tDIGITAL
'GUIDE TO

“Software Development




The Digital Guide to
Software Development

Corporate User Publications Group / Digital Equipment Corporation

EJHEHEIIW | Digital Press



Copyright © 1989 by Digital Equipment Corporation.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of the publisher.

987654321
Printed in the United States of America.

Order number EY-C178E-DP
ISBN 1-55558-035-1

Editors: Michael Catano, Dean Fachon, H. Jim Hager

Manuscript Editor: Kathe Rhoades

Illustrator: Lynne Kenison

Compositor: Corporate User Publications (CUP/ASG),
Digital Equipment Corporation

The foilowing are some of the trademarks and registered trademarks of Digital Equipment
Corporation; third-party trademarks and other Digital Equipment Corporation trademarks
are listed in the back of the book.

DEC MASSBUS RT
DECmate PDP UNIBUS
DECUS P/OS ULTRIX
DECwriter Professional VAX
DIBOL Rainbow VMS
angaen” RSTS vr

) RSX Work Processor

This book was prepared using VAX DOCUMENT, Version 1.1.



Contents

PREFACE

xiii

CHAPTER 1 THE DIGITAL PHASE REVIEW PROCESS

1.1 STRATEGY AND REQUIREMENTS PHASE 4
1.2 PLANNING AND PRELIMINARY DESIGN PHASE 7
1.3 DETAILED DESIGN AND IMPLEMENTATION PHASE 8
1.4 QUALIFICATION PHASE 8
1.5 MANUFACTURING PHASE 9
1.6 RETIREMENT PHASE 9
CHAPTER 2 SOFTWARE DEVELOPMENT TOOLS 1
21 SOFTWARE DEVELOPMENT TOOLS 12
211 VAXset 12

21.2 VAX Language-Sensitive Editor 14

21.3 VAX Source Code Analyzer 15

214 VAX DEC/Test Manager 16

215 VAX Performance and Coverage Analyzer 17

2.1.6 VAX DEC/Code Management System 18

21.7 VAX DEC/Module Management System 20

2.1.8 VAX SCAN 20

219 VAX CDD/PLUS 22

2.1.10 The VMS Debugger 23



2.2 MANAGEMENT AND COMMUNICATIONS TOOLS 26
2.2.1 VAX Software Project Manager 26
2.2.2 The VAX/VMS Mail Utility 29
223 VAX Notes 29
23 DOCUMENTATION TOOLS 30
2.3.1 VAX DIGITAL Standard Runoff 30
23.2 VAX DOCUMENT 31
233 DECwrite 33
24 VMS UTILITIES 34
2.4.1 The Message Utility 34
2.4.2 The Command Definition Utility 35
243 The VMS Run-Time Library 35
244 VAX C Run-Time Library 38
25 SUMMARY OF SOFTWARE DEVELOPMENT TOOLS 39
CHAPTER 3 PROJECT MANAGEMENT 43
3.1 DEVELOPMENT PROJECTS AND TEAMS 43
3.1.1 Product Team 43
3.1.2 Development Team 45

3.1.21 Responsibilities of the Engineering Project

Leader « 46
3122 Responsibilities of Development Team
Members « 47

3.1.23 Progress Reports and Team Mestings + 48
3.2 PROJECT PLANNING AND CONTROL 49
3.21 Project Schedule 49
3.2.2 Project Control 52
3.23 The VAX Software Project Manager 54
33 PROJECT DOCUMENTATION 54
3.31 Marketing Requirements Document 56



3.3.2 Product Requirements Document 56
3.33 Alternatives/Feasibility Study 57
3.34 Product Specification 57
3.35 Development Plan 58
3.3.6 High-Level Design Document 59
3.3.7 Detailed Design Document 59
3.3.8 Field Test Plan 60
3.3.9 Field Test Report 60
CHAPTER 4 PLANNING AND PRELIMINARY DESIGN 61
41 HIGH-LEVEL DESIGN 62
4.1.1 High-Level Design Process 63
4.1.2 High-Level Testing Analysis 64
4.2 DESIGN METHODOLOGIES 66
43 PROTOTYPES 66
44 HUMAN INTERFACE DESIGN 67
4.41 Usability Issues 67
4411 Requirements « 68
4412 Specifications « 68
4413 Iterative Design « 71
4.4.2 DECwindows 71
45 DESIGN REVIEWS 75
4.5.1 Design Review Guidelines 75
4.6 STANDARDS 78
4.6.1 The VAX Procedure Calling and Condition Handling
Standard 78
4.6.2 VAX/VMS Modular Programming Standard 80
4.6.3 IEEE Standards 81
4.7 PLANNING INTERNATIONAL PRODUCTS 81



CHAPTER 5 DESIGN AND IMPLEMENTATION 83
5.1 DETAILED DESIGN PROCESS 86
5.1.1 Logical Modules and Physical Modules 87
5.1.2 Design Documents 88
5.2 IMPLEMENTING BASE LEVELS 88
5.2.1 Types of Base Levels 89
5.2.2 Requirements Analysis 89
5.23 Build Procedures 90
524 Product Kits 92
CHAPTER 6 CODING GUIDELINES FOR IMPLEMENTATION 93
6.1 SELECTING GUIDELINES 93
6.1.1 Examine Existing Source Code 94
6.1.2 Use the Language-Sensitive Editor 94
6.1.3 Build Program Modules 95
6.1.3.1 Module Preface « 96
6.1.3.2 Module Declarations « 99
6.1.3.3 Procedure Description * 101
6.1.3.4 Examples of LSE Language Constructs « 106
6.2 CHOOSING AN IMPLEMENTATION LANGUAGE 107
6.3 IMPROVING CODE READABILITY 108
6.3.1 Symbols 109
6.3.2 Case Conventions 109
6.3.3 Spacing 110
6.3.4 Formatting Comments M
6.3.4.1 Block Comments + 112
6.3.4.2 Line Comments « 112
6.3.4.3 Formatting Comments with LSE « 114
6.4 NAMING CONVENTIONS 115
6.4.1 File Names 115
6.4.2 Directories 118

Vi



6.4.3 Procedures 118
6.4.4 Modules 119
6.4.5 Variables 120
6.4.5.1 Global Variables « 120
6.4.5.2 Local Variables « 121
6.4.6 Naming Conventions for Objects 122
6.4.7 File Image IDs 122
6.4.7.1 Image File ID and Image Name Fields « 122
6.4.7.2 Shareable Images « 123
6.5 CODE REVIEWS 123
6.5.1 Informal Walkthroughs 123
6.5.2 Formal Inspections 124
6.5.3 Code Inspection Guidelines 125
CHAPTER 7 THE TESTING PROCESS 127
7.1 LEVELS OF TESTING 128
7.1.1 Unit Testing 130
7.1.2 Integrated Testing 131
7.2 TYPES OF TESTS 131
7.21 White Box Tests 132
7.2.2 Black Box Tests 133
7.3 TESTING AND DESIGN 133
7.3.1 Design Considerations 133
7.3.11 Bottom-Up and Top-Down Approaches « 134
7.31.2 Product Dependencies « 135
7.3.2 Regression Testing 135
7.4 PERFORMANCE TESTING 139
7.41 Running Regression Tests 140
7.4.2 Resolving Performance Problems 140
7.5 SUMMARY OF TESTING GUIDELINES 142

vii



CHAPTER 8 QUALIFICATION 145
8.1 PREPARING FOR FIELD TEST 145
8.1.1 Problem Report System 146

8.1.2 Internal Field Test 147

8.1.3 Early Evaluation Field Test 148

8.2 CONDUCTING THE EXTERNAL FIELD TEST 148
8.2.1 Fixing Errors 149

8.2.2 Final Verification: Field Test Upgrade Kits 150

8.3 CLOSING THE FIELD TEST 150
8.3.1 Manufacturing Verification 150

8.3.2 Field Test Reports 151

8.3.3 Product Evaluation Report 152

8.3.4 Release Notes 152
CHAPTER 9 MAINTENANCE 155
9.1 PLANNING FOR MAINTENANCE 156
9.2 MAINTENANCE PROCEDURES 157
9.2.1 Project Environment 157

9.2.2 Project Conventions 159

9.23 Project Communication 160

9.2.4 Design Documentation 161

9.2.5 Test Plans 162

9.2.6 Code Conventions 163

9.2.7 Build Procedures 164

9.2.8 Maintenance Document 165

9.2.9 DEC/CMS Libraries 165

9.2.10 Problem Reports 166

9.3 SOFTWARE DEVELOPMENT PRODUCTIVITY 171
9.3.1 Productivity Metrics 171

9.3.2 Measurement Techniques 172

viii



APPENDIX A CODING CONVENTIONS FOR VAX C

Al

A2

A3

A4

A5

A.6

A7

A8

A9

A.10

SUPPORT TOOLS

MODULE ORGANIZATION

ORGANIZATION OF C SOURCE FILES

ORGANIZATION OF HEADER FILES

COMMENTS

NAMING CONVENTIONS

A.6.1 General Considerations
A.6.2 Local Names

A.6.3 Global Names

A.6.4 Reserved Names
DEFINITIONS

DECLARATIONS

A.8.1 Structure Declarations
A.8.2 Function Declarations
A.8.3 Type Compatibility
A.8.4 Pointers

FUNCTIONS

A.9.1 Definition

A.9.2 Exception Handling

STATEMENTS

A.10.1 Indentation of Compound Statements
A.10.2 The if Statement

A.10.3 The for Statement

A10.4 The while and do Statements

175

175

176

178

179

180

181
181
182
182
183

185

186
188
189
189
190

190
190
193

193
194
196
197
199



A.10.5 The switch Statement 200

A.10.6 The goto Statement 202

A.11 EXPRESSIONS AND OPERATORS 202

A.12  PORTABILITY 204
APPENDIX B INTERNATIONAL PRODUCT DEVELOPMENT 207
B.1 INTERNATIONAL PRODUCT MODEL 207

B.2 INTERNATIONAL SOFTWARE DESIGN GUIDELINES 211
APPENDIX C INDUSTRY STANDARDS 213
C.1 IEEE STANDARDS 213

C.2 SOURCES FOR OTHER STANDARDS 215
APPENDIX D ADDITIONAL READING 219
D.1 APPLICATIONS AND TOOLS 219

D.2 SOFTWARE DEVELOPMENT 223



TRADEMARKS 227
INDEX 229
EXAMPLES
6-1 LSE Template for a Bliss Module Preface 97
6-2 LSE Template for a Bliss Module’s Declaration 100
6-3 LSE Template for a Bliss Routine 101
6-4 LSE Template for a C Module 104
6-5 Proper Capitalization in a Pascal Program 110
6-6 Spacing in a BASIC Program 111
6-7 Block Comments in a FORTRAN Program 12
6-8 Justified Line Comments in a C Program 113
6-9 Unjustified Line Comments in a C Program 113
6-10 Block Comment in a C Program 13
FIGURES
1-1 The Phase Review Process for Product Development 2
1-2 Strategy and Requirements Phase 6
2-1 VMS Tools for Software Development 13
3-1 Product Team Interactions 44
3-2 Development Team Members 45
3-3 Mapping Units to Calendar 52
34 Project Control Model 53
3-5 Information Flow Among Phase Documents 55
4-1 Planning and Preliminary Design Phase 62
4-2 Modular Design Levels 65
4-3 Design Review Process 76
5-1 Design and Implementation Phase 85
7-1 Code Testing Process 129
7-2 Unit and Integrated Levels of Testing 130
7-3 DEC/Test Manager and Regression Testing 137

Xi



7-4 Performance Test Process 141
9-1 Use of DEC/CMS Groups for Maintenance 166
9-2 Variant Development 168
9-3 Multiple DEC/CMS Libraries 169
B-1 International Product Model 208
TABLES
2-1 Data Types Supported by VAX Software Project Manager 27
2-2 VMS Run-Time Library Facilities 37
3-1 Responses to Common Task-Related Problems 48
41 Sample Usability Specification Table 69
4-2 DECwindows Run-Time Libraries 73
4-3 VAX Register Use 79
5-1 Problems in Preparing Base Levels 91
6-1 Naming Conventions for Common Files 117
6-2 Examples of Entry Point Names 119
6-3 Relationships Among File, Module, and Procedure Names 119
6-4 Global Variable Code Values 120
6-5 Naming Conventions for Objects 122
7-1 White Box Tests and Black Box Tests 132
8-1 Resolution of Critical Errors 149
9-1 Relative Costs of Fixing Software Errors 156

Xii




Preface

There are many approaches to developing software products. This book
provides insight on how engineering teams develop software at Digital
Equipment Corporation.

The suggestions offered here are based on our accumulated experience
in turning software concepts into successful products. Through the
development of the VMS operating system and its many layered prod-
ucts, Digital’s development community has learned a great deal about
using structured software development and programming standards to
deliver high-quality products.

The Digital approach to software development is called the phase
review process. This process divides the life cycle of software products
into six phases and provides a set of measurable events for each.

In this way, the software development process is divided into more
manageable pieces.

The Digital Guide to Software Development was written for individuals
seeking information about a practical, efficient, and standardized ap-
proach to the software development process. These individuals include
software development managers and engineers, software technical writ-
ers, and those studying software engineering. This book concentrates
on the activities of the software development team and the phases in
which they are most interested and most involved.

The software development cycle used at your company may be quite
similar to or somewhat different from the process described here.
However, if you are looking for ways to enhance productivity through-
out your development process, this book can help you in two ways:

xiii



Xiv

Over the life cycle of a software product, it is easier and cheaper
to develop and maintain the software if you use a structured and
practical software development methodology, such as the phase
review process.

The productivity of your software development team can be in-
creased if you use a wide spectrum of software development tools to
implement your methodology. This book discusses the tools used at
Digital that are also available to you.

This book is organized as follows:

Chapter 1, The Digital Phase Review Process, introduces the phase
review process used at Digital for developing software applications
and provides a brief description of each phase.

Chapter 2, Software Development Tools, reviews the software
development tools used at Digital. You can use these tools in your
software development efforts.

Chapter 3, Project Management, provides guidelines for managing
a software development project. This chapter emphasizes the
team approach to software development. It also discusses the
role and responsibilities of project team members from a variety
of functional groups such as software engineering, marketing,
manufacturing, and customer services.

Chapter 4, Planning and Preliminary Design, details the tasks you
perform in the preliminary stages of software development to get
your project off to the right start. Tasks discussed include high-
level design, design methodologies, design reviews, and standards.

Chapter 5, Design and Implementation, is the first of three chapters
devoted to the design and implementation phase. This chapter
discusses developing base levels and build procedures for base
levels.

Chapter 6, Coding Guidelines for Implementation, focuses on
coding guidelines for implementing the detailed software design.
This chapter includes information on selecting coding guidelines,
methods of improving code readability, choosing an implementation
language, conducting code reviews, and naming conventions.

Chapter 7, The Testing Process, concentrates on the testing pro-
cesses used to verify an implementation against its design. It
discusses the levels of testing you nezd to perform, the types of
tests to perform, and some approaches to designing tests.



Chapter 8, Qualification, presents procedures for field testing the
product and qualifying it for final production.

Chapter 9, Maintenance, provides some guidelines for minimizing
maintenance costs associated with developing a software product.
Maintenance costs can account for a significant portion of engineer-
ing resources throughout each phase of software development.

Appendix A, Coding Conventions for VAX C, provides guidelines for
coding software using the C programming language. By using the
guidelines discussed in this chapter, you can take the steps needed
to increase the portability of your software product and decrease
the costs of your development efforts.

Appendix B, International Product Development, presents a model
for creating a product for an international market. This is becoming
more important in today’s global marketplace.

Appendix C, Industry Standards, summarizes IEEE standards and
other nonproprietary standards.
Appendix D, Additional Reading, contains the name and order

number of a variety of Digital documents discussed in this book. It
also contains information about other helpful books.






Chapter 1
The Digital Phase Review Process

Developing software applications is a labor-intensive activity. The size
and complexity of software applications continue to increase, and user
expectations of software applications have grown more sophisticated.
For these reasons, the difficulty of managing software development
activities has continued to increase, as have the personnel costs of
software development and maintenance.

To effectively deal with these issues, Digital has developed an approach
to software development called the phase review process, illustrated in
Figure 1-1. This process has the following basic characteristics:

e It divides the life cycle of a software product into six phases.

¢ It identifies a set of plans, activities, and documents that are
reviewed at the end of each phase before moving on to the next.

e It brings together participants from key functional groups at the
end of each phase to determine whether the project has met its
goals for the phase and whether the project should proceed as
planned.

This chapter introduces the phase review process, describing in general
terms the activities and responsibilities associated with each phase.
Succeeding chapters provide more information on phases highlighted in
Figure 1-1. These are the phases in which the software development
team are most involved.

The Digital Phase Review Process 1



Figure 1—-1: The Phase Review Process for Product Development

[

Strategy and
Requirements

No

/ Yes
R

etire? Retirement

Manufacturing

The phase review process defines the project life cycle over six phases.
The life cycle begins with the identification of a product opportunity
that is consistent with the company’s product strategy. The product
requirements are clearly defined, the preliminary design is established,
and then refined and implemented. The product is qualified by field
testing and, when ready for release, sent to manufacturing for du-
plication. The life cycle ends with an integrated plan to retire the
product.

2 The Digital Phase Review Process



Ideas for software products come from a variety of sources. Sometimes
the impetus comes from engineering; other times it comes from mar-
keting. Sometimes the product is more than an idea; it may already
be in use on a small scale in an internal group. Sometimes it may be
an adaptation of an existing software product. In any case, when a
product is to become a company product, a product team is formed.
Then, the product and the product team are submitted to the discipline
of the phase review process.

The product team is led by a product manager who guides the project
through all of its development phases. At Digital, the typical product
team includes representatives from the following functional groups:

* Engineering

¢  Product management
* Finance

* Manufacturing

¢ Customer services

¢ Marketing

* Sales

The phase review process provides an operational guideline for manag-
ing a product through its life cycle. The process provides a common set
of planning, measurement, and implementation tools to help product
teams deliver high-quality systems to customers. Each phase has a
set of required plans, activities, and documents. The process is simple,
dynamic, and flexible. It encourages and facilitates effective coopera-
tion and commitment among the cross-functional groups. The process
helps ensure that the necessary documents exist and are reviewed

by the appropriate people and groups. It also improves the discipline
and predictability required to effectively develop and deliver the final
product.

A key feature of the phase review process is the formal review held at
the end of each phase. At this time, the product manager convenes a
phase review meeting to determine whether the product has met the
milestones for the current phase and is ready to move to the next one.
Attendees include managers and key contributors from each functional
group represented on the product team. This meeting is a critical

one. At this forum the software engineers and other functional groups
review the status of the project, demonstrate that the product performs

The Digital Phase Review Process 3



according to its plans, and agree on any changes that may be needed
before moving on to the next phase.

This book concentrates on phases for which the software engineering
development team is principally responsible. These include the follow-
ing, each of which is highlighted in Figure 1-1 and described in greater
detail in succeeding chapters:

¢ Planning and Preliminary Design

* Design and Implementation
®  Qualification

In the remaining sections in this chapter, however, we will briefly
discuss every phase in the Digital phase review process in order to
provide the context.

1.1 Strategy and Requirements Phase

The strategy and requirements phase marks the start of a product’s
development life cycle. The primary activity during this phase is

to investigate a specific market need that has been identified. The
product team assesses the feasibility of technical options, market risks
and strategies, and product requirements.

In planning strategy and requirements, the product team considers
technical approaches to building the intended product. Individuals
outside the immediate product team are consulted for their expertise in
relevant areas. Often, possible solutions to difficult technical problems
are prototyped to make sure the implementation risks are well under-
stood. By the end of this phase of development, the system is generally
defined, and a business decision is made on whether to proceed.

During the strategy and requirements phase, the members of the
product team share the following responsibilities:

¢ Funding the project

* Proposing a product that is consistent with the company’s strategy

¢ Building a coordinated plan that incorporates subordinate plans
from all functional groups

¢ Planning for the manufacturing and production process

4 The Digital Phase Review Process



Providing marketing information
Developing service requirements and sales strategy

Product team members also have specific individual tasks, which are
described in more detail below. Figure 1-2 summarizes the tasks and
documents that are a part of this phase.

Product manager

With input from all members of the product team, the product man-
ager prepares a preliminary business plan outlining the product’s
priorities, goals, market needs, international requirements (if any),
and projected financial costs and sales. Similarly, the product man-
ager also prepares a product requirements document that outlines
the technical requirements of the product.

Marketing project manager
Prepares a marketing requirements statement that demonstrates

an understanding of the market in which the proposed product will
compete.

Engineering project leader

Leads the engineering development team (described in Chapter 3).
The engineering development team reviews the technical feasibility
of the product and prepares a list of alternatives. Typically, the
team begins work on several documents necessary for planning and
preliminary design:

— Preliminary product specification

— Preliminary development plan

— Preliminary documentation plan

Customer services representative

Prepares the customer services impact/requirements statement,

which analyzes how the product requirements will affect the
customer services group.

Sales representative

Prepares the sales impact/requirements statement, which outlines
the product sales support requirements and tools needed to support
the product.

The Digital Phase Review Process 5



Figure 1-2: Strategy and Requirements Phase

Sales

Marketing

\/

Users Product Ogher
Management Engineers
[
Advanced Requirements | Wish List
Development - Gathering
Requirements |
Document |
Y
Alternatives/
Feasibility
Study
\/ Y \ A
Preliminary Preliminary Schedule
Development Specification Estimate
Plan
\
Preliminary Preliminary
Documentatio —> ,': :\?izsv < Business
Plan Plan

6 The Digital Phase Review Process




*  Manufacturing project manager

Prepares the manufacturing impact statement, if necessary, which
analyzes how the product will affect the manufacturing group.

* Finance representative

Prepares a financial needs statement and maintains administrative
control over budgeting.

See Chapter 3, Project Management, for additional information on the
members of a product team and project documentation.

1.2 Planning and Preliminary Design Phase

The objectives of planning and preliminary design are to create com-
plete product specifications, a preliminary design, and an integrated
project-implementation plan. This plan helps ensure that the commit-
ments made by all functions involved in the project can be achieved.

During this phase, the product manager updates the business plan to
reflect the input from the entire development team. The engineering
project leader distributes the engineering plan, which contains the
product specification, the development plan, and a schedule. The
engineering plan defines how and when the product will be built,
tested, and delivered.

The software engineering development team also prepares a verification
test plan. This plan describes how the product will be tested and
verified to comply with the product specification, the manufacturing
plan, and the support guidelines.

Representatives from marketing, sales, customer services, and technical
documentation prepare documents outlining plans and strategies for
meeting the product’s requirements within their respective groups.
These plans contain sections on how to sell and support the product,
deliver training, and develop and deliver user documentation.

Chapter 4, Planning and Preliminary Design, contains more informa-
tion on planning and preliminary design.

The Digital Phase Review Process 7



1.3 Detailed Design and Implementation Phase

The objective of the detailed design and implementation phase is to
execute the plans made during planning and preliminary design. The
product design is completed and the product is coded and verified by
internal testing. The goal is to demonstrate that the product has met
the product specifications and design.

During this phase, members of the product team update their respec-
tive plans to reflect any changes. Team members also submit their
respective product support plans. Plans for field testing are finalized.

More information about the design and implementation phase is
included in the following chapters:

¢ Chapter 5, Design and Implementation

* Chapter 6, Coding Guidelines for Implementation

¢ Chapter 7, The Testing Process

1.4 Qualification Phase

The objective of qualification is to field test the product at selected
external sites representing a cross-section of customers. The field
test process should demonstrate, through testing and feedback, that
the product meets its requirements and specifications. By the end
of this phase, the development team has master copies of the final

product ready to send to the manufacturing group for duplication and
distribution to customers.

During this phase, product team member§ update their plans, and the
development team ensures that the product is ready for release:

* The product manager, along with the development manager, en-
sure that the product performs to specification and is ready for
manufacturing and shipping to customers.

¢ The documentation manager verifies that the product documenta-
tion is complete and technically accurate.

¢ The manufacturing manager confirms that the product meets the
minimum criteria for shipping the product to customers.

8 The Digital Phase Review Process



Chapter 8, Qualification, has more information on qualifying the design
for production.

1.5 Manufacturing Phase

When a product is ready for manufacturing, the master copies of the
software and documentation are given to the production group for
duplication. The product is then mass produced, packaged, delivered,
and serviced in a way that is satisfactory to customers.

Market performance evaluations are conducted periodically to deter-
mine if the planned market and product goals are being achieved. The
results of this evaluation are used as part of the decision to continue,
enhance, or retire the product from the marketplace.

1.6 Retirement Phase

A product enters the last phase of the life cycle when it is to be retired.
The objective of the retirement phase is to phase out all marketing
and manufacturing responsibilities and transfer all service-related
manufacturing responsibilities to the customer services organization.
A product is phased out in a manner that fulfills any internal and
external commitments.

At retirement, the phase-out plan is reviewed, the customer base is
migrated to replacement products, and the product is phased out. The
various groups stop supporting the product. The product team plans
how the phase-out will be handled, what will be done with any existing
product inventory, and what strategy will be used to phase out services
of the product.

The Digital Phase Review Process 9






Chapter 2
Software Development Tools

The demand for more complex, high-quality software is growing at an
unprecedented rate. As software becomes a more important part of the
products and services that businesses offer, and plays a more important
role in the management of business, the ability to match the demand
for software development and maintenance is now crucial. In an
attempt to meet these demands, Computer Aided Software Engineering
(CASE) has emerged.

