGN2

GOTO 9000

)
)

+

4000 - ACBF, ACBD, ACBG, ACBH

The result’s sign is the same as that of the second operand
(addend), unless this is underflow, in which case the
magnitudes of the addend and index may change the sign.

We must also determine if the branch is to be taken.

e EoNoEeNo Ko Ko Ne

4000 SIGN2 = LIBSEXTV (15,1,%VAL(READ OPS(2)))
RESULT NEGATIVE = SIGN2
IF (.NOT. OVERFLOW) THEN
IF (SMALLER(OP SIZE,%VAL(READ OPS(2)),
1 - $VAL(READ OPS(3))))
2 RESULT NEGATIVE = .NOT. RESULT NEGATIVE
END IF

+

If this is overflow, then the branch is not taken, since the
result is always going to be greater or equal in magnitude

to the limit, and will be the correct sign. If underflow,
the branch is ALMOST always taken. The only case where the
branch might not be taken is when the result is exactly

equal to the limit. For this example, we are going to ignore
this exceptional case.

eNeNeNe R Er o Kr Kol

IF (.NOT. OVERFLOW)
1 REGISTERS(15) = READ OPS(4) ! Branch destination

GO TO 9000

Cc+

C 5000 - CVTDF, CVTGF, CVTHF, CVTHD, CVTHG

C

C Result’s sign is the same as that of the first operand.

C-

5000 RESULT NEGATIVE = LIB$EXTV (15,1,%VAL(READ OPS(1)))
GO TO 9000

Cc+ .

C 6000 - EMODF, EMODD, EMODG, EMODH

C

C If the signs of the first and third operands are the same, then the
C result’s sign is positive, else it is negative.
C-

6000 SIGN1 = LIBSEXTV (15,1,3VAL(READ OPS(1)))
SIGN2 = LIBSEXTV (15,1,%VAL(READ OPS(3)))
RESULT NEGATIVE = SIGNL .XOR. SIGN2
GOTO 9000

LiB-123

LIB$ Routines
LIBSDECODE_FAULT

LiB-124

C+

C All code paths merge here to store the result value. We also
C set the PSL appropriately. First, determine which operand is
C the result.

C-

9000 RESULT OP = OP COUNT
IF (INST CLASS .EQ. 4)

1 RESULT OP = RESULT OP - 1 ! ACBx
C+
C Select result based on datatype and exception type.
C-
IF (OVERFLOW) THEN -
CALL LIB$MOVC3 (OP_SIZE,BIGGEST, $VAL(WRITE_OPS(RESULT OP)))
ELSE
GO TO (9100,9200,9300,9400), OP DTYPE-(LIB$K DCFTYP F-1)
C+
C Should never get here. Resignal original exception.
C~
FIXUP ACTION = SS$_RESIGNAL
RETURN
Cc+
C 9100 - F_floating result
C-
9100 CALL LIBSMOVC3 (OP_SIZE,SMALL F,S$VAL(WRITE OPS(RESULT OP)))
GOTO 9500
C+
C 9200 - D_floating result
C~-
9200 CALL LIB$MOVC3 (OP_SIZE,SMALL D,S$VAL(WRITE OPS(RESULT OP)))
GOTO 9500
c+
C 9300 - G_floating result
C-
9300 CALL LIBSMOVC3 (OP_SIZE,SMALL G,S$VAL(WRITE OPS(RESULT OP)))
GOTO 9500
C+
C 9400 - H_floating result
C-
9400 CALL LIBSMOVC3 (OP_SIZE,SMALL H,S$VAL(WRITE OPS(RESULT OP)))
GOTO 9500
9500 END IF
C+

C Modify the PSL to reflect the stored result. If the result was

C negative, set the N bit. Clear the V (overflow) and Z (zero) bits.
C If the instruction was an ACBx, leave the C (carry) bit unchanged,
C otherwise clear it.

Cc-
IF (RESULT NEGATIVE) THEN
PSL = IBSET (PSL,PSL$V _N) ! Set N bit
ELSE

C+
c
C-

C+

C~

C+

LIB$ Routines
LIBSDECODE_FAULT

PSL = IBCLR (PSL,PSL$V_N) ! Clear N bit
END IF
PSL = IBCLR (PSL,PSL$V V) ! Clear V bit
PSL = IBCLR (PSL,PSL$V Z) ! Clear Z bit
IF (INST CLASS .NE. 4)
1 PSL = IBCLR (PSL,PSL§V C) ! Clear C bit if not ACBx

Set the sign of result.

IF (RESULT NEGATIVE)
1 CALL LIBSINSV (1,15,1,%VAL(WRITE_OPS(RESULT OP)))

Fixup is complete. Return to LIBSDECODE FAULT.

FIXUP_ACTION = SS$_CONTINUE
RETURN
END

C Function which compares two floating values. It returns .TRUE. if
C the first argument is smaller in magnitude than the second.

C-

LOGICAL*4 FUNCTION SMALLER(NBYTES,VALl,VAL2)

INTEGER*4 NBYTES ! Number of bytes in values
INTEGER*2 VAL1(*),VAL2(*) ! Floating values to compare
INTEGER*4 WORDA,WORDB)

SMALLER = .TRUE. ! Initially return true

Zero extend to a longword for unsigned compares.
Compare first word without sign bit.

WORDA = IBCLR(ZEXT(VAL1(1)),15)
WORDB = IBCLR(ZEXT(VAL2(1)),15)
IF (WORDA .LT. WORDB) RETURN

DO I=2,NBYTES/2

WORDA = ZEXT(VAL1(I))

WORDB = ZEXT(VAL2(I))

IF (WORDA .LT. WORDB) RETURN
END DO

SMALLER = .FALSE. ! VALl not smaller than VAL2
RETURN
END

LIB-125

LIB$ Routines
LIBSDEC_OVER

LIBSDEC OVER
Enable or Disable Decimal Overflow Detection

Format

Returns

Argument

Description

LIB-126

The Enable or Disable Decimal Overflow Detection routine enables or disables
decimal overflow detection for the calling routine activation. The previous decimal
overflow setting is returned.}

This routine is available on OpenVMS Alpha systems in translated form and is
applicable to translated VAX images only. ¢

LIBSDEC_OVER new-setting

OpenVMS usage: longword_unsigned

type: longword integer (unsigned)
access: write only
mechanism: by value

The old decimal overflow enable setting (the previous contents of SF$W_
PSW[PSW$V_DV] in the caller’s frame).

new-setting

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New decimal overflow enable setting. The new-setting argument is the address
of an unsigned longword that contains the new decimal overflow enable setting.
Bit 0 set to 1 means enable; bit 0 set to 0 means disable.

The caller’s stack frame is modified by this routine.

A call to LIB$DEC_OVER affects only the current routine activation and does not
affect any of its callers or any routines that it may call. However, the setting does
remain in effect for any routines that are subsequently entered through a JSB
entry point.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Example

LIBS$ Routines
LIB$DEC_OVER

DECOVF: ROUTINE OPTIONS (MAIN);

DECLARE LIBSDEC OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
- /* enable/disable
/* setting */
RETURNS (FIXED BINARY (31)); /* 01d setting %/

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;
DECLARE RESULT FIXED BINARY (31);
DECLARE (A,B) FIXED DECIMAL (4,2);

ON FIXEDOVERFLOW PUT SKIP LIST ('Overflow’);

RESULT = LIBSDEC OVER (DISABLE); /* Disable recognition of decimal
- /* overflow in this block */
A = 99.99;
B=2+2;
PUT SKIP LIST ('In MAIN');
BEGIN;
B=A+ 2;
PUT LIST ('In BEGIN block’);
CALL Q;
Q: ROUTINE;
B=A+2;
PUT LIST ('In Q');
END 0Q;

END /* Begin */;
END DECOVF;

This PL/I program shows how to use LIB§DEC_OVER to enable or disable the
detection of decimal overflow. Note that in PL/I, disabling decimal overflow
using this routine causes the condition to be disabled only in the current block;
descendent blocks will enable the condition unless this routine is called in each
block.

LIB-127

LIBS$ Routines
LIBSDELETE_FILE

LIB$DELETE_FILE
Delete One or More Files

Format

Returns

Arguments

LIB-128

The Delete One or More Files routine deletes one or more files. The specification
of the files to be deleted may include wildcards.

LIB$DELETE_FILE is similar in function to the DCL command DELETE,

LIB$DELETE_FILE filespec [,default-filespec] [,related-filespec] [user-success-procedure]
[,user-error-procedure] [,user-confirm-procedure] [,user-specified-argument]
[,resultant-name] [file-scan-context]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

filespec

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

String containing the OpenVMS Record Management Services (RMS) file
specification of the files to be deleted. The filespec argument is the address

of a descriptor pointing to the file specification. If the specification includes
wildcards, each file that matches the specification is deleted. The string must not
contain more than 255 characters. Any string class is supported.

default-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Default file specification of the files to be deleted. The default-filespec argument
is the address of a descriptor pointing to the default file specification. This is an
optional argument; if the argument is omitted, the default is the null string. Any
string class is supported.

See the OpenVMS Record Management Services Reference Manual for information
about default file specifications.

related-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Related file specification of the files to be deleted. The related-filespec argument
is the address of a descriptor pointing to the related file specification. Any string

LIB$ Routines
LIBSDELETE_FILE

class is supported. This is an optional argument; if the argument is omitted, the
default is the null string.

Input file parsing is used. See the OpenVMS Record Management Services
Reference Manual for information on related file specifications and input file
parsing.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed.

user-success-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User—sﬁpplied success routine that LIB§DELETE_FILE calls after it successfully
deletes a file.

The success routine can be used to display a log of the files that were deleted. For
more information on the success routine, look under Call Format for a Success
Routine in the Description section.

user-error-procedure

OpenVMS usage: procedure

type: procedure value

access: function call (before return)
mechanism: by value

User-supplied error routine that LIBSDELETE_FILE calls when it detects an
error.

The error routine returns a success/fail value that LIBSDELETE_FILE uses to
determine if more files should be processed. For more information on the error
routine, see Call Format for an Error Routine in the Description section.

user-confirm-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIB§DELETE_FILE calls before each file is
deleted. The value returned by the confirm routine determines whether or not
the file will be deleted. The confirm routine can be used to select specific files for
deletion based on criteria such as expiration date, size, and so on.

For more information about the confirm routine, see Call Format for a Confirm
Routine in the Description section.

user-specified-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

User-supplied argument that LIB$bELETE_FILE passes to the error, success,
and confirm routines each time they are called. Whatever mechanism is used to

LIB-129

LIB$ Routines
LIB$DELETE_FILE

Description

LIB-130

pass user-specified-argument to LIBSDELETE_FILE is also used to pass it to
the routines. This is an optional argument; if the argument is omitted, zero is
passed by value.

resultant-name

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB§DELETE_FILE writes the RMS resultant file specification
of the last file processed. The resultant-name argument is the address of a
descriptor pointing to the resultant name.

If present, resultant-name is used to store the file specification passed to the
user-supplied routines, instead of a default class S, type T string. Therefore, this
argument should be specified when the user-supplied routines are used and those
routines require a descriptor type other than class S, type T. Any string class is
supported.

If you specify one or more of the user-supplied action routines, the descriptor used
to pass resultant-name must be: ‘

e Of the same class as the descriptor required by the filespec argument of
any action routines. For example, VAX Ada requires a class SB descriptor for
string arguments to Ada routines but will uge a class A descriptor by default
when calling external routines. Refer to your language manual to determine
the proper descriptor class to use.

¢ Of the same form as the descriptor required by the filespec argument of all
action routines. For example, if the filespec argument of an action routines
uses a 64-bit descriptor then the resultant-name argument must also use a
64-bit descriptor. ¢

file-scan-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context for deleting a list of file specifications. The file-scan-context argument
is the address of a longword containing the context value.

You must initialize the file scan context to zero before the first of a series of calls
to LIB$DELETE_FILE. LIB$FILE_SCAN uses this context to retain the file
context for multiple input files. You must specify this context only when you are
dealing with multiple input files, as the DCL command DELETE does. You may
deallocate the context allocated by LIB$FILE_SCAN by calling LIB$FILE_SCAN_
END after all calls to LIB$DELETE_FILE have been completed.

This Description section is divided into three parts:
e (Call Format for a Success Routine
e (Call Format for an Error Routine

e (Call Format for a Confirm Routine

LIB$ Routines
LIBSDELETE_FILE

Call Format for a Success Routine

The success routine is called only if the user-success-procedure argument was
specified in the LIB$DELETE_FILE argument list.

The calling format of a success routine is as follows:

user-success-procedure filespec [,user-specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Record Management Services (RMS) resultant file specification of the file being
deleted. The filespec argument is the address of a descriptor pointing to the file
specification. If the resultant-name argument was specified, it is used to pass
the string to the success routine. Otherwise, a class S, type T string is passed.
Any string class is supported.

The descriptor specified by each of the action routines for the filespec argument
and the descriptor specified by the LIB§SDELETE_FILE resultant-name
argument, if any, must be of the same form. They must all be 32-bit descriptors
or all 64-bit descriptors. If you do not specify a resultant-name argument, then
the filespec argument must use a 32-bit descriptor. ¢

user-specified-argument
OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIBSDELETE_FILE to the success
routine. The same passing mechanism that was used to pass user-specified-
argument to LIB$DELETE_FILE is used by LIBSDELETE_FILE to pass
user-specified-argument to the success routine. This is an optional argument.
Call Format for an Error Routine

The error routine is called only if the user-error-procedure argument was
specified in the LIBSDELETE_FILE argument list.

The calling format of an error routine is as follows:

user-error-procedure filespec ,rms-sts ,rms-stv ,error-source [,user-specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the RMS resultant file specification of the file being deleted. If
resultant-name was specified, it is used to pass the string to the error routine.
Otherwise, a class S, type T string is passed. Any string class is supported.

LIB-131

LIB$ Routines
LIB$DELETE_FILE

LIB-132

The descriptor specified by each of the action routines for the filespec argument
and the descriptor specified by the LIBSDELETE_FILE resultant-name
argument, if any, must be of the same form. They must all be 32-bit descriptors
or all 64-bit descriptors. If you specify no resultant-name argument then the
filespec argument must use a 32-bit descriptor. ¢

rms-sts

OpenVMS usage: cond_value

type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) that describes the error that occurred. The
rms-sts argument is the address of an unsigned longword that contains the
primary condition code.

rms-stv

OpenVMS usage: cond_value

type: longword (unsigned)
access: read only
mechanism: by reference

Secondary condition code (FAB$L_STV) that describes the error that occurred.
The rms-stv argument is the address of an unsigned longword that contains the
secondary condition code.

error-source

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Integer code that indicates the point at which the error was found. The error-
source argument is the address of a longword integer containing the code of the
error source.

Possi})le values for the error code are as follows:
0 Error searching for file specification

1 Error deleting file

user-specified-argument
OpenVMS usage: user_arg

type: unspecified
access: read only
mechanism: unspecified

Value passed to LIBSDELETE_FILE that is then passed to user-error-
procedure using the same passing mechanism that was used to pass it to
LIB$DELETE_FILE. This is an optional argument.

If the error routine returns a success status (bit 0 set), then LIB§DELETE_
FILE continues processing files. If a failure status (bit 0 clear) is returned, then
processing ceases immediately, and LIBSDELETE_FILE returns with the error
status.

LIB$ Routines
LIBSDELETE_FILE

If the user-error-procedure argument is not specified, LIBSDELETE_FILE
returns to its caller the most severe error status encountered while deleting

the files. If the error routine is called for an error, the success status LIB$_

ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine

The confirm routine is called only if the user-confirm-procedure argument was
specified in the call to LIBSDELETE_FILE.

The calling format of the confirm routine is as follows:

user-confirm-procedure filespec ,fab [user-specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file to be deleted. The filespec argument
is the address of a descriptor pointing to the file specification.

If resultant-name was specified, it is used to pass the string to the confirm
routine. Otherwise, a class S, type T string is passed. Any string class is
supported. : :

The descriptor specified by each of the action routines for the filespec argument
and the descriptor specified by the LIB§DELETE_FILE resultant-name
argument, if any, must be of the same form. They must all be 32-bit descriptors
or all 64-bit descriptors. If you do not specify a resultant-name argument then
the filespec argument must use a 32-bit descriptor. ¢

fab

OpenVMS usage: fab

type: unspecified
access: read only
mechanism: by reference

RMS file access block (FAB) that describes the file being deleted. Your program
may perform an RMS $OPEN on the FAB to obtain file attributes to determine
whether the file should be deleted, but it must close the file with $CLOSE before
returning to LIB§DELETE_FILE.

user-specified-argument
OpenVMS usage: user_arg

type: unspecified
access: read only
mechanism: unspecified

The value of the user-specified-argument argument that LIBSDELETE_FILE
passes to the confirm routine using the same passing mechanism that was used
to pass it to LIB$DELETE_FILE. This is an optional argument.

If confirm routine returns a success status (bit 0 set), the file is then deleted;
otherwise, the file is not deleted.

LIB-133

LIBS Routines
LIBSDELETE_FILE

Condition Values Returned

Example

LIB-134

SS$_NORMAL Routine successfully completed.

LIB$_ERRROUCAL Success, but an error routine was called. A file
+ error was encountered, but the error routine was
called to handle the condition.

LIB$_INVFILSPE Invalid file specification. Filespec or default-
filespec is longer than 255 characters.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect

number of arguments was passed to
. LIB$DELETE_FILE.

Any condition value returned by LIB§SCOPY_xxx except those condition values
specifying truncation errors.

Any condition value returned by RMS. If user-error-procedure is not specified,
this is the most severe of the RMS errors encountered while deleting the files.

