

X WINDOW SYSTEM

C Library and Protocol Reference

Robert W. Scheifler James Gettys Ron Newman

With AI Mento and AI Wojtas

mamaomo™ Digital Press

Copyright © 1988 by The Massachusetts Institute of Technology and Digital Equipment
Corporation.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, photocopying, recording, or otherwise,
without written permission from the publisher.

Printed in the United States of America.

98765432

Order number EY-6737E-DP

Design: David Ford
Manuscript editor: Christie Williams
Production coordinator: Editorial Inc.
Index: Howard Burrows and Rosemary Simpson
Compositor: Black Dot Graphics
Printer: Murray Printing Company

DEC, DECnet, the Digital logo, ULTRIX, MicroVAX II, VAX, VAX-ll, VAXstation,
VAXstation II/GPX, VAX/VMS, VMS are trademarks of Digital Equipment Corporation.

IBM, Personal Computer AT, Personal Computer RT are trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PostScript is a trademark of Adobe Systems Inc.

UNIX is a trademark of AT&T Bell Laboratories.

X Window System is a trademark of The Massachusetts Institute of Technology.

Library of Congress Cataloging in Publication Data

ScheiBer, Robert W., 1954-
X window system.

Includes index.
1. X Window System (Computer system) 2. C (Computer

program language) I. Gettys, James, 1953-
II. Newman, Ron, 1957- . III. Title.
QA76.76.W56S34 1988 005.4'3 88-30869
ISBN 1-55558-012-2

v

Contents

PART I XLlB-C LIBRARY X INTERFACE 1

Chapter 1. Introduction to Xlib 3
1.1. Overview of the X Window System 4

1.2. Errors 7

1.3. Naming and Argument Conventions within Xlib 7

1.4. Programming Considerations 8

1.5. Conventions Used in Xlib - C Language Interface 9

Chapter 2. Display Functions 10
2.1. Opening the Display 10

2.2. Obtaining Information about the Display, Image Formats,
or Screens 12

2.2.1. Display Macros 12

2.2.2. Image Format Macros 17

2.2.3. Screen Information Macros 19

2.3. Generating a NoOperation Protocol Request 22

2.4. Freeing Client-Created Data 23

2.5. Closing the Display 23

2.6. X Server Connection Close Operations 23

VI X WINDOW SYSTEM

Chapter 3. Window Functions 26
3.1. Visual Types 27

3.2. Window Attributes 30

3.2.1. Background Attribute 33

3.2.2. Border Attribute 34

3.2.3. Gravity Attributes 35

3.2.4. Backing Store Attribute 37

3.2.5. Save Under Flag 37

3.2.6. Backing Planes and Backing Pixel Attributes 38

3.2.7. Event Mask and Do Not Propagate Mask Attributes 38

3.2.8. Override Redirect Flag 38

3.2.9. Colormap Attribute 39

3.2.10. Cursor Attribute 39

3.3. Creating Windows 39

3.4. Destroying Windows 43

3.5. Mapping Windows 44

3.6. Unmapping Windows 47

3.7. Configuring Windows 48

3.8. Changing Window Stacking Order 53

3.9. Changing Window Attributes 57

3.10. Translating Window Coordinates 60

Chapter 4. Window Information Functions 62
4.1. Obtaining Window Information 62

4.2. Properties and Atoms 67

4.3. Obtaining and Changing Window Properties 71

4.4. Selections 75

Chapter 5. Graphics Resource Functions 79
5.1. Colormap Functions 80

5.1.1. Creating, Copying, and Destroying Colormaps 82

5.1.2. Allocating, Modifying, and Freeing Color Cells 84

5.1.3. Reading Entries in a Colormap 91

Contents Vll

5.2. Creating and Freeing Pixmaps 93

5.3. Manipulating Graphics Context/State 94

5.4. Using GC Convenience Routines 106

5.4.1. Setting the Foreground, Background, Function, or Plane
Mask 106

5.4.2. Setting the Line Attributes and Dashes 108

5.4.3. Setting the Fill Style and Fill Rule 110

5.4.4. Setting the Fill Tile and Stipple III

5.4.5. Setting the Current Font 114

5.4.6. Setting the Clip Region 114

5.4.7. Setting the Arc Mode, Subwindow Mode, and Graphics
Exposure 116

Chapter 6. Graphics Functions 118
6.1. Clearing Areas 118

6.2. Copying Areas 120

6.3. Drawing Points, Lines, Rectangles, and Arcs 122

6.3.1. Drawing Single and Multiple Points 123

6.3.2. Drawing Single and Multiple Lines 124

6.3.3. Drawing Single and Multiple Rectangles 126

6.3.4. Drawing Single and Multiple Arcs 128

6.4. Filling Areas 131

6.4.1. Filling Single and Multiple Rectangles 131

6.4.2. Filling a Single Polygon 132

6.4.3. Filling Single and Multiple Arcs 133

6.5. Font Metrics 135

6.5.1. Loading and Freeing Fonts 141

6.5.2. Obtaining and Freeing Font Names and Information 144

6.5.3. Setting and Retrieving the Font Search Path 146

6.5.4. Computing Character String Sizes 147

6.5.5. Computing Logical Extents 147

6.5.6. Querying Character String Sizes 149

viii X WINDOW SYSTEM

6.6. Drawing Text

6.6.1. Drawing Complex Text

6.6.2. Drawing Text Characters

6.6.3. Drawing Image Text Characters

6.7. Transferring Images between Client and Server

6.8. Cursors

6.8.1. Creating a Cursor

6.8.2. Changing and Destroying Cursors

6.8.3. Defining the Cursor

Chapter 7. Window Manager Functions
7.1. Changing the Parent of a Window

7.2. Controlling the Lifetime of a Window

7.3. Determining Resident Colormaps

7 A. Pointer Grabbing

7.S. Keyboard Grabbing

7.6. Server Grabbing

7.7. Miscellaneous Control Functions

7.7.1. Controlling Input Focus

7.7.2. Killing Clients

7.8. Keyboard and Pointer Settings

7.9. Keyboard Encoding

7.10. Screen Saver Control

7.11. Controlling Host Access

7.11.1. Adding, Getting, or Removing Hosts

7.11.2. Changing, Enabling, or Disabling Access Control

Chapter 8. Events and Event-Handling Functions
8.1. Event Types

8.2. Event Structures

8.3. Event Masks

804. Event Processing

804.1. Keyboard and Pointer Events

lSI
IS2
IS3
IS4
IS6
161

162

164
166

167
167

168

170

172

179

186

186

187

189

190

197

203
206

206

209

211
212

213

2IS
216

217

Contents IX

8.4.1.1. Pointer Button Events 217

8.4.1.2. Keyboard and Pointer Events 220

8.4.2. Window Entry/Exit Events 224

8.4.2.1. Normal Entry/Exit Events 226

8.4.2.2. Grab and Ungrab Entry/Exit Events 227

8.4.3. Input Focus Events 228

8.4.3.1. Normal Focus Events and Focus Events While Grabbed 229

8.4.3.2. Focus Events Generated by Grabs 233

8.4.4. Key Map State Notification Events 233

8.4.5. Exposure Events 234

8.4.5.1. Expose Events 234

8.4.5.2. GraphicsExpose and NoExpose Events 235

8.4.6. Window State Change Events 237

8.4.6.1. CirculateNotify Events 237

8.4.6.2. ConfigureNotify Events 238

8.4.6.3. CreateNotify Events 240

8.4.6.4. DestroyNotify Events 240

8.4.6.5. GravityNotify Events 241

8.4.6.6. MapNotify Events 242

8.4.6.7. MappingNotify Events 243

8.4.6.8. ReparentNotify Events 244

8.4.6.9. UnmapNotify Events 244

8.4.6.10. VisibilityNotify Events 245

8.4.7. Structure Control Events 246

8.4.7.1. CirculateRequest Events 247

8.4.7.2. ConfigureRequest Events 248

8.4.7.3. MapRequest Events 249

8.4.7.4. ResizeRequest Events 250

8.4.8. Colormap State Change Events 250

8.4.9. Client Communication Events 251

8.4.9.1. ClientMessage Events 252

x X WINDOW SYSTEM

8.4.9.2. PropertyNotify Events 252

8.4.9.3. SelectionClear Events 253

8.4.9.4. SelectionRequest Events 254

8.4.9.5. Selection Notify Events 255

8.5. Selecting Events 256

8.6. Handling the Output Buffer 257

8.7. Event Queue Management 258

8.8. Manipulating the Event Queue 259

8.8.1. Returning the Next Event 259

8.8.2. Selecting Events Using a Predicate Procedure 260

8.8.3. Selecting Events Using a Window or Event Mask 262

8.9. Putting an Event Back into the Queue 265

8.10. Sending Events to Other Applications 265

8.11. Getting Pointer Motion History 267

8.12. Handling Error Events 268

8.12.1. Enabling or Disabling Synchronization 268

8.12.2. Using the Default Error Handlers 269

Chapter 9. Predefined Property Functions 275
9.1. Communicating with Window Managers 275

9.1.1. Setting Standard Properties 278

9.1.2. Setting and Getting Window Names 279

9.1.3. Setting and Getting Icon Names 280

9.1.4. Setting the Command 280

9.1.5. Setting and Getting Window Manager Hints 281

9.1.6. Setting and Getting Window Sizing Hints 283

9.1. 7. Setting and Getting Icon Size Hints 287

9.1.8. Setting and Getting the Class of a Window 289

9.1.9. Setting and Getting the Transient Property 290

9.2. Manipulating Standard Colormaps 291

9.2.1. Standard Colormaps 292

Contents xi

9.2.2. Standard Colormap Properties and Atoms 294

9.2.3. Getting and Setting an XStandardColormap Structure 295

Chapter 10. Application Utility Functions 298
10.1. Keyboard Utility Functions 299

10.1.1. Keyboard Event Functions 299

10.1.2. Keysym Classification Macros 303

10.2. Obtaining the X Environment Defaults 303

10.3. Parsing the Window Geometry 305

10.4. Parsing the Color Specifications 307

10.5. Generating Regions 30S

10.6. Manipulating Regions 30S

10.6.1. Creating, Copying, or Destroying Regions 309

10.6.2. Moving or Shrinking Regions 309

10.6.3. Computing with Regions 310

10.6.4. Determining if Regions Are Empty or Equal 311

10.6.5. Locating a Point or a Rectangle in a Region 312

10.7. Using the Cut and Paste Buffers 312

10.S. Determining the Appropriate Visual Type 315

10.9. Manipulating Images 317

10.10. Manipulating Bitmaps 320

10.11. Using the Resource Manager 324

10.11.1. Resource Manager Matching Rules 326

10.11.2. Basic Resource Manager Definitions 327

10.11.3. Resource Database Access 330

10.11.3.1. Storing Into a Resource Database 331

10.11.3.2. Looking Up from a Resource Database 333

10.11.3.3. Database Search Lists 334

10.11.3.4. Merging Resource Databases 336

10.11.3.5. Retrieving and Storing Databases 336

10.11.4. Parsing Command Line Options 337

10.12. Using the Context Manager 340

Xll X WINDOW SYSTEM

PART II. X WINDOW SYSTEM PROTOCOL VERSION 11 343
1. Protocol Formats 345

2. Syntactic Conventions 346

3. Common Types 347

4. Errors 350

5. Keyboards 352

6. Pointers 353

7. Predefined Atoms 353

8. Connection Setup 354

9. Requests 360

10. Connection Close 441

11. Events 442

12. Flow Control and Concurrency 458

Appendix A. Xlib Functions and Protocol Requests 461

Appendix B. X Font Cursors 473

Appendix C. Extensions 476
Basic Protocol Support Routines 476

Hooking into Xlib 477

Hooks into the Library 478

Hooks onto Xlib Data Structures 484

GC Caching 486

Graphics Batching 486

Writing Extension Stubs 488

Requests, Replies, and Xproto.h 488

Request Format 489

Starting to Write a Stub Routine 491

Locking Data Structures 492

Sending the Protocol Request and Arguments 492

Variable Length Arguments 493

Contents

Replies

Synchronous Calling

Allocating and Deallocating Memory

Portability Considerations

Deriving the Correct Extension Opcode

Appendix D. Version 10 Compatibility Functions
Drawing and Filling Polygons and Curves

Associating User Data with a Value

Appendix E. KEYSYM Encoding

Appendix F. Protocol Encoding
Syntactic Conventions

Common Types

Errors

Keyboards

Pointers

Predefined Atoms

Connection Setup

Requests

Events

Glossary

Index

X111

494

497

497

498

499

500
500

503

506

540
540

543

547

551

551

551

553

556

602

615

627

XIV

Acknowledgments

Xlib-C Library X Interface
The design and implementation of the first ten versions of X were primarily
the work of three individuals: Robert ScheiBer of the MIT Laboratory for

Computer Science, Jim Gettys of Digital Equipment Corporation, and Ron

Newman of MIT, while at MIT/Project Athena. X version 11, however, is

the result of the efforts of dozens of individuals at almost as many locations
and organizations. At the risk of offending some of the players by exclusion,

we would like to acknowledge some of the people who deserve special credit
and recognition. Our apologies to anyone inadvertently overlooked.

First our thanks goes to Phil Karlton and Scott McGregor, both of Digital,
for their considerable contributions to the specification of the version 11

protocol. Digital employees Susan Augebranndt, Raymond Drewry, Todd

Newman (all members ofWSE), and Phil Karlton (ofWSL) worked long and

hard to produce the sample server implementation.
Next, our thanks goes to Ralph Swick (MIT/Project Athena and Digital)

who kept it all together for us. He handled literally thousands of requests
from people everywhere and saved the sanity of at least one of us. His calm

good cheer was a foundation on which we could build.
Our thanks also go to Todd Brunhoff (Tektronix) who was "loaned" to

MIT/Project Athena at exactly the right moment to provide very capable
and much-needed assistance during the alpha and beta releases. He was re­

sponsible for the successful integration of sources from multiple sites; we
would not have had a release without him.

Acknowledgments xv

Our thanks also go to Al Mento and Al Wojtas of Digital's ULTRIX Docu­

mentation Group. With good humor and cheer, they took a rough draft and
made it an infinitely better and more useful document. The work they have

done will help many everywhere. We also would like to thank Hal Murray

(Digital SRC) and Peter George (Digital VMS) who contributed much by

proofreading the early drafts of this document.

Our thanks also go to Jeff Dike (Digital UEG), Tom Benson, Jackie

Granfield, and Vince Orgovan (Digital VMS), who helped with the library

utilities implementation; to Hania Gajewska (Digital UEG-WSL) who, along

with Ellis Cohen (CMU and Siemens), was instrumental in the semantic de­

sign of the window manager properties; to Dave Rosenthal (Sun Microsys­

terns) who also contributed to the protocol and provided the sample generic

color frame buffer device-dependent code; and to Tim Greenwood (Digital

IECG) for his help in understanding international keyboards and for pro­
viding the KeySyms in Appendix E.

The alpha and beta test participants deserve special recognition and

thanks as well. It is significant that the bug reports (and many fixes) during

alpha and beta test came almost exclusively from just a few of the alpha test­
ers, mostly hardware vendors working on product implementations of X.

The continued public contribution of vendors and universities is certainly to

the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate

Research at Digital, who has remained committed to the widest public avail­

ability of X and who made it possible to greatly supplement MIT's resources
with the Digital staff in order to make version 11 a reality. Many of the peo­

ple mentioned here are part of the Western Software Laboratory (Digital

UEG-WSL) of the ULTRIX Engineering group and work for Smokey Wal­

lace, who has been vital to the project's success. Others not mentioned here

worked on the toolkit and are acknowledged in the X Toolkit documenta­

tion.

Of course, we must particularly thank Paul Asente, formerly of Stanford

University and now of Digital UEG-WSL, who wrote W, the predecessor to

X, and Brian Reid, formerly of Stanford University and now of Digital WRL,

who had much to do with W's design.

Finally, our thanks go to MIT, Digital Equipment Corporation, and IBM

for providing the environment where it could happen.

XVI X WINDOW SYSTEM

X Window System Protocol
The primary contributors to the XII protocol are: Dave Carver (Digital
HPW); Branko Gerovac (Digital HPW); Jim Gettys (Digital SRC); Phil

Karlton (Digital WSL); Scott McGregor (Digital SSG); Ram Rao (Digital

UEG); David Rosenthal (Sun Microsystems); and Dave Winchell (Digital

UEG).
The implementors of initial server who provided useful input are: Susan

Angebranndt (Digital WSL); Raymond Drewry (Digital); and Todd Newman

(Digital).

The invited reviewers who provided useful input are: Andrew Cherenson

(Berkeley); Burns Fisher (Digital VMS); Dan Garfinkel (HP); Leo Hourvitz

(Next); Brock Krizan (HP); David Laidlaw (Stellar); Dave Mellinger (Inter­

leaf); Ron Newman (MIT); John Ousterhout (Berkeley); Andrew Palay (ITC

CMU); Ralph Swick (MIT/Project Athena and Digital); Craig Taylor (Sun

Microsystems); and Jeffery Vroom (Stellar).
Thanks go to Al Mento of Digital's UEG Documentation Group for

formatting this document.
This document does not attempt to provide the rationale or pragmatics re­

quired to fully understand the protocol or to place it in perspective within a

complete system.

The protocol contains many management mechanisms that are not in­

tended for normal applications. Not all mechanisms are needed to build a

particular user interface. It is important to keep in mind that the protocol is

intended to provide mechanism, not policy.

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

Jim Gettys
Systems Research Center
Digital Equipment Corporation

Ron Newman

Project Athena
Massachusetts Institute of Technology

September 1988

XVll

Introduction

The X Window System, or X, is a network-transparent window system. With

X, you can run multiple applications simultaneously in windows, generating
text and graphics in monochrome or color on a bitmap display. Network

transparency means that you can use application programs that are running

on other machines scattered throughout the network, as if they were run­

ning on your machine. Because X permits applications to be device indepen­
dent, applications need not be rewritten, recompiled, or even relinked to

work with new display hardware.
X provides facilities for generating multifont text and two-dimensional

graphics (such as points, lines, arcs, and polygons) in a hierarchy of rectan­

gular windows. Every window can be thought of as a "virtual screen" and can

contain subwindows within it, to an arbitrary depth. Windows can overlap

each other like stacks of papers on a desk and can be moved, resized, and re­

stacked dynamically. Windows are inexpensive resources; applications using

several hundred subwindows are common. For example, windows are often

used to implement individual user interface components such as scroll bars,

menus, buttons, and so forth.

Although you may think of yourself as a client of the system, in network
terms, the application programs you run are called clients and they use the

network services of the window system. A program running on the machine

with your display provides these services and so is called the X server. The

X server acts as an intermediary between you and the applications, handling

output from the clients to the display and forwarding your input (entered

with a keyboard or mouse) to the appropriate clients for processing.

XVlll X WINDOW SYSTEM

Clients and servers use some form of interprocess communication to ex­

change information. The syntax and semantics of this conversation are de­
fined by a communication protocol. This protocol is the foundation of the X

Window System and is presented in Part II of this book. Clients use the pro­

tocol to send requests to the server to create and manipulate windows, to

generate text and graphics, to control input from the user, and to communi­

cate with other clients. The server uses the protocol to send information

back to the client in response to various requests and to forward keyboard

and other user input on to the appropriate clients.

Because a network roundtrip is an expensive operation relative to basic re­

quest execution, the protocol is primarily asynchronous, and data can be in

transit in both directions (client to server and server to client) simultane­

ously. After generating a request, a client typically does not wait for the ser­

ver to execute the request before generating a new request. Instead, the cli­

ent generates a stream of requests that are eventually received by the server

and executed. The server does not acknowledge receipt of a request and, in

most cases, does not acknowledge execution of a request. (This is possible

because the underlying transport being used is reliable.)

The protocol is designed explicitly to minimize the need to query the win­

dow system for information. Clients should not depend on the server to ob­

tain information that the clients initially supplied. In addition, clients do not

poll for input by sending requests to the server. Instead, clients use requests

to register interest in various events, and the server sends event notifications

asynchronously. Asynchronous operation may be one of the most significant

differences between X and other window systems with which you may be

familiar.

For the best performance, when the client and the server reside on the

same machine, communication between them often is implemented using

shared memory. When the client and the server reside on different ma­

chines, communication can take place over any network transport layer that

provides reliable, in-order delivery of data in both directions (usually called
a reliable duplex byte stream). For example, TCP (in the Internet protocol

family) and DECnet streams are two commonly used transport layers. To

support distributed computing in a heterogeneous environment, the com­

munication protocol is designed to be independent of the operating system,

programming language, and processor hardware. Thus, you can use a single

Introduction XIX

display to run applications written in multiple languages under multiple

operating systems on multiple hardware architectures simultaneously.
Although X is fundamentally defined by a network protocol, most applica­

tion programmers do not want to think about bits, bytes, and message for­

mats. Therefore, X has an interface library. This library provides a familiar
procedural interface that masks the details of the protocol encoding and
transport interactions and automatically handles the buffering of requests

for efficient transport to the server, much as the C standard I/O library buff­
ers output to minimize system calls. The library also provides various utility
functions that are not directly related to the protocol but that are neverthe­
less important in building applications. The exact interface for this library

differs for each programming language. Xlib is the library for the C pro­
gramming language and is presented in Part I of this book.

The accompanying figure shows a block diagram of a complete X environ­
ment. Each X server controls one or more screens, a keyboard, and a point­

ing device (typically a mouse) with one or more buttons on it. There can be
many X servers; often there is one for every workstation on the network.

Applications can run on any machine, even those without X servers. An ap­
plication might communicate with multiple servers simultaneously (for ex­
ample, to support computer conferencing between individuals in different
locations). Multiple applications can be active at the same time on a single

server.
In X, many facilities that are built into other window systems are provided

by client libraries. You will not find specifications for things like menus, scroll

bars, and dialog boxes; nor will you find the interpretation of particular key
and button sequences in this book. The protocol and Xlib avoid mandating
such policy decisions as much as possible. You can view the protocol and Xlib
as a construction kit providing a rich set of mechanisms that can implement

a variety of user interface policies. Toolkits (providing menus, scroll bars, di­
alog boxes, and so on), higher-level graphics libraries (which might trans­
form abstract object descriptions into graphics requests, for example), and
user interface management systems (UIMS) can all be implemented on top
of Xlib. Although Xlib provides the foundation, the expectation is that appli­

cations will be written using these higher-level facilities in conjunction with

the facilities of Xlib, rather than solely on the "bare bones" of Xlib.

You can think of the total user interface as having two primary compo-

xx X WINDOW SYSTEM

Application

GKS Library

XVDI

X Library

Terminal
Emulator

X Library

Network

Window
Manager

X Library

X Network Protocol

X SeNer X SeNer

Mail
Application

x Toolkit

X Library

Device Library Device Library

Figure 1. X window system block diagram

nents: the interaction with the user that is logically internal to an application

(for example, typing text into a text editor or changing a cell's contents in a

spreadsheet) and the interaction that is logically external to an application

(for example, moving or resizing an application window or turning an appli­

cation window into an icon). The external user interface is built into many

other window systems, but this is not the case with X. The X protocol does

not define an external user interface at all. Rather, the protocol provides

mechanisms with which a variety of external user interfaces can be built.

These mechanisms are designed so that a single client, called a window man­

ager, can provide the external user interface independent of all of the other

clients.
A window manager can automatically:

• Provide title bars, borders, and other window decorations for each application

• Provide a uniform means of moving and resizing windows

Introduction XXI

• Enforce a strict window layout policy if it desires (for example, "tiling" the screen
so that application windows never overlap)

• Provide uniform icons for applications

• Provide a uniform interface for switching the keyboard between applications

With a suitable set of conventions, you can construct applications that are

insensitive to the external user interface provided by a window manager but

that run unmodified in multiple environments and still behave properly.

Because the protocol can deal with such a broad spectrum of user inter­

faces, no single program, toolkit, DIMS, or window manager is likely to use

all of the facilities the protocol and Xlib provide. Do not be concerned if you

do not understand why some facility exists; it may support a user interface

style with which you are not familiar.

Principles
Early in the development of X, we argued about what should and should not

be implemented in the server. For example, we did not know if menus or ter­

minal emulators could be implemented in the client with adequate perform­

ance or whether "rubber banding" (dynamically stretching a simple figure in

response to movement of the pointing device) would be acceptable when

performed across a network. Experimentation during the first months

showed us that more was possible than we had first believed.

The~e observations hardened into the following principles, which guided

us through the early X design:

• Do not add new functionality unless an implementor cannot complete a real
application without it.

• It is as important to decide what a system is not, as to decide what it is. Do not
serve all the world's needs, but make the system extensible so that additional
needs can be met in an upwardly compatible fashion.

• The only thing worse than generalizing from one example is generalizing from no
examples at all.

• If a problem is not completely understood, it is probably best to provide no
solution at all.

• If you can get 90 percent of the desired effect for 10 percent of the work, use the
simpler solution.

XXll X WINDOW SYSTEM

• Isolate complexity as much as possible.

• Provide mechanism rather than policy. In particular, place user interface policy in
the client's hands.

The first principle kept the wish list under control. Just because someone

wanted something in the server, we did not feel obligated to add it. This kept
us focused on the important issues that made real applications work. This
principle was a somewhat more difficult touchstone to use during the design
of the present version of X, given its significantly larger audience. We modi­

fied the principle to be "know of some real application that will require it."
At each iteration of the X design, there was always more to do than time

allowed. We therefore focused on mechanisms with the broadest applic­
ability and for which consensus in the group could easily be achieved. For

example, we focused on two-dimensional graphics, explicitly deferring

three-dimensional graphics.
At the same time, to avoid obsolescence, we designed the present version

of X to be extensible at both the protocol and library interfaces and without
requiring incompatible changes to existing applications. Examples of exten­

sions we had in mind were additional graphics models (such as PHIGS and
PostScript), real-time video, and general programmability in the server. (We

view programmability as simply one example of an extension, not as the sole
mechanism for extensibility; mere programmability does not give you sup­

port for video or high-performance support for graphics.)

During the design and implementation process, we generally suspected
that any problems were just the tips of large icebergs. Expending effort to

solve an immediate problem without first trying to generalize the problem is
usually a mistake; a few related examples often make a whole class of prob­
lems obvious. This is not to say that we ignored the first instance of a prob­
lem; often there were adequate solutions using existing mechanisms.

We attempted to avoid solutions to problems we did not fully understand.
For example, the preliminary design for the present version of X supported
multiple input devices (more than just a single keyboard and mouse). As we

worked through the design, we realized it had flaws that would take signifi­
cant time and experimentation to correct. As a result, we removed this sup­

port from the system, knowing that correct support could be added later
through the extension mechanism.

Introduction XXlll

We also tried to avoid winning a complexity merit badge. If we could get

most of what we needed with less complexity than a complete solution would

require, we were willing to compromise our goals. Only history will decide if

these tradeoffs were successful. Much of the existing complexity is a result of

providing support for external window management; most programmers

need not be concerned with this, particularly those using an X toolkit. We ex­

pected that toolkits would hide various forms of tedium from the program­

mer. For example, a program that displays "Hello World" with configurable

colors and font and obeys window management conventions is about 150

lines of code when written using only the facilities of Xlib; an equivalent pro­

gram written using a toolkit can have fewer than a dozen lines of code. Thus,

it is important to keep in mind that Xlib is only one layer in a complete X

programming environment.

Isolation of complexity is necessary in large systems. A system in which
every component is intimately related to every other becomes difficult to

change as circumstances change. We therefore attempted to build as much as

possible into client programs, introducing only the minimum mechanisms

required in the server.
Deciding what a system is not isas important as deciding what it is. For ex­

ample, at various times people urged that remote execution and general

interclient remote procedure call be integral parts of X. They felt there were

no established standards in these areas, and they wanted X to be a self­

contained environment. As is often the case, solving the immediate problem

by adding to the existing framework rather than by integrating into a larger

framework is less work, but the result is not satisfactory for long. The X pro­

tocol is correctly viewed as just one component in an overall distributed sys­

tems architecture, not as the complete architecture by itself.

User interface design is difficult and currently quite diverse. Although glo­

bal user interface standards might someday be possible, we believed it pru­

dent to promote the cooperative coexistence of a variety of user interface

styles and to support diverse user communities and ongoing research activi­

ties. By separating window management functions from the server and from

normal applications and by layering user interface policy in higher-level li­

braries on top of Xlib, we allowed for experimentation without forcing all
users to be guinea pigs. As a result, many existing user interfaces have been

XXIV X WINDOW SYSTEM

imported into the X environment. Having a "pick one or roll your own"

policy instead of a "love it or leave it" one has drawbacks; the applications

developer must choose a user interface style and user community. You

should remember, however, that Xlib and the protocol is not an end but a

foundation.

History
X was born of necessity in 1984. Bob ScheiRer:. was working at MIT's Labora­

tory for Computer Science (LCS) on a distributed system called Argus and

was in need of a decent display environment for debugging multiple distrib­
uted processes. Jim Gettys, a Digital engineer, was assigned to MIT's Project

Athena, an undergraduate education program sponsored by Digital and

IBM that would ultimately populate the campus with thousands of work­

stations.

Neither Digital nor·IBM had a workstation product with a bitmap display

in 1984. The closest thing available from Digital was a VS 100 display at­

tached to a VAX. Both Athena and LCS had VAX-111750s, and Athena was

in the process of acquiring about 70 VS 1 OOs. VS 100s were in field test at the

time, and the firmware for them was unreliable. Athena loaned one of the

first VS 100s to LCS in exchange for cooperative work on the software. Our

immediate goal was clear: We needed to build a window system environment

running under UNIX on VS 100s for ourselves and the groups we worked

for. We had little thought of anything beyond these goals, but wondered

where to begin. Little software was available elsewhere that was not encum­

bered by license or portability.

Paul Asente and Brian Reid, then both at Stanford University, had devel­

oped a prototype window system called W to run under Stanford's Vopera­

ting system. W used a network protocol and supported "dumb terminal"

windows and "transparent graphics" windows with display lists maintained

in the server. In the summer of 1983, Paul Asente and Chris Kent, summer

students at Digital's Western Research Laboratory, ported W to the VS100

under UNIX. They were kind enough to give us a copy.

The V system has reasonably fast synchronous remote procedure call, and

W in the V environment was designed with a synchronous protocol. The

port to UNIX retained the synchronous communication even though com­

munication in UNIX was easily five times slower than in V. The combination

Introduction xxv

of prototype VS 100s with unreliable firmware and W using slow communi­

cation was not encouraging, to say the least; one could easily type faster than
the terminal window could echo characters.

In May of 1984, we received reliable VS 1 00 hardware and firmware. That

summer, Bob r~placed the synchronous protocol of W with an asynchronous

protocol and replaced the display lists with immediate mode graphics. The
result was sufficiently different from W that continuing to call it W was inap­

propriate and would cause confusion, as W was in some limited use at

Athena. With no particular thought about the name, and because the famil­

ial resemblance to W was still strong at that date, Bob called the result X.
Much later, when the name became a serious issue, X had already stuck and

was used by too many people to permit a change.

Development was rapid during the next eight months. The first terminal

emulator (VT52) and window manager were written in the CLU program­
ming language, the language of choice in the research group where Bob

worked. Bob continued development of the server and the protocol, which

went from version 1 to version 6 during this period (the version number was

incremented each time an incompatible change was made). Mark

Vandevoorde at Athena wrote a new VT100 terminal emulator in C, and Jim

Gettys worked on Xlib and the UNIX support for starting the window sys­

tem. Late in 1984, we received faster VS 1 00 firmware, causing the first

round of performance analysis and optimization. Within a few weeks, we

were again hardware limited, but we had a much better understanding of

performance issues.

By early 1985, many people inside Digital were using X, and plans were

underway for the first Digital UNIX workstation product, which was based
on the MicroVAX-II. At the time, support for UNIX in Digital was limited,

and there was no chance of getting any other window system except X on

Digital hardware. Other systems were either highly nonportable or were un­

available because of licensing problems (this was the case with Andrew). X
was the logical candidate. We had ported X version 6 to the QVSS display on

the MicroVAX. Ron Newmanjoined Project Athena at this time and worked

on documenting Xlib, already in its third major revision.

We redesigned X to support color during the second quarter of 1985, with

Digital's eventual VAXstation-II/GPX as the intended target. Although MIT

had licensed version 6 to a few outside groups for a brief time at nominal

XXVI X WINDOW SYSTEM

charge, a key decision was made in the summer of 1985 not to license future

versions of X. Instead, it would be available to anyone at the cost of produc­

tion. In September of 1985, version 9 of X was made publicly available, and

the field test of the VAXstation-II/GPX began. During that fall, Brown Uni­

versityand MIT started porting X to the IBM RT/PC, which was in field test

at those universities. A problem with reading unaligned data on the RT

forced an incompatible change to the protocol; this was the only difference

between version 9 and version 10.

During the fall, the first significant outside contributions of code to X

started to appear from several universities and from Digital. In January of
1986, Digital announced the VAXstation-II/GPX, which was the first com­

mercial X implementation. Release 3 of X (X10R3) was available in February

and was a major watershed in X development. Although we were happy to

see a major corporation incorporate X into its product line, we knew the de­
sign was limited to the taste and needs of a small group of people. I t could

solve just the problems we faced, and its hardware origins were still obvious

in key aspects of the design. We knew version 10 had inherent limitations

that would force major redesign within a few years, although it was certainly
adequate for developing many interesting applications.

Over the next few months, a strange phenomenon occurred. Many other

corporations, such as Hewlett-Packard, were basing products on version 10,

and groups at universities and elsewhere were porting X to other displays

and systems, including Apollo Computer and Sun Microsystems work­

stations. The server was even ported to the IBM PC/AT. Somewhat later,

Hewlett-Packard contributed their toolkit to the MIT distribution.

We tired of hearing comments such as "We like X, but there is this one

thing you ought to change." People were already declaring it a "standard,"

which was, to our thinking, premature. Before long, however, we were con­

fronted with a fundamental decision about X's future. We seriously consid­

ered doing nothing; after all, X did almost everything we needed it to, and

what it did not do could be added without difficulty. Unfortunately, this

would leave many people using an inadequate platform for their work. In

the long run, X would either die because of its inadequacies, or it would

spawn wildly incompatible variations. Alternatively, based on feedback from

users and developers, we could undertake a second major redesign of X.

Although we were willing to do the design work, we knew that the result-

Introduction XXVll

ing design would be ambitious and would requi~e much more implementa­
tion work than our meager resources at MIT would permit. Fortunately,
Digital's Western Software Laboratory (DECWSL) was between projects.
This group had the required expertise, including people who had contrib­

uted to pioneering Xerox window systems. More importantly, these people
were intimately familiar with X. Smokey Wallace, DECWSL's manager, and
Jim Gettys proposed the implementation of version 11, which would then be

given back to MIT for public distribution without a license. Digital manage­
ment quickly approved the proposal.

We started intensive protocol design in May of 1986. No proprietary infor­
mation was used in the design process. Key contributors included Phil

Karhon and Scott McGregor of Digital. Dave Rosenthal of Sun Microsystems
was invited to join Digital engineers in the design team, and Bob Scheifler

acted as the chief architect. At the first design meeting, we decided it was not
feasible to design a protocol that would be upwardly compatible with version
10 and still provide the functionality essential for the range of display hard­

ware that had to be supported. With some reluctance, we abandoned com­
patibility with version 10 (although Todd Brunhoff of Tektronix has since
shown that one can build a reasonable "compatibility server" to display ver­
sion 10 applications on a version 11 server).

We carried out most of the actual design work using the electronic mail fa­
cilities of the DARPA Internet, which connects hundreds of networks
around the country, including MIT's campus network and Digital's engi­
neering network. The entire group held only three day-long meetings dur­

ing the design process. During these meetings we reached a consensus on is­
sues we could not resolve by mail. Even with group members on opposite
coasts, responses to most design issues were only a few minutes away. A

printed copy of all the messages exchanged during this time would be a stack
of paper several feet high. Without electronic mail, the design simply would

not have been possible.
Once we completed a preliminary protocol design, we invited people from

other companies and universities to review the specification. By August, we
had a design ready for public review, which was again carried out using elec­

tronic mail, courtesy of the Internet. Design of the sample server implemen­
tation started at this time. Phil Karlton and Susan Angebranndt of DECWSL

designed and implemented the device-independent parts of the server, and

XXVlll X WINDOW SYSTEM

Raymond Drewry and Todd Newman implemented the portable, machine­

independent graphics library. Jim Gettys acted as the Xlib architect and with
Ron Newman at MIT worked on the redesign and implementation of the X

library. Many other contributions came from DECWSL as well, such as

rewriting version 10 clients and the Xt toolkit intrinsics (another story in it­

self).

During the fall of 1986, Digital decided to base its entire desktop worksta­

tion strategy for ULTRIX, VMS, and MS-DOS on X. Although this was grat­

ifying to us, it also meant we had even more people to talk to. This resulted

in some delay, but also in a better design in the end. Ralph Swick of Digital
joined Project Athena during this period and played a vital role thoughout

version 11 's development. The last version 10 release was made available in

December of 1986.

In January of 1987, about 250 people attended the first X technical con­

ference, which was held at MIT. During the conference, eleven major com­

puter hardware and software vendors announced their support for X ver­

sion 11 at an unprecedented press conference.

Alpha test of version 11 started in February of 1987, and beta testing

started three months later at over 100 sites. Server back-ends and other code

contributions came from Apollo, Digital, Hewlett-Packard, IBM, Sun, and

the University of California at Berkeley. Tektronix loaned Todd Brunhoffto

MIT to help coordinate testing and integration, which was a godsend to us

all. Texas Instruments provided an implementation of a Common LISP in­

terface library, based on an interface specification by Bob Scheifler. We

made the first release of version 11 (VIIRI) avail~ble on September 15,
1987.

At this point, MIT was thinking of getting out of the mainstream X devel­

opment, but at a meeting in June 1987, nine major computer companies

made it clear that they would like MIT to remain firmly in control of X. Over

the next few months, a proposal was put together to create the MIT X Con­

sortium, an open organization funded by the participants and with a charter

of supporting and controlling the development and evolution of the system.

The MIT X Consortium was created in January 1988, with Bob Scheifler as

its director. The X Consortium hosted the second annual X conference in

January, with approximately 900 people in attendance. The second release

of version 11 was available March 1, 1988. At the present time, the X Con-

Introduction XXIX

sortium consists of over 30 organizations, including almost all major US

computer vendors and many international vendors.

The Structure of This Book
This book consists of two parts: Part I is a reference manual for the C Lan­

guage X Interface library, also known as Xlib; and Part II is the X protocol

specification. The MIT X Consortium consider both the protocol and Xlib as

standards, with Xlib being the exclusive interface to the protocol for the C

programming language.

Part I consists of ten chapters. The first chapter provides a basic overview

and establishes conventions used throughout the book. Chapter 2 deals with

opening and closing connections and obtaining basic information about the

connected display. Chapters 3 and 4 explain how to create and manipulate

windows. Graphics capabilities are presented in chapters 5 and 6. Chapters

7 and 9 describe window manager functions and data, and chapter 8 ex­

plains events and event-handling functions. Finally, a variety of utility func­

tions for keyboard input, command line parsing, region arithmetic, and re­

source management are presented in chapter 10.

Part II is a concise, precise specification of the X protocol semantics. The

protocol specification is independent of any particular programming lan­

guage, and as such, is an appropriate starting point for creating interface li­

braries for other programming languages. C programmers will prefer the
Xlib reference to the protocol descriptions, although the protocol's alternate

description may clarify points of confusion.

The glossary provides definitions of the terminology used elsewhere in the

book. The book also includes a number of appendixes:

• Appendix A provides cross-reference information between protocol requests and
library functions.

• Appendix B provides the available predefined cursor shapes.

• Appendix C provides information required to extend the X library.

• Appendix D provides information about functions that may be available to ease
conversion of version 10 code to version 11.

• Appendix E provides the predefined keyboard symbol (KEYSYM) encodings.

• Appendix F provides the bit and byte description of the X protocol.

Part I. XLib-C Library X Interface

James Gettys Robert W. Scheifler Ron Newman

3

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was de­

signed at MIT. It runs under 4.3BSD UNIX, ULTRIX-32, many other
UNIX variants, VAX/VMS, MS/DOS, as well as several other operating sys­
tems.

X display servers run on computers with either monochrome or color

bitmap display hardware. The server distributes user input to and accepts
output requests from various client programs located either on the same ma­

chine or elsewhere in the network. Xlib is a C subroutine library that applica­

tion programs (clients) use to interface with the window system by means of
a stream connection. Although a client usually runs on the same machine as
the X server it is talking to, this need not be the case.

Xlib - C Language X Interface is a reference guide to the low-level C lan­

guage interface to the X Window System protocol. It is neither a tutorial nor
a user's guide to programming the X Window System. Rather, it provides a
detailed description of each function in the library as well as a discussion of
the related background information. Xlib - C Language X Interface assumes

a basic understanding of a graphics window system and of the C program­
ming language. Other higher-level abstractions (for example, those pro­
vided by the toolkits for X) are built on top of the Xlib library. For further
information about these higher-level libraries, see the appropriate toolkit

documentation. The X Window System Protocol provides the definitive word
on the behavior of X. Although additional information appears here, the

protocol document is the ruling document.

4 XLIB

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Naming and argument conventions

• Programming considerations

• Conventions used in this document

1.1 Overview of the X Window System
Some of the terms used in this book are unique to X, and other terms that

are common to other window systems have different meanings in X. You

may find it helpful to refer to the glossary, which is located at the end of the

book.

The X Window System supports one or more screens containing overlap­
ping windows or subwindows. A screen is a physical monitor and hardware,

which can be either color or black and white. There can be multiple screens

for each display or workstation. A single X server can provide display ser­

vices for any number of screens. A set of screens for a single user with one
keyboard and one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the

top of each hierarchy is a root window, which covers each of the display

screens. Each root window is partially or completely covered by child win­

dows. All windows, except for root windows, have parents. There is usually

at least one window for each application program. Child windows may in

turn have their own children. In this way, an application program can create

an arbitrarily deep tree on each screen. X provides graphics, text, and raster
operations for windows.

A child window can be larger than its parent. That is, part or all of the

child window can extend beyond the boundaries of the parent, but all out­

put to a window is clipped by its parent. If several children of a window have

overlapping locations, one of the children is considered to be on top of or

raised over the others thus obscuring them. Output to areas covered by

other windows is suppressed by the window system unless the window has

backing store. If a window is obscured by a second window, the second win­
dow obscures only those ancestors of the second window, which are also an­

cestors of the first window.

Chapter 1. Introduction to Xlib

A

Root Window

C

r-------·
I
I A.1
I -----., L _______ •

A.2 :
-----..1

-,
I
I
I

_J

----.,

B

I
I
I
I
I
I
I

----..I

Visible Screen

Areas enclosed by dashed lines are not
viewable. Windows labeled A and Bare
children of the root window. A.1 and A.2
are children of A; note that children are
clipped by their parent.

B is lower than A in the stacking hierarchy.

Figure 1.1. Window hierarchy

5

A window has a border zero or more pixels in width, which can be any pat­

tern (pixmap) or solid color you like. A window usually but not always has a

background pattern, which will be repainted by the window system when
uncovered. Each window has its own coordinate system. Child windows ob­

scure their parents unless the child windows (of the same depth) have no

background, and graphic operations in the parent window usually are

clipped by the children.
X does not guarantee to preserve the contents of windows. When part or

all of a window is hidden and then brought back onto the screen, its contents

may be lost. The server then sends the client program an Expose event to

notify it. that part or all of the window needs to be repainted. Programs must

be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Sin­

gle plane (depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps

6 XLIB

can be used in most graphics functions interchangeably with windows and

are used in various graphics operations to define patterns or tiles. Windows
and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These

requests later execute asynchronously on the X server. Functions that return

values of information stored in the server do not return (that is, they block)

until an explicit reply is received or an error occurs. You can provide an

error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow

the request with a call to XSync, which blocks until all previously buffered
asynchronous events have been sent and acted on. As an important side ef­

fect, the output buffer in Xlib is always flushed by a call to any function that

returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you

to refer to objects stored on the X server. These can be of type Window,

Font, Pixmap, Colormap, Cursor, and GContext, as defined in the file

<X11 / X. h>.l These resources are created by requests and are destroyed

(or freed) by requests or when connections are closed. Most of these re­
sources are potentially sharable between applications, and in fact, windows

are manipulated explicitly by window manager programs. Fonts and cursors

are shared automatically across multiple screens. Fonts are loaded and un­

loaded as needed and are shared by multiple clients. Fonts are often cached
in the server. Xlib provides no support for sharing graphics contexts be­

tween applications.
Client programs are informed of events. Events may either be side effects

of a request (for example, restacking windows generates Expose events) or

completely asynchronous (for example, from the keyboard). A client pro­

gram asks to be informed of events. Because other applications can send

events to your application, programs must be prepared to handle (or ignore)

events of all types.
Input events (for example, a key pressed or the pointer moved) arrive

asynchronously from the server and are queued until they are requested by

an explicit call (for example, XNextEvent or XWindowEvent). In addition,

some library functions (for example, XRaiseWindow) generate Expose and

1 The <> has the meaning defined by the # include statement of the C compiler and is a file
relative to a well-known directory. On UNIX-based systems, this is lusr/include.

Chapter 1. Introduction to Xlib 7

ConfigureRequest events. These events also arrive asynchronously, but

the client may wish to explicitly wait for them by calling XSync after calling

a function that can cause the server to generate events.

1.2 Errors
Some functions return S ta t us, an integer error indication. If the function
fails, it returns a zero. If the function returns a status of zero, it has not up­

dated the return arguments. Because C does not provide multiple return

values, many functions must return their results by writing into client-passed

storage. By default, errors are handled either by a standard library function
or by one that you provide. Functions that return pointers to strings return

NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If

more than one error could be generated for a given request, the server can

report any of them.

Because Xlib usually does not transmit requests to the server immediately

(that is, it buffers them), errors can be reported much later than they actu­

ally occur. For debugging purposes, however, Xlib provides a mechanism

for forcing synchronous behavior (see section 8.12.1). When synchroniza­

tion is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program

can provide. If you do not provide an error handler, the error is printed,

and your program terminates.

1.3 Naming and Argument Conventions within Xlib
Xlib follows a number of conventions for the naming and syntax of the func­

tions. Given that you remember what information the function requires,

these conventions are intended to make the syntax of the functions more

predictable.

The mqjor naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed
case for external symbols. It leaves lowercase for variables and all uppercase for
user macros, as per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols are capitalized.

8 XLIB

• All user-visible data structures begin with a capital X. More generally, anything
that a user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish them
from all user symbols, each word in the macro is capitalized.

• All elements of or variables in a data structure are in lowercase. Compound
words, where needed, are constructed with underscores (_).

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

• When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments are used together, the x and y
arguments always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

1.4 Programming Considerations
The major programming considerations are:

• Keyboards are the greatest variable between different manufacturers'
workstations. If you want your program to be portable, you should be particularly
conservative here.

• Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of his screen real estate. Therefore, you should
write your applications to react to window management rather than presume
control of the entire screen. What you do inside of your top-level window,
however, is up to your application. For further information, see chapter 9.

• Coordinates and sizes in X are actually 16-bit quantities. They usually are
declared as an "int" in the interface (int is 16 bits on some machines). Values
larger than 16 bits are truncated silently. Sizes (width and height) are unsigned
quantities. This decision was taken to minimize the bandwidth required for a
given level of performance.

Chapter 1. Introduction to Xlib

1.5 Conventions Used in Xlib - C Language X Interface
This document uses the following conventions:

• Global symbols in Xlib - C Language X Interface are printed in this special
font. These can be either function names, symbols defined in include files, or
structure names. Arguments are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from
other functions. The function declaration itself follows, and each argument is
specifically explained. General discussion of the function, if any is required,
follows the arguments. Where applicable, the last paragraph of the explanation
lists the possible Xlib error codes that the function can generate. For a complete
discussion of the Xlib error codes, see section 8.12.2.

9

• To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify. The
explanations for all arguments that are returned to you start with the word returns
or, in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and

returns.

• Any pointer to a structure that is used to return a value is designated as such by
the _return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the _in_out suffix.

• Xlib defines the Boolean values of True and False.

10

Chapter 2

.Display Functions

Before your program can use a display, you must establish a connection to

the X server. Once you have established a connection, you then can use the
Xlib macros and functions discussed in this chapter to return information

about the display. This chapter discusses how to:

• Open (connect to) the display

• Obtain information about the display, image format, and screen

• Free client-created data

• Close (disconnect from) a. display

The chapter concludes with a general discussion of what occurs when the

connection to the X server is closed.

2.1 Opening the Display

L

To open a connection to the X server that controls a display, use
XOpenDisplay.

Display *XOpenDisplay(display_name)

char *display_name;

display_name Specifies the hardware display name, which determines the display
and communications domain to be used. On a UNIX-based system,
if the display_name is NULL, it defaults to the value of the
DISPLAY environment variable.

Chapter 2. Display Functions 11

On UNIX-based systems, the display name or DISPLAY environment varia­

ble is a string in the format:

hostname:number.screen_number

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a single
colon (:) or a double colon (::).

number Specifies the number of the display server on that host machine.
You may optionally follow this display number with a period (.). A
single CPU can have more than one display. Multiple displays are
usually numbered starting with zero.

screen_number Specifies the screen to be used on that server. Multiple screens
can be controlled by a single X server. The screen_number sets
an internal variable that can be accessed by using the
Defaul tScreen macro or the XDefaul tScreen function if you

L are using languages other than C (see section 2.2.1).

For example, the following would specify screen 2 of display 0 on the ma­

chine named mit-athena:

mit-athena:O.2

The XOpenDisplay function returns a Display structure that serves as

the connection to the X server and that contains all the information about

that X server. XOpenDisplay conneCts your application to the X server

through TCP, UNIX domain, or DECnet communications protocols. If the

hostname is a host machine name and a single colon (:) separates the

hostname and display number, XOpenDisplay connects using TCP

streams. If the hostname is unix and a single colon (:) separates it from the

display number, XOpenDisplay connects using UNIX domain IPC

streams. If the hostname is not specified, Xlib uses whatever it believes is the

fastest transport. If the hostname is a host machine name and a double colon

(::) separates the hostname and display number, XOpenDisplay connects

using DECnet. A single X server can support any or all of these transport

mechanisms simultaneously. A particular Xlib implementation can support

many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure,

which is defined in <Xll / Xlib. h>. If XOpenDisplay does not succeed,

it returns NULL. After a successful call to XOpenDisplay, all of the screens

12 XLIB

in the display can be used by the client. The screen number specified in the

display_name argument is returned by the Defaul tScreen macro (or the
XDefaul tScreen function). You can access elements of the Display

and Screen structures only by using the information macros or functions.

For information about using macros and functions to obtain information

from the D isp lay structure, see section 2.2.1
X servers may implement various types of access control mechanisms (see

section 7.11).

2.2 Obtaining Information about the Display, Image Formats, or Screens
The Xlib library provides a number of useful macros and corresponding

functions that return data from the Display structure. The macros are

used for C programming, and their corresponding function equivalents are

for other language bindings. This section discusses the:

• Display macros

• Image format macros

• Screen macros

All other members of the Display structure (that is, those for which no

macros are defined) are private to Xlib and must not be used. Applications

must never directly modify or inspect these private members of the

Display structure.

Note The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplay­

Planes, XDisplayWidthMM, and XDisplayHeightMM functions in the

next sections are misnamed. These functions really should be named

Screenwhatever and XScreenwhatever, not Displaywhatever or XDisplay­

whatever. Our apologies for the resulting confusion.

2.2.1 Display Macros
Applications should not directly modify any part of the Display and

Screen structures. The members should be considered read-only, although

they may change as the result of other operations on the display.

The following lists the C language macros, their corresponding function

equivalents that are for other language bindings, and what data they both

can return.

Chapter 2. Display Functions 13

I AllPlanesO

L unsigned long XAllPlanesO

L

Both return a value with all bits set to 1 suitable for use in a plane argument

to a procedure.
Both BlackPixel and WhitePixel can be used in implementing a

monochrome application. These pixel values are for permanently allocated

entries in the default colormap. The actual RGB (red, green, and blue) val­
ues are settable on some screens and, in any case, may not actually be black·

or white. The names are intended to convey the expected relative intensity
of the colors.

BlackPixel(display, screen_number)

unsigned long XBlackPixel(display, screen_number)
Display *display;
int screen_number;

Both return the black pixel value for the specified screen.

I WhitePixel(display, screen_number)

L

unsigned long XWhitePixel(display, screen_number)
Display *display;
int screen_number;

Both return the white pixel value for the specified screen.

I ConnectionNumber(display)

int XConnectionNumber(display)

L Display *display;

L

Both return a connection number for the specified display. On a UNIX­

based system, this is the file descriptor of the connection.

DefaultColorma p(display, screen_number)

Color map XDefaultColormap(display, screen_number)
Display *display;
int screen_number;

14 XLIB

L

L

Both return the default colormap ID for allocation on the specified screen.

Most routine allocations of color should be made out of this colormap.

DefaultDepth(display, screen_number)

int XDefaultDepth(display, screen_number)

Display *display;
int screen_number;

Both return the depth (number of planes) of the default root window for the

specified screen. Other depths may also be supported on this screen (see
XMa tch Visuallnfo).

DefaultGC(display, screen_number)

GC XDefaultGC(display, screen_number)

Display *display;
int screen_number;

Both return the default graphics context for the root window of the speci­

fied screen. This GC is created for the convenience of simple applications

and contains the default GC components with the foreground and back­
ground pixel values initialized to the black and white pixels for the screen,

respectively. You can modify its contents freely because it is not used in any

Xlib function. This GC should never be freed.

DefaultRoot Window(display)

Window XDefaultRoot Window(display)

L Display *display;

Both return the root window for the default screen.

I DefaultScreenOfDisplay(display)

Screen *XDefaultScreenOfDisplay(display)

L Display *display;

Both return a pointer to the default screen.

ScreenOfDisplay(display, screen_number)

Screen *XScreenOfDisplay(display, screen_number)

Chapter 2. Display Functions 15

L

L

L

L

Display *display;

int screen_number;

Both return a pointer to the indicated screen.

Defa ultScreen(display)

int XDefaultScreen(display)

Display *display;

Both return the default screen number referenced by the XOpenDisplay

function. This macro or function should be used to retrieve the screen num­

ber in applications that will use only a single screen.

DefaultVisual(display, screen_number)

Visual *XDefaultVisual(display, screen_number)

Display *display;

int screen_number;

Both return the default visual type for the specified screen. For further in­

formation about visual types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(display, screen_number)

Display *display;
int screen_number;

Both return the number of entries in the default colormap.

I DisplayPlanes(display, screen_number)

L

int XDisplayPlanes(display, screen_number)

Display *display;

int screen_number;

Both return the depth of the root window of the specified screen. For an ex­

planation of depth, see the glossary.

DisplayString(display)

char *XDisplayString(display)

L Display *display;

16 XLIB

Both return the string that was passed to XOpenDisplay when the current

display was opened. On UNIX-based systems, if the passed string was

NULL, these return the value of the DISPLAY environment variable when

the current display was opened. These are useful to applications that invoke

the fork system call and want to open a new connection to the same display

from the child process as well as for printing error messages.

LastKnownRequestProcessed(display)

unsigned long XLastKnownRequestProcessed(display)

L Display *display;

Both extract the full serial number of the last request known by Xlib to have

been processed by the X server. Xlib automatically sets this number when re­

plies, events, and errors are received.

N extReq uest(display)

unsigned long XNextRequest(display)

L Display *display;

Both extract the full serial number that is to be used for the next request.

Serial numbers are maintained separately for each display connection.

ProtocoIVersion(display)

int XProtocoIVersion(display)

L Display *display;

Both return the major version number (11) of the X protocol associated with

the connected display.

ProtocolRevision(display)

int XProtocolRevision(display)

L Display *display;

L

Both return the minor protocol revision number of the X server.

QLength(display)

int XQLength(display)

Display *display;

Chapter 2. Display Functions 17

L

Both return the length of the event queue for the connected display. Note

that there may be more events that have not been read into the queue yet
(see XEventsQueued).

RootWindow(display, screen_number)

Window XRootWindow(display, screen_number)

Display *display;

int screen_number;

Both return the root window. These are useful with functions that need a

drawable of a particular screen and for creating top-level windows.

Screen Count(display)

int XScreenCount(display)
L Display *display;

L

Both return the number of available screens.

Server Vendor(display)

char *XServer Vendor(display)

Display *display;

Both return a pointer to a null-terminated string that provides some identifi­

cation of the owner of the X server implementation.

VendorRelease(display)

int XVendorRelease(display)

L Display *display;

2.2.2

Both return a number related to a vendor's release of the X server.

Image Format Macros
Applications are required to present data to the X server in a format that the

server demands. To help simplify applications, most of the work required to

convert the data is provided by Xlib (see sections 6.7 and 10.9).

The following lists the C language macros, their corresponding function

equivalents that are for other language bindings, and what data they both re­

turn for the specified server and screen. These are often used by toolkits as

well as by simple applications.

18

L

XLIB

ImageByteOrder(display)

int XlmageByteOrder(display)

Display *display;

Both specify the required byte order for images for each scanline unit in XY
format (bitmap) or for each pixel value in Z format. The macro or function
can return either LSBFirst or MSBFirst.

BitmapUnit(display)

int XBitmapUnit(display)

L Display *display;

Both return the size of a bitmap's scanline unit in bits. The scanline is calcu­
lated in multiples of this value.

BitmapBitOrder(display)

int XBitmapBitOrder(display)

L Display *display;

Within each bitmap unit, the left-most bit in the bitmap as displayed on the

screen is either the least-significant or most-significant bit in the unit. This
macro or function can return LSBFirst or MSBFirst.

BitmapPad(display)

int XBitmapPad(display)

L Display *display;

L

Each scanline must be padded to a multiple of bits returned by this macro or
function.

Display Height(display, screen_number)

int XDisplayHeight(display, screen_number)

Display *display;

int screen_number;

Both return an integer that describes the height of the screen in pixels.

Display HeightMM (display, screen_number)

int XDisplayHeightMM(display, screen_number)

Chapter 2. Display Functions

L
Display *display;
int screen_number;

Both return the height of the specified screen in millimeters.

I DisplayWidth(display, screen_number)

L

int XDisplayWidth(display,· screen_number)
Display *display;
int screen_number;

Both return the width of the screen in pixels.

I DisplayWidthMM(display, screen_number)

L

2.2.3

int XDisplayWidthMM(display, screen_number)

Display *display;
int screen_number;

Both return the width of the specified screen in millimeters.

Screen Information Macros

19

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both
can return. These macros or functions all take a pointer to the appropriate
screen structure.

L

BlackPixelOfScreen(screen)

unsigned long XBlackPixeIOfScreen(screen)
Screen *screen;

Both return the black pixel value of the specified screen.

I WhitePixelOfScreen(screen)

L
unsigned long XWhitePixelOfScreen(screen)

Screen *screen;

Both return the white pixel value of the specified screen.

I CellsOfScreen(screen)

L
int XCellsOfScreen(screen)

Screen *screen;

20 XLIB

L

L

Both return the number of colormap cells in the default colormap of the

specified screen.

DefaultColorma pOfScreen(screen)

Colormap XDefaultColormapOfScreen(screen)

Screen * screen;

Both return the default colormap of the specified screen.

Defa ultDepth OfScreen(screen)

int XDefaultDepthOfScreen(screen)

Screen *screen;

Both return the depth of the root window.

I DefaultGCOfScreen(screen)

L

L

L

GC XDefaultGCOfScreen(screen)

Screen *screen;

Both return a default graphics context (GC) of the specified screen, which
has the same depth as the root window of the screen. The GC must never be

freed.

DefaultVisuaIOfScreen(screen)

Visual *XDefault VisuaIOfScreen(screen)

Screen *screen;

Both return the default visual of the specified screen. For information on vis­

ual types, see section 3.1.

DoesBackingStore(screen)

int XDoesBackingStore(screen)

Screen *screen;

Both return a value indicating whether the screen supports backing stores.

The value returned can be one of WhenMapped, NotUseful, or Always

(see section 3.2.4).

Chapter 2. Display Functions 21

L

L

L

L

DoesSave Unders(screen)

Bool XDoesSave Unders(screen)

Screen *screen;

Both return a Boolean value indicating whether the screen supports save
unders. If True, the screen supports save unders. If False, the screen does
not support save unders (see section 3.2.5).

DisplayOfScreen(screen)

Display *XDisplayOfScreen(screen)
Screen *screen;

Both return the display of the specified screen.

EventMaskOfScreen(screen)

long XEventMaskOfScreen(screen)

Screen *screen;

Both return the event mask of the root window for the specified screen at
connection setup time.

WidthOfScreen(screen)

int XWidthOfScreen(screen)

Screen *screen;

Both return the width of the specified screen in pixels.

I HeightOfScreen(screen)

L
int XHeightOfScreen(screen)

Screen *screen;

Both return the height of the specified screen in pixels.

I WidthMMOfScreen(screen)

L
int XWidthMMOfScreen(screen)

Screen *screen;

Both return the width of the specified screen in millimeters.

22 XLIB

I HeightMMOfScreen(screen)

L

L

L

L

L

int XHeightMMOfScreen(screen)

Screen *screen;

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)

int XMaxCmapsOfScreen(screen)

Screen *screen;

Both return the maximum number of installed colormaps supported by the
specified screen (see section 7.3).

MinCmapsOfScreen(screen)

int XMinCmapsOfScreen(screen)

Screen *screen;

Both return the minimum number of installed colormaps supported by the
specified screen (see section 7.3).

PlanesOfScreen(screen)

int XPlanesOfScreen(screen)

Screen *screen;

Both return the depth of the root window.

Root WindowOfScreen(screen)

Window XRoot WindowOfScreen(screen)

Screen * screen;

Both return the root window of the specified screen.

2.3 Generating a NoOperation Protocol Request

L

To execute a NoOperation protocol request, use XNoOp.

XN oOp(display)
Display *display;

display Specifies the connection to the X server.

Chapter 2. Display Functions 23

The XNoOp function sends a NoOperation protocol request to the X

server, thereby exercising the connection.

2.4 Freeing Client-Created Data
To free any in-memory data that was created by an Xlib function, use

XFree.

XFree(data)
char *data;

L data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the speci­

fied data. You must use it to free any objects that were allocated by Xlib.

2.5 Closing the Display

L

To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay(display)
Display *display;

display Specifies the connection to the X server.

The XCloseDisp iay function closes the connection to the X server for the

display specified in the Dis p 1 a y structure and destroys all windows, re­

source IDs (Window, Font, Pixmap, Colormap, Cursor, and GContext),

or other resources that the client has created on this display, unless the close­

down mode of the resource has been changed (see XSetCloseDown­

Mode). Therefore, these windows, resource IDs, and other resources should

never be referenced again or an error will be generated. Before exiting, you

should call XCloseDisplay explicitly so that any pending errors are re­

ported as XCloseDisplay performs a final XSync operation.

XCloseDisplay can generate a BadGC error.

2.6 X Server Connection Close Operations
When the X server's connection to a client is closed either by an explicit call

to XCloseDisplay or by a process that exits, the X server performs the fol­

lowing automatic operations:

• It disowns all selections owned by the client (see XSetSelectionOwner).

24 XLIB

• It performs an XUngrabPointer and XUngrabKeyboard if the client has
actively grabbed the pointer or the keyboard.

• It performs an XUngra~Server if the client has grabbed the server.

• It releases all passive grabs made by the client.

• It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is
RetainPermanent or RetainTemporary. However, this does not prevent other
client applications from explicitly destroying the resources (see
xSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a
client's resources as follows:

• It examines each window in the client's save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients' windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window is
not an inferior of a window created by the client The reparenting leaves
unchanged the absolute coordinates (with respect to the root window) of the
upper-left outer corner of the save-set window.

• It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior
of a window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each non window resource created by
the client in the server (for example, Fon t, P ixmap, Cursor, Colormap, and
GContext).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes.
An X server goes through a cycle of having no connections and having some

connections. When the last connection to the X server closes as a result of a
connection closing with the close_mode of DestroyAll, the X server does
the following:

• It resets its state as if it had just been started. The X server begins by destroying
all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

• It deletes all but the predefined atom identifiers.

Chapter 2. Display Functions

• It deletes all properties on all root windows (see chapter 4).

• It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state Poin terRoot.

25

However, the X server does not reset if you close a connection with a close­

down mode set to RetainPermanent or RetainTemporary.

26

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that

lets you view graphic output. Client applications can display overlapping and

nested windows on one or more screens that are driven by X servers on one

or more machines. Clients who want to create windows must first connect

their program to the X server by calling XOpenDisplay. This chapter be­

gins with a discussion of visual types and window attributes. The chapter
continues with a discussion of the Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

• Configure windows

• Change the stacking order

• Change window attributes

• Translate window coordinates

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established con­

ventions for communicating with window managers for it to work well with

the various window managers in use (see section 9.1). Toolkits generally

adhere to these conventions for you, relieving you of the burden. Toolkits
also often supersede many functions in this chapter with versions of their

Chapter 3. Window Functions 27

own. Refer to the documentation for the toolkit you are using for more
information.

3.1 Visual Types
On some display hardware, it may be possible to deal with color resources in

more than one way. For example, you may be able to deal with a screen of ei­
ther 12-bit depth with arbitrary mapping of pixel to color (pseudo-color) or

24-bit depth with 8 bits of the pixel dedicated to each of red, green; and
blue. These different ways of dealing with the visual aspects of the screen are

called visuals. For each screen of the display, there may be a list of valid visual
types supported at different depths of the screen. Because default windows
and visual types are defined for each screen, most simple applications need

not deal with this complexity. Xlib provides macros and functions that re­
turn the default root window, the default depth of the default root window,
and the default visual type (see section 2.2.1 and XMatchVisuallnfo).

Xlib uses a Visual structure that contains information about the possible
color mapping. The members of this structure pertinent to this discussion
are class, red_mask, green_mask, blue_mask, bits_per_rgb, and

map_entries. The class member specifies one of the possible visual classes of
the screen and can be StaticGray, StaticColor, TrueColor,

GrayScale, PseudoColor, or DireotColor.

The following concepts may serve to make the explanation of visual types
clearer. The screen can be color or grayscale, can have a colormap that is
writable or read-only, and can also have a colormap whose indices are de­

composed into separate RGB pieces, provided one is not on a grayscale

screen. This leads to the following diagram:

Color GrayScale
RIO RlW RIO RlW

Undecomposed Static Pseudo Static Gray
Colormap Color Color Gray Scale

Decomposed True Direct
Colormap Color Color

28 XLIB

Conceptually, as each pixel is read out of video memory for display on the

screen, it goes through a look-up stage by indexing into a colormap.
Colormaps can be manipulated arbitrarily on some hardware, in limited
ways on other hardware, and not at all on other hardware. The visual types

affect the colormap and the RGB values in the following ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent
RGB values, and the RGB values can be changed dynamically.

• GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should always store the same value
for red, green, and blue in the colormaps .

• For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

• TrueColor is treated the same way as DirectColor except that the colormap
has predefined, read-only RGB values. These RGB values are server-dependent
but provide linear or near-linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the colormap
has predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB values
are equal for any single pixel value, thus resulting in shades of gray. StaticGray
with a two-entry colormap can be thought of as monochrome.

The red_mask, green_mask, and blue_mask members are only defined for

DirectColor and TrueColor. Each has one contiguous set of bits with no

intersections. The bits_per_rgb member specifies the log base 2 of the

Inpu
4

t Pixel
Bits

I~
Pixel Values Possible

Are 0 Through 15

15

0

Red

Example 4 Bit Colormap I = One Bit
15

oBit D =Zer

2 n Entries

--.
To Display

0

Green Blue

Figure 3.1. Pseudo color, gray scale, static color or static gray

Chapter 3. Window Functions 29

L

Inp

3

ut Pixel

m Bits

-------r--
'--

•
1

Example 3 x 4 Colormap (12 Bits/Pixel)

15

2 m Entries

3

15

0

5

1
15

•
0

Figure 3.2. Direct color

..
Red

..
Green

..
p

Blue

number of distinct color values (individually) of red, green, and blue. Actual
RGB values are unsigned 16-bit numbers. The map_entries member defines
the number of available colormap entries in a newly created colormap. For

DirectColor and TrueColor, this is the size of an individual pixel
subfield.

To obtain the visual ID from a Visual, use XVisualIDFrornVisual.

VisualID XVisualIDFrom Visual (visual)
Visual *visual;

visual Specifies the visual type.

The XVisualIDFrornVisual function returns the visual ID for the speci­
fied visual type.

30 XLIB

3.2 Window Attributes
All InputOutput windows have a border width of zero or more pixels, an

optional background, an event suppression mask (which suppresses propa­

gation of events from children), and a property list (see section 4.2). The

window border and background can be a solid color or a pattern, called a

tile. All windows except the root have a parent and are clipped by their par­
ent. If a window is stacked on top of another window, it obscures that other

window for the purpose of input. If a window has a background (almost all

do), it obscures the other window for purposes of output. Attempts to out­

put to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.2).

Both InputOutput and InputOnly windows have the following com­

mon attributes, which are the only attributes of an InputOnly window:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

If you specify any other attributes for an InputOnly window, a BadMatch

error results.

In p u to n 1 y windows are used for controlling input events in situations

where InputOutput windows are unnecessary. InputOnly windows are

invisible; can only be used to control such things as cursors, input event gen­
eration, and grabbing; and cannot be used in any graphics requests. Note

that InputOnly windows cannot have InputOutput windows as inferi­

ors.

Windows have borders of a programmable width and pattern as well as a

background pattern or tile. Pixel values can be used for solid colors. The

background and border pixmaps can be destroyed immediately after creat­

ing the window if no further explicit references to them are to be made. The

pattern can either be relative to the parent or absolute. If Paren t­
Relative, the parent's background is used.

Chapter 3. Window Functions 31

When windows are first created, they are not visible (not mapped) on the

screen. Any output to a window that is not visible on the screen and that does

not have backing store will be discarded. An application may wish to create

a window long before it is mapped to the screen. When a window is eventu­

ally mapped to the screen (using XMapWindow), the X server generates an

Expose event for the window if backing store has not been maintained.
A window manager can override your choice of size, border width, and

position for a top-level window. Your program must be prepared to use the

actual size and position of the top window. It is not acceptable for a client ap­

plication to resize itself unless in direct response to a human command to do

so. Instead, either your program should use the space given to it, or if the

space is too small for any useful work, your program might ask the user to

resize the window. The border of your top-level window is considered fair

game for window managers.
To set an attribute of a window, set the appropriate member of the

XSetWindowAttributes structure and OR in the corresponding value

bitmask in your subsequent calls to XCreateWindow and XChange­

WindowAttributes, or use one of the other convenience functions that set

the appropriate attribute. The symbols for the value mask bits and the

XSetWindowAttributes structure are:

/* Window attribute value mask bits */
#define CWBackPixmap

#define CWBackPixel

#define CWBorderPixmap

#define CWBorderPixel

#define CWBitGravity

#define CWWinGravity

#define CWBackingStore

#define CWBackingP lanes

#define CWBackingPixel

#define CWOverrideRedirect

#define CWSaveUnder

#define CWEventMask

#define CWDontPropaga te

#define CWColormap

#define CWCursor

(lL«O)
(IL«I)
(IL«2)
(IL«3)
(IL«4)
(IL«5)
(IL«6)
(IL«7)
(IL«8)
(lL«9)
(IL«lO)
(IL«ll)
(lL«12)
(IL«13)
(IL«14)

32 XLIB

L

1* Values *1
typedef struct {

Pixmap background_pixmap;

unsigned long backgrouncLpixel;
Pixmap border.,...pixmap;

unsigned long border_pixel;
int biLgravity;
int wiILgravity;
int backing_store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

long evenLmask;
long d0-110Lpropagate.....Jl1ask;

Booloverride_redirect;
Colormap colormap;

Cursor cursor;
} XSetWindowAttributes;

1* background, None, or
ParentRelative *1

1* background pixel *1
1* border of the window or

CopyFromParent *1
1* border pixel value *1
1* one of bit gravity values *1
1* one of the window gravity values *1
1* NotUseful, WhenMapped,

Always *1
1* planes to be preserved if possible *1
1* value to use in restoring planes *1
1* should bits under be saved?

(popups) *1
1* set of events that should be saved *1
1* set of events that should not

propagate *1
1* boolean value for override_redirect *1
1* color map to be associated with

window *1
1* cursor to be displayed (or None) *1

The following lists the defaults for each window attribute and indicates
whether the attribute is applicable to InputOutput and InputOnly win-

dows:

Attribute Default I nputOutput InputOnly

background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No

Chapter 3. Window Functions 33

3.2.1

Attribute

event-mask
do-not-propagate-mask
override-redirect
color map
cursor

Background Attribute

Default

empty set
empty set
False
CopyFromPareat
None

InputOutput InputOnly

Yes Yes
Yes Yes
Yes Yes
Yes No
Yes Yes

Only InputOutput windows can have a background. You can set the back­

ground of an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be

used for a window's background. This pixmap can be of any size, although

some sizes may be faster than others. The background-pixel attribute of a

window specifies a pixel value used to paint a window's background in a sin­

gle color.

You can set the background-pixmap to a pixmap, None (default), or

ParentRelative. You can set the background-pixel of a window to any

pixel value (no default). If you specify a background-pixel, it overrides ei­

ther the default background-pixmap or any value you may have set in the

background-pixmap. A pixmap of an undefined size that is filled with the

background-pixel is used for the background. Range checking is not per­

formed on the background pixel; it simply is truncated to the appropriate

number of bits.

If you set the background-pixmap, it overrides the default. The

background-pixmap and the window must have the same depth, or a

BadMatch error results. If you set background-pixmap to None, the win­
dow has no defined background. If you set the background-pixmap to

ParentRelative:

• The parent window's background-pixmap is used. The child window, however,
must have the same depth as its parent, or a BadMatch error results .

• If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

• A copy of the parent window's background-pixmap is not made. The parent's
background-pixmap is examined each time the child window's background­
pixmap is required.

34 XLIB

3.2.2

• The background tile origin always aligns with the parent window's background
tile origin. If the background-pixmap is not ParentRelative, the background
tile origin is the child window's origin.

Setting a new background, whether by setting background-pixmap or
background-pixel, overrides any previous background. The background­
pix map can be freed immediately if no further explicit reference is made to
it (the X server will keep a copy to use when needed). If you later draw into
the pixmap used for the background, what happens is undefined because
the X implementation is free to make a copy of the pixmap or to use the
same pixmap.

When no valid contents are available for regions of a window and either
the regions are visible or the server is maintaining backing store, the server
automatically tiles the regions with the window's background unless the win­
dow has a background of None. If the background is None, the previous
screen contents from other windows of the same depth as the window are
simply left in place as long as the contents come from the parent of the win­
dow or an inferior of the parent. Otherwise, the initial contents of the ex­
posed regions are undefined. Expose events are then generated for the re­
gions, even if the background-pixmap is None (see chapter 8).

Border Attribute
Only InputOutput windows can have a border. You can set the border of
an InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used
for a window's border. The border-pixel attribute of a window specifies a
pixmap of undefined size filled with that pixel be used for a window's bor­
der. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits. The border tile origin is always
the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be
faster than others) or to CopyFromParent (default). You can set the
border-pixel to any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap
and the window must have the same depth, or a BadMatch error results. If
you set the border-pixmap to CopyFromParent, the parent window's
border-pixmap is copied. Subsequent changes to the parent window's bor-

Chapter 3. Window Functions 35

3.2.3

der attribute do not affect the child window. However, the child window must

have the same depth as the parent window, or a BadMatch error results.
The border-pixmap can be freed immediately if no further explicit refer­

ence is made to it. If you later draw into the pixmap used for the border,

what happens is undefined because the X implementation is free either to

make a copy of the pixmap or to use the same pixmap. If you specify a

border-pixel, it overrides either the default border-pixmap or any value you

may have set in the border-pixmap. All pixels in the window's border will be

set to the border-pixel. Setting a new border, whether by setting border­

pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. There­

fore, graphics operations never affect the window border.

Gravity Attributes
The bit gravity of a window defines which region of the window should be

retained when an InputOutput window is resized. The default value for

the bit-gravity attribute is ForgetGra vi t y. The window gravity of a win­

dow allows you to define how the InputOutput or InputOnly window
should be repositioned if its parent is resized. The default value for the win­

gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window

is moved or its border is changed, then the contents of the window are not
lost but move with the window. Changing the inside width or height of the

window causes its contents to be moved or lost (depending on the bit-gravity

of the window) and causes children to be reconfigured (depending on their

win-gravity). For a change of width and height, the (x, y) pairs are defined:

Gravity Direction

NorthWestGravity
NorthGravity
NorthEastGravity

WestGravity
CenterGravity

EastGravity
SouthWestGravity

SouthGravity

SouthEastGravity

Coordinates

(0, 0)
(Width/2, 0)
(Width,O)
(0, Heightl2)
(Width/2, Heightl2)
(Width, Height/2)
(0, Height)
(Width/2, Height)
(Width, Height)

36 XLIB

When a window with one of these bit-gravity values is resized, the corre­

sponding pair defines the change in position of each pixel in the window.

When a window with one of these win-gravities has its parent window

resized, the corresponding pair defines the change in position of the window

within the parent. When a window is so repositioned, a Gra vi tyNotify

event is generated (see chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin

should not move relative to the origin of the root window. If the change in

size of the window is coupled with a change in position (x, y), then for bit­

gravity the change in position of each pixel is (- x, - y), and for win-gravity

the change in position of a child when its parent is so resized is (- x, - y).

Note that Sta ticGra v it Y still only takes effect when the width or height

of the window is changed, not when the window is moved.

A bit-gravity of ForgetGra vi t y indicates that the window's contents are

always discarded after a size change, even if a backing store or save under

has been requested. The window is tiled with its background and zero or

more Expose events are generated. If no background is defined, the exist­

ing screen contents are not altered. Some X servers may also ignore the spec­
ified bit-gravity and always generate Expose events.

Figure 3.3. Window gravity

i4-----l!--- Original
Window

Window
After Resize

Chapter 3. Window Functions 37

3.2.4

3.2.5

A win-gravity of UnmapGra vi ty is like NorthWestGra vi ty (the win­

dow is not moved), except the child is also unmapped when the parent is
resized, and an UnmapNotify event is generated.

Backing Store Attribute
Some implementations of the X server may choose to maintain the contents
of In p u to u t put windows. If the X server maintains the contents of a win­
dow, the off-screen saved pixels are known as backing store. The backing

store advises the X server on what to do with the contents of a window. The
backing-store attribute can be set to NotUseful (default), WhenMapped, or
Always.

A backing-store attribute of NotUseful advises the X server that main­

taining contents is unnecessary, although some X implementations may still

choose to maintain contents and, therefore, not generate Expose events. A
backing-store attribute of WhenMapped advises the X server that maintain­

ing contents of obscured regions when the window is mapped would be ben­
eficial. In this case, the server may generate an Expose event when the

window is created. A backing-store attribute of Always advises the X server
that maintaining contents even when the window is unmapped would be
beneficial. Even if the window is larger than its parent, this is a request to the

X server to maintain complete contents, not just the region within the parent
window boundaries. While the X server maintains the window's contents,
Expose events normally are not generated, but the X server may stop main­

taining contents at any time.
When the contents of obscured regions of a window are being maintained,

regions obscured by noninferior windows are included in the destination of
graphics requests (and source, when the window is the source). However, re­
gions obscured by inferior windows are not included.

Save Under Flag
Some server implementations may preserve contents of InputOutput win­

dows under other InputOutput windows. This is not the same as preserv­

ing the contents of a window for you. You may get better visual appeal if
transient windows (for example, pop-up menus) request that the system pre­
serve the screen contents under them, so the temporarily obscured applica­

tions do not have to repaint.

38 XLIB

3.2.6

3.2.7

3.2.8

You can set the save-under flag to True or False (default). If save-under

is True, the X server is advised that, when this window is mapped, saving the

contents of windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes
You can set backing planes to indicate (with bits set to 1) which bit planes of

an InputOutput window hold dynamic data that must be preserved in

backing store and during save unders. The default value for the backing­

planes attribute is all bits set to 1. You can set backing pixel to specify what

bits to use in planes not covered by backing planes. The default value for the
backing-pixel attribute is all bits set to O. The X server is free to save only the

specified bit planes in the backing store or the save under and is free to re­

generate the remaining planes with the specified pixel value. Any extrane­

ous bits in these values (that is, those bits beyond the specified depth of the

window) may be simply ignored. If you request backing store or save unders,

you should use these members to minimize the amount of off-screen

memory required to store your window.

Event Mask and Do Not Propagate Mask Attributes
The event mask defines which events the client is interested 10 for this

InputOutput or InputOnly window (or, for some event types, inferiors of

that window). The do-not-propagate-mask attribute defines which events

should not be propagated to ancestor windows when no client has the event

type selected in this InputOutput or InputOnly window. Both masks are

the bitwise inclusive OR of one or more of the valid event mask bits. You can

specify that no maskable events are reported by setting NoEventMask (de­
fault).

Override Redirect Flag
To control window placement or to add decoration, a window manager often

needs to intercept (redirect) any map or configure request. Pop-up windows,

however, often need to be mapped without a window manager getting in the

way. To control whether an InputOutput or InputOnly window is to ig­

nore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests

on this window should override a SubstructureRedirectMask on the

Chapter 3. Window Functions 39

3.2.9

parent. You can set the override-redirect flag to True or False (default).
Window managers use this information to avoid tampering with pop-up

windows (see also chapter 9).

Colormap Attribute
The colormap attribute specifies which colormap best reflects the true colors
of the InputOutpu t window. The colormap must have the same visual type

as the window, or a BadMatch error results. X servers capable of supporting

multiple hardware colormaps can use this information, and window manag­

er can use it for calls to XlnstallColormap. You can set the color map at­
tribute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window's

colormap is copied and used by its child. However, the child window must

have the same visual type as the parent, or a BadMatch error results. The
parent window must not have a colormap of None, or a BadMatch error re­

sults. The colormap is copied by sharing the colormap object between the
child and parent, not by making a complete copy of the colormap contents.

Subsequent changes to the parent window's colormap attribute do not affect
the child window.

3.2.10 Cursor Attribute
The cursor attribute specifies which cursor is to be used when the pointer is
in the InputOutput or InputOnly window. You can set the cursor to a

cursor or None (default).
If you set the cursor to None, the parent's cursor is used when the pointer

is in the InputOutput or InputOnly window, and any change in the par­
ent's cursor will cause an immediate change in the displayed cursor. By call­

ing XFreeCursor, the cursor can be freed immediately as long as no fur­

ther explicit reference to it is made.

3.3 Creating Windows
Xlib provides basic ways for creating windows, and toolkits often supply

higher-level functions specifically for creating and placing top-level win­
dows, which are discussed in the appropriate toolkit documentation. If you
do not use a toolkit, however, you must provide some standard information

40 XLIB

or hints for the window. manager by using the Xlib predefined property

functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of

the root window), you must observe the following rules so that all applica­

tions interact reasonably across the different styles of window manage­

ment:

• You must never fight with the window manager for the size or placement of your
top-level window.

• You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like "Please make me bigger" in its
window.

• You should only attempt to resize or move top-level windows in direct response to
a user request. If a request to change the size of a top-level window fails, you
must be prepared to live with what you get. You are free to resize or move the
children .of top-level windows as necessary. (Toolkits often have facilities for
automatic relayout.)

• If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

XCreateWindow is the more general function that allows you to set specific

window attributes when you create a window. XCreateSimpleWindow cre­

ates a window that inherits its attributes from its parent window.

The X server acts as if In p u to n 1 y windows do not exist for the purposes

of graphics requests, exposure processing, and Visibili tyNotify

events. An InputOnly window cannot be used as a drawable (that is, as a

source or destination for graphics requests). InputOnly and Input­

Output windows act identically in other respects (properties, grabs, input

control, and so on). Extension packages can define other classes of win­

dows.

To create an unmapped window and set its window attributes, use

XCreateWindow.

Window XCreateWindow(display, parent, x, y, width, height, border_width, depth, class,
visual, valuemask, attributes)

Display *display;
Window parent;
int x, y;

Chapter 3. Window Functions 41

L

unsigned int width, height;

unsigned int border_width;

int depth;

unsigned int class;

Visual *visual

unsigned long valuemask;

XSetWindowAttributes *attributes;

display Specifies the connection to the X server.
parent Specifies the parent window.
x

y

width

height

border_width

depth

class

visual

valuemask

attributes

Specify the x and y coordinates, which are the top-left outside
corner of the created window's borders and are relative to the
inside of the parent window's borders.

Specify the width and height, which are the created window's inside
dimensions and do not include the created window's borders. The
dimensions must be nonzero, or a BadValue error results.
Specifies the width Qf the created window's border in pixels.
Specifies the window's depth. A depth of CopyFromParent means
the depth is taken from the parent.
Specifies the created window's class. You can pass InputOutput,
InputOnly, or CopyFromParent. A class of CopyFromParent
means the class is taken from the parent.
Specifies the visual type. A visual of CopyFromParent means the
visual type is taken from the parent.
Specifies which window attributes are defined in the attributes
argument. This mask,is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are ignored
and are not referenced.
Specifies the structure from which the values (as specified by the
value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in the
structure.

The XCreateWindow function creates an unmapped subwindow for a spec­
ified parent window, returns the window ID of the created window, and

causes the X server to generate a CreateNotify event. The created win­

dow is placed on top in the stacking order with respect to siblings.

The border_width for an InputOnly window must be zero, or a

BadMatch error results. For class InputOutput, the visual type and depth

must be a combination supported for the screen, or a BadMa tch error re­

sults. The depth need not be the same as the parent, but the parent must not

42 XLIB

L

be a window of class InputOnly, or a- BadMatch error results. For an

InputOnly window, the depth must be zero, and the visual must be one

supported by the screen. If either condition is not met, a BadMa tch error

results. The parent window, however, may have any depth and class. If you

specify any invalid window attribute for a window, a BadMa tch error re­

sults.

The created window is not yet displayed (mapped) on the user's display.

To display the window, call XMapWindow. The new window initially uses the

same cursor as its parent. A new cursor can be defined for the new window

by calling XDefineCursor. The window will not be visible on the screen

unless it and all of its ancestors are mapped and it is not obscured by any of
its ancestors.

XCrea teWindow can generate BadAlloc, BadColor, BadCursor,

BadMatch, BadPixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent win­

dow, use XCreateSimpleWindow.

Window XCreateSimpleWindow(display, parent, x, y, width, height, border_width,

border, background)
Display *display;

Window parent;

int x, y;

unsigned int width, height;

unsigned int border_width;

unsigned long border;

unsigned long background;

display Specifies the connection to the X server.
parent Specifies the parent window.
x

y

width

height

border_width

border

background

Specify the x and y coordinates, which are the top-left outside
corner of the new window's borders and are relative to the inside
of the parent window's borders.

Specify the width and height, which are the created window's inside
dimensions and do not include the created window's borders. The
dimensions must be nonzero, or a BadValue error results.
Specifies the width of the created window's border in pixels.
Specifies the border pixel value of the window.
Specifies the background pixel value of the window.

Chapter 3. Window Functions 43

The XCreateSimpleWindow function creates an unmapped Input­

Output subwindow for a specified parent window, returns the window

ID of the created window, and causes the X server to generate a

CreateNotify event. The created window is placed on top in the stacking

order with respect to siblings. Any part of the window that extends outside

its parent window is clipped. The border_width for an InputOnly window

must be zero, or a BadMa tch error results. XCreateSimpleWindow inher­

its its depth, class, and visual from its parent. All other window attributes, ex­

cept background and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch,
BadValue, and BadWindow errors.

3.4 Destroying Windows
Xlib provides functions that you can use to destroy a window or destroy all

subwindows of a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroy Window(display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all

of its subwindows and causes the X server to generate a DestroyNotify

event for each window. The window should never be referenced again. If

the window specified by the w argument is mapped, it is unmapped auto­

matically. The ordering of the DestroyNotify events is such that for any

given window being destroyed, DestroyNotify is generated on any inferi­

ors of the window before being generated on the window itself. The order­

ing among siblings and across subhierarchies is not otherwise constrained. If

the window you specified is a root window, no windows are destroyed.

Destroying a mapped window will generate Expose events on other win­

dows that were obscured by the window being destroyed.

XDestroyWindow can generate a BadWindow error.

44 XLIB

To destroy all subwindows of a specified window, use XDestroy­

Subwindows.

XDestroySubwindows(display, w)
Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the

specified window, in bottom-to-top stacking order. It causes the X server to

generate a DestroyNotify event for each window. If any mapped
subwindows were actually destroyed, XDestroySubwindows causes the X

server to generate Expose events on the specified window. This is much

more efficient than deleting many windows one at a time because much of

the work need be performed only once for all of the windows, rather than
for each window. The subwindows should never be referenced again.

XDestroySubwindows can generate a BadWindow error.

3.5 Mapping Windows
A window is considered mapped if an XMapWindow call has been made on

it. It may not be visible on the screen for one of the following reasons:

• It is obscured by another opaque window.

• One of its ancestors is not mapped.

• It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes
visible on the screen. A client receives the Expose events only if it has asked

for them. Windows retain their position in the stacking order when they are

unmapped.

A window manager may want to control the placement of subwindows. If

SubstructureRedirectMask has been selected by a window manager on

a parent window (usually a root window), a map request initiated by other

clients on a child window is not performed, and the window manager is sent

a Map Request event. However, if the override-redirect flag on the child

had been set to True (usually only on pop-up menus), the map request is

performed.

Chapter 3. Window Functions 45

A tiling window manager might decide to reposition and resize other cli­

ents' windows and then decide to map the window to its final location. A win­

dow manager that wants to provide decoration might reparent the child into

a frame first. For further information, see section 3.2.8 and chapter 8. Only

a single client at a time can select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent

window. Then, any attempt to resize the window by another client is sup­

pressed, and the client receives a ResizeRequest event.

To map a given window, use XMapWindow.

XMapWindow(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The X Map Win dow function maps the window and all of its subwindows that

have had map requests. Mapping a window that has an unmapped ancestor

does not display the window but marks it as eligible for display when the an­

cestor becomes mapped. Such a window is called unviewable. When all its

ancestors are mapped, the window becomes viewable and will be visible on

the screen if it is not obscured by another window. This function has no ef­
fect if the window is already mapped.

If the override-redirect of the window is False and if some other client

has selected SubstructureRedirectMask on the parent window, then

the X server generates a Map Request event, and the XMapWindow function

does not map the window. Otherwise, the window is mapped, and the X

server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remem­

bered, the X server tiles the window with its background. If the window's
background is undefined, the existing screen contents are not altered, and

the X server generates zero or more Expose events. If backing-store was

maintained while the window was unmapped, no Expose events are gener­

ated. If backing-store will now be maintained, a full-window exposure is al­
ways generated. Otherwise, only visible regions may be reported. Similar til­

ing and exposure take place for any newly viewable inferiors.

46 XLIB

If the window is an InputOutput window, XMapWindow generates
Expose events on each InputOutput window that it causes to be displayed.
If the client maps and paints the window and if the client begins processing
events, the window is painted twice. To avoid this, first ask for Expose

events and then map the window, so the client processes input events as
usual. The event list will include Expose for each window that has appeared
on the screen. The client's normal response to an Expose event should be
to repaint the window. This method usually leads to simpler programs and
to proper interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

XMapRaised(display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it
maps the window and all of its subwindows that have had map requests.
However, it also raises the specified window to the top of the stack. For addi­
tional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(display, w)
Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified win­
dow in top-to-bottom stacking order. The X server generates Expose events

on each newly displayed window. This may be much more efficient than

mapping many windows one at a time because the server needs to perform

Chapter 3. Window Functions 47

much of the work only once, for all of the windows, rather than for each win­

dow.
XMapSubwindows can generate a BadWindow error.

3.6 Unmapping Windows
Xlib provides functions that you can use to unmap a window or all

subwindows.

To unmap a window, use XUnmapWindow.

XUnmap Window(display, w)

Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XUnmapWindow function un maps the specified window and causes the

X server to generate an UnmapNotify event. If the specified window is al­
ready unmapped, XUnmapWindow has no effect. Normal exposure process­
ing on formerly obscured windows is performed. Any child window will no
longer be visible until another map call is made on the parent. In other

words, the subwindows are still mapped but are not visible until the parent
is mapped. Unmapping a window will generate Expose events on windows
that were formerly obscured by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnrnap­

Subwindows.

XUnmapSubwindows(display, w)

Display *display;

Window w;
display Specifies the connection to the X server.

L w Specifies the window.

The XUnrnapSubwindows function unmaps all subwindows for the speci­

fied window in bottom-to-top stacking order. It causes the X server to gener­
ate an UnrnapNotify event on each subwindow and Expose events on for-

48 XLIB

merly obscured windows. Using this function is much more efficient than
unmapping multiple windows one at a time because the server needs to per­
form much of the work only once, for all of the windows, rather than for

each window.
XUnmapSubwindows can generate a BadWindow error.

3.7 Configuring Windows
Xlib provides functions that you can use to move a window, resize a window,
move and resize a window, or change a window's border width. To change
one of these parameters, set the appropriate member of the
XWindowChanges structure and OR in the corresponding value mask in
subsequent calls to XConfigureWindow. The symbols for the value mask
bits and the XWindowChanges structure are:

/* Configure window value mask bits */
#define CWx (1 «0)
#define CWY (1«1)
#define CWWidth (1 «2)
#define CWHeight (1«3)
#define CWBorderWidth (1 «4)
#define CWSibling (1 «5)
#define CWStackMode (1 «6)

/* Values */
typedef struct {

int x, y;
int width, height;
int border_width;
Window sibling;
int stacLmode;

L } XWindowChanges;

The x and y members are used to set the window's x and y coordinates,
which are relative to the parent's origin and indicate the position of the
upper-left outer corner of the window. The width and height members are
used to set the inside size of the window, not including the border, and must
be nonzero, or a BadValue error results. Attempts to configure a root win­
dow have no effect.

The border_width member is used to set the width of the border in pixels.
Note that setting just the border width leaves the outer-left corner of the

Chapter 3. Window Functions 49

window in a fixed position but moves the absolute position of the window's

origin. If you attempt to set the border-width attribute of an InputOnly
window nonzero, a BadMa tch error results.

The sibling member is used to set the sibling window for stacking opera­

tions. The stacLmode member is used to set how the window is to be

restacked and can be set to Above, Below, TopIf, Bottornlf, or

Opposi teo

If the override-redirect flag of the window is False and if some other cli­

ent has selected SubstructureRedirectMask on the parent, the X server

generates a ConfigureRequest event, and no further processing is

performed. Otherwise, if some other client has selected Resize­

RedirectMask on the window and the inside width or height of the win­

dow is being changed, a ResizeRequest event is generated, and the cur­

rent inside width and height are used instead. Note that the override­

redirect flag of the window has no effect on ResizeRedirectMask and

that SubstructureRedirectMask on the parent has precedence over

ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is

restacked among siblings, and a ConfigureNotify event is generated if

the state of the window actually changes. Gra vi tyNotify events are gener­

ated after ConfigureNotify events. If the inside width or height of the

window has actually changed, children of the window are affected as speci­

fied.

If a window's size actually changes,' the window's subwindows move ac­

cording to their window gravity. Depending on the window's bit gravity, the

contents of the window also may be moved (see section 3.2.3).
If regions of the window were obscured but now are not, exposure pro­

cessing is performed on these formerly obscured windows, including the

window itself and its inferiors. As a result of increasing the width or height,

exposure processing is also performed on any new regions of the window
and any regions where window contents are lost.

The restack check (specifically, the computation for Bottornlf, Toplf,

and Opposi te) is performed with respect to the window's final size and po­

sition (as controlled by the other arguments of the request), not its initial po­

sition. If a sibling is specified without a stacLmode, a BadMa tch error re­

sults.

50 XLIB

L

If a sibling and a stacLmode are specified, the window is restacked as fol­

lows:

Above

Below

Toplf

Bottomlf

Opposite

The window is placed just above the sibling.
The window is placed just below the sibling.
If the sibling occludes the window, the window is placed at the
top of the stack.
If the window occludes the sibling, the window is placed at the
bottom of the stack.
If the sibling occludes the window, the window is placed at the
top of the stack. If the window occludes the sibling, the
window is placed at the bottom of the stack.

If a stacLmode is specified but no sibling is specified, the window is re­

stacked as follows:

Above

Below

Toplf

Bottomlf

Opposite

The window is placed at the top of the stack.
The window is placed at the bottom of the stack.
If any sibling occludes the window, the window is placed at the
top of the stack.
If the window occludes any sibling, the window is placed at the
bottom of the stack.
If any sibling occludes the window, the window is placed at the
top of the stack. If the window occludes any sibling, the
window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window's size, location, stacking, or border, use

XConfigureWindow.

XConfigureWindow(display, w, value_mask, values)
Display *display;
Window w;

unsigned int value_mask;
XWindowChanges *values;

display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
value_mask Specifies which values are to be set using information in the values

structure. This mask is the bitwise inclusive OR of the valid
configure window values bits.

values Specifies a pointer to the XWindowChanges structure.

Chapter 3. Window Functions 51

L

The XConfigureWindow function uses the values specified in the

XWindowChanges structure to reconfigure a window's size, position, bor­
der, and stacking order. Values not specified are taken from the existing ge­

ometry of the window.

If a sibling is specified without a stack-mode or if the window is not actu­

ally a sibling, a BadMatch error results. Note that the computations for
Bottornlf, Toplf, and Opposite are performed with respect to the win­

dow's final geometry (as controlled by the other arguments passed to

XConfigureWindow), not its initial geometry. Any backing store contents

of the window, its inferiors, and other newly visible windows are either dis­

carded or changed to reflect the current screen contents (depending on the

implementation).
XConfigureWindow can generate BadMatch, BadValue, and Bad­

Window errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow(display, w, x, y)
Display *display;
Window w;

int x, y;

display Specifies the connection to the X server.
w Specifies the window to be moved.
x

y Specify the x and y coordinates, which define the new location of the
top-left pixel of the window's border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x

and y coordinates, but it does not change the window's size, raise the win­

dow, or change the mapping state of the window. Moving a mapped window

mayor may not lose the window's contents depending on if the window is ob­

scured by nonchildren and if no backing store exists. If the contents of the
window are lost, the X server generates Expose events. Moving a mapped

window generates Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client

has selected SubstructureRedirectMask on the parent, the X server

generates a ConfigureRequest event, and no further processing is per­

formed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

52 XLIB

To change a window's size without changing the upper-left coordinate, use

XResizeWindow.

XResizeWindow(display, w, width, height)

Display *display;
Window w;

unsigned int width, height;
display Specifies the connection to the X server.
w Specifies the window.
width
height Specify the width and height, which are the interior dimensions of the

L window after the call completes.

The XResizeWindow function changes the inside dimensions of the speci­

fied window, not including its borders. This function does not change the

window's upper-left coordinate or the origin and does not res tack the win­

dow. Changing the size of a mapped window may lose its contents and gen­

erate Expose events. If a mapped window is made smaller, changing its size

generates Expose events on windows that the mapped window formerly ob­

scured.
If the override-redirect flag of the window is Fa 1 s e and some other client

has selected SubstructureRedirectMask on the parent, the X server

generates a ConfigureRequest event, and no further processing is per­

formed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use XMoveResize­

Window.

XMoveResizeWindow(display, w, x, y, width, height)

Display *display;
Window w;

int x, y;

unsigned int width, height;
display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
x
y Specify the x and y coordinates, which define the new position of the

window relative to its parent.
width

L height Specify the width and height, which define the interior size of the window.

Chapter 3. Window Functions 53

The XMoveResizeWindow function changes the size and location of the
specified window without raising it. Moving and resizing a mapped window
may generate an Expos'e event on the window. Depending on the new size
and location parameters, moving and resizing a window may generate
Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server
generates a ConfigureRequest event, and no further processing is per­
formed. Otherwise, the window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindow­
BorderWidth.

XSetWindowBorderWidth(display, w, width)
Display *display;
Window w;

unsigned int width;

display Specifies the connection to the X server.
w Specifies the window.

L width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window's bor­
der width to the specified width.

XSetWindowBorderWidth can generate a BadWindow <;!rror.

3.8 Changing Window Stacking Order
Xlib provides functions that you can use to raise, lower, circulate, or restack
windows.

To raise a window so that no sibling window obscures it, use
XRaiseWindow.

XRaiseWindow(display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window.

54 XLIB

The XRaiseWindow function raises the specified window to the top of the

stack so that no sibling window obscures it. If the windows are regarded as
overlapping sheets of paper stacked on a desk, then raising a window is anal­

ogous to moving the sheet to the top of the stack but leaving its x and y loca­
tion on the desk constant. Raising a mapped window may generate Expose

events for the window and any mapped subwindows that were formerly ob­
scured.

If the override-redirect attribute of the window is False and some other
client has selected SubstructureRedirectMask on the parent, the X

server generates a ConfigureRequest event, and no processing is per­
formed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use
XLowerWindow.

XLowerWindow(display, w)

Display *display;

Window w;
display Specifies the connection to the X server.

L w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of

the stack so that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering a
window is analogous to moving the sheet to the bottom of the stack but leav­

ing its x and y location on the desk constant. Lowering a mapped window
will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other

client has selected SubstructureRedirectMask on the parent, the X
server generates a ConfigureRequest event, and no processing is per­

formed. Otherwise, the window is lowered to the bottom of the stack.
XLowerWindow can generate a BadWindow error.

To circulate a subwindow up or down, use XCirculateSubwindows.

Chapter 3. Window Functions 55

L

XCirculateSubwindows(display, w, direction)

Display *display;

Window w;

int direction;

display Specifies the connection to the X server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate the

window. You can pass RaiseLowest or LowerHighest.

The XCirculateSubwindows function circulates children of the spec­

ified window in the specified direction. If you specify RaiseLowest,
XCirculateSubwindows raises the lowest mapped child (if any) that is

occluded by another child to the top of the stack. If you specify
LowerHighest, XCirculateSubwindows lowers the highest mapped

child (if any) that occludes another child to the bottom of the stack. Expo­
sure processing is then performed on formerly obscured windows. If some

other client has selected SubstructureRedirectMask on the window,
the X server generates a CirculateRequest event, and no further pro­

cessing is performed. If a child is actually restacked, the X server generates
a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow er­
rors.

To raise the lowest mapped child of a window that is partially or com­
pletely occluded by another child, use XCirculateSubwindowsUp.

XCirculateSubwindows U p(display, w)

Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child
of the specified window that is partially or completely occluded by another
child. Completely unobscured children are not affected. This is a conve­

nience function equivalent to XCirculateSubwindows with Raise­
Lowest specifie-d.

XCircula teSubwindowsUp can generate a BadWindow error.

56 XLIB

To lower the highest mapped child of a window that partially or com­
pletely occludes another child, use XC ircu la teS ubw indowsDown.

XCirculateSubwindowsDown(display, w)

Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped
child of the specified window that partially or completely occludes another
child. Completely unobscured children are not affected. This is a con­
venience function equivalent to XCirculateSubwindows with Lower­

Highest specified.
XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestack­

Windows.

XRestack Windows(display, windows, nwindows);

Display *display;

Window windows[];

int nwindows;

display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.

L nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order speci­
fied, from top to bottom. The stacking order of the first window in the win­
dows array is unaffected, but the other windows in the array are stacked un­
derneath the first window, in the order of the array. The stacking order of
the other windows is not affected. For each window in the window array that
is not a child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other cli­
ent has selected SubstructureRedirectMask on the parent, the X server
generates ConfigureReguest events for each window whose override­
redirect flag is not set, and no further processing is performed. Otherwise,
the windows will be restacked in top to bottom order.

XRestackWindows can generate a BadWindow error.

Chapter 3. Window Functions 57

3.9 Changing Window Attributes

L

Xlib provides functions that you can use to set window attributes.
XChangeWindowAttributes is the more general function that allows
you to set one or more window attributes provided by the
XSetWindowAttributes structure. The other functions described in this

section allow you to set one specific window attribute, such as a window's
background.

To change one or more attributes for a given window, use

XChangeWindowAttributes.

XChangeWindowAttributes(display, w, valuemask, attributes)

Display *display;

Window w;

unsigned long valuemask;
XSetWindowAttributes *attributes;

display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the attributes

argument. This mask is the bitwise inclusive OR of the valid attribute
mask bits. If valuemask is zero, the attributes are ignored and are not
referenced. The values and restrictions are the same as for
XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate
bits set to indicate which attributes have been set in the structure (see
section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function
uses the window attributes in the XSetWindowAttributes structure to
change the specified window attributes. Changing the background does not

cause the window contents to be changed. To repaint the window and its

background, use XClearWindow. Setting the border or changing the back­
ground such that the border tile origin changes causes the border to

be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap. Changing the

border of a root window to CopyFromParent restores the default border
pixmap. Changing the win-gravity does not affect the current position

of the window. Changing the backing-store of an obscured window to

WhenMapped or Always, or changing the backing-planes, backing-pixel, or

58 XLIB

save-under of a mapped window may have no immediate effect. Changing

the colormap of a window (that is, defining a new map, not changing the

contents of the existing map) generates a ColormapNotify event. Chang­

ing the colormap of a visible window may have no immediate effect on the

screen because the map may not be installed (see XlnstallColormap).

Changing the cursor of a root window to None restores the default cursor.

Whenever possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks

are maintained separately. When an event is generated, it is reported to all

interested clients. However, only one client at a time can select for
SubstructureRedirectMask, ResizeRedirectMask, and Button­

PressMask. If a client attempts to select any of these event masks and some

other client has already selected one, a Bad Access error results. There is

only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor,

BadCursor, BadMatch, BadPixmap, BadValue, and BadWindow

errors.

To set the background of a window to a gIVen pixel, use

XSetWindowBackground.

XSetWindowBackground(display, w, background_pixel)

Display *display;

Window w;

unsigned long background_pixel;

display Specifies the connection to the X server.
w Specifies the window.

L background_pixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window

to the specified pixel value. Changing the background does not cause the

window contents to be changed. XSetWindowBackground uses a pixmap

of undefined size filled with the pixel value you passed. If you try to change

the background of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow

errors.

To set the background of a window to a given pixnlap, use

XSetWindowBackgroundPixmap.

Chapter 3. Window Functions 59

L

XSet Window BackgroundPixmap(display, w, background_pixmap)

Display *display;

Window w;
Pixmap background_pixmap;

display Specifies the connection to the X server.
w Specifies the window.
background_pixmap Specifies the background pixmap, ParentRelative, or

None.

The XSetWindowBackgroundPixmap function sets the background
pixmap of the window to the specified pixmap. The background pixmap can
immediately be freed if no further explicit references to it are to be made.
If ParentRelative is specified, the background pixmap of the window's

parent is used, or on the root window, the default background is restored. If
you try to change the background of an InputOnly window, a BadMatch

error results. If the background is set to None, the window has no defined
background.

XSetWindowBackgroundPixmap can generate BadMatch, Bad­

Pixmap, and BadWindow errors.

Note XSetWindowBackground and XSetWindowBackgroundPixmap do not
change the current contents of the window.

To change and repaint a window's border to a gIven pixel, use
XSetWindowBorder.

XSetWindowBorder(display, w, border_pixel)

Display *display;

Window w;

unsigned long border_pixel;

display Specifies the connection to the X server.
w Specifies the window.

L border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the
pixel value you specify. If you attempt to perform this on an InputOnly

window, a BadMatch error results.
XSetWindowBorder can generate BadMatch and BadWindow errors.

60 XLIB

To change and repaint the border tile of a gIven window, use
XSetWindowBorderPixmap.

XSet Window Border Pixmap(display, w, border _pixmap)
Display *display;
Window w;

Pixmap border_pixmap;
display Specifies the connection to the X server.
w Specifies the window.

L border_pixmap Specifies the border pixmap or CopyFromParent.

3.10

The XSetWindowBorderPixmap function sets the border pixmap of the
window to the pixmap you specify. The border pixmap can be freed imme­
diately if no further explicit references to it are to be made. If you specify

CopyFromParen t, a copy of the parent window's border pixmap is used. If
you attempt to perform this on an InputOnly window, a BadMatch error

results.
XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and

BadWindowerrors.

Translating Window Coordinates
Applications, mostly window managers, often need to perform a coordinate

transformation from the coordinate space of one window to another win­
dow or need to determine which subwindow a coordinate lies in.
XTranslateCoordinates fulfills these needs (and avoids any race condi­

tions) by asking the X server to perform this operation.

Bool XTranslateCoordinates (display, src_w, desLw, src_x, src_y, dest_x_return,
desLy_return, child_return)

Display *display;
Window src_w, dest_w;
int src_x, src_y;
int *desLx_return, *desLy_return;
Window *child_return;

display Specifies the connection to the X server.
src_w Specifies the source window.
dest_w Specifies the destination window.
src_x

Specify the x and y coordinates within the source window.

Chapter 3. Window Functions 61

L

dest_x_return
dest_ y_return
child_return

Return the x and y coordinates within the destination window.
Returns the child if the coordinates are contained in a mapped
child of the destination window.

The XTransla teCoordina tes function takes the src_x and src_y coordi­

nates relative to the source window's origin and returns these coordinates to

dest_x_return and dest_y_return relative to the destination window's ori­

gin. If XTranslateCoordinates returns zero, src_w and dest_w are on

different screens, and dest_x_return and dest_y_return are zero. If the co­

ordinates are contained in a mapped child of dest_ w, that child is returned
to child_return. Otherwise, child_return is set to None.

XTranslateCoordinates can generate a BadWindow error.

62

Chapter 4

Window Information
Functions

After you connect the display to the X server and create a window, you can
use the Xlib window information functions to:

• Obtain information about a window

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

4.1 Obtaining Window Information
Xlib provides functions that you can use to obtain information about the

window tree, the window's current attributes, the window's current geome­

try, or the current pointer coordinates. Because they are most frequently

used by window managers, these functions all return a status to indicate
whether the window still exists.

To obtain the parent, a list of children, and number of children for a given

window, use XQueryTree.

Status XQueryTree(display, w, root_return, parenLreturn, children_return,
nchildren_return)

Display *display;
Window w;

Window *rooLreturn;
Window *parent_return;

Chapter 4. Window Information Functions 63

L

Window **children_return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.
w Specifies the window whose list of children, root, parent, and

number of children you want to obtain.
root_return
parent_return
children_return
nchildren_return

Returns the root window.
Returns the parent window.
Returns a pointer to the list of children.
Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a

pointer to the list of children windows, and the number of children in the list
for the specified window. The children are listed in current stacking order,

from bottommost (first) to topmost (last). XQueryTree returns zero if it fails

and nonzero if it succeeds. To free this list when it is no longer needed, use

XFree.

To obtain the current attributes of a given window, use XGetWindow­

Attributes.

Status XGetWindowAttributes(display, w, window_attributes_return)
Display *display;
Window w;

XWindow Attributes *window_attributes_return;
display Specifies the connection to the X server.
w Specifies the window whose current attributes you want

to obtain.
window--attributes_return Returns the specified window's attributes in the

L XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for
the specified window to an XWindowAttributes structure.

typedef struct {
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;

/* location of window */
/* width and height of window */
/* border width of window */
/* depth of window */
/* the associated visual structure */
/* root of screen containing window */
/* InputOutput, InputOnly*/

64 XLIB

L

int biLgravity;
int will-gravity;
int backing_store;

1* one of the bit gravity values *1

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

1* one of the window gravity values *1
~ NotUseful, WhenMapped, Always ~
1* planes to be preserved if possible *1
1* value to be used when restoring planes */
1* boolean, should bits under be saved? *1
1* color map to be associated with window */
1* boolean, .is color map currently

Colormap colormap;
Bool map_installed;

int map_state;

long aILevent_masks;
long your _event_mask;

installed*/
~ IsUnmapped, IsUnviewable,

IsViewable *1
/* set of events all people have interest in*/
1* my event mask *1

long do_not~ propagate_mask;
Booloverride_redirect;

1* set of events that should not propagate */
1* boolean value for override-redirect *1

Screen *screen 1* back pointer to correct screen *1
} XWindowAtrributes;

The x and y members are set to the upper-left outer corner relative to the

parent window's origin. The width and height members are set to the inside

size of the window, not including the border. The border_width member is

set to the window's border width in pixels. The depth member is set to the

depth of the window (that is, bits per pixel for the object). The visual mem­

ber is a pointer to the screen's associated Visual structure. The root mem­

ber is set to the root window of the screen containing the window. The class

member is set to the window's class and can be either InputOutput or

InputOnly.

The bit_gravity member is set to the window's bit gravity and can be one

of the following:

ForgetGravity
NorthW~stGravity

NorthGravity
NorthEastGravity
WestGravity
CenterGravity

EastGravity
SouthWestGravity
SouthGravity
SouthEastGravity
StaticGravity

The will-gravity member is set to the window's window gravity and can be

one of the following:

UnmapGravity
NorthWestGravity

EastGravity
SouthWestGravity

Chapter 4. Window Information Functions

NorthGravity

NorthEastGravity

WestGravity

CenterGravity

SouthGravity

SouthEastGravity

StaticGravity

For additional information on gravity, see section 3.3.

65

The backing_store member is set to indicate how the X server should

maintain the contents of a window and can be WhenMapped, Always, or

NotUseful. The backing_planes member is set to indicate (with bits set to

1) which bit planes of the window hold dynamic data that must be preserved

in backing_stores and during save_unders. The backing_pixel member is

set to indicate what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member

is set to the colormap for the specified window and can be a color map ID or

None. The map_installed member is set to indicate whether the colormap is
currently installed and can be True or False. The map_state member is

set to indicate the state of the window and can be IsUnmapped,

IsUnviewable, or IsViewable. IsUnviewable is used if the window is

mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event

masks selected on the window by all clients. The your _event_mask member

is set to the bitwise inclusive OR of all event masks selected by the querying

client. The do_not_propagate_mask member is set to the bitwise inclusive

OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window

overrides structure control facilities and can be True or False. Window

manager clients should ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer

to the correct screen. This makes it easier to obtain the screen information

without having to loop over the root window fields to see which field

matches.
XGetWindowAttributes can generate BadDrawable and BadWindow

errors.

To obtain the current geometry of a given drawable, use XGet­

Geometry.

66

L

XLIB

Status XGetGeometry(display, d, root_return, x_return, y_return, width_return,
height_return, border _width_return, depth_return)

Display *display;
Drawable d;
Window *root_return;
int *x_return, *y_return;
unsigned int *width_return, *heighLreturn;
unsigned int *border_width_return;
unsigned int *depth_return;

display Specifies the connection to the X server.
d Specifies the drawable, which can be a window or a pixmap.
root_return
x_return
y_return

heighLreturn

Returns the root window.

Return the x and y coordinates that define the location of
the drawable. For a window, these coordinates specify the
upper-left outer corner relative to its parent's origin. For
pixmaps, these coordinates are always zero.

Return the drawable's dimensions (width and height). For a
window, these dimensions specify the inside size, not
including the border.

border_width_return Returns the border width in pixels. If the drawable is a
pixmap, it returns zero.
Returns the depth of the drawable (bits per pixel for the
object).

The XGetGeometry function returns the root window and the current ge­

ometry of the drawable. The geometry of the drawable includes the x and y

coordinates, width and height, border width, and depth. These are de­
scribed in the argument list. It is legal to pass to this function a window

whose class is InputOnly.

To obtain the root window the pointer is currently on and the pointer co­
ordinates relative to the root's origin, use XQueryPointer.

Bool XQueryPointer(display, w, rooLreturn, child_return, rooLx_return,
root_y_return, win_x_return, win_y_return, mask_return)

Display *display;
Window w;

Window *rooLreturn, *child_return;
int *root_x_return, *root_y_return;

Chapter 4. Window Information Functions 67

L

int *win_x_return, *win_y_return;
unsigned int *mask_return;

display Specifies the connection to the X server.
w Specifies the window.
root_return
child_return
root_x_return
root_ y_return

win_x_return
win_y_return
mask_return

Returns the root window that the pointer is in.
Returns the child window that the pointer is located in, if any.

Return the pointer coordinates relative to the root window's
origin.

Return the pointer coordinates relative to the specified window.
Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logi­

cally on and the pointer coordinates relative to the root window's origin. If

XQueryPointer returns False, the pointer is not on the same screen as

the specified window, and XQueryPointer returns None to child_return

and zero to win_x_return and win_y_return. If XQueryPointer returns

True, the pointer coordinates returned to win_x_return and win_y_return

are relative to the origin of the specified window. In this case,

XQueryPointer returns the child that contains the pointer, if any, or else

None to child_return.

XQueryPoin ter returns the current logical state of the keyboard buttons

and the modifier keys in masLreturn. It sets masLreturn to the bitwise in­

clusive OR of one or more of the button or modifier key bitmasks to match

the current state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the

physical state if device event processing is frozen (see section 7.4).
XQueryPointer can generate a BadWindow error.

4.2 Properties and Atoms
A property is a collection of named, typed data. The window system has a set

of predefined properties (for example, the name ofa window, size hints, and

so on), and users can define any other arbitrary information and associate it

with windows. Each property has a name, which is an ISO Latin-l string. For

each named property, a unique identifier (atom) is associated with it. A

property also has a type, for example, string or integer. These types are also

indicated using atoms, so arbitrary new types can be defined. Data of only

68 XLIB

Note

one type may be associated with a single property name. Clients can store
and retrieve properties associated with windows. For efficiency reasons, an
atom is used rather than a character string. XlnternAtom can be used to
obtain the atom for property names.

A property is also stored in one of several possible formats. The X server
can store the information as 8-bit quantities, 16-bit quantities, or 32-bit
quantities. This permits the X server to present the data in the byte order
that the client expects.

If you define further properties of complex type, you must encode and de­
code them yourself. These functions must be carefully written if they are to
be portable. For further information about how to write a library extension,

see appendix C.

The type of a property is defined by an atom, which allows for arbitrary
extension in this type scheme.

Certain property names are predefined in the server for commonly

used functions. The atoms for these properties are defined In
<Xll/Xatom. h>. To avoid name clashes with user symbols, the #define

name for each atom has the XA_ prefix. For definitions of these properties,
see section 4.3. For an explanation of the functions that let you get and set

much of the information stored in these predefined properties, see
chapter 9.

You can use properties to communicate other information between appli­

cations. The functions described in this section let you define new properties
and get the unique atom IDs in your applications.

Although any particular atom can have some client interpretation within
each of the name spaces, atoms occur in five distinct name spaces within the

protocol:

• Selections

• Property names

• Property types

• Font properties

• Type of a ClientMessage event (none are built into the X server)

Chapter 4. Window Information Functions

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT _BUFFERO
CUT _BUFFERI
CUT _BUFFER2
CUT _BUFFER3
CUT _BUFFER4
CUT _BUFFER5
CUT _BUFFER6
CUT_BUFFER7
RGB_BEST _MAP
RGB_BLUE_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP

The built-in property types are:

ARC
ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER

RGB_RED_MAP
RESOURCE_MANAGER
WM_CLASS
WM_CLIENT _MACHINE
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMALHINTS
WM_ZOOM_HINTS
WM_ TRANSIENT_FOR

PIXMAP
POINT
RGB_COLOILMAP
RECTANGLE
STRING
VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

The built-in font property names are:

MIN_SPACE
NORM_SPACE
MAX-SPACE
END_SPACE
SUPERSCRIPT _X
SUPERSCRIPT _ Y
SUBSCRIPT _X

STRIKEOUT_DESCENT
STRIKEOUT_ASCENT
ITALIC_ANGLE
X-HEIGHT
QUAD_WIDTH
WEIGHT
POINT_SIZE

69

70 XLIB

L

L

SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME
FULL-NAME

RESOLUTION
COPYRIGHT
NOTICE
FAMILY_NAME
CAP_HEIGHT

For further information about font properties, see section 6.5.

To return an atom for a given name, use XlnternAtom.

Atom XInternAtom(display, atom_name, only_if_exists)
Display *display;
char *atom_name;

Bool only_ii_exists;
display Specifies the connection to the X server.
atom_name Specifies the name associated with the atom you want returned.
only_if_exists Specifies a Boolean value that indicates whether XInternAtom

creates the atom.

The XlnternAtom function returns the atom identifier associated with the
specified atom_name string. If only_if_exists is False, the atom is created
if it does not exist. Therefore, XlnternAtom can return None. You should

use a null-terminated ISO Latin-l string for atom_name. Case matters; the
strings thing, Thing, and thinG all designate different atoms. The atom will

remain defined even after the client's connection closes. It will become unde­
fined only when the last connection to the X server closes.

XlnternAtom can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName(display, atom)
Display *display;
Atom atom;

display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified
atom. To free the resulting string, call XFree.

XGetA tomName can generate a BadA tom error.

Chapter 4. Window Information Functions 71

4.3 Obtaining and Changing Window Properties
You can attach a property list to every window. Each property has a name,
a type, and a value (see section 4.2). The value is an array of 8-bit, 16-bit, or
32-bit quantities, whose interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or in­
terchange window properties. In addition, Xlib provides other utility func­
tions for predefined property operations (see chapter 9).

To obtain the type, format, and value of a property of a given window, use
XGetWindowProperty.

int XGetWindowProperty(display, w, property, long_offset, long_length, delete, req_type,
actuaL type_ return, actuaLformaL return, nitems_ return,
bytes_after _return, prop_return)

Display *display;
Window w;

Atom property;
long long_offset, long_length;
Bool delete;
Atom req_type;
Atom *actuaLtype_return;
int *actuaLformaL return;
unsigned long *nitems_return;
unsigned long * bytes_after _return;
unsigned char **prop_return;

display Specifies the connection to the X server.
w Specifies the window whose property you want to obtain.
property Specifies the property name.
long_offset Specifies the offset in the specified property (in 32-bit

quantities) where the data is to be retrieved.
long_length Specifies the length in 32-bit multiples of the data to be

retrieved.
delete Specifies a Boolean value that determines whether the

property is deleted.
req_type Specifies the atom identifier associated with the property

type or AnyPropertyType.

actuaLtype_return Returns the atom identifier that defines the actual type of
the property.

actuaLformat_return Returns the actual format of the property.
nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items

stored in the prop_return data.

72 XLIB

L

Returns the number of bytes remaining to be read in the
property if a partial read was performed.
Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the prop­

erty; the actual format of the property; the number of 8-bit, 16-bit, or 32-bit

items transferred; the number of bytes remaining to be read in the property;

and a pointer to the data actually returned. XGetWin·dowProperty sets the

return arguments as follows:

• If the specified property does not exist for the specified window,
XGetWindowProperty returns None to actuaLtype_return and the value zero to
actuaL format_return and bytes_after _return. The nitems_return argument is
empty. In this case, the delete argument is ignored.

• If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type_return,
the actual property format (never zero) to actuaL format_return, and the
property length in bytes (even if the actuaL format_return is 16 or 32) to
bytes_after_return. It also ignores the delete argument. The nitems_return
argument is empty.

• If the specified property exists and either you assign AnyPropertyType to the
req_type argument or the specified type matches the actual property type,
XGetWindowProperty returns the actual property type to actual_type_return
and the actual property format (never zero) to actual_formaLreturn. It also
returns a value to bytes_after_return and nitems_return, by defining the
following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

I = 4 * long_ offset
T = N - I

L = MINIMUM(T, 4 * long_length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from zero), and
its length in bytes is L. If the value for long_offset causes L to be negative, a
BadValue error results. The value of bytes_ after_return is A, giving the number of
trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return

(even if the property is zero length) and sets it to ASCII null so that simple

properties consisting of characters do not have to be copied into yet another

Chapter 4. Window Information Functions 73

string before use. If delete IS True and bytes_after _retrun is zero,

XGetWindowProperty deletes the property from the window and gen­
erates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the re­

sulting data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and Bad­

Window errors.

To obtain a given window's property list, use XListProperties.

Atom *XListProperties(display, w, num_prop_return)

Display *display;

Window w;

int *num_prop_return;

display Specifies the connection to the X server.
w Specifies the window whose property list you want to obtain.

L num_prop_return Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom

properties that are defined for the specified window or returns NULL if no
properties were found. To free the memory allocated by this function, use
XFree.

XListProperties can generate a BadWindow error.

To change a property of a given ';Vindow, use XChangeProperty.

XChangeProperty(display, w, property, type, format, mode, data, nelements)

Display *display;

Window w;
Atom property, type;

intformat;

int mode;

unsigned char '*data;
int nelements;

display Specifies the connection to the X server.
w Specifies the window whose property you want to change.
property Specifies the property name.
type Specifies the type of the property. The X server does not interpret the

type but simply passes it back to an application that later calls
XGetWindowProperty.

74 XLIB

format Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or
32-bit quantities. Possible values are 8, 16, and 32. This information
allows the X server to correctly perform byte-swap operations as
necessary. If the format is 16-bit or 32-bit, you must explicitly cast
your data pointer to a (char *) in the call to XChangeProperty.

Specifies the mode of the operation. You can pass PropModeReplace, mode

PropModePrepend, or PropModeAppend.

data Specifies the property data.
L nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified win­

dow and causes the X server to generate a PropertyNotify event on that

window. XChangeProperty performs the following:

• If mode is PropModeReplace, XChangeProperty discards the previous
property value and stores the new data.

• If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts
the specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain

until explicitly deleted, until the window is destroyed, or until the server re­

sets. For a discussion of what happens when the connection to the X server
is closed, see section 2.5. The maximum size of a property is server depen­

dent and can vary dynamically depending on the amount of memory the

server has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch,

BadValue, and BadWindow errors.

To rotate a window's property list, use XRotateWindowProperties.

XRotateWindowProperties(display, w, properties, num_prop, npositions)

Display *display;

Window w;

Atom properties[];

int num_prop;

int npositions;

display Specifies the connection to the X server.
w Specifies the window.

Chapter 4. Window Information Functions

properties Specifies the array of properties that are to be rotated.
num_prop Specifies the length of the properties array.

L npositions Specifies the rotation amount.

75

The XRotateWindowProperties function allows you to rotate properties

on a window and causes the X server to generate PropertyNotify events.

If the property names in the properties array are viewed as being numbered
starting from zero and if there are num_prop property names in the list,

then the value associated with property name I becomes the value associated

with property name (I + npositions) mod N for all I from zero to N - l.

The effect is to rotate the states by npositions places around the virtual ring
of property names (right for positive npositions, left for negative

npositions). If npositions mod N is nonzero, the X server generates a

PropertyNotify event for each property in the order that they are listed

in the array. If an atom occurs more than once in the list or no property with
that name is defined for the window, a BadMa tch error results. If a

BadA tom or BadMa tch error results, no properties are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and

BadWindowerrors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty(display, w, property)
Display *display;
Window w;
Atom property;

display Specifies the connection to the X server.
w Specifies the window whose property you want to delete.

L property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the

property was defined on the specified window and causes the X server to

generate a PropertyNotify event on the window unless the property does

not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

4.4 Selections
Selections are one method used by applications to exchange data. By using

the property mechanism, applications can exchange data of arbitrary types

76 XLIB

L

and can negotiate the type of the data. A selection can be thought of as an
indirect property with a dynamic type. That is, rather than having the prop­
erty stored in the X server, the property is maintained by some client (the

owner). A selection is global in nature (considered to belong to the user but
be maintained by clients) rather than being private to a particular window

subhierarchy or a particular set of clients.
Xlib provides functions that you can use to set, get, or request conversion

of selections. This allows applications to implement the notion of current se­

lection, which requires that notification be sent to applications when they no

longer own the selection. Applications that support selection often highlight
the current selection and so must be informed when another application has

acquired the selection so that they can unhighlight the selection.
When a client asks for the contents of a selection, it specifies a selection tar­

get type. This target type can be used to control the transmitted representa­
tion of the contents. For example, if the selection is "the last thing the user

clicked on" and that is currently an image, then the target type might specify
whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmit­
ted, for example, asking for the "looks" (fonts, line spacing, indentation, and

so forth) of a paragraph selection, not the text of the paragraph. The target
type can also be used for other purposes. The protocol does not constrain

the seman tics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(display, selection, owner, time)

Display *display;

Atom selection;

Window owner;

Time time;

display Specifies the connection to the X server.
selection Specifies the selection atom.
owner Specifies the owner of the specified selection atom. You can pass a

window or None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change
time for the specified selection and has no effect if the specified time is ear­
lier than the current last-change time of the specified selection or is later

Chapter 4. Window Information Functions 77

than the current X server time. Otherwise, the last-change time is set to the

specified time, with CurrentTime replaced by the current server time. If
the owner window is specified as None, then the owner of the selection be­

comes None (that is, no owner). Otherwise, the owner of the selection be­

comes the client executing the request.

If the new owner (whether a client or None) is not the same as the current
owner of the selection and the current owner is not None, the current

owner is sent a SelectionClear event. If the client that is the owner of a

selection is later terminated (that is, its connection is closed) or if the owner

window it has specified in the request is later destroyed, the owner of the se­
lection automatically reverts to None, but the last-change time is not af­

fected. The selection atom IS uninterpreted by the X server.

XGetSelectionOwner returns the owner window, which is reported in

SelectionRequest and SelectionClear events. Selections are global

to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

Window XGetSelectionOwner(display, selection)
Display *display;
Atom selection;

display Specifies the connection to the X server.
L selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated

with the window that currently owns the specified selection. If no selection

was specified, the function returns the constant None. If None is returned,

there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection.

XConvertSelection(display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;
Atom property;
Window requestor;
Time time;

78 XLIB

L

display
selection
target
property
requestor
time

Specifies the connection to the X server.
Specifies the selection atom.
Specifies the target atom.
Specifies the property name. You also can pass None.
Specifies the requestor.
Specifies the time. You can pass either a timestamp or CurrentTirne.

XConvertSelection requests that the specified selection be converted to

the specified target type:

• If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

• If no owner for the specified selection exists, the X server generates a
SelectionNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two
predefined selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate BadAtom and BadWindow errors.