This chapter provides an overview of a number of CASE tools and
other software tools used at Digital to implement various elements of
its software development process. At Digital, CASE is an integrated
set of software tools and services that enable efficient implementation
of disciplined software engineering methodologies and procedures.
The Digital CASE environment contains a set of integrated tools

for designing, coding, testing, and maintenance of complex software
applications, as well as for project management, documentation, and
communication among developers.

Although tools cannot solve all the problems of software development
organizations, they help developers accomplish the following goals:

¢ Create a more predictable and disciplined development process

* Create high-quality, error-free software

¢ Achieve greater efficiency in the development process

* Reduce time-consuming maintenance tasks

* Complete a software project as specified

* Deliver a finished software product earlier

Software Development Tools 11



The integrated software development tools available for the VMS
operating system provide an especially rich and robust environment
for software development. Figure 2-1 associates some of the tools
discussed in this chapter with the stages of the project development in
which they are used.

2.1 Software Development Tools

Problems most often faced by programmers today fall into three basic
categories. Programmers must increase their programming output,
improve its quality, and manage the complexity of their programming
tasks. The tools discussed in this section can help meet each of these
challenges. At Digital, programmers use the following tools to help
them design, code, build, test, and maintain software:

VAXset

VAX Language-Sensitive Editor

VAX Source Code Analyzer

VAX DEC/Test Manager

VAX Performance and Coverage Analyzer
VAX DEC/Code Management System
VAX DEC/Module Management System
VAX SCAN

VAX CDD/PLUS

VMS Debugger

2.1.1 VAXset

The VAXset software is a package of six integrated tools designed
specifically to automate many of the repetitive tasks of software devel-
opment. These tools, discussed in the next sections, include:

VAX Language-Sensitive Editor

VAX Source Code Analyzer

VAX Performance and Coverage Analyzer
VAX DEC/Test Manager

VAX DEC/Code Management System
VAX DEC/Module Management System

12 Software Development Tools



Figure 2-1: VMS Tools for Software Development

Requirements Stage

- Primary Use

Occasional Use

Specification Stage
Design Stage

Implementation Stage

Qualification Stage

Maintenance Stage

DIGITAL Standard Runoff, VAX DOCUMENT
VAX Notes, VAX/VMS Mail

VAX Language-Sensitive Editor

VAX DEC/Code Management System

VAX Software Project Manager

VAX DEC/Module Manlagement System
Compilers, VMS Linker

VMS Debugger

VAX Performance and Coverage Analyzer
VAX Source Codé Analyzer

VAX DEC/Test Manager

For information on using the VAXset tools together to develop software
applications, see A Methodology for Software Development Using VMS

Tools.

Software Development Tools 13



2.1.2 VAX Language-Sensitive Editor

In today’s environment, software engineers need a productivity tool
that can help them code faster and more accurately, regardless of their
experience level. Digital’s software engineers use the VAX Language-
Sensitive Editor software (LSE) to develop and maintain source code.
LSE is a multilanguage text editor that provides source code templates
for each language it supports. These templates help both the novice
and the experienced programmer build programs faster, using the
correct syntax and punctuation.

With the editor’s language templates, engineers can create an entire
skeletal structure by successively expanding keywords (called tokens)
and placeholders. Placeholders specify positions within the template
at which an engineer must either choose an option from a menu or
enter program code. For example, suppose a user wants to enter a
WHILE loop in a Pascal program. To do so, the user types the WHILE
keyword and then expands that construct by pressing the “expand” key.
In response, LSE produces the following text:

WHILE $%{expression}$% DO
% {statement}$%

Within this template, there are two placeholders: one for the Boolean
expression, %{expression}%, and one for the statement that forms the
loop body, %/{statement}%. In this example, pressing the expand key
when the cursor is on %f{statement}% displays a list of valid Pascal
statements. The user can then choose the desired statement or type
over the placeholder to replace it with the desired program code.

LSE provides the following features:

* Provides source code templates for the constructs in the following
VAX programming languages and products:

VAX Ada

VAX BASIC

VAX Bliss—-32

VAX C

VAX CDD

VAX COBOL

VAX DATATRIEVE
VAX DIBOL

VAX DOCUMENT

14 Software Development Tools



VAX FORTRAN
VAX MACRO
VAX Pascal
VAX PL/1

VAX SCAN
VAXELN Pascal

* Taijlors the editing sessions for each of the VAX languages and
products that support LSE

¢ Uses source code templates that are both formatted and language-
specific to enter source code quickly and efficiently

¢ Allows coding, compiling, reviewing, and correcting of compile-time
errors without leaving the editing session

* Provides interactive editing capabilities during a debugging session

* Allows engineers to tailor the defined language environments or to
define their own environment

¢ Provides integrated access to the cross-referencing features of the
VAX Source Code Analyzer (see Section 2.1.3)

In short, LSE enables programmers to produce syntactically correct
code even if they do not know the language very well.

For more information on LSE, see the Guide to VAX Language-Sensitive
Editor and VAX Source Code Analyzer.

2.1.3 VAX Source Code Analyzer

The VAX Source Code Analyzer software (VAX SCA) helps Digital
software engineers understand the complexities of a large software
project by allowing them to make inquiries about the symbols in its
source code. This tool works with supporting compilers to provide
multilanguage, interactive cross-referencing and static analysis. With
VAX SCA, engineers can move easily through all the project’s files,
quickly locating the definition of any symbol name or any references
made to that symbol name.

Using the cross-referencing capabilities of VAX SCA, engineers can
display information about program symbol names in their source files.
The FIND command greatly simplifies the following cross-referencing
tasks:

Software Development Tools 15



¢ Locating symbol names and the occurrences (other uses) of the
names

* Locating a specified set of names or partial names; wildcards are
permitted

* Locating symbol names based on their specific characteristics (such
as routine names, variable names, or source files)

* Locating symbol names based on their specific occurrences (such as
the primary declaration of a symbol, read or write occurrences of a
symbol, or occurrences of a file)

For example, the cross-referencing capability of VAX SCA allows
engineers to quickly find all the locations where a symbol name is used
throughout an application, thus helping them to better understand the
results of any changes to a symbol name. VAX SCA eliminates the need
for searching through hard-copy listings for symbol names.

Engineers can get information about program structure, that is, the
interrelation of routines, symbols, and files by using the static analysis
capabilities of VAX SCA. Static analysis features include the following:

¢ Routine call relationships are displayed relative to a specified
routine.

* Routine calls are analyzed for consistency, with specific regard to
the numbers and data types of arguments passed and the types of
values returned.

For more information on VAX SCA, see the Guide to VAX Language-
Sensitive Editor and VAX Source Code Analyzer.

2.1.4 VAX DEC/Test Manager

During the design and implementation phase, development teams must
ensure that the application being developed performs to specification.
The VAX DEC/Test Manager software organizes software tests and
automates the way tests are run and results are evaluated. To use
DEC/Test Manager, software developers first write test scripts for their
software: each test script consists of input to the software that will
test various software functions. As the software is run under each test
script, the DEC/Test Manager captures the output.

16 Software Development Tools



DEC/Test Manager is based on the concept of regression testing.
Regression testing is a method of ensuring that software in develop-
ment runs correctly and that newly added features do not affect the
correct execution of those previously tested.

In regression testing, the development team runs established software
tests to compare the current test results with previously established
benchmark results. These benchmark results must be duplicated if the
software is functioning properly. If the current results do not match
the benchmark results, the current software may contain errors. The
software is said to have “regressed” in that it does not conform with
previously established behavior. In this case, the current software
version needs to be reworked.

DEC/Test Manager has the following features:

* Lets engineers create scripts of software tests

* Sets up the test environment so that tests are executed under
controlled conditions

* Executes specific tests, groups of tests, and combinations of test
groups, either interactively or in batch mode

* Compares the results of each executed test with its benchmark test
results to determine differences

¢ Records an interactive terminal session and associates it with a test
description

e Allows engineérs to group test descriptions into meaningful combi-
nations for later runs

¢ Allows engineers to examine test result files interactively
* Generates summary reports of test set runs

For more information on DEC/Test Manager, see the Guide to VAX
DEC [Test Manager.

2.1.5 VAX Performance and Coverage Analyzer

The VAX Performance and Coverage Analyzer software (VAX PCA) is
another tool that is used during testing. Engineers use VAX PCA to
analyze the run-time behavior of an application under development.
It analyzes test coverage by measuring which parts of an application
are or are not executed by a given set of test data. Engineers use this

Software Development Tools 17



information to create tests that thoroughly exercise the application.
VAX PCA also pinpoints execution bottlenecks and other performance
problems. Using this information, the development team can modify
modules to run faster.

VAX PCA can collect, analyze, and réport on the following types of data:

* Program counter sampling data—Provides a good overview of where
a program consumes the most time.

¢ Page fault data—Helps determine what sections of the program
cause the most page faults.

¢ Exact execution counts—Provides the exact number of times a
program executes specified locations, thereby helping the team to
understand a program’s dynamic behavior.

* Test coverage data—Shows which code paths are or are not exe-
cuted during testing.

* System services data—Shows which sections of the program call
system services.

¢ Input/Output data—Details all VMS Record Management Services
(VMS RMS) calls in a program, thus helping development teams
to understand a program’s input/output behavior. VMS RMS
software is a data management tool that provides an interface
at the application-program level to record and file management
functions.

For more information on VAX PCA, see the Guide to VAX Performance
and Coverage Analyzer.

2.1.6 VAX DEC/Code Management System

Maintaining software configuration management and keeping track

of source code files during development are tough challenges for any
software development team. If the wrong version is linked or the latest
changes are lost, the team can lose days or even weeks trying to correct
the problem. To overcome such problems, development teams at Digital
use the VAX DEC/Code Management System (DEC/CMS) software to
coordinate source code files. DEC/CMS software is used to ensure that
the files are always up-to-date and available, and to construct software
versions.

18 Software Development Tools



The DEC/CMS software is a tool that all team members can use—
managers, system analysts, technical writers, and engineers. At
Digital, engineers use it to organize and maintain all their program
source files. They also use it to track everything that happens to
project files during development. DEC/CMS records every change, the
reason for the change, who made it, and when.

DEC/CMS can also be used to merge modifications and store cur-
rent and historic versions of the files in a central library. Using the
class feature of DEC/CMS, development teams can associate a unique
DEC/CMS class name to each file and element related to a specific
software version. Thus, the class identifies all the files and elements
related to a specific version and provides a method of proper software
configuration management.

DEC/CMS can store any binary file, including a project’s object files
and its executable images. The code management aspects of software
configuration management are especially important on large projects
that develop over a long period of time and have multiple versions of
the developing software.

DEC/CMS works on any file created with an editor. Team members
use it to store documents, plans, specifications, status reports, or other
records.

In summary, DEC/CMS performs the following functions:

¢ Keeps track of files at every phase of development
* DMonitors changes in files to avoid conflict

* Allows team members to concurrently work on the same file without
the risk of losing the changes made by any team member, while
reporting any conflicts

* Conserves disk space as it stores the source files for documentation
and code

* Supplies source material for generating project activity reports
* Maintains a history of library activity
* Stores files from other software development tools

For more information on DEC/CMS, see the Guide to VAX DEC /Code
Management System.

Software Development Tools 19



2.1.7 VAX DEC/Module Management System

When building a software system, engineers must include the correct
version of each software component. To maintain proper software
configuration management at Digital, software engineers use VAX
DEC/Module Management System (DEC/MMS) software. DEC/MMS
provides a consistent means of automating the building of modular
software applications, from simple programs of one or two files to
complex programs consisting of many source files, message files, and
documentation. DEC/MMS software builds a system faster because
it builds only the parts that require building. No time is wasted in
recompiling and linking modules that have not changed since the
previous system build.

After DEC/MMS is set up to handle a software application, it can
build the application with one command. DEC/MMS then manages the
system build by retrieving the proper version of each source code file
from a DEC/CMS library.

DEC/MMS provides the following features:

¢ Builds only the parts that need building, thereby building the
system more quickly

¢ Consistently reproduces the same system each time it is built,
thereby increasing the accuracy of the build

For more information on DEC/MMS, see the Guide to VAX DEC /Module
Management System.

2.1.8 VAX SCAN

Development teams frequently need to reformat or transform existing
source files and other project files to match the standard used on the
current project. Also, a team might need to translate the program
source code from one language variant to another, for example from
DECSYSTEM-20 BASIC-PLUS-2 to VAX BASIC. The VAX SCAN
software helps programmers create tools to solve such cumbersome and
time-consuming text-processing tasks.

20 Software Development Tools



The VAX SCAN programming language is designed to help software
development teams create their own text-processing tools, that is, tools
that manipulate text strings and files.

The features of VAX SCAN include the following:

* Implemented as a high-level language

* Has extensive string-processing capabilities, including operators for
complex pattern matching

* Capable of calling VAX SCAN routines from other VAX languages

* Capable of calling routines written in other VAX languages from
VAX SCAN

* Capable of calling the VMS Run-Time Library (RTL) and System
Service routines from VAX SCAN

* Integrated for use with the VMS Debugger

* Integrated for use with LSE

The program created with VAX SCAN contains statements that define
the following:

* Rules for building “tokens” from the characters in the input stream

* Rules for defining patterns of tokens that are to be recognized in
the input stream

* Actions performed by the application when it recognizes a pattern

The input and output streams of text can be defined as a file, a string,
or a routine address, which can be called back to obtain the text.
Thus, VAX SCAN applications can be designed either as independent
applications or as part of larger systems.

VAX SCAN rules for building tokens and for defining and recognizing
grammars (patterns) help developers create applications more quickly
than is possible with a traditional programming language such as
COBOL or Pascal. Thus, VAX SCAN gives developers the potential to
create applications to solve problems that were left unresolved in the
past.

Another feature of VAX SCAN is that it is a compiled rather than an
interpreted implementation. Because it is compiled and conforms to
the VAX Procedure Calling and Condition Handling Standard, VAX
SCAN procedures can easily be integrated with procedures written
in other languages and system services. (This standard describes

Software Development Tools 21



the techniques used by all VAX languages for invoking routines and
passing data between them. See Section 4.6.1 for more information.)

For more information on VAX SCAN, see the Guide to VAX SCAN.

2.1.9 VAX CDD/PLUS

Managing data requires significant time and effort in application
development, especially when two or more applications need to share
some common data. The need for a central repository of data definitions
has gained increased recognition in recent years. Incorrectly defined
data is a major source of errors and delay in the development process;
applications programmers need accurate definitions.

At Digital, software development teams use the VAX CDD/PLUS
(Common Data Dictionary) data base. VAX CDD/PLUS permits data
administrators to store accurate and complete definitions in a central
location accessible to all. VAX CDD/PLUS efficiently helps manage and
control definitions across the modules that make up an application.

By planning for its use early in a project, a team can simplify its
management tasks.

VAX CDD/PLUS software is designed to be used throughout the life cy-
cle of a software development effort. It stores data definitions common
to many separate programs, which may be written in many different
languages. CDD/PLUS is particularly well suited to commercial en-
vironments where multiple application programs access large central
data bases.

By storing data definitions in a central repository, VAX CDD/PLUS
provides the following benefits to a project:

* Eliminates the need to define data within application modules.

* Reduces redundancy (multiple copies of the same data definitions)
and inconsistency. To change a data definition that affects several
application modules, the user needs to make the change only once
in VAX CDD/PLUS, then recompile the affected modules.

* Enables multiple modules, even those written in different lan-
guages, to share one or more definitions.

22 Software Development Tools



The CDD/PLUS system lets developers create, analyze, and administer
metadata for a software development project. Metadata is data that
both describes data and defines how the data is used.

The actual data values are stored and maintained outside of the

data dictionary in DEC/CMS libraries or in a data base management
system. The metadata in VAX CDD/PLUS keeps track of the location,
type, format, size, change history, and use of the data. The dictionary
controls all changes to the metadata. Thus, a developer can manage
information and application resources more effectively by allowing
shared and controlled access to all metadata (usually fields and records)
and by auditing the dictionary’s use.

For more information on VAX CDD/PLUS, see the VAX CDD/Plus
Common Dictionary Operator User’s Guide and the VAX CDD/Plus
Common Dictionary Operator Reference Manual. For more infor-
mation about using VAX CDD/PLUS with VAX languages, see the
documentation for the particular language.

2.1.10 The VMS Debugger

Digital engineers use the VMS Debugger software to observe and debug
a program as it executes and to manipulate the program interactively.
By issuing debugger commands at the terminal, engineers can carry
out the following tasks:

e Start, stop, and resume the execution of the program

* Trace the execution path of the program

¢ Monitor selected locations, variables, or events

¢ Examine and modify the contents of variables or force events to
occur

¢ In some cases, test the effect of modifications without having to edit
the source code, recompile, and relink the program

Software Development Tools 23



Programming Language Support

The VMS Debugger works with the following VAX languages: Ada,
BASIC, Bliss—32, C, COBOL, DIBOL, FORTRAN, MACRO-32, Pascal,
PL/, RPG, and VAX SCAN. The Debugger recognizes the syntax,
expressions, data typing, and other constructs of a given language. If
a program is written in more than one language, the user can change
from one to another during the debugging session.

Symbolic Debugging

The VMS Debugger is a symbolic debugger. Program locations can be
referenced by the symbolic names used for them in the program (the

names of variables, routines, labels, and so on). It is not necessary to
use virtual addresses to refer to memory locations.

Support for All Data Types

The Debugger understands all language data types, such as integer,
floating point, enumeration, record, and array. It displays program
variables according to their declared type.

Flexible Data Format

The VMS Debugger permits a variety of data forms and types for entry
and display. By default, the source language of the program determines
the format used for the entry and display of data. Other formats can
be specified. For example, the contents of a program location can be
entered or displayed in ASCII, hexadecimal, octal, or decimal notation.

Starting and Resuming Program Execution

The GO and STEP commands start and resume program execution.
The GO command causes the program to execute until a breakpoint is
reached, a watchpoint is modified, an exception condition occurs, or the
program terminates. The STEP command executes a specified number
of lines or instructions, or up to the next instruction of a specified class.

Breakpoints

The SET BREAK command suspends program execution at specified
locations so the developer can check the current status of the program.
Rather than specify a location, you can also suspend execution on
certain classes of instructions, on every source line, or on certain types
of events, such as exceptions and Ada tasking events.

24 Software Development Tools



Tracepoints

The SET TRACE command monitors the path of program execution
through specific locations. When a tracepoint is triggered, the VMS
Debugger reports that the tracepoint was reached and then continues
execution. As with the SET BREAK command, you can also trace
through classes of instructions and monitor events.

Watchpoints

The SET WATCH command causes execution to stop whenever a
particular variable or other memory area has been modified. When a
watchpoint is triggered, the VMS Debugger suspends execution at that
point and reports the old and new values of the variable.

Manipulation of Variables and Program Locations

The EXAMINE command lets the engineer determine the value of a
variable or program location. The DEPOSIT command lets the engineer
change that value and then continue execution to see the effect of the
change, without having to recompile, relink, and rerun the program.

Evaluation of Expressions

The EVALUATE command computes the value of a source language
expression or an address expression. You can specify expressions and
operators in the syntax of the language to which the VMS Debugger is
currently set.

Control Structures

Logical control structures (FOR, IF, REPEAT, WHILE) can be used in
commands to control the execution of other commands.

Shareable Image Debugging

You can debug shareable images (images that are not directly exe-
cutable). The SET IMAGE command references the symbols declared
in a shareable image.

Software Development Tools 25



Terminal Support

The VMS Debugger supports all of Digital’s VI-series terminals and
MicroVAX workstations. It uses multiple windows on the terminal
screen to display extensive program state information. With this
information developers can find program bugs rapidly and efficiently.

For more information on the VMS debugger, see the VMS Debugger
Manual.

2.2 Management and Communications Tools

Many of the problems encountered in developing large and complex
software projects are associated with managing all of the tasks in the
process and making certain all members of the development team
have the same timely information. This section discusses the following
management and communications tools used at Digital:

* VAX Software Project Manager
¢ VAX/VMS Mail Utility
¢ VAX Notes

2.2.1 VAX Software Project Manager

From the earliest stages of a project, the development team needs to
be able to monitor schedules, budgets, and staff requirements. Teams
at Digital use the VAX Software Project Manager project management
system to generate project schedules and simplify the process of esti-
mating, planning, and controlling software development projects. The
VAX Software Project Manager has the following capabilities:

* Manipulates data required to manage software projects that have
up to 5000 tasks and require up to 20 different resources.

* Supports three styles of interaction: menu mode, a command-line
mode, and a callable interface. All VAX Software Project Manager
functions can be carried out using either the menu mode or the
command-line mode. The callable interface provides a read-only
mechanism for extracting project data for use outside the VAX
Software Project Manager system.

26 Software Development Tools



VAX Software Project Manager supports an extensive collection of
project-related data. Developers can enter, manipulate, and view vary-
ing amounts of data depending on the amount and depth of scheduling
and reporting information needed on their project. Table 2—-1 summa-
rizes the types of data supported by VAX Software Project Manager.

Table 2—-1: Data Types Supported by VAX Software Project Manager

Data Type Description

Tasks Individual tasks required to satisfy project objec-
tives and product specifications

Milestones Critical points in time

Resources Personnel, equipment, supplies, and other materi-
als used to carry out tasks

Schedules Dates and resources assigned to carry out tasks

Calendar Calendar against which to schedule

Estimation hierarchy

Software work break-
down structure
Precedence network

User preference data

Access control lists

A tree-structured model, composed of estimation
nodes that contain cost and effort estimates for the
project

A tree-structured model of project tasks used for
detailed planning

A chronological map of a project showing dependen-
cies among tasks and milestones

Optional ways to specify how VAX Software Project
Manager displays its information

A list of accounts that can access and change
project data

VAX Software Project Manager provides a powerful set of tools to help
developers efficiently manipulate the project data. These tools include
estimating, planning, control, and operational environment facilities.

Estimation Facility

The estimation facility allows the team to generate project schedules
based on a range of assumptions about the amount and quality of
available resources. This “what if” analysis can help development
teams consider major trade-offs before committing to a project schedule.

Software Development Tools 27



The estimation facility is based on the widely accepted COCOMO
(Constructive Cost Model) estimation model developed by Dr. Barry
Boehm.! It uses algorithms that need as input the number of lines of
code for the project. The facility allows the user to specify “cost drivers”
that can push estimates for the project higher or lower; for example,
programmer skills, product complexity, the programming environment,
and so on.

Planning Facility

The planning facility generates task-level schedules. The schedules
are more detailed than those of the estimation facility because more
is known about the software project. Both the estimation and plan-
ning facilities allow the project manager to perform interactive “what
if” analysis confidently at varying levels of detail. Additionally, the
planning facility produces a project plan that can serve as a baseline
against which to compare actual progress.

Control Facility

The control facility helps project leaders monitor and report project
progress and costs, anticipate potential problem areas, and ensure the
efficient use of all resources by comparing the progress of the project
against the project plan.

Operational Environment Facility

The operational environment facility provides the means to control

the environment in which VAX Software Project Manager operates;
specifically, which project data base to use, who can use the system, and
what each person can read and write in the project data base. Other
tools in this facility allow the user to specify the resources a project
has, their capabilities, their associated costs, and their availability at
different times.

For more information on the VAX Software Project Manager, see the
Guide to VAX Software Project Manager.

1 Barry Boehm, Software Engineering Economics. Prentice-Hall: Englewood Cliffs, New Jersey, 1981.

28 Software Development Tools



2.2.2 The VAX/VMS Mail Utility

A communications tool that is widely used by Digital’s development
teams is the VAX/VMS Mail Utility (MAIL). Team members use MAIL
to send electronic messages to other people on the system or any other
computer that is connected to the system by means of the DECnet-VAX
networking software. VAX/VMS Mail can make communications almost
instantaneous. For many Digital engineers, MAIL often replaces the
telephone.

For more information on MAIL, see the VMS Mail Utility Manual.

2.2.3 VAX Notes

Throughout the software development process development team mem-
bers need to collect information for product requirements, design, and
development, as well as to exchange general project information. At
Digital, development teams make extensive use of the VAX Notes
computer conferencing system. The VAX Notes system enables team
members to conduct conferences on line, thereby reducing or elimi-
nating much of the time and expense required to arrange and attend
meetings. VAX Notes conferences can also provide a faster alternative
to reviewing project documents in hard-copy format. The capability
of VAX Notes to organize information can also simplify the process of
including review comments in final documents.

VAX Notes is organized into “topics,” in which a written “note” starts
the discussion of each topic. Members of the conference can create
new topics at any time and they can reply to existing notes and other
people’s replies. All information is stored on line and is easily examined
from any node in the user’s computer network. Some of the features of
VAX Notes include:

¢ Distributed Access. Notes conferences can reside on and be ac-
cessed from any VMS system on which VAX Notes has been
installed. Team members do not need an account on the system
where the conference resides in order to participate.

Software Development Tools 29



* Moderator Support. A moderator is the person responsible for
managing a conference. The moderator can restrict access to a
specific group of participants by specifying names and network
locations. VAX Notes allows both moderated and unmoderated
conferences.

* Simple Conference Structure. VAX Notes uses numbered topics and
replies to maintain the discussions in a conference, so there is no
difficult hierarchy to navigate. Participants can choose topics and
replies they want to read at any time.

¢ Use of Existing Text. Participants can create text outside of VAX
Notes and then add the text to the Notes conference.

For more information on VAX Notes, see the Guide to VAX Notes.