PROGRAM DELETE_ EXAMPLE(INPUT, OUTPUT);

{*}
{ Declare external function LIBSDELETE FILE. Throughout this
{ example, the user-arg argument is not used.
{-}
FUNCTION LIB$DELETE_EILE(
FILESPEC: VARYING [A] OF CHAR;
DEFAULT FILESPEC: VARYING [B] OF CHAR;
REL_FILESPEC ¢ VARYING [D] OF CHAR;
$IMMED [UNBOUND] ROUTINE SUCCESS_ROUTINE
(FILESPEC : VARYING [A] OF CHAR) := %IMMED 0;
$IMMED [UNBOUND] FUNCTION ERROR_ROUTINE
(FILESPEC : VARYING [A] OF CHAR; RMS STS, RMS_STV ¢ INTEGER)
: BOOLEAN := $IMMED 0;
$IMMED [UNBOUND] FUNCTION CONFIRM ROUTINE
(FILESPEC: VARYING [A] OF CHAR): BOOLEAN := $IMMED 0;
VAR USER_ARG : [UNSAFE] INTEGER := $IMMED 0;
VAR RESULT NAME : VARYING [C] OF CHAR := $IMMED 0
) : INTEGER; EXTERN;

{+}
{ Declare a routine which will display the names of the files
{ as they are deleted.

{-}
ROUTINE LOG_ROUTINE(FILESPEC : VARYING [A] OF CHAR);
BEGIN .
WRITELN('File ', FILESPEC, ' successfully deleted’);
END;
{+}

{ Declare a routine which will notify the user that an error
{ occurred.

{-}

LIB$ Routines
LIBS$DELETE_FILE

FUNCTION ERR_ROUTINE(FILESPEC: VARYING [A] OF CHAR;
RMS STS, RMS STV: INTEGER): BOOLEAN;
BEGIN -
WRITELN('Delete of ', FILESPEC, ' failed ', HEX(RMS STS));
ERR_ROUTINE := TRUE;
END;

{+}
{ Declare a routine which checks to see if the file should be
{ deleted. If the filename contains the string 'XYZz’, then it is
{ deleted.
{-}
FUNCTION CONFIRM ROUTINE(FILESPEC: VARYING [A] OF CHAR): BOOLEAN;
BEGIN
IF INDEX(FILESPEC, 'XYZ') <> 0
THEN
CONFIRM ROUTINE := TRUE
ELSE
CONFIRM ROUTINE := FALSE;
END;

{+}

{ The main program begins here.

{-}

VAR
FILES TO DELETE, RESULTANT NAME : VARYING [255] OF CHAR;
RET_STATUS : INTEGER;

BEGIN
WRITE ('Files to delete: ’);
READLN(FILES_TO DELETE);
RET STATUS := LIB$DELETE_FILE(
FILES_TO_DELETE, ‘*;”, '’, LOG_ROUTINE, ERR ROUTINE,
CONFIRM ROUTINE, ,RESULTANT NAME);
IF NOT ODD(RET_STATUS)
THEN
WRITELN('Delete failed. The error was ', HEX(RET STATUS));
END. :

This Pascal program prompts the user for file specifications of files to be deleted.
Of those, it deletes only files that contain the string XYZ somewhere in their
resultant file specification. The names of deleted files are displayed.

LIB-135

LIB$ Routines
LI B$DE_LETE_LOGICAL

LIBSDELETE_LOGICAL
Delete Logical Name

Format

Returns

Arguments

Description

LIB-136

The Delete Logical Name routine requests the calling process’ command
language interpreter (CLI) to delete a supervisor-mode process logical name.
LIB$DELETE_LOGICAL provides the same function as the DCL command
DEASSIGN.

LIBSDELETE_LOGICAL logical-name [,table-name]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
logical-name

OpenVMS usage: logical_name

type: character string
access: read only
mechanism: by descriptor

Logical name to be deleted. The logical-name argument is the address of a
descriptor pointing to this logical name string. The maximum length of a logical
name is 255 characters.

table-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table from which the logical name is to be deleted. The table-name
argument is the address of a descriptor pointing to this name string. This is

an optional argument. If the argument is omitted, the LNM$PROCESS table is
used.

LIB$DELETE_LOGICAL requests the calling process’s command language
interpreter (CLI) to delete a supervisor-mode process logical name. If the optional
table-name argument is defined, the logical name is deleted from that table.
Otherwise, the logical name is deleted from the LNM$PROCESS table.

Unlike the system service $DELLOG and $DELLNM, LIB§DELETE_LOGICAL
does not require the caller to be executing in supervisor mode to delete a
supervisor-mode logical name.

This routine is supported for use with the DCL and MCR command language
interpreters.

LIB$ Routines
LIB$DELETE_LOGICAL

This routine does not support the DCL DEFINE and DEASSIGN commands’
special side effect of opening and closing a process-permanent file if the logical
name “SYS$OUTPUT” is specified.

If an image is run directly as a subprocess or as a detached process, there is no
CLI present to perform this function. In that case, the error status LIB$_NOCLI

is returned.

See the OpenVMS DCL Dictionary for a description of the DCL command

DEASSIGN.

Condition Values Returned
SS$_ACCVIO
SS$_IVLOGNAM
SS$_IVLOGTAB
SS$_NOLOGNAM

SS$_NOPRIV
SS$_NORMAL
SS$_TOOMANYLNAM
LIB$_INVSTRDES

LIB$_NOCLI

LIB$_UNECLIERR

Access violation. The logical name could not be
read.

Invalid logical name. The logical name contained
illegal characters or more than 255 characters.
Invalid logical name table

No logical name match. The logical name was
not defined as a supervisor-mode process logical
name.

No privilege for attempted operation.

Routine successfully completed.

Logical name translation exceeded allowed depth.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

No CLI present to perform function. The calling
process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLL

Unexpected CLI error. The CLI returned an
error status that was not recognized. This error

may be caused by use of a nonstandard CLI. If

this error occurs while using the DCL command
language interpreter, please report the problem
to Digital by means of a Software Performance
Report (SPR).

LIB-137

LIB$ Routines
LIBSDELETE_SYMBOL

LIBSDELETE_SYMBOL
Delete CLI Symbol

Format

Returns

Arguments

LIB-138

The Delete CLI Symbol routine requests the calling process’s command language
interpreter (CLI) to delete an existing CLI symbol.

LIBSDELETE_SYMBOL symbol [{able-type-indicator]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

symbol

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be deleted by LIBSDELETE_SYMBOL. The symbol
argument is the address of a descriptor pointing to this symbol string. The
symbol name is converted to uppercase, and trailing blanks are removed before
use.

Symbol must begin with a letter, a digit, a dollar sign ($), a hyphen (-), or an
underscore (_). The maximum length of symbol is 255 characters.

table-type-indicator
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table that contains the symbol to be deleted. The table-type-
indicator argument is the address of a signed longword integer that is this table
indicator.

If table-type-indicator is omitted, the local symbol table is used. The following
are possible values for the table-type-indicator argument:

Symbolic Name Value Table Used

LIB$K_CLI_LOCAL_SYM 1 Local symbol table

LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

Description

LIB$ Routines
LIBSDELETE_SYMBOL

LIB$DELETE_SYMBOL is supported for use with the DCL CLI. The error status
LIB$_NOCLI is returned if LIBSDELETE_SYMBOL is used with the MCR CLI
or called from an image run directly as a subprocess or as a detached process.

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in Digital-
supplied symbol libraries (macro or module name $LIBCLIDEF) and as global

symbols.

Condition Values Returned

SS$_NORMAL
LIB$_FATERRLIB

LIB$_INSVIRMEM
LIB$_INVARG
LIB$_INVSTRDES

LIB$_INVSYMNAM

LIB$_NOCLI

LIB$_NOSUCHSYM
LIB$_UNECLIERR

Routine successfully completed.

Fatal internal error. An internal consistency
check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital.

Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.

Invalid argument. The value of table-type-
indicator was invalid.

Invalid string descriptor. A string descriptor has
an invalid value in its CLASS field.

Invalid symbol name. The symbol name
contained more than 255 characters or did
not begin with a letter, a digit, a dollar sign, a
hyphen, or an underscore.

No CLI present to perform the function. The
calling process did not have a CLI to perform the
function, or the CLI did not support the request
type. Note that an image run as a subprocess or
detached process does not have a CLI.

No such symbol. The symbol was not defined.

Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL command
language interpreter, please report the problem
to Digital by means of a Software Performance
Report (SPR).

LIB-139

LIB$ Routines
LIBSDELETE_VM_ZONE

LIBSDELETE_VM_ZONE
Delete Virtual Memory Zone

Format

Returns

Argument

Description

LIB-140

The Delete Virtual Memory Zone routine deletes a zone from the 32-bit virtual
address space and returns all pages on VAX systems or pagelets on Alpha systems
owned by the zone to the processwide 32-bit page pool.t :

LIB$DELETE_VM_ZONE zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the
identifier of a zone created by a previous call to LIBSCREATE_VM_ZONE or
LIB$CREATE_USER_VM_ZONE.

LIB$DELETE_VM_ZONE deletes a zone and returns all pages on VAX systems
or pagelets on Alpha systems owned by the zone to the processwide pool managed
by LIB$GET_VM_PAGE. The pages or pagelets are then available for reallocation
by later calls to LIB$GET_VM or LIB$GET _VM_PAGE.

It takes less time to free memory in a single operation by calling LIBSDELETE_
VM_ZONE than to individually account for and free every block of memory that
was allocated by calling LIBSGET_VM.

You must ensure that your program is no longer using any of the memory in the
zone before you call LIB§DELETE_VM_ZONE. Your program must not do any
further operations on the zone after you call LIBSDELETE_VM_ZONE.

If you specified deallocation filling when you created the zone, LIB§DELETE_
VM_ZONE will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIBSCREATE_USER_VM_
ZONE routine, then you must have an appropriate action routine for the delete
operation. That is, in your call to LIBSCREATE_USER_VM_ZONE, you must
have specified a user-delete-procedure.

T No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB$ Routines
LIBSDELETE_VM_ZONE

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_BADBLOADR An invalid zone-id argument or a corrupted
zone.

LIB-141

LIBS Routines
LIBSDELETE_VM_ZONE_64 (Alpha Only)

LIBSDELETE_VM_ZONE_64 (Alpha Only)
Delete Virtual Memory Zone

Format

Returns

Argument

Description

LIB-142

The Delete Virtual Memory Zone routine deletes a zone from the 64-bit virtual
address space and returns all Alpha system pagelets owned by the zone to the
processwide 64-bit page pool.

LIBSDELETE_VM_ZONE_64 zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a quadword that contains the
identifier of a zone created by a previous call to LIBSCREATE_VM_ZONE_64 or
LIB$CREATE_USER_VM_ZONE_64.

LIB$DELETE_VM_ZONE_64 deletes a zone and returns all pagelets on Alpha
systems owned by the zone to the processwide pool managed by LIB$GET_
VM_PAGE_64. The pagelets are then available for reallocation by later calls to
LIB$GET_VM_64 or LIB$GET_VM_PAGE_64.

It takes less time to free memory in a single operation by calling LIBSDELETE
VM_ZONE_64 than to individually account for and free every block of memory
that was allocated by calling LIBSGET_VM_64.

You must ensure that your program is no longer using any of the memory in the
zone before you call LIBSDELETE_VM_ZONE_64. Your program must not do
any further operations on the zone after you call LIBSDELETE_VM_ZONE_64.

If you specified deallocation filling when you created the zone, LIBSDELETE_
VM_ZONE_64 will fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIBSCREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the
delete operation. That is, in your call to LIB§CREATE_USER_VM_ZONE_64,
you must have specified a user-delete-procedure.

LIBS Routines
LIBSDELETE_VM_ZONE_64 (Alpha Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_BADBLOADR An invalid zone-id argument or a corrupted
zone.

LIB-143

LIB$ Routines
LIBSDIGIT_SEP

LIB$DIGIT_SEP
Get Digit Separator Symbol

Format

Returns

Arguments

Description

LIB-144

The Get Digit Separator Symbol routine returns the system’s digit separator
symbol.

LIB$DIGIT_SEP digit-separator-string [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: " write only
mechanism: by value

digit-separator-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Digit separator symbol returned by LIB§DIGIT_SEP. The digit-separator-string
argument is the address of a descriptor pointing to the digit separator.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into digit-separator-string, not counting padding
in the case of a fixed-length string. The resultant-length argument is the
address of an unsigned word containing the lengthof the digit separator symbol.
If the input string is truncated to the size specified in the digit-separator-string
descriptor, resultant-length is set to this size. Therefore, resultant-length can
always be used by the calling program to access a valid substring of digit-
separator-string.

LIB$DIGIT_SEP returns the symbol that is used to separate groups of three
digits in the integer part of a number, for readability. A common digit separator
is a comma (,) as in 3,006,854.

' LIB$DIGIT_SEP attempts to translate the logical name SYS$DIGIT_SEP as

a process, group, or system logical name. If the translation fails, LIB§DIGIT_
SEP returns a comma (,), the United States digit separator. If the translation
succeeds, the text produced is returned. Thus, a system manager can define
SYS$DIGIT_SEP as a systemwide logical name to provide a default for all users,
and an individual user with a special need can define SYS$DIGIT _SEP as a
process logical name to override the default symbol. For example, you may want
to use the European digit separator, the period (.).

LIB$ Routines
LIBSDIGIT_SEP

BASIC implicitly uses LIB$DIGIT_SEP.

Condition Values Returned

Example

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU Successfully completed, but the digit separator
string was truncated.

LIB$_FATERRLIB Fatal internal error. An internal consistency

check has failed. This usually indicates an
internal error in the Run-Time Library and
should be reported to Digital.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has
exceeded the image quota for virtual memory.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has

an invalid value in its CLASS field.

PROGRAM DIGIT SEP(INPUT, OUTPUT);

{+}

{ This program uses LIB$DIGIT SEP to return current

{ wvalue of SYS$DIGIT_SEP.

{-}

routine LIB$SDIGIT SEP(%DESCR DIGIT SEPSTR : VARYING [A]
OF CHAR; 3%REF OUT LEN : INTEGER); EXTERN;

VAR
SEPARATOR : VARYING [256] OF CHAR;
LENGTH : INTEGER;

BEGIN
LIBSDIGIT SEP(SEPARATOR, LENGTH);
WRITELN('104',SEPARATOR, ‘567’ ,SEPARATOR, 934");
END.

This Pascal example demonstrates how to use LIB$DIGIT_SEP. The output
generated by this program is as follows:

104,567,934

LIB-145

LIB$ Routines
LIB$SDISABLE_CTRL

LIBS$DISABLE_CTRL
Disable CLI Interception of Control Characters

Format

Returns

Arguments

LIB-146

The Disable CLI Interception of Control Characters routine requests the calling
process’s command language interpreter (CLI) to not intercept the selected
control characters when they are entered during an interactive terminal session.
LIB$DISABLE_CTRL provides the same function as the DCL command SET
NOCONTROL.

LIBSDISABLE_CTRL disable-mask [,0ld-mask]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

disable-mask
OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating which control characters are not to be intercepted. The
disable-mask argument is the address of an unsigned longword containing this
bit mask.

Each of the 32 bits corresponds to one of the 32 possible control characters. If a
bit is set, the corresponding control character is no longer intercepted by the CLI.
Currently, only bits 20 and 25, corresponding to Ctrl/T and Ctrl/Y, are recognized.

The following mask is defined in Digital-supplied symbol libraries to specify the
value of disable-mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X 00100000 Disables Ctrl/T
LIB$M_CLI_CTRLY %X 02000000 Disables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept,
LIB$DISABLE_CTRL returns an error.

Description

LIB$ Routines
LIB$DISABLE_CTRL

old-mask

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword into which LIB§DISABLE_CTRL writes the old bit mask. The old bit
mask is of the same form as disable-mask and indicates those control characters
that were previously enabled. It may therefore be given to LIBSENABLE_CTRL
to reinstate the previous condition.

The DCL and MCR CLIs can intercept the Ctrl/Y control character. The DCL
CLI can intercept the Ctrl/T character. See the OpenVMS DCL Dictionary for
information on how the DCL CLI processes control characters.

LIB$DISABLE_CTRL is supported for use with the DCL and MCR CLIs. If an
image is run directly as a subprocess or as a detached process, there is no CLI
present to perform this function. In those cases, LIBSDISABLE_CTRL returns
the error status LIB$_NOCLI.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_INVARG Invalid argument. A bit in disable-mask was
set that did not correspond to a control character
supported by the CLI.

LIB$_NOCLI No CLI present. Either the calling process did
not have a CLI to perform the function, or the
CLI did not support the request type. Note that
an image run as a subprocess or detached process
does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
; : error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL or MCR
CLIs, please report the problem to Digital by
means of a Software Performance Report (SPR).

LIB-147

LIB$ Routines
LIB$DO_COMMAND

LIBSDO_COMMAND
Execute Command

Format

Returns

Argument

Description

LiB-148

The Execute Command routine stops program execution and directs the command
language interpreter to execute a command that you supply as the argument. If
successful, LIBSDO_COMMAND does not return control to the calling program.
Instead, LIB$DO_COMMAND begins execution of the specified command.

If you want control to return to the caller, use LIBSSPAWN instead.

LIB$DO_COMMAND command-string

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

command-string
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Text of the command that LIB$DO_COMMAND executes. The command-string
argument is the address of a descriptor pointing to the command text. The
maximum length of the command is 255 characters.

LIB$DO_COMMAND terminates your current image and then executes the
contents of command-string as a command. The command is parsed using
normal DCL rules.

LIB$DO_COMMAND is especially useful when you want to execute a CLI
command after your program has finished executing. For example, you could use
the routine to execute a SUBMIT or PRINT command to handle a file that your
program has created.

Because of the following restrictions on LIB§DO_COMMAND, you should be
careful when you incorporate it in your program:

* During the call to LIBSDO_COMMAND, the current image exits and control
cannot return to it.

* The text of the command is passed to the current command language
interpreter. Because you can define your own CLI in addition to DCL and
MCR, you must make sure that the command will be handled by the intended
CLIL

LIB$ Routines
LIBSDO_COMMAND

e If LIBSDO_COMMAND is called from an image run directly as a subprocess
or detached process, it will not execute correctly, because no CLI is associated
with a subprocess.

