X WINDOW SYSTEM

C Library and Protocol Reference

Robert W. Scheifler

James Gettys Ron Newman

X WINDOW SYSTEM

C Library and Protocol Reference

Robert W. Scheifler James Gettys Ron Newman

With Al Mento and Al Wojtas

BOBARED™ Digital press

Copyright © 1988 by The Massachusetts Institute of Technology and Digital Equipment
Corporation.

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, photocopying, recording, or otherwise,
without written permission from the publisher.

Printed in the United States of America.
98765432
Order number EY-6737E-DP

Design: David Ford

Manuscript editor: Christie Williams

Production coordinator: Editorial Inc.

Index: Howard Burrows and Rosemary Simpson
Compositor: Black Dot Graphics

Printer: Murray Printing Company

DEC, DECnet, the Digital logo, ULTRIX, MicroVAX 11, VAX, VAX-11, VAXstation,
VAXstation II/GPX, VAX/VMS, VMS are trademarks of Digital Equipment Corporation.

IBM, Personal Computer AT, Personal Computer RT are trademarks of International
Business Machines Corporation.

MS-DOS is a trademark of Microsoft Corporation.

PostScript is a trademark of Adobe Systems Inc.

UNIX is a trademark of AT&T Bell Laboratories.

X Window System is a trademark of The Massachusetts Institute of Technology.

Library of Congress Cataloging in Publication Data

Scheifler, Robert W., 1954-
X window system.

Includes index.
1. X Window System (Computer system) 2. C (Computer
program language) I. Gettys, James, 1953—
I1. Newman, Ron, 1957- . II1. Title.
QA76.76.W56S34 1988 005.4’3 88-30869
ISBN 1-55558-012-2

Contents

PART | XLIB—C LIBRARY X INTERFACE

Chapter 1. Introduction to Xlib

1.1. Overview of the X Window System

1.2. Errors

1.3. Naming and Argument Conventions within Xlib
1.4. Programming Considerations

1.5. Conventions Used in Xlib — C Language Interface

Chapter 2. Display Functions
2.1. Opening the Display

2.2. Obtaining Information about the Display, Image Formats,
or Screens

2.2.1. Display Macros

2.2.2. Image Format Macros

2.2.3. Screen Information Macros

2.3. Generating a NoOperation Protocol Request
2.4. Freeing Client-Created Data

2.5. Closing the Display

2.6. X Server Connection Close Operations

O 0 g R~ W

10

12
12
17
19
22
23
23
23

vi

X WINDOW SYSTEM

Chapter 3. Window Functions

3.1. Visual Types

3.2. Window Attributes

3.2.1. Background Attribute

3.2.2. Border Attribute

3.2.3. Gravity Attributes

3.2.4. Backing Store Attribute

3.2.5. Save Under Flag

3.2.6. Backing Planes and Backing Pixel Attributes

3.2.7. Event Mask and Do Not Propagate Mask Attributes

3.2.8. Override Redirect Flag

3.2.9. Colormap Attribute

3.2.10. Cursor Attribute

3.3. Creating Windows

3.4. Destroying Windows

3.5. Mapping Windows

3.6. Unmapping Windows

3.7. Configuring Windows

3.8. Changing Window Stacking Order
3.9. Changing Window Attributes
3.10. Translating Window Coordinates

Chapter 4. Window Information Functions
4.1. Obtaining Window Information

4.2. Properties and Atoms

4.3. Obtaining and Changing Window Properties

4.4. Selections

Chapter 5. Graphics Resource Functions

5.1. Colormap Functions

5.1.1. Creating, Copying, and Destroying Colormaps
5.1.2. Allocating, Modifying, and Freeing Color Cells

5.1.3. Reading Entries in a Colormap

26
27
30
33
34
35
37
37
38
38
38
39
39
39
43
44
47
48
53
57
60

62
62
67
71
75

79
80
82
84
91

Contents

5.2. Creating and Freeing Pixmaps
5.3. Manipulating Graphics Context/State

5.4. Using GC Convenience Routines

5.4.1. Setting the Foreground, Background, Function, or Plane

Mask
5.4.2. Setting the Line Attributes and Dashes
5.4.3. Setting the Fill Style and Fill Rule
5.4.4. Setting the Fill Tile and Stipple
5.4.5. Setting the Current Font
5.4.6. Setting the Clip Region