2.3 Documentation Tools

A successful software product must have high-quality documentation.
This includes both project documents, such as product specifications
and design documents; and user documents, such as user manuals and
installation guides. This section describes the following documentation
tools used by development teams at Digital:

e VAX DIGITAL Standard Runoff
e VAX DOCUMENT
e  DECwrite

2.3.1 VAXDIGITAL Standard Runoff

The VAX DIGITAL Standard Runoff (DSR) text-formatting utility helps
developers create and maintain the extensive documentation necessary
to support a development effort. The DSR command set supports
documents as simple as a form letter or as complex as a multichapter
manual.

The input to DSR is a file containing the text of the document and the
DSR formatting codes. The output file is the formatted document that
can be printed. After DSR has run, the original file remains available
for further editing.

30 Software Development Tools



DSR has commands for a range of formatting needs, including the
following basic elements:

* Pages

e Titles

* Section headers

* Graphics, lists, and notes

¢ Indexes and tables of contents

For more information on DSR, see the VAX DIGITAL Standard Runoff
Reference Manual.

2.3.2 VAXDOCUMENT

Digital’s development teams use the VAX DOCUMENT batch document
composition system to create project documentation, such as prod-

uct specifications and other design documents, and the software user
documentation to support the product. VAX DOCUMENT has facil-
ities to create, maintain, revise, format, and print complex technical
documents.

The VAX DOCUMENT system produces high-quality output on a range
of Digital laser printers. Many different fonts are available for all of
these printers in a variety of point sizes and weights, including italic,
boldface, medium, and bold italic. Thus, documents prepared with VAX
DOCUMENT look typeset.

To use VAX DOCUMENT, the user creates and edits an ASCII file

in which text and markup instructions are entered. The markup
instructions contain no specific device or format information. Instead,
they identify the text elements (such as headings, bulleted lists, or
tables) that define the structure of the document. A separate file,
referenced by DOCUMENT when it processes the text file, defines the
typographic style of the document and its elements.

Writing a file using VAX DOCUMENT has several advantages:

¢ The writer can concentrate on the content of the information rather
than the format.

Software Development Tools 31



¢ The final appearance of the document can be changed easily with-
out changing the marked-up file. The marked-up file is simply
reprocessed, referencing a design file that will produce a different
design. For example, one design file might produce output in two-
column format and another design file might produce output that
spans the full width of the page.

¢ The documents that are produced have a consistent format.

Technical documentation for customers typically requires graphic
illustrations to support text discussions. VAX DOCUMENT allows a
writer to merge computer-generated graphic files into the final output
document. Different tools can be used to create the graphic files as
long as the files are encoded in the correct protocol for the device.
DOCUMENT accepts sixel-encoded graphic files for Digital’'s LN03

and LNO3-PLUS laser printers. It also accepts POSTSCRIPT-encoded
graphic files for Digital’s LNO3R ScriptPrinter and PrintServer 40 laser
printers.

VAX DOCUMENT also provides files that define the typographic style
of several types of documents:

e Letters
¢ Overhead transparencies and 35mm slides
e Articles

¢ User manuals with software-specific information
* Military specifications
* General-purpose documents

The VAX Language-Sensitive Editor supports VAX DOCUMENT. The
source files can be stored in a DEC/CMS library.

The user can specify output from VAX DOCUMENT to be printed or
displayed on any Digital character-cell terminal and monospaced line
printer. The user can also specify printing on the following Digital laser
printers: LN03, LN03—-PLUS, LNO3R ScriptPrinter, and PrintServer
40. These printers produce very high-quality text and graphics output.

For more information on VAX DOCUMENT, see the VAX DOCUMENT
User Manual, Volume 1, the VAX DOCUMENT User Manual, Volume 2,
and Step-by-Step: Writing with VAX DOCUMENT.

32 Software Development Tools



2.3.3 DECwrite

Another documentation tool that is useful to Digital’s development
teams is the DECwrite new-generation WYSIWYG (What You See

Is What You Get) information processing tool. DECwrite allows the
user to create, edit, format, store, interchange, compose, and chart
information in documents. DECwrite features a bitmapped display that
shows text, graphics, and images in correct relative size and position
as they will appear on output to PostScript printers. It is designed

for the DECwindows environment. (DECwindows is an easily learned
graphic user interface that stays consistent across a wide range of
Digital desktop devices. See Section 4.4.2 for more information.)

DECwrite is a page-oriented application, which makes it attractive to
team members who need to create layout-intensive documents such
as product brochures. It is also a document-oriented application, so
team members use it for structured documents such as proposals

and specifications. DECwrite allows multiple files to be stored under
one document name, thereby automatically creating a document with
multiple sections or chapters. In batch mode, it can generate an index
and a table of contents with separate sections for figures and tables.

DECwrite has a basic graphics editor for drawing lines, rectangles,
squares, ellipses, circles, arcs, polylines, and freehand strokes. Any of
these shapes can be drawn with different line weights and styles and
can be filled with a variety of patterns. Once drawn, graphics objects
can be modified, moved, copied, scaled, aligned relative to one another,
grouped, or deleted. These graphics objects can be placed anywhere on
a document page and can overlap text on the page.

DECwrite also accepts bitmapped images from scanners, paint pro-
grams, or screen capture facilities, all of which can be included in
documents. These images may be cropped and scaled to fit a specific
region of a page.

Software Development Tools 33



2.4 VMS Utilities

The VMS operating system has many powerful program develop-
ment utilities. This section describes some of the most widely used,
including:

The Message Utility

The Command Definition Utility
The VMS Run-Time Library
The VAX C Run-Time Library

2.4.1 The Message Utility

The Message Utility is used to construct informational, warning, or
error messages in standard VMS format. Messages can indicate other
conditions, for example, that a routine has run successfully or that a
default value has been assigned.

Developers create a source file that specifies the information used in
messages, message codes, and message symbols. Then they compile
the message source file with the MESSAGE command and link the
resulting object module with their facility object module. When a
program is run, the Put Message ($PUTMSG) system service finds the
information to use in the message by using a message argument vector.

The message argument vector includes the message code, which is a
32-bit value that uniquely identifies the message. Developers can refer
to the message code in programs by means of a global symbol called the
message symbol, which is also defined by information from the message
source file.

The message source file consists of message definition statements and
directives that define the message text, the message code values, and
the message symbol. The various elements that can be included in a

message source file are the following:

¢ Facility directive

* Severity directive

¢ Base message number directive

¢ Message definition

¢ Literal directive

34 Software Development Tools



¢ Identification directive
¢ Listing directive
e End directive

After the message file is compiled, the message object module must be
linked with the facility object module (created when the source file was
compiled) to produce one executable image file.

For more information on the Message Utility, see the VMS Message
Utility Manual and the Guide to VMS Programming Resources.

2.4.2 The Command Definition Utility

The Command Definition Utility (CDU) software creates, deletes, or
changes command definitions in a command table. CDU invokes a
program when the user enters a unique Digital Command Language
(DCL) command. As input, the CDU accepts a command table or a file
that contains command definitions. The CDU processes this input to
create a new command table in the form of executable code or an object
module.

The CDU provides a way to define command-line syntax. The command
table is used by the command-line interpreter (CLI) to parse com-
mands. The CLI’s parser is callable from the VAX Common Language
Environment.

For more information on command definition, see the VMS Command
Definition Utility Manual and the Guide to VMS Programming
Resources.

2.4.3 The VMS Run-Time Library

The VMS Run-Time Library (RTL) contains two types of procedures:

* General-purpose procedures
¢ Language-support procedures

The general-purpose procedures are intended to be called explicitly
from programs to perform common operations. The language-support
procedures are intended to be called implicitly by compiler-generated
code.

Software Development Tools 35



The general-purpose procedures in the RTL follow the VAX Procedure
Calling and Condition Handling Standard (see Section 4.6.1) and the
VAX/VMS Modular Programming Standard (see Section 4.6.2).

The RTL provides the following features and capabilities:

¢ The resource allocating procedures of the RTL provide a central
repository for process resources such as virtual memory and event
flags.

* Because many of the procedures are shared, they take up less space
in memory.

¢  When new versions of the RTL are installed, engineers do not need
to revise the calling program and generally do not need to relink.

The RTL contains several facilities that are groups of procedures that
perform related operations. Table 2-2 lists the RTL facilities.

The general-purpose routines use explicit procedure or function calls.
The following list briefly describes the types of general-purpose rou-
tines:

DECtalk Routines

These routines are used to control Digital’s DECtalk devices. DECtalk
is a voice synthesizer that converts computer alphanumeric text into
human-quality speech. DECtalk speaks this data through its own
internal speakers, an external audio system, or over a telephone.

General Utility Routines

These routines obtain records from devices, manipulate strings, convert
data types for I/0, allocate resources, obtain system information,
signal exceptions, establish condition handlers, enable detection of
hardware exceptions, and process cross-reference data. Frequently
used string-handling procedures have both JSB and CALL entry points.

Mathematical Routines

Mathematical routines perform common arithmetic, algebraic, and
trigonometric functions. Frequently used mathematical routines have
both JSB and CALL entry points.

36 Software Development Tools



Table 2-2: VMS Run-Time Library Facilities
Facility Description

General-Purpose Routines

DTK$ DECtalk routines

LIB$ General utility routines
MTHS$ Mathematical routines

PPL$ Parallel processing routines
SMG$ Screen management routines
STR$ String manipulation routines

Language-Support Procedures

OTS$ Language-independent support routines
BAS$ BASIC-specific support routines

COB$ COBOL-specific support routines

FOR$ FORTRAN-specific support routines
PAS$ Pascal-specific support routines

PLI$ PL/I-specific support routines

RPG$ RPG-specific support routines

Resource Aillocation Routines

Resource allocation routines allocate and deallocate virtual memory,
VMS local event flag numbers, BASIC and FORTRAN logical unit
numbers, and dynamic strings.

Screen Management Routines

Screen management routines perform terminal-independent screen
management functions. These routines help developers design, com-
pose, and track complex images on a video screen. For more informa-
tion on the screen management routines, see the VMS RTL Screen
Management (SMG$) Manual.

Parallel Processing Routines

These routines simplify subprocess creation, interprocess communica-
tion, and resource sharing for parallel applications.

Software Development Tools 37



Signaling and Condition-Handling Routines

These routines perform operations that entail handling exception con-
ditions, such as signaling exceptions, establishing condition handlers,
and enabling the detection of hardware exceptions.

Syntax Analysis Routines

Syntax analysis routines analyze the syntax of strings. The library
includes a table-driven parser called LIB$TPARSE and a procedure
called LIB$LOOKUP_KEY that recognizes keywords.

Cross-Reference Routines

The cross-reference routines accept cross-reference data, summarize it,
and format it for output. Programs access the cross-reference routines
through a set of control blocks and format definition tables.

Language-independent Support Routines

Language support routines are intended to be called implicitly by
language compilers and compiled code. Compiler-generated code uses
these routines to do specific tasks such as data-type conversions.

Language-Specific Support Facilities

The language-specific routines provide features such as compiled code
support, file processing, format processing, error processing, and I/O
processing.

For more information on the RTL routines, see the VMS Run-Time
Library Routines Volume.

2.4.4 VAX C Run-Time Library

The primary purpose of the VAX C Run-Time Library is to allow C
programs to perform I/O operations; the C language itself has no
facilities for reading and writing information. The VAX C RTL also
provides a means to perform many other tasks. The functions and
macros supported by the VAX C RTL are as follows:

e Standard I/O functions and macros

¢ Terminal functions and macros

¢ Character-handling functions and macros

38 Software Development Tools



¢ String- and list-handling functions and macros

¢ Mathematical functions

* Signal functions

* Memory allocation functions

¢ Subprocess functions

* System functions

® Cursor Screen Management functions and macros

For more information on the VAX C Run-Time Library, refer to the VAX
C Run-Time Library Reference Manual.

2.5 Summary of Software Development Tools

Here is a brief summary of the software development tools discussed in
this chapter:
VAX Language-Sensitive Editor

Simplifies programming in any VAX language by providing multi-
window, screen-oriented functions specifically designed for program
development and maintenance.

VAX Source Code Analyzer

Helps software engineers understand the complexities of a large soft-
ware project by allowing them to make inquiries about the symbols
used in the project’s code.

VAX DEC/Test Manager

Automates regression testing of software under development by exe-
cuting user-supplied test data and automatically comparing the results
with the expected test results.

VAX Performance and Coverage Analyzer

Analyzes the run-time behavior of software under development by
performing test coverage analysis, which measures the parts of a user
program executed or not executed by a given set of test data.

Software Development Tools 39



VAX DEC/Code Management System

Acts as the library system for storing, managing, and recording valu-
able information about the project files.

VAX DEC/Module Management System

Helps manage the building of application systems from component
modules by determining which modules need to be recompiled after
modifications and performing the appropriate actions to ensure that the
software system is compiled and linked with the latest changes.

VAX SCAN

Helps software development teams create their own text-processing
tools. It provides complex pattern-matching programming functions.

VAX CDD/PLUS

Makes it easier for software engineers to set up and maintain data
definitions.

VMS Debugger

Provides interactive functions for debugging software.

VAX Software Project Manager

Simplifies planning and organization of medium-to-large development
projects by generating schedules to track and manage project tasks.

VAX/VMS Mail Utility

Lets team members send electronic messages to other people on the
system or any other computer that is connected to the system by means
of the DECnet—VAX networking software.

VAX Notes

Enables the development team to create and access online conferences
or meetings, thus reducing the need to travel and coordinate schedules.

VAX DIGITAL Standard Runoff

Provides text-formatting functions for text editors.

40 Software Development Tools



VAX DOCUMENT

Provides tools for text creation, text and graphics integration, so-
phisticated document formatting, and typeset-quality output on laser
printers.

DECwrite

Enables developers to create, edit, format, store, interchange, compose,
and chart information in their documents. Features a bitmapped
display and is designed for the DECwindows environment.

Message Utility

Enables the software development team to construct informational,
warning, or error messages to be used by the software application.

Command Definition Utility

Used to create, delete, or change command definitions in a command
table.

VMS Run-Time Library

Provides a series of procedures designed to be called from programs to
perform common operations.

Software Development Tools 41






Chapter 3
Project Management

Project management is the process of coordinating the several inter-
related tasks of developing a product and bringing it to market. As
project teams develop larger and more complex applications, managing
the life cycle becomes more difficult and more time-consuming. Good

project management is therefore vital to the success of a software
development project.

This chapter discusses some of the key concepts in project management.
The chapter is divided into three main topics:

¢ Development projects and teams

¢ Project planning and control

* Project documentation

3.1 Development Projects and Teams

Digital relies on product teams to develop and deliver products. This
approach recognizes that bringing a new product to market on time and
within budget requires cooperation and shared decision-making.

3.1.1 Product Team

Every product-development effort requires the interaction of manage-
ment, marketing, engineering, customer services, sales, manufacturing,
and finance. Generally, these team members are first brought together
by the product and marketing managers.

Project Management 43



Figure 3-1 shows the interactions among members of a typical product
team.

Figure 3-1: Product Team Interactions

Supervisory

Review
A
Customer ] ‘
Services Engineering
Representative Project Leader

Sales Manufacturing
Representative Project Manager

)

Marketing
Project Manager

The product team shares these responsibilities:

* Monitoring development progress against the business plan

¢ Ensuring that software developers understand the user’s perspec-
tive

44 Project Management



¢ Evaluating prototypes for functionality

* Continuously reviewing product plans and documenting changes

The product team resolves all issues that arise while carrying out these

responsibilities.

3.1.2 Development Team

The team within a software engineering organization responsible for
delivering the product is generally called the project or development
team. Figure 3—-2 shows typical development team members.

Figure 3-2: Development Team Members

Product Manager Manager

Engineering

Software
Engineers

Technical
Writers

Other
Groups

Engineering
Project Leader

Release
Engineer

Project Management 45



An engineering project leader directs the daily engineering activities
of the development team and represents its interests on the product
team. Members of this team include one or more software engineers,
technical writers, release engineers, field test administrators, software
manufacturing planners, and administrative personnel.

The success of a project lies in the effectiveness of the team. One
measure of effectiveness is the communication among team members.
At Digital, the primary communications tools are meetings, reports,
and electronic dialogue (MAIL and VAX Notes). Another measure of
effectiveness is the ability of all individuals to manage their tasks on
the project, as described in the next sections.

3.1.2.1 Responsibilities of the Engineering Project Leader
The engineering project leader plays a central role in product develop-
ment. He or she is responsible for the following:

¢ Coordinating the daily engineering activities required to
meet the criteria for each phase of development. To meet this
responsibility, the engineering project leader:

— Plans projects

— DManages activities
— Evaluates status
— Manages change

¢ Ensuring that the engineering plan is consistent with the
support plans of the product development team and that all
support plans receive the necessary engineering attention.
To meet this responsibility, the engineering project leader:

— Participates in product development team meetings

— Conducts regular team meetings with the development team
members

— Reviews and approves all team documents
— Submits status reports

— Identifies and manages items that change the scope of the
project

46 Project Management



¢ Keeping engineering management fully informed of project
developments. To meet this responsibility, the engineering project
leader:

Identifies resource requirements for the project
Negotiates commitments for project resources
Reviews the performance of project team members

Recognizes performance problems with assigned personnel and
notifies the appropriate managers

Submits regular status reports

¢ Building an effective development team. To meet this respon-
sibility, the engineering project leader:

Directs and coordinates all resources on project tasks
Assigns individual team members to complete each task

Analyzes necessary trade-offs required to respond to changes in
the needs of the project

Provides a regular forum to communicate project status and
accomplishments

Manages changes and suggestions from the team
Manages dependencies with other resources on the project

Identifies dependencies that affect the start and completion of
each task

Estimates the time and effort needed to complete each task and
schedule start and completion dates

Specifies the criteria that will indicate that a particular task is
complete

Sets priorities and identifies potential risks and conflicts

3.1.2.2 Responsibilities of Development Team Members

Each team member develops a specific portion of the product. As a
group, they also review the work of their fellow team members to
ensure the cohesion of their efforts. Working with the project leader,
team members are responsible for:

¢ Planning their tasks to ensure efficient budgeting of time
and resources. To meet this responsibility, team members:

Make sure their tasks are clearly defined

Project Management 47



— Understand how much time each task requires and ensure that
time is available for all task commitments

— Confer with the project leader if they need help in planning
their tasks or in redefining tasks that are not properly defined

¢ Maintaining a list of their tasks and tracking their progress
against the planned schedule.

* Working on tasks according to the development schedule.
To meet this responsibility, team members bring difficult problems
to the attention of their project leader promptly. Table 3—1 lists
several common types of problems and courses of action to follow.

-Table 3—-1: Responses to Common Task-Related Problems

Type of Problem

Response

Improperly defined task

Missing task

Prerequisite not met

Revision required after the task
is complete

Discuss problem with project leader
immediately. No matter how much time
is spent planning, new information may
cause changes in a task, priority, or
content.

Discuss problem with project leader
immediately.

The project leader may need to alter
priorities of other tasks to allow a task
to begin, or defer a task at that point
and start another task.

Do not wait until the last minute to
check if the task is complete. Discuss
progress with others at status re-
view meetings as well as with the
project leader. The impact of rework is
generally underestimated.

3.1.2.3 Progress Reports and Team Meetings

Regular progress reports facilitate communication between team
members and the project leader and provide the project leader with
information needed to manage the project.

Progress reports include the following information:

48 Project Management



¢ Tasks or components worked on
¢ Time spent on each task

* Time remaining on all tasks

¢ Tasks completed

Progress reports are the key topic at team meetings, which are typically
held once a week. During the meeting, the project leader identifies
the accomplishments and problems from the previous week and sets
goals for the upcoming week. This information, collected weekly, can
contribute to a monthly project report.

Team meetings are most useful when everyone is prepared and ready
to participate actively. Team members should be able to discuss their
current status and their plans for the next two to four weeks. Thus,
everyone is made aware of what the others are doing.

3.2 Project Planning and Control

The purpose of project planning is to carry a project through all phases
of development on time and within budget while meeting all tech-
nical objectives. Effective project planning entails the following key
activities:

e Identifying the project tasks

¢ Identifying the resources necessary to carry out the project tasks

* Organizing the tasks and resources to meet project objectives

Although most of the planning occurs when the preliminary and
final engineering plans are prepared, in reality the project plan is
continuously updated to reflect the project’s evolution.

3.2.1 Project Schedule

During preliminary planning, the development team prepares a project
schedule. The schedule depends on many factors:

* The resources available for the project (people, equipment, and so
on)

¢ Dependencies on other projects

Project Management 49



¢ Marketing needs
® Special field testing requirements

The following checklist contains tasks and other items to consider when
allocating time for the schedule:
¢ Project Work
— Producing prototypes
— Supporting prototypes
— Testing
— Responding to reported problems with the software
— Fixing errors in the code
— Installing operating systems
-~ Verifying the product on new hardware or operating systems
— Testing performance
— Adjusting for delays in other projects that affect the schedule
— Reviewing documentation and code
— Holding project meetings
— Preparing review documents
* Overhead
— Administrative work (for example, demonstrations)
— Training
— Presentations and business trips
— Vacations
— Staffing changes

Digital’s development teams use the following steps to establish realis-
tic schedules:
1. Produce a product design with enough detail to minimize risks.
2. Divide the project into units or tasks suitable for scheduling.
The team uses the physical design of the software to divide the
project into units or tasks that are easy to schedule. Note that a

logical design might not directly correspond to a task that can be
scheduled.

50 Project Management



3. Estimate the time to complete tasks.

Team members estimate the time necessary to complete their
individual tasks, including overhead.

4. Determine milestones.

Milestones are important points in the project that typically reflect
significant progress in the product’s development.

5. Determine critical paths, that is, the completion order and depen-
dencies among tasks.

6. Define the actual time period in which project activities will be
completed.

7. Assign people to tasks.

The project leader makes sure that assigned parties agree with the
time estimates.

8. Schedule actual working hours.

Add time for meetings, vacations, and so on. For example, a
project leader may have a task that requires four days. If 50
percent of the assigned engineer’s time is taken with overhead,
then the job actually will take eight days to complete. The resulting
schedule consists of a series of milestones mapped to calendar
dates. Figure 3-3 depicts this mapping process.

Depending on the type of project, the schedule may have to allow for
a significant degree of uncertainty, particularly for projects whose
requirements are not well defined. To cope with this uncertainty, the
team regularly updates and reevaluates the project schedule. In effect,
“during much of the project, scheduling is an ongoing process.

As the project advances, however, scheduling dependencies increase
between the groups represented on the project team. Furthermore, the
schedule must become increasingly firm as the dates for field test and
manufacturing approach.

Project Management 51



Figure 3-3: Mapping Units to Calendar

—] Jan.

Feb.

Mar.

Design

Apr. Clearinghouse

Approval

May

- June

July

Design Review | Aug.

Sept.

Oct. |—

Nov.

Dec.

Coding

—{ Jan.

Feb.

Mar. —

© Testing

Apr.

May

— June

3.2.2 Project Control

To ensure a successful outcome, the development team needs a project
control strategy. Digital’s development teams use the following project
control model, adapting it as necessary to the needs of the project.
Each function is typically carried out by the project leader.

52 Project Management



* Directing: Assigning project tasks to team members or outside
groups; redirecting tasks and assigning special action items as

required.

¢ Monitoring: Staying abreast of the progress of individual tasks
and the project itself by personally observing tasks and reviewing

formal and informal status reports.

¢ Evaluating: Comparing actual progress to the schedule; the com-
parison leads to decisions regarding the project or task, reviews
held, and reports prepared for management.

¢ Replanning: Updating the project plan or task assignments.

Figure 3—4 illustrates the project control model. For simplicity, the
functions in the model are represented as discrete blocks. In practice,

of course, the operations may overlap.

Figure 3—4: Project Control Model

Project

Directing » Monitoring > Evaluating —> Complete
A \
Yes On
Plan?
No
Replanning

As a part of the control strategy, the engineering project leader can
examine how the updated schedules deviate from original schedules.
Using statistical analysis, the project leader may uncover a consistent
pattern of deviation the team can use to set up future schedules. In

Project Management 53



this way, the schedule more accurately reflects the ongoing progress of
the project.

3.2.3 The VAX Software Project Manager

At Digital, scheduling and task assignment are facilitated by the VAX
Software Project Manager. This tool, described in Section 2.2.1, helps
automate the process of mapping the scheduled tasks to a calendar
and assigning the tasks to team members. The VAX Software Project
Manager provides several advantages over other methods of project
management:

* Quickly generates schedules, thereby making them easier to main-
tain; any changes or unforeseen events can be factored into new
schedules.

¢ Communicates information to the entire development team rather
than limiting access to the project leader.

e Helps prevent mechanical or mathematical errors in schedules after
the team determines what units it will use.

3.3 Project Documentation

Good project documentation is essential to successful project manage-
ment. This section describes a number of the project-related documents
used at Digital to plan and control product development:

¢ Market requirements document

* Product requirements document

¢ Alternatives/feasibility study

e High level design document

® Detailed design document

¢ Product specification

* Development plan

¢ Field test plan

* Field test results

54 Project Management



Figure 3-5 shows the flow of information among the various documents
as related to the development phases.

Figure 3-5: Information Flow Among Phase Documents

STRATEGY AND
REQUIREMENTS
Alternatives/ Product Marketing
Feasibility Requirements < Requirements
Study Document Document
PLANNING
AND
PRELIMINARY
DESIGN
[ [
High-Level - Product ol
Design Document | " |  Specification >| Development Plan
DESIGN
AND
IMPLEMENTATION
Y Y.
Detailed » Field Test
Design Document Plan
\

QUALIFICATION

Field Test
Report

Project Management 55



3.3.1 Marketing Requirements Document

The marketing requirements document has the following purposes:

* Demonstrates an understanding of the marketplace that this
product will satisfy. It presents market requirements from the
customer’s perspective.

