

OpenVMS Calling Standard

Order Number: AA-QSBBA-TE

December 1995

This standard defines the requirements, mechanisms, and conventions
used in the OpenVMS interface that supports procedure-to-procedure
calls for Alpha and VAX environments. The standard defines the run-
time data structures, constants, algorithms, conventions, methods, and
functional interfaces that enable a 32-bit or 64-bit native user-mode
procedure to operate correctly in a multilanguage and multithreaded
environment on Alpha and VAX processors.

Revision/Update Information: = This manual supersedes the OpenVMS
Calling Standard for OpenVMS AXP
Version 6.1 and OpenVMS VAX Version
6.1.

Software Version: OpenVMS Alpha Version 7.0
OpenVMS VAX Version 7.0

Digital Equipment Corporation
Maynard, Massachusetts

December 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1995. All rights reserved.

The following are trademarks of Digital Equipment Corporation: AXP, Bookreader, DEC, DEC C++,
DEC COBOL, DEC Pascal, DEC PL/, DECthreads, Digital, OpenVMS, ULTRIX, VAX, VAX C, VAX
DOCUMENT, VAX MACRO, VAXcluster, VMS, VMScluster, and the DIGITAL logo.

The following are third-party trademarks:

BASIC is a registered trademark of the Trustees of Dartmouth College, D.B.A. Dartmouth College.

Internet is a registered trademark of Ir}temet, Inc.

Motorola is a registered trademark of Motorola, Inc.

POSIX is a registered certification mark of the Institute o.f Electrical and Electronic Engineers.

Display PostScript and PostScript are registered trademarks of Adobe Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.
ZK5973

This document is available on CD-ROM.

Contents

Preface

1 Introduction

1.1

1.2
1.3
1.4

Applicability..............
Architectural Level
Goals

Definitions

2 OpenVMS VAX Conventions

2.1
2.1.1
2.1.2
22
2.3
24
2.4.1
2.4.2
2421
2422

25
2.5.1
2.5.1.1
2.6
2.6.1
2.6.2

Register Usage
Scalar Register Usage . ..
Vector Register Usage . ..

Stack Usage

Calling Sequence

Argument List
Format...............

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

Argument Lists and High-Level Languages
Order of Argument Evaluation............................
Language Extensions for Argument Transmission

Function Value Returns

..................................

Returning a Function Value on Top of the Stack
Returning a Fixed-Length or Varying String Function Value.
Vector and Scalar Processor Synchronization.......................

Memory Synchronization .
Exception Synchronization

3 OpenVMS Alpha Conventions

3.1
3.1.1
3.1.2
3.2

3.3

3.4
3.4.1
342
3.4.3
3.4.3.1
3.4.3.2
3.4.3.3
3.434
3.4.4

Register Usage

Integer Registers
Floating-Point Registers. .
Address Representation
Procedure Representation . ..
Procedure Types...........
Stack Frame Procedures .

..................................

..................................

..................................

..................................

..................................

..................................

..................................

Procedure Descriptor for Procedures with a Stack Frame

Stack Frame Format

..................................

Fixed-Size Stack Frame ity
Variable-Size Stack Frame,
Fixed Temporary Locations for All Stack Frames
Register Save Area for All Stack Frames....................

Register Frame Procedure

..................................

1-2
1-2
1-2
1-4

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-5
2-5
2-5
2-6
2-7
2-8
2-8
2-9
2-9

3-1
31
3-2
3-3
3-3
3-3
3-4
3-5
3-8
3-9
3-10
3-12
3-12
3-14

3.4.5 Procedure Descriptor for Procedures with a Register Frame
3.4.6 Null Frame Procedurescc0iiiiiieetennnnnnn..

3.4.7 Procedure Descriptor for Null Frame Procedures.................
3.5 Procedure Signatures................ e e
3.5.1 Call Parameter PSIG Conversions e e e e
3.5.1.1 Native-to-Translated Code PSIG Conversions e
3.5.1.2 Translated-to-Native Code PSIG Conversions
3.5.2 Default Procedure Signature0itiriiinrnnnnnn
3.6 Procedure Call Chainttt ennn
3.6.1 Current Procedurec0i ittt
3.6.2 Procedure Call Tracing.ttt iiiiiennn
3.6.2.1 Referring to a Procedure Invocation from a Data Structure.
3.6.2.2 Invocation Context Block,
3.6.2.3 Getting a Procedure Invocation Context with a Routine
3.6.2.4 Walking the Call Chain e
3.6.3 Invocation Context Access Routines
3.6.3.1 LIBSGET_INVO_CONTEXTiititieiieeiiieaneennn
3.6.3.2 LIBSGET_CURR_INVO_CONTEXT.cvvtiiiiinnnnnn.
3.6.3.3 LIBSGET_PREV_INVO_CONTEXTvtiieinnennn
3.6.3.4 LIBSGET_INVO_HANDLEcoiiitniinennnnnn..
3.6.3.5 LIBSGET_PREV_INVO_HANDLEcoivirinrnnnnn..
3.6.3.6 LIBSPUT_INVO_ REGISTERSttt
3.7 Transfer of Control. it .
3.7.1 Call Conventionscviiiiiiiiiiiierneneennnnens
3.7.2 Linkage Section0 ittt ittt ittt
3.7.3 Calling Computed Addressesuttiennnnennnnnnnnnn.
3.74 Bound Procedure Descriptors ottt
3.7.41 Bound Procedure Valuec0iiiiiiiiininnunnn
3.7.5 Entry and Exit Code Sequences..............cciiirinnnnnn.
3.7.5.1 Entry Code Sequencecitiiiinnrninnnnnnn
3.7.5.2 Exit Code Sequencecciiiiiiineeeeinenennnn
3.8 Data Passingo it it e e e e e e
3.8.1 Argument-Passing Mechanismscviiiueennn...
3.8.2 Argument List Structure i
3.8.3 Argument Lists and High-Level Languages
3.84 Unused Bitsin Passed Datacciiiiiiiinnnnn..
3.8.5 SendingData e
3.8.5.1 Sending Mechanism ittt
3.8.5.2 Order of Argument Evaluation............................
3.8.6 Receiving Data........ e e e e e e e
3.8.7 Returning Data ittt
3.8.7.1 Function Value Return by Immediate Value
3.8.7.2 Function Value Return by Reference
3.8.7.3 Function Value Return by Descriptor.
3.9 Static Data.o ottt e
3.9.1 Alignment e
3.9.2 Record Layout Conventionscciitiiretnnnnnnn..
3.9.2.1 Aligned Record Layoutcooiiiiiiiinnnnnnnnnnnns
3.9.2.2 OpenVMS VAX Compatible Record Layout
3.10 Multithreaded Execution Environments

3.10.1 Stack Limit Checking. i,

3.10.1.1 Stack Guard Region
3.10.1.2 Stack Reserve Region.......... ... i,
3.10.1.3 Methods for Stack Limit Checking. PR
3.10.1.4 Stack Overflow Handling

4 OpenVMS Argument Data Types

41 Atomic Data Typest e e
4.2 String Data Types ...ttt ittt e i et e e e
4.3 Miscellaneous Data Typesco ittt et
4.4 Reserved Data-Type Codes0ttt
441 Facility-Specific Data-Type Codescciviiereennnn..
4.5 Varying Character String Data Type (DSC$K_DTYPE_VT)............

5 OpenVMS Argument Descriptors

5.1 Descriptor Prototype it it
5.2 - Fixed-Length Descriptor (CLASS_S)
5.3 Dynamic String Descriptor (CLASS_ D),
5.4 Array Descriptor (CLASS_A) et e e i e e
5.5 Procedure Argument Descriptor (CLASS_P)t
5.6 Decimal String Descriptor (CLASS_SD)......
5.7 Noncontiguous Array Descriptor (CLASS_ NCA)
5.8 Varying String Descriptor (CLASS_VS)
5.9 Varying String Array Descriptor (CLASS VSA).....................
5.10 Unaligned Bit String Descriptor (CLASS_UBS).....................
5.11 Unaligned Bit Array Descriptor (CLASS_ UBA)
5.12 String with Bounds Descriptor (CLASS_SB), ..
5.18 Unaligned Bit String with Bounds Descriptor (CLASS UBSB)
5.14 Reserved Descriptor Class Codes oot iiiinnerennnnn..
5.14.1 Facility-Specific Descriptor Class Codes.