5.4.7. Setting the Arc Mode, Subwindow Mode, and Graphics

Exposure

Chapter 6. Graphics Functions

6.1. Clearing Areas

6.2. Copying Areas

6.3. Drawing Points, Lines, Rectangles, and Arcs
6.3.1. Drawing Single and Multiple Points

6.3.2. Drawing Single and Multiple Lines

6.3.3. Drawing Single and Multiple Rectangles
6.3.4. Drawing Single and Multiple Arcs

6.4. Filling Areas

6.4.1. Filling Single and Muiltiple Rectangles
6.4.2. Filling a Single Polygon

6.4.3. Filling Single and Multiple Arcs

6.5. Font Metrics

6.5.1. Loading and Freeing Fonts

6.5.2. Obtaining and Freeing Font Names and Information
6.5.3. Setting and Retrieving the Font Search Path
6.5.4. Computing Character String Sizes

6.5.5. Computing Logical Extents

6.5.6. Querying Character String Sizes

vii

93
94
106

106
108
110
111
114
114

116

118
118
120
122
123
124
126
128
131
131
132
133
135
141
144
146
147
147
149

viii

X WINDOW SYSTEM

6.6. Drawing Text

6.6.1. Drawing Complex Text

6.6.2. Drawing Text Characters

6.6.3. Drawing Image Text Characters

6.7. Transferring Images between Client and Server
6.8. Cursors

6.8.1. Creating a Cursor

6.8.2. Changing and Destroying Cursors

6.8.3. Defining the Cursor

Chapter 7. Window Manager Functions
7.1. Changing the Parent of a Window

7.2. Controlling the Lifetime of a Window
7.3. Determining Resident Colormaps

7.4. Pointer Grabbing

7.5. Keyboard Grabbing

7.6. Server Grabbing

7.7. Miscellaneous Control Functions

7.7.1. Controlling Input Focus

7.7.2. Killing Clients

7.8. Keyboard and Pointer Settings

7.9. Keyboard Encoding

7.10. Screen Saver Control

7.11. Controlling Host Access

7.11.1. Adding, Getting, or Removing Hosts
7.11.2. Changing, Enabling, or Disabling Access Control

Chapter 8. Events and Event-Handling Functions
8.1. Event Types

8.2. Event Structures

8.3. Event Masks

8.4. Event Processing

8.4.1. Keyboard and Pointer Events

151
152
153
154
156
161
162
164
166

167
167
168
170
172
179
186
186
187
189
190
197
203
206
206
209

211
212
213
215
216
217

Contents

8.4.1.1. Pointer Button Events

8.4.1.2. Keyboard and Pointer Events
8.4.2. Window Entry/Exit Events

8.4.2.1. Normal Entry/Exit Events
8.4.2.2. Grab and Ungrab Entry/Exit Events
8.4.3. Input Focus Events

8.4.3.1. Normal Focus Events and Focus Events While Grabbed
8.4.3.2. Focus Events Generated by Grabs
8.4.4. KeyMap State Notification Events
8.4.5. Exposure Events

8.4.5.1. Expose Events

8.4.5.2. GraphicsExpose and NoExpose Events
8.4.6. Window State Change Events
8.4.6.1. CirculateNotify Events

8.4.6.2. ConfigureNotify Events

8.4.6.3. CreateNotify Events

8.4.6.4. DestroyNotify Events

8.4.6.5. GravityNotify Events

8.4.6.6. MapNotify Events

8.4.6.7. MappingNotify Events

8.4.6.8. ReparentNotify Events

8.4.6.9. UnmapNotify Events

8.4.6.10. VisibilityNotify Events

8.4.7. Structure Control Events

8.4.7.1. CirculateRequest Events

8.4.7.2. ConfigureRequest Events

8.4.7.3. MapRequest Events

8.4.7.4. ResizeRequest Events

8.4.8. Colormap State Change Events
8.4.9. Client Communication Events
8.4.9.1. ClientMessage Events

ix

217
220
224
226
9297
298
229
233
233
234
934
235
237
237
238
240
240
241
242
9243
944
244
245
246
247
248
249
250
250
251
252

X WINDOW SYSTEM

8.4.9.2. PropertyNotify Events 252
8.4.9.3. SelectionClear Events 253
8.4.9.4. SelectionRequest Events 254
8.4.9.5. SelectionNotify Events 255
8.5. Selecting Events 256
8.6. Handling the Output Buffer 257
8.7. Event Queue Management 258
8.8. Manipulating the Event Queue 259
8.8.1. Returning the Next Event 259
8.8.2. Selecting Events Using a Predicate Procedure 260
8.8.3. Selecting Events Using a Window or Event Mask 262
8.9. Putting an Event Back into the Queue 265
8.10. Sending Events to Other Applications . 265
8.11. Getting Pointer Motion History 267
8.12. Handling Error Events 268
8.12.1. Enabling or Disabling Synchronization 268
8.12.2. Using the Default Error Handlers 269
Chapter 9. Predefined Property Functions 275
9.1. Communicating with Window Managers 275
9.1.1. Setting Standard Properties 278
9.1.2. Setting and Getting Window Names 279
9.1.3. Setting and Getting Icon Names 280
9.1.4. Setting the Command 280
9.1.5. Setting and Getting Window Manager Hints 281
9.1.6. Setting and Getting Window Sizing Hints 283
9.1.7. Setting and Getting Icon Size Hints 287
9.1.8. Setting and Getting the Class of a Window 289
9.1.9. Setting and Getting the Transient Property 290
9.2. Manipulating Standard Colormaps 291