* Analyzes customer needs and describes customer priorities, in-
ternational considerations, and possible trade-offs in the areas of
pricing, cost of ownership, delivery, function, quality, ease-of-use,
performance, compatibility, and serviceability.

¢ Reviews the product position compared to competitive products.

The product or marketing manager prepares the marketing require-
ments document during the strategy and requirements phase, with
help from other marketing organizations.

3.3.2 Product Requirements Document

The product requirements document has the following purposes:
* Defines in measurable terms the goals, capabilities, and external
characteristics of the product.

¢ Describes the requirements of the product as agreed to by the
product team.

* Proposes what the final packaged product will look like to the
customer.

¢ Describes in detail the primary product features that will be
delivered to satisfy both critical market needs and success factors
that were identified in the marketing requirements document.

* Defines the specific technical requirements of the product.

¢ Identifies the methods, tools, processes, and metrics that will be
used to deliver and verify the quality of the stated features.

* Identifies international requirements.
¢ Identifies interdependencies.

56 Project Management



The product manager prepares the product requirements document
during the strategy and requirements phase with help from engineer-
ing, marketing, customer services, and other product and engineering
groups.

3.3.3 Alternatives/Feasibility Study

The alternatives/feasibility study analyzes the trade-offs required to
deliver a product that meets the conditions of the product requirements
document. It quantifies the total life-cycle costs of the alternatives for
meeting the requirements.

The alternatives/feasibility study has the following purposes:

* Identifies options within the company and industry that will allow
development using existing company products (available concur-
rently or in development).

* Identifies and describes various approaches for meeting the condi-
tions defined in the product requirements document. Focuses on
methods required to acquire and integrate the product within the
constraints of cost and schedule.

* Specifies the interdependencies involved in developing the product.

¢ Identifies alternative product and component design approaches.

¢ Identifies the cost requirements by phase based on the recom-
mended schedule.

The engineering development team prepares the alternatives/feasibility
study during the strategy and requirements phase.

3.3.4 Product Specification

A product specification describes in measurable terms the goals, capa-
bilities, and external characteristics of a component software product.
It is the development team’s commitment to meet the product require-
ments.

Project Management 57



The product specification is based on the product requirements doc-
ument. Usually, it also corresponds to a reference from a system
specification; that is, the document that describes the plan to deliver
the total system, of which this product may be a component. Additional
characteristics of the product specification include the following:

* Serves as the starting point for much of the design work for the
product

¢ Helps identify the tasks required to create the product

e Estimates the resources needed to deliver the product

¢ Provides a measure against which the product is evaluated

e Serves as the source document to be used by the service organiza-
tions and by other engineering groups, both hardware and software,
to plan other components of the system

3.3.5 Development Plan

The development plan serves as the master plan and schedule for
successfully delivering a component software product. It is used to
manage the product development effort.

The development plan has the following purposes:

¢ Describes the major tasks of each functional group.

¢ Details the commitments, schedules, and costs of all functional
groups that are responsible for the product’s objectives.

¢ Identifies when product reviews will occur in relation to the efforts
of functional groups.

* Describes the development project for designing, building, testing,
evaluating, and delivering the product.

¢ Lists the major issues and risks identified in the strategy and
requirements phase that are critical to the design freeze.

The development team prepares the development plan during the

planning and preliminary design phase, with help from the product
manager and marketing representative.

58 Project Management



3.3.6 High-Level Design Document

The high-level design document describes the design for the system
that meets the functional requirements detailed in the product specifi-
cation. The high-level design document translates the requirements of
the product specification into a physical model showing how the devel-
opment team will design and integrate the system components into a
complete product.

In planning a software product, a Digital product team divides each
system into components that represent a part of the capabilities of
the product. These components provide a basis for planning, de-
veloping, and integrating the product. The high-level design of the
system establishes the system interfaces and data structures and the
test specification for system integration. The high-level design for
each component establishes the component interfaces and data struc-
tures, processing within the component, and the test specification for
component integration.

The primary audience for the high-level design document consists of
design engineers who will design components of the system, review
engineers who will review the designs, maintenance engineers who will
support the system, and the project manager.

3.3.7 Detailed Design Document

The detailed design document translates the high-level designs into
module designs and test procedures. Each module design with its
associated test procedure is then used during the design and imple-
mentation phase. The detailed design also describes the procedures
the development team will use for unit and integration testing of the
component or system.

The detailed design document corresponds to the current version of the
software. Changes to the design are reflected in changes to the design
documentation.

Project Management 59



3.3.8 Field Test Plan

The field test plan has the following purposes:

Serves as the master plan for field testing a component software
product.

Serves as the operational plan used to track the product’s testing
effort.

Describes what is to be tested during field test.
Describes the strategy for carrying out the field test.
Describes how the field test sites are selected.
Describes how the field test will be evaluated.
Describes the major tasks of each functional group.

Details the responsibilities and schedules of internal groups and
test sites during the field test.

The development team prepares the field test plan during the design
and implementation phase, with help from the product manager and
field test administrator.

3.3.9 Field Test Report

The field test report collects and summarizes the results from the field
test. It contains information such as the following:

A general overview of the field test. This section describes each test
site and includes information such as the location of each test site,
and the start date and end date of the test at each site.

A section for each field test site. These sections contain information
about how the customers used the product, including their general
applications as well as actual field test use. It also describes the
customers’ reactions to the product.

A problem report section. This section describes all problem reports
submitted and their resolution.

The field test administrator prepares the field test report with help
from the product manager and development team.

60 Project Management



Chapter 4
Planning and Preliminary Design

After the documents of the strategy and requirements phase are
written and approved, attention turns to the software engineering
development team and the planning and preliminary design phase
begins. During this phase, the development team, with help from the
rest of the product team, determines precisely what to build and how
to build it. The product specification, the development plan (schedule)
and the high-level design document are prepared. When the project
specifications are complete, analysis and design can then take place
and the software product takes on full-system definition.

During this phase, top-level designs are prepared for all forms, data -
structures, program modules, file formats, and human interfaces based
on the information in the product specification. The completed design
gives the project technical definition. The design document makes it
possible to keep the design specifications in one location, accessible

to all software engineers. As the project evolves, so does the design
document.

Figure 4-1 shows the relationships among the key engineering tasks
and documents of this phase.

Planning and Preliminary Design 61



Figure 4-1: Planning and Preliminary Design Phase

STRATEGY AND Alternatives/
REQUIREMENTS Feasibility

Work
PLANNING AND
PRELIMINARY
DESIGN

Prototype
Design
High-Level | Product
Design Specification
Design
Reviews
Y
Design Project | Update
Documents Schedule Plans
Y
Phase
Review

DESIGN AND Y
IMPLEMENTATION

Detailed

Design

4.1 High-Level Design

The high-level design work provides information that the develop-
ment team can use to prepare preliminary versions of the product
specification and the development plan, including the project schedule.

62 Planning and Preliminary Design



The product requirements document and the alternatives and feasi-
bility study, written in the strategy and requirements phase, form the
basis for the high-level design.

4.1.1 High-Level Design Process

A Digital development team typically considers two major areas of
system design:

* High-level design (sometimes called logical design or analysis)
identifies the multiple components (modules) of a product. The
high-level design also identifies the interactions among components,
the relative size and scope of the components, and any shared
components. The team provides enough detail on each design
component to write the detailed designs.

* Detailed design (sometimes called physical design or implemen-
tation design) divides the product into units based on how each
component will be implemented. The team provides enough detail
on each design unit to allow the code to be written. Section 5.1.2
provides information on detailed design.

During high-level design, the development team begins to define

the product components, design criteria, design constraints, and the
functional design of each component. The functional designs specify
the inputs, outputs, and processing of data. Data flow diagrams can be
useful in preparing high-level designs. The finished high-level design
documents include both component and systemwide test designs.

When designing an application, the Digital design team plans cen-
tralized and common functions and designs the application’s system
of modules to produce efficient interaction among them. The develop-
ment team also attempts to create routines that are highly modular. A
modular approach to design has several benefits:

* Changes to the code are made in one place in the application rather
than in several places that reuse the same source code.

¢ The development team can write tests more easily for modular
routines because their functions are carefully delimited.

¢ Many utilities can access other routines directly without going
through functional routines.

Planning and Preliminary Design 63



¢ Tests are more likely to find code errors because some sections,
for example, the common access level or entry points, would be
repeatedly tested along with the functional routines. The result
should be fewer errors.

* Highly modular code can be reused more easily in other applica-
tions.

Modular routines have the following characteristics:

* They have one primary function.
* They are standalone.
¢ They are callable.

* They contain sufficient levels of error checking to detect problems
that occur during their execution.

As Figure 4-2 illustrates, a modularly designed application can be
represented as a series of levels. The user interface is at the highest
level, followed by the functional level, the access level, and the data
base level. The functional level contains the various utilities or routines
that give the application its functional capabilities. The modularity in
this example enables the utilities in the functional level to use the
data base through a common access level or entry point. Thus, each
utility in the functional level does not need its own individual routines
to access the data base. Instead, the access level has a common set of
routines that all the utilities in the functional level use to access the
data base.

4.1.2 High-Level Testing Analysis

High-level testing analysis refers to the testing strategy needed for
the product and is a part of the high-level design. The product re-
quirements document serves as the starting point for high-level testing
analysis. For analysis, the team can use the product itself (assuming
the development effort is for a new version of an existing product) or a
prototype.

64 Planning and Preliminary Design



Figure 4-2: Modular Design Levels

User Interface

A

| '
Functional Level
(Modular Utilities)

i ]
A

Access Level

3
/

Data Base

The VAX DEC/Test Manager, described in Chapter 2, is an automated
regression testing tool that can serve as a resource in planning the

testing strategy. See Section 2.1.4 for more information on the VAX
DEC/Test Manager.

The results of testing analysis take several forms:

® Details on the test system requirements for the product specifica-
tion and the development plan
e Support for the schedule estimate

¢ Information that becomes part of the high-level and detailed design
documents :

Refer to Section 7.3.1 for additional information on the relationship
between design and test planning.

Planning and Preliminary Design 65



4.2 Design Methodologies

Designs can be communicated by means of written documents, coded
and commented files, or both. Each method has a significant shortcom-
ing. The subjectivity and lack of precision of natural language creates
difficulties as the team translates the designs into highly structured,
high-level coding languages. On the other hand, using a programming
language to communicate a design introduces such fine detail that the
true power and flexibility of design work may be lost.

Digital’s solution to this problem is to use design methodologies. The
various methodologies (Yourdon, Warnier and Orr, and so on) provide a
rigid syntax (operators, operands), data (nouns), and a grammar that
governs the relationships among the component parts of the design.

The syntax and grammar of such formal methodologies provide two
major benefits:

* They provide ways to validate designs.
¢ They minimize the ambiguity inherent in the design medium.

When choosing a methodology, determine what is most commonly used
in your own company. Learning several methodologies is not practi-
cal for the actual design process. If your group favors no particular
methodology, personal preference can be the deciding factor.

See Appendix D, Additional Reading, for recommended reading on
design methodologies.

4.3 Prototypes

The development team may choose to produce an operational prototype
for a subset of the application to achieve some or all of the following
goals:

¢ Demonstrate whether or not product features are feasible

¢ Gather data on usability and performance issues

¢ Communicate design and implementation ideas

* Solicit user feedback

66 Planning and Preliminary Design



Producing a prototype entails four steps:

1. Setting the goals for the prototype and communicating them to
management.

2. Producing enough designs to make it possible to carry out the
coding.

3. Choosing a programming language.

4. Writing the code.

The language chosen for the prototype is often the implementation
language. However, fourth-generation languages are particularly useful
for developing prototypes quickly (for example, VAX RALLY, VAX SQL,
and the VAX COBOL GENERATOR).

Once the prototype is running, the team may gather statistics on its
use to measure the prototype against the product’s requirements. The
prototype can be particularly helpful in designing the human interface.
The team may also use the prototype to present information at a design
review meeting.

4.4 Human Interface Design

To create a truly useful product, every development team needs to un-
derstand how and why customers will use it. Without this knowledge,
the team stands little chance of creating an effective product that is
easy to use.

4.4.1 Usability Issues

Advances in interface design have led users to expect systems that are
easy to learn and use. Development teams need to consider how to
design the system’s architecture to meet those expectations. Digital’s
DECwindows interface, described in Section 4.4.2, has been devel-
oped to make a consistent human interface available to developers of
software applications.

Planning and Preliminary Design 67



An experienced development team recognizes that a principal test of
software quality is how easily a user can learn and use it. To pass this
test, the team must anticipate the user’s needs, which is not always
easy to do. In developing a human interface design, the Digital devel-
opment team follows the phases of the development process discussed
in this book: requirements, specifications, design, and iterative imple-
mentation and testing. During each of these phases, human factors
experts can help ensure that the final product meets users’ needs.

4411

Requirements

Gathering requirements is often one of the most difficult tasks in

any software project. This is especially true for interface design.
Typically, the team needs to learn about the users, their needs, and
about competitive products. Human factors specialists can provide
useful information on user requirements. The development team has
an easier time if the product is similar to products that team members
have used or developed, or if the users have similar experience.

Observations gathered in laboratory settings are helpful, but they
reflect an artificial and limited environment that differs from the one
in which customers are likely to work. By observing customers in their
work environment, the development team can better understand the
customer’s needs.

4.4.1.2 Specifications

To design a good user interface, the development team must know what
it wants to achieve and how to measure its objectives. There is no list
of usability objectives that applies to every product. Usability objectives
for a particular product must reflect the type of work for which it is
used, users’ éxperiences with similar products, the technology available,
and the resources of the development team.

Developers can construct a usability specification table to summarize
the attribute components and help the development team make trade-
offs among desired levels for many of the application’s attributes.
Table 4-1 shows part of a generic usability specification table.

68 Planning and Preliminary Design



Table 4-1: Sample Usability Specification Table

Performance Worst Planned Best Current
Attribute Measuring Technique Metric Case Level Case Level
Initial use Benchmark task from use Speed metric  10% 20% 30% 1-14%

Occasional use
Mastery

Installation

data, performed by practiced = S=PC/T!
designer in a given time; may
be harder at mastery level

Speed metric  25% 50% 65% 30-40%

Speed metric  50% 75% 90% 25-85%
Install on test system Time to 30 15

install cor- min. min.

rectly

IWork Speed (S): P is the percent of task completed (according to a scoring scheme); C is a constant equal to
the time an optimal user needs to complete the task; T is the time spent of task in minutes.

After establishing usability attributes, the team devises a technique for
collecting information on user performance for each attribute. Possible
techniques include the following:

¢ Ask the user to perform a specific task (benchmarking)

* Monitor the user during unstructured use (logging, observing)

¢ Interview the user

* Survey users

* Ask the user to complete a questionnaire

¢ Ask the user to describe critical incidents that reveal successes or
failures

To measure user performance, the team needs to quantify the informa-
tion it has gathered. Possible measurements include the following:

* Time required to complete a task

* Percentage of task completed

¢ Percentage of task completed per unit time

¢ Ratio of successes to failures

* Time spent resolving errors

Planning and Preliminary Design 69



¢ Percentage or number of errors

e Percentage or number of competitive products that the product is
better than

¢  Number of commands used

¢  Frequency with which online help and documentation are consulted
¢ Time spent using online help or documentation

e Percentage of favorable and unfavorable user comments
¢  Number of repetitions of failed commands

¢ Number of runs of successes and of failures

¢ Number of times interface misleads users

e  Number of good and bad features recalled by users

¢ Number of available commands not used

e Number of regressive behaviors

* Number of users who prefer the product over another

¢ Number of times users need to work around a problem

e Number of times users are disrupted from a work task by the
product

¢ Number of times users lose control of the system
e Number of times users express frustration or satisfaction

For each measurement, the team also establishes what it considers
a good performance, a bad performance, the level of performance it
seeks, and the level that the product can deliver at a given phase in its
development. The following can provide a basis for comparison:

* An existing system or previous version

* A competitive system

* Doing the task without a computer

¢ An absolute scale

¢ Other prototypes

* Users’ earlier performance

* Each individual component of a system

* A successive split of the difference between best and worst values
observed in user tests

70 Planning and Preliminary Design



While establishing user performance goals, the team also considers
these questions:

¢ How well do the attributes reflect system usability?

* Do all team members agree on each attribute?

e Can each attribute be measured in practice?

¢ Are resources available to measure all the attributes?

* Are the users defined clearly enough to find representative users?

4.41.3 lterative Design

Iterative design to improve usability means incremental, evolutionary,
and conscious iteration. This kind of development requires early, re-
peated feedback from typical users. Subsets of the system are tested
early in the development cycle with actual users. Throughout the de-
velopment cycle, the team enhances the software in small, incremental
versions that incorporate the feedback from users. Each new version
improves the system’s quality. Improvements are measured against the
target levels of usability attributes.

4.4.2 DECwindows

The rapid evolution of the workstation market and the technological
advances in workstations haye created the need to change the inter-
face design of many software products. The DECwindows architecture
frees developers from many interface issues and allows them to con-
centrate on the functional levels of the application. The DECwindows
architecture integrates the graphics programming interfaces of three
operating systems: VMS, ULTRIX, and MS-DOS. The primary features
of DECwindows include the following:

* A common user interface that adheres to industry-standard PC
conventions

* A set of personal productivity applications (for example, electronic
mail and personal data base query)

* Network-transparent windowing and communication between VAX
systems, VAXmate computers, and other industry-standard PCs,
using the X Window System (the industry-standard window system
for graphics programming interfaces developed at MIT)

Planning and Preliminary Design 71



¢ Common application environments that use the industry-standard
X Toolkit, software, and an extensible toolkit

The DECwindows architecture allows a user on any workstation,
running any operating system, to use windows transparently in a
networked environment. It also allows windowing programs to be
transported easily.

The DECwindows programming environment provides both the stan-
dard X Toolkit and the Digital XUI Toolkit (X User Interface) with
additional features.

Common User Interface
The common user interface has the following characteristics:

*  Window and user-interface managers
¢ Programming libraries

The window and user-interface managers make it easy to display

and use multiple windows on the workstation screen. They allow the
user to create new windows and manipulate existing ones. Window
management is common to both the VMS and ULTRIX operating
systems. The use of a common style of human interface across both
operating systems ensures that the users who work with both operating
systems need not learn more than one interface.

Procedural interfaces or bindings define how users access run-time
programming libraries from a particular language. Existing specifica-
tions for the X Window System run-time libraries have been provided
by MIT; future specifications are expected from the ongoing work on X
standards. These specifications include the MIT-defined Xlib and the C
language bindings.

Run-time libraries provide a number of functions:

* Resource management capabilities

¢ Graphics and text display

¢ Menu and other high-level input mechanisms
* Access to input events

e Data exchange between applications or the code that executes the
application

72 Planning and Preliminary Design



Table 4-2 lists and describes some specific run-time libraries.

Table 4-2: DECwindows Run-Time Libraries

Run-Time Library Description

Xlib Basic graphics and windowing code standard in the
industry

X Toolkit Industry-standard user-interface tools

XUI Toolkit DECwindows application user interface

DEC GKS! Digital’s implementation of industry-standard 2D
graphics library

DEC PHIGS? Digital’s implementation of industry-standard 3D

graphics library

LGraphical Kernel System

2Programmer’s Hierarchical Interactive Graphics System

Developers can use all of these libraries. For example, Xlib has the
functionality to draw a line and the X Toolkit can create a primitive
menu. The X Toolkit is a package of tools for programmers that extends
the basic functionality provided by the X Window System to support
human interface construction within user applications. It does so by
providing application programmers with a common set of intrinsic
routines for developing industry-standard applications. The X Toolkit
library allows programmers to create menus, scroll bars, and other
user-interface features.

The Digital XUI Toolkit (X User Interface) is the programmer and user
interface developed by Digital for X-based workstations. It provides
additional routines for creating complex applications based on the X
Window System. It defines the style, behavior, and human interface
applications. In addition, it provides for resource management and
internationalization. The XUI Toolkit makes it easier to write applica-
tions with consistent qualities. Its industry-standard libraries ensure
compatibility with industry standards such as GKS and PHIGS.

DEC GKS (Graphical Kernel System) is the graphics library for pro-
gramming applications requiring the generation of 2D pictures with

large amounts of data. It is best suited for generating static pictures
such as complex charts and graphs. DEC GKS provides a rich set of

Planning and Preliminary Design 73



input and output graphics functions as well as device independence.
Applications written in DEC GKS are portable between device and
operating systems.

DEC PHIGS (Programmer’s Hierarchical Interactive Graphics System)
is a graphics subroutine library for applications requiring interactive,
real-time editing of 3D dynamic pictures with realistic appearance. It
offers a variety of high-level primitives for creating graphics elements,
including advanced lighting, shading, and depth cueing primitives,
powerful ways to control the hierarchy and relation of graphics data.
Applications written in DEC PHIGS are portable between device and
operating systems.

Network Transparency

The DECwindows architecture provides a common network-transparent
application environment that is based on the X Window System.

An application developed for the DECwindows environment runs on a
VAX computer using either the VMS or ULTRIX operating system, and
directs its input and output to a DECstation or VAXstation workstation.
Because both the VMS and ULTRIX operating systems understand the
X communications protocol, both can run the same applications.

The application is local if the input and output occur on the same
workstation that is executing the application. Requests of the applica-
tion are translated on the local processor to manipulate the hardware
through the local processor’s device drivers. The application is remote
if input and output from the application occur over the network (for
example, if the application runs on a VAX 8800 in a computer labora-
tory while users manipulate that application from workstations in their
offices). For the remote applications, requests are transported over the
network using the X protocol. On the remote node, a server translates
the application requests and then manipulates the hardware through
that node’s local device drivers.

The DECwindows architecture also supports the integration of
industry-standard PCs into Digital’s computing environment. VAX
system-based applications written for the DECwindows environment
can use networked PCs as a windowed display device. The PC re-
ceives the X protocol requests and serves as the user interface for the
VAX application; the PC maps the wire protocol packets onto PC calls
to support the remote application display. Thus, users can run local

74 Planning and Preliminary Design



PC applications outside the DECwindows environment and also have
access to VAX system-based applications in the network.

4.5 Design Reviews

The purpose of design reviews is to find and correct design errors

as early as possible (see Figure 4-3). For a typical review, one team
member distributes a design document to the rest of the team. After
reviewing the document, the team holds a review meeting at which
the team member most closely involved with the design might make
a formal presentation. During the meeting, the other team members
may question particular features of the design. Ultimately, the group
decides whether to use the design or to change it.

Design reviews also help engineers become familiar with parts of the
project they may not know; however, design reviews are not meant
to carry out design work itself. If the product is to be marketed in-
ternationally, the design is reviewed in the context of the worldwide
requirements for the product.

The design review process is informal. Adopt a process that the entire
development team can work with. Design documents may undergo peer
review, either during periodic project meetings or between an engineer
and the project leader.

Design Review Guidelines

The following questions are answered during the design review:

Does the design help to meet at least one project goal?

Does the design implement any unnecessary functions?
Does the design identify all side effects and changed values?
Does the design properly address all human factors?

Is the design complete?

o ok W

Is the design easy to understand and unambiguous?

Planning and Preliminary Design 75



Figure 4-3: Design Review Process

Design Documents

Y

»> Reviewers

A

Review Meeting

Yes

Changes
Necessary?

Implement Code

7. Is the design self-contained? Could someone new to the project
successfully implement the project from the documentation alone?

8. Does the design show links among all applicable modules?
9. Does the design list all external dependencies?
10. Does the design consider packaging and installation requirements?

11. Does the design list all applicable control blocks, tables, data
structures, and all new functions for which they are used?

12. Does the design identify all new macros, symbols, and coding
conventions?

76 Planning and Preliminary Design



13.
14.

15.
16.
17.
18.

19.

20.
21.

22.
23.
24.

25.
26.
27.
28.
29.
30.
31.

Does the design identify all specific values required and set?

Is the design written at an appropriate and consistent level of
detail?

Does the design address all known possible cases?

Does the design address all exception cases?

Does the design address abnormal cases and error conditions?

Does the design address all appropriate operating environments
and devices?

Does the design provide for new logic and function that is consistent
with existing logic and function?

Are all fields described correctly? Are any of the fields missing?

Should an external routine be used rather than performing the
function internally?

Does the module provide for all possible input parameters?
Does the module process and pass all parameters correctly?

Are all return codes, parameter formats, and so on correctly iden-
tified? Alternatively, does the design document reference their
definitions adequately?

Are all issues of code protection addressed?

Does the design provide for reentrance or reusability?
Have performance issues been addressed?

Has storage size been addressed?

Does the function use existing facilities whenever possible?
Are there any paging or swapping issues?

Have the following issues been addressed:

— Maintainability

— Reliability

— Evolvability

— Functionality

— Compatibility

— User documentation

— User training

— Software specialist training

Planning and Preliminary Design 77



4.6 Standards

In the emerging environment of industry standards, developers need to
be familiar with the standards that are relevant to their own areas of
software development. Standards come from a number of sources. The
following sections introduce important software standards:
* For coding VMS applications:
— The VAX Procedure Calling and Condition Handling Standard
— The VAX/VMS Modular Programming Standard
¢ For migrating to open standards:
— IEEE standards
— International standards

4.6.1 The VAX Procedure Calling and Condition Handling Standard

The VAX Procedure Calling and Condition Handling Standard describes
the techniques used by all VAX languages for invoking routines and
passing data between them. By default, these conventions are followed
by all program calls in Digital’s programming languages and other
layered products. The standard specifies the following attributes:

* Register use

e Stack use

¢ Function value return

* Argument list

The VAX Procedure Calling and Condition Handling Standard also
defines such attributes as the calling sequence, the argument data
types and descriptor formats, condition handling, and stack unwinding.
The VMS Utility Routines Manual discusses these additional attributes
in detail. :

78 Planning and Preliminary Design



Register and Stack Use

The VAX Procedure Calling and Condition Handling Standard defines
several registers and their uses, as listed in Table 4-3.