6 OpenVMS Conditions

6.1 Condition Valueso,
6.1.1 Interpretation of Severity Codes
6.1.2 Useof Condition Valuesov ittt
6.2 Condition Handlers it
6.3 Condition Handler Options it iineineennnnn
6.4 Operations Involving Condition Handlers
6.4.1 Establishing a Condition Handler
6.4.2 Reverting to the Caller’s Handling.
6.4.3 Signaling a Condition.
6.4.4 Signaling a Condition Using GENTRAP (AlphaOnly)
6.45 Condition Handler Searchcouiiiininenennenennnn.
6.5 Properties of Condition Handlers,
6.5.1 Condition Handler Parameters and Invocation
6.5.1.1 Signal Argument Vectorc.0 it
6.5.1.2 Mechanism Argument Vector,
6.5.1.3 Mechanism Depth for Alpha and VAX Handler Arguments
6.5.2 System Default Condition Handlers.

3-60
3-60
3-60
3-60
3-62

4-1
4-4
4-4
4-5
4-6
4-6

5-2

5-5

5-6

5-7
5-12
5-13
5-15
5-19
5-21
5-24
5-25
5-29
5-31
5-33
5-33

6-1
6-4
6-5
6-6
6-7
6-7
6-8
6-8
6-9
6-9
6-11
6-12
6-12
6-13
6-15
6-19
6-20

6.5.3
6.5.3.1
6.5.3.2
6.5.3.3
6.6

6.7 .
6.7.1
6.7.2
6.8

- 6.8.1

6.8.2
6.9
6.10

Index

Examples

3-1
3-2
3-3
3-4
3-5

Figures

vi

2—1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
41

4-2
5-1
5-2
5-3
5-4
5-5

Coordinating the Handler and Establisher

Useof Memory

.......................

Exception Synchronization (Alpha Only) e

Continuation from Exceptions (Alpha
Returning from a Condition Handler
Request to Unwind from a Signal

Signaler’s Registers
Unwind Completion
GOTO Unwind Operations (Alpha Only) ...

Only)..................

.......................
.......................
.......................
.......................

.......................

Handler Invocation During a GOTO Unwind....................

Unwind Completion
Multiple Active Signals
Multiple Active Unwind Operations.

Code for Examining the Procedure Value
Entry Code for a Stack Frame Procedure

.......................

.......................

.......................

.......................

.......................

Entry Code for a Register Frame Procedure

Exit Code Sequence for a Stack Frame .
Exit Code Sequence for a Register Frame

.......................

Stack Frame Generated by CALLG or CALLS Instruction

Argument List Format..............

.......................

Stack Frame Procedure Descriptor (PDSC)

Fixed-Size Stack Frame Format.

Register Save Area (RSA) Layout
Register Save Area (RSA) Example

.......................

.......................

.......................

.......................

Register Frame Procedure Descriptor PDSC)
Null Frame Procedure Descriptor (PDSC) Format
Procedure Signature Information Block (PSIG)

Procedure Invocation Handle Format. . .
Invocation Context Block Format.

.......................

.......................

Argument Information Register (R25) Format

Linkage Pair Block Format
Bound Procedure Descriptor (PDSC) . ..

.......................

.......................

Varying Character String Data Type (DSC$K_DTYPE_VT)—General

Format.............

.......................

Varying Character String Data Type (DSC$K_DTYPE_VT) Format. .

Descriptor Prototype Format
Fixed-Length Descriptor Format
Dynamic String Descriptor Format
Array Descriptor Format
Procedure Argument Descriptor Format

.......................

.......................

.......................

.......................

.......................

6-20
6-20
6-20
6-21
6-22
6-23
6-24
6-25
6-25
6-27
6-28
6-28
6-29

2-2

2-4

3-5
3-10
3-11
3-13
3-14
3-16
3-21
3-22
3-30
3-32
3-38
3-40
3-43

4-7
4-8
5-3
5-5
5-6
5-8
5-12

5-10
5-11
5-12
5-13
5-14
6-1
6-2
6-3
64
6-5
6-6

Tables

2-1
2-2
31
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
4-1
4-2

4-4
5-1

5-2
5-3
5-4
5-5
5-6

Decimal String Descriptor Format 5-13

Noncontiguous Array Descriptor Format 5-16
Varying String Descriptor Format 5-20
Varying String Descriptor with Character String Data Type 5-21
Varying String Array Descriptor Format 5-22
Unaligned Bit String Descriptor Format 5-24
Unaligned Bit Array Descriptor Format. 5-26
String with Bounds Descriptor Format 5-30
Unaligned Bit String with Bounds Descriptor Format 5-31
Format of a Condition Valuec..... 6-2
Interaction Between Handlers and Default Handlers 6-12
Signal Argument Vector—32-Bit Format 6-14
Signal Argument Vector—64-Bit Format 6-15
VAX Mechanism Vector Formate.u.... 6-16
Alpha Mechanism Vector Format 6-18
VAX Register Usage coiiiii ittt ittt e e iennnnns 2-1
Argument-Passing Mechanisms with User Explicit Control......... 2-6
Alpha Integer Registersciiitiiiniiiiiiiiinnnnn 3-1
Alpha Floating-Point Registers 3-2
Contents of Stack Frame Procedure Descriptor (PDSC)............ 3-6
Contents of Register Frame Procedure Descriptor (PDSC).......... 3-17
Contents of Null Frame Procedure Descriptor PDSC)............. 3-21
Contents of the Procedure Signature Information Block (PSIG) 3-23
Function Return Signature Encodings 324
Native-to-Translated Conversion of the PSIG Field Values 3-26
Translated-to-Native Conversion of the PSIG Field Values 3-27
Contents of the Invocation Context Block 3-33
Contents of the Argument Information Register (R25)............. 3-38
Contents of the Linkage Pair Block 3-40
Contents of the Bound Procedure Descriptor (PDSC).............. 3-43
Argument Item Locations. 3-49
Data Types and the Unused Bits in Passed Data................. 3-51
Data Alignment Addresses., 3-57
Atomic Data Types oottt it i i 4-2
String Data Typesciiiiiii e tiieeannn. 4-4
Miscellaneous Data Typescoiiiiin i iiieennnnnn. 4-5
Reserved Data Types . ..o oo i ittt ettt eeaan 4-6
Argument Descriptor Classes for OpenVMS Alpha and OpenVMS

VA L e e e e 5-2
Contents of the Prototype Descriptor 54
Contents of the CLASS S Descriptoroiiiiiiinnn. 5-5
Contents of the CLASS_ D Descriptor.oviiiiiniennnnnn. 5-7
Contents of the CLASS_A Descriptor., 5-10
Contents of the CLASS_P Descriptoriiunn... 5-13

vii

viii

5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
6-1

6-3
6-4
6-5

Contents of the CLASS_SD Descriptor....... e
Internal-to-External BINSCALE Conversion Examples
Contents of the CLASS_NCA Descriptor
Contents of the CLASS_VS Descriptor..................
Contents of the CLASS_VSA Descriptor
Contents of the CLASS_UBS Descriptor
Contents of the CLASS_UBA Descriptor
Contents of the CLASS_SB Descriptor..................
Contents of the CLASS_UBSB Descriptor
Specific OpenVMS VAX Descriptors Reserved to Digital
Contents of the Condition Value
Value Symbols for the Condition Value Longword
Interpretation of Severity Codes

.......

.......

.......

.......

.......

.......

.......

.......

.......

Exception Codes and Symbols for the Alpha GENTRAP Argument . . .

Contents of the Alpha Argument Mechanism Array (MECH)

.......

5-14
5-15
5-18
5-20
5-24
5-25
5-28
5-30
5-32
5-33

6-3

6-3

6-4
6-10
6-19

Preface

The OpenVMS Calling Standard defines the requirements, mechanisms, and
conventions used in the OpenVMS interface that supports procedure-to-procedure
calls for both Alpha and VAX environments. The standard defines the run-time
data structures, constants, algorithms, conventions, methods, and functional
interfaces that enable a native user-mode procedure to operate correctly in a
multilanguage environment on Alpha and VAX systems. Properties of the run-
time environment that must apply at various points during program execution
are also defined.

The 32-bit user mode of the OpenVMS Alpha standard provides a high degree of
compatibility with current programs written for the OpenVMS VAX environment.

The 64-bit user mode of the OpenVMS Alpha standard is a compatible superset of
the OpenVMS Alpha 32-bit environment.