Chapter 5

Graphics Resource
Functions

79

After you connect your program to the X server by calling XOpenDisplay,

you can use the Xlib graphics resource functions to:

• Create, copy, and destroy colormaps

• Allocate, modify, and free color cells

• Read entries in a colormap

• Create and free pixmaps

• Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X.
Most information about performing graphics (for example, foreground
color, background color, line style, and so on) are stored in resources called

graphics contexts (GC). Most graphics operations (see chapter 6) take a GC
as an argument. Although in theory it is possible to share GCs between appli­
cations, it is expected that applications will use their own GCs when per­

forming operations. Sharing of GCs is highly discouraged because the li­

brary may cache GC state.
Each X window always has an associated colormap that provides a level of

indirection between pixel values and colors displayed on the screen. Many of

the hardware displays built today have a single colormap, so the primitives
are written to encourage sharing of colormap entries between applications.
Because colormaps are associated with windows, X will support displays with

80 XLIB

multiple colormaps and, indeed, different types of colormaps. If there are

not sufficient colormap resources in the display, some windows may not be

displayed in their true colors. A client or window manager can control which

windows are displayed in their true colors if more than one colormap is re­

quired for the color resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used
images for later use in graphics operations. Pixmaps are also used to define

tiles or patterns for use as window backgrounds, borders, or cursors. A

single bit-plane pixmap is sometimes referred to as a bitmap.
Note that some screens have very limited off-screen memory. Therefore,

you should regard off-screen memory as a precious resource.

Graphics operations can be performed to either windows or pixmaps,

which collectively are called drawables. Each drawable exists on a single

screen and can only be used on that screen. GCs can also only be used with
drawables of matching screens and depths.

5.1 Colormap Functions
Xlib provides functions that you can use to manipulate a colormap. This sec­
tion discusses how to:

• Create, copy, and destroy a colormap

• Allocate, modify, and free color cells

• Read entries in a colormap

The following functions manipulate the representation of color on the

screen. For each possible value that a pixel can take in a window, there is a

color cell in the colormap. For example, if a window is 4 bits deep, pixel val­

ues 0 through 15 are defined. A colormap is a collection of color cells. A

color cell consists of a triple of red, green, and blue. As each pixel is read out

of display memory, its value is taken and looked up in the colormap. The val­

ues of the cell determine what color is displayed on the screen. On a
multiplane display with a black-and-white monitor (with grayscale but not

color), these values can be combined to determine the brightness on the

screen.

Screens always have a default colormap, and programs typically allocate

Chapter 5. Graphics Resource Functions 81

cells out of this colormap. You should not write applications that monopolize
color resources. On a screen that either cannot load the colormap or cannot
have a fully independent colormap, only certain kinds of allocations may
work. Depending on the hardware, one or more colormaps may be resident

(installed) at one time. To install a colormap, use XlnstallColormap.

The Defaul tColormap macro returns the default colormap. The
Defaul tVisual macro returns the default visual type for the specified

screen. Colormaps are local to a particular screen. Possible visual types are
StaticGray, GrayScale, StaticColor, PseudoColor, True­

Color, or DirectColor (see section 3.1).
The functions discussed in this section operate on an XColor structure,

which contains:

typedef struct {
unsigned long pixel;
unsigned short red, green, blue;
char flags;
char pad;

L } XColor;

/* pixel value */
/* rgb values */
~ DoRed,DoGreen, DoBlue ~

The red, green, and blue values are scaled between 0 and 65535. On full in
a color is a value of 65535 independent of the number of bits actually used
in the display hardware. Half brightness in a color is a value of 32767, and

off is O. This representation gives uniform results for color values across dif­
ferent screens. In some functions, the flags member controls which of the
red, green, and blue members is used and can be one or more of DoRed,

DoGreen, and DoBlue.

The introduction of color changes the view a programmer should take
when dealing with a bitmap display. For example, when printing text, you
write a pixel value, which is defined as a specific color, rather than setting or
clearing bits. Hardware will impose limits (the number of significant bits, for
example) on these values. Typically, one allocates color cells or sets of color
cells. If read-only, the pixel values for these colors can be shared among

multiple applications, and the RGB values of the cell cannot be changed. If
read/write, they are exclusively owned by the program, and the color cell as­

sociated with the pixel value may be changed at will.

82 XLIB

5.1.1 Creating, Copying, and Destroying Colormaps
To create a colormap for a screen, use XCreateColormap.

I Colormap XCreateColormap(display, w, visual, alloe)
Display *display;

L

Window w;

Visual *visual;
int alloe;

display Specifies the connection to the X server.
w

visual

alloe

Specifies the window on whose screen you want to create a colormap.
Specifies a pointer to a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMa tch error results.
Specifies the colormap entries to be allocated. You can pass AllocNone

or AllocAll.

The XCreateColormap function creates a colormap of the specified visual

type for the screen on which the specified window resides and returns the
colormap ID associated with it. Note that the specified window is only used

to determine the screen.

The initial values of the colormap entries are undefined for the visual

classes GrayScale, PseudoColor, and DirectColor. For Static­

Gray, StaticColor, and TrueColor, the entries have defined values, but

those values are specific to the visual and are not defined by X. For
Sta ticGray, StaticColor, and TrueColor, alloc must be AllocNone, or a

BadMa tch error results. For the other visual classes, if alloc is AllocNone,

the color map initially has no allocated entries, and clients can allocate them.

For information about the visual types, see section 3.l.
If alloc is AllocAll, the entire colormap is allocated writable. The initial

values of all allocated entries are undefined. For GrayScale and

PseudoColor, the effect is as if an XAllocColorCells call returned all

pixel values from zero to N - 1, where N is the colormap entries value in the

specified visual. For DirectColor, the effect is as if an XAlloc­

ColorPlanes call returned a pixel value of zero and red_mask,
green_mask, and blue_mask values containing the same bits as the corre­

sponding masks in the specified visual. However, in all cases, none of these

entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue,

and BadWindow errors.

Chapter 5. Graphics Resource Functions 83

To create a new colormap when the allocation out of a previously shared

colormap has failed because of resource exhaustion, use XCopy­

ColormapAndFree.

Colormap XCopyColormapAndFree(display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.
L colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same vis­

ual type and for the same screen as the specified colormap and returns the
new colormap ID. It also moves all of the client's existing allocation from the

specified colormap to the new colormap with their color values intact and

their read-only or writable characteristics intact and frees those entries in the

specified colormap. Color values in other entries in the new colormap are
undefined. If the specified colormap was created by the client with alloc set

to AllocAll, the new colormap is also created with AllocAll, all color val­

ues for all entries are copied from the specified colormap, and then all en­

tries in the specified colormap are freed. If the specified colormap was not
created by the client with AllocAll, the allocations to be moved are all

those pixels and planes that have been allocated by the client using

XAllocColor, XAllocNamedColor, XAllocColorCells, or XAlloc­

ColorPlanes and that have not been freed since they were allocated.
XCopyColormapAndFree can generate BadAlloc and BadColor

errors.

To set the colormap of a given window, use XSetWindowColormap.

XSetWindowColormap(display, w, colormap)
Display *display;
Window w;

Colormap colormap;
display Specifies the connection to the X server.
w Specifies the window.

L colormap Specifies the colormap.

The XSetWindowColormap function sets the specified color map of the
specified window. The colormap must have the same visual type as the win­

dow, or a BadMa tch error results.

84 XLIB

XSetWindowColormap can generate BadColor, BadMatch, and
BadWindow errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap(display, colormap)

Display *display;

Colormap colormap;

display Specifies the connection to the X server.
L colormap Specifies the colormap that you want to destroy.

5.1.2

The XFreeColormap function deletes the association between the
colormap resource ID and the colormap and frees the colormap storage.
However, this function has no effect on the default colormap for a screen. If

the specified colormap is an installed map for a screen, it is uninstalled (see
XUninstallColormap). If the specified colormap is defined as the
colormap for a window (by XCreateWindow, XSetWindowColormap, or
XChangeWindowAttributes), XFreeColormap changes the colormap
associated with the window to None and generates a ColormapNotify

event. X does not define the colors displayed for a window with a color map
of None.

XFreeColormap can generate a BadColor error.

Allocating, Modifying, and Freeing Color Cells
There are two ways of allocating color cells: explicitly as read-only entries by
pixel value or read/write, where you can allocate a number of color cells and
planes simultaneously. The read/write cells you allocate do not have defined

colors until set with XStoreColor or XStoreColors.

To determine the color names, the X server uses a color database. Al­
though you can change the values in a read/write color cell that is allocated
by another application, this is considered "antisocial" behavior.

To allocate a read-only color cell, use XAllocColor.

Status XAllocColor(display, colormap, screen_in_out)

Display *display;

Colormap colormap;
XColor *screen_in_out;

Chapter 5. Graphics Resource Functions 85

display Specifies the connection to the X server.
colormap Specifies the colormap.

L screen_in_out Specifies and returns the values actually used in the colormap.

L

The XAllocColor function allocates a read-only colormap entry corre­

sponding to the closest RGB values supported by the hardware.
XAllocColor returns the pixel value of the color closest to the specified
RGB elements supported by the hardware and returns the RGB values actu­

ally used. The corresponding colormap cell is read-only. In addition,
XAllocColor returns nonzero if it succeeded or zero ifit failed. Read-only
colormap cells are shared among clients. When the last client de allocates a
shared cell, it is deallocated. XAllocColor does not use or affect the flags
in the XColor structure.

XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color sup­

ported by the hardware, use XAllocNarnedColor.

Status XAllocNamedColor(display, colormap, color_name, screen_del_return,
exact_del_return)

Display *display;
Colormap colormap;
char *color _name;
XColor *screen_del_return, * exacLdel_return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color

screen_del_return
exact_del_return

definition structure you want returned.
Returns the closest RGB values provided by the hardware.
Returns the exact RGB values.

The XAllocNarnedColor function looks up the named color with respect
to the screen that is associated with the specified colormap. It returns both

the exact database definition and the closest color supported by the screen.
The allocated color cell is read-only. You should use the ISO Latin-l encod­

ing; uppercase and lowercase do not matter.
XAllocNarnedColor can generate a BadColor error.

86 XLIB

L

To look up the name of a color, use XLookupColor.

Status XLookupColor(display, colormap, color_name, exact_del_return,
screen_del_return)

Display *display;
Colormap colormap;
char *color _name;
XColor *exacLdel_return, *screenJel_return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color

exactJel _return
screen_del_return

definition structure you want returned.
Returns the exact RGB values.
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with re­
spect to the screen associated with the specified colormap. It returns both
the exact color values and the closest values provided by the screen with re­

spect to the visual type of the specified colormap. You should use the ISO
Latin-l encoding; uppercase and lowercase do not matter. XLookupColor

returns nonzero if the name existed in the color database or zero if it did not
exist.

To allocate read/write color cell and color plane combinations for a
PseudoColor model, use XAllocColorCells.

Example Allocation, 8 Bits/Pixel

3 Pixels 2 Planes

Returned by XAliocColorCelis
You Own These 12 Pixel Values

After Allocation

Figure 5.1. Request of 3 cells and two planes

Chapter 5. Graphics Resource Functions 87

L

Status XAllocColorCells(display, colormap, contig, plane_masks_return, nplanes,

pixels_return, npixels)
Display *display;
Colormap colormap;
Bool contig;

unsigned long plane_masks_return[];
unsigned int nplanes;
unsigned long pixels_return[];
unsigned int npixels;

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the planes

must be contiguous.
plane_mask_return Returns an array of plane masks.
nplanes Specifies the number of plane masks that are to be returned

pixels_return

npixels

in the plane masks array.
Returns an array of pixel values.
Specifies the number of pixel values that are to be returned
in the pixels_return array.

The XAllocColorCells function allocates read/write color cells. The
number of colors must be positive and the number of planes nonnegative, or

a Bad Val ue error results. If ncolors and nplanes are requested, then

ncolors pixels and nplane plane masks are returned. No mask will have any

bits set to 1 in common with any other mask or with any of the pixels. By
ORing together each pixel with zero or more masks, ncolors * 2nplanes dis­

tinct pixels can be produced. All of these are allocated writable by the re­

quest. For GrayScale or PseudoColor, each mask has exactly one bit set

to 1. For DirectColor, each has exactly three bits set to 1. If contig is

True and if all masks are ORed together, a single contiguous set of bits set

to 1 will be formed for GrayScale or PseudoColor and three contiguous

sets of bits set to 1 (one within each pixel subfield) for DirectColor. The

RGB values of the allocated entries are undefined. XAllocColorCells re­

turns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadColor and Bad Value errors.

To allocate read/write color resources for a DirectColor model, use

XAllocColorPlanes.

88 XLIB

I Status XAllocColorPlanes(display, eolormap, eontig, pixels_return, neolors, nreds,
ngreens, nblues, rmask_return, gmask_return, bmask_return)

Display *display;

Colormap eolormap;
Bool contig;
unsigned long pixels_return[];

int neolors;
int nreds, ngreens, nblues;
unsigned long *rmask_return, *gmasLreturn, *bmask_return;

display Specifies the connection to the X server.
eolormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the planes must be

contiguous.
pixels_return Returns an array of pixel values. XAllocColorPlanes returns the

pixel values in this array.
neolors Specifies the number of pixel values that are to be returned in the

pixels_return array.
nreds
ngreens

nblues

rmask_return
gmask_return

Specify the number of red, green, and blue planes. The value you
pass must be nonnegative.

L bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must

be nonnegative, or a BadValue error results. Ifncolors colors, nreds reds,

ngreens greens, and nblues blues are requested, ncolors pixels are returned;

and the masks have nreds, ngreens, and nblues bits set to 1, respectively. If

contig is True, each mask will have a contiguous set of bits set to 1. No mask

will have any bits set to 1 in common with any other mask or with any of the

pixels. For DirectColor, each mask will lie within the corresponding pixel

subfield. By ORing together subsets of masks with each pixel value,
ncolors * 2(nreds +ngreens + nblues) distinct pixel values can be produced. All of

these are allocated by the request. However, in the colormap, there are only
ncolors * 2 nreds independent red entries, ncolors * 2ngreens independent green

entries, and ncolors * 2nblues independent blue entries. This is true even for

PseudoColor. When the colormap entry of a pixel value is changed (using
XStoreColors, XStoreColor, or XStoreNamedColor), the pixel is de­

composed according to the masks, and the corresponding independent en-

Chapter 5. Graphics Resource Functions 89

tries are updated. XAllocColorPlanes returns nonzero ifit succeeded or

zero if it failed.

XAllocColorPlanes can generate BadColor and BadValue errors.

To store RGB values into colormap cells, use XStoreColors.

XStoreColors(display, colormap, color, ncolors)
Display *display;
Colormap colormap;
XColor color[];
int ncolors;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies an array of color definition structures to be stored.

L ncolors Specifies the number of XColor structures in the color definition array.

The xStoreColors function changes the colormap entries of the pixel val­

ues specified in the pixel members of the XColor structures. You specify

which color components are to be changed by setting DoRed, DoGreen,

and/or DoBlue in the flags member of the XColor structures. If the

colormap is an installed map for its screen, the changes are visible immedi­

ately. XStoreColors changes the specified pixels if they are allocated writ­

able in the colormap by any client, even if one or more pixels generates an

error. If a specified pixel is not a valid index into the colormap, a Bad Val ue

error results. If a specified pixel either is unallocated or is allocated read­

only, a BadAccess error results. If more than one pixel is in error, the one

that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue

errors.

To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor(display, colormap, color)
Display *display;
Colormap colormap;
XColor *color;

display Specifies the connection to the X server.
colormap Specifies the colormap.

L color Specifies the pixel and RGB values.

90 XLIB

The XStoreColor function changes the colormap entry of the pixel value

specified in the pixel member of the XColor structure. You specified this
value in the pixel member of the XColor structure. This pixel value must be

a read/write cell and a valid index into the colormap. If a specified pixel is

not a valid index into the colormap, a Bad Val ue error results.

XStoreColor also changes the red, green, and/or blue color components.

You specify which color components are to be changed by setting Do Red,

DoGreen, and/or DoBlue in the flags member of the XColor structure. If

the colormap is an installed map for its screen, the changes are visible imme­

diately.

XStoreColor can generate BadAccess, BadColor, and BadValue

errors.

To set the color of a pixel to a named color, use XStoreNarnedColor.

XStoreNamedColor(display, colormap, color, pixel, flags)
Display *display;
Colormap colormap;
char *color;
unsigned long pixel;
intflags;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.

L flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect

to the screen associated with the colormap and stores the result in the speci­
fied colormap. The pixel argument determines the entry in the colormap.

The flags argument determines which of the red, green, and blue compo­

nents are set. You can set this member to the bitwise inclusive OR of the bits

DoRed, DoGreen, and DoBlue. If the specified pixel is not a valid index into

the colormap, a BadValue error results. If the specified pixel either is

unallocated or is allocated read-only, a Bad Access error results. You

should use the ISO Latin-l encoding; uppercase and lowercase do not mat­
ter.

Chapter 5. Graphics Resource Functions 91

XStoreNamedColor can generate BadAccess, BadColor, BadName,

and Bad Val ue errors.

To free colormap cells, use XFreeColors.

XFreeColors(display, colormap, pixel~, npixels, planes)
Display *display;
Colormap colormap;
unsigned long pixels[];
int npixels;
unsigned long planes;

display Specifies the connection to the X server.
colormap Specifies the colormap.
pixels Specifies an array of pixel values that map to the cells in the specified

colormap.
npixels Specifies the number of pixels. L planes Specifies the planes you want to free.

5.1.3

The XFreeColors function frees the cells represented by pixels whose val­

ues are in the pixels array. The planes argument should not have any bits set

to 1 in common with any of the pixels. The set of all pixels is produced by

ORing together subsets of the planes' argument with the pixels. The request
frees all of these pixels that were allocated by the client (using XAlloc­

Color, XAllocNamedColor, XAllocColorCells, and XAllocColor­

Planes). Note that freeing an individual pixel obtained from

XAllocColorP lanes may not actually allow it to be reused until all of its

related pixels are also freed.
All specified pixels that are allocated by the client in the colormap are

freed, even if one or more pixels produce an error. If a specified pixel is not
a valid index into the colormap, a Bad Val ue error results. If a specified

pixel is not allocated by the client (that is, is unallocated or is only allocated
by another client), a BadAccess error results. If more than one pixel is in

error, the one that gets reported is arbitrary.
XFreeColors can generate BadAccess, BadColor, and BadValue er­

rors.

Reading Entries in a Colormap
The XQueryColor and XQueryColors functions return the RGB values

stored in the specified colormap for the pixel value you pass in the pixel

92 XLIB

L

member of the XColor structure(s). The values returned for an unallocated
entry are undefined. These functions also set the flags member in the
XColor structure to all three colors. If a pixel is not a valid index into the

specified colormap, a BadValue error results. If more than one pixel is in

error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use

XQueryColor.

X QueryColor(display, colormap, def_in_out)

Display *display;

Colormap colormap;
XColor *def_in_out;

display Specifies the connection to the X server.
colormap Specifies the colormap.
def_in_out Specifies and returns the RGB values for the pixel specified in the

structure.

The XQueryColor function returns the RGB values for each pixel in the
XColor structures and sets the DoRed, DoGreen, and DoBlue flags.

XQueryColor can generate BadColor and Bad Value errors.

To query the RGB values of an array of pixels stored in color structures,

use XQueryColors.

XQueryColors(display, colormap, defs_in_out, ncolors)

Display *display;

Colormap colormap;
XColor defs_in_out[];

int ncolors;

display Specifies the connection to the X server.
colormap Specifies the colormap.
defs_in_out Specifies and returns an array of color definition structures for the

pixel specified in the structure.
ncolors Specifies the number of XColor structures in the color definition

array.

The XQueryColors function returns the RGB values for each pixel in the

XColor structures and sets the Do Red, DoGreen, and DoBlue flags.
XQueryColors can generate BadColor and BadValue errors.

Chapter 5. Graphics Resource Functions 93

5.2 Creating and Freeing Pixmaps

L

Pixmaps can only be used on the screen on which they were created.
Pixmaps are off-screen resources that are used for various operations, for

example, defining cursors as tiling patterns or as the source for certain raster

operations. Most graphics requests can operate either on a window or on a

pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap(display, d, width, height, depth)

Display *display;

Drawable d;
unsigned int width, height;

unsigned int depth;

display Specifies the connection to the X server.
d Specifies which screen the pixmap is created on.
width

height Specify the width and height, which define the dimensions of the
pixmap.

depth Specifies the depth of the pixmap.

The XCrea tePixmap function creates a pixmap of the width, height, and

depth you specified and returns a pixmap ID that identifies it. It is valid to

pass an InputOnly window to the drawable argument. The width and
height arguments must be nonzero, or a BadValue error results. The depth

argument must be one of the depths supported by the screen of the specified

drawable, or a Bad Val ue error results.

The server uses the drawable argument to determine on which screen to

create the pixmap. The pixmap can be used only on this screen and only

with other drawables of the same depth (see XCopyPlane for an exception

to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and Bad­

Value errors.

To free all storage associated with a specified plxmap, use

XFreeP ixmap.

XFreePixmap(display, pixmap)

Display *display;

Pixmap pixmap;

94 XLIB

display Specifies the connection to the X server.
L pixmap Specifies the pixmap.

The XFreeP ixmap function first deletes the association between the

pixmap ID and the pixmap. Then, the X server frees the pixmap storage

when there are no references to it. The pixmap should never be referenced
agam.

XFreePixmap can generate a BadPixmap error.

5.3 Manipulating Graphics Context/State
Most attributes of graphics operations are stored in Graphic Contexts (GCs).

These include line width, line style, plane mask, foreground, background,

tile, stipple, clipping region, end style, join style, and so on. Graphics opera­

tions (for example, drawing lines) use these values to determine the actual

drawing operation. Extensions to X may add additional components to GCs.

The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not

resource IDs to allow Xlib to implement the transparent coalescing of

changes to GCs. For example, a call to XSetForeground of a GC followed
by a call to XSetLineAttributes results in only a single-change GC pro­

tocol request to the server. GCs are neither expected nor encouraged to be

shared between client applications, so this write-back caching should present

no problems. Applications cannot share GCs without external synchroniza­

tion. Therefore, sharing GCs between applications is highly discouraged.
To set an attribute of a GC, set the appropriate member of the

XGCValues structure and OR in the corresponding value bitmask in your
subsequent calls to XCrea teGC. The symbols for the value mask bits and the

XGCVal ues structure are:

/* GC attribute value mask bits */

#defineGCFunction
#define GCP laneMask
#define GCForeground
#define GCBackground
#define GCLineWidth
#define GCLineStyle
#define GCCapStyle
#define GCJoinStyle
#define GCFillStyle

(IL«O)
(IL«I)
(IL«2)
(IL«3)
(IL«4)
(lL«5)
(IL«6)
(IL«7)
(IL«8)

Chapter 5. Graphics Resource Functions

#define GCFillRule

#define GCTile

#define GCStipple

#define GCTileStipXOrigin

#define GCTileStipYOrigin

#define GCFont

#define GCSubwindowMode

#define GCGraphicsExposures

#define GCClipXOrigin

#define GCClipYOrigin

#define GCClipMask

#define GCDashOffset

#define GCDashList

#define GCArcMode

1* Values *1
typedef struct {

int function;
unsigned long planeJIlask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;

int cap_style;

int join_style;

int filLrule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x-origin;
int ts_y_origin;
Font font;
int subwindow_mode;

Bool graphics_exposures;

(IL«9)
(IL«IO)
(lL«ll)
(lL«12)
(lL«13)
(lL«14)
(lL«15)
(lL«16)
(lL« 17)
(lL«18)
(lL«19)
(lL«20)
(lL«21)
(lL«22)

1* logical operation *1
1* plane mask *1
1* foreground pixel */

1* background pixel */
/* line width (in pixels) *1
~ LineSolid, LineOnOffDash,

LineDoubleDash ~

~ CapNotLast, CapButt, Cap Round,

CapProj ecting *1
~ JoinMiter, JoinRound,

JoinBevel *1
/* FillSolid, FillTiled,

FillStippled,

FillOpaqueStippled*1

1* EvenOddRule, WindingRule *1
1* ArcChord, ArcPieSlice *1
1* tile pixmap for tiling operations *1

95

1* stipple 1 plane pixmap for stippling *1
1* offset for tile or stipple operations *1

1* default text font for text operations */
1* ClipByChildren,

IncludeInferiors */

1* boolean, should exposures be
generated *1

96 XLIB

int clip-x-origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

L } XGCValues;

/* origin for clipping */

/* bitmap clipping; other calls for rects */

/* patterned/dashed line information */

The default GC values are:

Component

function
plane_mask
foreground
background
line_width
line_style
cap_style
join_style
filLstyle
filLrule
arc_mode
tile

stipple
ts_x-origin
ts_y_origin
font
subwindow_mode
graphics_exposures
clip-x-origin
cli p_ y _origin
clip_mask
dash_offset
dashes

Default

GXcopy
All ones
o

o
LineSolid
CapButt
JoinMiter

FillSolid
EvenOddRule
ArcPieSlice
Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this
pixmap)
Pixmap of unspecified size filled with ones
o
o
<implementation dependent>
ClipByChildren

True

o
o
None
o
4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be
useful in a window.

The function attributes of a GC are used when you update a section of a

drawable (the destination) with bits from somewhere else (the source). The

Chapter 5. Graphics Resource Functions 97

function in a GC defines how the new destination bits are to be computed
from the source bits and the old destination bits. GXcopy is typically the
most useful because it will work on a color display, but special applications
may use other functions, particularly in concert with particular planes of a
color display. The 16 GC functions, defined in <X11/x. h>, are:

Function Name Hex Code OPeration

GXclear OxO 0
GXand Oxl src AND dst
GXandReverse Ox2 src AND NOT dst
GXcopy Ox3 src
GXandlnverted Ox4 (NOT src) AND dst
GXnoop OxS dst
GXxor Ox6 src XOR dst
GXor Ox7 src OR dst
GXnor Ox8 (NOT src) AND (NOT dst)
GXequiv Ox9 (NOT src) XOR dst
GXinvert Oxa NOT dst
GXorReverse Oxb src OR (NOT dst)
GXcopylnverted Oxc NOT src
GXorlnverted Oxd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC.
The planes attribute is of type long, and it specifies which planes of the desti­

nation are to be modified, one bit per plane. A monochrome display has only

one plane and will be the least-significant bit of the word. As planes are
added to the display hardware, they will occupy more significant bits in the

plane mask.
In graphics operations, given a source and destination pixel, the result is

computed bitwise on corresponding bits of the pixels. That is, a Boolean op­
eration is performed in each bit plane. The plane_mask restricts the opera­

tion to a subset of planes. A macro constant AIIPlanes can be used to refer

to all planes of the screen simultaneously. The result is computed by the fol­
lowing:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

98 XLIB

Source Destination
Pixel Pixel

Plane Mask

Function

Graphics
Context

New
Destination

Pixel

I =One Bit

D = Zero Bit

Figure 5.2. Example graphics operation using function and plane mask (4
bits/pixel)

Range checking is not performed on the values for foreground, back­
ground, or plane_mask. They are simply truncated to the appropriate num­

ber of bits. The line-width is measured in pixels and either can be greater
than or equal to one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics re­

quest. Unless otherwise specified by the join-style or cap-style, the bounding

box of a wide line with endpoints [xl, y 1], [x2, y2] and width w is a rectangle
with vertices at the following real coordinates:

[xI- (w*sn/2), yl + (w*cs/2)], [xl + (w*sn/2), yI- (w*cs/2)],

[x2 - (w*sn/2), y2 + (w*cs/2)], [x2 + (w*sn/2), y2 - (w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle

of the line. A pixel is part of the line and so is drawn if the center of the pixel

is fully inside the bounding box (which is viewed as having infinitely thin

edges). If the center of the pixel is exactly on the bounding box, it is part of

the line if and only if the interior is immediately to its right (x increasing di­

rection). Pixels with centers on a horizontal edge are a special case and are

part of the line if and only if the interior or the boundary is immediately

below (y increasing direction) and the interior or the boundary is immedi­

ately to the right (x increasing direction).

Chapter 5. Graphics Resource Functions 99

Thin lines (zero line-width) are one-pixel-wide lines drawn using an un­
specified, device-dependent algorithm. There are only two constraints on
this algorithm.

1. If a line is drawn unclipped from [xl,yl] to [x2,y2] and if another line is drawn
unclipped from [xl+dx,yl+dy] to [x2+dx,y2+dy], a point [x,y] is touched by
drawing the first line if and only if the point [x + dx,y + dy] is touched by drawing
the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [xl,yl] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [xl,yl], not counting cap-style and join-style.
It is recommended that this property be true for thin lines, but this is not re­

quired. A line-width of zero may differ from a line-width of one in which
pixels are drawn. This permits the use of many manufacturers' line drawing

hardware, which may run many times faster than the more precisely speci­
fied wide lines.

In general, drawing a thin line will be faster than drawing a wide line of
width one. However, because of their different drawing algorithms, thin

lines may not mix well aesthetically with wide lines. If it is desirable to obtain
precise and uniform results across all displays, a client should always use a
line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid
LineDoubleDash

LineOnOffDash

The full path of the line is drawn.
The full path of the line is drawn, but the even dashes
are filled differently than the odd dashes (see fill-style)
with CapButt style used where even and odd dashes meet.
Only the even dashes are drawn, and cap-style applies to
all internal ends of the individual dashes, except
CapNotLast is treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast

CapButt

This is equivalent to Cap But t except that for a
line-width of zero the final end-point is not drawn.
The line is square at the endpoint (perpendicular to the
slope of the line) with no projection beyond.

100 XLIB

Cap Round

CapProjecting

The line has a circular arc with the diameter equal to
the line-width, centered on the endpoint. (This is
equivalent to CapButt for line-width of zero.)
The line is square at the end, but the path continues
beyond the endpoint for a distance equal to half the
line-width. (This is equivalent to CapButt for line-width
of zero.)

The join-style defines how corners are drawn for wide lines:

JoinMiter

JoinRound

JoinBevel

The outer edges of two lines extend to meet at an angle.
However, if the angle is less than 11 degrees, then a
J 0 i n B eve 1 join -style is used instead.
The corner is a circular arc with the diameter equal to
the line-width, centered on the join point.
The corner has CapButt endpoint styles with the
triangular notch filled.

For a line with coincident endpoints (xl =x2, yl =y2), when the cap-style is
applied to both endpoints, the semantics depends on the line-width and the
cap-style:

CapNotLast

CapButt

Butt Cap
Miter Join

thin The results are device-dependent, but the
desired effect is that nothing is drawn.

thin The results are device-dependent, but the

Projecting Cap Round Cap
Bevel Join Round Join

Figure 5.3. Wide line cap and join styles

Chapter 5. Graphics Resource Functions

CapRound thin

CapProjecting thin
CapButt wide
CapRound wide

CapProjecting wide

101

desired effect is that a single pixel is drawn.
The results are the same as for
capButt/thin.
The results are the same as for But t/thin.
Nothing is drawn.
The closed path is a circle, centered at the
endpoint, and with the diameter equal to the
line-width.
The closed path is a square, aligned with the
coordinate axes, centered at the endpoint,
and with the sides equal to the line-width.

For a line with coincident endpoints (xl = x2, y1 = y2), when the join-style is

applied at one or both endpoints, the effect is as if the line was removed

from the overall path. However, if the total path consists of or is reduced to

a single point joined with itself, the effect is the same as when the cap-style
is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of

whatever destination drawable is specified in a graphics request. The tile

pixmap must have the same root and depth as the GC, or a BadMa tch error

results. The stipple pixmap must have depth one and must have the same

root as the GC, or a BadMa tch error results. For stipple operations where

the fill-style is FillStippled but not FillOpaqueStippled, the stipple

pattern is tiled in a single plane and acts as an additional clip mask to be

ANDed with the clip-mask. Although some sizes may be faster to use than

others, any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill re­

quests. For all text and fill requests (for example, XDrawText, XDraw­

Text16, XFillRectangle, XFillPolygon, and XFillArc); for line re­

quests with line-style LineSolid (for example, XDrawLine, XDraw­

Segments, XDrawRectangle, XDrawArc); and for the even dashes for

line requests with line-style LineOnOffDash or LineDoubleDash,

the following apply:

FillSolid
FillTiled

Foreground
Tile

102 XLIB

FillOpaqueStippled

FillStippled

A tile with the same width and height as stipple,
but with background everywhere stipple has a zero
and with foreground everywhere stipple has a one
Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are
controlled by the fill-style in the following manner:

FillSolid

FillTiled

FillOpaqueStippled
FillStippled

Background
Same as for even dashes
Same as for even dashes
Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made.
If the pixmap is later used as the destination for a graphics request, the

change might or might not be reflected in the GC. If the pix map is used si­
multaneously in a graphics request both as a destination and as a tile or stip­
ple, the results are undefined.

For optimum performance, you should draw as much as possible with the
same GC (without changing its components). The costs of changing GC com­
ponents relative to using different GCs depend upon the display hardware
and the server implementation. It is quite likely that some amount of GC in­
formation will be cached in display hardware and that such hardware can

only cache a small number of GCs.
The dashes value is actually a simplified form of the more general patterns

that can be set with XSetDashes. Specifying a value of N is equivalent to
specifying the two-element list [N, N] in XSetDashes. The value must be
nonzero, or a Bad Val ue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask
is set to a pixmap, it must have depth one and have the same root as the GC,
or a BadMatch error results. If clip-mask is set to None, the pixels are always
drawn regardless of the clip origin. The clip-mask also can be set by calling

the XSetClipRectangles or XSetRegion functions. Only pixels where
the clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the
area covered by the clip-mask or where the clip-mask has a bit set to O. The

clip-mask affects all graphics requests. The clip-mask does not clip sources.
The clip-mask origin is interpreted relative to the origin of whatever destina­
tion drawable is specified in a graphics request.

Chapter 5. Graphics Resource Functions 103

You can set the subwindow-mode to ClipByChildren or Include­

Inferiors. For ClipByChildren, both source and destination windows
are additionally clipped by all viewable I npu tOu tpu t children. For

IncludeInferiors, neither source nor destination window is clipped by
inferiors. This will result in including subwindow contents in the source and

drawing through subwindow boundaries of the destination. The use of
IncludeInferiors on a window of one depth with mapped inferiors of

differing depth is not illegal, but the semantics are undefined by the core

protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in
XFillPolygon requests and can be set to EvenOddRule or Winding­

Rule. For EvenOddRule, a point is inside if an infinite ray with the point as

origin crosses the path an odd number of times. For WindingRule, a point

is inside if an infinite ray with the point as origin crosses an unequal number
of clockwise and counterclockwise directed path segments. A clockwise di­

rected path segment is one that crosses the ray from left to right as observed

from the point. A counterclockwise segment is one that crosses the ray from

right to left as observed from the point. The case where a directed line seg­
ment is coincident with the ray is uninteresting because you can simply

choose a different ray that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small,

and the path is an infinitely thin line. A pixel is inside if the center point of

the pixel is inside and the center point is not on the boundary. If the center

point is on the boundary, the pixel is inside if and only if the polygon inte­

rior is immediately to its right (x increasing direction). Pixels with centers on

a horizontal edge are a special case and are inside if and only if the polygon
interior is immediately below (y increasing direction).

Polygon Before Fill Even Odd Rule Winding Rule

Figure 5.4. Fill rule

104 XLIB

L

Pie Slice Chord

Figure 5.5. Arc mode

The arc-mode controls filling in the XF illArcs function and can be set

to ArcPieSlice or ArcChord. For ArcPieSlice, the arcs are pie-slice

filled. For ArcChord, the arcs are chord filled.
The graphics-exposure flag controls GraphicsExpose event generation

for XCopyArea and XCopyPlane requests (and any similar requests de­

fined by extensions).

To create a new GC that is usable on a given screen with a depth of draw­
able, use XCrea teGC.

GC XCreateGC(display, d, valuemask, values)

Display *display;

Drawable d;
unsigned long valuemask;

XGCValues *values;

display Specifies the connection to the X server.
d Specifies the drawable.
valuemask Specifies which components in the GC are to be set using the

information in the specified values structure. This argument is the
bitwise inclusive OR of one or more of the valid GC component mask
bits.

values Specifies any values as specified by the valuemask.

The XCrea teGC function creates a graphics context and returns a GC. The

GC can be used with any destination drawable having the same root and

depth as the specified drawable. Use with other drawables results in a

BadMa tch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont,

BadMa tch, BadPixmap, and Bad Value errors.

Chapter 5. Graphics Resource Functions 105

To copy components from a source GC to a destination GC, use

XCopyGC.

XCopyGC(display, src, valuemask, dest)

Display *display;

GC src, dest;

unsigned long valuemask;

display Specifies the connection to the X server.
src Specifies the components of the source GC.
valuemask Specifies which components in the GC are to be copied to the

destination GC. This argument is the bitwise inclusive OR of one or
more of the valid GC component mask bits.

L dest Specifies the destination GC.

L

The XCopyGC function copies the specified components from the source GC
to the destination GC. The source and destination GCs must have the same
root and depth, or a BadMa tch error results. The value mask specifies which

component to copy, as for XCrea teGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC(display, gc, valuemask, values)

Display *display;

GC gc;

unsigned long valuemask;

XGCValues *values;

display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be changed using

information in the specified values structure. This argument is the
bitwise inclusive OR of one or more of the valid GC component mask
bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask

for the specified GC. The values argument contains the values to be set. The

values and restrictions are the same as for XCrea teGC. Changing the clip­

mask overrides any previous XSetClipRectangles request on the con­

text. Changing the dash-offset or dash-list overrides any previous

XSetDashes request on the context. The order in which components are

106 XLIB

verified and altered is server-dependent. If an error is generated, a subset of
the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch,

BadPixmap, and BadValue errors.

To free a given GC, use XFreeGC.

XFreeGC(display, gc)
Display *display;
GCgc;

display Specifies the connection to the X server.
L gc Specifies the GC.

I

L
5.4

5.4.1

The XFreeGC function destroys the specified graphics context as well as all
the associated storage that was created by Xlib.

XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a gIVen GC, use
XGCon textFromGC.

GContext XGContextFromGC(gc)
GCgc;

gc Specifies the GC for which you want the resource ID.

Using GC Convenience Routines
This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

Setting the Foreground, Background, Function, or Plane Mask
To set the foreground, background, plane mask, and function components
for a given GC, use XSetState.

Chapter 5. Graphics Resource Functions

XSetState(display, gc, foreground, background, function, plane_mask)

Display *display;
GC gc;

unsigned long foreground, background;

int function;

unsigned long plane_mask;
display Specifies the connection to the X server.
gc Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
function Specifies the function you want to set for the specified GC. L plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGe, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

XSetForeground(display, gc, foreground)

Display *display;

GC gc;

unsigned long foreground;

display Specifies the connection to the X server.
gc Specifies the GC.

L foreground Specifies the foreground you want to set for the specified GC.

L

XSetForeground can generate BadAlloc and BadGe errors.

To set the background of a given GC, use XSetBackground.

XSetBackground(display, gc, background)

Display *display;

GC gc;

unsigned long background;

display Specifies the connection to the X server.
gc Specifies the GC.
background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGe errors.

To set the display function in a given GC, use XSetFunction.

XSetFunction(display, gc, function)

Display *display;

107

108 XLIB

GCgc;
int function;

display Specifies the connection to the X server.
gc Specifies the GC.

L function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSetp laneMask.

XSetPlaneMask(display, gc, plane_mask)
Display *display;
GCgc;
unsigned long plane_mask;

display Specifies the connection to the X server.
gc Specifies the GC.

L plane_mask Specifies the plane mask.

5.4.2

L

XSetPlaneMask can generate BadAlloc and BadGC errors.

Setting the Line Attributes and Dashes
To set the line drawing components of a gIven GC, use XSetLine­

Attributes.

XSetLineAttributes(display, gc, line_width, line-style, cap-style, join-style)
Display *display;
GC gc;
unsigned int line_width;
int line-style;
int cap-style;
int join-style;

display Specifies the connection to the X server.
gc Specifies the GC.
line_width Specifies the line-width you want to set for the specified GC.
line-style Specifies the line-style you want to set for the specified GC. You can

cap-style

join-style

pass LineSolid, LineOnOffDash, or LineDoubleDash.
Specifies the line-style and cap-style you want to set for the specified
GC. You can pass CapNotLast, CapButt, CapRound, or
CapProjecting.
Specifies the line join-style you want to set for the specified GC. You
can pass JoinMi ter, JoinRound, or JoinBevel.

Chapter 5. Graphics Resource Functions 109

L

XSetLineAttributes can generate BadAlloc, BadGe, and BadValue

errors.

To set the dash-offset and dash-list for dashed line styles of a given GC,
use XSetDashes.

XSetDashes(display, gc, dash_offset, dash_list, n)

Display *display;

CC gc;
int dash_offset;

char dash_list[];

int n;

display Specifies the connection to the X server.
Specifies the CC. gc

dash_offset Specifies the phase of the pattern for the dashed line-style you want
to set for the specified CC.

n

Specifies the dash-list for the dashed line-style you want to set for the
specified CC.
Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for
dashed line styles in the specified GC. There must be at least one element in
the specified dash_list, or a Bad Val ue error results. The initial and alternat­

ing elements (second, fourth, and so on) of the dash_list are the even dashes,

and the others are the odd dashes. Each element specifies a dash length in
pixels. All of the elements must be nonzero, or a BadValue error results.

Specifying an odd-length list is equivalent to specifying the same list concate­
nated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many

CI c:::t c:::t c::::::t c:::==:t a c:::t c:::t c::::::t c:::===-o ...
o If =-Gil c::::::::a =:::t c::::I c:::I c::I c:::::::a =:::t cO

~ c::::t =-c:= c::::::t c===:a CI c:::t c:::t c::::::t

Figure 5.6. Dashes: 20 50 40 50 60 50 80 50 160 50

110 XLIB

5.4.3

pixels into the dash-list the pattern should actually begin in any single

graphics request. Dashing is continuous through path elements combined

with ajoin-style but is reset to the dash-offset each time a cap-style is applied

at a line e~dpoint.

The unit of measure for dashes is the same for the ordinary coordinate

system. Ideally, a dash length is measured along the slope of the line, but im­

plementations are only required to match this ideal for horizontal and verti­
cal lines. Failing the ideal semantics, it is suggested that the length be mea­

sured along the major axis of the line. The major axis is defined as the x axis

for lines drawn at an angle of between - 45 and + 45 degrees or between
315 and 225 degrees from the x axis. For all other lines, the major axis is the
yaxiS.

XSetDashes can generate BadAlloc, BadGe, and Bad Val ue errors.

Setting the Fill Style and Fill Rule
To set the fill-style of a given GC, use XSetFillStyle.

I XSetFillStyle(display, gc, fiU-style)

Display *display;

CC gc;
int fiU-style;

display Specifies the connection to the X server.
gc Specifies the CC.

fiU-style Specifies the fill-style you want to set for the specified CC. You can pass
~ FillSolid, FillTiled, FillStippled,orFillOpaqueStippled.

~

XSetFillStyle can generate BadAlloc, BadGe, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, filLrule)

Display *display;

CC gc;
int fill_rule;

display Specifies the connection to the X server.
gc Specifies the ce.
fiU_rule Specifies the fill-rule you want to set for the specified CC. You can pass

EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGe, and BadValue errors.

Chapter 5. Graphics Resource Functions III

5.4.4 Setting the Fill Tile and Stipple
Some displays have hardware support for tiling or stippling with patterns of

specific sizes. Tiling and stippling operations that restrict themselves to those
specific sizes run much faster than such operations with arbitrary size pat­

terns. Xlib provides functions that you can use to determine the best size,

tile, or stipple for the display as well as to set the tile or stipple shape and the

tile or stipple origin.

To obtain the best SIze of a tile, stipple, or cursor, use XQuery­

BestSize.

Status XQueryBestSize(display, class, which-screen, width, height, width_return,
height_return)

Display *display;
int class;
Drawable which-screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.
class Specifies the class that you are interested in. You can pass

which_screen
width
height
width_return

TileShape, CursorShape, or StippleShape.
Specifies any drawable on the screen.

Specify the width and height.

height_return Return the width and height of the object best supported by the
L display hardware.

The XQueryBestS ize function returns the best or closest size to the speci­
fied size. For Curs·orShape, this is the largest size that can be fully displayed

on the screen specified by which_screen. For TileShape, this is the size that

can be tiled fastest. For StippleShape, this is the size that can be stippled

fastest. For CursorShape, the drawable indicates the desired screen. For
TileShape and StippleShape, the drawable indicates the screen and

possibly the window class and depth. An InputOnly window cannot be

used as the drawable for TileShape or StippleShape, or a BadMatch

error results.

XQueryBestSize can generate BadDrawable, BadMatch, and

Bad Val ue errors.

112 XLIB

L

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display, which_screen, width, height, width_return,
height_return)

Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.
which-screen Specifies any drawable on the screen.
width
height
width_return
height_return

Specify the width and height.

Return the width and height of the object best supported by the
display hardware.

The XQueryBestTile function returns the best or closest size, that is, the

size that can be tiled fastest on the screen specified by which_screen. The

drawable indicates the screen and possibly the window class and depth. If an

InputOnly window is used as the drawable, a BadMatch error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display, which_screen, width, height, width_return,
height_return)

Display *display;
Drawable which-screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width
height
width_return

Specify the width and height.

height_return Return the width and height of the object best supported by the
L display hardware.

The XQueryBestStipple function returns the best or closest size, that is,

the size that can be stippled fastest on the screen specified by which_screen.

The drawable indicates the screen and possibly the window class and depth.

If an InputOnly window is used as the drawable, a BadMatch error results.

Chapter 5. Graphics Resource Functions 113

XQueryBestStipple can generate BadDrawable and BadMatch

errors.

To set the fill tile of a given GC, use XSetTile.

XSetTile(display, gc, tile)

Display *display;
GC gc;

Pixmap tile;

display Specifies the connection to the X server.
gc Specifies the GC.

L tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.

XSetTile can generate BadAlloc, BadGC, BadMa tch, and Bad­

Pixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipple(display, gc, stipple)

Display *display;
GCgc;

Pixmap stipple;

display Specifies the connection to the X server.
gc Specifies the Ge.

L stipple Specifies the stipple you want to set for the specified GC.

The stipple and GC must have the same depth, or a BadMa tch error results.
XSetStipple can generate BadAlloc, BadGC, BadMatch, and Bad­

Pixmap errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin(display, gc, ts_x_origin, ts_y_origin)

Display *display;

GC gc;
int ts_x_origin, ts_y_origin;

display Specifies the connection to the X server.
gc Specifies the GC.
ts_x_origin

L ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

114 XLIB

5.4.5

When graphics requests call for tiling or stippling, the parent's origin will be

interpreted relative to whatever destination drawable is specified in the
graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

Setting the Current Font
To set the current font of a given GC, use XSetFont.

I XSetFont(display, gc, font)
Display *display;
GC gc;
Font font;

display Specifies the connection to the X server.
gc Specifies the GC.

L font Specifies the font.

5.4.6

XSetFont can generate BadAlloc, BadFont, and BadGC errors.

Setting the Clip Region
Xlib provides functions that you can use to set the clip-origin and the clip­
mask or set the clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin(display, gc, clip_x_origin, clip_y_origin)

Display *display;
GCgc;
int clip_x_origin, clip_y_origin;

display Specifies the connection to the X server.
gc Specifies the GC.
clip_x_origin

L clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destina­

tion drawable is specified in the graphics request.

XSetClipOrigin can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use
XSetClipMask.

Chapter 5. Graphics Resource Functions 115

I XSetClipMask(display, gc, pixmap)

Display *display;
GC gc;

Pixmap pixmap;

display Specifies the connection to the X server.
gc Specifies the GC.

L pixmap Specifies the pixmap or None.

L

If the clip-mask is set to None, the pixels are are always drawn (regardless

of the clip-origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and
BadValue errors.

To set the clip-mask of a given GC to the specified list of rectangles, use

XSetClipRectangles.

XSetClipRectangles(display, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)

Display *display;

GCgc;
int clip_x_origin, clip_y_origin;

XRectangle rectangles[];

int n;

int ordering;

display Specifies the connection to the X server.
gc Specifies the GC.
clip_x_origin

clip_ y_origin

rectangles

n

ordering

Specify the x and y coordinates of the clip-mask origin.
Specifies an array of rectangles that define the clip-mask.
Specifies the number of rectangles.
Specifies the ordering relations on the rectangles. You can pass
Unsorted, YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified

graphics context to the specified list of rectangles and sets the clip origin.
The output is clipped to remain contained within the rectangles. The clip­

origin is interpreted relative to the origin of whatever destination drawable

is specified in a graphics request. The rectangle coordinates are interpreted

relative to the clip-origin. The rectangles should be nonintersecting, or the

graphics results will be undefined. Note that the list of rectangles can be

empty, which effectively disables output. This is the opposite of passing

116 XLIB

5.4.7

None as the clip-mask In XCreateGC, XChangeGC, and XSet­

ClipMask.

If known by the client, ordering relations on the rectangles can be speci­

fied with the ordering argument. This may provide faster operation by the

server. If an incorrect ordering is specified, the X server may generate a

BadMa tch error, but it is not required to do so. If no error is generated, the
graphics results are undefined. Unsorted means the rectangles are in arbi­

trary order. YSorted means that the rectangles are nondecreasing in their

Y origin. YXSorted additionally constrains YSorted order in that all

rectangles with an equal Y origin are nondecreasing in their X origin.
YXBanded additionally constrains YXSorted by requiring that, for every

possible Y scanline, all rectangles that include that scanline have an identical

Y origins and Yextents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch,

and BadValue errors.
Xlib provides a set of basic functions for performing region arithmetic.

For information about these functions, see chapter 10.

Setting the Arc Mode, Subwindow Mode, and Graphics Exposure

To set the arc mode of a given GC, use XSetArcMode.

I XSetArcMode(display, gc, arc_mode)

Display *display;

GCgc;
int arc_mode;

display Specifies the connection to the X server.
gc Specifies the GC.

L arc_mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(display, gc, subwindow_mode)

Display *display;

GCgc;

int subwindow_mode;

Chapter 5. Graphics Resource Functions 117

L

display

gc

subwindow_mode

Specifies the connection to the X server.
Specifies the CC.
Specifies the subwindow mode. You can pass ClipByChildren

or Includelnferiors.

XSetSubwindowMode can generate BadAlloc, BadGe, and BadValue

errors.

To set the graphics-exposures flag of a given GC, use XSet­

GraphicsExposures.

XSetCraphicsExposures(display, gc, graphics_exposures)

Display *display;

CC gc;

Bool graphics_exposures;

display Specifies the connection to the X server.
gc Specifies the CC.
graphics_exposures Specifies a Boolean value that indicates whether you want

GraphicsExpose and NoExpose events to be reported when
L calling XCopyArea and XCopyPlane with this CC.

XSetGraphicsExposures can generate BadAlloc, BadGe, and Bad­

Value errors.

118

Chapter 6

Graphics Functions

Once you have connected the display to the X server, you can use the Xlib

graphics functions to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

• Draw text

• Transfer images between clients and the server

• Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back

calls to XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and

XFillRectangle. Note that this reduces the total number of requests sent

to the server.

6.1 Clearing Areas
Xlib provides functions that you can use to clear an area or the entire win­

dow. Because pixmaps do not have defined backgrounds, they cannot be

filled by using the functions described in this section. Instead, to accomplish

an analogous operation on a pixmap, you should use XFillRectangle,

which sets the pixmap to a known value.

Chapter 6. Graphics Functions

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display, w, x, y, width, height, exposures)

Display *display;

Window w;

int x, y;

unsigned int width, height;

Bool exposures;

display Specifies the connection to the X server.
w Specifies the window.
x

119

y Specify the x and y coordinates, which are relative to the origin of the
window and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the
rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to be
L generated.

The XClearArea function paints a rectangular area in the specified win­

dow according to the specified dimensions with the window's background
pixel or pixmap. The subwindow-mode effectively is ClipByChildren. If

width is zero, it is replaced with the current width of the window minus x. If

height is zero, it is replaced with the current height of the window minus y.

If the window has a defined background tile, the rectangle clipped by any
children is filled with this tile. If the window has background None, the con­

tents of the window are not changed. In either case, if exposures is True,

one or more Expose events are generated for regions of the rectangle that

are either visible or are being retained in a backing store. If you specify a
window whose class is InputOnly, a BadMa tch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow

errors.

To clear the entire area in a given window, us~ XClearWindow.

XClearWindow(display, w)

Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window.

120 XLIB

The XClearWindow function clears the entire area in the specified window

and is equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the win­

dow has a defined background tile, the rectangle is tiled with a plane-mask

of all ones and GXcopy function. If the window has background None, the

contents of the window are not changed. If you specify a window whose class

is InputOnly, a BadMatch error results.
XClearWindow can generate BadMatch and BadWindow errors.

6.2 Copying Areas
Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use

XCopyArea.

XCopyArea(display, src, dest, gc, src_x, src_y, width, height, desLx, dest_y)

Display *display;

Drawable src, dest;
GC gc;
int src_x, src_y;

unsigned int width, height;

int desLx, desLy;

display Specifies the connection to the X server.
src

dest Specify the source and destination rectangles to be combined.
gc Specifies the Gc.
src_x

src_y Specify the x and y coordinates, which are relative to the origin of the
source rectangle and specify its upper-left corner.

width
height Specify the width and height, which are the dimensions of both the

source and destination rectangles.
desLx

dest_y Specify the x and y coordinates, which are relative to the origin of the
L destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the

specified rectangle of dest. The drawables must have the same root and

depth, or a BadMa tch error results.
If regions of the source rectangle are obscured and have not been retained

in backing store or if regions outside the boundaries of the source drawable

Chapter 6. Graphics Functions 121

L

are specified, those regions are not copied. Instead, the following occurs on

all corresponding destination regions that are either visible or are retained
in backing store. If the destination is a window with a background other than

None, corresponding regions of the destination are tiled with that back­
ground (with plane-mask of all ones and GXcopy function). Regardless of

tiling or whether the destination is a window or a pixmap, if graphics­
exposures is True, then GraphicsExpose events for all corresponding

destination regions are generated. If graphics-exposures is True but no
GraphicsExpose events are generated, a NoExpose event is generated.

Note that by default graphics-exposures is True in new GCs.
This function uses these GC components: function, plane-mask,

subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip­
mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch er­
rors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane(display, src, dest, gc, src_x, src_y, width, height, dest_x, desLy, plane)
Display *display;

Drawable src, dest;
GCgc;
int src_x, src_y;

unsigned int width, height;
int dest_x, dest_y;

unsigned long plane;

display Specifies the connection to the X server.
src
dest

gc
src_x

src_y

width
height

dest_x

dest_y

plane

Specify the source and destination rectangles to be combined.
Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the
source rectangle and specify its upper-left corner.

Specify the width and height, which are the dimensions of both the
source and destination rectangles.

Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.
Specifies the bit plane. You must set exactly one bit to 1.

122 XLIB

The XCopyPlane function uses a single bit plane of the specified source rec­

tangle combined with the specified GC to modify the specified rectangle of

dest. The drawables must have the same root but need not have the same

depth. If the drawables do not have the same root, a BadMatch error

results. If plane does not have exactly one bit set to 1 and the value of plane

must be less that 2n
, where n is the depth of src, a BadValue error

results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectan­

gle of dest and with a size specified by the source region. It uses the

foreground/background pixels in the GC (foreground everywhere the bit
plane in src contains a bit set to 1, background everywhere the bit plane in

src contains a bit set to 0) and the equivalent of a Copy Area protocol request
is performed with all the same exposure semantics. This can also be thought

of as using the specified region of the source bit plane as a stipple with a fill­

style ofFillOpaqueStippled for filling a rectangular area of the destina­

tion.

This function uses these GC components: function, plane-mask, fore­
ground, background, subwindow-mode, graphics-exposures, clip-x-origin,

clip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

6.3 Drawing Points, Lines, Rectangles, and Arcs
Xlib provides functions that you can use to draw:

I

L

• A single point or multiple points

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these struc­
tures:

typedef struct {
short xl, yl, x2, y2;

} XSegment;

Chapter 6. Graphics Functions

I typedef struct {
short x, y;

} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

typedef struct {
short x, y;
unsigned short width, height;
short angle 1, angle2; /* Degrees * 64 */

L }XArc;

123

All x and y members are signed integers. The width and height members are
16-bit unsigned integers. You should be careful not to generate coordinates

and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields

for these values.

6.3.1 Drawing Single and Multiple Points
To draw a single point in a given drawable, use XDrawPoint.

I XDrawPoint(display, d, gc, x, y)
Display *display;
Drawable d;

L

GCgc;
int x, y;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x

y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;

124 XLIB

L

6.3.2

L

int npoints;

int mode;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.
points

npoints

mode

Specifies a pointer to an array of points.
Specifies the number of points in the array.
Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function compo­

nents of the GC to draw a single point into the specified drawable;
XDrawPoints draws multiple points this way. CoordModeOrigin treats all

coordinates as relative to the origin, and CoordModePrevious treats all co­

ordinates after the first as relative to the previous point. XDrawPoints

draws the points in the order listed in the array.
Both functions use these GC components: function, plane-mask, fore­

ground, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.

XDrawPoints can generate BadDrawable, BadGC, BadMatch, and

BadValue errors.

Drawing Single and Multiple Lines
To draw a single line between two points In a given drawable, use

XDrawLine.

XDrawLine(display, d, gc, xl, yl, x2, y2)

Display *display;

Drawable d;
CC gc;
int xl, yl, x2, y2;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the ce.
xl

yl

x2

y2 Specify the points (xl, yl) and (x2, y2) to be connected.

Chapter 6. Graphics Functions 125

L

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
CC gc;
XPoint *points;
int npoints;
int mode;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.
points
npoints
mode

Specifies a pointer to an array of points.
Specifies the number of points in the array.
Specifies the coordinate mode. You can pass CoordModeOrig in or
CoordModePrevious.

To draw multiple, unconnected lines In a gIven drawable, use

XDrawSegrnen ts.

XDrawSegments(display, d, gc, segments, nsegments)
Display *display;
Drawable d;
CCgc;
XSegment *segments;
int nsegments;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.
segments Specifies a pointer to an array of segments.

L nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw
a line between the specified set of points (xl, yl) and (x2, y2). It does not

perform joining at coincident endpoints. For any given line, XDrawLine

does not draw a pixel more than once. If lines intersect, the intersecting

pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to

draw npoints - 1 lines between each pair of points (point[i], point[i + IJ) in
the array of XPoin t structures. It draws the lines in the order listed in the

array. The lines join correctly at all intermediate points, and if the first and

last points coincide, the first and last lines also join correctly. For any given

126 XLIB

6.3.3

line, XDrawLines does not draw a pixel more than once. If thin (zero line­

width) lines intersect, the intersecting pixels are drawn multiple times. If
wide lines intersect, the intersecting pixels are drawn only once, as though

the entire PolyLine protocol request were a single, filled shape.

CoordModeOrigin treats all coordinates as relative to the origin, and

CoordModePrevious treats all coordinates after the first as relative to the
previous point.

The XDrawSegments function draws multiple, unconnected lines. For

each segment, XDrawSegments draws a line between (xl, yl) and (x2, y2).

It draws the lines in the order listed in the array of XSegmen t structures and
does not perform joining at coincident endpoints. For any given line,

XDrawSegments does not draw a pixel more than once. If lines intersect,
the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line­
width, line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y­

origin, and clip-mask. The XDrawLines function also uses the join-style GC

component. All three functions also use these GC mode-dependent compo­

nents: foreground, background, tile, stipple, tile-stipple-::,-origin,

tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate Bad­

Drawable, BadGC, and BadMa tch errors. XDrawLines also can generate

BadValue errors.

Drawing Single and Multiple Rectangles
To draw the outline of a single rectangle In a given drawable, use

XDrawRectangle.

XDrawRectangle(display, d, gc, x, y, width, height)

Display *display;

Drawable d;
GC gc;

int x, y;

unsigned int width, height;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the Gc.

Chapter 6. Graphics Functions 127

L

x

y Specify the x and y coordinates, which specify the upper-left corner of
the rectangle.

width

height Specify the width and height, which specify the dimensions of the
rectangle.

To draw the outline of multiple rectangles In a given drawable, use

XDrawRectangles.

XDrawRectangles(display, d, gc, rectangles, nrectangles)

Display *display;

Drawable d;
CC gc;

XRectangle rectangles[];

int nrectangles;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.

rectangles Specifies a pointer to an array of rectangles.
L nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the out­

lines of the specified rectangle or rectangles as if a five-point PolyLine pro­

tocol request were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel

more than once. XDrawRectangles draws the rectangles in the order listed

in the array. If rectangles intersect, the intersecting pixels are drawn multi­

ple times.

Both functions use these GC components: function, plane-mask, line­
width, line-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip­
y-origin, and clip-mask. They also use these GC mode-dependent com­

ponents: foreground, background, tile, stipple, tile-stipple-x-origin,

tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate Bad­

Drawable, BadGe, and BadMa tch errors.

128

6.3.4

L

L

XLIB

Drawing Single and Multiple Arcs
To draw a single arc in a given drawable, use XDrawArc.

XDrawArc(display, d, gc, x, y, width, height, angle1, angle2)

Display *display;

Drawable d;
GCgc;
int x, y;

unsigned int width, height;

int angle1, angle2;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin of the

drawable and specify the upper-left corner of the bounding rectangle.
width

height Specify the width and height, which are the major and minor axes of the
arc.

angle 1 Specifies the start of the arc relative to the three-o'clock position from
the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display, d, gc, arcs, narcs)

Display *display;

Drawable d;
GCgc;
XArc *arcs;

int narcs;

display

d
gc
arcs

narcs

Specifies the connection to the X server.
Specifies the drawable.
Specifies the GC.
Specifies a pointer to an array of arcs.
Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws
multiple circular or elliptical arcs. Each arc is specified by a rectangle and

two angles. The center of the circle or ellipse is the center of the rectangle,

Chapter 6. Graphics Functions 129

and the major and minor axes are specified by the width and height. Positive

angles indicate counterclockwise motion, and negative angles indicate clock­
wise motion. If the magnitude of angle2 is greater than 360 degrees,

XDrawArc or XDrawArcs truncates it to 360 degrees.

For an arc specified as [x, y, width, height, angle1, angle2] , the origin of

h . d' . [width height] d h . fi' h' t e major an mInor axes IS at x + -2-' y + -2-' an t e In nitely t In

path describing the entire circle or ellipse intersects the horizontal axis

[
height] [. height]. .. at x, y + -2- and x + wzdth, y + -2- and Intersects the vertICal aXIS at

[x+ w~th, yj and [x+ wi:th, Y+heightj. These coordinates can be fractional

and so are not truncated to discrete coordinates. The path should be defined

by the ideal mathematical path. For a wide line with line-width lw, the
bounding outlines for filling are given by the two infinitely thin paths con­

sisting of all points whose perpendicular distance from the path of the circle/

ellipse is equal to Iw/2 (which may be a fractional value). The cap-style and

join-style are applied the same as for a line corresponding to the tangent of

the circle/ellipse at the endpoint.
For an arc specified as [x, y, width, height, angle1, angle2], the angles must be

specified in the effectively skewed coordinate system of the ellipse (for a cir­

cle, the angles and coordinate systems are identical). The relationship be­

tween these angles and angles expressed in the normal coordinate system of

the screen (as measured with a protractor) is as follows:

(X,y) Angle 1 = 45
o

Height ~_....l.---L __ -l-. 3 O'clock

o
Angle 2 = 270

Figure 6.1. XDrawArc (DPY, W, Ge, width, height, 45*64, 270*64)

130 XLIB

[
Width] . skewed-angle = atan tan(normal-angle)*-.- + adJust
hezght

The skewed-angle and normal-angle are expressed in radians (rather than in

degrees scaled by 64) in the range [0, 27TJ and where atan returns a value in

the range [-i. i] and adjust is:

o for normal-angle in the range [0. ~]

'IT for normal-angle in the range [~. 3;]

2 'IT for normal-angle in the range [3;. 2'IT]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more
than once. If two arcs join correctly and if the line-width is greater than zero

and the arcs intersect, XDrawArc and XDrawArcs do not draw a pixel more

than once. Otherwise, the intersecting pixels of intersecting arcs are drawn
multiple times. Specifying an arc with one endpoint and a clockwise extent

draws the same pixels as specifying the other endpoint and an equivalent

counterclockwise extent, except as it affects joins.
If the last point in one arc coincides with the first· point in the following

arc, the two arcs will join correctly. If the first point in the first arc coincides

with the last point in the last arc, the two arcs will join correctly. By specify­

ing one axis to be zero, a horizontal or vertical line can be drawn. Angles are

computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask,

line-width, line-style, cap-style, join-style, fill-style, subwindow-mode,

clip-x-origin, clip-y-origin, and clip-mask. They also use these GC

mode-dependent components: foreground, background, tile, stipple, tile­

stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.
XDrawArc and XDrawArcs can generate BadDrawable, BadGe, and

BadMa tch errors.

Chapter 6. Graphics Functions 131

6.4 Filling Areas

6.4.1

Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

Filling Single and Multiple Rectangles
To fill a single rectangular area in a gIven drawable, use XFill­

Rectangle.

XFillRectangle(display, d, gc, x, y, width, height)

Display *display;

Drawable d;
GC gc;

int x, y;

unsigned int width, height;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin of the

drawable and specify the upper-left corner of the rectangle.
width

height Specify the width and height, which are the dimensions of the rectangle

L to be filled.

To fill multiple rectangular areas In a gIVen drawable, use XF ill­

Rectangles.

XFillRectangles(display, d, gc, rectangles, nrectangles)

Display *display;

Drawable d;
GC gc;

XRectangle *rectangles;

int nrectangles;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the Gc.
rectangles Specifies a pointer to an array of rectangles.

L nrectangles Specifies the number of rectangles in the array.

132 XLIB

6.4.2

The XFillRectangle and XFillRectangles functions fill the specified
rectangle or rectangles as if a four-point FillPolygon protocol request
were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height]

Each function uses the x and y coordinates, width and height dimensions,
and GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For
any given rectangle, XFillRectangle and XFillRectangles do not

draw a pixel more than once. If rectangles .intersect, the intersecting pixels
are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style,

subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stip­
ple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate Bad­

Drawable, BadGe, and BadMatch errors.

Filling a Single Polygon
To fill a polygon area in a given drawable, use XFillPolygon.

I X Fill Po lygo n (display, d, gc, points, npoints, shape, mode)
Display *display;

L

Drawable d;
CC gc;

XPoint *points;
int npoints;
int shape;
int mode;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.
points
npoints
shape

mode

Specifies a pointer to an array of points.
Specifies the number of points in the array.
Specifies a shape that helps the server to improve performance. You can
pass Complex, Convex, or Nonconvex.

Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

Chapter 6. Graphics Functions 133

6.4.3

XFillPolygon fills the region closed by the specified path. The path is

closed automatically if the last point in the list does not coincide with the first
point. XFillPolygon does not draw a pixel of the region more than once.

CoordModeOrigin treats all coordinates as relative to the origin, and

CoordModePrevious treats all coordinates after the first as relative to the

previous point.
Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect.

• If shape is Con vex, the path is wholly convex. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not
wholly convex. If known by the client, specifying Nonconvex instead of Complex

may improve performance. If you specify Noncon vex for a self-intersecting path,
the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting poly­

gons.
This function uses these GC components: function, plane-mask, fill-style,

fill-rule, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also

uses these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGe, BadMatch, and

Bad Val ue errors.

Filling Single and Multiple Arcs
To fill a single arc in a given drawable, use XFillArc.

I XFillArc(display, d, gc, x, y, width, height, angle1, angle2)

Display *display;

Drawable d;
GC gc;

int x, y;

unsigned int width, height;

int anglel, angle2;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

134

L

L

XLIB

x

y

width

height

angle 1

angle2

Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the bounding rectangle.

Specify the width and height, which are the major and minor axes of the
arc.
Specifies the start of the arc relative to the three-o'clock position from
the center, in units of degrees * 64.
Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display, d, gc, arcs, narcs)

Display *display;

Drawable d;
CC gc;

XArc *arcs;

int narcs;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the ce.
arcs

narcs
Specifies a pointer to an array of arcs.
Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infi­

nitely thin path described by the specified arc and, depending' on the arc­

mode specified in the GC, one or two line segments. For ArcChord, the

single line segment joining the endpoints of the arc is used. For Arc­

PieS lice, the two line segments joining the endpoints of the arc with the
center point are used. XFillArcs fills the arcs in the order listed in the

array. For any given arc, XFillArc and XFillArcs do not draw a pixel

more than once. If regions intersect, the intersecting pixels are drawn multi­
ple times.

Both functions use these GC components: function, plane-mask, fill-style,
arc-mode, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

They also use these GC mode-dependent components: foreground, back­

ground, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and

BadMatch errors.

Chapter 6. Graphics Functions 135

6.5 Font Metrics
A font is a graphical description of a set of characters that are used to in­
crease efficiency whenever a set of small, similar sized patterns are repeat­

edly used.

This section discusses how to:

• Load and free fonts

• Obtain and free font names

• Set and retrieve the font search path

• Compute character string sizes

• Return logical extents

• Query character string sizes

The X server loads fonts whenever a program requests a new font. The
server can cache fonts for quick lookup. Fonts are global across all screens in

a server. Several levels are possible when dealing with fonts. Most applica­

tions simply use XLoadQueryFont to load a font and query the font met­

ncs.
Characters in fonts are regarded as masks. Except for image text requests,

the only pixels modified are those in which bits are set to I in the character.

~RBean~
LBearing

Ascent

Descent

Width

Baseline

New
Origin

Figure 6.2. XCharStruct components

136 XLIB

This means that it makes sense to draw text using stipples or tiles (for exam­

ple, many menus gray-out unusable entries).
The XFontStruct structure contains all of the information for the font

and consists of the font-specific information as well as a pointer to an array

of XCharStruct structures for the characters contained in the font. The

XFontStruct, XFontProp, and XCharStruct structures contain:

typedef struct {
short lbearing;
short rbearing;
short width;
short ascent;
short descent;
unsigned short attributes;

} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;

} XFontProp;

typedef struct {
unsigned char byte 1 ;
unsigned char byte2;

} XChar2b;

typedef struct {
XExtData *exLdata;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max-char _or _byte2;
unsigned min_byte 1 ;
unsigned max-byte 1 ;
Bool aILchars_exist;
unsigned defaulLchar;
int n_properties;
XFontProp *properties;

XCharStruct min_bounds;

XCharStruct max-bounds;

/* origin to left edge of raster */
/* origin to right edge of raster */
/* advance to next char's origin */
1* baseline to top edge of raster *1
/* baseline to bottom edge of raster */
/* per char flags (not predefined) */

/* normal 16 bit characters are two bytes */

/* hook for extension to hang data */
/* Font id for this font */
/* hint about the direction font is painted */
/* first character */
/* last character */
/* first row that exists */
1* last row that exists */
/* flag if all characters have nonzero size */
1* char to print for undefined character */
/* how many properties there are */
/* pointer to array of additional

properties */
/* minimum bounds over all existing

char */
/* maximum bounds over all existing

char */

Chapter 6. Graphics Functions 137

XCharStruct *per _char;
int ascent;

1* firsLchar to lasLchar information *1
1* logical extent above baseline for

spacing *1
int descent; 1* logical descent below baseline for

spacing *1
L } XFontStruct;

X supports single byte/character, two bytes/character matrix, and 16-bit

character text operations. Note that any of these forms can be used with a

font, but a single bytelcharacter text request cari only specify a single byte

(that is, the first row of a 2-byte font). You should view 2-byte fonts as a two­

dimensional matrix of defined characters: byte 1 specifies the range of de­
fined rows and byte2 defines the range of defined columns of the font. Sin­

gle bytelcharacter fonts have one row defined, and the byte2 range specified

in the structure defines a range of characters.
The bounding box of a character is defined by the XC h a r S t rue t of that

character. When characters are absent from a font, the defaulLchar is used.

When fonts have all characters of the same size, only the information in the

XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

• The direction member can be either FontLeftToRight or FontRightToLeft.
It is just a hint as to whether most XCharStruct elements have a positive
(FontLeftToRight) or a negative (FontRightToLeft) character width metric.
The core protocol defines no support for vertical text.

• If the min_by tel and max-by tel members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the
per_char array, and max-char_or_byte2 specifies the linear character index of
the last element.

If either min_by tel or max-by tel are nonzero, both min_char_or_byte2 and

max-char_or_byte2 are less than 256, and the 2-byte character ind~x values

corresponding to the per_char array element N (counting from 0) are:

where:

by tel = N/D + min_by tel

byte2 = N\D + min_char _or _byte2

D = max_char_or_byte2 - min_char_or_byte2 + 1

I = integer division

\ = integer modulus

138 XLIB

• If the per_char pointer is NULL, all glyphs between the first and last character
indexes inclusive have the same information, as given by both min_bounds and
max-bounds.

• If all_chars_exist is True, all characters in the per_char array have nonzero
bounding boxes.

• The defaulLchar member specifies the character that will be used when an
undefined or nonexistent character is printed. The defaulLchar is a 16-bit
character (not a 2-byte character). For a font using 2-byte matrix format, the
defaulLchar has byte 1 in the most-significant byte and byte2 in the
least-significant byte. If the defaulLchar itself specifies an undefined or
nonexistent character, no printing is performed for an undefined or nonexistent
character.

• The min_bounds and max_bounds members contain the most extreme values of
each individual XCharStruct component over all elements of this array (and
ignore nonexistent characters). The bounding box of the font (the smallest
rectangle enclosing the shape obtained by superimposing all of the characters at
the same origin [x,y]) has its upper-left coordinate at:

[x + min_bounds.lbearing, y - max-bounds. ascent]

Its width is:

max_bounds.rbearing - min_bounds.lbearing

Its height is:

max-bounds.ascent + max_bounds. descent

• The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that
is used for determining line spacing. Specific characters may extend beyond this.

• If the baseline is at V-coordinate y, the logical extent of the font is inclusive
between the V-coordinate values (y - font.ascent) and (y + font.descent - 1).
Typically, the minimum interline spacing between rows of text is given by
ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the

smallest rectangle that encloses the character's shape) described in terms of
XCharstruct components is a rectangle with its upper-left corner at:

Chapter 6. Graphics Functions 139

[x + lbearing, y - ascent]

Its width is:

rbearing - lbearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink

from the origin. The rbearing member defines the extent of the right edge

of the character ink from the origin. The ascent member defines the extent

of the top edge of the character ink from the origin. The descent member

defines the extent of the bottom edge of the character ink from the origin.
The width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically
viewed as being the scan line just below nondescending characters. When de­

scent is zero, only pixels with Y -coordinates less than yare drawn, and the

origin is logically viewed as being coincident with the left edge of a

nonkerned character. When lbearing is zero, no pixels with X-coordinate
less than x are drawn. Any of the XCharStruct metric members could be

negative. If the width is negative, the next character will be placed to the left
of the current origin.

The X protocol does not define the interpretation of the attributes mem­
ber in the XCharStruct structure. A nonexistent character is represented

with all members of its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the

property value (for example, long or unsigned long) must be derived from

a priori knowledge of the property. When possible, fonts should have at least

the properties listed in the following table. With atom names, uppercase and

lowercase matter. The following built-in property atoms can be found in

<X11/Xatom. h>:

140 XLIB

Property Name Type Description

MIN_SPACE unsigned The minimum interword
spacing, in pixels.

NORM_SPACE unsigned The normal interword spacing,
in pixels.

MAX-SPACE unsigned The maximum interword
spacing, in pixels.

END_SPACE unsigned The additional spacing at the
end of sentences, in pixels.

SUPERSCRIPT _X int Offset from the character origin
SUPERSCRIPT _V where superscripts should begin,

in pixels. If the origin is at [x,y],
then superscripts should begin
at [x + SUPERSCRIPT _X, Y -
SUPERSCRIPT _ VJ.

SUBSCRIPT _X int Offset from the character origin
SUBSCRIPT _V where subscripts should begin,

in pixels. If the origin is at [x,y],
then subscripts should begin at
[x + SUPERSCRIPT_X, Y +
SUPERSCRIPT_V].

UNDERLINE_POSITION int V offset from the baseline to the
top of an underline, in pixels. If
the baseline is V -coordinate y,
then the top of the underline is at
(y + UNDERLINE_POSITION).

UNDERLINE_THICKNESS unsigned Thickness of the underline, in
pixels.

STRIKEOUT_ASCENT int Vertical extents for boxing or
STRIKEOUT_DESCENT voiding characters, in pixels. If

the baseline is at V-coordinate y,
then the top of the strikeout box
is at
(y - STRIKEOUT_ASCENT),
and the height of the box is
(STRIKEOUT_ASCENT +
STRIKEOUT_DESCENT).

ITALIC_ANGLE int The angle of the dominant staffs
of characters in the font, in
degrees scaled by 64, relative to
the three-o'clock position from

Chapter 6. Graphics Functions 141

6.5.1

Property Name Type

LHEIGHT int

QUAD_WIDTH int

int

WEIGHT unsigned

POINT_SIZE unsigned

RESOLUTION unsigned

Loading and Freeing Fonts

Description

the character origin, with
positive indicating
counterclockwise motion (as in
XDrawArc).

1 ex as in TeX, but expressed in
units of pixels. Often the height
of lowercase x.
1 em as in TeX, but expressed in
units of pixels. Often the width
of the digits 0-9.
Y offset from the baseline to the
top of the capital letters,
ignoring accents, in pixels. If the
baseline is at Y -coordinate y,
then the top of the capitals is at
(y - CAP_HEIGHT).
The weight or boldness of the
font, expressed as a value
between 0 and 1000.
The point size of this font at the
ideal resolution, expressed in
1110 points.
The number of pixels per point,
expressed in 11100, at which this
font was created.

Xlib provides functions that you can use to load fonts, get font information,

unload fonts, and free font information. A few font functions use a

GCon text resource ID or a font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(display, name)
Display *display;
char *name;

display Specifies the connection to the X server.
L name Specifies the name of the font, which is a null-terminated string.

142 XLIB

The XLoadFon t function loads the specified font and returns its associated

font ID. The name should be ISO Latin-1 encoding; uppercase and lower­
case do not matter. If XLoadFon t was unsuccessful at loading the specified

font, a BadName error results. Fonts are not associated with a particular

screen and can be stored as a component of any CC. When the font is no

longer needed, call XUnloadFon t.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, fonLID)
Display *display;

XIDfonLID;

display Specifies the connection to the X server.
L fonLID Specifies the font ID or the GCon text ID.

The XQueryFont function returns a pointer to the XFontStruct struc­

ture, which contains information associated with the font. You can query a

font or the font stored in a CC. The font ID stored in the XFontStruct

structure will be the GContext ID, and you need to be careful when using
this ID in other functions (see XGCon textFrornGC). To free this data, use
XFreeFon tI nfo.

To perform a XLoadFon t and XQueryFon t in a single operation, use
XLoadQueryFont.

XFontStruct *XLoadQueryFont(display, name)

Display *display;

char *name;
display Specifies the connection to the X server.

L name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for access­

ing a font. XLoadQueryFont both opens (loads) the specified font and re­

turns a pointer to the appropriate XFontStruct structure. If the font does

not exist, XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

Chapter 6. Graphics Functions 143

To unload the font and free the storage used by the font structure that was

allocated by XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont(display, fonLstruct)
Display *display;
XFontStruct *fonLstruct;

display Specifies the connection to the X server.
L font-struct Specifies the storage associated with the font.

The XFreeFon t function deletes the association between the font resource
ID and the specified font and frees the XFon tStruct structure. The font it­

self will be freed when no other resource references it. The data and the
font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool XGetFontProperty(font-struct, atom, value_return)
XFontStruct *font-struct;
Atom atom;
unsigned long *value_return;

font-struct Specifies the storage associated with the font.
atom Specifies the atom for the property name you want returned.

L value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function re­
turns the value of the specified font property. XGetFon tPropert y also re­

turns False if the property was not defined or True if it was defined. A set

of predefined atoms exists for font properties, which can be found in

<Xll/Xatom. h>. This set coptains the standard properties associated with
a font. Although it is not guaranteed, it is likely that the predefined font

properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont(display, font)
Display *display;
Font font;

display Specifies [he connection to the X server.
L font Specifies the font.

144 XLIB

6.5.2

L

The XUnloadFon t function deletes the association between the font re­
source ID and the specified font. The font itself will be freed when no other
resource references it. The font should not be referenced again.

XUnloadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information
You obtain font names and information by matching a wildcard specification

when querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts(display, pattern, maxnames, actuaLcounLreturn)
Display *display;
char *pattern;

int maxnames;
int *actual_count_return;

display Specifies the connection to the X server.
pattern Specifies the null-terminated pattern string that can contain

wildcard characters.
maxnames
actuaLcounLreturn

Specifies the maximum number of names to be returned.
Returns the actual number of font names.

The XListFon ts function returns an array of available font names (as con­

trolled by the font search path; see XSetFontPath) that match the string

you passed to the pattern argument. The string should be ISO Latin-I;

uppercase and lowercase do not matter. Each string is terminated by an

ASCII null. The pattern string can contain any characters, but each asterisk

(*) is a wildcard for any number of characters, and each question mark (?) is
a wildcard for a single character. The client should call XFreeFontNames

when finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames(list)

char * list[];
L list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by
XListFonts or XListFontsWi thlnfo.

Chapter 6. Graphics Functions 145

L

To obtain the names and information about available fonts, use

XListFontsWithInfo.

char **XListFontsWithlnfo(display, pattern, maxnames, counLreturn, info_return)
Display *display;
char *pattern;
int maxnames;
int *count_return;
XFontStruct **info_return;

display Specifies the connection to the X server.
pattern Specifies the null-terminated pattern string that can contain

wildcard characters.
maxnames
count_return
info_return

Specifies the maximum number of names to be returned.
Returns the actual number of matched font names.
Returns a pointer to the font information.

The XListFontsWi thInfo function returns a list of font names that
match the specified pattern and their associated font information. The list of

names is limited to size specified by maxnames. The information returned
for each font is identical to what XLoadQueryFont would return except

that the per-character metrics are not returned. The pattern string can con­
tain any characters, but each asterisk (*) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. To

free the allocated name array, the client should call XFreeFontNames. To
free the the font information array, the client should call XFree­

FontInfo.

To free the font information array, use XFreeFontInfo.

XFreeFontInfo(names, free_info, actuaLcount)
char **names;
XFontStruct *free_info;
int actuaLcount;

names Specifies the list of font names returned by XListFonts­
Withlnfo.

Specifies the pointer to the font information returned by
XListFontsWithlnfo.

actuaLcount Specifies the actual number of matched font names returned by
~ XListFontsWithlnfo.

146

6.5.3

XLIB

Setting and Retrieving the Font Search Path
To set the font search path, use XSetFontPath.

I XSetFontPath(display, directories, ndirs)

Display *display;

char **directories;

int ndirs;

display Specifies the connection to the X server.
directories Specifies the directory path used to look for a font. Setting the path to

the empty list restores the default path defined for the X server.
L ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font

lookup. There is only one search path per X server, not one per client. The

interpretation of the strings is operating system dependent, but they are in­

tended to specify directories to be searched in the order listed. Also, the con­

tents of these strings are operating system dependent and are not intended

to be used by client applications. Usually, the X server is free to cache font

information internally rather than having to read fonts from files. In addi­

tion, the X server is guaranteed to flush all cached information about fonts

for which there currently are no explicit resource IDs allocated. The

meaning of an error from this request is operating system dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFon tPa tho

char **XGetFontPath(display, npaths_return)

Display *display;

int *npaths_return;

display Specifies the connection to the X server.
L npaths_return Returns the number of strings in the font path array.

The XGetFon tPa th function allocates and returns an array of strings con­
taining the search path. When it is no longer needed, the data in the font

path should be freed by using XFreeFon tPa tho

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath(list)

char **list;

L list Specifies the array of strings you want to free.

Chapter 6. Graphics Functions 147

6.5.4

The XFreeFontPath function frees the data allocated by XGet­

FontPath.

Computing Character String Sizes
Xlib provides functions that you can use to compute the width, the logical

extents, and the server information about 8-bit and 2-byte text strings. The
width is computed by adding the character widths of all the characters. It

does not matter if the font is an 8-bit or 2-byte font. These functions return

the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWid tho

int XTextWidth(font-s·truct, string, count)
XFontStruct *fonL . ..struct;
char *string;
int count;

font-struct Specifies the font used for the width computation.
string Specifies the character string.

L count Specifies the character count in the specified string.

L

6.5.5

To determine the width of a 2-byte character string, use XTextWidth16.

int XTextWidth16(font-struct, string, count)
XFontStruct *font-struct;
XChar2b *string;
int count;

font-struct Specifies the font used for the width computation.
string Specifies the character string.
count Specifies the character count in the specified string.

Computing Logical Extents
To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

XTextExtents(font-struct, string, nchars, direction_return, fonLascenLreturn,
fonLdescent_return, overalLreturn)

XFontStruct *font-struct;
char *string;
int nchars;

148 XLIB

L

L

int *direction_return;
int *font_ascent_return, *fonLdescent_return;
XCharStruct *overaILreturn;

fonLstruct
string
nchars
direction_return

fonLascenLreturn
fonLdescenLreturn
overall_return

Specifies a pointer to the XFontStruct structure.
Specifies the character string.
Specifies the number of characters in the character string.
Returns the value of the direction hint (Fon tLeftToRigh t

or Fon tRigh tToLeft).

Returns the font ascent.
Returns the font descent.
Returns the overall size in the specified XCharStruct

structure.

To compute the bounding box of a 2-byte character string in a given font,

use XTextExtents16.

XTextExtents16ifonLstruct, string, nchars, direction_return, fonL . .ascent_return,
fonLdescent_return, overalLreturn)

XFontStruct *fonLstruct;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascenLreturn, *fonLdescent_return;
XCharStruct *overall_return;

fonLstruct
string
nchars
direction_return

font_as cent_return
fonLdescenLreturn
overall_return

Specifies a pointer to the XFontStruct structure.
Specifies the character string.
Specifies the number of characters in the character string.
Returns the value of the direction hint (Fon tLeftToRigh t

or FontRightToLeft).

Returns the font ascent.
Returns the font descent.
Returns the overall size in the specified XCharStruct

structure.

The XTextExtents and XTextExtents16 functions perform the size com­

putation locally and, thereby, avoid the round-trip overhead of XQuery­

TextExtents and XQueryTextExten ts16. Both functions return an

XCharStruct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all

characters in the string. The descent member is set to the maximum of the

descent metrics. The width member is set to the sum of the character-width

Chapter 6. Graphics Functions 149

6.5.6

L

metrics of all characters in the string. For each character in the string, let W
be the sum of the character-width metrics of all characters preceding it in the
string. Let L be the left-side-bearing metric of the character plus W. Let R be
the right-side-bearing metric of the character plus W. The lbearing member

is set to the minimum L of all characters in the string. The rbearing member
is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,

each XChar2b structure is interpreted as a 16-bit number with byte 1 as the
most-significant byte. If the font has no defined default character, undefined
'characters in the string are taken to have all zero metrics.

Querying Character String Sizes
To query the server for the bounding box of an 8-bit character string in a

given font, use XQueryTextExtents.

XQueryTextExtents(display, fonLID, string, nchars, direction_return,
fonLascenLreturn, fonLdescent_return, overall_return)

Display *display;
XID font_ID;
char *string;
int nchars;
int *direction_return;
int *font_ascenLreturn, *font-r1escent_return;
XCharStruct *overalLreturn;

display Specifies the connection to the X server.
fonLID Specifies either the font ID or the GContext ID that contains

the font.
string
nchars
direction_return

font_ascenLreturn
font_des cent_return
overall_return

Specifies the character string.
Specifies the number of characters in the character string.
Returns the value of the direction hint (FontLeftToRight
or FontRigh tToLeft).

Returns the font ascent.
Returns the font descent.
Returns the overall size in the specified XCharStruct
structure.

To query the server for the bounding box of a 2-byte character string in a
given font, use XQueryTextExtents16.

150

L

XLIB

XQueryTextExtents16(display, font_ID, string, nchars, direction_return,
font_as cent_return, fonL.descenLreturn, overalLreturn)

Display *display;
XIDfonLID;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *fonLdescent_return;
XCharStruct *overaILreturn;

display Specifies the connection to the X server.
fonLID Specifies either the font ID or the GContext ID that contains

the font.
string
nchars
direction_return

font_ascenLreturn
fonLdescenLreturn
overall_return

Specifies the character string.
Specifies the number of characters in the character string.
Returns the value of the direction hint (Fon tLeftToRigh t
or FontRigh tToLeft).
Returns the font ascent.
Returns the font descent.
Returns the overall size in the specified XCharStruct
structure.

The XQueryTextExtents and XQueryTextExtents16 functions return

the bounding box of the specified 8-bit and 16-bit character string in the

specified font or the font contained in the specified GC. These functions

query the X server and, therefore, suffer the round-trip overhead that is
avoided by XTextExtents and XTextExtents16. Both functions return

a XCharStruct structure, whose members are set to the values as fol­

lows.

The ascent member is set to the maximum of the ascent metrics of all
characters in the string. The descent member is set to the maximum of the

descent metrics. The width member is set to the sum of the character-width

metrics of all characters in the string. For each character in the string, let W

be the sum of the character-width metrics of all characters preceding it in the

string. Let L be the left-side-bearing metric of the character plus W. Let R be
the right-side-bearing metric of the character plus W. The lbearing member

is set to the minimum L of all characters in the string. The rbearing member

is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,

each XChar2b structure is interpreted as a 16-bit number with byte I as the

Chapter 6. Graphics Functions 151

most-significant byte. If the font has no defined default character, undefined

characters in the string are taken to have all zero metrics.

XQueryTextExtents and XQueryTextExtents16 can generate Bad­

Fan t and BadGe errors.

6.6 Drawing Text

L

This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XDrawText and XDrawText16 use the fol­

lowing structures.

typedef struct {
char *chars;
int nchars;
int delta;
Font font;

} XTextItem;

1* pointer to string *1
1* number of characters *1
1* delta between strings *1
1* Font to print it in, None don't change *1

typedef struct {
XChar2b *chars;
int nchars;

1* pointer to two-byte characters *1
1* number of characters *1

int delta; 1* delta between strings *1
Font font; 1* font to print it in, None don't change *1

} XTextItem16;

If the font member is not None, the font is changed before printing and also
is stored in the GC. If an error was generated during text drawing, the previ­

ous items may have been drawn. The baseline of the characters is drawn

starting at the x and y coordinates that you pass in the text drawing func­

tions.
For example, consider the background rectangle drawn by XDrawlrnage­

String. If you want the upper-left corner of the background rectangle

to be at pixel coordinate (x,y), pass the (x,y + ascent) as the baseline origin

coordinates to the text functions. The ascent is the font ascent, as given in

the XFantStruct structure. If you want the lower-left corner of the back-

152 XLIB

6.6.1

ground rectangle to be at pixel coordinate (x,y), pass the (x,y - descent + 1)

as the baseline origin coordinates to the text functions. The descent is the
font descent, as given in the XFon tStruct structure.

Drawing Complex Text
To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText(display, d, gc, x, y, items, nitems)

Display *display;

Drawable d;
GC gc;
int x, y;

XTextltem *items;

int nitems;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

items Specifies a pointer to an array of text items.
L nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawText16.

XDrawText16(display, d, gc, x, y, items, nitems)

Display *display;

Drawable d;
GC gc;
int x, y;

XTextItem16 *items;

int nitems;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

items Specifies a pointer to an array of text items.
L nitems Specifies the number of text items in the array.

Chapter 6. Graphics Functions 153

6.6.2

The XDrawText16 function is similar to XDrawText except that it uses

2-byte or 16-bit characters. Both functions allow complex spacing and font

shifts between counted strings.

Each text item is processed in turn. A font member other than None in an

item causes the font to be stored in the GC and used for subsequent text. A

text element delta specifies an additional change in the position along the x
axis before the string is drawn. The delta is always added to the character or­

igin and is not dependent on any characteristics of the font. Each character

image, as defined by the font in the GC, is treated as an additional mask for

a fill operation on the drawable. The drawable is modified only where the

font character has a bit set to 1. If a text item generates a BadFon t error, the
p·revious text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing,

each XChar2b structure is interpreted as a 16-bit number with byte 1 as the

most-significant byte.
Both functions use these GC components: function, plane-mask, fill-style,

font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also

use these GC mode-dependent components: foreground, background, tile,

stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawText16 can generate BadDrawable, BadFont,

BadGC, and BadMa tch errors.

Drawing Text Characters
To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display, d, gc, x, y, string, length)

Display *display;

Drawable d;
CC gc;

int x, y;

char * string;

int length;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.
x

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

154 XLIB

L

L

6.6.3

string
length

Specifies the character string.
Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawString16.

XDrawString16(display, d, gc, x, y, string, length)

Display *display;

Drawable d;
CCgc;

int x, y;

XChar2b *string;

int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the CC.
x

y

string

length

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
Specifies the character string.
Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an addi­

tional mask for a fill operation on the drawable. The drawable is modified
only where the font character has a bit set to 1. for fonts defined with 2-byte

matrix indexing and used with XDrawString16, each byte is used as a
byte2 with a byte 1 of zero.

Both functions use these GC components: function, plane-mask, fill-style,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also

use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawString16 can generate BadDrawable,

BadGe, and BadMatch errors.

Drawing Image Text Characters
Some applications, in particular terminal emulators, need to print image text
in which both the foreground and background bits of each character are

painted. This prevents annoying flicker on many displays.

Chapter 6. Graphics Functions 155

L

L

To draw 8-bit image text characters III a gIven drawable, use XDraw­

ImageString.

XDrawlmageString(display, d, gc, x, y, string, length)

Display *display;

Drawable d;
GCgc;
int x, y;

char *string;

int length;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.
string

length

Specifies the character string.
Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDraw­

ImageString16.

XDrawlmageString16(display, d, gc, x, y, string, length)

Display *display;

Drawable d;
GCgc;
int x, y;

XChar2b *string;

int length;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
y

string

length

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
Specifies the character string.
Specifies the number of characters in the string argument.

The XDrawlmageString16 function is similar to XDrawlmageString ex­

cept that it uses 2-byte or 16-bit characters. Both functions also use both the
foreground and background pixels of the GC in the destination.

156 XLIB

The effect is first to fill a destination rectangle with the background pixel

defined in the GC and then to paint the text with the foreground pixel. The
upper-left corner of the filled rectangle is at:

[x, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-:ascent, and font-descent are as would be returned
by XQueryTextExtents using gc and string. The function and fill-style de­

fined in the GC are ignored for these functions. The effective function is
GXcopy, and the effective fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDraw­

ImageString, each byte is used as a byte2 with a byte 1 of zero.

Both functions use these GC components: plane-mask, foreground, back­

ground, font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawlmageString and XDrawlmageString16 can generate Bad­

Drawable, BadGe, and BadMatch errors.

6.7 Transferring Images between Client and Server
Xlib provides functions that you can use to transfer images between a client

and the server. Because the server may require diverse data formats, Xlib

provides an image object that fully describes the data in memory and that

provides for basic operations on that data. You should reference the data

through the image object rather than referencing the data directly. How­

ever, some implementations of the Xlib library may efficiently deal with fre­

quently used data formats by replacing functions in the procedure vector

with special case functions. Supported operations include destroying the

image, getting a pixel, storing a pixel, extracting a subimage of an image,

and adding a constant to an image (see chapter 10).

All the image manipulation functions discussed in this section make use of
the Xlmage data structure, which describes an image as it exists in the cli­
ent's memory.

Chapter 6. Graphics Functions

typedef struct _XI mage {
int width, height;
int xoffset;
int format;
char *data;

1* size of image *1
1* number of pixels offset in X direction *1
1* XYBi tmap, XYP ixmap, ZPixmap *
1* pointer to image data *1

157

int byte_order;
int bitmap_unit;

1* data byte order, LSBFirst, MSBFirst *1
1* quant, of scanline 8,16, 32 *1

int bitmap_biLorder;
int bitmap_pad;
int depth;
int bytes_per_Iine;
int bits_per_pixel;
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;

1* LSBFirst, MSBFirst *1
1* 8, 16,32 either XYPixmap or ZPixmap *1
1* depth of image *1
1* accelerator to next scanline *1
1* bits per pixel (ZPixmap) *1
1* bits in z arrangement *1

char *obdata; 1* hook for the object routines to hang on *1
struct funcs { 1* image manipulation routines *1

} f;

struct _XImage *(*create_image)O;
int (*destroy_image)O;
unsigned long (*geLpixel)O;
int (*puLpixel)O;
struct _XImage *(*sub_image)O;
int (*add_pixel)O;

L } XImage;

You may request that some of the members (for example, height, width, and

xoffset) be changed when the image is sent to the server. That is, you may

send a subset of the image. Other members (for example, byte_order,

bitmap_unit, and so forth) are characteristics of both the image and the

server. If these members differ between the image and the server,

XPu tIm age makes the appropriate conversions. The first byte of the first

scanline of plane n is located at the address

(data + (n * height * bytes_per_Iine)).

To combine an image in memory with a rectangle of a drawable on the dis­

play use XPutImage.

XPutImage(display, d, gc, image, src_x, src_y, desLx, desLy, width, height)
Display *display;
Drawable d;

158 XLIB

L

GC ge;

Xlmage *image;
int sre_x, sre_y;

int desLx, desLy;

unsigned int width, height;

display Specifies the connection to the X server.
d Specifies the drawable.
ge Specifies the Gc.

des Lx

desLy

width

height

Specifies the image you want combined with the rectangle.
Specifies the offset in X from the left edge of the image defined by the
Xlmage data structure.
Specifies the offset in Y from the top edge of the image defined by the
Xlmage data structure.

Specify the x and y coordinates, which are relative to the origin of the
drawable and are the coordinates of the subimage.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.

The XPutlmage function combines an image in memory with a rectangle of

the specified drawable. If XYBi tmap format is used, the depth must be one,

or a BadMatch error results. The foreground pixel in the GC defines the

source for the one bits in the image, and the background pixel defines the

source for the zero bits. For XYPixmap and ZPixmap, the depth must match

the depth of the drawable, or a BadMatch error results. The section of the

image defined by the src_x, src_y, width, and height arguments is drawn on

the specified part of the drawable.

This function uses these GC components: function, plane-mask,

subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses

these GC mode-dependent components: foreground and background.

XPutlmage can generate BadDrawable, BadGe, BadMatch, and

BadValue errors.

To return the contents of a rectangle in a given drawable on the display,

use XGetlmage. This function specifically supports rudimentary screen

dumps.

Chapter 6. Graphics Functions 159

L

Xlmage *XGetlmage(display, d, x, y, width, height, plane_mask, format)

Display *display;

Drawable d;
int x, y;

unsigned int width, height;
long plane_mask;
intformat;

display Specifies the connection to the X server.
d Specifies the drawable.
x
y

width

height

plane_mask

format

Specify the x and y coordinates, which are relative to the origin of
the drawable and define the upper-left corner of the rectangle.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.
Specifies the plane mask.
Specifies the format for the image. You can pass XYPixnlap or
ZPixmap.

The XGetlmage function returns a pointer to an Xlmage structure. This

structure provides you with the contents of the specified rectangle of the

drawable in the format you specify. If the format argument is XYPixmap,

the image contains only the bit planes you passed to the plane_mask argu­

ment. If the plane_mask argument only requests a subset of the planes of

the display, the depth of the returned image will be the number of planes re­

quested. If the format argument is ZPixmap, XGetlmage returns as zero

the bits in all planes not specified in the plane_mask argument. The func­

tion performs no range checking on the values in plane_mask and ignores

extraneous bits.
XGetlmage returns the depth of the image to the depth member of the

Xlmage structure. The depth of the image is as specified when the drawable

was created, except when getting a subset of the planes in XYPixmap format,

when the depth is given by the number of bits set to 1 in plane_mask.
If the drawable is a pixmap, the given rectangle must be wholly contained

within the pixmap, or a BadMatch error results. If the drawable is a win­

dow, the window must be viewable, and it must be the case that if there were

no inferiors or overlapping windows, the specified rectangle of the window
would be fully visible on the screen and wholly contained within the outside

160 XLIB

edges of the window, or a BadMa tch error results. Note that the borders of
the window can be included and read with this request. If the window has

backing-store, the backing-store contents are returned for regions of the

window that are obscured by noninferior windows. If the window does not

have backing-store, the returned contents of such obscured regions are un­

defined. The returned contents of visible regions of inferiors of a different
depth than the specified window's depth are also undefined. The pointer

cursor image is not included in the returned contents.

XGetlmage can generate BadDrawable, BadMatch, and BadValue

errors.

To copy the contents of a rectangle on the display to a location within a

preexisting image structure, use XGetSublmage.

XImage *XGetSubImage(display, d, x, y, width, height, plane_mask, format, dest_image,
dest_x, dest_y)

Display *display;
Drawable d;
int x, y;

unsigned int width, height;
unsigned long plane_mask;
intformat;
XImage *dest_image;
int dest_x, dest_y;

display Specifies the connection to the X server.
d Specifies the drawable.
x

y

width
height

plane_mask
format

Specify the x and y coordinates, which are relative to the origin of
the drawable and define the upper-left corner of the rectangle.

Specify the width and height of the subimage, which define the
dimensions of the rectangle.
Specifies the plane mask.
Specifies the format for the image. You can pass XYPixmap or
ZPixmap.

dest_image Specifies the destination image.
dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of
the destination rectangle, specify its upper-left corner, and

L determine where the subimage is placed in the destination image.

Chapter 6. Graphics Functions 161

The XGetSublmage function updates desLimage structure with the speci­

fied subimage in the same manner as XGetlmage. If the format argument

is XYP ixmap, the image contains only the bit planes you passed to the

plane_mask argument. If the format argument is ZPixmap, XGet­

Sublmage returns as zero the bits in all planes not specified in the

plane_mask argument. The function performs no range checking on the
values in plane_mask and ignores extraneous bits. As a convenience,

XGetSublmage returns a pointer to the same Xlmage structure specified by

desLimage.

The depth of the destination Xlmage structure must be the same as that
of the drawable. If the specified subimage does not fit at the specified loca­

tion on the destination image, the right and bottom edges are clipped. If the

drawable is a pixmap, the given rectangle must be wholly contained within

the pixmap, or a BadMa tch error results. If the drawable is a window, the
window must be viewable, and it must be the case that if there were no inferi­

ors or overlapping windows, the specified rectangle of the window would be

fully visible on the screen and wholly contained within the outside edges of
the window, or a BadMatch error results. If the window has backing-store,

then the backing-store contents are returned for regions of the window that

are obscured by noninferior windows. If the window does not have backing­

store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the

specified window's depth are also undefined.

XGetSublmage can generate BadDrawable, BadGe, BadMatch, and

Bad Value errors.

6.8 Cursors
This section discusses how to:

• Create a cursor

• Change or destroy a cursor

• Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the

pointer is in a visible window, it is set to the cursor defined for that window.

If no cursor was defined for that window, the cursor is the one defined for

the parent window.

162 XLIB

6.8.1

From X's perspective, a cursor consists of a cursor source, mask, colors,

and a hotspot. The mask pix map determines the shape of the cursor and
must be a depth of one. The source pixmap must have a depth of one, and

the colors determine the colors of the source. The hotspot defines the point

on the cursor that is reported when a pointer event occurs. There may be
limitations imposed by the hardware on cursors as to size and whether a

mask is implemented. XQueryBestCursor can be used to find out what

sizes are possible. It is intended that most standard cursors will be stored as

a special font.

Creating a Cursor
Xlib provides functions that you can use to create a font, bitmap, or glyph

cursor.

To create a cursor from a standard font, use XCrea teFon tCursor.

#include <Xlllcursorfont.h>
Cursor XCreateFontCursor(display, shape)

Display *display;

unsigned int shape;

display Specifies the connection to the X server.
L shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor.

Applications are encouraged to use this interface for their cursors because
the font can be customized for the individual display type. The shape argu­

ment specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The

initial colors of a cursor are a black foreground and a white background (see

XRecolorCursor). For further information about cursor shapes, see ap­

pendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from two bitmaps, use XCrea teP ixmapCursor.

Cursor XCreatePixmapCursor(display, source, mask, foreground_color,

background_color, x, y)

Display *display;

Pixmap source;

Chapter 6. Graphics Functions 163

L

Pixmap mask;
XColor *foreground_color;

XColor * background_co lor;

unsigned int x, y;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the cursor's source bits to be displayed or None.

foreground_color Specifies the RGB values for the foreground of the source.
background_color Specifies the RGB values for the background of the source.
x
y Specify the x and y coordinates, which indicate the hotspot

relative to the source's origin.

The XCreatePixmapCursor function creates a cursor and returns the cur­

sor ID associated with it. The foreground and background RGB values must

be specified using foreground_color and background_color, even if the X
server only has a StaticGray or GrayScale screen. The foreground color

is used for the pixels set to 1 in the source, and the background color is used

for the pixels set to O. Both source and mask, if specified, must have depth

one (or a BadMatch error results) but can have any root. The mask argu­
ment defines the shape of the cursor. The pixels set to 1 in the mask define

which source pixels are displayed, and the pixels set to 0 define which pixels
are ignored. If no mask is given, all pixels of the source are displayed. The

mask, if present, must be the same size as the pix map defined by the source
argument, or a BadMa tch error results. The hotspot must be a point within
the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet dis­

play limitations. The pixmaps can be freed immediately if no further explicit
references to them are to be made. Subsequent drawing in the source or

mask pixmap has an undefined effect on the cursor. The X server might or

might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap er­

rors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor(display, source_font, mask_font, source_char, mask_char,
fore ground_color, background_color)

Display *display;
Font source_font, mask_font;

164 XLIB

unsigned int source_char, mask_char;

XColor *foreground_color;

XColor *background_color;

display Specifies the connection to the X server.
source_font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.
foreground_color Specifies the RGB values for the foreground of the source.

L background_color Specifies the RGB values for the background of the source.

6.8.2

The XCreateGlyphCursor function is similar to XCreatePixmap­

Cursor except that the source and mask bitmaps are obtained from the

specified font glyphs. The source_char must be a defined glyph in
source_font, or a BadValue error results. IfmasLfont is given, masLchar
must be a defined glyph in masLfont, or a BadValue error results. The
masLfont and character are optional. The origins of the source_char and

masLchar (if defined) glyphs are positioned coincidently and define the
hotspot. The source_char and masLchar need not have the same bounding
box metrics, and there is no restriction on the placement of the hotspot rela­
tive to the bounding boxes. If no masLchar is given, all pixels of the source

are displayed. You can free the fonts immediately by calling XFreeFont if
no further explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the byte 1
member in the most-significant byte and the byte2 member in the least­

significant byte.
XCrea teGlyphCursor can generate BadAlloc, BadFont, and Bad­

Value errors.

Changing and Destroying Cursors
Xlib provides functions that you can use to change the cursor color, destroy
the cursor, and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display, cursor, foreground_color, background_color)

Display *display;
Cursor cursor;

XColor *foreground_color, *background_color;

Chapter 6. Graphics Functions 165

display Specifies the connection to the X server.
cursor Specifies the cursor.
foreground_color Specifies the RGB values for the foreground of the source.

L background_color Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor,

and if the cursor is being displayed on a screen, the change is visible immedi­
ately.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor(display, cursor)

Display *display;

Cursor cursor;
display Specifies the connection to the X server.

L cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor re­

source ID and the specified cursor. The cursor storage is freed when no
other resource references it. The specified cursor ID should not be referred
to again.

XFreeCursor can generate a BadCursor error.

To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display *display;

Drawable d;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.
d Specifies the drawable, which indicates the screen.
width
height

width_return

Specify the width and height 'of the cursor that you want the size
information for.

height_return Return the best width and height that is closest to the specified

L width and height.

166 XLIB

6.8.3

Some displays allow larger cursors than other displays. The XQuery­

BestCursor function provides a way to find out what size cursors are actu­
ally possible on the display. It returns the largest size that can be displayed.

Applications should be prepared to use smaller cursors on displays that can­
not support large ones.

XQueryBestCursor can generate a BadDrawable error.

Defining the Cursor
Xlib provides functions that you can use to define or undefine the cursor
that should be displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display, w, cursor)
Display *display;
Window w;

Cursor cursor;
display Specifies the connection to the X server.
w Specifies the window.

L cursor Specifies the cursor that is to be displayed or Non e .

If a cursor is set, it will be used when the pointer is in the window. If the cur­
sor is None, it is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor(display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor

for this window. When the pointer is in the window, the parent's cursor will

now be used. On the root window, the default cursor is restored.
XUndefineCursor can generate a BadWindow error.

Chapter 7

Window Manager
Functions

167

Although it is difficult to categorize functions as application only or window

manager only, the functions in this chapter are most often used by window

managers. It is not expected that these functions will be used by most appli­

cation programs. You can use the Xlib window manager functions to:

• Change the parent of a window

• Control the lifetime of a window

• Determine resident colormaps

• Grab the pointer

• Grab the keyboard

• Grab the server

• Control event processing

• Manipulate the keyboard and pointer settings

• Control the screen saver

• Control host access

7.1 Changing the Parent of a Window
To change a window's parent to another window on the same screen, use

XReparen tWindow.

XReparentWindow(display, w, parent, x, y)
Display *display;
Window w;

168 XLIB

L

Window parent;
int x, y;

display Specifies the connection to the X server.
w Specifies the window.
parent Specifies the parent window.
x

y Specify the x and y coordinates of the position in the new parent windaw.

If the specified window is mapped, XReparentWindow automatically per­

forms an UnmapWindow request on it, removes it from its current position

in the hierarchy, and inserts it as the child of the specified parent. The win­

dow is placed in the stacking order on top with respect to sibling win­

dows.

After reparenting the specified window, XReparentWindow causes the X

server to generate a ReparentNotify event. The override_redirect mem­

ber returned in this event is set to the window's corresponding attribute.

Window manager clients usually should ignore this window if this member

is set to True. Finally, if the specified window was originally mapped, the X

server automatically performs a MapWindow request on it.
The X server performs normal exposure processing on formerly ob­

scured windows. The X server might not generate Expose events for re­

gions from the initial UnmapWindow request that are immediately obscured

by the final MapWindow request. A BadMatch error results if:

• The new parent window is not on the same screen as the old parent window.

• The new parent window is the specified window or an inferior of the specified
window.

• The specified window has a ParentRelative background, and the new parent
window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

7.2 Controlling the Lifetime of a Window
The save-set of a client is a list of other clients' windows that, if they are in­

feriors of one of the client's windows at connection close, should not be de­

stroyed and should be remapped if they are unmapped. For further infor­

mation about close-connection processing, see section 2.6. To allow an

application's window to survive when a window manager that has repar-

Chapter 7. Window Manager Functions 169

L

ented a window fails, Xlib provides the save-set functions that you can use to

control the longevity of subwindows that are normally destroyed when the
parent is destroyed. For example, a window manager that wants to add deco­

ration to a window by adding a frame might reparent an application's win­
dow. When the frame is destroyed, the application's window should not be

destroyed but be returned to its previous place in the window hierarchy.
The X server automatically removes windows from the save-set when they

are destroyed.

To add or remove a window from the client's save-set, use XChan'ge­

SaveSet.

XChangeSaveSet(display, w, change_mode)

Display *display;

Window w;

int change_mode;

display Specifies the connection to the X server.
w Specifies the window that you want to add to or delete from the

client's save-set.
change_mode Specifies the mode. You can pass SetModelnsert or

SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or de­

letes the specified window from the client's save-set. The specified window
must have been created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and Bad­

Window errors.

To add a window to the client's save-set, use XAddToSa veSet.

XAddToSaveSet(display, w)
Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window that you want to add to the client's save-set.

The XAddToSa veSet function adds the specified window to the client's

save-set. The specified window must have been created by some other client,
or a BadMatch error results.

XAddToSa veSet can generate BadMatch and BadWindow errors.

170 XLIB

To remove a window from the client's save-set, use XRemove­

FromS a veSet.

XRemoveFromSaveSet(display, w)

Display *display;
Window w;

display Specifies the connection to the X server.
L w Specifies the window that you want to delete from the client's save-set.

The XRemoveFromSa veSet function removes the specified window from

the client's save-set. The specified window must have been created by some

other client, or a BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow

errors.

7.3 Determining Resident Colormaps
Xlib provides functions that you can use to install a colormap, uninstall a

colormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an or­

dered list and is called the required list. The length of the required list is at

most M, where M is the minimum number of installed colormaps specified

for the screen in the connection setup. The required list is maintained as fol­

lows. When a colormap is specified to XlnstallColormap, it is added to

the head of the list; the list is truncated at the tail, if necessary, to keep its

length to at most M. When a colormap is specified to XUninstall­

Colormap and it is in the required list, it is removed from the list. A

colormap is not added to the required list when it is implicitly installed by the
X server, and the X server cannot implicitly uninstall a colormap that is in

the required list.

To install a colormap, use XlnstallColormap.

XlnstaliColormap(display, colormap)
Display *display;
Colormap colormap;

display Specifies the connection to the X server.
L colormap Specifies the colormap.

Chapter 7. Window Manager Functions 171

The XlnstallColormap function installs the specified colormap for its as­

sociated screen. All windows associated with this colormap immediately dis­
play with true colors. You associated the windows with this colormap when

you created them by calling XCreateWindow, XCreateSimpleWindow,

XChangeWindowAttributes,orXSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server

generates a ColormapNotify event on each window that has that

colormap. In addition, for every other color map that is installed as a result

of a call to XlnstallColormap, the X server generates a Colormap­

Notify event on each window that has that colormap.

XlnstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

XUninstallColormap(display, colormap)

Display *display;

Colormap colormap;

display Specifies the connection to the X server.
L colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from

the required list for its screen. As a result, the specified colormap might be

uninstalled, and the X server might implicitly install or uninstall additional

colormaps. Which colormaps get installed or uninstalled is server­

dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a

ColormapNotify event on each window that has that colormap. In addi­

tion, for every other colormap that is installed or uninstalled as a result of a
call to XUninstallColormap, the X server generates a Colormap­

Notify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use

XListlnstalledColormaps.

Colormap *XListlnstalledColormaps(display, w, num_return)

Display *display;

Window w;

int *num_return;

172 XLIB

display
w

Specifies the connection to the X server.
Specifies the window that determines the screen.

L num_return Returns the number of currently installed colormaps.

The XListlnstalledColormaps function returns a list of the currently
installed colormaps for the screen of the specified window. The order of the
colormaps in the list is not significant and is no explicit indication of the re­
quired list. When the allocated list is no longer needed, free it by using
XFree.

XListlnstalledColormaps can generate a BadWindow error.

7.4 Pointer Grabbing
Xlib provides functions that you can use to control input from the pointer,
which usually is a mouse. Window managers most often use these facilities to

implement certain styles of user interfaces. Some toolkits also need to use
these facilities for special purposes.

Usually, as soon as keyboard and mouse events occur, the X server deliv­
ers them to the appropriate client, which is determined by the window and

input focus. The X server provides sufficient control over event delivery to
allow window managers to support mouse ahead and various other styles of

user interface. Many of these user interfaces depend upon synchronous de­
livery of events. The delivery of pointer and keyboard events can be con­
trolled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to
the grabbing client rather than the normal client who would have received

the event. If the keyb~ard or pointer is in asynchronous mode, further
mouse and keyboard events will continue to be processed. If the keyboard or
pointer is in synchronous mode, no further events are processed until the

grabbing client allows them (see XAllowEvents). The keyboard or pointer

is considered frozen during this interval. The event that triggered the grab
can also be replayed.

Note that the logical state of a device (as seen by client applications) may
lag the physical state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs
when a single client grabs the keyboard and/or pointer explicitly (see
XGrabPointer and XGrabKeyboard). A passive grab occurs when clients
grab a particular keyboard key or pointer button in a window, and the grab

Chapter 7. Window Manager Functions 173

will activate when the key or button is actually pressed. Passive grabs are con­

venient for implementing reliable pop-up menus. For example, you can

guarantee that the pop-up is mapped before the up pointer button event oc­

curs by grabbing a button requesting synchronous behavior. The down

event will trigger the grab and freeze further processing of pointer events

until you have the chance to map the pop-up window. You can then allow
further event processing. The up event will then be correctly processed rela­

tive to the pop-up window.

For many operations, there are functions that take a time argument. The

X server includes a timestamp in various events. One special time, called

CurrentTirne, represents the current server time. The X server maintains

the time when the input focus was last changed, when the keyboard was last

grabbed, when the pointer was last grabbed, or when a selection was last

changed. Your application may be slow reacting to an event. You often need
some way to specify that your request should not occur if another applica­

tion has in the meanwhile taken control of the keyboard, pointer, or selec­

tion. By providing the timestamp from the event in the request, you can ar­

range that the operation not take effect if someone else has performed an

operation in the meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the

time since the last server reset. Timestamp values wrap around (after about

49.7 days). The server, given its current time is represented by timestamp T,

always interprets timestamps from clients by treating half of the timestamp

space as being later in time than T. One timestamp value, named

Curren tT irne, is never generated by the server. This value is reserved for

use in requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The

valid pointer event mask bits are: ButtonPressMask, ButtonRelease­

Mask, EnterWindowMask, LeaveWindowMask, PointerMotion­

Mask, PointerMotionHintMask, Button1MotionMask, Button2-
MotionMask, But ton3 MotionMask, But tonL; MotionMask, Button 5-

MotionMask, ButtonMotionMask, and KeyMapStateMask. For other

functions in this section, you pass keymask bits. The valid keymask bits

are: ShiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask,

Mod3Mask, ModL;Mask, and Mod5Mask.

174 XLIB

L

To grab the pointer, use XGrabPoin ter.

int XGrabPointer(display, grab_window, owner_events, evenLmask, pointer_mode,
keyboard_mode, confine_to, cursor, time)

Display *display;
Window grab_window;

Bool owner_events;
unsigned int evenLmask;
int pointer_mode, keyboard_mode;

Window confine_to;

Cursor cursor;

Time time;
display
grab_window
owner_events

keyboard_mode

confine_to

cursor

time

Specifies the connection to the X server.
Specifies the grab window.
Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.
Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask bits.
Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.
Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.
Specifies the window to confine the pointer in or None.
Specifies the cursor that is to be displayed during the grab or None.
Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabPointer function actively grabs control of the pointer and re­

turns GrabSuccess if the grab was successful. Further pointer events are

reported only to the grabbing client. XGrabPointer overrides any active
pointer grab by this client. If owner_events is False, all generated pointer

events are reported with respect to grab_window and are reported only if

selected by evenLmask. If owner_events is True and if a generated pointer

event would normally be reported to this client, it is reported as usual. Oth­

erwise, the event is reported with respect to the grab_window and is re­

ported only if selected by evenLmask. For either value of owner_events, un­

reported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing con­

tinues as usual. If the pointer is currently frozen by this client, the processing

of events for the pointer IS resumed. If the pointer_mode IS

Chapter 7. Window Manager Functions 175

GrabModeSync, the state of the pointer, as seen by client applications, ap­

pears to freeze, and the X server generates no further pointer events until
the grabbing client calls XAllowEvents or until the pointer grab is re­

leased. Actual pointer changes are not lost while the pointer is frozen; they

are simply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is
unaffected by activation of the grab. If the keyboard_mode is

GrabModeSync, the state of the keyboard, as seen by client applications, ap­

pears to freeze, and the X server generates no further keyboard events until

the grabbing client calls XAllowEvents or until the pointer grab is re­
leased. Actual keyboard changes are not lost while the pointer is frozen; they

are simply queued in the server for later processing.

If a cursor is specified, it is displayed regardless of what window the

pointer is in. If None is specified, the normal cursor for that window is dis­
played when the pointer is in grab_window or one of its subwindows; other­

wise, the cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay con­

tained in that window. The confine_to window need have no relationship to
the grab_window. If the pointer is not initially in the confine_to window, it

is warped automatically to the closest edge just before the grab activates and

enter/leave events are generated as usual. If the confine_to window is subse­

quently reconfigured, the pointer is warped automatically, as necessary, to
keep it contained in the window.

The time argument allows you to avoid certain circumstances that come

up if applications take a long time to respond or if there are long network

delays. Consider a situation where you have two applications, both of which
normally grab the pointer when clicked on. If both applications specify the

timestamp from the event, the second application may wake up faster and

successfully grab the pointer before the first application. The first applica­

tion then will get an indication that the other application grabbed the
pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the

confine_to window lies completely outside the boundaries of the root win­

dow, XGrabPointer fails and returns GrabNotViewable. If the pointer is

actively grabbed by some other client, it fails and returns

AlreadyGrabbed. If the pointer is frozen by an active grab of another cli-

176 XLIB

ent, it fails and returns GrabFrozen. If the specified time is earlier than the

last-painter-grab time or later than the current X server time, it fails and re­
turns GrabIn validTime. Otherwise, the last-painter-grab time is set to the

specified time (CurrentTime is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow

errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer(display, time)

Display *display;
Time time;

display Specifies the connection to the X server.
L time Specifies the time. You can pass either a timestamp or Curren tT irne.

L

The XUngrabPointer function releases the pointer and any queued events

if this client has actively grabbed the pointer from XGrabPointer,

XGrabButton, or from a normal button press. XUngrabPointer does not

release the pointer if the specified time is earlier than the last-painter-grab

time or is later than the current X server time. It also generates
EnterNotify and LeaveNotify events. The X server performs an

UngrabPointer request automatically if the event window or confine_to

window for an active pointer grab becomes not viewable or if window

reconfiguration causes the confine_to window to lie completely outside the

boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab(display, event_mask, cursor, time)

Display *display;

unsigned int event-mask;

Cursor cursor;

Time time;
display Specifies the connection to the X server.
event_mask Specifies which pointer events are reported to the client. The mask is

the bitwise inclusive OR of the valid pointer event mask bits.
cursor Specifies the cursor that is to be displayed or None.

time Specifies the time. You can pass either a timestamp or
CurrentT irne.

Chapter 7. Window Manager Functions 177

L

The XChangeActivePointerGrab function changes the specified dy­
namic parameters if the pointer is actively grabbed by the client and if the
specified time is no earlier than the last-pointer-grab time and no later than

the current X server time. This function has no effect on the passive parame­
ters of a X Grab Button . The interpretation of evenLmask and cursor is the
same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and Bad­

Value errors.

To grab a pointer button, use XGrabButton.

XGrabButton(display, button, modifiers, grab_window, owner _events, event_mask,

pointer_mode, keyboard_mode, confine_to, cursor)

Display *display;

unsigned int button;

unsigned int modifiers;

Window grab_window;

Bool owner_events;

unsigned int event_mask;

int pointer_mode, keyboard_mode;

Window confine_to;

Cursor cursor;

display Specifies the connection to the X server.
button Specifies the pointer button that is to be grabbed or AnyButton.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.
owner_events Specifies a Boolean value that indicates whether the pointer

events are to be! reported as usual or reported with respect to the
grab window if selected by the event mask.

event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask bits.

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass

cursor

GrabModeSync or GrabModeAsync.

Specifies the window to confine the pointer in or None.

Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the
pointer is actively grabbed (as for XGrabPointer), the last-pointer-grab

178 XLIB

time is set to the time at which the button was pressed (as transmitted in the

ButtonPress event), and the ButtonPress event is reported if all of the

following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

• The grab_window contains the pointer.

• The confine_to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer.

The active grab is terminated automatically when the logical state of the

pointer has all buttons released (independent of the state of the logical mod­

ifier keys).

Note that the logical state of a device (as seen by client applications) may

lag the physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on the
same button/key combinations on the same window. A modifiers of

AnyModifier is equivalent to issuing the grab request for all possible modi­

fier combinations (including the combination of no modifiers). It is not re­

quired that all modifiers specified have currently assigned KeyCodes. A but­

ton of AnyButton is equivalent to issuing the request for all possible

buttons. Otherwise, it is not required that the specified button currently be

assigned to a physical button.

If some other client has already issued a XGrabButton with the same

button/key combination on the same window, a BadAccess error results.

When using AnyModifier or AnyBu tton, the request fails completely, and

a BadAccess error results (no grabs are established) if there is a conflicting

grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadValue, and BadWindow

errors.

To ungrab a pointer button, use XUngrabButton.

Chapter 7. Window Manager Functions i79

L

XUngrabButton(display, button, modifiers, grab_window)

Display *display;

unsigned int button;

unsigned int modifiers;

Window grab_window;

display Specifies the connection to the X server.
button Specifies the pointer button that is to be released or AnyButton.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.
grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination

on the specified window if it was grabbed by this client. A modifiers of

AnyModifier is equivalent to issuing the ungrab request for all possible

modifier combinations, including the combination of no modifiers. A button

of AnyButton is equivalent to issuing the request for all possible buttons.

XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadValue and BadWindow errors.

7.5 Keyboard Grabbing
Xlib provides functions that you can use to grab or ungrab the keyboard as

well as allow events.

For many functions in this section, you pass keymask bits. The valid

keymask bits are: ShiftMask, LockMask, ControlMask, Mod1Mask,

Mod2Mask, Mod3Mask, ModL;Mask, and Mod5Mask.

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard(display, grab_window, owner_events, pointer_mode, keyboard_mode,

time)

Display *display;

Window grab_window;

Boolowner_events;

int pointer _mode, keyboard_mode;

Time time;

display

grab_window

owner_events

Specifies the connection to the X server.
Specifies the grab window.
Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

180 XLIB

L

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or
CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and

generates FocusI nand FocusOu t events. Further key events are reported

only to the grabbing client. XGrabKeyboard overrides any active keyboard

grab by this client. If owner_events is False, all generated key events are
reported with respect to grab_window. If owner_events is True and if a

generated key event would normally be reported to this client, it is reported

normally; otherwise, the event is reported with respect to the grab_window.

Both KeyPress and KeyRelease events are always reported, independent

of any event selection made by the client.
If the keyboard_mode argument is GrabModeAsync, keyboard event

processing continues as usual. If the keyboard is currently frozen by this cli­

ent, then processing of keyboard events is resumed. If the keyboard_mode

argument is GrabModeS ync, the state of the keyboard (as seen by client ap­
plications) appears to freeze, and the X server generates no further key­

board events until the grabbing client issues a releasing XAllowEvents call

or until the keyboard grab is released. Actual keyboard changes are not lost

while the keyboard is frozen; they are simply queued in the server for later
processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaf­

fected by activation of the grab. If pointer_mode is GrabModeSync, the

state of the pointer (as seen by client applications) appears to freeze, and the

X server generates no further pointer events until the grabbing client issues

a releasing XAllowEvents call or until the keyboard grab is released. Ac­

tual pointer changes are not lost while the pointer is frozen; they are simply

queued in the server for later processing.

If the keyboard is actively grabbed by some other client, XGrabKeyboard

fails and returns AlreadyGrabbed. If grab_window is not viewable, it fails

and returns GrabNotViewable. If the keyboard is frozen by an active grab

of another client, it fails and returns GrabFrozen. If the specified time is
earlier than the last-keyboard-grab time or later than the current X server

Chapter 7. Window Manager Functions 181

L

time, it fails and returns GrablnvalidTime. Otherwise, the last-keyboard­

grab time is set to the specified time (CurrentTime is replaced by the cur­

rent X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

XUngrabKeyboard(display, time)
Display *display;
Time time;

display Specifies the connection to the X server.
time Specifies the time. You can pass either a timestamp or Curren tTime.

The XUngrabKeyboard function releases the keyboard and any queued

events if this client has it actively grabbed from either XGrabKeyboard or

XGrabKey. XUngrabKeyboard does not release the keyboard and any
queued events if the specified time is earlier than the last-keyboard-grab

time or is later than the current X server time. It also generates Focusln

and FocusOut events. The X server automatically performs an Ungrab­

Keyboard request if the event window for an active keyboard grab becomes

not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey(display, keycode, modifiers, grab_window, owner_events, pointer_mode,
keyboard_mode)

Display *display;
int keycode;
unsigned int modifiers;
Window grab_window;
Boolowner_events;
int pointer _mode, keyboard_mode;

display Specifies the connection to the X server.
keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

grab....:...window Specifies the grab window.
owner_events Specifies a Boolean value that indicates whether the pointer events

are to be reported as usual or reported with respect to the grab
window if selected by the event mask.

182 XLIB

L

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the

future, the keyboard is actively grabbed (as for XGrabKeyboard), the last­

keyboard-grab time is set to the time at which the key was pressed (as trans­

mitted in the KeyPress event), and the KeyPress event is reported if all of

the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

• Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard.

The active grab is terminated automatically when the logical state of the key­

board has the specified key released (independent of the logical state of the

modifier keys).

Note that the logical state of a device (as seen by client applications) may

lag the physical state if device event processing is frozen.

A modifiers argument of Any Modifier is equivalent to issuing the re­

quest for all possible modifier combinations (including the combination of

no modifiers). It is not required that all modifiers specified have currently

assigned KeyCodes. A keycode argument of AnyKey is equivalent to issuing

the request for all possible KeyCodes. Otherwise, the specified keycode must

be in the range specified by min_keycode and max_keycode in the connec­

tion setup, or a Bad Val ue error results.

If some other client has issued a XGrabKey with the same key combination

on the same window, a BadAccess error results. When using Any­

Modifier or AnyKey, the request fails completely, and a BadAccess error

results (no grabs are established) if there is a conflicting grab for any combi­

nation.

Chapter 7. Window Manager Functions 183

XGrabKey can generate BadAccess, BadValue, and BadWindow

errors.

To ungrab a key, use XUngrabKey.

XUngrabKey(display, keycode, modifiers, grab_window)
Display *display;
int keycode;
unsigned int modifiers;
Window grab_window;

display Specifies the connection to the X server.
key code Specifies the KeyCode or AnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.
L grab_window Specifies the grab window.

L

The XUngrabKey function releases the key combination on the specified

window if it was grabbed by this client. It has no effect on an active grab. A

modifiers of AnyModifier is equivalent to issuing the request for all possi­

ble modifier combinations (including the combination of no modifiers). A

keycode argument of AnyKey is equivalent to issuing the request for all pos­

sible key codes.

XUngrabKey can generate BadValue and BadWindow errors.

To allow further events to be processed when the device has been frozen,

use XAllowEvents.

XAllowEvents(display, event_mode, time)
Display *display;
int event-mode;
Time time;

display Specifies the connection to the X server.
event-mode Specifies the event mode. You can pass AsyncPointer,

SyncPointer, AsyncKeyboard, SyncKeyboard, ReplayPointer,
ReplayKeyboard, AsyncBoth,orSyncBoth.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XAllowEvents function releases some queued events if the client has

caused a device to freeze. It has no effect if the specified time is earlier than
the last-grab time of the most recent active grab for the client or if the speci-

184 XLIB

£led time is later than the current X server time. Depending on the

evenLmode argument, the following occurs:

AsyncPointer

SyncPointer

ReplayPointer

AsyncKeyboard

SyncKeyboard

If the pointer is frozen by the client, pointer event
processing continues as usual. If the pointer is frozen
twice by the client on behalf of two separate grabs,
AsyncPointer thaws for both. AsyncPointer has no
effect if the pointer is not frozen by the client, but the
pointer need not be grabbed by the client.
If the pointer is frozen and actively grabbed by the
client, pointer event processing continues as usual until
the next ButtonPress or ButtonRelease event is
reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event causes
the pointer grab to be released, the pointer does not
freeze. SyncPointer has no effect if the pointer is not
frozen by the client or if the pointer is not grabbed by
the client.