9.2.1. Standard Colormaps 292

Contents

9.2.2. Standard Colormap Properties and Atoms
9.2.3. Getting and Setting an XStandardColormap Structure

Chapter 10. Application Utility Functions
10.1. Keyboard Utility Functions

10.1.1. Keyboard Event Functions

10.1.2. Keysym Classification Macros

10.2. Obtaining the X Environment Defaults
10.3. Parsing the Window Geometry

10.4. Parsing the Color Specifications

10.5. Generating Regions

10.6. Manipulating Regions

10.6.1. Creating, Copying, or Destroying Regions
10.6.2. Moving or Shrinking Regions

10.6.3. Computing with Regions

10.6.4. Determining if Regions Are Empty or Equal
10.6.5. Locating a Point or a Rectangle in a Region
10.7. Using the Cut and Paste Buffers

10.8. Determining the Appropriate Visual Type
10.9. Manipulating Images

10.10. Manipulating Bitmaps

10.11. Using the Resource Manager

10.11.1. Resource Manager Matching Rules
10.11.2. Basic Resource Manager Definitions
10.11.3. Resource Database Access

10.11.3.1. Storing Into a Resource Database
10.11.3.2. Looking Up from a Resource Database
10.11.3.3. Database Search Lists

10.11.3.4. Merging Resource Databases

10.11.3.5. Retrieving and Storing Databases
10.11.4. Parsing Command Line Options

10.12. Using the Context Manager

xi

294
295

298
299
299
303
303
305
307
308
308
309
309
310
311
312
312
315
317
320
324
326
327
330
331
333
334
336
336
337
340

xil X WINDOW SYSTEM

PART II. X WINDOW SYSTEM PROTOCOL VERSION 11 343
1. Protocol Formats 345
2. Syntactic Conventions ' 346
3. Common Types 347
4. Errors 350
5. Keyboards 352
6. Pointers 353
7. Predefined Atoms 353
8. Connection Setup 354
9. Requests 360

10. Connection Close 441

11. Events 442

12. Flow Control and Concurrency 458

Appendix A. Xlib Functions and Protocol Requests 461

Appendix B. X Font Cursors 473

Appendix C. Extensions 476

Basic Protocol Support Routines 476

Hooking into Xlib 477

Hooks into the Library 478

Hooks onto Xlib Data Structures 484

GC Caching 486

Graphics Batching 486

Writing Extension Stubs 488

Requests, Replies, and Xproto.h 488

Request Format 489

Starting to Write a Stub Routine 491

Locking Data Structures 492

Sending the Protocol Request and Arguments 492

Variable Length Arguments 493

Contents

Replies

Synchronous Calling

Allocating and Deallocating Memory
Portability Considerations

Deriving the Correct Extension Opcode

Appendix D. Version 10 Compatibility Functions
Drawing and Filling Polygons and Curves

Associating User Data with a Value

Appendix E. KEYSYM Encoding

Appendix F. Protocol Encoding
Syntactic Conventions

Common Types

Errors

Keyboards

Pointers

Predefined Atoms

Connection Setup

Requests

Events
Glossary

Index

xiii

494
497
497
498
499

500
500
503

506

540
540
543
547
551
551
551
553
556
602

615

627

X1v

Acknowledgments

Xlib—C Library X Interface

The design and implementation of the first ten versions of X were primarily
the work of three individuals: Robert Scheifler of the MIT Laboratory for
Computer Science, Jim Gettys of Digital Equipment Corporation, and Ron
Newman of MIT, while at MIT/Project Athena. X version 11, however, is
the result of the efforts of dozens of individuals at almost as many locations
and organizations. At the risk of offending some of the players by exclusion,
we would like to acknowledge some of the people whe deserve special credit
and recognition. Qur apologies to anyone inadvertently overlooked.

First our thanks goes to Phil Karlton and Scott McGregor, both of Digital,
for their considerable contributions to the specification of the version 11
protocol. Digital employees Susan Augebranndt, Raymond Drewry, Todd
Newman (all members of WSE), and Phil Karlton (of WSL) worked long and
hard to produce the sample server implementation.

Next, our thanks goes to Ralph Swick (MIT/Project Athena and Digital)
who kept it all together for us. He handled literally thousands of requests
from people everywhere and saved the sanity of at least one of us. His calm
good cheer was a foundation on which we could build.