The interfaces, methods, and conventions specified in this manual are primarily
intended for use by implementers of compilers, debuggers, and other run-time
tools, run-time libraries, and base operating systems. These specifications may or
may not be appropriate for use by higher level system software and applications.

This standard is under engineering change order (ECO) control. This manual
includes all ECOs through ECO #44. ECOs are approved by Digital’s Calling
Standard committee.

Intended Audience

This manual primarily defines requirements for compiler and debugger writers,
but the information can apply to procedure calling for all programmers in various
levels of programming.

Document Structure

This manual contains six chapters. Some chapters are restricted to either an
Alpha or a VAX environment.

Chapter 1 provides an overview of the standard, defines goals, and defines terms
used in the text.

Chapter 2 describes the primary conventions in calling a procedure in an }
OpenVMS VAX environment. It defines the VAX register usage and argument-
passing list as well as vector and scalar processor synchronization.

Chapter 3 describes the fundamental concepts and conventions in calling a
procedure in an OpenVMS Alpha environment. The chapter identifies the Alpha
register usage and addressing, and focuses on aspects of the calling standard that
pertain to procedure-to-procedure flow of control.

Chapter 4 defines the argument-passing data types used in calling a procedure
for both OpenVMS Alpha and OpenVMS VAX environments.

Chapter 5 defines the argument descriptors used in calling a procedure for both
OpenVMS Alpha and OpenVMS VAX environments.

Chapter 6 describes the OpenVMS condition- and exception-handling
requirements for both OpenVMS Alpha and OpenVMS VAX environments.

Related Documents
The following manuals contain related information:
* VAX Architecture Reference Manual
* Alpha Architecture Reference Manual
* OpenVMS Programming Interfaces: Calling a System Routine
* Guide to DECthreads
* VAX/VMS Internals and Data Structures
* OpenVMS AXP Internals and Data Structures

For additional information on OpenVMS products and services, access the Digital
OpenVMS World Wide Web site. Use the following URL:

http://www.openvms.digital.com

Reader’s Comments
Digital welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@zko.mts.dec.com
Fax 603 881-0120, Attention: OpenVMS Documentation, ZK03-4/U08
Mail OpenVMS Documentation Group, ZK03-4/U08

110 Spit Brook Rd.

Nashua, NH 03062-2698

How To Order Additional Documentation

Use the following table to order additional documentation or information.
If you need help deciding which documentation best meets your needs, call
800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Location

Fax Write

US.A.

Puerto Rico

International

Internal Orders

Fax: 800-234-2298 Digital Equipment Corporation

800-DIGITAL P.O. Box CS2008
800-344-4825 Nashua, NH 03061

809-781-0505 Fax: 809-749-8300 Digital Equipment Caribbean, Inc.

3 Digital Plaza, 1st Street, Suite 200
P.O.Box 11038

Metro Office Park

San Juan, Puerto Rico 00910-2138

800-267-6215 Fax: 613-592-1946 Digital Equipment of Canada, Ltd.

Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6
Attn: DECdirect Sales

— Local Digital subsidiary or
approved distributor

DTN: 2644446 Fax: 603-884-3960 U.S. Software Supply Business
603-884—4446 ’ Digital Equipment Corporation

10 Cotton Road
Nashua, NH 03063-1260

Conventions

ZK-7654A-GE

The name of the OpenVMS AXP operating system has been changed to OpenVMS
Alpha. Any references to OpenVMS AXP or AXP are synonymous with OpenVMS

Alpha or Alpha.

The following conventions are used to identify information specific to OpenVMS
Alpha or to OpenVMS VAX:

| Alpha_
>

The Alpha icon denotes the beginning of information
specific to OpenVMS Alpha.

The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS Alpha or to OpenVMS
VAX.

The following conventions are also used in this manual:

Ctrl/x

PF1 x or
GOLD x

A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PF1 x or GOLD x indicates that you must
first press and release the key labeled PF1 or GOLD and then
press and release another key or a pointing device button.

GOLD key sequences can also have a slash (/), dash (-), or
underscore (_) as a delimiter in EVE commands.

Xi

@)

[]

{}

boldface text

italic text

UPPERCASE TEXT

Monospace type

numbers

Xii

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

Horizontal ellipsis points in examples indicate one of the
following possibilities:

¢ Additional optional arguments in a statement have been
omitted.

¢ The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in Bookreader
versions of the manual.

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

Uppercase text indicates a command, the name of a routine,,
the name of a file, or the abbreviation for a system privilege.

Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

1

Introduction

This standard defines properties such as the run-time data structures, constants,
algorithms, conventions, methods, and functional interfaces that enable a
native user-mode procedure to operate correctly in a multilanguage and
multithreaded environment on OpenVMS Alpha and OpenVMS VAX systems.
These properties include the contents of key registers, format and contents of
certain data structures, and actions that procedures must perform under certain
circumstances.

This standard also defines properties of the run-time environment that must
apply at various points during program execution. These properties vary in scope
and applicability. Some properties apply at all points throughout the execution
of standard-conforming user-mode code and must, therefore, be held constant at
all times. Examples of such properties include those defined for the stack pointer
and various properties of the call-chain navigation mechanism. Other properties
apply only at certain points, such as call conventions that apply only at the point
of transfer of control to another procedure.

Furthermore, some properties are optional depending on circumstances. For
example, compilers are not obligated to follow the argument list conventions
when a procedure and all of its callers are in the same module, have been
analyzed by an interprocedural analyzer, or have private interfaces (such as
language-support routines).

Note

In many cases, significant performance gains can be realized by selective
use of nonstandard calls when the safety of such calls is known. Compiler
or tools writers are encouraged to make full use of such optimizations.

The OpenVMS Alpha portion of this calling standard is intended to provide a
calling standard that contains a high degree of compatibility with the OpenVMS
VAX environment. Conventions that differ are, for the most part, those that are
dictated by differences between the Alpha and VAX hardware architectures.

The procedure call mechanism depends on agreement between the calling and
called procedures to interpret the argument list. The argument list does not fully
describe itself. This standard requires language extensions to permit a calling
program to generate some of the argument-passing mechanisms expected by
called procedures.

This standard specifies the following attributes of the interfaces between modules:
* Calling sequence—instructions at the call site, entry point, and returns

* Argument list—structure of the list describing the arguments to the called
procedure

Introduction

¢ Function value return—form and conventions for the return of the function
value as a value or as a condition value to indicate success or failure

* Register usage—which registers are preserved and who is responsible for
preserving them

* Stack usage—rules governing the use of the stack
* Argument data types—data types of arguments that can be passed

* Argument descriptor formats—how descriptors are passed for the more
complex arguments

* Condition handling—how exception conditions are signaled and how they are
handled in a modular fashion

* Stack unwinding—how the current thread of execution is aborted efficiently

1.1 Applicability

This standard defines the rules and conventions that govern the native user-
mode run-time environment on Alpha and VAX processors. It is applicable to
all products of Digital Equipment Corporation that execute in native user mode.

Uses of this standard include:

* All externally callable interfaces in Digital-supported, standard system
software

¢ All intermodule calls to major software components

* All external procedure calls generated by OpenVMS language processors
without interprocedural analysis or permanent private conventions (such as
those used for language-support run-time library (RTL) routines)

1.2 Architectural Level

1.3 Goals

This standard defines an implementation-level run-time software
architecture for OpenVMS operating systems.

The interfaces, methods, and conventions specified in this document are primarily
intended for use by implementers of compilers, debuggers, and other run-time
tools, run-time libraries, and base operating systems. These specifications may or
may not be appropriate for use by higher-level system software and applications.

Compilers and run-time libraries may provide additional support of these
capabilities via interfaces that are more suited for compiler and application use.
This specification neither prohibits nor requires such additional interfaces.

Generally, this calling standard promotes the highest degree of performance,
portability, efficiency, and consistency in the interface between called procedures
of a common OpenVMS environment. Specifically, the calling standard:

e Is applicable to all intermodule callable interfaces in the native software
system. Specifically, the standard considers the requirements of important
compiled languages including Ada, BASIC, Bliss, C, C++, COBOL, FORTRAN,
Pascal, LISP, PL/I, and calls to the operating system and library procedures.
The needs of other languages that the OpenVMS operating system may

Introduction
1.3 Goals

support in the future must be met by the standard or by compatible revisions
to it.

Excludes capabilities for lower-level components (such as assembler routines)
that cannot be invoked from the high-level languages.

Allows the calling program and called procedure to be written in different
languages. The standard reduces the need for using language extensions in
mixed-language programs.