If the pointer is actively grabbed by the client and is
frozen as the result of an event having been sent to the
client (either from the activation of a X Grab Button or
from a previous XAllowEvents with mode Sync­

Pointer but not from a XGrabPointer), the pointer
grab is released and that event is completely
reprocessed. This time, however, the function ignores
any passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request has
no effect if the pointer is not grabbed by the client or if
the pointer is not frozen as the result of an event.
If the keyboard is frozen by the client, keyboard event
processing continues as usual. If the keyboard is frozen
twice by the client on behalf of two separate grabs,
AsyncKeyboard thaws for both. AsyncKeyboard has
no effect if the keyboard is not frozen by the client, but
the keyboard need not be grabbed by the client.
If the keyboard is frozen and actively grabbed by the
client, keyboard event processing continues as usual until
the next KeyPress or KeyRelease event is reported to
the client. At this time, the keyboard again appears to
freeze. However, if the reported event causes the
keyboard grab to be released, the keyboard does not
freeze. SyncKeyboard has no effect if the keyboard is

Chapter 7. Window Manager Functions 185

ReplayKeyboard

SyncBoth

AsyncBoth

not frozen by the client or if the keyboard is not
grabbed by the client.
If the keyboard is actively grabbed by the client and is
frozen as the result of an event having been sent to the
client (either from the activation of a X Grab Key or from
a previous XAllowEvents with mode SyncKeyboard

but not from a XGrabKeyboard), the keyboard grab is
released and that event is completely reprocessed. This
time, however, the function ignores any passive grabs at
or above (towards the root of) the grab_window of the
grab just released. The request has no effect if the
keyboard is not grabbed by the client or if the keyboard
is not frozen as the result of an event.
If both pointer and keyboard are frozen by the client,
event processing for both devices continues as usual
until the next ButtonPress, ButtonRelease,

KeyPress, or KeyRelease event is reported to the
client for a grabbed device (button event for the pointer,
key event for the keyboard), at which time the devices
again appear to freeze. However, if the reported event
causes the grab to be released, then the devices do not
freeze (but if the other device is still grabbed, then a
subsequent event for it will still cause both devices to
freeze). SyncBoth has no effect unless both pointer and
keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two
separate grabs, SyncBoth thaws for both (but a
subsequent freeze for SyncBoth will only freeze each
device once).
If the pointer and the keyboard are frozen by the client,
event processing for both devices continues as usual. If a
device is frozen twice by the client on behalf of two
separate grabs, AsyncBoth thaws for both. AsyncBoth

has no effect unless both pointer and keyboard are
frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on

the processing of keyboard events. AsyncKeyboard, SyncKeyboard,

and ReplayKeyboard have no effect on the processing of pointer events. It
is possible for both a pointer grab and a keyboard grab (by the same or dif­

ferent clients) to be active simultaneously. If a device is frozen on behalf of

either grab, no event processing is performed for the device. It is possible

186 XLIB

for a single device to be frozen because of both grabs. In this case, the freeze

must be released on behalf of both grabs before events can again be pro­

cessed.

XAllowEvents can generate a BadValue error.

7.6 Server Grabbing
Xlib provides functions that you can use to grab and ungrab the server.

These functions can be used to control processing of output on other con­

nections by the window system server. While the server is grabbed, no pro­

cessing of requests or close downs on any other connection will occur. A cli­

ent closing its connection automatically ungrabs the server. Although

grabb~ng the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

I XGrabServer(display)
Display *display;

L display Specifies the connection to the X server.

L

The XGrabServer function disables processing of requests and close

downs on all other connections than the one this request arrived on. You

should not grab the X server any more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XU ngrabServer(display)
Display *display;

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close

downs on other connections. You should avoid grabbing the X server as

much as possible.

7.7 Miscellaneous Control Functions
This section discusses how to:

• Control the input focus

• Control the pointer

• Kill clients

Chapter 7. Window Manager Functions 187

7.7.1

L

Controlling Input Focus
Xlib provides functions that you can use to move the pointer position as well

as to set and get the input focus.

To move the pointer to an arbitrary point on the screen, use

XWarp Pointer.

XWarpPointer(display, src_w, dest_w, src_x, src_y, src_width, src.lteight, dest_x, dest_y)
Display *display;
Window src_w, dest_w;
int src_x, src_y;
unsigned int src_width, srclteight;
int desLx, desLy;

display Specifies the connection to the X server.
src_w Specifies the source window or None.

dest_w Specifies the destination window or None.

src_x
src_y
src_width

src-1teight Specify a rectangle in the source window.
dest_x

desLy Specify the x and y coordinates within the destination window.

If desLw is None, XWarpPointer moves the pointer by the offsets (desLx,

desLy) relative to the current position of the pointer. If desLw is a window,

XWarpPointer moves the pointer to the offsets (desLx, desLy) relative to

the origin of desLw. However, if src_w is a window, the move only takes

place if the specified rectangle src_w contains the pointer.

The src-x and src_y coordinates are relative to the origin of src_w. If
src_height is zero, it is replaced with the current height of src_w minus

src_y. If src_width is zero, it is replaced with the current width of src_w

mInus src-x.

There is seldom any reason for calling this function. The pointer should
normally be left to the user. If you do use this function, however, it gen­

erates events just as if the user had instantaneously moved the pointer from

one position to another. Note that you cannot use XWarpPointer to move

the pointer outside the confine_to window of an active pointer grab. An at­
tempt to do so will only move the pointer as far as the closest edge of the

confine_to window.

188 XLIB

L

XWarpPointer can generate a BadWindow error.

To set the input focus, use XSetlnputFocus.

XSetInputFocus(display, focus, revert_to, time)

Display *display;

Window focus;

in t revert_to;

Time time;

display Specifies the connection to the X server.
focus Specifies the window, PointerRoot, or None.
revert_to Specifies where the input focus reverts to if the window becomes not

viewable. You can pass RevertToParent, RevertToPointerRoot, or
RevertToNone.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetlnputFocus function changes the input focus and the last-focus­
change time. It has no effect if the specified time is earlier than the current

last-focus-change time or is later than the current X server time. Otherwise,

the last-focus-change time is set to the specified time (CurrentTime is re­

placed by the current X server time). XSetlnputFocus causes the X server

to generate Focusln and FocusOut events.

Depending on the focus argument, the following occurs:

• If focus is None, all keyboard events are discarded until a new focus window is
set, and the reverLto argument is ignored.

• If focus is a window, it becomes the keyboard's focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors,
the event is reported as, usual. Otherwise, the event is reported relative to the
focus window.

• If focus is POinterRoot, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case,
the reverLto argument is ignored.

The specified focus window must be viewable at the time XSetlnputFocus

is called, or a BadMatch error results. If the focus window later becomes not

viewable, the X server evaluates the reverLto argument to determine the

new focus window as follows:

• If reverLto is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new reverLto value is taken to be RevertToNone.

Chapter 7. Window Manager Functions 189

• If reverLto is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the X server
generates FocusIn and FocusOut events, but the last-focus-change time is not
affected.

XSetlnputFocus can generate BadMatch, BadValue, and BadWindow

errors.

To obtain the current input focus, use XGetlnputFocus.

XGetln pu tFocus(display, focus_return, reverLto_return)

Display *display;

Window *focus_return;

int *reverLto_return;

display Specifies the connection to the X server.
focus_return Returns the focus window, PointerRoot, or None.
revert_to_return Returns the current focus state (RevertToParent,

L RevertToPointerRoot, or RevertToNone).

7.7.2

L

The XGetlnputFocus function returns the focus window and the current

focus state.

Killing Clients
Xlib provides functions that you can use to control the lifetime of resources

owned by a client or to cause the connection to a client to be destroyed.

To change a client's close-down mode, use XSetCloseDownMode.

XSetCloseDownMode(display, close_mode)

Display *display;
int close_mode;

display Specifies the connection to the X server.
close_mode Specifies the client close-down mode. You can pass DestroyAll,

RetainPermanent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client's re­

sources at connection close. A connection starts in DestroyAll mode. For

information on what happens to the client's resources when the close_mode

argument is RetainPermanent or RetainTemporary, see section 2.6.

XSetCloseDownMode can generate a BadValue error.

190 XLIB

L

To destroy a client, use XKillClient.

XKillClient(display, resource)
Display *display;
XID resource;

display Specifies the connection to the X server.
resource Specifies any resource associated with the client that you want to destroy

or AllTemporary.

The XKillClient function forces a close-down of the client that created

the resource if a valid resource is specified. If the client has already termi­

nated in either RetainPermanent or RetainTemporary mode, all of the

client's resources are destroyed. If AIITemporary is specified, the re­

sources of all clients that have terminated in RetainTemporary are de­

stroyed (see section 2.6). This permits implementation of window manager

facilities that aid debugging. A client can set its close-down mode to
RetainTemporary. If the client then crashes, its windows would not be de­

stroyed. The programmer can then inspect the application's window tree

and use the window manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

7.8 Keyboard and Pointer Settings
Xlib provides functions that you can use to change the keyboard control, ob­

tain a list of the auto-repeat keys, turn keyboard auto-repeat on or off, ring
the bell, set or obtain the pointer button or keyboard mapping, and obtain

a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click,

pointer behavior, and so on. The default values for many of these functions

are determined by command line arguments to the X server and, on UNIX­

based systems, are typically set in the /etc/ttys file. Not all implementa­

tions will actually be able to control all of these parameters.

The XChangeKeyboardControl function changes control of a key­

board and operates on a XKeyboardControl structure:

/* Mask bits for Change Keyboard Control */
#define KBKeyClickPercent (lL«O)
#define KBBellPercent (lL«l)
#define KBBellPitch (lL«2)
#define KBBellDuration (lL«3)

Chapter 7. Window Manager Functions

#define KBLed

#define KBLedMode

#define KBKey

#define KBAutoRepeatMode

1* Values *1
typedef struct {

int key_dick_percent;
int belLpercent;
int bell_pitch;
int belLduration;
int led;
int led_mode;
int key;

(lL«4)
(lL«5)
(lL«6)
(lL«7)

1* LedModeOn, LedModeOff *1

int auto_repeaLmode; 1* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepeatModeDefault~

L } XKeyboardControl;

191

The key_click_percent member sets the volume for key clicks between a
(off) and 100 (loud) inclusive, if possible. A setting of - 1 restores the de­

fault. Other negative values generate a Bad Val u e error.

The belLpercent sets the base volume for the bell between a (off) and 100

(loud) inclusive, if possible. A setting of - 1 restores the default. Other nega­

tive values generate a Bad Val u e error. The bell_pitch member sets the

pitch (specified in Hz) of the bell, if possible. A setting of - 1 restores the de­

fault. Other negative values generate a BadValue error. The belLduration

member sets the duration of the bell specified in milliseconds, if possible. A

setting of - 1 restores the default. Other negative values generate a

BadValue error.

If both the led_mode and led members are specified, the state of that LED
is changed, if possible. The led_mode member can be set to LedModeOn or

LedModeOff. If only led_mode is specified, the state of all LEDs are

changed, if possible. At most 32 LEDs numbered from one are supported.

No standard interpretation of LEDs is defined. If led is specified without
led_mode, a BadMa tch error results.

If both the auto_repeat_mode and key members are specified, the

auto_repeat_mode of that key is changed (according to AutoRepeat­

ModeOn, AutoRepeatModeOff, or AutoRepeatModeDefaul t), if possi­

ble. If only auto_repeat_mode is specified, the global auto_repeat_mode

for the entire keyboard is changed, if possible, and does not affect the per

192 XLIB

key settings. Ifa key is specified without an auto_repeaLmode, a BadMatch

error results. Each key has an individual mode of whether or not it should

auto-repeat and a default setting for that mode. In addition, there is a global

mode of whether auto-repeat should be enabled or not and a default setting

for that mode. When global mode is AutoRepeatModeOn, keys should obey

their individual auto-repeat modes. When global mode is AutoRepeat­

ModeOff, no keys should auto repeat. An auto-repeating key generates al­

ternating KeyPress and KeyRelease events. When a key is used as a mod­

ifier, it is desirable for the key not to auto-repeat, regardless of its auto­

repeat setting.
A bell generator connected with the console but not directly on a keyboard

is treated as if it were part of the keyboard. The order in which controls are

verified and altered is server-dependent. If an error is generated, a subset of

the controls may have been altered.

I XChangeKeyboardControl(display, value_mask, values)
Display *display;
unsigned long value_mask;
XKeyboardControl *values;

display Specifies the connection to the X server.
value_mask Specifies one value for each bit set to 1 in the mask.
values Specifies which controls to change. This mask is the bitwise inclusive

L OR of the valid control mask bits.

The XChangeKeyboardControl function controls the keyboard charac­

teristics defined by the XKeyboardControl structure. The value_mask ar­

gument specifies which values are to be changed.

XChangeKeyboardControl can genera~e BadMatch and BadValue

errors.

To obtain the current control values for the keyboard, use

XGetKeyboardControl.

typedef struct {
int key_clicLpercent;
int belLpercent;
unsigned int belLpitch, belLduration;
unsigned long led_mask;

Chapter 7. Window Manager Functions 193

L

L

L

int globaLauto_repeat;
char auto_repeats[32];

} XKeyboardState;

XGetKeyboardControl(display, values_return)

Display *display;

XKeyboardState *values_return;
display Specifies the connection to the X server.
values_return Returns the current keyboard controls in the specified

XKeyboardSta te structure.

The XGetKeyboardControl function returns the current control values

for the keyboard to the XKeyboardState structure.
For the LEDs, the least-significant bit of led_mask corresponds to LED

one, and each bit set to 1 in led_mask indicates an LED that is lit. The

global_auto_repeat member can be set to AutoRepeatModeOn or

AutoRepeatModeOff. The auto_repeats member is a bit vector. Each bit

set to 1 indicates that auto-repeat is enabled for the corresponding key. The

vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys

8N to 8N + 7 with the least-significant bit in the byte representing key 8N.

To turn on keyboard auto-repeat, use X A u toRepea tOn.

XAutoRepeatOn(display)
Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on

the specified display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

XAutoRepeatOff(display)

Display *display;

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on

the specified display.

To ring the bell, use XBell.

194

L

XLIB

XBell(display, percent)
Display *display;
int percent;

display Specifies the connection to the X server.
percent Specifies the volume for the bell, which can range from - 100 to 100

inclusive.

The XBe 11 function rings the bell on the keyboard on the specified display,

if possible. The specified volume is relative to the base volume for the key­

board. If the value for the percent argument is not in the range - 100 to 100

inclusive, a Bad Val ue error results. The volume at which the bell rings

when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative

is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardCon trol.

XBell can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use

XQueryKeymap.

XQuery Keymap(display, keys_return)
Display *display;
char keys_return[32];

display Specifies the connection to the X server.
keys_return Returns an array of bytes that identifies which keys are pressed

L down. Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the

keyboard, where each bit set to 1 indicates that the corresponding key is cur­

rently pressed down. The vector is represented as 32 bytes. Byte N (from 0)

contains the bits for keys 8N to 8N + 7 with the least-significant bit in the

byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may

lag the physical state if device event processing is frozen.

Chapter 7. Window Manager Functions 195

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping(display, map, nmap)

Display *display;

unsigned char map[];

int nmap;

display Specifies the connection to the X server.
map Specifies the mapping list.

L nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. Ifit

succeeds, the X server generates a MappingNotify event, and XSet­

PointerMapping returns MappingSuccess. Elements of the list are in­
dexed starting from one. The length of the list must be the same as
XGetPointerMapping would return, or a BadValue error results. The

index is a core button number, and the element of the list defines the effec­
tive number. A zero element disables a button, and elements are not re­

stricted in value by the number of physical buttons. However, no two ele­
ments can have the same nonzero value, or a Bad Val ue error results. If any

of the buttons to be altered are logically in the down state,
XSetPointerMapping returns MappingBusy, and the mapping is not

changed.
XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping(display, map_return, nmap)

Display *display;
unsigned char map_return[];

int nmap;

display Specifies the connection to the X server.
map_return Returns the mapping list.

L nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the

pointer. Elements of the list are indexed starting from one. XGet­

PointerMapping returns the number of physical buttons actually on the

pointer.' The nominal mapping for a pointer is the identity mapping:
map[i] = i. The nmap argument specifies the length of the array where the

196 XLIB

L

pointer mapping is returned, and only the first nmap elements are returned

in map_return.

To control the pointer's interactive feel, use XChangePointer­

Control.

XChangePointerControl(display, do_accel, do_threshold, acceLnumerator,
accel_denominator, threshold)

Display *display;
Bool do_accel, do_threshold;

int acceLnumerator, accel_denominator;
int threshold;

display

do_threshold

accel_numerator

accel_denominator

threshold

Specifies the connection to the X server.
Specifies a Boolean value that controls whether the values for
the acceLnumerator or accel_denominator are used.
Specifies a Boolean value that controls whether the value for
the threshold is used.
Specifies the numerator for the acceleration multiplier.
Specifies the denominator for the acceleration multiplier.
Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device

moves. The acceleration, expressed as a fraction, is a multiplier for move­

ment. For example, specifying 3/1 means the pointer moves three times as

fast as normal. The fraction may be rounded arbitrarily by the X server. Ac­

celeration only takes effect if the pointer moves more than threshold pixels

at once and only applies to the amount beyond the value in the threshold ar­

gument. Setting a value to - 1 restores the default. The values of the

do_accel and do_threshold arguments must be True for the pointer values

to be set, or the parameters are unchanged. Negative values (other than - 1)

generate a Bad Val ue error, as does a zero value for the accel_denominator

argument.

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl(display, accel_numerator _return, acceLdenominator _return,
threshold_return)

Display *display;
int *accel_numerator _return, *accel_denominator _return;

Chapter 7. Window Manager Functions 197

L

int *threshold_return;

display Specifies the connection to the X server.
accel_numerator _return

accel_denominator _return

threshold_return

Returns the numerator for the acceleration multiplier.
Returns the denominator for the acceleration
multiplier.
Returns the acceleration threshold.

The XGetPointerControl function returns the pointer's current acceler­

ation multiplier and acceleration threshold.

7.9 Keyboard Encoding
Most applications will find the simple interface XLookupString, which

performs simple translation of a key event to an ASCII string, most useful.

Keyboard-related utilities are discussed in chapter 10. The following section

explains how to completely control the bindings of symbols to keys and mod­
ifiers.

A KeyCode represents a physical (or logical) key. KeyCodes lie in the in­

clusive range [8,255]. A KeyCode value carries no intrinsic information, al­

though server implementors may attempt to encode geometry (for example,
matrix) information in some fashion so that it can be interpreted in a server­

dependent fashion. The mapping between keys and KeyCodes cannot be

changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of de­

fined KeySyms include the ISO Latin character sets (1-4), Katakana, Arabic,

Cyrillic, Greek, Technical, Special, Publishing, APL, Hebrew, and a special

miscellany of keys found on keyboards (Return, Help, Tab, and so on). To

the extent possible, these sets are derived from international standards. In

areas where no standards exist, some of these sets are derived from Digital

Equipment Corporation standards. The list of defined symbols can be found

in <X11/keysymdef. h>. Unfortunately, some C preprocessors have limits

on the number of defined symbols. If you must use KeySyms not in the Latin
1-4, Greek, and miscellaneous classes, you may have to define a symbol for

those sets. Most applications usually only include <X11/keysym. h>, which

defines symbols for ISO Latin 1-4, Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The length of the list

can vary with each KeyCode. The list is intended to convey the set of symbols

on the corresponding key. By convention, if the list contains a single KeySym

198 XLIB

and if that KeySym is alphabetic and case distinction is relevant for it, then

it should be treated as equivalent to a two-element list of the lowercase and

uppercase KeySyms. For example, if the list contains the single KeySym for

uppercase A, the client should treat it as if it were a pair with lowercase a as

the first KeySym and uppercase A as the second KeySym.

For any KeyCode, the first KeySym in the list should be chosen as the in­
terpretation of a KeyPress when no modifier keys are down. The second

KeySym in the list normally should be chosen when the Shift modifier is on

or when the Lock modifier is on and Lock is interpreted as ShiftLock. When

the Lock modifier is on and is interpreted as CapsLock, it is suggested that
the Shift modifier first be applied to choose a KeySym. However, if that

KeySym is lowercase alphabetic, the corresponding uppercase KeySym

should be used instead. Other interpretations of CapsLock are possible; for

example, it may be viewed as equivalent to ShiftLock, but only applying

when the first KeySym is lowercase alphabetic and the second KeySym is the

corresponding uppercase alphabetic. No interpretation of KeySyms beyond

the first two in a list is suggested here. No spatial geometry of the symbols on

the key is defined by their order in the KeySym list, although a geometry
might be defined on a vendor-specific basis. The X server does not use the

mapping between KeyCodes and KeySyms. Rather, it stores it merely for

reading and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

XDis play Keycodes(display, min-keycodes_return, max-keycodes_return)
Display *display;
int *min-keycodes_return, max-keycodes_return;

display Specifies the connection to the X server.
min-keycodes_return Returns the minimum number of KeyCodes.

L max-keycodes_return Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max­

keycodes supported by the specified display. The minimum number of

KeyCodes returned is never less than 8, and the maximum number of

KeyCodes returned is never greater than 255. Not all KeyCodes in this

range are required to have corresponding keys.

Chapter 7. Window Manager Functions 199

To obtain the symbols for the specified KeyCodes, use

XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(display, firsLkeycode, keycode_count,

keysyms_per -keycode_return)

Display *display;

KeyCode first-keycode;

int keycode_count;

int *keysyms_per -keycode_return;

display Specifies the connection to the X server.
first-keycode Specifies the first KeyCode that is to be returned.
keycode_count Specifies the number of KeyCodes that are to be

returned.
L keysyms_per-keycode_return Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the speci­
fied number of KeyCodes starting with firsLkeycode. The value specified in

firsLkeycode must be greater than or equal to min_keycode returned by

XDisplayKeycodes or a BadValue error results. In addition, the follow­

ing expression must be less than or equal to max_ keycode returned by

XDisplayKeycodes:

firsLkeycode + keycode_count - 1

If this is not the case, a BadValue error results. The number of elements in

the KeySyms list is:

keycode_count * keysyms_per_keycode_return

KeySym number N, counting from zero, for KeyCode K has the following
index in the list, counting from zero:

(K - firsLcode) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to

be large enough to report all requested symbols. A special KeySym value of

NoSymbol is used to fill in unused elements for individual KeyCodes. To

free the storage returned by XGetKeyboardMapping, use XFree.

XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

200

L

XLIB

XChangeKeyboardMapping(display, first......keycode, keysyms_perkeycode, keysyms,
num_codes)

Display *display;
int first......keycode;
int keysyms_per......keycode;
KeySym *keysyms;.
int num_codes;

display
first......keycode
keysyms_perkey code
keysyms
num_codes

Specifies the connection to the X server.
Specifies the first KeyCode that is to be changed.
Specifies the number of KeySyms per KeyCode.
Specifies a pointer to an array of KeySyms.
Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the

specified number of KeyCodes starting with firsLkeycode. The symbols for

KeyCodes outside this range remain unchanged. The number of elements in

keysyms must be:

The specified firsLkeycode must be greater than or equal to min-Izeycode

returned by XDisplayKeycodes, or a BadValue error results. In addi­

tion, the following expression must be less than or equal to max_keycode re­

turned by XDisplayKeycodes, or a BadValue error results:

firsLkeycode + num_codes - 1

KeySym number N, counting from zero, for KeyCode K has the following

index in keysyms, counting from zero:

(K - firsLkeycode) * keysyms_per_keycode + N

The specified keysyms_per_keycode can be chosen arbitrarily by the client

to be large enough to hold all desired symbols. A special KeySym value of
NoSyrnbol should be used to fill in unused elements for individual

KeyCodes. It is legal for NoS yrnbol to appear in nontrailing positions of the

effective list for a KeyCode. XChangeKeyboardMapping generates a

MappingNotifyevent.

There is no requirement that the X server interpret this mapping. It is
merely stored for reading and writing by clients.

Chapter 7. Window Manager Functions 201

XChangeKeyboardMapping can generate BadAlloc and BadValue

errors.

The next four functions make use of the XModifierKeymap data struc­

ture, which contains:

typedef struct {
int max-keypermod;

KeyCode *modifiermap;

L } XModifierKeymap;

/* This server's max number of keys per
modifier */

/* An 8 by max-keypermod array of the
modifiers */

To create an XModifierKeymap structure, use XNewModifiermap.

XModifierKeymap *XNewModifiermap(max-keys_per_mod)
int max-keys_per _mod;

max-keys_per _mod Specifies the number of KeyCode entries preallocated to the
L modifiers in the map.

The XNewModifiermap function returns a pointer to an XModifier­

Keymap structure for later use.

To add a new entry to an XModifierKeymap structure, use

XlnsertModifiermapEntry.

XModifierKeymap *XlnsertModifiermapEntry(modmap, keycode_entry, modifier)

XModifierKeymap *modmap;

KeyCode keycode_entry;

int modifier;

modmap Specifies a pointer to the XModifierKeymap structure.
keycode_entry Specifies the KeyCode.

L modifier Specifies the modifier.

The XlnsertModifiermapEntry function adds the specified KeyCode to

the set that controls the specified modifier and returns the resulting
XModifierKeymap structure (expanded as needed).

To delete an entry from an XModifierKeymap structure, use

XDeleteModifiermapEntry.

202

L

L

XLIB

XModifier Keymap *XDeleteModifierma pEntry(modmap, keycode_entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;
int modifier;

modmap Specifies a pointer to the XModifierKeymap structure.
keycode_entry Specifies the KeyCode.
modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode
from the set that controls the specified modifier and returns a pointer to the
resulting XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifierma p(modmap)
XModifierKeymap *modmap;

modmap Specifies a pointer to the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap

structure.

To set the KeyCodes to be used as modifiers, use XSetModifier­

Mapping.

int XSetModifierMapping(display, modmap)
Display *display;
XModifierKeymap *modmap;

display Specifies the connection to the X server.
L modmap Specifies a pointer to the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys
(if any) that are to be used as modifiers. If it succeeds, the X server generates
a MappingNotify event, and XSetModifierMapping returns Mapping­

Success. X permits at most eight modifier keys. If more than eight are
specified in the XModifierKeymap structure, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains
eight sets of max-keypermod KeyCodes, one for each modifier in the order
Shift, Lock, Control, Mod1, Mod2, Mod3, Modi;, and ModS. Only
nonzero KeyCodes have meaning in each set, and zero KeyCodes are ig­
nored. In addition, all of the nonzero KeyCodes must be in the range speci­
fied by min_keycode and max-keycode in the Display structure, or a

Chapter 7. Window Manager Functions 203

L

BadValue error results. No KeyCode may appear twice in the entire map,

or a Bad Val ue error results.
An X server can impose restrictions on how modifiers can be changed, for

example, if certain keys do not generate up transitions in hardware, if auto­
repeat cannot be disabled on certain keys, or if multiple modifier keys are

not supported. If some such restriction is violated, the status reply is
MappingFailed, and none of the modifiers are changed. If the new
KeyCodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are in the logically down state,

XSetModifierMapping returns MappingBusy, and none of the modifi­
ers is changed.

XSetModifierMapping can generate BadAlloc and BadValue er­

rors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifier Keymap *XGetModifier Mapping(display)

Display *display;

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifi­

ers. The structure should be freed after use by calling XFree­

Modifiermap. If only zero values appear in the set for any modifier, that

modifier is disabled.

7.10 Screen Saver Control
Xlib provides functions that you can use to set, force, activate, or reset the

screen saver and to obtain the current screen saver values.

To set the screen saver, use XSetScreenSaver.

XSetScreenSaver(display, timeout, interval, prefer_blanking, allow_exposures)

Display *display;

int timeout, interval;

int prefer_blanking;

int allow_exposures;

display Specifies the connection to the X server.
timeout Specifies the timeout, in seconds, until the screen saver turns on.

204 XLIB

interval
prefer_blanking

Specifies the interval between screen saver alterations.
Specifies how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking,or
Defaul tBlanking.

allow_exposures Specifies the screen save control values. You can pass
DontAllowExposures, AllowExposures,or

~ DefaultExposures.

~

Timeout and interval are specified in seconds. A timeout of 0 disables the

screen saver, and a timeout of -1 restores the default. Other negative values

generate a Bad Val ue error. If the timeout value is nonzero,

XSetScreenSaver enables the screen saver. An interval of 0 disables the

random-pattern motion. If no input from devices (keyboard, mouse, and so

on) is generated for the specified number of timeout seconds once the screen

saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video

blanking, the screen simply goes blank. Otherwise, if either exposures are al­

lowed or the screen can be regenerated without sending Expose events to

clients, the screen is tiled with the root window background tile randomly re­

origined each interval minutes. Otherwise, the screens' state does not

change, and the screen saver is not activated. The screen saver is deactivated,

and all screen states are restored at the next keyboard or pointer input or at

the next call to XForceScreenSa ver with mode ScreenSa verReset.

If the server-dependent screen saver method supports periodic change,

the interval argument serves as a hint about how long the change period

should be, and zero hints that no periodic change should be made. Examples

of ways to change the screen include scrambling the colormap periodically,

moving an icon image around the screen periodically, or tiling the screen

with the root window background tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSa ver.

XForceScreenSa ver(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.
mode Specifies the mode that is to be applied. You can pass

ScreenSa verActi ve or ScreenS a verReset.

Chapter 7. Window Manager Functions 205

If the specified mode is ScreenSa verActi ve and the screen saver cur­

rently is deactivated, XForceScreenSa ver activates the screen saver even

if the screen saver had been disabled with a timeout of zero. If the specified

mode is ScreenSaverReset and the screen saver currently is enabled,

XForceScreenSaver deactivates the screen saver if it was activated, and

the activation timer is reset to its initial state (as if device input had been re­

ceived).
XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

I XActivateScreenSaver(display)
Display *display;

L display Specifies the connection to the X server.

L

L

To reset the screen saver, use XResetScreenSa ver.

XResetScreenSaver(display)
Display *display;

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSa ver.

XGetScreenSaver(display, timeout-return, intervaLreturn, prefer _blanking_return,
allow_exposures_return)

Display *display;
int *timeout_return, *interval_return;
int *prefer_blanking_return;
in t * allow_exposures_return;

display Specifies the connection to the X server.
timeout_return

interval_return
prefer _blanking_return

Returns the timeout, in minutes, until the screen saver
turns on.
Returns the interval between screen saver invocations.
Returns the current screen blanking preference
(DontPreferBlanking, PreferBlanking,or
Defaul tBlanking).
Returns the current screen save control value
(DontAllowExposures, AllowExposures,or
Defaul tExposures).

206 XLIB

7.11 Controlling Host Access
This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the

resource ID of a resource, you can manipulate it. To provide some minimal

level of protection, however, connections are permitted only from machines

you trust. This is adequate on single-user workstations but obviously breaks

down on timesharing machines. Although provisions exist in the X protocol

for proper connection authentication, the lack of a standard authentication

server leaves host-level access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On UNIX-based systems, each host listed in the letclX? hosts file. The?
indicates the number of the display. This file should consist of host names
separated by newlines. DECnet nodes must terminate in :: to distinguish them
from Internet hosts.

If a host is not in the access control list when the access control mechanism

is enabled and if the host attempts to establish a connection, the server re­

fuses the connection. To change the access list, the client must reside on the
same host as the server and/or must have been granted permission in the ini­

tial authorization at connection setup.

Servers also can implement other access control policies in addition to or

in place of this host access facility. For further information about other ac­

cess control implementations, see part B, X Window System Protocol.

7.11.1 Adding, Getting, or Removing Hosts
Xlib provides functions that you can use to add, get, or remove hosts from

the access control list. All the host access control functions use the

XHostAddress structure, which contains:

typedef struct {
int family;
int length;

1* for example Familylnternet *1
1* length of address, in bytes *1

Chapter 7. Window Manager Functions 207

L
char *address;

} XHostAddress;
/* pointer to where to find the address */

The family member specifies which protocol address family to use (for ex­

ample, TCP/IP or DECnet) and can be FamilyInternet, Family­

DECnet, or FamilyChaos. The length member specifies the length of the

address in bytes. The address member specifies a pointer to the address.

For TCP/IP, the address should be in network byte order. For the DECnet

family, the server performs no automatic swapping on the address bytes. A

Phase IV address is two bytes long. The first byte contains the least­

significant eight bits of the node number. The second byte contains the

most-significant two bits of the node number in the least-significant two bits

of the byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.

XAddHost(display, host)
Display *display;
XHostAddress *host;

display Specifies the connection to the X server.
L host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for

that display. The server must be on the same host as the client issuing the

command, or a BadAccess error results.

XAddHost can generate BadAccess and BadValue errors.

To add multiple hosts at one time, use XAddHosts.

XAddHosts(display, hosts, numJlOsls)
Display *display;
XHostAddress *hosts;
int numJwsts;

display Specifies the connection to the X server.
hosts Specifies each host that is to be added.

L numJwsts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list
for that display. The server must be on the same host as the client issuing the

command, or a Bad Access error results.

208 XLIB

L

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts(display, nhosts_return, state_return)

Display *display;
int *nhosts_return;
Bool *state_return;

display Specifies the connection to the X server.
nhosts_return Returns the number of hosts currently in the access control list.
state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as

whether the use of the list at connection setup was enabled or disabled.

XListHosts allows a program to find out what machines can make connec­

tions. It also returns a pointer to a list of host structures that were allocated

by the function. When no longer needed, this memory should be freed by

calling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(display, host)
Display *display;

XHostAddress *host;
display Specifies the connection to the X server.

L host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access con­

trollist for that display. The server must be on the same host as the client

process, or a Bad Access error results. If you remove your machine from

the access list, you can no longer connect to that server, and this operation

cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(display, hosts, numJlOsls)
Display *display;
XHostAddress *hosts;
int numJwsts;

Chapter 7. Window Manager Functions 209

display Specifies the connection to the X server.
hosts Specifies each host that is to be removed.

L num-"wsts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access

control list for that display. The X server must be on the same host as the cli­

ent process, or a Bad Access error results. If you remove your machine
from the access list, you can no longer connect to that server, and this opera­

tion cannot be reversed unless you reset the server.

XRemoveHosts can generate BadAccess and Bad Val ue errors.

7.11.2 Changing, Enabling, or Disabling Access Control
Xlib provides functions that you can use to enable, disable, or change access
control.

For these functions to execute successfully, the client application must re­

side on the same host as the X server and/or have been given permission in

the initial authorization at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.
L mode Specifies the mode. You can pass EnableAccess or DisableAccess.

L

The XSetAccessControl function either enables or disables the use of the

access control list at each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControl(display)
Display *display;

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access con­

trol list at each connection setup.

XEnableAccessControl can generate a BadAccess error.

210 XLIB

L

To disable access control, use XDisableAccessControl.

XDisableAccessCon trol(display)
Display *display;

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access con­
trollist at each connection setup.

XDisableAccessControl can generate a BadAccess error.

Chapter 8

Events and
Event-Handling
Functions

211

A client application communicates with the X server through the connection

you establish with the XOpenDisplay function. A client application sends

requests to the X server over this connection. These requests are made by

the Xlib functions that are called in the client application. Many Xlib func­

tions cause the X server to generate events, and the user's typing or moving

the pointer can generate events asynchronously. The X server returns

events to the client on the same connection.
This chapter begins with a discussion of the following topics associated

with events:

• Event types

• Event structures

• Event mask

• Event processing

It then discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle error events

212

Note

XLIB

Some toolkits use their own event-handling functions and do not allow you
to interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what
to do with it, execute some amount of code that results in changes to the dis­
play, and then wait for the next event.

8.1 Event Types
An event is data generated asynchronously by the X server as a result of
some device activity or as side effects of a request sent by an Xlib function.
Device-related events propagate from the source window to ancestor win­

dows until some client application has selected that event type or until the
event is explicitly discarded. The X server generally sends an event to a cli­
ent application only if the client has specifically asked to be informed of that
event type, typically by setting the event-mask attribute of the window. The

mask can also be set when you create a window or by changing the window's

event-mask. You can also mask out events that would propagate to ancestor
windows by manipulating the do-not-propagate mask of the window's attri­

butes. However, MappingNotify events are always sent to all clients.
An event type describes a specific event generated by the X server. For

each event type, a corresponding constant name is defined in <Xll / X. h>,

which is used when referring to an event type. The following table lists the
event category and its associated event type or types. The processing associ­
ated with these events is discussed in section 8.4.

Event Category

Keyboard events
Pointer events

Window crossing events
Input focus events
Keymap state notification event
Exposure events
Structure control events

Event Type

KeyPress, KeyRelease
ButtonPress, ButtonRelease,
MotionNotify
EnterNotify, LeaveNotify
Focusln, FocusOut
KeymapNotify
Expose, GraphicsExpose, NoExpose
CirculateRequest, ConfigureRequest,
MapReguest, ResizeReguest

Chapter 8. Events and Event-Handling Functions 213

Event Category Event Type

Window state notification events CirculateNotify, ConfigureNotify,
CreateNotify, DestroyNotify,
GravityNotify, MapNotify,
MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify
ColormapNotify Colormap state notification event

Client communication events ClientMessage, PropertyNotify,
SelectionClear, SelectionNotify,
SelectionRequest

8.2 Event Structures
For each event type, a corresponding structure IS declared In

<X11 / Xlib. h>. All the event structures have the following 'common

members:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;

L } XAnyEvent;

/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The type member is set to the event type constant name that uniquely identi­

fies it. For example, when the X server reports a GraphicsExpose event to

a client application, it sends an XGraphicsExposeEvent structure with the

type member set to GraphicsExpose. The display member is set to a

pointer to the display the event was read on. The sencLevent member is set

to True if the event came from a SendEvent protocol request. The serial

member is set from the serial number reported in the protocol but ex­

panded from the 16-bit least-significant bits to a full 32-bit value. The win­

dow member is set to the window that is most useful to toolkit dispatch-

ers.

The X server can send events at any time in the input stream. Xlib stores

any events received while waiting for a reply in an event queue for later use.

Xlib also provides functions that allow you to check events in the event

queue (see section 8.7).

214 XLIB

In addition to the individual structures declared for each event type, the
XEvent structure is a union of the individual structures declared for each
event type. Depending on the type, you should access members of each

event by using the XEvent union.

typedef union _XEvent {
int type;
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreate Window Event xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XProperty Event xproperty;
XSelection Clear Event xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

L } XEvent;

/* must not be changed */

Chapter 8. Events and Event-Handling Functions 215

An XEvent structure's first entry always is the type member, which is set to

the event type. The second member always is the serial number of the proto­
col request that generated the event. The third member always is
send_event, which is a Boo 1 that indicates if the event was sent by a different

client. The fourth member always is a display, which is the display that the
event was read from. Except for keymap events, the fifth member always is
a window, which has been carefully selected to be useful to toolkit dispatch­

ers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which

an event occurred. In addition, a pointer to the generic event must be cast
before it is used to access any other information in the structure.

8.3 Event Masks
Clients select event reporting of most events relative to a window. To do this,
pass an event mask to an Xlib event-handling function that takes an
evenLmask argument. The bits of the event mask are defined in

<Xll / X. h>. Each bit in the event mask maps to an event mask name,
which describes the event or events you want" the X server to return to a cli­
ent application.

Unless the client has specifically asked for them, most events are not re­

ported to clients when they are generated. Unless the client suppresses them
by setting graphics-exposures in the GC to False, GraphicsExpose and
NoExpose are reported by default as a result of XCopyPlane and
XCopyArea. SelectionClear, SelectionRequest, Selection­

Notify, or ClientMessage cannot be masked. Selection related events

are only sent to clients cooperating with selections (see section 4.4). When
the keyboard or pointer mapping is changed, MappingNotify is always

sent to clients.
The following table lists the event mask constants you can pass to the

evenLmask argument and the circumstances in which you would want to
specify the event mask:

Event Mask

NoEventMask
KeyPressMask
KeyReleaseMask

Circumstances

No events wanted
Keyboard down events wanted
Keyboard up events wanted

216 XLIB

Event Mask

ButtonPressMask

ButtonReleaseMask
EnterWindowMask

LeaveWindowMask
PointerMotionMask
PointerMotionHintMask
ButtonlMotionMask

Button2MotionMask
Button3MotionMask

Button~MotionMask

Button5MotionMask

ButtonMotionMask
KeymapStateMask

ExposureMask
VisibilityChangeMask
StructureNotifyMask

ResizeRedirectMask
SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask

PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

8.4 Event Processing

Circumstances

Pointer button down events wanted
Pointer button up events wanted
Pointer window entry events wanted
Pointer window leave events wanted
Pointer motion events wanted
Pointer motion hints wanted
Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down
Pointer motion while button 5 down
Pointer motion while any button down
Keyboard state wanted at window entry and
focus in
Any exposure wanted
Any change in visibility wanted
Any change in window structure wanted
Redirect resize of this window
Substructure notification wanted
Redirect structure requests on children
Any change in input focus wanted
Any change in property wanted·
Any change in colormap wanted
Automatic grabs should activate with
owner_events set to True

The event reported to a client application during event processing depends
on which event masks you provide as the event-mask attribute for a window.

For some event masks, there is a one-to-one correspondence between the

event mask constant and the event type constant. For example, if you pass

the event mask ButtonPressMask, the X server sends back only
ButtonPress events. Most events contain a time member, which is the time

at which an event occurred.

In other cases, one event mask constant can map to several event type

constants. For example, if you pass the event mask Substructure­

NotifyMask, the X server can send back CirculateNotify,

Chapter 8. Events and Event-Handling Functions 217

8.4.1

ConfigureNotify, CreateNotify, DestroyNotify, Gravity­

Notify, MapNotify, ReparentNotify, or UnmapNotify events.
In another case, two event masks can map to one event type. For example,

if you pass either PointerMotionMask or ButtonMotionMask, the X

server sends back a MotionNotify event.

The table on pages 218 and 219 lists the event mask, its associated event
type or types, and the structure name associated with the event type. Some

of these structures actually are typedefs to a generic structure that is shared

between two event types. Note that N.A. appears in columns for which the
information is not applicable.

The sections that follow describe the processing that occurs when you se­

lect the different event masks. The sections are organized according to these
processing categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keymap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Client communication events

Keyboard and Pointer Events
This section discusses:

• Pointer button events

• Keyboard and pointer events

8.4.1.1 Pointer Button Events
The following describes the event processing that occurs when a pointer but­

ton press is processed with the pointer in some window wand when no active

pointer grab is in progress.
The X server searches the ancestors of w from the root down, looking for

a passive grab to activate. If no matching passive grab on the button exists,

Event Mask

ButtonMotionMask
Button1MotionMask
Button2MotionMask
Button3MotionMask
Button~MotionMask

ButtonSMotionMask

ButtonPressMask
ButtonReleaseMask
ColormapChangeMask

EnterWindowMask

LeaveWindowMask
ExposureMask

GCGraphicsExposureinGC

FocusChangeMask

KeymapStateMask

KeyPressMask
KeyReleaseMask
OwnerGrabButtonMask

PointerMotionMask

PointerMotionHintMask
PropertyChangeMask

ResizeRedirectMask

StructureNotifyMask

Event Type

MotionNotify

ButtonPress
ButtonRelease
ColormapNotify

EnterNotify

LeaveNotify
Expose

GraphicsExpose
NoExpose
FocusIn
FocusOut
KeymapNotify
KeyPress

KeyRelease
N.A.
MotionNotify

N.A.
PropertyNotify

ResizeRequest
CirculateNotify
ConfigureNotify
DestroyNotify

Structure

XPointerMovedEvent

XButtonPressedEvent

XButtonReleasedEvent
XColormapEvent

XEnterWindowEvent
XLeaveWindowEvent

XExposeEvent
XGraphicsExposeEvent
XNoExposeEvent
XFocusInEvent
XFocusOutEvent
XKeymapEvent
XKeyPressedEvent
XKeyReleasedEvent
N.A.
XPointerMovedEvent

N.A.
XPropertyEvent

XResizeRequestEvent
XCirculateEvent
XConfigureEvent
XDestroyWindowEvent

Generic Structure

XMotionEvent

XButtonEvent

XButtonEvent

XCrossingEvent
XCrossingEvent

XFocusChangeEvent
XFocusChangeEvent

XKeyEvent
XKeyEvent

XMotionEvent

~
1-1

00

SubstructureNotifyMask

SubstructureRedirectMask

N.A.
N.A.
N.A.
N.A.
N.A.
VisibilityChangeMask

GravityNotify

MapNotify
ReparentNotify

UnmapNotify
CirculateNotify

ConfigureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateRequest

ConfigureRequest

MapRequest
ClientMessage

MappingNotify
SelectionClear
SelectionNotify
SelectionRequest
VisibilityNotify

XGravityEvent

XMapEvent
XReparentEvent

XUnmapEvent
XCirculateEvent

XConfigureEvent
XCreateWindowEvent
XDestroyWindowEvent
XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent
XCirculateRequestEvent

XConfigureRequestEvent
XMapRequest~vent

XClientMessageEvent

XMappingEvent
XSelectionClearEvent
XSelectionEvent
XSelectionRequestEvent
XVisibilityEvent

~
I-'
(!)

220 XLIB

the X server automatically starts an active grab for the client receiving the
event and sets the last-pointer-grab time to the current server time. The ef­
fect is essentially equivalent to an XGrabButton with these client passed ar­

guments:

Argument

w
event_mask

pointer_mode

keyboard_mode

owner_events

confine_to

cursor

Value

The event window
The client's selected pointer events on the event window
GrabModeAsync

GrabModeAsync
True, if the client has selected OwnerGrabButtonMask on the
event window, otherwise False

None

None

The active grab is automatically terminated when the logical state of the
pointer has all buttons released. Clients can modify the active grab by calling

XUngrabPointer and XChangeActivePointerGrab.

8.4.1.2 Keyboard and Pointer Events
This section discusses the processing that occurs for the keyboard events

KeyPress and KeyRelease and the pointer events ButtonPress,

ButtonRelease, and MotionNotify. For information about the key­
board event-handling utilities, see chapter 10.

The X server reports KeyPress or KeyRelease events to clients wanting
information about keys that logically change state. Note that these events are
generated for all keys, even those mapped to modifier bits. The X server re­

ports ButtonPress or ButtonRelease events to clients wanting informa­
tion about buttons that logically change state.

The X server reports MotionNotify events to clients wanting informa­

tion about when the pointer logically moves. The X server generates this
event whenever the pointer is moved and the pointer motion begins and
ends in the window. The granularity of MotionNotify events is not guar­

anteed, but a client that selects this event type is guaranteed to receive at
least one event when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device
event processing is frozen.

Chapter 8. Events and Event-Handling Functions 221

To receIve KeyPress, KeyRelease, ButtonPress, and Button­

Release events, set KeyPressMask, KeyReleaseMask, Button­

PressMask, and ButtonReleaseMask bits in the event-mask attribute of

the window.

To receive MotionNotify events, set one or more of the following event

mask bits in the event-mask attribute of the window.

Button1MotionMask

Button2MotionMask

Button3MotionMask

Button~MotionMask

ButtonSMotionMask

ButtonMotionMask

PointerMotionMask

PointerMotionHint

The client application receives MotionNotify

events only when one or more of the specified
buttons is pressed.

The client application receives MotionNotify

events only when at least one button is pressed.

The client application receives MotionNotify

events independent of the state of the pointer
buttons.

IfPointerMotionHintMask is selected, the X
server is free to send only one MotionNotify event
(with the is_hint member of the XPointerMoved

Event structure set to NotifyHint) to client for
the event window, until either the key or button
state changes, the pointer leaves the event window,
or the client calls XQueryPointer or XGetMotion­

Events. The server still may send MotionNotify

events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The

window used by the X server to report these events depends on the window's

position in the window hierarchy and whether any intervening window pro­

hibits the generation of these events. Starting with the source window, the X
server searches up the window hierarchy until it locates the first window

specified by a client as having an interest in these events. If one of the inter­

vening windows has its do-not-propagate-mask set to prohibit generation of

the event type, the events of those types will be suppressed. Clients can mod­

ify the actual window used for reporting by performing active grabs and, in

the case of keyboard events, by using the focus window.

222 XLIB

The structures for these event types contain:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x-root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

} XButtonEvent;

/* ButtonPress or ButtonRelease */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window it is reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* key or button mask */
/* detail */
/* same screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_ */ event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x-root, y_root;
unsigned int state;
unsigned int keycode;

/* KeyPress or KeyRelease */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window it is reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* key or button mask */

/* detail */
Bool same_screen; /* same screen flag */

} XKeyEvent;
typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;

/* MotionNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

Chapter 8. Events and Event-Handling Functions

Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x-root, y_root;
unsigned int state;
char is_hint;
Bool same_screen;

} XMotionEvent;

1* "event" window reported relative to *1
1* root window that the event occurred on *1
1* child window *1
1* milliseconds *1
1* pointer x, y coordinates in event window *1
1* coordinates relative to root *1
1* key or button mask *1
1* detail *1
1* same screen flag *1

L typedef XMotionEvent XPointerMovedEvent;

223

These structures have the following common members: window, root,
subwindow, time, x, y, x-root, y_root, state, and same_screen. The window

member is set to the window on which the event was generated and is re­

ferred to as the event window. As long as the conditions previously discussed
are met, this is the window used by the X server to report the event. The root

member is set to the source window's root window. The x-root and y_root

members are set to the pointer's coordinates relative to the root window's or­

igin at the time of the event.

The same_screen member is set to indicate whether the event window is

on the same screen as the root window and can be either True or False. If

True, the event and root windows are on the same screen. If False, the

event and root windows are not on the same screen.
If the source window is an inferior of the event window, the subwindow

member of the structure is set to the child of the event window that is the

source member or an ancestor of it. Otherwise, the X server sets the

subwindow member to None. The time member is set to the time when the

event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and

y members are set to the coordinates relative to the event window's origin.

Otherwise, these members are set to zero.
The state member is set to indicate the logical state of the pointer buttons

and modifier keys just prior to the event which is the bitwise inclusive OR of

one or more of the button or modifier key masks: Button1Mask,

Button2Mask, Button3Mask, ButtonL;Mask, ButtonSMask, Shift­

Mask, LockMask, ControlMask, Mod1Mask, Mod2Mask, Mod3Mask,

ModL;Mask, and ModSMask.

224 XLIB

8.4.2

Each of these structures also has a member that indicates the detail. For

the XKeyPressedEvent and XKeyReleasedEvent structures, this mem­

ber is called keycode. It is set to a number that represents a physical key on

the keyboard. The keycode is an arbitrary representation for any key on the

keyboard (see chapter 7).

For the XButtonPressedEvent and XButtonReleasedEvent struc­
tures, this member is called button. It represents the pointer button that

changed state and can be the Button1, Button2, Button3, ButtonL;, or

ButtonS value. For the XPointerMovedEvent structure, this member is

called is_hint. It can be set to NotifyNorrnal or NotifyHint.

Window Entry/Exit Events
This section describes the processing that occurs for the window crossing

events EnterNotify and LeaveNotify. If a pointer motion or a window

hierarchy change causes the pointer to be in a different window than before,

the X server reports En terNotify or Lea veNotify events to clients who

have selected for these events. All EnterNotify and LeaveNotify events

caused by a hierarchy change are generated after any hierarchy event

(UnrnapNotify, Map Notify, ConfigureNotify, Gra vi tyNotify,

Circula teNotify) caused by that change; however, the X protocol does

not constrain the ordering of En terNotify and Lea veN otify events with

respect to FocusOut, Visibili tyNotify, and Expose events.
This contrasts with MotionNotify events, which are also generated

when the pointer moves but only when the pointer motion begins and ends

in a single window. An EnterNotify or LeaveNotify event also can be

generated when some client application calls XGrabPointer and
XUngrabPointer.

To receive EnterNotify or Lea veNotify events, set the Enter­

WindowMask or LeaveWindowMask bits of the event-mask attribute of the

window.

The structure for these event types contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;

/* EnterNotify or LeaveNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* "event" window reported relative to */

Chapter 8. Events and Event-Handling Functions

Window root;
Window subwindow;
Time time;
int x, y;
int x-root, y_root;
int mode;

int detail;

Bool same_screen;
Bool focus;

1* root window that the event occurred on *1
1* child window *1
1* milliseconds *1
1* pointer x, y coordinates in event window *1
1* coordinates relative to root *1
~ NotlfyNormal, NotifyGrab,

NotlfyUngrab *1
~ NotlfyAncestor, NotifyVlrtual,

Notlfylnferior, NotifyNonlinear,
NotlfyNonlinearVirtual *1

1* same screen flag *1
1* boolean focus *1

unsigned int state; 1* key or button mask *1
} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;

L typedef XCrossingEvent XLeave Window Event;

225

The window member is set to the window on which the EnterNotify or

Lea veNotify event was generated and is referred to as the event window.

This is the window used by the X server to report the event, and is relative

to the root window on which the event occurred. The root member is set to
the root window of the screen on which the event occurred.

For a Lea veNotify event, if a child of the event window contains the ini­

tial position of the pointer, the subwindow component is set to that child.

Otherwise, the X server sets the subwindow member to None. For an

EnterNotify event, if a child of the event window contains the final

pointer position, the subwindow component is set to that child or None.

The time member is set to the time when the event was generated and is

expressed in milliseconds. The x and y members are set to the coordinates
of the pointer position in the event window. This position is always the point­

er's final position, not its initial position. If the event window is on the same

screen as the root window, x and yare the pointer coordinates relative to the

event window's origin. Otherwise, x and yare set to zero. The x-root and
y_root members are set to the pointer's coordinates relative to the root win­

dow's origin at the time of the event.

The same_screen member is set to indicate whether the event window is

on the same screen as the root window and can be either True or False. If
True, the event and root windows are on the same screen. If False, the

event and root windows are not on the same screen.

226 XLIB

The focus member is set to indicate whether the event window is the focus
window or an inferior of the focus window. The X server can set this mem­
ber to either True or False. If True, the event window is the focus window

or an inferior of the focus window. If False, the event window is not the
focus window or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and
modifier keys just prior to the event. The X server can set this member to the

bitwise inclusive OR of one or more of the button or modifier key masks:
ButtonlMask,Button2Mask,Button3Mask,Button~Mask,Button5-

Mask, ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask,

Mod3Mask, Mod~Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events,
pseudo-motion events when a grab activates, or pseudo-motion events when

a grab deactivates. The X server can set this member to NotifyNormal,

NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be

NotifyAncestor, NotifyVirtual, Notifylnferior, Notify­

Nonlinear, or NotifyNonlinearVirtual.

8.4.2.1 Normal Entry/Exit Events
EnterNotify and LeaveNotify events are generated when the pointer

moves from one window to another window. Normal events are identified by
XEnterWindowEvent or XLea veWindowEvent structures whose mode
member is set to NotifyNormal.

• When the pointer moves from window A to window B and A is an inferior of B,
the X server does the following:
- It generates a LeaveNotify event on window A, with the detail member of

the XLeaveWindowEvent structure set to NotifyAncestor.

- It generates a LeaveNotify event on each window between window A and
window B, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to Notifylnferior.

• When the pointer moves from window A to window Band B is an inferior of A,
the X server does the following:
- It generates a LeaveNotify event on window A, with the detail member of

the XLeaveWindowEvent structure set to Notifylnferior.

Chapter 8. Events and Event-Handling Functions 227

- It generates an EnterNotify event on each window between window A and
window B, exclusive, with the detail member of each XEnterWindowEvent

structure set to NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyAncestor .

• When the pointer moves from window A to window B and window C is their least
common ancestor, the X server does the following:
- It generates a LeaveNotify event on window A, with the detail member of

the XLeaveWindowEvent structure set to NotifyNonlinear.

- It generates ~ LeaveNotify event on each window between window A and
window C, exclusive, with the detail member of each XLeaveWindowEvent

structure set to NotifyNonlinearVirtual.

- It generates an EnterNotify event on each window between window C and
window B, exclusive, with the detail member of each XEnterWindowEvent

structure set to NotifyNonlinearVirtual.

- It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

• When the pointer moves from window A to window B on different screens, the X
server does the following:
- It generates a LeaveNotify event on window A, with the detail member of

the XLeaveWindowEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a LeaveNotify event on each
window above window A up to and including its root, with the detail member
of each XLeaveWindowEvent structure set to NotifyNonlinearVirtual.

- If window B is not a root window, it generates an EnterNotify event on each
window from window B's root down to but not including window B, with the
detail member of each XEnterWindowEvent structure set to Notify­

NonlinearVirtual.

- It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

8.4.2.2 Grab and Ungrab Entry/Exit Events
Pseudo-motion mode EnterNotify and LeaveNotify events are gener­

ated when a pointer grab activates or deactivates. Events in which the

pointer grab activates are identified by XEnterWindowEvent or XLea ve­

WindowEvent structures whose mode member is set to NotifyGrab.

Events In which the pointer grab deactivates are identified by

228 XLIB

8.4.3

XEnterWindowEvent or XLeaveWindowEvent structures whose mode

member is set to NotifyUngrab (see XGrabPointer).

• When a pointer grab activates after any initial warp into a confine_to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab_window for the grab, and P is the window the pointer is in, the X server
does the following:
- It generates EnterNotify and LeaveNotify events (see section 8.4.2.1) with

the mode members of the XEnterWindowEvent and XLeaveWindowEvent

structures set to NotifyGrab. These events are generated as if the pointer
were to suddenly warp from its current position in P to some position in G.
However, the pointer does not warp, and the X server uses the pointer position
as both the initial and final positions for the events.

• When a pointer grab deactivates after generating any actual ButtonRelease

event that deactivates the grab, G is the grab_window for the grab, and P is the
window the pointer is in, the X server does the following:
- It generates EnterNotify and LeaveNotify events (see section 8.4.2.1) with

the mode members of the XEnterWindowEvent and XLeaveWindowEvent

structures set to NotifyUngrab. These events are generated as if the pointer
were to suddenly warp from some position in G to its current position in P.

However, the pointer does not warp, and the X server uses the current pointer
position as both the initial and final positions for the events.

Input Focus Events
This section describes the processing that occurs for the input focus events

Focusln and FocusOut. The X server can report Focusln or FocusOut

events to clients wanting information about when the input focus changes.

The keyboard is always attached to some window (typically, the root window

or a top-level window), which is called the focus window. The focus window

and the position of the pointer determine the window that receives keyboard

input. Clients may need to know when the input focus changes to control

highlighting of areas on the screen.

To receive Focusln or FocusOut events, set the FocusChangeMask bit
in the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;

/* FocusIn or FocusOut */
/* # of last request processed by server */
/* true if this came from a SendEvent request */

Chapter 8. Events and Event-Handling Functions 229

Display *display;
Window window;
int mode;

int detail;

} XFocusChangeEvent;

1* Display the event was read from *1
1* window of event *1
~ NotifyNorrnal, NotifyGrab,

NotifyUngrab *1
1* NotifyAncestor, NotifyVirtual,

Notifylnferior, NotifyNonlinear,
NotifyNonlinearVirtual, NotifyPointer,
NotifyPointerRoot, NotifyDetailNone *1

typedef XFocusChangeEvent XFocuslnEvent;
L typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the FocusIn or

FocusOut event was generated. This is the window used by the X server to

report the event. The mode member is set to indicate whether the focus

events are normal focus events, focus events while grabbed, focus events
when a grab activates, or focus events when a grab deactivates. The X server

can set the mode member to NotifyNorrnal, NotifyWhileGrabbed,

NotifyGrab, or NotifyUngrab.

All FocusOut events caused by a window unmap are generated after any

UnrnapNotify event; however, the X protocol does not constrain the order­

ing of FocusOut events with respect to generated EnterNotify,

LeaveNotify, VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the no­
tify detail and can be NotifyAncestor, NotifyVirtual, Notify­

Inferior, NotifyNonlinear, NotifyNonlinearVirtual, Notify­

Pointer,NotifyPointerRoot,orNotifyDetailNone.

8.4.3.1 Normal Focus Events and Focus Events While Grabbed
Normal focus events are identified by XFocusInEvent or

XFocusOutEvent structures whose mode member IS set to

NotifyNorrnal. Focus events while grabbed are identified by

XFocusInEvent or XFocusOutEvent structures whose mode member is

set to NotifyWhileGrabbed. The X server processes normal focus and

focus events while grabbed according to the following:

• When the focus moves from window A to window B, A is an inferior of B, and
the pointer is in window P, the X server does the following:

230 XLIB

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

- It generates a FocusOut event on each window between window A and
window B, exclusive, with the detail member of each XFocusOutEvent

structure set to NotifyVirtual.

- It generates a Focusln event on window B, with the detail member of the
XFocusOutEvent structure set to Notifylnferior.

- If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a Focusln event on each
window below window B, down to and including window P, with the detail
member of each XFocuslnEvent structure set to NotifyPointer.

• When the focus moves from window A to window B, B is an inferior of A, and
the pointer is in window P, the X server does the following:
- If window P is an inferior of window A but P is not an inferior of window B or

an ancestor of B, it generates a FocusOut event on each window from window
P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to Notifylnferior.

- It generates a Focusln event on each window between window A and window
B, exclusive, with the detail member of each XFocuslnEvent structure set to
NotifyVirtual.

- It generates a Focusln event on window B, with the detail member of the
XFocuslnEvent structure set to NotifyAncestor.

• When the focus moves from window A to window B, window C is their least
common ancestor, and the ppinter is in window P, the X server does the
following:
- If window P is an inferior of window A, it generates a FocusOut event on each

window from window P up to but not including window A, with the detail
member of the XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

- It generates a FocusOut event on each window between window A and
window C, exclusive, with the detail member of each XFocusOutEvent

structure set to NotifyNonlinearVirtual.

- It generates a Focusln event on each window between C and B, exclusive,
with the detail member of each XFocuslnEvent structure set to Notify­

NonlinearVirtual.

Chapter 8. Events and Event-Handling Functions

- It generates a Focusln event on window B, with the detail member of the
XFocuslnEvent structure set to NotifyNonlinear.

231

- If window P is an inferior of window B, it generates a Focusln event on each
window below window B down to and including window P, with the detail
member of the XFocuslnEvent structure set to NotifyPointer.

• When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:
- If window P is an inferior of window A, it generates a FocusOut event on each

window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member
of each XFocusOutEvent structure set to NotifyNonlinearVirtual.

- If window B is not a root window, it generates a Focusln event on each
window from window B's root down to but not including window B, with the
detail member of each XFocuslnEvent structure set to Notify­
NonlinearVirtual.

- It generates a Focusln event on window B, with the detail member of each
XFocuslnEvent structure set to NotifyNonlinear.

- If window P is an inferior of window B, it generates a Focusln event on each
window below window B down to and including window P, with the detail
member of each XFocuslnEvent structure set to NotifyPointer.

• When the focus moves from window A to PointerRoot (events sent to the
window under the pointer) or None (discard), and the pointer is in window P, the
X server does the following:
- If window P is an inferior of window A, it generates a FocusOu t event on each

window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member
of each XFocusOutEvent structure set to NotifyNonlinearVirtual.

- It generates a Focusln event on the root window of all screens, with the detail
member of each XFocuslnEvent structure set to NotifyPointerRoot (or
NotifyDetailNone).

232 XLIB

- If the new focus is PointerRoot, it generates a FocusIn event on each
window from window P's root down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the
pointer) or None to window A, and the pointer is in window P, the X server does
the following:
- If the old focus is PointerRoot, it generates a FocusOut event on each

window from window P up to and including window P's root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to NotifyPointerRoot (or Notify­
DetailNone).

- If window A is not a root window, it generates a FocusIn event on each
window from window A's root down to but not including window A, with the
detail member of each XFocusInEvent structure set to Notify­
NonlinearVirtual.

- It generates a FocusIn event on window A, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

- If window P is an inferior of window A, it generates a FocusIn event on each
window below window A down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the
pointer) to None (or vice versa), and the pointer is in window P, the X server does
the following:
- If the old focus is PointerRoot, it generates a FocusOut event on each

window from window P up to and including window P's root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a Focusout event on all root windows, with the detail member of
each XFocusOutEvent structure set to either NotifyPointerRoot or
NotifyDetailNone.

- It generates a FocusIn event on all root windows, with the detail member of
each XFocusInEvent structure set to NotifyDetailNone or Notify­
PointerRoot.

- If the new focus is PointerRoot, it generates a FocusIn event on each
window from window P's root down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

Chapter 8. Events and Event-Handling Functions 233

8.4.3.2 Focus Events Generated by Grabs

8.4.4

Focus events in which the keyboard grab activates are identified by
XFocusInEvent or XFocusOutEvent structures whose mode member is
set to NotifyGrab. Focus events in which the keyboard grab deactivates are
identified by XFocusInEvent or XFocusOutEvent structures whose

mode member is set to NotifyUngrab (see XGrabKeyboard).

• When a keyboard grab activates before generating any actual KeyPress event
that activates the grab, G is the grab_window, and F is the current focus, the X
server does the following:
- It generates Focusln and FocusOut events, with the mode members of the

XFocuslnEvent and XFocusOutEvent structures set to NotifyGrab. These
events are generated as if the focus were to change from F to G.

• When a keyboard grab deactivates after generating any actual KeyRelease event
that deactivates the grab, G is the grab_window, and F is the current focus, the X
server does the following:
- It generates Focusln and FocusOut events, with the mode members of the

XFocuslnEvent and XFocusOutEvent structures set to NotifyUngrab.

These events are generated as if the focus were to change from G to F.

Keymap State Notification Events
The X server can report KeymapNotify events to clients that want informa­

tion about changes in their keyboard state.
To receive KeymapNotify events, set the KeymapStateMask bit in the

event-mask attribute of the window. The X server generates this event im­

mediately after every EnterNotify and Focusln event.
The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
char key_vector[32];

/* KeymapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

L } XKeymapEvent;

The window member is not used but is present to aid some toolkits. The
key_vector member is set to the bit vector of the keyboard. Each bit set to 1

234 XLIB

8.4.5

indicates that the corresponding key is currently pressed. The vector is rep­
resented as 32 bytes. Byte N (from 0) contains the bits for keys SN to
SN + 7 with the least-significant bit in the byte representing key SN.

Exposure Events

The X protocol does not guarantee to preserve the contents of window re­
gions when the windows are obscured or reconfigured. Some implementa­
tions may preserve the contents of windows. Other implementations are free

to destroy the contents of windows when exposed. X expects client applica­
tions to assume the responsibility for restoring the contents of an exposed
window region. (An exposed window region describes a formerly obscured
window whose region becomes visible.) Therefore, the X server sends

Expose events describing the window and the region of the window that has
been exposed. A naive client application usually redraws the entire window.
A more sophisticated client application redraws only the exposed region.

8.4.5.1 Expose Events

The X server can report Expose events to clients wanting information about
when the contents of window regions have been lost. The circumstances in

which the X server generates Expose events are not as definite as those for
other events. However, the X server never generates Expose events on win­
dows whose class you specified as InputOnly. The X server can generate
Expose events when no valid contents are available for regions of a window

and either the regions are visible, the regions are viewable and the server is
(perhaps newly) maintaining backing store on the window, or the window is
not viewable but the server is (perhaps newly) honoring the window's
backing-store attribute of Always or WhenMapped. The regions decompose

into an (arbitrary) set of rectangles, and an Expose event is generated for
each rectangle. For any given window, the X server guarantees to report

contiguously all of the regions exposed by some action that causes Expose

events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask
attribute of the window.

The structure for this event type contains:

Chapter 8. Events and Event-Handling Functions 235

I typedef struct {
int type; /* Expose */

L

unsigned long serial;
Bool send_event;
Display *display;
Window window;
int x, y;
int width, height;
int count;

} XExposeEvent;

/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */

The window member is set to the exposed (damaged) window. The x and y

members are set to the coordinates relative to the window's origin and indi­

cate the upper-left corner of the rectangle. The width and height members

are set to the size (extent) of the rectangle. The count member is set to the
number of Expose events that are to follow. If count is zero, no more

Expose events follow for this window. However, if count is nonzero, at least

that number of Expose events (and possibly more) follow for this window.

Simple applications that do not want to optimize redisplay by distinguishing

between subareas of its window can just ignore all Expose events with

nonzero counts and perform full redisplays on events with zero counts.

8.4.5.2 GraphicsExpose and No Expose Events
The X server can report GraphicsExpose events to clients wanting infor­

mation about when a destination region could not be computed during cer­

tain graphics requests: XCopyArea or XCopyPlane. The X server gener­

ates this event whenever a destination region could not be computed due to

an obscured or out-of-bounds source region. In addition, the X server

guarantees to report contiguously all of the regions exposed by some graph­

ics request (for example, copying an area of a drawable to a destination

drawable).
The X server generates a NoExpose event whenever a graphics request

that might produce a GraphicsExpose event does not produce any. In

other words, the client is really asking for a GraphicsExpose event but in­

stead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the

graphics-exposure attribute of the graphics context to True. You also can

236 XLIB

L

set the graphics-expose attribute when creating a graphics context using
XCreateGC or by calling XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int x, y;
int width, height;
int count;
int major_code;
int minor_code;

} XGraphicsExposeEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int major_code;
int minor_code;

} XNoExposeEvent;

/* GraphicsExpose */
/* # of last request processed by server */
1* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */
/* core is CopyArea or CopyPlane */
/* not defined in the core */

/* NoExpose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
1* Display the event was read from *1

/* core is CopyArea or CopyPlane */
/* not defined in the core */

Both structures have these common members: drawable, major_code, and
minor_code. The drawable member is set to the drawable of the destination

region on which the graphics request was to be performed. The major_code
member is set to the graphics request initiated by the client and can be either
X_CopyArea or X_CopyPlane. Ifit is X_CopyArea, a call to XCopyArea

initiated the request. If it is X_CopyP lane, a call to XCopyP lane initiated

the request. These constants are defined in <X11 / Xproto. h>. The
minor_code member, like the major_code member, indicates which graph­
ics request was initiated by the client. However, the minor_code member is

not defined by the core X protocol and will be zero in these cases, although
it may be used by an extension.

The XGraphicsExposeEvent structure has these additional members:

Chapter 8. Events and Event-Handling Functions 237

8.4.6

x, y, width, height, and count. The x and y members are set to the coordi­
nates relative to the drawable's origin and indicate the upper-left corner of
the rectangle. The width and height members are set to the size (extent) of
the rectangle. The count member is set to the number of GraphicsExpose

events to follow. If count is zero, no more GraphicsExpose events follow
for this window. However, if count is nonzero, at least that number of
GraphicsExpose events (and possibly more) are to follow for this win­

dow.

Window State Change Events
The following sections discuss:

• CirculateNotify events

• ConfigureNotify events

• CreateNotify events

• DestroyNotify events

• GravityNotify events

• MapNotify events

• MappingNotify events

• ReparentNotify events

• UnmapNotify events

• VisibilityNotify events

8.4.6.1 CirculateNotify Events
The X server can report Circula teNotify events to clients wanting infor­
mation about when a window changes its position in the stack. The X server
generates this event type whenever a window is actually restacked as a result

of a client application calling XCirculateSubwindows, XCirculate­
SubwindowsUp,orXCirculateSubwindowsDown.

To receive CirculateNotify eyents, set the StructureNotifyMask

bit in the event-mask attribute of the window or the Substructure­
NotifyMask bit in the event-mask attribute of the parent window (in which

case, circulating any child generates an event).

238 XLIB

L

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int place;

} XCirculateEvent;

1* Circula teNotify *1
1* # of last request processed by server */
/* true if this came from a SendEvent request */
1* Display the event was read from */

1* PlaceOnTop, PlaceOnBottom */

The event member is set either to the restacked window or to its parent, de­

pending on whether StructureNofify or SubstructureNotify was

selected. The window member is set to the window that was restacked. The

place member is set to the window's position after the restack occurs

and is either PlaceOnTop or PlaceOnBottom. If it is Place­

OnTop, the window is now on top of all siblings. Ifit is PlaceOnBottom, the

window is now below all siblings.

8.4.6.2 ConfigureNotify Events
The X server can report ConfigureNotify events to clients wanting infor­

mation about actual changes to a window's state, such as size, position, bor­

der, and stacking order. The X server generates this event type whenever

one of the following configure window requests made by a client application

actually completes:

• A window's size, position, border, and/or stacking order is reconfigured by calling
XConfigureWindow.

• The window's position in the stacking order is changed by calling XLowerWindow,

XRaiseWindow, or XRestackWindows.

• A window is moved by calling XMoveWindow.

• A window's size is changed by calling XResizeWindow.

• A window's size and location is changed by calling XMoveResizeWindow.

• A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

• A window's border width is changed by calling XSetWindowBorderWidth.

Chapter 8. Events and Event-Handling Functions 239

To receive ConfigureNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substructure­
NotifyMask bit in the event-mask attribute of the parent window (in which
case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Baal send_event;
Display *display;
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Baal override_redirect;

L } XConfigureEvent;

/* ConfigureNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the reconfigured window or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window whose size, position, bor­
der, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the parent win­
dow's origin and indicate the position of the upper-left outside corner of the
window. The width and height members are set to the inside size of the win­
dow, not including the border. The border_width member is set to the width
of the window's border, in pixels.

The above member is set to the sibling window and is used for stacking op­
erations. If the X server sets this member to None, the window whose state
was changed is on the bottom of the stack with respect to sibling windows.
However, if this member is set to a sibling window, the window whose state
was changed is placed on top of this sibling window.

The override_redirect member is set to the override-redirect attribute of
the window. Window manager clients normally should ignore this window if
the override_redirect member is True.

240 XLIB

8.4.6.3 CreateNotify Events

L

The X server can report CreateNotify events to clients wanting informa­

tion about creation of windows. The X server generates this event when­

ever a client application creates a window by calling XCrea te Window or

XCreateSirnpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask

bit in the event-mask attribute of the window. Creating any children then

generates an event.

The structure for the event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Bool override_redirect;

} XCreateWindowEvent;

1* Crea teNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1
1* parent of the window *1
1* window id of window created *1
1* window location *1
1* size of window *1
1* border width *1
1* creation should be overridden *1

The parent member is set to the created window's parent. The window

member specifies the created window. The x and y members are set to the
created window's coordinates relative to the parent window's origin and in­

dicate the position of the upper-left outside corner of the created window.

The width and height members are set to the inside size of the created win­

dow (not including the border) and are always nonzero. The border_width

member is set to the width of the created window's border, in pixels. The

override_redirect member is set to the override-redirect attribute of the win­

dow. Window manager clients normally should ignore this window if the

override_redirect member is True.

8.4.6.4 DestroyNotify Events
The X server can report DestroyNotify events to clients wanting infor­

mation about which windows are destroyed. The X server generates this

event whenever a client application destroys a window by calling

XDestroy Window or XDestroySubwindows.

Chapter 8. Events and Event-Handling Functions 241

The ordering of the DestroyNotify events is such that for any given

window, DestroyNotify is generated on all inferiors of the window before
being generated on the window itself. The X protocol does not constrain the

ordering among siblings and across subhierarchies.
To receive DestroyNotify events, set the StructureNotifyMask

bit in the event-mask attribute of the window or the Substructure­
NotifyMask bit in the event-mask attribute of the parent window (in which

case, destroying any child generates an event).
The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;

L } XDestroyWindowEvent;

/* DestroyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the destroyed window or to its parent, de­
pending on whether StructureNotify or SubstructureNotify was

selected. The window member is set to the window that is destroyed.

8.4.6.5 GravityNotify Events
The X server can report Gra vi tyNotify events to clients wanting infor­
mation about when a window is moved because of a change in the size of its

parent. The X server generates this event whenever a client application actu­

ally moves a child window as a result of resizing its parent by calling
XConfigureWindow, XMoveResizeWindow, or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask

bit in the event-mask attribute of the window or the Substructure­

NotifyMask bit in the event-mask attribute of the parent window (in which
case, any child that is moved because its parent has been resized generates an

event).
The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;

/* Gra vi t yNotify */
/* # of last request processed by server */

242 XLIB

Bool send_event;
Display *display;
Window event;
Window window;
int x, y;

/* true if this came from a SendEvent request */
/* Display the event was read from */

L } XGravityEvent;

The event member is set either to the window that was moved or to its par­

ent, depending on whether StructureNotify or SubstructureNotify

was selected. The window member is set to the child window that was moved.

The x and y members are set to the coordinates relative to the new parent
window's origin and indicate the position of the upper-left outside corner of

the window.

8.4.6.6 MapNotify Events

L

The X server can report Map Notify events to clients wanting information

about which windows are mapped. The X server generates this event type

whenever a client application changes the window's state from unmapped to

mapped by calling XMapWindow, XMapRaised, XMapSubwindows,

XReparentWindow, or as a result of save-set processing.

To receive MapNotify events, set the StructureNotifyMask bitin the

event-mask attribute of the window or the SubstructureNotifyMask bit

in the event-mask attribute of the parent window (in which case, mapping
any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send,-event;
Display *display;
Window event;
Window window;
Booloverride_redirect;

} XMapEvent;

/* MapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* boolean, is override set ... */

The event member is set either to the window that was mapped or to its par­

ent, depending on whether StructureNotify or SubstructureNotify

was selected. The window member is set to the window that was mapped.

The override_redirect member is set to the override-redirect attribute of the

Chapter 8. Events and Event-Handling Functions 243

window. Window manager clients normally should ignore this window if the

override-redirect attribute is True, because these events usually are gener­

ated from pop-ups, which override structure control.

8.4.6.7 MappingNotify Events

L

The X server reports MappingNotify events to all clients. There is no

mechanism to express disinterest in this event. The X server generates this

event type whenever a client application successfully calls:

• XSetModifierMapping to indicate which KeyCodes are to be used as modifiers

• xChangeKeyboardMapping to change the keyboard mapping

• xSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool sencL.event;
Display *display;
Window window;
int request;

int firsLkeycode;
int count;

} XMappingEvent;

1* MappingNotify *1
1* # of last request processed by server */
/* true if this came from a SendEven t request */
/* Display the event was read from */
/* unused */
/* one of MappingModifier, MappingKeyboard,

MappingPointer */
/* first keycode */
/* defines range of change w. firsLkeycode*/

The request member is set to indicate the kind of mapping change that oc­

curred and can be MappingModifier, MappingKeyboard, Mapping­
Pointer. If it is MappingModifier, the modifier mapping was changed.

If it is MappingKeyboard, the keyboard mapping was changed. If it is

MappingPointer, the pointer button mapping was changed. The

firsLkeycode and count members are set only if the request member was set
to MappingKeyboard. The number in firsLkeycode represents the first

number in the range of the altered mapping, and count represents the num­

ber of keycodes altered.
To update the client application's knowledge of the keyboard, you should

callXRefreshKeyboardMapping.

244 XLIB

8.4.6.8 ReparentNotify Events
The X server can report Reparen tNotify events to clients wanting infor­
mation about changing a window's parent. The X server generates this event
whenever a client application calls XReparentWindow and the window is

actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask

bit in the event-mask attribute of the window or the Substructure­

NotifyMask bit in the event-mask attribute of either the old or the new par­
ent window (in which case, reparenting and child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

L } XReparentEvent;

1* ReparentNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

The event member is set either to the reparented window or to its old or new
parent, depending on whether StructureNotify or Substructure­

Notify was selected. The window member is set to the window that was
reparented. The parent member is set to the new parent window. The x and

y members are set to the reparented window's coordinates relative to the
new parent window's origin and define the upper-left outer corner of the
reparented window. The override_redirect member is set to the override­
redirect attribute of the window specified by the window member. Window
manager clients normally should ignore this window if the override_redirect

member is True.

8.4.6.9 UnmapNotify Events
The X server can report UnrnapNotify events to clients wanting informa­
tion about which windows are unmapped. The X server generates this event

type whenever a client application changes the window's state from mapped
to unmapped.

Chapter 8. Events and Event-Handling Functions 245

To receive UnmapNotify events, set the StructureNotifyMask bit in

the event-mask attribute of the window or the SubstructureNotifyMask
bit in the event-mask attribute of the parent window (in which case,

unmapping any child window generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool from_configure;

L } XUnmapEvent;

/* UnmapNotify */

/* # of last request processed by server */
/* true if this came from a SendEven t request */
/* Display the event was read from */

The event member is set either to the unmapped window or to its parent,

depending on whcther StructureNotify or SubstructureNotify

was selected. This is the window used by the X server to report the event.

The window member is set to the window that was unmapped. The

from_configure member is set to True if the event was generated as a result

of a resizing of the window's parent when the window itself had a

win_gravity of UnmapGravity.

8.4.6.10 VisibilityNotify Events
The X server can report VisibilityNotify events to clients wanting any

change in the visibility of the specified window. A region of a window is visi­

ble if someone looking at the screen can actually see it. The X server gener­

ates this event whenever the visibility changes state. However, this event is

never generated for windows whos~ class is InputOnly.

All Visibili tyNotify events caused by a hierarchy change are gener­

ated after any hierarchy event (UnrnapNotify, Map Notify, Configure­

Notify, GravityNotify, CirculateNotify) caused by that change.

Any VisibilityNotify event on a given window is generated before any

Expose events on that window, but it is not required that all

Visibili tyNotify events on all windows be generated before all Expose

events on all windows. The X protocol does not constrain the ordering of

246 XLIB

Visibili tyNotify events with respect to FocusOut, EnterNotify, and

Lea veNotify events.

To receIve Visibili tyNotify events, set the Visibili ty­

ChangeMask bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int state;

/* VisibilityNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

L } XVisibilityEvent;

8.4.7

The window member is set to the window whose visibility state changes. The

state member is set to the state of the window's visibility and can

be VisibilityUnobscured, VisibilityPartiallyObscured, or

VisibilityFullyObscured. The X server ignores all of a window's

subwindows when determining the visibility state of the window and pro­

cesses Visibili tyNotify events according to the following:

• When the window changes state from partially obscured, fully obscured, or not
viewable to viewable and completely unobscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to Visibility­

Unobscured.

• When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event with
the state member of the XVisibilityEvent structure set to Visibility­

PartiallyObscured.

• When the window changes state from viewable and completely unobscured,
viewable and partially obscured, or not viewable to viewable and fully obscured,
the X server generates the event with the state member of the XVisibili ty­

Event structure set to Visibili tyFullyObscured.

Structure Control Events
This section discusses:

• CirculateRequest events

• ConfigureRequest events

Chapter 8. Events and Event-Handling Functions 247

• Map Request events

• ResizeRequest events

8.4.7.1 CirculateRequest Events
The X server can report CirculateRequest events to clients wanting in­

formation about when another client initiates a circulate window request on
a specified window. The X server generates this event type whenever a client

initiates a circulate window request on a window and a subwindow actually

needs to be restacked. The client initiates a circulate window request on the

window by calling XCirculateSubwindows, XCirculateSubwindows­

Up, or XCirculateSubwindowsDown.

To receive CirculateRequest events, set the Substructure­

RedirectMask in the event-mask attribute of the window. Then, in the fu­

ture, the circulate window request for the specified window is not executed,
and thus, any subwindow's position in the stack is not changed. For example,

suppose a client application calls xc ircu la teS ubw indowsUp to

raise a subwindow to the top of the stack. If you had selected

SubstructureRedirectMask on the window, the X server reports to you

a CirculateRequest event and does not raise the subwindow to the top of

the stack.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;

/* Circula teRequest */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

int place; /* PlaceOnTop, PlaceOnBottom */
L } XCirculateRequestEvent;

The parent member is set to the parent window. The window member is set

to the subwindow to be restacked. The place member is set to what the new

position in the stacking order should be and is either PlaceOnTop or

PlaceOnBottom. If it is PlaceOnTop, the subwindow should be on top of

all siblings. If it is P laceOnBot tom, the subwindow should be below all sib­

lings.

248 XLIB

8.4.7.2 ConfigureRequest Events
The X server can report ConfigureRequest events to clients wanting in­

formation about when a different client initiates a configure window request

on any child of a specified window. The configure window request attempts

to reconfigure a window's size, position, border, and stacking order. The X

server generates this event whenever a different client initiates a configure
window request on a window by calling XConfigureWindow, XLower­

Window, XRaiseWindow, XMapRaised, XMoveResizeWindow, XMove­

Window, XResizeWindow, XRestackWindows, or XSetWindow­

BorderWid tho

To receive ConfigureRequest events, set the Substructure­

RedirectMask bit in the event-mask attribute of the window.

ConfigureRequest events are generated when a ConfigureWindow

protocol request is issued on a child window by another client. For example,
suppose a client application calls XLowerWindow to lower a window. If you

had selected SubstructureRedirectMask on the parent window and if

the override-redirect attribute of the window is set to False, the X server

reports a ConfigureRequest event to you and does not lower the speci­
fied window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;

Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail;

unsigned long value_mask;
L } XConfigureRequestEvent;

1* ConfigureRequest *1
1* # of last request processed by server *1
1* true if this came from a SendEven t

request *1
1* Display the event was read from *1

~ Above, Below, Toplf, Bottomlf,
Opposite *1

Chapter 8. Events and Event-Handling Functions 249

The parent member is set to the parent window. The window member is set
to the window whose size, position, border width, and/or stacking order is to
be reconfigured. The value_mask member indicates which components

were specified in the ConfigureWindow protocol request. The corre­

sponding values are reported as given in the request. The remaining values
are filled in from the current geometry of the window, except in the case of
above (sibling) and detail (stack-mode), which are reported as Above and

None, respectively, if they are not given in the request.

8.4.7.3 MapRequest Events
The X server can report MapRequest events to clients wanting information

about a different client's desire to map windows. A window is considered
mapped when a map window request completes. The X server generates this

event whenever a different client initiates a map window request on an
unmapped window whose override_redirect member is set to False. Cli­

ents initiate map window requests by calling XMapWindow, XMapRaised,

or XMapSubwindows.

To receive MapRequest events, set the SubstructureRedirectMask

bit in the event-mask attribute of the window. This means another client's at­

tempts to map a child window by calling one of the map window request
functions is intercepted, and you are sent a MapRequest instead. For exam­

ple, suppose a client application calls XMapWindow to map a window. If you
(usually a window manager) had selected SubstructureRedirectMask

on the parent window and if the override-redirect attribute of the window is
set to False, the X server reports a MapRequest event to you and does not

map the specified window. Thus, this event gives your window manager cli­
ent the ability to control the placement of subwindows.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;

L } XMapRequestEvent;

1* MapRequest *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

250 XLIB

The parent member is set to the parent window. The window member is set

to the window to be mapped.

8.4.7.4 ResizeRequest Events
The X server can report ResizeReguest events to clients wanting infor­

mation about another client's attempts to change the size of a window. The

X server generates this event whenever some other client attempts to change

the size of the specified window by calling XConfigureWindow, XResize­

Window, or XMoveResizeWindow.

To receive ResizeReguest events, set the ResizeRedirect bit in the

event-mask attribute of the window. Any attempts to change the size by

other clients are then redirected.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int width, height;

/* ResizeRequest */
/* # of last request processed by server */
/* true if this came from a SendEven t request */
/* Display the event was read from */

L } XResizeRequestEvent;

8.4.8

The window member is set to the window whose size another client at­
tempted to change. The width and height members are set to the inside size

of the window, excluding the border.

Colormap State Change Events
The X server can report ColormapNotify events to clients wanting infor­

mation about when the colormap changes and when a colormap is installed

or uninstalled. The X server generates this event type whenever a client ap­

plication:

• Changes the colormap member of the XSetWindowAttributes structure by
calling XChangeWindowAttributes, XFreeColormap, or XSetWindow­

Colormap

• Installs or uninstalls the colormap by calling XlnstallColormap or
XUninstallColormap

Chapter 8. Events and Event-Handling Functions 251

To receive ColormapNotify events, set the ColormapChangeMask bit in

the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Colormap colormap;
Bool new;
int state;

/* ColormapNotify */
/* # of last request processed by server */
/* true if this came from a SendEven t request */
/* Display the event was read from */

/* colormap or None */

~ Colormaplnstalled,
ColormapUninstalled */

L } XColormapEvent;

8.4.9

The window member is set to the window whose associated colormap is

changed, installed, or uninstalled. For a colormap that is changed, installed,

or uninstalled, the colormap member is set to the colormap associated with

the window. For a colormap that is changed by a call to XFreeColormap,

the colormap member is set to None. The new member is set to indicate

whether the colormap for the specified window was changed or installed or

uninstalled and can be True or False. If it is True, the colormap was

changed. If it is False, the colormap was installed or uninstalled. The state

member is always set to indicate whether the colormap is installed

or uninstalled and can be Colormaplnstalled or Colormap­

Un installed.

Client Communication Events
This section discusses:

• ClientMessage events

• PropertyNotify events

• SelectionClear events

• SelectionNotifyevents

• SelectionRequest events

252 XLIB

8.4.9.1 ClientMessage Events

The X server generates ClientMessage events only when a client calls the
function XSendEvent.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom message_type;
int format;
union {

char b[20];
short s[10];
long 1[5];
} data;

L } XClientMessageEvent;

/* ClientMessage */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The window member is set to the window to which the event was sent. The
message_type member is set to an atom that indicates how the data should

be interpreted by the receiving client. The format member is set to 8, 16, or

32 and specifies whether the data should be viewed as a list of bytes, shorts,

or longs. The data member is a union that contains the members b, s, and 1.
The b, s, and I members represent data of 20 8-bit values, 10 16-bit values,

and 5 32-bit values. Particular message types might not make use of all these

values. The X server places no interpretation on the values in the

message_type or data members.

8.4.9.2 PropertyNotify Events
The X server can report PropertyNotify events to clients wanting infor­

mation about property changes for a specified window.
To receive PropertyNotify events, set the PropertyChangeMask bit

in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;

/* PropertyNotify */
/* # of last request processed by server */

Chapter 8. Events and Event-Handling Functions 253

L

Bool send_event;
Display *display;
Window window;
Atom atom;
Time time;
int state;

} XProperty Event;

1* true if this came from a SendEvent request *1
1* Display the event was read from *1

1* PropertyNewValue or PropertyDelete *1

The window member is set to the window whose associated property was

changed. The atom member is set to the property's atom and indicates which

property was changed or desired. The time member is set to the server time

when the property was changed. The state member is set to indicate whether

the property was changed to a new value or deleted and can be

PropertyNewValue or PropertyDelete. The state member is set to

PropertyNewValue when a property of the window is changed using

XChangeProperty or XRota teWindowProperties (even when adding

zero-length data using XChangeProperty) and when replacing all or part

of a property with identical data using XChangeProperty or XRotate­

WindowProperties. The state member IS set to Property­

Deleted when a property of the window is deleted using XDelete­

Property or, if the delete argument IS True, XGetWindow­

Property.

8.4.9.3 SelectionClear Events

The X server reports SelectionClear events to the current owner of a se­

lection. The X server generates this event type on the window losing owner­

ship of the selection to a new owner. This sequence of events could occur

whenever a client calls XSetSelectionOwner.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom selectIon;
Time time;

L } XSelectionClearEvent;

1* SelectionClear *1
1* # of last request processed by server *1
1* true if this came from a SendEven t request *1
1* Display the event was read from *1

254 XLIB

The window member is set to the window losing ownership of the selection.

The selection member is set to the selection atom. The time member is set to

the last change time recorded for the selection. The owner member is

the window that was specified by the current owner in its XSet­

SelectionOwner call.

8.4.9.4 Selection Request Events

The X server reports SelectionRequest events to the owner of a selec­

tion. The X server generates this event whenever a client requests a selection

conversion by calling XCon vertSelection and the specified selection is

owned by a window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

L } XSelectionRequestEvent;

1* SelectionRequest *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

The owner member is set to the window owning the selection and is the win­

dow that was specified by the current owner in its XSetSelectionOwner

call. The requestor member is set to the window requesting the selection.

The selection member is set to the atom that names the selection. For exam­

ple, PRIMARY is used to indicate the primary selection. The target member

is set to the atom that indicates the type the selection is desired in. The prop­

erty member can be a property name or None. The time member is set

to the time and is a timestamp or CurrentTime from the Convert-

Selection request.

The client who owns the selection should do the following:

• The owner client should convert the selection based on the atom contained in the
target member.

Chapter 8. Events and Event-Handling Functions 255

• If a property was specified (that is, the property member is set), the owner client
should store the result as that property on the requestor window and then send a
SelectionNotify event to the requestor by calling XSendEvent with an empty
event-mask; that is, the event should be sent to the creator of the requestor window.

• If None is specified as the property, the owner client should choose a property
name on the requestor window and then send a SelectionNotify event giving
the actual name.

• If the selection cannot be converted as requested, the owner client should send a
SelectionNotify event with the property set to None.

8.4.9.5 Selection Notify Events
This event is generated by the X server III response to a

ConvertSelection protocol request when there is no owner for the selec­

tion. When there is an owner, it should be generated by the owner of the se­

lection by using XSendEvent. The owner of a selection should send this

event to a requestor when a selection has been converted and stored as a

property or when a selection conversion could not be performed (which is

indicated by setting the property member to None).
If None is specified as the property in the ConvertSelection protocol

request, the owner should choose a property name, store the result as that

property on the requestor window, and then send a SelectionNotify

giving that actual property name.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

L } XSelectionEvent;

1* SelectionNotify *1
1* # of last request processed by server *1
1* true if this came from a SendEvent request *1
1* Display the event was read from *1

1* atom or None *1

The requestor member is set to the window associated with the requestor of

the selection. The selection member is set to the atom that indicates the selec­

tion. For example, PRIMARY is used for the primary selection. The target

256 XLIB

member is set to the atom that indicates the converted type. For example,

PIXMAP is used for a pixmap. The property member is set to the atom that
indicates which property the result was stored on. If the conversion failed,

the property member is set to None. The time member is set to the time the

conversion took place and can be a timestamp or CurrentTime.

8.5 Selecting Events
There are two ways to select the events you want reported to your client

application. One way is to set the evenLmask member of the XSet­

WindowAttributes structure when you call XCreateWindow and

XChangeWindowAttributes. Another way is to use XSelectlnput.

XSelectlnput(display, w, evenLmask)
Display *display;
Window w;
long evenLmask;

display Specifies the connection to the X server.
W Specifies the window whose events you are interested in.

L evenLmask Specifies the event mask.

The XSelectlnput function requests that the X server report the events

associated with the specified event mask. Initially, X will not report any of

these events. Events are reported relative to a window. If a window is not in­

terested in a device event, it usually propagates to the closest ancestor that is

interested, unless the do_noLpropagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call

for the same window but not for other clients. Multiple clients can select for

the same events on the same window with the following restrictions:

• Multiple clients can select events on the same window because their event masks
are disjoint. When the X server generates an event, it reports it to all interested
clients.

• Only one client at a time can select CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the event mask Substructure­

RedirectMask .

• Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which is associated with
the event mask ButtonPressMask.

Chapter 8. Events and Event-Handling Functions 257

The server reports the event to all interested clients.

XSelectlnput can generate a BadWindow error.

8.6 Handling the Output Buffer

L

The output buffer is an area used by Xlib to store requests. The functions
described in this section flush the output buffer if the function would block
or not return an event. That is, all requests residing in the output buffer that

have not yet been sent are transmitted to the X server. These functions dif­
fer in the additional tasks they might perform.

To flush the output buffer, use XFlush.

XFlush(display)
Display *display;

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applications
need not use this function because the output buffer is automatically flushed
as needed by calls to XPending, XNextEvent, and XWindowEvent. Events
generated by the server may be enqueued into the library's event queue.

To flush the output buffer and then wait until all requests have been pro­

cessed, use XSync.

XSync(display, discard)
Display *display;
Bool discard;

display Specifies the connection to the X server.
discard Specifies a Boolean value that indicates whether XSync discards all

L events on the event queue.

The XSync function flushes the output buffer and then waits until all re­

quests have been received and processed by the X server. Any errors gener­
ated must be handled by the error handler. For each error event received

and processed by the X server, XSync calls the client application's error han­

dling routine (see section 8.12.2). Any events generated by the server are
enqueued into the library's event queue.

Finally, if you passed False, XSync does not discard the events in the
queue. If you passed True, XSync discards all events in the queue, includ-

258 XLIB

ing those events that were on the queue before XSync was called. Client ap­

plications seldom need to call XSync.

8.7 Event Queue Management

L

L

Xlib maintains an event queue. However, the operating system also may be

buffering data in its network connection that is not yet read into the event

queue.

To check the number of events In the event queue, use XEvents­

Queued.

int XEventsQueued(display, mode)
Display *display;
int mode;

display Specifies the connection to the X server.
mode Specifies the mode. You can pass QueuedAlready, QueuedAfterFlush,

or QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number of

events already in the event queue (and never performs a system call). If

mode is QueuedAfterFlush, XEventsQueued returns the number of

events already in the queue if the number is nonzero. If there are no events

in the queue, XEventsQueued flushes the output buffer, attempts to read

more events out of the application's connection, and returns the number

read. If mode is QueuedAfterReading, XEventsQueued returns the

number of events already in the queue if the number is nonzero. If there are

no events in the queue, XEventsQueued attempts to read more events out

of the application's connection without flushing the output buffer and re­

turns the number read.

XEventsQueued always returns immediately without 110 if there are

events already in the queue. XEven tsQueued with mode QueuedAfter­

Flush is identical in behavior to XPending. XEventsQueued with mode

QueuedAlready is identical to the XQLength function.

To return the number of events that are pending, use XPending.

int XPending(display)
Display *display;

display Specifies the connection to the X server.

Chapter 8. Events and Event-Handling Functions 259

The XPending function returns the number of events that have been re­

ceived from the X server but have not been removed from the event queue.

XPending is identical to XEventsQueued with the mode Queued­

After-Flush specified.

8.8 Manipulating the Event Queue

8.8.1

Xlib provides functions that let you manipulate the event queue. The next

three sections discuss how to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate procedures
that you provide

Returning the Next Event
To get the next event and remove it from the queue, use XNextEvent.

I XNextEvent(display, event_return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.
L event-return Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into

the specified XEvent structure and then removes it from the queue. If the

event queue is empty, XNextEvent flushes the output buffer and blocks

until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent(display, event-return)
Display *display;
XEvent *event_return;

display Specifies the connection to the X server.
L event_return Returns a copy of the matched event's associated structure.

The XPeekEvent function returns the first event from the event queue, but
it does not remove the event from the queue. If the queue is empty,

XPeekEvent flushes the output buffer and blocks until an event is received.

260 XLIB

8.8.2

L

L

It then copies the event into the client-supplied XEvent structure without

removing it from the event queue.

Selecting Events Using a Predicate Procedure
Each of the functions discussed in this section requires you to pass a predi­

cate procedure that determines if an event matches what you want. Your
predicate procedure must decide only if the event is useful and must not call
Xlib functions. In particular, a predicate is called from inside the event rou­

tine, which must lock data structures so that the event queue is consistent in

a multi-threaded environment.

The predicate procedure and its associated arguments are:

Bool (*predicate)(display, event, arg)

Display *display;

XEvent *event;

char *arg;

display Specifies the connection to the X server.
event Specifies a pointer to the XEvent structure.
arg Specifies the argument passed in from the XlfEvent,XChecklfEvent,

or XPeeklfEvent function.

The predicate procedure is called once for each event in the queue until it
finds a match. After finding a match, the predicate procedure must return
True. If it did not find a match, it must return False.

To check the event queue for a matching event and, if found, remove the

event from the queue, use XlfEvent.

XlfEvent(display, event_return, predicate, arg)

Display *display;

XEvent *event_return;

Bool (*predicate)();

char *arg;

display Specifies the connection to the X server.
event_return

predicate

arg

Returns the matched event's associated structure.
Specifies the procedure that is to be called to determine if the next
event in the queue matches what you want.
Specifies the user-supplied argument that will be passed to the
predicate procedure.

Chapter 8. Events and Event-Handling Functions 261

The XlfEvent function completes only when the specified predicate proce­

dure returns True for an event, which indicates an event in the queue

matches. XlfEvent flushes the output buffer if it blocks waiting for addi­

tional events. XlfEvent removes the matching event from the queue and

copies the structure into the client-supplied XEvent structure.

To check the event queue for a matching event without blocking, use

XCheckI fEven t.

Bool XChecklfEvent(display, event_return, predicate, arg)

Display *display;
XEvent *event_return;

Bool (*predicate)();

char *arg;

display Specifies the connection to the X server.
event_return Returns a copy of the matched event's associated structure.
predicate Specifies the procedure that is to be called to determine if the next

event in the queue matches what you want.
arg Specifies the user-supplied argument that will be passed to the

L predicate procedure.

L

When the predicate procedure finds a match, XChecklfEvent copies the

matched event into the client-supplied XEvent structure and returns True.

(This event is removed from the queue.) If the predicate procedure finds no

match, XChecklfEvent returns False, and the output buffer will have

been flushed. All earlier events stored in the queue are not discarded.

To check the event queue for a matching event without removing the

event from the queue, use XPeeklfEvent.

XPeeklfEvent(display, event-;-return, predicate, arg)

Display *display;

XEvent *event_return;

Bool (*predicate)();

char *arg;

display Specifies the connection to the X server.
event_return Returns a copy of the matched event's associated structure.
predicate Specifies the procedure that is to be called to determine if the next

event in the queue matches what you want.
arg Specifies the user-supplied argument that will be passed to the

predicate procedure.

262 XLIB

8.8.3

L

The XPeeklfEvent function returns only when the specified predicate

procedure returns True for an event. After the predicate procedure finds a

match, XPeeklfEvent copies the matched event into the client-supplied

XEvent structure without removing the event from the queue. XPeek­

I fE ve n t flushes the output buffer if it blocks waiting for additional events.

Selecting Events Using a Window or Event Mask
The functions discussed in this section let you select events by window or

event types, allowing you to process events out of order.

To remove the next event that matches both a window and an event mask,

use XWindowEvent.

XWindowEvent(display, w, evenLmask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.
w

event_mask
Specifies the window whose events you are interested in.
Specifies the event mask.

event_return Returns the matched event's associated structure.

The XWindowEvent function searches the event queue for an event that

matches both the specified window and event mask. When it finds a match,

XWindowEvent removes that event from the queue and copies it into the

specified XEvent structure. The other events stored in the queue are not

discarded. If a matching event is not in the queue, XWindowEvent flushes

the output buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask

(if any), use XCheckWindawEvent. This function IS similar to

XWindawEvent except that it never blocks and it returns a Baal indicating

if the event was returned.

Bool XCheck Window Event(display, w, event_mask, event_return)
Display *display;
Window w;
long event_mask;
XEvent *event_return;

Chapter 8. Events and Event-Handling Functions 263

L

display
w

evenLmask

Specifies the connection to the X server.
Specifies the window whose events you are interested in.
Specifies the event mask.

evenLreturn Returns the matched event's associated structure.

The XCheckWindowEvent function searches the event queue and then the

events available on the server connection for the first event that matches the

specified window and event mask. Ifit finds a match, XCheckWindowEvent

removes that event, copies it into the specified XEvent structure, and re­

turns True. The other events stored in the queue are not discarded. If the

event you requested is not available, XCheckWindowEvent returns False,

and the output buffer will have been flushed.

To remove the next event that matches an event mask, use

XMaskEvent.

XMaskEvent(display, event_mask, evenLreturn)
Display *display;
long event_mask;
XEvent *event_return;

display Specifies the connection to the X server.
evenLmask Specifies the event mask.

L evenLreturn Returns the matched event's associated structure.

The XMaskEvent function searches the event queue for the events associ­

ated with the specified mask. When it finds a match, XMaskEvent removes

that event and copies it into the specified XEvent structure. The other

events stored in the queue are not discarded. If the event you requested is

not in the queue, XMaskEvent flushes the output buffer and blocks until

one is received.

To return and remove the next event that matches an event mask (if any),

use XCheckMaskEvent. This function is similar to XMaskEvent except

that it never blocks and it returns a Baal indicating if the event was re­

turned.

Bool XCheckMaskEvent(display, event_mask, event_return)
Display *display;
long event_mask;
XEvent *event_return;

264 XLIB

L

L

display
event_mask

Specifies the connection to the X server.
Specifies the event mask.

event_return Returns the matched event's associated structure.

The XCheckMaskEvent function searches the event queue and then any

events available on the server connection for the first event that matches the

specified mask. Ifit finds a match, XCheckMaskEvent removes that event,

copies it into the specified XEvent structure, and returns True. The other

events stored in the queue are not discarded. If the event you requested is

not available, XCheckMaskEvent returns False, and the output buffer

will have been flushed.

To return and remove the next event in the queue that matches an event

type, use XCheckTypedEven t.

Bool XCheckTypedEvent(display, event_type, event_return)
Display *display;
int event-type;
XEvent *event_return;

display Specifies the connection to the X server.
event_type Specifies the event type to be compared.
event_return Returns the matched event's associated structure.

The XCheckTypedEvent function searches the event queue and then any

events available on the server connection for the first event that matches the
specified type. If it finds a match, XCheckTypedEven t removes that event,

copies it into the specified XE ve n t structure, and returns T rue. The other

events in the queue are not discarded. If the event is not available,

XCheckTypedEvent returns False, and the output buffer will have been
flushed.

To return and remove the next event in the queue that matches an event

type and a window, use XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent(display, w, event_type, event_return)
Display *display;
Window w;
int event-type;
XEvent *event-return;

display Specifies the connection to the X server.

Chapter 8. Events and Event-Handling Functions 265

L

w Specifies the window.
event_type Specifies the event type to be compared.
event_return Returns the matched event's associated structure.

The XCheckTypedWindowEvent function searches the event queue and
then any events available on the server connection for the first event that

matches the specified type and window. If it finds a match, XCheck­

TypedWindowEvent removes the event from the queue, copies it into the
specified XEvent structure, and returns True. The other events in the
queue are not discarded. If the event is not available, XCheck­

TypedWindowEvent returns False, and the output buffer will have been
flushed.

8.9 Putting an Event Back into the Queue
To push an event back into the event queue, use XPutBackEvent.

I XPutBackEvent(display, event)
Display *display;
XEvent *event;

display Specifies the connection to the X server.
L event Specifies a pointer to the event.

The XPutBackEvent function pushes an event back onto the head of the
display's event queue by copying the event into the queue. This can be useful
if you read an event and then decide that you would rather deal with it later.
There is no limit to the number of times in succession that you can call

XPutBackEvent.

8.10 Sending Events to Other Applications
To send an event to a specified window, use XSendEvent. This function is

often used in selection processing. For example, the owner of a selection
should use XSendEvent to send a SelectionNotify event to a requestor
when a selection has been converted and stored as a property.

Status XSendEvent(display, w, propagate, evenLmask, event-send)
Display *display;
Window w;

Bool propagate;
long event_mask;

XEvent *event-send;

266 XLIB

display Specifies the connection to the X server.
w Specifies the window the event is to be sent to, Poin terWindow, or

InputFocus.
propagate Specifies a Boolean value.
event_mask Specifies the event mask.

L event-send Specifies a pointer to the event that is to be sent.

The XSendEvent function identifies the destination window, determines

which clients should receive the specified events, and ignores any active

grabs. This function requires you to pass an event mask. For a discussion of

the valid event mask names, see section 8.3. This function uses the w argu­
ment to identify the destination window as follows:

• If w is PointerWindow, the destination window is the window that contains the
pointer.

• If w is InputFocus and if the focus window contains the pointer, the destination
window is the window that contains the pointer; otherwise, the destination window
is the focus window.

To determine which clients should receIVe the specified events,

XSendEvent uses the propagate argument as follows:

• If evenLmask is the empty set, the event is sent to the client that created the
destination window. If that client no longer exists, no event is sent.

• If propagate is False, the event is sent to every client selecting on destination
any of the event types in the evenLmask argument.

• If propagate is True and no clients have selected on destination any of the event
types in event-mask, the destination is replaced with the closest ancestor of
destination for which some client has selected a type in event-mask and for which
no intervening window has that type in its do-not-propagate-mask. If no such
window exists or if the window is an ancestor of the focus window and
InputFocus was originally specified as the destination, the event is not sent to
any clients. Otherwise, the event is reported to every client selecting on the final
destination any of the types specified in evenLmask.

The event in the XE ve n t structure must be one of the core events or one of

the events defined by an extension (or a BadValue error results) so that the

X server can correctly byte-swap the contents as necessary. The contents of

the event are otherwise unaltered and unchecked by the X server except to

force send_event to True in the forwarded event and to set the serial num­

ber in the event correctly.

Chapter 8. Events and Event-Handling Functions 267

XSendEvent returns zero if the conversion to wire protocol format failed

and returns nonzero otherwise.
XSendEvent can generate BadValue and BadWindow errors.

8.11 Getting Pointer Motion History

L

Some X server implementations will maintain a more complete history of
pointer motion than is reported by event notification. The pointer position

at each pointer hardware interrupt may be stored in a buffer for later

retrieval. This buffer is called the motion history buffer. For example, a few
applications, such as paint programs, want to have a precise history of where
the pointer traveled. However, this historical information is highly excessive

for most applications.

To determine the SIze of the motion buffer, use XDisplay­

MotionBufferSize.

unsigned long XDisplayMotionBufferSize (display)

Display *display;
display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to
a finer granularity than is reported by MotionNotify events. The

XGetMotionEvents function makes this history available.

To get the motion history for a specified window and time, use XGet­

MotionEvents.

XTimeCoord *XGetMotionEvents(display, w, start, stop, nevents_return)

Display *display;

Window w;

Time start, stop;

int *nevents_return;
display Specifies the connection to the X server.
W Specifies the window.
start

stop Specify the time interval in which the events are returned from
the motion history buffer. You can pass a timestamp or
CurrentTime.

L nevents_return Returns the number of events from the motion history buffer.

268 XLIB

The XGetMotionEvents function returns all events in the motion history
buffer that fall between the specified start and stop times, inclusive, and that
have coordinates that lie within the specified window (including its borders)
at its present placement. If the start time is later than the stop time or if the

start time is in the future, no events are returned. If the stop time is in the
future, it is equivalent to specifying CurrentTime. The return type for this
function is a structure defined as follows:

typedef struct {
Time time;
short x, y;

L } XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members
are set to the coordinates of the pointer and are reported relative to the ori­

gin of the specified window. To free the data returned from this call, use
XFree.

XGetMotionEvents can generate a BadWindow error.

8.12 Handling Error Events
Xlib provides functions that you can use to enable or disable synchronization
and to use the default error handlers.

8.12.1 Enabling or Disabling Synchronization
When debugging X applications, it often is very convenient to require Xlib

to behave synchronously so that errors are reported as they occur. The fol­
lowing function lets you disable or enable synchronous behavior. Note that
graphics may occur 30 or more times more slowly when synchronization is
enabled. On UNIX-based systems, there is also a global variable _Xdebug

that, if set to nonzero before starting a program under a debugger, will force
synchronous library behavior.

After completing their work, all Xlib functions that generate protocol re­

quests call what is known as an after function. XSetAfterFunction sets
which function is to be called.

int (*XSetAfterFunction(display, procedure))()

Display *display;

int (*procedure)();

Chapter 8. Events and Event-Handling Functions 269

display Specifies the connection to the X server.
procedure Specifies the function to be called after an Xlib function that generates

L ,a protocol request completes it work.

L

The specified procedure is called with only a display pointer. XSet­

AfterFunction returns the previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchronize(display, onofJ))O

Display *display;

Boolonoff;

display Specifies the connection to the X server.
onoff Specifies a Boolean value that indicates whether to enable or disable

synchronization.

The XSynchronize function returns the previous after function. If onoff

is True, XSynchronize turns on synchronous behavior. If onoff is False,

XSynchronize turns off synchronous behavior.

8.12.2 Using the Default Error Handlers
There are two default error handlers in Xlib: one to handle typically fatal

conditions (for example, the connection to ~ display server dying because a

machine crashed) and one to handle error events from the X server. These

error handlers can be changed to user-supplied routines if you prefer your

own error handling and can be changed as often as you like. If either func­

tion is passed a NULL pointer, it will reinvoke the default handler. The ac­

tion of the default handlers is to print an explanatory message and exit.

To set the error handler, use XSetErrorHandler.

I XSetError Handler(handler)

int (*handler)(Display *, XErrorEvent *)
L handler Specifies the program's supplied error handler.

Xlib generally calls the program's supplied error handler whenever an error

is received. It is not called on BadName errors from OpenFont, Lookup­

Color, or AllocNamedColor protocol requests or on BadFont errors

from a QueryFont protocol request. These errors generally are reflected

back to the program through the procedural interface. Because this condi-

270 XLIB

L

tion is not assumed to be fatal, it is acceptable for your error handler to re­

turn. However, the error handler should not call any functions (directly or
indirectly) on the display that will generate protocol requests or that will

look for input events.

The XErrorEvent structure contains:

typedef struct {
int type;
Display *display;
unsigned long serial;
unsigned char error_code;
unsigned char requesLcode;
unsigned char minor_code;
XID resourceid;

/* Display the event was read from */
/* serial number of failed request */

/* error code of failed request */
/* Major op-code of failed request */

/* Minor op-code of failed request */
/* resource id */

} XErrorEvent;

The serial member is the number of requests, starting from one, sent over

the network connection since it was opened. It is the number that was the

value of NextRequest immediately before the failing call was made. The

requesLcode member is a protocol request of the procedure that failed, as

defined in <X11 / Xproto. h>. The following error codes can be returned

by the functions described in this chapter:

Error Code

BadAccess

BadAlloc

Description

A client attempts to grab a key/button combination
already grabbed by another client.
A client attempts to free a colormap entry that it had
not already allocated.
A client attempts to store into a read-only or
unallocated colormap entry.
A client attempts to modify the access control list
from other than the local (or otherwise authorized)
host.
A client attempts to select an event type that another
client has already selected.
The server fails to allocate the requested resource.
Note that the explicit listing of BadAlloc errors in
requests only covers allocation errors at a very coarse
level and is not intended to (nor can it in practice
hope to) cover all cases of a server running out of

Chapter 8. Events and Event-Handling Functions 271

Error Code

BadAtom

BadColor

BadCursor

BadDrawable

BadFont

BadGC

BadIDChoice

Badlmplementation

BadLength

BadMatch

Description

allocation space in the middle of service. The
semantics when a server runs out of allocation space
are left unspecified, but a server may generate a
BadAlloc error on any request for this reason, and
clients should be prepared to receive such errors and
handle or discard them.

A value for an atom argument does not name a
defined atom.
A value for a colormap argument does not name a
defined colormap.
A value for a cursor argument does not name a
defined cursor.
A value for a drawable argument does not name a
defined window or pixmap.
A value for a font argument does not name a defined
font (or, in some cases, GContext).
A value for a GContext argument does not name a
defined GCon text.
The value chosen for a resource identifier either is
not included in the range assigned to the client or is
already in use. Under normal circumstances, this
cannot occur and should be considered a server or
Xlib error.
The server does not implement some aspect of the
request. A server that generates this error for a core
request is deficient. As such, this error is not listed for
any of the requests, but clients should be prepared to
receive such errors and handle or discard them.
The length of a request is shorter or longer than that
required to contain the arguments. This is an internal
Xlib or server error.
The length of a request exceeds the maximum length
accepted by the server.
In a graphics request, the root and depth of the
graphics context does not match that of the drawable.
An InputOnly window is used as a drawable.
Some argument or pair of arguments has the correct
type and range, but it fails to match in some other
way required by the request.
An InputOnly window lacks this attribute.

272 XLIB

Note

Error Code

BadName
BadPixmap

BadRequest

BadValue

BadWindow

Description

A font or color of the specified name does not exist.
A value for a pixmap argument does not name a
defined pixmap.
The major or minor opcode does not specify a valid
request. This usually is an Xlib or server error.
Some numeric value falls outside of the range of
values accepted by the request. Unless a specific range
is specified for an argument, the full range defined by
the argument's type is accepted. Any argument
defined as a set of alternatives typically can generate
this error (due to the encoding).
A value for a window argument does not name a
defined window.

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadG C,
BadPixmap, and BadWindow errors are also used when the argument type

is extended by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, use
XGetErrorText.

XGetErrorText(display, code, buffer_return, length)
Display *display;
int code;
char *buffer_return;

int length;

display Specifies the connection to the X server.
code Specifies the error code for which you want to obtain a description.
buffer_return Returns the error description.

L length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing

the specified error code into the specified buffer. It is recommended that

you use this function to obtain an error description because extensions to

Xlib may define their own error codes and error strings.

To obtain error messages from the error database, use

XGetErrorDatabaseText.

Chapter 8. Events and Event-Handling Functions 273

I XGetErrorDatabaseText(display, name, message, default-string, buffer_return, length)
Display *display;

L

L

char *name, *message;
char *default-string;
char *buffer_return;
int length;

display
name
message
default-string

buffer_return
length

Specifies the connection to the X server.
Specifies the name of the application.
Specifies the type of the error message.
Specifies the default error message if none is found in the
database.
Returns the error description.
Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a message (or the default
message) from the error message database. Xlib uses this function internally
to look up its error messages. On a UNIX-based system, the error message
database is lusr/lib/X11/XErrorDB.

The name argument should generally be the name of your application.
The message argument should indicate which type of error message you
want. Xlib uses three predefined message types to report errors (strings and

uppercase and lowercase matter):

XProtoError

XlibMessage

XRequest

The protocol error number is used as a string for the message
argument.
These are the message strings that are used internally by the
library.
The major request protocol number is used for the message
argument. If no string is found in the error database, the
defaulLstring is returned to the buffer argument.

To report an error to the user when the requested display does not exist, use
XD isp layName.

char *XDisplay N ame(string)
char *string;

string Specifies the character string.

The XDisplayName function returns the name of the display that
XOpenDisplay would attempt to use. If a NULL string is specified,

XDisplayName looks in the environment for the display and returns the

274 XLIB

L

display name that XOpenDisplay would attempt to use. This makes it easier

to report to the user precisely which display the program attempted to open

when the initial connection attempt failed.

To handle fatal 110 errors, use XSetIOErrorHandler.

XSetIOError Handler(handler)
int (*handler)(Display *);

handler Specifies the program's supplied error handler.

The XSetIOErrorHandler sets the fatal 110 error handler. Xlib calls the

program's supplied error handler if any sort of system call error occurs (for

example, the connection to the server was lost). This is assumed to be a fatal

condition, and the called routine should not return. If the 110 error handler

does return, the client process exits.

Chapter 9

Predefined Property
Functions

275

There are a number of predefined properties for information commonly as­
sociated with windows. The atoms for these predefined properties can be

found in <X11 / Xatom. h>, where the prefix XA_ is added to each atom
name.

Xlib provides functions that you can use to perform operations on
predefined properties. This chapter discusses how to:

• Communicate with window managers

• Manipulate standard colormaps

9.1 Communicating with Window Managers
This section discusses a set of properties and functions thaE are necessary for

clients to communicate effectively with window managers. Some of these

properties have complex structures. Because all the data in a single property

on the server has to be of the same format (8-bit, 16-bit, or 32-bit) and be­

cause the C structures representing property types cannot be guaranteed to

be uniform in the same way, Set and Get functions are provided for proper­
ties with complex structures.

These functions define but do not enforce minimal policy among window

managers. Writers of window managers are urged to use the information in

these properties rather than invent their own properties and types. A win­

dow manager writer, however, can define additional properties beyond this

least-common denominator.

276 XLIB

In addition to Set and Get functions for individual properties, Xlib in­
cludes one function, XSetStandardProperties, that sets all or portions
of several properties. Applications are encouraged to provide the window
manager more information than is possible with XSetStandard­

Properties. To do so, they should call the Set functions for the additional
or specific properties that they need.

To work well with most window managers, every application should spec­
ify the following information:

• Name of the application

• Name to be used in the icon

• Command used to invoke the application

• Size and window manager hints

Xlib does not set defaults for the properties described in this section. Thus,
the default behavior is determined by the window manager and may be

based on the presence or absence of certain properties. All the properties
are considered to be hints to a window manager. When implementing win­

dow management policy, a window manager determines what to do with this
information and can ignore it.

The supplied properties are:

Name

WM_NAME

WM_ICON_NAME

WM_NORMALHINTS

WM_COMMAND

Type

STRING

STRING

WM_SIZLHINTS

STRING

Format

8
8
32

32

32

8

Description

Name of the application.
Name to be used in icon.
Size hints for a window in its
normal state. The C type of
this property is
XSizeHints.

Size hints for a zoomed
window. The C type of this
property is XSizeHints.

Additional hints set by client
for use by the window
manager. The C type of this
property is XWMHints.

The command and
arguments, separated by

Chapter 9. Predefined Property Functions

Name Type

STRING

WM_TRANSIENT_FOR' WINDOW

Format

32

32

32

277

Description

ASCII nulls, used to invoke
the application.
The window manager may
set this property on the root
window to specify the icon
sizes it supports. The C type
of this property is
XlconSize.
Set by application programs
to allow window and session
managers to obtain the
application's resources from
the resource database.
Set by application programs
to indicate to the window
manager that a transient
top-level window, such as a
dialog box, is not really a
normal application window.

The atom names stored In <Xll / Xatom. h> are named

XA_PROPERTY _NAME.

Xlib provides functions that you can use to set and get predefined proper­
ties. Note that calling the Set function for a property with complex structure

redefines all members in that property, even though only some of those

members may have a specified new value. Simple properties for which Xlib

does not provide a Set or Get function can be set by using XChange-

. Property, and their values can be retrieved using XGetWindowProperty.

The remainder of this section discusses how to:

• Set standard properties

• Set and get the name of a window

• Set and get the icon name of a window

• Set the command and arguments of the application

• Set and get window manager hints

• Set and get window size hints

• Set and get icon size hints

278 XLIB

9.1.1

L

• Set and get the class of a window

• Set and get the transient property for a window

Setting Standard Properties
To specify a minimum set of properties describing the "quickie" application,
use XSetStandardProperties. This function sets all or portions of the
WM_NAME, WM_ICON_NAME, WM_HINTS, WM_COMMAND, and

WM_NORMAL_ HINTS properties.

XSetStandardProperties(display, w, window_name, icon_name, icon_pixmap, argv,
argc, hints)

Display *display;
Window w;

char *window_name;
char *icon_name;
Pixmap icon_pixmap;
char **argv;
int argc;
XSizeHints *hints;

display Specifies the connection to the X server.
w Specifies the window.
window_name Specifies the window name, which should be a null-terminated

icon_pixmap
argv
argc
hints

string.
Specifies the icon name, which should be a null-terminated string.
Specifies the bitmap that is to be used for the icon or None.

Specifies the application's argument list.
Specifies the number of arguments.
Specifies a pointer to the size hints for the window in its normal state.

The XSetStandardProperties function provides a means by which sim­
ple applications set the most essential properties with a single call.

XSetStandardProperties should be used to give a window manager
some information about your program's preferences. It should not be used
by applications that need to communicate more information than is possible

with XSetStandardProperties. (Typically, argv is the argv array of your
main program.)

XSetStandardProperties can generate BadAlloc and BadWindow

errors.

Chapter 9. Predefined Property Functions 279

9.1.2

L

Setting and Getting Window Names
Xlib provides functions that you can use to set and read the name of a win­
dow. These functions set and read the WM_NAME property.

To assign a name to a window, use XStoreName.

XStoreName(display, w, window_name)
Display *display;
Window w;

char *window_name;
display Specifies the connection to the X server.
w Specifies the window.
window_name Specifies the window name, which should be a null-terminated

string.

The XStoreName function assigns the name passed to window_name to the
specified window. A window manager can display the window name in some

prominent place, such as the title bar, to allow users to identify windows eas­
ily. Some window managers may display a window's name in the window's

icon, although they are encouraged to use the window's icon name if one is

provided by the application.
XStoreName can generate BadAlloc and BadWindow errors.

To get the name of a window, use XFetchName.

Status XFetchN ame(display, w, wiridow_name_return)
Display *display;
Window w;
char **window_name_return;

display Specifies the connection to the X server.
w Specifies the window.
window_name_return Returns a pointer to the window name, which is a

L null-terminated string.

The XFetchName function returns the name of the specified window. If it

succeeds, it returns nonzero; otherwise, if no name has been set for the win­
dow, it returns zero. If the WM_NAME property has not been set for this

window, XFetchName sets window_name.-return to NULL. When finished
with it, a client must free the window name string using XFree.

XFetchName can generate a BadWindow error.

280

9.1.3

XLIB

Setting and Getting Icon Names
Xlib provides functions that you can use to set and read the name to be dis­
played III a window's Icon. These functions set and read the

WM_ICON_NAME property.

To set the name to be displayed In a window's Icon, use

XSetlconName.

XSetIconName(display, w, icon_name)
Display *display;
Window w;

char *icon_name;
display Specifies the connection to the X server.
w Specifies the window.

L zcon_name Specifies the icon name, which should be a null-terminated string.

XSetlconName can generate BadAlloc and BadWindow errors.

To get the name a window wants displayed in its icon, use

XGetlconName.

Status XGetlconName(display, w, icon_name_return)
Display *display;
Window w;

char **icon_name_return;
display Specifies the connection to the X server.
w Specifies the window.
icon_name_return Returns a pointer to the window's icon name, which is a

L null-terminated string.

9.1.4

The XGetlconName function returns the name to be displayed in the speci­

fied window's icon. If it succeeds, it returns nonzero; otherwise, if no icon

name has been set for the window, it returns zero. If you never assigned a

name to the window, XGetlconName sets icon_name_return to NULL.

When finished with it, a client must free the icon name string using XFree.

XGetlconName can generate a BadWindow error.

Setting the Command
To set the command property, use XSetCommand. This function sets the
WM_COMMAND property.

Chapter 9. Predefined Property Functions 281

I XSetCommand(display, w, argv, argc)
Display *display;
Window w;

char **argv;
int argc;

display Specifies the connection to the X server.
w Specifies the window.
argv Specifies the application's argument list.

Large Specifies the number of arguments.

9.1.5

The XSetCommand function sets the command and arguments used to in­
voke the application. (Typically, argv is the argv array of your main pro­

gram.)
XSetCommand can generate BadAlloc and BadWindow errors.

Setting and Getting Window Manager Hints
The functions discussed in this section set and read the WM_HINTS prop­

erty and use the flags and the XWMHints structure, as defined in the

<Xll / Xutil. h> header file:

1* Window manager hints mask bits *1
#define InputHint (IL« 0)

(IL « 1)

(IL « 2)
(IL « 3)

(IL« 4)

(IL « 5)
(IL« 6)

#define StateHint
#define IconPixmapHint
#define IconWindowHint
#define IconPosi tionHint
#define IconMaskHint
#defineWindowGroupHint
#define AllHints (InputHintIStateHintllconPixmapHintllconWindowHintl\

IconPosi tionHintllconMaskHintlWindowGroupHint)

1* Values *1
typedef struct {

long flags;
Bool input;

int initiaLstate;
Pixmap icon_pixmap;
Window icoILwindow;
int icon_x, icon_y;

1* marks which fields in this structure are defined *1
1* does this application rely on the window

manager to get keyboard input? *1
1* see below *1
1* pixmap to be used as icon *1
1* window to be used as icon *1
1* initial position of icon *1

282 XLIB

Pixmap icon_mask;
XID window_group;

/* pixmap to be used as mask for icon_pixmap */

/* id of related window group */
/* this structure may be extended in the future */

L } XWMHints;

The input member is used to communicate to the window manager the

input focus model used by the application. Applications that expect input

but never explicitly set focus to any of their subwindows (that is, use the push

model of focus management), such as XIO-style applications that use real­

estate driven focus, should set this member to True. Similarly, applications

that set input focus to their subwindows only when it is given to their top­
level window by a window manager should also set this member to True.

Applications that manage their own input focus by explicitly setting focus to

one of their subwindows whenever they want keyboard input (that is, use the

pull model of focus management) should set this member to False. Appli­

cations that never expect any keyboard input also should set this member to
False.

Pull model window managers should make it possible for push model ap­

plications to get input by setting input focus to the top-level windows of ap­

plications whose input member is True. Push model window managers

should make sure that pull model applications do not break them by reset­

ting input focus to Po in terRoot when it is appropriate (for example,

whenever an application whose input member is False sets input focus to
one of its subwindows).

The definitions for the initial_state flag are:

#define Don tCareSta te
#define NormalState
#define ZoomSta te
#define IconicState
#define InactiveState

o /* don't know or care */

1 /* most applications start this way */

2 /* application wants to start zoomed */

3 /* application wants to start as an icon */

4 /* application believes it is seldom used; some
wm's may put it on inactive menu */

The icon_mask specifies which pixels of the icon_pixmap should be used as

the icon. This allows for nonrectangular icons. Both the icon_pixmap and

icon_mask must be bitmaps. The icon_window lets an application provide a

window for use as an icon for window managers that support such use. The

window_group lets you specify that this window belongs to a group of other

windows. For example, if a single application manipulates multiple top-level

Chapter 9. Predefined Property Functions 283

windows, this allows you to provide enough information that a window man­

ager can iconify all of the windows rather than just the one window.

To set the window manager hints for a window, use XSetWMHints.

XSetWMHints(display, w, wmhints)

Display *display;

Window w;

XWMHints *wmhints;

display Specifies the connection to the X server.
w Specifies the window.

L wmhints Specifies a pointer to the window manager hints.

The XSetWMHints function sets the window manager hints that include

icon information and location, the initial state of the window, and whether

the application relies on the window manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

To read the window manager hints for a window, use XGetWMHints.

XWMHints *XGetWMHints(display, w)

Display *display;

Window w;

display Specifies the connection to the X server.
L w Specifies the window.

9.1.6

The XGetWMHints function reads the window manager hints and returns

NULL if no WM_HINTS property was set on the window or a pointer to a

XWMHints structure if it succeeds. When finished with the data, free the

space used for it by calling XFree.

XGetWMHints can generate a BadWindow error.

Setting and Getting Window Sizing Hints
Xlib provides functions that you can use to set or get window sizing hints.

The functions discussed in this section use the flags and the XSizeHints

structure, as defined in the <X11 / Xutil. h> header file:

/* Size hints mask bits */
#define USPosi tion
#define USSize
#define PPosi tion

(IL « 0)
(lL « I)
(lL « 2)

/* user specified x, y */
/* user specified width, height */

/* program specified position */

284

L

XLIB

#define PSize

#define PMinSize

#define PMaxS ize

#define PResizelnc

#define PAspect

(lL « 3)
(lL « 4)
(lL « 5)
(lL « 6)
(lL « 7)

1* program specified size *1
1* program specified minimum size *1
1* program specified maximum size *1
1* program specified resize increments *1
1* program specified min and max

aspect ratios *1
#define PAllHints (PPosi tionlPS izelPMinSizelPMaxSizel\

PResizelnclPAspect)

1* Values *1
typedef struct {

long flags;

int x, y;
int width, height;
int min_width, min_height;
int max-width, max-height;
int width_inc, heighLinc;
struct {

int x;
int y;

} min_aspect, max_aspect;
} XSizeHints;

1* marks which fields in this structure are
defined *1

1* numerator *1
1* denominator *1

The x, y, width, and height members describe a desired position and size for
the window. To indicate that this information was specified by the user, set
the USPosi tion and USSize flags. To indicate that it was specified by the
application without any user involvement, set PPosi tion and PSize. This
lets a window manager know that the user specifically asked where the win­
dow should be placed or how the window should be sized and that the win­
dow manager does not have to rely on the program's opinion.