Our thanks also go to Todd Brunhoff (Tektronix) who was “loaned” to
MIT/Project Athena at exactly the right moment to provide very capable
and much-needed assistance during the alpha and beta releases. He was re-
sponsible for the successful integration of sources from multiple sites; we
would not have had a release without him.

Acknowledgments XV

Our thanks also go to Al Mento and Al Wojtas of Digital’s ULTRIX Docu-
mentation Group. With good humor and cheer, they took a rough draft and
made it an infinitely better and more useful document. The work they have
done will help many everywhere. We also would like to thank Hal Murray
(Digital SRC) and Peter George (Digital VMS) who contributed much by
proofreading the early drafts of this document.

Our thanks also go to Jeff Dike (Digital UEG), Tom Benson, Jackie
Granfield, and Vince Orgovan (Digital VMS), who helped with the library
utilities implementation; to Hania Gajewska (Digital UEG-WSL) who, along
with Ellis Cohen (CMU and Siemens), was instrumental in the semantic de-
sign of the window manager properties; to Dave Rosenthal (Sun Microsys-
tems) who also contributed to the protocol and provided the sample generic
color frame buffer device-dependent code; and to Tim Greenwood (Digital
IECG) for his help in understanding international keyboards and for pro-
viding the KeySyms in Appendix E.

The alpha and beta test participants deserve special recognition and
thanks as well. It is significant that the bug reports (and many fixes) during
alpha and beta test came almost exclusively from just a few of the alpha test-
ers, mostly hardware vendors working on product implementations of X.
The continued public contribution of vendors and universities is certainly to
the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate
Research at Digital, who has remained committed to the widest public avail-
ability of X and who made it possible to greatly supplement MIT’s resources
with the Digital staff in order to make version 11 a reality. Many of the peo-
ple mentioned here are part of the Western Software Laboratory (Digital
UEG-WSL) of the ULTRIX Engineering group and work for Smokey Wal-
lace, who has been vital to the project’s success. Others not mentioned here
worked on the toolkit and are acknowledged in the X Toolkit documenta-
tion.

Of course, we must particularly thank Paul Asente, formerly of Stanford
University and now of Digital UEG-WSL, who wrote W, the predecessor to
X, and Brian Reid, formerly of Stanford University and now of Digital WRL,
who had much to do with W’s design.

Finally, our thanks go to MIT, Digital Equipment Corporation, and IBM
for providing the environment where it could happen.

xVvi

X WINDOW SYSTEM

X Window System Protocol

The primary contributors to the X11 protocol are: Dave Carver (Digital
HPW); Branko Gerovac (Digital HPW); Jim Gettys (Digital SRC); Phil
Karlton (Digital WSL); Scott McGregor (Digital SSG); Ram Rao (Digital
UEG); David Rosenthal (Sun Microsystems); and Dave Winchell (Digital
UEG).

The implementors of initial server who provided useful input are: Susan
Angebranndt (Digital WSL); Raymond Drewry (Digital); and Todd Newman
(Digital).

The invited reviewers who provided useful input are: Andrew Cherenson
(Berkeley); Burns Fisher (Digital VMS); Dan Garfinkel (HP); Leo Hourvitz
(Next); Brock Krizan (HP); David Laidlaw (Stellar); Dave Mellinger (Inter-
leaf); Ron Newman (MIT); John Ousterhout (Berkeley); Andrew Palay (ITC
CMU); Ralph Swick (MIT/Project Athena and Digital); Craig Taylor (Sun
Microsystems); and Jeffery Vroom (Stellar).

Thanks go to Al Mento of Digital’s UEG Documentation Group for
formatting this document.

This document does not attempt to provide the rationale or pragmatics re-
quired to fully understand the protocol or to place it in perspective within a
complete system.

The protocol contains many management mechanisms that are not in-
tended for normal applications. Not all mechanisms are needed to build a
particular user interface. It is important to keep in mind that the protocol is
intended to provide mechanism, not policy.

Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology
Jim Gettys

Systems Research Center

Digital Equipment Corporation

Ron Newman

Project Athena
Massachusetts Institute of Technology

September 1988

XvVii

Introduction

The X Window System, or X, is a network-transparent window system. With
X, you can run multiple applications simultaneously in windows, generating
text and graphics in monochrome or color on a bitmap display. Network
transparency means that you can use application programs that are running
on other machines scattered throughout the network, as if they were run-
ning on your machine. Because X permits applications to be device indepen-
dent, applications need not be rewritten, recompiled, or even relinked to
work with new display hardware.