Table 4-3: VAX Register Use

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)
RO, R1 Function value return registers

Any called routine can use registers R2 through R11 for computation,
and the AP register as a temporary register.

Function Value Return

A function is a routine that returns a single value to the calling routine.
The function value represents the return value that is assigned to the
function’s identifier during execution. According to the VAX Procedure
Calling and Condition Handling Standard, a function value may be
returned either as an actual value or a condition value that indicates
success or failure.

Argument List

The VAX Procedure Calling and Condition Handling Standard also
defines a data structure called the argument list. Engineers use an
argument list to pass information to a routine and receive results. An
argument list is a collection of longwords in memory that represents a
routine parameter list and possibly includes a function value.

Planning and Preliminary Design 79



4.6.2 VAX/VMS Modular Programming Standard

The VAX/VMS Modular Programming Standard sets the minimum
criteria necessary to ensure the correct interface at the procedure
level between a team’s software and software written by others. The
Guide to Creating VMS Modular Procedures contains full details on the
VAX/VMS Modular Programming Standard.

Scope of Standard

The VAX/VMS Modular Programming Standard gives engineers a
common environment in which to write code. If all engineers coding
VMS applications follow this standard, any modular procedure added
to a procedure library will not conflict with procedures currently in the
library or with procedures that might be added in the future.

The elements of the standard apply to library procedures and are sug-
gested for other types of software, including utilities and application
programs. Each programming language supplied by Digital and im-
plemented on the VMS operating system lets users write programs to
follow this standard.

The VAX/VMS Modular Programming Standard applies to procedures
that have a public entry point, that is, one that the VMS Linker can
locate by searching the default system libraries. This standard does not
apply to calls of internal routines in procedures that do not have public
entry points. This is true as long as the entire set of procedures follows
the standard.

Coding Rules

The VAX/VMS Modular Programming Standard governs the following
functions:

¢ The calling interface

* Initialization

* Reporting of exception conditions

* AST reentrance

¢ Resource allocation

*  Format and content of coded modules

80 Planning and Preliminary Design



* Shareable images
¢ Upward compatibility

4.6.3 |EEE Standards

The Institute of Electrical and Electronics Engineers (IEEE) prepares
standards for applying engineering principles to developing and main-
taining software. Both new engineers and experienced engineers need
to be aware of these standards. For new engineers, the standards serve
as valuable guidelines to recommended practices. For experienced
engineers, they serve as benchmarks against which to compare their
own practices, particularly since the IEEE standards are the result of
agreement among practicing professionals.

IEEE intends to review and update its standards every five years

to ensure that they remain up-to-date. See Appendix C, Industry

Standards, for a list of IEEE standards and source information for
IEEE and other external standards.

4.7 Planning International Products

The international marketplace is growing rapidly. In international
markets, the use of English and American standards and conventions
are often unacceptable. An international software product has the
following characteristics:

¢ It can be adapted to local needs by a group that is geographically
remote from the product’s developers.

e After any appropriate adaptation, it is equally attractive in all the
markets.

The structure of the original product can make adaptation either
simple or complex. Building a product that a local group can modify
easily may require more time and care than building the product for
one geographical market. However, Digital’s development teams try to
design products so that local engineering groups can adapt them easily.
No definitive standards exist for designing international software
products. However, Digital’s experience in adapting software for use

Planning and Preliminary Design 81



outside the United States has generated a number of guidelines that
can improve the process.

For a discussion of these guidelines and the requirements of the inter-
national markets, see Appendix B, International Product Development.

In addition to designing the product for adaptation to international
markets, development teams need to consider how to provide local
engineering teams with the necessary project information to carry
out their work. The local engineering team might need source code,
kit-build procedures, the test system, specification documents, design
documents, draft manuals, and so on. Project documents (product
requirements, product specifications, and development plan) detail
clearly the development team’s plans to meet the needs of the local
engineering groups. This information includes:

e Who the local engineering contacts are

¢  When the source code will be available

¢ How the source code will be delivered

¢ What engineering documents will be made available

82 Planning and Preliminary Design



Chapter 5
Design and iImplementation

When preliminary planning and design are complete, the development
team turns to the tasks of creating the detailed design, implementing
it, and testing the software. The tasks entail building source code
modules, then compiling, linking, and executing the resulting images.
User documentation is created, and software tests are conducted to
ensure that the implementation operates correctly.

Often, the system implementation consists of a series of stages or base
levels in which each adds more and more of the required functionality.
As the team implements and tests each base level, they may discover
unforeseen problems in implementing the design, meaning that speci-
fications and designs might require revision. If so, the programs, the
tests, and the user documentation must also accurately reflect changes
in requirements or designs.

The project team must analyze the structure and performance of
the software in this phase. Reviews of the design, code, tests, and
documentation are held frequently.

Other groups are given copies of the software to determine how well
the program works under controlled conditions. Performance analysis
ensures that the system will meet certain customer-environment
requirements. When this phase is successfully completed, the project
should have software that works.

Design and Implementation 83



Information about the design and implementation phase are covered in
the following three chapters:

¢ This chapter, Chapter 5, discusses the major tasks of de51gn and
implementation:
— Producing a detailed design
— Writing design documents
— Implementing base levels
— Producing product kits

* Chapter 6, Coding Guidelines for Implementation, focuses on the
coding conventions used for implementing the detailed design.

¢ Chapter 7, The Testing Process, concentrates on the testing process,
which verifies the product against the design.

Figure 5-1 shows the relationships among the key engineering tasks
and documents of design and implementation.

84 Design and Implementation



Figure 5-1: Design and Implementation Phase

PLANNING AND
PRELIMINARY DESIGN High-Level
Design
A
DESIGN AND
IMPLEMENTATION Detailed
Design

Design

Preliminary

Plans Documents

Y

Base-Level
Development

Code <«

<« Testing

Kit
Build

Review
Plans

QUALIFICATION

Field Test
Preparation

Design and Implementation 85



5.1 Detailed Design Process

Detailed design has two primary goals:

To understand enough of the details of implementation to reduce
the technical and schedule-related risks to an acceptable level

To communicate and coordinate the activities associated with the
implementation process

For several reasons, the development team usually does not complete
all detailed designs before it starts coding:

A detailed design that is not tightly coupled with the actual code is
less likely to represent that code accurately as coding proceeds.

Significant portions of the detailed designs are likely to change
between early design work and coding. Such changes often occur
when the product relies on external deliverables not yet fully
specified.

Additional design detail does not help developers to understand or
reduce the risks.

Extremely detailed design may best be expressed and communi-
cated using a program design language. In the absence of such a
language, the designers use the implementation language itself,
blurring the line between design and coding.

At Digital, the development team determines both the form of the
designs and the level of detail within them. The “acceptable level”
of risk is usually reached by consensus among the team members.
The team also decides how formal the process of communicating the
detailed designs among the members will be.

The following list shows the main input-to and output-from the detailed
design process.

Input

— Product requirements document
— Alternatives/feasibility study
— High-level design documents

— Product specification

86 Design and Implementation



¢ Output
— Detailed design documents
— Functional prototype
— Performance/usability evaluation of prototype
— Implementation estimates
— Identification/evaluation of technical risks

5.1.1 Logical Modules and Physical Modules

As part of the detailed design process, the development team identifies
the logical modules that are subsequently “packaged” into physical
modules.

Logical modules represent the features and functions the application
will have. Logical modules are packaged into physical modules that
make up the application and accomplish the features delineated in the
logical modules.

For example, a hypothetical application (SELF) is designed to be an
online system that operates over Digital’s DECnet network to provide
“phone book” information about users on the network. SELF will
have an online user interface program (UIP) and a data base server
(DBS). The UIP will perform all of the user functions and reside on
any of the nodes in the network that communicates with the data base
server. Five physical modules will make up the UIP. One of these,
UIPMAIN.BAS is the master module and incorporates six logical
modules from the application’s design:

* PROGRAM: UIP main program module

¢ LOCAL: Initialize UIP

* LOCAL: Terminate UIP

e LOCAL: Get a valid command

¢ LOCAL: Process a valid SELF command

¢ LOCAL: Error handling

Structure charts are useful for representing the relationships among
logical and physical designs.

Design and Implementation 87



5.1.2 Design Documents

A design document is a set of files that represent the design of the
product. These may take different forms:

* A written description of features of the code
¢ Pseudocode or high-level language code with embedded comments
* Data-flow diagrams, structure charts, and supplementary text

The main purpose of the detailed design document is to translate

the high-level designs into module designs. These detailed designs
sufficiently document designs and tests to permit coding of the software
modules. In addition, the detailed designs, by relying on graphic
representation, pseudocode, and written text, allow engineers with
different programming language skills to participate in any design
review. The detailed design process, including its review stages, helps
to ensure that the product is taking shape properly and that component
and system interfaces are adequately considered. Finally, the design
documents serve as a resource for the maintenance team later in the
product’s life cycle.

5.2 Implementing Base Levels

A base level is the set of files and documents that make up a specific
version of a product built at a specific time. It represents a particular
level of features for the product. In effect, base levels are stages in the
design, development, and maintenance of a product.

Base levels are important throughout the life cycle of the product.
During implementation, they provide a way of measuring progress and
a reference point for testing. During maintenance, they improve the
chances that the maintenance team can recover and modify a previous
version of the product.

88 Design and Implementation



5.2.1 Types of Base Levels

Projects have two types of base levels:

¢ Implementation base levels, which are used to develop and inte-
grate levels of features for the product

¢ Maintenance base levels, which are used to correct problems or add
minor enhancements to the product

Managing base levels is an ongoing job for the engineering project
leader. The project leader assigns people to specific coding and testing
activities. The project leader also tracks the team’s progress relative
to the development schedule. The project leader, and the development
team, must also decide when to freeze the code, that is, when to stop
changing a given set of modules for base-level testing.

5.2.2 Requirements Analysis

New requirements are an additional source of input for base-level
development.

Although the development team tries to accurately gauge the re-
quirements and market for the product, suggestions for the product
may inspire changes throughout the development period. In conjunc-
tion with other members of the product team, the development team
evaluates potential new requirements with respect to the following
issues:

¢ What is the business need for this requirement?

¢ Is it possible to implement the requirement?

¢ If so, what is the impact on development and documentation,
particularly on their schedules?

* What is the impact on training?

*  Where does this requirement fit in a priority list?

* What does the product gain by adding this capability or feature?

¢  What does the product lose by not adding this capability or feature?
* Is it worth the cost (resources, impact on schedule) to implement it?
¢ Can this requirement be postponed until a subsequent release?

Design and Implementation 89



The team must understand the implications of implementing or not
implementing a new requirement. The development team can indicate
the cost of implementing a new requirement; product management
indicates the benefits of fulfilling the new requirement.

If a suggestion is approved as a requirement for the current release, the
team will need to update the project documents to reflect the addition.
Base-level development will need to reflect the new task assignments.
If the suggestion is not approved, the team may add it to the project’s
“wish list.”

Sometimes, trade-offs must be made between market needs and time
to market. In some cases, the team postpones fulfilling a particular
requirement; in others, the demands of meeting the market needs
win out, and the schedule is changed. All members of the product
team must be aware of any decisions not to deliver some functional
capability.

5.2.3 Build Procedures

Development teams at Digital plan their build procedures and describe
them in the development plan. When possible, they use detailed
command procedures from existing products to help automate the build
process. They often use a combination of command procedures and the
tools described in Chapter 2, Software Development Tools, such as the
VAX DEC/Module Management System (DEC/MMS), VAX DEC/Test
Manager, the VAX Language-Sensitive Editor (LSE), and the VAX
DEC/Code Management System (DEC/CMS).

A number of problems can occur while the team is preparing base
levels. Table 5-1 lists some of the more common problems and ways to
deal with them.

90 Design and Implementation



Table 5-1:

Problems in Preparing Base Levels

Problem

Response

Too many errors in new software
during base-level build.

Too many rebuilds of the soft-
ware because it fails regression
tests.

Failure of regression tests
caused by coupling new software
with old.

Partially completed modules do
not integrate properly in build.

Installation procedure and in-
stallation kits have errors.

Halt the build process and assess the
completeness of the new software. An
additional review may be needed to confirm
that the new software is ready for the base
level.

Make sure that all tests are run before
rebuilding the system to minimize the
number of builds needed for the system.

Make sure that any old test procedures
that are replaced by new test procedures
are marked as not applicable for the next
base level. These may be applicable only
for a specific base level and are not re-
quired for additional base-level tests.

Resist including partially completed mod-
ules in the base level. Either do not freeze
and test the software during this base level
or redefine the module so that it can be
frozen in the base level.

To minimize the number of times the base-
level build process is required, make sure
that the distribution kits and installation
procedures are tested thoroughly before the
formal test period.

Teams at Digital use the following guidelines for the build procedure:

* Teams agree on general work procedures that allow members to
manage development tasks efficiently and without conflicting with

each other’s work.

* After working on modules, team members run unit tests on the

modules.

* After successful unit testing, team members link the modules and
create the images for the full application.

¢ Team members then run functional and regression tests on the
application. (See Section 7.3.2 for more information on regression

testing.)

Design and Implementation 91



* Assuming the test and build cycle is successful, the modules are
then checked back in to the DEC/CMS library. The team agrees
upon and follows check-in procedures.

¢ Using DEC/MMS, DEC/Test Manager, and DEC/CMS, the team
automates and tracks the steps of testing and building.

Once the modules reach an agreed-upon level of progress, the team
creates a DEC/CMS class that represents the most recently attained
base level and uses this class to produce software kits.

For more information on setting up build procedures and work pro-
cedures using the VAXset tools, see A Methodology for Software
Development Using VMS Tools.

5.2.4 Product Kits

Development teams build kits at different points in the development of
the product. In general, the team assembles kits only after completing
a base level to ensure that the distributed software is stable. This
approach also minimizes the effort needed to prepare the kits.

Product kits are needed for the following testing activities:

® Testing by the development group on separate systems with dif-
ferent versions of prerequisite software (for example, different
versions of VMS)

* Testing by internal users
¢ Testing by external field test sites

The types of kits and the amount of testing associated with them vary.
The product manager and development team determine the appropriate
media types for the product. If the product’s installation must be tested
on all types of media, the team takes this into account as it considers
kit building and plans for the field test process.

After all testing is complete and satisfactory, the final kit is submitted
to manufacturing.

92 Design and Implementation



Chapter 6

Coding Guidelines for
Implementation

During the design and implementation phase, the development team
translates its designs into code. This chapter discusses general coding
guidelines. Appendix A contains specific guidelines for coding in the C
language.

The guidelines and coding conventions described in this chapter are
applicable to a range of languages. It is important to adopt guidelines
that promote consistent and efficient coding practices. This is partic-
ularly helpful to engineers unfamiliar with an application’s code. It is
also crucial for any future maintenance efforts on the software. Using
a consistent coding style helps software engineers produce good pro-
grams. It allows engineers to adopt routines and data structures from
existing software. This process is much easier if the existing software
is readily understandable.

6.1 Selecting Guidelines

This section provides development teams with generic coding guide-
lines applicable to different languages. Guidelines provide consis-
tency within a project and may ease the transition to another project.
Language-specific guidelines for C are provided in Appendix A, Coding
Conventions for VAX C.

Coding Guidelines for Implementation 93



6.1.1 Examine Existing Source Code

Because team members may work on a number of projects, it is impor-
tant for them to adjust their styles to differences in conventions. It is
usually appropriate to follow conventions established in any existing
source code. In order to maintain an existing product, the source code
should be consistent within an application. If it is necessary to use a
different convention from the one already established in an application,
the entire application is updated to reflect the new convention.

If modules from other projects are used, they are reformatted when
practical to conform to the project’s conventions. When a program
contains undocumented code, comments are added to describe the code’s
function. These comments help simplify future software maintenance
efforts.

6.1.2 Use the Language-Sensitive Editor

An excellent source of coding guidelines for new code is the VAX
Language-Sensitive Editor (LSE). It provides one of the easiest ways
for development teams to format code consistently. LSE has online
language templates for these languages:

VAX Ada

VAX BASIC

VAX Bliss-32
VAX C

VAX CDD

VAX COBOL

VAX DATATRIEVE
VAX DIBOL

VAX DOCUMENT
VAX FORTRAN
VAX MACRO
VAX Pascal

VAX PI/I

VAX SCAN
VAXELN Pascal

94 Coding Guidelines for Implementation



The LSE language templates ensure consistent formatting, capitaliza-
tion, indentation, and spacing. Although formatting standards are built
into the templates, development teams can modify them for their own
project and then save these modifications in an environment file. The
environment file can then be stored in a central directory. When the
team members log in to the system, they can automatically have access
to the central directory via information stored in their login command
file (LOGIN.COM). In this way, the modified templates can be shared
by everyone who uses LSE.

In addition to providing formatting consistency, LSE provides much of
the module and routine preface information for its supported languages.

6.1.3 Build Program Modules

A module is a single body of code and text that can be assembled and
compiled as a unit. Generally, it is part of a larger program or facility
created by linking all of the component modules and object code. A
facility is a collection of one or more modules that implement a set of
related functions or services.

A module has some self-evident identity. Typically, a module consists of
either of the following:

¢ A single function or data base

* A collection of related functions, any one of which would be too
small for an independent module

The module’s interface should be as clean as possible. Try to avoid side
effects. When they occur, document them in the routine header.

The goal in module design is to maximize cohesion and minimize
coupling. Cohesion is the degree to which the tasks performed by a
single program module are functionally related. Coupling is a measure
of the interdependence among modules.

The following sections describe the elements typically included in a
module at Digital. The inclusion of these elements is simplified by the
use of LSE and its standard module templates for all coding activities.
On the following pages, Bliss templates are used as examples.

Coding Guidelines for Implementation 95



To access the standard LSE module template for any VAX language,
the developer must first use LSE to create a file of the appropriate
language type. For example, to create the Bliss source file named
EXAMPLE that appears below, the developer first invokes LSE by
entering a VMS command and specifying the name of the file to be
created as EXAMPLE.BLI (BLI is the three-letter VMS file type used
to identify Bliss source files). In response, LSE opens the file and
associates it with the standard LSE Bliss template.

The template and file are linked by the single string [~MODULE~],
which LSE writes into the file as it creates it. Known as a placeholder,
this special keyword allows the developer to either call up the complete
Bliss module template through LSE keyboard commands or to bypass
it by deleting or typing over the placeholder.

Example 6-1 reproduces the standard LSE Bliss module template that
appears when the placeholder /[~MODULE~] is expanded. This ex-
panded template contains placeholders of its own for such elements as
the title and module level declarations. These in turn can be expanded,
deleted, or typed over and are discussed below.

6.1.3.1 Module Preface

At Digital, a module opens with a preface that documents its function,
use, and history. As shown in Example 6-1, developers at Digital
include the following elements:

@ Title statement
The title statement specifies the title line in the listing file.
® Module statement

The module statement specifies the module name. If the object file
is inserted into an object library, this module name that appears in
a listing of the object library’s contents. This name also appears in
a LINK map.

©® Copyright statement

96 Coding Guidelines for Implementation



Example 6-1: LSE Template for a Bliss Module Preface

[~$TITLE ' [~quoted chars~]’~] "
MODULE {~name~} [~(module_switches)~] = e;
BEGIN
1

COPYRIGHT (c) 1988 BY (3]

!
!
'
!
!
!
!
'
!
!
!
!
'
!
!
!
1
'
'
1
'
1
1
1
1
'
]
1
1
1

COMPANY XYZ, ANYWHERE, USA.
ALL RIGHTS RESERVED.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE OF THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED .

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY COMPANY XYZ.

COMPANY XYX ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY COMPANY XYZ.

Y44
FACILITY: 0
[~tbs~]
ABSTRACT : 6
[~tbs~]
AUTHORS : @
[~tbs~]
CREATION DATE: [~tbs~] 0
1
! MODIFICATION HISTORY: @
[
[~module level declarations~] o
[~routine declaration~]... ﬂ»
END ! End of module

ELUDOM

A standard copyright statement appears on the first page of every
source file. Note the following about the copyright statement:

— When developing a new module, the year stated is the year of
the first release, not the year coding begins.

Coding Guidelines for Implementation 97



— When modifying an existing program that has legal notices,
verify the validity of the statements. Add the year that the
code is changed to the existing copyright year. Separate the
years with a comma.

O Facility statement

A module may be a dedicated part of a larger linked facility, part of
several facilities, or a general-purpose library function. The facility
statement identifies the whole of which the module is part.

©® Abstract
The abstract briefly describes the function of the module, including

the design basis for any critical algorithms. If the module needs an
extensive functional description, it appears on the next page.

Authors
Creation date

@00

Modification history

The modification history provides the detailed history of changes
made to the module, including the versions, the person editing the
module, and the last date of each version. It also lists the specific
changes made between base levels (during production) or releases,
along with a short description of each problem and its solution, and
appropriate references to related information.

Each history entry receives a maintenance number starting with

1. The maintenance numbers increase by one, are decimal, and are
never reset. Generally, the entries are ordered starting with the
most recent modification first; however, inherited code may preclude
this type of ordering. The goal is to maintain the chronological
consistency of entries among application modules. Engineers

can also use the maintenance numbers to attach maintenance
comments to all the lines of source code that were modified.

Note, however, that Digital’'s DEC/Code Management System
(DEC/CMS) can generate much of this change history automatically.
If the history attribute is defined for an element (typically an
application module), DEC/CMS includes the element history in

the output file when an engineer retrieves it from the DEC/CMS
library. The element history is a list of the transactions that
created each generation of the element. Each transaction record
consists of the generation number, user, date, time, and remark

98 Coding Guidelines for Implementation



associated with the command. The history attribute is defined by
using the /HISTORY qualifier with either the CREATE ELEMENT
or the MODIFY ELEMENT command.

If the notes and position attributes are both defined, DEC/CMS
embeds notes in the output file when the element is retrieved.
Notes are generation numbers embedded in the lines of the file.
They indicate the generation in which the line was inserted or
modified most recently. Notes appear at the horizontal position in
the line specified by the position attribute. Engineers can obtain
the same type of generation information by using the ANNOTATE
command. Annotated listings include a replacement history and
generation numbers that indicate when each line was inserted or
modified most recently.

Module level declarations

When expanded, this placeholder provides a template for the
module’s declarations.

Routine declaration

When expanded, this placeholder provides a menu of routines.

6.1.3.2 Module Declarations

Example 6-2 shows what happens when you expand the MODULE_
LEVEL_DECLARATIONS placeholder of Example 6-1.

The format is that of a Bliss template, but is used for other languages.
It contains the following sections:

Table of contents

For Bliss, this lists, in order, all forward routine declarations with
a summary description of each.

Include files

Lists the specification of INCLUDE files or binary definitions. Lists
library REQUIRE FILES and library macros that define MACROs,

assembly parameters, systemwide equated symbols, and table
definitions.

Coding Guidelines for Implementation 99



Example 6-2: LSE Template for a Bliss Module’s Declaration

! MODIFICATION HISTORY:

| -

!

'

! TABLE OF CONTENTS: (1)
1

[~forward routine_declaration~]

!

! INCLUDE FILES: (2]
1

[~library declaration~]...

[~require declaration~]...

1

! MACROS: 9

!

[~macro_or keywordmacro_declaration~]...
]

! EQUATED SYMBOLS: 0
'

[~literal_declaration~]
[~bind_declaration~]

]

! OWN STORAGE: 5]
]

[~own_declaration~]
[~global_declaration~]

!

! EXTERNAL REFERENCES: @
]

[vexternal declarations~]...
[~routine_declaration~]...

END ! End of module
ELUDOM

©® Macros

Defines local macros other than structure definitions.
©® Equated symbols

Lists LITERAL and BIND declarations.
©® Own storage

Lists declaration of permanent storage allocations and local storage
structures.

100 Coding Guidelines for Implementation



@ External references

List the specification of externals. For assembly language, only
WEAK or VALIDATION externals need to be listed.

6.1.3.3 Procedure Description

If you now expand the ROUTINE_DECLARATION placeholder in
Example 6-1 and choose the complex routine option from an LSE-
generated menu, you get template additions shown in Example 6-3.
(Note that in Example 6-3, the MODULE : LEVEL, DECLARATIONS
placeholder is not expanded, nor is there a copyright statement.)

Example 6-3: LSE Template for a Bliss Routine

[~$TITLE ' [~quoted_chars~]’~]
MODULE {~name~} [~(module_switches)~] =
BEGIN
4+
! FACILITY:
[~tbs~]
ABSTRACT:
[~tbs~]
AUTHORS :
[~tbs~]

CREATION DATE: [~tbs~]

MODIFICATION HISTORY:

Example 6-3 Cont’d. on next page

Coding Guidelines for Implementation 101



Example 6-3 (Cont.): LSE Template for a Bliss Routine

[~module_level_ declarations~]
!