LIB$DO_COMMAND is supported for use with the DCL and MCR CLIs. If an
image is run directly as a subprocess or as a detached process, there is no CLI
present to perform this function. In those cases, the error status LIB$_NOCLI is
returned. Note that the command can execute an indirect file using the at sign
(@) feature of DCL.

Condition Values Returned

Example

LIB$_INVARG Invalid argument. command-string was more
than 255 characters.
LIB$_NOCLI No CLI present. The calling process did not have

a CLI to perform the function, or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status that was not recognized. This error
may be caused by use of a nonstandard CLI. If
this error occurs while using the DCL or MCR
CLlIs, please report the problem to Digital by
means of a Software Performance Report (SPR).

PROGRAM DO_COMMAND(INPUT, OUTPUT);

{+}

{ This example uses LIB$DO_COMMAND to execute
{ any DCL command that is entered by the user
{ at the prompt.

{-}

PROCEDURE LIB$DO_COMMAND(CMDTXT : VARYING [A] OF CHAR);
EXTERN;

VAR
COMMAND : VARYING [256] OF CHAR;

BEGIN

WRITELN('ENTER THE COMMAND YOU WANT TO EXECUTE: ’);
READLN (COMMAND) ;
LIBS$DO_COMMAND (COMMAND) ;

END.

This Pascal program shows how to call LIB§DO_COMMAND. An example of the
output of this program is as follows:

$ RUN DO_COMMAND
ENTER THE COMMAND YOU WANT TO EXECUTE: SHOW TIME
30-MAY-1994 14:07:28

LIB-149

LIB$ Routines

LIBSEDIV

LIB$SEDIV

Extended-Precision Divide

Format

Returns

Arguments

LIB-150

The Extended-Precision Divide routine performs extended-precision division.
LIB$EDIV makes the VAX EDIV instruction available as a callable routine.l

LIBSEDIV Iongword-integér-divisor ,quadword-integer-dividend ,longword-integer-quotient ,remainder

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

longword-integer-divisor
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Divisor. The longword-integer-divisor argument is the address of a signed
longword integer containing the divisor.

quadword-integer-dividend
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Dividend. The quadword-integer-dividend argument is the address of a signed
quadword integer containing the dividend.

longword-integer-quotient
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Quotient. The longword-integer-quotient argument is the address of a signed
longword integer containing the quotient.

remainder

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only

mechanism: by reference

Remainder. The remainder argument is the address of a signed longword
integer containing the remainder.

! On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB$ Routines
LIB$EDIV

Condition Values Returned

Example

SS$_NORMAL Normal successful operation.

SS$_INTOVF Integer overflow. The quotient is replaced by
bits 31:0 of the dividend, and the remainder is
replaced by zero.

SS$_INTDIV Integer divide by zero. The quotient is replaced
by bits 31:0 of the dividend, and the remainder is
replaced by zero.

C+
C This Fortran program demonstrates how to use LIBSEDIV.
C-

INTEGER DIVISOR,DIVIDEND(2),QUOTIENT,REMAINDER
c+

C Find the quotient and remainder of 4600387192 divided by 4096.
C Because 4600387192 is too large to store as a longword, use LIBSEDIV.
C-

DIVISOR = 4096

C+

C The dividend must be represented as a quadword. To do this use a vector
C of length 2. The first element is the low-order longword, and the second
C element is the high-order longword.

C Now, 4600387192 = ’00000000112345678'x. So,

C=

DIVIDEND(1)
DIVIDEND(2)

'12345678'X
*00000001'X

C+
C Compute the quotient and remainder of 4600387192 divided by 4096.
C-

RETURN = LIB$EDIV(DIVISOR,DIVIDEND,QUOTIENT,REMAINDER)
TYPE *,’The longword integer quotient of 4600387192/4096 is:’

TYPE *,’ ! ,QUOTIENT

TYPE *,’The longword integer remainder of 4600387192/4096 is:’
TYPE *,’ !, REMAINDER

END

This Fortran example demonstrates how to call LIBSEDIV. The output generated
by this program is as follows:

The longword integer qhotient of 4600387192/4096 is:
1123141

The longword integer remainder of 4600387192/4096 is:
' 1656

LIB-151

LIB$ Routines

LIBSEMODD

LIBSEMODD
Extended Multiply and Integerize Routines for D-Floating-Point

Values

Format

Returns

Arguments

LIB-152

The Extended Multiply and Integerize routine (D-Floating-Point Values) allows
higher level language users to perform accurate range reduction of D-floating
arguments.

D-floating-point values are not supported in full precision in native OpenVMS
Alpha programs. They are precise to 56 bits on VAX systems, 53 or 56 bits in
translated VAX images, and 53 bits in native OpenVMS Alpha programs. ¢

LIBSEMODD floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a D-floating number.

multiplier-extension
OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned byte.

floating-point-multiplicand
OpenVMS usage: floating_point

type: D_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a D-floating
number.

Description

LIB$ Routines
LIBSEMODD

integer-portion
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point

type: D_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
D-floating number.

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted, and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are

Routine X Bits y
LIB$EMODD 8 7:0 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero (0).
SS$_ROPRAND Reserved operand. The integer and fraction

operands are unaffected.

LIB-153

LIB$ Routines

LIBSEMODF
LIBSEMODF
Extended Multiply and Integerize Routines for F-Floating-Point
Values
The Extended Multiply and Integerize routine (F-Floating-Point Values) allows
higher-level-language users to perform accurate range reduction of F-floating
arguments.
Format
LIBSEMODF floating-point-multiplier ,multiplier-extension floating-point-multiplicand ,integer-portion
Jfractional-portion
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

LIB-154

floating-point-multiplier
OpenVMS usage: floating_point

type: F _floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an
F-floating number containing the number.

multiplier-extension
OpenVMS usage: byte_unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is the address of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand
OpenVMS usage: floating_point

type: F floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an F-floating
number.

integer-portion
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Description

LIB$ Routines
LIBSEMODF

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point

type: F_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the
address of an F-floating number containing the fractional portion of the result.

LIB$EMODF allows higher level language users to perform accurate range
reduction of F-floating arguments.

The floating-point multiplier-extension operand (second operand) is
concatenated with the floating-point-multiplier (first operand) to gain x
additional low-order fraction bits. The multiplicand is multiplied by the extended
multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y
LIB$EMODF 8 7:0 32

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.
SS$_ROPRAND Reserved operand. The integer and fraction

operands are unaffected.

LIB-155

LIB$ Routines

LIBSEMODG
LIBSEMODG
Extended Multiply and Integerize Routines for G-Floating-Point
Values
The Extended Multiply and Integerize routine (G-Floating-Point Values) allows
higher-level-language users to perform accurate range reduction of G-floating
arguments.
Format
LIBSEMODG floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
Jfractional-portion
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

LIB-156

floating-point-multiplier
OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a G-floating number.

multiplier-extension
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned word.

floating-point-multiplicand
OpenVMS usage: floating_point

type: G_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a G-floating
number.

integer-portion
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

LIB$ Routines
LIB$EMODG

fractional-portion
OpenVMS usage: floating_point -

type: G_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a
G-floating number.

Description

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits. -

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y
LIB$EMODG 11 15:5 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero.
SS$_ROPRAND Reserved operand. The integer and fraction

operands are unaffected.

LIB-157

LIB$ Routines

LIBSEMODH

LIBSEMODH
Extended Multiply and Integerize Routines for H-Floating-Point

Values

Format

Returns

Arguments

LIB-158

On OpenVMS VAX systems, the Extended Multiply and Integerize routine (H-
Floating-Point Values) allows higher-level-language users to perform accurate
range reduction of H-floating arguments.

This routine is not available to native OpenVMS Alpha programs but is available
to translated VAX images. ¢

LIBSEMODH floating-point-multiplier ,multiplier-extension ,floating-point-multiplicand ,integer-portion
fractional-portion

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

floating-point-multiplier
OpenVMS usage: floating_point

type: H_{floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is an H-floating
number.

multiplier-extension
OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument
is an unsigned word.

floating-point-multiplicand
OpenVMS usage: floating_point

type: H_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an H-floating
number.

Description

LIB$ Routines
LIBSEMODH

integer-portion
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address
of a signed longword integer containing the integer portion of the result.

fractional-portion
OpenVMS usage: floating_point

type: H_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is an
H-floating number.

The floating-point multiplier extension operand (second operand) is concatenated
with the floating-point multiplier (first operand) to gain x additional low-order
fraction bits. The multiplicand is multiplied by the extended multiplier. After
multiplication, the integer portion is extracted and a y-bit floating-point number
is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a
fraction field of y bits. With respect to the result as the sum of an integer and
fraction of the same sign, the integer operand is replaced by the integer part of
the result and the fraction operand is replaced by the rounded fractional part of
the result.

The values of x and y are as follows:

Routine X Bits y
LIB$EMODH 15 15:1 128

Condition Values Returned

SS$_NORMAL Routine successfully completed.

SS$_INTOVF Integer overflow. The integer operand is replaced
by the low-order bits of the true result. Floating
overflow is indicated by SS$_INTOVF also.

SS$_FLTUND Floating underflow. The integer and fraction
operands are replaced by zero. :
SS$_ROPRAND Reserved operand. The integer and fraction

operands are unaffected.

LIB-159

LIB$ Routines

LIBSEMUL

LIBSEMUL

Extended-Precision Multiply

Format

Returns

Arguments

LIB-160

The Extended-Precision Multiply routine performs'extended-precision
multiplication. LIBSEMUL makes the VAX EMUL instruction available as a
callable routine.l

LIBSEMUL longword-integer-multiplier ,longword-integer-multiplicand ,addend ,product

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

longword-integer-multiplier
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: - by reference

Multiplier used by LIBSEMUL in the extended-precision multiplication. The
longword-integer-multiplier argument is the address of a signed longword
integer containing the multiplier.

longword-integer-multiplicand
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Multiplicand used by LIBSEMUL in the extended-precision multiplication. The
longword-integer-multiplicand argument is the address of a signed longword
integer containing the multiplicand.

addend

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Addend used by LIBSEMUL in the extended-precision multiplication. The
addend argument is the address of a signed longword integer containing the
addend.

! On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

Description

LIB$ Routines

LIBSEMUL
product
OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: write only
mechanism: by reference

Product of the extended-precision multiplication. The product argument is the
address of a signed quadword integer into which LIBSEMUL writes the product.

The multiplicand argument is multiplied by the multiplier argument giving a
double-length result. The addend argument is sign-extended to double-length
and added to the result. LIBSEMUL then writes the result into the product
argument.

Condition Values Returned

Example

SS$_NORMAL Routine successfully completed.

INTEGER MULT1,MULT2,ADDEND,PRODUCT(2)
C+
C Find the extended precision multiplication of 268435456 times 4096.
C That is, find the extended precision product of 2**28 times 2**12.
C Since 268435456 times 4096 is 2**40, a quadword value is needed for
C the calculation: use LIBSEMUL.

C-
MULT1 = 4096
MULT2 = 268435456
APPEND = 0

C+

C Compute 268435456*4096.
C Note that product will be stored as a quadword. This value will be stored
C in the 2 dimensional vector PRODUCT. The first element of PRODUCT will
C contain the low order bits, while the second element will contain the high
C order bits.
Cc-~

RETURN = LIB$EMUL(MULT1,MULT2,APPEND, PRODUCT)

TYPE *,'PRODUCT(2) =',PRODUCT(2),' and PRODUCT(l) = ',PRODUCT(1)

TYPE *,' '

TYPE *,'Note that 256 and 0 represent the hexadecimal value’

type *,14H’10000000000'x,’, which in turn, represents 2**40,’

END

This Fortran program demonstrates how to use LIBSEMUL. The output
generated by this program is as follows:

PRODUCT(2) = 256 and PRODUCT(1) = 0

Note that 256 and O represent the hexadecimal value ' 10000000000 x, which in
turn represents 240,

LIB-161

LIB$ Routines ,
LIBSENABLE_CTRL

LIBSENABLE_CTRL
Enable CLI Interception of Control Characters

The Enable CLI Interception of Control Characters routine requests the calling
process’s command language interpreter (CLI) to resume interception of the
selected control characters when they are typed during an interactive terminal
session. LIBSENABLE_CTRL provides the same function as the DCL command

SET CONTROL.
Format

LIBSENABLE_CTRL. enable-mask [,old-mask]
Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value
Arguments

enable-mask
OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating for which control characters LIBSENABLE_CTRL is to
enable interception. The enable-mask argument is the address of an unsigned
longword containing this bit mask. Each of the 32 bits corresponds to one of the
32 possible control characters. If a bit is set, the corresponding control character
is intercepted by the CLI. Currently, only bits 20 and 25, corresponding to Ctrl/T
and Ctrl/Y, are recognized.

The following mask is defined in Digital-supplied symbol libraries to specify the
value of enable-mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X 00100000 Enables Ctrl/T
LIB$M_CLI_CTRLY %X 02000000 Enables Ctrl/Y

If a set bit does not correspond to a character which the CLI can intercept, an
error is returned.

old-mask

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned
longword containing the old bit mask. The old bit mask is of the same form as
enable-mask.

LIB-162

Description

LIB$ Routines
LIBSENABLE_CTRL

LIB$ENABLE_CTRL provides the functions of the DCL SET CONTROL
command. Normally, Ctrl/Y interrupts the current command, command
procedure, or image. After a call to LIB§DISABLE_CTRL, Ctrl/Y is treated
like Ctrl/U followed by a carriage return. LIBSENABLE_CTRL restores the
normal operation of Ctrl/Y or Ctrl/T.

Both the DCL and MCR CLIs can intercept control characters. See the OpenVMS
DCL Dictionary for information on how the CLI processes control characters.

LIBSENABLE_CTRL is supported for use with the DCL or MCR CLIs.

If an image is run directly as a subprocess or as a detached process, there is
no CLI present to perform this function. In those cases, the error status LIB$_
NOCLI is returned.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_INVARG Invalid argument. A bit in enable-mask was set
which did not correspond to a control character
supported by the CLI.

LIB$_NOCLI No CLI present. The calling process did not have
a CLI to perform the function, or the CLI did not
support the request type. Note that an image
run as a subprocess or detached process does not
have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an
error status which was not recognized. This
error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or
MCR CLIs, please report the problem to Digital
by means of a Software Performance Report
(SPR).

LiB-163

LIB$ Routines
LIBSESTABLISH

LIBSESTABLISH
Establish a Condition Handler

Format

Returns

Argument

Description

LIB-164

The Establish a Condition Handler routine moves the address of a condition
handling routine (which can be a user-written or a library routine) to longword 0
of the stack frame of the caller of LIBSESTABLISH.+

This routine is not available to native OpenVMS Alpha programs but is
recognized and handled appropriately by most Digital high-level language
compilers. ¢

LIBSESTABLISH new-handler

OpenVMS usage: routine

type: procedure value
access: write only
mechanism: by reference

Previous contents of SF$A_HANDLER (longword 0) of the caller’s stack frame;
zero if no handler existed.

new-handler
OpenVMS usage: procedure

type: procedure value
access: read only
mechanism: by value

Routine to be set up as the condition handler. The new-handler argument is the
address of the procedure value to this routine.

LIB$ESTABLISH moves the address of a condition-handling routine to longword
0 of the stack frame of the caller of LIBSESTABLISH. This condition-handling
routine then becomes the caller’s condition handler. LIBSESTABLISH returns
the previous contents of longword 0. This can either be the address of the caller’s
previous condition handler or zero if no handler existed.

The new condition handler remains in effect for your routine until you call
LIB$REVERT or until control returns to the caller of the routine that called
LIB$ESTABLISH. Once this happens, you must call LIBSESTABLISH again if
the same (or a new) condition handler is to be associated with the routine that
called LIBSESTABLISH.

LIB$ESTABLISH modifies the caller’s stack frame.

t No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB$ Routines
LIBSESTABLISH

LIBS$ESTABLISH is provided primarily for use with languages without built-in
error handling facilities. Do not use LIBSESTABLISH with languages that
provide error handling, such as BASIC, COBOL, Pascal, and PL/I. Use of this
routine with these languages may adversely affect the behavior of your program.
The language-support library for these languages depends on predefined
language-specific handlers. Also, the handler address is used to identify the
stack frames of routines written in these languages. See the documentation

for the language you are using for more information about how that language
handles errors.

In VAX MACRO, you merely use the following instruction instead of calling
LIB$ESTABLISH:

MOVAB HANDLER, (FP) ; set handler address
; in current stack frame

Condition Values Returned

Example

None.

c+
C This Fortran program demonstrates the
C use of LIBSESTABLISH.

C
C This is the main program.
C-
EXTERNAL LOG_HANDL
CHARACTER TIMBUF
OPEN (UNIT=99, FILE = 'ERRLOG’, STATUS = 'NEW')
CALL LIBSESTABLISH (LOG_HANDL)
CALL SYS$BINTIM (TIMBUF, TIMADR)
Cc+
C The rest of the main program would go here.
C-
END
INTEGER*4 FUNCTION LOG_HANDL (SIGARGS, MECHARGS)
INTEGER*4 SIGARGS (*), MECHARGS (5)

C This is the handler to journal any signaled error messages.
C~

INCLUDE ' ($SSDEF)’

EXTERNAL PUT LINE

LOG_HANDL = SS$_RESIGNAL

CALL SYS$PUTMSG (SIGARGS, PUT LINE,)

RETURN

END
C+
C This is the action subroutine.
C-

LOGICAL*4 FUNCTION PUT LINE (LINE)
CHARACTER* (%) LINE
PUT LINE = .FALSE.
100 WRITE (99,200)LINE
200 FORMAT (A)
RETURN
END

LIB-165

LIB$ Routines
LIBSESTABLISH

In this Fortran example, the function log_handl is the condition handler for the
program, and thus receives control when an error occurs.