X provides facilities for generating multifont text and two-dimensional
graphics (such as points, lines, arcs, and polygons) in a hierarchy of rectan-
gular windows. Every window can be thought of as a “virtual screen” and can
contain subwindows within it, to an arbitrary depth. Windows can overlap
each other like stacks of papers on a desk and can be moved, resized, and re-
stacked dynamically. Windows are inexpensive resources; applications using
several hundred subwindows are common. For example, windows are often
used to implement individual user interface components such as scroll bars,
menus, buttons, and so forth.

Although you may think of yourself as a client of the system, in network
terms, the application programs you run are called clients and they use the
network services of the window system. A program running on the machine
with your display provides these services and so is called the X server. The
X server acts as an intermediary between you and the applications, handling
output from the clients to the display and forwarding your input (entered
with a keyboard or mouse) to the appropriate clients for processing.

xviil

X WINDOW SYSTEM

Clients and servers use some form of interprocess communication to ex-
change information. The syntax and semantics of this conversation are de-
fined by a communication protocol. This protocol is the foundation of the X
Window System and is presented in Part II of this book. Clients use the pro-
tocol to send requests to the server to create and manipulate windows, to
generate text and graphics, to control input from the user, and to communi-
cate with other clients. The server uses the protocol to send information
back to the client in response to various requests and to forward keyboard
and other user input on to the appropriate clients.

Because a network roundtrip is an expensive operation relative to basic re-
quest execution, the protocol is primarily asynchronous, and data can be in
transit in both directions (client to server and server to client) simultane-
ously. After generating a request, a client typically does not wait for the ser-
ver to execute the request before generating a new request. Instead, the cli-
ent generates a stream of requests that are eventually received by the server
and executed. The server does not acknowledge receipt of a request and, in
most cases, does not acknowledge execution of a request. (This is possible
because the underlying transport being used is reliable.)

The protocol is designed explicitly to minimize the need to query the win-
dow system for information. Clients should not depend on the server to ob-
tain information that the clients initially supplied. In addition, clients do not
poll for input by sending requests to the server. Instead, clients use requests
to register interest in various events, and the server sends event notifications
asynchronously. Asynchronous operation may be one of the most significant
differences between X and other window systems with which you may be
familiar.

For the best performance, when the client and the server reside on the
same machine, communication between them often is implemented using
shared memory. When the client and the server reside on different ma-
chines, communication can take place over any network transport layer that
provides reliable, in-order delivery of data in both directions (usually called
a reliable duplex byte stream). For example, TCP (in the Internet protocol
family) and DECnet streams are two commonly used transport layers. To
support distributed computing in a heterogeneous environment, the com-
munication protocol is designed to be independent of the operating system,
programming language, and processor hardware. Thus, you can use a single

Introduction xXix

display to run applications written in multiple languages under multiple
operating systems on multiple hardware architectures simultaneously.

Although X is fundamentally defined by a network protocol, most applica-
tion programmers do not want to think about bits, bytes, and message for-
mats. Therefore, X has an interface library. This library provides a familiar
procedural interface that masks the details of the protocol encoding and
transport interactions and automatically handles the buffering of requests
for efficient transport to the server, much as the C standard I/O library buff-
ers output to minimize system calls. The library also provides various utility
functions that are not directly related to the protocol but that are neverthe-
less important in building applications. The exact interface for this library
differs for each programming language. Xlib is the library for the C pro-
gramming language and is presented in Part I of this book.

The accompanying figure shows a block diagram of a complete X environ-
ment. Each X server controls one or more screens, a keyboard, and a point-
ing device (typically a mouse) with one or more buttons on it. There can be
many X servers; often there is one for every workstation on the network.
Applications can run on any machine, even those without X servers. An ap-
plication might communicate with multiple servers simultaneously (for ex-
ample, to support computer conferencing between individuals in different
locations). Multiple applications can be active at the same time on a single
server.

In X, many facilities that are built into other window systems are provided
by client libraries. You will not find specifications for things like menus, scroll
bars, and dialog boxes; nor will you find the interpretation of particular key
and button sequences in this book. The protocol and Xlib avoid mandating
such policy decisions as much as possible. You can view the protocol and Xlib
as a construction kit providing a rich set of mechanisms that can implement
a variety of user interface policies. Toolkits (providing menus, scroll bars, di-
alog boxes, and so on), higher-level graphics libraries (which might trans-
form abstract object descriptions into graphics requests, for example), and
user interface management systems (UIMS) can all be implemented on top
of Xlib. Although Xlib provides the foundation, the expectation is that appli-
cations will be written using these higher-level facilities in conjunction with
the facilities of Xlib, rather than solely on the “bare bones” of Xlib.