Contributes to the writing of error-free, modular, and maintainable software,
and promotes effective sharing and reuse of software modules.

Provides the programmer with control over fixing, reporting, and flow of
control when various types of exception conditions occur.

Provides subsystem and application writers with the ability to override
system messages toward a more suitable application-oriented interface.

Adds no space or time overhead to procedure calls and returns that do not
establish exception handlers, and minimizes time overhead for establishing
handlers at the cost of increased time overhead when exceptions occur.

The OpenVMS Alpha portion of this standard:

Supports a 32-bit user-mode environment that provides a high degree of
compatibility with the OpenVMS VAX environment.

Supports a 64-bit user-mode environment that is a compatible superset of the
OpenVMS Alpha 32-bit environment.

Simplifies coexistence with VAX procedures that execute under the translated
image environment.

Simplifies the compilation of VAX assembler source to native Alpha object
code.

Supports a multilanguage, multithreaded execution environment, including
efficient, effective support for the implementation of the multithread
architecture (DECthreads).

Provides an efficient mechanism for calling lightweight procedures that do
not need or cannot expend the overhead of setting up a stack call frame.

Provides for the use of a common calling sequence to invoke lightweight
procedures that maintain only a register call frame and heavyweight
procedures that maintain a stack call frame. This calling sequence allows a
compiler to determine whether to use a stack frame based on the complexity
of the procedure being compiled. A recompilation of a called routine that
causes a change in stack frame usage does not require a recompilation of its
callers.

Provides condition handling, traceback, and debugging for lightweight
procedures that do not have a stack frame.

Makes efficient use of the Alpha architecture, including effectively using a
larger number of registers than is contained in a conventional VAX processor.

Minimizes the cost of procedure calls. ¢

Introduction
1.3 Goals

The OpenVMS procedure calling mechanisms of this standard do not provide:

¢ Checking of argument data types, data structures, and parameter access. The
VAX and Alpha protection and memory management systems do not depend
on correct interactions between user-level calling and called procedures. Such
extended checking might be desirable in some circumstances, but system
integrity does not depend on it. ‘

¢ Information for an interpretive OpenVMS Debugger. The definition of the
debugger includes a debug symbol table (DST) that contains the required
descriptive information.

1.4 Definitions
The following terms are used in this standard:

¢ Address: On VAX systems, a 32-bit value used to denote a position in
memory. On Alpha systems, a 64-bit value used to denote a position in
memory. However, many Alpha applications and user-mode facilities operate
in such a manner that addresses are restricted only to values that are
representable in 32 bits. This allows Alpha addresses often to be stored and
manipulated as 32-bit longword values. In such cases, the 32-bit address
value is always implicitly or explicitly sign-extended to form a 64-bit address
for use by the Alpha hardware.

¢ Argument list: A vector of entries (longwords on VAX processors, quadwords
on Alpha processors) that represents a procedure parameter list and possibly
a function value.

¢ Asynchronous software interrupt: An asynchronous interruption of
normal code flow caused by some software event. This interruption shares
many of the properties of hardware exceptions, including forcing some
out-of-line code to execute.

* Bound procedure: A type of procedure that requires knowledge (at run
time) of a dynamically determined larger enclosing scope to function correctly.

e Call frame: The body of information that a procedure must save to allow
it to properly return to its caller. A call frame may exist on the stack or in
registers. A call frame may optionally contain additional information required
by the called procedure.

¢ Condition handler: A procedure designed to handle conditions (exceptions)
when they occur during the execution of a thread.

* Condition value: A 32-bit value (sign extended to a 64-bit value on Alpha
processors) used to uniquely identify an exception condition. A condition
value can be returned to a calling program as a function value or signaled
using the OpenVMS signaling mechanism.

* Descriptor: A mechanism for passing parameters where the address of
a descriptor is an entry in the argument list. The descriptor contains the
address of the parameter, data type, size, and additional information needed
to describe fully the data passed.

* Exception condition (or condition): An exceptional condition in the
current hardware or software state that should be noted or fixed. Its
existence causes an interrupt in program flow and forces execution of out-of-
line code. Such an event might be caused by an exceptional hardware state,
such as arithmetic overflows, memory access control violations, and so on, or

14

Introduction
1.4 Definitions

by actions performed by software, such as subscript range checking, assertion
checking, or asynchronous notification of one thread by another.

During the time the normal control flow is interrupted by an exception, that
condition is termed active.

Function: A procedure that returns a single value in accordance with the
standard conventions for value returning. Additional values are returned by
means of the argument list.

Hardware exception: A category of exceptions that reflect an exceptional
condition in the current hardware state that should be noted or fixed by the
software. Hardware exceptions can occur synchronously or asynchronously

with respect to the normal program flow.

Immediate value: A mechanism for passing input parameters where the
actual value is provided in the argument list entry by the calling program.

Lénguage-support procedure: A procedure called implicitly to implement
high-level language constructs. Such procedures are not intended to be
explicitly called from user programs.

Library procedure: A procedure explicitly called using the equivalent of a
call statement or function reference. Such procedures are usually language
independent.’

Natural alignment: An attribute of certain data types that refers to the
placement of the data so that the lowest addressed byte of the data has an
address that is a multiple of the size of the data in bytes. Natural alignment
of an aggregate data type generally refers to an alignment in which all
members of the aggregate are naturally aligned.

This standard defines five natural alignments:

— Byte—Any byte address

— Word—Any byte address that is a multiple of 2

— Longword—Any byte address that is a multiple of 4

— Quadword—Any byte address that is a multiple of 8
— Octaword—Any byte address that is a multiple of 16

Procedure: A closed sequence of instructions that is entered from and
returns control to the calling program.

Procedure value: An address value that represents a procedure. In the
VAX environment, a procedure value is the address of the entry mask that is
interpreted by the CALLx instruction invoking the procedure. In an Alpha
environment, a procedure value is the address of the procedure descriptor for
the procedure.

Process: An address space and at least one thread of execution. Selected
security and quota checks are done on a per-process basis.

This standard anticipates the possibility of the execution of multiple threads
within a process. An operating system that provides only a single thread of
execution per process is considered a special case of a multithreaded system
where the maximum number of threads per process is one.

Reference: A mechanism for passing parameters where the address of the
parameter is provided in the argument list by the calling program.

Introduction
1.4 Definitions

Signal: A POSIX-defined concept used to cause out-of-line execution of code.
(This term should not be confused with-the OpenVMS usage of the word that
more closely equates to exception as used in this document.)

Standard call: Any transfer of control to a procedure by any means that
presents the called procedure with the environment defined by this document
and does not place additional restrictions, not defined by this document, on
the called procedure.

Standard-conforming procedure: A procedure that adheres to all the
relevant rules set forth in this document.

Thread of execution (or thread): An entity scheduled for execution on a
processor. In language terms, a thread is a computational entity utilized by a
program unit. Such a program unit might be a task, procedure, loop, or some
other unit of computation.

All threads executing within the same process share the same address space
and other process contexts but have a unique per-thread hardware context
that includes program counter, processor status, stack pointer, and other
machine registers.

This standard applies only to threads that execute within the context of a
user-mode process and are scheduled on one or more processors according to
software priority. All subsequent uses of the term thread in this standard
refer only to such user-mode process threads.

Thread-safe code: Code that is compiled in such a way as to ensure it will
execute properly when run in a threaded environment. Thread-safe code
usually adds extra instructions to do certain run-time checks and requires
that thread local storage be accessed in a particular fashion.

Undefined: Referring to operations or behavior for which there is

no directing algorithm used across all implementations that support
this standard. Such operations may be well defined for a particular
implementation, but they still remain undefined with reference to this
standard. The actions of undefined operations may not be required by
standard-conforming procedures.

Unpredictable: Referring to the results of an operation that cannot be
guaranteed across all implementations of this standard. These results may be
well defined for a particular implementation, but they remain unpredictable
with reference to this standard. All results that are not specified in this
standard, but are caused by operations defined in this standard, are
considered unpredictable. A standard-conforming procedure cannot depend on
unpredictable results.

2

OpenVMS VAX Conventions

This chapter describes the primary conventions in calling a procedure in an
OpenVMS VAX environment.
2.1 Register Usage

In the VAX architecture, there are fifteen 32-bit wide, general-purpose hardware
registers for use with scalar and vector program operations. This section defines
the rules of scalar and vector register usage.

2.1.1 Scalar Register Usage

This standard defines several general-purpose VAX registers and their scalar use,
as listed in Table 2-1.