LIB-166

LIB$ Routines
LIBSEXPAN D_NOD}ENAME

LIBSEXPAND_NODENAME
Expand a Node Name to Its Full Name Equivalent

Format

Returns

Arguments

The Expand a Node Name to Its Full Name Equivalent routine expands a node
name to its full name equivalent.}

LIBSEXPAND_NODENAME nodename, fullname [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

nodename

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Node name to be expanded. The nodename argument contains the address of a
descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename is an invalid descriptor.

fullname

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Expanded node name. The fullname argument contains the address of

a descriptor pointing to the expanded node-name string. LIBSEXPAND_
NODENAME writes the expanded node-name string into the buffer pointed
to by the fullname descriptor.

The error LIB$_INVSTRDES is returned if fullname is an invalid descriptor.

The length field of the fullname descriptor is not updated unless fullname is
a dynamic descriptor with a length less than the resulting expanded full name.

Refer to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic
string descriptor usage.

The fullname argument contains an unusable result when LIBSEXPAND_
NODENAME returns in error.

1 No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-167

LIBS Routines
LIBSEXPAND_NODENAME

Description

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the expanded node name. The resultant-length argument is the
address of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when
LIB$EXPAND_NODENAME returns in error.

This routine expands the input node name to its full name equivalent. Input is
validated against the supported form of node names. The error LIB$_INVARG is
returned if the input node name is invalid.

If the returned full name overflows the buffer pointed to by fullname, the
returned full name is truncated, and the alternate successful status LIB$_
STRTRU is returned. The resultant-length argument is set to the value of the
length field of the fullname descriptor if this argument is supplied.

If the length of the returned full name is less than or equal to the output buffer,
the expanded full name is returned in fullname. Resultant-length is set to the
actual length of the expanded full name if this argument is supplied.

On a DECnet Phase IV system, expanding a DECnet/OSI node name results in
the error condition LIB$_INVARG.

LIB$EXPAND_NODENAME uses the underlying network directory services
to look up the full name. In a DECnet/OSI environment, LIB§EXPAND_
NODENAME verifies the existence of the expanded full name in the naming
environment. If the expanded full name does not exist in the naming

environment, an error condition is returned from the underlying network services
and is propagated back to the caller of LIBSEXPAND_NODENAME.

It is recommended that applications use full names instead of the short form of
full names whenever possible. Because the short form of a full name is intended
to be used only in a specific naming environment, make sure the short form of a
full name is expanded in the right naming environment to avoid ambiguity. See
LIB$COMPRESS_NODENAME for more information about where and when to
use the short form of a full name.

Any error resulting from calling the underlying network services is propagated
and returned as condition values in this routine.

LIB$EXPAND_NODENAME supports any string class for the nodename and
fullname string arguments.

Condition Values Returned

LIB-168

" SS$_NORMAL Routine successfully completed.

LIB$_STRTRU Routine successfully completed. Characters are
truncated in the output buffer pointed to by the
fullname descriptor.

LIB$ Routines
LIBSEXPAND NODENAME

LIB$_INVARG ’ Invalid argument:

nodename is invalid.
nodename points to a null string.

The length of the node name is more than
1024 characters.

The expanded DECnet/OSI node name is
invalid in a DECnet Phase IV system.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX.
Any condition value returned by the $IPC DECnet service.

LIB-169

LIB$ Routines

LIBSEXTV

LIBSEXTV

Extract a Field and Sign-Extend

Format

Returns

Arguments

LIB-170

The Extract a Field and Sign-Extend routine returns a sign-extended longword
field that has been extracted from the specified variable bit field. LIBSEXTV
makes the VAX EXTV instruction available as a callable routine.}

LIBSEXTV position ,size ,base-address

OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTYV, sign-extended to a longword.

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Position (relative to the base address) of the first bit in the field that LIBSEXTV
extracts. The position argument is the address of a signed longword integer

containing the position.
B

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIBSEXTV extracts. The size argument is the address of an
unsigned byte containing the size. The maximum size is 32 bits.

base-address
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIBSEXTV extracts from the specified variable bit
field. The base-address argument is an unsigned longword containing the base
address.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

Description

LIB$ Routines

LIBSEXTV

The variable-length bit field is an OpenVMS data type used to store small
integers packed together in a larger data structure. It is often used to store

single flag bits. ,
Three scalar attributes define a variable bit field:

* The base address is the address of a byte in memory that serves as a reference

point for locating the bit field.

* The bit position is a signed longword containing the displacement of the least

significant bit of the field with respect to bit 0 of the base address.

e The size is a byte integer indicating the size of the bit field in bits (in the
range 0 < size < 32). That is, a bit field can be no more than one longword in

length.

A variable-length bit field has the following format. The area containing asterisks

indicates the field.

P+5-1 P 0

¢ Kkkkkkhkkkkdkkkkk :A LIB$EXTV

\ A /
Y Y

S = Size of Field in Bits——

P = Bit Displacement of Field
from Bit Zero of Address A

ZK-1940-GE

Bit fields are zero-origin, which means that the routine regards the first bit in the

field as being the zero position.

Condition Value Signaled

Example

SS$_ROPRAND A reserved operand fault occurs if a size greater

than 32 is specified.

SIGN_EXTEND: ROUTINE OPTIONS (MAIN);
DECLARE LIBSEXTV ENTRY

(FIXED BINARY (31), /* Address of longword containing
/* beginning bit position

FIXED BINARY (7), /* Address of byte containing size
/* of field

FIXED BINARY (31)) /* Address of field

RETURNS (FIXED BINARY (31)); /* Return value
DECLARE (VALUE, SMALL INT) FIXED BINARY (31);
ON ENDFILE (SYSIN) STOP;

*/
*/

*/
*/

LIB-171

LIB$ Routines
LIBSEXTV

DO WHILE ('1'B); /* Loop continuously, until end of file */
PUT SKIP(2);
GET LIST (VALUE) OPTIONS (PROMPT ('Value: '));
SMALL INT = LIBSEXTV (0, 4, VALUE); /* Extract and sign-extend
/* first 4 bits */
PUT SKIP LIST (VALUE, SMALL INT);
END;

END SIGN_EXTEND;

This PL/I program extracts a field and returns it sign-extended into a longword.

LiB-172

LIBS$ Routines
LIBSEXTZV

LIB$EXTZV
Extract a Zero-Extended Field

The Extract a Zero-Extended Field routine returns a longword zero-extended field
that has been extracted from the specified variable bit field. LIBSEXTZV makes
the VAX EXTZV instruction available as a callable routine.l

Format
LIBSEXTZV position ,size ,base-address
Returns
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value
Field extracted by LIB$EXTZV, zero-extended to a longword.
Arguments
position
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field LIBSEXTZV
extracts. The position argument is the address of a signed longword integer
containing the position. .

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTZV extracts. The size argument is the address of an
unsigned byte containing the size. The maximum size is 32 bits.

base-address
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIBSEXTZV extracts. The base-address argument
is an unsigned longword containing the base address.

1" On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB-173

LIB$ Routines
LIBSEXTZV

Description

The variable-length bit field is an OpenVMS data type used to store small
integers packed together in a larger data structure. It is often used to store
single flag bits.

Three scalar attributes define a variable bit field:

* The base address is the address of the byte in memory that serves as a
reference point for locating the bit field.

* The bit position is a signed longword containing the displacement of the least
significant bit of the field with respect to bit 0 of the base address.

¢ The size is a byte integer indicating the size of the bit field in bits (in the

range 0 < size < 32). That is, a bit field can be no more than one longword in
length.

A variable-length bit field has the following format. The area containing asterisks
indicates the field.

P+S-1 P 0

ek dededede ek de ke dekok :A LI B$EXTZV

\ A /
Y Y

S = Size of Field in Bits——J

P = Bit Displacement of Field
from Bit Zero of Address A

ZK-1941-GE

Bit fields are zero-origin fields, which means that the routine regards the first bit
in the field as being the zero position.

Condition Value Signaled

SS$_ROPRAND A reserved operand fault occurs if a size greater
than 32 is specified.

LIB-174

LIB$ Routines
LIB$FFx

LIB$FFx

Find First Clear or Set Bit

Format

Returns

Arguments

The Find First Clear or Set Bit routines search the field specified by the start
position, size, and base for the first clear or set bit. LIB$FFC and LIB$FFS make
the VAX FFC and VAX FFS instructions available as callable routines.}

LIB$FFC position ,size ,base find-position
LIBSFFS position ,size ,base ,find-position

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

position

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: ‘by reference

Starting position, relative to the base address, of the bit field to be searched by
LIB$FFx. The position argument is the address of a signed longword integer
containing the starting position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of bits to be searched by LIB$FFx. The size argument is the address
of an unsigned byte containing the size of the bit field to be searched. The
maximum size is 32 bits.

base

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

The base argument is the address of the bit field which LIB$FFx searches.

1 On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

LIB-175

LIB$ Routines

LIB$SFFx

Description

find-position
OpenVMS usage: longword_signed

type: longword integer (signed)
access: write only
mechanism: by reference

Bit position of the first bit in the specified state (clear or set), relative to the
base address. The find-position argument is the address of a signed longword
integer into which LIB$FFC writes the position of the first clear bit and into
which LIB$FFS writes the position of the first set bit.

LIB$FFC searches the field specified by the start position, size, and base for the
first clear bit. LIB$FFS searches the field for the first set bit.

If a bit in the specified state is found, LIB$FFx writes the position (relative to the
base) of that bit into find-position and returns a success status. If no bits are
in the specified state or if size is zero, LIB$FFx returns LIB§_NOTFOU and sets
find-position to the starting position plus the size.

LIB$FFx regards the first bit in the field as being the zero position.

Condition Values Returned

SS$_NORMAL Routine successfully completed. A bit in the
specified state was found.
LIB$_NOTFOU A bit in the specified state was not found.

Condition Value Signaled

LIB-176

SS$_ROPRAND Reserved operand fault. A size greater than 32
was specified.

LIB$ Routines
LIBSFID_TO_NAME

LIB$FID_TO_NAME
Convert Device and File ID to File Specification

Format

Returns

Arguments

The Convert Device and File ID to File Specification routine converts a disk
device name and file identifier to a file specification.

LIB$FID_TO_NAME device-name file-id ,filespec [,filespec-length] {,directory-id] [,acp-status]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

device-name
OpenVMS usage: char_string

type: character string
access: read only
mechanism; by descriptor

Device name to be converted. The device-name argument is the address of a
descriptor pointing to the device name. It must reference a disk device, and must
contain 64 characters or less. LIBSFID_TO_NAME obtains device-name from
the NAM$T_DVI field of a RMS name block.

file-id

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Specifies the file identifier. The file-id argument is the address of an array of
three words containing the file identification. LIB$FID_TO_NAME obtains file-id
from the NAM$W_FID field of a RMS name block. The $FIDDEF macro defines
the structure of file-id.

filespec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the file specification. The filespec argument is the address of a
descriptor pointing to the file specification string. Refer to the Description section
for more information about the file specification returned.

filespec-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

LIB-177

LIB$ Routines
LIB$FID_TO_NAME

Description

L VAX

LiB-178

Receives the number of characters written into filespec, excluding padding in
the case of a fixed-length string. The optional filespec-length argument is the
address of an unsigned word containing the number of characters.

If the output string is truncated to the number of characters specified in filespec,
then filespec-length is set to that truncated size. Therefore, you can always use
filespec-length to access a valid substring of filespec.

directory-id

OpenVMS usage: vector_word_unsigned

type: word (unsigned)

access: read only

mechanism: by reference, array reference

Specifies a directory file identifier. The directory-id argument is the address

of an array of three words containing the directory file identifier. LIB$FID_TO_
NAME obtains this array from the NAM$W_DID field of a RMS name block. The
$FIDDEF macro defines the structure of directory-id.

acp-status

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The status resulting from traversing the backward links. The optional acp-
status argument is the address of an unsigned longword containing the status.

LIB$FID_TO_NAME converts a disk device name and file identifier to a file
specification by requesting the ACP file specification attribute.

On OpenVMS VAX systems, if you use the LIB$FID_TO_NAME routine on
a structure level 1 disk, specify the directory-id argument to ensure proper
operation of the routine. ¢

LIB$FID_TO_NAME uses the directory backpointer stored in the file header.
With files in SYS$COMMON, the directory structure is duplicated because of
some SET FILE/ENTERs of directory names. If directory names have been
renamed or the tree structure modified (which the OpenVMS operating system
does with the [SYCOMMONT] tree), the file specification returned by this routine
may not be useful.

LIB$FID_TO_NAME stores the output arguments (filespec, filespec-length,
and acp-status) only if the routine successfully finishes.

LIB$ Routines
LIB$FID_TO_NAME

Condition Values Returned

LIB$_NORMAL Routine successfully completed.

LIB$STRTRU Output string truncated (qualified success).

LIB$_INVARG Required argument omitted, or device-name is
longer than 64 characters.

LIB$_INVFILSPE The device-name argument does not reference a
disk.

Any condition value returned by LIBSANALYZE_SDESC, SYS$ASSIGN,
SYS$QIO, or SYS$DASSGN.

LIB-179

LIB$ Routines
LIB$SFILE_SCAN

LIBSFILE_SCAN

File Scan

Format

Returns

Arguments

LiB-180

The File Scan routine searches an area, such as a directory, for all files matching
the file specification given and transfers program execution to the specified user-
written routine. Wildcards are acceptable. An action routine is called for each
file and/or error found. LIB$FILE_SCAN allows the search sequence to continue
even if an error occurs while processing a particular file.

LIBSFILE_SCAN fab ,user-success-procedure ,user-error-procedure [,context]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

fab

OpenVMS usage: fab

type: unspecified

access: read only
mechanism: by reference

File Access Block (FAB) referencing a valid NAM block. The fab argument is the
address of the FAB which contains the address and length of the file specification
being searched for by LIB$FILE_SCAN.

user-success-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$FILE_SCAN calls when a file is found.
The success routine is invoked with the FAB address that was passed to
LIB$FILE_SCAN. The user context may be pased to this routine using the
FAB$L_CTX field in the FAB.

user-error-procedure
OpenVMS usage: procedure

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIBSFILE_SCAN calls when it encounters én
error. The error routine is called with the FAB argument that was passed to
LIB$FILE_SCAN.

LIB$ Routines
LIBSFILE_SCAN

context
OpenVMS usage: context
type: longword (unsigned)
access: modify
~ mechanism: by reference

Description

Default file context used in processing file specifications for multiple input files.
The context argument is the address of a longword, which must be initialized
to zero by your program before the first call to LIB$FILE_SCAN. After the first
call, LIB$FILE_SCAN maintains this longword. You must not change the value
of context in subsequent calls to LIB$FILE_SCAN.

Name blocks and file specification strings are allocated by LIBSFILE_SCAN, and
context is used to retain their addresses so they may be deallocated later. If
the context argument is not passed, unspecified portions of the file specification
will be inherited from the previous file specification processed, rather than from
multiple input file specifications.

LIB$FILE_SCAN is called with the address of a File Access Block (FAB) and calls
an action routine for each file found and/or error returned. LIB$FILE_SCAN
allows the search sequence to continue even if an error occurs while processing a
particular file.

If this routine is called once for each file specification argument in a command
line, portions of the file specifications which are not specified by the user are
inherited from the last files processed.

You must call LIBSFILE_SCAN_END before initiating a new sequence of calls to
LIB$FILE_SCAN.

Condition Values Returned

Any condition value returned by the Record Management Service (RMS) Parse.

LIB-181

LIB$ Routines
LIBSFILE_SCAN_END

LIBSFILE_SCAN_END
End-of-File Scan

Format

Returns

Arguments

Description

LIB-182

The End-of-File Scan routine is called after each sequence of calls to LIB$FILE_
SCAN. LIB$FILE_SCAN_END deallocates any saved Record Management
Service (RMS) context and/or deallocates the virtual memory that had been
allocated for holding the related file specification information.

LIBSFILE_SCAN_END [fab] [,contexi]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

fab

OpenVMS usage: fab

type: unspecified

access: modify

mechanism: by reference

File access block (FAB) used with LIB$FILE_SCAN. The optional fab argument
is the address of the FAB that contains the address and length of the file
specification.

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Temporary default context used in LIB$FILE_SCAN. The optional context
argument is the address of a longword containing this temporary default context.

Your program should call LIB$FILE_SCAN_END after each sequence of calls to
LIB$FILE_SCAN. The function that LIBSFILE_SCAN_END performs depends
upon the arguments you specify. If you specify fab, LIBSFILE_SCAN_END
parses the null string to deallocate any saved RMS context. If you specify
context, LIBSFILE_SCAN_END deallocates any virtual memory that was
allocated for holding the related file specification information. If you specify both
fab and context, LIBSFILE_SCAN_END performs both functions. However, if
you do not specify either argument, LIB$FILE_SCAN_END does nothing.

LIB$ Routines
LIBSFILE_SCAN_END

If LIBSFILE_SCAN is directed to process the specifications for multiple input
files, LIB$FILE_SCAN_END is used to deallocate those saved file specifications.
If LIB$FILE_SCAN_END is called by your program after each sequence of calls
to LIB$FILE_SCAN, it will prevent the defaults from the previous call from
affecting context value in the next call to LIB$FILE_SCAN. LIB$FILE_SCAN_
END does this by replacing the context value passed to it with a temporary
context value that your program passes to LIB$FILE_SCAN the next time it is
called.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
RMS$_FAB The fab argument is not the address of a valid
FAB.

LIB-183

LIB$ Routines
LIBSFIND_FILE

LIB$SFIND_FILE

Find File

Format

Returns

Arguments

LIB-184

The Find File routine is called with a file specification for which it searches.
LIB$FIND_FILE returns one file specification for each call. The file specification
may contain wildcards.

LIBSFIND_FILE filespec ,resultant-filespec ,context [default-filespec] [,related-filespec] [,status-value]
[flags] ‘

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

filespec

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

File specification, which may contain wildcards, that LIB$FIND_FILE uses to
search for the desired file. The filespec argument is the address of a descriptor
pointing to the file specification. The maximum length of a file specification is
255 bytes.

The file specification used may also contain a search list logical name. If present,
the search list logical name elements can be used as accumulative to related file
specifications, so that portions of file specifications not specified by the user are
inherited from previous file specifications.

resultant-filespec
OpenVMS usage: char_string

type: | . character string
access: modify
mechanism: by descriptor

Resultant file specification that LIBSFIND_FILE returns when it finds a file
that matches the specification in the filespec argument. The resultant-filespec
argument is the address of a descriptor pointing to the resultant file specification.