The min_width and miILheight members specify the minimum window
size that still allows the application to be useful. The max-width and
max-height members specify the maximum window size. The width_inc
and heighLinc members define an arithmetic progression of sizes (mini­
mum to maximum) into which the window prefers to be resized. The
min_aspect and max-aspect members are expressed as ratios ofx and y, and
they allow an application to specify the range of aspect ratios it prefers.

The next two functions set and read the WM_NORMAL_HINTS prop­
erty.

Chapter 9. Predefined Property Functions 285

L

L

To set the size hints for a given window m its normal state, use

XSetNormalHints.

XSetNormaIHints(display, w, hints)

Display *display;

Window w;

XSizeHints *hints;
display Specifies the connection to the X server.
w Specifies the window.
hints Specifies a pointer to the size hints for the window in its normal state.

The XSetNormalHints function sets the size hints structure for the speci­

fied window. Applications use XSetNormalHints to inform the window

manager of the size or position desirable for that window. In addition, an ap­

plication that wants to move or resize itself should call XSetNormalHints

and specify its new desired location and size as well as making direct Xlib
calls to move or resize. This is because window managers may ignore redi­

rected configure requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appro­

priate members in the hints structure but also must set the flags member of

the structure to indicate which information is present and where it came

from. A call to XSetNormalHints is meaningless, unless the flags member

is set to indicate which members of the structure have been assigned values.

XSetNormalHints can generate BadAlloc and BadWindow errors.

To return the size hints for a window in its normal state, use

XGetNormalHints.

Status XGetNormaIHints(display, w, hints_return)

Display *display;

Window w;
XSizeHints *hints_return;

display Specifies the connection to the X server.
w Specifies the window.
hints_return Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its

normal state. It returns a nonzero status if it succeeds or zero if the applica­

tion specified no normal size hints for this window.

XGetNormalHints can generate a BadWindow error.

286 XLIB

The next two functions set and read the WM_ZOOM_ HINTS prop­

erty.

To set the zoom hints for a window, use XSetZoomHints.

XSetZoomHints(display, w, zhints)

Display *display;

Window w;

XSizeHints *zhints;

display Specifies the connection to the X server.
w Specifies the window.

L zhints Specifies a pointer to the zoom hints.

L

Many window managers think of windows in one of three states: iconic, nor­
mal, or zoomed. The XSetZoomHints function provides the window man­
ager with information for the window in the zoomed state.

XSetZoomHints can generate BadAlloc and BadWindow errors.

To read the zoom hints for a window, use XGetZoornHints.

Status XGetZoomHints(display, w, zhints_return)

Display *display;

Window w;

XSizeHints *zhints_return;

display Specifies the connection to the X server.
w Specifies the window.
zhints_return Returns the zoom hints.

The XGetZoornHints function returns the size hints for a window in its

zoomed state. It returns a nonzero status if it succeeds or zero if the applica­
tion specified no zoom size hints for this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM_SIZE_HINTS, use
XSetS izeHin ts.

XSetSizeHints(display, w, hints, property)

Display *display;

Window w;

XSizeHints *hints;

Atom property;

Chapter 9. Predefined Property Functions 287

L

display

w
hints­

property

Specifies the connection to the X server.
Specifies the window.
Specifies a pointer to the size hints.
Specifies the property name.

The XSetSizeHints function sets the XSizeHints structure for the

named property and the specified window. This is used by XSetNormal­

Hints and XSetZoomHints, and can be used to set the value of any prop­

erty of type WM_SIZE_HINTS. Thus, it may be useful if other properties

of that type get defined.
XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow

errors.

To read the value of any property of type WM_SIZE_HINTS, use

XGetS izeHin ts.

Status XGetSizeHints(display, w, hints_return, property)

Display *display;

Window w;

XSizeHints *hints_return;

Atom property;

display Specifies the connection to the X server.
w Specifies the window.
hints_return Returns the size hints.

L property Specifies the property name.

9.1.7

XGetSizeHints returns the XSizeHints structure for the named prop­

erty and the specified window. This is used by XGetNormalHints and

XGetZoomHints. It also can be used to retrieve the value of any property
of type WM_SIZE_HINTS. Thus, it may be useful if other properties of

that type get defined. XGetSizeHints returns a nonzero status if a size

hint was defined or zero otherwise.
XGetSizeHints can generate BadAtom and BadWindow errors.

Setting and Getting Icon Size Hints
Applications can cooperate with window managers by providing icons in

sizes supported by a window manager. To communicate the supported icon

sizes to the applications, a window manager should set the icon size property

on the root window of the screen. To find out what icon sizes a window man-

288 XLIB

ager supports, applications should read the icon size property from the root

window of the screen.
The functions discussed in this section set or read the WM_ICON_SIZE

property. In addition, they use the XIconSize structure, which is defined

in <X11 / Xu til. h> and contains:

typedef struct {
int milL-width, min_height;
int max-width, max-height;
int width_inc, heighLinc;

L } XlconSize;

The width_inc and heighLinc members define an arithmetic progression of

sizes (minimum to maximum) that represent the supported icon sizes.

To set the icon size hints for a window, use XSetIconSizes.

XSetlconSizes(display, w, size_list, count)
Display *display;
Window w;

XlconSize *size_list;
int count;

display Specifies the connection to the X server.
w Specifies the window.
size_list Specifies a pointer to the size list.

L count Specifies the number of items in the size list.

L

The XSetIconSizes function is used only by window managers to set the

supported icon sizes.

XSetIconSizes can generate BadAlloc and BadWindow errors.

To return the icon sizes hints for a window, use XGetIconSizes.

Status XGetlconSizes(display, w, size_list-return, count-return)

Display *display;
Window w;
XlconSize **size_list_return;
int *count_return;

display Specifies the connection to the X server.
w Specifies the window.
size_list_return Returns a pointer to the size list.
count_return Returns the number of items in the size list.

Chapter 9. Predefined Property Functions 289

9.1.8

The XGetlconSizes function returns zero if a window manager has not

set icon sizes or nonzero otherwise. XGetlconSizes should be called by an

application that wants to find out what icon sizes would be most appreciated

by the window manager under which the application is running. The appli­

cation should then use XSetWMHints to supply the window manager with

an icon pixmap or window in one of the supported sizes. To free the data al­

located in size_IisLreturn, use XFree.

XGetlconSizes can generate a BadWindow error.

Setting and Getting the Class of a Window
Xlib provides functions to set and get the class of a window. These functions

set and read the WM_CLASS property. In addition, they use the

XClassHint structure, which is defined in <Xl1 / Xutil. h> and con­
tains:

typedef struct {
char *res_name;
char *res_class;

L } XClassHint;

The res_name member contains the application name, and the res_class

member contains the application class. Note that the name set in this prop­

erty may differ from the name set as WM_NAME. That is, WM_NAME

specifies what should be displayed in the title bar and, therefore, can contain

temporal information (for example, the name of a file currently in an edi­

tor's buffer). On the other hand, the name specified as part of WM_CLASS

is the formal name of the application that should be used when retrieving
the application's resources from the resource database.

To set the class of a window, use XSetClassHint.

XSetClassHint(display, w, class_hints)
Display *display;

Window w;

XClassHint *class_hints;

display Specifies the connection to the X server.
w Specifies the window.

L class_hints Specifies a pointer to a XClassHint structure that is to be used.

290 XLIB

L

9.1.9

1-

The XSetClassHint function sets the class hint for the specified win­

dow.

XSetClassHint can generate BadAlloc and BadWindow errors.

To get the class of a window, use XGetClassHint.

Status XGetClassHint(display, w, class_hints_return)
Display *display;

Window w;

XClassHint *class_hints_return;

display Specifies the connection to the X server.
w Specifies the window.
class_hints_return Returns the XClassHint structure.

The XGetClassHint function returns the class of the specified window. To

free res_name and res_class when finished with the strings, use XF ree.

XGetClassHint can generate a BadWindow error.

Setting and Getting the Transient Property
An application may want to indicate to the window manager that a transient,
top-level window (for example, a dialog box) is operating on behalf of (or is

transient for) another window. To do so, the application would set the WM_

TRANSIENT _FOR property of the dialog box to be the window ID of its

main window. Some window managers use this information to unmap an ap­
plication's dialog boxes (for example, when the main application window

gets iconified).

The functions discussed in this section set and read the WM_

TRANSIENT_FOR property.

To set the WM_ TRANSIENT _FOR property for a window, use

XSetTransientForHint.

XSetTransientForHint(display, w, prop_window)

Display *display;
Window w;

Window prop_window;

display Specifies the connection to the X server.
w Specifies the window.
prop_window Specifies the window that the WM_ TRANSIENT _FOR property is

to be set to.

Chapter 9. Predefined Property Functions 291

L

The XSetTransientForHint function sets the WM_ TRANSIENT_FOR

property of the specified window to the specified prop_window.
XSetTransientForHint can generate BadAlloc and BadWindow er­

rors.

To get the WM_ TRANSIENT _FOR value for a window, use

XGetTransientForHint.

Status XGetTransientForHint(display, w, prop_window_return)
Display *display;
Window w;
Window *prop_window_return;

display Specifies the connection to the X server.
w Specifies the window.
prop_window_return Returns the WM_ TRANSIENT _FOR property of the

specified window.

XGetTransientForHint returns the WM_TRANSIENT _FOR prop­

erty for the specified window.

XGetTransientForHint can generate a BadWindow error.

9.2 Manipulating Standard Colormaps
Applications with color palettes, smooth-shaded drawings, or digitized im­

ages demand large numbers of colors. In addition, these applications often

require an efficient mapping from color triples to pixel values that display

the appropriate colors.

As an example, consider a 3D display program that wants to draw a

smoothly shaded sphere. At each pixel in the image of the sphere, the pro­

gram computes the intensity and color of light reflected back to the viewer.

The result of each computation is.a triple of RGB coefficients in the range

0.0 to 1.0. To draw the sphere, the program needs a colormap that provides

a large range of uniformly distributed colors. The colormap should be ar­
ranged so that the program can convert its RGB triples into pixel values very

quickly, because drawing the entire sphere requires many such conver­

SIOns.

On many current workstations, the display is limited to 256 or fewer col­

ors. Applications must allocate colors carefully, not only to make sure they

cover the entire range they need but also to make use of as many of the avail-

292 XLIB

9.2.1

able colors as possible. On a typical X display, many applications are active at
once. Most workstations have only one hardware look-up table for colors, so
only one application colormap can be installed at a given time. The applica­

tion using the installed colormap is displayed correctly, and the other

applications "go technicolor" and are displayed with false colors.
As another example, consider a user who is running an image processing

program to display earth-resources data. The image processing program

needs a colormap set up with 8 reds, 8 greens, and 4 blues (a total of 256 col­
ors). Because some colors are already in use in the default colormap, the

image processing program allocates and installs a new colormap.
The user decides to alter some of the colors in the image. He invokes a

color palette program to mix and choose colors. The color palette program
also needs a colormap with 8 reds, 8 greens, and 4 blues, so just as the image­

processing program, it must allocate and install a new colormap.
Because only one colormap can be installed at a time, the color palette may

be displayed incorrectly whenever the image-processing program is active.

Conversely, whenever the palette program is active, the image may be dis­
played incorrectly. The user can never match or compare colors in the pal­
ette and image. Contention for colormap resources can be reduced if appli­
cations with similar color needs share colormaps.

As another example, the image processing program and the color palette

program could share the same colormap if there existed a convention that
described how the colormap was set up. Whenever either program was ac­
tive, both would be displayed correctly.

The standard colormap properties define a set of commonly used
colormaps. Applications that share these colormaps and conventions display
true colors more often and provide a better interface to the user.

Standard Colormaps
Standard colormaps allow applications to share commonly used color re­
sources. This allows many applications to be displayed in true colors simulta­

neously, even when each application needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a win­
dow manager creates these colormaps. Applications should use the standard
colormaps if they already exist. If the standard colormaps do not exist, you

Chapter 9. Predefined Property Functions 293

should create them by opening a new connection, creating the properties,

and setting the close-down mode of the connection to RetainPermanent.

The XStandardColormap structure contains:

typedef struct {
Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long greeIL-mult;
unsigned long blue_max;
unsigned long blue_mult;
unsigned long base_pixel;

L } XStandardColormap;

The colormap member is the colormap created by the XCreateColormap
function. The red_max, green_max, and blue_max members give the maxi­

mum red, green, and blue values, respectively. Each color coefficient ranges

from zero to its max, inclusive. For example, a common colormap allocation

is 3/3/2 (3 planes for red, 3 planes for green, and 2 planes for blue). This
colormap would have red_max = 7, green_max = 7, and blue_max = 3.

An alternate allocation that uses only 216 colors is red_max = 5, green_max

= 5, and blue_max = 5.
The red_mult, green_mult, and blue_mult members give the scale factors

used to compose a full pixel value. (See the discussion of the base_pixel

members for further information.) For a 3/3/2 allocation, red_mult might be

32, green_mult might be 4, and blue_mult might be 1. For a 6-colors-each al­

location, red_mult might be 36, green_mult might be 6, and blue_mult

might be 1.

The base_pixel member gives the base pixel value used to compose a

full pixel value. Usually, the base_pixel is obtained from a call to the

XAllocColorPlanes function. Given integer red, green, and blue coeffi­

cients in their appropriate ranges, one then can compute a corresponding

pixel value by using the following expression:

r * red_mult + g * greeILmult + b * blue_mult + base_pixel

For GrayScale colormaps, only the colormap, red_max, red_mult, and

base_pixel members are defined. The other members are ignored.

294 XLIB

9.2.2

To compute a GrayScale pixel value, use the following expression:

The properties containing the XStandardColormap information have the
type RGB_COLOLMAP.

Standard Colormap Properties and Atoms
Several standard colormaps are available. Each standard colormap is defined
by a property, and each such property is identified by an atom. The follow­
ing list names the atoms and describes the colormap associated with each
one. The <Xll / Xatom. h> header file contains the definitions for each of
the following atoms, which are prefixed with XL.

RGB_DEFAULT _MAP
This atom names a property. The value of the property is an XStandard­
Colormap.

The property defines an RGB subset of the default colormap of the
screen. Some applications only need a few RGB colors and may be able to al­
locate them from the system default colormap. This is the ideal situation be­
cause the fewer colormaps that are active in the system the more applications
are displayed with correct colors at all times.

A typical allocation for the RGB_DEFAULT_MAP on 8-plane displays is 6
reds, 6 greens, and 6 blues. This gives 216 uniformly distributed colors (6 in­
tensities of 36 different hues) and still leaves 40 elements of a 256-element
colormap available for special-purpose colors for text, borders, and so on.

RGB_BEST_MAP

This atom names a property. The value of the property is an
XStandardColormap.

The property defines the best RGB colormap available on the screen. (Of
course, this is a subjective evaluation.) Many image processing and 3D appli­
cations need to use all available colormap cells and to distribute as many per­
ceptually distinct colors as possible over those cells. This implies that there
may be more green values available than red, as well as more green or red
than blue.

On an 8-plane PseudoColor display, RGB_BEST _MAP should be a

Chapter 9. Predefined Property Functions 295

9.2.3

3/3/2 allocation. On a 24-plane DirectColor display, RGB_BEST_MAP

should be an 8/8/8 allocation. On other displays, the RGB_BEST _MAP allo­

cation is purely up to the implementor of the display.

RGB_RED_MAP

RGB_GREEN_MAP

RGB_BLUE_MAP

These atoms name properties. The value of each property is an

XStandardColorrnap.

The properties define all-red, all-green, and all-blue colormaps, respec­

tively. These maps are used by applications that want to make color­

separated images. For example, a user might generate a full-color image on

an 8-plane display both by rendering an image three times (once with high

color resolution in red, once with green, and once with blue) and by

multiply-exposing a single frame in a camera.

RGB_GRAY_MAP

This atom names a property. The value of the property is an

XStandardColorrnap.

The property describes the best GrayScale colormap available on the

screen. As previously mentioned, only the colormap, red_max, red_mult,

and base_pixel members of the XStandardColorrnap structure are used

for GrayScale colormaps.

Getting and Setting an XStandardColormap Structure
To get the XStandardColorrnap structure associated with one of the de­

scribed atoms, use XGetStandardColorrnap.

Status XGetStandardColormap(display, w, colormap_return, property)

Display *display;

Window w;

XStandardColormap *colormap_return;

Atom property; /* RGB_BEST_MAP, etc */
display Specifies the connection to the X server.
w Specifies the window.
colormap_return Returns the colormap associated with the specified atom.

L property Specifies the property name.

296 XLIB

The XGetStandardColormap function returns the colormap definition

associated with the atom supplied as the property argument. For example, to

fetch the standard GrayScale colormap for a display, you use

XGetStandardColormap with the following syntax:
XGetStandardColormap(d py, DefaultRoot Window(dpy), &cmap, XA_RGB_GRAY _MAP);

Once you have fetched a standard colormap, you can use it to convert

RGB values into pixel values. For example, given an XStandardColormap

structure and floating-point RGB coefficients in the range 0.0 to 1.0, you can

compose pixel values with the following C expression:

pixel base_pixel

+ ((unsigned long) (0.5 + r * red_max)) * red_mult

+ ((unsigned long) (0.5 + g * green_max)) * green_mult

+ ((unsigned long) (0.5 + b * blue_max)) * blue_mult;

The use of addition rather than logical OR for composing pixel values per­

mits allocations where the RGB value is not aligned to bit boundaries.

XGetStandardColormap can generate BadAtom and BadWindow

errors.

To set a standard colormap, use XSetStandardColormap.

XSetStandardColormap(display, w, colormap, property)
Display *display;
Window w;

XStandardColormap *colormap;
Atom property; 1* RGB_BEST_MAP, etc. *1

display Specifies the connection to the X server.
w Specifies the window.
colormap Specifies the colormap.

L property Specifies the property name.

The XSetStandardColormap function usually is only used by window

managers. To create a standard colormap, follow this procedure:

1. Open a new connection to the same server.
2. Grab the server.
3. See if the property is on the property list of the root window for the screen.
4. If the desired property is not present:

- Create a colormap (not required for RGB_DEFAULT _MAP)

Chapter 9. Predefined Property Functions 297

- Determine the color capabilities of the display.

- Call XAllocColorPlanes or XAllocColorCells to allocate cells in the
colormap.

- Call XStoreColors to store appropriate color values in the colormap.

- Fill in the descriptive members in the XStandardColorrnap structure.

- Attach the property to the root window.

- Use XSetCloseDownMode to make the resource permanent.

5. Ungrab the server.

XSetStandardColormap can generate BadAlloc, BadAtom, and Bad­

Window errors.

298

Chapter 10

Application Utility
Functions

Once you have initialized the X system, you can use the Xlib utility functions

to:

• Handle keyboard events

• Obtain the X environment defaults

• Parse window geometry strings

• Parse hardware color strings

• Generate regions

• Manipulate regions

• Use cut and paste buffers

• Determine the appropriate visual

• Manipulate images

• Manipulate bitmaps

• Use the resource manager

• Use the context manager

As a group, the functions discussed in this chapter provide the functionality
that is frequently needed and that spans toolkits. Many of these functions do
not generate actual protocol requests to the server.

Chapter 10. Application Utility Functions 299

10.1 Keyboard Utility Functions
This section discusses keyboard event functions and KeySym classification
macros.

10.1.1 Keyboard Event Functions
The X server does not predefine the keyboard to be ASCII characters. It is
often useful to know that the a key was just pressed or that it was just re­
leased. When a key is pressed or released, the X server sends keyboard
events to client programs. The structures associated with keyboard events
contain a keycode member that assigns a number to each physical key on the
keyboard. For a discussion of keyboard event processing, see section 8.4.1.
For information on how to manipulate the keyboard encoding, see section
7.9.

Because KeyCodes are completely arbitrary and may differ from server to
server, client programs wanting to deal with ASCII text, for example, must
explicitly convert the KeyCode value into ASCII. Therefore, Xlib provides
functions to help you customize the keyboard layout. Keyboards differ dra­
matically, so writing code that presumes the existence of a particular key on
the main keyboard creates portability problems.

Keyboard events are usually sent to the deepest viewable window under­
neath the pointer's position that is interested in that type of event. It is also
possible to assign the keyboard input focus to a specific window. When the
input focus is attached to a window, keyboard events go to the client that has
selected input on that window rather than the window under the pointer.

The functions in this section handle the shift modifier computations sug­
gested by the protocol. The KeySym table is internally modified to define the
lowercase transformation of a-z by adding the lowercase KeySym to the first
element of the KeySym list (used internally) defined for the KeyCode, when
the list is of length 1. If you want the untransformed KeySyms defined for
a key, you should only use the functions described in section 7.9.

To look up the KeySyms, use XLookupKeysym.

KeySym XLookupKeysym(key_event, index)
XKeyEvent *key_event;
int index;

300 XLIB

key_event Specifies the KeyPress or KeyRelease event.
L index Specifies the index into the KeySyms list for the event's KeyCode.

L

The XLookupKeysym function uses a given keyboard event and the index
you specified to return the KeySym from the list that corresponds to the
KeyCode member in the XKeyPressedEvent or XKeyReleasedEvent

structure. If no KeySym is defined for the KeyCode of the event, XLook u p -

Keysym returns NoSymbol.

To refresh the stored modifier and keymap information, use

XRefreshKeyboardMapping.

XRefreshKeyboardMapping(event_map)
XMappingEvent *evenLmap;

event_map Specifies the mapping event that is to be used.

The XRefreshKeyboardMapp ing function refreshes the stored modifier
and keymap information. You usually call this function when a Mapping­

Notify event with a request member of MappingKeyboard or
MappingModifier occurs. The result is to update Xlib's knowledge of the
keyboard.

To map a key event to an ISO Latin-l string, use XLookupString.

int XLookupString(evenLstruct, buffer_return, bytes_buffer, keysym_return,
status_in_out)

XKey Event *event_struct;
char *buffer_return;
int bytes_buffer;
KeySym *keysym_return;
XComposeStatus *status_in_out;

event_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyReleasedEvent.

buffer_return
bytes_buffer

keysym_return

Returns the translated characters.
Specifies the length of the buffer. No more than bytes_buffer of
translation are returned.
Returns the KeySym computed from the event if this argument is
not NULL.

L status_in_out Specifies or returns the XComposeStatus structure or NULL.

Chapter 10. Application Utility Functions 301

The XLookupString function is a convenience routine that maps a key

event to an ISO Latin-1 string, using the modifier bits in the key event to deal
with shift, lock, and control. It returns the translated string into the user's

buffer. It also detects any rebound KeySyms (see XRebindKeysyrn) and re­

turns the specified bytes. XLookupString returns the length of the string
stored in the tag buffer. If the lock modifier has the caps lock KeySym associ­
ated with it, XLookupString interprets the lock modifier to perform caps

lock processing.
If present (non-NULL), the XCornposeSta tus structure records the

state, which is private to Xlib, that needs preservation across calls to
XLookupString to implement compose processing.

To rebind the meaning of a KeySym for a client, use XRebindKeysyrn.

XRebindKeysym(display, keysym, list, mod_count, string, bytes_string)

Display *display;

KeySym keysym;

KeySym list[];

int mod_count;

unsigned char * string;

int bytes_string;

display Specifies the connection to the X server.
keysym Specifies the KeySym that is to be rebound.
list Specifies the KeySyms to be used as modifiers.
mod_count Specifies the number of modifiers in the modifier list.
string Specifies a pointer to the string that is copied and will be returned

by XLookupString.
L bytes_string Specifies the length of the string.

The XRebindKeysyrn function can be used to rebind the meaning of a
KeySym for the client. It does' not redefine any key in the X server but

merely provides an easy way for long strings to be attached to keys.
XLookupString returns this string when the appropriate set of modifier
keys are pressed and when the KeySym would have been used for the trans­

lation. Note that you can rebind a KeySym that may not exist.

To convert the name of the KeySym to the KeySym code, use
XStringToKeysyrn.

302 XLIB

I KeySym XStringToKeysym(string)
char *string;

L string Specifies the name of the KeySym that is to be converted.

L

Valid KeySym names are listed in <X11 / keysymdef. h> by removing the

XL prefix from each name. If the specified string does not match a valid

KeySym, XStringToKeysym returns NoSymbol.

To convert a KeySym code to the name of the KeySym, use
XKeysymToString.

char *XKeysymToString(keysym)
KeySym keysym;

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. If the speci­
fied KeySym is not defined, XKeysymToString returns a NULL.

To convert a key code to a defined KeySym, use XKeycodeToKeysym.

KeySym XKeycodeToKeysym(display, keycode, index)
Display *display;
KeyCode keycode;
int index;

display Specifies the connection to the X server.
keycode Specifies the KeyCode.

L index Specifies the element of KeyCode vector.

XKeycodeToKeysymfunction uses internal Xlib tables and returns the

KeySym defined for the specified KeyCode and the element of the KeyCode
vector. If no symbol is defined, XKeycodeToKeysym returns NoSymbol.

To convert a KeySym to the appropriate KeyCode, use
XKeysymToKeycode.

KeyCode XKeysymToKeycode(display, keysym)
Display *display;
KeySym keysym;

display Specifies the connection to the X server.
L keysym Specifies the KeySym that is to be searched for.

Chapter 10. Application Utility Functions 303

If the specified KeySym IS not defined for any KeyCode, XKeysym­

ToKeycode returns zero.

10.1.2 Keysym Classification Macros

I
L

I
L

I
L

I
L

I
L

I
L

You may want to test if a KeySym is, for example, on the keypad or on one
of the function keys. You can use the KeySym macros to perform the follow­
ing tests.

IsCursor Key(keysym)

Returns True if the specified KeySym is a cursor key.

IsFunctionKey(keysym)

Returns True if the specified KeySym is a function key.

IsKeypadKey(keysym)

Returns True if the specified KeySym is a keypad key.

IsMiscFunctionKey(keysym)

Returns True if the specified KeySym is a miscellaneous function key.

IsModifier Key(keysym)

Returns True if the specified KeySym is a modifier key.

IsPFKey(keysym)

Returns True if the specified KeySym is a PF key.

10.2 Obtaining the X Environment Defaults
A program often needs a variety of options in the X environment (for exam­
ple, fonts, colors, mouse, background, text, and cursor). Specifying these op­
tions on the command line is inefficient and unmanageable because individ­
ual users have a variety of tastes with regard to window appearance.

304 XLIB

L

XGetDefaul t makes it easy to find out the fonts, colors, and other environ­
ment defaults favored by a particular user. Defaults are usually loaded into
the RESOURCE_MANAGER property on the root window at login. If no

such property exists, a resource file in the user's home directory is loaded.

On a UNIX-based system, this file is $HOME/. Xdefaul ts. After loading
these defaults, XGetDefaul t merges additional defaults specified by the
XENVIRONMENT environment variable. If XENVIRONMENT is de­
fined, it contains a full path name for the additional resource file.

If XENVIRONMENT is not defined, XGetDefaul t looks for
$HOME/. Xdefaul ts-name, where name specifies the name of the machine
on which the application is running. For details of the format of these files,

see section 10.1I.

The XGetDefaul t function provides a simple interface for clients not

wishing to use the X toolkit or the more elaborate interfaces provided by the
resource manager discussed in section 10.11.

char *XGetDefault(display, program, option)
Display *display;
char *program;
char *option;

display Specifies the connection to the X server.
program Specifies the program name for the Xlib defaults (usually argv[O] of the

main program).
option Specifies the option name.

The XGetDefaul t function returns the value NULL if the option name
specified in this argument does not exist for the program. The strings re­

turned by XGetDefaul t are owned by Xlib and should not be modified or
freed by the client.

To obtain a pointer to the resource manager string of a display, use

XResourceManagerString.

I char * XResourceManagerString (display)

Display *display;
L display Specifies the connection to the X server.

The XResourceManagerString returns the RESOURCE_MANAGER

property from the server's root window of screen zero, which was retlirned

when the connection was opened using XOpenDisplay.

Chapter 10. Application Utility Functions

10.3 Parsing the Window Geometry
To parse standard window geometry strings, use XParseGeometry.

int XParseGeometry(parsestring, x_return, y_return, width_return, height_return)
char *parsestring;
int *x_return, *y_return;
int * width_return , *heighLreturn;

parsestring Specifies the string you want to parse.
x_return
y_return Return the x and y offsets.
width_return

L heighLreturn Return the width and height determined.

305

By convention, X applications use a standard string to indicate window size
and placement. XParseGeometry makes it easier to conform to this stan­

dard because it allows you to parse the standard window geometry. Specifi­
cally, this function lets you parse strings of the form:

[=][<width>x<height>][{ + - }<xoffset>{ + - }<yoffset>]

The items in this form map into the arguments associated with this function.
(Items enclosed in <> are integers, items in [] are optional, and items en­
closed in {} indicate "choose one of." Note that the brackets should not ap­

pear in the actual string.)
The XParseGeometry function returns a bitmask that indicates which of

the four values (width, height, xoffset, and yoffset) were actually found in

the string and whether the x and y values are negative. By convention, - °
is not equal to + 0, because the user needs to be able to say "position the win­

dow relative to the right or bottom edge." For each value found, the corre­
sponding argument is updated. For each value not found, the argument is

left unchanged. The bits are represented by XValue, YValue, Width­

Value, HeightValue, XNegative, or YNegative and are defined in

<Xll / xutil. h>. They will be set whenever one of the values is defined or
one of the signs is set.

If the function returns either the XValue or YValue flag, you should

place the window at the requested position.

To parse window geometry given a user-specified position and a default

position, use XGeometry.

306 XLIB

lint XGeometry(display, screen, position, default-position, bwidth, fwidth, fheight, xadder,

L

yadder, x_return, y_return, width_return, height_return)
Display *display;
int screen;

char *position, *default_position;
unsigned int bwidth;

unsigned int fwidth, fheight;
int xadder, yadder;
int *x_return, *y_return;

int * width_return , *height_return;

display Specifies the connection to the X server.
screen Specifies the screen.
position
default_position

bwidth
fheight

fwidth
xadder
yadder
x_return
y_return
width_return

height_return

Specify the geometry specifications.
Specifies the border width.

Specify the font height and width in pixels (increment size).

Specify additional interior padding needed in the window.

Return the x and y offsets.

Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and
fheight (typically font width and height), and any additional interior space
(xadder and yadder) to make it easy to comput~ the resulting size. The

XGeometry function returns the position the window should be placed
given a position and a default position. XGeometry determines the place­

ment of a window using a geometry specification as specified by
XParseGeometry and the additional information about the window. Given
a fully qualified default geometry specification and an incomplete geometry

specification, XParseGeometry returns a bitmask value as defined above in
the XParseGeometry call, by using the position argument.

The returned width and height will be the width and height specified by
default_ position as overridden by any user-specified position. They are not

affected by fwidth, fheight, xadder, or yadder. The x and y coordinates are
computed by using the border width, the screen width and height, padding
as specified by xadder and yadder, and the fheight and fwidth times the

width and height from the geometry specifications.

Chapter 10. Application Utility Functions

10.4 Parsing the Color Specifications
To parse color values, use XParseColor.

Status XParseColor(display, colormap, spec, exact-del_return)
Display *display;

Colormap colormap;
char *spec;

XColor *exact-del_return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
spec Specifies the color name string. Case is ignored.

307

exact_del_return Returns the exact color value for later use and sets the DaRed,

L DoGreen, and DoBlue flags.

The XParseColor function provides a simple way to create a standard user

interface to color. It takes a string specification of a color, typically from a

command line or XGetDefaul t option, and returns the corresponding red,

green, and blue values that are suitable for a subsequent call to

XAllocColor or XStoreColor. The color can be specified either as a

color name (as in XAllocNamedColor) or as an initial sharp sign character
followed by a numeric specification, in one of the following formats:

#RGB
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB

(4 bits each)
(8 bits each)
(12 bits each)
(16 bits each)

The R, G, and B represent single hexadecimal digits (both uppercase and

lowercase). When fewer than 16 bits each are specified, they represent the
most-significant bits of the value. For example, #3a7 is the same as

#3000a0007000. The colormap is used only to determine which screen to

look up the color on. For example, you can use the screen's default

colormap.

If the initial character is a sharp sign but the string otherwise fails to fit the

above formats or if the initial character is not a sharp sign and the named

color does not exist in the server's database, XParseColor fails and returns

zero.

XParseColor can generate a BadColor error.

308

10.5

XLIB

Generating Regions
Regions are arbitrary sets of pixel locations. Xlib provides functions for
manipulating regions. The opaque type Reg ion IS defined In

<X11 / Xutil. h>.

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion(points, n, filLrule)
XPoint points[];
int n;

in t fill_rule;
points Specifies an array of points.
n Specifies the number of points in the polygon.
filLrule Specifies the fill-rule you want to set for the specified CC. You can pass

L EvenOddRule or windingRule.

The XPolygonRegion function returns a region for the polygon defined
by the points array. For an explanation of fill_rule, see XCrea teGC.

To generate the smallest rectangle enclosing the region, use XCI i P Box.

XClipBox(r, reet_return)
Region r;
XRectangle *recLreturn;

r Specifies the region.
L reet_return Returns the smallest enclosing rectangle.

The XClipBox function returns the smallest rectangle enclosing the speci­

fied region.

10.6 Manipulating Regions
Xlib provides functions that you can use to manipulate regions. This section

discusses how to:

• Create, copy, or destroy regions

• Move or shrink regions

• Compute with regions

• Determine if regions are empty or equal

• Locate a point or rectangle in a region

Chapter 10. Application Utility Functions 309

10.6.1 Creating, Copying, or Destroying Regions

I
L

L

To create a new empty region, use XCrea teReg ion.

Region XCreateRegionO

To set the clip-mask of a GC to a region, use XSetRegion.

XSetRegion(display, gc, r)
Display *display;
GC gc;
Region r;

display Specifies the connection to the X server.
gc Specifies the GC.
r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified re­

gion. Once it is set in the GC, the region can be destroyed.

To deallocate the storage associated with a specified regIon, use

XDestroyRegion.

XDestroy Region(r)
Region r;

L r Specifies the region.

10.6.2 _Moving or Shrinking Regions
To move a region by a specified amount, use XOffsetRegion.

XOffsetRegion(r, dx, dy)
Region r;
int dx, dy;

r Specifies the region.
dx
dy Specify the x and y coordinates, which define the amount you want to move

L the specified region.

To reduce a region by a specified amount, use XShrinkRegion.

310 XLIB

XShrinkRegion(r, dx, dy)
Region r;
int dx, dy;

r Specifies the region.
dx
dy Specify the x and y coordinates, which define the amount you want to shrink

L the specified region.

Positive values shrink the size of the region, and negative values expand the
region.

10.6.3 Computing with Regions
To compute the intersection of two regions, use XlntersectRegion.

XlntersectRegion(sra, srh, dr_return)
Region sra, srh, dr_return;

sra
srh Specify the two regions with which you want to perform the

computation.
L dr_return Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUnionRegion(sra, srh, dr_return)
Region sra, srh, dr_return;

sra
srh Specify the two regions with which you want to perform the

computation.
L dr_return Returns the result of the computation.

To create a unIOn of a source region and a rectangle, use

XUnionRectWithRegion.

XUnionRect With Region (rectangle, src_region, dest_region_return)
XRectangle *rectangle;
Region src_region;
Region desLregion_return;

rectangle Specifies the rectangle.
src_region Specifies the source region to be used. L dest_region_return Returns the destination region.

Chapter 10. Application Utility Functions 311

The XUnionRectWi thRegion function updates the destination region
from a union of the specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubtractRegion(sra, srb, dr_return)

Region sra, srb, dr_return;

sra

srb Specify the two regions with which you want to perform the
computation.

L dr_return Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the re­
sults in dr_return.

To calculate the difference between the union and intersection of two re­
gions, use XXorRegion.

XXorRegion(sra, srb, dr_return)

Region sra, srb, dr_return;
sra

srb Specify the two regions with which you want to perform the
computation.

L dr_return Returns the result of the computation.

10.6.4 Determining if Regions Are Empty or Equal

To determine if the specified region is empty, use XEmptyRegion.

Bool XEmptyRegion(r)
Region r;

L r Specifies the region.

The XEmptyRegion function returns True if the region is empty.

To determine if two regions have the same offset, size, and shape, use
XEqualRegion.

Bool XEquaIRegion(rl, r2)
Region rl, r2;

rl

L r2 Specify the two regions.

312 XLIB

The XEqualRegion function returns True if the two regions have the same

offset, size, and shape.

10.6.5 Locating a Point or a Rectangle in a Region
To determine if a specified point resides in a specified region, use

XPointInRegion.

Bool XPointInRegion(r, x, y)

Region r;
int x, y;

r Specifies the region.
x

L y Specify the x and y coordinates, which define the point.

The XPointInRegion function returns True if the point (x, y) is contained

in the region r.

To determine if a specified rectangle IS inside a region, use

XRectI nReg ion.

int XRectInRegion(r, x, y, width, height)

Region r;
int x, y;

unsigned int width, height;

r Specifies the region.
x

y Specify the x and y coordinates, which define the coordinates of the
upper-left corner of the rectangle.

width

L height Specify the width and height, which define the rectangle.

The XRectInRegion function returns RectangleIn if the rectangle is en­

tirely in the specified region, Rectang leOu t if the rectangle is entirely out

of the specified region, and RectanglePart if the rectangle is partially in

the specified region.

10.7 Using the Cut and Paste Buffers
Xlib provides functions that you can use to cut and paste buffers for pro­

grams using this form of communications. Selections are a more useful

mechanism for interchanging data between clients because typed informa-

Chapter 10. Application Utility Functions 313

tion can be exchanged. X provides property names for properties in which
bytes can be stored for implementing cut and paste between windows (imple­
mented by use of properties on the first root window of the display). It is up
to applications to agree on how to represent the data in the buffers. The data
is most often ISO Latin-l text. The atoms for eight such buffer names are

provided and can be accessed as a ring or as explicit buffers (numbered °
through 7). New applications are encouraged to share data by using selec­
tions (see section 4.4).

To store data in cut buffer 0, use XStoreBytes.

XStoreBytes(display, bytes, nbytes)
Display *display;
char *bytes;
int nbytes;

display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

L nbytes Specifies the number of bytes to be stored.

Note that the cut buffer's contents need not be text, so zero bytes are not spe­
cial. The cut buffer's contents can be retrieved later by any client calling
XFetchBytes.

XStoreBytes can generate a BadAlloc error.

To store data in a specified cut buffer, use XStoreBuffer.

XStoreBuffer(display, bytes, nbytes, buffer)
Display *display;
char *bytes;
int nbytes;
int buffer;

display Specifies the connection to the X server.
bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.
nbytes Specifies the number of bytes to be stored.

L buffer Specifies the buffer in which you want to store the bytes.

If the property for the buffer has never been created, a BadA tom error re­
sults.

XStoreBuffer can generate BadAlloc and BadAtom errors.

314 XLIB

To return data from cut buffer 0, use XFetchBytes.

char *XFetchBytes(display, nbytes_return)

Display *display;

int *nbytes_return;

display Specifies the connection to the X server.
L nbytes_return Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the

nbytes_return argument, if the buffer contains data. Otherwise, the func­

tion returns NULL and sets nbytes to 0. The appropriate amount of storage

is allocated and the pointer returned. The client must free this storage when
finished with it by calling XFree. Note that the cut buffer does not necessar­

ily contain text, so it may contain embedded zero bytes and may not termi­

nate with a null byte.

To return data from a specified cut buffer, use XFetchBuffer.

char *XFetchBuffer(display, nbytes_return, buffer)

Display *display;

int *nbytes_return;

int buffer;

display Specifies the connection to the X server.
nbytes_return Returns the number of bytes in the buffer.

L buffer Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes_return argument

if there is no data in the buffer.

XFetchBuffer can generate a BadValue error.

To rotate the cut buffers, use XRota teBuffers.

XRotateBuffers(display, rotate)

Display *display;

int rotate;

display Specifies the connection to the X server.
L rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer °
becomes buffer n, buffer 1 becomes n + 1 mod 8, and so on. This cut buffer

Chapter 10. Application Utility Functions 315

numbering is global to the display. Note that XRota teBuffers generates
BadMa tch errors if any of the eight buffers have not been created.

10.8 Determining the Appropriate Visual Type
A single display can support multiple screens. Each screen can have several

different visual types supported at different depths. You can use the func­
tions described in this section to determine which visual to use for your ap­

plication.

The functions in this section use the visual information masks and the
XVisuallnfo structure, which is defined in <X11 / xutil. h> and con­

tains:

/* Visual information mask bits */
#define VisualNoMask

#define VisualIDMask

#define VisualScreenMask

#define VisualDepthMask

#define VisualClassMask

#define VisualRedMaskMask

#define VisualGreenMaskMask

#define VisualBl ueMaskMask

#define VisualColorrnapS izeMask

#define VisualBi tsPerRGBMask

#define VisualAllMask

/* Values */
typedef struct {

Visual *visual;
VisualID visualid;
int screen;
unsigned int depth;
int class;
unsigned long red_mask;
unsigned long greeILmask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;

L } XVisualInfo;

OxO
Oxl
Ox2
Ox4
Ox8
OxlO
Ox20
Ox40
Ox80
OxlOO
OxlFF

316 XLIB

To obtain a list of visual information structures that match a specified tem­
plate, use XGetVisuallnfo.

XVisualInfo *XGetVisualInfo(display, vinfo_mask, vinfo_template, nitems_return)

Display *display;
long vinfo_mask;

XVisualInfo *vinfo_template;
int *nitems_return;

display Specifies the connection to the X server.
vinfo_mask Specifies the visual mask value.
vinfo_template Specifies the visual attributes that are to be used in matching the

visual structures.
L nitems_return Returns the number of matching visual structures.

The XGetVisuallnfo function returns a list of visual structures that match

the attributes specified by vinfo_template. If no visual structures match the
template using the specified vinfo_mask, XGetVisuallnfo returns a
NULL. To free the data returned by this function, use XFree.

To obtain the visual information that matches the specified depth and class
of the screen, use XMatchVisuallnfo.

Status XMatch VisualInfo(display, screen, depth, class, vinfo_return)

Display *display;

int screen;
int depth;

int class;
XVisualInfo *vinfo_return;

display Specifies the connection to the X server.
screen Specifies the screen.
depth Specifies the depth of the screen.
class Specifies the class of the screen.

L vinfo_return Returns the matched visual information.

The XMa tch Visuallnfo function returns the visual information for a vis­
ual that matches the specified depth and class for a screen. Because multiple
visuals that match the specified depth and class can exist, the exact visual

chosen is undefined. If a visual is found, XMatchVisuallnfo returns
nonzero and the information on the visual to vinfo_return. Otherwise, when
a visual is not found, XMatchVisuallnfo returns zero.

Chapter 10. Application Utility Functions 317

10.9 Manipulating Images
Xlib provides several functions that perform basic operations on images. All

operations on images are defined using an Xlmage structure, as defined in

<X11 / Xlib. h>. Because the number of different types of image formats

can be very large, this hides details of image storage properly from applica­

tions.
This section describes the functions for generic operations on images.

Manufacturers can provide very fast implementations of these for the for­

mats frequently encountered on their hardware. These functions are nei­

ther sufficient nor desirable to use for general image processing. Rather,
they are here to provide minimal functions on screen format images. The

basic operations for getting and putting images are XGetlmage and

XPutlmage.

Note that no functions have been defined, as yet, to read and write images

to and from disk files.

The Xlmage structure describes an image as it exists in the client's mem­

ory. The user can request that some of the members such as height, width,

and xoffset be changed when the image is sent to the server. Note that

bytes_per_Iine in concert with offset can be used to extract a subset of the

image. Other members (for example, byte order, bitmap_unit, and so forth)

are characteristics of both the image and the server. If these members differ

between the image and the server, XPutlmage makes the appropriate con­

versions. The first byte of the first line of plane n must be located at the ad­

dress (data + (n * height * bytes_per_Iine)). For a description of the Xlmage

structure, see section 6.7.

To allocate sufficient memory for an Xlmage structure, use

XCrea tel mage.

Xlmage *XCreateimage(display, visual, depth, format, offset, data, width, height,
bitmap_pad, bytes_per _line)

Display *display;

Visual *visual;

unsigned int depth;

intformat;

int offset;

char *data;

unsigned int width;

318 XLIB

L

unsigned int height;

int bitmap_pad;

int bytes_per _line;

display Specifies the connection to the X server.
visual Specifies a pointer to the visual.
depth Specifies the depth of the image.
format Specifies the format for the image. You can pass XYBitmap,

offset

data

width

height

bitmap_pad

XYPixmap or ZPixmap.

Specifies the number of pixels to ignore at the beginning of the
scanline.
Specifies a pointer to the image data.
Specifies the width of the image, in pixels.
Specifies the height of the image, in pixels.
Specifies the quantum of a scanline (8, 16, or 32). In other words,
the start of one scan line is separated in client memory from the
start of the next scanline by an integer multiple of this many bits.

bytes_per_line Specifies the number of bytes in the client image between the start
of one scanline and the start of the next.

The XCreatelmage function allocates the memory needed for an Xlmage

structure for the specified display but does not allocate space for the image
itself. Rather, it initializes the structure byte-order, bit-order, and bitmap­
unit values from the display and returns a pointer to the Xlmage structure.

The red, green, and blue mask values are defined for Z format images only

and are derived from the V is u a 1 structure passed in. Other values also are
passed in. The offset permits the rapid displaying of the image without re­

quiring each scanline to be shifted into position. If you pass a zero value in
bytes_per..Jine, Xlib assumes that the scanlines are contiguous in memory
and calculates the value of bytes_per _line itself.

Note that when the image is created using XCrea telmage, XGetlmage,

or XSublmage, the destroy procedure that the XDestroylmage function

calls frees both the image structure and the data pointed to by the image
structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and
add a constant offset to a Z format image are defined in the image object.
The functions in this section are really macro invocations of the functions in

the image object and are defined in <X:L:L / Xutil. h>.

Chapter 10. Application Utility Functions 319

L

To obtain a pixel value in an image, use XGetPixel.

unsigned long XGetPixel(ximage, x, y)

XI mage *ximage;

int x;

int y;

ximage Specifies a pointer to the image.
x
y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named
image. The pixel value is returned in normalized format (that is, the least­
significant byte of the long is the least-significant byte of the pixel). The

image must contain the x and y coordinates.

To set a pixel value in an image, use XPutPixel.

int XPutPixel(ximage, x, y, pixel)

Xlmage *ximage;

int x;

int y;

unsigned long pixel;

ximage Specifies a pointer to the image.
x

y Specify the x and y coordinates.
pixel Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the
specified pixel value. The input pixel value must be in normalized format

(that is, the least-significant byte of the long is the least-significant byte of the
pixel). The image must contain the x and y coordinates.

To create a subimage, use XSubImage.

Xlmage *XSublmage(ximage, x, y, subimage_width, subimage-.lteight)

XI mage *ximage;

int x;

int y;

unsigned int subimage_width;

unsigned int subimage-.lteight;

ximage Specifies a pointer to the image.

320 XLIB

L

x
y
subimage_width

subimage-.height

Specify the x and y coordinates.
Specifies the width of the new subimage, in pixels.
Specifies the height of the new subimage, in pixels.

The XSublmage function creates a new image that is a subsection of an ex­

isting one. It allocates the memory necessary for the new Xlmage structure

and returns a pointer to the new image. The data is copied from the source

image, and the image must contain the rectangle defined by x, y,

subimage_width, and subimage_height.

To increment each pixel in the pixmap by a constant value, use

XAddPixel.

XAddPixel(ximage, value)
Xlmage *ximage;
long value;

ximage Specifies a pointer to the image.
L value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image.

It is useful when you have a base pixel value from allocating color resources

and need to manipulate the image to that form.

To deallocate the memory allocated in a previous call to XCreatelmage,

use XDestroylmage.

lint XDestroylmage(ximage)
Xlmage *ximage;

L ximage Specifies a pointer to the image.

The XDestroylmage function deallocates the memory associated with the

XI mage structure.
Note that when the image is created using XCreatelmage, XGetlmage,

or XSublmage, the destroy procedure that this macro calls frees both the

image structure and the data pointed to by the image structure.

10.10 Manipulating Bitmaps
Xlib provides functions that you can use to read a bitmap from a file, save a

bitmap to a file, or create a bitmap. This section describes those functions

that transfer bitmaps to and from the client's file system, thus allowing their

Chapter 10. Application Utility Functions 321

reuse in a later connection (for example, from an entirely different client or
to a different display or server).

The X version 11 bitmap file format is:

#define name_width width
#define name--11eight height
#define name-X-hot x
#define name_y_hot y

L static char name_bits[] = { OxNN, ... }

The variables ending with -x_hot and _y_hot suffixes are optional because
they are present only if a hotspot has been defined for this bitmap. The
other variables are required. The _bits array must be large enough to con­
tain the size bitmap. The bitmap unit is eight. The name is derived from the

name of the file that you specified on the original command line by deleting
the directory path and extension.

To read a bitmap from a file, use XReadBi trnapFile.

int XReadBitmapFile(display, d, filename, width_return, height_return, bitmap_return,
x_hot_return, y_hot_return)

Display *display;
Drawable d;
char *filename;
unsigned int *width_return, *height_return;
Pixmap *bitmap_return;
int *x_hot_return, *y_hot_return;

display Specifies the connection to the X server.
d Specifies the drawable that indicates the screen.
filename Specifies the file name to use. The format of the file name is

operating-system dependent.
width_return
height_return
bitmap_return
x_hot_return

Return the width and height values of the read in bitmap file.
Returns the bitmap that is created.

L y_hot_return Return the hotspot coordinates.

The XReadBi trnapFile function reads in a file containing a bitmap. The
file can be either in the standard X version 10 format (that is, the format
used by X version 10 bitmap program) or in the X version 11 bitmap for­
mat. If the file cannot be opened, XReadBitrnapFile returns

322 XLIB

L

Bi tmapOpenFailed. If the file can be opened but does not contain valid

bitmap data, it returns Bi tmapFileIn valid. If insufficient working stor­

age is allocated, it returns BitmapNoMemory. If the file is readable and

valid, it returns Bi tmapSuccess.

XReadBi tmapFile returns the bitmap's height and width, as read from

the file, to width_return and heighLreturn. It then creates a pixmap of the

appropriate size, reads the bitmap data from the file into the pixmap, and as­

signs the pixmap to the caller's variable bitmap. The caller must free

the bitmap using XFreePixmap when finished. If name_x_hot and

name_y_hot exist, XReadBi tmapFile returns them to x_hot_return and
y _hoLreturn; otherwise, it returns - 1, - 1.

XReadBi tmapFile can generate BadAlloc and BadDrawable errors.

To write out a bitmap to a file, use XWri teBi tmapFile.

int XWriteBitmapFile(display, filename, bitmap, width, height, x_hot, y_hot)

Display *display;

char *filename;

Pixmap bitmap;
unsigned int width, height;
int x_hot, y_hot;

display Specifies the connection to the X server.
filename Specifies the file name to use. The format of the file name is

bitmap

width
height
x_hot
y_hot

operating-system dependent.
Specifies the bitmap.

Specify the width and height.

Specify where to place the hotspot coordinates (or - 1, - 1 if none are
present) in the file.

The XWri teBi tmapFile function writes a bitmap out to a file. While

XReadBi tmapFile can read in either X version 10 format or X version 11

format, XWri teBi tmapFile always writes out X version 11 format. If the

file cannot be opened for writing, it returns Bi tmapOpenFailed. If

insufficient memory IS allocated, XWri teBi tmapFile returns

Bi tmapNoMemory; otherwise, on no error, it returns Bi tmapSuccess. If

x-hot and y_hot are not -1, -1, XWriteBitmapFile writes them out as

the hotspot coordinates for the bitmap.

Chapter 10. Application Utility Functions 323

XWriteBitmapFile can generate BadDrawable and BadMatch

errors.

To create a pixmap and then store· bitmap-format data into it, use

XCreatePixmapFromBitmapData.

Pixmap XCreatePixmapFromBitmapData(display, d, data, width, height, fg, bg, depth)
Display *display;
Drawable d;
char *data;
unsigned int width, height;
unsigned long fg, bg;
unsigned int depth;

display Specifies the connection to the X server.
d Specifies the drawable that indicates the screen.
data Specifies the data in bitmap format.
width
height Specify the width and height.
fg
bg Specify the foreground and background pixel values to use.

L depth Specifies the depth of the pixmap.

XCreatePixmapFromBi tmapData function creates a pixmap of the given
depth and then does a bitmap-format Xputlmage of the data into it. The

depth must be supported by the screen of the specified drawable, or a
BadMa tch error results.

XCreatePixmapFromBi tmapData can generate BadAlloc and

BadMa tch errors.

To include a bitmap written out by XWri teBi tmapFile in a program
directly, as opposed to reading it in every time at run time,. use

XCreateBitmapFromData.

Pixmap XCreateBitmapFromData(display, d, data, width, height)
Display *display;
Drawable d;
char *data;
unsigned int width, height;

display Specifies the connection to the X server.
d Specifies the drawable that indicates the screen.

324 XLIB

data Specifies the location of the bitmap data.
width

L height Specify the width and height.

10.11

The XCreateBitmapFromData function allows you to include in your
C program (using #include) a bitmap file that was written out by
XWri teBi tmapFile (X version 11 format only) without reading in the
bitmap file. The following example creates a gray bitmap:

#include "gray.bitmap"
Pixmap bitmap
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width,

gray_height);

If insufficient working storage was allocated, XCrea teBi tmapFromDa ta

returns None. It is your responsibility to free the bitmap using XFree­

Pix map when finished.
XCreateBitmapFromData can generate a BadAlloc error.

Using the Resource Manager
The resource manager is a database manager with a twist. In most database
systems, you perform a query using an imprecise specification, and you get
back a set of records. The resource manager, however, allows you to specify
a large set of values with an imprecise specification, to query the database
with a precise specification, and to get back only a single value. This should
be used by applications that need to know what the user prefers for colors,
fonts, and other resources. It is this use as a database for dealing with X re­
sources that inspired the name "Resource Manager," although the resource
manager can be and is used in other ways.

For example, a user of your application may want to specify that all win­
dows should have a blue background but that all mail-reading windows
should have a red background. Presuming that all applications use the re­
source manager, a user can define this information using only two lines of
specification. Your personal resource database usually is stored in a file and
is loaded onto a server property when you log in. This database is retrieved
automatically by Xlib when a connection is opened.

As an example of how the resource manager works, consider a mail-

Chapter 10. Application Utility Functions 325

reading application called xmh. Assume that it is designed so that it uses a
complex window hierarchy all the way down to individual command buttons,
which may be actual small subwindows in some toolkits. These are often
called objects or widgets. In such toolkit systems, each user interface object
can be composed of other objects and can be assigned a name and a class.
Fully qualified names or classes can have arbitrary numbers of component
names, but a fully qualified name always has the same number of component
names as a fully qualified class. This generally reflects the structure of the
application as composed of these objects, starting with the application itself.

For example, the xmh mail program has a name "xmh" and is one of a
class of "Mail" programs. By convention, the first character of class compo­
nents is capitalized, and the first letter of name components is in lowercase.
Each name and class finally has an attribute (for example "foreground" or
"font"). If each window is properly assigned a name and class, it is easy for
the user to specify attributes of any portion of the application.

At the top level, the application might consist of a paned window (that is,
a window divided into several sections) named "toe". One pane of the paned
window is a button box window named "buttons" and is filled with command
buttons. One of these command buttons is used to retrieve (include) new
mail and has the name "include". This window has a fully qualified name,
"xmh.toc.buttons.include," and a fully qualified class, "Xmh.VPaned.Box.
Command". Its fully qualified name is the name of its parent, "xmh.toc.
buttons", followed by its name, "include". Its class is the class of its parent,
"Xmh. VPaned.Box", followed by its particular class, "Command". The fully
qualified name of a resource is the attribute's name appended to the object's
fully qualified name, and the fully qualified class is its class appended to the
object's class.

This include button needs the following resources:

• Title string

• Font

• Foreground color for its inactive state

• Background color for its inactive state

• Foreground color for its active state

• Background color for its active state

326 XLIB

Each of the resources that this button needs are considered to be attributes
of the button and, as such, have a name and a class. For example, the fore­
ground color for the button in its active state might be named "active­
Foreground", and its class would be "Foreground."

When an application looks up a resource (for example, a color), it passes
the compl,ete name and complete class of the resource to a look-up routine.
After look up, the resource manager returns the resource value and the rep­

resentation type.
The resource manager allows applications to store resources by an incom­

plete specification of name, class, and a representation type, as well as to re­
trieve them given a fully qualified name and class.

10.11.1 Resource Manager Matching Rules
The algorithm for determining which resource name or names match a
given query is the heart of the database. Resources are stored with only par­
tially specified names and classes, using pattern matching constructs. An as­
terisk (*) is used to represent any number of intervening components (in­
cluding none). A period (.) is used to separate immediately adjacent
components. All queries fully specify the name and class of the resource
needed. A trailing period and asterisk are not removed. The library sup­
ports 100 components in a name or class. The look-up algorithm then
searches the database for the name that most closely matches (is most spe­
cific) this full name and class. The rules for a match in order of precedence

are:

1. The attribute of the name and class must match. For example, queries for:
xterm.scrollbar.background (name)
XTerm.Scrollbar.Background (class)
will not match the following database entry:
xterm.scrollbar:on

2. Database entries with name or class prefixed by a period (.) are more specific than
those prefixed by an asterisk (*). For example, the entry xterm.geometry is more
specific than the entry xterm*geometry.

3. Names are more specific than classes. For example, the entry "*scrollbar.
background" is more specific than the entry "*Scrollbar.Background".

4. Specifying a name or class is more specific than omitting either. For example, the
entry "Scrollbar*Background" is more specific than the entry "*Background".

Chapter 10. Application Utility Functions 327

5. Left components are more specific than right components. For example,
"*vtIOO*background" is more specific than the entry "*scrollbar*background" for
the query ". vt 100 .scrollbar. background".

6. If neither a period (.) nor an asterisk (*) is specified at the beginning, a period (.)
is implicit. For example, "xterm.background" is identical to ".xterm.
background" .

Names and classes can be mixed. As an example of these rules, assume the

following user preference specification:

xmh*background:
*command.font:
*command.background:
*Command.Foreground:
xmh. toc*Command.activeForeground:

red
8xl3
blue
green
black

A query for the name "xmh.toc.messagefunctions.include.
active Foreground" and class "Xmh.VPaned.Box.Command.Foreground"

would match "xmh.toc*Command.activeForeground" and return "black".

However, it also matches "*Command.Foreground".

Using the precedence algorithm described above, the resource mana­
ger would return the value specified by "xmh.toc*Command.

active Foreground" .

1 0.11.2 Basic Resource Manager Definitions
The definitions for the resource manager's use are contained in

<X11 /Xresource. h>. Xlib also uses the resource manager internally to

allow for non-English language error messages.

Database values consist of a size, an address, and a representation type.

The size is specified in bytes. The representation type is a way for you to

store data tagged by some application-defined type (for example, "font" or

"color"). It has nothing to do with the C data type or with its class. The

XrmValue structure contains:

typedef struct {
unsigned int size;
caddr_t addr;

L } Xrm Value, *Xrm ValuePtr;

328 XLIB

I
L

I
L

L

I
L

A resource database is an opaque type used by the look-up functions.

typedef struct _XrmHashBucketRec *XrmDatabase;

To initialize the resource manager, use Xrrnlni tialize.

void XrmlnitializeO;

Most uses of the resource manager involve defining names, classes, and rep­

resentation types as string constants. However, always referring to strings in

the resource manager can be slow, because it is so heavily used in some

toolkits. To solve this problem, a shorthand for a string is used in place of the

string in many of the resource manager functions. Simple comparisons can

be performed rather than string comparisons. The shorthand name for a

string is called a quark and is the type XrrnQuark. On some occasions, you

may want to allocate a quark that has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use

is entirely local to your application.

To allocate a new quark, use XrrnUniqueQuark.

XrmQuark Xrm UniqueQuarkO

The XrrnUniqueQuark function allocates a quark that is guaranteed not to

represent any string that is known to the resource manager.

To allocate some memory you will never give back, use Xperrnalloc.

char *Xpermalloc(size)
unsigned int size;

The Xperrnalloc function is used by some toolkits for permanently allo­

cated storage and allows some performance and space savings over the com­

pletely general memory allocator.

Each name, class, and representation type is typedef'd as an XrrnQuark.

Chapter 10. Application Utility Functions

I typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;

L typedef XrmQuark XrmRepresentation;

329

Lists are represented as null-terminated arrays of quarks. The size of the

array must be large enough for the number of components used.

I typedef XrmQuarkList XrmN ameList;
L typedef XrmQuarkList XrmClassList;

To convert a string to a quark, use XrmStringToQuark.

#define XrmStringToN ame(string)
#define XrmStringToClass(string)
#define XrmStringToRepresentation(string)
XrmQuark XrmStringToQuark(string)

char *string;

XrmStringToQuark(string)
XrmStringToQuark(string)
XrmStringToQuark(string)

L string Specifies the string for which a quark is to be allocated.

To convert a quark to a string, use XrmQuarkToString.

#define XrmNameToString(name) XrmQuarkToSting(name)
#define XrmClassToString(class) XrmQuarkToString(class)
#define XrmRepresentation ToString(type) XrmQuarkToString(type)
char *XrmQuarkToString(quark)

XrmQuark quark;
L quark Specifies the quark for which the equivalent string is desired.

These functions can be used to convert to and from quark representations.
The string pointed to by the return value must not be modified or freed. If
no string exists for that quark, XrmQu·arkToString returns NULL.

To convert a string with one or more components to a quark list, use
XrmStringToQuarkList.

#define XrmStringToNameList(str, name)
#define XrmStringToClassList(str ,class)
void XrmStringToQuarkList(string, quarks_return)

char *string;
XrmQuarkList quarks_return;

XrmStringToQuarkList«str), (namer
XrmStringToQuarkList« str), (class))

330 XLIB

L

L

string
quarks_return

Specifies the string for which a quark is to be allocated.
Returns the list of quarks.

The XrmStringToQuarkList function converts the null-terminated
string (generally a fully qualified name) to a list of quarks. The components
of the string are separated by a period or asterisk character.

A binding list is a list of type XrmBindingList and indicates if compo­
nents of name or class lists are bound tightly or loosely (that is, if wildcarding
of intermediate components is specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and
XrmBindLoosely indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a
quark list, use XrmStringToBindingQuarkList.

XrmStringToBindingQuarkList(string, bindings_return, quarks_return)

char * string;
XrmBindingList bindings_retu'm;
XrmQuarkList quarks_return;

string Specifies the string for which a quark is to be allocated.
bindings_return Returns the binding list. The caller must allocate sufficient space

for the binding list before calling XrmStringToBinding­
QuarkList.

quarks_return Returns the list of quarks. The caller must allocates sufficient
space for the quarks list before calling XrmStringToBinding­
QuarkList.

Component names in the list are separated by a period or an asterisk charac­
ter. If the string does not start with a period or an asterisk, a period is as­
sumed. For example, "*a.b*c" becomes:
quarks abc
bindings loose tight loose

10.11.3 Resource Database Access
Xlib provides resource management functions that you can use to manipu­
late resource databases. The next sections discuss how to:

Chapter 10. Application Utility Functions 331

• Store and get resources

• Get database levels

• Merge two databases

• Retrieve and store databases

10.11.3.1 Storing Into a Resource Database
To store resources into the database, use XrmPutResource or
XrmQPutResource. Both functions take a partial resource specification, a
representation type, and a value. This value is copied into the specified data­
base.

void XrmPutResource(database, specifier, type, value)

XrmDatabase *database;

char *specifier;

char *type;

XrmValue *value;

database Specifies a pointer to the resource database.
specifier Specifies a complete or partial specification of the resource.
type Specifies the type of the resource.

L value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutResource creates a new database and
returns a pointer to it. XrmPutResource is a convenience function that
calls XrmStringToBindingQuarkList followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

void XrmQPutResource(database, bindings, quarks, type, value)

XrmDatabase *database;
XrmBindingList bindings;

XrmQuarkList quarks;

XrmRepresentation type;

Xrm Value *value;

database Specifies a pointer to the resource database.
bindings Specifies a list of bindings.
quarks Specifies the complete or partial name or the class list of the resource.
type Specifies the type of the resource.

L value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutResource creates a new database and
returns a pointer to it.

332 XLIB

To add a resource that IS specified as a string, use

XrmPutStringResource.

void XrmPutStringResource(database, specifier, value)
XrmDatabase *database;

char *specifier;

char *value;
database Specifies a pointer to the resource database.
specifier Specifies a complete or partial specification of the resource.

L value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutStringResource creates a new data­
base and returns a pointer to it. XrmPutStringResource adds a resource
with the specified value to the specified database. XrmPut­

StringResource is a convenience routine that takes both the resource and
value as null-terminated strings, converts them to quarks, and then calls
XrmQPutResource, using a "String" representation type.

To add a string resource using quarks as a specification, use

XrmQPutStringResource.

void XrmQPutStringResource(database, bindings, quarks, value)

XrmDatabase *database;
XrmBindingList bindings;

XrmQuarkList quarks;
char *value;

database Specifies a pointer to the resource database.
bindings Specifies a list of bindings.
quarks Specifies the complete or partial name or the class list of the resource.

L value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutStringResource creates a new data­

base and returns a pointer to it. XrmQPutStringResource is a conve­
nience routine that constructs an Xrm Val ue for the value string (by calling
strlen to compute the size) and then calls XrmQPutResource, using a
"String" representation type.

To add a single resource entry that is specified as a string that contains
both a name and a value, use XrmPutLineResQurce.

Chapter 10. Application Utility Functions 333

L

void XrmPutLineResource(database, line)
XrmDatabase *database;
char *line;

database Specifies a pointer to the resource database.
line Specifies the resource value pair as a single string. A single colon (:)

separates the name from the value.

If database contains NULL, XrmPutLineResQurce creates a new database

and returns a pointer to it. XrmPutLineResQurce adds a single resource
entry to the specified database. Any white space before or after the name or
colon in the line argument is ignored. The value is terminated by a new-line
or a NULL character. To allow values to contain embedded new-line charac­
ters, a "\n" is recognized and replaced by a new-line character. For example,

line might have the value "xterm*background:green\n". Null-terminated
strings without a new line are also permitted.

1 0.11.3.2 Looking Up from a Resource Database
To retrieve a resource from a resource database, use XrmGetResQurce or

XrmQGetResQurce.

Bool XrmGetResource(database, str_name, str_class, str_type_return, value_return)
XrmDatabase database;
char *str_name;
char *str_class;
char **str _type_return;
Xrm Value *value_return;

database Specifies the database that is to be used.
str_name Specifies the fully qualified name of the value being retrieved (as

a string).
str_class Specifies the fully qualified class of the value being retrieved (as a

string).
str_type_return Returns a pointer to the representation type of the destination

(as a string).
value_return Returns the value in the database.

Bool XrmQGetResource(database, quark_name, quark_class, quark_type_return,
value_return)

XrmDatabase database;
XrmNameList quark_name;
XrmClassList quark_class;

334 XLIB

L

XrmRepresentation *quark_type_return;
Xrm Value *value_return;

database Specifies the database that is to be used.
quark_name Specifies the fully qualified name of the value being retrieved

(as a quark).
quark_class Specifies the fully qualified class of the value being retrieved

(as a quark).
quarLtype_return Returns a pointer to the representation type of the destination

(as a quark).
Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a re­
source from the specified database. Both take a fully qualified name/class

pair, a destination resource representation, and the address of a value (size/
address pair). The value and returned type point into database memory;

therefore, you must not modify the data.
The database only frees or overwrites entries on XrmPu tResource,

XrmQPutResource, or XrmMergeDatabases. A client that is not storing
new values into the database or is not merging the database should be safe

using the address passed back at any time until it exits. If a resource was
found, both XrmGetResource and XrmQGetResource return True; oth­
erwise, they return Fa 1 s e.

10.11.3.3 Database Search Lists
Most applications and toolkits do not make random probes into a resource

database to fetch resources. The X toolkit access pattern for a resource data­
base is quite stylized. A series of from 1 to 20 probes are made with only the

last name/class differing in each probe. The XrmGetResource function is
at worst a 2n algorithm, where n is the length of the name/class list. This can

be improved upon by the application programmer by prefetching a list of

database levels that might match the first part of a name/class list.

To return a list of database levels, use XrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList(database, names, classes, list_return, list_length)
XrmDatabase database;
XrmNameList names;
XrmClassList classes;

Chapter 10. Application Utility Functions 335

L

L

XrmSearchList list-return;
int list-length;

database
names
classes
list_return

list_length

Specifies the database that is to be used.
Specifies a list of resource names.
Specifies a list of resource classes.
Returns a search list for further use. The caller must allocate
sufficient space for the list before calling XrmQGetSearchList.

Specifies the number of entries (not the byte size) allocated for
lisLreturn.

The XrmQGetSearchList function takes a list of names and classes and re­

turns a list of database levels where a match might occur. The returned list

is in best-to-worst order and uses the same algorithm as XrmGetResource

for determining precedence. If lisLreturn was large enough for the search

list, XrmQGetSearchList returns True; otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon

the number of levels and wildcards in the resource specifiers that are stored

in the database. The worst case length is 3n
, where n is the number of name

or class components in names or classes.

When using XrmQGetSearchList followed by multiple probes for re­

sources with a common name and class prefix, only the common prefix

should be specified in the name and ciass list to XrmQGetSearchList.

To search resource database levels for a given resource, use XrmQ­

GetSearchResource.

Bool XrmQGetSearchResource(list, name, class, type_return, value_return)
XrmSearchList list;
XrmName name;
XrmClass class;
XrmRepresentation *type_return;
Xrm Value *value_return;

list Specifies the search list returned by XrmQGetSearchList.

name
class
type_return
value_return

Specifies the resource name.
Specifies the resource class.
Returns data representation type.
Returns the value in the database.

The XrmQGetSearchResource function searches the specified database

levels for the resource that is fully identified by the specified name and class.

336 XLIB

The search stops with the first match. XrmQGetSearchResource returns

T rue if the resource was found; otherwise, it returns Fa 1 s e.

A call to XrmQGetSearchList with a name and class list containing all

but the last component of a resource name followed by a call to

XrmQGetSearchResource with the last component name and class

returns the same database entry as XrmGetResource and XrmQGet­

Resource with the fully qualified name and class.

10.11.3.4 Merging Resource Databases
To merge the contents of one database into another database, use
XrmMergeDatabases.

void XrmMergeDatabases(source_db, targeLdb)
XrmDatabase source_db, *target_db;

source_db Specifies the resource database that is to be merged into the target
database.

targeLdb Specifies a pointer to the resource database into which the source
L database is to be merged.

The XrmMergeDa tabases function merges the contents of one database
into another. It may overwrite entries in the destination database. This func­

tion is used to combine databases (for example, an application specific data­

base of defaults and a database of user preferences). The merge is destruc­

tive; that is, the source database is destroyed.

1 0.11 .3.5 Retrieving and Storing Databases

L

To retrieve a database from disk, use XrmGetFileDatabase.

XrmDatabase XrmGetFileDatabase(filename)
char *filename;

filename Specifies the resource database file name.

The XrmGetFileDa tabase function opens the specified file, creates a new

resource database, and loads it with the specifications read in from the speci­

fied file. The specified file must contain lines in the format accepted by

XrmPutLineResource. If it cannot open the specified file, XrmGet­

FileDatabase returns NULL.

Chapter 10. Application Utility Functions 337

To store a copy of a database to disk, use XrmPutFileDatabase.

void XrmPutFileDatabase(database, stored_db)

XrmDatabase database;

char *stored_db;

database Specifies the database that is to be used.
L stored_db Specifies the file name for the stored database.

L

The XrmPutFileDatabase function stores a copy of the specified data­
base in the specified file. The file is an ASCII text file that contains lines in
the format that is accepted by XrmPutLineResource.

To create a database from a string, use XrmGetStringDatabase.

XrmDatabase XrmGetStringDatabase(data)

char *data;

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores

the resources specified in the specified null-terminated string. XrmGet­

StringDatabase is similar to XrmGetFileDatabase except that it reads
the information out of a string instead of out of a file. Each line is

separated by a new-line character III the format accepted by
XrmPutLineResource.

10.11.4 Parsing Command Line Options
The XrmParseCommand function can be used to parse the command line

arguments to a program and modify a resource database with selected en­

tries from the command line.

typedef enum {
XrmoptionN oArg,
XrmoptionIsArg,
XrmoptionSticky Arg,
XrmoptionSepArg,
XrmoptionResArg,
XrmoptionSkipArg,
XrmoptionSkipLine

} XrmOptionKind;

1* Value is specified in OptionDescRec.value *1
1* Value is the option string itself *1
1* Value is characters immediately following option *1
1* Value is next argument in argv *1
1* Resource and value in next argument in argv *1
1* Ignore this option and the next argument in argv *1
1* Ignore this option and the rest of argv *1

338 XLIB

typedef struct {
char *option; 1* Option specification string in argv *1
char *specifier; 1* Binding and resource name (sans application

name) *1
XrmOptionKind argKind; 1* Which style of option it is *1
caddr_t value; 1* Value to provide if XrmoptionNoArg *1

L } XrmOptionDescRec, *XrmOptionDescList;

To load a resource database from a C command line, use XrmParse­

Command.

void XrmParseCommand(database, table, table_count, name, argc_in_out,
agrv_in_out)

XrmDatabase *database;
XrmOptionDescList table;
int table_count;
char *name;
int *argc_in_out;
char **argv_in_out;

database Specifies a pointer to the resource database.
table Specifies the table of command line arguments to be parsed.
table_count Specifies the number of entries in the table.
name Specifies the application name.
argc_in_out Specifies the number of arguments and returns the number of

remaining arguments.
argv_in_out Specifies a pointer to the command line arguments and returns the

L remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to
the specified option table, loads recognized options into the specified data­
base with type "String," and modifies the (argc, argv) pair to remove all rec­
ognized options.

The specified table is used to parse the command line. Recognized entries
in the table are removed from argv, and entries are made in the specified re­

source database. The table entries contain information on the option string,
the option name, the style of option, and a value to provide if the option
kind is XrmoptionNoArg. The argc argument specifies the number of ar­

guments in argv and is set to the remaining number of arguments that were
not parsed. The name argument should be the name of your application for
use in building the database entry. The name argument is prefixed to the

resourceN ame in the option table before storing the specification. No sepa-

Chapter 10. Application Utility Functions 339

rating (binding) character is inserted. The table must contain either a period

(.) or an asterisk (*) as the first character in each resourceN arne entry. To
specify a more completely qualified resource name, the resourceName entry

can contain multiple components.

For example, the following is part of the standard option table from the X

Toolkit Xtlni tialize function:

static XrmOptionDescRec opTable[J = {
{" - background", "*background" , XrmoptionSepArg, (caddr_t) NULL},

{"-bd", "*borderColor" , XrmoptionSepArg, (caddr_t) NULL},

{"-bg", "*background" , XrmoptionSepArg, (caddr_t) NULL},

{" - borderwidth", "*TopLeveIShell. borderWidth", XrmoptionSepArg, (caddr_t) NULL},

{" - bordercolor", "*borderColor" , XrmoptionSepArg, (caddr_t) NULL},

{"-bw", "*TopLevelShell. borderWidth", XrmoptionSepArg, (caddr_t) NULL},

{" - display", ".display", XrmoptionSepArg, (caddr_t) NULL},

{"-fg", "*foreground" , XrmoptionSepArg, (caddr_t) NULL},

{"-fn", "*font", XrmoptionSepArg, (caddr_t) NULL},

{"-font", "*font", XrmoptionSepArg, (caddr_t) NULL},

{" - foreground", "*foreground" , XrmoptionSepArg, (caddr_t) NULL},

{" - geometry", ". TopLeveIShell.geometry", XrmoptionSepArg, (caddr_t) NULL},

{" - iconic", ". TopLeveIShell.iconic", XrmoptionN oArg, (caddr_t) "on"},

{"-name", ".name", XrmoptionSepArg, (caddr_t) NULL},

{" - reverse", "*reverse Video", XrmoptionN oArg, (caddr_t) "on"},

{"-rv", "*reverse Video", XrmoptionN oArg, (caddr_t) "on"},

{" - synchronous", ".synchronous" , XrmoptionN oArg, (caddr_t) "on"},

{" - title", ". TopLevelShell. title" , XrmoptionSepArg, (caddr_t) NULL},

{"-xrm", NULL, XrmoptionResArg, (caddr_t) NULL},

};

In this table, if the - background (or - bg) option is used to set background

colors, the stored resource specifier matches all resources of attribute back­

ground. If the - borderwidth option is used, the stored resource specifier

applies only to border width attributes of class TopLevelShell (that is, outer­

most windows, including pop-up windows). If the - title option is used to set
a window name, only the topmost application windows receive the re­

source.
When parsing the command line, any unique unambiguous abbreviation

for an option name in the table is considered a match for the option. Note

that uppercase and lowercase matter.

340 XLIB

10.12 Using the Context Manager
The context manager provides a way of associating data with a window in
your program. Note that this is local to your program; the data is not stored

in the server on a property list. Any amount of data in any number of pieces
can be associated with a window, and each piece of data has a type associated

with it. The context manager requires knowledge of the window and type to
store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional,
sparse array: one dimension is subscripted by the window and the other by

a context type field. Each entry in the array contains a pointer to the data.
Xlib provides context management functions with which you can save data
values, get data values, delete entries, and create a unique context type. The

symbols used are in <X11 / xutil. h>.

To save a data value that corresponds to a window and context type, use
XSaveContext.

int XSaveContext(display, w, context, data)

Display *display;
·Window w;

XContext context;
caddr _t data;

display Specifies the connection to the X server.
w Specifies the window with which the data is associated.
context Specifies the context type to which the data belongs.

L data Specifies the data to be associated with the window and type.

If an entry with the specified window and type already exists, XSave­

Context overrides it with the specified context. The XSaveContext func­
tion returns a nonzero error code if an error has occurred and zero other­
wise. Possible errors are XCNOMEM (out of memory).

To get the data associated with a window and type, use
XFindContext.

int XFindContext(display, w, context, data_return)

Display *display;

Window w;

XContext context;

caddr_t *data_return;

Chapter 10. Application Utility Functions 341

L

display

w

context

data_return

Specifies the connection to the X server.
Specifies the window with which the data is associated.
Specifies the context type to which the data belongs.
Returns a pointer to the data.

Because it is a return value, the data is a pointer. The XFindContext func­

tion returns a nonzero error code if an error has occurred and zero other­

wise. Possible errors are XCNOENT (context-not-found).

To delete an entry for a given window and type, use

XDeleteContext.

int XDeleteContext(display, w, context)

Display *display;

Window w;

XContext context;

display Specifies the connection to the X server.
w Specifies the window with which the data is associated.

L context Specifies the context type to which the data belongs.

I
L

The XDeleteContext function deletes the entry for the given window and
type from the data structure. This function returns the same error codes

that XFindContext returns if called with the same arguments.

XDeleteContext does not free the data whose address was saved.

To create a unique context type that may be used in subsequent calls to

XSa veContext and XFindContext, use XUniqueContext.

XContext XUniqueContextO

Part II. X Window System Protocol
Version 11

Robert W. Scheifler

345

SECTION 1. PROTOCOL FORMATS

Request Format
Every request contains an 8-bit major opcode and a 16-bit length field ex­

pressed in units of four bytes. Every request consists of four bytes of a
header (containing the major opcode, the length field, and a data byte) fol­

lowed by zero or more additional bytes of data. The length field defines the
total length of the request, including the header. The length field in a re­

quest must equal the minimum length required to contain the request. If the
specified length is smaller or larger than the required length, an error is gen­

erated. Unused bytes in a request are not required to be zero. Major opcodes
128 through 255 are reserved for extensions. Extensions are intended to
contain multiple requests, so extension requests typically have an additional
minor opcode encoded in the "spare" data byte in the request header. How­
ever, the placement and interpretation of this minor opcode and of all other

fields in extension requests are not defined by the core protocol. Every re­
quest on a given connection is implicitly assigned a sequence number, start­
ing with one, that is used in replies, errors, and events.

Reply Format
Every reply contains a 32-bit length field expressed in units of four bytes.

Every reply consists of 32 bytes followed by zero or more additional bytes of
data, as specified in the length field. Unused bytes within a reply are not

guaranteed to be zero. Every reply also contains the least-significant 16 bits

of the sequence number of the corresponding request.

346 PROTOCOL

Error Format
Error reports are 32 bytes long. Every error includes an 8-bit error code.

Error codes 128 through 255 are reserved for extensions. Every error also

includes the major and minor opcodes of the failed request and the least­

significant 16 bits of the sequence number of the request. For the following
errors (see section 4), the failing resource ID is also returned: Colormap,

Cursor, Drawable, Font, GContext, IDChoice, Pixmap, and

Window. For Atom errors, the failing atom is returned: For Value errors,

the failing value is returned. Other core errors return no additional data.

Unused bytes within an error are not guaranteed to be zero.

Event Format
Events are 32 bytes long. Unused bytes within an event are not guaranteed

to be zero. Every event contains an 8-bit type code. The most-significant bit
in this code is set if the event was generated from a SendEvent request.

Event codes 64 through 127 are reserved for extensions, although the core

protocol does not define a mechanism for selecting interest in such events.

Every core event (with the exception of KeymapNotify) also contains the
least-significant 16 bits of the sequence number of the last request issued by

the client that was (or is currently being) processed by the server.

SECTION 2. SYNTACTIC CONVENTIONS

Sections 3 through 12 use the following syntactic conventions.

• The syntax { ... } encloses a set of alternatives.

• The syntax [...] encloses a set of structure components.

• In general, TYPEs are in uppercase and AlternativeValues are capitalized.

• Requests in section 9 are described in. the following format:

RequestName
argJ: type1

argN: typeN
~

result 1 : type 1

Section 3. Common Types

resultM: typeM

Errors: kindl, ... , kindK

Description

347

If no ~ is present in the description, then the request has no reply (it is asyn­

chronous), although errors may still be reported. If ~ + is used, then one or

more replies can be generated for a single request.

• Events in section 11 are described in the following format:

EventName
value1: type 1

valueN: typeN

Description

SECTION 3. COMMON TYPES

LISTofFOO

A type name of the form LISTofFOO means a counted list of elements of

type FOO. The size of the length field may vary (it is not necessarily the same

size as a FOO), and in some cases, it may be implicit. It is fully specified in

Appendix F. Except where explicitly noted, zero-length lists are legal.

BITMASK

LISTofV ALUE
The types BITMASK and LISTofVALUE are somewhat special. Various re­

quests contain arguments of the form:

value-mask: BITMASK

value-list: LISTofV ALUE

These are used to allow the client to specify a subset of a heterogeneous col­

lection of optional arguments. The value-mask specifies which arguments

are to be provided; each such argument is assigned a unique bit position.

The representation of the BITMASK will typically contain more bits than

there are defined arguments. The unused bits in the value-mask must be

zero (or the server generates a Value error). The value-list contains one

348 PROTOCOL

value for each bit set to 1 in the mask, from least-significant to most­

significant bit in the mask. Each value is represented with four bytes, but the
actual value occupies only the least-significant bytes as required. The values

of the unused bytes do not matter.

OR

A type of the form "T 1 or ... or Tn" means the union of the indicated types.
A single-element type is given as the element without enclosing braces.

"VINDOW: 32-bit value (top three bits guaranteed to be zero)
PIXMAP: 32-bit value (top three bits guaranteed to be zero)
CURSOR: 32-bit value (top three bits guaranteed to be zero)

FONT: 32-bit value (top three bits guaranteed to be zero)
GCONTEXT: 32-bit value (top three bits guaranteed to be zero)
COLORMAP: 32-bit value (top three bits guaranteed to be zero)
DRAWABLE: WINDOW or PIXMAP
FONTABLE: FONT or GCONTEXT

ATOM: 32-bit value (top three bits guaranteed to be zero)
VISUALID: 32-bit value (top three bits guaranteed to be zero)

VALUE: 32-bit quantity (used only in LISTofVALUE)
BYTE: 8-bit value
INT8: 8-bit signed integer

INTI6: 16-bit signed integer
INT32: 32-bit signed integer

CARD8: 8-bit unsigned integer
CARD 16: 16-bit unsigned integer
CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32
BITGRAVITY: {Forget, Static, NorthWest, North, NorthEast, West,

Center,East, SouthWest, South, SouthEast}
WINGRAVITY: {Unmap, Static, NorthWest, North, NorthEast, West,

Center, East, SouthWest, South, SouthEast}
BOOL: {True, False}

EVENT: {KeyPress, KeyRelease, OwnerGrabButton,
ButtonPress, ButtonRelease, EnterWindow,
LeaveWindow, PointerMotion, PointerMotionHint,
Button1Motion, Button2Motion, Button3Motion,
Button~Motion, Button5Motion, ButtonMotion,
Exposure, VisibilityChange, StructureNotify,
ResizeRedirect, SubstructureNotify,
SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState}

Section 3. Common Types

POINTEREVENT: {ButtonPress, ButtonRelease, EnterWindow,
LeaveWindow, POinterMotion, PointerMotionHint,
Button1Motion, Button2Motion, Button3Motion,
Button~Motion, ButtonSMotion, ButtonMotion,
KeyrnapSta te}

349

DEVICEEVENT:{KeyPress, KeyRelease, ButtonPress, ButtonRelease,
PointerMotion, Button1Motion, Button2Motion,
Button3Motion, Button~Motion, ButtonSMotion,
ButtonMotion}

KEYSYM: 32-bit value (top three bits guaranteed to be zero)
KEYCODE:CARD8
BUTTON: CARD8

KEYMASK: {Shift, Lock, Control, Mod1, Mod2, Mod3, Mod~, ModS}
BUTMASK: {Button1, Button2, Button3, Button~, ButtonS}

KEYBUTMASK: KEYMASK or BUTMASK

STRING8: LISTofCARD8
STRING16: LISTofCHAR2B

CHAR2B: [byte 1, byte2: CARD8]
POINT: [x, y: INT16]

RECTANGLE: [x, y: INT16,
width, height: CARD 16]

ARC: [x, y: INT16,
width, height: CARD 16,
angle1, angle2: INT16]

HOST: [family: {Internet, DECnet, Chaos}
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left corner.
The primary interpretation of large characters in a STRIN G 16 is that they

are composed of two bytes used to index a 2-D matrix; hence, the use of
CHAR2B rather than CARD16. This corresponds to the lIS/ISO method of

indexing 2-byte characters. It is expected that most large fonts will be de­
fined with 2-byte matrix indexing. For large fonts constructed with linear in­
dexing, a CHAR2B can be interpreted as a 16-bit number by treating byte 1
as the most-significant byte. This means that clients should always transmit
such 16-bit character values most-significant byte first, as the server will

never byte-swap CHAR2B quantities.
The length, format, and interpretation of a HOST address are specific to

the family (see ChangeHosts request).

350 PROTOCOL

SECTION 4. ERRORS

In general, when a request terminates with an error, the request has no side

effects (that is, there is no partial execution). The only requests for which

this is not true are ChangeWindowAttributes, ChangeGC, Poly­

Text5, PolyText16, FreeColors, StoreColors, and Change­

KeyboardControl.

The following error codes result from various requests as follows:

Error

Access

Alloe

Atom

Colormap

Cursor

Drawable

Font

Description

An attempt is made to grab a key/button combination
already grabbed by another client.
An attempt is made to free a colormap entry not
allocated by the client.

An attempt is made to store into a read-only or an
unallocated colormap entry.
An attempt is made to modify the access control list from
other than the local host (or otherwise authorized client).
An attempt is made to select an event type that only one
client can select at a time Tvvhen another client has already
selected it.
The server failed to allocate the requested resource. Note
that the explicit listing of Alloe errors in requests only
covers allocation errors at a very coarse level and is not
intended to cover all cases of a server running out of
allocation space in the middle of service. The semantics
when a server runs out of allocation space are left
unspecified, but a server may generate an A lloe error on
any request for this reason, and clients should be
prepared to receive such errors and handle or discard them.
A value for an ATOM argument does not name a defined
ATOM.
A value for a COLORMAP argument does not name a
defined COLORMAP.
A value for a CURSOR argument does not name a
defined CURSOR.
A value for a DRAWABLE argument does not name a
defined WINDOW or PIXMAP.
A value for a FONT argument does not name a defined
FONT.

Section 4. Errors 351

Note

Error

GContext

InChoice

Implementation

Length

Match

Name

Pixmap

Request

Value

Window

Description

A value for a FONTABLE argument does not name a
defined FONT or a defined GCONTEXT.
A value for a GCONTEXT argument does not name a
defined GCONTEXT.
The value chosen for a resource identifier either is not
included in the range assigned to the client or is already
in use.
The server does not implement some aspect of the
request. A server that generates this error for a core
request is deficient. As such, this error is not listed for any
of the requests, but clients should be prepared to receive
such errors and handle or discard them.
The length of a request is shorter or longer than that
required to minimally contain the arguments.
The length of a request exceeds the maximum length
accepted by the server.

An InputOnly window is used as a DRAWABLE.
In a graphics request, the GCONTEXT argument does
not have the same root and depth as the destination
DRAWABLE argument.
Some argument (or pair of arguments) has the correct
type and range, but it fails to match in some other way
required by the request.
A font or color of the specified name does not exist.
A value for a PIXMAP argument does not name a
defined PIXMAP.
The major or minor opcode does not specify a valid request.
Some numeric value falls outside the range of values
accepted by the request. Unless a specific range is
specified for an argument, the full range defined by the
argument's type is accepted. Any argument defined as a
set of alternatives typically can generate this error (due to
the encoding).
A value for a WINDOW argument does not name a
defined WINDOW.

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap,

and Window errors are also used when the argument type is extended by

union with a set of fixed alternatives, for example, <WINDOW or

PointerRoot or None>.

352 PROTOCOL

SECTION 5. KEYBOARDS

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclu­

sive range [8,255]. A keycode value carries no intrinsic information, al­
though server implementors may attempt to encode geometry information
(for example, matrix) to be interpreted in a server-dependent fashion. The
mapping between keys and keycodes cannot be changed using the proto­
col.

A KEYSYM is an encoding of a symbol on the cap of a key. The set of de­
fined KEYSYMs include the character sets Latin 1, Latin 2, Latin 3, Latin 4,
Kana, Arabic, Cryllic, Greek, Tech, Special, Publish, APL, and Hebrew as
well as a set of symbols common on keyboards (Return, Help, Tab, and so

on). KEYSYMs with the most-significant bit (of the 29 bits) set are reserved

as vendor-specific.
A list of KEYSYMs is associated with each KEYCODE, and the length of

the list can vary with each KEYCODE. The list is intended to convey the set
of symbols on the corresponding key. By convention, if the list contains a sin­

gle KEYSYM and that KEYSYM is alphabetic and case distinction is relevant
fur it, then it should be treated as equivaient to a two-element iist of the low­

ercase and uppercase KEYSYMs. For example, if the list contains the single
KEYSYM for uppercase A, then the client should treat it as if it were instead
a pair with lowercase a as the' first KEYSYM and uppercase A as the second
KEYSYM.

For any KEYCODE, the first KEYSYM in the list normally should be cho­
sen as the interpretation of a KeyPress when no modifier keys are down.
The second KEYSYM in the list normally should be chosen when the Shift
modifier is on or when the Lock modifier is on and Lock is interpreted as
ShiftLock. When the Lock modifier is on and is interpreted as CapsLock, it
is suggested that the Shift modifier first be applied to choose a KEYSYM.

However, if that KEYSYM is lowercase alphabetic, the corresponding
uppercase KEYSYM should be used instead. Other interpretations of
CapsLock are possible. For example, it may be viewed as equivalent to
ShiftLock, applying only when the first KEYSYM is lowercase alphabetic and

the second KEYSYM is the corresponding uppercase alphabetic. No inter­
pretation of KEYSYMs beyond the first two in a list is suggested here. No
spatial geometry of the symbols on the key is defined by their order in the

Section 7. Predefined Atoms 353

KEYSYM list, although a geometry might be defined on a vendor-specific
basis.

The mapping between KEYCODEs and KEYSYMs is not used directly by

the server; it is merely stored for reading and writing by clients.
The KEYMASK modifier named Lock is intended to be mapped to either

a CapsLock or a ShiftLock key, but which one is left as application-specific
and/or user-specific. However, it is suggested that the determination be
made according to the associated KEYSYM(s) of the corresponding

KEYCODE.

SECTION 6. POINTERS

Buttons are always numbered starting with one.

SECTION 7. PREDEFINED ATOMS

Predefined atoms are not strictly necessary and may not be useful in all envi­
ronments, but they will eliminate many InternAtom requests in most appli­
cations. Note that they are predefined only in the sense of having numeric
values, not in the sense of having required semantics. The core protocol im­
poses no semantics on these names, except as they are used in FONTPROP
structures (see QueryFont request).

The following names have predefined atom values. Note that uppercase
and lowercase matter.

ARC ITALIC_ANGLE STRING
ATOM MAX-SPACE SUBSCRIPT _X
BITMAP MIN_SPACE SUBSCRIPT _ Y
CAP_HEIGHT NORM_SPACE SUPERSCRIPT _X
CARDINAL NOTICE SUPERSCRIPT _ Y
COLORMAP PIXMAP UNDERLINE_POSITION
COPYRIGHT POINT UNDERLINE_THICKNESS
CURSOR POINT_SIZE VISUALID
CUT _BUFFERO PRIMARY WEIGHT
CUT _BUFFERI QUAD_WIDTH WINDOW
CUT _BUFFER2 RECTANGLE WM_CLASS
CUT_BUFFER3 RESOLUTION WM_CLIENT _MACHINE
CUT_BUFFER4 RESOURCE-MANAGER WM_COMMAND
CUT_BUFFERS RGB_BEST _MAP WM_HINTS

354 PROTOCOL

CUT _BUFFER6 RGB_BLUE_MAP WM_ICON_NAME
CUT_BUFFER7 RGB_COLOR-MAP WM_ICON_SIZE
DRAWABLE RGB_DEFAULT _MAP WM_NAME
END_SPACE RGB_GRAY_MAP WM_NORMALHINTS
FAMILY _NAME RGB_GREEN_MAP WM_SIZE_HINTS
FONT RGB_RED_MAP WM_ TRANSIENT_FOR
FONT_NAME SECONDARY WM_ZOOM_HINTS
FULL_NAME STRIKEOUT_ASCENT LHEIGHT
INTEGER STRIKEOUT_DESCENT

To avoid conflicts with possible future names for which semantics might be

imposed (either at the protocol level or in terms of higher level user inter­
face models), names beginning with an underscore should be used for atoms

that are private to a particular vendor or organization. To guarantee no con­

flicts between vendors and organizations, additional prefixes need to be

used. However, the protocol does not define the mechanism for choosing

such prefixes. For names private to a single application or end user but

stored in globally accessible locations, it is suggested that two leading under­

scores be used to avoid conflicts with other names.

SECTION 8. CONNECTION SETUP

For remote clients, the X protocol can be built on top of any reliable byte

stream.
The client must send an initial byte of data to identify the byte order to be

employed. The value of the byte must be octal 102 or 154. The value 102

(ASCII uppercase B) means values are transmitted most-significant byte

first, and value 154 (ASCII lowercase 1) means values are transmitted least­

significant byte first. Except where explicitly noted in the protocol, all 16-bit
and 32-bit quantities sent by the client must be transmitted with this byte

order, and all 16-bit and 32-bit quantities returned by the server will be

transmitted with this byte order.

• Following the byte-order byte, the client sends the following information
at connection setup:

protocol-major-version: CARD16

protocol-minor-version: CARD 16

authorization-protocol-name: STRING8

authorization-protocol-data: STRING8

Section 8. Connection Setup 355

The version numbers indicate what version of the protocol the client expects

the server to implement.
The authorization name indicates what authorization protocol the client

expects the server to use, and the data is specific to that protocol. Specifica­

tion of valid authorization mechanisms is not part of the core X protocol. It

is hoped that eventually one authorization protocol will be agreed upon. In
the meantime, a server that implements a different protocol than the client

expects or that only implements the host-based mechanism may simply ig­

nore this information. If both name and data strings are empty, this is to be

interpreted as "no explicit authorization."

• The client receives the following information at connection setup:

success: BOOL

protocol-major-version: CARD 16
protocol-minor-version: CARD16

length: CARD 16

Length is the amount of additional data to follow, in units of four bytes. The

version numbers are an escape hatch in case future revisions of the protocol
are necessary. In general, the major version would increment for incompati­

ble changes, and the minor version would increment for small upward com­

patible changes. Barring changes, the major version will be 11, and the

minor version will be o. The protocol version numbers returned indicate the

protocol the server actually supports. This might not equal the version sent

by the client. The server can (but need not) refuse connections from clients

that offer a different version than the server supports. A server can (but

need not) support more than one version simultaneously.

• The client receives the following additional data if authorization fails:

reason: STRING8

• The client receives the following additional data if authorization is
accepted:

vendor: STRING8

release-number: CARD32

resource-id-base, resource-id-mask: CARD32
image-byte-order: {LSBFirst, MSBFirst}

bitmap-scanline-unit: {8, 16, 32}

bitmap-scanline-pad: {8, 16, 32}

356 PROTOCOL

bitmap-bit-order: {LeastS ignificant; MostSignifican t}

pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN

motion-buffer-size: CARD32

maximum-request-Iength: CARD 16
min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARD8,
bits-per-pixel: {I, 4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD 16
width-in-millimeters, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH '
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARDIG
backing-stores: {Never, WhenMapped, Al ways}
save-unders: BOOL
current-in put-masks: SETofEVENT]

DEPTH: [depth: CARD8
visuals: LISTofVISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
cla~:{StaticGray, StaticColor, TrueColor, GrayScale,

PseudoColor, DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-value: CARD8
colormap-entries: CARD 16]

• The information that is global to the server is:

The vendor string gives some identification of the owner of the server im­

plementation. The vendor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18).
The client allocates resource IDs for types WINDOW, PIXMAP, CURSOR,

FONT, GCONTEXT, and COLORMAP by choosing a value with only some
subset of these bits set and ORing it with resource-id-base. Only values con-

Section 8. Connection Setup 357

structed in this way can be used to name newly created resources over this

connection. Resource IDs never have the top three bits set. The client is not
restricted to linear or contiguous allocation of resource IDs. Once an ID has

been freed, it can be reused, but this should not be necessary. An ID must

be unique with respect to the IDs of all other resources, not just other re­

sources of the same type. However, note that the value spaces of resource

identifiers, atoms, visualids, and keysyms are distinguished by context, and

as such, are not required to be disjoint; for example, a given numeric value

might be both a valid window ID, a valid atom, and a valid keysym.

Although the server is in general responsible for byte-swapping data to
match the client, images are always transmitted and received in formats (in­

cluding byte order) specified by the server. The byte order for images is

given by image-byte-order and app~ies to each scanline unit in XY format

(bitmap format) and to each pixel value in Z format.

A bitmap is represented in scanline order. Each scanline is padded to a

multiple of bits as given by bitmap-scanline-pad. The pad bits are of arbi­

trary value. The scanline is quantized in multiples of bits as given by the

bitmap-scanline-unit. The bitmap-scanline-unit is always less than or equal to
the bitmap-scanline-pad. Within each unit, the leftmost bit in the bitmap is

either the least-significant or most-significant bit in the unit, as given by

bitmap-bit-order. If a pixmap is represented in XY format, each plane is

represented as a bitmap, and the planes appear from most-significant to
least-significant in bit order with no padding between planes.

Pix map-formats contains one entry for each depth value. The entry de­

scribes the Z format used to represent images of that depth. An entry for a

depth is included if any screen supports that depth, and all screens support­

ing that depth must support only that Z format for that depth. In Z format,

the pixels are in scanline order, left-to-right within a scanline.

The number of bits used to hold each pixel is given by bits-per-pixel. Bits­

per-pixel may be larger than strictly required by the depth, in which case the

least-significant bits are used to hold the pixmap data, and the values of the

unused high-order bits are undefined. When the bits-per-pixel is 4, the

order of nibbles in the byte is the same as the image byte-order. When the

bits:!per-pixel is 1, the format is identical for bitmap format. Each scanline is
padded to a multiple of bits as given by scanline-pad. When bits-per-pixel is

1, this will be identical to bitmap-scanline-pad.

358 PROTOCOL

How a pointing device roams the screens is up to the server implementa­

tion and is transparent to the protocol. No geometry is defined among

screens.

The server may retain the recent history of pointer motion and do so to a

finer granularity than is reported by MotionNotify events. The Get­

MotionEvents request makes such history available. The motion-buffer­

size gives the approximate size of the history buffer.

Maximum-request-Iength specifies the maximum length of a request ac­

cepted by the server, in 4-byte units. That is, length is the maximum value

that can appear in the length field of a request. Requests larger than this

maximum generate a Length error, and the server will read and simply dis­

card the entire request. Maximum-request-Iength will always be at least 4096

(that is, requests of length up to and including 16384 bytes will be accepted

by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode

values'transmitted by the server. Min-keycode is never less than 8, and max­

keycode is never greater than 255. Not all keycodes in this range are re­

quired to have corresponding keys .

• The information that applies per screen is:

The allowed-depths specifies what pix map and window depths are sup­

ported. Pixmaps are supported for each depth listed, and windows of that

depth are supported if at least one visual type is listed for the depth. A

pixmap depth of one is always supported and listed, but windows of depth

one might not be supported. A depth of zero is never listed, but zero-depth

InputOnly windows are always supported.

Root-depth and root-visual specify the depth and visual type of the root

window. Width-in-pixels and height-in-pixels specify the size of the root

window (which cannot be changed). The class of the root window is always

InputOutput. Width-in-millimeters and height-in-millimeters can be used

to determine the physical size and the aspect ratio.

The default-colormap is the one initially associated with the root window.

Clients with minimal color requirements creating windows of the same depth

as the root may want to allocate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome

application. These pixel values are for permanently allocated entries in the

default-colormap. The actual RGB values may be settable on some screens

Section 8. Connection Setup 359

and, in any case, may not actually be black and white. The names are in­

tended to convey the expected relative intensity of the colors.

The border of the root window is initially a pixmap filled with the black­

pixel. The initial background of the root window is a pixmap filled with

some unspecified two-color pattern using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed
to be installed simultaneously (with InstallColormap), regardless of the

number of entries allocated in each map. Max-installed-maps specifies the

maximum number of maps that might possibly be installed simultaneously,

depending on their allocations. Multiple static-visual colormaps with identi­
cal contents but differing in resource ID should be considered as a single

map for the purposes of this number. For the typical case of a single hard­

ware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this

screen, although it may be storage limited in the number of windows it can

support at once. If save-unders is True, the server can support the save­

under mode in CreateWindow and ChangeWindowAttributes, a~

though again it may be storage limited.

The current-in put-events is what GetWindowAttributes would return

for the all-event-masks for the root window.

• The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for more

than one screen.

For PseudoColor, a pixel value indexes a colormap to produce indepen­

dent RGB values; the RGB values can be changed dynamically. GrayScale

is treated in the same way as PseudoColor except which primary drives the

screen is undefined; thus, the client should always store the same value for

red, green, and blue in colormaps. For DirectColor, a pixel value is de­

composed into separate RGB subfields, and each subfield separately indexes

the colormap for the corresponding value. The RGB values can be changed

dynamically. TrueColor is treated in the same way as DirectColor except

the colormap has predefined read-only RGB values. These values are server­

dependent but provide linear or near-linear increasing ramps in each

primary. StaticColor is treated in the same way as PseudoColor except

the colormap has predefined read-only RGB values, which are server-

360 PROTOCOL

dependent. StaticGray is treated in the same way as StaticColor ex­

cept the red, green, and blue values are equal for any single pixel value, re­

sulting in shades of gray. StaticGray with a two-entry colormap can be

thought of as monochrome.

The red-mask, green-mask, and blue-mask are only defined for

DirectColor and TrueColor. Each has one contiguous set of bits set to

1 with no intersections. Usually each mask has the same number of bits set

to 1.

The bits-per-rgb-value specifies the log base 2 of the number of distinct

color intensity values (individually) of red, green, and blue. This number

need not bear any relation to the number of colormap entries. Actual RGB

values are always passed in the protocol within a 16-bit spectrum, with 0

being minimum intensity and 65535 being the maximum intensity. On hard­

ware that provides a linear zero-based intensity ramp, the following relation­

ship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from O. The colormap-entries defines the

number of available colormap entries in a newly created colormap. For

DirectColor and TrueColor, this will usually be 2 to the power of the

maXImum number of bits set to 1 in red-mask, green-mask, and blue­

mask.

SECTION 9: REQUESTS

Create Window
wid, parent: WINDOW

class: {InputOutput, InputOnly, CopyFromParent}

depth: CARD8

visual: VISUALID or CopyFromParent

x, y: INT16

width, height, border-width: CARD 16

value-mask: BITMASK

value-list: LISTofV ALUE

Errors: IDChoice, Window, Pixmap, Colormap, Cursor, Match,

Value, Alloc

Section 9. Requests 361

This request creates an unmapped window and assigns the identifier wid to

it.
A class of CopyFromParent means the class is taken from the parent. A

depth of zero for class InputOutput or CopyFromParent means the

depth is taken from the parent. A visual of CopyFromParent means the vi­

sual type is taken from the parent. For class InputOutput, the visual type

and depth must be a combination supported for the screen (or a Match

error results). The depth need not be the same as the parent, but the parent

must not be of class InputOnly (or a Match error results). For class

InputOnly, the depth must be zero (or a Match error results), and the vi­

sual must be one supported for the screen (or a Ma tch error results). How­

ever, the parent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the

purposes of graphics requests, exposure processing, and Visibili ty­
Notify events. An InputOnly window cannot be used as a drawable (as a

source or destination for graphics requests). InputOnly and Input­

Ou tpu t windows act identically in other respects-properties, grabs, input

control, and so on.
The window is placed on top in the stacking order with respect to siblings.

The x and y co'ordinates are relative to the parent's origin and specify the

position of the upper-left outer corner of the window (not the origin). The

width and height specify the inside size (not including the border) and must

be nonzero (or a Value error results). The border-width for an InputOnly

window must be zero (or a Match error results).

The value-mask and value-list specify attributes of the window that are to

be explicitly initialized. The possible values are:

Attribute

background -pixmap
background-pixel
border-pixmap
border-pixel
bit-gravity
win-gravity
backing -s tore
backing-planes

Type

PIXMAP or None or ParentRelative

CARD32
PIXMAP or CopyFromParent

CARD32
BITGRAVITY
WINGRAVITY
{NotUseful, WhenMapped, Always}

CARD32

362 PROTOCOL

Attribute

backing-pixel
save-under
event-mask
do-not-propagate-mask
override-redirect
colormap
cursor

Type

CARD32
BOOL
SETofEVENT
SETofDEVICEEVENT
BOOL
COLORMAP or CopyFrornParent
CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute

background -pixma p
border-pixmap
bit-gravity
win-gravity
backing-store
backing-planes
backing-pixei
save-under
event-mask
do-not-propagate-mask
override-redirect
colormap
cursor

Default

None
CopyFrornParent
Forget
NorthWest
NotUseful
all ones
zero
False
{ } (empty set)
{ } (empty set)
False
CopyFrornParent
None

Only the following attributes are defined for In p u to n 1 y windows:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

It is a Match error to specify any other attributes for InputOnly WIn­
dows.

If background-pixmap is given, it overrides the default background­

pixmap. The background pixmap and the window must have the same root
and the same depth (or a Match error results). Any size pixmap can be used,

Section 9. Requests 363

although some sizes may be faster than others. If background None is
specified, the window has no defined background. If background
ParentRelative is specified, the parent's background is used, but the win­
dow must have the same depth as the parent (or a Ma tch error results). If
the parent has background None, then the window will also have back­

ground None. A copy of the parent's background is not made. The parent's
background is reexamined each time the window background is required. If

background-pixel is given, it overrides the default background-pixmap and
any background-pixmap given explicitly, and a pixmap of undefined size

filled with background-pixel is used for the background. Range checking is
not performed on the background-pixel value; it is simply truncated to the
appropriate number of bits. For a ParentRelative background, the back­

ground tile origin always aligns with the parent's background tile origin.

Otherwise, the background tile origin is always the window origin.
When no valid contents' are available for regions of a window and the

regions are either visible or the server is maintaining backing store, the

server automatically tiles the regions with the window's background unless
the window has a background of None. If the background is None, the
previus screen contents from other windows of the same depth as the win­

dow are simply left in place if the contents come from the parent of the win­
dow or an inferior of the parent; otherwise, the initial contents of the ex­

posed regions are undefined. Exposure events are then generated for the
regions, even if the background is None.

The border tile origin is always the same as the background tile origin. If
border-pixmap is given, it overrides the default border-pixmap. The border

pixmap and the window must have the same root and the same depth (or a
Ma tch error results). Any size pixmap can be used, although some sizes may
be faster than others. If CopyFromParent is given, the parent's border

pixmap is copied (subsequent changes to the parent's border attri­

bute do not affect the child), but the window must have the same depth as
the parent (or a Ma tch error results). The pixmap might be copied by shar­
ing the same pixmap object between the child and parent or by making a

complete copy of the pixmap contents. If border-pixel is given, it overrides

the default border-pixmap and any border-pixmap given explicitly, and a
pixmap of undefined size filled with border-pixel is used for the border.

Range checking is not performed on the border-pixel value; it is simply

truncated to the appropriate number of bits.

364 PROTOCOL

Output to a window is always clipped to the inside of the window, so that

the border is never affected.
The bit-gravity defines which region of the window should be retained if

the window is resized, and win-gravity defines how the window should be re­

positioned if the parent is resized (see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining con­
tents of obscured regions when the window is mapped would be beneficial.

A backing-store of Al ways advises the server that maintaining contents even

when the window is unmapped would be beneficial. In this case, the server

may generate an exposure event when the window is created. A value of

NotUseful advises the server that maintaining contents is unnecessary, al­

though a server may still choose to maintain contents while the window is

mapped. Note that if the server maintains contents, then the server should

maintain complete contents not just the region within the parent bound­

aries, even if the window is larger than its parent. While the server maintains

contents, exposure events will not normally be generated, but the server

may stop maintaining contents at any time.

If save-under is True, the server is advised that when this window is

mapped, saving the contents of windows it uuscures wouid be beneficial.

When the contents of obscured regions of a window are being maintained,

regions obscured by noninferior windows are included in the destination

(and source, when the window is the source) of graphics requests, but re­

gions obscured by inferior windows are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the

window hold dynamic data that must be preserved in backing-stores and

during save-unders. The backing-pixel specifies what value to use in planes
not covered by backing-planes. The server is free to save only the specified

bit planes in the backing-store or save-under and regenerate the remaining

planes with the specified pixel value. Any bits beyond the specified depth of

the window in these values are simply ignored.

The event-mask defines which events the client is interested in for this

window (or for some event types, inferiors of the window). The do-not­

propagate-mask defines which events should not be propagated to ancestor

windows when no client has the event type selected in this window.

The override-redirect specifies whether map and configure requests on

this window should override a SubstructureRedirect on the parent,

typically to inform a window manager not to tamper with the window.

Section 9. Requests 365

The colormap specifies the colormap that best reflects the true colors of

the window. Servers capable of supporting multiple hardware colormaps
may use this information, and window managers may use it for

InstallColormap requests. The colormap must have the same visual type
as the window (or a Match error results). If CopyFromParent is specified,

the parent's colormap is copied (subsequent changes to the parent's
colormap attribute do not affect the child). However, the window must have

the same visual type as the parent (or a Match error results), and the parent
must not have a colormap of None (or a Match error results). For an expla­

nation of None, see FreeColormap request. The colormap is copied by
sharing the colormap object between the child and the parent, not by mak­

ing a complete copy of the colormap contents.
If a cursor is specified, it will be used whenever the pointer is in the win­

dow. If None is specified, the parent's cursor will be used when the pointer

is in the window, and any change in the parent's cursor will cause an immedi­

ate change in the displayed cursor.
This request generates a Crea teN otify event.
The background and border pixmaps and the cursor may be freed imme­

diately if no further explicit references to them are to be made.
Subsequent drawing into the background or border pixmap has an unde­

fined effect on the window state. The server might or might not make a copy

of the pixmap.

Change Window Attributes
window: WINDOW
value-mask: BITMASK

value-list: LISTofV ALUE

Errors: Window, Pixmap, Colormap, Cursor, Match, Value,

Access

The value-mask and value-list specify which attributes are to be changed.
The values and restrictions are the same as for CreateWindow.

Setting a new background, whether by background-pixmap or
background-pixel, overrides any previous background. Setting a new bor­

der, whether by border-pixel or border-pixmap, overrides any previous bor­
der.

Changing the background does not cause the window contents to be
changed. Setting the border or changing the background such that the bor-

366 PROTOCOL

der tile origin changes causes the border to be repainted. Changing the
background ofa root window to None or ParentRelative restores the de­
fault background pixmap. Changing the border of a root window to

CopyFromParen t restores the default border pixmap.
Changing the win-gravity does not affect the current position of the win­

dow.
Changing the backing-store of an obscured window to WhenMapped or

Al ways or changing the backing-planes, backing-pixel, or save-under of a

mapped window may have no immediate effect.
Multiple clients can select input on the same window; their event-masks

are disjoint. When an event is generated, it will be reported to all inter­

ested clients. However, only one client at a time can select
for SubstructureRedirect, only one client at a time can select for

ResizeRedirect, and only one client at a time can select for Button­

Press. An attempt to violate these restrictions results in an Access error.
There is only one do-not-propagate-mask for a window, not one per cli­

ent.
Changing the colormap of a window (by defining a new map, not by

changing the contents of the existing map) generates a ColormapNotify

event. Changing the colormap of a visible window might have no immediate

effect on the screen (see InstallColormap request).
Changing the cursor of a root window to None restores the default cursor.
The order in which attributes are verified and altered is server­

dependent. If an error is generated, a subset of the attributes may have been
altered.

GetWindow Attributes
window: WINDOW
~

visual: VISUALID

class: {Inpu tOu tput, Inpu tOnly}

bit-gravity: BITGRAVITY

win-gravity: WINGRAVITY
backing-store: {NotUseful, WhenMapped, Always}

backing-planes: CARD32
backing-pixel: CARD32

save-under: BOOL

Section 9. Requests

colormap: COLORMAP or None

map-is-installed: BOOL
map-state: {Unmapped, Unviewable, Viewable}

all-event-masks, your-event-mask: SETofEVENT

do-not-propagate-mask: SETofDEVICEEVENT

override-redirect: BOOL

Errors: Window

367

This request returns the current attributes of the window. A window is

Unviewable if it is mapped but some ancestor is unmapped. All-event­

masks is the inclusive-OR of all event masks selected on the window by cli­

ents. Your-event-mask is the event mask selected by the querying client.

DestroyWindow
window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed

automatically. The window and all inferiors are then destroyed, and a
DestroyNotify event is generated for each window. The ordering of the

DestroyNotify events is such that for any given window, Destroy­

Notify is generated on all inferiors of the window before being generated

on the window itself. The ordering among siblings and across subhierarchies

is not otherwise constrained.

Normal exposure processing on formerly obscured windows IS per­

formed.

If the window is a root window, this request has no effect.

DestroySubwindows
window: WINDOW

Errors: Window

This request performs a DestroyWindow request on all children of the

window, in bottom-to-top stacking order.

ChangeSaveSet
window: WINDOW

mode: {Insert, Delete}

Errors: Window, Match, Value

368 PROTOCOL

This request adds or removes the specified window from the client's save-set.

The window must have been created by some other client (or a Ma tch error
results). For further information about the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them

from the save-set.

ReparentWindow
window, parent: WINDOW

x, y: INT16

Errors: Window, Match

If the window is mapped, an UnrnapWindow request is performed automati­

cally first. The window is then removed from its current position in the hier­

archy and is inserted as a child of the specified parent. The x and y coordi­

nates are relative to the parent's origin and specify the new position of the
upper-left outer corner of the window. The window is placed on top in the

stacking order with respect to siblings. A ReparentNotify event is then

generated. The override-redirect attribute of the window is passed on in this

event; a value of True indicates that a window manager should not tamper
with this window. Finally, if the window was originally mapped, a

MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is per­

formed. The server might not generate exposure events for regions from

the initial un map that are immediately obscured by the final map.

A Match error is generated if:

• The new parent is not on the same screen as the old parent.

• The new parent is the window itself or an inferior of the window.

• The window has a Paren tRela ti ve background,and the new parent is not the
same depth as the window.

MapWindow
window: WINDOW

Errors: Window

If the window is already mapped, this request has no effect.
If the override-redirect attribute of the window is False and some other

Section 9. Requests 369

client has selected SubstructureRedirect on the parent, then a
MapRequest event is generated, but the window remains unmapped. Oth­
erwise, the window is mapped, and a MapNotify event is generated.

If the window is now viewable and its contents have been discarded, the
window is tiled with its background (if no background is defined, the existing
screen contents are not altered), and zero or more exposure events are gen­
erated. If a backing-store has been maintained while the window was
unmapped, no exposure events are generated. If a backing-store will now be
maintained, a full-window exposure is always generated. Otherwise, only vis­
ible regions may be reported. Similar tiling and exposure take place for any
newly viewable inferiors.

MapSubwindows
window: WINDOW

Errors: Window

This request performs a MapWindow request on all unmapped children of
the window, in top-to-bottom stacking order.

UnmapWindow
window: WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise,
the window is unmapped, and an UnmapNotify event is generated. Normal
exposure processing on formerly obscured windows is performed.

UnmapSubwindows
window: WINDOW

Errors: Window

This request performs an UnmapWindow request on all mapped children of
the window, in bottom-to-top stacldng order.

Configure Window
window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Window, Match, Value

370 PROTOCOL

This request changes the configuration of the window. The value-mask and

value-list specify which values are to be given. The possible values are:

Attribute

x
y
width
height
border-width
sibling
stack-mode

Type

INT16
INT16
CARD16
CARD16
CARD16
WINDOW
{Above, Below, TopIf, BottornIf, Opposite}

The x and y coordinates are relative to the parent's origin and specify the

position of the upper-left outer corner of the window. The width and height

specify the inside size, not including the border, and must be nonzero (or a

Value error results). Those values not specified are taken from the existing

geometry of the window. Note that changing just the border-width leaves

the outer-left corner of the window in a fixed position but moves the abso­

lute position of the window's origin. It is a Match error to attempt to make

the border-'ty-vidth of an InputOnly v""indo'Vv nonzero.

If the override-redirect attribute of the window is False and some other
client has selected SubstructureRedirect on the parent, a Configure­

Request event is generated, and no further processing is performed. Oth­
erwise, the following is performed:

If some other client has selected ResizeRedirect on the window and

the inside width or height of the window is being changed, a

ResizeRequest event is generated, and the current inside width and

height are used instead. Note that the override-redirect attribute of the win­

dow has no effect on ResizeRedirect and that Substructure­

Redirect on the parent has precedence over ResizeRedirect on the

window.
The geometry of the window is changed as specified, the window is re­

stacked among siblings, and a ConfigureNotify event is generated if the

state of the window actually changes. If the inside width or height of the win­

dow has actually changed, then children of the window are affected, accord­

ing to their win-gravity. Exposure processing is performed on formerly

obscured windows (including the window itself and its inferiors if regions of

Section 9. Requests 371

them were obscured but now are not). Exposure processing is also per­

formed on any new regions of the window (as a result of increasing the width
or height) and on any regions where window contents are lost.

If the inside width or height of a window is not changed but the window

is moved or its border is changed, then the contents of the window are not

lost but move with the window. Changing the inside width or height of the
window causes its contents to be moved or lost, depending on the bit-gravity

of the window. It also causes children to be reconfigured, depending on

their win-gravity. For a change of width and height of Wand H, we define
the [x, y] pairs as:

Direction Deltas

NorthWest [0,0]
North [W/2, 0]
NorthEast [W,O]
West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
SouthWest [0, H]
South [W/2, H]
SouthEast [W, H]

When a window with one of these bit-gravities is resized, the corresponding

pair defines the change in position of each pixel in the window. When a win­

dow with one of these win-gravities has its parent window resized, the corre­

sponding pair defines the change in position of the window within the par­

ent. This repositioning generates a Gra vi tyNotify event. Gra vi ty­

Notify events are generated after the ConfigureNotify event is gener­
ated.

A gravity of S tat ic indicates that the contents or origin should not move

relative to the origin of the root window. If the change in size of the window

is coupled with a change in position of [X, Y], then for bit-gravity the change
in position of each pixel is [- X, - Y] and for win-gravity the change in posi­

tion of a child when its parent is so resized is [- X, - Y]. Note that Sta tic

gravity still only takes effect when the width or height of the window is

changed, not when the window is simply moved.
A bit-gravity of Forget indicates that the window contents are always dis-

372 PROTOCOL

carded after a size change, even if backing-store or save-under has been re­

quested. The window is tiled with its background (except, if no background
is defined, the existing screen contents are not altered) and zero or more ex­
posure events are generated. A server may also ignore the specified
bit-gravity and use Forget instead.

A win-gravity of Unmap is like NorthWest, but the child is also unmapped
when the parent is resized, and an UnmapNotify event is generated.

UnmapNotify events are generated after the ConfigureNotify event is
generated.

If a sibling and a stack-mode are specified, the window is restacked as fol­
lows:

Above

Below

Toplf

Bottomlf

Opposite

The window is placed just above the sibling.
The window is placed just below the sibling.
If the sibling occludes the window, then the window is placed at
the top of the stack.
If the window occludes the sibling, then the window is placed at
the bottom of the stack.
If the sibling occludes the window, then the window is placed at
the top of the stack. Otherwise, if the window occludes the
sibiing, then the window is placed at the bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is re­
stacked as follows:

Above

Below

Toplf

Bottomlf

Opposite

The window is placed at the top of the stack.
The window is placed at the bottom of the stack.
If any sibling occludes the window, then the window is placed at
the top of the stack.
If the window occludes any sibling, then the window is placed at
the bottom of the stack.
If any sibling occludes the window, then the window is placed at
the top of the stack. Otherwise, if the window occludes any
sibling, then the window is placed at the bottom of the stack.

It is a Ma tch error if a sibling is specified without a stack-mode or if the win­
dow is not actually a sibling. Note that the computations for BottomIf,

TopI f, and Oppos i te are performed with respect to the window's final ge­
ometry (as controlled by the other arguments to the request), not to its initial
geometry.

Attempts to configure a root window have no effect.

Section 9. Requests

Circulate Window

window: WINDOW
direction: {RaiseLowest, LowerHighest}

Errors: Window, Value

373

If some other client has selected SubstructureRedirect on the window,
then a Circula teRequest event is generated, and no further processing

is performed. Otherwise, the following is performed, and then a

Circula teNotify event is generated if the window is actually restacked.
For RaiseLowest, Circula teWindow raises the lowest mapped child (if

any) that is occluded by another child to the top of the stack. For

LowerHighest, CirculateWindow lowers the highest mapped child (if

any) that occludes another child to the bottom of the stack. Exposure proc­

essing is performed on formerly obscured windows.

GetGeometry
drawable: DRAWABLE
~

root: WINDOW
depth: CARD8

x, y: INT16

width, height, border-width: CARD 16

Errors: Drawable

This request returns the root and current geometry of the drawable. The

depth is the number of bits per pixel for the object. The x, y, and border­

width will always be zero for pixmaps. For a window, the x and y coordinates

specify the upper-left outer corner of the window relative to its parent's ori­

gin, and the width and height specify the inside size, not including the bor­

der.

It is legal to pass an In p u to n 1 y window as a drawable to this request.

QueryTree
window: WINDOW
~

root: WINDOW

374 PROTOCOL

parent: WINDOW or None

children: LISTofWINDOW

Errors: Window

This request returns the root, the parent, and the children of the window.

The children are listed in bottom-to-top stacking order.

InternAtom

name: STRING8

only-ii-exists: BOOL
~

atom: ATOM or None

Errors: Value, Alloc

This request returns the atom for the given name. If only-if-exists is False,

then the atom is created if it does not exist. The string should use the ISO

Latin-1 encoding. Uppercase and lowercase matter.

The lifetime of an atom is not tied to the interning client. Atoms remained

defined until server reset (see section 10).

GetAtomName
atom: ATOM
~

name: STRING8

Errors: Atom

This request returns the name for the given atom.

ChangeProperty
window: WINDOW

property, type: ATOM

format: {8, 16, 32}

mode: {Replace, Prepend, Append}

data: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors: Window, Atom, Value, Match, Alloc

This request alters the property for the specified window. The type is

uninterpreted by the server. The format specifies whether the data should

be viewed as a list of 8-bit, 16-bit, or 32-bit quantities so that the server can

correctly byte-swap as necessary.

Section 9. Requests 375

If the mode is Replace, the previous property value is discarded. it the

mode is Prepend or Append, then the type and format must match the ex­
isting property value (or a Match error results). If the property is unde­
fined, it is treated as defined with the correct type and format with zero­

length data. For Prepend, the data is tacked on to the beginning of the
existing data, and for Append, it is tacked on to the end of the existing data.

This request generates a PropertyNotify event on the window.
The lifetime of a property is not tied to the storing client. Properties re­

main until explicitly deleted, until the window is destroyed, or until server

reset (see section 10).
The maximum size of a property is server-dependent and may vary dy­

namically.

DeleteProperty
window: WINDOW
property: ATOM

Errors: Window, Atom

This request deletes the property from the specified window if the property
exists and generates a PropertyNotify event on the window unless the
property does not exist.

GetProperty
window: WINDOW

property: ATOM
type: ATOM or AnyPropertyType

long-offset, long-length: CARD32
delete: BOOL
~

type: ATOM or None

format: {a, 8, 16, 32}

bytes-after: CARD32
value: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors: Window, Atom, Value

If the specified property does not exist for the specified window, then the re­
turn type is None, the format and bytes-after are zero, and the value is
empty. The delete argument is ignored in this case. If the specified property

exists but its type does not match the specified type, then the return type is

376 PROTOCOL

the actual type of the property, the format is the actual format of the prop­

erty (never zero), the bytes-after is the length of the property in bytes (even

if the format is 16 or 32), and the value is empty. The delete argument is ig­

nored in this case. If the specified property exists and either

AnyPropertyType is specified or the specified type matches the actual type

of the property, then the return type is the actual type of the property, the

format is the actual format of the property (never zero), and the bytes-after

and value are as follows, given:

N = actual length of the stored property

in bytes (even if the format is 16 or 32)
1 = 4 * long-offset
T = N - 1
L = MINIMUM(T, 4 * long-length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from 0),

and its length in bytes is L. However, it is a Val ue error if long-offset is given

such that L is negative. The value of bytes-after is A, giving the number of

trailing unread bytes in the stored property. If delete is True and the bytes­

after is zero, the property is also deleted from the window, and a

PropertyNotify event is generated on the window.

RotateProperties
window: WINDOW

delta: INT16
properties: LISTofATOM

Errors: Window, Atom, Match

If the property names in the list are viewed as being numbered starting from

zero, and there are N property names in the list, then the value associated

with property name I becomes the value associated with property name (I +
delta) mod N, for all I from zero to N - 1. The effect is to rotate the states

by delta places around the virtual ring of property names (right for positive

delta, left for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for

each property in the order listed.

If an atom occurs more than once in the list or no property with that name

Section 9. Requests 377

is defined for the window, a Ma tch error is generated. If an A tom or Ma tch

error is generated, no properties are changed.

ListProperties
window: WINDOW
~

atoms: LISTofATOM

Errors: Window

This request returns the atoms of properties currently defined on the win­

dow.

SetSelectionOwner
selection: ATOM

owner: WINDOW or None
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

This request changes the owner, owner window, and last-change time of the

specified selection. This request has no effect if the specified time is earlier

than the current last-change time of the specified selection or is later than

the current server time. Otherwise, the last-change time is set to the specified

time with CurrentTime replaced by the current server time. If the owner

window is specified as None, then the owner of the selection becomes None

(that is, no owner). Otherwise, the owner of the selection becomes the client

executing the request. If the new owner (whether a client or None) is not the

same as the current owner and the current owner is not Non e, then the cur­

rent owner is sent a SelectionClear event.
If the client that is the owner of a selection is later terminated (that is, its

connection is closed) or if the owner window it has specified in the request

is later destroyed, then the owner of the selection automatically reverts to

None, but the last-change time is not affected.
The selection atom is uninterpreted by the server. The owner window is

returned by the GetSelectionOwner request and is reported in

SelectionRequest and SelectionClear events.

Selections are global to the server.

378 PROTOCOL

GetSelectionOwner
selection: ATOM
~

owner: WINDOW or None

Errors: A tom

This request returns the current owner window of the specified selection, if

any. If None is returned, then there is no owner for the selection.

ConvertSelection

selection, target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or CurrentTime

Errors: A tom, Window

If the specified selection has an owner, the server sends a Selection­

Request event to that owner. If no owner for the specified selection exists,

the server generates a SelectionNotify event to the requestor with prop­

erty None. The arguments are passed on unchanged in either event.

SendEvent
destination: WINDOW or PointerWindow or InputFocus

propagate: BOOL

event-mask: SETofEVENT
event: <normal-event-format>

Errors: Window, Val ue

If PointerWindow is specified, destination is replaced with the window that

the pointer is in. If InputFocus is specified and the focus window contains

the pointer, destination is replaced with the window that the pointer is in.

Otherwise, destination is replaced with the focus window.

If the event-mask is the empty set, then the event is sent to the client that

created the destination window. If that client no longer exists, no event is
sent.

If propagate is False, then the event is sent to every client selecting on

destination any of the event types in event-mask.
If propagate is True and no clients have selected on destination any of the

event types in event-mask, then destination is replaced with the closest ances-

Section 9. Requests 379

tor of destination for which some client has selected a type in event-mask

and no intervening window has that type in its do-not-propagate-mask. If no

such window exists or if the window is an ancestor of the focus window and

InputFocus was originally specified as the destination, then the event is not

sent to any clients. Otherwise, the event is reported to every client selecting

on the final destination any of the types specified in event-mask.
The event code must be one of the core events or one of the events de­

fined by an extension (or a Value error results) so that the server can cor­

rectly byte-swap the contents as necessary. The contents of the event are oth­

erwise unaltered and unchecked by the server except to force on the
most-significant bit of the event code and to set the sequence number in the

event correctly.