Table 2-1 VAX Register Usage

Register Use

PC Program counter.

Sp Stack pointer.

FP Current stack frame pointer. This register must always point at the current

frame. No modification is permitted within a procedure body.

AP Argument pointer. When a call occurs, AP must point to a valid argument
list. A procedure without parameters points to an argument list consisting
of a single longword containing the value 0.

R1 Environment value. When a procedure that needs an environment value
is called, the calling program must set R1 to the environment value. See
bound procedure value in Section 4.3.

RO, R1 Function value return registers. These registers are not to be preserved
by any called procedure. They are available as temporary registers to any
called procedure.

Registers R2 through R11 are to be preserved across procedure calls. The called
procedure can use these registers, provided it saves and restores them using the
procedure entry mask mechanism. The entry mask mechanism must be used so
that any stack unwinding done by the condition-handling mechanism restores all
registers correctly. In addition, PC, SP, FP, and AP are always preserved by the
CALLS or CALLG instruction and restored by the RET instruction. However, a
called procedure can use AP as a temporary register.

If JSB routines are used, they must not save or modify any preserved registers
(R2 through R11) not already saved by the entry mask mechanism of the calling
program.

2-1

OpenVMS VAX Conventions
2.1 Register Usage

2.1.2 Vector Register Usage

This calling standard does not specify conventions for preserved vector registers,
vector argument registers, or vector function value return registers. All such
conventions are by agreement between the calling and called procedures. In
the absence of such an agreement, all vector registers, including VO through
V15, VLR, VCR, and VMR are scratch registers. Among cooperating procedures,
a procedure that preserves or otherwise manipulates the vector registers by
agreement with its callers must provide an exception handler to restore them
during an unwind.

2.2 Stack Usage

2-2

Figure 2-1 shows the contents of the stack frame created for the called procedure
by the CALLG or CALLS instruction.

Figure 2-1 Stack Frame Generated by CALLG or CALLS Instruction

31 0
.Condition handler (none=0) :(SP) :(FP)
SPA|S|0| Register save mask PSW
Argument pointer (AP)
Frame pointer (FP)

Program counter (PC)

Saved register (R2)

D)
t{
ese
b}
<

Saved register (R11)

ZK-5249A-GE

FP always points to the call frame (the condition-handler longword) of the calling
procedure. Other uses of FP within a procedure are prohibited. Unless the
procedure has a condition handler, the condition-handler longword contains all
zeros. See Chapter 6 for more information on condition handlers.

The contents of the stack located at addresses higher than the mask/PSW
longword belong to the calling program; they should not be read or written by
the called procedure, except as specified in the argument list. The contents of
the stack located at addresses lower than SP belong to interrupt and exception
routines; they are modified continually and unpredictably.

OpenVMS VAX Conventions
2.2 Stack Usage

The called procedure allocates local storage by subtracting the required number
of bytes from the SP provided on entry. This local storage is freed automatically
by the return instruction (RET).

Bit <28> of the mask/PSW longword is reserved to Digital for future extensions
to the stack frame.

2.3 Calling Sequence

At the option of the calling procedure, the called procedure is invoked using the
CALLG or CALLS instruction, as follows:

CALLG arglst, proc
CALLS argent, proc

CALLS pushes the argument count argent onto the stack as a longword and sets
the argument pointer, AP, to the top of the stack. The complete sequence using
CALLS follows:

push argn

push argl
CALLS #n, proc

If the called procedure returns control to the calling procedure, control must
return to the instruction immediately following the CALLG or CALLS instruction.
Skip returns and GOTO returns are allowed only during stack unwind operations.

The called procedure returns control to the calling procedure by executing the
RET instruction.

2.4 Argument List

The argument list is the primary means of passing information to and receiving
results from a procedure.

2-3

OpenVMS VAX Conventions
2.4 Argument List

2.4.1 Format

2-4

Figure 2-2 shows the argument list format.

Figure 2-2 Argument List Format

31 0
Argument :arglst
Must be 0 count (n)
arg1
arg2
:L : :.J-

argn

ZK-4648A-GE

The first longword is always present and contains the argument count as an
unsigned integer in the low byte. The 24 high-order bits are reserved to Digital
and must be zero. To access the argument count, the called procedure must
ignore the reserved bits and access the count as an unsigned byte (for example,
MOVZBL, TSTB, or CMPB).

The remaining longwords can be one of the following:

* An uninterpreted 32-bit value (by immediate value mechanism). If the called
procedure expects fewer than 32 bits, it accesses the low-order bits and
ignores the high-order bits.

¢ An address (by reference mechanism). It is typically a pointer to a scalar data
item, array, structure, record, or a procedure.

* An address of a descriptor (by descriptor mechanism). See Chapter 5 for
descriptor formats.

The standard permits programs to call by immediate value, by reference, by
descriptor, or by combinations of these mechanisms. Interpretation of each
argument list entry depends on agreement between the calling and called
procedures. High-level languages use the reference or descriptor mechanisms for
passing input parameters. OpenVMS system services and VAX BLISS, VAX C,
DEC C, DEC C++, or VAX MACRO programs use all three mechanisms.

A procedure with no arguments is called with a list consisting of a 0 argument
count longword, as follows:

CALLS #0, proc

A missing or null argument—for example, CALL SUB(A,,B)—is represented

by an argument list entry consisting of a longword 0. Some procedures allow
trailing null arguments to be omitted and others require all arguments. See each
procedure’s specification for details. :

The argument list must be treated as read-only data by the called procedure and
might be allocated in read-only memory at the option of the calling program.

OpenVMS VAX Conventions
2.4 Argument List

2.4.2 Argument Lists and High-Level Languages

Functional notations for procedure calls in high-level languages are mapped into
VAX argument lists according to the following rules:

* Arguments are mapped from left to right to increasing argument list offsets.
The leftmost (first) argument has an address of arglst+4, the next has an
address of arglst+8, and so on. The only exception to this is when arglst+4
specifies where a function value is to be returned, in which case the first
argument has an address of arglst+8, the second argument has an address of
arglst+12, and so on. See Section 2.5 for more information.

e Each argument position corresponds to a single VAX argument list entry.
For the C and C++ languages, a floating-point argument or a record struct
that is larger than 32 bits may be passed by value using more than one VAX
argument list entry. In this case, the argument count in the argument list
reflects the actual number of argument list entries rather than the number of
C or C++ language arguments.

2.4.2.1 Order of Argument Evaluation

Because most high-level languages do not specify the order of evaluation of
arguments (with respect to side effects), those language processors can evaluate
arguments in any convenient order.

In constructing an argument list on the stack, a language processor can evaluate
arguments from right to left and push their values on the stack. If call-by-
reference semantics are used, argument expressions can be evaluated from left
to right, with pointers to the expression values or descriptors being pushed from
right to left.

Note

The choice of argument evaluation order and code generation strategy is
constrained only by the definition of the particular language. Do not write
programs that depend on the order of evaluation of arguments.

2.4.2.2 Language Extensions for Argument Transmission

This calling standard permits arguments to be passed by immediate value,
by reference, or by descriptor. By default, all language processors except VAX
BLISS, VAX C, and VAX MACRO pass arguments by reference or by descriptor.

Language extensions are needed to reconcile the different argument-passing
mechanisms. In addition to the default passing mechanism used, each language
processor is required to give you explicit control, in the calling program, of the
argument-passing mechanism for the data types supported by the language.

Table 2-2 lists various argument data-type groups. In the table, the value Yes
means the language processor is responsible for providing the user with explicit
control of that argument-passing mechanism group.

2-5

OpenVMS VAX Conventions
2.4 Argument List

Table 2-2 Argument-Passing Mechanisms with User Explicit Control

Data Type Group Section Value Reference Descriptor
Atomic <= 32 bits 4.1 Yes Yes Yes
Atomic > 32 bits 4.1 No Yes Yes
String 4.2 No Yes Yes
Miscellaneous 4.3 No! No No
Array 5 No Yes ' Yes

1For languages that support the bound procedure value data type, a language extension is required
to pass it by immediate value in order to be able to interface with OpenVMS system services and other
software. See Section 4.3.

For example, DEC Fortran provides the following intrinsic compile-time functions:

%VAL(arg) By immediate value mechanism. Corresponding argument list entry
is the value of the argument arg as defined in the language.