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

A longword integer variable into which the routine stores a context value for
use by future calls to LIBSFIND_FILE or LIB§FIND_FILE_END. The context
argument is an unsigned longword integer containing the address of the context.

LIB$ Routines
LIBSFIND FILE

This variable must be set to zero before the first call to LIBSFIND_FILE. You
can use the same context argument from one LIBJFIND_FILE call to another
provided you have not called LIB$FIND_FILE_END for that context first.
LIB$FIND_FILE uses this argument to retain the context when processing
multiple input files. Portions of file specifications that the user does not specify
may be inherited from the last files processed because the file contexts are
retained in this argument.

default-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Default file specification. The default-filespec argument is the address of a
descriptor pointing to the default file specification. See the OpenVMS Record
Management Services Reference Manual for information about default file
specifications.

related-filespec
OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Related file specification containing the context of the last file processed. The
related-filespec argument is the address of a descriptor pointing to the related
file specification.

The related file specification is useful when you are processing lists of file
specifications. Unspecified portions of the file specification are inherited from the
last file processed. For more information on related file specifications, see the
OpenVMS Record Management Services Reference Manual.

status-value
OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

Record Management Service (RMS) secondary status value from a failing RMS
operation. The status-value argument is an unsigned longword containing the
address of a longword-length buffer to receive the RMS secondary status value
(usually returned in the file access block field, FAB$L_STV).

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword
containing the user flags.

LIB-185

LIB$ Routines
LIBSFIND_FILE

Description

LIB-186

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description

0 NOWILD If set, LIB$FIND_FILE returns an error if a wildcard
character is input.

1 MULTIPLE If set, this performs temporary defaulting for multiple

input files and the related-filespec argument is
ignored. See description of context in LIB$FILE_
SCAN. Each time LIB$FIND_FILE is called with a
different file specification, the specification from the
previous call is automatically used as a related file
specification. This allows parsing of the elements of
a search-list logical name such as DISK2:[SMITH]
FIL1.TYP,FIL*2.TYP, and so on. Use of this feature is
required to get the desired defaulting with search list
logical name. LIB$FIND_FILE_END must be called
between each command line in interactive use or the
defaults from the previous command line affect the
current file specification.

LIB$FIND_FILE returns one file specification per call unless it fails to find the
target file specification. In this case, the routine returns the condition value
RMS$_NMF (no more files). Each successful call to LIB$FIND_FILE results in a
new resultant-filespec.

When you call LIB$FIND_FILE repeatedly using the same context, filespec is
saved only if you set the MULTIPLE bit. If you specify a different filespec on
your next call and set the MULTIPLE bit, the file specification from the previous
call defaults as the related file specification.

For each LIBSFIND_FILE call, RMS first applies the defaults from default-
filespec and then uses the defaults from related-filespec, if relevant. Default
file specifications are used only if components are missing from the filespec
argument and the needed components are found in default-filespec. The
related-filespec argument is used when you process lists of file specifications.
Unspecified portions of the file specification are inherited from the last file
processed. This provides an extra level of file specification defaults. For
additional information on related file specifications and input file parsing,

see the Guide to OpenVMS File Applications.

The filespec argument can contain wildcard characters. LIBSFIND_FILE can be
called repeatedly using the same context argument until the error RMS$_NMF
(no more files) is returned.

LIB$FIND_FILE searches for a certain wildcard file specification and returns all
file specifications that satisfy that wildcard file specification.

LIB$ Routines
LIBSFIND_FILE

If you make multiple calls to LIB§FIND_FILE, be aware of the following
behavior:

¢ If the NOWILD bit is not set and the file specification does not contain any
wildcard characters, LIB§FIND_FILE returns the appropriate file name on
the first call and the condition value RMS$_NMF on the next call.

e If the NOWILD bit is set and you use the same nonwildcard file specification,
LIB$FIND_FILE returns the file name on the first call as well as each
subsequent call.

You must call LIBSFIND_FILE_END before initiating a new sequence of calls to
LIB$FIND_FILE to properly deallocate all of the internal data structures that
were allocated in the calls to LIB$FIND_FILE. After you call LIB$FIND_FILE_

END, the context value is no longer valid and cannot be used on any subsequent
LIB$FIND_FILE calls.

If the error RMS$_CHN is returned, RMS has no more channels to assign. There
are two possible reasons for this:

¢ You did‘not call LIB$FIND_FILE_END before initiating a new call with a
context variable to LIB$FIND_FILE. (This is the most common reason.)

¢ The system parameter CHANNELCNT is too low.
Condition Values Returned

RMS$_NORMAL Routine successfully completed.

LIB$_NOWILD A wildcard character was present in the file
specification parsed, and the wildcard flag bit
was set to no wildcard. (This is actually the
SHR$_NOWILD error message after application
of the LIB$ facility code.)

RMS$_CHN No more channels.

RMS$_NMF No more files.

Any condition value returned by RMS Parse and Search services, LIB§GET_VM,
LIBGET_VM_64, LIBFREE_VM, LIB$FREE_VM_64, LIB$SCOPY_R_DX, or
LIB$SCOPY_R_DX_64.

LIB-187

LIB$ Routines
LIBSFIND_FILE_END

LIB$SFIND_FILE_END
End of Find File

The End of Find File routine is called once after each sequence of calls

to LIBSFIND_FILE. LIB$FIND_FILE_END deallocates any saved Record
Management Service (RMS) context and deallocates the virtual memory used
to hold the allocated context block.

Format
LIBSFIND_FILE_END context
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Argument
context
OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference
Zero or the address of a FAB/NAM buffer from a previous call to LIB$FIND_
FILE. The context argument is the address of a longword that contains this
context.
Description

LIB$FIND_FILE_END should be called by your program after each sequence of
calls to LIB$FIND_FILE. This will prevent the default values from the previous
call from affecting the next file specification.

LIB$FIND_FILE_END deallocates the context used in the last call to LIBSFIND_
FILE so that the context retained will not be used in subsequent calls to
LIB$FIND_FILE. If LIB$FIND_FILE was directed to process file specifications
for multiple input files, the saved file specifications are also deallocated.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
RMS$_FAB ' File access block argument is not the address of
a valid FAB.

LIB-188

LIB$ Routines
LIBSFIND_IMAGE_SYMBOL

LIBSFIND_

IMAGE_SYMBOL

Find Universal Symbol in Shareable Image File

Format

Returns

Arguments

The Find Universal Symbol in Shareable Image File routine reads universal
symbols from the shareable image file. This routine then dynamically activates a
shareable image into the PO address space of a process.

LIBSFIND_IMAGE_SYMBOL filename ,symbol ,symbol-value [image-name]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

filename

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Name of the file for which LIB§FIND_IMAGE_SYMBOL is searching. The
filename argument is the address of a descriptor pointing to this file name
string. This argument may contain only the file name. File type cannot be

indicated. If any file specification punctuation characters (;, [, <, ;, .) are present,
the error SS$_IVLOGNAM is returned.

You can specify a file specification for the image name with the optional
image-name argument. If you do not specify image-name, a default file
specification of SYS$SHARE: EXE is applied to the file name. If the file is not in
SYS$SHARE:.EXE, a logical name must be used to direct this routine to locate
the correct file. Only logical names defined in the system logical name table with
the /EXEC attribute will be considered while the image activator is processing a
request from an image that was installed with privileges. If the calling image was
installed with privileges, the image being activated and any shareable images

or message sections it references must be installed as a known image with the
INSTALL utility. Running an image to which you have only Execute (not Read)
access results in the same restrictions on logical names and shareable images as
does running a privileged image.

On VAX systems, the filename descriptor must be class D, S, or Z. ¢

symbol

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Symbol for which LIB$FIND_IMAGE_SYMBOL is searching in the filename file.
The symbol argument is the address of a descriptor pointing to the symbol name

LIB-189

LIB$ Routines
LIBSFIND_IMAGE_SYMBOL

@

Description

LIB-190

string. The symbol name string can be input in uppercase, lowercase, or mixed
case letters.

symbol-value
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Symbol value that LIB§FIND_IMAGE_SYMBOL has located. The symbol-value
argument is the address of a signed longword integer into which LIB$FIND_
IMAGE_SYMBOL returns the symbol value. If the symbol is relocatable, the
starting virtual address of the shareable image in memory will be added to the
symbol value.

image-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification applied to the image name. The optional image-name
argument is a string used as the RMS default file specification when parsing
filename as the primary filename. If image-name is not supplied, then a
default file specification of SYS$SHARE:.EXE is applied to the image name.

On VAX systems, the image-name descriptor must be class D, S, or Z. ¢

The shareable image that LIBSFIND_IMAGE_SYMBOL activates must have
been already linked and must be position independent. You must have read
access to the shareable image file to use this routine.

LIB$FIND_IMAGE_SYMBOL writes the symbol value that it has located into the
symbol-value argument.

After the first call to LIB$FIND_IMAGE_SYMBOL for a particular image,
successive calls for that image will be processed quickly. The image is activated
only once and an in-memory database is maintained. There is no way to
deallocate this database, nor is there any supported method to remove an
activated image from the address space. All images are activated into PO space.

LIB$FIND_IMAGE_SYMBOL locates the universal symbol in its database
qualified by the file name exactly as given in the filename argument. Therefore,
a reference to a lexically different but equivalent file name causes a new copy
of the same shareable image to be loaded and searched. To avoid this situation,
always specify the desired file name in the same form.

To interoperate properly with translated VAX images, LIBSFIND_IMAGE_
SYMBOL may modify the name of the file being searched and may retry the
search if the first search failed. If called from a translated image, LIBSFIND_
IMAGE_SYMBOL will append “_TV” to the file name before searching. This will
locate the translated version of the image being searched. If the search fails to
find the file or the file does not define the symbol, LIB§FIND_IMAGE_SYMBOL
trys again with the unmodified original file name. This will locate the native
Alpha version of the image. If the second search also fails, an error is returned.
If LIB$FIND_IMAGE_SYMBOL is called from a native Alpha program, the order

LIB$ Routines
LIB$FIND _IMAGE_SYMBOL

of the searches is reversed. The first search is done with the unmodified original
file name. If that fails, the second search is done with “_TV” appended to the file
name. If the second search fails, an error is returned. ¢

LIB$FIND_IMAGE_SYMBOL disables AST recognition while it is executing.
AST recognition is reenabled before returning to the caller only if AST recognition

was previously enabled.

LIB$FIND_IMAGE_SYMBOL signals all errors and returns the status in RO.

Condition Values Returned

LIB$_BADCCC
LIB$_EOMERROR
LIB$_EOMFATAL
LIB$_EOMWARN
LIB$_GSDTYP
LIB$_ILLFMLCNT

LIB$_ILLMODNAM
LIB$_ILLPSCLEN
LIB$_ILLRECLEN
LIB$_ILLRECLN2
LIB$_ILLRECTYP
LIB$_ILLRECTY2
LIB$_ILLSYMLEN
LIB$_NOEOM
LIB$_RECTOOSML

LIB$_SEQUENCE
LIB$_SEQUENCE2
LIB$_STRVL

Illegal compilation code.

Compilation errors.

Fatal compilation errors.

Compilation warnings.

Illegal universal symbol directory record type.

Maximum argument count exceeds maximum for
routine.

Illegal module name length.

Illegal program section length.

Illegal record length in module.

Illegal record length.

Illegal record type in module.

Illegal record type.

Illegal symbol length.

No end of module record contained in the module.

Record too small; data overflows object record in
module. '

Illegal record sequence in module.
Illegal record sequence.
Tllegal object language structure level in module.

Note that all of the above
error messages indicate a
format error in the shareable
image.

LIB$_INSVIRMEM
SS$_IVLOGNAM

Insufficent virtual memory.

The filename argument contained more
than just a file name; a device or directory
specification was found in the string.

Any condition values returned by LIBSINSERT_TREE.
Any condition values returned by LIBSLOOKUP_TREE.
Any condition values returned by RMS.

LIB-191

LIB$ Routines
LIBSFIND _VM_ZONE

LIBSFIND VM_ZONE
Return the Next Valid Zone Identifier

Format

Returns

Arguments

Description

LIB-192

The Return the Next Valid Zone Identifier routine returns the zone identifier of
the next valid zone in the heap management 32-bit database.

LIBSFIND_VM_ZONE context ,zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

Context specifier. The context argument is the address of an unsigned longword
used to keep the scan context for finding the next valid zone. The context
argument must be 0 to initialize the scan and to start with the first returnable
zone identifier.

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: ~ write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned longword
that receives the zone identifier for the next zone.

At each call, LIBSFIND_VM_ZONE scans the heap management 32-bit zone
database and returns the zone-id of the next valid zone. (The first and second
calls to LIB$FIND_VM_ZONE return the zone-id of the 32-bit default zone and
the 32-bit string zone, respectively.) This capability allows a program to deal
with each 32-bit VM zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE finds only 32-bit zones. You must use LIB$FIND_
VM_ZONE and LIB$FIND_VM_ZONE_64 to loop through all VM zones.

LIB$ Routines
LIB$FIND_VM_ZONE

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=0, LIBSVERIFY_VM_ZONE is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will produce
no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_

NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code
has been changed), then this routine may not be able to locate it in the zone
database.

Note that ASTs may be disabled while LIBSFIND_VM_ZONE is executing code
that depends on the stability of the heap management zone database. In general
it is the caller’s responsibility to ensure that the calling program has exclusive
access to the zone database while scanning for multiple zones with this routine.
Results are unpredictable if another thread of control modifies the zone database
or the associated areas during the scanning.

Condition Values Returned

Example

SS$_NORMAL Routine successfully completed.

LIB$_BADZONE Invalid zone.

LIB$_NOTFOU Zone identifier not found (alternate success
status).

LIB$_WRONUMARG Wrong number of arguments.

IMPLICIT NONE
INTEGER*4 status,context,zone_id
INTEGER*4 lib$find vm_zone,lib$show_vm zone

context = 0
status = lib$find vm zone (context, zone_ id)
DO WHILE (status)

print *

status = lib$show_vm zone (zone id, 0)

status = 1ib$find vm zone (context, zone id)
END DO -7 -
END

Sample output for this Fortran program is shown below:

Zone Id
Zone Id

00020020, Zone name = "DEFAULT ZONE"
000200B0, Zone name = "STRING_ZONE“

LIB-193

LIB$ Routines
LIBSFIND_VM_ZONE_64 (Alpha Only)

LIBSFIND_VM_ZONE_64 (Alpha Only)
Return the Next Valid Zone Identifier

Format

Returns

Arguments

Description

LIB-194

The Return the Next Valid Zone Identifier routine returns the zone identifier of
the next valid zone in the heap management 64-bit database.

LIB$FIND_VM_ZONE_64 context ,zone-id

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

context

OpenVMS usage: context

type: quadword (unsigned)
access: modify

mechanism: by reference

Context specifier. The context argument is the address of an unsigned quadword
used to keep the scan context for finding the next valid zone. The context
argument must be 0 to initialize the scan and to start with the first returnable
zone identifier.

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned quadword
that receives the zone identifier for the next zone.

At each call, LIB$FIND_VM_ZONE_64 scans the heap management 64-bit zone
database and returns the zone-id of the next valid zone. (The first and second
calls to LIBSFIND_VM_ZONE_64 return the zone-id of the 64-bit default zone
and the 64-bit string zone, respectively.) This capability allows a program to deal
with each VM 64-bit zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE_64 finds only 64-bit zones. You must use
LIB$FIND_VM_ZONE and LIB$FIND_VM_ZONE_64 to loop through
all VM zones.

LIB$ Routines
LIBSFIND_VM_ZONE_64 (Alpha Only)

The context argument controls the state of the scan. It determines what zone
to return (the first, the next, and so forth). On the initial call, specified by
context=0, LIB§VERIFY_VM_ZONE_64 is called to verify the heap management
zone database. If the database is corrupt, further calls to this routine will produce
no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_
NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code
has been changed), then this routine may not be able to locate it in the zone
database.

Note that ASTs may be disabled while LIB§FIND_VM_ZONE_64 is executing
code that depends on the stability of the heap management zone database. In
general it is the caller’s responsibility to ensure that the calling program has
exclusive access to the zone database while scanning for multiple zones with this
routine. Results are unpredictable if another thread of control modifies the zone
database or the associated areas during the scanning.

Condition Values Returned

Example

SS$_NORMAL Routine successfully completed.

LIB$_BADZONE Invalid zone.

LIB$_NOTFOU Zone identifier not found (alternate success
: status).

LIB$_WRONUMARG Wrong number of arguments.

IMPLICIT NONE

INTEGER*4 status

INTEGER*8 context,zone_id

INTEGER*4 1ib$find vm zone_64,lib$show_vm zone 64

context = 0
status = lib$find vm_zone 64 (context, zone_id)
DO WHILE (status) -
print *
status
status
END DO
END

lib$show_vm zone 64 (zone_id, 0)
lib$find vm zone 64 (context, zone_id)

Sample output for this Fortran program is as follows:

Zone Id = 0000000000020040, Zone name = "DEFAULT ZONE"
Zone Id = 0000000000020140, Zone name = "STRING ZONE"

LiB-195

LIB$ Routines
LIBSFIT_NODENAME

LIBSFIT_NODENAME
Fit a Node Name into an Output Field

Format

Returns

Arguments

LIB-196

The Fit a Node Name Into an Output Field routine fits a node name into an
output field. It attempts to compress the node name to fit the output field. If this
fails, it trims the node name.}

LIB$FIT_NODENAME nodename, output-buffer [,output-width] [,resultant-length]

OpenVMS usage: cond_value

.type: longword (unsigned)
access: write only
mechanism: by value
nodename
OpenVMS usage: char_string
type: ' character string
access: read only
mechanism: by descriptor

Node name to be fitted into the desired output field. The nodename argument
contains the address of a descriptor pointing to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node
name, points to a null string, or contains more than 1024 characters. The error
LIB$_INVSTRDES is returned if nodename is an invalid descriptor.

output-buffer

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

The output buffer. The output-buffer argument contains the address of a
descriptor pointing to the output buffer. LIB$FIT _NODENAME writes the final
output node name into the buffer pointed to by output-buffer.