You can think of the total user interface as having two primary compo-

XX

X WINDOW SYSTEM

Application Application
Mail
GKS Library lpseudo v Application
Terminal Window .
X VDI Emulator Manager X Toolkit
X Library X Library X Library X Library
1 1 4
! Network J !

X Network Protocol

A

X Server

Device Library

pd

Keyboard

‘Screenl iScreen’

A

X Server

Device Library

e

8se

Keyboard

Screen

Figure 1.

nents: the interaction with the user that is logically internal to an application
(for example, typing text into a text editor or changing a cell’s contents in a
spreadsheet) and the interaction that is logically external to an application
(for example, moving or resizing an application window or turning an appli-
cation window into an icon). The external user interface is built into many
other window systems, but this is not the case with X. The X protocol does
not define an external user interface at all. Rather, the protocol provides
mechanisms with which a variety of external user interfaces can be built.
These mechanisms are designed so that a single client, called a window man-
ager, can provide the external user interface independent of all of the other

clients.

X window system block diagram

A window manager can automatically:

« Provide title bars, borders, and other window decorations for each application

¢ Provide a uniform means of moving and resizing windows

Introduction xxi

L]

Enforce a strict window layout policy if it desires (for example, “tiling” the screen
so that application windows never overlap)

Provide uniform icons for applications

Provide a uniform interface for switching the keyboard between applications

With a suitable set of conventions, you can construct applications that are
insensitive to the external user interface provided by a window manager but
that run unmodified in multiple environments and still behave properly.

Because the protocol can deal with such a broad spectrum of user inter-
faces, no single program, toolkit, UIMS, or window manager is likely to use
all of the facilities the protocol and Xlib provide. Do not be concerned if you
do not understand why some facility exists; it may support a user interface
style with which you are not familiar.

Principles
Early in the development of X, we argued about what should and should not
be implemented in the server. For example, we did not know if menus or ter-
minal emulators could be implemented in the client with adequate perform-
ance or whether “rubber banding” (dynamically stretching a simple figure in
response to movement of the pointing device) would be acceptable when
performed across a network. Experimentation during the first months
showed us that more was possible than we had first believed.

These observations hardened into the following principles, which guided
us through the early X design:

Do not add new functionality unless an implementor cannot complete a real
application without it.

It is as important to decide what a system is not, as to decide what it is. Do not
serve all the world’s needs, but make the system extensible so that additional
needs can be met in an upwardly compatible fashion.

The only thing worse than generalizing from one example is generalizing from no
examples at all.

If a problem is not completely understood, it is probably best to provide no
solution at all.

If you can get 90 percent of the desired effect for 10 percent of the work, use the
simpler solution.

xXxii

X WINDOW SYSTEM

« Isolate complexity as much as possible.

o Provide mechanism rather than policy. In particular, place user interface policy in

the client’s hands.

The first principle kept the wish list under control. Just because someone
wanted something in the server, we did not feel obligated to add it. This kept
us focused on the important issues that made real applications work. This
principle was a somewhat more difficult touchstone to use during the design
of the present version of X, given its significantly larger audience. We modi-
fied the principle to be “know of some real application that will require it.”

At each iteration of the X design, there was always more to do than time
allowed. We therefore focused on mechanisms with the broadest applic-
ability and for which consensus in the group could easily be achieved. For
example, we focused on two-dimensional graphics, explicitly deferring
three-dimensional graphics.

At the same time, to avoid obsolescence, we designed the present version
of X to be extensible at both the protocol and library interfaces and without
requiring incompatible changes to existing applications. Examples of exten-
sions we had in mind were additional graphics models (such as PHIGS and
PostScript), real-time video, and general programmability in the server. (We
view programmability as simply one example of an extension, not as the sole
mechanism for extensibility; mere programmability does not give you sup-
port for video or high-performance support for graphics.)

During the design and implementation process, we generally suspected
that any problems were just the tips of large icebergs. Expending effort to
solve an immediate problem without first trying to generalize the problem is
usually a mistake; a few related examples often make a whole class of prob-
lems obvious. This is not to say that we ignored the first instance of a prob-
lem; often there were adequate solutions using existing mechanisms.

We attempted to avoid solutions to problems we did not fully understand.
For example, the preliminary design for the present version of X supported
multiple input devices (more than just a single keyboard and mouse). As we
worked through the design, we realized it had flaws that would take signifi-
cant time and experimentation to correct. As a result, we removed this sup-
port from the system, knowing that correct support could be added later
through the extension mechanism.