[~$SBTTL ’ [~quoted chars~]’~]
[~GLOBAL~] ROUTINE {~name~}[~(formals)~] : [~routine_ attributes~]... =
T4+

! FUNCTIONAL DESCRIPTION: o
'

[~tbs~]
! FORMAL PARAMETERS : R )

[~description_or_none~]

IMPLICIT INPUTS: (3]
[~description_or_none~]

IMPLICIT OUTPUTS: 9
[~description_or none~]

{~routine_value_or_ completion_codes~} ‘B

[~description_or_ none~]
! SIDE EFFECTS: @

]
]
]
]
1
1
'
'
]
1
1
]
]
]
1]
1]
]
1
1
]
! [~description_or none~]
1

BEGIN

[~declaration~]...

{~expression~}...

END;
[~routine_declaration~]...
END ! End of module
ELUDOM

Include the elements of a procedure description shown in Example 6-3
whether they are actually present or not.

@ Functional description

This section describes a procedure’s purpose and documents its
interfaces. The description includes the rationale for using any
critical algorithms, including literature references, where applica-
ble. Indicate in this section the reentrance characteristics of this
procedure if they differ from those given in the module’s description.

102 Coding Guidelines for Implementation



® Formal parameters

Parameters conform to the VAX Procedure Calling and Condition
Handling Standard. For routines that conform to the calling
standard, the argument list pointer AP always points to the base of
the caller-supplied argument list. Bliss and MACRO routines local
to a module can pass arguments in registers.
The description of the arguments also includes the following:
* How the arguments are passed:
— By value
— By reference
— By descriptor
* Type of parameter (for untyped languages such as Bliss)
¢ Mode of the parameter:
— Read-only
— Write-only
— Read-write
® Implicit inputs
List any inputs from storage, internal or external to the module,

that are not specified in the argument list. Usually all that will
appear here is NONE.

O Implicit outputs

List any outputs to internal or external storage that are not speci-
fied in the argument list.

© Completion status or routine value

List the success or failure condition value symbols that could
be returned as completion codes in R0O. If a procedure returns
a function value other than a condition value in RO, change the
heading to routine value.

@ Side effects

In this section, describe any functional side effects not evident
from a procedure’s calling sequence. Such side effects include
changes in storage allocation, process status, file operations, and
possible signaled conditions. In general, document anything out
of the ordinary that the procedure does to the environment. If a

Coding Guidelines for Implementation 103



side effect modifies local or global storage locations, document this
modification in the implicit output description.

Example 6—4 shows an expanded LSE template for a C module. Note
the similarity between the C module preface and that for Bliss shown
in Example 6-3.

Example 6—4: LSE Template for a C Module

[@#modulel]

/*

*kgq

** FACILITY:
* %k

* % [@tbs@]
*k

** ABSTRACT:
**

*x [etbs@]
*k

**  AUTHORS:

*x

* % [@tbs@]
*%

*%

** CREATION DATE: [@tbs@]
* %

** MODIFICATION HISTORY:
*k

**/
[@include files@]
[@macro_definitions@]

[@preprocessor_line@]...

[@comment@] ...

Example 6-4 Cont’d. on next page

104 Coding Guidelines for Implementation



Example 6-4 (Cont.): LSE Template for a C Module

/*

LT

** FUNCTIONAL DESCRIPTION:
* %

*x [@tbs@]

**

** FORMAL PARAMETERS:

* %k

** [@description_or_none@]
*k

** IMPLICIT INPUTS:

* %

*x [@description_or_none@]
* %

** IMPLICIT OUTPUTS:
*x

** [@description_or_ none@]

* %

** {@function_value or_completion_ codes@}
* %

*x [€description_or_none@]

* %k

** SIDE EFFECTS:

* %

*% [@description or_none@]

% %k

KK

*%k /[

{@main() OR main function that accept arguments from the command line@}

{
[@block_decl@]...

{@statement@}...
}

[@function_definition@]...

Note that the called procedure specifies how it is to be called. The
calling procedure must invoke the procedure correctly. The procedure
description provides all the necessary information to determine how a
routine is to be called.

Coding Guidelines for Implementation 105



6.1.3.4 Examples of LSE Language Constructs

The previous examples show how LSE provides the text elements for
the module and routine prefaces. LSE also provides language construct
templates for all its supported languages.

For example, working with the routine declaration section of the
Bliss template brings you to the EXPRESSION placeholder. When
expanded, it displays a menu of expressions from which to choose. The
IF expression produces the following template:

IF {~expression~}

THEN

{~expression~}

[~ELSE {~expression~} ~];

[~expression~] ...

END;

You could quickly fill in the EXPRESSION placeholder information by
typing over the new placeholders:

IF test
THEN

consequence
ELSE

alternative;
[~expression~]...
END;

The following example shows an LSE template for a WHILE statement
in C.
while ({Qexpression@})

{@statement@}
[@statement@]. ..

Directly typing over the placeholders produces the following generic
WHILE statement:

while (test)
loop-body;
[@statement@]...

The templates represent accepted standards for effective language for-
matting, complete with indenting, capitalization, and spacing. A team
can choose to modify the templates, in effect creating new conventions
for the project. The key point is that formatting conventions are readily

available and, through the use of LSE, can be applied consistently to
code.

106 Coding Guidelines for Implementation



6.2 Choosing an Implementation Language

Because the software being developed today is increasingly complex
and diverse, development teams need to carefully assess their choice of
implementation language. Increasingly, development teams at Digital
take advantage of the strengths and features of particular languages,
based on the needs of the application being developed.

The key elements to consider when choosing an implementation lan-
guage are as follows:

* The development team will use a non-machine-dependent, high-
level language.

* Project plans will indicate the implementation language chosen and
the rationale for the choice.

For the most part, the languages supported by Digital have equivalent
features. All conform to the VAX Procedure Calling and Conditioning
Standard and can be used in a multilanguage environment. They are
supported by Digital tools such as LSE, VAX Source Code Analyzer
(VAX SCA), and the VMS Debugger. Most have comparable compile
times and execution times. However, these are not the most important
issues when choosing an implementation language. Rather, consider
the following issues:

e Will this software ever need to be ported to another operating
system?

e Will this software ever need to be ported to another hardware
target?

¢  What languages do the engineers on the project already know?
How hard will it be to hire or train new people?

¢ How much code does the product have? How much will it share?

¢ What special language features does the application need? Does
the language being considered provide them?

e Will the team be doing low-level or high-level programming? Does
the language readily allow for this?

Coding Guidelines for Implementation 107



Each language has merits that can justify its use. For example, C is
a viable choice for those products to be offered on multiple operating
systems or multiple hardware targets. It is a good choice for products
to be transported to and from comparable C environments and for
applications that run with DECwindows.

Ada, a high-level language developed to highlight any portability
problems, is suitable for those projects that need to develop products
only for VMS. Besides providing powerful language features, Ada
reduces software life cycle costs by providing for modularization and
separate compilation using packages, scope rules, and a compilation
data base. Ada also allows both bottom-up and top-down program
development, while enhancing software reliability through strong
typing.

6.3 Improving Code Readability

Other readers can better understand source code if it is properly
structured, organized, and indented. The code should be constructed
into blocks with a limited amount of branching. In general, low-level
constructs should be indented more than high-level constructs. This
approach provides a visual indication of the control flow and allows
other engineers to better understand and modify it.

Regardless of the source of a project’s coding guidelines, the conventions
described in the following sections have been shown to improve the
readability of programs:

e Symbols

¢ (Case conventions

* Spacing conventions

* Formatting comments

108 Coding Guidelines for Implementation



6.3.1 Symbols

To ensure code readability it is best to use symbols, not numbers,

as much as possible. Because symbols are mnemonic, they clarify
programs and provide more information for cross-reference listings. It
is good coding practice to define a symbol for a constant that is used
a number of times. If the value for that symbol changes, the symbol’s
value will need to redefined only once rather than in every place it
is used in the program. Thus, using symbols simplifies the task of

maintenance and facilitates cross-referencing.

6.3.2 Case Conventions

Case conventions should be appropriate to the language. Using all
uppercase letters for the code is not desirable because it is difficult to
read. Avoid randomly scattering uppercase and lowercase letters in
the code. In general, keywords are one case, identifiers another. For
example, in Ada, where formatting conventions are more stringent,
you are expected to use lowercase letters for keywords and uppercase
letters for identifiers.

The C language distinguishes between uppercase and lowercase letters
in variable names and keywords. To ensure portability, global symbols
must never require case distinction. Lowercase letters are appropriate
for variable and function names, structure names, and keywords. Use
uppercase letters for preprocessor identifiers (macro names), symbols
defined with the VAX extension facilities globalref, globaldef, and
globalvalue to ensure correct access. Finally, if a symbol is created that
is external and has mixed case, all references to it must match the case
of the definition and the name must not conflict with other symbols
that have the same characters but different case.

Use uppercase and lowercase letters for all comments. Comments
that are complete sentences start with a capital letter and end with a
period.

When using languages that do not distinguish between uppercase and
lowercase letters, your development team should not depend heavily on
using case conventions as a way to convey vital information about the
code because they may be difficult to thoroughly enforce.

Coding Guidelines for Implementation 109



Example 6-5 shows how to use uppercase and lowercase letters prop-
erly in a Pascal program.

Example 6-5: Proper Capitalization in a Pascal Program

{ Program to call LIB_LP_LINES and determine the
{ number of lines per line printer page.

}

PROGRAM lines (OUTPUT);

{ Declare the external procedure used by this
{ program.

}

FUNCTION 1lib_lp lines : INTEGER; EXTERN;

{ Call l1lib_lp lines and print the result.
}
BEGIN
WRITELN (' Each page contains ’,lib_lp lines,’ lines.’);
END. '

6.3.3 Spacing

Digital developers use the following spacing guidelines when permitted
by the coding language.

¢ Follow a comma (,) with a single space.

¢ Follow and precede an equal sign (=) with a single space.

e Follow an exclamation mark (!) or semicolon (;) with a single
space, to separate a comment from the source code.

* Precede and follow the arithmetic operators plus (+) and minus (—)
by spaces in expressions.

¢ Use blank lines to separate logically distinct (but physically close)
pieces of code.

* Be aware that appropriate spacing in code often makes it easier to
read.

¢ Use form feeds between routines.

110 Coding Guidelines for Implementation



The BASIC program in Example 6—6 shows proper spacing in a BASIC
program.

Example 6-6: Spacing in a BASIC Program

10 ! The following BASIC program converts a character
! string representing a hexadecimal value to a
! longword, then adds one to the result.

! Declare the external routine used.
]

EXTERNAL LONG FUNCTION OTS_CVT TZ L
! Perform the conversion.

]

HEXVAL_ = "80012BFA"
RET_STAT% = OTS_CVT_TZ L (HEXVAL_, HEX%)

! Add one to the result.
]

HEX% = HEX% + 1
END

6.3.4 Formatting Comments

The importance of including comments cannot be overemphasized.
In any professional environment, many people will read the code.
Sometimes they will want to modify it to do something else; at other
times they will want to modify it to do what was originally intended.

A comment describes the purpose of a section of code. If written
properly, the code itself conveys this adequately. Most comments
describe what a source statement does. This category of comment is
imperative in form, as shown in the examples in this section.

This section describes how to fbrmat block comments and line com-
ments, and how to use LSE to format comments.

Coding Guidelines for Implementation 111



6.3.4.1

Block Comments

Digital developers comment on blocks of statements by writing one or
more lines of text preceding the block. Comment lines begin with com-
ment delimiters appropriate to the particular language. Example 6-7
shows an example of a FORTRAN program with exclamation points
being used as a delimiter. Frequently, the last comment line contains
only the comment delimiter. You may wish to set off block comments
with blank lines to make them easier to read. Comment delimiters are
followed by one space, as shown in Example 6-7.

Example 6-7: Block Comments in a FORTRAN Program

! This program demonstrates a call to the
! Run-Time Library procedure STR PREFIX.

! Initialize the strings to be used.
!

AS
BS

"ABC"
"DEF"

| call STR_PREFIX
[}

ISTAT = STR_PREFIX (AS, BS)
END

When possible, indent the comment delimiter the same as the source
code it discusses, with the comment text separated by a single space.
Note that LSE automatically indents the delimiter this way. Never
write a comment that could be interpreted as a language statement.
Always include a block comment at the beginning of a major segment
of the program.

6.3.4.2 Line Comments

You can write brief comments on the same line as the statements
they describe. Be sure to indent them enough to separate them from
the statements. If more than one line comment appears in a block
of code, each new comment starts at the same position, as shown in
Example 6-8.

112 Coding Guidelines for Implementation



Example 6-8: Justified Line Comments in a C Program

while ( !'finish()) { /* Main sequence:*/
inquire (); /* Get user request*/
process (); /* And carry it out*/

} /* As long as possible*/

Note that all line comments start at some specific column and are
flagged by a slash and an asterisk (/*). Compare Example 6-9 to
Example 6-8.

Example 6-9: Unjustified Line Comments in a C Program

while (!'finish()) { /* Main sequence: */
inquire(); /* Get user request */
process(); /* And carry it out */

} /* As long as possible */

In general, it is best to use line comments to document variable def-
initions and block comments to describe the computation process.
Example 6-8 would best be written as a block comment, as shown in
Example 6-10.

Example 6-10: Block Comment in a C Program

/*
* Main sequence: get and process all user requests.
*/
while ( 'finish()) {
inquire ();
process ();

Coding Guidelines for Implementation 113



6.3.4.3 Formatting Comments with LSE

Because LSE recognizes many of the comment portions of the code,
you can use LSE to format them. In addition, LSE treats comments

specially when a placeholder is erased or duplicated. Two commands
are useful: ALIGN and FILL.

When you use the ALIGN command, LSE lines up all the comments
within a region along the same columns. For example, here is a
commented program section:

IF (col >= R Margin) ! This is the start of an
THEN ! extended end-of-line comment block
Begin
i:=3i4+1;
j =3 + i ; ! another comment

! to be filled

After you use the ALIGN command, the program section looks like this:

IF (col >= R Margin) ! This is the start of an
THEN , ! extended end-of-line comment block
Begin
ix=41i+1;
ji=3j+1i; ! another comment

! to be filled

When you use the FILL command, LSE aligns and fills out each
comment line. For example, here is the same program section after
using the FILL command:

IF (col >= R Margin) ! This is the start of an extended
THEN ! end-of-line comment block
Begin
i:=41i+1;
j:=3+1i; ! another comment to be filled

Special handling of comments applies only to a trailing comment;
that is, one that is the last item on a line, excluding blank space.
LSE recognizes two types of comments: bracketed comments and line
comments. A bracketed comment has both a beginning and ending
delimiter; a line comment begins with a delimiter but terminates with
the end of the line.

114 Coding Guidelines for Implementation



6.4 Naming Conventions

Naming conventions are used in naming files, directories, facilities,
modules, procedures, program sections (PSECTs), and variables. The
naming conventions discussed in this section make it easier for devel-
opment teams to carry out their work. They also make it easier for
maintenance teams to carry out theirs. See the Guide to Creating VMS
Modular Procedures for additional naming conventions.

NOTE

This section discusses software structures such as file names,
directories, and procedures. Any such structures supplied by
Digital have a dollar sign ($) in their name. The use of the
dollar sign ($) in the names of these software structures is
reserved for Digital.

To eliminate any possible conflict resulting from duplicate
names, do not use dollar signs ($) in the names of any
software structures you create. Instead, use an underscore
(_) character.

6.4.1 File Names

The purpose of a file-naming convention is to make the file names of
a product family or facility more consistent, organized, and easier to

identify. When you use such a convention, it will be easier to identify
which files are part of a particular software product family.

All file names use the following format:

fac_<IDENTIFIER> <PURPOSE>.<FILE_ TYPE>

Coding Guidelines for Implementation 115



The different parts of the syntax have the following meanings:

fac__ The product’s unique facility name, followed
by an underscore ( _) character

<IDENTIFIER> An identifier string (optional)

_ Underscore character to separate parts

<PURPOSE> A string that identifies the purpose of the file

<FILE_TYPE> A string that identifies the type of data the file
contains

The facility name (fac) is a unique alphanumeric string containing
from 2 to 27 characters (2 to 4 characters are suggested). This string
is used as a prefix to uniquely identify a product and its components,
including file names. Facility names you supply should be followed by
an underscore (_) to identify the software not supplied by Digital.

The optional identifier string (IDENTIFIER) makes it possible to have
multiple files that serve the same purpose. Products that have multiple
files serving a similar purpose (for instance, more than one shareable
image library file, help file, startup file, and so on) need to include the
identifier string. Products that do not have multiple files serving a
similar purpose do not need to include the identifier string.

For example, if a product named Employee List has one startup file, no
identifier string is needed:

EMPLOYEES_STARTUP .COM

A file type string (FILE TYPE) is a character string from 1 to 39
characters (3 or 4 characters are suggested) that identifies the file
based on its contents. When choosing a file type, consider a default file
type before creating a new one. Using a default file type helps to limit
the number of unique file types that reside on the system.

Software products often use files that are common to many products.
Some examples of commonly used files are help files, message files, and
run-time libraries. If your goal is to make the names of these files more
consistent, all products using these types of files should comply with
this standard.

116 Coding Guidelines for Implementation



Table 6-1 lists the common files and their associated naming conven-

tion.

Table 6-1: Naming Conventions for Common Files

Type of File

Naming Convention

Help files

Main images
Message files

RTL images
Shareable images
Object libraries
Option files

Startup files
Release notes
Control programs
Initialization files

G Float RTL Images
H Float RTL Images
Client images

Server images

fac_<IDENTIFIER>_HELP.HLB
fac_<IDENTIFIER>_MAIN.EXE
fac_<IDENTIFIER>_MSG.EXE
fac_<IDENTIFIER>_RTL.EXE
fac_<IDENTIFIER>_SHR.EXE
fac_<IDENTIFIER>_OBJLIB.OLB
fac_<IDENTIFIER>_OPTION.OPT
fac_<IDENTIFIER>_STARTUP.COM
fac_<version>.RELEASE_NOTES
fac_<IDENTIFIER>_CONTROL.EXE
fac_<IDENTIFIER>_INIT.INI
fac_<IDENTIFIER>_RTL_G.EXE
fac_<IDENTIFIER>_RTL_H.EXE
fac_CLIENT_<purpose>
fac_SERVER_<purpose>

The following examples show how to name client and server files
properly for the hypothetical product VAX QUALITY. The file type
.COM stands for a command file, and the file type .EXE stands for an

executable file.

QUAL CLIENT MAIN.EXE
QUAL SERVER_MAIN.EXE
QUAL_CLIENT STARTUP .COM
QUAL_SERVER_STARTUP . COM
QUAL CLIENT_SHR.EXE
QUAL_SERVER_SHR.EXE
QUAL_CLIENT MSG.EXE
QUAL_SERVER_OPTIONS .OPT

Coding Guidelines for Implementation 117



QUAL_RTL.EXE
QUAL_OBJLIB.OLB
QUAL HELP.HLB
QUAL_INIT.INI

QUAL 010.RELEASE NOTES

6.4.2 Directories
Top-level directory names must be consistent with the file-naming
convention. Correct directory names contain the following:

* The product’s unique facility name
¢ The underscore (_) character
¢ An identifier string

The following example shows a top-level directory name for a product
called Employees List:

EMPLOYEES_SERVER.DIR

6.4.3 Procedures

When you create a procedure and give it a global name, other proce-

dures in the same image can call it. In such an environment, global

procedures require a naming convention to prevent any name conflict
between global procedures in the same image.

The rules for naming entry points to procedures have this general form:

fac_<SYMBOL>

fac A 2- to 4-character facility name, followed by an
underscore (_) character.

<SYMBOL> A symbol from 1 to 27 characters long. (The entire
procedure name may not exceed 31 characters in
length.)

118 Coding Guidelines for Implementation



The procedure name usually consists of a verb and its object, which
describe the action of the procedure. For example, a run-time library
procedure that calls a procedure STR_PREFIX might be called called
LIB_GET_STR.

Some procedures, even though assigned global names, are not intended
to be called from outside the facility in which they are located. These
procedures are only available internally, within a set of procedures, and
do not by themselves provide any features for the facility. The names of
these procedures you supply contain three underscores (__ _). (Three
underscores are necessary to avoid conflict condition value symbols you
define that use two underscores.)

The names in Table 6-2 are examples of procedure entry point names.

Table 6-2: Examples of Entry Point Names

Procedure Name Description

LIB_PRINT_REPORT Global procedures supplied by you
LIB___ADD_TAX Internal procedure supplied by you

6.4.4 Modules

Module names are identical to file names except that module names do
not include file types.

Table 6-3 contains examples of module names with corresponding file
and procedure names.

Table 6-3: Relationships Among File, Module, and Procedure Names

File Name Module Name Procedure Name

LIB_SPR.B32 LIB_SPR LIB_GET_SPR
LIB_FREE_SPR

MTH_EXPMAR MTH_EXP MTH_EXP

Coding Guidelines for Implementation 119



6.4.5 Variables

This section describes naming conventions for local and global vari-
ables.

6.4.5.1 Global Variables
Use the following format to name global variables:

fac_Gt_variablename

The letter G indicates this is a global variable; the letter ¢ indicates
the contents and use of the global variable. Table 6—4 lists the possible
values for ¢.

Table 6-4: Global Variable Code Values

fort Content and Use
Address
Byte integer

Single character

D_floating

Reserved for Digital

F_floating

G_floating

H_floating

Reserved for integer extensions
Reserved for customers for escape to other codes
Constant

Longword integer

Field mask

Numeric string (all byte forms)
Octaword

T ozZzEgrCrRe"TI@DoHREHDOOQP

Packed string

120 Coding Guidelines for Implementation



Table 6-4 (Cont.): Global Variable Code Values

Value
fort Content and Use

Quadword integer

Records (structure)

Field size

Text (character) string

Smallest unit of addressable storage
Bit field

Word integer

Context dependent (generic)

Context dependent (generic)

NKMXg<cR Do

Unspecified or nonstandard

The format for addressable global arrays is similar:
fac_At_variablename

The letter A represents a global array; the letter ¢ corresponds to the
values in Table 6—4.

6.4.5.2 Local Variables

Local values follow the same format as global variables, except that
they lack the letter G, which indicates that a variable is global.

Use the folldwing format to name local variables:

fac_t_variablename

The letter ¢ indicates the contents and use of the variable. Table 6—4
lists the possible values for £.

Coding Guidelines for Implementation 121



6.4.6 Naming Conventions for Objects

Table 6-5 contains naming conventions for common objects.

Table 6-5: Naming Conventions for Objects

Object Syntax

Facility-specific public macro _fac__<MACRONAME>

names

System macros using local _fac_<MACRONAME>

symbols or macros

System lock identifiers fac_<FACILITY><SYSTEMLOCK>

PSECT names fac_<PSECT_NAME>

Status code and condition fac__<STATUS>

values

Data structure definitions fac_K_CLASS_<SYMBOLIC_CODE>!or fac_
K_DTYPE_<SYMBOLIC_CODE>

Rights data base identifiers fac_<RIGHTS_IDENTIFIER>

Queue names fac_<QUEUE_NAME>

IThe different symbolic codes are listed in Introduction to VMS System Routines.

6.4.7 File Image IDs

The guidelines in this section apply to using the file image ID field in
.EXE files. You can see these fields by issuing an ANALYZE/IMAGE
command on any .EXE files. Any .EXE file belonging to a layered
product should conform to these standards.

6.4.7.1 Image File ID and Image Name Fields

VMS layered products use the image file ID field to identify the product
name and version number.

The field is 15 characters long and has the following format:

<PRODUCT NAME> <VERSION IDENTIFIER>

122 Coding Guidelines for Implementation



The VMS Linker option IDENT = “15-byte string” sets this field. In
this case, the quotation marks must be used to delimit the string.

The image file ID field specifies the product name and version number;
therefore, the image name of the file is acceptable in this field. Because
VMS puts the image name in this field by default, you do not need to
do so.

6.4.7.2 Shareable Images

Some products use images that are shareable or that another group in
your organization supplies. In these cases, the group that provides the

~ image sets the image file ID area to reflect the current version of the
shareable image. The image ID then contains the information of the
base product to which it belongs.

For example, if you used an image (NLQ_SHR.EXE), the image ID area
of that executable image would be similar to the following:

IMAGE FILE ID: NLQ V3.5-2
IMAGE NAME : NLQ SHR

6.5 Code Reviews

The project’s development plan describes code review requirements.
The purpose of code reviews is essentially the same as for design
reviews or requirements reviews: to enhance the quality of the product.
To this end, code reviews supplement the testing process described

in Chapter 7. The reviews can be less formal—walkthroughs—or can
entail formal inspection procedures.

6.5.1 Informal Walkthroughs

The code walkthrough process is similar to that for design reviews
(see Section 4.5). Typically informal, code walkthroughs can take
place during group meetings. The team holds walkthroughs as soon as
possible after engineers write the code and complete unit testing.

During code walkthroughs, the development team tries to accomplish
the following:

Coding Guidelines for Implementation 123



* Find errors in the code
* Make sure code comments are complete and accurate
¢ Ensure coding standards are followed

* Show new engineers on the team what is expected of their code,
particularly any group-specific methodology

* Help engineers become familiar with code other than their own

* Provide a forum for experienced engineers to share their knowledge
with less experienced engineers

6.5.2 Formal Inspections

Formal inspections are a type of technical peer review in which a small
group of engineers, led by a trained moderator, examines a process
document line-by-line to find problems. This process can be used for
any type of review.

At Digital, the engineer’s supervisor selects and assigns the inspectors.
Each inspector contributes unique technical expertise to the inspection.
The supervisor does not attend the inspection. Typically four to six
people attend a single inspection, which lasts about 2 hours. The
reviewers are able to inspect about 500 lines of text or 250 lines of code
(excluding comments).