The error LIB$_INVSTRDES is returned if output-buffer is an invalid
descriptor.

The length field of the output-buffer descriptor is not updated unless output-
buffer is a dynamic descriptor with a length less than the resulting fitted node
name. Refer to the OpenVMS RTL String Manipulation (STR$) Manual for
dynamic string descriptor usage.

The output-buffer argument contains an unusable result when LIB$FIT_
NODENAME returns in error.

Tt No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Description

LIB$ Routines
LIB$FIT_NODENAME

output-width

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Field width desired for the fit operation. The output-width argument is the
address of an unsigned word that contains this field width in bytes.

If output-width is omitted, the current length of outpu t-buffer is used. If
output-buffer is not a fixed-length string, specify output-width to ensure that
the desired width is used.

If the lengths of both output-buffer and output-width are specified, the length
in output-width is used. In this case, if the current length of output-buffer is
smaller than the length of output-width, the output node name is truncated at
the end, and the alternate successful status LIB$_STRTRU is returned.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node name. The resultant-length argument is the address
of an unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$FIT_
NODENAME returns in error.

This routine fits the input node name into the desired output field for display
purposes. It first attempts to get the usable short form of the input node name
by calling LIBSCOMPRESS_NODENAME. If that fails, the input node name
is expanded by LIB§SEXPAND_NODENAME and then trimmed by LIB$TRIM _
FULLNAME to fit the desired output width.

The input is validated against the supported form of input node names. The error
LIB$_INVARG is returned if the input node name is invalid.

Node-name compression is always attempted even if the length of the input node
name is less than or equal to the desired output width. This is to ensure that the
short form of a full name is always chosen for display purposes.

When the compressed node name is too long to fit the desired output width, the
input node name is expanded using LIBSEXPAND_NODENAME and trimmed
using LIB$TRIM_FULLNAME. In this case, the alternate success status LIB$_
STRTRU is returned.

When LIB$FIT_NODENAME encounters errors from the underlying network
services, it tries to return the string-truncated compressed node name. If it is
the compression operation that fails, LIBSFIT NODENAME returns the string-
truncated input node name. The alternate successful status LIB§_STRTRU is
returned.

LIB-197

LIB$ Routines
LIB$FIT_NODENAME

Note that the returned node name can be either a compressed usable short form
of the input node name or an unusable trimmed or truncated node name. The
caller should always assume an unusable node name is returned when it finds
the alternate success return status LIB§_STRTRU. On the other hand, the SS$_
NORMAL return status means that a usable form of a node name is returned.

LIB$FIT NODENAME adds padding spaces to the end of the output buffer if the
output node name is shorter than the size of the output buffer. The argument
resultant-length, if supplied, is set to the length of the output node name,

excluding any padding spaces.

Condition Values Returned

LIB-198

SS$_NORMAL
LIB$_STRTRU

LIB$_INVARG

LIB$_INVSTRDES
LIB$_WRONUMARG

Routine successfully completed.

Routine successfully completed. Characters are
truncated in the output buffer pointed to by
output-buffer.

Invalid argument:
* nodename is invalid.
* nodename points to a null string.

® The length of the node name is more than
1024 characters.

Invalid string descriptor.
Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX.

LIB$ Routines
LIB$FIXUP_FLT

LIBSFIXUP_FLT
Fix Floating Reserved Operand

Format

Returns

Arguments

The Fix Floating Reserved Operand routine finds the reserved operand of any
F-floating, D-floating, G-floating, or H-floating instruction (with some exceptions)
after a reserved operand fault has been signaled.i LIB$FIXUP_FLT changes
the reserved operand from —0.0 to the value of the new-operand argument, if
present; or to +0.0 if new-operand is absent.

This routine is available on OpenVMS Alpha systems in translated form and is
applicable to translated VAX images only. ¢

LIBSFIXUP_FLT signal-arguments ,mechanism-arguments [,new-operand]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

signal-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument is the address of an
array of unsigned longwords containing the signal argument vector.

mechanism-arguments
OpenVMS usage: vector_longword_unsigned

type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument is the
address of an array of unsigned longwords containing the mechanism argument
vector.

new-operand
OpenVMS usage: floating-point

type: F_floating
access: read only
mechanism: by reference

An F-floating value to replace the reserved operand. The new-operand
argument is the address of an F-floating number containing the new operand.
This is an optional argument. If omitted, the default value is +0.0.

¥ No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-199

LIBS$ Routines
LIBSFIXUP_FLT

Description

LIB$FIXUP_FLT finds the reserved operand of any F-floating, D-floating, G-
floating, or H-floating instruction (with some exceptions) after a reserved operand
fault has been signaled. LIB§FIXUP_FLT changes the reserved operand from
—0.0 to the value of the new-operand argument, if present; or to +0.0 if new-
operand is absent. LIBSFIXUP_FLT cannot handle the following cases and will
return a status of SS$_RESIGNAL if any of them occur:

* The currently active signaled condition is not SS§_ROPRAND.

e The reserved operand’s data type is not F-floating, D-floating, G-floating, or
H-floating.

* The reserved operand is an element in the coefficient table for one of the VAX
POLYx instructions.

If the status value returned from LIB$FIXUP_FLT is seen by the condition
handling facility (as would be the case if LIB§FIXUP_FLT was the handler), any
success value is equivalent to SS$_CONTINUE, which causes the instruction to
be restarted. Any failure value is equivalent to SS$_RESIGNAL, which causes
the condition to be resignaled to the next handler. This resignal status is because
the condition handler (LIB$FIXUP_FLT) was unable to handle the condition
correctly.

LIB$FIXUP_FLT can be enabled directly as a condition handler. The signal-
arguments and mechanism-arguments arguments are passed to the condition
handler by OpenVMS exception dispatching.

Condition Values Returned

LIB-200

SS$_NORMAL Routine successfully completed. The reserved
operand was found and has been fixed.
SS$_ACCVIO Access violation. An argument to LIB$FIXUP_

FLT or an operand of the faulting instruction
could not be read or written.
SS$_RESIGNAL The signaled condition was not SS§_ROPRAND,

or the reserved operand was not a floating-point
value or was an element in a POLYx table.

SS$_ROPRAND Reserved operand fault. The optional argument
new-operand was supplied but was itself an
F-floating reserved operand.

LIB$_BADSTA Bad stack. The stack frame linkage has been

corrupted since the time of the reserved operand
exception.

LIB$ Routines
LIBSFLT_UNDER

LIBSFLT_UNDER ;
Floating-Point Underflow Detection

Format

Returns

Argument

Description

The Floating-Point Underflow Detection routine enables or disables floating-point
underflow detection for the calling routine activation. The previous setting is
returned as a function value.

This routine is available on OpenVMS Alpha systems in translated form and is
applicable to translated VAX images only. ¢

LIBSFLT_UNDER new-setting

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by value

The old floating-point underflow enable setting (the previous contents of the
SF$W_PSW[PSW$V_FU] in the caller’s frame).

new-setting

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New floating-point underflow enable setting. The new-setting argument is the
address of an unsigned byte containing the new setting. Bit 0 set to 1 means
enable; bit 0 set to 0 means disable.

LIB$FLT_UNDER affects only the current routine activation and does not affect
any of its callers or any routines that it may call. However, the setting does
remain in effect for any routines entered through a JSB entry point.

The caller’s stack frame will be modified by this routine.

Condition Values Returned

None.

t No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-201

LIB$ Routines
LIBSFLT _UNDER

Example

LIB—202

C+

C This Fortran example program shows
C the use of LIB$FLT_UNDER.

C-

INTEGER*4 NEW_SETTING
REAL*4 X , Y, Z

NEW_SETTING = 0
X = 1E-20
Y = 1E20

CALL LIBSFLT_UNDER(NEW_SETTING)
TYPE *,'First Case: This should not have an underflow exception’
Z=X1/%Y

TYPE *, 'If this lines prints then the underflow exception
1 was disabled.’
TYPE *

NEW_SETTING = 1
X = 1E-20
Y = 1E20

CALL LIB$FLT UNDER(NEW_SETTING)

TYPE * , ’'Second Case: This should have an underflow exception
1 and then stop.’

Z=X/Y

TYPE * , 'If this line prints, then the underflow exception
1 was disabled.’

END

In this Fortran example, floating-point underflow detection is disabled the first
time X is divided by Y. The second time, underfiow detection is enabled, and the
program stops because of the error generated.

LIB$ Routines
LIBSFORMAT_DATE_TIME

LIBSFORMAT _DATE_TIME
Format Date and/or Time

Format

Returns

Arguments

The Format Date and/or Time routine allows the user to select at run time a
specific output language and format for a date or time, or both.

LIBSFORMAT_DATE_TIME date-string [,date] [,user-context] [,date-length] [,flags]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

date-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Receives the requested date or time, or both, that has been formatted for output
according to the currently selected format and language. The date-string
argument is the address of a descriptor pointing to this string.

date

OpenVMS usage: date_time

type: quadword (unsigned)
access: read only
mechanism: by reference

The date or time, or both, to be formatted for output. The date argument is the
address of an unsigned quadword that contains the absolute date or time, or both
to be formatted. If you omit this argument, or if you supply a zero passed by
value, then the current system time is used. Note that the date argument must
represent an absolute time, not a delta time.

user-context

OpenVMS usage: context

type: longword (unsigned)
access: modify

mechanism: by reference

User context that retains the translation context over multiple calls to this
routine. The user-context argument is the address of an unsigned longword
that contains this context. The initial value of the context variable must be zero.
Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not passed,
the routine LIBSFORMAT_DATE_TIME may abort if two threads of execution
attempt to manipulate the context area concurrently. Therefore, when calling
this routine in situations where reentrancy might occur, such as from AST level,

LIB-203

LIB$ Routines
LIBSFORMAT_DATE_TIME

Description

LIB-204

Digital recommends that users specify a different context cell for each calling
thread.

date-length

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of bytes of text written to the date-string argument. The date-length
argument is the address of a signed longword that receives this string length.
Note that date-length specifies the number of bytes of text, not the number of
characters, written to date-string.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are
output. The flags argument is the address of an unsigned bit mask containing
the specified values. Valid values are LIB$M_DATE_FIELDS and LIB$M_TIME_
FIELDS.

Default values are determined as follows:

e If the flags argument is omitted, LIBSFORMAT DATE_TIME determines
which fields to format according to the current definition of LIB$DT_
FORMAT.

e If the flags argument is specified, LIBSFORMAT_DATE_TIME uses the flags
value to determine which fields to format. That is, the flags argument can be
used to override the definition of LIB$DT _FORMAT when specifying which
fields should be formatted for output. If the field specified by flags was not
assigned a format through the definition of LIB§DT _FORMAT, the standard
OpenVMS format is used.

The LIB$FORMAT_DATE_TIME routine formats an OpenVMS internal format
date-time quadword into a textual string of some predefined format. The
language to be used and the format in which to output the information are
programmable using either of the following methods.

¢ The language and format are programmable at compile time through the use
of the routine LIB$INIT_DATE_TIME_CONTEXT.

e The language and format are determined at run time through the translation
of the logical names SYS$LANGUAGE and LIB$DT_FORMAT.

In general, if an application is formatting text for internal storage or
transmission, the language and format should be specified at compile time.

If this is the case, use the routine LIB$INIT DATE_TIME_CONTEXT to specify
the language and format of your choice.

/

LIB$ Routines
LIBSFORMAT_DATE_TIME

If an application is formatting text for presentation to a user, the logical name
method of specifying language and format should be used. In this method, the
user assigns equivalence names to the logical names SYS$LANGUAGE and
LIB$DT_FORMAT, thereby selecting the language and format of the date and
time at run time.

If the logical name method is used, the translations of the logical names
SYS$LANGUAGE and LIB$DT_FORMAT specify one or more executive mode
logicals, which in turn must be translated to determine the actual format string.
‘These additional logicals supply such things as the names of the days of the week
and the months in the selected language (determined by SYS$LANGUAGE).

All of these logicals are predefined, so that a non-privileged user can select any
one of these languages and formats. A user can create his or her own languages
and formats; however, the CMEXEC, SYSNAME, and SYSPRYV privileges are
required.

With the exception of SYS$LANGUAGE and LIB$DT_FORMAT, all logical names
used by this routine must be defined from the executive mode.

See the OpenVMS Programming Concepts Manual for a description of system
date and time operations as well as a detailed description of the format
mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_ENGLUSED English used; unable to determine or use the
specified language.

LIB$_DEFFORUSE Default format used;‘unable to determine the
desired format.

LIB$_UNRFORCOD Unrecognized format code.

LIB$_STRTRU Output string truncated.

LIB$_ABSTIMREQ Absolute time required.

LIB$_REENTRANCY Reentrant invocation with same context variable.

Any condition values returned by SYS$NUMTIM, LIB$GET_VM, LIB§GET_VM_
64, and LIBSANALYZE_SDESC, LIBSANALYZE_SDESC_64.

LIB-205

LIB$ Routines
LIBSFORMAT_SOGW_PROT (VAX Only)

LIBSFORMAT_SOGW_PROT (VAX Only)
Format Protection Mask

Format

Returns

Arguments

The Format Protection Mask routine translates a protection mask into a
formatted string.

LIBSFORMAT_SOGW_PROT protection-mask, [access-narﬁes], [ownership-names],
[ownership-separator], [list-separator], protection-string, {protection-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

protection-mask
OpenVMS usage: protection

type: word (unsigned)
access: read only
mechanism: by reference

The protection-mask argument is the address of a word that holds a 16-bit
protection mask to be translated.

access-names

OpenVMS usage: access_names

type: array [0..31] of quadword string descriptor
access: read only

mechanism: by reference

The access-names argument is the address of the access name table for the
associated object class. For example, it is the value returned by the LIBSGET_
ACCNAM routine in the "accnam" longword. This parameter is optional and
defaults to the access name table for the FILE object class.

ownership-names
OpenVMS usage: char_string

type: array [0..3] of quadword string descriptor
access: read only
mechanism: by reference

The ownership-names argument is the address of a vector of 4 quadword
descriptors that points to the ownership name. The default value is the full

. ownership category names (System, Owner, Group, World).

LIB-206

Description

LIBS Routines
LIBSFORMAT_SOGW_PROT (VAX Only)

ownership-separator
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor

The ownership-separator argument is the address of a descriptor that points
to the ownership separator string. The separator string is inserted after the
ownership name to introduce a nonempty set of access names. By default, the
value is “: ” (the colon and space characters).

list-separator
OpenVMS usage: char_string

type: character-coded text string
access: read only
mechanism: by descriptor

The list-separator argument is the address of a descriptor that points to the list
separator string. The list separator string is inserted between ownership-access
type pairs. By default, the value is “, ” (the comma and space characters).

protection-string
OpenVMS usage: char_string

type: , character-coded text string
access: write only
mechanism: by descriptor

The protection-string argument is the address of a character-string descriptor
that receives the output of the routine call. protection-string points to the
formatted protection string at the end of a call. The protection string has the
following components repeated for each of: System, Owner, Group, World:

ownership-name[ownership-separator][access-types][list-separator].
An example of a formatted protection string is
System: RWED, Owner: RWED, Group: RW, World: R

protection-length
OpenVMS usage: word_signed

type: word (signed)
access: write only
mechanism: by reference

The protection-length argument is the address of a word that receives the
length of the string returned in the protection-string argument.

LIB$FORMAT_SOGW_PROT translates a 16-bit protection mask into a formatted
string. This routine works for any protected object class by specifying the correct
access name table. The address of the access name table can be obtained from
the LIB$GET_ACCNAM routine.

Several formatting options are available. The caller can specify ownership names,

- ownership separators, or list separators.

LIB-207

LIBS Routines
LIBSFORMAT_SOGW_PROT (VAX Only)

Condition Values Returned

LIB-208

SS$_NORMAL
LIB$_INVARG
STR$_TRU
LIB$_WRONGNUMARG

Routine successfully completed.
Required parameter missing.
String truncation warning.
Wrong number of arguments.

LIB$ Routines
LIBSFREE_DATE_TIME_CONTEXT |

LIBSFREE_DATE_TIME_CONTEXT
Free the Context Area Used When Formatting Dates and Times for
Input or Output

Format

Returns

Arguments

Description

The Free the Context Area Used When Formatting Dates and Times for Input or
Output routine frees the virtual memory associated with the context area used by
the date/time input and output Formatting Routines.

LIBSFREE_DATE_TIME_CONTEXT [user-context]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

user-context
OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to the date
/time input and output Formatting Routines. The user-context argument is
the address of an unsigned longword that contains this context. If the user-
context argument was not specified in the call to LIBSFORMAT_DATE_TIME,

LIB$CONVERT_DATE_STRING, or LIB§GET_MAXIMUM_DATE_LENGTH,
then no argument should be supplied when calling this routine.

The LIB$FREE_DATE_TIME_CONTEXT routine frees the virtual memory
associated with the context area used by the date/time input and output
formatting routines. A call to this routine is optional, since the same functions
are performed at image exit.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Any condition value returned by LIB§FREE_VM. If one of these condition values
is returned, it indicates either an internal coding error or that memory was
corrupted by the user’s program.

LIB-209

LIB$ Routines
LIBSFREE_EF

LIBSFREE_EF
Free Event Flag

The Free Event Flag routine frees a local event flag previously allocated by
LIB$GET_EF. LIBSFREE_EF is the complement of LIB§GET_EF.

Format
LIBSFREE_EF event-flag-number

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Argument

event-flag-number

OpenVMS usage: ef number

type: longword integer (unsigned)
access: read only

mechanism: by reference

Event flag number to be deallocated by LIBSFREE_EF. The event-flag-number
argument is the address of a signed longword integer that contains the event flag
number, which is the value returned to the user by LIB§GET_EF.