Introduction xx1il

We also tried to avoid winning a complexity merit badge. If we could get
most of what we needed with less complexity than a complete solution would
require, we were willing to compromise our goals. Only history will decide if
these tradeoffs were successful. Much of the existing complexity is a result of
providing support for external window management; most programmers
need not be concerned with this, particularly those using an X toolkit. We ex-
pected that toolkits would hide various forms of tedium from the program-
mer. For example, a program that displays “Hello World” with configurable
colors and font and obeys window management conventions is about 150
lines of code when written using only the facilities of Xlib; an equivalent pro-
gram written using a toolkit can have fewer than a dozen lines of code. Thus,
it is important to keep in mind that Xlib is only one layer in a complete X
programming environment.

Isolation of complexity is necessary in large systems. A system in which
every component is intimately related to every other becomes difficult to
change as circumstances change. We therefore attempted to build as much as
possible into client programs, introducing only the minimum mechanisms
required in the server.

Deciding what a system is not is as important as deciding what it is. For ex-
ample, at various times people urged that remote execution and general
interclient remote procedure call be integral parts of X. They felt there were
no established standards in these areas, and they wanted X to be a self-
contained environment. As is often the case, solving the immediate problem
by adding to the existing framework rather than by integrating into a larger
framework is less work, but the result is not satisfactory for long. The X pro-
tocol is correctly viewed as just one component in an overall distributed sys-
tems architecture, not as the complete architecture by itself.

User interface design is difficult and currently quite diverse. Although glo-
bal user interface standards might someday be possible, we believed it pru-
dent to promote the cooperative coexistence of a variety of user interface
styles and to support diverse user communities and ongoing research activi-
ties. By separating window management functions from the server and from
normal applications and by layering user interface policy in higher-level li-
braries on top of Xlib, we allowed for experimentation without forcing all
users to be guinea pigs. As a result, many existing user interfaces have been

XXIV

X WINDOW SYSTEM

imported into the X environment. Having a “pick one or roll your own”
policy instead of a “love it or leave it” one has drawbacks; the applications
developer must choose a user interface style and user community. You
should remember, however, that Xlib and the protocol 1s not an end but a
foundation.

History

X was born of necessity in 1984. Bob Scheifler was working at MIT’s Labora-
tory for Computer Science (LCS) on a distributed system called Argus and
was in need of a decent display environment for debugging multiple distrib-
uted processes. Jim Gettys, a Digital engineer, was assigned to MIT’s Project
Athena, an undergraduate education program sponsored by Digital and
IBM that would ultimately populate the campus with thousands of work-
stations.

Neither Digital nor-IBM had a workstation product with a bitmap display
in 1984. The closest thing available from Digital was a VS100 display at-
tached to a VAX. Both Athena and LCS had VAX-11/750s, and Athena was
in the process of acquiring about 70 VS100s. VS100s were in field test at the
time, and the firmware for them was unreliable. Athena loaned one of the
first VS100s to LCS in exchange for cooperative work on the software. Our
immediate goal was clear: We needed to build a window system environment
running under UNIX on VS§100s for ourselves and the groups we worked
for. We had little thought of anything beyond these goals, but wondered
where to begin. Little software was available elsewhere that was not encum-
bered by license or portability.

Paul Asente and Brian Reid, then both at Stanford Umver51ty, had devel-
oped a prototype window system called W to run under Stanford’s V opera-
ting system. W used a network protocol and supported “dumb terminal”
windows and “transparent graphics” windows with display lists maintained
in the server. In the summer of 1983, Paul Asente and Chris Kent, summer
students at Digital’s Western Research Laboratory, ported W to the VS100
under UNIX. They were kind enough to give us a copy.

The V system has reasonably fast synchronous remote procedure call, and
W in the V environment was designed with a synchronous protocol. The
port to UNIX retained the synchronous communication even though com-
munication in UNIX was easily five times slower than in V. The commbination

Introduction XXV

of prototype VS100s with unreliable firmware and W using slow communi-
cation was not encouraging, to say the least; one could easily type faster than
the terminal window could echo characters.

In May of 1984, we received reliable VS100 hardware and firmware. That
summer, Bob replaced the synchronous protocol of W with an asynchronous
protocol and replaced the display lists with immediate mode graphics. The
result was sufficiently different from W that continuing to call it W was inap-
propriate and would cause confusion, as W was in some limited use at
Athena. With no particular thought about the name, and because the famil-
ial resemblance to W was still strong at that date, Bob called the result X.
Much later, when the name became a serious issue, X had already stuck and
was used by too many people to permit a change.

Development was rapid during the next eight months. The first terminal
emulator (VT52) and window manager were written in the CLU program-
ming language, the language of choice in the research group where Bob
worked. Bob continued development of the server and the protocol, which
went from version 1 to version 6 during this period (the version number was
incremented each time an incompatible change was made). Mark
Vandevoorde at Athena wrote a new VT100 terminal emulator in C, and Jim
Gettys worked on Xlib and the UNIX support for starting the window sys-
tem. Late in 1984, we received faster VS100 firmware, causing the first
round of performance analysis and optimization. Within a few weeks, we
were again hardware limited, but we had a much better understanding of
performance issues.