%REF(arg) By reference mechanism. Corresponding argument list entry contains
the address of the value of the argument arg as defined in the
language. »

%DESCR(arg) By descriptor mechanism. Corresponding argument list entry

contains the address of a descriptor of the argument arg as defined
in Chapter 5 and in the language.

Use these intrinsic functions in the syntax of a procedure call to control
generation of the argument list. For example:

CALL SUB1(%VAL(123), $REF(X), $DESCR(A))
For more information, see the DEC Fortran language documentation.

In other languages, you can achieve the same effect by making appropriate
attributes of the declaration of SUB1 in the calling program. Thus, you might
write the following after making the external declaration for SUB1:

CALL SUB1 (123, X, A)

2.5 Function Value Returns

2-6

A function value is returned in register RO if its data type can be represented in
32 bits, or in registers RO and R1 if its data type can be represented in 64 bits,
provided the data type is not a string data type (see Section 4.2).

If the data type requires fewer than 32 bits, then R1 and the high-order bits of RO
are undefined. If the data type requires 32 or more bits but fewer than 64 bits,
then the high-order bits of R1 are undefined. Two separate 32-bit entities cannot
be returned in RO and R1 because high-level languages cannot process them.

In all other cases (the function value needs more than 64 bits, the data type is
a string, the size of the value can vary from call to call, and so on), the actual
argument list and the formal argument list are shifted one entry. The new
first entry is reserved for the function value. In this case, one of the following
mechanisms is used to return the function value:

e If the maximum length of the function value is known (for example, octaword
integer, H_floating, or fixed-length string), the calling program can allocate
the required storage and pass the address of the storage or a descriptor for
the storage as the first argument.

OpenVMS VAX Conventions
2.5 Function Value Returns

¢ If the maximum length of a string function value is not known to the calling
program, the calling program can allocate a dynamic string descriptor. The
called procedure then allocates storage for the function value and updates the
contents of the dynamic string descriptor using OpenVMS Run-Time Library
procedures. For information about dynamic strings, see Section 5.3.

¢ If the maximum length of a fixed-length string (see Section 5.2) or a varying
string (see Section 5.8) function value is not known to the calling program,
the calling program can indicate that it expects the string to be returned on
top of the stack. For more information about the function value return, see
Section 2.5.1.

Some procedures, such as operating system calls and many library procedures,
return a success or failure value as a longword function value in R0. Bit <0> of
the value is set (Boolean true) for a success and clear (Boolean false) for a failure.
The particular success or failure status is encoded in the remaining 31 bits, as
described in Section 6.1.

2.5.1 Returning a Function Value on Top of the Stack

If the maximum length of the function value is not known, the calling program
can optionally allocate certain descriptors with the POINTER field set to O,
indicating that no space has been allocated for the value. If the called procedure
finds POINTER 0, it fills in the POINTER, LENGTH, and other extent fields to
describe the actual size and placement of the function value. This function value
is copied to the top of the stack as control returns to the calling program.

This is an exception to the usual practice because the calling program regains
control at the instruction following the CALLG or CALLS sequence with the
contents of SP restored to a value different from the one it had at the beginning
of its CALLG or CALLS calling sequence.

This technique applies only to the first argument in the argument list. Also, the
called procedure cannot assume that the calling program expects the function
value to be returned on the stack. Instead, the called procedure must check the
CLASS field. If the descriptor is one that can be used to return a value on the
stack, the called procedure checks the POINTER field. If POINTER is not 0,
the called procedure returns the value using the semantics of the descriptor. If
POINTER is 0, the called procedure fills in the POINTER and LENGTH fields
and returns the value to the top of the stack.

Also, when POINTER is 0, the contents of RO and R1 are unspecified by the
called procedure. Once the called procedure fills in the POINTER field and other
extent fields, the calling program may pass the descriptor as an argument to
other procedures.

2-7

OpenVMS VAX Conventions
2.5 Function Value Returns

- 2.5.1.1 Returning a Fixed-Length or Varying String Function Value

If a called procedure can return its function value on the stack as a fixed-length
(see Section 5.2) or varying string (see Section 5.8), the called procedure must
also take the following actions (determined by the CLASS and POINTER fields of
the first descriptor in the argument list):

CLASS POINTER Called Procedure’s Action

S=1 Not 0 Copy the function value to the fixed-length area specified by the
descriptor and space fill (hex 20 if ASCII) or truncate on the
- right. The entire area is always written according to Section 5.2.

S=1 0 Return the function value on top of the stack after filling in
. POINTER with the first address of the string and LENGTH with
the length of the string to complete the descriptor according to

Section 5.2.

VS=11 Not 0 Copy the function value to the varying area specified by
the descriptor and fill in CURLEN and BODY according to
Section 5.8.

VS=11 0 Return the function value on top of the stack after filling in

POINTER with the address of CURLEN and MAXSTRLEN
with the length of the string in bytes (same value as contents of
CURLEN) according to Section 5.8.

Other - Error. A condition is signaled.

In both the fixed-length and varying string cases, the string is unaligned.
Specifically, the function value is allocated on top of the stack with no unused
bytes between the stack pointer value contained at the beginning of the CALLS
or CALLG sequence and the last byte of the string.

2.6 Vector and Scalar Processor Synchronization

2-8

There are two kinds of synchronization between a scalar and vector processor
pair: memory synchronization and exception synchronization.

Memory synchronization with the caller of a procedure that uses the vector
processor is required because scalar machine writes (to main memory) might
still be pending at the time of entry to the called procedure. The various forms
of write-cache strategies allowed by the VAX architecture combined with the
possibly independent scalar and vector memory access paths implies that a
scalar store followed by a CALLx followed by a vector load is not safe without an
intervening MSYNC.

Within a procedure that uses the vector processor, proper memory and exception
synchronization might require use of an MSYNC instruction, a SYNC instruction,
or both, prior to calling or upon being called by another procedure. Further, for
calls to other procedures, the requirements can vary from call to call, depending
on details of actual vector usage.

An MSYNC instruction (without a SYNC) at procedure entry, at procedure

exit, and prior to a call provides proper synchronization in most cases. A

SYNC instruction without an MSYNC prior to a CALLx (or RET) is sometimes
appropriate. The remaining two cases, where both or neither MSYNC and SYNC
are needed, are rare.

Refer to the VAX vector architecture section in the VAX MACRO and Instruction
Set Reference Manual for the specific rules on what exceptions are ensured to be
reported by MSYNC and other MFVP instructions.

P

OpenVMS VAX Conventions
2.6 Vector and Scalar Processor Synchronization

2.6.1 Memory Synchronization

Every procedure is responsible for synchronization of memory operations with
the calling procedure and with procedures it calls. If a procedure executes vector
loads or stores, one of the following must occur:

* An MSYNC instruction (a form of the MFVP instruction) must be executed
before the first vector load and store to synchronize with memory operations
issued by the caller. While an MSYNC instruction might typically occur in
the entry code sequence of a procedure, exact placement might also depend on
a variety of optimization considerations.

* An MSYNC instruction must be executed after the last vector load or store
to synchronize with memory operations issued after return. While an
MSYNC instruction might typically occur in the return code sequence of a
procedure, exact placement might also depend on a variety of optimization
‘considerations.

e An MSYNC instruction must be executed between each vector load and store
and each standard call to other procedures to synchronize with memory
operations issued by those procedures.

Any procedure that executes vector loads or stores is responsible for synchronizing
with potentially conflicting memory operations in any other procedure. However,
execution of an MSYNC instruction to ensure scalar and vector memory
synchronization can be omitted when it can be determined for the current
procedure that all possibly incomplete vector load and stores operate only on
memory not accessed by other procedures.

2.6.2 Exception Synchronization

Every procedure must ensure that no exception can be raised after the current
frame is changed (as a result of a CALLx or RET). If a procedure executes any
vector instruction that might raise an exception, then a SYNC instruction (a form
of the MFVP instruction) must be executed prior to any subsequent CALLx or
RET.

However, if the only exceptions that can occur are certain to be reported by an
MSYNC instruction that is otherwise needed for memory synchronization, then
the SYNC is redundant and can be omitted as an optimization.

Mdfpvover, if the only exceptions that can occur are certain to be reported by one
;or hére MFVP instructions that read the vector control registers, then the SYNC
- igarddundant and can be omitted as an optimization.
e "n“?.

2-9

3

OpenVMS Alpha Conventions

- This chapter describes the fundamental concepts and conventions for calling
a procedure in an Alpha environment. The following sections identify register
usage and addressing, and focus on aspects of the calling standard that pertain to
procedure-to-procedure flow control.