Description

When a local event flag allocated by calling LIBSGET_EF is no longer needed,
LIB$FREE_EF should be called to free the event flag for use by other routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_EF_ALRFRE Event flag already free.
LIB$_EF_RESSYS Event flag reserved to system. This error occurs

if the event flag number is outside the ranges of
1 to 23 and 32 to 63.

LiB-210

LIB$ Routines
LIBSFREE_LUN

LIBSFREE_LUN
Free Logical Unit Number

Format

Returns

Argument

Description

The Free Logical Unit Number routine releases a logical unit number allocated
by LIB$GET_LUN to the pool of available numbers. LIB§FREE_LUN is the
complement of LIBSGET_LUN.

LIBSFREE_LUN logical-unit-number

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

logical-unit-number
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Logical unit number to be deallocated. The logical-unit-number argument is
the address of a signed longword integer that contains this logical unit number,
which is the value previously returned by LIB$GE‘T_LUN.

When a logical unit number allocated by calling LIBSGET_LUN is no longer
needed, it should be released for use by other routines.

This routine is useful only in BASIC or Fortran programs.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_LUNALRFRE Logical unit number is already free.
LIB$_LUNRESSYS Logical unit number reserved to system. This

occurs if the specified logical unit number is
outside the range of 100 through 299.

LIB-211

LIB$ Routines
LIBSFREE_TIMER

LIBSFREE_TIMER
Free Timer Storage

Format

Returns

Argument

Description

The Free Timer Storage routine frees the storage allocated by LIBSINIT_TIMER.

LIBSFREE_TIMER handle-address

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

handle-address
OpenVMS usage: address

type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to a block of storage containing the value returned by a previous call to
LIB$INIT TIMER; this is the storage that LIBSFREE_TIMER deallocates. The
handle-address argument is the address of an unsigned longword containing
that value. '

LIB$FREE_TIMER frees a block of storage previously allocated by LIB$INIT_
TIMER. LIB$FREE_TIMER assumes that handle-address was returned by a
previous call to LIB$INIT_TIMER. If the block referred to by handle-address
was not allocated by LIB$INIT TIMER, LIB§FREE_TIMER returns an error. If
the routine completes successfully, LIBSFREE_TIMER sets handle-address to
zZero.

Condition Values Returned

LIB-212

SS$_NORMAL Routine successfully completed.

LIB$_INVARG Invalid argument; handle-address was not
supplied or did not point to a timer block.

LIB$_BADBLOADR Bad block address; LIB$FREE_TIMER could not
deallocate the block to which handle-address
points.

LIBS Routines
LIBSFREE_VM

LIBSFREE_VM
Free Virtual Memory from Program Region

The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that were allocated by a previous call to LIBS§GET_ VM.
The arguments passed are the same as for LIB§GET_VM.¥

Format
LIBSFREE_VM number-of-bytes ,base-address [,zone-id]
- Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments

number-of-bytes
OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIBSFREE_VM. The number-
of-bytes argument is the address of a signed longword integer that contains this
number. The value of number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB§GET_VM.

Note

You may omit the number-of-bytes argument if you are using boundary
tags (LIB$M_VM_BOUNDARY_TAGS).

base-address
OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIBSFREE_VM. The base-address
argument contains the address of an unsigned longword that is this address.
The value of base-address must be the address of a block of memory that was
allocated by a previous call to LIBSGET_VM.

1 No support for arguments passed by 64-bit address reference or for use of 64-b1t
descriptors, if applicable, is planned for this routine.

LIB-213

LIB$ Routines
LIBS$FREE_VM

Description

zone-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a longword that contains a zone identifier
created by a previous call to LIBSCREATE_VM_ZONE or LIB§CREATE_USER._
VM_ZONE.

You must specify the same zone-id value as when you called LIB$GET_VM to
allocate the block. An error status will be returned if you specify an incorrect
zone-id. The zone-id argument is optional. If zone-id is omitted or if the
longword contains the value 0, LIB§VM’s 32-bit default zone is used.

LIB$FREE_VM returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB$GET_VM for the zone.

The base-address argument must contain the address of the first byte of memory
that was allocated by a previous call to LIBSGET_VM. LIB$FREE_VM rounds up
the value of number-of-bytes to a multiple of the block size for the zone.

Note

You cannot free part of a block that was allocated by a call to LIB§GET_
VM. The whole block must be freed by a single call to LIBSFREE_VM.

Neither can you combine contiguous blocks of memory that were allocated
by several calls to LIBS§GET_VM into one larger block that is freed by a
single call to LIBSFREE_VM.

If you specified deallocation filling when you created the zone, LIBSFREE_VM
will fill each byte freed. Note that part of a free block is used to store control
information, so some bytes will not contain the fill value.

LIB$FREE_VM is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the LIBSCREATE_USER_VM_

ZONE routine, then you must have an appropriate action routine for the free
operation. That is, in your call to LIBSCREATE_USER_VM_ZONE, you must
have specified a user deallocation procedure.

Condition Values Returned

LIB-214

SS$_NORMAL Routine successfully completed.

LIB$_BADBLOADR The base-address argument contained a bad
block address. Either an address was outside of
the area allocated by LIB$GET_VM, the contents
of base-address were not properly aligned, part
of the space being deallocated was previously
deallocated, or a zone was found to be corrupt.

LIB$_BADBLOSIZ

LIB$_BADTAGVAL

LIB$ Routines
LIBSFREE_VM

The number-of-bytes argument is less than or
equal to 0, or the number-of-bytes argument is
incorrect for a zone containing fixed size blocks.

For a zone that uses boundary tags, the tag field
was corrupted.

LIB-215

LIB$ Routines
LIBSFREE_VM_64 (Alpha Only)

LIBSFREE_VM_64 (Alpha Only)
Free Virtual Memory from Program Region

Format

Returns

Arguments

LIB—216

The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that were allocated by a previous call to LIBSGET_VM_
64. The arguments passed are the same as for LIBSGET_VM_64.

LIBSFREE_VM_64 number-of-bytes ,base-address [,zone-id]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

number-of-bytes

OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only

mechanism: by reference

Number of contiguous bytes to be deallocated by LIBSFREE_VM_64. The
number-of-bytes argument is the address of a signed quadword integer that
contains this number. The value of number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB§GET_VM_64.

Note

You may omit the number-of-bytes argument if you are using boundary
tags (LIBSM_VM_BOUNDARY_TAGS).

base-address
OpenVMS usage: address

type: quadword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIBSFREE_VM_64. The base-
address argument contains the address of an unsigned quadword that is this
address. The value of base-address must be the address of a block of memory
that was allocated by a previous call to LIB§GET_VM_64.

Description

LIB$ Routines
LIBSFREE_VM_64 (Alpha Only)

zone-id

OpenVMS usage: identifier

type: quadword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a quadword that contains a zone
identifier created by a previous call to LIBSCREATE_VM_ZONE_64 or
LIB$CREATE_USER_VM_ZONE_64.

You must specify the same zone-id value as when you called LIB§GET_VM_64
to allocate the block. An error status will be returned if you specify an incorrect
zone-id. The zone-id argument is optional. If zone-id is omitted or if the
quadword contains the value 0, LIB§VM’s 64-bit default zone is used.

LIB$FREE_VM_64 returns the block of memory to a free list associated with the
zone, so the block is available on a subsequent call to LIB§GET_VM_64 for the
zone.

The base-address argument must contain the address of the first byte of memory
that was allocated by a previous call to LIB§GET_VM_64. LIBSFREE_VM_64
rounds up the value of number-of-bytes to a multiple of the block size for the
zone.

Note

You cannot free part of a block that was allocated by a call to LIBSGET_
VM_64. The whole block must be freed by a single call to LIB$FREE_
VM_64.

Neither can you combine contiguous blocks of memory that were allocated
by several calls to LIB§GET_VM_64 into one larger block that is freed by
a single call to LIBSFREE_VM_64.

If you specified deallocation filling when you created the zone, LIBSFREE_VM_64
will fill each byte freed. Note that part of a free block is used to store control
information, so some bytes will not contain the fill value.

LIB$FREE_VM_64 is fully reentrant, so it can be called by routines executing at
AST-level or in an Ada multitasking environment.

If the zone you are freeing was created using the LIBSCREATE_USER_VM_
ZONE_64 routine, then you must have an appropriate action routine for the free
operation. That is, in your call to LIBSCREATE_USER_VM_ZONE_64, you must
have specified a user deallocation procedure.

LIB-217

LIB$ Routines
LIBSFREE_VM_64 (Alpha Only)

Condition Values Returned

SS$_NORMAL
LIB$_BADBLOADR

LIB$_BADBLOSIZ

LIB$_BADTAGVAL

LIB-218

Routine successfully completed.

The base-address argument contained a bad
block address. Either an address was outside
of the area allocated by LIB§GET_VM_64, the
contents of base-address were not properly
aligned, part of the space being deallocated was
previously deallocated, or a zone was found to be
corrupt.

The number-of-bytes argument is less than or
equal to 0, or the number-of-bytes argument is
incorrect for a zone containing fixed size blocks.

For a zone that uses boundary tags, the tag field
was corrupted.

LIB$ Routines
LIBSFREE_VM_PAGE

LIBSFREE_VM_PAGE
Free Virtual Memory Page

Format

Returns

Arguments

Description

The Free Virtual Memory Page routine deallocates a block of contiguous pages on
VAX systems or pagelets on Alpha systems that were allocated by previous calls
to LIBS§GET_VM_PAGE.}

LIBSFREE_VM_PAGE number-of-pages ,base-address

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value
number-of-pages

OpenVMS usage: longword_signed

type: longword integer (signed)
access: read only

mechanism: by reference

Number of pages on VAX systems or pagelets on Alpha systems. The number-
of-pages argument is the address of a longword integer which specifies the
number of contiguous pages on VAX systems or pagelets on Alpha systems to be
deallocated. The value of number-of-pages must be greater than zero.

base-address

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a longword which
contains the address of the first byte of the first VAX page or Alpha pagelet to be
deallocated.

LIB$FREE_VM_PAGE deallocates a block of contiguous 512-byte pages starting
at base-address. Each of the pages or pagelets specified by number-of-pages
and base-address must have been allocated by previous calls to LIB§GET_
VM_PAGE. The pages or pagelets are returned to the processwide pool and are
available to satisfy subsequent calls to LIBSGET_VM_PAGE.

¥ No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

LIB-219

LIBS$ Routines
LIBSFREE_VM_PAGE

You can free a smaller group of pages or pagelets than you allocated. That

is, if you allocated a group of contiguous pages or pagelets by a single call to
LIB$GET_VM_PAGE, you can deallocate them in several calls to LIB§FREE_
VM_PAGE. You can also combine contiguous groups of pages or pagelets that
were allocated in several calls to LIBSGET_VM_PAGE into one large group that
is freed by a single call to LIBSFREE_VM_PAGE.

LIB$FREE_VM_PAGE is fully reentrant, so it may be called by routines executing
at AST level or in an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_BADBLOADR Pages on VAX systems or pagelets on Alpha
: systems not allocated by LIB§GET_VM_PAGE,
the value of base-address is not a page
boundary, or the pages were previously freed.
LIB$_BADBLOSIZ The number-of-pages argument is less than or
equal to zero.

LIB-220

LIB$ Routines
LIBS$FREE_VM_PAGE_64 (Alpha Only)

LIBSFREE_VM_PAGE_64 (Alpha Only)
Free Virtual Memory Page

Format

Returns

Arguments

Description

The Free Virtual Memory Page routine deallocates a block of contiguous Alpha
pagelets that were allocated by previous calls to LIBSGET_VM_PAGE_64.

LIBSFREE_VM_PAGE_64 number-of-pages ,base-address

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

number-of-pages
OpenVMS usage: quadword_signed

type: quadword integer (signed)
access: read only
mechanism: by reference

Number of Alpha pagelets. The number-of-pages argument is the address of a
quadword integer which specifies the number of contiguous Alpha pagelets to be
deallocated. ‘The ralue of number-of-pages must be greater than zero.

base-address

OpenVMS usage: address

type: quadword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a quadword which
contains the address of the first byte of the first Alpha pagelet to be deallocated.

LIB$FREE_VM_PAGE_64 deallocates a block of contiguous Alpha pagelets
starting at base-address. Each of the pagelets specified by number-of-pages
and base-address must have been allocated by previous calls to LIB§GET_VM_
PAGE_64. The pagelets are returned to the processwide pool and are available to
satisfy subsequent calls to LIBSGET VM_PAGE_64.

You can free a smaller group of pagelets than you allocated. That is, if you
allocated a group of contiguous pagelets by a single call to LIBSGET _VM_PAGE_
64, you can deallocate them in several calls to LIBSFREE_VM_PAGE_64. You
can also combine contiguous groups of pagelets that were allocated in several
calls to LIBS§GET_VM_PAGE_64 into one large group that is freed by a single call
to LIBSFREE_VM_PAGE_64.

LIBSFREE_VM_PAGE_64 is fully reentrant, so it may be called by routines
executing at AST level or in an Ada multitasking environment.

LIB-221

LIB$ Routines ,
LIBSFREE_VM_PAGE_64 (Alpha Only)

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_BADBLOADR Alpha pagelets not allocated by LIBSGET_VM_
PAGE_64, the value of base-address is not a
pagelet boundary, or the pagelets were previously
freed.

LIB$_BADBLOSIZ The number-of-pages argument is less than or
equal to zero.

LIB-222

LIB$ Routines
LIBSGETDVI

LIBSGETDVI
Get Device/Volume Information

The Get Device/Volume Information routine provides a simplified interface to
the $GETDVI system service. It returns information about the primary and
secondary device characteristics of an I/O device. The calling process need not
have a channel assigned to the device about which it wants information.

Format
LIBSGETDVI item-code [,channel] [,device-name] [longword-integer-value] [,resultant-string]
[,resultant-length]
Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Arguments
item-code
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Code specifying the item of information you are requesting. The item-code
argument is the address of a signed longword containing the item code. All valid
$GETDVI item codes whose names begin with DVI$_ are accepted.

See the Description section for more information on item codes.

channel

OpenVMS usage: channel

type: word (unsigned)
access: read only
mechanism: by reference

OpenVMS I/O channel assigned to the device for which LIB§GETDVI returns
information. The channel argument is the address of an unsigned word
containing the channel specification. If channel is not specified, device-name is
used instead. You must specify either channel or device-name, but not both. If
neither is specified, the error status SS$_IVDEVNAM is returned.

device-name -
OpenVMS usage: device_name

type: character string
access: read only
mechanism: by descriptor

Name of the device for which LIB§GETDVI returns information. The device-
name argument is the address of a descriptor pointing to the device name string.
If this string contains a colon, the colon and the characters that follow it are
ignored.

LIB-223

LIB$ Routines

LIBSGETDVI

Description

LIB-224

The device-name may be either a physical device name or a logical name. If
the first character in the string is an underscore character (_), the name is
considered a physical device name. Otherwise, the name is considered a logical
name, and logical name translation is performed until either a physical device
name is found or the system default number of translations has been performed.

If device-name is not specified, channel is used instead. You must specify
either channel or device-name, but not both. If neither is specified, the error
status SS$_IVDEVNAM is returned. The device name must not be longer than
255 characters.

longword-integer-value
OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Numeric value of the information requested. The longword-integer-value
argument is the address of a signed longword containing the numeric value. If an
item is listed as only returning a string value, this argument is ignored.

resultant-string _
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String representation of the information requested. The resultant-string
argument is the address of a descriptor pointing to this information. If resultant-
string is not specified and if the value returned has only a string representation,
the error status LIB$_INVARG is returned.

Refer to Table LIB—4 for a description of the string representation used for each
item.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB§GETDVI.
The resultant-length argument is the address of an unsigned word containing
this length.

LIB$GETDVI returns two categories of information:
* Primary device characteristics
* Secondary device characteristics

LIB$GETDVI does not allow you to get more than one item of information in a
single call.

LIB$ Routines
LIBSGETDVI

LIB$GETDVI provides the following features in addition to those provided by the
$GETDVI system service.

* Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

* For items which return numeric values, LIBS§GETDVI can optionally provide
a formatted string interpretation of the value. For example, if the device
owner UIC is requested, LIBSGETDVI can return the UIC formatted as
[identifier]. .

e For string arguments, LIBSGETDVI understands all string classes supported
by the Run-Time Library.

e Calls to LIB$GETDVI are synchronous; LIB§GETDVI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

See the description of the $GETDVI system service in the OpenVMS System
Services Reference Manual for more detailed information.

Iltem Codes

All item codes that can be used with the $GETDVI system service may be used
as the item-code argument to LIB§GETDVI. These codes have symbolic names
beginning with DVI$_,

The use of a DVI$_ code by itself will return the primary device characteristic
associated with that code. To obtain the secondary device characteristics, add 1
to the code. See the description of the $GETDVI system service for a list of the
defined item codes. The symbolic names for these items are defined in Digital
supplied symbol libraries in module $DVIDEF (where appropriate).

Value Formats

By using the longword-integer-value and resultant-string arguments to
LIB$GETDVI, the information requested can be returned in two different
fashions.)

¢ For those items described as “string” in the table of Item Identifier Codes for
the $GETDVI service, the value is returned in resultant-string.

* For all other items—those that have numeric values—the numeric
representation is returned in longword-integer-value (f specified), and a
formatted string interpretation of the value is returned in resultant-string.

Each formatted item is written leftjustified; resultant-length, if specified, gives
the number of characters used. Table LIB—4 lists the formats used for the string
interpretations.

LIB-225

LIB$ Routines
LIBSGETDVI

Table LIB-4 Formats Used for LIBSGETDVI Strings

Item or Format

Description

DVI$_ACPPID
DVI$_PID

DVI$_ACPTYPE

DVI$_OWNUIC

DVI$_VPROT

Boolean

All others

The string value is returned as an 8-digit hexadecimal
number.

The string value is returned as an 8-digit hexadecimal
number.