In every inspection, the document under review is compared with

one or more source documents. For example, module code may have
pseudocode as a source document along with the product specification
and design documents as supporting documents. As the inspectors
discover problems, they record and classify them by problem type.
When the inspection is complete, the engineer receives a list of the
problems found and their classification. The engineer is responsible for
correcting the problems.

The factor that limits formal inspections is the availability of time and
personnel. The time necessary for formal inspections must be built in
to what is often a tight schedule. The key to planning inspections is
to identify those documents that are to be inspected because of their
audience or importance.

124 Coding Guidelines for Implementation



Most inspections uncover at least one problem that could otherwise
result in a problem report. The cost of a formal inspection can be
justified because it requires only about half the time needed for dealing
with a problem report. Managers should encourage scheduling the
time needed for formal inspections; otherwise development teams may
forego them. In spite of these constraints, formal inspections remain
one option for helping ensure improved product quality.

6.5.3 Code Inspection Guidelines
At Digital the following questions are a part of any code inspection:

Function

1. Is there a concept, an underlying idea, that can be expressed
easily in plain language? Is it expressed in plain language in the
implemented code?

2. Does the function of this part have a clear place in the function of
the whole? Is this function clearly expressed?

3. Is the routine properly sheltered so that it can perform its function
reliably in spite of possible misuse?

Form .

1. Is the style clean and clear?
2. Is it meaningful to all classes of readers who will see it?

3. Are there repeated code segments, whether within or between
routines?

Are comments useful or are they an excuse for poor coding?
Is the level of detail consistent?
Are standard practices followed?

No ol

Is initialization done properly and does the routine clean up after
initialization?

Coding Guidelines for Implementation 125



Economy
1. Are there redundant operations for which there is no compensating
benefit?

2. Is storage use consistent both internally and with external
specifications?

3. How much will it cost to modify? (Consider the three most likely
modifications.)

4. Is it simple?

126 Coding Guidelines for Implementation



Chapter 7
The Testing Process

After a program has been coded, it is tested. The testing process is

a part of the design and implementation phase. The primary goal of
testing is to make sure that the application performs as described in
the requirements and specifications documents. The benefit of testing
is that it reduces the long-term costs of the application by finding
and fixing code errors early in the development process when they
are relatively cheap to correct. The software maintenance costs are
similarly reduced.

As a part of the testing process, the development team considers the
following:

* Levels of testing

¢ Types of tests

* Regression testing

¢ Testing and design

* Performance testing

Another type of testing, field testing, is discussed in Chapter 8,
Qualification.

Throughout this chapter, frequent reference is made to the following
Digital products, which are useful in the testing process:

* VAX DEC/Code Management System (DEC/CMS)
¢ VAX Performance and Coverage Analyzer (VAX PCA)
¢ VAX DEC/Test Manager

The Testing Process 127



Figure 7-1 shows where testing fits in the development process. The
product develops in a series of progressive base levels, each marking a
new or different level of product features. Testing is required at each
stage of development. Two levels of testing are done: unit testing and
integrated testing. Regression testing is used to evaluate the results.
These tests, which are described in the following sections, form part of
the full application test suite; in turn, the full test suite is used as part
of the development team’s periodic build and test cycle.

At Digital, when the development team decides to freeze the code for
a base level, it must test and review the base level before creating

a DEC/CMS class. The DEC/CMS class will associate all the source
modules for easy access. To build distribution kits of the media, the
team uses the base-level class. Base-level development continues if the
product is not yet complete, or ends if the DEC/CMS class represents
the final base level for release.

7.1 Levels of Testing

The complexity of the environment within which a team tests the
code determines the level of testing that is required. The two levels of
testing are:

® Unit testing
¢ Integrated testing

Unit testing takes place on code that constitutes the simplest en-
vironment. In unit testing, engineers test a unit of code, such as
a subprogram, subroutine, internal procedure, or module before it
becomes part of a larger procedure.

Integrated testing takes place on code that constitutes a progressively
more complex environment as the individual units are combined into
larger functional components. More than one level of integrated testing
may be needed to test all functional components of a software product.

128 The Testing Process



Figure 7-1: Code Testing Process

Unit
/ Testing
Code
\ \ Integrated
Testing
Rebuild
Base-Level
Development
[
Code Base-Level Base-Level
Freeze o Test Review
Distribute DEC/CMS
Kits? Class

Design and
Implementation
Review

For example, a unit test for an accounts receivable module of a business
accounting package might determine whether the module correctly
calculates the total for a sale, including any taxes, to a customer.
Similarly, an integrated test might determine whether the items sold

The Testing Process 129



are subtracted in the inventory module of the business accounting
package.

In Figure 7-2, level 1 represents unit testing, and levels 2 and 3
represent integrated testing.

Figure 7-2: Unit and Integrated Levels of Testing

Level 1 Level 3

711

Unit Testing

Thorough unit testing is good coding practice. Typically, in unit testing
a specific test is written or an existing test modified for a unit of code.

After writing a test, Digital developers use the VAX Performance and
Coverage Analyzer (VAX PCA) together with the DEC/Test Manager to
see how effectively the test covers the code. If the DEC/Test Manager
indicates a high percentage of code is covered, the team can have
confidence that the test is a valid indicator of correctness. On the other
hand, if the DEC/Test Manager indicates that a low percentage of code
is covered by the test, the test is modified or augmented.

For instance, a team whose tests cover 85 percent (suggested minimum)
of the product’s code paths can be more confident that their tests are
measuring the correctness of the product than a team whose test
coverage is only 68 percent. However, as the coverage values for the
application increase, the team must trade off the cost of developing new
and more comprehensive tests against the cost of fixing an otherwise

130 The Testing Process



undiscovered error. The type of application being developed also has a
large effect on this judgment.

7.1.2 Integrated Testing

The approach to integrated testing preferred at Digital is called incre-
mental testing. With this approach, testing begins with a single unit.
Testing continues as more units are added to the original unit. Each
unit is thoroughly tested before it is included in the integrated testing
process. At each level, errors are corrected before going on to the next
level. At the last step, testing the units in combination, the entire
procedure should work correctly.

Incremental testing helps find the following types of errors:

¢  Problems with the calling interface between units

¢ Incorrect assumptions about what values are returned and which
units they are returned to

* Unexpected transfer of control between units

Incremental testing has many advantages: the entire procedure need
not be complete to begin integrated testing. Debugging is simplified
because modules and interfaces can be tested as the system grows. In
addition, programming errors in the interfaces and incorrect assump-
tions between units surface at an early stage. Finally, because existing
units are retested as new units are added to the test set, undesirable
or unexpected interactions among code units are more likely to be
detected.

7.2 Types of Tests

The unit and integrated tests are generally classified as “white box” or
“black box.” Table 7-1 shows some characteristics of white box tests
and black box tests.

The Testing Process 131



Table 7-1: White Box Tests and Black Box Tests

White Box Tests Black Box Tests

Primarily used for unit testing Primarily used for integrated testing

Can be written in the design phase Can be written based on the require-

only if documents are quite detailed ments, specifications, and design doc-
uments; usually used for functional
tests

Used to examine how the results Used to examine whether a procedure
were achieved at the code path level produces the expected results without
concern for the underlying code

7.2.1 White Box Tests

White box tests examine the internal workings of the code, that is, the
individual lines of code. A set of test data should test each statement,
decision, and condition. If a set of test data fails to do so, sections of
code that contain errors might be skipped. For example, compound or
nested decisions may have many possible branches of code; the test
data needs multiple values to force the execution of these branches.

Digital engineers find the VAX Performance and Coverage Analyzer
(VAX PCA) to be particularly useful for white box tests. When used
with the VAX DEC/Test Manager, VAX PCA measures test coverage.
The coverage analysis takes two forms:

e Percentage of total coverage: Indicates how much of the code was
executed by the test data.

¢ Individual source line coverage: Shows which lines of code were
executed by the test data.

VAX PCA provides a way to mark code as acceptably not covered.
This method allows portions of the code to be bypassed during testing.
These portions are typically not testable or the conditions cannot

be reproduced. Coverage analysis considers these conditions when
calculating coverage percentages.

132 The Testing Process



7.2.2 Black Box Tests

Black box tests measure whether the procedure can produce the pre-
dicted results for particular input values. A command procedure is
written that repetitively executes the tested procedure with different
input values.

The input values come from the following categories:

* Expected inputs
* Boundary values
¢ Illegal values

7.3 Testing and Design

The development team must plan for testing when they create an
application’s design. The team should recognize that the product
eventually will be tested for validity and consistency. The verification
process uses standard testing procedures (for example, regression
testing) that the team can plan for.

7.3.1 Design Considerations

The design work generally reveals potential problems such as running
out of disk space or a possible failure of system services. If such
problems cannot be “designed out” of the system, having a record of
them can be valuable when the team prepares its tests.

The team writes the set of functional validation tests during prelimi-
nary design to ensure that the tests measure the functions the software
is to perform. If the team writes the tests after the code is written,
their knowledge of the code may affect the way they write the tests.
This approach diminishes the objectivity of the test and the value of
the results.

Functional tests are usually black box tests and can be written based
on the requirements, specifications, and design documents. White box
tests can be written at the design phase only if the design documents
are quite detailed.

The Testing Process 133



A product’s successful development is in large part measured against
the initial requirements and function list. Therefore, functional tests
provide a way to measure the success of the product’s development.
At Digital, teams usually organize their functional tests on the basis
of some characteristic of the application: the command list or perhaps
objects manipulated by the application. For example, a test of the
VAX DEC/Code Management System (DEC/CMS) would exercise all
DEC/CMS commands.

An organization based on objects might validate all the attributes or
functions of an element (SHOW ELEMENT, CREATE ELEMENT,
DELETE ELEMENT, and so on). By organizing tests this way, it is
possible to run a subset of the test system or a DEC/Test Manager
group after having changed a particular feature. Note that DEC/Test
Manager allows individual tests to be members of more than one group.

When designing tests, the development team examines any product
dependencies and whether to take a bottom-up or a top-down approach
to testing.

7.3.1.1 Bottom-Up and Top-Down Approaches

Depending on the design of the application, the team takes either a
bottom-up or a top-down approach to its integrated testing. For a
bottom-up design, the team has an application that develops from
primitives—low-level functional units, such as data base routines or
file-handling routines that form the working base of the application.
As the application develops, the low-levels units are combined into
larger components. The higher-level combinations of units execute and
make use of the primitives to produce the functions of the application.
At the highest level, the user interface drives the lower levels of the
application.

To carry out tests on a bottom-up design, it is necessary to test the
primitives before higher levels of code exist. For this task, driver
programs must be written to execute the primitives by calling the
routines. In this way unit testing can begin, followed by integrated
testing as the application grows. The driver programs are used only
until the higher-level code is written.

134 The Testing Process



A top-down design creates a different set of circumstances for testing.
A top-down design starts with major functions, such as interface
routines or calling routines. These high-level units exist before the
primitives. After it is clear how they work together, the lower-level
functions are designed. The primitives will ultimately be needed to
carry out the work.

For top-down designs, dead-end units or “stubs” are created that return
dummy values to the higher-level calling routine. In this way, unit
testing can be carried out at higher levels and progress downward to
the lower levels as the application develops.

7.3.1.2 Product Dependencies

In designing tests, Digital’s developers also consider a set of test data
that verify all levels of a product’s dependencies on other products.
Tests that validate relationships between one product’s components and
another product’s components help development teams discover prob-
lems when changes among dependent products occur. The following list
contains examples of dependencies for which development teams might
design validation tests:

* Operating system dependencies

¢ Hardware-specific dependencies

¢ Prerequisite products

¢ Optional products

¢ User interfaces

¢ International layers (translation dependencies)

7.3.2 Regression Testing

Regression testing is the most common technique for evaluating test
results. In regression testing, established software tests are run (white
box or black box) and the results compared with the successful results
from previous test runs. If the new results do not conform to the
previously verified results, the software being tested may contain
errors. If errors do exist, the software is said to have “regressed.”
Thus, regression testing ensures that a program runs consistently

and that new features do not affect the correct execution of previously
tested features.

The Testing Process 135



This is a typical sequence of steps used in regression testing:

1. Write test scripts (command procedures or interactive session
records) to test the software.

2. Organize the tests and create a mechanism that lets the team
readily access the tests as needed.

3. Run the tests.
4. Examine the test results.
a. Compare the results of each test to the expected results. Note
any differences between the expected and actual results.
b. For incorrect test output, revise the program code to correct the
problem. Repeat steps 3 and 4 until the test output is correct.
c. Save the correct output as the validated test results.
5. Repeat steps 3 and 4 whenever the program is modified.
a. If the current and validated test results match, the program
being tested is working as expected.

b. If unexpected changes are found in the test results, the program
being tested may contain errors. Correct the program and rerun
the tests whose results did not match. Repeat this cycle until
all results are valid. For future test runs, use these validated
test results as references against which to compare the current
test results.

Digital’s engineers use the VAX DEC/Test Manager for organizing
software regression tests and test results. The DEC/Test Manager
automates steps 2 through 4, although engineers must still create the
tests manually. Figure 7-3 shows the steps used in regression testing,
with those steps the DEC/Test Manager automates indicated in the
outlined area.

Here is a typical sequence of steps for using the DEC/Test Manager to
perform regression testing:

1. Create tests by writing test scripts to test the software.
2. Set up a DEC/Test Manager system.
a. Create a DEC/Test Manager library.

136 The Testing Process



Figure 7-3: DEC/Test Manager and Regression Testing

Tests
and
Test Data
\
Automated by
DEC/Test Manager Run
Tests
\
Expected Generate
Results Test
(Benchmarks) Output

A

Compare
Test Results
to Benchmark

A

Examine
Comparison
Report

b. Identify each test and its related files to the DEC/Test Manager.
c. Categorize the tests, if desired, by placing them in groups.
3. Run the tests.

a. Use the DEC/Test Manager to collect the test or set of tests that

will be run. (DEC/Test Manager can fetch tests directly from a
DEC/CMS library.)

b. Run the collection of tests either interactively or in batch
mode.

The Testing Process 137



138

4. Compare the current test results with the expected results for each
test. After the test results from the first run have been examined
and validated, the DEC/Test Manager will automatically compare
new test results with the validated results for each test and record
any differences in a differences file.

5. Examine the test results. The DEC/Test Manager provides an
interactive subsystem that allows access to test results immedi-
ately. To simplify retesting, the DEC/Test Manager also allows
engineers to update or create benchmark files that group all tests
that produce incorrect results.

6. Repeat steps 3 through 5 whenever you modify the program or add
new code.

The DEC/Test Manager simplifies the testing process, thereby increas-
ing the likelihood that all team members will test the application
consistently. The DEC/Test Manager can provide the information to
answer questions such as the following:

Who added a specific test?

* Who revised the test set and when?

* How often is the test set run?

¢  What are the variables used for?

To set up a test system, the engineers create tests and store the test
descriptions in a DEC/Test Manager library to identify the tests and
their associated files to the DEC/Test Manager. A test description
consists of a series of fields whose contents point to files and other
information needed to run the test. The core of the test description is
the template file. For tests that are not interactive, the template file
is a DCL command file created to run a specified test; for interactive
tests, the DEC/Test Manager automatically creates a template file
when the interactive terminal session is recorded.

You can use the VAX Language-Sensitive Editor (LSE) to create tem-
plate files more easily. LSE allows engineers to write generalized
templates for languages not supported by Digital. They can also write
LSE templates for the DEC/Test Manager files if they have several
tests that share common characteristics. This approach makes it easier
to create and use tests.

For more information on the DEC/Test Manager, see Section 2.1.4.

The Testing Process



While regression testing enables the development team to be certain
that successive versions of the software yield consistent test results,
the team also conducts performance testing to ensure that the software
performs its functions correctly.

7.4 Performance Testing

Performance testing helps ensure that a product performs its functions
at the required speed. Planning for performance testing starts at

the beginning of the project when product goals and requirements

are defined. Performance testing is a part of the product’s initial
engineering plan.

Insofar as possible, the development team states the performance
requirements in measurable terms. When this is difficult, the product
requirements document provides some guidance as to the importance
of the product’s performance. Increasingly, performance may affect a
product’s acceptance in the marketplace. The performance of competing
products, therefore, can serve as comparative benchmarks.

The development team can approach performance testing in one of
three ways.

1. The team can design for performance. Techniques such as modeling
and prototyping help to assess the application’s performance.
Techniques for validating designs help produce an application
design that can enhance performance.

2. The team can test performance during development. This approach
entails testing performance at the unit level. The team writes
tests and establishes performance benchmarks for each unit tested.
The drawback to this approach is the significant time and effort
required.

3. The development team can test the performance of the finished
product. This approach also requires tests and benchmarks.
However, the team creates the tests and benchmarks only for the
full application. For this reason, it is more practical than testing
during development.

The Testing Process 139



Assuming that the team chooses the third approach, the engineers
must first create the tests and benchmarks. This step is difficult
because it entails translating information from the requirements
and specification stages into tests and benchmarks that are specific
to individual products. Without meaningful benchmarks, however,
performance testing serves little purpose.

7.4.1 Running Regression Tests

Once the team establishes performance criteria for the product, it can
run appropriate regression tests. As mentioned earlier in this chapter,
the DEC/Test Manager can help the team manage the tests and evalu-
ate the results. Because the DEC/Test Manager is a consistency-testing
tool, the development team has to write a filter for tests that collect
VMS accounting data at logout. Typical information includes CPU
time, elapsed time, and page fault data. To be meaningful, the tests
need to be run consistently, that is, on the same class of equipment un-
der the same conditions. The team must ensure that these conditions
exist.

When the tests are run, the DEC/Test Manager can compare bench-
marks automatically with the data collected. This type of perfor-
mance testing is suitable for applications that are batch-intensive.
The DEC/Test Manager cannot measure human interface aspects of
performance. This is best addressed by human factors testing. (See
Section 4.4 for information on human interface design.)

7.4.2 Resolving Performance Problems

Experience has shown that it is difficult for engineers to intuitively
determine where the greatest performance problems occur in their
programs. The VAX Performance and Coverage Analyzer (VAX PCA)
can be extremely helpful in locating the problem in the source code.

If the regression testing shows that the application no longer compares
favorably with the established benchmarks, VAX PCA can be used to
help improve performance. Figure 7—4 shows where VAX PCA fits in
the performance testing process.

140 The Testing Process



Figure 7-4: Performance Test Process

Requirements
Document and
Engineering

Plan

DEC/Test Manager
Regression Test

. Performance
Rg\év(;ge Tests and <
Benchmarks
\
Use VAX PCA for No
Performance
Debugging
Yes
Next Build
Cycle

In effect, VAX PCA functions as a performance debugger, quickly identi-
fying sections of code that consume the largest portions of performance
time. Once the bottlenecks are located, the code and its algorithms can
be rewritten.

VAX PCA can also help when a performance problem occurs during field
test. A performance problem in this sense does not reflect a section of
code whose logic fails to work; rather, it reflects a section of code that
performs inefficiently, perhaps in special circumstances. Examples of
this type of problem include hidden N2 algorithms, code that is too
general, or code that is poorly designed.

The Testing Process 141



VAX PCA can be used in much the same way to solve both types of
performance problems. However, note that reacting to performance
problems that become apparent during field test is not the same as
developing a strategy of performance testing against benchmarks.

7.5 Summary of Testing Guidelines

This section summarizes the key guidelines covered in previous sections
of this chapter.

Error Testing

* Plan the application’s design with testing in mind.

* Plan the testing itself as early as possible.

¢ Use black and white box tests to exercise the code.

* Perform thorough unit testing before beginning integrated testing.
¢ Use incremental testing at the integrated level.

* Devise complete functional tests for the product as it matures.

* Devise tests that verify correct error-handling.

¢ Use regression testing techniques with the DEC/Test Manager to
automate and organize the testing process as part of a build/test
cycle.

* Use VAX PCA with the DEC/Test Manager to determine the amount
of test coverage on tests; rewrite if necessary.

¢ After any developmental task (error fix, module written, and so on),
test the code unit as a unit and then as part of the application test
suite before checking the code unit back into the project DEC/CMS
code library.

Performance Testing

¢ Plan performance requirements and specifications for the applica-
tion.

¢ DPlan tests and benchmarks that define the application’s accepted
performance.

142 The Testing Process



¢ Use the DEC/Test Manager to run regression tests that com-
pare performance against established benchmarks as part of the
build/test cycle.

¢ Use VAX PCA to locate sections of code that perform inefficiently;
rewrite the sections.

For more information on testing, see the Guide to Creating VMS
Modular Procedures; see also The Art of Software Testing by Glenford
dJ. Myers (see Appendix D).

The Testing Process 143






Chapter 8
Qualification

After a fully functional software product is created, it is time to qualify
the product through field tests and to begin steps to release the product
to manufacturing. During the qualification phase, the software is in
use at selected external field test sites. The development team stays
in close contact with these sites, making sure any needed corrections
are reflected in the version of the software and documentation to be
shipped to the general customer base. In later stages of this test
period, source code and documentation are frozen, and final copies of
the distribution media and books are prepared.

8.1 Preparing for Field Test

The development team prepared a field test strategy as part of the
design and implementation phase of product development. This pre-
liminary field test plan becomes part of the development plan. Thus,
it is available to help the team begin identifying appropriate field test
sites. Often, the product manager, with help from both the field test
administrator and the engineering project leader, takes care of this
task.

During design and implementation, the development team works out

specific details of the field test process, such as the site configurations
and problem reporting mechanisms. This information forms the basis
of the field test plan.

Qualification 145



The length of an effective field test varies with the product and the
sites. Given the time needed to set up, use, and provide feedback,
three to four months is generally the minimum field test period. When
scheduling a field test, bear in mind that feedback is less likely during
holidays and, for universities, at the end of semesters.

Before field test begins, the development team provides the customer
with all the information needed to test the product. This information
states clearly what the development team expects from the field test
sites.

Many of the administrative tasks associated with preparing for field
test are the responsibility of the field test administrator; for example,
the administrator completes any needed nondisclosure or licensing
agreements with the field test site, and distributes the field test kits.
The kits are assembled by the development team or release engineer.

The team devises a means of communicating with the field test sites
in order to gather feedback and respond to problems. This is often
accomplished formally through an online problem report system (see
Section 8.1.1), and informally through phone calls and site visits.
Before the field test begins, the problem report system is ready to
handle the problem reports from field test sites.

8.1.1 Problem Report System

Every development effort needs an effective means of assigning and
tracking problem reports throughout the life cycle of the product.
Problem reports originate from the following groups and at different
times in the product’s life cycle:

* From the development group itself—at all stages of the product’s
development, including unreleased versions

¢ TFrom internal and external users of field test versions

¢ From internal and external users of released versions

The ideal setup for problem reporting is a single system that handles
all types of problem reports, including reports from field test sites.
An online problem report system provides users with an easy way

to forward problem reports, concerns, or suggestions to the product
developers. Useful features of such a system include the following: -

146 Qualification



® Online access by both field test sites and developers
* Ease of editing problem report replies

* Standard format of online problem report

* Statistical tracking capabilities

¢ Flexible display of problem reports in a data base

e Capability to categorize problem reports with keywords (or some
counterpart) and status; for example, answered, unanswered,
closed, open, and so on

NOTE

Development teams can write their own problem reporting
system using Digital’s VAX RALLY or VAX DATATRIEVE
software in combination with VMS RMS data base files.

Before submitting a product to manufacturing, the development team
tries to screen and respond to all problem reports. Typically, one person
on the team screens the reports and passes them along to the engineer
responsible for the feature in question. Often, development teams set
a goal of responding to their problem reports within a short period of
time, perhaps two days.

In addition to responding to problem reports, the development team
and the product manager meet to discuss the status of each field test
site and compare activity to milestones and schedules. The team may
need to revise schedules, depending on the quality of the field test.
Results of the review meetings are made available to all groups that
make up the product team.

8.1.2 Internal Field Test

Before a Digital development team sends test kits to external field test
sites, it typically has begun a formal field test within its own group.
Internal testing helps to pave the way for external testing. One benefit
is that internal tests uncover problems that the team can resolve before
undertaking the external test. It is also easier to distribute the product
and gain feedback.

For those products that will be sold worldwide, the internal field test
includes sites with a comparable worldwide distribution.

Qualification 147



8.1.3 Early Evaluation Field Test

One way that Digital developers get feedback on the product before the
full-scale external field test is to conduct an early evaluation field test
(EEFT). Conducting an EEFT entails testing an application at select
customer sites while the product is being developed. Perhaps only

65 percent of the product’s features are ready, yet by having selected
customers field test the application early, the development team gains
valuable information as to whether the product has the right features
and is meeting its requirements.

Because the product is not finished, feedback from an EEFT can result
in significant redevelopment. Thus, an early evaluation is as much

a prototyping effort as it is a developmental engineering step. The
likelihood of redevelopment with a consequent impact on the product’s
schedule requires that management support the EEFT’s goals and the
development team be prepared for additional work.

Selecting and preparing sites is essential for an EEFT. The sites must
understand that the product they will test is unfinished and that they
can play a formative role in its development. For this reason, and
because of the close interaction between the sites and the development
team, it is best to carefully select a small number of sites.

8.2 Conducting the External Field Test

The development team has the following responsibilities during exter-
nal field test:

* Responding to input from field test sites, including problems and
questions

¢ Informing field test sites of changes to the software

* Participating in reviews of field test sites

* Helping decide whether the field test is meeting its goals, or
whether it needs to be modified or extended

¢ Communicating regularly with other members of the product team
¢ Providing new field test upgrade kits as required

148 CQualification



Members of the development team contact field test sites regularly
to provide them with information on changes to the software and to
respond to problems and questions.