Active grabs are ignored for this request.

GrabPointer
grab-window: WINDOW

owner-events: BOOL

event-mask: SETofPOINTEREVENT

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

confine-to: WINDOW or None

cursor: CURSOR or None

time: TIMESTAMP or CurrentTime

----?

status: {Success, AlreadyGrabbed, Frozen, InvalidTime,

Notviewable}

Errors: Cursor, W-indow, Value

This request actively grabs control of the pointer. Further pointer events are

only reported to the grabbing client. The request overrides any active

pointer grab by this client.

If owner-events is False, all generated pointer events are reported with

respect to grab-window and are only reported if selected by event-mask. If

owner-events is True and a generated pointer event would normally be re­

ported to this client, it is reported normally. Otherwise, the event is reported

with respect to the grab-window and is only reported if selected by event­
mask. For either value of owner-events, unreported events are simply dis­

carded.

If pointer-mode is Asynchronous, pointer event processing continues

380 PROTOCOL

normally. If the pointer is currently frozen by this client, then processing of

pointer events is resumed. If pointer-mode is Synchronous, the state of the

pointer (as seen by means of the protocol) appears to freeze, and no further

pointer events are generated by the server until the grabbing client issues a

releasing AllowEvents request or until the pointer grab is released. Actual

pointer changes are not lost while the pointer is frozen. They are simply

queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is unaf­

fected by activation of the grab. If keyboard-mode is Synchronous, the

state of the keyboard (as seen by means of the protocol) appears to freeze,
and no further keyboard events are generated by the server until the grab­

bing client issues a releasing AllowEvents request or until the pointer grab

is released. Actual keyboard changes are not lost while the keyboard is fro­

zen. They are simply queued for later processing.
If a cursor is specified, then it is displayed regardless of what window the

pointer is in. If no cursor is specified, then when the pointer is in grab­

window or one of its subwindows, the normal cursor for that window is dis­

played. Otherwise, the cursor for grab-window is displayed.
If a confine-to window is specified, then the pointer will be restricted to

stay contained in that window. The confine-to window need have no rela­

tionship to the grab-window. If the pointer is not initially in the confine-to

window, then it is warped automatically to the closest edge (and enter/leave
events are generated normally) just before the grab activates. If the confine­

to window is subsequently reconfigured, the pointer will be warped auto­

matically as necessary to keep it contained in the window.

This request generates EnterNotify and LeaveNotify events.
The request fails with status AlreadyGrabbed if the pointer is actively

grabbed by some other client. The request fails with status Frozen if the

pointer is frozen by an active grab of another client. The request fails with

status NotViewable if grab-window or confine-to window is not viewable or

if the confine-to window lies completely outside the boundaries of the root

window. The request fails with status InvalidTime if the specified time is

earlier than the last-pointer-grab time or later than the current server time.

Otherwise, the last-pointer-grab time is set to the specified time, with

CUrrentTime replaced by the current server time.

Section 9. Requests 381

UngrabPointer
time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from

either GrabPointer or GrabButton or from a normal button press) and

releases any queued events. The request has no effect if the specified time is

earlier than the last-pointer-grab time or is later than the current server

time.

This request generates EnterNot'ify and LeaveNotify events.
An UngrabPointer request is performed automatically if the event win­

dow or confine-to window for an active pointer grab becomes not viewable

or if window reconfiguration causes the confine-to window to lie completely
outside the boundaries of the root window.

GrabButton
modifiers: SETofKEYMASK or AnyModifier

button: BUTTON or AnyButton

grab-window: WINDOW

owner-events: BOOL

event-mask: SETofpOINTEREVENT

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

confine-to: WINDOW or None

cursor: CURSOR or None

Errors: Cursor, Window, Value, Access

This request establishes a passive grab. In the future, the pointer is actively

grabbed as described in GrabPointer, the last-pointer-grab time is set to

the time at which the button was pressed (as transmitted in the

ButtonPress event), and the Bu ttonPress event is reported if all of the

following conditions are true:

• The pointer is not grabbed and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

• The grab-window contains the pointer.

• The confine-to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor
of grab-window.

382 PROTOCOL

The interpretation of the remaInIng arguments IS the same as for

GrabPoin ter. The active grab is terminated automatically when the logical

state of the pointer has all buttons released, independent of the logical state
of modifier keys. Note that the logical state of a device (as seen by means of

the protocol) may lag the physical state if device event processing is frozen.
This request overrides all previous passive grabs by the same client on the

same button/key combinations on the same window. A modifier of
AnyModifier is equivalent to issuing the request for all possible modifier

combinations (including the combination of no modifiers). It is not required
that all specified modifiers have currently assigned keycodes. A button of
AnyButton is equivalent to issuing the request for all possible buttons. Oth­
erwise, it is not required that the button specified currently be assigned to a
physical button.

An Access error is generated if some other client has already issued a
GrabButton request with the same button/key combination on the same
window. When using AnyModifier or AnyButton, the request fails com­

pletely (no grabs are established), and an Access error is generated if there

is a conflicting grab for any combination. The request has no effect on an ac-
tive grab.

UngrabButton
modifiers: SETofKEYMASK or AnyModifier

button: BUTTON or AnyButton

grab-window: WINDOW

Errors: Window, Value

This request releases the passive button/key combination on the specified
window if it was grabbed by this client. A modifiers argument of Any­

Modifier is equivalent to issuing the request for all possible modifier com­

binations (including the combination of no modifiers). A button of
AnyButton is equivalent to issuing the request for all possible buttons. The
request has no effect on an active grab.

ChangeActivePointerGrab
event-mask: SEToEPOINTEREVENT

cursor: CURSOR or None

time: TIMESTAMP or CurrentTime

Errors: Cursor, Value

Section 9. Requests 383

This request changes the specified dynamic parameters if the pointer is ac­
tively grabbed by the client and the specified time is no earlier than the last­

pointer-grab time and no later than the current server time. The interpreta­

tion of event-mask and cursor are the same as in GrabPointer. This

request has no effect on the parameters of any passive grabs established with

GrabButton.

GrabKeyboard
grab-window: WINDOW

owner-events: BaaL
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

time: TIMESTAMP or CurrentTime

~

status: {Success, AlreadyGrabbed, Frozen, InvalidTime,

Notviewable}

Errors: Window, Value

This request actively grabs control of the keyboard. Further key events are

reported only to the grabbing client. This request overrides any active key­
board grab by this client.

If owner-events is False, all generated key events are reported with re­

spect to grab-window. If owner-events is True and if a generated key event

would normally be reported to this client, it is reported normally. Otherwise,

the event is reported with respect to the grab-window. Both KeyPress and

KeyRelease events are always reported, independent of any event selec­

tion made by the client.

If keyboard-mode is Asynchronous, keyboard event processing contin­
ues normally. If the keyboard is currently frozen by this client, then process­

ing of keyboard events is resumed. If keyboard-mode is Synchronous, the

state of the keyboard (as seen by means of the protocol) appears to freeze.

No further keyboard events are generated by the server until the grabbing
client issues a releasing AllowEvents request or until the keyboard grab is

released. Actual keyboard changes are not lost while the keyboard is frozen.

They are simply queued for later processing.

If pointer-mode is Asynchronous, pointer event processing is unaf­

fected by activation of the grab. If pointer-mode mode is Synchronous, the

384 PROTOCOL

state of the pointer (as seen by means of the protocol) appears to freeze. No

further pointer events are generated by the server until the grabbing client
issues a releasing AllowEvents request or until the keyboard grab is re­

leased. Actual pointer changes are not lost while the pointer is frozen. They

are simply queued for later processing.

This request generates FocusIn and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively

grabbed by some other client. The request fails with status Frozen if the

keyboard is frozen by an active grab of another client. The request fails with

status NotViewable if grab-window is not viewable. The request fails with
status InvalidTime if the specified time is earlier than the last-keyboard­

grab time or later than the current server time. Otherwise, the last­

keyboard-grab time is set to the specified time with CurrentTime replaced

by the current server time.

UngrabKeyboard
time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a
result of either GrabKeyboard or GrabKey) and releases any queued

events. The request has no effect if the specified time is earlier than the last­

keyboard-grab time or is later than the current server time.

This request generates FocusIn and FocusOut events.
An UngrabKeyboard is performed automatically if the event window for

an active keyboard grab becomes not viewable.

GrabKey
key: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier

grab-window: WINDOW

owner-events: BOOL

pointer-mode, keyboard-mode: {Synchronous, Asynchronous}

Erron: Window, Value, Access

This request establishes a passive grab on the keyboard. In the future, the

keyboard is actively grabbed as described in GrabKeyboard, the last­

keyboard-grab time is set to the time at which the key was pressed (as trans-

Section 9. Requests 385

mitted in the KeyPress event), and the KeyPress event is reported if all of

the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down .

• Either the grab-window is an ancestor of (or is) the focus window, or the
grab-window is a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab-window.

The interpretation of the remaInIng arguments IS the same as for

GrabKeyboard. The active grab is terminated automatically when the logi­

cal state of the keyboard has the specified key released, independent of the

logical state of modifier keys. Note that the logical state of a device (as seen

by means of the protocol) may lag the physical state if device event process­

ing is frozen.

This request overrides all previous passive grabs by the same client on the
same key combinations on the same window. A modifier of AnyModifier is

equivalent to issuing the request for all possible modifier combinations (in­

cluding the combination of no modifiers). It is not required that all modifiers

specified have currently assigned keycodes. A key of AnyKey is equivalent to
issuing the request for all possible keycodes. Otherwise, the key must be in

the range specified by min-keycode and max-keycode in the connection

setup (or a Value error results).

An Access error is generated if some other client has issued a GrabKey

with the same key combination on the same window. When using

AnyModifier or AnyKey, the request fails completely (no grabs are estab­

lished), and an Access error is generated if there is a conflicting grab for

any combination.

UngrabKey
key: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier

grab-window: WINDOW

Errors: Window, Value

386 PROTOCOL

This request releases the key combination on the specified window if it was

grabbed by this client. A modifiers argument of AnyModifier is equivalent

to issuing the request for all possible modifier combinations (including the

combination of no modifiers). A key of AnyKey is equivalent to issuing the

request for all possible keycodes. This request has no effect on an active
grab.

AllowEvents
mode: {AsyncPointer, SyncPointer, ReplayPointer,

AsyncKeyboard, SyncKeyboard, ReplayKeyboard,

AsyncBoth, SyncBoth}

time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a device to
freeze. The request has no effect if the specified time is earlier than the last­

grab time of the most recent active grab for the client or if the specified time

is later than the current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event

processing continues nurmally. If the pointer is frozen twice by the client on

behalf of two separate grabs, AsyncPointer thaws for both.

AsyncPointer has no effect if the pointer is not frozen by the client, but

the pointer need not be grabbed by the client.
For SyncPointer, if the pointer is frozen and actively grabbed by the cli­

ent, pointer event processing continues normally until the next

ButtonPress or ButtonRelease event is reported to the client, at which

time the pointer again appears to ~reeze. However, if the reported event
causes the pointer grab to be released, then the pointer does not freeze.

SyncPointer has no effect if the pointer is not frozen by the client or if the

pointer is not grabbed by the client.

For ReplayPointer, if the pointer is actively grabbed by the client and
is frozen as the result of an event having been sent to the client (either from

the activation of a GrabButton or AllowEvents with mode Sync­

Pointer but not from a GrabPointer), then the pointer grab is released

and that event is completely reprocessed, this time ignoring any passive
grabs at or above (towards the root) the grab-window of the grab just re­

leased. The request has no effect if the pointer is not grabbed by the client

or if the pointer is not frozen as the result of an event.

Section 9. Requests 387

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard

event processing continues normally. If the keyboard is frozen twice by the

client on behalf of two separate grabs, AsyncKeyboard thaws for both.

AsyncKeyboard has no effect if the keyboard is not frozen by the client, but

the keyboard need not be grabbed by the client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by the

client, keyboard event processing continues normally until the next

KeyPress or KeyRelease event is reported to the client, at which time the

keyboard again appears to freeze. However, if the reported event causes the

keyboard grab to be released, then the keyboard does not freeze.
SyncKeyboard has no effect if the keyboard is not frozen by the client or if

the keyboard is not grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client

and is frozen as the result of an event having been sent to the client (either
from the activation of a GrabKey or from a previous AllowEvents with

mode SyncKeyboard but not from a GrabKeyboard), then the keyboard

grab is released and that event is completely reprocessed, this time ignoring

any passive grabs at or above (towards the root) the grab-window of the grab
just released. The request has no effect if the keyboard is not grabbed by the

client or if the keyboard is not frozen as the result of an event.

For SyncBoth, if both pointer and keyboard are frozen by the client,

event processing (for both devices) continues normally until the next

ButtonPress, ButtonRelease, KeyPress, or KeyRelease event is

reported to the client for a grabbed device (button event for the pointer, key

event for the keyboard), at which time the devices again appear to freeze.

However, if the reported event causes the grab to be released, then the de­
vices do not freeze (but if the other device is still grabbed, then a subsequent

event for it will still cause both devices to freeze). SyncBoth has no effect

unless both pointer and keyboard are frozen by the client. If the pointer or

keyboard is frozen twice by the client on behalf of two separate grabs,

SyncBoth thaws for both (but a subsequent freeze for SyncBoth will only

freeze each device once).

For AsyncBoth, if the pointer and the keyboard are frozen by the client,

event processing for both devices continues normally. If a device is frozen

twice by the client on behalf of two separate grabs, AsyncBoth thaws for

both. AsyncBoth has no effect unless both pointer and keyboard are frozen

by the client.

388 PROTOCOL

AsyncPointer, SyncPointer, and ReplayPointer have no effect
on processing of keyboard events. AsyncKeyboard, SyncKeyboard, and

ReplayKeyboard have no effect on processing of pointer events.
It is possible for both a pointer grab and a keyboard grab to be active si­

multaneously (by the same or different clients). When a device is frozen on
behalf of either grab, no event processing is performed for the device. It is
possible for a single device to be frozen because of both grabs. In this case,
the freeze must be released on behalf of both grabs before events can again

be processed.

GrabServer
This request disables processing of requests and close-downs on all connec­

tions other than the one this request arrived on.

UngrabServer
This request restarts processing of requests and close-downs on other con­

nections.

Query Pointer
window: WINDOW
~

root: WINDOW

child: WINDOW or None

same-screen: BOOL
root-x, root-y, win-x, win-y: INT16
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer coordinates rela­
tive to the root's origin are returned. If same-screen is False, then the

pointer is not on the same screen as the argument window, child is Non e,

and win-x and win-yare zero. If same-screen is True, then win-x and win-y
are the pointer coordinates relative to the argument window's origin, and

child is the child containing the pointer, if any. The current logical state of
the modifier keys and the buttons are also returned. Note that the logical

state of a device (as seen by means of the protocol) may lag the physical state
if device event processing is frozen.

Section 9. Requests

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime

window: WINDOW
~

events: LISToITIMECOORD

where:

TIMECOORD: [x, y: INT16
time: TIMESTAMP]

Errors: Window

389

This request returns all events in the motion history buffer that fall between
the specified start and stop times (inclusive) and that have coordinates that
lie within (including borders) the specified window at its present placement.
The x and y coordinates are reported relative to the origin of the win­

dow.
If the start time is later than the stop time or if the start time is in the fu­

ture, no events are returned. If the stop time is in the future, it is equivalent

to specifying CurrentTime.

TranslateCoordinates
src-window, dst-window: WINDOW
src-x, src-y: INT16
~

same-screen: BOOL
child: WINDOW or None

dst-x, dst-y: INT16

Errors: Window

The src-x and src-y coordinates are taken relative to src-window's origin and
are returned as dst-x and dst-y coordinates relative to dst-window's origin. If
same-screen is False, then src-window and dst-window are on different
screens, and dst-x and dst-y are zero. If the coordinates are contained in a

mapped child of dst-window, then that child is returned.

WarpPointer

src-window: WINDOW or None

dst-window: WINDOW or None

390 PROTOCOL

src-x, src-y: INT16
src-width, src-height: CARD 16
dst-x, dst-y: I NT 16

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y]
relative to the current position of the pointer. If dst-window is a window, this
request moves the pointer to [dst-x, dst-y] relative to dst-window's origin.

However, if src-window is not None, the move only takes place if src-window
contains the pointer and the pointer is contained in the specified rectangle
of src-window.

The src-x and src-y coordinates are relative to src-window's origin. If src­

height is zero, it is replaced with the current height of src-window minus
src-y. If src-width is zero, it is replaced with the current width of src-window
mInus src-x.

This request cannot be used to move the pointer outside the confine-to
window of an active pointer grab. An attempt will only move the pointer as

far as the closest edge of the confine-to window.
This request 'Nil! generate events just as if the user had instantaneously

moved the pointer.

SetInputFocus
focus: WINDOW or PointerRoot or None

revert-to: {Paren t, Po in terRoot, None}

time: TIMESTAMP or CurrentTime

Errors: Window, Value, Match

This request changes the input focus and the last-focus-change time. The re­

quest has no effect if the specified time is earlier than the current last-focus­
change time or is later than the current server time. Otherwise, the last­

focus-change time is set to the specified time with CurrentTime replaced by
the current server time.

If None is specified as the focus, all keyboard events are discarded until a
new focus window is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard's focus win­
dow. If a generated keyboard event would normally be reported to this win­
dow or one of its inferiors, the event is reported normally. Otherwise, the

event is reported with respect to the focus window.

Section 9. Requests 391

If Poin terRoot is specified as the focus, the focus window is dynamically

taken to be the root window of whatever screen the pointer is on at each key­
board event. In this case, the revert-to argument is ignored.

This request generates Foeusln and FoeusOut events.

The specified focus window must be viewable at the time of the request (or

a Ma teh error results). If the focus window later becomes not viewable, the

new focus window depends on the revert-to argument. If revert-to is

Pare n t, the focus reverts to the parent (or the closest viewable ancestor)

and the new revert-to value is taken to be None. If revert-to is

PointerRoot or None, the focus reverts to that value. When the focus re­

verts, Foeusln and FoeusOut events are generated, but the last-focus­

change time is not affected.

GetlnputFocus
-,)-

focus: WINDOW or PointerRoot or None

revert-to: {Parent, PointerRoot, None}

This request returns the current focus state.

QueryKeymap
-,)-

keys: LISTofCARDS

This request returns a bit vector for the logical state of the keyboard. Each

bit set to 1 indicates that the corresponding key is currently pressed. The

vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys

SN to SN + 7 with the least-significant bit in the byte representing key SN.
Note that the logical state of a device (as seen by means of the protocol) may

lag the physical state if device event processing is frozen.

OpenFont
fid: FONT

name: STRINGS

Errors: IDChoiee, Name, Alloe

This request loads the specified font, if necessary, and associates identifier

fid with it. The font name should use the ISO Latin-1 encoding, and

uppercase and lowercase do not matter.

"
392 PROTOCOL

Fonts are not associated with a particular screen and can be stored as a
component of any graphics context.

CloseFont
font: FONT

Errors: Fon t

This request deletes the association between the resource ID and the font.

The font itself will be freed when no other resource references it.

QueryFont
font: FONTABLE
~

font-info: FONTINFO

char-infos: LISTofCHARINFO

where:

FONTINFO: [draw-direction: {LeftToRight, RightToLeft}

min-char-or-byte2, max-char-or-byte2: CARD16
min-by tel, max-by tel: CARD8
all-chars-exist: BOOL
default-char: CARD16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INT16
font-descent: INT16
properties: LISTofFONTPROP]

FONTPROP: [name: ATOM
value: <32-bit-value>]

CHARINFO: [left-side-bearing: INT16
right-side-bearing: INT16
character-width: INT16
ascent: INT16
descent: INT 16
attributes: CARDI6]

Errors: Font

This request returns logical information about a font. If a gcontext is given
for font, the currently contained font is used.

Section 9. Requests 393

The draw-direction is just a hint and indicates whether most char-infos
have a positive, LeftToRigh t, or a negative, Righ tToLeft, character­
width metric. The core protocol defines no support for vertical text.

If min-byte 1 and max-byte 1 are both zero, then min-char-or-byte2 speci­

fies the linear character index corresponding to the first element of char­
infos, and max-char-or-byte2 specifies the linear character index of the last
element. If either min-byte 1 or max-byte 1 are nonzero, then both min-char­
or-byte2 and max-char-or-byte2 will be less than 256, and the 2-byte

character index values corresponding to char-infos element N (counting
from 0) are:

where:

by tel

byte2
N/D + min-by tel
N\D + min-char-or-byte2

D = max-char-or-byte2 - min-char-or-byte2 + 1

I = integer division

\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be

identical, and the effective char-infos is one filled with this char-info, of
length:

L = D * (max-byte 1 - min-by tel + 1)

That is, all glyphs in the specified linear or matrix range have the same in­
formation, as given by min-bounds (and max-bounds). If all-chars-exist is

True, then all characters in char-infos have nonzero bounding boxes.
The default-char specifies the character that will be used when an unde­

fined or nonexistent character is used. Note that default-char is a CARDl6,
not CHAR2B. For a font using 2-byte matrix format, the default-char has

byte 1 in the most-significant byte and byte2 in the least-significant byte. If
the default-char itself specifies an undefined or nonexistent character, then

no printing is performed for an undefined or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum
values of each individual CHARINFO component over all char-infos (ignor­
ing nonexistent characters). The bounding box of the font (that is, the small-

394 PROTOCOL

est rectangle enclosing the shape obtained by superimposing all characters at

the same origin [x,y]) has its upper-left coordinate at:

[x + min-bounds.left-side-bearing, y - max-bounds.ascent]

with a width of:

max -bounds. right -side-bearing - min-bounds .left-side-bearing

and a height of:

max-bounds. ascent + max-bounds. descent

The font-ascent is the logical extent of the font above the baseline and is

used for determining line spacing. Specific characters may extend beyond

this. The font-descent is the logical extent of the font at or below the baseline

and is used for determining line spacing. Specific characters may extend be­

yond this. If the baseline is at Y -coordinate y, then the logical extent of the

font is inclusive between the Y -coordinate values (y - font-ascent) and
(y + font-descent - 1).

A font is not guaranteed to have any properties. The interpretation of the

property value (for example, INT32, CARD32) must be derived from a pri­
ori knowledge of the property. When possible, fonts should have at least the

following properties (note that uppercase and lowercase matter).

Property

MAX-SPACE

SUPERSCRIPT _X
SUPERSCRIPT _ Y

Type

CARD32

CARD32

CARD32

CARD32

INT32

Description

The minimum interword
spacing, in pixels.
The normal interword spacing,
in pixels.
The maximum interword
spacing, in pixels.
The additional spacing at the
end of sentences, in pixels.
Offsets from the character origin
where superscripts should begin,
in pixels. If the origin is at [x,y],
then superscripts should begin at
[x + SUPERSCRIPT_X,
y - SUPERSCRIPT _ V].

Section 9. Requests

Property

SUBSCRIPT _X
SUBSCRIPT _ Y

UNDERLINE_POSITION

UNDERLINE_THICKNESS

STRIKEOUT_ASCENT
STRIKEOUT_DESCENT

ITALIC_ANGLE

X_HEIGHT

Type

INT32

INT32

CARD32

INT32

INT32

INT32

INT32

INT32

395

Description

Offsets from the character origin
where subscripts should begin,
in pixels. If the origin is at [x,y],
then subscripts should begin at
[x + SUBSCRIPT_X,
Y + SUBSCRIPT _ V].
Y offset from the baseline to the
top of an underline, in pixels. If
the baseline is Y -coordinate y,
then the top of the underline is at
(y + UNDERLINE_POSITION).
Thickness of the underline, in
pixels.
Vertical extents for boxing or
voiding characters, in pixels. If
the baseline is at V-coordinate y,
then the top of the strikeout box
is at
(y - STRIKEOUT_ASCENT)
and the height of the box is
(STRIKEOUT_ASCENT +
STRIKEOUT_DESCENT).
The angle of the dominant staffs
of characters in the font, in
degrees scaled by 64, relative to
the three-o'clock position from
the character origin, with
positive indicating
counterclockwise motion (as in
Arc requests).
1 ex as in TeX, but expressed in
units of pixels. Often the height
of lowercase x.
1 em as in TeX, but expressed in
units of pixels. Often the width
of the digits 0-9.
Y offset from the baseline to the
top of the capital letters,
ignoring accents, in pixels. If the
baseline is at Y -coordinate y,

396 PROTOCOL

Property Type

WEIGHT CARD32

CARD32

RESOLUTION CARD32

Description

then the top of the capitals is at
(y - CAP_HEIGHT).
The weight or boldness of the
font, expressed as a value
between ° and 1000.
The point size, expressed in
1110, of this font at the ideal
resolution.
The number of pixels per point,
expressed in 11100, at which this
font was created.

For a character origin at [x,y], the bounding box of a character (that is, the

smallest rectangle enclosing the character's shape), described in terms of
CHARINFO components, is a rectangle with its upper-left corner at:

[x + left-side-bearing, y - ascent]

with a width of:

right-side-bearing - left-side-bearing

and a height of:

ascent + descent

and the origin for the next character is defined to be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending

characters (when descent is zero, only pixels with Y -coordinates less than y
are drawn) and that the origin is logically viewed as being coincident with the
left edge of a nonkerned character (when left-side-bearing is zero, no pixels
with X-coordinate less than x are drawn).

Note that CHARINFO metric values can be negative.

A nonexistent character is represented with all CHARINFO components
zero.

The interpretation of the per-character attributes field is server­
dependent.

Section 9. Requests

QueryTextExtents
font: FONTABLE
string: STRING 16
~

draw-direction: {LeftToR igh t, R igh tToLeft}

font-ascent: INT16

font-descent: INT16

overall-ascent: INT16

overall-descent: INT16

overall-width: INT32

overall-left: INT32

overall-right: INT32

Errors: Font

397

This request returns the logical extents of the specified string of characters

in the specified font. If a gcontext is given for font, the currently contained

font is used. The draw-direction, font-ascent, and font-descent are the same

as described in QueryFont. The overall-ascent is the maximum of the as­

cent metrics of all characters in the string, and the overall-descent is the

maximum of the descent metrics. The overall-width is the sum of the

character-width metrics of all characters in the string. For each character in

the string, let W be the sum of the character-width metrics of all characters
preceding it in the string, let L be the left-side-bearing metric of the charac­

ter plus W, and let R be the right-side-bearing metric of the character plus

W. The overall-left is the minimum L of all characters in the string, and the

overall-right is the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,

the server will interpret each CHAR2B as a 16-bit number that has been

transmitted most-significant byte first (that is, byte 1 of the CHAR2B is taken

as the most-significant byte).

If the font has no defined default-char, then undefined characters in the

string are taken to have all zero metrics.

ListFonts

pattern: STRINGS
max-names: CARD 16
~

names: LISTofSTRINGS

398 PROTOCOL

This request returns a list of available font names (as controlled by the font
search path; see SetFontPath request) that match the pattern. At most,
max-names names will be returned. The pattern should use the ISO Latin-1

encoding, and uppercase and lowercase do not matter. In the pattern, the
"?" character (octal value 77) will match any single character, and the "*,,

character (octal value 52) will match any number of characters. The re­
turned names are in lowercase.

ListFonts Withlnfo
pattern: STRING8

max-names: CARD 16
~+

name: STRING8

info: FONTINFO
replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information about

each font. The information returned for each font is identical to what
QueryFon t would return except that the per-character metrics are not re­

turned. Note that this request can generate multiple replies. With each
reply, replies-hint may provide an indication of how many more fonts will be
returned. This number is a hint only and may be larger or smaller than the

number of fonts actually returned. A zero value does not guarantee that no
more fonts will be returned. After the font replies, a reply with a zero-length
name is sent to indicate the end of the reply sequence.

SetFontPath
path: LISTofSTRING8

Errors: Value

This request defines the search path for font lookup. There is only one
search path per server, not one per client. The interpretation of the strings
is operating-system-dependent, but the strings are intended to specify direc­
tories to be searched in the order listed.

Setting the path to the empty list restores the default path defined for the
server.

Section 9. Requests 399

As a side effect of executing this request, the server is guaranteed to flush

all cached information about fonts for which there currently are no explicit

resource IDs allocated.
The meaning of an error from this request is system specific.

GetFontPath
~

path: LISTofSTRING8

This request returns the current search path for fonts.

CreatePixmap
pid: PIXMAP
drawable: DRAWABLE

depth: CARD8

width, height: CARD 16

Errors: IDChoiee, Drawable, Value, Alloe

This request creates a pixmap and assigns the identifier pid to it. The width

and height must be nonzero (or a Value error results). The depth must be
one of the depths supported by the root of the specified drawable (or a

Val ue error results). The initial contents of the pix map are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap
pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the
pixmap. The pixmap storage will be freed when no other resource refer­

ences it.

CreateGC
cid: GCONTEXT

drawable: DRAWABLE

value-mask: BITMASK

value-list: LISTofV ALUE

400 PROTOCOL

Errors: IDChoice, Drawable, Pixmap, Font, Match, Value,

Alloc

This request creates a graphics context and assigns the identifier cid to it.
The gcontext can be used with any destination drawable having the same

root and depth as the specified drawable; use with other drawables results in
a Ma tcherror.

The value-mask and value-list specify which components are to be explic­
itly initialized. The context components are:

Component

function

plane-mask
foreground
background
line-width
line-style
cap-style
join-style
fill-style
fill-rule
arc-mode
tile
stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
gra phics-exposures
clip-x-origin
clip-y-origin
clip-mask
dash-offset
dashes

Type

{Clear, And, AndReverse, Copy, AndInverted, NoOp,
Xor, Or, Nor, Equiv, Invert, OrReverse,
CopyInverted,OrInverted, Nand, Set}

CARD32
CARD32
CARD32
CARD16
{Solid, OnOffDash, DoubleDash}
{NotLast, Butt, Round, Projecting}
{Miter, Round, Bevel}
{Solid, Tiled, OpaqueS tippled, Stippled}
{EvenOdd, Winding}
{Chord, PieS lice}
PIXMAP
PIXMAP
INT16
INT16
FONT
{ClipBychildren, IncludeInferiors}
BaaL
INT16
INT16
PIXMAP or None
CARD16
CARD8

In graphics operations, given a source and destination pixel, the result is
computed bitwise on corresponding bits of the pixels; that is, a Boolean

Section 9. Requests 401

operation is performed in each bit plane. The plane-mask restricts the

operation to a subset of planes, so the result is:

«src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, back­

ground, or plane-mask. They are simply truncated to the appropriate num­

ber of bits.
The meanings of the functions are:

Function OPeration

Clear 0
And src AND dst
AndReverse src AND (NOT dst)
Copy src
AndInverted (NOT src) AND dst
NoOp dst
Xor src XOR dst
Or src OR dst
Nor (NOT src) AND (NOT dst)
Equiv (NOT src) XOR dst
Invert NOT dst
OrReverse src OR (NOT dst)
CopyInverted NOT src
OrInverted (NOT src) OR dst
Nand (NOT src) OR (NOT dst)
Set 1

The line-width is measured in pixels and can be greater than or equal to one,
a wide line, or the special value zero, a thin line.

Wide lines are drawn centered on the path described by the graphics re­

quest. Unless otherwise specified by the join or cap style, the bounding box
of a wide line with end points [x 1, y 1], [x2, y2] and width w is a rectangle with
vertices at the following real coordinates:

[xl - (w*sn/2), yl + (w*cs/2)], [xl + (w*sn/2), y I - (w*cs/2)],
[x2 - (w*sn/2), y2 + (w*cs/2)], [x2 + (w*sn/2), y2 - (w*cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of

the -line. A pixel is part of the line (and hence drawn) if the center of the

402 PROTOCOL

pixel is fully inside the bounding box, which is viewed as having infinitely

thin edges. If the center of the pixel is exactly on the bounding box, it is part

of the line if and only if the interior is immediately to its right (x increasing

direction). Pixels with centers on a horizontal edge are a special case and are

part of the line if and only if the interior or the boundary is immediately

below (y increasing direction) and if the interior or the boundary is immedi­

ately to the right (x increasing direction). Note that this description is a math­

ematical model describing the pixels that are drawn for a wide line and does

not imply that trigonometry is required to implement such a model. Real or

fixed point arithmetic is recommended for computing the corners of the line

endpoints for lines greater than one pixel in width.

Thin lines (zero line-width) are "one pixel wide" lines drawn using an un~

specified, device-dependent algorithm. There are only two constraints on

this algorithm. First, if a line is drawn unclipped from [xl,yl] to [x2,y2] and

another line is drawn unclipped from [xl +dx,yl +dy] to [x2+dx,y2+dy],

then a point [x,y] is touched by drawing the first line if and only if the point

[x+dx,y+dy] is touched by drawing the second line. Second, the effective

set of points comprising a line cannot be affected by clipping. Thus, a point

is touched in a clipped line if and only if the point lies inside the dipping re­

gion and the point would be touched by the line when drawn unclipped.

Note that a wide line drawn from [xl,yl] to [x2,y2] always draws the same

pixels as a wide line drawn from [x2,y2] to [xl,yl], not counting cap-style

and join-style. Implementors are encouraged to make this property true for

thin lines, but it is not required. A line-width of zero may differ from a line­

width of one in which pixels are drawn. In general, drawing a thin line will

be faster than drawing a wide line of width one, but thin lines may not mix

well aesthetically with wide lines because of the different drawing algo­

rithms. If it is desirable to obtain precise and uniform results across all dis­

plays, a client should always use a line-width of one, rather than a line-width

of zero.

The line-style defines which sections of a line are drawn:

Solid

DoubleDash
The full path of the line is drawn.
The full path of the line is drawn, but the even dashes are
filled differently than the odd dashes (see fill-style), with
Butt cap-style used where even and odd dashes meet.

Section 9. Requests

OnOffDash

403

Only the even dashes are drawn, and cap-style applies to all
internal ends of the individual dashes (except NotLast is
treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast

Butt

Round

Projecting

The result is equivalent to But t, except that for a line-width
of zero the final endpoint is not drawn.
The result is square at the endpoint (perpendicular to the
slope of the line) with no projection beyond.
The result is a circular arc with its diameter equal to the
line-width, centered on the endpoint; it is equivalent to Butt
for line-width zero.
The result is square at the end, but the path continues
beyond the endpoint for a distance equal to half the
line-width; it is equivalent to Butt for line-width zero.

The join-style defines how corners are drawn for wide lines:

Miter

Round

Bevel

The outer edges of the two lines extend to meet at an angle.
However, if the angle is less than 11 degrees, a Bevel join-style is
used instead.
The result is a circular arc with a diameter equal to the line-width,
centered on the join point.
The result is Butt endpoint styles, and then the triangular "notch"
is filled.

For a line with coincident endpoints (xl =x2, yl =y2), when the cap-style is

applied to both endpoints, the semantics depends on the line-width and the

cap-style:

NotLast

Butt

Round
Projecting
Butt
Round

thin

thin

thin
thin
wide
wide

This is device-dependent, but the desired effect is
that nothing is drawn.
This is device-dependent, but the desired effect is
that a single pixel is drawn.
This is the same as But t/thin.
This is the same as But t/thin.
Nothing is drawn.
The closed path is a circle, centered at the
endpoint and with a diameter equal to the
line-width.

404 PROTOCOL

Projecting wide The closed path is a square, aligned with the
coordinate axes, centered at the endpoint and
with sides equal to the line-width.

For a line with coincident end points (x 1 = x2, y 1 = y2), when the join-style is
applied at one or both endpoints, the effect is as if the line was removed
from the overall path. However, if the total path consists of (or is reduced to)
a single point joined with itself, the effect is the same as when the cap-style
is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of
whatever destination drawable is specified in a graphics request.

The tile pix map must have the same root and depth as the gcontext (or a
Ma tch error results). The stipple pixmap must have depth 1 and must have
the same root as the gcontext (or a Match error results). For fill-style
Stippled (but not fill-style OpaqueStippled), the stipple pattern is tiled
in a single plane and acts as an additional clip mask to be ANDed with the
clip-mask. Any size pixmap can be used for tiling or stippling, although
some sizes may be faster to use than others.

The fill-style defines the contents of the source for line, text, and fill re­
quests. For all text and fill requests (for example, PolyTextB,

PolyText16, PolyFillRectangle, FillPoly, and PolyFillArc) as
well as for line requests with line-style Solid (for example, PolyLine,

PolySegment, PolyRectangle, PolyArc), and for the even dashes for
line requests with line-style OnOffDash or DoubleDash:

Solid
Tiled
OpaqueS tippled

Stippled

Foreground
Tile
A tile with the same width and height as stipple but with
background everywhere stipple has a zero and with
foreground everywhere stipple has a one
Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid

Tiled
OpaqueStippled
Stippled

Background

Same as for even dashes
Same as for even dashes
Background masked by stipple

Section 9. Requests 405

The dashes value allowed here is actually a simplified form of the more gen­

eral patterns that can be set with SetDashes. Specifying a value of N here
is equivalent to specifying the two element list [N, N] in SetDashes. The

value must be nonzero (or a Value error results). The meaning of dash­

offset and dashes are explained in the SetDashes request.

The clip-mask restricts writes to the destination drawable. Only pixels
where the clip-mask has bits set to 1 are drawn. Pixels are not drawn outside

the area covered by the clip-mask or where the clip-mask has bits set to O.
The clip-mask affects all graphics requests, but it does not clip sources. The

clip-mask origin is interpreted relative to the origin of whatever destination
drawable is specified in a graphics request. If a pixmap is specified as the

clip-mask, it must have depth 1 and have the same root as the gcontext (or

a Ma tch error results). If clip-mask is None, then pixels are always drawn,

regardless of the clip origin. The clip-mask can also be set with the
SetClipRectangles request.

For ClipByChildren, both source and destination windows are addi­

tionally clipped by all viewable InputOutput children. For Include­

Inferiors, neither source nor destination window is clipped by inferiors.

This will result in including subwindow contents in the source and drawing

through subwindow boundaries of the destination. The use of Include­

Inferiors with a source or destination window of one depth with mapped

inferiors of differing depth is not illegal, but the semantics is undefined by

the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths

given in FillPoly requests. EvenOdd means a point is inside if an infinite

ray with the point as origin crosses the path an odd number of times. For

Win din g, a point is inside if an infinite ray with the point as origin crosses

an unequal number of clockwise and counterclockwise directed path seg­

ments. A clockwise directed path segment is one that crosses the ray from

left to right as observed from the point. A counterclockwise segment is one
that crosses the ray from right to left as observed from the point. The case

where a directed line segment is coincident with the ray is uninteresting be­

cause one can simply choose a different ray that is not coincident with a seg­

ment.

For both fill rules, a point is infinitely small and the path is an infinitely

406 PROTOCOL

thin line. A pixel is inside if the center point of the pixel is inside and the

center point is not on the boundary. If the center point is on the boundary,

the pixel is inside if and only if the polygon interior is immediately to its

right (x increasing direction). Pixels with centers along a horizontal edge are

a special case and are inside if and only if the polygon interior is immediately

below (y increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event genera­

tion for CopyArea and CopyP lane requests (and any similar requests de­

fined by extensions).

The default component values are:

Component

function
plane-mask
foreground
background
line-width
line-style
cap-style
join-style
fill-style
fill-rule
arc-mode
tile

stipple
tile-stipple-x-origin
tile-stipple-y-origin
font
subwindow-mode
gra phics-exposures
clip-x-origin
cli p-y -origin
clip-mask
dash-offset
dashes

Default

Copy
all ones
o
1
o
Solid
Butt

Miter

Solid

EvenOdd
PieSlice

Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this
pixmap)
Pixmap of unspecified size filled with ones
o
o
<server-dependent -font>
ClipByChildren
True

o
o
None

o
4 (that is, the list [4, 4])

Section 9. Requests 407

Storing a pixmap in a gcontext might or might not result in a copy being

made. If the pixmap is later used as the destination for a graphics request,
the change might or might not be reflected in the gcontext. If the pix map is

used simultaneously in a graphics request as both a destination and as a tile

or stipple, the results are not defined.

It is quite likely that some amount of gcontext information will be cached
in display hardware and that such hardware can only cache a small number

of gcontexts. Given the number and complexity of components, clients

should view switching between gcontexts with nearly identical state as signifi­

cantly more expensive than making minor changes to a single gcontext.

ChangeGC
gc: GCONTEXT

value-mask: BITMASK

value-list: LISTofV ALUE

Errors: GContext, Pixmap, Font, Match, Value, Alloc

This request changes components in gc. The value-mask and value-list spec­
ify which components are to be changed. The values and restrictions are the

same as for Crea teGC.

Changing the clip-mask also overrides any previous SetClip­

Rectangles request on the context. Changing dash-offset or dashes over­

rides any previous SetDashes request on the context.

The order in which components are verified and altered is server­

dependent. If an error is generated, a subset of the components may have

been altered.

CopyGC
src-gc, dst-gc: GCONTEXT

value-mask: BITMASK

Errors: GContext, Value, Match, Alloc

This request copies components from src-gc to dst-gc. The value-mask speci­

fies which components to copy, as for Crea teGC. The two gcontexts must

have the same root and the same depth (or a Match error results).

408 PROTOCOL

SetDashes
gc: GCONTEXT
dash-offset: CARD 16
dashes: LISTofCARD8

Errors: GContext, Value, Alloc

This request sets dash-offset and dashes in gc for dashed line styles. Dashes
cannot be empty (or a Value error results). Specifying an odd-length list is
equivalent to specifying the same list concatenated with itself to produce an
even-length list. The initial and alternating elements of dashes are the even

dashes; the others are the odd dashes. Each element specifies a dash length
in pixels. All of the elements must be nonzero (or a Value error results).

The dash-offset defines the phase of the pattern, specifying how many pixels
into dashes the pattern should actually begin in any single graphics request.

Dashing is continuous through path elements combined with ajoin-style, but
it is reset to the dash-offset each time a cap-style is applied at a line endpoint.

The unit of measure for dashes is the same as in the ordinary coordinate
system. Ideally, a dash length is measured along the slope of the line, but im­
plementations are only required to match this ideal for horizontal and verti­
cal lines. Failing the ideal semantics, it is suggested that the length be mea­

sured along the major axis of the line. The major axis is defined as the x axis
for lines drawn at an angle of between - 45 and + 45 degrees or between
315 and 225 degrees from the x axis. For all other lines, the major axis is the
yaxiS.

SetClipRectangles
gc: GCONTEXT
clip-x-origin, clip-y-origin: I NT 16

rectangles: LISTofRECTANGLE

ordering: {UnSorted, YSorted, YXSorted, YXBanded}

Errors: GContext, Value, Alloc, Match

This request changes dip-mask in gc to the specified list of rectangles and

sets the clip origin. Output will be clipped to remain contained within the
rectangles. The clip origin is interpreted relative to the origin of whatever
destination drawable is specified in a graphics request. The rectangle coordi­
nates are interpreted relative to the clip origin. The rectangles ~hould be

Section 9. Requests 409

nonintersecting, or graphics results will be undefined. Note that the list of
rectangles can be empty, which effectively disables output. This is the oppo­
site of passing None as the clip-mask in CreateGC and ChangeGC.

If known by the client, ordering relations on the rectangles can be speci­
fied with the ordering argument. This may provide faster operation by the
server. If an incorrect ordering is specified, the server may generate a
Match error, but it is not required to do so. If no error is generated, the

graphics results are undefined. UnSorted means that the rectangles are in
arbitrary order. YSorted means that the rectangles are nondecreasing in
their Y origin. YXSorted additionally constrains YSorted order in that all
rectangles with an equal Y origin are nondecreasing in their X origin.
YXBanded additionally constrains YXSorted by requiring that, for every

possible Y scanline, all rectangles that include that scanline have identical Y

origins and Y extents.

FreeGC

gc: GCONTEXT

Errors: GContext

This request deletes the association between the resource ID and the

gcontext and destroys the gcontext.

ClearArea
window: WINDOW
x, y: INT16

width, height: CARD 16
exposures: BOOL

Errors: Window, Value, Match

The x and y coordinates are relative to the window's origin and specify the
upper-left corner of the rectangle. If width is zero, it is replaced with the

current width of the window minus x. If height is zero, it is replaced with the
current height of the window minus y. If the window has a defined back­

ground tile, the rectangle tangle is tiled with a plane-mask of all ones and

function of Copy and a subwindow-mode of ClipByChildren. If the win­
dow has background None, the contents of the window are not changed. In
either case, if exposures is True, then one or more exposure events are gen-

410 PROTOCOL

era ted for regions of the rectangle that are either visible or are being re­

tained in a backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea
src-drawable, dst-drawable: DRAWABLE

gc: GCONTEXT

src-x, src-y: INT16

width, height: CARD 16

dst-x, dst-y: INT16

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the speci­

fied rectangle of dst-drawable. The src-x and src-y coordinates are relative to

src-drawable's origin. The dst-x and dst-y are relative to dst-drawable's ori­

gin, each pair specifying the upper-left corner of the rectangle. The src­

drawable must have the same root and the same depth as dst-drawable (or a

Ma tch error results).

If regions of the source rectangle are obscured and have not been retained
in backing store or if regions outside the boundaries of the source drawable

are specified, then those regions are not copied, but the following occurs on

all corresponding destination regions that are either visible or are retained

in backing-store. If the dst-drawable is a window with a background other
than None, these corresponding destination regions are tiled (with plane­

mask of all ones and function Copy) with that background. Regardless of

tiling and whether the destination is a window or a pixmap, if graphics­

exposures in gc is True, then GraphicsExposure events for all corre­
sponding destination regions are generated.

If graphics-exposures is True but no GraphicsExposure events are

generated, then a NoExposure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics­
exposures, clip-x-origin, clip-y-origin, clip-mask

CopyPlane
src-drawable, dst-drawable: DRAWABLE

gc: GCONTEXT

src-x, src-y: INT16

width, height: CARD 16

Section 9. Requests

dst-x, dst-y: INT16

bit-plane: CARD32

Errors: Drawable, GContext, Value, Match

411

The src-drawable must have the same root as dst-drawable (or a Match error

results), but it need not have the same depth. The bit-plane must have ex­

actly one bit set to 1 and the value of bit-plane must be less than 2N where

N is the depth of src-drawable (or a Value error results). Effectively, a

pixmap of the same depth as dst-drawable and with size specified by the

source region is formed using the foreground/background pixels in gc (fore­

ground everywhere the bit-plane in src-drawable contains a bit set to 1, back­

ground everywhere the bit-plane contains a bit set to 0), and the equivalent

of a Copy Area is performed, with all the same exposure semantics. This can

also be thought of as using the specified region of the source bit-plane as a

stipple with a fill-style of OpaqueStippled for filling a rectangular area of

the destination.

GC components: function, plane-mask, foreground, background, sub­

window-mode, graphics-exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint
drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: {O rig in, Pre v i 0 us}

points: LISTofpOINT

Errors: Drawable, GContext, Value, Match

This request combines the foreground pixel in gc with the pixel at each

point in the drawable. The points are drawn in the order listed.

The first point is always relative to the drawable's origin. The rest are rela­

tive either to that origin or the previous point, depending on the coordinate­

mode.

GC components: function, plane-mask, foreground, subwindow-mode,

clip-x-origin, clip-y-origin, clip-mask

PolyLine
drawable: DRAWABLE

gc: GCONTEXT

coordinate-mode: {O rig in, Pre vi 0 us}

412 PROTOCOL

points: LISTofPOINT

Errors: Drawable, GContext, Value, Match

This request draws lines between each pair of points (point[iJ, point[i + IJ).
The lines are drawn in the order listed. The lines join correctly at all inter­
mediate points, and if the first and last points coincide, the first and last lines
also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line­
width) lines intersect, the intersecting pixels are drawn multiple times. If
wide lines intersect, the intersecting pixels are drawn only once, as though
the entire PolyLine were a single filled shape.

The first point is always relative to the drawable's origin. The rest are rela­
tive either to that origin or the previous point, depending on the coordinate­
mode.

GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolySegment
drawable: DRAWABLE
gc: GCONTEXT
segments: LISTofSEGMENT

where:

SEGMENT: [xl, yI, x2, y2: INTI6J

Errors: Dra wab Ie, GCon text, Match

For each segment, this request draws a line between [xl, yIJ and [x2, y2].
The lines are drawn in the order listed. No joining is performed at coinci­
dent endpoints. For any given line, no pixel is drawn more than once. Iflines
intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style,
fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

Section 9. Requests

Poly Rectangle
drawable: DRAWABLE
gc: GCONTEXT

rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

413

This request draws the outlines of the specified rectangles, as if a five-point

PolyLine were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height] [x,y]

The x and y coordinates of each rectangle are relative to the drawable's ori­

gin and define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no

pixel is drawn more than once. If rectangles intersect, the intersecting pixels

are drawn multiple times.

GC components: function, plane-mask, line-width, line-style, join-style,

fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

PolyArc
drawable: DRAWABLE

gc: GCONTEXT

arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rec­
tangle and two angles. The angles are signed integers in degrees scaled by

64, with positive indicating counterclockwise motion and negative indicating

clockwise motion. The start of the arc is specified by angle 1 relative to the

three-o'clock position from the center of the rectangle, and the path and ex­

tent of the arc is specified by angle2 relative to the start of the arc. If the

magnitude of angle2 is greater than 360 degrees, it is truncated to 360 de­

grees. The x and y coordinates of the rectangle are relative to the origin of

the drawable. For an arc specified as [x,y,w,h,a1,a2], the origin of the major
and minor axes is at [x + (w/2),y + (h/2)], and the infinitely thin path describ­

ing the entire circle/ellipse intersects the horizontal axis at [x,y + (h/2)] and

414 PROTOCOL

[x+w,y+(h/2)] and intersects the vertical axis at [x+(w/2),y] and [x+(w/2),
y + h]. These coordinates can be fractional; that is, they are not truncated to
discrete coordinates. The path should be defined by the ideal mathematical

path. For a wide line with line-width lw, the bounding outlines for filling are
given by the two infinitely thin paths consisting of all points whose perpen­

dicular distance from the path of the circle/ellipse is equal to Iw/2 (which may
be a fractional value). The cap-style andjoin-style are applied the same as for

a line corresponding to the tangent of the circle/ellipse at the endpoint.
For an arc specified as [x,y,w,h,al,a2], the angles must be specified in the

effectively skewed coordinate system of the ellipse (for a circle, the angles
and coordinate systems are identical). The relationship between these angles

and angles expressed in the normal coordinate system of the screen (as mea­
sured with a protractor) is as follows:

skewed-angle = atan(tan(normal-angle) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range [O,2*PI). The atan returns a value in the

range [- PII2,PII2]. The adjust is:

° for normal-angle in the range [O,PII2)
PI for normal-angle in the range [PII2,(3*PI)/2)
2*PI for normal-angle in the range [(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides

with the first point in the following arc, the two arcs will join correctly. If the
first point in the first arc coincides with the last point in the last arc, the two

arcs will join correctly. For any given arc, no pixel is drawn more than once.
If two arcs join correctly and the line-width is greater than zero and the arcs
intersect, no pixel is drawn more than once. Otherwise, the intersecting

pixels of intersecting arcs are drawn multiple times. Specifying an arc with
one endpoint and a clockwise extent draws the same pixels as specifying the
other endpoint and an equivalent counterclockwise extent, except as it af­

fects joins.
By specifying one axis to be zero, a horizontal or vertical line can be

drawn.
Angles are computed based solely on the coordinate system, ignoring the

aspect ratio.
GC components: function, plane-mask, line-width, line-style, cap-style,

Section 9. Requests 415

join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask
GC mode-dependent components: foreground, background, tile, stipple,

tile-stipple-x-origin, tile-stipple-y-origin, dash-offset, dashes

Fill Poly

drawable: DRAWABLE
gc: GCONTEXT
shape: {Complex, Nonconvex, Con vex}
coordinate-mode: {Origin, Previous}
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is closed
automatically if the last point in the list does not coincide with the first point.
No pixel of the region is drawn more than once.

The first point is always relative to the drawable's origin. The rest are rela­
tive either to that origin or the previous point, depending on the coordinate­
mode.

The shape parameter may be used by the server to improve performance.
Complex means the path may self-intersect.

Nonconvex means the path does not self-intersect, but the shape is not
wholly convex. If known by the client, specifying Nonconvex over Complex
may improve performance. If Noncon vex is specified for a self-intersecting
path, the graphics results are undefined.

Con vex means the path is wholly convex. If known by the client, specify­
ing Con vex can improve performance. If Con vex is specified for a path that
is not convex, the graphics results are undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow­
mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin

Poly FillRectangle
drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

416 PROTOCOL

This request fills the specified rectangles, as if a four-point FillPoly were

specified for each rectangle:

[x,y] [x+width,y] [x + width,y + height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable's ori­
gin and define the upper-left corner of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no
pixel is drawn more than once. If rectangles intersect, the intersecting pixels
are drawn multiple times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x­
origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-sti pple-x-origin, tile-stipple-y-origin

Poly Fill Arc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path de­
scribed by the specified arc and one or two line segments, depending on the
arc-mode. For Chord, the single line segment joining the endpoints of the
arc is used. For PieS lice, the two line segments joining the endpoints of
the arc with the center point are used. The arcs are as specified in the
PolyArc request.

The arcs are filled in the order listed. For any given arc, no pixel is drawn
more than once. If regions intersect, the intersecting pixels are drawn multi­
ple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow­
mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-stipple-x-origin, tile-stipple-y-origin

Putlmage
drawable: DRAWABLE
gc: GCONTEXT
depth: CARDS

Section 9. Requests

width, height: CARD 16
dst-x, dst-y: INT16
left-pad: CARD8

format: {Bitmap, XYPixmap, ZP ixmap}

data: LISToffiYTE

Erron: Drawable, GContext, Match, Value

417

This request combines an image with a rectangle of the drawable. The dst-x

and dst-y coordinates are relative to the drawable's origin.
If Bi tmap format is used, then depth must be one (or a t1atch error re­

sults), and the image must be in XY format. The foreground pixel in gc

defines the source for bits set to 1 in the image, and the background pixel de­

fines the source for the bits set to O.
For XYPixmap and ZPixmap, the depth must match the depth of the

drawable (or a Match error results). For XYPixmap, the image must be sent
in XY format. For ZPixmap, the image must be sent in the Z format defined

for the given depth.
The left-pad must be zero for ZPixmap format (or a Ma tch error results).

For Bitmap and XYPixmap format, left-pad must be less than bitmap­
scanline-pad as given in the server connection setup information (or a

Ma tch error results). The first left-pad bits in every scanline are to be ig­
nored by the server. The actual image begins that many bits into the data.

The width argument defines the width of the actual image and does not in­
clude left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background

Getlmage
drawable: DRAWABLE
x, y: INT16
width, height: CARD 16

plane-mask: CARD32
format: {XYPixmap, ZPixmap}
~

depth: CARD8

418 PROTOCOL

visual: VISUALID or None

data: LISTofBYTE

Errors: Drawable, Value, Match

This request returns the contents of the given rectangle of the drawable in

the given format. The x and y coordinates are relative to the drawable's ori­

gin and define the upper-left corner of the rectangle. If XYP ixmap is speci­
fied, only the bit planes specified in plane-mask are transmitted, with the

planes appearing from most-significant to least-significant in bit order. If

ZPixmap is specified, then bits in all planes not specified in plane-mask are

transmitted as zero. Range checking is not performed on plane-mask; extra­
neous bits are simply ignored. The returned depth is as specified when the

drawable was created and is the same as a depth component in a FORMAT

structure (in the connection setup), not a bits-per-pixel component. If the
drawable is a window, its visual type is returned. If the drawable is a pixmap,
the visual is None.

If the drawable is a pixmap, then the given rectangle must be wholly con­
tained within the pixmap (or a Ma tch error results). If the drawable is a win­

dow, the window must be viewable, and it must be the case that, if there were
no inferiors or overlapping windows, the specified rectangle of the window

would be fully visible on the screen and wholly contained within the outside

edges of the window (or a Match error results). Note that the borders of the

window can be included and read with this request. If the window has a
backing store, then the backing-store contents are returned for regions of

the window that are obscured by noninferior windows; otherwise, the re­

turned contents of such obscured regions are undefined. Also undefined are

the returned contents of visible regions of inferiors of different depth than
the specified window. The pointer cursor image is not included in the con­

tents returned.

This request is not general-purpose in the same sense as other graphics­

related requests. It is intended specifically for rudimentary hardcopy sup­
port.

PolyText8
drawable: DRAWABLE
gc: GCONTEXT

x, y: INT16

items: LISToITEXTITEM8

Section 9. Requests

where:

TEXTITEM8:TEXTELT8orFONT
TEXTELT8: [delta: INT8

string: STRING8]

Errors: Drawable,GContext, Match, Font

419

The x and y coordinates are relative to the drawable's origin and specify the

baseline starting position (the initial character origin). Each text item is pro­

cessed in turn. A font item causes the font to be stored in gc and to be used

for subsequent text. Switching among fonts does not affect the next charac­

ter origin. A text element delta specifies an additional change in the position

along the x axis before the string is drawn; the delta is always added to the

character origin. Each character image, as defined by the font in gc, is

treated as an additional mask for a fill operation on the drawable.
All contained FONTs are always transmitted most-significant byte first.

Ifa Font error is generated for an item, the previous items may have been
drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is in­

terpreted as a byte2 value of a CHAR2B with a byte 1 value of zero.
GC components: function, plane-mask, fill-style, font, subwindow-mode,

clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple,
tile-sti pple-x -origin, tile-sti pple-y-origin

PolyTextl6
drawable: DRAWABLE

gc: GCONTEXT
x, y: INT16

items: LISTofTEXTITEM16

where:

TEXTITEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8

string: STRING 16]

Errors: Drawable, GContext, Match, Font

420 PROTOCOL

This request is similar to PolyText8, except 2-byte (or 16-bit) characters

are used. For fonts defined with linear indexing rather than 2-byte matrix in­

dexing, the server will interpret each CHAR2B as a 16-bit number that has

been transmitted most-significant byte first (that is, byte 1 of the CHAR2B is

taken as the most-significant byte).

ImageText8
drawable: DRAWABLE

gc: GCONTEXT

x, y: INT16

string: STRING8

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable's origin and specify the

baseline starting position (the initial character origin). The effect is first to fill

a destination rectangle with the background pixel defined in gc and then to

paint the text with the foreground pixel. The upper-left corner of the filled

rectangle is at:

[x, y - font-ascent]

the width is:

overall-width

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be re­

turned by a QueryTextExten ts call using gc and string.

The function and fill-style defined in gc are ignored for this request. The

effective function is Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is in­

terpreted as a byte2 value of a CHAR2B with a byte 1 value of zero.

GC components: plane-mask, foreground, background, font, subwindow­

mode, clip-x-origin, clip-y-origin, clip-mask

ImageTextl6
drawable: DRAWABLE

gc: GCONTEXT

Section 9. Requests 421

x, y: INT16

string: STRING16

Erro~: Drawable, GContext, Match

This request is similar to ImageTextB, except 2-byte (or 16-bit) characters

are used. For fonts defined with linear indexing rather than 2-byte matrix in­

dexing, the server will interpret each CHAR2B as a 16-bit number that has

been transmitted most-significant byte first (that is, byte 1 of the CHAR2B is

taken as the most-significant byte).

CreateColormap
mid: COLORMAP

visual: VISUALID

window: WINDOW

alloc: {None, All}

Errors: IDChoice, Window, Value, Match, Alloc

This request creates a colormap of the specified visual type for the screen on

which the window resides and associates the identifier mid with it. The visual

type must be one supported by the screen (or a Ma tch error results). The ini­

tial values of the colormap entries are undefined for classes GrayScale,

PseudoColor, and DirectColor. For StaticGray, Sta ticColor, and

TrueColor, the entries will have defined values, but those values are spe­

cific to the visual and are not defined by the core protocol. For Sta ticGray,

StaticColor, and TrueColor, alloc must be specified as None (or a

Ma tch error results). For the other classes, if alloc is None, the colormap ini­

tially has no allocated entries, and clients can allocate entries.

If alloc is All, then the entire colormap is "allocated" writable. The initial

values of all allocated entries are undefined. For GrayScale and

PseudoColor, the effect is as if an AllocColorCells request returned

all pixel values from zero to N - 1, where N is the colormap-entries value
in the specified visual. For DirectColor, the effect is as if an

AllocColorPlanes request returned a pixel value of zero and red-mask,

green-mask, and blue-mask values containing the same bits as the corre­

sponding masks in the specified visual. However, in all cases, none of these

entries can be freed with FreeColors.

422 PROTOCOL

FreeColormap

cmap: COLORMAP

Errors: Colormap

This request deletes the association between the resource ID and the

colormap and frees the colormap storage. If the colormap is an installed

map for a screen, it is uniIistalled (see UninstallColormap request). If the

colormap is defined as the colormap for a window (by means of

CreateWindow or ChangeWindowAttributes), the color map for the

window is changed to None, and a ColormapNotify event is generated.

The protocol does not define the colors displayed for a window with a

colormap of None.
This request has no effect on a default colormap for a screen.

CopyColormapAndFree
mid, src-cmap: COLORMAP

Errors: IDChoiee, Colormap, Alloe

This request creates a colormap of the same visual type and for the same

screen as src-cmap, and it associates identifier mid with it. It also moves all

of the client's existing allocations from src-cmap to the new colormap with

their color values intact and their read-only or writable characteristics intact,

and it frees those entries in src-cmap. Color values in other entries in the

new colormap are undefined. If src-cmap was created by the client with alloc

All (see CreateColormap request), then the new colormap is also created

with alloc All, all color values for all entries are copied from src-cmap, and

then all entries in src-cmap are freed. If src-cmap was not created by the cli­

ent with alloc All, then the allocations to be moved are all those pixels and

planes that have been allocated by the client using either AlloeColor,

AlloeNamedColor, AlloeColorCells, or AlloeColorPlanes and

that have not been freed since they were allocated.

InstallColormap

cmap: COLORMAP

Errors: Colormap

This request makes this colormap an installed map for its screen. All win­

dows associated with this colormap immediately display with true colors. As

Section 9. Requests 423

a side effect, additional colormaps might be implicitly installed or

uninstalled by the server. Which other colormaps get installed or uninstalled

is server-dependent except that the required list must remain installed.

If cmap is not already an installed map, a ColorrnapNotify event is gen­

erated on every window having cmap as an attribute. In addition, for every

other colormap that is installed or uninstalled as a result of the request, a

ColorrnapNotify event is generated on every window having that color­

map as an attribute.

At any time, there is a subset of the installed maps that are viewed as an
ordered list and are called the required list. The length of the required list

is at most M, where M is the min-installed-maps specified for the screen in
the connection setup. The required list is maintained as follows. When a

colormap is an explicit argument to InstallColorrnap, it is added to the

head of the list; the list is truncated at the tail, if necessary, to keep the length
of the list to at most M. When a colormap is an explicit argument to

UninstallColorrnap and it is in the required list, it is removed from the

list. A colormap is not added to the required list when it is installed implicitly

by the server, and the server cannot implicitly uninstall a colormap that is in

the required list.

Initially the default colormap for a screen is installed (but is not in the re­

quired list).

UninstallColormap
cmap: COLORMAP

Errors: Colorrnap

If cmap is on the required list for its screen (see InstallColorrnap re­
quest), it is removed from the list. As a side effect, cmap might be

uninstalled, and additional colormaps might be implicitly installed or

uninstalled. Which colormaps get installed or uninstalled is server­

dependent except that the required list must remain installed.
If cmap becomes uninstalled, a ColorrnapNotify event is generated on

every window having cmap as an attribute. In addition, for every other

colormap that is installed or uninstalled as a result of the request, a

ColorrnapNotify event is generated on every window having that
colormap as an attribute.

424 PROTOCOL

ListlnstalledColormaps
window: WINDOW
~

cmaps: LISTofCOLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the screen
of the specified window. The order of colormaps is not significant, and there

is no explicit indication of the required list (see InstallColormap re­

quest).

AllocColor
cmap: COLORMAP

red, green, blue: CARD 16
~

pixel: CARD32

red, green, blue: CARD 16

Errors: Colormap, Alloe

This request allocates a read-only colormap entry corresponding to the clos­
est RGB values provided by the hardware. It also returns the pixel and the

RGB values actually used.

AllocN amedColor
cmap: COLORMAP

name: STRING8
~

pixel: CARD32

exact-red, exact-green, exact-blue: CARD16

visual-red, visual-green, visual-blue: CARD16

Errors: Colormap, Name, Alloe

This request looks up the named color with respect to the screen associated

with the colormap. Then, it does an AlloeColor on cmap. The name

should use the ISO Latin-1 encoding, and uppercase and lowercase do not

matter. The exact RGB values specify the true values for the color, and the

visual values specify the values actually used in the colormap.

Section 9. Requests

AllocColorCells
cmap: COLORMAP

colors, planes: CARD16

contiguous: BOOL
~

pixels, masks: LISTofCARD32

Errors: Colormap, Value, Alloc

425

The number of colors must be positive, and the number of planes must be

nonnegative (or a Value error results). If C colors and P planes are re­

quested, then C pixels and P masks are returned. No mask will have any bits

in common with any other mask or with any of the pixels. By ORing together

masks and pixels, C*2P distinct pixels can be produced; all of these are allo­

cated writable by the request. For GrayScale or PseudoColor, each mask
will have exactly one bit set to 1; for DirectColor, each will have exactly

three bits set to 1. If contiguous is True and if all masks are ORed together,

a single contiguous set of bits will be formed for GrayScale or

PseudoColor, and three contiguous sets of bits (one within each pixel
subfield) for DireetColor. The RGB values of the allocated entries are un­

defined.

AllocColor Planes
cmap: COLORMAP

colors, reds, greens, blues: CARD16

contiguous: BOOL
~

pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32

Errors: Colormap, Value, Alloe

The number of colors must be positive, and the reds, greens, and blues must
be nonnegative (or a Value error results). If C colors, R reds, G greens, and

B blues are requested, then C pixels are returned, and the masks have R, G,

and B bits set, respectively. If contiguous is True, then each mask will have

a contiguous set of bits. No mask will have any bits in common with any

other mask or with any of the pixels. For DireetColor, each mask will lie

426 PROTOCOL

within the corresponding pixel subfield. By ORing together subsets of masks
with pixels, C*2R

+
G

+
B distinct pixels can be produced; all of these are allo­

cated by the request. The initial RGB values of the allocated entries are un­
defined. In the colormap, there are only C*2R independent red entries, C*2G

independent green entries, and C*2B independent blue entries. This is true
even for PseudoColor. When the colormap entry for a pixel value is
changed using StoreColors or StoreNamedColor, the pixel is decom­
posed according to the masks and the corresponding independent entries

are updated.

FreeColors
cmap: COLORMAP

pixels: LISTofCARD32
plane-mask: CARD32

Errors: Colormap, Access, Value

The plane-mask should not have any bits in common with any of the pixels.
The set of all pixels is produced by ORing together subsets of plane-mask

with the pixels. The request frees all of these pixels that were allocated by
the client (using AllocColor, AllocNamedColor, AllocColorCells,

and AllocColorPlanes). Note that freeing an individual pixel obtained
from AllocColorPlanes may not actually allow it to be reused until all of

its related pixels are also freed.
All specified pixels that are allocated by the client in cmap are freed, even

if one or more pixels produce an error. A Val ue error is generated if a spec­

ified pixel is not a valid index into cmap, and an Access error is generated
if a specified pixel is not allocated by the client (that is, is unallocated or is
only allocated by another client). If more than one pixel is in error, it is arbi­

trary as to which pixel is reported.

StoreColors
cmap: COLORMAP
items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Section 9. Requests 427

Errors: Colormap, Access, Value

This request changes the colormap entries of the specified pixels. The do­

red, do-green, and do-blue fields indicate which components should actually

be changed. If the colormap is an installed map for its screen, the changes

are visible immediately.
All specified pixels that are allocated writable in cmap (by any client) are

changed, even if one or more pixels produce an error. A Value error is gen­

erated if a specified pixel is not a valid index into cmap, and an Access

error is generated if a specified pixel is unallocated or is allocated read-only.
If more than one pixel is in error, it is arbitrary as to which pixel is reported.

StoreN amedColor
cmap: COLORMAP

pixel: CARD32

name: STRING8

do-red, do-green, do-blue: BOOL

Errors: Colormap, Name, Access, Value

This request looks up the named color with respect to the screen associated

with cmap and then does a StoreColors in cmap. The name should use

the ISO Latin-l encoding, and uppercase and lowercase do not matter. The

Access and Value errors are the same as in StoreColors.

QueryColors
cmap: COLORMAP

pixels: LISTofCARD32
~

colors: LISTofRGB

where:

RGB: [red, green, blue: CARD16]

Errors: Colormap, Value

This request returns the color values stored in cmap for the specified pixels.

The values returned for an unallocated entry are undefined. A Value error

428 PROTOCOL

is generated if a pixel is not a valid index into cmap. If more than one pixel

is in error, it is arbitrary as to which pixel is reported.

LookupColor
cmap: COLORMAP

name: STRING8
~

exact-red, exact-green, exact-blue: CARD16

visual-red, visual-green, visual-blue: CARD 16

Errors: Colormap, Name

This request looks up the string name of a color with respect to the screen

associated with cmap and returns both the exact color values and the closest

values provided by the hardware with respect to the visual type of cmap. The
name should uSe the ISO Latin-1 encoding, and uppercase and lowercase do

not matter.

CreateCursor

cid: CURSOR
source: PIXMAP

mask: PIXMAP or None

fore-red, fore-green, fore-blue: CARD 16

back-red, back-green, back-blue: CARD 16

x, y: CARD16

Errors: IDChoice, Pixmap, Match, Alloc

This request creates a cursor and associates identifier cid with it. The fore­

ground and background RGB values must be specified, even if the server

only has a Sta ticGray or GrayScale screen. The foreground is used for

the bits set to 1 in the source, and the background is used for the bits set to

O. Both source and mask (if specified) must have depth one (or a Match

error results), but they can have any root. The mask pixmap defines the

shape of the cursor. That is, the bits set to 1 in the mask define which source

pixels will be displayed, and where the mask has bits set to 0, the correspond­

ing bits of the source pixmap are ignored. If no mask is given, all pixels of
the source are displayed. The mask, if present, must be the same size as the

Section 9. Requests 429

source (or a Ma teh error results). The x and y coordinates define the

hotspot relative to the source's origin and must be a point within the source
(or a Ma teh error results).

The components of the cursor may be transformed arbitrarily to meet dis­
play limitations.

The pixmaps can be freed immediately if no further explicit references to
them are to be made.

Subsequent drawing in the source or mask pixmap has an undefined ef­
fect on the cursor. The server might or might not make a copy of the
pixmap.

CreateGlyphCursor
cid: CURSOR
source-font: FONT
mask-font: FONT or None

source-char, mask-char: CARD 16
fore-red, fore-green, fore-blue: CARD 16

back-red, back-green, back-blue: CARD 16

Errors: IDChoiee, Font, Value, Alloe

This request is similar to CreateCursor, except the source and mask

bitmaps are obtained from the specified font glyphs. The source-char must
be a defined glyph in source-font, and if mask-font is given, mask-char must
be a defined glyph in mask-font (or a Value error results). The mask font
and character are optional. The origins of the source and mask (if it is de­
fined) glyphs are positioned coincidently and define the hotspot. The source
and mask need not have the same bounding box metrics, and there is no re­
striction on the placement of the hotspot relative to the bounding boxes. If
no mask is given, all pixels of the source are displayed. Note that source-char
and mask-char are CARDI6, not CHAR2B. For 2-byte matrix fonts, the
16-bit value should be formed with byte 1 in the most-significant byte and
byte2 in the least-significant byte.

The components of the cursor may be transformed arb~trarily to meet dis­

play limitations.
The fonts can be freed immediately if no further explicit references to

them are to be made.

430 PROTOCOL

FreeCursor
cursor: CURSOR

Errors: Cursor

This request deletes the association between the resource ID and the cursor.
The cursor storage will be freed when no other resource references it.

RecolorCursor
cursor: CURSOR
fore-red, fore-green, fore-blue: CARD 16
back-red, back-green, back-blue: CARD 16

Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed

on a screen, the change is visible immediately.

Query BestSize
class: {Cursor, Tile, Stipp le}

drawable: DRAWABLE
width, height: CARD 16

-?

width, height: CARD 16

Errors: Drawable, Value, Match

This request returns the best size that is closest to the argument size. For

Cursor, this is the largest size that can be fully displayed. For Tile, this is
the size that can be tiled fastest. For Stipple, this is the size that can be stip­

pled fastest.
For Cursor, the drawable indicates the desired screen. For Tile and

Stipple, the drawable indicates the screen and also possibly the window
class and depth. An In p u to n 1 y window cannot be used as the drawable for

Tile or Stipple (or a Match error results).

QueryExtension
name: STRING8

-?

present: BOOL
major-opcode: CARD8

Section 9. Requests

first-event: CARDS

first-error: CARDS

431

This request determines if the named extension is present. If so, the major

opcode for the e,fCtension is returned, if it has one. Otherwise, zero is re­

turned. Any minor opcode and the request formats are specific to the exten­

sion. If the extension involves additional event types, the base event type

code is returned. Otherwise, zero is returned. The format of the events is

specific to the extension. If the extension involves additional error codes, the

base error code is returned. Otherwise, zero is returned. The format of ad­

ditional data in the errors is specific to the extension.

The extension name should use the ISO Latin-1 encoding, and uppercase

and lowercase matter.

ListExtensions
~

names: LISTofSTRINGS

This request returns a list of all extensions supported by the server.

SetModifierMapping
keycodes-per-modifier: CARDS

keycodes: LISTofKEYCODE
~

status: {Success, Busy, Failed}

Errors: Value, Alloc

This request specifies the keycodes (if any) of the keys to be used as modifi­

ers. The number of key codes in the list must be S*keycodes-per-modifier (or

a Length error results). The keycodes are divided into eight sets, with each

set containing keycodes-per-modifier elements. The sets are assigned to the

modifiers Shift, Lock, Control, Modl, Mod2, Mod3, Modi;, and ModS, in

order. Only nonzero keycode values are used within each set; zero values are

ignored. All of the nonzero keycodes must be in the range specified by min­

keycode and max-keycode in the connection setup (or a Value error re­

sults). The order of keycodes within a set does not matter. If no nonzero

values are specified in a set, the use of the corresponding modifier is dis­

abled, and the modifier bit will always be zero. Otherwise, the modifier bit will

432 PROTOCOL

be one whenever at least one of the keys in the corresponding set is in the

down position.

A server can impose restrictions on how modifiers can be changed (for ex­

ample, if certain keys do not generate up transitions in hardware, if auto­

repeat cannot be disabled on certain keys, or if multiple keys per modifier

are not supported). The status reply is Failed if some such restriction is

violated, and none of the modifiers is changed.
If the new nonzero keycodes specified for a modifier differ from those

currently defined and any (current or new) keys for that modifier are logi­

cally in the down state, then the status reply is Busy, and none of the modifi­
ers is changed.

This request generates a MappingNotify event on a Success status.

GetModifier Mapping
~

keycodes-per-modifier: CARD8

keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers. The
number of keycodes in lhe lisl is 8*keycudes-per-modifier. The keycodes are

divided into eight sets, with each set containing keycodes-per-modifier ele­

ments. The sets are assigned to the modifiers Shift, Lock, Control,

Modl, Mod2, Mod3, Modi;, and ModS, in order. The keycodes-per-modifier

value is chosen arbitrarily by the server; zeroes are used to fill in unused ele­

ments within each set. If only zero values are given in a set, the use of the

corresponding modifier has been disabled. The order of keycodes within

each set is chosen arbitrarily by the server.

ChangeKeyboardMapping
first-keycode: KEYCODE

keysyms-per-keycode: CARD8

keysyms: LISTofKEYSYM

Errors: Value, Alloc

This request defines the symbols for the specified number of keycodes, start­

ing with the specified keycode. The symbols for keycodes outside this range

remained unchanged. The number of elements in the keysyms list must be

a multiple of keysyms-per-keycode (or a Length error results). The first-

Section 9. Requests 433

keycode must be greater than or equal to min-keycode as returned in the

connection setup (or a Value error results) and:

first-keycode + (keysyms-Iength / keysyms-per-keycode) - 1

must be less than or equal to max-keycode as returned in the connection

setup (or else a Value error results). KEYSYM number N (counting from

zero) for keycode K has an index (counting from zero) of:

(K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client

to be large enough to hold all desired symbols. A special KEYSYM value of

NoSymbol should be used to fill in unused elements for individual keycodes.

It is legal for NoSymbol to appear in nontrailing positions of the effective list

for a keycode.
This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is

merely stored for reading and writing by clients (see section 5).

GetKeyboardMapping
first-keycode: KEYCODE

count: CARD8
~

keysyms~per-keycode: CARD8

keysyms: LISTofKEYSYM

Errors: Value

This request returns the symbols for the specified number of keycodes, start­
ing with the specified keycode. The first-keycode must be greater than or

equal to min-keycode as returned in the connection setup (or a Value error

results), and:

first-keycode + count - 1

must be less than or equal to max-keycode as returned in the connection

setup (or a Value error results). The number of elements in the keysyms list

IS:

count * keysyms-per-keycode

434 PROTOCOL

and KEYSYM number N (counting from zero) for keycode K has an index

(counting from zero) of:

(K - first-keycode) * keysyms-per-keycode + N

In keysyms. The keysyms-pe~-keycode value is chosen arbitrarily by the

server to be large enough to report all requested symbols. A special
KEYSYM value of NoSymbol is used to fill in unused elements for individ­

ual keycodes.

ChangeKeyboardControl
value-mask: BITMASK
value-list: LISTofV ALUE

Errors: Match, Value

This request controls various aspects of the keyboard. The value-mask and
value-list specify which controls are to be changed. The possible values are:

Control

key-elick-percent
bell-percent
bell-pitch
bell-duration
led
led-mode
key
auto-repeat-mode

Type

INT8
INT8
INT16
INT16
CARD8
{On, Off}
KEY CODE
{On, Off, Default}

The key-click-percent sets the volume for key clicks between 0 (off) and 100
(loud) inclusive, if possible. Setting to - 1 restores the default. Other nega­

tive values generate a Val ue error.
The bell-percent sets the base volume for the bell between 0 (off) and 100

(loud) inclusive, if possible. Setting to - 1 restores the default. Other nega­
tive values generate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Set­
ting to -1 restores the default. Other negative values generate a Value
error.

The bell-duration sets the duration of the bell (specified in milliseconds),

Section 9. Requests 435

if possible. Setting to - 1 restores the default. Other negative values gener­

ate a Value error.
If both led-mode and led are specified, then the state of that LED is

changed, if possible. If only led-mode is specified, then the state of all LEDs

are changed, if possible. At most 32 LEDs, numbered from one, are sup­

ported. No standard interpretation of LEDs is defined. It is a Match error

if an led is specified without an led-mode.

If both auto-rep eat-mode and key are specified, then the auto-repeat

mode of that key is changed, if possible. If only auto-rep eat-mode is speci­

fied, then the global auto-repeat mode for the entire keyboard is changed, if

possible, without affecting the per-key settings. It is a Ma tch error if a key is

specified without an auto-repeat-mode. Each key has an individual mode of

whether or not it should auto-repeat and a default setting for that mode. In

addition, there is a global mode of whether auto-repeat should be enabled or
not and a default setting for that mode. When the global mode is On, keys

should obey their individual auto-repeat modes. When the global mode is

Off, no keys should auto-repeat. An auto-repeating key generates alternat­

ing KeyPress and KeyRelease events. When a key is used as a modifier,

it is desirable for the key not to auto-repeat, regardless of the auto-repeat

setting for that key.

A bell generator connected with the console but not directly on the key­

board is treated as if it were part of the keyboard.
The order in which controls are verified and altered is server-dependent.

If an error is generated, a subset of the controls may have been altered.

GetKeyboardControl
~

key-elick-percent: CARDS

bell-percent: CARDS

bell-pitch: CARD16

bell-duration: CARD16
led-mask: CARD32

global-auto-repeat: {On, Off}

auto-repeats: LISTofCARDS

This request returns the current control values for the keyboard. For the

LEDs, the least-significant bit of led-mask corresponds to LED one, and each

436 PROTOCOL

one bit in led-mask indicates an LED that is lit. The auto-repeats is a bit vec­

tor; each one bit indicates that auto-repeat is enabled for the corresponding

key. The vector is represented as 32 bytes. Byte N (from 0) contains the bits

for keys SN to SN + 7, with the least-significant bit in the byte representing

key SN.

Bell
percent: INTS

Errors: Value

This request rings the bell on the keyboard at a volume relative to the base
volume for the keyboard, if possible. Percent can range from -100 to 100

inclusive (or a Value error results). The volume at which the bell is rung

when percent is nonnegative is:

base - [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

SetPointerMapping
map: LISTofCARDS
~

status: {Success, Busy}

Errors: Value

This request sets the mapping of the pointer. Elements of the list are in­

dexed starting from one. The length of the list must be the same as
GetPointerMapping would return (or a Value error results). The index

is a core button number, and the element of the list defines the effective

number.

A zero element disables a button. Elements are not restricted in value by

the number of physical buttons, but no two elements can have the same

nonzero value (or a Value error results).

If any of the buttons to be altered are logically in the down state, the status

reply is Busy, and the mapping is not changed.
This request generates a MappingNotify event on a Success status.

Section 9. Requests

GetPointer Mapping
~

map: LISTofCARD8

437

This request returns the current mapping of the pointer. Elements of the list

are indexed starting from one. The length of the list indicates the number of

physical buttons.

The nominal mapping for a pointer is the identity mapping: map [i] = i.

ChangePointerControl
do-acceleration, do-threshold: BaaL
acceleration-numerator, acceleration-denominator: INT 16

threshold: INT16

Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier

for movement expressed as a fraction. For example, specifying 3/1 means

the pointer moves three times as fast as normal. The fraction can be

rounded arbitrarily by the server. Acceleration only takes effect if the

pointer moves more than threshold number of pixels at once and only ap­

plies to the amount beyond the threshold. Setting a value to - 1 restores the

default. Other negative values generate a Value error, as does a zero value

for acceleration-denominator.

GetPointerControl
~

acceleration-numerator, acceleration -denominator: CARD 16

threshold: CARD16

This request returns the current acceleration and threshold for the

pointer.

SetScreenSaver
timeout, interval: INT 16

prefer-blanking: {Yes, No, Default}

allow-exposures: {Yes, No, Default}

Errors: Value

438 PROTOCOL

The timeout and interval are specified in seconds; setting a value to -1 re­

stores the default. Other negative values generate a Value error. If the

timeout value is zero, screen-saver is disabled. If the timeout value is

nonzero, screen-saver is enabled. Once screen-saver is enabled, if no input

from the keyboard or pointer is generated for timeout seconds, screen-saver

is activated. For each screen, if blanking is preferred and the hardware sup­

ports video blanking, the screen will simply go blank. Otherwise, if either ex­

posures are allowed or the screen can be regenerated without sending expo­

sure events to clients, the screen is changed in a server-dependent fashion to

avoid phosphor burn. Otherwise, the state of the screens does not change,
and screen-saver is not activated. At the next keyboard or pointer input or

at the next ForceScreenSa ver with mode Reset, screen-saver is deacti­

vated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic

change, interval serves as a hint about how long the change period should

be, with zero hinting that no periodic change should be made. Examples of

ways to change the screen include scrambling the color map periodically,

moving an icon image about the screen periodically, or tiling the screen with
the root window background tile, randomly reorigincd periodically.

GetScreenSaver
~

timeout, interval: CARD16
prefer-blanking: {Yes, No}

allow-exposures: {Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver
mode: {Acti va te, Reset}

Errors: Value

If the mode is Acti va te and screen-saver is currently deactivated, then

screen-saver is activated (even if screen-saver has been disabled with a

timeout value of zero). If the mode is Reset and screen-saver is currently

enabled, then screen-saver is deactivated (if it was activated), and the activa­

tion timer is reset to its initial state as if device input had just been received.

Section 9. Requests

ChangeHosts
mode: {Insert, Delete}

host: HOST

Errors: Access, Value

439

This request adds or removes the specified host from the access control list.

When the access control mechanism is enabled and a host attempts to estab­

lish a connection to the server, the host must be in this list, or the server will
refuse the connection.

The client must reside on the same host as the server and/or have been

granted permission by a server-dependent method to execute this request
(or an Access error results).

An initial access control list can usually be specified, typically by naming a
file that the server reads at startup and reset.

The following address families are defined. A server is not required to

support these families and may support families not listed here. Use of an

unsupported family, an improper address format, or an improper address
length within a supported family results in a Value error.

For the Internet family, the address must be four bytes long. The address

bytes are in standard IP order; the server performs no automatic swapping
on the address bytes. For a Class A address, the network number is the first

byte in the address, and the host number is the remaining three bytes, most­
significant byte first. For a Class B address, the network number is the first

two bytes and the host number is the last two bytes, each most-significant
byte first. For a Class C address, the network number is the first three bytes,

most-significant byte first, and the last byte is the host number.
For the DECnet family, the server performs no automatic swapping on the

address bytes. A Phase IV address is two bytes long: the first byte contains
the least-significant eight bits of the node number, and the second byte con­

tains the most-significant two bits of the node number in the least-significant
two bits of the byte and the area in the most-significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host num­

ber is always the first byte in the address, and the subnet number is always

the second byte. The server performs no automatic swapping on the address
bytes.

440 PROTOCOL

ListHosts
~

mode: {Enabled, Disabled}

hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of

the list at connection setup is currently enabled or disabled.

Each HOST is padded to a multiple of four bytes.

SetAccessControl
mode: {Enable, Disable}

Errors: Value, Access

This request enables or disables the use of the access control list at connec­

tion setups.
The client must reside on the same host as the server and/or have been

granted permission by a server-dependent method to execute this request

(or an Access error results).

SetCloseDownMode
mode: {Destroy, RetainPermanent, RetainTemporary}

Errors: Value

This request defines what will happen to the client's resources at connection

close. A connection starts in Destroy mode. The meaning of the close­

down mode is described in section 10.

KillCHent
resource: CARD32 or AllTemporary

Errors: Value

If a valid resource is specified, KillClien t forces a close-down of the client

that created the resource. If the client has already terminated in either

RetainPermanent or RetainTemporary mode, all of the client's re­

sources are destroyed (see section 10). If AllTemporary is specified, then
the resources of all clients that have terminated in RetainTemporary are

destroyed.

Section 10. Connection Close 441

NoOperation

This request has no arguments and no results, but the request length field

can be nonzero, which allows the request to be any multiple of four bytes in

length. The bytes contained in the request are uninterpreted by the server.

This request can be used in its minimum four byte form as padding where

necessary by client libraries that find it convenient to force requests to begin

on 64-bit boundaries.

SECTION 10. CONNECTION CLOSE

At connection close, all event selections made by the client are discarded. If

the client has the pointer actively grabbed, an UngrabPointer is per­

formed. If the client has the keyboard actively grabbed, an

UngrabKeyboard is performed. All passive grabs by the client are released.
If the client has the server grabbed, an UngrabServer is performed. All se­

lections (see SetSelectionOwner request) owned by the client are dis­

owned. If close-down mode (see SetCloseDownMode request) is

RetainPermanen t or Retain Temporary, then all resources (including
colormap entries) allocated by the client are marked as permanent or tempo­

rary, respectively (but this does not prevent other clients from explicitly de­

stroying them). If the mode is Destroy, all of the client's resources are de­

stroyed.
When a client's resources are destroyed, for each window in the client's

save-set, if the window is an inferior of a window created by the client, the

save-set window is reparented to the closest ancestor such that the save-set

window is not an inferior of a window created by the client. If the save-set
window is unmapped, a MapWindow request is performed on it (even if it

was not an inferior of a window created by the client). The reparenting

leaves unchanged the absolute coordinates (with respect to the root window)

of the upper-left outer corner of the save-set window. After save-set process­
ing, all windows created by the client are destroyed. For each nonwindow re­

source created by the client, the appropriate Free request is performed. All

colors and colormap entries allocated by the client are freed.

A server goes through a cycle of having no connections and having some
connections. At every transition to the state of having no connections as a re­

sult of a connection closing with a Destroy close-down mode, the server

442 PROTOCOL

resets its state as if it had just been started. This starts by destroying all lin­

gering resources from clients that have terminated in RetainPermanent
or RetainTemporary mode. It additionally includes deleting all but the

predefined atom identifiers, deleting all properties on all root windows, re­

setting all device maps and attributes (key click, bell volume, acceleration),

resetting the access control list, restoring the standard root tiles and cursors,
restoring the default font path, and restoring the input focus to state

PointerRoot.

Note that closing a connection with a close-down mode of

RetainPermanent or RetainTemporary will not cause the server to

reset.

SECTIt.,,)N 11. EVENTS

When a button press is processed with the pointer in some window Wand no

active pointer grab is in progress, the ancestors of Ware searched from the

root down, looking for a passive grab to activate. If no matching passive grab

on the button exists, then an active grab is started automatically for the client

receiving the event, and the last-painter-grab time is set to the current server

time. The effect is essentially equivalent to a GrabButton with argu­

ments:

Argument

event-window
event-mask

pointer-mode and keyboard-mode
owner-events

confine-to
cursor

Value

Event window
Client's selected pointer events on the
event window
Asynchronous

True if the client has OwnerGrabButton

selected on the event window, otherwise
False

None
None

The grab is terminated automatically when the logical state of the pointer

has all buttons released. UngrabPoin ter and ChangeActi veGrab can
both be used to modify the active grab.

Section 11. Events

KeyPress
KeyRelease
ButtonPress
ButtonRelease
MotionN otify

root, event: WINDOW
child: WINDOW or None

same-screen: BOOL

root-x, root-y, event-x, event-y: INT16

detail: <see below>
state: SETofKEYBUTMASK

time: TIMESTAMP

443

These events are generated either when a key or button logically changes
state or when the pointer logically moves. The generation of these logical

changes may lag the physical changes if device event processing is frozen.

Note that KeyPress and KeyRelease are generated for all keys, even

those mapped to modifier bits. The source of the event is the window the
pointer is in. The window the event is reported with respect to is called the

event window. The event window is found by starting with the source win­

dow and looking up the hierarchy for the first window on which any client
has selected interest in the event (provided no intervening window prohibits

event generation by including the event type in its do-not-propagate-mask).

The actual window used for reporting can be modified by active grabs and,

in the case of keyboard events, can be modified by the focus window.

The root is the root window of the source window, and root-x and root-y
are the pointer coordinates relative to root's origin at the time of the event.

Event is the event window. If the event window is on the same screen as root,

then event-x and event-yare the pointer coordinates relative to the event

window's origin. Otherwise, event-x and event-yare zero. If the source win­
dow is an inferior of the event window, then child is set to the child of the

event window that is an ancestor of (or is) the source window. Otherwise, it

is set to None. The state component gives the logical state of the buttons and

modifier keys just before the event. The detail component type varies with
the event type:

444 PROTOCOL

Event

KeyPress, KeyRelease
ButtonPress, ButtonRelease
MotionNotify

Component

KEYCODE
BUTTON
{Normal, Hin t}

MotionNotify events are only generated when the motion begins and ends

in the window. The granularity of motion events is not guaranteed, but a cli­

ent selecting for motion events is guaranteed to get at least one event when

the pointer moves and comes to rest. Selecting PointerMotion receives

events independent of the state of the pointer buttons. By selecting some

subset of Button[l-S]Motion instead, MotionNotify events will only be

received when one or more of the specified buttons are pressed. By selecting

ButtonMotion, MotionNotify events will be received only when at least

one button is pressed. The events are always of type MotionNotify, inde­

pendent of the selection. If PointerMotionHint is selected, the server is

free to send only one MotionNotify event (with detail Hint) to the client

for the event window until either the key or button state changes, the pointer

leaves the event window, or the client issues a QueryPointer or

GetMotionEvents request.

EnterNotify
LeaveNotify

root, event: WINDOW

child: WINDOW or None

same-screen: BOOL

root-x, root-y, event-x, event-y: INT16

mode: {Normal, Grab, Ungrab}

detail: {Ancestor, Virtual, Inferior, Nonlinear,

NonlinearVirtual}

focus: BOOL

state: SETofKEYBUTMASK

time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a

different window than before, EnterNotify and LeaveNotify events are

generated instead of a MotionNotify event. Only clients selecting

EnterWindow on a window receive EnterNotify events, and only clients

Section 11. Events 445

selecting Lea veNotify receive Lea veNotify events. The pointer position

reported in the event is always the final position, not the initial position of

the pointer. The root is the root window for this position, and root-x and

root-yare the pointer coordinates relative to root's origin at the time of the

event. Event is the event window. If the event window is on the same screen

as root, then event-x and event-yare the pointer coordinates relative to the
event window's origin. Otherwise, event-x and event-yare zero. In a

Lea veNotify event, if a child of the event window contains the initial posi­

tion of the pointer, then the child component is set to that child. Otherwise,

it is None. For an EnterNotify event, if a child of the event window con­
tains the final pointer position, then the child component is set to that child.

Otherwise, it is None. If the event window is the focus window or an inferior

of the focus window, then focus is True. Otherwise, focus is False.

Normal pointer motion events have mode Normal. Pseudo-motion

events when a grab activates have mode Grab, and pseudo-motion events

when a grab deactivates have mode Ungrab.

All EnterNotify and Lea veNotify events caused by a hierarchy

change are generated after any hierarchy event caused by that change (that

is, Un map Not i f Y , Map Not i f Y , Con fig u r e Not i f Y , G r a v it Y Not i f Y ,

CirculateNotify), but the ordering of EnterNotify and Leave­

Notify events with respect to FocusOut, VisibilityNotify, and

Expose events is not constrained.
Normal events are generated as follows:

When the pointer moves from window A to window B and A is an inferior

ofB:

• LeaveNotify with detail Ancestor is generated on A.

• LeaveNotify with detail Virtual is generated on each window between A and
B exclusive (in that order).

• EnterNotify with detail Inferior is generated on B.

When the pointer moves from window A to window Band B is an inferior

of A:

• LeaveNotify with detail Inferior is generated on A.

• EnterNotify with detail Virtual is generated on each window between A and
B exclusive (in that order).

• EnterNotify with detail Ancestor is generated on B.

446 PROTOCOL

When the pointer moves from window A to window B and window C is their
least common ancestor:

• LeaveNotify with detail Nonlinear is generated on A.

• LeaveNotify with detail NonlinearVirtual is generated on each window
between A and C exclusive (in that order).

• EnterNotify with detail NonlinearVirtual is generated on each window
between C and B exclusive (in that order).

• EnterNotify with detail Nonlinear is generated on B.

When the pointer moves from window A to window B on different screens:

• Lea veNotify with detail Nonlinear is generated on A.

• If A is not a root window, LeaveNotify with detail NonlinearVirtual is
generated on each window above A up to and including its root (in order).

• If B is not a root window, EnterNotify with detail NonlinearVirtual is
generated on each window from B's root down to but not including B (in order).

• EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to

window and before generating any actual ButtonPress event that activates

the grab), G is the grab-window for the grab, and P is the window the pointer
IS In:

• .EnterNotify and LeaveNotify events with mode Grab are generated (as for
Normal above) as if the pointer were to suddenly warp from its current position
in P to some position in G. However, the pointer does not warp, and the pointer
position is used as both the initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual

ButtonRelease event that deactivates the grab), G is the grab-window for

the grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Ungrab are generated (as for
Normal above) as if the pointer were to suddenly warp from some position in G
to its current position in P. However, the pointer does not warp, and the current
pointer position is used as both the initial and final positions for the events.

Section 11. Events

Focusln
FocusOut

event: WINDOW

mode: {Normal, WhileGrabbed, Grab, Ungrab}

detail: {Ancestor, Virtual, Inferior, Nonlinear,

NonlinearVirtual, Pointer, PointerRoot, None}

447

These events are generated when the input focus ch~nges and are reported

to clients selecting FocusChange on the window. Events generated by

SetInputFocus when the keyboard is not grabbed have mode Normal.

Events generated by SetInputFocus when the keyboard is grabbed have

mode WhileGrabbed. Events generated when a keyboard grab activates

have mode Grab, and events generated when a keyboard grab deactivates

have mode Ungrab.
All FocusOu t events caused by a window unmap are generated after any

UnmapNotify event, but the ordering of FocusOut with respect to gener­

ated EnterNotify, LeaveNotify, VisibilityNotify, and Expose

events is not constrained.

Normal and WhileGrabbed events are generated as follows:

When the focus moves from window A to window B, A is an inferior of B,

and the pointer is in window P:

• FocusOu t with detail Ancestor is generated on A.

• FocusOut with detail Virtual is generated on each window between A and B
exclusive (in order).

• FocusIn with detail Inferior is generated on B.

• If P is an inferior of B but P is not A or an inferior of A or an ancestor of A,
FocusIn with detail Pointer is generated on each window below B down to and
including P (in order).

When the focus moves from window A to window B, B is an inferior of A,
and the pointer is in window P:

• If P is an inferior of A but P is not an inferior of B or an ancestor of B,
FocusOut with detail Pointer is generated on each window from P up to but not
including A (in order).

• FocusOut with detail Inferior is generated on A.

448 PROTOCOL

• Focusln with detail Virtual is generated on each window between A and B
exclusive (in order).

• Focusln with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least

common ancestor, and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOu t with detail Nonlinear is generated on A.

• FocusOut with detail NonlinearVirtual is generated on each window between
A and C exclusive (in order).

• Focusln with detail NonlinearVirtual is generated on each window between C
and B exclusive (in order).

• Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated on each
window below B down to and including P (in order).

When the focus moves from window A to window B on different screens and
the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOu t with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated
on each window above A up to and including its root (in order).

• If B is not a root window, Focusln with detail NonlinearVirtual is generated
on each window from B's root down to but not including B (in order).

• Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated on each
window below B down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and the

pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each
window from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

Section 11. Events 449

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated
on each window above A up to and including its root (in order).

• Focusln with detail PointerRoot (or None) is generated on all root windows.

• If the new focus is PointerRoot, Focusln with detail Pointer is generated on
each window from P's root down to and including P (in order).

When the focus moves from PointerRoot (or None) to window A and the

pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on
each window from P up to and including P's root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• If A is not a root window, Focusln with detail NonlinearVirtual is generated
on each window from A's root down to but not including A (in order).

• Focusln with detail Nonlinear is generated on A .

• If P is an inferior of A, Focusln with detail Pointer is generated on each
window below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the

pointer is in window P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on
each window from P up to and including P's root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• Focusln with detail None (or PointerRoot) is generated on all root windows.

• If the new focus is PointerRoot, Focusln with detail Pointer is generated on
each window from P's root down to and including P (in order).

When a keyboard grab activates (but before generating any actual

KeyPress event that activates the grab), G is the grab-window for the grab,

and F is the current focus:

• Focusln and FocusOut events with mode Grab are generated (as for Normal
above) as if the focus were to change from F to G.

When a keyboard grab deactivates (but after generating any actual

KeyRelease event that deactivates the grab), G is the grab-window for the

grab, and F is the current focus:

• Focusln and FocusOut events with mode Ungrab are generated (as for Normal
above) as if the focus were to change from G to F.

450 PROTOCOL

KeymapN otify
keys: LISTofCARD8

The value is a bit vector as described in QueryKeymap. This event is re­

ported to clients selecting KeymapState on a window and is generated im­

mediately after every EnterNotify and Focusln.

Expose
window: WINDOW

x, y, width, height: CARD16

count: CARD 16

This event is reported to clients selecting Exposure on the window. It is

generated when no valid contents are available for regions of a window, and

either the regions are visible, the regions are viewable and the server is (per­

haps newly) maintaining backing store on the window, or the window is not

viewable but the server is (perhaps newly) honoring window's backing-store

attribute of Always or WhenMapped. The regions are decomposed into an

arbitrary set of rectangles, and an Expose event is generated for each rec­

tangle.

For a given action causing exposure events, the set of events for a given

window are guaranteed to be reported contiguously. If count is zero, then

no more Expose events for this window follow. If count is nonzero, then at

least that many more Expose events for this window follow (and possibly

more).

The x and y coordinates are relative to window's origin and specify the

upper-left corner of a rectangle. The width and height specify the extent of

the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change are generated after any

hierarchy event caused by that change (for example, UnmapNotify,

MapNotify,ConfigureNotify,GravityNotify,CirculateNotify).

All Expose events on a given window are generated after any

Visibili tyNotify event on that window, but it is not required that all

Expose events on all windows be generated after all Visibility events on

all windows. The ordering of Expose events with respect to FOCllSOut,

EnterNotify, and LeaveNotify events is not constrained.

Section 11. Events

GraphicsExposure
drawable: DRAWABLE
x, y, width, height: CARD16
count: CARD16
major-opcode: CARD8
minor-opcode: CARD16

451

This event is reported to clients selecting graphics-exposures in a graphics

context and is generated when a destination region could not be computed

due to an obscured or out-of-bounds source region. All of the regions ex­

posed by a given graphics request are guaranteed to be reported contigu­
ously. If count is zero then no more GraphicsExposure events for this

window follow. If count is nonzero, then at least that many more

GraphicsExposure events for this window follow (and possibly more).

The x and y coordinates are relative to drawable's origin and specify the

upper-left corner of a rectangle. The width and height specify the extent of

the rectangle.

The major and minor opcodes identify the graphics request used. For the

core protocol, major-opcode is always CopyArea or CopyPlane, and

minor-opcode is always zero.

NoExposure
drawable: DRAWABLE
major-opcode: CARD8

minor-opcode: CARD 16

This event is reported to clients selecting graphics-exposures in a graphics

context and is generated when a graphics request that might produce

GraphicsExposure events does not produce any. The drawable specifies

the destination used for the graphics request.

The major and minor opcodes identify the graphics request used. For the
core protocol, major-opcode is always CopyArea or CopyPlane, and the

minor-opcode is always zero.

VisibilityNotify
window: WINDOW
s~~: {Unobscured, PartiallyObscured, FullyObscured}

452 PROTOCOL

This event is reported to clients selecting Visibili tyChange on the win­

dow. In the following, the state of the window is calculated ignoring all of
the window's subwindows. When a window changes state from partially or

fully obscured or not viewable to viewable and completely unobscured, an

event with Unobscured is generated. When a window changes state from

viewable and completely unobscured or not viewable, to viewable and par­

tially obscured, an event with PartiallyObscured is generated. When a

window changes state from viewable and completely unobscured, from

viewable and partially obscured, or from not viewable to viewable and fully

obscured, an event with FullyObscured is generated.
Visibili tyNotify events are never generated on InputOnly win­

dows.
All Visibili tyNotify events caused by a hierarchy change are gener­

ated after any hierarchy event caused by that change (for example,
UnmapNotify, Map Notify, ConfigureNotify, Gravi tyNotify,

CirculateNotify). Any Visibili tyNotify event on a given window is

generated before any Expose events on that window, but it is not required

that all VisibilityNotify events on all windows be generated before all
Expose events on all windows. The ordering of Visibili tyNotify

events with respect to FocusOut, EnterNotify, and LeaveNotify

events is not constrained.

CreateN otify
parent, window: WINDOW

x, y: INT16

width, height, border-width: CARD 16

override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the

parent and is generated when the window is created. The arguments are as

in the CreateWindow request.

Destroy Notify
event, window: WINDOW

This event is reported to clients selecting StructureNotify on the win­

dow and to clients selecting SubstructureNotify on the parent. It is gen­

erated when the window is destroyed. The event is the window on which the

event was generated, and the window is the window that is destroyed.

Section 11. Events 453

The ordering of the DestroyNotify events is such that for any given

window, DestroyNotify is generated on all inferiors of the window before

being generated on the window itself. The ordering among siblings and

across subhierarchies is not otherwise constrained.

UnmapNotify
event, window: WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the win­

dow and to clients selecting SubstructureNotify on the parent. It is gen­

erated when the window changes state from mapped to unmapped. The

event is the window on which the event was generated, and the window is the

window that is unmapped. The from-configure flag is True if the event was

generated as a result of the window's parent being resized when the window
itself had a win-gravity of Unmap.

MapNotify
event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the win­

dow and to clients selecting SubstructureNotify on the parent. It is gen­

erated when the window changes state from unmapped to mapped. The

event is the window on which the event was generated, and the window is the

window that is mapped. The override-redirect flag is from the window's at­

tribute.

MapRequest
parent, window: WINDOW

This event is reported to the client selecting Substructure Redirect on

the parent and is generated when a MapWindow request is issued on an

unmapped window with an override-redirect attribute of False.

ReparentN otify
event, window, parent: WINDOW
x, y: INT16
override-redirect: BOOL

454 PROTOCOL

This event is reported to clients selecting SubstructureNotify on either

the old or the new parent and to clients selecting StructureNotify on the

window. It is generated when the window is reparented. The event is the

window on which the event was generated. The window is the window that

has been rerooted. The parent specifies the new parent. The x and y coordi­

nates are relative to the new parent's origin and specify the position of the
upper-left outer corner of the window. The override-redirect flag is from

the window's attribute.

ConfigureN otify
event, window: WINDOW

x, y: INT16

width, height, border-width: CARD16

above-sibling: WINDOW or None

override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the win­

dow and to clients selecting SubstructureNotify on the parent. It is gen­

erated when a ConfigureWindow request actually changes the state of the
window. The event is the window on which the event was generated, and the

window is the window that is changed. The x and y coordinates are relative

to the new parent's origin and specify the position of the upper-left outer

corner of the window. The width and height specify the inside size, not in­
cluding the border. If above-sibling is None, then the window is on the bot­

tom of the stack with respect to siblings. Otherwise, the window is immedi­

ately on top of the specified sibling. The override-redirect flag is from the
window's attribute.

Gravity Notify
event, window: WINDOW

x, y: INT16

This event is reported to clients selecting SubstructureNotify on the

parent and to clients selecting StructureNotify on the window. It is gen­

erated when a window is moved because of a change in size of the parent.

The event is the window on which the event was generated, and the window

is the window that is moved. The x and y coordinates are relative to the new

Section 11. Events 455

parent's origin and specify the position of the upper-left outer corner of the

window.

ResizeRequest
window: WINDOW

width, height: CARD 16

This event is reported to the client selecting ResizeRedirect on the win­

dow and is generated when a ConfigureWindow request by some other cli­

ent on the window attempts to change the size of the window. The width and

height are the inside size, not including the border.

ConfigureRequest
parent, window: WINDOW

x, y: INT16

width, height, border-width: CARD16
sibling: WINDOW or None

stack-mode: {Above, Below, Toplf, Bottomlf, Opposite}

value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on

the parent and is generated when a ConfigureWindow request is issued on

the window by some other client. The value-mask indicates which compo­

nents were specified in the request. The value-mask and the corresponding

values are reported as given in the request. The remaining values are filled

in from the current geometry of the window, except in the case of sibling

and stack-mode, which are reported as None and Above (respectively) if not

given in the request.

CirculateN otify
event, window: WINDOW

place: {TOp, Bot tom}

This event is reported to clients selecting StructureNotify on the win­

dow and to clients selecting SubstructureNottfy on the parent. It is gen­

erated when the window is actually restacked from a CirculateWindow re­

quest. The event is the window on which the event was generated, and the

window is the window that is restacked. If place is Top, the window is now on

top of all siblings. Otherwise, it is below all siblings.

456 PROTOCOL

CirculateRequest
parent, window: WINDOW
place: {Top, Bottom}

This event is reported to the client selecting SubstructureRedirect on

the parent and is generated when a CirculateWindow request is issued on
the parent and a window actually needs to be restacked. The window speci­
fies the window to be restacked, and the place specifies what the new position
in the stacking order should be.

PropertyNotify
window: WINDOW
atom: ATOM
state: {Newvalue, Deleted}

time: TIMESTAMP

This event is reported to clients selecting PropertyChange on the window

and is generated with state NewValue when a property of the window is
changed using ChangeProperty or RotateProperties, even when

adding zero-length data using ChangeProperty and when replacing all or
part of a property with identical data using ChangeProperty or

Rota teProperties. It is generated with state Deleted when a property

of the window is deleted using request DeleteProperty or Get­

Property. The timestamp indicates the server time when the property was
changed.

SelectionClear
owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated

when a new owner is being defined by means of SetSelectionOwner.
The timestamp is the last-change time recorded for the selection. The owner

argument is the window that was specified by the current owner in its
SetSelectionOwner request.

SelectionRequest
owner: WINDOW
selection: ATOM

Section 11. Events

target: ATOM

property: ATOM or None

requestor: WINDOW

time: TIMESTAMP or CurrentTime

457

This event is reported to the owner of a selection and is generated when a
client issues a ConvertSelection request. The owner argument is the

window that was specified in the SetSelectionOwner request. The re­

maining arguments are as in the Con vertS election request.

The owner should convert the selection based on the specified target type.
If a property is specified, the owner should store the result as that property

on the requestor window and then send a SelectionNotify event to the

requestor using SendEvent with an empty event-mask (that is, the event

should be sent to the creator of the requestor window). If None is specified
as the property, the owner should choose a property name, store the result

as that property on the requestor window, and then send a

SelectionNotify giving that actual property name. If the selection can­

not be converted as requested, the owner should send a SelectionNotify
with the property set to None.

SelectionN otify
requestor: WINDOW

selection, target: ATOM
property: ATOM or None

time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertS election
request when there is no owner for the selection. When there is an owner, it

should be generated by the owner using Sen dE ve n t. The owner of a selec­

tion should send this event to a requestor either when a selection has been

converted and stored as a property or when a selection conversion could not

be performed (indicated with property None).

ColormapNotify
window: WINDOW

colormap: COLORMAP or None

new: BOOL

~a~: {Installed, Uninstalled}

458 PROTOCOL

This event is reported to clients selecting ColorrnapChange on the window.

It is generated with value True for new when the colormap attribute of the

window is changed and is generated with value False for new when the

colormap of a window is installed or uninstalled. In either case, the state in­

dicates whether the colormap is currently installed.

MappingNotify
request: {Modifier, Keyboard, Pointer}

first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express disinterest

in this event. The detail indicates the kind of change that occurred:

Modifiers for a successful SetModifierMapping, Keyboard for a suc­

cessful ChangeKeyboardMapping, and Pointer for a successful Set­

PointerMapping. If the detail is Keyboard, then first-keycode and count

indicate the range of altered keycodes.

ClientMessage
window: WINDOW

type: ATOM

format: {8, 16, 32}

data: LISTofINT8 or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendE ven t. The type specifies

how the data is to be interpreted by the receiving client; the server places no

interpretation on the type or the data. The format specifies whether the data

should be viewed as a list of 8-bit, 16-bit, or 32-bit quantities, so that the

server can correctly byte-swap, as necessary. The data always consists of ei­

ther twenty 8-bit values or ten 16-bit values or five 32-bit values, although

particular message types might not make use of all of these values.

SECTION 12. FLOW CONTROL AND CONCURRENCY

Whenever the server is writing to a given connection, it is permissible for the

server to stop reading from that connection (but if the writing would block,

it must continue to service other connections). The server is not required to

buffer more than a single request per connection at one time. For a given

connection to the server, a client can block while reading from the connec-

Section 12. Flow Control and Concurrency 459

tion but should undertake to read (events and errors) when writing would

block. Failure on the part of a client to obey this rule could result in a dead­
locked connection, although deadlock is probably unlikely unless either the

transport layer has very little buffering or the client attempts to send large

numbers of requests without ever reading replies or checking for errors and

events.

If a server is implemented with internal concurrency, the overall effect

must be as if individual requests are executed to completion in some serial

order, and requests from a given connection must be executed in delivery

order (that is, the total execution order is a shuffle of the individual streams).

The execution of a request includes validating all arguments, collecting all

data for any reply, and generating and queueing all required events. How­

ever, it does not include the actual transmission of the reply and the events.

In addition, the effect of any other cause that can generate multiple events
(for example, activation of a grab or pointer motion) must effectively gener­

ate and queue all required events indivisibly with respect to all other causes

and requests. For a request from a given client, any events destined for that

client that are caused by executing the request must be sent to the client be­

fore any reply or error is sent.

Appendix A

Xlib Functions and
Protocol Requests

461

This appendix provides two tables that relate to Xlib functions and the X

protocol. The following table lists each Xlib function (in alphabetical order)

and the corresponding protocol request that it generates.

Xlib Function

XActivateScreenSaver

XAddHost

XAddHosts
XAddToSaveSet

XAllocColor
XAllocColorCells

XAllocColorPlanes
XAllocNamedColor
XAllowEvents

XAutoRepeatOff
XAutoRepeatOn

XBell
XChangeActivePointerGrab

XChangeGC
XChangeKeyboardControl

XChangeKeyboardMapping
XChangePointerControl
XChangeProperty
XChangeSaveSet

Protocol Request

ForceScreenSaver

ChangeHosts
ChangeHosts
ChangeSaveSet
AllocColor

AllocColorCells
AllocColorPlanes

AllocNamedColor
AllowEvents

ChangeKeyboardControl
ChangeKeyboardControl

Bell
ChangeActivePointerGrab
ChangeGC

ChangeKeyboardControl
ChangeKeyboardMapping

ChangePointerControl
ChangeProperty

ChangeSaveSet

462 APPENDIX

Xlib Function

XChangeWindowAttributes

XCirculateSubwindows
XCirculateSubwindowsDown
XCirculateSubwindowsUp

XClearArea
XClearWindow
XConfigureWindow

XConvertSelection

XCopyArea
XCopyColormapAndFree
XCopyGC

XCopyPlane
XCreateBitmapFromData

XCreateColormap
XCreateFontCursor
XCreateGC
XCreateGlyphCursor
XCreatePixmap

XCreatePixmapCursor
XCreatePixmapFromData

XCreateSimpleWindow
XCreateWindow
XDefineCursor
XDeleteProperty

XDestroySubwindows
XDestroyWindow
XDisableAccessControl
XDrawArc
XDrawArcs

XDrawlmageString

XDrawlmageString16
XDrawLine
XDrawLines

XDrawPoint

Protocol Request

ChangeWindowAttributes

CirculateWindow
CirculateWindow

CirculateWindow
ClearArea
ClearArea
ConfigureWindow
ConvertS election

Copy Area
CopyColormapAndFree
CopyGC
CopyPlane

CreateGC
CreatePixmap
FreeGC

Putlmage
CreateColormap
CreateGlyphCursor

CreateGC
CreateGlyphCursor
CreatePixmap

CreateCursor
CreateGC
Createpixmap

FreeGC
Putlmage

CreateWindow
CreateWindow
ChangeWindowAttributes
DeleteProperty

DestroySubwindows
DestroyWindow

SetAccessControl
Poly Arc

PolyArc
ImageText8

ImageText16

PolySegment
PolyLine

PolyPoint

Appendix A. Xlib Functions and Protocol Requests

Xlib Function

XDrawPoints

XDrawRectangle
XDrawRectangles

XDrawSegments
XDrawString
XDrawString16
XDrawText
XDrawText16

XEnableAccessControl
XFetchBytes

XFetchName
XFillArc

XFillArcs

XFillPolygon
XFillRectangle

XFillRectangles
XForceScreenSaver
XFreeColormap

XFreeColors
XFreeCursor

XFreeFont
XFreeGC

XFreePixmap
XGetAtomName
XGetFontPath

XGetGeometry
XGetlconSizes

XGetlmage
XGetlnputFocus
XGetKeyboardControl

XGetKeyboardMapping
XGetMotionEvents

XGetModifierMapping
XGetNormalHints

XGetPointerControl
XGetPointerMapping

XGetScreenSaver
XGetSelectionOwner
XGetSizeHints
XGetWMHints

Protocol Request

PolyPoint
PolyRectangle
PolyRectangle

PolySegment
PolyText8
PolyText16
PolyText8

PolyText16
SetAccessControl
GetProperty
GetProperty
PolyFillArc

PolyFillArc

FillPoly
PolyFillRectangle
PolyFillRectangle

ForceScreenSaver

FreeColormap
FreeColors
FreeCursor

CloseFont
FreeGC

FreePixmap
GetAtomName
GetFontPath
GetGeometry

GetProperty

Getlmage
GetlnputFocus
GetKeyboardControl

GetKeyboardMapping
GetMotionEvents

GetModifierMapping
GetProperty

GetPointerControl
GetPointerMapping

GetScreenSaver

GetSelectionOwner
GetProperty

GetProperty

463

464 APPENDIX

Xlib Function

XGetWindowAttributes

XGetWindowProperty
XGetZoomHints

XGrabButton
XGrabKey

XGrabKeyboard
XGrabPointer
XGrabServer

XlnitExtension
XlnstallColormap
XlnternAtom
XKillClient

XListExtensions
XListFonts

XListFontsWithlnfo
XListHosts

XListlnstalledColormaps
XListProperties
XLoadFont
XLoadQueryFont

XLookupColor

XLowerWindow
XMapRaised

XMapSubwindows
XMapWindow

XMoveResizeWindow
XMoveWindow

XNoOp

XOpenDisplay
XParseColor
XPutlmage

XQueryBestCursor
XQueryBestSize

XQueryBestStipple
XQueryBestTile
XQueryColor

XQueryColors

Protocol Request

GetWindowAttributes
GetGeometry

GetProperty
GetProperty

GrabButton
GrabKey

GrabKeyboard
GrabPointer
GrabServer
QueryExtension

InstallColormap
InternAtom
KillClient

ListExtensions
ListFonts

ListFontsWithlnfo
ListHosts

ListlnstalledColormaps
ListProperties
OpenFont

OpenFont

QueryFont
LookupColor

ConfigureWindow
ConfigureWindow
MapWindow

MapSubwindows

MapWindow
ConfigureWindow

ConfigureWindow
NoOperation
CreateGC

LookupColor
Putlmage

QueryBestSize
QueryBestSize

QueryBestSize
QueryBestSize
QueryColors
QueryColors

Appendix A. Xlib Functions and Protocol Requests

Xlib Function

XQueryExtension

XQueryFont

XQueryKeymap

XQueryPointer

XQueryTextExtents

XQueryTextExtents16

XQueryTree

XRaiseWindow

XReadBitmapFile

XRecolorCursor

XRemoveFromSaveSet
XRemoveHost

XRemoveHosts

XReparentWindow

XResetScreenSaver

XResizeWindow
XRestackWindows

XRotateBuffers

XRotateWindowProperties

XSelectlnput

XSendEvent

XSetAccessControl

XSetArcMode

XSetBackground

XSetClipMask

XSetClipOrigin

XSetClipRectangles

XSetCloseDownMode

XSetCommand

XSetDashes
XSetFillRule

XSetFillStyle

XSetFont

XSetFontPath

XSetForeground
XSetFunction

XSetGraphicsExposures

Protocol Request

QueryExtension

QueryFont

QueryKeymap

QueryPointer

QueryTextExtents

QueryTextExtents

QueryTree

ConfigureWindow

CreateGC

CreatePixmap

FreeGC

Putlmage

RecolorCursor

ChangeSaveSet
ChangeHosts

Change Hosts

ReparentWindow

ForceScreenSaver

ConfigureWindow

ConfigureWindow

RotateProperties

RotateProperties

ChangeWindowAttributes

SendEvent

SetAccessControl

ChangeGC

ChangeGC

ChangeGC

ChangeGC

SetClipRectangles

SetCloseDownMode

ChangeProperty

SetDashes

ChangeGC

ChangeGC

ChangeGC

SetFontPath

ChangeGC
ChangeGC

ChangeGC

465

466 APPENDIX

Xlib Function

XSetlconName
XSetlconSizes
XSetlnputFocus
XSetLineAttributes
XSetModifierMapping
XSetNormalHints
XSetPlaneMask
XSetPointerMapping
XSetScreenSaver
XSetSelectionOwner
XSetSizeHints
XSetStandardProperties
XSetState
XSetStipple
XSetSubwindowMode
XSetTile
xSetTSOrigin
XSetWMHints
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowBorderWidth
XSetWindowColormap
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreColor
XStoreColors
XStoreName
XStoreNamedColor
XSync
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUngrabKey
XUngrabKeyboard
XUngrabPointer

Protocol Request

ChangeProperty
ChangeProperty
SetlnputFocllS
ChangeGC
SetModifierMapping
ChangeProperty
ChangeGC
SetPointerMapping
SetScreenSaver
SetSelectionOwner
ChangeProperty
ChangeProperty
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeGC
ChangeProperty
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ConfigureWindow
ChangeWindowAttributes
ChangeProperty
ChangeProperty
ChangeProperty
StoreColors
StoreColors
ChangeProperty
StoreNamedColor
GetlnputFocus
TranslateCoordinates
ChangeWindowAttributes
UngrabButton
UngrabKey
UngrabKeyboard
UngrabPointer

Appendix A. Xlib Functions and Protocol Requests

Xlib Function

XUngrabServer
XUninstallColorrnap
XUnloadFont
XUnrnapSubwindows
XUnrnapWindow
XWarpPointer

Protocol Request

UngrabServer
UninstallColorrnap
CloseFont
UnrnapSubwindows
UnrnapWindow
WarpPointer

467

The following table lists each X protocol request (in alphabetical order) and

the Xlib functions that reference it.

Protocol Request

AllocColor
AllocColorCells
AllocColorPlanes
AllocNarnedColor
AllowEvents
Bell
SetAccessControl

ChangeActivePointerGrab
SetCloseDownMode
ChangeGC

Xlib Function

XAllocColor
XAllocColorCells
XAllocColorPlanes
XAllocNarnedColor
XAllowEvents
XBell
XDisableAccessControl
XEnableAccessControl
XSetAccessControl
XChangeActivePointerGrab
XSetCloseDownMode
XChangeGC
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFillStyle
XSetFont
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSetPlaneMask
XSetState
XSetStipple
XSetSubwindowMode

468 APPENDIX

Protocol Request

ChangeHosts

ChangeKeyboardControl

ChangeKeyboardMapping

ChangePointerControl

ChangeProperty

ChangeSaveSet

ChangeWindowAttributes

CirculateWindow

ClearArea

Xlib Function

XSetTile

XSetTSOrigin

XAddHost

XAddHosts

XRemoveHost

XRemoveHosts

XAutoRepeatOff

XAutoRepeatOn

XChangeKeyboardControl

XChangeKeyboardMapping
XChangePointerControl

XChangeProperty

XSetCommand

XSetlconName

XSetlconSizes
XSetNormalHints

XSetSizeHints

XSetStandardProperties

XSetWMHints
XSetZoomHints

XStoreBuffer

XStoreBytes

XStoreName

XAddToSaveSet
XChangeSaveSet

XRemoveFromSaveSet

XChangeWindowAttributes

XDefineCursor

XSelectlnput

XSetWindowBackground

XSetWindowBackgroundPixmap

XSetWindowBorder

XSetWindowBorderPixmap

XSetWindowColormap

XUndefineCursor

XCirculateSubwindowsDown

XCirculateSubwindowsUp

XCirculateSubwindows
XClearArea

XClearWindow

Appendix A. Xlib Functions and Protocol Requests

Protocol Request

CloseFont

ConfigureWindow

ConvertSelection
Copy Area

CopyColormapAndFree
CopyGC

CopyPlane
CreateColormap

CreateCursor
CreateGC

CreateGlyphCursor

CreatePixmap

CreateWindow

DeleteProperty

DestroySubwindows
DestroyWindow
FillPoly

ForceScreenSaver

FreeColormap
FreeColors

Xlib Function

XFreeFont
XUnloadFont

XConfigureWindbw
XLowerWindow

XMapRaised
XMoveResizeWindow

XMoveWindow
XRaiseWindow
XResizeWindow
XRestackWindows

XSetWindowBorderWidth
XConvertSelection

XCopyArea
XCopyColormapAndFree
XCopyGC
XCopyPlane
XCreateColormap
XCreatePixmapCursor

XCreateGC
XCreateBitmapFromData

XCreatePixmapFromData
XOpenDisplay

XReadBitmapFile
XCreateFontCursor
XCreateGlyphCursor
XCreatePixmap

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile
XCreateSimpleWindow
XCreateWindow

XDeleteProperty
XDestroySubwindows
XDestroyWindow
XFillPolygon
XActivateScreenSaver

XForceScreenSaver
XResetScreenSaver
XFreeColormap
XFreeColors

469

470 APPENDIX

Protocol Request Xlib Function

FreeCursor XFreeCursor
FreeGC XFreeGC

XCreateBitmapFromData

XCreatePixmapFromData

XReadBitmapFile
FreePixmap XFreePixmap
GetAtomName XGetAtomName

GetFontPath XGetFontPath
GetGeometry XGetGeometry

XGetWindowAttributes
Getlmage XGetlmage
GetlnputFocus XGetlnputFocus

XSync
GetKeyboardControl XGetKeyboardControl
GetKeyboardMapping XGetKeyboardMapping
GetModifierMapping XGetModifierMapping
GetMotionEvents XGetMotionEvents
GetPointerControl XGetPointerControl
GetPointerMapping XGetPointerMapping
GetProperty XFetchBytes

XFetchName

XGetlconSizes

XGetNormalHints

XGetSizeHints
XGetWMHints

XGetWindowProperty

XGetZoomHints
GetSelectionOwner XGetSelectionOwner
GetWindowAttributes XGetWindowAttributes
GrabButton XGrabButton
GrabKey XGrabKey
GrabKeyboard XGrabKeyboard
GrabPointer XGrabPointer
GrabServer XGrabServer
ImageText16 XDrawlmageString16
ImageText8 XDrawlmageString
InstallColormap XlnstallColormap
InternAtom XlnternAtom
KillClient XKillClient
ListExtensions XListExtensions

Appendix A. Xlib Functions and Protocol Requests

Protocol Request

ListFonts
ListFontsWithInfo

ListHosts
ListInstalledColormaps

ListProperties
LookupColor

MapSubwindows
MapWindow

NoOperation

OpenFont

PolyArc

PolyFillArc

PolyFillRectangle

PolyLine

PolyPoint

PolyRectangle

Poly Segment

PolyText1b

PolyTextB

Putlmage

QueryBestSize

QueryColors

Xlib Function

XListFonts
XListFontsWithInfo

XListHosts
XListlnstalledColormaps
XListProperties
XLookupColor
XParseColor

XMapSubwindows
XMapRaised
XMapWindow
XNoOp
XLoadFont

XLoadQueryFont
XDrawArc
XDrawArcs

XFillArc
XFillArcs

XFillRectangle
XFillRectangles
XDrawLines
XDrawPoint

XDrawPoints
XDrawRectangle

XDrawRectangles
XDrawLine

XDrawSegments
XDrawString1b
XDrawText1b
XDrawString
XDrawText

XPutlmage
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile
XQueryBestCursor

XQueryBestSize
XQueryBestStipple

XQueryBestTile
XQueryColor
XQueryColors

471

472 APPENDIX

Protocol Request Xlib Function

QueryExtension XlnitExtension
XQueryExtension

QueryFont XLoadQueryFont
XQueryFont

QueryKeyrnap XQueryKeyrnap
QueryPointer XQueryPointer
QueryTextExtents XQueryTextExtents

XQueryTextExtents16
QueryTree XQueryTree
RecolorCursor XRecolorCursor
ReparenUTindow XReparentWindow
RotateProperties XRotateBuffers

XRotateWindowProperties
SendEvent XSendEvent
SetClipRectangles XSetClipRectangles
SetCloseDownMode XSetCloseDownMode
SetDashes XSetDashes
SetFontPath XSetFontPath
SetlnputFocus XSetlnputFocus
SetModifierMapping XSetModifierMapping
SetPointerMapping XSetPointerMapping
SetScreenSaver XGetScreenSaver

XSetScreenSaver
SetSelectionOwner XSetSelectionOwner
StoreColors XcStoreColor

XStoreColors
StoreNarnedColor XStoreNarnedColor
TranslateCoordinates XTranslateCoordinates
UngrabButton XUngrabButton
UngrabKey XUngrabKey
UngrabKeyboard XUngrabKeyboard
OngrabPointer XUngrabPointer
UngrabServer XUngrabServer
UninstallColorrnap XUninstallColorrnap
unrnapSubwindows XUnrnapSubWindows
UnrnapWindow XUnrnapWindow
Warp Pointer XWarpPointer

473

Appendix B

X Font Cursors

The following are the available cursors that can be used with XCrea te-

FontCursor.

X XC_X_cursor ~ XC_clock

If XC_arrow § XC_coffee_mug

~
.JL

XC_based_arrow_down -,r XC_cross

.t. ~~
XC_based_arrow_up 7~ XC_cross_reverse

~ XC_boat + XC_crosshair

m LJ~
XC_bogosity 'q17 XC_diamond_cross

~ XC_bottom_left_corner • XC_dot

~ XC_bottom_right_corner c:l XC_dot_box_mask

± XC_bottom_side ~ XC_double_arrow ~

.L XC_bottom_tee 1f XC_draft_large

~ XC_box_spiral / XC_draft_small

+ XC_center_ptr ~ XC_draped_box

0 tr"
XC_circle ~ XC_exchange

474 APPENDIX

+ XC_fleur 1 XC_right_ptr

~-
XC_gobbler -71 xC_right_side

~ XC_gumby -I XC_right_tee

~ XC_hand iil XC_rightbutton

~ XC_hand1_mask fE1 XC_rtl_logo

Q XC_heart J~ XC_sailboat

C XC_icon JI. XC_sb_down_arrow

m XC_iron_cross ~ XC_sb_h_double_arrow

~ XC_Ieft_ptr -4= XC_sb_Ieft_arrow

I<E- XC_Ieft_side ~ XC_sb_right_arrow

I- XC_Ieft_tee 11" XC_sb_up_arrow

1m XC_Ieftbutton t XC_sb_v_double_arrow

L XC_II_angle iO XC_shuttle

...J XC_Ir_angle ~ XC_sizing

'X XC_man *= XC_spider

a XC_middlebutton
~::

XC_spraycan

6 XC_mouse A XC_star

~ XC_pencil 0 XC_target

~ XC_pirate -t- XC_tcross

+ XC_plus " xC_top_left_arrow

? XC_quest ion_arrow ~ xC_top_left_corner

Appendix B. X Font Cursors 475

f XC_umbrella

-, XC_ur_angle

(!> XC_watch

I XC_xterm

476

Appendix C

Extensions

Because X can evolve by extensions to the core protocol, it is important that

extensions not be perceived as second class citizens. At some point, your fa­

vorite extensions may be adopted as additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension

from that of the core protocol. To avoid having to initialize extensions ex­

plicitly in application programs, it is also important that extensions perform

"lazy evaluations" and automatically initialize themselves when called for the

first time.

This appendix describes techniques for writing extensions to Xlib that will

run at essentially the same performance as the core protocol requests.