The ACP type string is one of the following:
NONE No ACP

F11v1 Files—11 Level 1

F11V2 - Files—11 Level 2

MTA Magnetic Tape

NET Networks

REM Remote I/O

The standard UIC format [group,member] is used. If the
format of a UIC includes identifiers from the access rights
database in place of the octal group and member numbers,
the UIC string returned will have these identifiers, if
available.

The volume protection string is in the following form:
SYSTEM=RWLP,OWNER=RWLP,GROUP=RWLP,WORLD=RWLP
If a category has no access, the equal sign is omitted. The

string will not contain any embedded spaces.

The value string returned is TRUE if the low bit of the
value is set, or FALSE if the low bit is clear.

The value string is returned in the form of an unsigned
decimal integer.

Condition Values Returned

SS$_NORMAL
LIB$_STRTRU

SS$_BADPARAM
SS$_IVDEVNAM

LIB$_INSEF

LIB—226

Normal successful completion.

String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

Unrecognized item code. The item-code
argument was not recognized as valid by
$GETSYI.

The device name string contains invalid
characters, or neither the channel nor device-
name arguments were specified.

Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

LIB$ Routines
LIBSGETDVI

LIB$_INVARG Invalid arguments. The $GETSYI Item Identifier
code describes the item as “string”, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor of
the resultant-string argument is not a valid
descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETDVL

Any condition values returned by LIB$SCOPY _xuxx.
Any condition values returned by SYS$GETDVI.

LIB-227

LiB$ Routines

LIBSGETJPI

LIBSGETJPI
Get Job/Process Information

Format

Returns

Arguments

LIB-228

The Get Job/Process Information routine provides a simplified interface to the
$GETJPI system service. It provides accounting, status, and identification
information about a specified process.

LIB$GETJPI obtains only one item of information in a single call.

LIBSGETJPI item-code [,process-id] [,process-name] [,resultant-value] [,resultant-string]
[,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The
item-code argument is the address of a signed longword containing the item
code. You may request only one item in each call to LIB§GETJPIL.

LIB$GETJPI accepts all $GETJPI item codes. These names begin with JPI$_ and
are defined in Digital supplied symbol libraries in module $JPIDEF.

process-id

OpenVMS usage: process_id :
type: longword (unsigned)
access: modify

mechanism: by reference

Process identifier of the process for which you are requesting information. The
process-id argument is the address of an unsigned longword containing the
process identifier. If you do not specify process-id, process-name is used.

The process-id is updated to contain the process identifier actually used,
which may be different from what you originally requested if you specified
process-name or used wildcard process searching.

LIB$ Routines

LIBSGETJPI
process-name
OpenVMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

A 1- to 15-character string specifying the name of the process for which you
are requesting information. The process-name argument is the address of
a descriptor pointing to the process name string. The name must correspond
exactly to the name of the process for which you are requesting information;
LIB$GETJPI does not allow trailing blanks or abbreviations.

If you do not specify process-name, process-id is used. If you specify neither
process-name nor process-id, the caller’s process is used. Also, if you do not
specify process-name and you specify zero for process-id, the caller’s process
is used. In this way, you can fetch the item you want and the caller’s PID in a
single call to LIB$GETJPI.

resultant-value
OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you request. The resultant-value argument
is the address of a longword or quadword into which LIB$GETJPI writes the
numeric value of this information. Refer to Table LIB-5 for information on which
items return longword values and which return quadword values. If the item you
request returns only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String representation of the information you request. The resultant-string
argument is the address of a character string into which LIB§GETJPI writes the
string representation. Table LIB-5 describes the string representation used for
each item.

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB§GETJPI.
The resultant-length argument is the address of an unsigned word integer into
which LIB§GETJPI writes the number of characters.

LIB—-229

LIB$ Routines

LIBSGETJPI

Description

LIB-230

LIB$GETJPI provides the following features in addition to those provided by the
$GETJPI system service:

* Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

* For items which return numeric values, LIBSGETJPI can optionally provide a
formatted string interpretation of the value. For example, if the process UIC
is requested, LIB$GETJPI can return the UIC formatted as [g,m].

* For string arguments, all string classes supported by the Run-Time Library
are understood.

e (Calls to LIB§GETJPI are synchronous. LIB§GETJPI calls LIB§GET_EF to
allocate a local event flag number for synchronization.

See the description of the $GETJPI system service in the OpenVMS System
Services Reference Manual for more information.

By using the resultant-value and resultant-string arguments to LIBSGETJPI,
you can request that the information be returned in two ways. For those items
described as “string” in the table of Item Identifier Codes for the $GETJPI service,
the value is returned in resultant-string. For all other items—those which have
numeric values—the numeric representation is returned in resultant-value

(if specified), and a formatted string interpretation of the value is returned in
resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

Table LIB-5 lists the formats used for the string interpretations.

Table LIB-5 Item Code Formats for LIBSGETJPI
Item or Format Description

JPI$_AUTHPRIV The string representation of these quadword privilege
masks is a list of each privilege that is enabled. The
privilege names are in uppercase, and are separated by

commas.

JPI$_CURPRIV Same as for JPISAUTHPRIV.

JPI$_IMAGPRIV Same as for JPISAUTHPRIV.

JPI$_PROCPRIV Same as for JPISAUTHPRIV.

JPI$_LOGINTIM The string representation of the quadword time is a
standard absolute date-time string.

JPI$_PID The process identification string is an 8-digit

hexadecimal number.

(continued on next page)

LIB$ Routines

LIBSGETJPI
Table LIB-5 (Cont.) Item Code Formats for LIBSGETJPI
Item or Format Description
JPI$_STATE The process state string is one of the following:
CEF Common event flag wait

COM Computable

COMO Computable, outswapped

CUR Current process

COLPG Collided page wait

FPG Free page wait

HIB Hibernate wait

HIBO Hibernate wait, outswapped

LEF Local event flag wait

LEFO Local event flag wait, outswapped
MWAIT Mutex and miscellaneous resource wait
PFW Page fault wait

SUSP Suspended

SUSPO Suspended, outswapped

JPI$_UIC The standard UIC format [group,member] is used. If
the format of a UIC includes identifiers from the access
rights database in place of the octal group and member
numbers, the UIC string returned will have these
identifiers, if available.

JPI$_MODE The current mode string is one of the following: BATCH,
INTERACTIVE or NETWORK.

All others ' The string value is returned as an unsigned decimal
integer.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

SS$_BADPARAM Unrecognized item code. The item-code

argument was not recognized as valid by
$GETJPI.

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETSYI Item Identifier
code describes the item as “string”, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB-231

LIBS$ Routines
LIBSGETJPI

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETJPL.

Any condition value returned by LIB$SCOPY_xxx.
- Any condition value returned by SYS$GETJPI.

LIB-232

LIB$ Routines
LIBSGETQUI

LIBSGETQUI
Get Queue Information

Format

Returns

Arguments

The Get Queue Information routine provides a simplified interface to the
$GETQUI system service. It provides queue, job, file, characteristic, and form
information about a specified process.

LIB$GETQUI obtains only one item of information in a single call.

LIBSGETQUI function-code [,item-code] [,search-number] [,search-name] [,search-flags] [,resultant-value]
[,resultant-string] [,resultant-length]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

function-code
OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Function code specifying the function that LIBSGETQUI is to perform. The
function-code argument is the address of a signed longword containing the
function code.

LIB$SGETQUI accepts all $GETQUI function codes. These names begin with
QUI$_ and are defined in Digital supplied symbol libraries in module $QUIDEF.

item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The
item-code argument is the address of a signed longword containing the item
code. You may request only one item in each call to LIBSGETQUI.

LIB$GETQUI accepts all $GETQUI item codes. These names begin with QUI$_
and are defined in Digital supplied symbol libraries in module $QUIDEF.

LIB-233

LIB$ Routines

LIBSGETQUI

LIB-234

search-number
OpenVMS usage:
type:

access:
mechanism:

longword_signed
longword integer (signed)
read only

by reference

Numeric value used to process your request. The search-number argument
is the address of a signed longword integer containing the number needed to
process your request. The search-number argument corresponds directly to
QUI$_SEARCH_NUMBER as described by the $GETQUI system service.

search-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string used to process your request. The search-name argument is
the address of.a string descriptor that provides the name needed to process your
request. The search-name argument corresponds directly to QUI$_SEARCH_
NAME as described by the $GETQUI system service.

search-flags
OpenVMS usage: longword_unsigned

type: longword integer (unsigned)
access: read only
mechanism: by reference

Optional bit mask indicating request to be performed. The search-flags
argument is the address of an unsigned longword integer containing the bit
mask. The search-flags argument directly corresponds to $QUI_SEARCH_
FLAGS as described by the $GETQUI system service.

resultant-value

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you requested. The resultant-value argument
is the address of a longword, quadword or octaword into which LIB§GETQUI
writes the numeric value of this information. Refer to Table LIB-6 for
information on which items return values other than longwords.

If the item you requested returns only a string value, this argument is ignored.

resultant-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: .by descriptor

String representation of the information you requested. The resultant-string
argument is the address of a character string into which LIB§GETQUI writes the
string representation. Table LIB—6 describes the string representation used for
each item.

Description

LIB$ Routines
LIB$GETQUI

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length
OpenVMS usage: word_signed

type: word integer (signed)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB§GETQUI.
The resultant-length argument is the address of a signed word integer into
which LIB$GETQUI writes the number of characters.

LIB$GETQUI provides a simplified interface to the $GETQUI system service. It
provides queue, job, file, characteristic, and form information about a specified
process. This routine obtains only one item of information in a single call.

LIB$GETQUI provides the following features in addition to those provided by the
$GETQUI system service.

* Instead of a list of item descriptors that may be difficult to construct in high-
level languages, the single item desired is specified as an integer code which
is passed by reference. Results are written to separate arguments.

* For items that return numeric values, LIBSGETQUTI optionally can provide a
formatted string interpretation of the value. For example, if you request the
characteristics of a queue, LIBSGETQUI can return the list of characteristics
as “23,42,76,98,125”,

o For string arguments, all string classes supported by the Run-Time Library
are understood.

e (Calls to LIB§GETQUI are synchronous. LIB$§GETQUI calls $GETQUIW to
force the synchronization.

LIB$GETQUI retains context. This means that previous calls to LIB$GETQUI
affect current calls to LIB§GETQUI.

See the description of the $GETQUI system service in the OpenVMS System
Services Reference Manual for more information.

By using the resultant-value and resultant-string arguments to LIB§GETQUI,
you can request that the information be returned in two ways. For items that
have numeric values, the numeric representation is returned in resultant-value
(if specified), and a formatted string interpretation of the value is returned in
resultant-string. For those items described as “string” in the table of Item
Identifier Codes for the $GETQUI service, the value is returned in resultant-
string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

The $GETQUI system service requires some item codes. LIB§GETQUI provides
those item codes for you by corresponding your input to LIBSGETQUI directly to
the required input codes.

LIB—235

LIB$ Routines
LIBSGETQUI

The following table describes all of the required and optional input needed to
perform your task with LIB§GETQUI:

Function Input Description

QUI$_CANCEL Accepts no input.

QUI$_DISPLAY_CHARACTERISTIC A characteristic name or number,
or both. Optionally, a search flags
number.

QUI$_DISPLAY_ENTRY Optionally, an entry number, user
name, and search flags number. The
default user name is that of the calling

process.
QUI$_DISPLAY_FILE Optionally, a search flags number.
QUI$_DISPLAY_FORM A form name or number, or both.
Optionally, a search flags number.
QUI$_DISPLAY_JOB ~ Optionally, a search flags number.
QUI$_DISPLAY_QUEUE ‘ A queue name. Optionally, a search
flags number.
QUI$_TRANSLATE_QUEUE A queue name.

Table LIB-6 lists the formats used for the string interpretations.

Table LIB-6 Item Code Formats fo'r LIBSGETQUI

Item or Format Description

QUI$_AFTER_TIME Returns a quadword resultant-value as
well as a resultant-string.

QUI$_CHARACTERISTICS Returns an octaword resultant-value as

well as a comma-separated list that lists
all the characteristic numbers, output as
a resultant-string,.

QUI$_SUBMISSION_TIME Returns a quadword resultant-value as
. well as a resultant-string.
QUI$_UIC Returns a formatted resultant-string as

well as a longword.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the
returned item.

SS$_BADPARAM Unrecognized item code. The item-code
argument was not recognized as valid by
$GETQUI.

LIB-236

LIB$ Routines

LIBSGETQUI
LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.
LIB$_INVARG Invalid arguments. The $GETSYI Item Identifier

code describes the item as “string”, and no
resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a
string argument was not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETQUI.

Any condition value returned by LIB$SCOPY_xxx.
Any condition value returned by SYS$GETQUI.

LIB-237

LIBS$ Routines

LIBSGETSYI

LIBSGETSYI
Get Systemwide Information

Format

Returns

Arguments

LIB-238

The Get Systemwide Information routine provides a simplified interface to the
$GETSYI system service. The $GETSYI system service obtains status and
identification information about the system. LIBSGETSYI returns only one item
of information in a single call.

LIBSGETSY! item-code [resultant-value] [resultant-string] [,resultant-length] [,cluster-system-id]
[,node-name]

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item code specifying the desired item of information. The item-code argument
is the address of a signed longword containing this item code. All valid $GETSYI
item codes are accepted.

resultant-value
OpenVMS usage: varying_arg

type: unspecified
access: write only
mechanism: by reference

Numeric value returned by LIBSGETSYI. The resultant-value argument is the
address of a longword or quadword containing this value. If an item is listed as
returning only a string value, this argument is ignored.

resultant-string
OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Information returned by LIBSGETSYI. The resultant-string argument is the
address of a descriptor pointing to the character string that will receive this
information.

See the Description section for more information about value formats. If
resultant-string is not specified and if the returned value has only a string
representation, the error status LIB$_INVARG is returned.

LIB$ Routines
LIBSGETSYI

resultant-length
OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string, not including
blank padding or truncated characters. The resultant-length argument is the
address of an unsigned word into which LIBSGETSYI returns this number.

cluster-system-id
OpenVMS usage: identifier

type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification (CSID) of the node for which information is to

be returned. The cluster-system-id argument is the address of this CSID.

If cluster-system-id is specified and is nonzero, node-name is not used. If
cluster-system-id is specified as zero, LIBSGETSYI uses node-name and
writes into the cluster-system-id argument the CSID corresponding to the node
identified by node-name.

The cluster-system-id of an OpenVMS node is assigned by the cluster-
connection software and may be obtained by the DCL command SHOW
CLUSTER. The value of the cluster-system-id for an OpenVMS node is not
permanent; a new value is assigned to an OpenVMS node whenever it joins or
rejoins the VAXcluster.

If cluster-system-id is specified as —1, LIBSGETSYI assumes a wildcard
operation and returns the requested information for each OpenVMS node in the
cluster, one node per call.

If cluster-system-id is not specified, node-name is used.

node-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: - by descriptor

Name of the node for which information is to be returned. The node-name
argument is the address of a descriptor pointing to the node name string. If
cluster-system-id is not specified or is specified as zero, node-name is used. If
neither node-name nor cluster-system-id is specified, the caller’s node is used.
See the cluster-system-id argument for more information.

The node name string must contain from 1 to 15 characters and must correspond
exactly to the OpenVMS node name; no trailing blanks nor abbreviations are
permitted.

LIB-239

LIB$ Routines

LIBSGETSYI

Description

LIB$GETSYI provides the following features in addition to those provided by the
$GETSYI system service:

¢ Instead of a list of item descriptors, which may be difficult to construct in
high-level languages, the single item desired is specified as an integer code
which is passed by reference. Results are written to separate arguments.

¢ For items which return numeric values, LIBS§GETSYI can optionally provide
a formatted string interpretation of the value.

e For string arguments, all string classes supported by the Run-Time Library
are understood.

e Calls to LIB§GETSYI are synchronous. LIB$GETSYI calls LIB$GET_EF to
allocate a local event flag number for synchronization.

All item codes that can be used with the $GETSYI system service may be used
as the item-code argument to LIB§GETSYI. See the description of the $GETSYI
system service for a list of the defined item codes. Note that the symbolic
names for these items are defined in Digital supplied symbol libraries in module
$SYIDEF (where appropriate).

Value Formats

By using the resultant-value and resultant-string arguments to LIB§GETSYI,
you can request that the information be returned in two ways. For those items
described as “string” in the table of Item Identifier Codes for the $GETSYI
service, the value is returned in resultant-string. For all other items—

those which have numeric values—the numeric representation is returned in
resultant-value (if specified), and an unsigned decimal integer representation is
stored in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives
the number of characters used.

See the OpenVMS System Services Reference Manual for a description of the
$GETSYI system service.

Condition Values Returned

LIB-240

SS$_NORMAL Routine successfully completed.

LIB$_STRTRU String truncated. This is an alternate success
return status. The resultant-string argument
could not contain all the characters of the

: returned item.

SS$_BADPARAM Unrecognized item code. The item-code
argument was not recognized as valid by
$GETSYL.

LIB$_INSEF Insufficient event flags. A local event flag
number could not be allocated by a call to
LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETSYI item identifier
code describes the item as “string”, and no
resultant-string argument was specified.

LIB$ Routines
LIBSGETSYI

LIB$_INVSTRDES Invalid string descriptor. The descriptor of
the resultant-string argument is not a valid
descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect
number of arguments was passed to
LIB$GETSYI.

Any condition values returned by LIB§SCOPY_xxx.
Any condition values returned by the $GETSYI system service.

LIB-241

LIB$ Routines
LIBSGET_ACCNAM (VAX Only)

LIBSGET_ACCNAM (VAX Only)
Get Access Name Table for Protected Object Class (by Name)

Format

Returns

Arguments

LIB-242

The Get Access Name Table for Protected Object Class (by Name) routine returns
a pointer to the access name table for a protected object class that is specified by
name.

LIBSGET_ACCNAM [clsnam] , [objnam] ,accnam

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value

clsnam

OpenVMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor

The clsnam argument is the address of a character string descriptor pointing
to the name of a security object class. This argument is optional and defaults to
FILE. '

objnam

OpenVMS usage: char_string

type: character-coded text string
access:. read only

mechan