3.1 Register Usage

The 64-bit-wide, general-purpose Alpha hardware registers divide into two
groups:

¢ Integer

¢ Floating point

The first 32 general-purpose registers support integer processing and the second
32 support floating-point operations.

3.1.1 Integer Registers

This standard defines the usage of the Alpha general-purpose integer registers as
listed in Table 3-1.

Table 3—1 Alpha Integer Registers

Register Usage

RO Function value register. In a standard call that returns a nonfloating-point
function result in a register, the result must be returned in this register.
In a standard call, this register may be modified by the called procedure
without being saved and restored. This register is not to be preserved by
any called procedure.

R1 Conventional scratch register. In a standard call, this register may be
modified by the called procedure without being saved and restored. This
register is not to be preserved by any called procedure.

R2-15 Conventional saved registers. Ifa standard-conforming procedure modifies
one of these registers, it must save and restore it.

R16-21 Argument registers. In a standard call, up to six nonfloating-point items of
the argument list are passed in these registers. In a standard call, these
registers may be modified by the called procedure without being saved and
restored.

R22-24 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

(continued on next page)

3-1

OpenVMS Alpha Conventions

3.1 Register Usage

Table 3—-1 (Cont.) Alpha Integer Registers

Register

Usage

R25

R26

R27

R28

R29

R30

R31

Argument information (AI) register. In a standard call, this register
describes the argument list. (See Section 3.7.1 for a detailed description.)
In a standard call, this register may be modified by the called procedure
without being saved and restored.

Return address (RA) register. In a standard call, the return address must
be passed in this register. In a standard call, this register may be modified
by the called procedure without being saved and restored.

Procedure value (PV) register. In a standard call, the procedure value of
the procedure being called is passed in this register. In a standard call, this
register may be modified by the called procedure without being saved and
restored.

Volatile scratch register. The contents of this register are always
unpredictable after any external transfer of control either to or from a
procedure. This applies to both standard and nonstandard calls. This
register may be used by the operating system for external call fixup,
autoloading, and exit sequences.

Frame pointer (FP). The contents of this register define, among other things,
which procedure is considered current. Details of usage and alignment are
defined in Section 3.6.

Stack pointer (SP). This register contains a pointer to the top of the current
operating stack. Aspects of its usage and alignment are defined by the
hardware architecture. Various software aspects of its usage and alignment
are defined in Section 3.7.1.

ReadAsZero/Sink (RZ). Hardware defines binary zero as a source operand
and sink (no effect) as a result operand. :

3.1.2 Floating-Point Registers

This standard defines the usage of the Alpha general-purpose floating-point
registers as listed in Table 3-2.

Table 3-2 Alpha Floating-Point Registers

Register

Usage

FO

F1

F2-9

F10-15

F16-21

Floating-point function value register. In a standard call that returns a
floating-point result in a register, this register is used to return the real part
of the result. In a standard call, this register may be modified by the called
procedure without being saved and restored.

Floating-point function value register. In a standard call that returns a
complex floating-point result in registers, this register is used to return
the imaginary part of the result. In a standard call, this register may be
modified by the called procedure without being saved and restored.

Conventional saved registers. If a standard-conforming procedure modifies
one of these registers, it must save and restore it.

Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

Argument registers. In a standard call, up to six floating-point arguments
may be passed by value in these registers. In a standard call, these registers
may be modified by the called procedure without being saved and restored.

(continued on next page)

OpenVMS Alpha Conventions
3.1 Register Usage

Table 3-2 (Cont.) Alpha Floating-Point Registers

Register Usage

F22-30 Conventional scratch registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

F31 ReadAsZero/Sink. Hardware defines binary zero as a source operand and .
sink (no effect) as a result operand.

3.2 Address Representation

An address is a 64-bit value used to denote a position in memory. However,

for compatibility with OpenVMS VAX, many Alpha applications and user-mode
facilities operate in such a manner that addresses are restricted only to values
that are representable in 32 bits. This allows Alpha addresses often to be stored
and manipulated as 32-bit longword values. In such cases, the 32-bit address
value is always implicitly or explicitly sign extended to form a 64-bit address for
use by the Alpha hardware.

3.3 Procedure Representation

One distinguishing characteristic of any calling standard is how procedures

are represented. The term used to denote the value that uniquely identifies a
procedure is a procedure value. If the value identifies a bound procedure, it is
called a bound procedure value.

In the Alpha portion of this calling standard, all procedure values are defined to
be the address of the data structure (a procedure descriptor) that describes that
procedure. So, any procedure can be invoked by calling the address stored at
offset 8 from the address represented by the procedure value.

Note that a simple (unbound) procedure value is defined as the address of

that procedure’s descriptor (see Section 3.4). This provides slightly different
conventions than would be used if the address of the procedure’s code were used
as it is in many calling standards.

A bound procedure value is defined as the address of a bound procedure descriptor
that provides the necessary information for the bound procedure to be called (see
Section 3.7.4).

3.4 Procedure Types
This standard defines the following basic types of procedures:
¢ Stack frame procedure—Maintains its caller’s context on the stack

* Register frame procedure—Maintains its caller’s context in registers

¢ Null frame procedure—Does not establish a context and, therefore,
executes in the context of its caller

A compiler can choose Which type of procedure to generate based on the
requirements of the procedure in question. A calling procedure does not need to
know what type of procedure it is calling.

Every procedure must have an associated structure that describes which type

of procedure it is and other procedure characteristics. This structure, called a
procedure descriptor, is a quadword-aligned data structure that provides basic
information about a procedure. This data structure is used to interpret the call

3-3

OpenVMS Alpha Conventions
3.4 Procedure Types

chain at any point in a thread’s execution. It is typically built at compile time
and usually is not accessed at run time except to support exception processing or
other rarely executed code.

Read access to procedure descriptors is done through a procedure interface
described in Section 3.6.2. This allows for future compatible extensions to these
structures.

The purpose of defining a procedure descriptor for a procedure and making that
procedure descriptor accessible to the run-time system is twofold:

¢ To make invocations of that procedure visible to and interpretable by facilities
such as the debugger, exception-handling system, and the unwinder.

¢ To ensure that the context of the caller saved by the called procedure

can be restored if an unwind occurs. (For a description of unwinding, see
Section 6.7.)

3.4.1 Stack Frame Procedurés

34

The stack frame of a procedure consists of a fixed part (the size of which is known
at compile time) and an optional variable part. Certain optimizations can be
done if the optional variable part is not present. Compilers must also recognize
unusual situations such as the following that can effectively cause a variable part
of the stack to exist: '

* A called routine may use the stack as a means to return certain types of
function values (see Section 3.8.7 for more information).

* A called routine that allocates stack space may take an exception in
its routine prologue before it becomes current. This situation must be
considered since the stack expansion happens in the context of the caller (see
Section 3.7.5 for more information).

For this reason, a fixed-stack usage version of this procedure type cannot
make standard calls.

The variable-stack usage version of this type of procedure is referred to as full
function and can make standard calls to other procedures.

OpenVMS Alpha Conventions
3.4 Procedure Types

3.4.2 Procedure Descriptor for Procedures with a Stack Frame

A stack frame procedure descriptor (PDSC) built by a compiler provides
information about a procedure with a stack frame. The minimum size of the

~descriptor is 32 bytes defined by constant PDSC$K_MIN_STACK_SIZE. An
optional PDSC extension in 8-byte increments supports exception-handling
requirements.

The fields defined in the stack frame descriptor are illustrated in Figure 3—1 and
described in Table 3-3.

Figure 3-1 Stack Frame Procedure Descriptor (PDSC)

PDSC , | quadword aligned
RSA_OFFSET FLAGS 0
IGNATURE_OFFSET EM | FRET Reserved |4
SlG URE_OFFS <14:12>} <11:8> esee
ENTRY ‘8
SIZE 116
20
ENTRY_LENGTH Reserved
IREG_MASK 24
FREG_MASK 28

PDSC$K_MIN_STACK_SIZE = 32
End of required part of procedure descriptor

STACK_HANDLER 32
40
STACK_HANDLER_DATA
PDSC$K_MAX_STACK_SIZE = 48
FRET = PDSC$V_FUNC_RETURN
EM = PDSC$V_EXCEPTION_MODE
ZK-4649A-GE

3-5

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3-3 Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name Contents
PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND A 4-bit field <3:0> that identifies the type of procedure
descriptor. For a procedure with a stack frame, this
field must specify a value 9 (defined by constant
PDSC$K_KIND_FP_STACK).