Note It is expected that a given extension to X consists of multiple requests. Defin­

ing ten new features as ten separate extensions is a bad practice. Rather, they

should be packaged into a single extension and should use minor opcodes to

distinguish the requests.

The symbols and macros used for writing stubs to Xlib are listed In

<X11/Xlibint.h>.

Basic Protocol Support Routines
The basic protocol requests for extensions are XQueryExtension and

XListExtensions.

Appendix C. Extensions 477

I Bool XQueryExtension(display, name, major_opcode_return, firsLevent_return,
firsLerror _return)

L

Display *display;
char *name;
int *major_opcode_return;
int *first_evenLreturn;
int *first_error_return;

XQueryExtension determines if the named extension is present. If so, the

major opcode for the extension is returned (if it has one); otherwise, False

is returned. Any minor opcode and the request formats are specific to the

extension. If the extension involves additional event types, the base event

type code is returned; otherwise, False is returned. The format of the

events is specific to the extension. If the extension involves additional error

codes, the base error code is returned; otherwise, False is returned. The

format of additional data in the errors is specific to the extension.

The extension name "should be in the ISO Latin-l encoding, and upper­
case and lowercase do matter.

I char **XListExtensions(display, nextensions_return)
Display *display;

L int *nextensions_return;

XListExtensions returns a list of all extensions supported by the

server.

I XFreeExtensionList(list)

L char **list;

XFreeExtensionList frees the memory allocated by XList­

Extensions.

Hooking into Xlib
These functions allow you to hook into the library. They are not normally

used by application programmers but are used by people who need to ex­

tend the core X protocol and the X library interface. The functions, which

generate protocol requests for X, are typically called stubs.
In extensions, stubs first should check to see if they have initialized

478 APPENDIX

L

I
L

themselves on a connection. If they have not, they then should call

Xlni tExtension to attempt to initialize themselves on the connection.

If the extension needs to be informed of GC/font allocation or

de allocation or if the extension defines new event types, the functions de­

scribed here allow the extension to be called when these events occur.

The XExtCodes structure returns the information from XIni t­

Extension and is defined in <X11 I Xlib. h>:

typedef struct _XExtCodes {
int extension;
int major_opcode;
int firsLevent;
int firsLerror;

} XExtCodes;

1* public to extension, cannot be changed *1
1* extension number *1
1* major op-code assigned by server *1
1* first event number for the extension *1
1* first error number for the extension *1

XExtCodes *XlnitExtension(display, name)
Display *display;
char *name;

Xlni tExtension determines if the extension exists. Then, it allocates stor­
age for maintaining the information about the extension on the connection,

chains this onto the extension list for the connection, and returns the infor­

mation the stub implementor will need to access the extension. If the exten­

sion does not exist, XIni tExtension returns NULL.
In particular, the extension number in the XExtCodes structure is

needed in the other calls that follow. This extension number is unique only

to a single connection.

XExtCodes *XAddExtension (display)
Display *display;

For local Xlib extensions, XAddExtension allocates the XExtCodes struc­

ture, bumps the extension number count, and chains the extension onto the

extension list. (This permits extensions to Xlib without requiring server ex­

tensions.)

Hooks into the Library
These functions allow you to define procedures that are to be called when

various circumstances occur. The procedures include the creation of a new

Appendix C. Extensions 479

L

L

L
I

L

GC for a connection, the copying of a GC, the freeing a GC, the creating and

freeing of fonts, the conversion of events defined by extensions to and from

wire format, and the handling of errors.

All of these functions return the previous routine defined for this exten­

SIOn.

int (*XESetCloseDisplay(display, extension, proc))O
Display *display; /* display */
in t extension;
int (*proc)();

/* extension number */
/* routine to call when display closed */

You use this procedure to define a procedure to be called whenever

XCloseDisplay is called. This procedure returns any previously defined

procedure, usually NULL.
When XCloseDisplay is called, your routine is called with these argu­

ments:

(*proc)(display, codes)
Display *display;
XExtCodes *codes;

int (*XESetCreateGC(display, extension, proc»O
Display *display; /* display */

in t extension;
int (*proc)O;

/* extension number */
/* routine to call when GC created */

You use this procedure to define a procedure to be called whenever a new

GC is created. This procedure returns any previously defined procedure,

usually NULL.
When a GC is created, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetCopyGC(display, extension, proc»O
Display *display; /* display */
in t extension;
int (*proc)O;

/* extension number */
/* routine to call when GC copied */

480 APPENDIX

L
I

L

L
I

L

L

You use this procedure to define a procedure to be called whenever a GC is

copied. This procedure returns any previously defined procedure, usually

NULL.

When a GC is copied, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GC gc;
XExtCodes *codes;

int (*XESetFreeGC(display, extension, proc»O
Display *display; 1* display *1
in t extension;
int (*proc)O;

1* extension number *1
1* routine to call when GC freed */

You use this procedure to define a procedure to be called whenever a GC is

freed. This procedure returns any previously defined procedure, usually

NULL.

When a GC is freed, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display *display;
GCgc;
XExtCodes *codes;

int (*XESetCreateFont(display, extension, proc»O

Display *display; /* display */
int extension;
int (*proc)();

/* extension number */
/* routine to call when font created */

You use this procedure to define a procedure to be called whenever

XLoadQueryFont and XQueryFont are called. This procedure returns

any previously defined procedure, usually NULL.

When XLoadQueryFont or XQueryFont is called, your routine is called

with these arguments:

(*proc)(display, fs, codes)
Display *display;
XFontStruct *fs;

XExtCodes *codes;

Appendix C. Extensions 481

L

L

Note

L

Note

int (*XESetFreeFont(display, extension, proc»O
Display *display; 1* display *1
in t extension;
int (*proc)();

1* extension number *1
1* routine to call when font freed */

You use this procedure to define a procedure to be called whenever
XFreeFont is called. This procedure returns any previously defined proce­

dure, usually NULL.

When XFreeFont is called, your routine is called with these argu­

ments:

(*proc)(display, fs, codes)
Display *display;
XFontStruct *fs;

XExtCodes *codes;

The next two functions allow you to define new events to the library.

There is an implementation limit such that your host event structure size

cannot be bigger than the size of the XEven t union of structures. There also
is no way to guarantee that more than 24 elements or 96 characters in the

structure will be fully portable between machines.

int (*XESetWireToEvent(display, event_number, proc))O
Display *display; 1* display *1
int evenLnumber;
Bool (*proc)();

1* event routine to replace *1
1* routine to call when converting event *1

You use this procedure to define a procedure to be called when an event
needs to be converted from wire format (xEvent) to host format (XEvent).

The event number defines which protocol event number to install a conver­

sion routine for. This procedure returns any previously defined proce­

dure.

You can replace a core event conversion routine with one of your own, al­

though this is not encouraged. It would, however, allow you to intercept a

core event and modify it before being placed in the queue or otherwise ex­

amined.

482 APPENDIX

L

L

Note

L

When Xlib needs to convert an event from wire format to host format, your

routine is called with these arguments:

Status (*proc)(display, re, event)

Display *display;

XEvent *re;

xEvent *event;

Your routine must return status to indicate if the conversion succeeded. The

re argument is a pointer to where the host format event should be stored,

and the event argument is the 32-byte wire event structure. In the XE ven t

structure you are creating, type must be the first member and window must
be the second member. You should fill in the type member with the type

specified for the xEvent structure. You should copy all other members from

the xEvent structure (wire format) to the XEvent structure (host format).

Your conversion routine should return True if the event should be placed in
the queue or False if it should not be placed in the queue.

Status (*XESetEventToWire(display, evenLnumber, proc))O

Display *display; /* display */
int event_number;

int (*proc)();

/* event routine to replace */
/* routine to call when converting event */

You use this procedure to define a procedure to be called when an event

needs to be converted from host format (XEvent) to wire format (xEvent)

form. The event number defines which protocol event number to install a

conversion routine for. This procedure returns any previously defined pro­

cedure. It returns zero if the conversion fails or nonzero otherwise.

You can replace a core event conversion routine with one of your own, al­

though this is not encouraged. It would, however, allow you to intercept a

core event and modify it before being sent to another client.

When Xlib needs to convert an event from wire format to host format, your

routine is called with these arguments:

(*proc)(display, re, event)

Display *display;

XEvent *re;

xEvent *event;

Appendix C. Extensions 483

L

L

L

The re argument is a pointer to the host format event, and the event argu­

ment is a pointer to where the 32-byte wire event structure should be stored.

In the XEvent structure that you are forming, you must have "type" as the

first member and "window" as the second. You then should fill in the type

with the type from the xEvent structure. All other members then should be

copied from the wire format to the XEvent structure.

int (*XESetError(display, extension, proc))O
Display *display; /* display */
in t extension;
int (*proc)O;

/* extension number */
/* routine to call when X error happens */

Inside Xlib, there are times that you may want to suppress the calling of the

external error handling when an error occurs. This allows status to be re­

turned on a call at the cost of the call being synchronous (though most such

routines are query operations, in any case, and are typically programmed to

be synchronous).

When Xlib detects a protocol error in _x Rep 1 y, it calls your procedure

with these arguments:

int (*proc)(display, err, codes, ret_code)
Display *display;
xError *err;
XExtCodes *codes;
int *reLcode;

The err argument is a pointer to the 32-byte wire format error. The codes

argument is a pointer to the extension codes structure. The reLcode argu­

ment is the return code you may want _XReply returned to.

If your routine returns a zero value, the error is not suppressed, and the

client's error handler is called. (For further information, see section 8.12.2.)

If your routine returns nonzero, the error is suppressed, and _XReply re­

turns the value of reLcode.

char *(*XESetErrorString(display, extension, proc))O
Display *display; /* display */
in t extension;
char *(*proc)O:

/* extension number */
/* routine to call to obtain an error string*/

484 APPENDIX

L

L

L

The XGetErrorText function returns a string to the user for an error.

XESetErrorString allows you to define a routine to be called that should

return a pointer to the error message. The following is an example.

char *(*proc)(display, code, codes, buffer, nbytes)
Display *display;
int code;
XExtCodes *codes;
char *buffer;
int nbytes;

Your procedure is called with the error code for every error detected. You

should copy nbytes of a null-terminated string containing the error message

to buffer.

int (*XESetFlushGC(display, extension, proc))O
Display *display; /* display *1
in t extension;
char *(*proc)O;

/* extension number *1
/* routine to call when 110 error happens *1

The XESetFlushGC procedure is identical to XESetCopyGC except that

XESetFlushGC is called when a GC cache needs to be updated in the

server.

Hooks onto Xlib Data Structures
Various Xlib data structures have provisions for extension routines to chain

extension supplied data onto a list. These structures are GC, Visual,

Screen, ScreenFormat, Display, and XFontStruct. Because the list

pointer is always the first member in the structure, a single set of routines
can be used to manipulate the data on these lists.

The following structure is used in the routines in this section and is de­

fined in <X11 / Xlib. h>:

typedef struct _XExtData {
int number;
struct _XExtData *next;
int (*free)O;
char *private;

} XExtData;

1* number returned by XlnitExtension *1
1* next item on list of data for structure *1
1* if defined, called to free private */
1* data private to this extension. *1

Appendix C. Extensions 485

When any of the data structures listed above are freed, the list is walked, and

the structure's free routine (if any) is called. If free is NULL, then the library

frees both the data pointed to by the private member and the structure itself.

union { Display *display;
GC gc;
Visual *visual
Screen *screen
ScreenFormat *pixmap_format;
XFontStruct *font } XEDataObject;

XExtData **XEHeadOfExtensionList(object)
L XEDataObject object;

XEHeadOfExtensionList returns a pointer to the list of extension struc­

tures attached to the specified object. In concert with XAddTo­
ExtensionList, XEHeadOfExtensionList allows an extension to at­

tach arbitrary data to any of the structures of types contained in

XEDa taObj eet.

I XAddToExtensionList(structure, ext_data)
struct _XExtData **structure; 1* pointer to structure to add *1

L XExtData *exLdata; 1* extension data structure to add *1

The structure argument is a pointer to one of the data structures enumer­

ated above. You must initialize exLdata~number with the extension num­

ber before calling this routine.

I XExtData *XFindOnExtensionList(structure, number)
struct _XExtData **structure;

L int number; 1* extension number from Xlni tExtension *1

XFindOnExtensionList returns the first extension data structure for the

extension numbered number. It is expected that an extension will add at

most one extension data structure to any single data structure's extension

data list. There is no way to find additional structures.

The XAlloeID macro, which allocates and returns a resource ID, is de­

fined in <X11! Xlib. h>.

486

I
L

APPENDIX

XAllocID(display)
Display *display;

This macro is a call through the Display structure to the internal resource

ID allocator. It returns a resource ID that you can use when creating new re­
sources.

GC Caching
ecs are cached by the library to allow merging of independent change re­

quests to the same ec into single protocol requests. This is typically called a

write back cache. Any extension routine whose behavior depends on the

contents of a ec must flush the ec cache to make sure the server has up-to­
date contents in its ec.

The FlushGC macro checks the dirty bits in the library's ec structure and
calls _XFlushGCCache if any elements have changed. The FlushGC macro

is defined as follows:

I FlushGC(display, gc)
Display *display;

L GCgc;

L

Note that if you extend the ec to add additional resource ID components,

you should ensure that the library stub sends the change request immedi­
ately. This is because a client can free a resource immediately after using it,

so if you only stored the value in the cache without forcing a protocol re­

quest, the resource might be destroyed before being set into the ec. You can

use the _XFlushGCCache procedure to force the cache to be flushed. The

_XFlushGCCache procedure is defined as follows:

_XFlushGCCache(display, gc)
Display *display;
GC gc;

Graphics Batching
If you extend X to add more poly graphics primitives, you may be able to

take advantage of facilities in the library to allow back-to-back single calls to

be transformed into poly requests. This may dramatically improve perfor-

Appendix C. Extensions 487

mance of programs that are not written using poly requests. A pointer to an
xReq, called lasLreq in the display structure, is the last request being pro­
cessed. By checking that the last request type, drawable, gc, and other op­

tions are the same as the new one and that there is enough space left in the

buffer, you may be able to just extend the previous graphics request by ex­
tending the length field of the request and appending the data to the buffer.
This can improve performance by five times or more in naive programs. For
example, here is the source for the XDrawPoint stub. (Writing extension

stubs is discussed in the next section.)

#include "copyrigh t. hit

#include "Xlibint. h"

/* precompute the maximum size of batching request allowed */

static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)

{

register Display *dpy;

Drawable d;

GC gc;

int x, y; /* INT16 */

xPoint *point;

LockDisplay(dpy);

FlushGC(dpy, gc);

{

register xPolyPointReq *req = (xPolyPointReq *) dpy-l>last_req;

/* if same as previous request, with same drawable, batch requests */

if (

(req~reqType = = X_PolyPoint)

&& (req~drawable = = d)

&& (req~gc = = gc~gid)

&& (req~coordMode = = CoordModeOrigin)

&& ((dpy~bufptr + sizeof (xPoint)) <= dpy~bufmax)

&& « (char *)dpy~bufptr - (char *)req) < size)) {
/

point = (xPoint *) dpy~bufptr;

req~length + = sizeof (xPoint) » 2;

dpy~bufptr + = sizeof (xPoint) ;

488 APPENDIX

L

else {

GetRegExtra (PolyPoint, L" reg) ; /* 1 point = L, bytes * /

reg~drawable = d;

reg~gc = gc~gid;

reg~coordMode = CoordModeOrigin;

point = (xPoint *) (reg + 1) ;

point~x = x;

point~y = y;

UnlockDisplay(dpy);

SyncHandle () ;}

To keep clients from generating very long requests that may monopolize the

server, there is a symbol defined in <X11 / Xlibint. h> of EPERBATCH

on the number of requests batched. Most of the performance benefit occurs

in the first few merged requests. Note that FlushGC is called before picking

up the value of lasLreq, because it may modify this field.

Writing Extension Stubs
All X requests always contain the length of the request, expressed as a 16-bit

quantity of 32 bits. This means that a single request can be no more than

256K bytes in length. Some servers may not support single requests of such

a length. The value of dpy~max_request_size contains the maximum

length as defined by the server implementation. For further information, see

part B, "X Window System Protocol."

Requests, Replies, and Xproto.h
The <X11 / Xproto. h> file contains three sets of definitions that are of in­

terest to the stub implementor: request names, request structures, and reply

structures.

You need to generate a file equivalent to <X11 / Xproto. h> for your ex­

tension and need to include it in your stub routine. Each stub routine also

must include <X11 / Xlibint. h>.

The identifiers are deliberately chosen in such a way that, if the request is

called X_D6Something, then its request st~tlcture is xDoSomethingReq, and

Appendix C. Extensions 489

I
1-

its reply is xDoSomethingReply. The GetReq family of macros, defined in

<X11 / Xlibint. h>, takes advantage of this naming scheme.
For each X request, there is a definition in <X11 / Xproto. h> that looks

similar to this:

#define LDoSomething 42

In your extension header file, this will be a minor opcode, instead of a major

opcode.

Request Format
Every request contains an 8-bit major opcode and a 16-bit length field ex­

pressed in units of four bytes. Every request consists of four bytes of header

(containing the major opcode, the length field, and a data byte) followed by

zero or more additional bytes of data. The length field defines the total

length of the request, including the header. The length field in a request

must equal the minimum length required to contain the request. If the speci­

fied length is smaller or larger than the required length, the server should

generate a BadLength error. Unused bytes in a request are not required to

be zero.

long XMaxRequestSize(display)

Display *display;

XMaxRequestSize returns the maximum request size (in 4-byte units) sup­

ported by the server. Single protocol requests to the server can be no longer

than this size. Extensions should be designed in such a way that long proto­

col requests can be split up into smaller requests. The protocol guarantees

the size to be no smaller than 4096 unit (16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensions

are intended to contain multiple requests, so extension requests typically

have an additional minor opcode encoded in the "spare" data byte in the re­

quest header, but the placement and interpretation of this minor opcode as

well as all other fields in extension requests are not defined by the core pro­

tocol. Every request is implicitly assigned a sequence number (starting with

one) used in replies, errors, and events.
To help but not cure portability problems to certain machines, the B 16

and B32 macros have been defined so that they can become bitfield specifica-

490 APPENDIX

tions on some machines. For example, on a Cray, these should be used for all

16-bit and 32-bit quantities, as discussed below.

Most protocol requests have a corresponding structure typedef in

<X11 / Xproto. h>, which looks like:

typedef struct _DoSomethingReq {
CARD8 reqType; /* LDoSomething */
CARD8 someDatum; /* used differently in different requests */

CARD16 length B16; /* total # of bytes in request, divided by 4 */

/* request-specific data */

L } xDoSomethingReq;

If a core protocol request has a single 32-bit argument, you need not declare

a request structure in your extension header file. Instead, such requests use

<X11 / Xproto. h>'s xResourceReq structure. This structure is used for

any request whose single argument is a Window, Pixmap, Drawable,

GContext, Font, Cursor, Colormap, Atom,orVisualID.

typedef struct _ResourceReq {
CARD8 reqType;

BYTE pad;
CARD16 length B16;

CARD32 id B32;

L } xResourceReq;

/* the request type, e.g.
LDoSomething */

/* not used */
/* 2 (= total # of bytes in request,

divided by 4) */

/* the Window, Drawable, Font,
GContext, etc. */

If convenient, you can do something similar in your extension header file.

In both of these structures, the reqType field identifies the type of the re­

quest (for example, LMapWindow or LCreatePixmap). The length field

tells how long the request is in units of 4-byte longwords. This length in­

cludes both the request structure itself and any variable length data, such as

strings or lists, that follow the request structure. Request structures come in

different sizes, but all requests are padded to be multiples of four bytes long.

A few protocol requests take no arguments at all. Instead, they use

<X11 / Xproto. h>'s xReq structure, which contains only a reqType and a

length (and a pad byte).

Appendix C. Extensions 491

If the protocol request requires a reply, then <Xll / Xproto. h> also

contains a reply structure typedef:

typedef struct _DoSomethingReply {
BYTE type;
BYTE someDatum;
CARD16 sequenceNumber B16;
CARD32 length B32;

/* request-specific data */

L } xDoSomethingReply;

/* always LReply */

/* used differently in different requests */
/* # of requests sent so far */

/* # of additional bytes, divided by 4 */

Most of these reply structures are 32 bytes long. If there are not that many

reply values, then they contain a sufficient number of pad fields to bring

them up to 32 bytes. The length field is the total number of bytes in the re­
quest minus 32, divided by 4. This length will be nonzero only if:

• The reply structure is followed by variable length data such as a list or string.

• The reply structure is longer than 32 bytes.

Only GetWindowAttributes, QueryFont, QueryKeymap, and Get­

KeyboardControl have reply structures longer than 32 bytes in the core

protocol.

A few protocol requests return replies that contain no data.

<Xll / Xproto. h> does not define reply structures for these. Instead, they

use the xGenericReply structure, which contains only a type, length, and

sequence number (and sufficient padding to make it 32 bytes long).

Starting to Write a Stub Routine
An Xlib stub routine should always start like this:

#include "Xlibint. hIt

XDoSomething (arguments, ...)

1* argument declarations */

{
register XDoSomethingReq *req;

492 APPENDIX

If the protocol request has a reply, then the variable declarations should in­

clude the reply structure for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures
To lock the display structure for systems that want to support multithreaded
access to a single display connection, each stub will need to lock its critical

section. Generally, this section is the point from just before the appropriate

GetReq call until all arguments to the call have been stored into the buffer.

The precise instructions needed for this locking depend upon the machine

architecture. Two calls, which are generally implemented as macros, have

been provided.

LockDis play(display)
Display *display;

U nlockDis play(display)
L Display *display;

Sending the Protocol Request and Arguments
After the variable declarations, a stub routine should call one of four macros

defined in <X11/Xlibint.h>: GetReg, GetRegExtra, GetResReg,or

GetEmptyReg. All of these macros take, as their first argument, the name

of the protocol request as declared in <X11 / Xproto. h> except with L

removed. The macro then appends the request structure to the output

buffer, fills in its type and length field, and sets req to point to it.
If the protocol request has no arguments (for instance, LGrabServer),

then use GetEmptyReg.

GetEmptyReq (DoSomething);

If the protocol request has a single 32-bit argument (such as a Pixmap,

Window, Drawable, Atom, and so on), then use GetResReg. The second

argument to the macro is the 32-bit object. _MapWindow is a good

example.

GetResReq (DoSomething, rid);

Appendix C. Extensions 493

The rid argument is the Pixmap, Window, or other resource ID.

If the protocol request takes any other argument list, then call GetReq.

After the GetReq, you need to set all the other fields in the request struc­

ture, usually from arguments to the stub routine.

GetReq (DoSomething) ;

/* fill in arguments here */
req~argl = argl;

req~arg2 = arg2;

A few stub routines (such as XCrea teGC and XCrea teP ixmap) return a re­
source ID to the caller but pass a resource ID as an argument to the protocol
request. Such routines use the macro XAllocID to allocate a resource ID

from the range of IDs that were assigned to this client when it opened the

connection.

rid = req~rid = XAllocID();

return (rid) ;

Finally, some stub routines transmit a fixed amount of variable length data
after the request. Typically, these routines (such as XMoveWindow and

XSetBackground) are special cases of more general functions like
XMoveResizeWindow and XChangeGC. These special case routines use

GetReqExtra, which is the same as GetReq except that it takes an addi­
tional argument (the number of extra bytes to allocate in the output buffer
after the request structure). This number should always be a multiple of

four.

Variable Length Arguments
Some protocol requests take additional variable length data that follow the

xDoSomethingReq structure. The format of this data varies from request
to request. Some requests require a sequence of 8-bit bytes, others a se­
quence of 16-bit or 32-bit entities, and still others a sequence of struc­

tures.

It is necessary to add the length of any variable length data to the length
field of the request structure. That length field is in units of 32-bit

494 APPENDIX

longwords. If the data is a string or other sequence of 8-bit bytes, then you

must round the length up and shift it before adding:

req~length += (nbytes+3»>2;

To transmit variable length data, use the D a t a macro. If the data fits into the

output buffer, then this macro copies it to the buffer. If it does not fit, how­
ever, the Da ta macro calls _XSend, which transmits first the contents of the

buffer and then your data. The Da ta macro takes three arguments: the Dis­

play, a pointer to the beginning of the data, and the number of bytes to be

sent.

Data(display, (char*) data, nbytes);

If the data are 16-bit entities, then use the PackDa ta macro instead. It takes

the same arguments and does the same things, but it does the right thing on

machines where a short is 32 bits instead of the usual 16.

I Data (display, (char *) data, nbytes)
Data16 (display, (short *) data, nbytes)

L Data32 (display, (long *) data, nbytes)

Data, Data16, and Data32 are macros that may use their last argument

more than once, so that argument should be a variable rather than an ex­

pression such as "nitems*sizeof(item)." You should do that kind of computa­

tion in a separate statement before calling them. Use the appropriate macro

when sending byte, short, or long data.

If the protocol request requires a reply, then call the procedure _XSend

instead of the Data macro. _XSend takes the same arguments, but because

it sends your data immediately instead of copying it into the output buffer

(which would later be flushed anyway by the following call on _XReply), it

is faster.

Replies
If the protocol request has a reply, then call _XReply after you have fin­

ished dealing with all the fixed and variable length arguments. _XReply

flushes the output buffer and waits for an xReply packet to arrive. If any

events arrive in the meantime, _XReply places them in the queue for later

use.

Appendix C. Extensions 495

L

Status _XReply(display, rep, extra, discard)
Display *display;
xReply *rep;
int extra;
Bool discard;

/* number of 32-bit words expected after the reply */
/* should I discard data following "extra" words? */

_XReply waits for a reply packet and copies its contents into the specified
rep. _XReply handles error and event packets that occur before the reply is

received. _XReply takes four arguments:

• A Display structure

• A pointer to a reply structure (which must be cast to an xReply *)

• The number of additional bytes (beyond sizeof(xReply) = 32 bytes) in the reply
structure

• A Boolean that indicates whether _XReply is to discard any additional bytes
beyond those it was told to read

Because most reply structures are 32 bytes long, the third argument is usu­

ally O. The only core protocol exceptions are the replies to Get­

WindowAttributes, QueryFont, QueryKeymap, and GetKeyboard­

Control, which have longer replies.
The last argument should be False if the reply structure is followed by

additional variable length data (such as a list or string). It should be True if

there is not any variable length data.

Note This last argument is provided for upward-compatibility reasons to allow a

client to communicate properly with a hypothetical later version of the

server that sends more data than the client expected. For example, some
later version of GetWindowAttributes might use a larger, but compati­

ble, xGetWindowAttributesReply that contains additional attribute data

at the end.

_XReply returns True if it received a reply successfully or False if it re­

ceived any sort of error.
For a request with a reply that is not followed by variable length data, you

write something like:

496 APPENDIX

L

_XReply (display, (xReply *) &rep, 0, True) ;

*retl = rep.retl;

*ret2 = rep.ret2;

*ret3 = rep.ret3;

UnlockDisplay(dpy);

SyncHandle();

return (rep. retL;) ;

}

If there is variable length data after the reply, change the True to False,

and use the appropriate _XRead function to read the variable length data.

_XRead (display, data, nbytes)
Display *display;
char *data;
long nbytes;

_XRead reads the specified number of bytes into data.

I _XRead16 (display, data, nbytes)
Display *display;
short *data;

L long nbytes;

L

L

_XRead16 reads the specified number of bytes, unpacking them as 16-bit

quantities, into the specified array as shorts.

_XRead32 (display, data, nbytes)
Display *display;
long *data;
long nbytes;

_XRead32 reads the specified number of bytes, unpacking them as 32-bit

quantities, into the specified array as longs.

_XRead16Pad (display, data, nbytes)
Display *display;
short *data;
long nbytes;

Appendix C. Extensions 497

L

_XRead16Pad reads the specified number of bytes, unpacking them as

16-bit quantities, into the specified array as shorts. If the number of bytes is
not a multiple of four, _XRead16Pad reads up to three additional pad

bytes.

_XReadPad (display, data, nbytes)
Display *display;
char *data;
long nbytes;

_XReadPad reads the specified number of bytes into data. If the number of

bytes is not a multiple of four, _XReadPad reads up to three additional pad

bytes.
Each protocol request is a little different. For further information, see the

Xlib sources for examples.

Synchronous Calling
To ease debugging, each routine should have a call, just before returning to

the user, to a routine called SyncHandle. This routine generally is imple­

mented as a macro. If synchronous mode is enabled (see XSynchronize),

the request is sent immediately. The library, however, waits until any error

the routine could generate at the server has been handled.

Allocating and Deallocating Memory
To support the possible reentry of these routines, you must observe several

conventions when allocating and deallocating memory, most often done

when returning data to the user from the window system of a size the caller
could not know in advance (for example, a list of fonts or a list of exten­

sions). The standard C library routines on many systems are not protected

against signals or other multithreaded uses. The following analogies to stan­

dard 110 library routines have been defined:

XmallocO

XfreeO

XcallocO

Replaces mallocO

Replaces freeO

Replaces callocO

These should be used in place of any calls you would make to the normal C

library routines.

498 APPENDIX

If you need a single scratch buffer inside a critical section (for example, to

pack and unpack data to and from the wire protocol), the general memory

allocators may be too expensive to use (particularly in output routines, which

are performance critical). The routine below returns a scratch buffer for
your use:

I char * _XAllocScratch(display, nbytes)
Display *display;

L unsigned long nbytes;

This storage must only be used inside of the critical section of your stub.

Portability Considerations
Many machine architectures, including many of the more recent RISC archi­

tectures, do not correctly access data at unaligned locations; their compilers
pad out structures to preserve this characteristic. Many other machines capa­

ble of unaligned references pad inside of structures as well to preserve align­

ment, because accessing aligned data is usually much faster. Because the

library and the server use structures to access data at arbitrary points in a
byte stream, all data in request and reply packets must be naturally aligned;

that is, 16-bit data starts on 16-bit boundaries in the request and 32-bit data

on 32-bit boundaries. All requests must be a multiple of 32 bits in length to

preserve the natural alignment in the data stream. You must pad structures

out to 32-bit boundaries. Pad information does not have to be zeroed unless

you want to preserve such fields for future use in your protocol requests.

Floating point varies radically between machines and should be avoided

completely if at all possible.
This code may run on machines with 16-bit ints. So, if any integer argu­

ment, variable, or return value either can take only nonnegative values or is

declared as a CARD16 in the protocol, be sure to declare it as unsigned int

and not as int. (This, of course, does not apply to Booleans or enumera­

tions.)
Similarly, if any integer argument or return value is declared CARD32 in

the protocol, declare it as an unsigned long and not as int or long. This also

goes for any internal variables that may take on values larger than the maxi­

mum 16-bit unsigned int.
The library currently assumes that a char is 8 bits, a short is 16 bits, an int

Appendix C. Extensions 499

is 16 or 32 bits, and a long is 32 bits. The PackData macro is a half-hearted

attempt to deal with the possibility of 32-bit shorts. However, much more
work is needed to make this work properly.

Deriving the Correct Extension Opcode
The remaining problem a writer of an extension stub routine faces that the
core protocol does not face is to map from the call to the proper major and

minor opcodes. While there are a number of strategies, the simplest and
fastest is outlined below.

1. Declare an array of pointers, _NFILE long (this is normally found in <stdio. h>
and is the number of file descriptors supported on the system) of type
XExtCodes. Make sure these are all initialized to NULL.

2. When your stub is entered, your initialization test isjust to use the display pointer
passed in to access the file descriptor and an index into the array. If the entry is
NULL, then this is the first time you are entering the routine for this display. Call
your initialization routine and pass it to the display pointer.

3. Once in your initialization routine, call Xlni tExtension; if it succeeds, store the
pointer returned into this array. Make sure to establish a close display handler to
allow you to zero the entry. Do whatever other initialization your extension re­
quires. (For example, install event handlers and so on). Your initialization routine
would normally return a pointer to the XExtCodes structure for this extension,
which is what would normally be found in your array of pointers.

4. After returning from your initialization routine, the stub can now continue nor­
mally, because it has its major opcode safely in its hand in the XExtCodes struc­
ture.

500

Appendix 0

Version 10
Compatibility
Functions

Drawing and Filling Polygons and Curves
Xlib provides functions that you can use to draw or fill arbitrary polygons or

curves. These functions are provided mainly for compatibility with XIO and
have no server support. That is, they call other Xlib functions, not the server

directly. Thus, if you just have straight lines to draw, using XDrawLines or

XDrawSegments is much faster.

The functions discussed here provide all the functionality of the XIO
functions XDraw, XDrawFilled, XDrawPatterned, XDrawDashed, and

XDrawTiled. They are as compatible as possible given XlI's new line draw­

ing functions. One thing to note, however, is that VertexDrawLastP6int

is no longer supported. Also, the error status returned is the opposite of

what it was under XIO (this is the XII standard error status). XAppend­

Vertex and XClearVertexFlag from XIO also are not supported.

Just how the graphics context you use is set up actually determines

whether you get dashes or not, and so on. Lines are properly joined if they

connect and include the closing of a closed figure (see XDrawLines). The

functions discussed here fail (return zero) only if they run out of memory or

are passed a Vertex list that has a Vertex with VertexStartClosed set

that is not followed by a Vertex with VertexEndClosed set.

Appendix D. Version 10 Compatibility Functions 501

To achieve the effects of the X10 XDraw, XDrawDashed, and

XDrawPa tterned, use XDraw.

#include <XIIlXIO.h>
Status XDraw(display, d, ge, vlist, veount)

Display *display;

Drawable d;
GCge;

Vertex *vlist;

int vcount;

display Specifies the connection to the X server.
d Specifies the drawable.
ge Specifies the GC.
vlist Specifies a pointer to the list of vertices that indicate what to draw.

L veount Specifies how many vertices are in vlist.

XDraw draws an arbitrary polygon or curve. The figure drawn is defined by
the specified list of vertices (vlist). The points are connected by lines as speci­

fied in the flags in the vertex structure.

Each Vertex, as defined in <X11 / X10. h>, is a structure with the follow­
ing members:

typedef struct _Vertex {
short x,y;
unsigned short flags;

L } Vertex;

L

The x and y members are the coordinates of the vertex that are relative to

either the upper-left inside corner of the drawable (if VertexRelative is
zero) or the previous vertex (if VertexRela ti ve is one).

The flags, as defined in <X11 / X10. h>, are as follows:

VertexRelative OxOOOI /* else absolute */
VertexDontDraw OxOOO2 /* else draw */
VertexCurved OxOOO4 /* else straight */
VertexStartClosed OxOOO8 /* else not */
VertexEndClosed OxOOIO /* else not */

• If VertexRelative is not set, the coordinates are absolute (that is, relative to the
drawable's origin). The first vertex must be an absolute vertex.

502 APPENDIX

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to
this one. This is analogous to picking up the pen and moving to another place
before drawing another line .

• If VertexCurved is one, a spline algorithm is used to draw a smooth curve from
the previous vertex through this one to the next vertex. Otherwise, a straight line
is drawn from the previous vertex to this one. It makes sense to set Vertex­

Curved to one only if a previous and next vertex are both defined (either
explicitly in the array or through the definition of a closed curve).

• It is permissible for VertexDontDraw bits and VertexCurved bits to both be
one. This is useful if you want to define the previous point for the smooth curve
but do not want an actual curve drawing to start until this point.

• If VertexStartClosed is one, then this point marks the beginning of a closed
curve. This vertex must be followed later in the array by another vertex whose
effective coordinates are identical and that has a VertexEndClosed bit of one.
The points in between form a cycle to determine predecessor and successor
vertices for the spline algorithm.

This function uses these GC components: function, plane-mask, line-width,

line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip­

y-origin, and clip-mask. It also uses these GC mode-dependent components:
foreground, background, tile, stipple, tile-stipple-x-origin, tile-stipple-y­

origin, dash-offset, and dash-list.

To achieve the effects of the XIO XDrawTiled and XDrawFilled, use

XDrawFilled.

#include <XIllXIO.h>

Status XDrawFilled(display, d, gc, vlist, vcount)

Display *display;

Drawable d;
CC gc;

Vertex *vlist;

int vcount;
display Specifies the connection to the X server.
d Specifies the drawable.

gc Specifies the CC.

vlist Specifies a pointer to the list of vertices that indicate what to draw.
L vcount Specifies how many vertices are in vlist.

Appendix D. Version 10 Compatibility Functions 503

XDrawFilled draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line­

width, line-style, cap-style, join-style, fill-style, subwindow-mode, clip-x­

origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent

components: foreground, background, tile, stipple, tile-stipple-x-origin, tile­

stipple-y-origin, dash-offset, dash-list, fill-style, and fill-rule.

Associating User Data with a Value
These functions have been superseded by the context management func­

tions (see section 10.12). It is often necessary to associate arbitrary informa­

tion with resource IDs. Xlib provides the XAssocTable functions that you

can use to make such an association. Application programs often need to be

able to easily refer to their own data structures when an event arrives. The

XAssocTable system provides users of the X library with a method for as­
sociating their own data structures with X resources (Pixmaps, Fonts,

Windows, and so on).

An XAssocTable can be used to type X resources. For example, the user

may want to have three or four types of windows, each with different prop­
erties. This can be accomplished by associating each X window ID with a

pointer to a window property data structure defined by the user. A generic

type has been defined in the X library for resource IDs. It is called an XID.

There are a few guidelines that should be observed when using an

XAssocTable:

• All XrDs are relative to the specified display .

• Because of the hashing scheme used by the association mechanism, the following
rules for determining the size of a X Ass ocT able should be followed. Associations
will be made and looked up more efficiently if the table size (number of buckets in
the hashing system) is a power of two and if there are not more than 8 XrDs per
bucket.

To return a pointer to a new XAssocTable, use XCreateAssocTable.

XAssocTable *XCreateAssocTable(size)
int size;

L size Specifies the number of buckets in the hash system of XAssocTable.

504 APPENDIX

The size argument specifies the number of buckets in the hash system of
XAssocTable. For reasons of efficiency the number of buckets should be a

power of two. Some size suggestions might be: use 32 buckets per 100 ob­
jects, and a reasonable maximum number of objects per buckets is 8. If an

error allocating memory for the XAssocTable occurs, a NULL pointer is
returned.

To create an entry in a given XAssocTable, use XMakeAssoc.

XMakeAssoc(display, table, x_id, data)

Display *display;

XAssocTable *table;

XID x_id;

char *data;

display Specifies the connection to the X server.
table Specifies the as soc table.
x_id Specifies the X resource ID.

L data Specifies the data to be associated with the X resource ID.

XMakeAssoc inserts data into an XAssocTable keyed on an XID. Data is
inserted into the table only once. Redundant inserts are ignored. The queue

in each association bucket is sorted from the lowest XID to the highest XID.

To obtain data from a given XAssocTable, use XLookUpAssoc.

char *XLookUpAssoc(display, table, x_id)

Display *display;

XAssocTable *table;

XID x_id;

display Specifies the connection to the X server.
table Specifies the as soc table.

L x_id Specifies the X resource ID.

XLookUpAssoc retrieves the data stored in an XAssocTable by its XID. If
an appropriately matching XID can be found in the table, XLookUpAssoc

returns the data associated with it. If the x_id cannot be found in the table,
it returns NULL.

To delete an entry from a given XAssocTable, use XDeleteAssoc.

Appendix D. Version 10 Compatibility Functions 505

L

XDeleteAssoc(display, table, x_id)
Display *display;
XAssocTable *table;
XID x_id;

display Specifies the connection to the X server.
table Specifies the assoc table.
x_id Specifies the X resource ID.

XDeleteAssoc deletes an association 10 an XAssocTable keyed on its

XID. Redundant deletes (and deletes of nonexistent XIDs) are ignored.

Deleting associations in no way impairs the performance of an

XAssocTable.

To free the memory associated with a gIven XAssocTable, use

XDestroyAssocTable.

I" XDestroy AssocTable(table)
XAssocTable *table;

L table Specifies the assoc table.

506

Appendix E

KEYSYM Encoding

For convenience, KEYSYM values are viewed as split into four bytes:

• Byte 1 (for the purposes of this encoding) is the most-significant 5 bits (because of
the 29-bit effective values)

• Byte 2 is the next most-significant 8 bits

• Byte 3 is the next most-significant 8 bits

• Byte 4 is the least-significant 8 bits

The standard KEYSYM values all have the zero values for bytes 1 and 2.
Byte 3 indicates a character code set, and byte 4 indicates a particular charac-
ter within that set.

Byte 3 Byte 4

0 Latin 1
1 Latin 2
2 Latin 3
3 Latin 4
4 Kana
5 Arabic
6 Cyrillic
7 Greek
8 Technical
9 Special
10 Publishing
11 APL
12 Hebrew
255 Keyboard

Appendix E. KEYSYM Encoding 507

Each character set contains gaps where codes have been removed that were
duplicates with codes in previous character sets (that is, character sets with
lesser byte 3 value).

The 94 and 96 character code sets have been moved to occupy the right­
hand quadrant (decimal 129 through 256), so the ASCII subset has a unique

encoding across byte 4, which corresponds to the ASCII character code.
However, this cannot be guaranteed with future registrations and does not

apply to all of the Keyboard set.
To the best of our knowledge, the Latin, Kana, Arabic, Cyrillic, Greek,

APL, and Hebrew sets are from the appropriate ISO and/or ECMA interna­
tional standards. There are no Technical, Special, or Publishing interna­

tional standards, so these sets are based on Digital Equipment Corporation
standards.

The ordering between the sets (byte 3) is essentially arbitrary. Although
the national and international standards bodies are commencing delibera­
tions regarding international 2-byte and 4-byte character sets, we do not

know of any proposed layouts.
The order may be arbitrary, but it is important in dealing with duplicate

coding. As far as possible, KEYSYM values are the same as the character
code. In the Latin-l to Latin-4 sets, all duplicate glyphs occupy the same

code position. However, duplicates between Greek and Technical do not oc­
cupy the same code position. Thus, applications wishing to use the technical
character set must transform the keysym by means of an array.

There is a difference between European and US usage of the names

Pilcrow, Paragraph, and Section, as follows:

US name

Section sign
Paragraph sign

European name

Paragraph sign
Pilcrow sign

code position in Latin-l

10/07
11106

We have adopted the names used by both the ISO and ECMA standards.

Thus, 11106 is the Pilcrow sign, and 10/07 is the Paragraph sign (Section

sign). This favors the European usage.
The Keyboard set is a miscellaneous collection of commonly occuring keys

on keyboards. Within this set, the keypad symbols are generally duplicates of
symbols found on keys on the main part of the keyboard, but they are distin-

508 APPENDIX

guished here because they often have a distinguishable semantics associated

with them.
Keyboards tend to be comparatively standard with respect to the alphanu­

meric keys, but they differ radically on the miscellaneous function keys.

Many function keys are left over from early timesharing days or are de­

signed for a specific application. Keyboard layouts from large manufactur­
ers tend to have lots of keys for every conceivable purpose, whereas small

workstation manufacturers often add keys that are solely for support of
some of their unique functionality. There are two ways of thinking about

how to define keysyms for such a world:

• The Engraving approach

• The Common approach

The Engraving approach is to create a keysym for every unique key engrav­
ing. This is effectively taking the union of all key engravings on all key­
boards. For example, some keyboards label function keys across the top as Fl
through Fn, and others label them as PF 1 through PFn. These would be dif­

ferent keys under the Engraving approach. Likewise, Lock would differ
from Shift Lock, which is different from the up-arrow symbol that has the

effect of changing lowercase to uppercase. There are lots of other aliases
such as Del, DEL, Delete, Remove, and so forth. The Engraving approach

makes it easy to decide if a new entry should be added to the keysym set: if
it does not exactly match an existing one, then a new one is created. One esti­

mate is that there would be on the order of 300-500 Keyboard keysyms

using this approach, without counting foreign translations and variations.
The Common approach tries to capture all of the keys present on an inter­

esting number of keyboards, folding likely aliases into the same keysym. For

example, Del, DEL, and Delete are all merged into a single keysym. Vendors

would be expected to augment the keysym set (using the vendor-specific en­
coding space) to include all of their unique keys that were not included in the
standard set. Each vendor decides which of its keys map into the standard

keysyms, which presumable can be overridden by a user. It is more difficult

to implement this approach, because judgment is required about when a suf­
ficient set of keyboards implements an engraving to justify making it a
keysym in the standard set and about which engravings should be merged

Appendix E. KEYSYM Encoding / 509

into a single keysym. Under this scheme there are an estimated 100-150
keysyms.

Although neither scheme is perfect or elegant, the Common approach has
been selected because it makes it easier to write a portable application. Hav­
ing the Delete functionality merged into a single keysym allows an applica­
tion to implement a deletion function and expect reasonable bindings on a
wide set of workstations. Under the Common approach, application writers
are still free to look for and interpret vendor-specific keysyms, but because
they are in the extended set, the application developer is more conscious that
they are writing the application in a non portable fashion.

In the listings starting on the next page, Code Pos is a representation of
byte 4 of the KEYSYM value, expressed as most-significant/least significant
4-bit values. The Code Pos numbers are for reference only and do not affect
the KEYSYM value. In all cases, the KEYSYM value is:

byte3 * 256 + byte4

<..n
Byte Byte Code Character Name I-'

0
3 4 Pos

Latin-l KEYSYM Set
)-
""0

000 032 02/00 SPACE ""0
tTl

000 033 02/01 EXCLAMATION POINT Z
t:::l

000 034 02/02 QUOTATION MARK I-'

000 035 02/03 # NUMBER SIGN
~

000 036 02/04 $ DOLLAR SIGN
000 037 02/05 % PERCENT SIGN
000 038 02/06 & AMPERSAND
000 039 02/07 APOSTROPHE
000 040 02/08 (LEFT PARENTHESIS
000 041 02/09) RIGHT PARENTHESIS
000 042 02110 * ASTERISK
000 043 02111 + PLUS SIGN
000 044 02112 COMMA
000 045 02113 HYPHEN, MINUS SIGN
000 046 02114 FULL STOP
000 047 02115 / SOLIDUS
000 048 03/00 0 DIGIT ZERO
000 049 03/01 1 DIGIT ONE
000 050 03/02 2 DIGIT TWO
000 051 03/03 3 DIGIT THREE
000 052 03/04 4 DIGIT FOUR
000 053 03/05 5 DIGIT FIVE
000 054 03/06 6 DIGIT SIX
000 055 03/07 7 DIGIT SEVEN
000 056 03/08 8 DIGIT EIGHT
000 057 03/09 9 DIGIT NINE
000 058 03/10 COLON
000 059 03111 SEMICOLON

000 060 03/12 < LESS THAN SIGN ~

000 061 03113 = EQUALS SIGN ~
~

000 062 03/14 > GREATER THAN SIGN ~
~

000 063 03115 ? QUESTION MARK ~.

000 064 04/00 @ COMMERCIAL AT ~

000 065 04/01 A LATIN CAPITAL LETTER A ~
000 066 04/02 B LATIN CAPITAL LETTER B ~
000 067 04/03 C LATIN CAPITAL LETTER C ~
000 068 04/04 D LATIN CAPITAL LETTER D

~
000 069 04/05 E LATIN CAPITAL LETTER E ~ c--,

F
0

000 070 04/06 LATIN CAPITAL LETTER F ~

000 071 04/07 G LATIN CAPITAL LETTER G
~.

CIq

000 072 04/08 H LATIN CAPITAL LETTER H
000 073 04/09 I LATIN CAPITAL LETTER I
000 074 04110 J LATIN CAPITAL LETTER J
000 075 04/11 K LATIN CAPITAL LETTER K
000 076 04/12 L LATIN CAPITAL LETTER L
000 077 04/13 M LATIN CAPITAL LETTER M
000 078 04/14 N LATIN CAPITAL LETTER N
000 079 04/15 0 LATIN CAPITAL LETTER 0
000 080 05/00 P LATIN CAPITAL LETTER P
000 081 05/01 Q LATIN CAPITAL LETTER Q
000 082 05/02 R LATIN CAPITAL LETTER R
000 083 05/03 S LATIN CAPITAL LETTER S
000 084 05/04 T LATIN CAPITAL LETTER T
000 085 05/05 U LATIN CAPITAL LETTER U
000 086 05/06 V LATIN CAPITAL LETTER V
000 087 05/07 W LATIN CAPITAL LETTER W
000 088 05/08 X LATIN CAPITAL LETTER X
000 089 05/09 Y LATIN CAPITAL LETTER Y
000 090 05/10 Z LATIN CAPITAL LETTER Z
000 091 05/11 [LEFT SQUARE BRACKET

VI
I-'
I-'

C,)l

Byte Byte Code Character Name
~

3 4 Pos

000 092 05/12 \ REVERSE SOLIDUS
000 093 05/13] RIGHT SQUARE BRACKET

>
""0
""0

000 094 05114 CIRCUMFLEX ACCENT t:r1

000 095 05/15 LOW LINE Z
~

000 096 06/00 GRAVE ACCENT -:x:
000 097 06/01 a LATIN SMALL LETTER a

000 098 06/02 b LATIN SMALL LETTER b
000 099 06/03 c LATIN SMALL LETTER c

000 100 06/04 d LATIN SMALL LETTER d
000 101 06/05 e LATIN SMALL LETTER e
000 102 06/06 f LATIN SMALL LETTER f
000 103 06/07 9 LATIN SMALL LETTER g
000 104 06/08 h LATIN SMALL LETTER h
000 105 06/09 LATIN SMALL LETTER i
000 106 06/10 j LATIN SMALL LETTER j
000 107 06/11 k LATIN SMALL LETTER k
000 108 06/12 l LATIN SMALL LETTER I
000 109 06113 m LATIN SMALL LETTER m

000 110 06114 n LATIN SMALL LETTER n

000 III 06115 0 LATIN SMALL LETTER 0

000 112 07/00 p LATIN SMALL LETTER P
000 113 07/01 q LATIN SMALL LETTER q

000 114 07/02 r LATIN SMALL LETTER r

000 115 07/03 s LATIN SMALL LETTER s

000 116 07/04 t LATIN SMALL LETTER t
000 117 07/05 u LATIN SMALL LETTER u

000 118 07/06 v LATIN SMALL LETTER v

000 119 07/07 w LATIN SMALL LETTER w

000 120 07/08 x LATIN SMALL LETTER x

000 121 07/09 y LATIN SMALL LETTER Y ~

000 122 07/10 z LATIN SMALL LETTER z ~
~

000 123 07/11 { LEFT CURLY BRACKET ;S
~

000 124 07/12 I VERTICAL LINE
~.

tl':l
000 125 07/13 { RIGHT CURLY BRACKET
000 126 07/14 TILDE ~
000 160 10100 NO-BREAK SPACE 2;5
000 161 10101 i INVERTED EXCLAMATION MARK ~
000 162 10102 ¢ CENT SIGN tl':l
000 163 10103 £ POUND SIGN ;S

<:"'>
<:::>

000 164 10104 Jl CURRENCY SIGN ~
~.

000 165 10105 :y: YEN SIGN C'Jq

000 166 10106 BROKEN VERTICAL BAR
000 167 10107 § PARAGRAPH SIGN, SECTION SIGN
000 168 10108 DIAERESIS
000 169 10109 @) COPYRIGHT SIGN
000 170 10/10 ~ FEMININE ORDINAL INDICATOR
000 171 10/11 « LEFT ANGLE QUOTATION MARK
000 172 10/12 -. NOT SIGN
000 174 10/14 ® REGISTERED TRADEMARK SIGN
000 175 10/15 MACRON
000 176 11100 DEGREE SIGN, RING ABOVE
000 177 11/01 ± PLUS-MINUS SIGN
000 178 11102 SUPERSCRIPT TWO
000 179 11103 3 SUPERSCRIPT THREE
000 180 11104 ACUTE ACCENT
000 181 11105 11 MICRO SIGN
000 182 11106 , PILCROW SIGN
000 183 11107 • MIDDLE DOT
000 184 11108 CEDILLA
000 185 11109 SUPERSCRIPT ONE
000 186 11110 MASCULINE ORDINAL INDICATOR

C,]l
0

""""" - C,;O

(.)1

Byte Byte Code Character Name I-'

~
3 4 Pos

000 187 11111 » RIGHT ANGLE QUOTATION MARK > 000 188 11/12 V4 VULGAR FRACTION ONE QUARTER ~
~

000 189 11113 1/2 VULGAR FRACTION ONE HALF tr1

000 190 11114 3,4 VULGAR FRACTION THREE QUARTERS Z
tj

000 191 11115 i INVERTED QUESTION MARK -><
000 192 12/00 A LATIN CAPITAL LETTER A WITH GRAVE ACCENT
000 193 12/01 A LATIN CAPITAL LETTER A WITH ACUTE ACCENT
000 194 12/02 A LATIN CAPITAL LETTER A WITH CIRCUMFLEX ACCENT
000 195 12/03 A LATIN CAPITAL LETTER A WITH TILDE
000 196 12/04 A LATIN CAPITAL LETTER A WITH DIAERESIS
000 197 12/05 A LATIN CAPITAL LETTER A WITH RING ABOVE
000 198 12/06 ~ LATIN CAPITAL DIPHTHONG AE
000 199 12/07 ~ LATIN CAPITAL LETTER C WITH CEDILLA
000 200 12/08 E LATIN CAPITAL LETTER E WITH GRAVE ACCENT
000 201 12/09 E LATIN CAPITAL LETTER E WITH ACUTE ACCENT
000 202 12110 E LATIN CAPITAL LETTER E WITH CIRCUMFLEX ACCENT
000 203 12111 E LATIN CAPITAL LETTER E WITH DIAERESIS
000 204 12/12 i LATIN CAPITAL LETTER I WITH GRAVE ACCENT
000 205 12/13 i LATIN CAPITAL LETTER I WITH ACUTE ACCENT
000 206 12/14 i LATIN CAPITAL LETTER I WITH CIRCUMFLEX ACCENT
000 207 12/15 LATIN CAPITAL LETTER I WITH DIAERESIS
000 208 13/00 f) ICELANDIC CAPITAL LETTER ETH
000 209 13/01 N LATIN CAPITAL LETTER N WITH TILDE
000 210 13/02 0 LATIN CAPITAL LETTER 0 WITH GRAVE ACCENT
000 211 13/03 6 LATIN CAPITAL LETTER 0 WITH ACUTE ACCENT
000 212 13/04 0 LATIN CAPITAL LETTER 0 WITH CIRCUMFLEX ACCENT
000 213 13/05 0 LATIN CAPITAL LETTER 0 WITH TILDE
000 214 13/06 0 LATIN CAPITAL LETTER 0 WITH DIAERESIS
000 215 13/07 X MULTIPLICATION SIGN

000 216 13/08 " LATIN CAPITAL LETTER 0 WITH OBLIQUE STROKE ~

000 217 13/09 (j LATIN CAPITAL LETTER U WITH GRAVE ACCENT ~
~

000 218 13/10 U LATIN CAPITAL LETTER U WITH ACUTE ACCENT ~
~

000 219 13/11 0 LATIN CAPITAL LETTER U WITH CIRCUMFLEX ACCENT
~.

000 220 13/12 0 LATIN CAPITAL LETTER U WITH DIAERESIS
~

000 221 13/13 Y LATIN CAPITAL LETTER Y WITH ACUTE ACCENT ~
000 222 13/14 P ICELANDIC CAPITAL LETTER THORN ~
000 223 13/15 f3 GERMAN SMALL LETTER SHARP s ~
000 224 14/00 a LATIN SMALL LETTER a WITH GRAVE ACCENT ~
000 225 14/01 a LATIN SMALL LETTER a WITH ACUTE ACCENT ~

~ c
000 226 14/02 a LATIN SMALL LETTER a WITH CIRCUMFLEX ACCENT ~

~.

000 227 14/03 a LATIN SMALL LETTER a WITH TILDE CIq

000 228 14/04 a LATIN SMALL LETTER a WITH DIAERESIS
000 229 14/05 6 LATIN SMALL LETTER a WITH RING ABOVE
000 230 14/06 iI! LATIN SMALL DIPHTHONG ae
000 231 14/07 ~ LATIN SMALL LETTER c WITH CEDILLA
000 232 14/08 e LATIN SMALL LETTER e WITH GRAVE ACCENT
000 233 14/09 e LATIN SMALL LETTER e WITH ACUTE ACCENT
000 234 14/10 e LATIN SMALL LETTER e WITH CIRCUMFLEX ACCENT
000 235 14/11 e LATIN SMALL LETTER e WITH DIAERESIS
000 236 14/12 LATIN SMALL LETTER i WITH GRAVE ACCENT
000 237 14/13 LATIN SMALL LETTER i WITH ACUTE ACCENT
000 238 14/14 LATIN SMALL LETTER i WITH CIRCUMFLEX ACCENT
000 239 14/15 , LATIN SMALL LETTER i WITH DIAERESIS
000 240 15/00 d ICELANDIC SMALL LETTER ETH
000 241 15/01 n LATIN SMALL LETTER n WITH TILDE
000 242 15/02 0 LATIN SMALL LETTER 0 WITH GRAVE ACCENT
000 243 15/03 6 LATIN SMALL LETTER 0 WITH ACUTE ACCENT
000 244 15/04 0 LATIN SMALL LETTER 0 WITH CIRCUMFLEX ACCENT
000 245 15105 6 LATIN SMALL LETTER 0 WITH TILDE
000 246 15/06 6 LATIN SMALL LETTER 0 WITH DIAERESIS
000 247 15/07 DIVISION SIGN

CJI

""""' CJI

(,)l

Byte Byte Code Character Name ~

0")

3 4 Pos

000 248 15/08 fl} LATIN SMALL LETTER 0 WITH OBLIQUE STROKE > 000 249 15/09 U LATIN SMALL LETTER u WITH GRAVE ACCENT '"d
'"d

000 250 15110 U LATIN SMALL LETTER u WITH ACUTE ACCENT t'l1

000 251 15/11 a LATIN SMALL LETTER u WITH CIRCUMFLEX ACCENT Z
t:'

000 252 15/12 (j LATIN SMALL LETTER u WITH DIAERESIS -><
000 253 15/13 Y LATIN SMALL LETTER Y WITH ACUTE ACCENT
000 254 15114 P ICELANDIC SMALL LETTER THORN
000 255 15/15 Y LATIN SMALL LETTER y WITH DIAERESIS

Latin-2 KEYSYM Set
001 161 10101 ~ LATIN CAPITAL LETTER A WITH OGONEK
001 162 10102 v BREVE
001 163 10103 t. LATIN CAPITAL LETTER L WITH STROKE
001 165 10/05 LV LATIN CAPITAL LETTER L WITH CARON
001 166 10106 S LATIN CAPITAL LETTER S WITH ACUTE ACCENT
001 169 10109 S LATIN CAPITAL LETTER S WITH CARON
001 170 10/10 S LATIN CAPITAL LETTER S WITH CEDILLA
001 171 10/11 f LATIN CAPITAL LETTER T WITH CARON
001 172 10/12 Z LATIN CAPITAL LETTER Z WITH ACUTE ACCENT
001 174 10/14 i LATIN CAPITAL LETTER Z WITH CARON
001 175 10/15 i LATIN CAPITAL LETTER Z WITH DOT ABOVE
001 177 11101 ij LATIN SMALL LETTER a WITH OGONEK
001 178 11102 OGONEK
001 179 11103 t LATIN SMALL LETTER 1 WITH STROKE
001 181 11105 r LATIN SMALL LETTER 1 WITH CARON
001 182 11106 S LATIN SMALL LETTER s WITH ACUTE ACCENT
001 183 11107 CARON
001 185 11109 S LATIN SMALL LETTER s WITH CARON
001 186 11110 ~ LATIN SMALL LETTER s WITH CEDILLA

001 187 11111 f LATIN SMALL LETTER t WITH CARON ~

001 188 11112 Z LATIN SMALL LETTER z WITH ACUTE ACCENT ~
C'::>

001 189 11113 " DOUBLE ACUTE ACCENT ~
~

001 190 11114 Z LATIN SMALL LETTER z WITH CARON
~.

~
001 191 1111S i LATIN SMALL LETTER z WITH DOT ABOVE

~ 001 192 12/00 R LATIN CAPITAL LETTER R WITH ACUTE ACCENT
001 19S 12/03 A LATIN CAPITAL LETTER A WITH BREVE ~
001 197 12/0S [LATIN CAPITAL LETTER L WITH ACUTE ACCENT ~
001 198 12/06 C LATIN CAPITAL LETTER C WITH ACUTE ACCENT ~
001 200 12/08 C LATIN CAPITAL LETTER C WITH CARON ~

C")

c
001 202 12/10 ~ LATIN CAPITAL LETTER E WITH OGONEK ~

001 204 12/12 E LATIN CAPITAL LETTER E WITH CARON
~.

001 207 12/1S 0 LATIN CAPITAL LETTER D WITH CARON
001 208 13/00 f) LATIN CAPITAL LETTER D WITH STROKE
001 209 13/01 N LATIN CAPITAL LETTER N WITH ACUTE ACCENT
001 210 13/02 N LATIN CAPITAL LETTER N WITH CARON
001 213 13/0S 0 LATIN CAPITAL LETTER 0 WITH DOUBLE ACUTE ACCENT
001 216 13/08 R LATIN CAPITAL LETTER R WITH CARON
001 217 13/09 U LATIN CAPITAL LETTER U WITH RING ABOVE
001 219 13/11 0 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE ACCENT
001 222 13/14 T LATIN CAPITAL LETTER T WITH CEDILLA
001 224 14/00 {- LATIN SMALL LETTER r WITH ACUTE ACCENT
001 227 14/03 a LATIN SMALL LETTER a WITH BREVE
001 229 14/0S r LATIN SMALL LETTER 1 WITH ACUTE ACCENT
001 230 14/06 C LATIN SMALL LETTER c WITH ACUTE ACCENT
001 232 14/08 C LATIN SMALL LETTER c WITH CARON
001 234 14/10 ~ LATIN SMALL LETTER e WITH OGONEK
001 236 14/12 e LATIN SMALL LETTER e WITH CARON
001 239 14/1S a LATIN SMALL LETTER d WITH CARON
001 240 lS/00 d LATIN SMALL LETTER d WITH STROKE
001 241 lS/01 ri LATIN SMALL LETTER n WITH ACUTE ACCENT
001 242 lS/02 Ii LATIN SMALL LETTER n WITH CARON

c.n
I-'
.....:r

c.n
Byte Byte Code Character Name '""' 00
3 4 Pos

001 245 15/05 <> LATIN SMALL LETTER 0 WITH DOUBLE ACUTE ACCENT > 001 248 15/08 r LATIN SMALL LETTER r WITH CARON ""0

001 249 15/09 U LATIN SMALL LETTER u WITH RING ABOVE
""0
t'l1

001 251 15/11 (j LATIN SMALL LETTER u WITH DOUBLE ACUTE ACCENT Z
d

001 254 15114 t LATIN SMALL LETTER t WITH CEDILLA ~

~
001 255 15/15 DOT ABOVE

Latin-3 KEYSYM Set
002 161 10101 it LATIN CAPITAL LETTER H WITH STROKE

002 166 10106 A LATIN CAPITAL LETTER H WITH CIRCUMFLEX ACCENT

002 169 10109 i LATIN CAPITAL LETTER I WITH DOT ABOVE
002 171 10/11 G LATIN CAPITAL LETTER G WITH BREVE

002 172 10/12 j LATIN CAPITAL LETTER J WITH CIRCUMFLEX ACCENT

002 177 11101 n LATIN SMALL LETTER h WITH STROKE
002 182 11/06 ti LATIN SMALL LETTER h WITH CIRCUMFLEX ACCENT
002 185 11/09 SMALL DOTLESS LETTER i
002 187 11111 9 LATIN SMALL LETTER g WITH BREVE

002 188 11112 j LATIN SMALL LETTER j WITH CIRCUMFLEX ACCENT

002 197 12/05 t LATIN CAPITAL LETTER C WITH DOT ABOVE

002 198 12/06 C LATIN CAPITAL LETTER C WITH CIRCUMFLEX ACCENT

002 213 13/05 G LATIN CAPITAL LETTER G WITH DOT ABOVE

002 216 13/08 G LATIN CAPITAL LETTER G WITH CIRCUMFLEX ACCENT
002 221 13/13 U LATIN CAPITAL LETTER U WITH BREVE

002 222 13114 S LATIN CAPITAL LETTER S WITH CIRCUMFLEX ACCENT

002 229 14/05 C LATIN SMALL LETTER c WITH DOT ABOVE
002 230 14/06 C LATIN SMALL LETTER c WITH CIRCUMFLEX ACCENT

002 245 15/05 9 LATIN SMALL LETTER g WITH DOT ABOVE
002 248 15/08 9 LATIN SMALL LETTER g WITH CIRCUMFLEX ACCENT

002 253 15113 U LATIN SMALL LETTER u WITH BREVE ~

002 254 15114 S LATIN SMALL LETTER s WITH CIRCUMFLEX ACCENT
:g:
~
;'S
~

Latin-4 KEYSYM Set
~.

003 162 10102 K LATIN SMALL LETTER KAPPA ~

003 163 10103 ~ LATIN CAPITAL LETTER R WITH CEDILLA ~
003 165 10105 i LATIN CAPITAL LETTER I WITH TILDE ~
003 166 10106 ~ LATIN CAPITAL LETTER L WITH CEDILLA ~
003 170 10110 E LATIN CAPITAL LETTER E WITH MACRON ~

003 171 10/11 9 LATIN CAPITAL LETTER G WITH CEDILLA ;'S
~
c

003 172 10/12 :f LATIN CAPITAL LETTER T WITH OBLIQUE STROKE ~
~.

003 179 11103 ~ LATIN SMALL LETTER r WITH CEDILLA 0I::l

003 181 11105 i LATIN SMALL LETTER i WITH TILDE
003 182 11106 LATIN SMALL LETTER 1 WITH CEDILLA
003 186 11110 e LATIN SMALL LETTER e WITH MACRON
003 187 11111 9 LATIN SMALL LETTER g WITH ACUTE ACCENT
003 188 11112 t LATIN SMALL LETTER t WITH OBLIQUE STROKE
003 189 11/13 0 LAPPISH CAPITAL LETTER ENG
003 191 11115 f) LAPPISH SMALL LETTER ENG
003 192 12/00 A LATIN CAPITAL LETTER A WITH MACRON
003 199 12/07 l LATIN CAPITAL LETTER I WITH OGONEK
003 204 12/12 E LATIN CAPITAL LETTER E WITH DOT ABOVE
003 207 12/15 i LATIN CAPITAL LETTER I WITH MACRON
003 209 13/01 ~ LATIN CAPITAL LETTER N WITH CEDILLA
003 210 13/02 0 LATIN CAPITAL LETTER 0 WITH MACRON
003 211 13/03 ~ LATIN CAPITAL LETTER K WITH CEDILLA
003 217 13/09 IJ LATIN CAPITAL LETTER U WITH OGONEK
003 221 13/13 0 LATIN CAPITAL LETTER U WITH TILDE
003 222 13/14 0 LATIN CAPITAL LETTER U WITH MACRON
003 224 14/00 a LATIN SMALL LETTER a WITH MACRON
003 231 14/07 i LATIN SMALL LETTER i WITH OGONEK
003 236 14/12 e LATIN SMALL LETTER e WITH DOT ABOVE

c.J1
......
(.0

Code
CJ1

Byte Byte Character Name NI
0

3 4 Pos

003 239 14115 LATIN SMALL LETTER i WITH MACRON
)-

003 241 15/01 Q LATIN SMALL LETTER n WITH CEDILLA ."

003 242 15/02 0 LATIN SMALL LETTER 0 WITH MACRON
."
rz1

003 243 15/03 ~ LATIN SMALL LETTER k WITH CEDILLA Z
0

003 249 15/09 IJ LATIN SMALL LETTER u WITH OGONEK -:x:
003 253 15/13 (j LATIN SMALL LETTER u WITH TILDE
003 254 15/14 (j LATIN SMALL LETTER u WITH MACRON

Kana KEYSYM Set
004 126 07/14 OVERLINE
004 161 10101 KANA FULL STOP
004 162 10102 KANA OPENING BRACKET
004 163 10103 J KANA CLOSING BRACKET
004 164 10104 KANA COMMA
004 165 10105 KANA MIDDLE DOT
004 166 10106 , KANA LETTER WO
004 167 10107 7' KANA LETTER SMALL A
004 168 10108 -(KANA LETTER SMALL I
004 169 10109 ., KANA LETTER SMALL U
004 170 10/10 z KANA LETTER SMALL E
004 171 10/11 ". KANA LETTER SMALL 0
004 172 10/12 ~ KANA LETTER SMALL YA
004 173 10113 ~ KANA LETTER SMALL YU
004 174 10/14 3 KANA LETTER SMALL YO
004 175 10115 ':I KANA LETTER SMALL TU
004 176 11100 PROLONGED SOUND SYMBOL
004 177 11101 7 KANA LETTER A
004 178 11102 ~ KANA LETTER I
004 179 11103 ., KANA LETTER U

004 180 11104 z KANA LETTER E ~

004 181 11105 * KANA LETTER 0 ~
~

004 182 11106 1J KANA LETTER KA ~
~

004 183 11107 ~ KANA LETTER KI
~.

004 184 11108 ? KANA LETTER KU ~

004 185 11109 Jr KANA LETTER KE ~
004 186 11110 :l KANA LETTER KO ~
004 187 11111 it KANA LETTER SA ~
004 188 11112 ~ KANA LETTER SHI ~
004 189 11113 A KANA LETTER SU ~

~ c
004 190 11114 -t! KANA LETTER SE ~

~.
004 191 11115 '/ KANA LETTER SO C"Iq

004 192 12/00 ? KANA LETTER TA
004 193 12/01 7- KANA LETTER TI
004 194 12/02 .~ KANA LETTER TU
004 195 12/03 T KANA LETTER TE
004 196 12/04 ,. KANA LETTER TO
004 197 12/05 -r KANA LETTER NA
004 198 12/06 .: KANA LETTER NI
004 199 12/07)I KANA LETTER NU
004 200 12/08 * KANA LETTER NE
004 201 12/09 / KANA LETTER NO
004 202 12/10 ,\ KANA LETTER HA
004 203 12/11 t: KANA LETTER HI
004 204 12/12 7 KANA LETTER HU
004 205 12/13 "- KANA LETTER HE
004 206 12/14 if; KANA LETTER HO
004 207 12/15 "7 KANA LETTER MA
004 208 13/00 ~ KANA LETTER MI
004 209 13/01 A KANA LETTER MU
004 210 13/02 ~ KANA LETTER ME
004 211 13/03 ~ KANA LETTER MO

U1
Nl
I--'

Byte Byte Code Character Name
<Jl
~
~

3 4 Pos

004 212 13/04 "" KANA LETTER YA > 004 213 13/05 .:1 KANA LETTER YU ~

004 214 13/06 :I KANA LETTER YO
~
~

004 215 13/07 '7 KANA LETTER RA Z
tj

004 216 13/08 I) KANA LETTER RI ~

~
004 217 13/09 JI- KANA LETTER RU
004 218 13/10 v KANA LETTER RE
004 219 13/11 c KANA LETTER RO
004 220 13/12 f"J KANA LETTER WA
004 221 13/13 ;.,; KANA LETTER N
004 222 13/14 VOICED SOUND SYMBOL
004 223 13115 SEMIVOICED SOUND SYMBOL

Arabic KEYSYM Set
005 172 10/12 ARABIC COMMA
005 187 11111 ARABIC SEMICOLON
005 191 11115 f ARABIC QUESTION MARK
005 193 12/01 ARABIC LETTER HAMZA
005 194 12102 T ARABIC LETTER MADDA ON ALEF
005 195 12/03 ARABIC LETTER HAMZA ON ALEF
005 196 12/04 ARABIC LETTER HAMZA ON WAW
005 197 12/05 ARABIC LETTER HAMZA UNDER ALEF
005 198 12/06 .:. ARABIC LETTER HAMZA ON YEH
005 199 12/07 ARABIC LETTER ALEF
005 200 12/08 y ARABIC LETTER BEH
005 201 12/09 ; ARABIC LETTER TEH MARBUTA
005 202 12/10 0 ARABIC LETTER TEH
005 203 12/11

A

ARABIC LETTER THEH ~

005 204 12/12 [ARABIC LETTER JEEM

005 205 12/13 t ARABIC LETTER HAH ~

005 206 12/14 t ARABIC LETTER KHAH :g:
~

207 ;;::l 005 12/15 ~ ARABIC LETTER DAL ~

005 208 13/00 ,; ARABIC LETTER THAL
~.

005 209 13/01 ARABIC LETTER RA ~
J

~ 005 210 13/02 J ARABIC LETTER ZAIN
005 211 13/03 ...,... ARABIC LETTER SEEN ~
005 212 13/04 .. ARABIC LETTER SHEEN ~ ...,...
005 213 13/05

~
ARABIC LETTER SAD tl::l

005 214 13/06 ~ ARABIC LETTER DAD ;;::l
C"'l c

005 215 13/07 .k ARABIC LETTER TAH ~
~.

005 216 13/08 J.;. ARABIC LETTER ZAH CTq

005 217 13/09 t ARABIC LETTER AIN
005 218 13/10 t ARABIC LETTER GHAIN
005 224 14/00 ARABIC LETTER TATWEEL
005 225 14/01 J ARABIC LETTER FEH
005 226 14/02 ~ ARABIC LETTER QAF
005 227 14/03 I!J ARABIC LETTER KAF
005 228 14/04 J ARABIC LETTER LAM
005 229 14/05 r ARABIC LETTER MEEM
005 230 14/06 0 ARABIC LETTER NOON
005 231 14/07 ARABIC LETTER HEH
005 232 14/08 J ARABIC LETTER WAW
005 233 14/09 J. ARABIC LETTER ALEF MAKSURA
005 234 14/10 .s ARABIC LETTER YEH
005 235 14/11 ARABIC LETTER FATHATAN
005 236 14/12 '/ ARABIC LETTER DAMMATAN
005 237 14/13 ARABIC LETTER KASRATAN
005 238 14/14 ARABIC LETTER FATHA
005 239 14/15 ARABIC LETTER DAMMA
005 240 15/00 ARABIC LETTER KASRA
005 241 15/01 ARABIC LETTER SHADDA

lJl
J'\D
(.)0

005 242 15/02 ARABIC LETTER SUKUN

C,l{

Byte Byte Code Character Name ~
~

3 4 Pos

Cyrillic KEYSYM Set > 006 161 10101 b SERBIAN SMALL LETTER D JE ""0

006 162 10102 t MACEDONIA SMALL LETTER G JE ""0
t"r1

006 163 10103 e CYRILLIC SMALL LETTER 10 Z
t;:j

006 164 10104 € UKRAINIAN SMALL LETTER JE -:x
006 165 10105 s MACEDONIA SMALL LETTER DSE
006 166 10106 i UKRAINIAN SMALL LETTER I
006 167 10107 UKRAINIAN SMALL LETTER YI
006 168 10108 j SERBIAN SMALL LETTER JE
006 169 10109 lob SERBIAN SMALL LETTER LJE
006 170 10/10 1'1 SERBIAN SMALL LETTER NJE
006 171 10/11 K SERBIAN SMALL LETTER TSHE
006 172 10/12 Jb MACEDONIA SMALL LETTER KJE
006 174 10/14 Y BYELORUSSIAN SMALL LETTER SHORT U
006 175 lOllS y SERBIAN SMALL LETTER DZE
006 176 11100 N!~ NUMERO SIGN
006 177 11/01 C SERBIAN CAPITAL LETTER DJE
006 178 11102 t MACEDONIA CAPITAL LETTER GJE
006 179 11103 £ CYRILLIC CAPITAL LETTER 10
006 180 11104 € UKRAINIAN CAPITAL LETTER JE
006 181 11105 S MACEDONIA CAPITAL LETTER DSE
006 182 11106 UKRAINIAN CAPITAL LETTER I
006 183 11107 i' UKRAINIAN CAPITAL LETTER YI
006 184 11108 J SERBIAN CAPITAL LETTER JE
006 185 11109 I-b SERBIAN CAPITAL LETTER LJE
006 186 11110 11 SERBIAN CAPITAL LETTER NJE
006 187 11111 Jb SERBIAN CAPITAL LETTER TSHE
006 188 11/12 K MACEDONIA CAPITAL LETTER KJE
006 190 11114 Y BYELORUSSIAN CAPITAL LETTER SHORT U

006 191 11115 V SERBIAN CAPITAL LETTER DZE ~

006 192 12/00 10 CYRILLIC SMALL LETTER YU ~
t:'>:I

006 193 12/01 a CYRILLIC SMALL LETTER A ~
~

006 194 12/02 6 CYRILLIC SMALL LETTER BE
~.

~
006 195 12/03 n CYRILLIC SMALL LETTER TSE
006 196 12/04 Ll CYRILLIC SMALL LETTER DE ~
006 197 12/05 e CYRILLIC SMALL LETTER IE ~
006 198 12/06 QJ CYRILLIC SMALL LETTER EF ~
006 199 12/07 r CYRILLIC SMALL LETTER GHE ~
006 200 12/08 x CYRILLIC SMALL LETTER HA ~

<:')
c

006 201 12/09 II CYRILLIC SMALL LETTER I ~
v ~.

006 202 12/10 II CYRILLIC SMALL LETTER SHORT I CTq

006 203 12/11 K CYRILLIC SMALL LETTER KA
006 204 12/12 11 CYRILLIC SMALL LETTER EL
006 205 12/13 M CYRILLIC SMALL LETTER EM
006 206 12/14 H CYRILLIC SMALL LETTER EN
006 207 12/15 0 CYRILLIC SMALL LETTER 0
006 208 13/00 IT CYRILLIC SMALL LETTER PE
006 209 13/01 H CYRILLIC SMALL LETTER YA
006 210 13/02 p CYRILLIC SMALL LETTER ER
006 211 13/03 c CYRILLIC SMALL LETTER ES
006 212 13/04 T CYRILLIC SMALL LETTER TE
006 213 13/05 y CYRILLIC SMALL LETTER U
006 214 13/06 iK CYRILLIC SMALL LETTER ZHE
006 215 13/07 B CYRILLIC SMALL LETTER VE
006 216 13/08 b CYRILLIC SMALL SOFT SIGN
006 217 13/09 bI CYRILLIC SMALL LETTER YERU
006 218 13/10 3 CYRILLIC SMALL LETTER ZE
006 219 13/11 ill CYRILLIC SMALL LETTER SHA
006 220 13/12 :3 CYRILLIC SMALL LETTER E
006 221 13/13 W; CYRILLIC SMALL LETTER SHCHA
006 222 13/14 CYRILLIC SMALL LETTER CHE

~
q ~

~

c..n
Byte Byte Code Character Name J\:)

O'l
3 4 Pos

006 223 13/15 1> CYRILLIC SMALL HARD SIGN > 006 224 14/00 10 CYRILLIC CAPITAL LETTER YU ""0

006 225 14/01 A CYRILLIC CAPITAL LETTER A
""0
t:r::1

006 226 14/02 B CYRILLIC CAPITAL LETTER BE Z
~

006 227 14/03 u: CYRILLIC CAPITAL LETTER TSE -:x
006 228 14/04 ,[(CYRILLIC CAPITAL LETTER DE
006 229 14/05 E CYRILLIC CAPITAL LETTER IE
006 230 14/06 cI> CYRILLIC CAPITAL LETTER EF
006 231 14/07 r CYRILLIC CAPITAL LETTER GHE
006 232 14/08 X CYRILLIC CAPITAL LETTER HA
006 233 14/09 I1 CYRILLIC CAPITAL LETTER I
006 234 14110 if CYRILLIC CAPITAL LETTER SHORT I
006 235 14111 K CYRILLIC CAPITAL LETTER KA
006 236 14/12 11 CYRILLIC CAPITAL LETTER EL
006 237 14/13 M CYRILLIC CAPITAL LETTER EM
006 238 14114 H CYRILLIC CAPITAL LETTER EN
006 239 14/15 0 CYRILLIC CAPITAL LETTER 0
006 240 15/00 I1 CYRILLIC CAPITAL LETTER PE
006 241 15/01 R CYRILLIC CAPITAL LETTER YA
006 242 15/02 P CYRILLIC CAPITAL LETTER ER
006 243 15/03 C CYRILLIC CAPITAL LETTER ES
006 244 15/04 T CYRILLIC CAPITAL LETTER TE
006 245 15/05 Y CYRILLIC CAPITAL LETTER U
006 246 15/06)K CYRILLIC CAPITAL LETTER ZHE
006 247 15/07 B CYRILLIC CAPITAL LETTER VE
006 248 15/08 b CYRILLIC CAPITAL SOFT SIGN
006 249 15/09 bI CYRILLIC CAPITAL LETTER YERU
006 250 15/10 3 CYRILLIC CAPITAL LETTER ZE
006 251 15111 III CYRILLIC CAPITAL LETTER SHA

006 252 15/12 3 CYRILLIC CAPITAL LETTER E ~

006 253 15/13 m CYRILLIC CAPITAL LETTER SHCHA :g:
~

006 254 15/14 q CYRILLIC CAPITAL LETTER CHE
;S
~

006 255 15/15 'b CYRILLIC CAPITAL HARD SIGN
~.

~

Greek KEYSYM Set ~
007 161 10101 'A GREEK CAPITAL LETTER ALPHA WITH ACCENT ~
007 162 10102 'E GREEK CAPITAL LETTER EPSILON WITH ACCENT ~
007 163 10103 'H GREEK CAPITAL LETTER ETA WITH ACCENT ~
007 164 10104 'I GREEK CAPITAL LETTER IOTA WITH ACCENT ;s

C"'>

i'
c

007 165 10105 GREEK CAPITAL LETTER IOTA WITH DIAERESIS ~

007 166 10106 'i' GREEK CAPITAL LETTER IOTA WITH ACCENT + DIAERESIS
~.

CIq

007 167 10107 '0 GREEK CAPITAL LETTER OMICRON WITH ACCENT
007 168 10108 'T GREEK CAPITAL LETTER UPSILON WITH ACCENT
007 169 10109 l' GREEK CAPITAL LETTER UPSILON WITH DIAERESIS
007 170 10/10 '1' GREEK CAPITAL LETTER UPSILON WITH ACCENT + DIAERESIS
007 171 10/11 '0 GREEK CAPITAL LETTER OMEGA WITH ACCENT
007 177 11/01 a GREEK SMALL LETTER ALPHA WITH ACCENT
007 178 11102 € GREEK SMALL LETTER EPSILON WITH ACCENT
007 179 11103 ~ GREEK SMALL LETTER ETA WITH ACCENT
007 180 11104 GREEK SMALL LETTER IOTA WITH ACCENT
007 181 11105 GREEK SMALL LETTER IOTA WITH DIAERESIS
007 182 11106 GREEK SMALL LETTER IOTA WITH ACCENT + DIAERESIS
007 183 11107 6 GREEK SMALL LETTER OMICRON WITH ACCENT
007 184 11108 " GREEK SMALL LETTER UPSILON WITH ACCENT
007 185 11109 v GREEK SMALL LETTER UPSILON WITH DIAERESIS ,
007 186 11/10 jj GREEK SMALL LETTER UPSILON WITH ACCENT + DIAERESIS
007 187 11/11

,
GREEK SMALL LETTER OMEGA WITH ACCENT w

007 193 12/01 A GREEK CAPITAL LETTER ALPHA
007 194 12/02 B GREEK CAPITAL LETTER BETA
007 195 12/03 r GREEK CAPITAL LETTER GAMMA
007 196 12/04 L\ GREEK CAPITAL LETTER DELTA

~
~
'J

c..n
Byte Byte Code Character Name N)

00
3 4 Pos

007 197 12/05 E GREEK CAPITAL LETTER EPSILON >
007 198 12/06 Z GREEK CAPITAL LETTER ZETA ~

~
007 199 12/07 H GREEK CAPITAL LETTER ETA t"rj

007 200 12/08 9 GREEK CAPITAL LETTER THETA Z
t::'

007 201 12/09 I GREEK CAPITAL LETTER IOTA -X
007 202 12/10 K GREEK CAPITAL LETTER KAPPA
007 203 12/11 A GREEK CAPITAL LETTER LAMBDA
007 204 12/12 M GREEK CAPITAL LETTER MU
007 205 12113 N GREEK CAPITAL LETTER NU
007 206 12114 2: GREEK CAPITAL LETTER XI
007 207 12/15 0 GREEK CAPITAL LETTER OMICRON
007 208 13/00 II GREEK CAPITAL LETTER PI
007 209 13/01 P GREEK CAPITAL LETTER RHO
007 210 13/02 E GREEK CAPITAL LETTER SIGMA
007 212 13/04 T GREEK CAPITAL LETTER TAU
007 213 13/05 T GREEK CAPITAL LETTER UPSILON
007 214 13/06 <I> GREEK CAPITAL LETTER PHI
007 215 13/07 X GREEK CAPITAL LETTER CHI
007 216 13/08 'lr GREEK CAPITAL LETTER PSI
007 217 13/09 0 GREEK CAPITAL LETTER OMEGA
007 225 14/01 ex GREEK SMALL LETTER ALPHA
007 226 14/02 (3 GREEK SMALL LETTER BETA
007 227 14/03 l' GREEK SMALL LETTER GAMMA
007 228 14/04 () GREEK SMALL LETTER DELTA
007 229 14/05 € GREEK SMALL LETTER EPSILON
007 230 14/06 S GREEK SMALL LETTER ZETA
007 231 14/07 1'/ GREEK SMALL LETTER ETA
007 232 14/08 0 GREEK SMALL LETTER THETA
007 233 14/09 GREEK SMALL LETTER IOTA

007 234 14/10 K GREEK SMALL LETTER KAPPA ~

007 23S 14/11 A GREEK SMALL LETTER LAMBDA ~
~

007 236 14/12 J.t GREEK SMALL LETTER MU
;s
~

007 237 14/13 JI GREEK SMALL LETTER NU
~.

007 238 14/14 ~ GREEK SMALL LETTER XI ~

007 239 14/1S 0 GREEK SMALL LETTER OMICRON ~
007 240 IS/OO 7r GREEK SMALL LETTER PI ~
007 241 IS/OI p GREEK SMALL LETTER RHO ~
007 242 IS/02 (J GREEK SMALL LETTER SIGMA tl-:I
007 243 IS/03 ~ GREEK SMALL LETTER FINAL SMALL SIGMA ;s

"" c
007 244 IS/04 r GREEK SMALL LETTER TAU ~

~.

007 24S IS/OS JI GREEK SMALL LETTER UPSILON CTq

007 246 IS/06 cf> GREEK SMALL LETTER PHI
007 247 IS/07 X GREEK SMALL LETTER CHI
007 248 IS/08 1/; GREEK SMALL LETTER PSI
007 249 IS/09 w GREEK SMALL LETTER OMEGA

Technical KEYSYM Set
008 161 10101 oj LEFT RADICAL
008 162 10102 r TOP LEFT RADICAL
008 163 10103 HORIZONTAL CONNECTOR
008 164 10104 r TOP INTEGRAL
008 16S 10lOS J BOTTOM INTEGRAL
008 166 10106 I VERTICAL CONNECTOR
008 167 10107 r TOP LEFT SQUARE BRACKET
008 168 10108 L BOTTOM LEFT SQUARE BRACKET
008 169 10109 1 TOP RIGHT SQUARE BRACKET
008 170 10/10 J BOTTOM RIGHT SQUARE BRACKET
008 171 10/11 (TOP LEFT PARENTHESIS
008 172 10/12 t BOTTOM LEFT PARENTHESIS
008 173 10/13) TOP RIGHT PARENTHESIS
008 174 10/14) BOTTOM RIGHT PARENTHESIS

\,)l

NJ
(.0

iJl
Byte Byte Code Character Name t.lO

0
3 4 Pos

008 175 10/15 1 LEFT MIDDLE CURLY BRACE >-
008 176 11100 ~ RIGHT MIDDLE CURLY BRACE '"d

'"d
008 177 11101 ~ TOP LEFT SUMMATION t:r:!

008 178 11102 L BOTTOM LEFT SUMMATION Z
~

008 179 11103 \ TOP VERTICAL SUMMATION CONNECTOR
:x

008 180 11104 / BOTTOM VERTICAL SUMMATION CONNECTOR
008 181 11105 .., TOP RIGHT SUMMATION
008 182 11106 --' BOTTOM RIGHT SUMMATION
008 183 11107) RIGHT MIDDLE SUMMATION
008 188 11/12 S LESS THAN OR EQUAL SIGN
008 189 11/13 = NOT EQUAL SIGN
008 190 11114 ~ GREATER THAN OR EQUAL SIGN
008 191 11115 1 INTEGRAL
008 192 12/00 . THEREFORE . .
008 193 12/01 ex: VARIATION, PROPORTIONAL TO

008 194 12/02 00 INFINITY
008 197 12/05 V NABLA,DEL
008 200 12/08 IS APPROXIMATE TO
008 201 12/09 ~ SIMILAR OR EQUAL TO
008 205 12/13 ¢:) IF AND ONLY IF
008 206 12/14 :::) IMPLIES
008 207 12115 - IDENTICAL TO
008 214 13/06 V RADICAL
008 218 13110 c: IS INCLUDED IN
008 219 13/11 :J INCLUDES
008 220 13/12 n INTERSECTION
008 221 13/13 U UNION
008 222 13/14 A LOGICAL AND
008 223 13/15 V LOGICAL OR

008 239 14/1S a PARTIAL DERIVATIVE ~

008 246 IS/06 f FUNCTION ~
~

008 2S1 IS/II +- LEFT ARROW ~
~

008 2S2 IS/12 t UPWARD ARROW
~.

tr:I
008 2S3 IS/13 .. RIGHT ARROW
008 2S4 IS/14 "- DOWNWARD ARROW ~

~
Special KEYSYM Set ~
009 223 13/1S (BLANK) BLANK tr:I
009 224 14/00 • SOLID DIAMOND ~

<"> c
009 22S 14/01 I CHECKERBOARD ~

~.
009 226 14/02 ~ "HT" ~

009 227 14/03 ~ "FF"
009 228 14/04 i "CR"
009 229 14/0S "LF"
009 232 14/08 "NL"
009 233 14/09 "VT"
009 234 14/10 LOWER-RIGHT CORNER
009 23S 14/11 UPPER-RIGHT CORNER
009 236 14/12 UPPER-LEFT CORNER
009 237 14/13 LOWER-LEFT CORNER
009 238 14/14 t CROSSIN G-LINES
009 239 14/1S

SCAN)
HORIZONTAL LINE, SCAN 1

009 240 IS/OO - HORIZONTAL LINE, SCAN 3 SCAN 3

009 241 IS/OI - HORIZONTAL LINE, SCAN S SCAN 5

009 242 IS/02 - HORIZONTAL LINE, SCAN 7
SCAN 1

009 243 IS/03 SCAN 9 HORIZONTAL LINE, SCAN 9
009 244 IS/04 ~ LEFT "T"
009 24S IS/oS i RIGHT "T"
009 246 IS/06 .L. BOTTOM "T"
009 247 IS/07 T TOP"T"
009 248 IS/08 VERTICAL BAR

<J"l
ColO
.......

c..n
Byte Byte Code Character Name 1:.>0

M
3 4 Pos

Publish KEYSYM Set >
010 161 10101 E~1 SPACE "'C

"'C
010 162 10102 EN SPACE tr1

010 163 10103 3/EM SPACE Z
tj

010 164 10104 4/EM SPACE -~
010 165 10105 DIGIT SPACE
010 166 10106 PUNCTUATION SPACE
010 167 10107 THIN SPACE
010 168 10108 HAIR SPACE
010 169 10109 EM DASH
010 170 10/10 EN DASH
010 172 10/12 SIGNIFICANT BLANK SYMBOL
010 174 10/14 ELLIPSIS
010 175 lOllS DOUBLE BASELINE DOT
010 176 11100 113 VULGAR FRACTION ONE THIRD
010 177 11101 2;3 VULGAR FRACTION TWO THIRDS
010 178 11102 Ys VULGAR FRACTION ONE FIFTH
010 179 11103 % VULGAR FRACTION TWO FIFTHS
010 180 11104 % VULGAR FRACTION THREE FIFTHS
010 181 11105 'Ys VULGAR FRACTION FOUR FIFTHS
010 182 11106 V6 VULGAR FRACTION ONE SIXTH
010 183 11107 5fs VULGAR FRACTION FIVE SIXTHS
010 184 11108 % CARE OF
010 187 11111 FIGURE DASH
010 188 11112 LEFT ANGLE BRACKET
010 189 11113 DECIMAL POINT
010 190 11114 RIGHT ANGLE BRACKET
010 191 11115 MARKER
010 195 12/03 Va VULGAR FRACTION ONE EIGHTH

010 196 12/04 % VULGAR FRACTION THREE EIGHTHS ~

010 197 12/05 % VULGAR FRACTION FIVE EIGHTHS ~
~

010 198 12/06 VULGAR FRACTION SEVEN EIGHTHS ~
7/e ~

010 201 12/09 TM TRADEMARK SIGN
~.

~
010 202 12/10 8M SIGNATURE MARK
010 203 12/11 @ TRADEMARK SIGN IN CIRCLE ~
010 204 12/12 <l LEFT OPEN TRIANGLE ~
010 205 12/13 t> RIGHT OPEN TRIANGLE ~
010 206 12/14 0 EM OPEN CIRCLE ~
010 207 12/15 0 EM OPEN RECTANGLE ~

C'>
c

010 208 13/00 LEFT SINGLE QUOTATION MARK ~
~.

010 209 13/01 RIGHT SINGLE QUOTATION MARK ~

010 210 13/02 LEFT DOUBLE QUOTATION MARK
010 211 13/03 RIGHT DOUBLE QUOTATION MARK
010 212 13/04 R PRESCRIPTION, TAKE, RECIPE
010 214 13/06 MINUTES
010 215 13/07 SECONDS
010 217 13/09 LATIN CROSS
010 218 13/10 * HEXAGRAM
010 219 13/11 • FILLED RECTANGLE BULLET
010 220 13/12 ... FILLED LEFT TRIANGLE BULLET
010 221 13/13 ~ FILLED RIGHT TRIANGLE BULLET
010 222 13/14 • EM FILLED CIRCLE
010 223 13/15 • EM FILLED RECTANGLE
010 224 14/00 0 EN OPEN CIRCLE BULLET
010 225 14/01 0 EN OPEN SQUARE BULLET
010 226 14/02 Cl OPEN RECTANGULAR BULLET
010 227 14/03 A OPEN TRIANGULAR BULLET UP
010 228 14/04 " OPEN TRIANGULAR BULLET DOWN
010 229 14/05 * OPEN STAR
010 230 14/06 • EN FILLED CIRCLE BULLET

231 14/07 • EN FILLED SQUARE BULLET
C,Jl

010 (,)0
(,)0

U1
Byte Byte Code Character Name (.)0

~
3 4 Pos

010 232 14/08 A FILLED TRIANGULAR BULLET UP > 010 233 14/09 'Y FILLED TRIANGULAR BULLET DOWN ~

010 234 14110 LEFT POINTER
~
~

010 23S 14/11 RIGHT POINTER Z
~

010 236 14/12 "" CLUB -><
010 237 14/13 • DIAMOND
010 238 14/14 • HEART
010 240 lS/OO + MALTESE CROSS
010 241 lS/01 t DAGGER
010 242 lS/02 :J: DOUBLE DAGGER
010 243 lS/o3 -I CHECK MARK, TICK
010 244 lS/04 X BALLOT CROSS
010 24S lS/OS # MUSICAL SHARP
010 246 lS/06 MUSICAL FLAT

010 247 IS/07 cf MALE SYMBOL
010 248 lS/08 9 FEMALE SYMBOL
010 249 lS/09 it TELEPHONE SYMBOL
010 2S0 lS/10 0 TELEPHONE RECORDER SYMBOL
010 2S1 lS/ll ® PHONOGRAPH COPYRIGHT SIGN
010 2S2 lSI12 CARET
010 2S3 lS/13 SINGLE LOW QUOTATION MARK
010 2S4 lS/14 DOUBLE LOW QUOTATION MARK
010 2SS lSI15 0 CURSOR

APL KEYSYM Set
011 163 10103 < LEFT CARET
all 166 10106 > RIGHT CARET
all 168 10108 v DOWN CARET
011 169 10109 1\ UP CARET

011 192 12/00 OVERBAR ~

011 194 12/02 1 DOWN TACK
:g:
~

011 195 12/03 UP SHOE (CAP)
;::s

u ~

011 196 12/04 L DOWN STILE
~.

tl-j
011 198 12/06 UNDERBAR

~ 011 202 12/10 JOT
011 204 12/12 0 QUAD ~
011 206 12/14 T UP TACK ~
011 207 12/15 0 CIRCLE tl-j

011 211 13/03 r UP STILE
;::s
C">
<:::>

011 214 13/06 n DOWN SHOE (CUP) ~
~.

011 216 13/08 :::J RIGHT SHOE \Iq

011 218 13/10 c: LEFT SHOE
011 220 13/12 I- LEFT TACK
011 252 15/12 -t RIGHT TACK

Hebrew KEYSYM Set
012 224 14/00 N HEBREW LETTER ALEPH
012 225 14/01] HEBREW LETTER BETH
012 226 14/02 l HEBREW LETTER GIMMEL
012 227 14/03 1 HEBREW LETTER DALETH
012 228 14/04 i1 HEBREW LETTER HE
012 229 14/05 , HEBREW LETTER WAW
012 230 14/06 T HEBREW LETTER ZAYIN
012 231 14/07 n HEBREW LETTER HET
012 232 14/08 0 HEBREW LETTER TETH
012 233 14/09 HEBREW LETTER YOD
012 234 14/10 1 HEBREW LETTER FINAL KAPH
012 235 14/11) HEBREW LETTER KAPH
012 236 14/12 7 HEBREW LETTER LAMED
012 237 14/13 0 HEBREW LETTER FINAL MEM
012 238 14114 0

<..Jt
HEBREW LETTER MEM (,)0

<..Jt

Ol
Byte Byte Code Character Name <.JO

0')

3 4 Pos

012 239 14/15 I HEBREW LETTER FINAL NUN >-012 240 15/00 1 HEBREW LETTER NUN '"'0
'"'0

012 241 15/01 0 HEBREW LETTER SAMEKH rr:1

012 242 15/02 lJ HEBREW LETTER A'YIN Z
t:;1

012 243 15/03 1 HEBREW LETTER FINAL PE I-(

><
012 244 15/04 !) HEBREW LETTER PE
012 245 15/05 Y HEBREW LETTER FINAL ZADI
012 246 15/06 ~ HEBREW LETTER ZADI
012 247 15/07 jJ HEBREW KUF
012 248 15/08 1 HEBREW RESH
012 249 15/09 lY HEBREW SHIN
012 250 15/10 11 HEBREWTAF

KEYBOARD KEYSYM Set
255 008 00108 BACKSPACE, BACK SPACE, BACK CHAR
255 009 00109 TAB
255 010 00/10 LINEFEED, LF
255 011 00111 CLEAR
255 013 00/13 RETURN, ENTER
255 019 01103 PAUSE, HOLD, SCROLL LOCK
255 027 01111 ESCAPE
255 032 02/00 MULTI-KEY CHARACTER PREFACE
255 033 02/01 KANJI, KANJI CONVERT
255 080 05/00 HOME
255 081 05/01 LEFT, MOVE LEFT, LEFT ARROW
255 082 05/02 UP, MOVE UP, UP ARROW
255 083 05/03 RIGHT, MOVE RIGHT, RIGHT ARROW
255 084 05/04 DOWN, MOVE DOWN, DOWN ARROW
255 085 05/05 PRIOR, PREVIOUS

255 086 05/06 NEXT ~

255 087 05/07 END, EOL ~
~

255 088 05/08 BEGIN, BOL ;;:s
~

255 096 06/00 SELECT, MARK
~.

~
255 097 06/01 PRINT
255 098 06/02 EXECUTE, RUN, DO ~
255 099 06/03 INSERT, INSERT HERE ~
255 101 06/05 UNDO, OOPS ~
255 102 06/06 REDO, AGAIN ~
255 103 06/07 MENU ;;:s

C"'>
0

255 104 06/08 FIND, SEARCH ~
;;:s

255 105 06/09 CANCEL, STOP, ABORT, EXIT O'q

255 106 06/10 HELP, QUESTION MARK
255 107 06/11 BREAK
255 126 07/14 MODE SWITCH, SCRIPT SWITCH, CHARACTER SET SWITCH
255 127 07/15 NUM LOCK
255 128 08/00 KEYPAD SPACE
255 137 08/09 KEYPAD TAB
255 141 08/13 KEYPAD ENTER
255 145 09/01 KEYPAD Fl, PF1, A
255 146 09/02 KEYPAD F2, PF2, B
255 147 09/03 KEYPAD F3, PF3, C
255 148 09/04 KEYPAD F4, PF4, D
255 170 10/10 KEYPAD MULTIPLICATION SIGN, ASTERISK
255 171 10/11 KEYPAD PLUS SIGN
255 172 10/12 KEYPAD SEPARATOR, COMMA
255 173 10/13 KEYPAD MINUS SIGN, HYPHEN
255 174 10/14 KEYPAD DECIMAL POINT, FULL STOP
255 175 10/15 KEYPAD DIVISION SIGN, SOLIDUS
255 176 11/00 KEYPAD DIGIT ZERO
255 177 11/01 KEYPAD DIGIT ONE

~
255 178 11/02 KEYPAD DIGIT TWO CJO

-I

c..n
Byte Byte Code Character Name C;O

00
3 4 Pos

255 179 11103 KEYPAD DIGIT THREE >
255 180 11104 KEYPAD DIGIT FOUR ""0

255 181 11105 KEYPAD DIGIT FIVE
""0
r.r1

255 182 11106 KEYPAD DIGIT SIX Z
d

255 183 11107 KEYPAD DIGIT SEVEN ~ :x:
255 184 11108 KEYPAD DIGIT EIGHT
255 185 11109 KEYPAD DIGIT NINE
255 189 11113 KEYPAD EQUALS SIGN
255 190 11114 F1
255 191 11115 F2
255 192 12/00 F3
255 193 12/01 F4
255 194 12/02 F5
255 195 12/03 F6
255 196 12/04 F7
255 197 12/05 F8
255 198 12/06 F9
255 199 12/07 FlO
255 200 12/08 Fll, L1
255 201 12/09 F12, L2
255 202 12/10 F13, L3
255 203 12/11 F14,L4
255 204 12/12 F15, L5
255 205 12/13 F16,L6
255 206 12/14 F17, L7
255 207 12115 F18, L8
255 208 13/00 F19, L9
255 209 13/01 F20, L10
255 210 13/02 F21, R1

255 211 13/03 F22, R2 ~

~ 255 212 13/04 F23, R3 ~ ;:s
255 213 13/05 F24, R4 ~

~.

255 214 13/06 F25, R5
~

255 215 13/07 F26, R6
~ 255 216 13/08 F27, R7

255 217 13/09 F28, R8 ~
255 218 13110 F29, R9 ~
255 219 13111 F30, RIO ~

255 220 13/12 F31, R11
;:s
C"'>
c

255 221 13/13 F32, R12 ~
~.

255 222 13/14 F33, R13 O"l

255 223 13/15 F34, R14
255 224 14/00 F35, R15
255 225 14/01 LEFT SHIFT
255 226 14/02 RIGHT SHIFT
255 227 14/03 LEFT CONTROL
255 228 14/04 RIGHT CONTROL
255 229 14/05 CAPS LOCK
255 230 14/06 SHIFT LOCK
255 231 14/07 LEFT META
255 232 14/08 RIGHT META
255 233 14/09 LEFT ALT
255 234 14110 RIGHT ALT
255 235 14/11 LEFT SUPER
255 236 14/12 RIGHT SUPER
255 237 14/13 LEFT HYPER
255 238 14/14 RIGHT HYPER
255 255 15/15 DELETE, RUBOUT

~
<..>0
CD

540

Appendix F

Protocol Encoding

Syntactic Conventions
All numbers are in decimal, unless prefixed with #x, in which case they are

in hexadecimal (base 16).
The general syntax used to describe requests, replies, errors, events, and

compound types is:

NameoIThing
encode-form

encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the inter­
pretation of those bytes. For example,

depth: CARD8

becomes:

CARDS depth

Appendix F. Protocol Encoding 541

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-byte unsigned integer. For example,

the first two bytes of a Window error are always zero (indicating an error in
general) and three (indicating the Window error in particular):

o
3

For components described in the protocol as:

name: {Namel, ... ,NameI}

the encode-form is:

N
value 1

value I

Error
code

name
Namel

NameI

The value is always interpreted as an N-byte unsigned integer. Note that the

size of N is sometimes larger than that strictly required to encode the values.
For example:

class: {I n p u to u t put, In put 0 n 1 y, Cop Y Fro m Par en t}

becomes:

2 class
o CopyFromParent

1 InputOutput
2 InputOnly

For components described in the protocol as:

NAME: TYPE or Al ternativel ... or Al ternativeI

the encode-form is:

N TYPE NAME
v~uel Alternativel

v~ueI AlternativeI

542 APPENDIX

The alternative values are guaranteed not to conflict with the encoding of

TYPE. For example:

destination: WINDOW or PointerWindow or InputFocus

becomes:

4 WINDOW
o PointerWindow

InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK
mask! mask-name!

maskI mask-nameI

destination

value-mask

The individual bits in the mask are specified and named, and N is 2 or 4.

The most-significant bit in a BITMASK is reserved for use in defining

chained (multiword) bitmasks, as extensions augment existing core requests.

The precise interpretation of this bit is not yet defined here, although a

probable mechanism is that a I-bit indicates that another N bytes of bitmask

follow, with bits within the overall mask still interpreted from least­

significant to most-significant with an N-byte unit, with N-byte units inter­

preted in stream order, and with the overall mask being byte-swapped in in­

dividual N-byte units.

For LISTofVALUE encodings, the request is followed by a section of the

form:

VALUEs

encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form

keys to the corresponding BITMASK bit. The encoding of a VALUE always

occupies four bytes, but the number of bytes specified in the encoding-form

Appendix F. Protocol Encoding 543

indicates how many of the least-significant bytes are actually used; the re­

maining bytes are unused and their values do not matter.
In various cases, the number of bytes occupied by a component will be

specified by a lowercase single-letter variable name instead of a specific nu­
meric value, and often some other component will have its value specified as

a simple numeric expression involving these variables. Components speci­
fied with such expressions are always interpreted as unsigned integers. The

scope of such variables is always just the enclosing request, reply, error,
event, or compound type structure. For example:

2
4n

3+n
LISTofPOINT

request length
points

For unused bytes (the values of the bytes are undefined and do not matter),

the encode-form is:

N unused

If the number of unused bytes is variable, the encode-form typically is:

p unused, p = pad(E)

where E is some expression, and pad(E) is the number of bytes needed to
round E up to a multiple of four.

pad (E) = (4 - (E mod 4)) mod 4

Common Types
LISTofFOO
In this document the LISTof notation strictly means some number of repeti­
tions of the Faa encoding; the actual length of the list is encoded elsewhere.
SETofFOO

A set is always represented by a bitmask, with a I-bit indicating presence in
the set.

BITMASK: CARD32
WINDOW: CARD32
PIXMAP: CARD32
CURSOR: CARD32
FONT: CARD32

544 APPENDIX

GCONTEXT: CARD32
COLORMAP: CARD32
DRAWABLE: CARD32
FONTABLE: CARD32
ATOM: CARD32
VISUALID: CARD32
BYTE: 8-bit value
INT8: 8-bit signed integer
INTI6: 16-bit signed integer
INT32: 32-bit signed integer
CARD8: 8-bit unsigned integer
CARDI6: 16-bit unsigned integer
CARD32: 32-bit unsigned integer
TIMESTAMP: CARD32

BITGRAVITY

0 Forget

1 NorthWest

2 North

3 NorthEast

4 West

5 Center

6 East

7 SouthWest

8 South

9 SouthEast

10 Static

WINGRAVITY

0 Unmap

1 NorthWest

2 North

3 NorthEast

4 West

5 Center

6 East

7 SouthWest

8 South

9 SouthEast

10 Static

Appendix F. Protocol Encoding

BOOL

o False

True

SETofEVENT

#xOOOOOOOI
#x00000002
#x00000004
#x00000008
#xOOOOOOIO
#x00000020
#x00000040
#x00000080
#xOOOOOIOO
#x00000200
#x00000400
#x00000800
#xOOOOIOOO
#x00002000
#x00004000
#x00008000
#xOOOIOOOO
#x00020000
#x00040000
#x00080000
#xOOIOOOOO
#x00200000
#x00400000
#x00800000
#xOIOOOOOO
#xfeOOOOOO

KeyPress

Key Release

ButtonPress

ButtonRelease

EnterWindow
LeaveWindow

PointerMotion

PointerMotionHint

ButtonlMotion

Button2Motion
Button3Motion

ButtonL;Motion

ButtonSMotion

ButtonMotion

KeymapState

Exposure

VisibilityChange

StructureNotify

ResizeRedirect

SubstructureNotify

SubstructureRedirect

FocusChange

PropertyChange

ColormapChange
OwnerGrabButton
unused but must be zero

SETofPOINTEREVENT
encodings are the same as for SETofEVENT, except with

#xffff8003 unused but must be zero

SETofDEVICEEVENT
encodings are the same as for SETofEVENT, except with

#xffffcObO unused but must be zero

545

546 APPENDIX

KEYSYM: CARD32
KEYCODE:CARD8
BUTTON:CARD8
SETofKEYBUTMASK

#xOOOl Shift
#xOOO2 Lock
#xOOO4 Control
#xOOO8 Mod1
#xOOlO Mod2
#xOO20 Mod3
#xOO40 ModL;
#xOO80 ModS
#xOlOO Button1
#x0200 Button2
#x0400 Button3
#x0800 ButtonL;
#xlOOO ButtonS
#xcOOO unused but must be zero

SETofKEYMASK
encodings are the same as for SETofKEYBUTMASK, except with

#xffOO unused but must be zero

STRING8: LISTofCARD8
STRING16: LISTofCHAR2B
CHAR2B

CARD8
CARD8

POINT

2
2

INTl6
INTl6

RECTANGLE

2
2
2
2

INTl6
INTl6
CARDl6
CARDl6

by tel
byte2

x

y

x
y

width
height

Appendix F. Protocol Encoding 547

ARC

2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 INT16 angle 1
2 INT16 angle2

HOST

family
0 Internet
1 DEC net
2 Chaos

1 unused
2 n length of address
n LISTofBYTE address
p unused, p = pad(n)

STR

n length of name in bytes
n STRINGS name

Errors
Request

0 Error
1 1 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Value

1 0 Error
1 2 code
2 CARD16 sequence number
4 <32~bits> bad value

Appendix F. Protocol Encoding 549

Font

0 Error
1 7 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Match

0 Error
1 8 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Drawable

1 0 Error
1 9 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARD8 mqjor opcode
21 unused

Access

0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Alloc

0 Error
11 code

550 APPENDIX

2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

Colormap

1 0 Error
1 12 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

GContext

0 Error
1 13 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode
1 CARDS major opcode
21 unused

IDChoice

1 0 Error
1 14 code
2 CARD16 sequence number
4 CARD32 bad resource id
2 CARD16 minor opcode

CARDS major opcode
21 unused

Name

0 Error
1 15 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode

Appendix F. Protocol Encoding

1
21

CARDS

Length

0
1 16
2 CARD16
4
2 CARD16
1 CARDS
21

Implementation

0
1 17
2 CARD16
4
2 CARD16
1 CARDS
21

Keyboards

major opcode
unused

Error
code
sequence number
unused
minor opcode
major opcode
unused

Error
code
sequence number
unused
minor opcode
major opcode
unused

KEYCODE values are always greater than 7 (and less than 256).

551

KEYSYM values with the bit #x10000000 set are reserved as vendor­
specific.

The names and encodings of the standard KEYSYM values are contained
in appendix E.

Pointers
BUTTON values are numbered starting with one.

Predefined Atoms

PRIMARY 1
SECONDARY 2
ARC 3
ATOM 4
BITMAP 5

552 APPENDIX

CARDINAL 6
COLORMAP 7
CURSOR 8
CUT _BUFFERO 9
CUT _BUFFER 1 10
CUT _BUFFER2 11
CUT _BUFFER3 12
CUT _BUFFER4 13
CUT _BUFFER5 14
CUT _BUFFER6 15
CUT_BUFFER7 16
DRAWABLE 17
FONT 18
INTEGER 19
PIXMAP 20
POINT 21
RECTANGLE 22
RESOURCE_MANAGER 23
RGB_COLOILMAP 24
RGB_BEST _MAP 25
RGB_BLUE_MAP 26
RGB_DEFAULT _MAP 27
RGB_GRAY_MAP 28
RGB_GREEN_MAP 29
RGB_RED_MAP 30
STRING 31
VISUALID 32
WINDOW 33
WM_COMMAND 34
WM_HINTS 35
WM_CLIENT _MACHINE 36
WM_ICON_NAME 37
WM_ICON_SIZE 38
WM_NAME 39
WM_NORMALHINTS 40
WM-SIZE_HINTS 41
WM-ZOOM_HINTS 42
MIN_SPACE 43
NORM_SPACE 44
MAX-SPACE 45
END-SPACE 46
SUPERSCRIPT _X 47

Appendix F. Protocol Encoding 553

SUPERSCRIPT _ Y 48
SUBSCRIPT _X 49
SUBSCRIPT _ Y 50
UNDERLINE-POSITION 51
UNDERLINE_THICKNESS 52
STRIKEOUT_ASCENT 53
STRIKEOUT_DESCENT 54
ITALIC-ANGLE 55
X-HEIGHT 56
QUAD_WIDTH 57
WEIGHT 58
POINT_SIZE 59
RESOLUTION 60
COPYRIGHT 61
NOTICE 62
FONT_NAME 63
FAMILY_NAME 64
FULL-NAME 65
CAP_HEIGHT 66
WM_CLASS 67
WM_ TRANSIENT_FOR 68

Connection Setup
For TCP connections, displays on a given host are numbered starting from
0, and the server for display N listens and accepts connections on port
6000 + N. For DECnet connections, displays on a given host are numbered
starting from 0, and the server for display N listens and accepts connections
on the object name obtained by concatenating "X$X" with the decimal repre­
sentation for N. for example, X$XO and X$Xl.

1
2
2
2

Information sent by the client at connection setup:

#x42 MSB first
#x6C LSB first

CARD16
CARD16
n

byte-order

unused
protocol-major-version
protocol-minor-version
length of authorization­
protocol-name

554 APPENDIX

2 d length of authorization-
protocol-data

2 unused
n STRINGS authorization-protocol-name
p unused, p = pad(n)
d STRINGS authorization-protocol-data
q unused, q == pad (d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities
sent by the client must be transmitted with the specified byte order, and all
16-bit and 32-bit quantities returned by the server will be transmitted with
this byte order.

Information received by the client if authorization fails:

0 failed
1 n length of reason in bytes
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 (n+p)/4 length in 4-byte units of

"additional data"
n STRINGS reason
p unused, p = pad(n)

Information received by the client if authorization is accepted:

success
1 unused
2 CARD16 protocol-major-version
2 CARD16 protocol-minor-version
2 S + 2n + (v + p + m)/4 length in 4-byte units of

"additional data"
4 CARD32 release-number
4 CARD32 resource-id-base
4 CARD32 resource-id-mask
4 CARD32 motion-buffer-size
2 v length of vendor
2 CARD16 maximum-request-Iength

CARDS number of SCREENs in roots
n number for FORMATs in

pixmap-formats
1 image-byte-order

0 LSBFirst
MSBFirst

Appendix F. Protocol Encoding

1
0 LeastSignificant

MostSignificant
1 CARD8
1 CARD8
1 KEY CODE

KEY CODE
4
v STRING8
p
8n LISTofFORMAT
m LISTofSCREEN

FORMAT

CARD8
1 CARD8
1 CARD8
5

SCREEN

4
4
4
4
4
2
2
2
2
2
2
4
1

1

WINDOW
COLORMAP
CARD32
CARD32
SETofEVENT
CARD16
CARD16
CARD16
CARD16
CARD16
CARD16
VISUALID

o Never
1 WhenMapped
2 Always
BOOL
CARD8

555

bitmap-format-bit-order

bitma p-format-scanline-unit
bitmap-format-scanline-pad
min-keycode
max-keycode
unused
vendor
unused, p = pad(v)
pixmap-formats
roots (m is always a
multiple of 4)

depth
bits-per-pixel
scanline-pad
unused

root
default-colormap
white-pixel
black-pixel
current-in put-masks
width-in-pixels
height-in-pixels
width-in-millimeters
height-in-millimeters
min-installed-maps
max-installed-maps
root-visual
backing-stores

save-unders
root-depth

556 APPENDIX

CARD8 number of DEPTHs in
n LISTofDEPTH allowed -depths

allowed-depths (n is always
a multiple of 4)

DEPTH

CARD8 depth
1 unused
2 n number of VISUALTYPES

in visuals
4 unused
24n LISTofVISUALTYPE visuals

VISUALTYPE

4 VISUALID visual-id
class

0 StaticGray
1 GrayScale
2 StaticColor
3 PseudoColor
4 TrueColor
5 DirectColor

1 CARD8 bits-per-rgb-value
2 CARD16 colormap-entries
4 CARD32 red-mask
4 CARD32 green-mask
4 CARD32 blue-mask
4 unused

Requests
CreateWindow

opcode
1 CARD8 depth
2 8+n request length
4 WINDOW wid
4 WINDOW parent
2 INT16 x

2 INT16 y
2 CARD16 width

Appendix F. Protocol Encoding

2
2
2

4

4

4n

CARD16
CARD16

0 CopyFromParent
1 InputOutput
2 InputOnly
VISUALID
0 CopyFromParent
BITMASK
#xOOOOOOOl background-pixmap
#xOOOOOOO2 background-pixel
#xOOOOOOO4 border-pixmap
#xOOOOOOO8 border-pixel
#xOOOOOOlO bit-gravity
#xOOOOOO20 win-gravity
#xOOOOOO40 backing-store
#xOOOOOO80 backing-planes
#xOOOOOlOO backing-pixel
#xOOOOO200 override-redirect
#xOOOOO400 save-under
#xOOOOO800 event-mask
#xOOOOlOOO do-not -propagate-mask
#xOOOO2000 color map
#xOOOO4000 cursor
LISTofV ALUE

VALUEs

4

4
4

4
1
1

4
4

PIXMAP
0 None
1 ParentRelative
CARD32
PIXMAP
0 CopyFromParent
CARD32
BITGRAVITY

WINGRAVITY

o NotUseful
1 WhenMapped
2 Always
CARD32
CARD32

height
border-width
class

visual

557

value-mask (has n bits set to 1

value-list

background-pixmap

background-pixel
border-pixmap

border-pixel
bit-gravity

win-gravity
backing -s tore

backing-planes
backing-pixel

558 APPENDIX

BOOL override-redirect
1 BOOL save-under
4 SETofEVENT event-mask
4 SEToIDEVICEEVENT do-not-propagate-mask
4 COLORMAP colormap

0 CopyFromParent
4 CURSOR cursor

0 None

Change Window Attributes

2 opcode
1 unused
2 3+n request length
4 WINDOW window
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as

for CreateWindow

4n LISTofVALUE value-list
encodings are the same as
for CreateWindow

GetWindow Attributes

1 3 opcode
1 unused
2 2 request length
4 WINDOW window
~

Reply
backing-store

0 NotUseful
1 WhenMapped
2 Always

2 CARD16 sequence number
4 3 reply length
4 VISUALID visual
2 class

1 InputOutput
2 Inputonly

1 BITGRAVITY bit-gravity
WINGRAVITY win-gravity

Appendix F. Protocol Encoding

4
4
1
1
1

4

4
4
2
2

CARD32
CARD32
BOOL
BOOL

o Unmapped
1 Unviewable
2 Viewable
BOOL
COLORMAP
o None
SETofEVENT
SETofEVENT
SEToIDEVICEEVENT

DestroyWindow

1

2
4

4

2
WINDOW

DestroySubwindows

1
2
4

5

2
WINDOW

ChangeSaveSet

1 6
1

0 Insert
1 Delete

2 2
4 WINDOW

ReparentWindow

1
1

7

backing-planes
backing-pixel
save-under
map-is-installed
map-state

override-redirect
color map

559

all-event-masks
your-event-mask
do-not-propagate-mask
unused

opcode
unused
request length
window

opcode
unused
request length
window

opcode
mode

request length
window

opcode
unused

560 APPENDIX

2 4
4 WINDOW
4 WINDOW
2 INTI6
2 INTI6

MapWindow

8
1
2 2
4 WINDOW

MapSubwindows

9
1
2 2
4 WINDOW

UnmapWindow

1 10
1
2 2
4 WINDOW

UnmapSubwindows

1 11
1
2 2
4 WINDOW

Configure Window

12
1
2 3+n
4 WINDOW
2 BITMASK

#xOOOI x
#xOO02 y
#xOO04 width

request length
window
parent
x

y

opcode
unused
request length
window

opcode
unused
request length
window

opcode
unused
request length
window

opcode
unused
request length
window

opcode
unused
request length
window
value-mask (has n bits set to 1)

Appendix F. Protocol Encoding

2
4n

#xOOOS
#xOOIO
#x0020
#x0040

height
border-width
sibling
stack-mode

LISTofV ALUE

VALUEs

2
2
2
2
2
4
1

INTI6
INTI6
CARDI6
CARDI6
CARDI6
WINDOW

o Above
1 Below
2 TopIf
3 BottomIf
4 Opposite

Circulate Window

2
4

13

o RaiseLowest
1 LowerHighest
2
WINDOW

GetGeometry

1 14
1
2 2
4 DRAWABLE
~

1 1
1 CARDS
2 CARD16
4 0
4 WINDOW

unused
value-list

x
y
width
height
border-width
sibling
stack-mode

opcode
direction

request length
window

opcode
unused
request length
drawable

Reply
depth
sequence number
reply length
root

561

562 APPENDIX

2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
10 unused

QueryTree

1 15 opcode
1 unused
2 2 request length
4 WINDOW window
~

Reply
1 unused
2 CARD16 sequence number
4 n reply length
4 WINDOW root
4 WINDOW parent

0 None

2 n number of WINDOWs in
children

14 unused
4n LISTofWINDOW children

InternAtom

16 opcode
1 BaaL only-if-exists
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p = pad(n)
~

1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 ATOM atom

0 None

20 unused

Appendix F. Protocol Encoding

GetAtomName

1 17
1
2 2
4 ATOM
~

1
1
2 CARD16
4 (n+p)/4
2 n
22
n String8
p

ChangeProperty

1 18
1

0 Replace
1 Prepend
2 Append

2 6+(n+p)/4
4 WINDOW
4 ATOM
4 ATOM
1 CARD8
3
4 CARD32

n LISToffiYTE

p

DeleteProperty

19
1

opcode
unused
request length
atom

Reply
unused
sequence number
reply length
length of name
unused
name
unused, p = pad(n)

opcode
mode

request length
window
property
type
format
unused

563

length of data in format units
(= n for format = 8)
(= 0/2 for format = 16)
(= 0/4 for format = 32)
data
(n is a multiple of 2 for

format = 16)

(n is a multiple of 4 for

format = 32)
unused, p = pad(n)

opcade
unused

564 APPENDIX

2 3 request length
4 WINDOW window
4 ATOM property

GetProperty

20 opcode
1 BOOL delete
2 6 request length
4 WINDOW window
4 ATOM property
4 ATOM type

0 AnyPropertyType
4 CARD32 long-offset
4 CARD32 long-length
~

Reply
1 CARD8 format
2 CARD16 sequence number
4 (n+p)/4 reply length
4 ATOM type

0 None
4 CARD32 bytes-after
4 CARD32 length of value in format units!

(= 0 for format = 0)
(= n for format = 8)
(= nl2 for format = 16)
(= n/4 for format = 32)

12 unused
n LISToffiYTE value

(n is zero for format = 0)
(n is a multiple of 2 for
format = 16)
(n is a multiple of 4 for
format = 32)
unused, p = pad(n)

p

ListProperties

21 opcode
1 unused
2 2 request length

Appendix F. Protocol Encoding 565

4 WINDOW winqow
~

1 Reply
1 unused
2 CARD16 sequence number
4 n reply length

2 n number of ATOMs in atoms
22 unused
4n LISTofATOM atoms

SetSelectionOwner

22 opcode
1 unused
2 4 request length
4 WINDOW owner

0 None
4 ATOM selection
4 TIMESTAMP time

0 CurrentTime

GetSelectionOwner

1 23 opcode
1 unused
2 2 request length
4 ATOM selection
~

Reply
1 unused
2 CARD16 sequence n~mber
4 0 reply length
4 WINDOW owner

0 None
20 unused

ConvertSelection

24 opcode
1 unused
2 6 request length
4 WINDOW requestor
4 ATOM selection

566 APPENDIX

4
4

4

ATOM
ATOM
o None
TIMESTAMP
o CurrentTirne

SendEvent

25
1 BOOL
2 11
4 WINDOW

0 PointerWindow
InputFocus

4 SETofEVENT
32 standard event format (see the Events section)

GrabPointer

26
1 BOOL
2 6
4 WINDOW
2 SETofPOINTEREVENT

0 Synchronous
Asynchronous

0 Synchronous
Asynchronous

4 WINDOW
0 None

4 CURSOR
0 None

4 TIMESTAMP
0 CurrentTime

~

0 Success
1 AlreadyGrabbed
2 InvalidTime

target
property

time

opcode
propagate
request length
destination

event-mask
event

opcode
owner-events
request length
grab-window
event-mask
pointer-mode

keyboard-mode

confine-to

cursor

time

Reply
status

Appendix F. Protocol Encoding

2
4
24

3 NotViewable
4 Frozen
CARD16
o

UngrabPointer

1 27
1
2 2
4 TIMESTAMP

0 CurrentTime

GrabButton

28
1 BOOL
2 6
4 WINDOW
2 SETofPOINTEREVENT

0 Synchronous
Asynchronous

0 Synchronous
1 Asynchronous

4 WINDOW
0 None

4 CURSOR
0 None
BUTTON
0 AnyButton

1
2 SETofKEYMASK

#x8000 AnyModifier

UngrabButton

1 29
1 BUTTON

0 AnyButton
2 3
4 WINDOW

sequence number
reply length
unused

opcode
unused
request length
time

opcode
owner-events
request length
grab-window
event-mask
pointer-mode

keyboard-mode

confine-to

cursor

button

unused
modifiers

opcode
button

request length
grab-window

567

568 APPENDIX

2 SETofKEYMASK modifiers
#x8000 AnyModifier

2 unused

ChangeActivePointerGrab

30 opcode
1 unused
2 4 request length
4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime
2 SETofPOINTEREVENT event-mask
2 unused

GrabKeyboard

1 31 opcode
1 BaaL owner-events
2 4 request length
4 WINDOW grab-window
4 TIMESTAMP time

0 CurrentTime
pointer-mode

0 Synchronous
Asynchronous

keyboard-mode
0 Synchronous

Asynchronous
2 unused
~

Reply
status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number

4 0 reply length
24 unused

Appendix F. Protocol Encoding

UngrabKeyboard

1
1
2
4

32

2
TIMESTAMP
o CurrentTime

GrabKey

1
1
2
4
2

1

33
BOOL
4
WINDOW
SETofKEYMASK
#x8000 AnyModifier
KEY CODE
o AnyKey

o Synchronous
1 Asynchronous

o Synchronous
1 Asynchronous

opcode
unused
request length
time

opcode
owner-events
request length
grab-window
modifiers

key

pointer-mode

keyboard-mode

3 unused

UngrabKey

2
4
2

34
KEYCODE
o Any Key
3
WINDOW
SETofKEYMASK
#x8000 AnyModifier

opcode
key

request length
grab-window
modifiers

2 unused

AllowEvents

35 opcode

o AsyncPointer
SyncPointer

mode

569

570 APPENDIX

2 ReplayPointer
3 AsyncKeyboard
4 SyncKeyb.oard
5 ReplayKeyboard
6 AsyncBoth
7 SyncBoth

2 2
4 TIMESTAMP

0 CurrentTime

GrabServer

1
1

2

36

UngrabServer

1
1
2

37

QueryPointer

1 38
1
2 2
4 WINDOW
~

1
1 BOOL
2 CARD16
4 0
4 WINDOW
4 WINDOW

0 None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK
6

request length
time

opcode
unused
request length

opcode
unused
request length

opcode
unused
request length
window

Reply
same-screen
sequence number
reply length
root
child

root-x
root-y
Wln-x

win-y
mask
unused

Appendix F. Protocol Encoding 571

GetMotionEvents

1 39 opcode
1 unused
2 4 request length
4 WINDOW window
4 TIMESTAMP start

0 CurrentTime
4 TIMESTAMP stop

0 CurrentTime
~

1 Reply
1 unused
2 CARD16 sequence numher
4 2n reply length
4 n number of TIMECOORDs

in events
20 unused
8n LISTofTIMECOORD events

TIMECOORD

4 TIMESTAMP time
2 CARD16 x
2 CARD16 y

TranslateCoordinates

1 40 opcode
1 unused
2 4 request length
4 WINDOW src-window
4 WINDOW dst-window
2 INT16 src-x
2 INT16 src-y
~

Reply
1 BOOL same-screen
2 CARD16 sequence number
4 0 reply length
4 WINDOW child

0 None

572 APPENDIX

2 INT16 dst-x
2 INT16 dst-y
16 unused

WarpPointer

41 opeode
1 unused
2 6 request length
4 WINDOW sre-window

0 None
4 WINDOW dst-window

0 None
2 INT16 sre-x
2 INT16 sre-y
2 CARD16 src-width
2 CARD16 src-height
2 INT16 dst-x
2 INT16 dst-y

SetInputFocus

42 opeode
revert-to

0 None
1 PointerRoot
2 Parent

2 3 request length
4 WINDOW foeus

0 None
1 PointerRoot

4 TIMESTAMP time
0 CurrentTime

GetInputFocus

43 opeode
1 unused
2 request length
~

Reply
revert-to

Appendix F. Protocol Encoding 573

0 None
1 PointerRoot
2 Parent

2 CARD16 sequence number
4 0 reply length
4 WINDOW focus

0 None
PointerRoot

20 unused

QueryKeymap

1 44 opcode
1 unused
2 request length

---?