8.2.1 Fixing Errors

The development team’s response to errors that are discovered during
field test depends on the severity of the error and when it is discovered.
The team fixes minor errors in the code that arise during field test. The
modified software is sent back to test sites as part of a field test update
kit to verify the changes. The team fixes any minor errors before the
code is frozen for production.

The development team must resolve critical errors before submitting
the product to manufacturing. Table 8-1 describes how the errors are
resolved, which in turn depends on when they are discovered.

Table 8-1: Resolution of Critical Errors

If the error is discovered
after the development team... The development team must...

Sends out a field test upgrade Analyze and solve the problem, make the

kit to the field (see Section 8.2.2) change, and test the software. Testing
helps validate the solution and may de-
tect regressive effects elsewhere in the

software.
Reviews and signs off the pro- Repeat the final verification period to fix
duct documentation (assuming the documentation. This usually means
the error affects the documenta-  delaying submission to manufacturing.
tion)
Submits the product to manu- Withdraw the product from manufac-
facturing. This creates the most turing and repeat the entire verification
serious problem. procedure.

Qualification 149



8.2.2 Final Verification: Field Test Upgrade Kits

Before the field test period ends, the development team sends upgrade
kits to the field test sites. An upgrade kit is submitted as the final
version of the software and the documentation, both of which will
eventually be sent to manufacturing.

This portion of the field test makes up the final verification of the
product. The project team sends out the upgrade kit to make sure
there are no undetected problems.

8.3 Closing the Field Test

The field test plan states how long the field test will last and the cri-
teria for ending it. Conditions such as the quality of the field test
results or the severity of the software problem can force the develop-
ment team to adjust the field test schedule. The decision to extend or
close the field test rests with the development team, which relies on
recommendations from the product team.

8.3.1 Manufacturing Verification

After the field test is completed, the development team meets the

following list of criteria to verify that the product is ready for manufac-

turing:

¢ Testing is complete and all known problems in the code and docu-
mentation have been corrected.

* The code is frozen.

¢ All software masters have been built and submitted to manufactur-
ing.

® The final draft of all documentation is available, including installa-
tion and installation verification procedures.

The development team may add its own criteria to this list. It also
includes time in the development schedule to verify that the product
meets all the criteria.

150 Qualification



To ensure that a stable product is delivered to manufacturing, all of
Digital’s software products also meet the following final checks before
being submitted to manufacturing:

* The product can be installed according to the installation documen-
tation.

e All demonstration programs and the distribution kit, including
documentation, are complete and accurate.

¢ All product documents (manuals, descriptions, and release notes)
are ready for the printer.

* The final verification of the product in its intended market environ-
ment is complete.

* The development team has recorded and submitted for correction
all problems discovered during the product’s final verification (after
the upgrade kit is sent out).

* The development team has corrected and verified errors that do not
affect the product’s documentation.

When all checks are complete, the product is ready to be signed off by
all participants.

8.3.2 Field Test Reports

During the field test, the development team gets a great deal of feed-
back from the test sites. This feedback is compiled into a report on
the field test results. The report organizes the data from the field test
sites, including the following types of information:

* Test results

* Problems (classified by priority) encountered by the test sites

* Responses to these problems

¢ Survey results of user perceptions

* Polling results

¢ Complications during testing

Typically, the project’s field test administrator helps organize and

consolidate this information, for example, by statistically analyzing the
data.

Qualification 151



8.3.3 Product Evaluation Report

The product evaluation report represents the development team’s
evaluation as to whether the product is ready to ship to customers.
After analyzing key sections of the field test results to substantiate
its evaluation, the development team makes the product evaluation
report available to the development supervisor and other members of
the product team.

The product evaluation report contains a condensed analysis of all the
testing and product evaluation that has been carried out. This includes
field test data, regression testing, software product description verifi-
cation, and a serviceability evaluation report. The product evaluation
report is agreed to by the entire product team, and it includes these
items:

¢ (Clearly stated test results and evaluations compared to each goal,
capability, and external characteristic as stated in the product
specification.

¢ A statement of the product’s status compared to the defined soft-
ware manufacturing submission criteria for the product. This
statement shows that the product meets the criteria for submission
to manufacturing (see Section 8.3.1).

¢ A statement of test and evaluation results compared to the goals
and capabilities defined in the customer services plan, the training
plan, and the software manufacturing plan.

8.3.4 Release Notes

Release notes provide a way to document significant changes to the
product since the last release and/or any last-minute changes that the
team could not include in the standard documentation. The following
items might be included in release notes:

* Code errors fixed before shipping

¢ Known code errors or restrictions

¢ Changes from last release

¢ Documentation changes and omissions

152 Qualification



Release notes do not contain information that is better documented
elsewhere, such as information on new features and installation proce-
dure instructions.

Qualification 153






Chapter 9
Maintenance

Various studies have shown that from 60 to 70 percent of the cost of
software is incurred during maintenance.l Although this percentage
varies considerably from project to project, it does indicate that main-
tenance accounts for a significant portion of engineering resources
throughout the life cycle of a software product.

Therefore, planning how to minimize maintenance costs is an ongoing
concern. This chapter highlights the planning required to address
maintenance concerns in all phases of software development.

Depending on the status of a product, maintenance tasks vary, but
these tasks are typical:

Eliminating errors in the application
Enhancing the application in response to customer feedback

Solving regression problems (for example, the application does not
work on a particular system)

Testing the application on new processors, both previous versions in
the field and new development versions

Updating documentation to reflect changes in the application

Analyzing statistics and metrics collected from customers using the
product

1 Guidance on Software Maintenance. NBS Special Publication 500-106. National Bureau of Standards,

1983.

Maintenance 155



9.1 Planning for Maintenance

The best way to reduce maintenance work is to minimize the avoidable
errors in the application. The farther along a product is in its develop-
ment cycle, the higher the cost of fixing errors. Table 9-1 compares the
costs of fixing problems at various times in the development cycle.

Table 9—-1: Relative Costs of Fixing Software Errors

Time When Fixed Cost Multiplier
During design phase 1

During coding phase 1.5

Just before base-level test 10

During base-level test 60

During field test 100

The maintenance team accomplishes its work more easily if develop-
ment is carried out with maintenance in mind. This is particularly
important because often the maintenance team is made up of engineers
who did not participate in the original development work. If the devel-
opment team uses the tools and follows the procedures described in the
previous chapters, the development process is easier for everyone. It is
during maintenance, however, that these procedures really show their
worth.

Without an effective set of work procedures, the maintenance team will
find itself with a series of potential problems, for example:
¢ It may not be able to reproduce code in the field.

¢ It may not know what tests were run and where the tests are
stored.

¢ It may not be able to review old versions of code.

¢ It may not update product specifications to reflect changes in code
or features.

156 Maintenance



9.2 Maintenance Procedures

This section emphasizes software development procedures that can
make software maintenance tasks easier and less costly:

Project environment
Project conventions
Project communication
Design documentation
Test plans

Code conventions
Build procedures
Maintenance document
DEC/CMS libraries
Problem reports

9.2.1 Project Environment

To set up the project environment, the development team must plan
such tasks as file storage, project directory and library structure, and
tool use.

Many tasks necessary to facilitate maintenance should have been done
during each of the phases already discussed in this guide. Here is a
quick review of some of the tools used to carry out these tasks. See
Chapter 2, Software Development Tools, for more detail.

The VAX DEC/Code Management System (DEC/CMS) helps man-
age and control file storage for both code and documentation. It
also facilitates software configuration management.

The VAX DEC/Module Management System (DEC/MMS) can
control, in conjunction with DEC/CMS, the build process for the
application; DEC/MMS is particularly useful if the project has not
already developed extensive build procedures for previous versions.
The VAX DEC/Test Manager helps organize and run project tests.

The VAX Language-Sensitive Editor (LSE) simplifies coding con-
ventions, source control, compilations, and editing and debugging
tasks.

Maintenance 157



* The VAX Source Code Analyzer (VAX SCA) provides cross-
referencing and static analysis among an application’s modules.
It is particularly useful for helping new engineers become familiar
with an application’s code.

* The VAX Performance and Coverage Analyzer (VAX PCA) is an aid
for performance debugging.

¢ The VMS Debugger debugs code.
¢  VAX SCAN writes filters, extractors, and translators.

* VAX Notes makes many kinds of project communication easier
across the network.

In addition to these tools, the development team needs to establish a
problem-reporting mechanism to handle problem reports over the life
cycle of the product. This mechanism has features to both assign and
track problems reported with the software. Without such a mechanism
in place, the maintenance tasks will be much more difficult.

The tools the team chooses will affect the directory and library struc-
ture for the project. The directory structure should fulfill three pur-
poses:

1. Provide a comprehensive and adequate file storage hierarchy

2. Provide the necessary storage libraries for specific tools (for exam-
ple, DEC/CMS, VAX SCA, and DEC/Test Manager libraries)

3. Have a structure that is readily understandable and accessible to
its users

A Methodology for Software Development Using VMS Tools provides
useful examples of how to set up a project’s directories and libraries to
maximize the use of Digital’s software development tools.

Once the team has designed its directory structure, team members
typically use logical names to speed access to particular directories
and to provide more generic specifications. A Methodology for Software
Development Using VMS Tools has examples of logical names as well.

158 Maintenance



9.2.2 Project Conventions

When setting up the directory hierarchy, team members agree on
conventions for the project. For example:

* Specification formats
* Design formats
* Naming conventions for files, modules, routines, and tests

¢ Conventions for DEC/CMS and DEC/Test Manager remarks that
are logged in the respective tool’s history file

¢ Comment formats for module and routine prefaces

¢ Test headers (similar to module headers) that provide a test’s name,
function, and any special requirements for running the tests

Previous chapters of this book describe how to establish such standards,
for example, by using LSE templates to enforce coding conventions (see
Chapter 6, Coding Guidelines for Implementation).

By agreeing on these standards early in the project and adhering to
them throughout, the team avoids confusion and conflict. An added
benefit is that standards provide a consistent framework for new team
members, enabling them to quickly learn about the project. Chapter 4,
Planning and Preliminary Design, Chapter 6, Coding Guidelines for
Implementation, and Chapter 7, The Testing Process, contain specific
information on relevant standards.

Coding Conventions

As explained in Chapter 6, development teams can use LSE to format
code consistently. Code that is formatted consistently is easier to
read, benefiting not only team members, but also engineers who may
maintain or update the application in the future. The use of LSE
and regular code reviews (described in Section 6.5) promote coding
consistency.

Naming Conventions

Adhering to naming conventions also helps both the development and
maintenance teams. Naming conventions for modules, routines, and
variables provide a number of benefits:

Maintenance 159



¢ Faster identification of code elements

* Easier access to files and directories using wildcard characters
* Faster learning by engineers new to a project

¢ Faster work with the VMS Debugger

* Easier maintenance of the software

See Section 6.4 and the Guide to Creating VMS Modular Procedures for
detailed information on naming conventions.

Conventions for DEC/CMS and DEC/Test Manager Remarks

Another convention that Digital developers follow concerns the infor-
mation put in the remarks of tools, notably DEC/CMS and DEC/Test
Manager. These remarks should provide useful information, such as a
clear problem description. The engineers can then reference the module
and the routines that were modified.

Furthermore, the problem, its cause, and the number of the associated
report can be duplicated in the source code using the modification
history comments (see Section 6.1.3.1). The modification history com-
ments specify which tests were run to check the effects of the code
changes. Engineers can track this information and cross-reference from
the report numbers to the code. This supplementary knowledge helps
engineers to more quickly understand the code.

9.2.3 Project Communication

Without communication, members of the team can easily lose track of
what other team members are doing. A number of problems can result:
¢ Team members may duplicate effort.

* Team members may miss opportunities to make use of reusable
code.

* The code design may not be truly modular.

* Modules developed by different team members may not work
together.

Several mechanisms can help to reduce these problems.

160 Maintenance



Project Account

To help make information easily accessible to all team members, the
team can set up a project account to receive all project-related MAIL
messages. This account can also store the results of project builds and
other relevant files, and be accessible to the entire team.

Project Conferences

VAX Notes can help a team organize many of its information-handling
tasks. Typical project needs met by VAX Notes include the following:

* A suggestion box as an ongoing “wish list” to plan for the next
release of the product

e A forum to keep up-to-date on issues and answers for customers
and internal users

¢ A place for public announcements, such as the availability of new
versions of software

Project Meetings

Project meetings need to be held frequently enough to maintain ade-
quate communication within the project; once a week is appropriate for
many teams. All members need to stay up-to-date on all the project
work. The information they gain from the project meeting feeds back
into the development work, generating a better quality product.

Often, project meetings serve as review forums to help verify that team
members are following code, design, and specification conventions.
These reviews can also help transfer knowledge. For example, de-
signers may not always implement their own designs. Design reviews
can help to ensure that the design is clear and understandable to the
engineer assigned the task of implementing the design. (Section 4.5
contains more information on design reviews; Section 6.5 has more
information on code reviews.)

9.2.4 Design Documentation

The design documentation provides a record of major design decisions,
for example:

Maintenance 161



¢ Alternatives not taken and why

¢ Future enhancements, including the range of possibilities and ideas
considered

¢ Failings or limitations of outside software and hardware, for
example, operating system version requirements and emulator
incompatibilities

The team can use an LSE design template to set up consistent means
of recording this type of information. They can refer to this information
when they make changes to the code.

Another task that helps with maintenance is reviewing (usually during
team meetings) the correlation between the specifications and the
designs. The team checks to see that all developers have designed those
features that meet the application’s requirements and specifications.

See Section 4.5 for more information on design reviews.

9.2.5 Test Plans

As they are designing an application, the team also plans their tests.
Although pieces of the software may not be running, the team is likely
to be familiar with the software design and with any problems that
may occur during its implementation. When designing the application,
engineers can create a DEC/Test Manager test stored in the test
system. In writing this test, they need to keep in mind the potential
problems uncovered during design. When a piece of running software
becomes available, the team can refer to the test. This approach helps
ensure that design knowledge is preserved.

At the design stage the team considers its white box and black box
testing strategy (see Section 7.2.2 and Section 7.2.1). The project
team must decide how much of each kind of testing will be done and
must determine an integration strategy for testing the design’s coded
implementation.

162 Maintenance



9.2.6 Code Conventions

When writing code, engineers need to be concerned with more than
efficient algorithms. Maintaining the code is easier if it is formatted
consistently, commented clearly, and reviewed for its adherence to
project standards.

Using LSE

Projects that use LSE can enforce coding standards effectively for
formatting and use. The consistency provided by LSE greatly aids
maintainers as they attempt to modify code. An added benefit of LSE
is its capacity to provide online language help. LSE templates make
it much easier to fill in language constructs accurately, particularly in
those instances when an engineer is less familiar with the construct.
By expanding the LSE placeholders, an engineer gains additional
language information. In effect, engineers can use LSE as a learning
aid while producing code for their application.

Commenting

As the coding progresses, engineers make many design decisions.
Comments associated with the source code provide one of the best
ways for other team members to understand these design decisions
and to understand the limitations of the code. Engineers can document
potential problem areas at this same level in the code. They can use
LSE templates to ensure that comments are entered in a consistent
format.

Reviews

Regular code reviews enable the team to check for a number of char-
acteristics important for maintenance. The team reviews for code
consistency and adherence to project standards. Reviews ensure that
the code reflects the current requirements, specifications, and designs.
Throughout the development cycle, team members must be able to
trace requirements to implemented code. This process is critical both
to the quality of the application and to changing or enhancing the
application.

Maintenance 163



9.2.7 Build Procedures

164

The team’s build procedures accomplish a number of tasks to optimize
maintenance:

¢ Building base levels accurately
* Running and reviewing tests with major builds

* Developing base levels so that ongoing work continues while earlier
versions or variants are accessible

* Recording or documenting build procedures so that engineers can
re-create important base levels

Digital’s DEC/Module Management System (DEC/MMS) provides a
number of advantages that make it a popular choice among Digital
engineers for building applications, particularly for new projects.
DEC/MMS is partially integrated with DEC/CMS, so it can pull mod-
ules directly from DEC/CMS during builds. Furthermore, DEC/MMS
understands DEC/CMS classes. As a result, a development team can
save previous base levels in DEC/CMS as multiple unique classes.
These DEC/CMS class names, when properly designated to DEC/MMS,
cause it to rebuild a previous version using only the files and elements
related to that version. Rebuilds of previous versions are particularly
useful during maintenance when multiple versions may be in the hands
of customers while the development team is working on new variant
development.

A useful feature of DEC/MMS is the description file, which contains the
relationships among the modules in an application. The description file
serves as a useful record of the application’s structure to maintainers.
Engineers can check any changes or additions to modules against the
description file. This permanent record removes much of the confusion
from build procedures during maintenance.

Engineers create and run tests in parallel with their coding. Coding
is not considered finished until tests with verified coverage exist. The
tests are run and reviewed with each build to catch problems as soon
as possible to reduce costs. Chapter 7, The Testing Process, contains
more information on testing.

Maintenance



9.2.8 Maintenance Document

The development team prepares a maintenance document, which pro-
vides the maintenance team with key information about the software
system so that changes can be made with a minimum of difficulty. It
contains information such as the following:

¢ The location of all the relevant documents for the project, for
example, design documents in a DEC/CMS library

* Header comments for the source code
e Location of the code in the executable file
* Tools used during development, including version numbers

Engineers can create a maintenance document using a series of com-
mands that retrieve and format all the related information from
project storage disks. They can then edit the resulting document.
Alternatively, they can write the information in the form of DIGITAL
Standard Runoff (DSR) or VAX DOCUMENT files, which can be pro-
cessed to generate a formatted document.

To be useful, maintenance documents must accurately reflect the cur-
rent state of the project. If developers fail to update project documents
over the development life cycle of the product, maintenance documents
have limited value.

The maintenance document can also be useful if a product is being
developed for international markets. In addition to basic project in-
formation, maintainers might include information on how the design
of the product affects efforts to localize the product for a particular
country. This section of the document might describe which parts of
the application need to be changed to support languages other than
English. It might also detail how the modular design of the application
facilitates the changes.

9.2.9 DEC/CMS Libraries

Digital’s DEC/Code Management System (DEC/CMS) software contains
elements and classes that can help organize and relate specification
and design stages. In addition, DEC/CMS classes and groups can save
time during maintenance.

Maintenance 165



For example, Figure 9-1 shows a DEC/CMS code library with two
groups, each containing two elements. The groups, designated in

this example as the FORTRAN group and the Pascal group, classify
functions with a common purpose. Engineers, either during implemen-
tation or maintenance, can reserve the FORTRAN group to access all
the FORTRAN elements rather than specifying each element individ-
ually. This type of organization saves time, particularly in fixing an
error during maintenance.

Figure 9—1: Use of DEC/CMS Groups for Maintenance

FORTRAN Group Pascal Group
A.FOR L.FOR C.PAS M.PAS

I

9.2.10 Problem Reports

166

When a problem report comes in, a maintainer needs to know how
the project area is laid out. That is why, during the early phases of
development, the team considers the future needs for maintenance
when designing the project storage areas and the application. The
storage areas should provide easy access to specifications, designs, and
source code.

Maintenance



Once the system is fully accessible, the following series of steps can be
taken to isolate and correct problems:

1. Build the system, perhaps by using DEC/MMS, to pull the modules
from DEC/CMS using the class name.

2. Locate the user’s problem using the VMS Debugger, VAX SCA, and
LSE.

3. Reserve a modifiable source module directly from DEC/CMS using
LSE.

4. Edit the source code using LSE and following the existing format-
ting conventions in the code.

5. Modify the associated requirements, specifications, design, and
user documentation as necessary; future maintainers thus have
complete information on any change.

6. Build the local system using modified files linked against the global
system.

7. Add any tests to the test system that check the modified code.

8. Verify the code path coverage on the new tests.

9. Replace the reserved modules in the DEC/CMS code library.

10. Create a new DEC/CMS class containing the code that eliminates
the problem; the modified code should be on a variant line of
descent in the DEC/CMS library.

11. Merge variant code into the next maintenance release of the soft-
ware.

12. Answer the original problem report.

The following sections discuss how to use the development tools and
procedures to perform these tasks.

Making the Changes

Figure 9-2 shows how DEC/CMS helps engineers continue development
work on Version 2.0 while eliminating problems from Version 1.0, which
in this case is stored as a DEC/CMS class. The problems found in
Version 1.0 are corrected on a variant line of descent, which will be
merged back into a subsequent release.

Maintenance 167



168

Figure 9-2: Variant Development

MOD1.C MOC2.C

Version 2.0 l
Development . .
Corrections in

Version 1.0 Variant

Having multiple DEC/CMS libraries can make it easier to trace the
code back to its designs, specifications, and requirements. For instance,
Figure 9-3 shows multiple DEC/CMS libraries for the requirements
documents, specifications, design documents, tests, and source code. By
using the same class name for all files and elements associated with a
specific version, maintainers can quickly pull out all files related to that
version. Thus, the information is readily available and maintainers
can easily modify the various documents if a coding change is made.
Finally, DEC/CMS records all the changes in the form of a history
record.

Testing the Changes

After locating and correcting the error, the maintenance engineers must
relink to build the image. The image must then be tested to ensure
that the code fix has not caused some other part of the application to
stop functioning properly. The VAX DEC/Test Manager is useful for
running the appropriate regression tests. (See Section 7.3.2 for more
information on regression testing.)

Maintenance



Figure 9-3: Multiple DEC/CMS Libraries

Requirements Specifications Designs Code Tests

Class 1 Class 1 Class 1 Class 1 Class 1

This is the stage where planning the test system saves time. The test
set must be the one that corresponds to the product in the field, in this
case, the version that is the source of the error report. This test set
must be available to the maintainers, even though new development
work may be in progress.

To speed up the testing process, engineers can use the group feature

of DEC/Test Manager that allows them to run a subset of tests. This
subset relates to the error fixed in the source code. For example,
engineers may run the data base subset of tests in a local work area. If
no problems occur for the smaller subset, they may run the full system
test for this version of the product. If the error is a small one, running
the subset of tests may be sufficient.

Another feature of DEC/Test Manager that helps during maintenance
is the use of benchmark and template directories. Librarywide defaults
can be specified for both the benchmark directory and the template
directory. The default directories represent the set of tests and corre-
sponding benchmarks that the development team accesses most often,
for example, a new version of the application under development.

These same default directories can be overridden during a DEC/Test
Manager test collection. Overriding the defaults is useful when one
maintenance version is in the field and a different maintenance version
is undergoing development. In a typical maintenance scenario, a
problem report for Version 1.1 comes in. In response to the report,

Maintenance 169



maintainers initiate a DEC/Test Manager test collection by specifying
a directory with Version 1.1 tests and their corresponding benchmarks.
The Version 1.1 tests are run and compared to the valid Version 1.1
benchmarks.

The same tests could be running for Version 1.2; that is, Version 1.2
still uses the same test scripts to test the application. However, in the
case of a reported error in Version 1.1, the maintainer initiates the
DEC/Test Manager test collection by specifying a different directory
for the benchmarks: Version 1.1 benchmarks. Although there would
be only one template sét and one test set for Versions 1.1 and 1.2,
DEC/Test Manager would use different directories for the benchmarks.

The integration of DEC/CMS with DEC/Test Manager simplifies the
process of running tests for previous versions. If tests and bench-
marks for maintenance Version 1.1 are stored in a DEC/CMS class,
maintainers can run them on the debugged Version 1.1. The tests and
benchmarks for Version 1.2 or Version 2.0 have separate DEC/CMS
classes and thus are not affected.

If the tests are new or produce different results because of the change
to the code, engineers must update the benchmarks. The new test re-
sult files become the new benchmarks and are stored in the DEC/CMS
library for test benchmarks. DEC/Test Manager does this automatically
when updated. Furthermore, both DEC/CMS and DEC/Test Manager
provide a history of the changes.

Engineers check any new tests for code path coverage by using
DEC/Test Manager and VAX PCA together. See Section 7.2.1 for
more information.

Performance Debugging

If the problem reported constitutes a performance weakness, the team
can consider using VAX PCA to find routines and lines of code that
consume the most time. It can then attempt to code the problem sec-
tions again. Refer to Section 7.4 for more information on performance
debugging.

170 Maintenance



9.3 Software Development Productivity

The driving force behind efforts to improve productivity is the demand
of the market for reliable software products. At the same time, soft-
ware applications have become more complex, which makes the task of
delivering reliable applications more difficult. Productivity metrics can
help a team achieve greater development productivity.

9.3.1 Productivity Metrics

During a project’s life cycle, the development team is likely to be
interested in answers to the following types of questions:

¢ Has the product’s defect rate gone down?

* What tools are being used and to what effect?

®¢  What are the reasons for rework?

¢ Are problem reports under control?

¢ Is the schedule reasonable?

Collecting and evaluating software metrics can provide the answers.

The productivity of software development can be assessed in terms of
the people, the process, and the resulting software system.

¢ Engineering productivity entails such issues as how much work
developers do in a unit of time, their morale, the effect of training,
and trade-offs between creativity and discipline.

* To improve the productivity of the process, teams can investigate
what they can automate, the costs of automation, and how to
minimize obstacles and delays.

* The software system itself can be examined for its quality, reliabil-
ity, error rate, complexity, and ease of maintenance.

To make improvements in productivity visible, teams must be able to
measure it. A software metric can be defined as a quantitative measure
that is used to characterize an attribute or quality of a software system
or the software development process. The parts of the system (require-
ments, specifications, code, documentation, tests, and training) can be
characterized using a range of attributes:

Maintenance 171



e Usability

¢ Maintainability
¢ Extendibility

* S