PDSC$V_ If set to 1, this descriptor has an extension for

HANDLER_VALID the stack handler (PDSC$Q_STACK_HANDLER)
information.

PDSC$V_ If set to 1, the handler can be reinvoked, allowing an

HANDLER_ occurrence of another exception while the handler is

REINVOKABLE already active. If this bit is set to 0, the exception
handler cannot be reinvoked. Note that this bit must
be 0 when PDSC$V_HANDLER_VALID is 0.

PDSC$V_ If set to 1, the HANDLER_VALID bit must be 1,

HANDLER_DATA _ the PDSC extension STACK_HANDLER_DATA field

VALID contains valid data for the exception handler, and

PDSC$V_BASE_
REG_IS_FP

PDSC$V_REI_
RETURN

Bit 9

PDSC$V_BASE_
FRAME

3-6

the address of PDSC$Q_STACK_HANDLER_DATA
will be passed to the exception handler as defined in
Section 6.2.

If this bit is set to 0, the SP is the base register to
which PDSC$L_SIZE is added during an unwind. A
fixed amount of storage is allocated in the procedure
entry sequence, and SP is modified by this procedure
only in the entry and exit code sequence. In this case,
FP typically contains the address of the procedure
descriptor for the procedure. A procedure for which
this bit is 0 cannot make standard calls.

If this bit is set to 1, FP is the base address and the
procedure has a minimum amount of stack storage
specified by PDSC$L_SIZE. A variable amount of
stack storage can be allocated by modifying SP in the
entry and exit code of this procedure.

If set to 1, the procedure expects the stack at entry
to be set, so an REI instruction correctly returns
from the procedure. Also, if set, the contents of the
RSA$Q_SAVED_RETURN field in the register save
area are unpredictable and the return address is
found on the stack (see Figure 3—4).

* Must be 0 (reserved).

For compiled code, this bit must be set to 0. If set
to 1, indicates the logical base frame of a stack that
precedes all frames corresponding to user code. The
interpretation and use of this frame and whether
there are any predecessor frames is system software
defined (and subject to change).

(continued on next page)

OpenVMS Alpha Conventions
3.4 Procedure Types

Table 3-3 (Cont.) Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name

Contents

PDSC$W_RSA_OFFSET

PDSC$V_FUNC_
RETURN

PDSC$V_EXCEPTION_
MODE

PDSC$V_TARGET _ If set to 1, the exception handler for this procedure is

INVO invoked when this procedure is the target invocation
of an unwind. Note that a procedure is the target
invocation of an unwind if it is the procedure in
which execution resumes following completion of the
unwind. For more information, see Chapter 6.

If set to 0, the exception handler for this procedure is
not invoked. Note that when PDSC$V_HANDLER_
VALID is 0, this bit must be 0.

PDSC$V_NATIVE For compiled code, this bit must be set to 1.

PDSC$V_NO_ For compiled code, this bit must be set to 1.
JACKET

PDSC$V_TIE_ For compiled éode, this bit must be 0. Reserved for
FRAME use by system software.

Bit 15 Must be 0 (reserved).

Signed offset in bytes between the stack frame base (SP or FP as indicated by
PDSC$V_BASE_REG_IS_FP) and the register save area. This field must be a
multiple of 8, so that PDSC$W_RSA_OFFSET added to the contents of SP or
FP (PDSC$V_BASE_REG_IS_FP) yields a quadword-aligned address.

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

Table 3—7 lists and describes the possible encoded values of PDSC$V_FUNC_
RETURN.

A 3-bit field <14:12> that encodes the caller’s desired exception-reporting
behavior when calling certain mathematically oriented library routines. The
possible values for this field are defined as follows:

Value Name Meaning

0 PDSC$K_ Raise exceptions for all error conditions
EXCEPTION_MODE_ except for underflows producing a zero
SIGNAL result. This is the default mode.

1 PDSC$K_ » Raise exceptions for all error conditions
EXCEPTION_MODE_ (including underflow).
SIGNAL_ALL

2 PDSC$K_ Raise no exceptions. Create only finite
EXCEPTION_MODE_ values (no infinities, denormals, or NaNs).
SIGNAL_SILENT In this mode, either the function result or

the C language errno variable must be
examined for any error indication.

3 PDSC$K_ Raise no exceptions except as controlled
EXCEPTION_MODE_ by separate IEEE exception enable bits.
FULL_IEEE Create infinities, denormals, or NaN

values according to the IEEE floating-point
standard.

4 PDSCS$K_ Perform the exception-mode behavior
EXCEPTION_MODE_ specified by this procedure’s caller.
CALLER

(continued on next page)

3-7

OpenVMS Alpha Conventions

3.4 Procedure Types

Table 3-3 (Cont.) Contents of Stack Frame Procedure Descriptor (PDSC)

Field Name

Contents

PDSC$W_SIGNATURE_
OFFSET

PDSC$Q_ENTRY

PDSC$L_SIZE

PDSC$W_ENTRY_
LENGTH

PDSC$L_IREG_MASK

PDSC$L_FREG_MASK

PDSC$Q_STACK_
HANDLER

PDSC$Q_STACK_
HANDLER_DATA

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0
in this field indicates that no signature information is present. Note that
in a bound procedure descriptor (as described in Section 3.7.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

Absolute address of the first instruction of the entry code sequence for the
procedure.

Unsigned size, in bytes, of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the minimum
stack alignment required by the Alpha hardware architecture and stack
alignment during a call (defined in Section 3.7.1). PDSC$L_SIZE cannot be 0
for a stack-frame type procedure, since the stack frame must include space for
the register save area.

The value of SP at entry to this procedure can be calculated by adding
PDSC$L_SIZE to the value SP or FP, as indicated by PDSC$V_BASE_REG._
IS_FP.

Unsigned offset, in bytes, from the entry point to the first instruction in the
procedure code segment following the procedure prologue (that is, following
the instruction that updates FP to establish this procedure as the current
procedure).

Bit vector (0-31) specifying the integer registers that are saved in the register
save area on entry to the procedure. The least significant bit corresponds to
register RO. Never set bits 31, 30, 28, 1, and 0 of this mask, since R31 is the
integer read-as-zero register, R30 is the stack pointer, R28 is always assumed
to be destroyed during a procedure call or return, and R1 and RO are never
preserved registers. In this calling standard, bit 29 (corresponding to the FP)
must always be set.

Bit vector (0-31) specifying the floating-point registers saved in the register
save area on entry to the procedure. The least significant bit corresponds
to register F0. Never set bit 31 of this mask, since it corresponds to the

floating-point read-as-zero register.

Absolute address to the procedure descriptor for a run-time static exception-
handling procedure. This part of the procedure descriptor is optional. It
must be supplied if either PDSC$V_HANDLER_VALID is 1 or PDSC$V_
HANDLER_DATA_VALID is 1 (which requires that PDSC$V_HANDLER _
VALID be 1).

If PDSC$V_HANDLER_VALID is 0, then the contents or existence of
PDSC$Q_STACK_HANDLER is unpredictable.

Data (quadword) for the exception handler. This is an optional quadword and
needs to be supplied only if PDSC$V_HANDLER_DATA_VALID is 1.

If PDSC$V_HANDLER_DATA_VALID is 0, then the contents or existence of
PDSC$Q_STACK_HANDLER_DATA is unpredictable.

3.4.3 Stack Frame Format

The stack of a stack frame procedure consists of a fixed part (the size of which is
known at compile time) and an optional variable part. There are two basic types
of stack frames:

¢ TFixed size

¢ Variable size

3-8

OpenVMS Alpha Conventions
3.4 Procedure Types

Even though the exact contents of a stack frame are determined by the compiler,
all stack frames have common characteristics.

Various combinations of PDSC$V_BASE_REG_IS_FP and PDSC$L_SIZE can be
used as follows:

e When PDSC$V_BASE_REG_IS_FP is 0 and PDSC$L_SIZE is 0, then the
procedure utilizes no stack storage and SP contains the value of SP at entry
to the procedure. (Such a procedure must be a register frame procedure.)

e When PDSC$V_BASE_REG_IS_FP is 0 and PDSC$L_SIZE is a nonzero
value, then the procedure has a fixed amount of stack storage specified by
PDSC$L_SIZE, all of which is allocated in the procedure entry sequence, and
SP is modified by this procedure only in