1 Reply
1 unused
2 CARD16 sequence number
4 2 reply length
32 LISTofCARD8 keys

OpenFont

45 opcode
1 unused
2 3 + (n + p)/4 request length
4 FONT fid
2 n length of name

2 unused
n STRING8 name
p unused, p = pad(n)

CloseFont

46 opcode
I unused

2 2 request length
4 FONT font

QueryFont

47 opcode
unused

574 APPENDIX

2 2 request length
4 FONTABLE font
~

Reply
1 unused
2 CARD16 sequence number
4 7+2n+3m reply length
12 CHARINFO min-bounds
4 unused
12 CHARINFO max-bounds
4 unused
2 CARD16 min-char-or-byte2
2 CARD16 max-char-or-byte2
2 CARD16 default-char
2 n number of FONTPROPs

in properties
draw-direction

0 LeftToRight
RightToLeft

CARD8 min-byte 1
CARD8 max-byte 1

1 BOOL all-chars-exist
2 INT16 font-ascent
2 INT16 font-descent
4 m number of CHARINFOs

in char-infos
8n LISTofFONTPROP properties
12m LISTofCHARINFO char-infas

FONTPROP

4 ATOM name
4 <32-bits> value

CHARINFO

2 INT16 left -side-bearing
2 INT16 right-side-bearing
2 INT16 character-width
2 INT16 ascent
2 INT16 descent
2 CARD16 attributes

Appendix F. Protocol Encoding 575

QueryTextExtents

1 48 opcode
1 BOOL odd length, True if p = 2

2 2+(2n+p)/4 request length
4 FONTABLE font
2n STRING16 string
p unused, p = pad(2n)
~

Reply
draw-direction

0 LeftToRight
1 RightToLeft

2 CARD16 sequence number
4 0 reply length

2 INT16 font-ascent
2 INT16 font-descent
2 INT16 overall-ascent

2 INT16 overall-descent
4 INT32 overall-width
4 INT32 overall-left
4 INT32 overall-right
4 unused

ListFonts

1 49 opcode
1 unused

2 2 + (n + p)/4 request length

2 CARD16 max-names

2 n length of pattern
n STRING8 pattern
p unused, p:::::: pad(n)
~

1 Reply
1 unused

2 CARD16 sequence number
4 (n+p)/4 reply length

2 CARD16 number of STRs in names

22 unused
n LISTofSTR names

p unused, p = pad(n)

Appendix F. Protocol Encoding 577

~ (last in series)
1 1 Reply
1 0 last-reply indicator
2 CARD16 sequence number
4 7 reply length
52 unused

SetFontPath

1 51 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 number of STRs in path
2 unused
n LISTofSTR path
p unused, p = pad(n)

GetFontPath

52 opcode
1 unused
2 request list
~

Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 CARD16 number of STRs in path

22 unused
n LISTofSTR path
p unused, p = pad(n)

CreatePixmap

53 opcode
1 CARD8 depth
2 4 request length
4 PIXMAP pid
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

578 APPENDIX

FreePixmap

54 opcode
1 unused

2 2 request length

4 PIXMAP pixmap

CreateGC

55 opcode

1 unused

2 4+n request length

4 GCONTEXT cid

4 DRAWABLE drawable

4 BITMASK value-mask
(has n bits set to I)

#xOOOOOOOI function
#xOOOOOOO2 plane-mask
#xOOOOOOO4 foreground
#xOOOOOOO8 background

#xOOOOOOIO line-width
#xOOOOOO20 line-style
#xOOOOOO40 cap-style

#xOOOOOO80 join-style
#xOOOOOIOO fill-style

#xOOOOO200 fill-rule
#xOOOOO400 tile
#xOOOOO800 stipple
#xOOOOIOOO tile-sti pple-x -origin

#xOOOO2000 tile-stipple-y-origin
#xOOOO4000 font
#xOOOO8000 subwindow-mode
#xOOOIOOOO graphics-exposures

#xOOO20000 clip-x-origin

#xOOO40000 clip-y-origin
#xOOO80000 clip-mask
#xOOIOOOOO dash-offset
#xOO200000 dashes
#xOO400000 arc-mode

4n LISTofVALUE value-list

Appendix F. Protocol Encoding 579

VALUEs

function
0 Clear
1 And
2 AndRe verse
3 Copy
4 AndInverted
5 NoOp
6 Xor
7 Or
8 Nor
9 Equiv
lO Invert
11 OrReverse
12 CopyInverted
13 OrInverted
14 Nand
15 Set

4 CARD32 plane-mask
4 CARD32 foreground
4 CARD32 background

2 CARD16 line-width
line-style

0 Solid
I OnOffDash
2 DoubleDash

cap-style
0 NotLast
1 Butt
2 Round
3 Projecting

join-style
0 Miter
1 Round
2 Bevel

fill-style
0 Solid
1 Tiled
2 Stippled
3 OpaqueStippled

fill-rule

580 APPENDIX

0 EvenOdd
1 Winding

4 PIXMAP tile
4 PIXMAP stipple
2 INT16 tile-stipple-x -origin
2 INT16 tile-stipple-y-origin
4 FONT font

subwindow-mode
0 ClipByChildren

Includelnferiors
1 BOOL gra phics-exposures
2 INT16 clip-x-origin
2 INT16 clip-y-origin
4 PIXMAP clip-mask

0 None
2 CARD16 dash-offset

CARDS dashes
arc-mode

0 Chord
PieSlice

ChangeGC

56 opcode
1 unused
2 3+n request length
4 GCONTEXT gc
4 BITMASK value-mask

(has n bits set to 1)
encodings are the same

as for Crea teGC
4n LISTofVALUE value-list

encodings are the same
as for CreateGC

CopyGC

1 57 opcode
1 unused
2 4 request length
4 GCONTEXT src-gc

Appendix F. Protocol Encoding 581

4 GCONTEXT dst-gc
4 BITMASK value-mask

encodings are the same
as for CreateGC

SetDashes

1 58 opcode
1 unused
2 3+ (n +p)/4 request length
4 GCONTEXT gc

2 CARD16 dash-offset
2 n length of dashes
n LISTofCARD8 dashes
p unused, p = pad(n)

SetClipRectangles

1 59 opcode
1 ordering

0 unSorted
1 YSorted
2 YXSorted
3 YXBanded

2 3+2n request length
4 GCONTEXT gc
2 INT16 clip-x-origin

2 INT16 clip-y-origin
8n LISTofRECTANGLE rectangles

FreeGC

60 opcode
1 unused
2 2 request length
4 GCONTEXT gc

ClearArea

61 opcode
1 BOOL exposures
2 4 request length
4 WINDOW window

582 APPENDIX

2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height

CopyArea

62 opcode
1 unused
2 7 request length
4 DRAWABLE src-drawable
4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height

CopyPlane

63 opcode
1 unused
2 8 request length
4 DRAWABLE src-drawable
4 DRAWABLE dst-drawable
4 GCONTEXT gc
2 INT16 src-x
2 INT16 src-y
2 INT16 dst-x
2 INT16 dst-y
2 CARD16 width
2 CARD16 height
4 CARD32 bit-plane

PolyPoint

64 opcode
coordinate-mode

0 Origin
Previous

2 3+n request length

Appendix F. Protocol Encoding 583

4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolyLine

65 opcode
coordinate-mode

0 Origin

Previous

2 3+n request length
4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolySegment

I 66 opcode
I unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT

2 INTI6 xl
2 INTI6 yl
2 INTI6 x2
2 INTI6 y2

Poly Rectangle

67 opcode
I unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyArc

68 opcode
unused

584 APPENDIX

2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

FillPoly

69 opcode
1 unused
2 4+n request length
4 DRAWABLE drawable
4 GCONTEXT gc

shape
0 Complex
1 Nonconvex
2 Convex

coordinate-mode
0 Origin

Previous
2 unused
4n LISTofPOINT points

Poly Fill Rectangle

70 opcode
1 unused
2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

Poly FillArc

71 opcode
1 unused
2 3+3n request length
4 DRAWABLE drawable
4 GCONTEXT gc
12n LISTofARC arcs

PutImage

72 opcode
format

Appendix F. Protocol Encoding 585

0 Bitmap
1 XYPixmap
2 ZPixmap

2 6+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 CARD16 width
2 CARD16 height
2 INT16 dst-x
2 INT16 dst-y

CARD8 left-pad
1 CARD8 depth
2 unused
n LISTofBYTE data
p unused, p = pad(n)

GetImage

73 opcode
format

1 XYPixmap
2 ZPixmap

2 5 request length
4 DRAWABLE drawable
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
4 CARD32 plane-mask
~

Reply
1 CARD8 depth
2 CARD16 sequence number
4 (n+p)/4 reply length
4 VISUALID visual

0 None

20 unused
n LISTofBYTE data
p unused, p = pad(n)

PolyText8

74 opcode
unused

586 APPENDIX

2 4+(n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INTI6 x

2 INTI6 y
n LISTofTEXTITEMS items
p unused, p = pad(n)

(p is always 0 or I)

TEXTITEM8

m length of string
(cannot be 255)

INTS delta

m STRINGS string

or
255 font-shift indicator

font byte 3
(most-significant)
font byte 2
font byte 1
font byte 0
(least-significant)

PolyTextl6

75 opcode

1 unused

2 4+ (n +p)/4 request length

4 DRAWABLE drawable

4 GCONTEXT gc

2 INTI6 x

2 INTI6 y

n LISTofTEXTITEM 16 items

p unused, p = pad(n)
(p is always 0 or I)

TEXTITEM16

1 m number of CHAR2Bs
in string (cannot)
by 255)

INTS delta

Appendix F. Protocol Encoding 587

m STRING16 string
or

255 font-shift indicator
font byte 3
(most-significant)
font byte 2
font byte 1
font byte 0
(least -significan t)

ImageText8

76 opcode

1 n length of string

2 4+(n+p)/4 request length

4 DRAWABLE drawable
4 GCONTEXT gc

2 INT16 x

2 INT16 y

n STRING8 string

p unused, p = pad(n)

ImageText16

77 opcode

n number of CHAR2Bs
in string

2 4+ (2n +p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INT16 x
2 INT16 y
2n STRING16 string
p unused, p = pad(2n)

CreateColormap

78 opcode
alloc

0 None

All
2 4 request length

588 APPENDIX

4 COLORMAP mid
4 WINDOW window
4 VISUALID visual

FreeColormap

1 79 opcode
1 unused
2 2 request length
4 COLORMAP cmap

CopyColormapAndFree

1 80 opcode
1 unused
2 3 request length
4 COLORMAP mid
4 COLORMAP src-cmap

InstallColormap

81 opcode
1 unused
2 2 request length
4 COLORMAP cmap

UninstallColormap

82 opcode
1 unused
2 2 request length
4 COLORMAP cmap

ListlnstalledColormaps

1 83 opcode
1 unused
2 2 request length
4 WINDOW window
~

Reply
1 unused
2 CARD16 sequence number
4 n reply length

Appendix F. Protocol Encoding 589

2 n number of COLORMAPs
in cmaps

22 unused
4n LISTofCOLORMAP cmaps

AllocColor

1 84 opcode
1 unused
2 4 request length
4 COLORMAP cmap
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused

--i>

1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 red
2 CARD16 green
2 CARD16 blue
2 unused
4 CARD32 pixel
12 unused

AllocN amedColor

85 opcode
1 unused
2 3+(n+p)/4 request length
4 COLORMAP cmap
2 n length of name
2 unused
n STRING8 name
p unused, p = pad(n)

--i>

Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 CARD32 pixel

590 APPENDIX

2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red

2 CARD16 visual-green

2 CARD16 visual-blue
8 unused

AllocColorCells

1 86 opcode
1 BOOL contiguous
2 3 request length
4 COLORMAP cmap

2 CARD16 colors
2 CARD16 planes
~

Reply
1 unused
2 CARD16 sequence number
4 n+m reply length

2 n number of CARD32s
in pixels

2 m number of CARD32s
in masks

20 unused
4n LISTofCARD32 pixels
4m LISTofCARD32 masks

AllocColor Planes

1 87 opcode
1 BOOL contiguous
2 4 request length
4 COLORMAP cmap
2 CARD16 colors
2 CARD16 reds
2 CARD16 greens
2 CARD16 blues
~

1 Reply

1 unused
2 CARD16 sequence number

Appendix F. Protocol Encoding

4 n
2 n

2
4 CARD32
4 CARD32
4 CARD32
8
4n LISTofCARD32

FreeColors

1
2
4
4
4n

88

3+n
COLORMAP
CARD32
LISTofCARD32

StoreColors

1 89
1
2 2+3n
4 COLORMAP
12n LISTofCOLORITEM

COLORITEM

4
2
2
2

CARD32
CARD16
CARD16
CARD16

#xOI do-red (1 is True, 0 is False)

#x02 do-green (1 is True, 0 is False)

#x04 do-blue (1 is True, 0 is False)

#xf8 unused

StoreN amedColor

90

reply length
number of CARD32s
in pixels
unused
red-mask
green-mask
blue-mask
unused
pixels

opcode
unused
request length
cmap
plane-mask
pixels

opcode
unused
request length
cmap
items

pixel
red
green
blue

591

do-red, do-green, do-blue

unused

opcode
do-red, do-green, do-blue

592 APPENDIX

2
4
4
2
2
n

p

#x01 do-red (1 is True, 0 is False)

#x02 do-green (1 is True, 0 is False)
#x04 do-blue (1 is True, 0 is False)

#xf8 unused
4+(n+p)/4
COLORMAP
CARD32
n

STRING8

QueryColors

1

2
4
4n

1
2
4
2
22
8n

RGB

2
2
2
2

91

2+n
COLORMAP
LISTofCARD32

CARD16
2n
n

LISTofRGB

CARD16
CARD16
CARD16

LookupColor

1

2
4
2
2

92

3+ (n +p)/4
COLORMAP
n

request length
cmap
pixel
length of name
unused
name
unused, p = pad(n)

opcode
unused
request length
cmap
pixels

Reply
unused
sequence number
reply length
number of RGBs in colors
unused
colors

red
green
blue
unused

opcode
unused
request length
cmap
length of name
unused

Appendix F. Protocol Encoding 593

n STRING8 name
p unused, p = pad(n)
~

Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 exact-red
2 CARD16 exact-green
2 CARD16 exact-blue
2 CARD16 visual-red
2 CARD16 visual-green
2 CARD16 visual-blue
12 unused

CreateCursor

1 93 opcode
1 unused
2 8 request length
4 CURSOR cid
4 PIXMAP source
4 PIXMAP mask

0 None
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue
2 CARD16 x
2 CARD16 y

CreateGlyphCursor

94 CreateGlyphCursor
1 unused
2 8 request length
4 CURSOR cid
4 FONT source-font
4 FONT mask-font

0 None
2 CARD16 source-char

594 APPENDIX

2 CARD16 mask-char

2 CARD16 fore-red

2 CARD16 fore-green

2 CARD16 fore-blue
2 CARD16 back-red

2 CARD16 back-green

2 CARD16 back-blue

FreeCursor

95 opcode
1 unused
2 2 request length
4 CURSOR cursor

RecolorCursor

96 opcode
1 unused

2 5 request length
4 CURSOR cursor

2 CARD16 fore-red
2 CARD16 fore-green

2 CARD16 fore-blue

2 CARD16 back-red

2 CARD16 back-green

2 CARD16 back-blue

Query BestSize

97 opcode
class

0 Cursor
1 Tile

2 Stipple

2 3 request length
4 DRAWABLE drawable

2 CARD16 width

2 CARD16 height
~

Reply
1 unused

2 CARD16 sequence number
4 0 reply length

Appendix F. Protocol Encoding 595

2 CARD16 width
2 CARD16 height
20 unused

QueryExtension

98 opcode
1 unused
2 2+ (n + p)/4 request length
2 n length of name
2 unused
n STRING8 name
p unused, p = pad(n)
~

1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length

BOOL present
CARD8 major-opcode
CARD8 first-event

1 CARD8 first-error
20 unused

ListExtensions

1 99 opcode
1 unused
2 request length
~

1 Reply
1 CARD8 number of STRs in names
2 CARD16 sequence number
4 (n + p)/4 reply length
24 unused
n LISTofSTR names
p unused, p = pad(n)

ChangeKeyboardMapping

100 opcode
1 n keycode-count
2 2+nm request length

596 APPENDIX

1 KEYCODE
1 m
2
4nm LISTofKEYSYM

GetKeyb oard Mapping

1 101
1
2 2

KEYCODE
1 CARD8
2
~

1 n
2 CARD16
4 nm

24
4nm LISTofKEYSYM

ChangeKeyboardControl

102
1
2 2+n
4 BITMASK

#xOOOl key-elick-percent
#xOO02 bell-percent
#xOO04 bell-pitch
#xOO08 bell-duration
#xOOl0 led
#x0020 led-mode
#x0040 key
#x0080 auto-repeat-mode

4n LISTofVALUE

VALUEs

1
1

INT8
INT8

first-keycode
keysyms-per-keycode
unused
keysyms

opcode
unused
request length
first-keycode
count
unused

Reply
keysyms-per-keycode
sequence number
reply length (m = count
field from the request)

unused
keysyms

opcode
unused
request length
value-mask
(has n bits set to 1)

value-list

key-elick-percent
bell-percent

Appendix F. Protocol Encoding 597

2 INT16 bell-pitch

2 INT16 bell-duration
1 CARDS led

1 led-mode
0 Off

On

KEYCODE key
auto-repeat-mode

0 Off

1 On

2 Default

GetKeyboardControl

1 103 opcode
1 unused
2 request length
~

Reply
global-auto-repeat

0 Off

On

2 CARD16 sequence number
4 5 reply length
4 CARD32 led-mask

CARD8 key -click -percen t
1 CARDS bell-percent

2 CARD16 bell-pitch

2 CARD16 bell-duration

2 unused

32 LISTofCARD8 auto-repeats

Bell

104 opcode
1 INT8 percent

2 request length

ChangePointerControl

105 opcode
1 unused

2 3 request length

598 APPENDIX

2 INT16 acceleration -numerator
2 INT16 acceleration -denominator
2 INT16 threshold

BaaL do-acceleration
BaaL do-threshold

GetPointerControl

106 opcode
1 unused
2 request length
~

Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 acceleration -numerator
2 CARD16 acceleration -denominator
2 CARD16 threshold
18 unused

SetScreenSaver

107 opcode
1 unused
2 3 request length
2 INT16 timeout
2 INT16 interval

prefer-blanking
0 No
1 Yes

2 Default

allow-exposures
0 No
1 Yes

2 Default

2 unused

GetScreenSaver

108 opcode
1 unused
2 request length
~

Appendix F. Protocol Encoding 599

Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 timeout
2 CARD16 interval

prefer-blanking
0 No

Yes

allow-exposures
0 No

Yes
18 unused

ChangeHosts

109 opcode
mode

0 Insert

1 Delete

2 2+(n+p)/4 request length
family

0 Internet

1 DECnet

2 Chaos
1 unused
2 CARD16 length of address
n LISTofCARD8 address
p unused, p = pad(n)

ListHosts

110 opcode
1 unused
2 request length
~

Reply
mode

0 Disabled

Enabled

·2 CARD16 sequence number
4 n/4 reply length

600 APPENDIX

2
22
n

CARD16

LISTofHOST

SetAe cess Control

111

o Disable

Enable

number of HOSTs in hosts
unused
hosts (n always a multiple
of 4)

opcode
mode

2 request length

SetCloseDownMode

112 opcode

o Destroy

1 RetainPermanent

2 RetainTemporary

mode

2 request length

KillClient

1
2
4

113

2
CARD32
o AllTemporary

RotateProperties

1 114
1
2 3+n
4 WINDOW
2 n
2 INT16
4n LISTofATOM

ForceScreenSaver

115

opcode
unused
request length
resource

opcode
unused
request length
window
number of properties
delta
properties

opcode
mode

Appendix F. Protocol Encoding

2

o Reset
Activate

SetPointerMapping

1
2
n

p

1
1

2
4
24

116
n
1 +(n +p)/4
LISTofCARD8

0 Success
Busy

CARD16
0

GetPointerMapping

117
1
2
~

1
1 n
2 CARD16
4 (n+p)/4
24
n LISTofCARD8
p

SetModifier Mapping

1
1
2
8n

118
n

1 +2n
LISTofKEYCODE

request length

opcode
length of map
request length
map
unused, p = pad(n)

Reply
status

sequence number
reply length
unused

opcode
unused
request length

Reply
length of map
sequence number
reply length
unused
map
unused, p = pad(n)

opcode

601

keycodes-per-modifier
request length
keycodes

Reply
status

602 APPENDIX

2
4
24

o Success
1 Busy
2 Failed
CARD16
o

Get Modifier Mapping

1

2

1
1

2
4
24
8n

119

n
CARD16
2n

LISTofKEYCODE

N oOperation

1

2

127

Events
KeyPress

2
1 KEYCODE
2 CARD16
4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

0 None

2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK

sequence number
reply length
unused

opcode
unused
request length

Reply
keycodes-per-modifier
sequence number
reply length
unused
keycodes

opcode
unused
request length

code
detail
sequence number
time
root
event
child

root-x
root-y
event-x
event-y
state

Appendix F. Protocol Encoding 603

BOOL same-screen
unused

KeyRelease

3 code
1 KEYCODE detail
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x

2 INT16 root-y

2 INT16 event-x
2 INT16 event-y
2 SETofKEYBUTMASK state

BOOL same-screen
unused

ButtonPress

4 code
1 BUTTON detail

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None
2 INT16 root-x

2 INT16 root-y

2 INT16 event-x

2 INT16 event-y

2 SETofKEYBUTMASK state
1 BOOL same-screen

unused

ButtonRelease

1 5 code
1 BUTTON detail

2 CARD16 sequence number

604 APPENDIX

4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

0 None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK

BOOL

MotionNotify

6

0 Normal
1 Hint

2 CARD16
4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

0 None
2 INT16
2 INT16
2 INT16
2 INT16
2 SETofKEYBUTMASK

BOOL

EnterNotify

7

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

time
root
event
child

root-x
root-y
event-x
event-y
state
same-screen
unused

code
detail

sequence number
time
root
event
child

root-x
root-y
event-x
event-y
state
same-screen
unused

code
detail

Appendix F. Protocol Encoding

2
4
4
4
4

2
2
2
2
2

CARD16
TIMESTAMP
WINDOW
WINDOW
WINDOW
0 None
INT16
INT16
INT16
INT16
SETofKEYBUTMASK

o Normal
1 Grab
2 Ungrab

#xOI focus (1 is True, 0 is False)
#x02 same-screen (l is True, 0 is False)
#xfc unused

LeaveNotify

8

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual

2 CARD16
4 TIMESTAMP
4 WINDOW
4 WINDOW
4 WINDOW

0 None

2 INT16

2 INT16

2 INT16

2 INT16

2 SETofKEYBUTMASK
1

sequence number
time
root
event
child

root-x
root-y
event-x
event-y
state
mode

same-screen, focus

code
detail

sequence number
time
root
event
child

root-x
root-y
event-x
event-y
state
mode

605

606 APPENDIX

o Normal
1 Grab
2 Ungrab

#xOl focus (1 is True, 0 is False)
#x02 same-screen (1 is True, 0 is False)
#xfc unused

Focusln

9

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

2 CARD16
4 WINDOW
1

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23

FocusOut

1 10

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointerRoot
7 None

same-screen, focus

code
detail

sequence number
event
mode

unused

code
detail

Appendix F. Protocol Encoding 607

2 CARD16 sequence number
4 WINDOW event

mode
0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

KeymapN otify

11 code
31 LISTofCARDS keys (byte for keycodes

0-7 is omitted)

Expose

1 12 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 count
14 unused

GraphicsExposure

13 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 x
2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 minor-opcode
2 CARD16 count

CARDS major-opcode
11 unused

608 APPENDIX

NoExposure

14 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 minor-opcode
1 CARD8 major-opcode
21 unused

Visibility Notify

15 code
1 unused
2 CARD16 sequence number
4 WINDOW window

state
0 Unobscured
1 PartiallyObscured
2 FullyObscured

23 unused

CreateN otify

16 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 BOOL override-redirect
9 unused

Destroy Notify

17 code
1 unused
2 CARD16 sequence number
4 WINDOW event

Appendix F. Protocol Encoding 609

4 WINDOW window
20 unused

UnmapNotify

18 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
1 BOOL from-configure
19 unused

MapNotify

1 19 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
1 BOOL override-redirect
19 unused

MapRequest

20 code
1 unused
2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
20 unused

ReparentNotify

21 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW parent
2 INT16 x
2 INT16 Y
1 BOOL override-redirect
11 unused

610 APPENDIX

ConfigureN otify

22 code
1 unused
2 CARD16 sequence number
4 WINDOW event
4 WINDOW window
4 WINDOW above-sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 BOOL override-redirect
5 unused

ConfigureRequest

23 code
stack-mode

0 Above
1 Below
2 Toplf
3 Bottomlf
4 Opposite

2 CARD16 sequence number
4 WINDOW parent
4 WINDOW window
4 WINDOW sibling

0 None
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
2 BITMASK value-mask

#xOOOl x
#xOOO2 y
#xOOO4 width
#xOOO8 height
#xOOlO border-width

Appendix F. Protocol Encoding 611

#xOO20 sibling

#xOO40 stack-mode

4 unused

Gravity Notify

24 code
1 unused

2 CARD16 sequence number

4 WINDOW event
4 WINDOW window

2 INT16 x
2 INT16 y

16 unused

ResizeRequest

1 25 code
1 unused

2 CARD16 sequence number

4 WINDOW window

2 CARD16 width

2 CARD16 height

20 unused

CirculateN otify

26 code
1 unused

2 CARD16 sequence number

4 WINDOW event
4 WINDOW window
4 WINDOW unused

1 place
0 Top

Bottom

15 unused

CirculateRequest

27 code
1 unused

2 CARD16 sequence number

4 WINDOW parent

612 APPENDIX

4 WINDOW window
4 unused

place
0 Top

Bottom
15 unused

Property Notify

28 code
1 unused
2 CARD16 sequence number
4 WINDOW window
4 ATOM atom
4 TIMESTAMP time

state
0 NewValue

Deleted
15 unused

Selection Clear

29 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW owner
4 ATOM selection
16 unused

SelectionRequest

30 code
1 unused
2 CARD16 sequence number
4 TIMESTAMP time

0 CurrentTime
4 WINDOW owner
4 WINDOW requestor
4 ATOM selection
4 ATOM target

Appendix F. Protocol Encoding 613

4 ATOM property

0 None
4 unused

SelectionN otify

31 code
1 unused

2 CARD16 sequence number

4 TIMESTAMP time

0 CurrentTime
4 WINDOW requestor

4 ATOM selection

4 ATOM target

4 ATOM property

0 None
8 unused

ColormapN otify

32 code

1 unused

2 CARD16 sequence number

4 WINDOW window

4 COLORMAP colormap

0 None
BOOL new

state

0 Uninstalled
Installed

18 unused

ClientMessage

33 code

1 CARD8 format

2 CARD16 sequence number

4 WINDOW window

4 ATOM type

20 data

614 APPENDIX

MappingNotify

34 code
1 unused
2 CARD16 sequence number

request
0 Modifier
1 Keyboard
2 Pointer

1 KEYCODE first -keycode
1 CARD8 count
25 unused

615

Glossary

Access control list X maintains a list of hosts from which client programs

can be run. By default, only programs on the local host and hosts specified

in an initial list read by the server can use the display. This access control

list can be changed by clients on the local host. Some server implementa­

tions can also implement other authorization mechanisms in addition to or

in place of this mechanism. The action of this mechanism can be condi­

tional based on the authorization protocol name and data received by the

server at connection setup,

Active grab A grab is active when the pointer or keyboard IS actually

owned by the single grabbing client.

Ancestors If W is an inferior of A, then A is an ancestor of W.

Atom An atom is a unique ID corresponding to a string name. Atoms are

used to identify properties, types, and selections.

Background An InputOutput window can have a background, which is

defined as a pixmap. When regions of the window have their contents lost

or invalidated, the server automatically tiles those regions with the back­

ground.

Backing store When a server maintains the contents of a window, the

pixels saved off-screen are known as a backing store.

Bit gravity When a window is resized, the contents of the window are not

necessarily discarded. It is possible to request that the server relocate the

previous contents to some region of the window (though no guarantees

616 X WINDOW SYSTEM

are made). This attraction of window contents for some location of a win­

dow is known as bit gravity.

Bit plane When a pixmap or window is thought of as a stack of bitmaps,

each bitmap is called a bit plane or plane.

Bitmap A bitmap is a pixmap of depth one.

Border An InputOutput window can have a border of equal thickness on

all four sides of the window. The contents of the border are defined by a

pixmap, and the server automatically maintains the contents of the bor­

der. Exposure events are never generated for border regions.

Button grabbing Buttons on the pointer can be passively grabbed by a cli­

ent. When the button is pressed, the pointer is then actively grabbed by

the client.

Byte order For image (pixmaplbitmap) data, the server defines the byte

order, and clients with different native byte ordering must swap bytes as

necessary. For all other parts of the protocol, the client defines the byte

order, and the server swaps bytes as necessary.

Children The children of a window are its first-level subwindows.

Class Windows can be of different classes or types. See the entries for

InputOnly and InputOutput windows for further information about

valid window types.

Client An application program connects to the window system server by

some interprocess communication (IPC), path, such as a TCP connection

or a shared memory buffer. This program is referred to as a client of the

window system server. More precisely, the client is the IPC path itself. A

program with multiple paths open to the server is viewed as multiple cli­

ents by the protocol. Resource lifetimes are controlled by connection life­

times, not by program lifetimes.

Clipping region In a graphics context, a bitmap or list of rectangles can be

specified to restrict output to a particular region of the window. The

image defined by the bitmap or rectangles is called a clipping region.

Colormap A colormap consists of a set of entries defining color values. The

colormap associated with a window is used to display the contents of the

window; each pixel value indexes the colormap to produce RGB values

that drive the guns of a monitor. Depending on hardware limitations, one

Glossary 617

or more colormaps can be installed at one time so that windows associated

with those maps display with true colors.

Connection The IPC path between the server and client program is known

as a connection. A client program typically (but not necessarily) has one

connection to the server over which requests and events are sent.

Containment A window contains the pointer if the window is viewable and

the hotspot of the cursor is within a visible region of the window or a visi­

ble region of one of its inferiors. The border of the window is included as

part of the window for containment. The pointer is in a window if the win­
dow contains the pointer but no inferior contains the pointer.

Coordinate system The coordinate system has X horizontal and Y vertical,

with the origin [0, 0] at the upper left. Coordinates are discrete and are in

terms of pixels. Each window and pixmap has its own coordinate system.
For a window, the origin is inside the border at the inside upper-left cor­

ner.

Cursor A cursor is the visible shape of the pointer on a screen. It consists

of a hotspot, a source bitmap, a shape bitmap, and a pair of colors. The

cursor defined for a window controls the visible appearance when the

pointer is in that window.

Depth The depth of a window or pixmap is the number of bits per pixel it

has. The depth of a graphics context is the depth of the drawables it can

be used in conjunction with graphics output.

(0,0) ..
+X

" +Y

Coordinates Are Pixel Centers

Figure G.l. Coordinate system

618 X WINDOW SYSTEM

Device Keyboards, mice, tablets, track-balls, button boxes, and so on are all

collectively known as input devices. Pointers can have one or more buttons

(the most common number is three). The core protocol only deals with

two devices: the keyboard and the pointer.

DirectColor D irectColor is a class of colormap in which a pixel value is

decomposed into three separate subfields for indexing. The first subfield

indexes an array to produce red intensity values. The second subfield in­

dexes a second array to produce blue intensity values. The third subfield

indexes a third array to produce green intensity values. The RGB (red,

green, and blue) values in the colormap entry can be changed dynami­

cally.

Display A server, together with its screens and input devices, is called a dis­

play. The Xlib Display structure contains all information about the par­

ticular display and its screens as well as the state that Xlib needs to commu­

nicate with the display over a particular connection.

Drawable Both windows and pixmaps can be used as sources and destina­

tions in graphics operations. These windows and pix maps are collectively
known as drawables. However, an InputOnly window cannot be used as

a source or destination in a graphics operation.

Event Clients are informed of information asynchronously by means of

events. These events can be either asynchronously generated from devices

or generated as side effects of client requests. Events are grouped into

types. The server never sends an event to a client unless the client has spe­

cifically asked to be informed of that type of event. However, clients can

force events to be sent to other clients. Events are typically reported rela­
tive to a window.

Event mask Events are requested relative to a window. The set of event

types a client requests relative to a window is described by using an event

mask.

Event propagation Device-related events propagate from the source win­

dow to ancestor windows until some client has expressed interest in han­

dling that type of event or until the event is discarded explicitly.

Event source The deepest viewable window that the pointer is in is called

the source of a device-related event.

Glossary 619

Event synchronization There are certain race conditions possible when

de multiplexing device events to clients (in particular, deciding where
pointer and keyboard events should be sent when in the middle of window

management operations). The event synchronization mechanism allows

synchronous processing of device events.

Exposure event Servers do not guarantee to preserve the contents of win­
dows when windows are obscured or reconfigured. Exposure events are

sent to clients to inform them when contents of regions of windows have

been lost.

Extension Named extensions to the core protocol can be defined to extend

the system. Extensions to output requests, resources, and event types are

all possible, and expected.

Font A font is an array of glyphs (typically characters). The protocol does
no translation or interpretation of character sets. The client simply indi­

cates values used to index the glyph array. A font contains additional met­

ric information to determine interglyph and interline spacing.

Frozen events Clients can freeze event processing during keyboard and

pointer grabs.

GC GC is an abbreviation for graphics context. See Graphics context.

Glyph A glyph is an image in a font, typically of a character.

Grab Keyboard keys, the keyboard, pointer buttons, the pointer, and the

server can be grabbed for exclusive use by a client. In general, these facili­

ties are not intended to be used by normal applications but are intended

for various input and window managers to implement various styles of

user interfaces.

Graphics context Various information for graphics output is stored in a

graphics context (GC), such as foreground pixel, background pixel, line

width, clipping region, and so on. A graphics context can only be used

with drawables that have the same root and the same depth as the graphics

context.

Gravity The contents of windows and windows themselves have a gravity,

which determines how the contents move when a window is resized. See
Bit gravity and Window gravity.

620 X WINDOW SYSTEM

GrayScale GrayScale can be viewed as a degenerate case of Pseudo­

Color, in which the red, green, and blue values in any given colormap
entry are equal and thus produce shades of gray. The gray values can be

changed dynamically.

Hotspot A cursor has an associated hotspot, which defines the point in the

cursor corresponding to the coordinates reported for the pointer.

Identifier An identifier is a unique value associated with a resource that cli­

ents use to name that resource. The identifier can be used over any con­

nection to name the resource.

Inferiors The inferiors of a window are all of the subwindows nested

below it: the children, the children's children, and so on.

Input focus The input focus is usually a window defining the scope for

processing of keyboard input. If a generated keyboard event usually
would be reported to this window or one of its inferiors, the event is re­

ported as usual. Otherwise, the event is reported with respect to the focus

window. The input focus also can be set such that all keyboard events are

discarded and such that the focus window is dynamically taken to be the

root window of whatever screen the pointer is on at each keyboard event.

Input manager Control over keyboard input is typically provided by an

input manager client, which usually is part of a window manager.

InputOnly window An InputOnly window is a window that cannot be

used for graphics requests. InputOnly windows are invisible and are

used to control such things as cursors, input event generation, and grab­

bing. InputOnly windows cannot have InputOutput windows as inferi­

ors.

InputOutput window An InputOutput window is the normal kind of

window that is used for both input and output. InputOutput windows

can have both InputOutput and InputOnly windows as inferiors.

Key grabbing Keys on the keyboard can be passively grabbed by a client.

When the key is pressed, the keyboard is then actively grabbed by the cli­

ent.

Keyboard grabbing A client can actively grab control of the keyboard, and

key events will be sent to that client rather than the client the events would

normally have been sent to.

Glossary 621

Keysym An encoding of a symbol on a keycap on a keyboard.

Mapped A window is said to be mapped if a map call has been performed

on it. Unmapped windows and their inferiors are never viewable or visible.

Modifier keys Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple,

CapsLock, ShiftLock, and similar keys are called modifier keys.

Monochrome Monochrome is a special case of StaticGray in which

there are only two colormap entries.

Obscure A window is obscured if some other window obscures it. A win­

dow can be partially obscured and so still have visible regions. Window A
obscures window B if both are viewable InputOutput windows, if A is

higher in the global stacking order, and if the rectangle defined by the out­

side edges of A intersects the rectangle defined by the outside edges of B.

Note the distinction between obscures and occludes. Also note that win­
dow borders are included in the calculation.

Occlude A window is occluded if some other window occludes it. Window

A occludes window B if both are mapped, if A is higher in the global stack­

ing order, and if the rectangle defined by the outside edges of A intersects

the rectangle defined by the outside edges of B. Note the distinction be­

tween occludes and obscures. Also note that window borders are included

in the calculation and that InputOnly windows never obscure other win­

dows but can occlude other windows.

Padding Some padding bytes are inserted in the data stream to maintain

alignment of the protocol requests on natural boundaries. This increases

ease of portability to some machine architectures.

Parent window If C is a child of P, then P is the parent of C.

Passive grab Grabbing a key or button is a passive grab. The grab activates

when the key or button is actually pressed.

Pixel value A pixel is an N-bit value, where N is the number of bit planes

used in a particular window or pixmap (that is, is the depth of the window

or pixmap). A pixel in a window indexes a colormap to derive an actual

color to be displayed.

Pixmap A pixmap is a three-dimensional array of bits. A pix map is nor­

mally thought of as a two-dimensional array of pixels, where each pixel

622 X WINDOW SYSTEM

can be a value from ° to 2N -1, and where N is the depth (z axis) of the
pixmap. A pixmap can also be thought of as a stack of N bitmaps. A
pixmap can only be used on the screen that it was created in.

Plane When a pixmap or window is thought of as a stack of bitmaps, each

bitmap is called a plane or bit plane.

Plane mask Graphics operations can be restricted to only affect a subset of
bit planes of a destination. A plane mask is a bit mask describing which
planes are to be modified. The plane mask is stored in a graphics context.

Pointer The pointer is the pointing device currently attached to the cursor
and tracked on the screens.

Pointer grabbing A client can actively grab control of the pointer. Then

button and motion events will be sent to that client rather than the client
the events would normally have been sent to.

Pointing device A pointing device is typically a mouse, tablet, or some

other device with effective dimensional motion. The core protocol defines
only one visible cursor, which tracks whatever pointing device is attached

as the pointer.

Property Windows can have associated properties that consist of a name, a

type, a data format, and some data. The protocol places no interpretation
on properties. They are intended as a general-purpose naming mecha­

nism for clients. For example, clients might use properties to share infor­
mation such as resize hints, program names, and icon formats with a win­

dow manager.

Property list The property list of a window is the list of properties that
have been defined for the window.

PseudoColor PseudoColor is a class of colormap in which a pixel value
indexes the colormap entry to produce independent RGB values; that is,

the colormap is viewed as an array of triples (RGB values). The RGB val­
ues can be changed dynamically.

Rectangle A rectangle specified by [x,y,w,h] has an infinitely thin outline

path with corners at [x,y], [x + w,y], [x + w,y + h], and [x, y+ h]. When a
rectangle is filled, the lower-right edges are not drawn. For example, if
w=h=O, nothing would be drawn. For w=h= 1, a single pixel would be

drawn.

Glossary 623

Redirecting control Window managers (or client programs) may enforce

window layout policy in various ways. When a client attempts to change
the size or position of a window, the operation may be redirected to a spec­

ified client rather than the operation actually being performed.

Reply Information requested by a client program using the X protocol is

sent back to the client with a reply. Both events and replies are multi­
plexed on the same connection. Most requests do not generate replies, but

some requests generate multiple replies.

Request A command to the server is called a request. It is a single block of

data sent over a connection.

Resource Windows, pixmaps, cursors, fonts, graphics contexts, and

colormaps are known as resources. They all have unique identifiers associ­

ated with them for naming purposes. The lifetime of a resource usually is

bounded by the lifetime of the connection over which the resource was

created.

RGB values RGB values are the red, green, and blue intensity values that

are used to define a color. These values are always represented as 16-bit,
unsigned numbers, with 0 the minimum intensity and 65535 the maxi­

mum intensity. The X server scales these values to match the display hard­

ware.

Root The root of a pixmap or graphics context is the same as the root of

whatever drawable was used when the pixmap or GC was created. The

root of a window is the root window under which the window was created.

Root window Each screen has a root window covering it. The root window
cannot be reconfigured or unmapped, but otherwise it acts as a full­

fledged window. A root window has no parent.

Save-set The save-set of a client is a list of other clients' windows that, if

they are inferiors of one of the clients' windows at connection close, should

not be destroyed and that should be remapped if currently unmapped.

Save-sets are typically used by window managers to avoid lost windows if

the manager should terminate abnormally.

Scanline A scanline is a list of pixel or bit values viewed as a horizontal row

(all values having the same y coordinate) of an image, with the values or­

dered by increasing the x coordinate.

624 X WINDOW SYSTEM

Scanline order An image represented in scanline order contains scanlines

ordered by increasing the y coordinate.

Screen A server can provide several independent screens, which typically

have physically independent monitors. This would be the expected config­

uration when there is only a single keyboard and pointer shared among

the screens. A Screen structure contains the information about that

screen and is linked to the Display structure.

Selection A selection can be thought of as an indirect property with dy­

namic type. That is, rather than having the property stored in the X

server, it is maintained by some client (the owner). A selection is global and
is thought of as belonging to the user and being maintained by clients,

rather than being private to a particular window subhierarchy or a partic­

ular set of clients. When a client asks for the contents of a selection, it spec­

ifies a selection target type, which can be used to control the transmitted
representation of the contents. For example, if the selection is "the last

thing the user clicked on," and that is currently an image, then the target

type might specify whether the contents of the image should be sent in XY

format or Z format.

The target type can also be used to control the class of contents trans­

mitted; for example, asking for the "looks" (fonts, line spacing, indenta­

tion, and so forth) of a paragraph selection, rather than the text of the

paragraph. The target type can also be used for other purposes. The pro­

tocol does not constrain the semantics.

Server The server, which is also referred to as the X server, provides the

basic windowing mechanism. It handles IPC connections from clients,

demultiplexes graphics requests onto the screens, and multiplexes input
back to the appropriate clients.

Server grabbing The server can be grabbed by a single client for exclusive

use. This prevents processing of any requests from other client connec­

tions until the grab is completed. This is typically only a transient state for

such things as rubber-banding, pop-up menus, or executing requests indi­
visibly.

Sibling Children of the same parent window are known as sibling win­
dows.

Glossary 625

Stacking order Sibling windows, similar to sheets of paper on a desk, can

stack on top of each other. Windows above both obscure and occlude
lower windows. The relationship between sibling windows is known as the

stacking order.

StaticColor StaticColor can be viewed as a degenerate case of

PseudoColor in which the RGB values are predefined and read-only.

Static Gray Sta ticGray can be viewed as a degenerate case of Gray­

Scale in which the gray values are predefined and read-only. The values

are typically linear or near-linear increasing ramps.

Status Many Xlib functions return a success status. If the function does not

succeed, however, its arguments are not disturbed.

Stipple A stipple pattern is a bitmap that is used to tile a region to serve as

an additional clip mask for a fill operation with the foreground color.

Tile A pix map can be replicated in two dimensions to tile a region. The

pixmap itself is also known as a tile.

Timestamp A timestamp is a time value expressed in milliseconds. It is typ­

ically the time since the last server reset. Timestamp values wrap around
(after about 49.7 days). The server, given its current time is Tepresented

by timestamp T, always interprets timestamps from clients by treating half

of the timestamp space as being earlier in time than T and half of the

timestamp space as being later in time than T. One timestamp value, rep­

resented by the constant Curren tTirne, is never generated by the server.

This value is reserved for use in requests to represent the current server

time.

TrueColor TrueColor can be viewed as a degenerate case of D irect­

Color in which the subfields in the pixel value directly encode the corre­

sponding RGB values. That is, the colormap has predefined read-only

RGB values. The values are typically linear or near-linear increasing

ramps.

Type A type is an arbitrary atom used to identify the interpretation of

property data. Types are completely uninterpreted by the server. They

are solely for the benefit of clients. X predefines type atoms for many fre­
quently used types, and clients also can define new types.

626 X WINDOW SYSTEM

Viewable A window is viewable if it and all of its ancestors are mapped.

This does not imply that any portion of the window is actually visible.

Graphics requests can be performed on a window when it is not viewable,

but output will not be retained unless the server is maintaining backing

store.

Visible A region of a window is visible if someone looking at the screen can

actually see it; that is, the window is viewable and the region is not oc­

cluded by any other window.

Window gravity When windows are resized, subwindows may be reposi­

tioned automatically relative to some position in the window. This attrac­
tion of a subwindow to some part of its parent is known as window gravity.

Window manager Manipulation of windows on the screen and much of

the user interface (policy) is typically provided by a window manager

client.

XY format The data for a pixmap is said to be in XY format if it is orga­

nized as a set of bitmaps representing individual bit planes with the planes

appearing from most-significant to least-significant bit order.

Z format The data for a pixmap is said to be in Z format if it is organized

as a set of pixel values in scanline order.

Index

acceleration,
parameters for pointer movement, queried

with XGetPointerControl, 196
Access error,

description of conditions leading to, 350
access,

control,
changing, discussion and related Xlib func­

tions, 209
disabling, discussion and related Xlib func­

tions, 209
disabling, using XDisableAccessControl,

210
discussion and related Xlib functions, 206
enabling, discussion and related Xlib func­

tions, 209
enabling, using xEnableAccessControl,

209
list, glossary entry, 615
list, managing, discussion and related Xlib

functions, 206
list, reset on closing last connection to

server, 25
mechanisms vary with X server implementa­

tion, 12
setting, using SetAccessControl protocol

request, 440
setting, using XSetAccessControl, 209

error, protocol encoding, 549
activating,

screen saver,
using ForceScreenSaver protocol request,

438
using XActivateScreenSaver, 205

active grab,
glossary entry, 615

adding,
See Also incrementing

a constant value to each pixel in an image
using XAddPixel, 320

data onto certain Xlib data structures, 485
entry to XModifierKeymap using

XlnsertModifiermapEntry, 201
extension using XAddExtension, 478
hosts,

627

discussion and related Xlib functions, 206
using XAddHost, 207

multiple hosts using XAdd Hosts, 207
resources specified as string to resource data­

base, using XrmPutStringResource, 332
resources to resource database, using

XrmPutLineResource, 333
XrmPutResource,331
XrmQputResource,331
XrmQPutStringResource, 332

specified host using ChangeHosts protocol re­
quest, 439

windows to a save-set, using
XAddToSaveSet, 169
XChangeSaveSet, 169

address,
as element in type description of HOST, 349
element of HOST characteristics set by net­

work,349
after functions,

all Xlib functions generating requests call an
after function, 268

algorithms,
for matching resource names used by resource

manager, 326
all-event-masks,

receives current-input-events for root window,
359

Alloc error,
description of conditions leading to, 350
protocol encoding, 549

628 X WINDOW

allocating, See Also assigning, entering, saving,
setting, storing

allocating,
a new quark using XrmuniqueQuark, 328
color

cells, using AllocColorCells protocol re­
quest, 425

planes, using AllocColorP lanes protocol
request, 425

colormap entries, using AllocColor protocol
request, 424

deallocating memory for image structure
using XDestroylmage, 320

memory for long term use with Xpermalloc,
328

named colormap entries, using
AllocNamedColor protocol request, 424

protected memory in extensions, discussion
and related Xlib functions, 497

read-only color cells, by name of color using
XAllocNamedColor, 85

using XAllocColor, 84
read/write color,

cells using XAllocColorCells, 87
resources using XAllocColorPlanes, 88

resource IDs, details, format, and uniqueness,
356

storage for information about extensions using
XlnitExtension,478

sufficient memory for XI mage structure with
XCreatelmage, 317

allocations,
as writable cells in colormap, 83
of color should come from default colormap, 14

AllocColor,
full protocol description with discussion of ar­

guments, 424
request, protocol encoding, 589

AllocColorCells,
full protocol description with discussion of ar­

guments, 425
request, protocol encoding, 590

AllocColorPlanes,
full protocol description with discussion of ar­

guments, 425
request, protocol encoding, 590

AllocNamedColor,
full protocol description with discussion of ar­

guments, 424
request, protocol encoding, 589

allowed depths,
for pixmap and windows exchanged remote

setup, 358
AllowEvents,

full protocol description with discussion of ar­
guments, 386

request, protocol encoding, 569

allowing,
access control, using XEnableAccess

Control,209
AllPlanes,

formal description of Xlib macro for obtaining
number of planes, 13

macro constant for planes element of
XGCValues,97

al phabetical,
listing of,

X protocol requests with Xlib functions that
reference them, 467

Xlib functions with protocol requests they
generate, 461

Alternate Values,
are represented with capitals in descriptions,

346
Always,

as Alternative Value of backing stores of
SCREEN,356

value,
of backing store saves window even if larger

than parent, 37
returned by DoesBackingStore macro, 20

ancestors,
glossary entry, 615

anglel,
as element in type description of ARC, 349

angle2,
as element in type description of ARC, 349

angles,
meaning of positive and negative in drawing

arcs, 129
APL,

KeySym set, 534
apuiVb~-'

misnaming screen functions as display, 12
applications,

cannot override window manager decisions, 31
must be prepared to handle all events, 6
setting command used to invoke application,

using XSetCommand, 281
specific atoms should begin with 2 under­

scores, 354
Arabic,

KeySym set, 522
ARC,

in list of atoms with predefined values, 353
listed as a built-in property type, 69
type description, 349

arc_mode,
as element of XGCValues, description of op­

tions, 103
diagram showing interpretation of options,

104

Index

ArcChord
option for arc_mode element of XGCValues

structure, 104
ArcPieSlice,

option for arc_mode element of XGCValues
structure, 104

arcs,
discussion of functions for drawing, 128
drawing, using PolyArc protocol request, 413
filling,

discussion and related Xlib functions, 133
region delimited by, using PolyFillArc

protocol request, 416
setting arc mode of a given GC using

XSetArcMode, 116
areas,

clearing window, using ClearArea protocol
request, 409

copying window, using Copy Area protocol re­
quest, 410

filling, discussion and related Xlib functions,
131

listed which have special filling functions, 131
arguments,

hints for remembering syntax for functions, 7
selection of options with value-mask, 347
sending variable length arguments with Data

macro, 493
source precedes destination in Xlib function

calls, 8
aspect ratio,

in width-in-millimeters and height-in­
millimeters, 358

assigning,
See Also allocating, entering, saving, setting,

storing,
icon names, using XSetIconName, 280
value of pixel in an image using XPutPixel,

319
window names, using XStoreName, 279

associating,
data with a resource rD, discussion and re­

lated version 10 functions, 503
asynchronous,

normal for X server allowing batching of re­
quests, 6

atom,
as unique identifier of a property, 67
definition remains until last connection closed,

70
ATOM,

in list of atoms with predefined values, 353
listed as a built-in property type, 69
type description, 348

Atom error,
description of conditions leading to, 350

629

atoms,
creating, using InternAtom protocol request,

374
error, protocol encoding, 548
five distinct name spaces listed, 68
glossary entry, 615
identifiers, deleted at closing of last server

connection, 24
list of predefined with discussion of uses, 353
name for given atom obtained with

XGetAtomName, 70
obtaining,

for a given name with XInternAtom, 70
from property name with XInternAtom, 68
the name, using GetAtomName protocol re-

quest, 374
predefined, protocol encoding, 551
predefinition not required but save Intern­

Atom, 353
specific to,

application should begin with two under­
scores, 354

vendor should begin with underscore, 354
attaching,

keyboard output, FocusIn protocol event, 447
severing attachment to keyboard, FocusOut

protocol event, 447
attributes,

for bell, etc., reset on closing last connection, 25
changing window,

using XChangeWindowAttributes, 57
using ChangeWindowAttributes protocol

request, 365
of GC set with mask and XGCValues, 94
getting, window using GetWindowAttributes

protocol request, 365
list of defaults for each window attribute, 32
of specified window obtained with

XGetWindowAttributes, 63
authorization,

failure, client receives reason during connec­
tion setup, 355

mechanism not stipulated by protocol, 355
name and data strings empty for no explicit

authorization, 355
authorization-protocol-data,

sent during connection setup by client, 354
authorization -protocol-name,

sent during connection setup by client, 354
auto-repeat, keyboard setting with,

XAutoRepeatOff, 193
XAutoRepeatOn, 193

background,
absent in windows with zero depth, 5
attribute, discussion and details of use, 33
glossary entry, 615

630 X WINDOW

background (Cant.)
of InputOutput window set with pixel or

pixmap, 33
pattern for window, brief overview, 5
pixmap can be freed if no further references

are made, 59
if root window has only black-pixel + white­

pixel,359
setting background of GC using,

XSetBackground, 107
XSetState, 107

background -pixel,
attribute of window used to fill background, 33
discussion of options and default values, 33
element of XSetWindowAttributes struc-

ture, 32
overrides background-pixmap patterns, 33

background-pixmap,
attribute of window used to fill background, 33
can be freed if no further reference to be

made, 34
discussion of options and default values, 33
element of XSetWindowAttributes struc­

ture,32
overridden by background-pixel value, 33

backgrounds,
setting window background to given,

pixel using XSetWindowBackground, 58
pixmap using XSetWindowBackground­

Pixmap,59
backing,

pixel, attributes, discussion and details of use,
38

planes, attributes, discussion and details of
use, 38

backing store,
attribute, discussion and details of use, 37
check if screen supports with

DoesBackingStore,20
contents are discarded if window is

reconfigured, 51
glossary entry, 615
required for output to window that is not visi­

ble, 31
used for output to obscured windows, 4

backing_pixel ,
element of XSetWindowAttributes struc­

ture,32
backing_planes,

element of XSetWindowAttributes struc­
ture, 32

backing_store,
element of XSetWindowAttributes struc­

ture, 32
backing-stores,

indicates when screen stores supported by
server, 359

BadGC error,
can be generated by call to XCloseDisplay, 23

batching,
list of functions that may be batched together

when sent to server, 118
requests for performance improvements, 486

beginning,
access control, using XEnableAccess­

Control, 209
Bell,

full protocol description with discussion of ar­
guments, 436

request, protocol encoding, 597
bell,

ringing bell on keyboard using,
XBell, 194
Bell protocol request, 436

volume, setting with XChangeKeyboard func­
tion, 194

binding,
list, converting string to binding and quark

lists with XrmStringToBindingQuark­
List, 330

meaning of a KeySym for a client using
XRebindKeysym, 301

BITGRAVITY,
type description, 348

bit gravity,
glossary entry, 615
of window defines region retained when

resized, 35
bit-gravity,

default value is ForgetGravity, 35
defines resized position of each pixel in win­

dow, 36
element of XSetWindowAttributes struc­

ture, 32
in XWindowAttributes possible values listed,

64
bit plane,

glossary entry, 616
BITMAP,

in list of atoms with predefined values, 353
listed as a built-in property type, 69

bitmap-bit-order,
as element of exchange in connection setup, 356
describes significance of left-most bit in

bitmap, 357
bitmap-scanline-pad,

describes multiple of bits padding scanline,
357

as element of exchange in connection setup, 355
bitma p-scanline-unit,

describes number of bits in unit of scanline, 357
as element of exchange in connection setup, 355

Index

BitmapOrder,
formal description of Xlib macro for scanline,

unit format, 18
BitmapPad,

formal description of Xlib macro for scanline,
pad size, 18

bitmaps,
bit order returned by XB i tmapB i tOrder, 18
creating,

a pixmap and storing bitmap data in it
using XCreatePixmapFromBi tmap­
Data, 323

cursor from two bitmaps, using XCreate­
PixmapCursor, 162

defining coordinate names for hotspot in
bitmap, 321

discussion of elements describing formats, 357
file format definitions, discussion and related

Xlib functions, 321
glossary entry, 616
introduction and relation to pixmaps, 5
loading bitmap into program memory using

XCreateBitmapFrom Data, 323
manipulating bitmaps, discussion and related

Xlib functions, 320
padding of each scanline returned with

XBitmapPad, 18
reading from bitmap file using XReadBi tmap­

File, 321
use pixel value to set color of printing, 81
writing to bitmap file using XWri teBi tmap­

File, 322
BitmapUnit,

formal description of Xlib macro for scanline
unit size, 18

BITMASK,
and LISTofVALUE for subset of arguments,

347
bitmask,

list of symbol definitions for setting window
attributes, 31

bits-per-pixel,
description and relation to bitmap data, 357

bits-per-rgb-value,
number of color intensity values, 360

black-pixel,
permanently allocated entry in default­

colormap, 358
BlackPixel,

formal description of Xlib macro for dark in­
tensity, 13

RGB values can be set on some screens, 13
BlackPixelOfScreen,

formal description of Xlib macro for value of
dark pixel, 19

631

block,
or delay in return of information from server, 6

blue-mask,
conditions for use and bit description, 360

BOOL,
type description, 348

border_pixel,
element of XSetWindowAttributes struc­

ture,32
overrides border-pixmap patterns, 35
specifies pix map filled with pixel for border, 34

border _pixmap,
element of XSetWindowAttributes struc­

ture,32
can be freed if no further reference to be

made to it, 35
overridden by border-pixel value, 35
specifies pixmap for window's border, 34

border width,
changing with XWindowChanges structure and

value mask, 48
of drawable obtained with XGetGeometry, 66

border_width,
element of XWindowChanges moves origin, 48
listed as element of XWindowChanges struc­

ture,48
in XWindowAttributes expressed in pixels, 64

borders,
attribute, discussion and details of use, 34
changing windows,

ConfigureNotify event discussion and re­
lated Xlib structures, 238

ConfigureRequest event discussion and
related Xlib structures, 248

glossary entry, 616
never affected by graphics operations in win­

dow, 35
of InputOutput window set with pixel or

pixmap,34
of root window is pixmap filled with black­

pixel,359
pattern of window is programmable, 30
setting window borders,

with XSetWindowBorder, 53
to pixel value with XSetWindowBorder, 59
to pixmap with XSetWindowBorderPixmap,

60
width of window is programmable, 30
for window overview, of width, pattern, and

color, 5
buffers,

getting size of pointer motion history buffer,
using XDisplayMotionBuffer, 267

handling output buffer for requests, discus­
sion and related Xlib functions, 257

632 X WINDOW

buffers (Cont.)
fetching data from,

cut buffer 0 using XFetchBytes, 314
specified cut buffer using XFetchBuffer,

314
rotating data between cut buffers using

XRotateBuffers, 314
storing data in,

cut buffer 0 with XStoreBytes, 313
specified cut buffer with XStoreBuffer,

313
building,

creating a pixmap and storing bitmap data in
it using XCreatePixmapFromBi tmap­
Data, 323

BUTMASK,
as one of the types of KEYBUTMASK, 349
type description, 349

BUTTON,
type description, 349

Button1,
as Alternative Value for BUTMASK, 349

Button1Motion,
as AlternativeValue for,

DEVICEEVENT, 349
EVENT,348
POINTEREVENT,349

Button2,
as Alternative Value for BUTMASK, 349

Button2Motion,
as AlternativeValue for,

DEVICEEVENT, 349
EVENT,348
POINTEREVENT,349

Button3,
as AlternativeValue for BUTMASK, 349

Button3Motion,
as AlternativeValue for,

DEVICEEVENT,349
EVENT,348
POINTEREVENT, 349

ButtonL;,
as AlternativeValue for BUTMASK, 349

ButtonL;Motion,
as Alternative Value for,

DEVICEEVENT, 349
EVENT,348
POINTEREVENT,349

ButtonS,
as Alternative Value for BUTMASK, 349

ButtonSMotion,
as AlternativeValue for,

DEVICEEVENT,349
EVENT,348
POINTEREVENT, 349

ButtonMotion,
as AlternativeValue for,

DEVICEEVENT, 349
EVENT,348
POINTEREVENT, 349

ButtonPress,
as AlternativeValue for,

DEVICEEVENT,349
EVENT,348
POINTEREVENT,349

event,
protocol encoding, 603

formal description of protocol event, 443
ButtonRelease,

as Alternative Value for,
DEVICEEVENT,349
EVENT,348
POINTEREVENT, 349

event,
protocol encoding, 603

formal description of protocol event, 443
buttons,

events, discussion and related Xlib functions,
217

grabbing,
glossary entry, 616
pointer button, using XGrabButton, 177
pointer button, using XUngrabButton, 179
using GrabButton protocol request, 381

on pointers numbered starting with one, 353
pressing, ButtonPress protocol event, 443
releasing,

ButtonRelease protocol event, 443
using UngrabButton protocol request, 382

setting mapping of pointer buttons, using
XSetPointerMapping, 195

values returned by XQueryPointer, 66
byte order,

as setup in initial data byte of new connection,
354

differences supported in property format, 68
glossary entry, 616

BYTE,
type description, 348

byte-swapping,
for images performed by client, 357

cache,
GCs cached to pool change requests, flushed

with FlushGC, 486
cap and join styles,

diagram showing examples for wide lines, 100
CAP_HEIGHT,

listed as a built-in font property type, 70
in list of atoms with predefined values, 353

cap_style,
as element of XGCValues, description of op­

tions,99

Index

CapButt,
option for cap_style element of XGCValues

structure, 99
capital styles,

semantics dependency on line_width, 100
capitalization,

is syntax for Altenative Values in descriptions,
346

capitalize,
all function names and symbols in Xlib, 7

CapNotLast,
option for cap_style element of XGC­

Val ues structure, 99
CapProjecting,

option for cap_style element of XGC­
Values structure, 100

CapRound,
option for cap_style element of XGC­

Values structure, 100
Caps lock modifier,

should select second KEYSYM from
KEYCODE list, 352

CARD16,
as type of width and height elements in,

ARC, 349
RECTANGLE, 349

type description, 348
CARD32,

as type of TIMESTAMP, 348
type description, 348

CARD8,
as type of,

BUTTON,349
KEYCODE, 349
the bytes in CHAR2B, 349

type description, 348
CARDINAL,

listed as a built-in property type, 69
in list of atoms with predefined values, 353

case conventions,
for representing symbols used by Xlib, 7

categories of events
discussion and table of categories and types, 212
processing, 217

CellsOfScreen,
formal description of Xlib macro to obtain

colormap entries, 19
Center,

as AlternativeValue for,
BITGRAVITY, 348
WINGRAVITY, 348

CenterGravi ty,
relative coordinates listed, 36

chaining,
additional data onto certain Xlib data struc­

tures, 485

633

ChangeActivePointerGrab,
full protocol description with discussion of ar­

guments, 382
request, protocol encoding, 568

ChangeGC,
full protocol description with discussion of ar­

guments, 407
listed as generating side effects on error, 350
request, protocol encoding, 580

ChangeHosts,
full protocol description with discussion of ar­

guments, 439
request, protocol encoding, 599

ChangeKeyboardControl,
full protocol description with discussion of ar­

guments, 434
listed as generating side effects on error, 350
request, protocol encoding, 596

Change Keyboard Mapping,
full protocol description with discussion of ar­

guments, 432
request, protocol encoding, 595

ChangePointerControl,
full protocol description with discussion of ar­

guments, 437
request, protocol encoding, 597

Changeproperty,
full protocol description with discussion of ar­

guments, 374
request, protocol encoding, 563

ChangeSaveSet,
full protocol description with discussion of ar­

guments, 367
request, protocol encoding, 559

ChangeWindowAttributes,
full protocol description with discussion of ar­

guments, 365
listed as generating side effects on error, 350
request, protocol encoding, 558

changing,
access control,

discussion and related Xlib functions, 209
using XSetAccessControl, 209

active,
mouse pointer, using XChangeActive­

Po in ter, 178
pointer grab parameters, using

ChangeActivePointerGrab protocol
request, 382

changing a property of a given window using
XChangeProperty, 73

color of cursor, using RecolorCursor proto­
col request, 430

XRecolorCursor
cursor, discussion and related Xlib functions,

164

634 X WINDOW

changing (Cont.)

graphics context, using
ChangeGC protocol request, 407
XChangeGC, 105

how the pointer moves using Change­
PointerControl protocol request, 437

keyboard mapping,
to KEYCODE not supported, 352
using XChangeKeyboardMapping, 200

normal events listed for various changes in
keyboard focus, 229

parent of window, using XReparentWindow,
167

properties on window, results in Property­
NotHy protocol event, 456

save-sets, using ChangeSaveSet protocol re­
quest, 367

symbols for keycodes using Change­
KeyboardMapping protocol request, 432

type of selection to that of a target using
XConvertSelection, 78

various aspects of keyboard using Change­
KeyboardControl protocol request, 434

window
attributes, using ChangeWindow­

Attributes protocol request, 365
attributes, usingXChangeWindow­

Attributes, 57
properties, using ChangeProperty protocol

request, 374
save-set, using XChangeSaveSet, 169

Chaos,
as AlternativeValue for HOST, 349
specifying in XHostAddress family member,

207
CHAR2B,

type description, 349
character,

composed of 2 bytes in STRING16 and
CHAR2B,349

drawing, discussion and related Xlib functions,
153

metrics, discussion and related Xlib functions,
135

sets, for KEYSYM encoding of keyboard
listed, 35.2

string,
computing sizes, discussion and related Xlib

functions, 147
querying sizes, discussion and related Xlib

functions, 149
child_return,

set to None if coordinates not in mapped
child,61

child window,
defined with general discussion of role in X, 4

children,
glossary entry, 616
obtaining,

for a window, using QueryTree protocol re­
quest, 373

parent and children of window with
XQueryTree,63

of top-level windows may be moved or grown,
40

ReparentNotify event, discussion and re­
lated Xlib structures, 244

under pointing device returned by
XQuerypointer, 66

circle drawing, See XDrawArcs
CirculateNotify,

event, protocol encoding, 611
formal description of protocol event, 455

CirculateReguest,
event, protocol encoding, 611
formal description of protocol event, 456

CirculateWindow,
full protocol description with discussion of ar­

guments, 373
request, protocol encoding, 561

circulating, See Also rotating
circulating,

windows, using CirculateWindow protocol
request, 373

classes,
getting,

and setting the class of a window, discussion
and related Xlib functions, 289

visual information matching depth and class
of screen, using XMatchVisuallnfo,
316

glossary entry, 616
of root window is always InputOutput, 358
of Visual structure list of possible values, 27
converting classes to,

quarks, discussion and related Xlib func­
tions, 329

strings, discussion and related Xlib func­
tions, 329

classification macros,
discussion and related Xlib functions, 303

ClearArea,
full protocol description with discussion of ar­

guments, 409
request, protocol encoding, 581

clearing, See Also deleting, destroying, erasing,
killing, removing.

clearing,
areas in windows using XClearArea, 118
pixmaps using XFillRectangle, 118
selection, SelectionClear protocol event,

456

Index

SelectionClear events, discussion and re­
lated Xlib structures, 253

window areas, using ClearArea protocol re­
quest, 409

windows using XClearWindow, 118
ClientMessage,

event,
as a name space for atoms, 68
protocol encoding, 613

formal description of protocol event, 458
clients,

ClientMessage events, discussion and re­
lated Xlib structures, 252

communication events, discussion and related
Xlib structures, 251

controls byte order of data but not images, 357
disconnecting client from server, discussion

and related Xlib functions, 189
glossary entry, 616
must ask for events to receive them, 44

ClipByChildren,
option for subwindow_mode of XGCValues

structure, 103
clip_mask,

as element of XGCValues, description of op­
tions, 102

clip-mask,
setting the,

rectangle, using SetClipRectangles pro­
tocol request, 408

clip-mask of GC to region using
XSetRegion, 309

clipping,
of all windows by their parents, 30
of child windows by parent boundaries, 4
characteristics as used in XGCValues struc-

ture, 101
region, glossary entry, 616
setting clip mask,

of a given GC using XSetClipMask, 115
to list of rectangles using XSetClip­

Rectangle, 115
close_mode,

Destroyall implications for closing last con­
nection,24

close-down,
forcing, using KillClient protocol request,

440
mode,

setting, using SetCloseDownMode protocol
request, 440

used to mark resources at connection close,
24

closedown
mode, of resource, effect on XCloseDisplay

macro, 23

635

setting disposition of resources with closed own
mode, 189

CloseFont,
full protocol description with discussion of ar­

guments, 392
request, protocol encoding, 573

closing,
connection to the display,

additional processing if last connection to
server, 24

defining extensions to be called at close with
XESetCloseDisplay,479

discussion of XCloseDisplay function of
Xlib,23

summary list of automatic operations at
close, 23

fonts, using CloseFon t protocol request, 392
codes,

list of error codes with their descriptions, 270
COLORMAP,

listed as a built-in property type, 69
in list of atoms with predefined values, 353
type,

of default-colormap element of SCREEN,
356

description, 348
Colormap error,

description of conditions leading to, 350
colormap-entries,

number of available entries for new colormap,
360

ColormapChange,
as AlternativeValue for EVENT, 348

ColormapNotify event,
if XFreeColormap frees colormap to a win­

dow, 84
formal description of protocol event, 457
protocol encoding, 613

colormaps,
allocating,

color cells, using AllocColorCells proto­
col request, 425

color planes, using AllbcColorPlanes
protocol request, 425

entries, using AllocColor protocol request,
424

named entries, using AllocNaitledColor
protocol request, 424

read-only cell by name of color using
XAllocNamedColor,85

read-only color cells using XAllocColor, 84
read/write color resources using XAlloc­

ColorPlanes, 88
atoms defined for describing colormaps, in

X11!Xatom.h file, 294
attribute, discussion and details of use, 39

636 X WINDOW

colormaps (Cont.)
changes to parent do not affect child window,

39
as collection of color cells, 80
copying, using CopyColormapAndFree proto­

col request, 422
creating,

a colormap for a screen using XCrea te­
Colormap, 82

new colormap when old colormap fails
using XCopyColormapAndFree, 83

using CreateColormap protocol request,
421

element of XSetWindowAttrihutes struc­
ture, 32

entries, connection close frees those allocated,
24

error, protocol encoding, 550
figure showi:qg,

options for each screen, 27
example of use for, DirectColor, 29
example of use for, most classes, 28

freeing colormap,
using FreeColormap protocol request, 422
using XFreeColormap, 84
cells using XFreeColors, 91

getting standard colormap structure using
XGetStandardColormap, 295

glossary entry, 616
ID

obtained for default colormap using
XDefaul tColormap, 13

returned by XcreateColormap, 82
installing,

discussion and related Xlib functions, 170
xInstallColormap formal description of

Xlib function, 170
XUninstallColormap formal description

of Xlib function, 171
using InstallColormap protocol request,

422
as level of indirection between storage and

screen, 79
listing,

currently installed colormaps, using XList­
InstalledColormaps, 171

installed, using ListInstalledColormaps
protocol request, 424

manipulating standard colormaps,
discussion and related Xlib functions, 291

maps, min and max count of installed maps,
359

notification that colormap changed, using
ColormapNotify protocol event, 457

obtaining,
default screen colormap using

XDefaultColormapOfScreen, 20

depth of root window using
XPlanesOfScreen, 22

number of display cells for colormap entries
using XDisplayCells, 15

number of color cells in colormap with
XCellsOfScreen, 19

number of installed colormaps supported by
screen, 22

value of dark pixel with XBlackPixelOf­
Screen, 19

value of light pixel with XWhi tePixelOf­
Screen, 19

overview of types of functions, 80
reading entries using XQueryColor or

xQueryColors, 91
removing, using UninstallColormap proto­

col request, 423
setting,

color of a pixel to a named color using
XStoreNamedColor, 90

colormap of a given window using
XSetWindowColormap, 83

standard colormap structure using
XSetStandardColormap, 296

standard, formal description of Xlib
XStandardColormap structure, 293

state change events, discussion and related
Xlib structures, 250

storing RGB values into colormap cells using
XStoreColors or XStoreColor, 89

colors,
cells,

allocating read-only cell by name of color
using XAllocNamedColor, 85

allocating read-only color cells using
XAllocColor,84

allocating read/write color cells using
XAllocColorCells, 87

as triple of red, green, and blue, 80
descriptions .of functions affecting, 84

changing color of cursor using,
XRecolorCursor, 164
RecolorCursor protocol request, 430

database, for named colors uses ISO Latin-l
encoding, 86

definition, using XStoreColors and array of
XColor structures, 89

freeing, using FreeColors protocol request,
426

look up string name of a color using
LookupColor protocol request, 428

obtaining string name of a color using
XLookupColor, 86

parsing the color specifications, using
xParseColor, 307

querying values, using QueryColors protocol
request, 427

Index

resources, should be shared and not monopo­
lized, 81

storing,
colors using StoreColors protocol request,

426
named colors, using StoreNamedColor

protocol request, 427
combining,

image in memory with rectangle of drawable,
using XPutlmage, 157

commands,
loading resource database from C command

line using XrmParseCommand, 338
setting command used to invoke application,

using XSetCommand, 281
table of options for parsing command line,

discussion and example of uses, 338
common types,

listed with detailed descriptions, 347
communication,

client communication events, discussion and
related Xlib structures, 251

communications,
protocols supported by X with naming syntax,

11
Complex,

XFillPolygon shape option discussed, 133
complex text,

drawing, discussion and related Xlib functions,
152

computing,
difference between union and intersection of

two regions using XXorRegion, 311
region,

intersections with XlntersectRegion, 310
unions with a rectangle using

XUnionRectWithRegion, 310
unions with XUnionRegion, 3lO

concurrency,
discussion of requirements for appearance of

serial order, 459
ConfigureNotify,

event,
generated if window changed and restacked

among siblings, 49
protocol encoding, 610

formal description of protocol event, 454
ConfigureRequest

discussion of conditions for sending, 56
event, protocol encoding, 610
formal description of protocol event, 455
is generated unless override-reddirect is set by

selecting SubstructureRedirect­
Mask,49

Configure Window,
full protocol description with discussion of ar­

guments, 369

request, protocol encoding, 560
configuring, windows.

637

discussion and details of related functions, 48
using ConfigureWindow protocol request,

369
using XConfigureWindow, 50

connecting,
to displays with XOpenDisplay, 10

connection,
close,

discussion of actions occurring at connection
close, 441

summary list of automatic operations at
close, 23

glossary entry, 617
killing connection to client, using

XKillClient, 190
number,

obtained using XConnectionNumber, 13
on UNIX-based system is file descriptor, 13

setup,
detailed description of initial exchanges, 354
protocol encoding, 553

to server closed with XCloseDisplay macro,
23

to X server first step in using display, 10
ConnectionNumber,

formal description of Xlib macro to obtain
connection info, 13

constants,
adding a constant value to each pixel in an

image using XAddPixel, 320
constraints,

on algorithm for generating thin lines, 99
containment,

glossary entry, 617
contents,

copying contents of display to image structure,
using XGetSublmage, 160

retrieving contents of drawable, using
XGetImage, 159

context manager,
discussion and related Xlib functions, 340

contexts,
creating unique context type for associating

data with a window using
XUniqueContext, 341

deleting context data from a window using
XDeleteContext,341

retrieving data from a window's context using
XFindContext, 340

saving a data value in a window context using
XSaveContext, 340

using context manager for associating local
data list with a window, 340

Control,
as Alternative Value for KEYMASK, 349

638 X WINDOW

control values,
keyboard state, returned by XGetKeyboard­

State, 193
controlling,

host access, discussion and related Xlib func­
tions, 206

input focus, discussion and related Xlib func­
tions, 187

lifetime of window with a save-set, 168
pointing device location, using

XWarpPointer, 187
converting,

classes to,
quarks, discussion and related Xlib func­

tions, 329
strings, discussion and related Xlib func­

tions, 329
converting KeyCode to a defined KeySym

using XKeycodeToKeysym, 302
data, to server format using image format

macros, 17
KeySym code to its name using XKeysym­

ToString, 302
KeySym to appropriate KeyCode using

XKeysymToKeycode, 302
name of KeySym to its code with

XStringToKeysym, 302
names to,

quarks, discussion and related Xlib func­
tions, 329

strings, discussion and related Xlib func­
tions, 329

quarks to strings, discussion and related Xlib
functions, 329

representations to,
quarks, discussion and related Xlib func­

tions, 329
strings, discussion and related Xlib func­

tions, 329
selection, using ConvertS election protocol

request, 378
string,

to binding and quark lists with XrrnString­
ToBindingQuarkList, 330

with list of names to list of quarks using
XrmStringToNameList, 329

to quarks, discussion and related Xlib func­
tions, 329

ConvertSelection,
full protocol description with discussion of ar­

guments, 378
request, protocol encoding, 565

Convex,
XFillPolygon shape option discussed, 133

coordinate system,
exists for each window, 5
glossary entry, 617

coordinates,
for gravity direction listed, 36
in XWindowAttributes set to upper left cor­

ner, 64
of drawable obtained with XGetGeometry, 66
origin can be set with mode of XDrawPoints,

124
translating, using TranslateCoordinates

protocol request, 389
[x,y] of RECTANGLE specify upper-left cor­

ner, 349
CopyArea,

full protocol description with discussion of ar­
guments, 410

protocol request equivalent to XCopyPlane,
121

request, protocol encoding, 582
CopyColormapAndFree,

full protocol description with discussion of ar­
guments, 422

request, protocol encoding, 588
CopyFromParent,

AlternativeValue for border_pixmap, 32
border-pixmap won't change with parent

pixmap,34
color map attribute allow shared colormap, 39
list of implications of this value for border­

pixmap,34
copyGC,

full protocol description with discussion of ar­
guments, 407

request, protocol encoding, 580
copying,

areas of drawables using XCopyArea, 120
colormaps, using CopyColormapAndFree pro­

tocol request, 422
components from GC to GC using XCopyGC,

105
contents of,

display to image structure, using
XGetSubImage, 160

drawable, using XGetImage, 159
graphics context, using CopyGC protocol re­

quest, 407
new colormap when old has failed using

XCopyColormapAndFree,83
planes, using CopyPlane protocol request,

410
single bit plane of given drawable using

XCopyPlane, 121
window areas, using CopyArea protocol re­

quest, 410
CopyPlane,

full protocol description with discussion of ar­
guments, 410

request, protocol encoding, 582

Index

COPYRIGHT,
listed as a built-in font property type, 70
in list of atoms with predefined values, 353

core protocol,
defines where, not how to extend event re­

port, 346
does not stipulate authorization mechanism,

355
no defined choice of prefixes for private

atoms, 354
CreateColormap,

full protocol description with discussion of ar­
guments, 421

request, protocol encoding, 587
CreateCursor,

full protocol description with discussion of ar­
guments, 428

request, protocol encoding, 593
CreateGC,

full protocol description with discussion of ar­
guments, 399

request, protocol encoding, 578
CreateGlyphCursor,

full protocol description with discussion of ar­
guments, 429

request, protocol encoding, 593
CreateNotify

event,
generated by XCreateWindow, 41
protocol encoding, 608

formal description of protocol event, 452
CreatePixmap,

full protocol description with discussion of ar­
guments, 399

request, protocol encoding, 577
CreateWindow,

full protocol description with discussion of ar­
guments, 360

request, protocol encoding, 556
creating,

atom for a given name using XlnternAtom, 70
atoms, using InternAtom protocol request, 374

colormaps,
for a screen using XCreateColormap, 82
using CreateColormap protocol request,

421
connection to displays with XOpenDisplay, 10
CreateNotify event, discussion and related

Xlib structures, 240
cursors,

discussion and related Xlib functions, 162
using Crea teCursor protocol request, 428

cursor from,
font glyphs, using XCreateGlyphCursor,

163
font glyphs, using CreateGlyphCursor

protocol request, 428

639

standard font, using XCreateFontCursor,
162

two bitmaps, using XCreatePixmapCursor,
162

graphics contexts,
using CreateGC protocol request, 399
using XCrea teGC, lO4

new,
colormap when old colormap fails using

xCopyColormapAndFree,83
empty regions using XCreateRegion, 309
quark using XrmUniqueQuark, 328
resource ID using XAllocID, 486

pixmaps,
and storing bitmap data in it using

XCreatePixmapFromBitmapData, 323
using CreatePixmap protocol request, 399
using XCrea teP ixmap, 93

regions with XPolygonRegion and
XClipBox, 308

resource database,
from a string using XrmGetString-

Database, 337
using XrmPutLineResource, 333
using XrmPutResource, 331
using XrmputStringResource, 332
using XrmQPu tResource, 331
using XrmQPutStringResource, 332

subimage using XSublmage, 319
sufficient memory for Xlmage structure with

XCreatelmage, 317
top-level windows, rules listed, 40
unique context type for associating data with a

window using XUniqueContext, 341
unmapped windows,

and setting its attributes using
XCreateWindow,40

with attributes of parent using
XCreateSimpleWindow,42

windows,
Crea teNotify protocol event, 452
CreateWindow protocol request, 360
discussion and details of related functions, 39
not visible until mapped to screen, 31
only after call to XOpenDisplay, 26

XModifierKeymap structure, using
XNewModifiermap, 201

crossing,
event sent when pointer enters/exits window,

discussion and related Xlib structure, 224
current-in put-events,

returned by GetWindowAttributes for root
window, 359

CURSOR,
listed as a built-in property type, 69
in list of atoms with predefined values, 353
type description, 348

640 X WINDOW

Cursor error,
description of conditions leading to, 350
protocol encoding, 548

cursors,
attribute,

discussion and details of use, 39
None value sets cursor to parent's, 39

changing,
from parent's with XDefineCursor, 42
color of cursor, using XRecolorCursor,

164
color on cursor using RecolorCursor pro­

tocol request, 430
discussion and related Xlib functions, 164

classification macro, using IsCursorKey, 303
components of cursor listed, 162
creating from,

font glyphs, using XCreateGlyphCursor,
163

font glyphs, using createGlyphCursor
protocol request, 428

standard font, using XCreateFontCursor,
162

two bitmaps, using XCreatePixmapCursor,
162

using CreateCursor protocol request, 428
varieties of cursors, discussion and related

Xlib functions, 162
defining,

XDefineCursor formal description of Xlib
function, 166

XUndefineCursor formal description of
Xlib function, 166

destroying, discussion and related Xlib func­
tions, 164

determining,
best size of cursor using XQueryBestSize,

III
useful cursor sizes, using

XQueryBestCursor, 165
element of XSetWindowAttributes struc­

ture, 32
freeing,

XFreeCursor formal description of Xlib
function, 165

using FreeCursor protocol request, 430
glossary entry, 617
list of cursors that can be used with

XCreateFontCursor, 473
may be shared across multiple screens or cli­

ents, 6
operations involving cursors, discussion and

related Xlib functions, 161
restored on closing last connection to server, 25

curves,
discussion and examples of drawing curves, 128

CUT_BUFFERs,
listed as a built-in property names, 69

CUT_BUFFERs,
in list of atoms with predefined values, 353, 354

CWBackingPixel,
defined for bitmask for setting window attri­

butes, 31
CWBackingPlanes,

defined for bitmask for setting window attri­
butes, 31

CWBackingStore,
defined for bitmask for setting window attri­

butes, 31
CWBackPixel,

defined for bitmask for setting window attri­
butes, 31

CWBackPixmap,
defined for bitmask for setting window attri­

butes, 31
CWBitGravity,

defined for bitmask for setting window attri­
butes,31

CWBorderPixel,
defined for bitmask for setting window attri­

butes, 31
CWBorderPixmap,

defined for bitmask for setting window attri­
butes,31

CWBorderwidth,
definition of symbol for naming bit in

XWindowChanges value mask, 48
CWColormap,

defined for bitmask for setting window attri­
butes,31

CWCursor,
defined for bitmask for setting window attri­

butes, 31
CWDontPropagate,

defined for bitmask for setting window attri­
butes,31

CWEventMask,
defined for bitmask for setting window attri­

butes,31
CWHeight,

definition of symbol for naming bit in
XWindowChanges value mask, 48

CWQverrideRedirect,
defined for bitmask for setting window attri­

butes,31
CWSaveUnder,

defined for bitmask for setting window attri­
butes, 31

CWSibling,
definition of symbol for naming bit in

XWindowChanges value mask, 48

Index

CWStackMode,
definition of symbol for naming bit in

XWindowChanges value mask, 48
CWWidth,

definitio"n of symbol for naming bit in
xWindowChanges value mask, 48

CWWinGravity,
defined for bitmask for setting window attri­

butes,31
CWX,

definition of symbol for naming bit in
XWindowChanges value mask, 48

CWY,
definition of symbol for naming bit in

XWindowChanges value mask, 48
Cyrillic, KeySym set, 524

dashes,
as element of XGCValues, description of op-

tions, 102
diagram of example dash pattern, 109
discussion and function description, 109
setting, using SetDashes protocol request, 408

Data,
macro described for sending variable length

arguments to X, 493
data structures,

elements and variables are lowercase in Xlib, 8
visible to user begin with X in Xlib, 8

Data16,
macro described for sending variable length

arguments to X, 493
Data32,

macro described for sending variable length
arguments to X, 493

databases,
creating resource database from a string using

XrmGetStringDatabase, 337
destructive merge of two resource databases

using XrmMergeDatabase, 336
getting errors from error database, using

XGetErrorDatabase, 273
loading resource database from C command

line using XrmParseCommand, 338
resource database,

access functions, discussion and related Xlib
functions, 330

search lists, discussion and related Xlib
functions, 334

retrieving resource databases from disk files
using XrmGetFileDatabase, 336

storing resource databases on disk files
using XrmPutFileDatabase, 337

storing resources into resource database using,
XrmPutLineResource, 333
XrmPutResource, 331
XrmPutStringResource, 332

XrmQPutResource,331
XrmQPutStringResource, 332

deallocating,
memory for image structure using

XDestroylmage, 320
the storage of a specified region using

XDestroyRegion, 309
debugging,

641

all Xlib functions generating requests call after
functions, 268

can make use of synchronous capability, 7
each routine should call SyncHandle, 497
obtaining textual descriptions of specified

error codes, 272
setting error handlers using

XSetErrorHandler, 269
setting fatal I/O error handler using

XSetIOErrorHandler, 274
DECnet,

as AlternativeValue for HOST, 349
communications protocol naming syntax, 11
specifying in XHostAddress family member,

207
decomposed colormap,

diagram of options for each screen, 27
default -colormap,

is initially associated with root window, 358
DefaultColormap,

formal description of Xlib macro to obtain
colormap ID, 13

macro returning default colormap, 81
DefaultColormapOfScreen,

formal description of Xlib macro to obtain de­
fault colormap, 20

Defaul tDepth,
formal description of Xlib macro to obtain

number of planes, 14
DefaultDepthOfScreen,

formal description of Xlib macro for depth of
root window, 20

Defaul tGC,
formal description of Xlib macro to obtain

graphic context, 14
DefaultGCOfScreen,

formal description of Xlib macro for graphics
context, 20

DefaultRootWindow,
formal description of Xlib macro to obtain

root window, 14
defaults,

listed for each window attribute, 32
using default error handlers, discussion and

related Xlib functions, 269
Defaul tScreen,

formal description of Xlib macro to access dis­
play name, 15

642 X WINDOW

Defaul tScreen (Cont.)
macro for accessing screen_number of DIS­

PLAY, 11
DefaultScreenOfDisplay,

formal description of Xlib macro to obtain de­
fault screen, 14

DefaultVisual,
formal description of Xlib macro to obtain vis­

ual of screen, 15
macro returning default visual type for speci­

fied screen, 81
DefaultVisualOfScreen,

formal description of Xlib macro for default
visual type, 20

defining,
a new quark using XrmUniqueQuark, 328
coordinate names for hotspot in bitmap, 321
cursor, using

XDefineCursor, formal description of Xlib
function, 166

XUndefineCursor, formal description of
Xlib function, 166

meaning of a KeySym for a client using
XRebindKeysym, 301

definitions,
for structures used by resource manager in

Xll1Xresource.h file, 327
list of definitions for initial state flag of

XWMHints, 282
of mask bits for window manager hints struc­

ture, 281
of size hints mask bits, 283

DeleteProperty,
full protocol description with discussion of ar­

guments, 375
request, protocol encoding, 563

deleting, See Also clearing, destroying, erasing,
killing, removing

deleting,
a property on a given window using

XDeleteProperty, 75
XModifierKeymap using XFreeModifiermap,

202
context data from a window using

XDeleteContext, 341
deallocating memory for image structure

using XDestroylmage, 320
DestroyNotify event, discussion and related

Xlib structures, 240
entry from XModifierKeymap using

XDeleteModifiermapEntry, 202
pixmaps using XFreePixmap, 93
SelectionClear events, discussion and re­

lated Xlib structures, 253
window properties, using DeleteProperty

protocol request, 374

DEPTH,
record description, 356

depth,
of drawable obtained with XGetGeometry, 66
getting visual information matching depth and

class of screen, using XMa tch Visual­
Info, 316

glossary entry, 617
obtaining number of display planes (depth) of

root window using XDisplayPlanes, 15
as number of planes, returned using

XDefaul tDepth, 14
of screen,

may have multiple values, 14
obtained using XDefaul tDepthOfScreen,

20
in XWindowAttributes set to bits per pixel, 64
of zero is never listed in allowed-depths, 358

DestroyAll,
close-down mode implications listed, 24
implications of mode at closing of last connec­

tion, 24
destroying, See Also clearing, deleting, erasing,

killing, removing
destroying,

XModifierKeymap using
XFreeModifiermap, 202

connection to client using XKillClient, 190
cursor,

XFreeCursor formal description of Xlib
function, 165

discussion and related Xlib functions, 164
deallocating memory for image structure

using XDestroylmage, 320
DestroyNotify event, discussion and related

Xlib structures, 240
many windows at once is more efficient, 44
subwindows, using DestroySubwindows pro­

tocol request, 367
the storage of a specified region using

XDestroyRegion, 309
windows,

DestroyNotify protocol event, 452
description and details of related functions,

43
using DestroyWindow protocol request, 367

DestroyNotify
event, generated for each,

protocol encoding, 608
subwindow destroyed, 44
window destroyed, 43

formal description of protocol event, 452
DestroySubwindows,

full protocol description with discussion of ar­
guments, 367

Index

DestroyWindow,
full protocol description with discussion of ar­

guments, 367
request, protocol encoding, 559

DestroySubWindows,
request, protocol encoding, 559

determining, See Also checking, getting, informa­
tion, obtaining, querying, reading

determining,
if two regions have same offset, size, and

shape using XEqualRegion, 311
device,

frozen, allowing events to be processed using
XAllowEvents, 183

glossary entry, 618
maps, reset on closing last connection to

server, 25
DEVICEEVENT,

type description, 349
dialog box,

getting window transient-for property, using
XGetTransientForHint, 291

setting window transient-for property, using
XSetTransientForHint,290

DirectColor,
as AlternativeValue of class of VISUALTYPE,

356
description of this class of VISUALTYPE, 359
glossary entry, 618
visual structure class characteristics, 28

disabling,
access control,

discussion and related Xlib functions, 209
using XDisableAccessControl, 210

synchronization, using XSynchronize, 269
disconnecting,

client from server, discussion and related Xlib
functions, 189

disk,
reading images from disks, no functions de­

fined in X, 317
DISPLAY environment,

format of display name described, 11
Display structure,

macros and functions giving access to informa­
tion, 12

serves as connection to X server, 11
DisplayCells,

formal description of Xlib macro to obtain
color map entries, 15

DisplayHeight,
formal description of Xlib macro for screen

height in pixels, 18
DisplayHeightMM,

formal description of Xlib macro for screen
height in mm, 18

643

DisplayOfScreen,
formal description of Xlib macro returning

display, 21
D isp layp lanes,

formal description of Xlib macro to obtain
depth of root, 15

DisplayString,
formal description of Xlib macro to obtain dis­

play name, 15
DisplayWidth,

formal description of Xlib macro for screen
width in pixels, 19

DisplayWidthMM,
formal description of Xlib macro for screen

width in mm, 19
displays,

argument, first argument in list for many Xlib
functions, 8

cells, obtaining number of display cells for
colormap entries using XDisplayCells,
15

copying contents to image structure, using
XGetSublmage, 160

defined with general discussion of role in X, 4
functions, detailed discussion for using display

in Xlib, 10
glossary entry, 618
KeyCodes, obtained using XDisplay­

Keycodes, 198
macros, giving access to Display structure in­

formation, 12
name,

format of display name described, 11
used for XOpenDisplay accessed later by

DisplayString, 16
obtaining the display of a given screen with

XDisplayOfScreen, 21
opening connection with XOpenDisplay, 10
reporting error when display does not exist,

using XDisplayName, 273
used in place of screen in function names, 12
window, with call to XMapWindow after win­

dow creation, 42
do_not-propagate_mask,

discussion and details of use, 38
element of XSetWindowAttributes struc­

ture, 32
DoesBackingStore,

formal description of Xlib macro for sup­
ported storage, 20

DoesSaveUnders,
formal description of Xlib macro for sup­

ported storage, 21
dotted line,

See dashes
DRAWABLE,

in list of atoms with predefined values, 354

644 X WINDOW

DRAWABLE (cont.)
listed as a built-in property type, 69
type description, 348

Drawable error,
description of conditions leading to, 350

drawables,
before other resources in Xlib function calls, 8
combining, image in memory with rectangle of

drawable, using XPutImage, 157
error, protocol encoding, 549
glossary entry, 618
introduction as windows and pixmaps to­

gether,6
obtaining the geometry of drawable, using

GetGeometry protocol request, 373
retrieving contents of drawable, using

XGetImage, 159
as window or pixmap, overview of use, 80

drawing,
16-bit character text

and background, using ImageTextlb pro­
tocol request, 420

using PolyText:Lb protocol request, 418
8-bit character text

and background, using ImageTextB proto­
col request, 420

using PolyTextB protocol request, 418
arcs, using PolyArc protocol request, 413
image text, discussion and related Xlib func-

tions, 154
images, using Putlmage protocol request, 416
lines, using PolyLine protocol request, 411
multiple,

arcs in a given drawable using XDrawArcs,
128

connected lines in given drawable using
XDrawLines, 124

points in a given drawable using
XDrawPoints, 123

unconnected lines in given drawable using
XDrawSegments, 124

outlines of multiple rectangles using
XDra wRectang les, 127

points, using PolyPoint protocol request,
411

primitives, discussion and related functions,
122

rectangles, using PolyRectangle protocol re­
quest, 413

segments, using PolySegment protocol re­
quest, 412

a single,
arc in a given drawable using XDrawArc, 128
line between two points in given drawable

using XDrawLine, 124
outline of a rectangle using

XDrawRectangle, 126

point in a given drawable using
XDrawPoint, 123

text
characters, discussion and related Xlib func­

tions, 153
discussion and related Xlib functions, 151

East,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

EastGravity,
relative coordinates listed, 36

efficiency,
fonts used for repeatedly used patterns, 135

ellipse drawing,
See XDrawArcs

empty,
determining if a region is empty using

XEmptyRegion, 311
enabling,

access control,
discussion and related Xlib functions, 209
using XEnableAccessControl, 209

synchronization using XSynchronize, 269
encoding,

keyboard, discussion and related Xlib func­
tions, 197

KeySym encoding, discussion and byte
descripitions, 506

END_SPACE,
listed as a built-in font property type, 69
in list of atoms with predefined values, 354

ending,
access control, using XDisableAccess­

Control, 210
connection to client using XKillClient, 190

entering,
notification of, using EnterNotify protocol

event, 444
EnterNotify,

event, protocol encoding, 604
formal description of protocol event, 444

EnterWindow,
as Alternative Value for EVENT, 348
as AlternativeValue for POINTEREVENT,

349
entry,

event sent when pointer enters window, dis­
cussion and related Xlib structure, 224

entry/exit,
events, normal events discussed when pointer

enters/exits window, 226
environment,

obtaining default settings, discussion and re­
lated Xlib functions, 303

Index

EPERBATCH,
symbol defined in XlllXlibint.h to limit length

of requests, 488
equal,

determining if two regions have same offset,
size, and shape using XEqualRegion, 311

erasing,
areas in windows using XClearArea, 118
pixmaps using XFillRectangle, 118
windows using XClearWindow, ll8

errors,
all Xlib functions generating requests call after

functions, 268
codes, reserved for extensions in error format,

346
defining extensions to be called when an error

occurs, 483
discussion of requests generating side effects,

350
format, bit description and detailed discussion,

346
generated if refer to data from closed display,

23
getting errors from error database, using

XGetErrorDatabase, 273
handler,

if not provided error terminates program, 7
must be provided by client, 6

handling error events, discussion and related
Xlib functions, 268

introduction and general description, 7
list of error codes and detailed descriptions,

350, 270
list of message types for reporting errors, 273
listed which are used when argument type ex­

tended incorrectly, 351
obtaining textual descriptions of specified

error codes, 272
protocol encoding for the various errors, 547
reported,

immediately by server, 7
late if delay in sending request to server, 7

reporting error when display does not exist,
using XDisplayName, 273

setting,
error handlers using XSetErrorHandler,

269
fatal I/O error handler, using

XSetIOErrorHandler, 274
usin~ default error handlers, discussion and

related Xlib functions, 269
EvenOddRule,

option for filLrule element of XGCValues
structure, 103

EVENT,
type description, 348

645

event-mask,
element of XSetWindowAttributes struc­

ture, 32
event-mode,

argument to XAllowEvents, options listed
and discussed, 184

EventMaskOfScreen,
formal description of Xlib macro for mask of

root window, 21
events,

Circl,llateNotify event, discussion and re­
lated Xlib structures, 237

CirculateRequest event, discussion and re­
lated Xlib structures, 247

client communication events, discussion and
related Xlib structures, 251

client must ask for events to receive them, 44
ClientMessage events, discussion and re­

lated Xlib structures, 252
colormap state change events, discussion and

related Xlib structures, 250
ConfigureNotify event, discussion and re­

lated Xlib structures, 238
ConfigureRequest event, discussion and re­

lated Xlib structures, 248
CreateNotify event, discussion and related

Xlib structures, 240
defining extensions to be called to convert

from
event to wire format, 482
wire to event format, 481

DestroyNotify event, discussion and related
Xlib structures, 240

expose, discussion and related Xlib structures, 234
exposure, and preservation and regeneration

of window contents, 234
format, bit description and detailed discussion,

346
getting,

pointer motion history, discussion and re­
lated Xlib functions, 267

size of pointer motion history buffer, using
XDisplayMotionBuffer, 267

glossary entry, 618
GraphicsExpose event, discussion and re­

lated Xlib structures, 451
GravityNotify event, discussion and related

Xlib structures, 241
handling error events, discussion and related

Xlib functions, 268
in motion history buffer, obtaining, using

GetMotionEvents protocol request, 389
introduction and general discription, 6
key map state notification events, discussion

and related Xlib structures, 233
keyboard, discussion and related Xlib struc­

tures, 220

646 X WINDOW

events (Cont.)
manipulating the event queue, discussion and

related Xlib functions, 259
MapNotify event, discussion and related Xlib

structures, 242
mapping a key event to ISO Latin-l string

with XLookupString, 300
MappingNotify event, discussion and related

Xlib structures, 243
Map Request event, discussion and related

Xlib structures, 249
mask,

attribute, discussion and details of use, 38
bits, mouse pointer, list of valid symbols, 173
glossary entry, 618

masks,
discussion and related Xlib functions, 215
table of circumstances, 215
types, and structures, large table of symbols,

218
NoExpose events, discussion and related Xlib

structures, 451
normal events,

discussed when pointer enters/exits window,
226

listed for various changes in keyboard focus,
229

number of events,
pending, using XPending, 258
queued, using XEventsQueued, 258

obtaining,
length of event queue using XQLength, 16
the event mask of a screen using

XEventMask, 21
overview and list of concepts, 211
peeking at next event, using XPeekEvent, 259
pointer,

button, discussion and related Xlib func­
tions, 217

discussion and related Xlib structures, 220
motion history for specified window and

time, using XGetMotionEvents, 267
predicate procedures, called from inside event

routine for selecting events, 260
processing,

discussion and related Xlib fUllctions, 216
list of categories, 217

propagation, glossary entry, 618
PropertyNotify events,

discussion and related Xlib structures, 252
protocol encodeing for each event, 602
putting event back into queue using

XPutBackEvent, 265
queue management, discussion and related

Xlib functions, 258
received by client queued until requested, 6

releasing events, using AllowEvents protocol
request, 386

removing event matching,
event mask, using XCheckMaskEvent, 263
event mask, using XMaskEvent, 263
event type, using XCheckTypedEvent, 264
event type and window, using

XCheckTypedWindowEvent, 264
window and event mask, using

XCheckWindowEvent, 262
window and event mask, using

XWindowEvent, 262
ReparentNotify event, discussion and re­

lated Xlib structures, 244
ResizeRequest event, discussion and related

Xlib structures, 250
results of button press discussed in terms of

active and passive grabs, 442
returning next event, using XNextEvent, 259
selecting events,

discussion and related Xlib functions, 256
discussion of using masks and related Xlib

functions, 262
SelectionNotify events, discussion and re­

lated Xlib structures, 255
SelectionRequest events, discussion and re­

lated Xlil:rstructures, 254
sending events, using SendEvent protocol re­

quest, 378
setting error handlers using XSetError-

Handler, 269
source, glossary entry, 618
structure control events, list of categories, 246
structures, discussion and related Xlib func-

tions, 213
synchronization, glossary entry, 619
syntax as used for descriptions in Section 11

of protocol, 347
types, discussion and table of categories and

types, 212
UnmapNotify event, discussion and related

Xlib structures, 244
utility functions to handle keyboard events,

299
Visibili tyNotify event, discussion and re­

lated Xlib structures, 245
window exit/entry, discussion and related Xlib

structure, 224
window state change events, discussion and re­

lated Xlib structures, 237
XEventsQueued may have events not yet read

into event queue, 17
exit,

event sent when pointer exits window, discus­
sion and related Xlib structure, 224

should call XCloseDisplay to catch pending
errors, 23

Index

Expose event,
as side effect of restacking window, 6
can be generated if background-pixmap None,

34
checked before mapping to avoid repainting, 46
formal description of protocol event, 450
generated,

by XMapWindow unless backing store pres­
ent, 31

if XDestroyWindow called on mapped win­
dow, 43

if window resized with ForgetGravity, 36
on specified window in XDestroy­

Subwindows,44
with certain settings of backing store, 37
if XCirculateSubwindows exopses ob­

scured windows, 55
if XLowerWindow exposes obscured win­

dows, 54
if XRaiseWindow exposes obscured win­

dows,54
if moving window,

causes loss of contents, 51, 53
exposes obscured windows, 51, 53

if resizing window
causes loss of contents, 52, 53
exposes obscured windows, 52, 53

on obscured windows uncovered with
unmap, 47

protocol encoding, 607
sent to allow repainting of hidden window, 5

exposing,
events, discussion and related Xlib structures,

234
Visibili tyNotify event, discussion and re­

lated Xlib structures, 245
due to graphic requests, GraphicsExposure

protocol event, 451
graphics requests did not generate exposure,

NOExposure protocol event, 451
windows, generate Expose protocol event, 450

Exposure,
as AlternativeValue for EVENT, 348

Exposure event,
if part of mapped window becomes visible, 44

exposure,
event, glossary entry, 619
events, and preservation and regeneration of

window contents, 234
processing, if window is reconfigured with

XWindowChanges,49
setting flag of given GC using XSet­

GraphicsExposures, 117
extensions,

adding extension using XAddExtension, 478
allocating storage for information about ex­

tensions using XlnitExtension, 478

647

of argument type using OR, 348
chaining additional data onto certain Xlib data

structures, 484
complete list of those supported by server

using XListExtensions, 477
defining procedures to be called when various

circumstances occur, 478
error codes reserved for extensions in error

format, 346
general discussion of role of extensions in X

Standard, 475
glossary entry, 619
opcodes reserved for extensions in requests,

345
presence checked using XQueryExtension,

477
querying for,

list of extensions using ListExtensions
protocol request, 431

presence of extension, using Query­
Extension protocol request, 430

extents,
See Also widths
computing logical string, discussion and re­

lated Xlib functions, 147
querying for character strings, discussion and

related Xlib functions, 149
external symbols,

represented in mixed case by Xlib, 7

False,
Boolean defined in Xlib, 9

family,
as element in type description of HOST, 349

FAMILY_NAME,
listed as a built-in font property type, 70
in list of atoms with predefined values, 354

fatal,
setting fatal 110 error handler, using XSetIO­

ErrorHandler, 274
feel,

of interaction with pointer, controlling with
XChangePointerControl, 196

fetching,
data from,

cut buffer 0 using XFetchBytes, 314
specified cut buffer using XFetchBuffer,

314
files,

bitmap file format definitions, discussion and
related Xlib functions, 321

connection number is file descriptor on
UNIX-based system, 13

reading bitmap from file using XReadBitmap­
File, 321

retrieving resource databases from disk files
using XrmGetFileDatabase, 336

648 X WINDOW

files (Cont.)
storing resource databases on disk files using

XrmPutFileDatabase, 337
writing to bitmap file using XWriteBitmap­

File, 322
filLrule,

as element of XGCValues, description of op­
tions, 103

diagram showing interpretation of options,
103

filLstyle,
as element of XGCValues, description of op­

tions, 101
fill style,

convenience functions for setting, 110
filling,

arcs, discussion and related Xlib functions, 133
areas, discussion and related Xlib functions, 131
polygon, discussion and related Xlib functions,

132
rectangle, discussion and related Xlib func­

tions, 131
rectangles, using PolyFillRectangle proto­

col request, 415
region delimited by an arc, using PolyFill­

Arc protocol request, 416
regions, using FillPoly protocol request, 415
setting pixmap to be used for fill tile with

XSetTile, 113
FillOpaqueStippled,

fill_style equivalent to XCopyPlane, 121
option for filLstyle element of XGCValues

structure, 102
FillPoly,

full protocol description with discussion of ar­
guments, 415

request, protocol encoding, 584
FillPolygon,

protocol request compared to XFill­
Rectangles, 132

FillSolid,
option for filLstyle element of XGCValues

structure, 101
FillStippled,

option for filLstyle element of XGCValues
structure, 102

FillTiled,
option for filLstyle element of XGCValues

structure, 101
finding,

data added onto Xlib data structures by exten­
sions, 485

data from a window's context using XFind­
Context, 340

list of resource names and classes using XrmQ­
GetSearchList, 334

single resource using XrmQGetSearchList,
335

floating point,
varies between machines and should be

avoided in protocol, 498
flow control,

discussion of request buffering, 458
flush,

method for emptying output buffer to server, 6
FlushGC,

formal description of Xlib macro, 486
flushing,

output buffer,
and wait to clear, using XSync, 257
for requests, using XFlush function, 257

focus,
controlling target of keyboard and pointer

input, 187
events generated by grabs, detailed discussion,

233
getting the input using GetInputFocus pro­

tocol request, 391
getting target of keyboard input, using XGet­

InputFocus, 189
input events, discussion and related Xlib struc­

tures, 228
normal events listed for various changes in

keyboard focus, 229
setting,

target of keyboard input, using XSetlmput­
Focus, 188

the input, using SetlnputFocus protocol
request, 390

FocusChange,
as AlternativeValue for EVENT, 348

Focusln,
event, protocol encoding, 606
formal description of protocol event, 447

FocusOut,
event, protocol encoding, 606
formal description of protocol event, 447

FONT,
as one of the types of FONTABLE, 348
listed as a built-in property type, 69
in list of atoms with predefined values, 354
type description, 348

Font error,
description of conditions leading to, 350

FONTABLE,
type description, 348

FONT_NAME,
listed as a built-in font property type, 70
in list of atoms with predefined values, 354

fonts,
as graphical description of set of characters, 135
closing, using CloseFont protocol request,

392

Index

concepts listed for manipulating, 135
creating cursor from standard font, using

XCreateFontCursor, 162
defining extensions to be called when,

XFreeFont is called, 481
XLoadQueryFont or XQueryFont are

called,480
error, protocol encoding, 549
freeing,

discussion and related Xlib functions, 141
search path, XFreeFontPath formal de­

scription of Xlib function, 146
XFreeFont formal description of Xlib func­

tion, 143
get the search path, using GetfontPath pro­

tocol request, 399
glossary entry, 619
glyphs, creating cursor from font glyphs,

using XCreateGlyphCursor, 163
information,

using font information to retrieve names, 145
XQueryFont formal description of Xlib

function, 142
listing,

those with information, using ListFonts­
Wi thlnfo protocol request, 398

using ListFonts protocol request, 397
loading,

XUnloadFont formal description of Xlib
function, 143

discussion and related Xlib functions, 141
XLoadFont formal description of Xlib func­

tion, 141
XLoadQueryFont formal description of Xlib

function, 142
may be shared across multiple screens or cli­

ents, 6
metrics,

discussion and related Xlib functions, 135
list and descriptions of related structures, 136

names,
freeing, using XFreeFontNames, formal de­

scription of Xlib function, 144
freeing, discussion and related Xlib func­

tions, 144
obtaining, discussion and related Xlib func­

tions, 144
opening, using OpenFont protocol request,

391
path, restored on closing last connection to

server, 25
property,

names, built-in names listed, 69
XGetFontProperty formal description of

Xlib function, 143
querying, using QueryFont protocol request,

392

649

retrieving search path, using XGetFontPath
formal description of Xlib function, 146

search path, discussion and related Xlib func­
tions, 146

setting,
font of a given graphics context using

XSetFont, 114
search path, using XSetFontPath formal

description of Xlib function, 146
search path, using SetFontPath, protocol

request, 398
XListFonts returns list of names, 144

ForceScreenSaver,
full protocol description with discussion of ar­

guments, 438
request, protocol encoding, 600

forcing,
close-down, using KillClient protocol re­

quest, 440
screen saver on or off, using XForceScreen­

Saver, 204
foreground,

setting foreground of GC using,
XSetForeground, 107
XSetState, 107

Forget,
as AlternativeValue for BITGRAVITY, 348

ForgetGravi ty,
default value of bit-gravity attribute, 35
window's contents discarded on size change, 36

fork,
brief discussion of system call to open new

connection to same display, 16
FORMAT,

record description, 356
format,

bitmap file format definitions, discussion and
related Xlib functions, 321

errors, bit description and discussion, 346
events, bit description and discussion, 346
of HOST address element set by network, 349
of property is variable to allow different byte

orders, 68
replies, bit description and discussion, 345
requests, bit description and discussion, 345
XY vs Z and interpretation of image-byte-

order, 357
FreeColormap,

full protocol description with discussion of ar­
guments, 422

request, protocol encoding, 588
FreeColors,

full protocol description with discussion of ar­
guments, 426

request, protocol encoding, 591
listed as generating side effects on error, 350

650 X WINDOW

FreeCursor,
full protocol description with discussion of ar­

guments, 430
request, protocol encoding, 594

FreeGC,
full protocol description with discussion of ar­

guments, 409
request, protocol encoding, 581

freeing, Set! Also releasing
freeing.

colormaps,
cells using XFreeColors, 91
using FreeColormap protocol request, 422
using XFreeColormap, 84

colors, using ~reecolors protocol request, 426
cursor,

discussion and related Xlib functions, 164
using FreeCursor protocol request, 430
using XFreeCursor formal description of

Xlib function, 165
data with XFree function of Xlib, 23
fonts,

discussion and related Xlib functions, 141
information, using XFreeFontlnfo formal

description of Xlib function, 145
names, using XFreeFontNames formal de­

scription of Xlib function, 144
names, discussion and related Xlib func­

tions, 144
search path, using XFreeFontPath formal

description of Xlib function, 146
XFreeFont formal description of Xlib func­

tion, 143
graphics contexts,

using FreeGC protocol request, 409
using XFreeGC, 106

memory allocated by listing extensions using
XFreeExtensionList, 477

pixmaps,
using FreePixmap protocol request, 399
using XFreePixmap, 93

SelectionClear events, discussion and re­
lated Xlib structures, 253

XModifierKeymap using XFree­
Modifiermap, 202

FreePixmap,
full protocol description with discussion of ar­

guments, 399
request, protocol encoding, 578

frozen device,
allowing events to be processed using

XAllowEvents, 183
frozen events,

glossary entry, 619
FULL-NAME,

listed as a built-in font property type, 70
in list of atoms with predefined values, 354

functions,
all Xlib functions generating requests call an

after function, 268
attribute of XGCValues, list of defined func­

tions,97
conventions for documenting, 9
key classification macros,

IsFunctionKey, 303
IsMiscFunctionKey, 303

setting function of GC,
using XSetFunction, 107
using XSetState, 107

Xlib, listed in alphabetical order with protocol
requests they generate, 461

GC,
See Also graphics context
glossary entry, 619

GCArcNode,
symbol for mask bit for XGCValues structure,

95
GCBackground,

symbol for mask bit for XGCValues structure,
94

GCCapStyle,
symbol for mask bit for XGCValues structure,

94
GCClipMask,

symbol for mask bit for XGCValues structure,
95

GCClipXOrigin,
symbol for mask bit for XGCValues structure,

95
GCClipYOrigin,

symbol for mask bit for XGCValues structure,
95

GCDashList,
symbol for mask bit for XGCValues structure,

95
GCDashOffset,

symbol for mask bit for XGCValues structure,
95

GCFillRule,
symbol for mask bit for XGCValues structure,

95
GCFillStyle,

symbol for mask bit for XGCValues structure,
94

GCFont,
symbol for mask bit for XGCValues structure,

95
GCForeground,

symbol for mask bit for XGCValues structure,
94

GCFunction,
symbol for mask bit for XGCValues structure,

94

Index

GCGraphicsExposures,
symbol for mask bit for XGCValues structure,

95
GCJoinStyle,

symbol for mask bit for XGCValues structure,
94

GCLineStyle,
symbol for mask bit for XGCValues structure,

94
GCLineWidth,

symbol for mask bit for XGCValues structure,
94

GCONTEXT,
as one of the types of FONTABLE, 348
resource IDs for a given graphics context ob­

tained using XGCContextFromGC, 105
type description, 348

GContext error,
description of conditions leading to, 351
protocol encoding, 550
resource IDs for a given graphics context ob­

tained using XGCContextFromGC, 105
GCPlaneMask,

symbol for mask bit for XGCValues structure,
94

GCStipple,
symbol for mask bit for XGCValues structure,

95
GCSubwindowMode,

symbol for mask bit for XGCValues structure,
95

GCTile,
symbol for mask bit for XGCValues structure,

95
GCTileStipXOrigin,

symbol for mask bit for XGCValues structure,
95

GCTileStipYOrigin,
symbol for mask bit for XGCValues structure,

95
generating,

regions with XPolygonRegion and XClip­
Box, 308

geometry,
obtaining for the drawable, using

GetGeometry protocol request, 373
parsing window geometry, using XParse­

Geometry and XGeometry, 305
of symbols on keyboard not defined by proto­

col,352
GetAtomName,

full protocol description with discussion of ar­
guments, 374

request, protocol encoding, 563
GetEmptyReq,

macro for sending protocol request with no
arguments to X, 492

651

GetFontPath,
full protocol description with discussion of ar­

guments, 399
request, protocol encoding, 577

GetGeometry,
full protocol description with discussion of ar­

guments, 373
request, protocol encoding, 561

Getlmage,
full protocol description with discussion of ar­

guments, 417
request, protocol encoding, 585

GetlnputFocus,
full protocol description with discussion of ar­

guments, 391
request, protocol encoding, 572

GetKeyboardControl,
full protocol description with discussion of ar­

guments, 435
request, protocol encoding, 597

GetKeyboardMapping,
full protocol description with discussion of ar­

guments, 433
request, protocol encoding, 596

GetModifierMapping,
full protocol description with discussion of ar­

guments, 432
request, protocol encoding, 602

GetMotionEvents,
allows detailed access to history of pointer mo­

tion, 358
full protocol description with discussion of ar­

guments, 389
request, protocol encoding, 571

GetPointerControl,
full protocol description with discussion of ar­

guments, 437
request, protocol encoding, 598

GetPointerMapping,
full protocol description with discussion of ar­

guments, 437
request, protocol encoding, 601

GetProperty,
full protocol description with discussion of ar­

guments, 375
request, protocol encoding, 564

GetReq,
macro for sending protocol request followed

by argument list to X, 493
GetReqExtra,

macro for sending protocol request with fixed
data argument to X, 493

GetResReq,
macro for sending protocol request with one

argument to X, 492

652 X WINDOW

GetScreenSa ver,
full protocol description with discussion of ar­

guments, 438
request, protocol encoding, 598

GetSelectionOwner,
full protocol description with discussion of ar­

guments, 377
request, protocol encoding, 565

getting,
and setting,

icon size hints, discussion and related Xlib
functions, 287

the class of a window, discussion and related
Xlib functions, 289

window manager hints, discussion and re­
lated Xlib functions, 281

data from a, window's context using XFind­
Context, 340

default settings of X environment using XGet­
Default, 304

font search path, using GetfontPath protocol
request, 399

hosts, discussion and related Xlib functions, 206
icon,

names, using XGetlconName, 280
size hints using XGetlconSizes, 288

images, using Getlmage protocol request, 417
keyboard input focus, using XGetInput­

Focus, 189
KeyCodes,

for a display, using XDisplayKeycodes,
198

that are used as modifiers, using
XGetModifierMapping, 203

list of hosts, using XListHosts, 208
mapping of pointer using GetPointer­

Mapping protocol request, 436
name of an atom, using GetAtomName proto­

col request, 374
owner, owner window and last change time

for a selection, using GetSelection­
Owner protocol request, 436

pointer,
acceleration parameters, with XGet­

PointerControl, 196
motion history for specified window and

time, using XGetMotionEvents, 267
to the RESOURCE_MANAGER property

with XResourceManagerString, 304
reading window manager hints for a window,

using XGetWMHints, 283
resource from resource database,

using XrmGetResource, 333
using XrmQGetResource, 333

screen saver values, using XGetScreenSaver,
205

size hints for a window,
using XGetSizeHints, 287
in its normal state, using XGetNormal­

Hints, 285
size of pointer motion history buffer, using

XDisplayMotionBuffer, 267
standard color map structure using XGet­

StandardColormap, 295
the geometry for the drawable, using

GetGeometry protocol request, 373
the zoom hints for a window, using

XGetZoomHints, 286
value of pixel in an image using XGetPixel,

319
visual information,

matching depth and class of screen, using
XMatchVisuallnfo, 316

structures matching a template, using
XVisualInfo, 316

window,
attributes, using GetWindowAttributes

protocol request, 365
names, using XFetchNames, 279
properties, using GetProperty protocol re­

quest, 375
transient-for property using XGet­

TransientForHint, 291
GetWindowAttributes,

full protocol description with discussion of ar­
guments, 366

request, protocol encoding, 558
returns current-input-events for root window,

359
glyphs,

creating cursor from font glyphs, using
XCreateGlyphCursor, 163

glossary entry, 619
grabbing,

buttons, using GrabButton protocol request,
381

changing the active pointer grab, using
ChangeActivePointerGrab protocol re­
quest, 382

generates,
focus events, detailed discussion, 233
pseudo-motion entry-exit events, detailed

discussion, 227
glossary entry, 619
key, using GrabKey protocol request, 384
keyboard,

XGrabKeyboard formal description of Xlib
function, 179

XUngrabKeyboard formal description of
Xlib function, 181

list of valid keymask bits, 179
using GrabKeyboard protocol request, 383

Index

mouse pointer,
XGrabPointer formal description of Xlib

function, 174
XUngrabPointer formal description of Xlib

function, 174
discussion and related Xlib functions, 172

pointer button,
XGrabButton formal description of Xlib

function, 177
xUngrabButton formal description of Xlib

function, 179
pointers,

discussion and related Xlib functions, 172
using GrabPointer protocol request, 379

pointing device,
XGrabPointer formal description of Xlib

function, 174
XUngrabPointer formal description of Xlib

function, 174
server,

to control other connections, 186
using GrabServer protocol request, 388

single key,
XGrabKey formal description of Xlib func­

tion, 181
XUngrabKey formal description of Xlib

function, 183
GrabButton,

full protocol description with discussion of ar­
guments, 381

request, protocol encoding, 567
GrabKey,

full protocol description with discussion of ar­
guments, 384

request, protocol encoding, 569
GrabKeyboard,

full protocol description with discussion of ar­
guments, 383

request, protocol encoding, 568
GrabPointer,

full protocol description with discussion of ar­
guments, 379

request, protocol encoding, 566
GrabServer,

full protocol description with discussion of ar­
guments, 388

request, protocol encoding, 570
graphics contexts,

as information about graphics objects, 79
cached to pool change requests, flushed with

FlushGC, 486
changing,

GCs using XChangeGC, 105
using ChangeGC protocol request, 407

copying,
GC to GC using XCopyGC, 105
using CopyGC protocol request, 407

creating,
GC using XCreateGC, 104
using Crea teGC protocol request, 399

default,

653

not used in any Xlib function but don't free,
14

of screen should never be freed, 20
defining extensions to be called,

when a GC is freed, 480
when GC cache needs to be updated, 484
when new GC is copied, 479
when new GC is created, 479

freeing GCs using
XFreeGC, 106
FreeGC protocol request, 409

glossary entry, 619
list of default values, 96
not sharable without synch since caching is

used,94
obtaining context of screen using

XDefaultGCOfScreen, 20
returned using XDefaul tGC, 14
routines for setting XGCValues components,

106
setting

arc mode of a given GC using
XSetArcMode, 116

background of GC using XSetBackground,
107

clip-mask of a GC to a region using
xSetRegion, 309

fill-rule using XSetFillRule, 110
fill-style using XSetFillStyle, 110
flag of given GC using XSetGraphics-

Exposures, 117
foreground, background, function, or plane

mask with XSetState, 107
foreground of GC using XSetForeground,

107
function of GC using XSetFunction, 107
line drawing components of a given GC

using XSetLineAttributes, 108
plane mask of GC using XSetPlaneMask,

107
styles for dashed lines using XSetDashes,

109
subwindow mode of a given GC using

XSetSubwindowMode, 116
graphics,

Expose event, controlled by XGCValues
graphics_exposure flag, 104

exposures, setting flag of given GC using
xSetGraphicsExposures, 117

GraphicsExpose events, discussion and re­
lated Xlib structures, 235

NoExpose events, discussion and related Xlib
structures, 235

654 X WINDOW

graphics (Cont.)
operations, stored in extensible graphics con­

texts, 94
requests did not generate exposure,using

NoExposure protocol event, 451
resource functions, overview and detailed dis­

cussion,79
GraphicsExpose event,

generated by XCopyArea, 121
GraphicsExposure,

event, protocol encoding, 607
formal description of protocol event, 451

gravity,
attributes, discussion and details of use, 35
glossary entry, 619
Gra vi tyNotify event, discussion and related

Xlib structures, 241
notification that window moved due to its

gravity, by Gravi tyNotify protocol
event, 454

relative coordinates listed, 36
GravityNotifyevent,

formal description of protocol event, 454
generated,

after ConfigureNotify event, 49
when window repositioned to parent, 36

GravityNotify event, (Cont.)
protocol encoding, 611

GrayScale,
as Alternate Value of class of VISUALTYPE, 356
description of this class of VISUALTYPE, 359
glossary entry, 620
visual structure class characteristics, 28

Greek,
KeySym set, 527

green-mask,
conditions for use and bit description, 360

GXand,
function name for function element of

XGCValues, 97
GXandlnverted,

function name for function element of
XGCValues,97

GXandReverse,
function name for function element of

XGCValues, 97
GXclear,

function name for function element of
XGCValues,97

GXcopy,
function name for function element of

XGCValues,97
used by XClearWindow, 120

GXcopylnverted,
function name for function element of

XGCValues,97

GXequiv,
function name for function element of

XGCValues,97
GXinvert,

function name for function element of
XGCValues, 97

GXnand,
function name for function element of

XGCValues,97
GXnoop,

function name for function element of
XGCValues, 97

GXnor,
function name for function element of

XGCValues,97
GXor,

function name for function element of
XGCValues, 97

GXorlnverted,
function name for function element of

XGCValues, 97
GXorReverse,

function name for function element of
XGCValues, 97

GXset,
function name for function element of

XGCValues,97
GXxor,

function name for function element of
XGCValues, 97

handlers,
setting error handlers using XSetError­

Handler, 269
using default error handlers, discussion and

related Xlib functions, 269
handling,

output buffer for requests, discussion and re­
lated Xlib functions, 257

hardware,
supported by X Window System, 3

Hebrew,
KeySym set, 535

height,
in XWindowAttributes doesn't include bor­

der, 64
obtaining the height in,

millimeters of screen using XWidthMMOf­
Screen, 21

pixels of screen using XHeightOfScreen, 21
of drawable obtained with XGetGeometry, 66

height-in-millimeters,
for physical size and aspect ratio of screen, 358

height-in-pixels,
specifies the fixed height of root window, 358

HeightMMOfScreen,
formal description of Xlib macro for screen

height in mm, 22

Index

HeightOfScreen,
formal description of Xlib macro for screen

height in pixels, 21
hierarchy of windows,

defined with general discussion of role in X, 4
hints,

getting,
and setting the class of a window, discussion

and related Xlib functions, 289
icon size hints using XGetIconSizes, 288
size hints for a window, using XGetS ize­

Hints, 287
size hints for a window in its normal state,

using XGetNormalHints, 285
zoom hints for a window, using XGetZoom­

Hints, 286
reading window manager hints for a window,

using XGetWMHints, 283
setting,

and getting icon size hints, discussion and
related Xlib functions, 287

and getting window manager hints, discus­
sion and related Xlib functions, 281

icon size hints using XSetIconSizes, 288
size hints for windows, using XSetSize

Hints, 287
size hints for windows in their normal state,

using XSetNormalHints, 285
window manager hints for a window, using

XSetWMHints, 283
zoom hints for a window, using XSetZoom

Hints, 286
transient,

getting window transient-for property
using XGetTransientForHint, 291

setting window transient-for property using
XSetTransientForHint, 290

history,
getting,

pointer motion history, discussion and re­
lated Xlib functions, 267

size of pointer motion history buffer using
XDisplayMotionBuffer, 267

pointer motion history,
accessed with GetMotionEvents, 358
for specified window and time, using

XGetMotionEvents, 267
hooks,

into Xlib,
data structures, discussion and related Xlib

functions, 484
discussion and related Xlib functions, 478

HOST,
address element characteristics set by network,

349
type description, 349

655

hostname,
as part of DISPLAY environment variable, 11

hosts,
adding,

discussion and related Xlib functions, 206
multiple, using XAddHosts, 207
specified host using ChangeHosts protocol

request, 439
using XAddHost, 207

controlling access, discussion and related Xlib
functions, 206

getting,
discussion and related Xlib functions, 206
list of hosts, using XListHosts, 208
list of hosts, using ListHosts protocol re­

quest, 440
removing,

discussion and related Xlib functions, 206
multiple, using XRemoveHosts, 208
using XRemoveHost, 208

hotspot,
defining coordinate names for hotspot in

bitmap, 321
hotspot,

glossary entry, 620

I/O,
setting fatal I/O error handler, using

XSetIOErrorHandler, 274
icons,

getting icon size hints using XGetIconSizes,
288

setting,
and getting icon names, discussion and re­

lated Xlib functions, 280
and getting icon size hints, discussion and

related Xlib functions, 287
icon size hints using XSetIconSizes, 288

ID,
of resource returned in certain listed errors, 346

IDChoice error,
description of conditions leading to, 351
protocol encoding, 550

Identifier,
glossary entry, 620

image text,
drawing, discussion and related Xlib functions,

154
image-byte-order,

as element of exchange in connection setup, 355
interpretation varies with XY or Z format, 357

ImageByteOrder,
formal description of Xlib macro for image in­

formation, 18
images,

combining image in memory with drawable,
using XPutlmage, 157

656 X WINDOW

images (Cont.)
copying contents of display to image structure,

using XGetSublmage, 160
creating,

pixmap and storing bitmap data in it using
XCreatePixmapFromBitmapData, 323

subimage using XSublmage, 319
drawing, using Putlmage protocol request,

416
format,

macros, giving access to Display structure in­
formation, 17

specified by server, 357
getting, using GetImage protocol request, 417
loading bitmap into program memory using

XCreateBitmapFrom Data, 323
manipulating,

bitmaps, discussion and related Xlib func­
tions, 320

images, discussion and related Xlib func­
tions, 317

obtaining value of pixel in an image using
XGetPixel, 319

querying image format with ImageBi tOrder
and BitmapBitOrder macros, 18

reading images from disks, no functions de­
fined in X, 317

setting value of pixel in an image using
xPutPixel,319

structure, deallocating memory for image
structure using XDestroylmage, 320

transferring between server and client, de­
tailed discussion, 156

writing to bitmap file using XWriteBi tmap­
File, 322

ImageText16,
full protocol description with discussion of ar­

guments, 420
request, protocol encoding, 587

ImageTextll,
full protocol description with discussion of ar­

guments, 420
request, protocol encoding, 587

Implementation error,
description of conditions leading to, 351
protocol encoding, 551

_in_out suffix,
for pointers used for both input and output, 9

Includelnferiors,
option for subwindow_mode of XGCValues

structure, 103
indexing,

2-D matrix vs linear for 16-bit characters, 349
inferior windows,

block graphics requests to obscured window, 37
implications for save-set at connection close, 24

inferiors,

glossary entry, 620
of InputOnly windows cannot be

InputOutput, 30
information,

about
display, image formats, or screens, 12
KeyCodes for a display, using XDisplay­

Keycodes, 198
mapping of pointing device using

XGetPointerMapping, 195
visual information structures matching a

template, using XVisualInfo, 316
fonts,

freeing with XFreeFontIno, 145
using font information to retrieve names, 145
XLoadQueryFont formal description of Xlib

function, 142
XQueryFont formal description of Xlib

function, 142
functions for obtaining information about win­

dows, 62
getting,

icon names, using XGetlconName, 280
window names, using XFetchNames, 279

KeyCodes that are used as modifiers, using
XGetModifierMapping, 203

list of hosts, using XListHosts, 208
pointer acceleration parameters, with

XGetPoin terCon trol, 196
screen saver values, using XGetScreenSaver,

205
visual matching depth and class of screen ob­

tained with XMatchVisualInfo, 316
initializing,

the resource manager using Xrmlni tialize,
328

initiating,
access control, using XEnableAccessControl,

209
input focus,

controlling, discussion and related Xlib func­
tions, 187

events, discussion and related Xlib structures,
228

glossary entry, 620
set to PointerRoot on closing last connec­

tion, 25
input manager,

glossary entry, 620
input/output,

setting fatal I/O error handler, using XSetIO­
ErrorHandler, 274

InputOnly,
list of defaults for each window attribute, 32
windows,

can't have InputOutput windows as inferi­
ors, 30

Index

for controlling input events, cursors, grab­
bing, 30

of depth zero are always supported, 358
window,

glossary entry, 620
requires depth of zero or BadMatch error,

42
should not be passed to XGetGeornetry, 66

InputOutput,
as the only class of window with a back­

ground,33
list of defaults for each window attribute, 32
windows,

discussion of possible attributes, 30
glossary entry, 620

InstallColorMap,
count of maps installed in min-installed-maps,

359
full protocol description with discussion of ar­

guments, 422
request, protocol encoding, 588

installed colormaps,
listing, using XListlnstalledColorrnaps,

171
installing,

colormaps,
discussion and related Xlib functions, 170
using InstallColorrnap protocol request,

422
XlnstallColorrnap using formal descrip­

tion of Xlib function, 170
XUninstallColorrnap using formal de­

scription of Xlib function, 171
INT16,

as type of,
angle elements in ARC, 349
x and y elements in ARC, 349
x and y elements in POINT, 349
x and y elements in RECTANGLE, 349

type description, 348
INT32,

type description, 348
INT8,

type description, 348
INTEGER,

listed as a built-in property type, 69
in list of atoms with predefined values, 354

interface conventions,
between C language and Xlib, 9

InternAtorn,
full protocol description with discussion of ar­

guments, 374
may be eliminated with predefinition of atoms,

353
request, protocol encoding, 562

Internet,
as AlternativeValue for HOST, 349

657

specifying in XHostAddress family member,
207

interning,
atoms, using InternAtorn protocol request,

374
interpretation,

of HOST address element set by network, 349
intersection,

computing the intersection of two regions with
XlntersectRegion, 310

difference between union and intersection of
two regions using XXorRegion, 311

introduction,
overview of Xlib system, 3

invoking,
setting command used to invoke application,

using XSetCornrnand, 281
IPC UNIX domain,

communications protocol naming syntax, 11
IsCursorKey,

cursor classification macro, 303
IsFu nctionKey,

function classification macro, 303
ISKeypadKey,

keypad classification macro, 303
IsMiscFunctionKey,

miscellaneous function key classification
macro, 303

IsModifierKey,
key classification macro, 303

IsPFKey,
classification macro, 303

ITALIC_ANGLE,
listed as a built-in font property type, 69

ITALIC_SPACE,
in list of atoms with predefined values, 353

join_style,
as element of XGCValues, description of op­

tions, 100
JoinBevel,

option for joiIL-style element of XGCValues
structure, 100

joining,
and cap styles, diagram showing examples for

wide lines, 100
not performed with XDrawLine, 125

JoinMi ter,
option for join_style element of XGCValues

structure, 100
JoinRound,

option for join_style element of XGCValues
structure, 100

Kana,
KeySym set, 520

658 X WINDOW

keyboards,
attachment formed, when Focusln protocol

event, 447
attachment severed, when FocusOut protocol

event, 447
auto-repeat,

setting with XAutoRepeatOff, 193
setting with XAutoRepeatOn, 193

changing,
meaning of a KeySym for a client using

XRebindKeysym, 301
various aspects of keyboard using

Change Keyboard Control protocol re­
quest, 434

encoding, discussion and related Xlib func­
tions, 197

events, discussion and related Xlib structures,
220

focus events, discussion and related Xlib struc­
tures, 228

grabbing a single key,
XGrabKey using formal description of Xlib

function, 181
XUngrabKey using formal description of

Xlib function, 183
grabbing,

XGrabKeyboard using formal description of
Xlib function, 179

XUngrabKeyboard using formal description
of Xlib function, 181

discussion and related Xlib functions, 179
glossary entry, 620
list of valid keymask bits, 179
using GrabKeyboard protocol request, 383

KeySym encoding, discussion and byte
descripitions, 506

KeySym set, 536
LEDs, current values returned by

XKeyboardState, 193
mapping,

changing, using XChangeKeyboardMap­
ping, 200

to KEYCODE changes not supported, 352
normal events listed for various changes in

keyboard focus, 229
querying'control values for keyboard using

GetKeyboardControl protocol request,
435

refreshing Xlib's knowledge of the keyboard
using XRefreshKeyboardMapping, 300

releasing, using UngrabKeyboard protocol re­
quest, 384

ringing bell with XBell, 194
settings,

characteristics, using XChangeKeyboard
function, 192

discussion and related Xlib functions, 190
state,

control values returned by
XGetKeyboardSta te, 193

showing which keys are pressed, returned
by XQueryKeymap, 194

utility functions, discussion and related Xlib
functions, 299

discussion of encoding components, 352
protocol encoding for KeyCodes and

KeySyms, 551
vary so conservative programming suggested, 8

KEYBUTMASK,
type description, 349

KEYCODE,
each has variable length list of KEYSYMs, 352
mapping to keyboard changes not supported,

352
restricted range of integers representing key

on keyboard, 352
server does not use mapping of KEYCODE to

KEYSYMs, 353
type,

description, 349
of min- and max-keycode for remote setup,

356
with only one KEYSYM is treated uniquely, 352

KeyCodes,
converting,

keycode to defined KeySym using
XKeycodeToKeysym, 302

KeySym to appropriate KeyCode using
XKeysymToKeycode, 302

for representing key, discussion and related
Xlib functions, 197

KeySyms, obtaining lists of KeySyms with
XGetKeyboardMapping, 199

obtaining for display using XDisplay­
Keycodes, 198

changing symbols for keycodes using
ChangeKeyboardMapping protocol re­
quest, 432

querying,
keycodes of modifier keys using

GetModifierMapping protocol re­
quest, 432

symbols for keycodes using GetKeyboard
Mapping protocol request, 433

specifying keycodes for modifier keys using
SetModifierMapping protocol request,
431

keymap,
as bit vector showing which keys are pressed,

returned by XQueryKeymap, 194
querying, using QueryKeymap protocol re­

quest, 391

Index

KeymapNotify,
event, protocol encoding, 607
formal description of protocol event, 450

KeymapState,
as AlternativeValue for EVENT, 348
as AlternativeValue for POINTEREVENT,

349
KEYMASK,

as one of the types of KEYBUTMASK, 349
type description, 349

keymask bits,
list of valid keymask bits for grabbing key­

board, 179
keypad,

classification macro, using IsKeypadKey, 303
KeyPress,

as AlternativeValue for DEVICEEVENT, 349
as Alternative Value for EVENT, 348
event, protocol encoding, 602
formal description of protocol event, 443
interpretation without modifier keys, 352

Key Release,
as Alternative Value for

DEVICEEVENT,349
EVENT,348

event, protocol encoding, 603
formal description of protocol event, 443

keys,
converting keycode to a defined KeySym using

XKeycodeToKeysym, 302
encoded with KeyCodes and their list of

KeySyms, 197
grabbing,

glossary entry, 620
using GrabKey protocol request, 384

map state notification events, discussion and
related Xlib structures, 233

mapping,
a key event to ISO Latin-l string with

XLookupString, 300
notification using KeymapNotify protocol

event, 450
pressing, generates KeyPress protocol event,

443
releasing,

generates KeyRelease protocol event, 443
using UngrabKey protocol request, 385

KEYSYM,
changing meaning of a KeySym for a client

using XRebindKeysym, 301
character sets listed for encoding keyboard, 352
classification macros, discussion and related

Xlib functions, 303
converting,

Key Code to defined KeySym using
XKeycodeToKeysym, 302

KeySym code to its name using
XKeysymToString, 302

KeySym to appropriate KeyCode using
XKeysymToKeycode, 302

name of KeySym to its code with
XStringToKeysym, 302

659

description and discussion of use, 352
encoding, discussion and byte descriptions,

506
for encoding symbol on key, discussion and

related Xlib functions, 197
glossary entry, 621
list, order of items related to modifier keys, 352
obtaining lists of KeySyms for a KeyCode with

XGetKeyboardMapping, 199
type description, 349

KillClient,
full protocol description with discussion of ar­

guments, 440
request, protocol encoding, 600

killing,
See Also clearing, deleting, destroying, erasing,

removing
XModifierKeymap using

XFreeModifiermap, 202
connection to client using XKillClient, 190
deallocating memory for image structure

using XDestroyImage, 320
DestroyNotify event, discussion and related

Xlib structures, 240
disconnecting client from server, discussion

and related Xlib functions, 189
resource clients, using KillClient protocol

request, 440

large characters,
composed of 2 bytes in STRING16 and

CHAR2B,349
LastKnownRequestProcessed,

formal description of Xlib macro to obtain ser­
ial number, 16

Latin-I,
encoding, for named colors in color database,

86
KeySym set, 510

Latin-2,
KeySym set, 516

Latin-3,
KeySym set, 518

Latin-4,
KeySym set, 519

LeaveNotify,
event, protocol encoding, 605
formal description of protocol event, 444

Lea veWindow,
as AlternativeValue for EVENT, 348

660 X WINDOW

LeaveWindow (Cont.)
as Alternative Value for POINTEREVENT,

349
leaving,

event sent when pointer exits window, discus­
sion and related Xlib structure, 224

notification of, Lea veNotify protocol event,
444

LEDs,
keyboard, current values returned by

XKeyboardState, 193
Length error,

description of conditions leading to, 351
protocol encoding, 551

length,
of bitmap's scanline unit returned with

XBitmapUnit, 18
of event queue returned by QLength macro, 17
maximum for writing extension stubs, 488
of HOST address element set by network, 349

lifetime,
controlling lifetime of window with a save-set,

168
line_style,

as element of XGCValues, description of op­
tions, 99

line_width,
and semantics dependency of cap styles, 100
formula for computing line, 98
special treatment of zero width, 99

linear indexing,
for 16-bit characters using CHAR2B, 349

LineDoubleDash,
list of XGCValues filLstyle interpretations,

102
option for line_style element of XGC­

Values structure, 99
LineOnOffDash,

option for line_style element of XGC­
Values structure, 99

lines,
drawing,

setting line drawing components of a given
GC using XSetLineAttributes, 108

using PolyLine protocol request, 411
LineSolid,

option for line_style element of XGC­
Values structure, 99

ListExtensions,
full protocol description with discussion of ar­

guments, 431
request, protocol encoding, 595

ListFonts,
full protocol description with discussion of ar­

guments, 397
request, protocol encoding, 575

ListFontsWithlnfo,
full protocol description with discussion of ar­

guments, 398
request, protocol encoding, 576

ListHosts,
full protocol description with discussion of ar­

guments, 440
request, protocol encoding, 599

listing,
colormaps currently installed, using XList­

InstalledColormaps, 171
fonts,

using ListFonts protocol request, 397
with information, using ListFontsWi th­

Info protocol request, 398
hosts,

using ListHosts protocol request, 440
using XListHosts, 208

installed colormaps, using ListInstalled­
Colormaps protocol request, 424

window properties, using Listproperty pro­
tocol request, 376

ListlnstalledColormaps,
full protocol description with discussion of ar­

guments, 424
request, protocol encoding, 588

LISTofBYTE,
as type of address element of HOST, 349

LISTofCARD8,
as type of STRING8, 349

LISTofCHAR2B,
as type of STRING16, 349

LISTofDEPTH,
type of allowed-depths element of SCREEN,

356
LISTofFOO,

pattern for counted list of elements of type
FOO,347

LISTofFORMAT,
type of pixmap-formats element of remote

setup, 356
LlSTofSCREEN,

type of roots element of connection setup, 356
LISTofVALUE,

and BITMASK for subset of list of arguments,
347

LISTofVISUALTYPE,
type of visuals element of DEPTH, 356

ListProperties,
full protocol description with discussion of ar­

guments, 377
request, protocol encoding, 564

lists,
converting string,

to binding and quark lists with
XrmStringToBindingQuarkList, 330

Index

with list of names to list of quarks using
XrmStringToNameList, 329

font names,
XListFonts, formal description of Xlib

function, 144
XListFontsWithlnfo, formal description

of Xlib function, 145
loading,

bitmap into program memory using
XCreateBi tmapFrom Data, 323

fonts,
XUnloadFont formal description of Xlib

function, 143
discussion and related Xlib functions, 141
XLoadFont formal description of Xlib func­

tion, 141
XLoadQueryFont formal description of Xlib

function, 142
reading, bitmap from file using XRead­

BitmapFile, 321
resource, database from C command line

using XrmParseCommand, 338
locating,

point in region using XPointInRegion, 312
rectangle in region using XRectlnRegion,

312
Lock,

as Alternative Value for KEYMASK, 349
modifier, should select second KEYSYM from

KEYCODE list, 352
LockDisplay,

formal description of macro, 492
locking,

data structures to support multithreaded ac­
cess to single display connection, 492

logical extents,
computing, discussion and related Xlib func­

tions, 147
logical state,

may lag physical state if event processing fro­
zen, 67

of keyboard, returned by XQueryKeymap, 194
lookup,

KeySym from KeyCode list, 299
mapping a key event to ISO Latin-l string

with XLookupString, 300
retrieving resource from resource database,

using XrmGetResource, 333
using XrmQGetResource, 333

as stage in indexing of pixel to colormap for
display, 28

string name of a color using LookupColor
protocol request, 428

LookupColor,
full protocol description with discussion of ar­

guments, 428
request, protocol encoding, 592

661

lowercase,
KEYCODE with single KEYSYM still treated

as pair, 352
LowerHighest,

stipulates direction for XCirculate­
Subwindows, 55

LSBFirst, returned by,
BitmapBitOrder macro, 18
ImageByteOrder macro, 18

macros,
for sending requests and argumens to X, 492

major version,
number, returned by Protocol Version

macro, 16
management,

event queue, discussion and related Xlib func­
tions,258

of windows provided by user and window
manager, 8

managers,
for windows allows resource sharing, 6
setting and getting window manager hints, dis­

cussion and related Xlib functions, 281
using context manager for associating local

data list with a window, 340
managing,

access control list, discussion and related Xlib
functions, 206

manipulating,
bitmaps, discussion and related Xlib functions,

320
event queue, discussion and related Xlib func­

tions, 259
graphics context, discussion and details of Xlib

functions, 94
regions, list of categories of operations, 308

map_entries,
member of Visual structure for colormap size,

29
MapNotify,

event, protocol encoding, 609
MapNotify event,

generated when window is mapped, 45
MapNotify,

formal description of protocol event, 453
mapped,

glossary entry, 621
mapping,

a key event to ISO Latin-l string with
XLookupString, 300

all subwindows of a specified window using
XMapSubwindows, 46

changing keyboard,
modifier, or pointer, using MappingNotify

protocol event, 458
mapping to KEYCODE not supported, 352

662 X WINDOW

mapping (Cont.)
mapping, using XChangeKeyboard­

Mapping, 200
getting mapping of pointer using

GetPointerMapping protocol request,
436

key map state notification events, discussion
and related Xlib structures, 233

keys notification, KeymapNotify protocol
event, 450

Map Notify event, discussion and related Xlib
structures, 242

MappingNotify event, discussion and related
Xlib structures, 243

MapRequest event, discussion and related
Xlib structures, 249

notification of change to,
mapped, Map Notify protocol event, 453
unmapped, UnmapNotify protocol event,

453
pointer,

buttons, setting with XSetPointerMapping,
195

getting information about with
XGEtPointerMapping, 195

refreshing Xlib's knowledge of the keyboard
w~h XRefreshKeyboardMapping, 300

requested on window by Map Request protocol
event, 453

setting mapping of pointer using
SetPointerMapping protocol request,
436

subwindows, using MapSubwindows protocol
request, 369

UnmapNotify event, discussion and related
Xlib structures, 244

windows,
description and details of related functions,

44
and raising it to top of viewing stack using

XMapRaised, 46
using MapWindow protocol request, 368
with unmapped ancestor marks eligible, 45

MappingNotify,
event, protocol encoding, 614
formal description of protocol event, 458

Map Request event,
SubstructureRedirectMask and override­

redirect, 45
for map requests with Substructure­

RedirectMask, 44
Map Request,

event, protocol encoding, 609
formal description of protocol event, 453

MapSubwindows,
full protocol description with discussion of ar­

guments, 369

request, protocol encoding, 560
MapWindow,

for save-set window at connection close, 24
full protocol description with discussion of ar­

guments, 368
request, protocol en'coding, 560

mask bits,
for window manager hints structure, 281
symbol names for XChangeKeyboard­

Control, 190
masks,

events, discussion and related Xlib functions,
215

for selecting visual information in
XVisualInfo, 315

pointer events, large table of symbols, 218
precede pointers in Xlib function calls, 8
selecting events, discussion of using masks and

related Xlib functions, 262
Ma tch error,

description of conditions leading to, 351
protocol encoding, 549

matching,
rules for matching resource names used by re­

source manager, 326
matrix indexing,

for 16-bit characters using CHAR2B, 349
MAX-SPACE,

listed as a built-in font property type, 69
in list of atoms with predefined values, 353

max-installed-maps,
discussion simultaneous installed maps, 359

max -keycode,
as element of exchange in connection setup, 356
specifies largest keycode transmitted by server,

358
MaxCmapsOfScreen,

formal description of Xlib macro for number
of colormaps, 22

maximum-request-length,
as element of exchange in connection setup, 356
for all length fields in requests, 358

memory,
allocating for long term use with XPermalloc,

328
deallocating memory for image structure

using XDestroylmage, 320
loading bitmap into program memory using

XCreateBitmapFromData, 323
often limited, so limit pixmap and backing

store use, 8
merging,

destructive merge of two resource databases
using XrmMergeDatabase, 336

messages,
ClientMessage events, discussion and re­

lated Xlib structures, 252

Index

getting errors from error database,
usingXGetErrorDatabase, 273

list of message types for reporting errors, 273
sent by client, using ClientMessage protocol

event, 458
MIN_SPACE,

listed as a built-in font property type, 69
in list of atoms with predefined values, 353

min-installed-maps,
simultaneous maps installed with

InstallColorMap, 359
min-keycode,

as element of exchange in connection setup, 356
specifies smallest keycode transmitted by

server, 358
MinCmapsOfScreen,

formal description of Xlib macro for number
of colormaps, 22

minor version,
number, returned by ProtocolRevision

macro, 16
Modl,

as Alternative Value for KEYMASK, 349
Mod2,

as Alternative Value for KEYMASK, 349
Mod3,

as AlternativeValue for KEYMASK, 349
Mod.!;,

as AlternativeValue for KEYMASK, 349
ModS,

as AlternativeValue for KEYMASK, 349
modifier keys,

classification macro, using IsModifierKey,
303

glossary entry, 621
values returned by XQueryPointer, 66

modifiers,
adding entry to XModifierKeymap, 201
creating XModifierKeymap structure, using

XNewModifiermap, 201
deleting entry from XModifierKeymap, 202
described with XModifierKeymap structure,

201
destroying XModifierKeymap using

XFreeModifiermap, 202
getting KeyCodes used as modifiers using

XGetModifierMapping, 203
querying the keycodes of the modifier keys

using GetModifierMapping protocol re­
quest, 432

setting KeyCodes for use as modifiers, using
XSetModifierMapping, 202

specifying keycodes for modifier keys using
SetModifierMapping protocol request,
431

monochrome,
glossary entry, 621

motion,
getting,

663

pointer motion history, discussion and re­
lated Xlib functions, 267

size of pointer motion history buffer using
XDisplayMotionBuffer, 267

history buffer, obtaining the events in, using
GetMotionEvents protocol request, 389

notification of, MotionNotify protocol event,
443

pointer motion history for specified window
and time using XGetMotionEven ts, 267

motion-buffer-size,
as element of exchange in connection setup, 356
gives size of storage of history of pointer mo­

tion, 358
MotionNotify,

events,
list of settings to select specified events, 221
protocol encoding, 604

formal description of protocol event, 443
not only way to retain history of pointer mo­

tion, 358
mouse,

event sent when pointer enters/exits window,
discussion and related Xlib structure, 224

grabbing,
pointer button, using XGrabButton, 177
pointer button, using XUngrabButton, 179
the pointer, discussion and related Xlib

functions, 172
moving on screen, using XWarpPointer, 187
pointer,

changing the active, using XChangeActi ve­
Pointer, 178

event mask bits, list of valid symbols, 173
grabbing, using XGrabPointer formal de­

scription of Xlib function, 174
grabbing, using XUngrabPointer formal

description of Xlib function, 174
movement,

pointer, controlling feel with
XChangePointerControl, 196

moving,
data between cut buffers using XRotate­

Buffers, 314
pointing device on screen, using XWarp­

Pointer, 187
regions using XOffsetRegion, 309
the pointer, using Warp Pointer protocol re­

quest, 390
windows,

using XMoveWindow, 51
using XWindowChanges structure and value

mask,48
MSIDOS,

in list of operating systems, 3

664 X WINDOW

MSBFirst,
returned by,

BitmapBitOrder macro, 18
ImageByteOrder macro, 18

multiple,
connections, to display, utility of NULL and

DisplayString, 16
hosts,

adding, using XAddHosts, 207
removing, using XRemoveHosts, 208

requests, should use minor opcode in request
format, 345

return, must use client-passed storage in C
language, 7

multithreaded,
access to a single display connection requires

locked data structures, 492

name,
converting,

KeySym code to its name using
XKeysymToString, 302

name of KeySym to its code with
XStringToKeysym, 302

Name error,
description of conditions leading to, 351
protocol encoding, 550

names,
converting names to,

quarks, discussion and related Xlib func­
tions, 329

strings, discussion and related Xlib. func­
tions, 329

defining coordinate names for hotspot in
bitmap, 321

for given atom obtained with XGetAtomName,
70

for mask bits, using XChangeKeyboard­
Control, 190

hints for remembering names of functions, 7
look up string name of a color using

LookupColor protocol request, 428
obtaining an atom, using GetAtomName proto­

col request, 374
rules for matching resource names used by re­

source manager, 326
setting and getting, window names, discussion

and related Xlib functions, 279
spaces, for atoms listed, 68

Never,
as Alternative Value of backing stores of

SCREEN,356
next event,

returning using XNextEvent, 259
NextRequest,

formal description of Xlib macro to obtain ser­
ial number, 16

NoEventMask,
used to specify no maskable events, 38

NoExpose event,
generated by XCopyArea, 121

NoExposure,
event, protocol encoding, 608
formal description of protocol event, 451

Nonconvex,
XFillPolygon shape option discussed, 133

liOOP operation,
using NoOperation protocol request, 441

NoOpera tion,
full protocol description with discussion of ar­

guments, 441
request for exercising connection, 23
request, protocol encoding, 602

NORM_SPACE,
listed as a built-in font property type, 69
in list of atoms with predefined values, 353

North,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

NorthEast,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

NorthEastGravity,
relative coordinates listed, 36

NorthGravity,
relative coordinates listed, 36

NorthWest,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

NorthWestGravity,
default value of window-gravity attribute, 35

NorthWestGravity,
relative coordinates listed, 36

NOTICE,
listed as a built-in font property type, 70
in list of atoms with predefined values, 353

notifying of,
change in ownership of selection, by

SelectionNotifY protocol event, 457
keymap update, by KeymapNotify protocol

event, 450
of change in state of window, by Configure­

Notify protocol event, 454
of change in window to,

mapped, by MapNotify protocol event, 453
unmapped, by UnmapNotify protocol

event, 453
of entry, by EnterNotify protocol event, 444
ofleaving, by LeaveNotify protocol event, 444
of motion, by MotionNotify protocol event,

443
window,

moved due to its gravity, by
GravityNotify protocol event, 454

Index

visibility change, by Visibili tyNotify
protocol event, 451

Notuseful,
value for backing store means no saving of

window contents, 37
value returned by DoesBackingStore macro,

20
NULL pointers,

returned if string doesn't exist, 7

obscure,
verb, glossary entry, 621

obtaining,
See Also checking, determining, getting, infor­

mation, querying, reading
atom for a given name using XlnternAtom, 70
attributes of specified window with

XGetWindowAttributes,63
best size of a tile, stipple, or cursor using

XQueryBestS ize, 111
GContext resource IDs for a given GC using

XGCContextFromGC, 105
font names, discussion and related Xlib func-

tions, 144
icon names, using XGetlconName, 280
images, using Getlmage protocol request, 417
information about location of pointer using

XQuerypointer, 66
KeyCodes,

for a display, using XDisplayKeycodes,
198

that are used as modifiers, using XGet­
ModifierMapping, 203

list of,
hosts, using XListHosts, 208
window's properties using XList­

Properties, '73
measures of windows using XGetGeometry,

66
name of,

a given atom using XGetAtomName, 70
an atom, using GetAtomName protocol re­

quest, 374
next event, using XNextEvent, 259
number of display cells for colormap entries

using XDisplayCells, 15
parent and children of window with

XQueryTree, 63
pointer acceleration parameters, with

XGetPointerControl, 196
root window using XRootWindow, 17
screen saver values, using XGetScreenSaver,

205
string name of a color using XLookupColor, 86
the geometry for the drawable, using

GetGeometry protocol request, 373

the owner of a selection using
XGetSelectionOwner, 77

665

value of pixel in an image using XGetPixel,
319

window names, using XFetchNames, 279
occlude,

glossary entry, 621
off-screen memory,

minimized with use of backing planes, 38
often limited, so limit pixmap and backing

store use, 8
off-screen storage,

of graphics objects in pixmaps, 5
offsetting,

regions with XOffsetRegion, 309
only _if_exists,

argument to XlnternAtom controls atom cre­
ation, 70

opcode,
for extensions obtained using Xlnit­

Extension, 499
major,

and minor in request format, 345
reserved for extensions in requests, 345

minor in spare data byte of request header, 345
of failed request included in error format, 346

OpenFont,
full protocol description with discussion of ar­

guments, 391
request, protocol encoding, 573

opening,
connection to displays with XOpenDisplay, 10
display, detailed discussion of functions in

Xlib, 10
fonts, using OpenFont protocol request, 391

operating systems,
supported by X Window System, 3

operations,
involving cursors, discussion and related Xlib

functions, 161
option table,

for parsing command line, discussion and ex­
ample of uses, 338

optional arguments,
selected with value-mask and value-list, 347

OR,
description of use in setting window attribute,

31
in specification of union of types, 348

order,
of arguments in function by convention, 8

origin,
for coordinates set with mode of

XDrawPoints, 124
for tile or stipple set with XSetTSOrigin, 113
of window changed with change to border­

width,49

666 X WINDOW

origin (Cont.)
setting origin of clip region using

XSetClipOrigin, 114
XFillPolygon mode options for setting, 133

output buffer,
discussion and related Xlib functions, 257
flushing,

and waiting to clear, using XSync, 257
using XFlush function, 257

used by Data macro if data fits the buffer, 493
override,

of background-pixmap by background-pixel,
33

of border-pix map by border-pixel value, 35
redirect flag, discussion and details of use, 38

override_redirect,
element of XSetWindowAttributes struc­

ture, 32
overview,

and purpose of book, 3
of steps in using displays in Xlib, 10
of X Window System, 4

owner,
getting for a selection, using Get­

SelectionOwner protocol request, 377
of implementation obtained with Server­

Vendor, 17
setting for a selection, using SetSelection­

Owner protocol request, 377
OwnerGrabButton, as AlternativeValue for

EVENT,348

padding,
glossary entry, 621
of scanlines described by bitmap-scanline-pad,

357
parameters,

pointer acceleration, queried with XGet­
POinterControl, 196

Paren tRela ti ve,
Alternate Value for background_pixmap, 32
background-pixmap means parent pixmap

shared,33
list of implications of this background-pixmap,

33
parents,

boundaries, clip output to child windows, 4
changing parent of window, XReparent­

Window, 167
obtaining,

for a window, using QueryTree protocol re­
quest, 373

parent and children of window with
XQueryTree, 63

ReparentNotify event, discussion and re­
lated Xlib structures, 244

window,
defined with general discussion of role in X, 4
glossary entry, 621

parsing,
color specifications, XParseColor, 307
command line and modifying resource data­

base, discussion and related Xlib func­
tions, 337

table of options for parsing command line,
discussion and example of uses, 338

window geometry, using XParseGeometry
and XGeometry, 305

passive grab,
glossary entry, 621
released automatically at connection close, 24

peeking,
next event, using XPeekEvent, 259

pending,
number of events pending, using XPending,

258
performance,

for optimal performance don't change GC fre­
quently, 102

PF key,
classification macro, IsPFKey, 303

physical,
size, in width-in-millimeters and height-in­

millimeters, 358
state, may lead logical state if event processing

frozen, 67
pixels,

getting value for a,
dark intensity pixel with XBlackPixel, 13
light intensity pixel with XWhitePixel, 13

obtaining value of pixel in an image using
XGetPixel,319

setting,
color of a pixel to a named color using

XStoreNamedColor, 90
value of pixel in an image using

XPutPixel, 319
used to set background of InputOutput win­

dow, 33
used to set border of InputOutput window, 34
value, glossary entry, 621

PIXMAP,
listed as a built-in property type, 69
in list of atoms with predefined values, 353
as one of the types of DRAWABLE, 348
type description, 348

pixmap-formats,
as element of exchange in connection setup, 356

pixmaps,
creating,

cursor from two bitmaps, XCre<ltePixmap­
Cursor, 162

Index

•
a pixmap and storing bitmap data in it

using XCreatePixmapFromBi tmapData,
323

pixmaps using XCreatePixmap, 93
using CreatePixmap protocol request, 399

of depth one always supported, 358
error,

description of conditions leading to, 351
protocol encoding, 548

freeing,
using FreePixmap protocol request, 399
using XFreePixmap, 93

glossary entry, 621
ID,

deleted with XFreePixmap, 94
returned by xCreatePixmap, 93

introduction and brief description of use, 5
loading bitmap into program memory using

XCreateBitmapFrom Data, 323
as off-screen memory, overview of use, 80
passes pixel value to XSetWindow­

Background, 58
used to set,

background of InputOutput window, 33
border of InputOutput window, 34

plane_mask,
diagram showing use as element of

XGCValues, 98
formula for use as element of XGCValues, 97

plane mask,
glossary entry, 622
setting plane mask of GC using,

XSetPlaneMask, 107
XSetState, 107

planes,
copying, using CopyPlane protocol request,

410
glossary entry, 622
obtaining number of display planes (depth) of

root window using XDisplayPlanes, 15
setting a value with bits set to 1 for use in

plane argument with XAllPlanes, 13
PlanesOfScreen,

formal description of Xlib macro for depth of
root window, 22

POINT,
in list of atoms with predefined values, 353
listed as a built in property type, 69
type description, 349

POINT_SIZE,
listed as a built-in font property type, 69
in list of atoms with predefined values, 353

POINTEREVENT,
type description, 349

PointerMotion,
as AlternativeValue for,

DEVICEEVENT,349

EVENT,348
POINTEREVENT,349

PointerMotionHint,
as AlternativeValue for,

EVENT,348
POINTEREVENT,349

POinterRoot,

667

value of input focus on closing last connection,
25

pointer,
acceleration parameters, queried with

XGetPointerControl, 196
pointers,

button events, discussion and related Xlib
functions, 217

buttons numbered starting with one, 353
changing,

the active mouse, with XChange­
ActivePointer, 178

how the pointer moves using Change­
PointerControl protocol request, 437

the grab parameters, using ChangeActive­
PointerGrab protocol request, 382

event,
mask bits, list of valid symbols, 173
sent when pointer enters/exits window, dis­

cussion and related Xlib structure, 224
events, discussion and related Xlib structures,

220
follow masks in Xlib function calls, 8
getting,

mapping of pointer using GetPointer­
Mapping protocol request, 436

pointer motion history, discussion and re­
lated Xlib functions, 267

size of pointer motion history buffer, using
XDisplayMotionBuffer, 267

glossary entry, 622
grabbing,

discussion and related Xlib functions, 172
glossary entry, 622
the mouse, using XGrabPointer formal de-

scription of Xlib function, 174
pointer button, using XGrabButton, 177
pointer button, using XUngrabButton, 179
using GrabPointer protocol request, 379
XUngrabPointer formal description of Xlib

function, 174
interactive feel, controlling with

XChangePointerControl, 196
mapping, getting information, about with

XGetPointerMapping, 195
motion, as example input event for

InputOutput window, 30
normal events discussed when pointer enters/

exits window, 226

668 X WINDOW

pointers, (Cont.)
pointer motion history for specified window

and time, with XGetMotionEvents, 267
pointing device location returned by

XQueryPointer, 66
protocol encoding for pointing device buttons,

551
querying,

acceleration and threshold of pointer using
QueryPointer protocol request, 437

using QueryPointer protocol request, 388
releasing, using UngrabPointer protocol re­

quest, 380
setting mapping of pointer using

SetPointerMapping protocol request,
436

settings, discussion and related Xlib functions,
190

warping, using Warppointer protocol re­
quest, 389

pointing device,
glossary entry, 622
grabbing, discussion and related Xlib func­

tions, 172
roaming of screen set by server implementa­

tion, 357
points,

drawing, using PolyPoint protocol request,
411

locating point in region using XPointln­
Region, 312

PolyArc,
full protocol description with discussion of ar­

guments, 413
request, protocol encoding, 583

PolyFillArc,
full protocol description with discussion of ar­

guments, 416
request, protocol encoding, 584

PolyFillRectangle,
full protocol description with discussion of ar­

guments, 415
request, protocol encoding, 584

polygon,
filling, discussion and related Xlib functions,

132
PolyLine,

full protocol description with discussion of ar­
guments, 411

protocol request, relation to XDraw­
Rectangle, 127

request, protocol encoding, 583
PolyPoint,

full protocol description with discussion of ar­
guments, 411

request, protocol encoding, 582

•
PolyRectangle,

full protocol description with discussion of ar­
guments, 413

request, protocol encoding, 583
Poly Segment,

full protocol description with discussion of ar­
guments, 412

request, protocol encoding, 583
PolyText16,

full protocol description with discussion of ar­
guments, 419

listed as generating side effects on error, 350
request, protocol encoding, 586

PolyText13,
full protocol description with discussion of ar­

guments, 418
listed as generating side effects on error, 350
request, protocol encoding, 585

pop-up windows,
getting window transient-for property using

XSetTransientForHint, 291
override intercepts with override redirect, 38
setting window transient-for property using

XSetTransientForHint, 290
portability,

discussion of considerations, 498
position,

changing windows,
ConfigureNotify event discussion and re­

lated Xlib structures, 238
ConfigureRequest event discussion and

related Xlib structures, 248
predefined atoms,

discussion of uses and list of atom names, 353
predicate procedures,

called from inside event routine for selecting
events, 260

formal description of form of Xlib function, 260
used to select event by,

xChecklfEvent, 261
XlfEvent, 260
XPeeklfEvent, 261

prefixes,
should be added for atoms private to vendor,

354
preservation,

of hidden windows not guaranteed, 5
pressing,

buttons, ButtonPress protocol event, 443
key, KeyPress protocol event, 443

PRIMARY,
listed as a built-in selection property name, 69
in list of atoms with predefined values, 353

private members,
of Display structure should not be accessed,

12

Index

processing,
events, discussion and related Xlib functions,

216
programming considerations,

short list of useful hints for programming
with Xlib, 8

programs,
must be prepared to handle all events, 6

prohibiting,
access control, using XDisableAccess­

Control, 210
properties,

and atoms, discussion and detailed overview, 67
changed on window, using propertyNotify

protocol event, 456
changing,

property of a given window using
XChangeProperty, 73

window, using ChangeProperty protocol
requests, 374

a collection of named, typed data, 67
deleting a

property on a given window using
XDeleteProperty, 73

window, using DeleteProperty protocol
request, 374

discussion and detailed overview of obtaining
and changing, 71

exists until deleted, window destroyed, or
server reset, 74

fonts,
built-in property names, 140
XGetFontProperty, using formal descrip­

tion of Xl ib function, 143
for communicating with window manager, dis­

cussion and related Xlib functions, 275
actions used for creating windows without

toolkit, 40
getting,

pointer to the RESOURCE_MANAGER
with XResourceManagerString, 30L;

window, using GetProperty protocol re-
quest, 375

glossary entry, 622
list, glossary entry, 622
listing window, using ListProperty protocol

request, 376
names,

has ISO Latin-l string, 67
built-in names of listed, 69
predefined with atoms in [XI lIXatom.h] , 68

obtaining
list of window's properties using XList­

Properties, 73
type, format, and value using XGet­

WindowProperty, 7]

669

on roots deleted on closing last connection, 25
PropertyNotify events, discussion and re­

lated Xlib structures, 252
rotating,

a window's property list using
XRotateWindowProperties, 74

window, using RotateProperty protocol
request, 376

setting,
and getting icon names, discussion and re­

lated Xlib functions, 280
and getting window names, discussion and

related Xlib functions, 279
standard properties, using

XSetStandardProperties, 278
types,

built-in types listed, 69
new types can be defined using atoms, 67

PropertyChange,
as AlternativeValue for EVENT, 348

PropertyNotify,
event,

generated by XChangeProperty, 74
generated by xRotateWindowProperties,

75
generated if property retrieved and deleted,

73
protocol encoding, 612

formal description of protocol event, 456
generated by XDeleteProperty, 75

protocol,
encoding, syntactic conventions, 540
formats, bit description and discussion of each

type, 345
requests, listed in alphabetical order with Xlib

functions that reference them, 467
revisions, allowed for in connection setup ex­

change, 355
protocol-major-version,

description of use for major and minor ver­
sions, 355

received by remote client during connection
setup, 355

sent by remote client during connection setup,
354

protocol-minor-version,
description of use for major and minor ver­

sions, 355
received by remote client during connection

setup, 355
sent by remote client during connection setup,

354
ProtocolRevision,

formal description of Xlib macro to obtain
minor version, 16

670 X WINDOW

Protocol Version,
formal description of Xlib macro to obtain

major version, 16
PseudoColor,

as AlternateValue of class of VISUAL TYPE, 356
description of this class of VISUALTYPE, 359
glossary entry, 622
visual structure class characteristics, 28

Publish,
KeySym set, 532

Putlmage,
full protocol description with discussion of ar­

guments, 416
request, protocol encoding, 584

putting,
resources into resource database,

using XrmPutLineResource, 333
using XrmPutResource, 331
using XrmPutStringResource, 332
using XrmQPu tResource, 331
using XrmQPutStringResource, 332

value of pixel in an image using XPutPixel,
319

QLength,
formal description of Xlib macro to check

event queue, 16
QUAD_WIDTH,

listed as a built in font property type, 69
in list of atoms with predefined values, 353

quarks,
allocating a new quark using XrmUnique­

Quark, 328
converting,

classes to quarks, discussion and related Xlib
functions, 329

classes to strings, discussion and related Xlib
functions, 329

names to quarks, discussion and related Xlib
functions, 329

names to strings, discussion and related Xlib
functions, 329

quarks to strings, discussion and related
Xlib functions, 329

representations to quarks, discussion and re­
lated Xlib functions, 329

representations to strings, discussion and re­
lated Xlib functions, 329

string to binding and quark lists with
XrmStringToBindingQuarkList, 330

string with list of names to list of quarks
using XrmStringToNameList, 329

strings to quarks, discussion and related
Xlib functions, 329

list of symbol typedefs of type quark, 329
XrmClass typedef, 329

XrmClassList typedef, 329
XrmName typedef, 329
XrmNameList typedef, 329
XrmQuarkList typedef, 329
XrmRepresentation typede~ 329
as shorthand for string, discussion and related

Xlib functions, 328
storing resources into resource database,

using XrmQPutResource, 331
using XrmQPutStringResource, 332

used for strings in applications like atoms are
used in server, 328

QueryBestSize,
full protocol description with discussion of ar­

guments, 430
request, protocol encoding, 594

QueryColors,
full protocol description with discussion of ar­

guments, 427
request, protocol encoding, 592

QueryExtension,
full protocol description with discussion of ar­

guments, 430
request, protocol encoding, 595

QueryFont,
full protocol description with discussion of ar­

guments, 392
request, protocol encoding, 573

querying, See Also checking, determining, get­
ting, information, obtaining, reading, re­
trieving

querying,
about mapping of pointing device using

XGetPointerMapping, 195
acceleration and threshold of pointer using

GetPointerControl protocol request,
437

color values, using QueryColors protocol re­
quest, 427

control values for keyborad using
GetKeyboardCon trol protocol request,
435

fonts using QueryFon t protocol request, 392
for best size object using QueryBestSize pro­

tocol request, 430
for list of

all extensions supported by server with
XListExtensions, 477

extensions using ListExtensions protocol
request, 431

for presence of
a named extension to Xlib using

XQueryExtension, 477
extension, using QueryExtension protocol

request, 430
for screen saver values, using XGetScreen­

Saver, 205

Index

if a region is empty using XEmptyRegion, 311
KeyCodes for a display, using XDisplay­

Keycodes, 198
KeyCodes that are used as modifiers, using

XGetModifierMapping, 203
keymap, using QueryKeymap protocol request,

391
list of hosts, using XListHosts, 208
pointer acceleration parameters, with

XGetPointerControl, 196
pointers, using QueryPointer protocol re­

quest, 388
screen saver using GetScreenSaver protocol

req, est, 438
text extents, using QueryTextExtents proto­

col request, 397
the keycodes of the modifier keys using

GetModifierMapping protocol request,
432

the symbols for the keycodes using
GetKeyboardMapping protocol request,
433

the tree of a window, using QueryTree proto­
col request, 373

the zoom hints for a window, XGetZoom­
Hints, 286

value of pixel in an image using XGetPixel,
319

QueryKeymap,
full protocol description with discussion of ar­

guments, 391
request, protocol encoding, 573

QueryPointer,
full protocol description with discussion of ar­

guments, 388
request, protocol encoding, 570

QueryTextExtents,
full protocol description with discussion of ar­

guments, 397
request, prqtocol encoding, 575

QueryTree,
full protocol description with discussion of ar­

guments, 373
request, protocol encoding, 562

queued events,
releasing, using AllowEvents protocol re­

quest, 386
queues,

event queue management, discussion and re­
lated Xlib functions, 258

manipulating the event queue, discussion and
related Xlib functions, 259

number of events queued, using
XEventsQueued, 258

obtaining length of event queue using
XQLength, 16

putting event back into queue, using
XPutBackEvent, 265

RaiseLowest,
stipulates direction for XCirculate­

Subwindows, 55
raising,

671

window to top of viewing stack and showing it
on screen using XMapRaised, 46

read-only,
color cells,

are allocated explicitly by pixel value, 84
are shared among clients, 85

option for colormap of screen, 27
read/write color cells,

get colors with XStoreColor or
XStoreColors, 84

many cells may be allocated simultaneously or
by planes, 84

reading,
colormap entries using XQueryColor or

XQueryColors, 91
from bitmap file using XReadBitmapFile,

321
images from disks, no functions defined in X

windows, 317
the zoom hints for a window, XGetZoom­

Hints, 286
variable length data sent by X after reply to

request, discussion and related Xlib func­
tions, 496

window manager hints for a window, using
XGetWMHints, 283

reason,
as element of exchange for failed authoriza­

tion, 355
rebinding,

meaning of a KeySym for a client using
XRebindKeysym, 301

receiving,
replies from X after Xlib sends protocol re­

quest using_XReply, 495
RecolorCursor,

full protocol description with discussion of ar­
guments, 430

request, protocol encoding, 594
RECTANGLE,

[x,y] coordinates specify upper-left corner,
349

in list of atoms with predefined values, 353
listed as a built-in property type, 69
type description, 349

rectangles,
discussion of functions for drawing, 126
drawing, using PolyRectangle protocol re­

quest, 413

672 X WINDOW

rectangles (Cont.)
filling,

discussion and related Xlib functions, 131
using PolyFillRectangle protocol re­

quest, 415
glossary entry, 622
locating rectangle in region using

XRectInRegion, 312
region union with a rectangle using

XUnionRectWithRegion, 310
setting clip-mask, using SetClipRectangles

protocol request, 408
red-mask,

conditions for use and bit description, 360
redirecting control,

glossary entry, 623
refreshing,

Xlib's knowledge of the keyboard with
XRefreshKeyboardMapping, 300

regions,
computing,

combinations, discussion and related Xlib
functions, 310

the intersection of two regions with
XlntersectRegion, 310

deallocating the storage of a specified region
using XDestroyRegion, 309

determining if,
a region is empty using XEmptyRegion, 311
two regions have same offset, size, and

shape using XEqualRegion, 311
difference between union and intersection of

two regions using XXorRegion, 311
filling,

regions delimited by an are, using
PolyFillArc protocol request, 416

using FillPoly protocol request, 415
generating with XPolygonRegion and

XClipBox, 308
lacking contents are tiled with background, 34
locating,

point in region using XPointInRegion,
312

rectangle in region using XRectInRegion,
312

manipulating, list of categories of operations,
308

moving with XOffsetRegion, 309
region,

union with a rectangle using
XUnionRectWithRegion, 310

unions with XUnionRegion, 310
setting the clip-mask of a GC to a region using

XSetRegion, 309
shrinking with XShrinkRegion, 310
subtracting two regions using

XSubtractRegion, 311

release number,
obtaining vendor's release number with

XVendorRelease, 17
semantics controlled by vendor, 356

release-number,
as element of exchange in connection setup, 355

releasing, See Also freeing
releasing,

buttons,
ButtonRelease protocol event, 443
using UngrabButton protocol request, 382

colormaps, using FreeColormap protocol re­
quest, 422

colors, using FreeColors protocol request,
426

events, using AllowEvents protocol request,
386

graphics context, using FreeGC protocol re­
quest, 409

keyboard, using UngrabKeyboard protocol
request, 384

keys,
KeyRelease protocol event, 443
using UngrabKey protocol request, 385

pixmaps, using FreePixmap protocol request,
399

pointers, using UngrabPointer protocol re­
quest, 380

servers, using UngrabServer protocol re­
quest, 388

removing, See Also deleting, destroying, killing
removing,

colormaps, using UninstallColormap proto­
col request, 423

context data from a window using
XDeleteContext, 341

events from the event queue matching,
event mask, using XCheckMaskEvent, 263
event mask, using XMaskEvent, 263
event type and window, using XCheck-

TypedWindowEvent, 264
event type, using XCheckTypedEvent, 264
window and event mask, using XCheck­

WindowEvent, 262
window and event mask, using

XWindowEvent, 262
hosts,

discussion and related Xlib functions, 206
using XRemoveHost, 208

multiple hosts, using XRemoveHosts, 208
specified host using ChangeHosts protocol re­

quest, 439
windows from a save-set

using XChangeSaveSet, 169
using XRemoveFromSa veSet, 170

reparenting,
of save-set window at connection close, 24

Index

windows,
using ReparentNotify protocol event, 453
using ReparentWindow protocol request,

368
ReparentNotify,

event,
protocol encoding, 609

formal description of protocol event, 453
ReparentWindow,

full protocol description with discussion of ar­
guments, 368

request, protocol encoding, 559
reply,

format, bit description and detailed discussion,
345

from X after Xlib sends protocol request using
_XReply, 495

glossary entry, 623
reporting,

list of message types for reporting errors, 273
reporting error when display does not exist

using XDisplayNarne, 273
representations,

converting representations to,
quarks, discussion and related Xlib func­

tions, 329
strings, discussion and related Xlib func­

tions, 329
Request error,

description of conditions leading to, 351
requesting,

CirculateWindow, using CirculateRequest
protocol event, 456

ConvertS election on owned selection, using
SelectionRequest protocol event, 456

mapping on window, using MapRequest pro­
tocol event, 453

SelectionNotify events, discussion and re­
lated Xlib structures, 255

SelectionRequest events, discussion and re­
lated Xlib structures, 254

requests,
errors, protocol encoding, 547
extensions, for multiple requests as part of re­

quest format, 345
flush output buffer and wait to clear, XSync,

257
flushing output buffer using XFlush function,

257
format, bit description and detailed discussion,

345
format, specifications and discussion, 489
glossary entry, 623
list of functions that may be batched together

when sent to server, 118
output buffer control, discussion and related

Xlib functions, 257

673

protocol encoding for each request, 556
sequence number assigned for each connec­

tion, 345
serial number of,

last request obtained with XLastKnown­
RequestProcessed, 16

next request obtained with XNextRequest,
16

syntax as used for descriptions in Section 9 of
protocol, 346

resetting,
screen saver using XResetScreenSaver, 205

resident colormaps,
discussion and related Xlib functions, 170

ResizeRedirect,
as Alternative Value for EVENT, 348

ResizeRedirectMask,
on parent diverts resize to ResizeRequest

event, 45
ResizeRequest,

event,
generated if ResizeRedirectMask set and

resize requested, 49
protocol encoding, 611
when ResizeRedirectMask set on parent

of resize, 45
formal description of protocol event, 455

resizing,
parent, window gravity sets new position, 35
windows,

bit gravity sets region retained, 35
may lose contents if window is obscured, 52,

53
using XWindowChanges structure and value

mask,48
RESOLUTION,

listed as a built-in font property type, 70
in list of atoms with predefined values, 353

RESOURCE_MANAGER,
listed as a built-in property name, 69
in list of atoms with predefined values, 353
property, discussion of environment defaults

stored in, 304
resource-id -base,

as element of exchange in connection setup, 355
ORed with resource-id-mask at connection

setup, 356
resource-id -mask,

as element of exchange in connection setup, 355
values allocated by client at connection setup,

356
resources,

associating data with a resource ID, discussion
and related version 10 functions, 503

clients, killing, using KillClient protocol re­
quest, 440

674 X WINDOW

resources (Cant.)
creating,

new resource ID using XAllocID, 486
resource database form a string using

XrmGetStringDatabase, 337
database access functions discussion and re­

lated Xlib functions, 330
database search lists, discussion and related

Xlib functions, 334
destroyed by call to XCloseDisplay macro, 23
destructive merge of the two resource data­

bases using XrmMergeDatabase, 336
finding,

lists of resource names and classes using
XrmQGetSearchList, 334

single resource using XrmQGetSearchList,
335

like request on nonwindow resources sent at
connection close, 24

getting pointer to the
RESOURCE_MANAGER property with
XResourceString, 304

glossary entry, 623
IDs,

allocation details, format, and uniqueness,
356

destroyed by call to XCloseDisplay pacro,
23

list of types assigned IDs by client during
setup, 356

refer to objects on server, 6
returned in certain listed errors, 346

loading resource database from C command
line using XrmParseCommand, 338

management, allocating memory for long
term use with Xpermalloc, 328

manager
allocating a new quark using

XUniqueQuark,328
general discussion and naming conventions,

324
initializing with Xrmlni tialize, 328
name matching rules listed with examples,

326
resource database access functions, discus­

sion and related Xlib functions, 330
marked by close-down mode at connection

close 24
may be shared between applications, 6
objects 1st or 2nd argument in list for Xlib

functions, 8
retrieving resource,

databases from disk files using
XrmGetFileDatabase, 336

from resource database using
XrmGetResource, 333

from resource database using
XrmQGetResource, 333

setting disposition of resources with close­
down mode, 189

storing resource databases on disk files using
XrmPutFileDatabase, 337

storing resources into resource database, using
XrmPutLineResource, 333
XrmPutResource, 331
XrmPutStringResource, 332
XrmQPutResource, 331
XrmQPutStringResource, 332

RetainPermanen t,
implications of mode at closing of last connec­

tion, 25
used to mark resources at connection close, 24

RetainTemporary,
implications of mode at closing of last connec­

tion,25
used to mark resources at connection close, 24

retrieving, See Also checking, determining, get­
ting, information, obtaining, querying,
reading

retrieving,
contents of drawable, XGetlmage, 159
data from,

a window's context using XFindContext,
340

cut buffer 0 using xFetchBytes, 314
specified cut buffer using XFetchBuffer,

314
font search path,

XGetFontPath formal description of Xlib
function, ·146

discussion and related Xlib functions, 146
icon names, using XGetlconName, 280
next event, using XNextEvent, 259
resource,

databases from disk files using
XrmGetFileDatabase, 336

from resource database using
XrmGetResource, 333

from resource database using
XrmQGetResource, 333

window names, using XFetchNames, 279
_return suffix,

for pointers used to return a value, 9
revisions,

allowed for in connection setup exchange, 355
RGB_BEST_MAP,

listed
as a built-in property name, 69
with atoms with predefined values, 353

property, discussion and related Xlib func­
tions, 294

Index

RGB_BLUE_MAP,
listed

as a built-in property name, 69
with atoms with predefined values, 354

property, discussion and related Xlib func­
tions, 295

RGB_COLOLMAP,
listed

as a built-in property type, 69
with atoms with predefined values, 354

RGB_DEFAULT_MAP,
listed

as a built-in property name, 69
with atoms with predefined values, 354

property, discussion and related Xlib func­
tions, 294

RGB_GRAY_MAP,
listed

as a built-in property name, 69
with atoms with predefined values, 354

property, discussion and related Xlib func­
tions, 295

RGB_GREEN_MAP,
listed

as a built-in property name, 69
with atoms with predefined values, 354

property, discussion and related Xlib func­
tions, 295

RGB_RED_MAP,
listed

as a built-in property name, 69
with atoms with predefined values, 354

property, discussion and related Xlib func­
tions, 295

RGB (red, green, blue) values,
can be changed dynamically for

DirectColor, 28
PseudoColor, 28

for named classes of VISUALTYPE, 359
glossary entry, 623
obtained from pixel value using

XQueryColor(s),92
settable for WhitePixel and BlackPixel, 13

ringing bell,
on keyboard with XBell, 194
using Bell protocol request, 436

root,
glossary entry, 623
ID, returned by XQueryTree, 63
obtaining for a window, using QueryTree

protocol request, 373
window,

cannot be configured with XWindow­
Changes, 48

cannot be configured with XConfigure­
Window, 50

defined with general discussion of role in X, 4

675

glossary entry, 623
no effect of call to XDestroyWindow, 43
obtaining ID with XRootWindow, 17
obtaining number of display planes (depth)

of root window using XDisplay­
Planes, 15

obtaining the root window of the screen
using XRootWindowOfScreen, 22

obtaining with XDefaultRootWindow, 14
root-depth,

specifies depth of root window, 358
root-visual,

specifies visual type of root window, 358
roots,

as element of exchange in connection setup, 356
ReparentNotify event, discussion and re­

lated Xlib structures, 244
RootWindow,

formal description of Xlib macro to obtain
root window, 17

RootWindowOfScreen,
formal description of Xlib macro for getting

root window, 22
RotateProperties,

full protocol description with discussion of ar­
guments, 376

request, protocol encoding, 600
rotating,

a window's' property list using
XRotateWindowProperties, 74

data between cut buffers using
XRotateBuffers, 314

window
properties, using RotateProperty protocol

request, 376
restacked, CirculateNotify protocol

event, 455
using CirculateWindow protocol request,

373
in the viewing stack using

XCirculateSubwindows, 55
rules,

for matching resource names used by resource
manager, 326

save under,
allows system to preserve obscured windows, 37
check support with DoesSa veUnders, 21

save_under,
element of XSetWindowAttributes struc­

ture, 32
for CreateWindow and ChangeWindow­

Attributes,359
save-sets,

adding,
a window to a save-set using XChangeSave­

Set, 169

676 X WINDOW

save-sets (Cont.)
windows to a save-set, using XAddToSave­

Set, 169
changing, using ChangeSa veSet protocol re­

quest, 367
controlling lifetime of window with a save-set,

168
description and treatment at connection close,

24
glossary entry, 623
removing,

a window from a save-set, using
XChangeSaveSet, 169

windows from a save-set, using
XRernoveFrornSa veSet, 170

saving,
a data value in a window context using

XSaveContext, 340
writing to bitmap file using

XWriteBitrnapFile, 322
scanline,

glossary entry, 623
scanline order,

glossary entry, 624
scanline-pad,

description and relation to bitmap-scanline­
pad, 357

SCREEN,
record description, 356

screen_number,
as part of DISPLAY environment variable, 11

ScreenCount,
formal description of Xlib macro to obtain

number of screens, 17
ScreenOfDisplay,

formal description of Xlib macro to obtain
screen pointer, 14

screens,
activating screen saver using ForceScreen­

Saver protocol request, 438
creating a colormap for a screen using

XCreateColorrnap,82
defined with general discussion of role in X, 4
depth,

as number of planes, returned using
XDefaultDepth, 14

obtained using XDefaul tDepthOfScreen,
20

getting visual information matching depth and
class of screen, using XMa tch Visual­
Intro, 316

glossary entry, 624
height in,

millimeters returned by XDisplayHeight,
18

pixels returned by XDisplayHeight;18
information,

details of elements exchanged at connection
setup, 358

macros, giving access to Display structure in­
formation, 19

number,
access provided by Defaul tScreen or

XDefaultScreen, 12
referenced by XOpenDisplay accessed by

Defaul tScreen, 15
obtaining,

default screen color map using
XDefaultColorrnapOfScreen, 20

default visuals of screen using
XDefaultVisualOfScreen, 20

the display of a given screen with
XDisplayOfScreen, 21

the event mask of a screen using
XEventMask, 21

the height in millimeters of screen using
XWidthMMOfScreen, 21

the height in pixels of screen using
XHeightOfScreen, 21

graphics context of screen using
XDefaultGCOfScreen, 20

number of available screens using
XScreenCount, 17

number of color cells in colormap with
XCellsOfScreen, 19

pointer to default screen, Xlib functions de­
scribed, 14

the width in millimeters of screen using
XWidthMMOfScreen, 21

the width in pixels of screen using
XWidthOfScreen, 21

value of dark pixel with
XBlackPixelOfScreen, 19

value of light pixel with
XWhi tePixelOfScreen, 19

querying screen saver using GetScreenSaver
protocol request, 438

saver,
activating, using XActivateScreenSaver,

205
controlling, discussion and related Xlib

functions, 203
forcing on or off, using

XForceScreenSaver, 204
resetting, using XResetScreenSaver, 205

saving obscured windows checked with
XDoesSaveUnders,21

setting screen saver using SetScreenSaver
protocol request, 437

visual of screen obtained using
XDefaultVisual, 15

Index

width in,
millimeters returned by XDisplayWidth,

19
pixels returned by XDisplayWidth, 19

search path,
fonts, discussion and related Xlib functions, 146
getting the font, using GetfontPath protocol

request, 399
setting the font, using SetFontPath protocol

request, 398
searching,

resource database,
for list of names and classes using

XrmQGetSearchList, 334
search lists, discussion and related Xlib

functions, 334
for single resource using

XrmQGetSearchResource, 335
SECONDARY,

listed as a built-in selection property name, 69
in list of atoms with predefined values, 354

segments,
drawing, using PolySegment protocol re­

quest, 412
selecting,

events,
discussion and related Xlib functions, 256
discussion of predicate procedures and re­

lated Xlib functions, 260
discussion of using masks and related Xlib

functions, 262
SelectionClear,

event,
protocol encoding, 612
sent to prior owner when selection has new

owner, 77
formal description of protocol event, 456

SelectionNotify,
event,

protocol encoding, 613
sent to XCon vertS election requestor if

no owner for selection, 78
formal description of protocol event, 457

SelectionRequest,
event,

protocol encoding, 612
sent to current owner by XCon vert­

Selection, 78
formal description of protocol event, 456

selections,
built-in property names listed, 69
changing a selection to a new target type using

XConvertSelection, 78
clearing, using SelectionClear protocol

event, 456
converting, using Con vertSelection proto­

col request, 378

677

discussion and details of use, 75
getting owner, owner window, and last change

time, using GetSelectionOwner protocol
request, 377

glossary entry, 624
as indirect properties with dynamic types, 76
notification of change in ownership, using

SelectionNotify protocol event, 457
obtaining the owner of a selection using

XGetSelectionOwner, 77
owned by client disowned at connection close,

23
requesting Con vertSelection on owned se­

lection, using SelectionRequest proto­
col event, 456

SelectionClear events, discussion and re­
lated Xlib structures, 253

SelectionNotify events, discussion and re­
lated Xlib structures, 255

SelectionRequest events, discussion and re­
lated Xlib structures, 254

sending events to other applications, discus­
sion and related Xlib functions, 265

setting,
owner, owner window, and last change time,

using SetSelectionOwner protocol re­
quest, 377

the owner of a selection using
XSetSelection, 76

semantics,
for FONTPROP structures atoms is

predefined, 353
not defined for predefined atoms, 353
of release number controlled by vendor, 356
of selection not controlled by protocol, 76

SendEvent,
full protocol description with discussion of ar­

guments, 378
request, protocol encoding, 566
sets most-significant bit in type code of event

report, 346
sending,

events,
to other applications, discussion and related

Xlib functions, 265
using SendEvent protocol request, 378

message by client, using ClientMessage pro­
tocol event, 458

protocol requests and arguments from Xlib
client to X, 492

sequence number,
assigned for each request for each connection,

345
for request included in reply format, 345
of failed request included in error format, 346
of request included in event format, 346

678 X WINDOW

serial number,
automatically set upon receipt of replies, er­

rors, events, 16
of last request obtained with XLastKnown­

RequestProcessed, 16
maintained separately for each display connec­

tion, 16
of next request obtained with XNextRequest,

16
servers,

can support more than one version simultane­
ously, 355

controls byte order of image data, 357
does not use mapping of KEYCODE to

KEYSYMs, 353
glossary entry, 624
grabbing,

glossary entry, 624
to control other connections, 186
using GrabServer protocol request, 388

implementation, owner given in vendor string
of connection setup, 356

releasing, using UngrabServer protocol re­
quest, 388

ServerVendor,
formal description of Xlib macro to obtain ID

of owner, 17
SetAccessControl,

full protocol description with discussion of ar­
guments, 440

request, protocol encoding, 600
SetClipRectangles,

full protocol description with discussion of ar­
guments, 408

request, protocol encoding, 581
SetCloseDownMode,

full protocol description with discussion of ar­
guments, 440

request, protocol encoding, 600
SetDashes,

full protocol description with discussion of ar­
guments, 408

request, protocol encoding, 581
SetFontPath,

full protocol description with discussion of ar­
guments, 398

request, protocol encoding, 577
SetlnputFocus,

full protocol description with discussion of ar­
guments, 390

request, protocol encoding, 572
SetModifierMapping,

full protocol description with discussion of ar­
guments, 431

request, protocol encoding, 601

SETofEVENT,
type of current-in put-masks element of

SCREEN,356
SetPointerMapping,

full protocol description with discussion of ar­
guments, 436

request, protocol encoding, 601
SetScreenSa ver,

full protocol description with discussion of ar­
guments, 437

request, protocol encoding, 598
SetSelectionOwner,

full protocol description with discussion of ar­
guments, 377

request, protocol encoding, 565
setting (verb),

access control,
using SetAccessControl protocol request,

440
using XSetAccessControl, 209

after functions using XSetAfterFunction,
268

arc mode of a given GC using XSetArcMode,
116

attributes and creating new window using
XCreateWindow,40

bell volume, using XChangeKeyboard func­
tion, 194

bitmap to be used for stippling with
XSetStipple, 113

clip mask,
of a GC to a region using XSetRegion, 309
of a given GC using XSetClipMask, 115
to list of rectangles using

XSetClipRectangle, 115
close-down mode, using SetCloseDownMode

protocol request, 440
color of a pixel to a named color using

XStoreNamedColor,90
colormap of a given window using

XSetWindowColormap, 83
command used to invoke application, using

XSetCommand, 281
dash-offset and dash-list styles for dashed lines

using XSetDashes, 109
dashes, using SetDashes protocol request,

408
error handlers using XSetErrorHandler, 269
fill-rule of a given graphics context using

XSetFillRule, 110
fill-style of a given graphics context using

XSetFillStyle, 110
font of a given graphics context using

XSetFont, 114
font search path,

using XSetFontPath, formal description of
Xlib function, 146

Index

discussion and related Xlib functions, 146
using SetFontPath protocol request, 398

foreground, background, function, or plane
mask with XSetState, 107

and getting,
the class of a window, discussion and related

Xlib functions, 289
icon size hints, discussion and related Xlib

functions, 287
window manager hints, discussion and re­

lated Xlib functions, 281
graphics-exposures flag of a given GC using

xSetGraphicsExposures, 117
icon,

names, using XSetlconName, 280
size hints using XSetlconSizes, 288

input focus,
using GetlnputFocus protocol request, 391
using SetlnputFocus protocol request, 390

keyboard,
auto-repeat with XAutoRepeatOff, 193
auto-repeat with XAu toRepeatOn, 193
characteristics, using XChangeKeyboard

function, 192
input focus, using XSetImputFocus, 188

KeyCodes to be used as modifiers, using
XSetModifierMapping, 202

line drawing components of a given GC using
XSetLineAttributes, 108

mapping of pointer,
buttons, using XSetPointerMapping, 195
using SetPointerMapping protocol re­

quest, 436
meaning of a KeySym for a client using

xRebindKeysym, 301
origin of clip region using XSetClipOrigin,

114
owner,

owner window, and last change time for a
selection, using SetSelectionOwner
protocol request, 377

of selection using XSetSelection, 76
pixmap to be used for fill tile with XSetTile,

113
rectangle clip-maps, using SetClip­

Rectangles protocol request, 408
screen saver,

using SetScreenSa ver protocol request,
437

using XSetScreenSaver function, 203
setting fatal I/O error handler,

using XSetIOErrorHandler, 274
size hints for windows,

using XSetSizeHints, 287
in their normal state, using

XSetNormalHints, 285

679

standard
colormap using xSetStandardColormap,

296
properties, using XSetStandard­

Properties, 278
subwindow mode of a given CC using XSet­

SubwindowMode, 116
tile or stipple origin of a given GC using

XSetTSOrigin, 113
value of pixel in an image using XPutPixel,

319
window,

background to given pixel using
xSetWindowBackground, 58

background to given pixmap using
XSetWindowBackgroundPixmap, 59

border to pixel value with
XSetWindowBorder, 59

border to pixmap with
xSetWindowBorderPixmap, 60

borders with XSetWindowBorder, 53
manager hints for a window, using

XSetWMHints,283
names, using XStoreName, 279
transient-for property using

XSetTransientForHint, 291
zoom hints for a window, using

XSetZoomHints, 286
settings (noun),

keyboard, discussion and related Xlib func­
tions, 190

obtaining default X environment, discussion
and related Xlib functions, 303

pointing device, discussion and related Xlib
functions, 190

setup,
for connection with remote clients, 354

shape,
XFillPolygon shape options discussed, 133

sharing,
of GC discouraged since caching is used, 94
of parent pixmap when background-pixmap is

ParentRelative,33
resources between applications is allowed, 6

Shift,
as AlternativeValue for KEYMASK, 349

Shift,
modifier, should select second KEYSYM from

KEYCODE list, 352
showing,

contents of window using XMapWindow, 45
shrinking,

a region using XShrinkRegion, 310
sibling,

glossary entry, 624
listed as element of XWindowChanges struc­

ture, 48

680 X WINDOW

side effects,
requests listed that generate side effects, 350
usually not present when request ends in

error, 350
significant bit,

in units of scanlines set by bitmap-bit-order, 357
most-significant bit,

in event type set by SendEvent, 346
of KEYSYM vendor specific, 352

most-significant byte first for 16-bit characters,
349

order for planes attribute in XGCValues struc­
ture, 97

significant bits,
ImageBitOrder and BitmapBitOrder mac­

ros, 18
size,

change in size attempted on window, using
ResizeRequest,455

changing,
size of region with XShrinkRegion, 310
size of windows using XResizeWindow, 52
windows, with ConfigureNotify event,

discussion and related Xlib structures,
238

windows, with ConfigureRequest event,
discussion and related Xlib structures,
248

computing string, discussion and related Xlib
functions, 147

definitions of size hints mask bits, 283
determining useful cursor sizes, using

XQueryBestCursor, 165
getting,

icon size hints using XGetlconSizes, 288
size hints for a window, using

XGetSizeHints, 287
size hints for a window in its normal state,

using XGetNormalHints, 285
size of pointer motion history buffer, using

XDisplayMotionBuffer, 267
giving fastest,

stippling determined using
XQueryBestStipple, 112

tiling determined using XQueryBestTile,
112

maximum length for writing extension stubs,
488

obtaining best size of a tile, stipple, or cursor
using XQueryBestSize, III

of bitmap's scanline unit returned with
XBi tmapUni t, 18

of border-pixmap may affect speed of draw­
ing, 34

of pixel subfield given in map_entries, 29
of pixmap may affect speed of filling back­

ground,33

querying,
for best size object using QueryBestSize

protocol request, 430
string, discussion and related Xlib functions,

149
ResizeRequest event, discussion and related

Xlib structures, 250
setting,

and getting icon size hints, discussion and
related Xlib functions, 287

and getting window size hints, discussion
and related Xlib functions, 283

icon size hints using XSetlconSizes, 288
skewed angles,

used in specifying arcs, 129
sorting,

list of rectangles to improve speed for
XSetClipRectangle, 116

South,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

SouthEast,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

SouthEastGravity,
relative coordinates listed, 36

SouthGravi ty,
relative coordinates listed, 36

SouthWest,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

SouthWestGravity,
relative coordinates listed, 36

Special,
KeySym set, 531

specifies,
word chosen to explain arguments you pass, 9

specifying keycddes,
for modifier keys using SetModifierMapping

protoC()1 request, 431
stack-mode,

list of AlternateValues for XWindowChanges,
49

listed as element of XWindowChanges struc­
tur~, 48

stacking,
CirculateWindow requested, using

CirculateRequest protocol event,456
CirculateNotify event, discussion and re­

lated Xlib structures, 237
CirculateRequest event, discussion and re­

lated Xlib structures, 247
event sent when stacking changes leave

pointer in new window, 224
implications of stack-mode listed, 50
lowering window in viewing stack with

XLowerWindow, 54

Index

order,
bottom-to-top for un mapping subwindows,

47
ConfigureNotify event discussion and re­

lated Xlib structures, 238
ConfigureRequest event discussion and

related Xlib structures, 248
glossary entry, 625
new window placed on top with respect to

siblings, 41
unchanged when windows are unmapped, 44

raising window to top of viewing stack with
XRaiseWindow, 53

rotating windows in the viewing stack using,
XCirculateSubwindows, 55
XCirculateSubwindowsDown, 55
XCirculateSubwindowsUp, 55
XRestackWindows, 55
using sibling and stacLmode elements to

change,49
windows,

discussion and details of related functions, 53
obscures input and sometimes output, 30
rotated in stack, using CirculateNotify

protocol event, 455
starting,

access control, using XEnableAccess­
Control, 209

state,
colormap state change events, discussion and

related Xlib structures, 250
of keyboard, using XQueryKeymap returns bit

vector describing state, 194
window state change events, discussion and re­

lated Xlib structures, 237
Static,

as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

Sta ticColor,
as AlternateValue of class of VISUAL TYPE, 356
description of this class of VISUALTYPE, 359
glossary entry, 625
visual structure class characteristics, 28

StaticGravity,
origin doesn't move relative to root origin, 36

StaticGray,
as Alternate Value of class of VISUALTYPE, 356
description of this class of VISUALTYPE, 360
glossary entry, 625
visual structure class characteristics, 28

status,
glossary entry, 625
returned by some functions to indicate error, 7

stipple,
and clip, characteristics as used in XGCValues

structure, 101
glossary entry, 625

681

size giving fastest stippling determined using,
XQueryBestSize, 111
XQueryBestStipple, 112

stippling,
setting bitmap to be used for stippling with

XSetStipple, 113
stopping,

access control, using XDisableAccess­
Control,210

storage,
of data in,

cut buffer 0 using XStoreBytes, 313
specified cut buffer using XStoreBuffer,

313
deallocating the storage of a specified region

using XDestroyRegion, 309
StoreColors,

full protocol description with discussion of ar­
guments, 426

listed as generating side effects on error, 350
request, protocol encoding, 591

StoreNamedColor,
full protocol description with discussion of ar­

guments, 427
request, protocol encoding, 591

storing,
colors, using StoreColors protocol request,

426
creating a pixmap and storing bitmap data in

it using xCreatePixmapFrom­
BitmapData, 323

a data value in a window context using
XSaveContext, 340

named colors, using StoreNamedColor proto­
col request, 427

resource databases on disk files using
XrmPutFileDatabase, 337

resources into resource database using,
XrmPutLineResource, 333
XrmPutResource,331
XrmPutStringResource, 332
XrmQPutResource, 331
XrmQPutStringResource, 332

RGB values into colormap cells using
XStoreColors or XStoreColor, 89

value of pixel in an image using XPutPixel,
319

writing to bitmap file using
XWriteBitmapFile, 322

STRIKEOUT_ASCENT,
listed as a built-in font property type, 69
in list of atoms with predefined values, 354

STRIKEOUT_DESCENT,
listed as a built-in font property type, 69
in list of atoms with predefined values, 354

682 X WINDOW

STRING,
listed as a built in property type, 69
in list of atoms with predefined values, 353

STRINGI6,
for strings of 16-bit characters, 349
type description, 349

STRING8,
type description, 349

strings,
allocating a new quark using

XrmUniqueQuark, 328
computing, sizes, discussion and related Xlib

functions, 147
converting,

classes to strings, discussion and related Xlib
functions, 329

KeySym code to its name using
XKeysymToString, 302

name of KeySym to its code with
XStringToKeysym, 302

names to strings, discussion and related Xlib
functions, 329

quarks to strings, discussion and related
Xlib functions, 329

representations to strings, discussion and re­
lated Xlib functions, 329

string to binding and quark lists with
XrmStringToBindingQuarkList, 330

string with list of names to list of quarks
using XrmStringToNameList, 329

strings to quarks, discussion and related
Xlib functions, 329

mapping a key event to ISO Latin-l string
with XLookupString, 300

querying sizes, discussion and related Xlib
functions, 149

Struct ureNotify,
as AlternativeValue for EVENT, 348

structures,
structure control events, discussion and re­

lated Xlib structures, 246
events, discussion and related Xlib functions,

213
pointer events, large table of symbols, 218

stubs,
example of stub routine and discussion, 491
as functions which generate protocol requests

for X, 477
subimages,

creating subimage using XSublmage, 319
SUBSCRIPT_X,

listed as a built-in font property type, 69
in list of atoms with predefined values, 353

SUBSCRIPT _ y,
listed as a built-in font property type, 70
in list of atoms with predefined values, 353

SubstructureNotify,
as AlternativeValue for EVENT, 348

SubstructureRedirect,
as AlternativeValue for EVENT, 348

SubstructureRedirectMask,
on parent may be overridden with override­

redirect, 38
overrides ResizeRedirectMask on window,

49
subtracting,

two regions using XSubtractRegion, 311
Subwindow_mode,

as element of XGCValues, description of op­
tions, 103

subwindows,
destroying,

using DestroySubwindows protocol re­
quest, 367

with XDestroyWindow, 43
mapping, using MapSubwindows protocol re­

quest, 369
move to window gravity if main window

resized,49
SUPERSCRIPT_X,

listed as a built-in font property type, 69
in list of atoms with predefined values, 353

SUPERSCRIPT_Y,
in list of atoms with predefined values, 353
listed as a built-in font property type, 69

symbols,
defined for size hints mask bits, 283
for KeyCodes, obtaining lists of KeySyms with

. XGetKeyboardMapping, 199
on keyboard and suggested use of modifiers,

352
on keys, encoding with KeySyms, 197

SyncHandle,
discussed for synchronous calling of Xlib

functions, 497
synchronization,

all Xlib functions generating requests call after
functions, 268

enabling and disabling, using XSynchronize,
269

synchronize,
flush output buffer and wait to clear, using

XSync, 257
synchronous,

calling in Xlib extensions, discussion and re­
lated Xlib functions, 497

calls can be forced with XSync, 6
capability of X useful for debugging, 7

syntactic conventions,
for protocol encoding, 540
used in protocol descriptions, 346

Index

table,
of options for parsing command line, discus­

sion and example of uses, 338
target,

getting keyboard input focus, using
XGetlnputFocus, 189

setting keyboard input focus, using
XSetlnputFocus, 188

type, used to control form of transmitted se­
lection, 76

TCP,
communications protocol naming syntax, 11

TCP/IP,
specifying in XHostAddress family member,

207
Technical,

KeySym set, 529
temporary,

window,
getting window transient-for property

using XGetTransientForHint, 291
setting window transient-for property using

XSetTransientForHint, 290
terminating,

access control, using XDisableAccess­
Control, 210

connection to client using XKillClient, 190
text,

drawing,
16-bit character, using PolyText:L6 proto­

col request, 418
8-bit character, using PolyText8 protocol

request, 418
background and 16-bit character, using

ImageText:L6 protocol request, 420
background and 8-bit character, using

ImageText8 protocol request, 420
characters, discussion and related Xlib func­

tions, 153
complex, discussion of and related Xlib

functions, 152
discussion and related Xlib functions, 151

drawing, image text, discussion and related
Xlib functions, 154

extents,
computing locally, discussion and related

Xlib functions, 147
querying, using QueryTextExtents proto­

col request, 397
image text, discussion and related Xlib func­

tions, 154
obtaining textual descriptions of specified

error codes, 272
strings,

computing width in pixels, discussion and
related Xlib functions, 147

683

querying extents in pixels, discussion and
related Xlib functions, 149

thin lines,
list of constraints on algorithm for thin lines, 99

tiles,
glossary entry, 625
restored on closing last connection to server, 25
setting pixmap to be used for fill tile with

XSetTile, 113
size giving fastest tiling determined using,

XQueryBestS ize, 111
XQueryBestTile, 112

time,
pointer motion history for specified window

and time, using XGetMotion-
Events, 267

timestamp,
glossary entry, 625
type description, 348

toolkits,
communicate with window managers, 26

transferring,
images between server and client, detailed dis­

cussion, 156
transient windows,

getting window transient-for property using
XGetTransientForHint, 291

setting window transient-for property using
XSetTransientForHint, 290

TranslateCoordinates,
full protocol description with discussion of ar­

guments, 389
request, protocol encoding, 571

translating,
coordinates, using TranslateCoordinates

protocol request, 389
translation"

of window coordinates using
XTranslateCoordinates, 60

transmission,
representation and class control by target

type, 76
tree,

obtaining for a window, using QueryTree
protocol request, 373

True,
Boolean defined in Xlib, 9

TrueColor,
as AlternateValue of class of VISUAL TYPE, 356
description of this class of VISUALTYPE, 359
glossary entry, 625
visual structure class characteristics, 28

truncation,
not used for coordinates of arc, 129
of background-pixel to appropriate bit num­

ber, 33

684 X WINDOW

truncation (Cont.)
of border-pixel value to appropriate bit num­

ber, 34
of coordinates and sizes to 16-bits is silent, 8
of elements in XGCValues structure, 98

types,
code, as component of event report, 346
events, discussion and table of categories and

types, 212
glossary entry, 625
list of message types for reporting errors, 273
listed with detailed descriptions, 347
pointer events, large table of symbols, 218
protocol encoding for the common types, 543
are represented with uppercase in descrip-

tions, 346
union, with set of fixed alternatives causes

error, 351

ULTRIX-32,
in list of supported operating systems, 3

uncovering,
window, expose event discussion and related

Xlib structures, 234
UNDERLINE_POSITION,

listed as a built-in font property type, 70
in list of atoms with predefined values, 353

UNDERLINE_THICKNESS,
listed as a built-in font property type, 70
in list of atoms with predefined values, 353

underscores,
one or two underscores should begin atoms

private to vendor, 354
used for compound words in Xlib, 8

UngrabButton,
full protocol description with discussion of ar­

guments, 382
request, protocol encoding, 567

UngrabKey,
full protocol description with discussion of ar­

guments, 385
request, protocol encoding, 569

UngrabKeyboard,
full protocol description with discussion of ar­

guments, 384
request, protocol encoding, 569

UngrabPointer,
full protocol description with discussion of ar­

guments, 380
request, protocol encoding, 567

UngrabServer,
full protocol description with discussion of ar­

guments, 388
request, protocol encoding, 570

UninstallColormap,
full protocol description with discussion of ar­

guments, 423

request, protocol encoding, 588
uninstalling,

colormaps,
XUninstallColormap formal description

of Xlib function, 171
using UninstallColormap protocol re­

quest, 423
union,

computing the union of,
a region and a rectangle with

XUnionRectWithRegion, 310
two regions with XUnionRegion, 310

difference between union and ihtersection of
two regions using XXorRegion, 311

of argument types using OR, 348
of types with set of fixed alternatives causes

error, 351
UNIX,

4.3 BSD in list of supported operating sys­
terns, 3

domain, communications protocol naming syn­
tax, 11

UnlockDisplay,
formal description of macro, 492

Unmap,
as AlternativeValue for WINGRAVITY, 348

UnmapGravity,
win-gravity unmaps child when parent resized,

37
UnmapNotify,

event,
generated by call to XUnmapWindow, 47
generated by call to XUnmapSubwindows, 47
generated if parent resized with

unmapGravity,37
protocol encoding, 609

formal description of protocol event, 453
unmapping,

subwindows,
using UnmapSubwindows protocol request,

369
using XUnmapSubwindows, 47

windows,
description and details of related functions,

47-48
using UnmapWindow protocol request, 369

UnmapSubwindows,
full protocol description with discussion of ar­

guments, 369
request, protocol encoding, 560

UnmapWindow,
full protocol description with discussion of ar­

guments, 369
request, protocol encoding, 560

unviewable,
window is unviewable even if mapped if it has

an unmapped ancestor, 45

Index

uppercase,
is syntax for TYPEs in protocol descriptions,

346
KEY CODE with single KEYSYM still treated

as pair, 352
user macros,

represented in uppercase by Xlib, 7
utility,

functions, overview and list of categories, 298

VALUE,
type description, 348

value-list,
and value-mask for subset of arguments, 347

value-mask,
and value-list for subset of list of arguments,

347
values,

bitmask, description of use in setting window
attribute, 31

error,
description of conditions leading to, 351
protocol encoding, 547

getting value for a,
dark intensity pixel with XBlackPixel, 13
light intensity pixel with XWhitePixel, 13

mask, symbols listed for masking GC attri­
butes,94

obtaining value of pixel in an image using
XGetPixel, 319

setting value of pixel in an image using
XPutPixel, 319

variables,
represented in lowercase by Xlib, 7

VAX/VMS,
in list of supported operating systems, 3

vendor,
controls semantics of release number, 356
as element of exchange in connection setup, 355
specific atoms should begin with underscore,

354
VendorRelease,

formal description of Xlib macro to obtain
server release, 17

version,
connection not necessarily refused if different,

355
description of use for major and minor ver­

sions, 355
number, function returning major and minor

version numbers described, 16
sent by remote client during connection setup,

354
Vertex,

list of flags for version 10 support defined in
Xll/XlO.h,501

structure for compatibility with X10 available,
501

VertexDrawLastPoint,
X10 function no longer supported, 500

viewable,
glossary entry, 626

viewing,

685

Visibili tyNotify event, discussion and re­
lated Xlib structures, 245

visibility,
none for mapped window,

entirely dipped, 44
if unmapped ancestor, 44
obscured by another, 44

Visibili tyNotify event, discussion and re­
lated Xlib structures, 245

of window changed, with Visibility­
Notify protocol event, 451

windows must be mapped to be visible, 31
VisibilityChange,

as AlternativeValue for EVENT, 348
VisibilityNotify,

event, protocol encoding, 608
formal description of protocol event, 451

visible,
discussion of display of windows with no con­

tent or background, 45
glossary entry, 626

Visual,
structure, members containing information on

color mapping, 27
visual,

getting information structures matching a
template using XVisualInfo, 316

information masks, list of definitions, 315
of screen obtained using XDefaul tVisual, 15
types,

defaults used by most simple applications, 27
determining appropriate type for applica­

tion, discussion and related Xlib func­
tions, 315

discussion of choice of ways to deal with
color, 27

list of possible values, 81
visual-type information,

details of elements exchanged at connection
setup, 359

VISUALID,
in list of atoms with predefined values, 353
listed as a built-in property type, 69
type,

description, 348
of root-visual element of SCREEN, 356
of visual-id element of VISUALTYPE, 356

visuals,
obtaining,

default visuals of screen using
XDefaultVisualOfScreen, 20

686 X WINDOW

visuals (Cont.)
visual ID from a visual using

XVisualIDFromVisual,29
as W<lVS of de<lling with aspects of screen, 27

VISUALTYPE,
record description, 356

volume,
setting bell volume, using XChangeKeyboard

function, 194

warping,
the pointer, using WarpPointer protocol re­

quest, 389
WarpPointer,

full protocol description with discussion of ar­
guments, 389

request, protocol encoding, 572
WEIGHT,

listed as a built-in font property type, 69
in list of atoms with predefined values, 353

West,
as AlternativeValue for BITGRAVITY, 348
as AlternativeValue for WINGRAVITY, 348

WestGravity,
relative coordinates listed, 36

WhenMapped,
as AlternateValue of backing-stores of

SCREEN,356
value,

of backing store window means contents
stored sometimes, 37

returned by DoesBackingStore macro, 20
white-pixel,

permanently allocated entry in default­
colormap, 358

WhitePixel,
formal description of Xlib macro for a light

intensity, 13
RGB values can be set on some screens, 13

WhitePixelOfScreen,
formal description of Xlib macro for value of

light pixel, 19
wide lines,

drawing algorithm and discussion of use, 98
width,

in XWindowAttributes doesn't include bor­
der, 64

obtaining the width in,
millimeters of screen using XWidthMMOf­

Screen, 21
pixels of screen using XWidthOfScreen, 21

of drawable obtained with XGetGeometry, 66
width-in-millimeters,

for physical size and aspect ratio of screen, 358
width-in-pixels,

specifies the fixed width of root window, 358

WidthMMOfScreen,
formal description of Xlib macro for screen

width in mm, 21
WidthOfScreen,

formal description of Xlib macro for screen
width in pixels, 21

widths,
computing character strings, discussion and

related Xlib functions, 147
win_gravity,

defines position of window when parent
resized, 36

element of XSetWindowAttributes struc­
ture, 32

in XWindowAttributes possible values listed,
64

WindingRule,
option for fill_rule element of XGCValues

structure, 103
WINDOW,

in list of atoms with predefined values, 353
listed as a built-in property type, 69
as one of the types of DRAWABLE, 348
type description, 348

window-gravity,
(kf;1\llt value is NorthWestGravi ty, 35

windows,
attributes,

discussion and definitions, 30
discussion and details of related functions, 57
of specified window obtained with

XGetWindowAttributes,63
change in size attempted on window, with

ResizeRequest,455
changing,

a property of a given window using
XChangeProperty, 73

attributes using ChangeWindowAttributes
protocol request, 365

parent of window, using XReparent­
Window, 167

properties of window, using
ChangeProperty protocol request, 374

size and location of window with
XMoveResizeWindow, 52

size of windows using XResizeWindow, 52
window attributes using XChangeWindow­

Attributes, 57
CirculateNotify event,

discussion and related Xlib structures, 237
CirculateRequest event,

discussion and related Xlib structures, 247
circulating, using Circula teWindow protocol

request, 373
clearing,

areas in windows using XClearArea, 118

Index

areas, using ClearArea protocol request,
409

windows using XClearWindow, 118
colormap change notification, using

ColormapNotify protocol event, 457
configuring, using ConfigureWindow proto­

col request, 369
controlling lifetime of window with a save-set,

168
coordinates, discussion and details of related

functions, 60
copying,

areas of drawables using XCopyArea, 120
areas, using CopyArea protocol request, 410
single bit plane of given drawable using

XCopyPlane, 121
creating,

CreateNotify protocol event, 452
CreateWindow protocol request, 360
CreateNotify event discussion and related

Xlib structures, 240
unique context type for associating data

with a window using XUniqueContext,
341

definition and overview of functions, 26
deleting,

context data from a window using
XDeleteContext, 341

a property on a given window using
XDeleteProperty, 75

properties of, using DeleteProperty pro­
tocol request, 374

depth, as number of planes,
returned using XDefaul tDepth, 14

of depth one may not be supported, 358
destroyed,

DestroyNotify protocoleven~ 452
by call to XCloseDisplay macro, 23

destroying,
DestroyNotify, event, discussion and re­

lated Xlib structures, 240
using DestroyWindow protocol request, 367
with XDestroyWindow, 43

discussion of creation and details of related
functions, 39

drawing,
multiple arcs in a given drawable using

XDrawArcs, 128
multiple, connected lines using

XDrawLines, 124
multiple points in a given drawable using

XDrawPoints, 123
multiple, unconnected lines using

XDrawSegments, 124
outlines of multiple rectangles using

XDrawRectangles, 127

a single arc in a given drawable using
XDrawArc, 128

a single line between two points using
XDrawLine, 124

a single outline of a rectangle using
XDrawRectangle, 126

a single point in a given drawable using
XDrawPoint, 123

error,
description of conditions leading to, 351
protocol encoding, 548

687

event sent when pointer enters/exits window,
discussion and related Xlib structure, 224

exposing, using Expose protocol event, 450
exposure events, and preservation and regen­

eration of window contents, 234
getting,

attributes using GetWindowAttributes
protocol request, 365

focus of keyboard input, XGetImputFocus,
189

properties of, using Get protocol request, 375
and setting the class of a window, discussion

and related Xlib functions, 289
size hints for a window, XGetSizeHints, 287
size hints for a window in its normal state,

using XGetNormalHints, 285
gravity,

defines reposition when parent is resized, 35
diagram showing location of named posi­

tions,35
glossary entry, 626

GravityNotify event, discussion and related
Xlib structures, 241

hidden content may have to be repainted, 5
hierarchy,

defined with general discussion of role in X, 4
diagram showing view of parents and chil­

dren, 5
1D,

of parent returned by XQueryTree, 63
returned by XCreateWindow, 41

information, discussion and details of related
functions, 62

keyboard focus events, discussion and related
Xlib structures, 228

list of,
defaults for each window attribute, 32
symbol definitions for naming bits in

XWindowChanges value mask, 48
symbols for elements of bitmask for window

attributes, 31
listing properties of, using ListProperty

protocol request, 376
lowering window in viewing stack with

XLowerWindow,54

688 X WINDOW

Window (Cont.)
manager,

allows resource sharing, 6
controls size and placement of top-level win­

dow, 40
controls size, border width, position of win-

dow, 31
glossary entry, 626
hints structure mask bits definitions, 281
list of operations, 167
list of properties and their descriptions, 276
reading window manager hints for a win-

dow, using XGetWMHints, 283
setting and getting window manager hints,

discussion and related Xlib functions,
281

setting window manager hints for a window,
using XSetWMHints, 283

WMHints structure contained in Xll1Xutil.h
file, 281

Map Notify event discussion and related Xlib
structures, 242

mapping,
all subwindows of a specified window using

XMapSubwindows,46
using MapWindow protocol request, 368

MappingNotify event discussion and related
Xlib structures, 243

MapRequest event discussion and related Xlib
structures, 249

moving with XMoveWindow, 51
normal events discussed when pointer enters/

exits window, 226
not visible until mapped to screen, 31
notification,

of change in state, using Configure­
Notify protocol event, 454

that window moved due to its gravity, using
GravityNotify protocol event, 454

obtaining,
list of window's properties using

XListProperties, 73
measures of windows using XGetGeometry,

66
parent and children of window with

XQueryTree, 63
root window using XDefaul tRootWindow,

14
type format and value fo properties using

XGetWindowProperty, 71
parsing window geometry, XParseGeometry

and XGeometry, 305
pointer motion history for specified window

and time, using XGetMotion-
Events, 267

properties,
changed on window, using PropertyNotify

protocol event, 456

should be set for top-level windows before
mapping them, 40

propertyNotify events, discussion and re­
lated Xlib structures, 252

querying the tree for, using QueryTree proto­
col request, 373

raising window to top of viewing stack with
XRaiseWindow,53

reading,
the zoom hints for a window, XGetZoom­

Hints,286
window manager hints for a window, using

XGetWMHints,283
receiving ConfigureWindow request, using

ConfigureRequest protocol event, 455
removing event matching,

event mask, using XCheckMaskEvent, 263
event mask, using XMaskEvent, 263
event type, using XCheckTypedEvent, 264
event type and window, using

XCheckTypedWindowEvent, 264
window and event mask, using XCheck­

WindowEvent, 262
window and event mask, using XWindow­

Event, 262
reparenting,

using ReparentNotify protocol event, 453
using ReparentWindow protocol request,

368
ReparentNotify event discussion and related

Xlib structures, 244
requesting mapping on window, using Map­

Request protocol event, 453
ResizeRequest event discussion and related

Xlib structures, 250
retrieving data from a window's context using

XFindContext, 340
rotated in stack, using CirculateNotify

protocol event, 455
rotating,

properties of windows, using Rota te­
Property protocol request, 376

a window's property list using XRotate­
WindowProperties, 74

windows in the viewing stack using
XCirculateSubwindows, 55

windows in the viewing stack using
XCirculateSubwindowsDown, 55

windows in the viewing stack using
XCirculateSubwindowsUp, 55

windows in the viewing stack using
XRestackWindows, 55

saving a data value in a window context using
XSaveContext, 340

sending events to other applications, discus­
sion and related Xlib functions, 265

Index

setting,
the colormap of a given window using

XSetWindowColormap, 83
focus of keyboard input, using XSetlnput­

Focus, 189
and getting window names, discussion and

related Xlib functions, 279
size hints for windows, using XSetSize­

Hints, 287
size hints for windows in their normal state,

using XSetNormalHints, 285
subwindow mode of a given GC using

XSetSubwindowMode, 116
window background to given pixel using

XSetWindowBackground, 58
window background to given pixmap using

XSetWindowBackgroundPixmap, 58
window border to pixel value with

XSetWindowBorder,59
window border to pixmap with

XSetWindowBorderPixmap, 60
window borders with XSetWindowBorder,

53
window manager hints for a window, using

XSetWMHints, 283
the zoom hints for a window, using

XSetZoomHints, 286
stacking, obscures input and with background

output, 30
state change events,

discussion and related Xlib structures, 237
list of the various events, 237

UnmapNotify event discussion and related
Xlib structures, 244

unmapping,
using UnmapSubwindows protocol request,

369
using UnmapWindow protocol request, 369
windows, description and details of related

functions, 47-48
using context manager for associating local

data list with a window, 340
viewing contents of window using

XMapWindow, 45
visibility changed, Visibili tyNotify proto­

col event, 451
Visibili tyNotify event discussion and re­

lated Xlib structures, 245
WINGRAVITY,

type description, 348
WM_CLASS,

listed as a built-in property name, 69
in list of atoms with predefined values, 353
property, discussion and related Xlib func-

tions, 289
WM_CLIENT _MACHINE,

listed as a built-in property name, 69

689

in list of atoms with predefined values, 353
WM_COMMAND,

listed as a built-in property name, 69
in list of atoms with predefined values, 353
property for command used to invoke applica-

tion, 281
WM_HINTS,

in list of atoms with predefined values, 353
listed as a built-in property,

name, 69
type, 69

property, discussion and related Xlib func­
tions, 281

WM_ICON_NAME,
getting icon names using XGetlconName, 280
in list of atoms with predefined values, 354

WM_ICON_SIZE,
listed as a built-in property name, 69
in list of atoms with predefined values, 354
property, discussion and related Xlib func-

tions, 288
WM_NAME,

listed as a built-in property name, 69
in list of atoms with predefined values, 354
setting and getting window names, discussion

and related Xlib functions, 279
WM_NORMALHINTS,

listed as a built-in property name, 69
in list of atoms with predefined values, 354
property, discussion and related Xlib func-

tions, 284
WM~SIZE_HINTS,

listed as a built-in property type, 69
in list of atoms with predefined values, 354
property, discussion and related Xlib func-

tions, 286
WM_ TRANSIENT_FOR,

listed as a built-in property name, 69
in list of atoms with predefined values, 354
property, discussion and related Xlib func-

tions, 290
WM_ZOOM_HINTS,

listed as a built-in property name, 69
in list of atoms with predefined values, 354
property, discussion and related Xlib func-

tions, 286
WMHints,

structure contained in Xll1Xutil.h file, 281
writable,

color map option for screen, 27
write back cache,

GCs cached to pool change requests, using
FlushGC,486

allows combining GC requests to server, 94
writing,

to bitmap file using XWri teBi tmapFile, 322

690 X WINDOW

X environment,
obtaining default settings, discussion and re­

lated Xlib functions, 303
LHEIGHT,

in list of atoms with predefined values, 354
listed as a built-in font property type, 69

X,
not used· for macros and other symbols in

Xlib,8
prefix begins all Xlib functions, 7
protocol requests, listed in alphabetical order

Xlib functions that reference them, 467
X10,

compatibility functions discussed, 500
X1I1X.h,

contains definitions for XGCValues functions,
97

file containing type definitions of listed names,
6

X1I1X10.h,
file containing compatibility functions for ver­

sion 10 of X, 501
X1I1Xatom.h,

defines atoms for describing colormaps, 294
font built-in property names, 139

X1I1Xlib.h,
file containing definition of,

XExtCodes, 478
XExtData, 484

as source of Display structure for
XOpenDisplay, 11

X1I1Xlibint.h,
each stub routine must include this file, 488
file containing,

EPERBATCH symbol definition, 488
macros for sending requests and arguments

to X, 492
symbols and macros for writing stubs to

Xlib,475
X1I1Xproto.h,

contains request names, request structures,
and reply structures, 488

X1I1Xresource.h,
file contains structures used by resource man­

ager, 327
X1l1Xutil.h,

contains symbols used for context manage­
ment functions, 340

file,
containing XSizeHints structure, 283
containing XVisuallnfo structure, 315
containing XWMHints structure, 281
definesXClassHint, 289

XA_,
prefix,

for atoms in X1I1Xatom.h, 275
reserved for #define name of atoms, 68

XActivateScreenSaver,
formal description of Xlib function, 205

XAddExtension,
formal description of Xlib function, 478

XAddHost,
formal description of Xlib function, 207

XAddHosts,
formal description of Xlib function, 207

XAddPixel,
formal description of Xlib function, 320

XAddToExtensionList,
formal description of Xlib function, 485

XAddToSa veSet,
formal description of Xlib function, 169

XAllocColor,
formal description of Xlib function for read­

only cells, 84
in list of functions used to allocate color cells, 83

XAllocColorCells,
diagram of example allocation, 85

XAllocColorCells,
formal description of Xlib function, 87
in list of functions used to allocate color cells, 83

XAllocColorPlanes,
formal description of Xlib function, 88
in list of functions used to allocate color cells, 83

XAllocID,
formal description of Xlib macro, 486

XAllocNamedColor,
formal description of Xlib function, 85
in list of functions used to allocate color cells, 83

XAllocScra tch,
allocates memory for critical section of a stub,

498
XAllowEvents,

formal description of Xlib function, 183
XAllPlanes,

formal description of Xlib function for obtain­
ing number of planes, 13

XAnyEvent,
formal description of Xlib structure, 213

XArc,
Xlib structure definition, 123

XAssocTable,
compatibility function for X10 support formal

description, 503
XAutoRepeatOn,

formal description of Xlib function, 193
XBell,

formal description of Xlib function, 194
XBi tmapBi tOrder,

formal description of Xlib function for
scanline unit format, 18

XBi tmapPad,
formal description of Xlib function for

scanline pad size, 18

Index

XBi tmapUni t,
formal description of Xlib function for

scan line unit size, 18
XBlaekPixel,

formal description of Xlib function for a dark
intensity, 13

XBlaekPixelOfSereen,
formal description of Xlib function for value

of dark pixel, 19
XButtonEvent,

formal description of Xlib structure, 222
Xealloe,

similar to ealloe but used for protected
memory, 497

XCellsOfSereen,
formal description of Xlib function to obtain

colormap entries, 19
XChangeAetivePointer,

formal description of Xlib function, 178
XChangeGC,

formal description of Xlib function, 105
XChangeKeyboard,

controls settings of XKeyboardControl struc­
ture, 192

formal description of Xlib function, 192
XChangeKeyboardMapping,

formal description of Xlib function, 200
XChangePointerControl,

formal description of Xlib function, 196
XChangeProperty,

formal description of Xlib function, 73
XChangeS a veSet,

formal description of Xlib function, 169
XChangeWindowAttributes,

formal description of Xlib function for chang­
ing attributes, 57

in list of functions that attach colormap to
window, 84

XChar2b,
formal description of Xlib structure, 136

XCharStruet,
formal description of Xlib structure, 136

XCheeklfEvent,
using predicate procedure, formal description

of Xlib function, 261
XCheekMaskEven t,

formal description of Xlib function, 263
XCheekTypedEvent,

formal description of Xlib function, 264
XCheekTypedWindowEvent,

formal description of Xlib function, 264
XCheekWindowEvent,

formal description of Xlib function, 262
XCireula teE vent,

formal description of Xlib structure, 238
XCireulateRequestEvent,

formal description of Xlib structure, 247

691

XCireulateSubwindows,
formal description of Xlib function to change

stacking order, 55
XCireulateSubwindowsUp,

formal description of Xlib function to change
stacking order, 55

XCireulateSubwindowsDown,
formal description of Xlib function to change

stacking order, 55
XClassHint,

formal description of Xlib structure, 289
structure defined in X11!Xutil.h file, 289

XClearArea,
formal description of Xlib function, 119

XClearWindow,
formal description of Xlib function, 119
suggested function to repaint window and

background, 57
XClientMessageEvent,

formal description of Xlib structure, 252
XClipBox,

formal description of Xlib function, 308
XCloseDisplay,

defining extension to be called, 479
formal description of Xlib function for closing

connection, 23
XColor,

formal definition of structure and details of
use, 81

XColormapEvent,
formal description of Xlib structure, 251

XConfigureEvent,
formal description of Xlib structure, 239

XConfigureRequestEvent,
formal description of Xlib structure, 248

XConfigureWindow,
formal description of Xlib function, 50

XConneetionNumber,
formal description of Xlib function to obtain

connection information, 13
XConvertSeleetion,

formal description of Xlib function to change
target type, 78

XCopyArea,
formal description of Xlib function, 120

xCopyColormapAndFree,
formal description of Xlib function for creat­

ing copy of colormap, 83
XCopyGC,

formal description of Xlib function, 105
xCopyPlane,

exception to depth rule for drawables and
pixmap,93

formal description of X1ib function, 121
XCreateBitmapFrom Data,

formal description of Xlib function, 323

692 X WINDOW

XCreateColormap,
formal description of Xlib function for initiat­

ing colormap, 82
XCreateFontCursor,

formal description of Xlib function, 162
list of available font cursors, 473

XCreateGC,
formal description of Xlib function, 104

xCreateGlyphCursor,
formal description of Xlib function, 163

XCreatelmage,
formal description of Xlib function, 317

XCreatePixmap,
formal description of Xlib function, 93

xcreatePixmapCursor,
formal description of Xlib function, 162

XCreatePixmapFromBitmapData,
formal description of Xlib function, 323

XCreateRegion,
formal description of Xlib function, 309

XCreateSimpleWindow,
formal description of Xlib function, 42
inherits attributes from parents upon creation,

40
XCreateWindow,

allows setting of attributes upon creation, 40
formal description of Xlib function, 40
in list of functions that attach colormap to

window, 84
XCreateWindowEvent,

formal description of Xlib structure, 240
XCrossingEvent,

formal description of Xlib structure, 225
XDefaultColormap,

formal description of Xlib function to obtain
colormap ID, 13

XDefaultColormapOfScreen,
formal description of Xlib function to obtain

default colormap, 20
XDefaul tDepth,

formal description of Xlib function to obtain
number of planes, 14

XDefaultDepthOfScreen,
formal description of Xlib function for depth

of root window, 20
XDefa ul tGC,

formal description of Xlib function to obtain
graphic context, 14

XDefaultGCOfScreen,
formal description of Xlib function for graph­

ics context, 20
XDefaultRootWindow.

formal description of Xlib function to obtain
root window, 14

XDefaul tScreen,
formal description of Xlib function to access

screen number, 15

macro for accessing screen_number of DIS­
PLAY, 11

XDefaultScreenOfDisplay,
formal description of Xlib function to obtain

default screen, 14
XDefaul tVisual,

formal description of Xlib function to obtain
visual of screen, 15

XDefaultVisualOfScreen,
formal description of Xlib function for default

visual type, 20
XDefineCursor,

formal description of Xlib function, 166
to change new window cursor from parent's, 42

XDeleteAssoc,
compatibility function for XIO support formal

description, 505
XDeleteContext,

formal description of Xlib function, 341
XDeleteModifiermapEntry,

formal description of Xlib function, 202
XDeleteProperty,

description of Xlib function and discussion, 75
XDestroyAssocTable,
. compatibility function for XI0 support, for­

mal description, 505
XDestroylmage,

formal description of Xlib function, 320
XDestroyRegion,

formal description of Xlib function, 309
XDestroySubwindows,

destroys inferior windows of specified window,
44

formal description of Xlib function, 44
XDestroyWindow,

destroys window and subwindows, 43
formal description of Xlib function, 43

XDestroyWindowEvent,
formal description of Xlib structure, 241

XDisableAccessControl,
formal description of Xlib function, 210

XDisplayCells,
formal description of Xlib function to obtain

colormap entries, 15
XDisplayHeight,

formal description of Xlib function for screen
height in pixels, 18

XDisplayHeightMM,
formal description of Xlib function for screen

height in mm, 18
XDisplayKeycodes,

formal description of Xlib function, 198
XDisplayMotionBuffer,

formal description of Xlib function, 267
XDisplayName,

formal description of Xlib function, 273

Index

XDisplayOfScreen,
formal description of Xlib function returning

display, 21
XDisplayPlanes,

formal description of Xlib function to obtain
depth of root, 15

XDisplayString,
formal description of Xlib function to obtain

display name, 15
XDisplayWidth,

formal description of Xlib function for screen
width in pixels, 19

XDisplayWidthMM,
formal description of Xlib function for screen

width in mm, 19
XDoesBackingStore,

formal description of Xlib function for deter­
mining if backing store supported, 20

XDoesSaveUnders,
formal description of Xlib function for deter­

mining if save unders supported, 21
XDoSomethingReply,

formal description of Xlib structure, 491
XDoSomethingReq,

formal description of Xlib structure, 490
XDraw,

compatibility function for XI0 support formal
description, 501

XDrawArc,
diagram with example of use, 129
formal description of Xlib function, 128

XDrawArcs,
formal description of Xlib function, 128

XDrawFilled,
compatibility function for XI0 support formal

description, 502
XDrawlmageString,

formal description of Xlib function, 155
XDrawlmageString16,

formal description of Xlib function, 155
XDrawLine,

formal description of Xlib function, 124
XDrawLines,

formal description of Xlib function, 125
XDrawPoint,

formal description of Xlib function, 123
stub as example of performance improvement

with batching, 487
XDrawPoints,

formal description of Xlib function, 123
XDrawRectangle,

formal description of Xlib function, 126
XDrawRectangles,

formal description of Xlib function, 127
XDrawSegments,

formal description of Xlib function, 125

XDrawString,
formal description of Xlib function, 153

XDrawString16,
formal description of Xlib function, 154

XDrawText,
formal description of Xlib function, 152

XDrawText16,
formal description of Xlib function, 152

XEDataObject,
formal description of Xlib function, 485

XEHeadOfExtensionList,
formal description of Xlib function, 485

XEmptyRegion,
formal description of Xlib function, 311

XEnableAccessControl,
formal description of Xlib function, 209

XEnterWindowEvent,
formal description of Xlib structure, 225

XEqualRegion,
formal description of Xlib function, 311

XErrorEvent,
formal description of Xlib structure, 270

XESetCloseDisplay,
formal description of Xlib function, 479

XESetCopyGC,
formal description of Xlib function, 479

XESetCreateFont,
formal description of Xlib function, 480

XESetCreateGC,
formal description of Xlib function, 479

XESetError,
formal description of Xlib function, 483

XESetErrorString,
formal description of Xlib function, 483

XESetEventToWire,
formal description of Xlib function, 482

XESetFlushGC,
formal description of Xlib function, 484

XESetFreeFont,
formal description of Xlib function, 481

XESetFreeGC,
formal description of Xlib function, 480

XESetWireToEvent,
formal description of Xlib function, 481

XEvent,
formal description of Xlib structure, 214

XEventMaskOfScreen,

693

formal description of Xlib function for obtain­
ing mask of root window, 21

XEventsQueued,
formal description of Xlib function, 258
may have events not yet read into event

queue, 17
XExposeEvent,

formal description of Xlib structure, 235

694 X WINDOW

XExtCodes,
formal description of Xlib structure returned

by XlnitExtension, 478
XExtData,

formal description of Xlib structure, 484
XFetchBuffer,

formal description of Xlib function, 314
XFetchBytes,

formal description of Xlib function, 314
XFetchNarnes,

formal description of Xlib function, 279
XFillArc,

formal description of Xlib function, 133
XFillArcs,

and interpretation of XGCVal ues arc_mode,
103

formal description of Xlib function, 133
XFillPolygon,

and interpretation of XGCValues fill_rule,
103

formal description of Xlib function, 132
XF illRectang Ie,

formal description of Xlib function, 131
XFillRectangles,

formal description of Xlib function, 131
XFindContext,

formal description of Xlib function, 340
XFindOnExtensionList,

formal description of Xlib function, 485
XFlush,

formal description of Xlib function, 257
_XFlushGCCache,

formal description of Xlib macro, 486
XFocusChangeEvent,

formal description of Xlib structure, 229
XFocuslnEvent,

formal description of Xlib structure, 229
XFocusOutEvent,

formal description of Xlib structure, 229
XFontProp,

formal description of Xlib structure, 136
XFontStruct,

formal description of Xlib structure, 137
XForceScreenSaver,

formal description of Xlib function, 204
XFree,

deallocates memory that was protected against
signals, 497

formal description of Xlib function for freeing
a pointer, 23

suggested for freeing string from
XGetAtomName, 70

suggested to free children list from
XQueryTree, 63

suggested to free data from
XGetWindowProperty,73

XFreeColormap,
formal description of Xlib function for setting

colormap, 84
XFreeColors,

formal description of Xlib function, 91
may not free pixels allocated with

XAllocColorPlanes, 91
XFreeCursor,

can free cursor if no reference expected, 39
formal description of Xlib function, 165

XFreeExtensionList,
formal description of Xlib function, 477

XFreeFont,
formal description of Xlib function, 143

XFreeFon tI n fo,
formal description of Xlib function, 145

XFreeFontNames,
formal description of Xlib function, 144

XFreeFontPath,
formal description of Xlib function, 146

XFreeGC,
formal description of Xlib function, 106

XFreeModifiermap,
formal description of Xlib function, 202

XFreePixmap,
formal description of Xlib function, 93

XGContextFromGC,
formal description of Xlib function, 105

XGCValues,
list of functions using XGCValues, 101

XGeometry,
formal description of Xlib function, 306

XGetAtomName,
formal description of Xlib function to get

name from atom, 70
XGetClassHint,

formal description of Xlib function, 290
XGetDefaul t,

formal description of Xlib function, 304
XGetErrorDatabase,

formal description of Xlib function, 273
XGetErrorText,

formal description of Xlib function, 272
XGetFontPath,

formal description of Xlib function, 146
XGetFontProperty,

formal description of Xlib function, 143
XGetGeometry,

formal description of Xlib function, 66
XGetlconName,

formal description of Xlib function, 280
XGetlconSizes,

formal description of Xlib function, 288
XGetlmage,

formal description of Xlib function, 159
XGetlnputFocus,

formal description of Xlib function, 189

Index

XGetKeyboardMapping,
formal description of Xlib function, 199

XGetModifierMapping,
formal description of Xlib function, 203

XGetMotionEvents,
formal description of Xlib function, 267

XGetNormalHints,
formal description of Xlib function, 285

XGetPixel,
formal description of Xlib function, 319

XGetPointerControl,
formal description of Xlib function, 196

XGetpointerMapping,
formal description of Xlib function, 195

XGetScreenSaver,
formal description of Xlib function, 205

XGetSelectionOwner,
formal description of Xlib function for time

and owner, 77
XGetSizeHints,

formal description of Xlib function, 287
XGetStandardColormap,

formal description of Xlib function, 295
XGetSublmage,

formal description of Xlib function, 160
XGetTransientForHint,

formal description of Xlib function, 291
XGetWindowAttributes,

formal description of Xlib function, 63
XGetWindowProperty,

formal description of Xlib function, 71
XGetWMHints,

formal description of Xlib function, 283
XGetZoomHints,

formal description of Xlib function, 286
XGrabKey,

formal description of Xlib function, 181
XGrabKeyboard,

formal description of Xlib function, 179
XGrabPointer,

formal description of Xlib function, 174
XGrabServer,

formal description of Xlib function, 186
XGraphicsExposeEvent,

formal description of Xlib structure, 236
XGravi tyEvent,

formal description of Xlib structure, 241
XHeightMMOfScreen,

formal description of Xlib function for screen
height in mm, 22

XHeightOfScreen,
formal description of Xlib function for screen

height in pixels, 21
XHostAddress,

formal description of Xlib structure, 207
XlconSize,

formal description of Xlib structure, 288

695

XlfEvent,
using predicate procedure, formal description

of Xlib function, 260
Xlmage,

formal description of Xlib structure, 157
XlmageByteOrder,

formal description of Xlib function for image
information, 18

XlnitExtension,
formal description of Xlib function, 478

XlnsertModifiermapEntry,
formal description of Xlib function, 201

XlnstallColormap,
formal description of Xlib function, 170
suggested as function to load colormap, 81
uses colormap attribute for best colors of

screen, 39
XlnternAtom,

formal description of Xlib function to get
atom for name, 70

suggested to obtain atom for a property name,
68

XlntersectRegion,
formal description of Xlib function, 310

XKeyboardControl,
formal description of Xlib structure, 191
structure, setting with XChangeKeyboard, 192

XKeyboardState,
formal description of Xlib structure, 193
structure, querying with XGetKeyboard­

State, 193
XKeycodeToKeysym,

formal description of Xlib function, 302
xKeyEvent,

formal description of Xlib structure, 222
XKeymapEvent,

formal description of Xlib structure, 233
XKeysymToKeycode,

formal description of Xlib function, 302
XKeysymToString,

formal description of Xlib function, 302
XKillClient,

formal description of Xlib function, 190
XLastKnownRequestProcessed,

formal description of Xlib fun<;tion to obtain
serial number, 16

XLeaveWindowEvent,
formal description of Xlib structure, 225

Xlib functions, listed in alphabetical order with
protocol requests they generate, 461

XListExtensions,
formal description of Xlib function, 477

XListFontsWithlnfo,
formal description of Xlib function, 145

XListHosts,
formal description of Xlib function, 208

696 X WINDOW

XLlstlnstalledColormaps,
formal description of Xlib function, 171

XLlstProperties,
formal description of Xlib function, 73

XLoadFont,
formal description of Xlib function, 141

XLoadQueryFon t,
formal description of Xlib function, 142

XLookUpAssoc,
compatibility function for XI0 support formal

description, 504
XLookupColor,

formal description of Xlib function, 86
XLookupKeysym,

formal description of Xlib function, 299
XLookupString,

formal description of Xlib function, 300
XLowerW indow,

formal description of Xlib function to hide
window, 53-54

XMakeAssoc,
compatibility function for XIO support formal

description, 504
Xmalloc,

allocates memory which may be protected
against signals, 497

XMapEvent,
formal description of Xlib structure, 242

XMappingEvent,
formal description of Xlib structure, 243

XMapRaised,
formal description of Xlib function, 46

XMapRequestEvent,
formal description of Xlib structure, 249

xMapSubwindows,
formal description of Xlib function to map

many subwindows, 46
xMapWindow,

called after window creation to display win­
dow, 42

formal description of Xlib function to display
windows, 45

leads to Expose event unless backing store, 31
makes created window visible, 31

XMaskEvent,
formal description of Xlib function, 263

XMatchVisuallnfo,
formal description of Xlib function, 316
referenced for information on multiple screen

depths, 14
referenced for information on visual types, 27

XMaxCmapsOfScreen,
formal description of Xlib function for num­

ber of colormaps, 22
XMinCmapsOfScreen,

formal description of Xlib function for num­
ber of colormaps, 22

XModifierKeymap,
formal description of Xlib structure, 201

XMotionEvent,
formal description of Xlib structure, 223

XMoveResizeWindow,
formal description of Xlib function, 52

XMoveWindow,
formal description of Xlib function to move

window, 51
XNewModifiermap,

formal description of Xlib function, 201
XNextEvent,

formal description of Xlib function, 259
requests event from queue, 6

XNextRequest,
formal description of Xlib function to obtain

serial number, 16
XNoExposeEvent,

formal description of Xlib structure, 236
XNoOp,

formal description of Xlib function for exer­
cising connection, 22

XOffsetReglon,
formal description of Xlib function, 309

XOpenDisplay,
formal description of Xlib function for con­

necting to display, 10
must be called before creating windows, 26

xor,
difference between union and intersection of

two regions using XXorRegion, 311
xparseColor,

formal description of Xlib function, 307
XparseGeometry,

formal description of Xlib function, 305
XPeekEvent,

formal description of Xlib function, 259
XPeeklfEvent,

using predicate procedure, formal description
ofXlib function, 261

xpending,
formal description of Xlib function, 258

XPermalloc,
formal description of Xlib function, 328

XPlanesOfScreen,
formal description of Xlib function for depth

of root window, 22
XPoint,

Xlib structure definition, 123
XPointlnRegion,

formal description of Xlib function, 312
XPolygonRegion,

formal description of Xlib function, 308
xpropertyEvent,

formal description of Xlib structure, 253

Index

xProtocolRevision,
formal description of Xlib function to obtain

minor version, 16
XProtocolVersion,

formal description of Xlib function to obtain
major version, 16

XputBackEvent,
formal description of Xlib function, 265

XPutlmage,
formal description ()f Xlib function, 157

XPutPixel,
formal description of Xlib function, 319

XQLength,
formal description of Xlib function to check

event queue, 16
XQueryBestCursor,

formal description of Xlib function, 165
XQueryBestSize,

formal description of Xlib function, 111
XQueryBestStipple,

formal description of Xlib function, 112
XQueryBestTile,

formal description of Xlib function, 112
XQueryColor,

formal description of Xlib function, 92
XQueryCo lors,

formal description of Xlib function, 92
XQueryExtension,

formal description of Xlib function, 477
XQueryFont,

formal description of Xlib function, 142
XQueryKeymap,

formal description of Xlib function, 194
XQueryPointer,

formal description of Xlib function, 66
returns False if pointing device not on screen,

66
XQueryTextExtents,

formal description of Xlib function, 149
XQueryTextExtents16,

formal description of Xlib function, 150
XQueryTree,

formal description of Xlib function, 63
xRaiseWindow,

formal description of Xlib function to expose
window,53

generates Expose and ConfigureRequest
events, 6

_XRead,
macro, formal description of Xlib function,

496
_XRead16,

macro, formal description of Xlib function,
496

_XRead16Pad,
macro, formal description of Xlib function,

496

697

_XRead32,
macro, formal description of Xlib function,

496
_XReadBitmapFile,

formal description of Xlib function, 321
_XReadPad,

macro, formal description of Xlib function,
497

XRebindKeysym,
formal description of Xlib function, 301

XRecolorCursor,
formal description of Xlib function, 164

XRectang le,
Xlib structure definition, 123

XRectI nReg ion,
formal description of Xlib function, 312

XRefreshKeyboardMapping,
formal description of Xlib function, 300

XRemoveFromSaveSet,
formal description of Xlib function, 170

XRemoveHost,
formal description of Xlib function, 208

XRemoveHosts,
formal description of Xlib function, 208

XReparentEvent,
formal description of Xlib structure, 244

XReparentWindow,
formal description of Xlib function, 167

_XReply,
formal description of Xlib function, 495

xResetScreenSaver,
formal description of Xlib function, 205

XResizeRequestEvent,
formal description of Xlib structure, 250

XResizeWindow,
formal description of Xlib function to resize

window, 52
XResourceManagerString,

formal description of Xlib function, 304
XResourceReq,

formal description of Xlib structure, 490
XRestackWindows,

formal description of Xlib function to change
exposure of windows, 56

XrmClass,
type definition, 329

XrmClassList,
type definition, 329

XrmClassToString,
formal description of Xlib function, 329

XrmDatabase,
formal description of Xlib structure, 328

XrmGetFileDatabase,
formal description of Xlib function, 336

XrmGetResource,
formal description of Xlib function, 333

698 X WINDOW

XrmGetStringDatabase,
formal description of Xlib function, 337

Xrmlnitialize,
formal description of Xlib function, 328

XrmMergeDatabase,
formal description of Xlib function, 336

XrmName,
type definition, 329

XrmNameList,
type definition, 329

XrmNameToString,
formal description of Xlib function, 329

XrmOptionDescRec,
formal description of Xlib structure, 338

XrmOptionKind,
formal description of Xlib enum, 337

XrmParseCornrnand,
formal description of Xlib function, 338

XrrnPutFileDatabase,
formal descriptio!' of Xlib function, 337

XrmPutLineResource,
formal description of Xlib function, 333

XrrnPutResource,
formal description of Xlib function, 331

XrrnPutStringResource,
formal description of Xlib function, 332

XrmQGetResource,
formal description of Xlib function, 333

XrrnQGetSearchList,
formal description of Xlib function, 334-335

XrrnQPutResource,
formal description of Xlib function, 331

XrrnQPutStringResource,
formal description of Xlib function, 332

XrrnQuarkList,
type definition, 329

XrrnQuarkToString,
formal description of Xlib function, 329

XrrnRepresentation,
type definition, 329

XrmRepresentationToString,
formal description of Xlib function, 329

XrrnSearchList,
type definition as XrrnHashTable, 334

XrrnStringToBindingQuarkList,
formal description of Xlib function, 330

XrmStringToClass,
formal description of Xlib function, 329

XrrnStringToName,
formal description of Xlib function, 329

XrrnStringToNarneList,
formal description of Xlib function, 329

XrmStringToQuark,
formal description of Xlib function, 329

XrmStringToRepresentation,
formal descripti,)n of Xlib function, 329

XrrnUniqueQuark,
formal description of Xlib function, 328

XrrnValue,
formal description of Xlib structure, 327

XrmValuePtr,
formal description of Xlib structure, 327

XRootWindow,
formal description of Xlib function to obtain

root window, 17
XRootWindowOfScreen,

formal description of Xlib function for getting
root window, 22

XRotateBuffers,
formal description of Xlib function, 314

XRotateWindowProperties,
formal description of Xlib function, 74

XSa veCon text,
formal description of Xlib function, 340

XScreenCount,
formal description of Xlib function to obtain

number of screens, 17
xScreenOfDisplay,

formal description of Xlib function to obtain
pointer to screen, 14

xSegrnent,
Xlib structure definition, 122

XSelectlnput,
formal description of Xlib function, 256

XSelectionClearEvent,
formal description of Xlib structure, 253

xSelectionEvent,
formal description of Xlib structure, 255

XSelectionRequestEvent,
formal description of Xlib structure, 254

_xSend,
macro should be used in place of Data if Xlib

needs a reply from X, 493
XSendEvent,

formal description of Xlib function, 265
XServerVendor,

formal description of Xlib function to obtain
ID of owner, 17

XSetAccessControl,
formal description of Xlib function, 209

XSetAfterFunction,
formal description of Xlib function, 268

XSetArcMode,
formal description of Xlib function, 116

XSetBackground,
formal description of Xlib function, 107

XSetClassHint,
formal description of Xlib function, 289

XSetClipMask,
formal description of Xlib function, 115

xSetClipOrigin,
formal description of Xlib function, 114

Index

XSetClipRectangle,
formal description of Xlib function, 115·

XSetCloseDown,
changes result of call to XCloseDisplay

macro, 23
xSetCloseDownMode,

formal description of Xlib function, 189
referenced in warning of possible override, 24

xSetCommand,
formal description of Xlib function, 281

XSetDashes,
formal description of Xlib function, 109

XSetErrorHandler,
formal description of Xlib function, 269

XSetFillRule,
formal description of Xlib function, 110

XSetFillStyle,
formal description of Xlib function, 110

XSetFont,
formal description of Xlib function, 114

XSetFontPath,
formal description of Xlib function, 146

xSetForeground,
formal description of Xlib function, 107
used in example of caching of requests, 94

XSetFunction,
formal description of Xlib function, 108

xSetGraphicsExposures,
formal description of Xlib function, 117

XSetIconName,
formal description of Xlib function, 280

XSetIconSizes,
formal description of Xlib function, 288

XSetImputFocus,
formal description of Xlib function, 188

XSetIOErrorHandler,
formal description of Xlib function, 274

XSetLineAttributes,
formal description of Xlib function, 108
used in example of caching of requests, 94

XSetModifierMapping,
formal description of Xlib function, 202

XSetNormalHints,
formal description of Xlib function, 285

XSetPlaneMask,
formal description of Xlib function, 108

XSetPointerMapping,
formal description of Xlib function, 195

xSetRegion,
formal description of Xlib function, 309

XSetScreenSaver,
formal description of Xlib function, 203

XSetSelectionOwner,
formal description of Xlib function, 76
selections disowned at connection close, 23

XSetSizeHints,
formal description of Xlib function, 287

XSetStandardColormap,
formal description of Xlib function, 296

XSetStandardProperties,
formal description of Xlib function, 278

XSetState,
formal description of Xlib function, 107

XSetStipple,
formal description of Xlib function, 113

XSetSubwindowMode,
formal description of Xlib function, 116

XSetTile,
formal description of Xlib function, 113

XSetTransientForHint,
formal description of Xlib function, 290

XSetTSOrigin,
formal description of Xlib function, 113

XSetWindowAttributes,

699

description of use in setting window attribute,
31

discussion of use of structure with attribute
functions, 57

formal structure definition, 32
xSetWindowBackground,

formal description of Xlib function for chang­
ing background, 58

XSetWindowBackgroundPixmap,
formal description of Xlib function for chang­

ing background, 59
XSetWindowBorder,

formal description of Xlib function for chang­
ing border, 59

XSetWindowBorderPixmap,
formal description of Xlib function for chang­

ing border, 60
XSetWindowBorderWidth,

formal description of Xlib function to change
border, 53

XSetWindowColormap,
formal description of Xlib function for setting

colormap, 83
in list of functions that attach colormap to

window, 84
XSetWMHints,

formal description of Xlib function, 283
xSetZoomHints,

formal description of Xlib function, 286
xShrinkRegion,

formal description of Xlib function, 310
XSizeHints,

contained in file X1I1Xutil.h, 283
formal description of Xlib structure, 284

XStandardColormap,
formal description of Xlib structure, 293

xStoreBuffer,
formal description of Xlib function, 313

xStoreBytes,
formal description of Xlib function, 313

700 X WINDOW

XStoreColor,
formal description of Xlib function, 89

XStoreColors,
formal description of Xlib function, 89

XStoreName,
formal description of Xlib function, 279

XStoreNamedColor,
formal description of Xlib function, 90

XStringToKeysym,
formal description of Xlib function, 302

XSublmage,
formal description of Xlib function, 319

XSubtractRegion,
formal description of Xlib function, 311

XSync,
formal description of Xlib function, 257
performed by call to XCloseDisplay func­

tion, 23
XTextExtents,

formal description of Xlib function, 147
XTextExtents16,

formal description of Xlib function, 148
XTextltem,

formal description of Xlib structure, 151
XTextltem16,

formal description of Xlib structure, 151
XTextWidth,

formal description of Xlib function, 147
xTextWidth16,

formal description of Xlib function, 147
XTimeCoord,

formal description of Xlib structure for
XGetMotionEvents, 268

XUndefineCursor,
formal description of Xlib function, 166

xungrabKey,
formal description of Xlib function, 183

XUngrabKeyboard,
formal description of Xlib function, 181
performed automatically at connection close, 24

XUngrabPointer,
formal description of Xlib function, 174
performed automatically at connection close, 24

XUngrabServer,
formal description of Xlib function, 186
performed automatically at connection close, 24

XUninstallColormap,
formal description of Xlib function, 171

XUnionRectWithRegion,
formal description of Xlib function, 310

XUnionRegion,
formal description of Xlib function, 310

XUniqueContext,
formal description of Xlib function, 341

XUn loadFon t,
formal description of Xlib function, 143

XUnmapEvent,
formal description of Xlib structure, 245

XUnmapSubwindows,
formal description of Xlib function for hiding

subwindows, 47
XUnmapWindow,

formal description of Xlib function for hiding
subwindows, 47

XVendorRelease,
formal description of Xlib function to obtain

server release, 17
XVisibilityEvent,

formal description of Xlib structure, 246
XVisualIDFromVisual,

formal description of Xlib function for deter­
mining ID, 29

XVisuallnfo,
formal description of Xlib function, 316
structure defined in Xll/Xutil.h file, 315

xWarpPointer, .
formal description of Xlib function, 187

XWhitePixel,
formal description of Xlib function for a light

intensity, 13
XWhitePixelOfScreen,

formal description of Xlib function for value
of light pixel, 19

XWidthMMOfScreen,
formal description of Xlib function for screen

width in mm, 21
XWidthOfScreen,

formal description of Xlib function for screen
width in pixels, 21

XWindowChanges,
discussion of use with XConfigureWindow, 51
formal description of Xlib structure, 48

XW indowE ven t,
formal description of Xlib function, 262
requests event from queue, 6

XWMHints,
formal description of Xlib structure, 282
list of definitions for the initiaLstate flag, 282

XWriteBitmapFile,
formal description of Xlib function, 322

XXorRegion,
formal description of Xlib function, 311

XYformat,
byte order of scanline unit in ImageByte-

Order, 18
glossary entry, 626
image-byte-order applied to each scanline, 357
in example of target type control of transmis-

sion, 76

Index

Zformat,
byte order for pixel values in ImageByte-

Order, 18
glossary entry, 626
image-byte-order applied to each pixel, 357
in example of target type control of transmis-

sion, 76
zero,

depth child windows do not obscure their par­
ents, 5

not guaranteed for unused bytes,
in error, 346
of event, 346
of reply, 345

not required in,
pad bits of image scanlines, 357
unused bits of value-list, 347
unused bytes of request, 345

required for,
border_width of InputOnly window, 41
borderwidth of InputOnly window, 48

701

unused bits of value-mask, 347
in Status value signifies failed function, 7
in top three bits of all resource IDs, 357
top three bits of some designated types, 348
width and height of XWindowChanges is

error, 48
zooming,

getting the zoom hints for a window, using
XGetZoomHints, 286

setting the zoom hints for a window, using
XSetZoomHints, 286

->+,
signifies multiple replies in request descrip­

tions, 346
->,

signifies reply in syntax of request descrip­
tions, 346

{ ... },
syntax for set of alternatives in description, 346

[...],
syntax for set of structure components, 346

Ordering Information

Use the form below to order additional copies of this book. Or for quicker
service, call toll-free:

1-800-343-8321

Digital Press
Digital Equipment Corporation
12 Crosby Drive
Bedford, MA 01730

Order No. Title

EY-6737E-DP X Window System

Method of payment

Qty.

Include payment with order to get FREE shipping.

Price*

$55.00

subtotal
tax
total

__ Check enclosed, payable
to Digital Equipment

__ MasterCard
__ VISA

Corporation

Total

__ Purchase order (please Card no. __________________ _

enclose)
P.O. no. ____________ __ Expiration date ____________ _
Signature __ ___

Shiplbill to:

Name __ __

Address __ __

City _____________ State __ Zip _______ _

*Important! Price is subject to change without notice. Taxes and shipping, if appli­
cable, are not included in the price. Price and terms are U.S. only.

Please address inquiries regarding discounts on multiple-copy orders to: Sales
Manager, Digital Press, BUO-E94, 12 Crosby Drive, Bedford, MA 01730.