By early 1985, many people inside Digital were using X, and plans were
underway for the first Digital UNIX workstation product, which was based
on the MicroVAX-I1. At the time, support for UNIX in Digital was limited,
and there was no chance of getting any other window system except X on
Digital hardware. Other systems were either highly nonportable or were un-
available because of licensing problems (this was the case with Andrew). X
was the logical candidate. We had ported X version 6 to the QVSS display on
the MicroVAX. Ron Newman joined Project Athena at this time and worked
on documenting Xlib, already in its third major revision. ~

We redesigned X to support color during the second quarter of 1985, with
Digital’s eventual VAXstation-II/GPX as the intended target. Although MIT
had licensed version 6 to a few outside groups for a brief time at nominal

XXVI

X WINDOW SYSTEM

charge, a key decision was made in the summer of 1985 not to license future
versions of X. Instead, it would be available to anyone at the cost of produc-
tion. In September of 1985, version 9 of X was made publicly available, and
the field test of the VAXstation-1I/GPX began. During that fall, Brown Uni-
versity and MIT started porting X to the IBM RT/PC, which was in field test
at those universities. A problem with reading unaligned data on the RT
forced an incompatible change to the protocol; this was the only difference
between version 9 and version 10.

During the fall, the first significant outside contributions of code to X
started to appear from several universities and from Digital. In January of
1986, Digital announced the VAXstation-II/GPX, which was the first com-
mercial X implementation. Release 3 of X (X10R3) was available in February
and was a major watershed in X development. Although we were happy to
see a major corporation incorporate X into its product line, we knew the de-
sign was limited to the taste and needs of a small group of people. It could
solve just the problems we faced, and its hardware origins were still obvious
in key aspects of the design. We knew version 10 had inherent limitations
that would force major redesign within a few years, although it was certainly
adequate for developing many interesting applications.

Over the next few months, a strange phenomenon occurred. Many other
corporations, such as Hewlett-Packard, were basing products on version 10,
and groups at universities and elsewhere were porting X to other displays
and systems, including Apollo Computer and Sun Microsystems work-
stations. The server was even ported to the IBM PC/AT. Somewhat later,
Hewlett-Packard contributed their toolkit to the MIT distribution.

We tired of hearing comments such as “We like X, but there is this one
thing you ought to change.” People were already declaring it a “standard,”
which was, to our thinking, premature. Before long, however, we were con-
fronted with a fundamental decision about X’s future. We seriously consid-
ered doing nothing; after all, X did almost everything we needed it to, and
what it did not do could be added without difficulty. Unfortunately, this
would leave many people using an inadequate platform for their work. In
the long run, X would either die because of its inadequacies, or it would
spawn wildly incompatible variations. Alternatively, based on feedback from
users and developers, we could undertake a second major redesign of X.

Although we were willing to do the design work, we knew that the result-

Introduction xxvil

ing design would be ambitious and would require much more implementa-
tion work than our meager resources at MIT would permit. Fortunately,
Digital’'s Western Software Laboratory (DECWSL) was between projects.
This group had the required expertise, including people who had contrib-
uted to pioneering Xerox window systems. More importantly, these people
were intimately familiar with X. Smokey Wallace, DECWSL’s manager, and
Jim Gettys proposed the implementation of version 11, which would then be
given back to MIT for public distribution without a license. Digital manage-
ment quickly approved the proposal.

We started intensive protocol design in May of 1986. No proprietary infor-
mation was used in the design process. Key contributors included Phil
Karlton and Scott McGregor of Digital. Dave Rosenthal of Sun Microsystems
was invited to join Digital engineers in the design team, and Bob Scheifler
acted as the chief architect. At the first design meeting, we decided it was not
feasible to design a protocol that would be upwardly compatible with version
10 and still provide the functionality essential for the range of display hard-
ware that had to be supported. With some reluctance, we abandoned com-
patibility with version 10 (although Todd Brunhoff of Tektronix has since
shown that one can build a reasonable “compatibility server” to display ver-
sion 10 applications on a version 11 server).

We carried out most of the actual design work using the electronic mail fa-
cilities of the DARPA Internet, which connects hundreds of networks
around the country, including MIT’s campus network and Digital’s engi-
neering network. The entire group held only three day-long meetings dur-
ing the design process. During these meetings we reached a consensus on is-
sues we could not resolve by mail. Even with group members on opposite
coasts, responses to most design issues were only a few minutes away. A
printed copy of all the messages exchanged during this time would be a stack
of paper several feet high. Without electronic mail, the design simply would
not have been possible.

Once we completed a preliminary protocol design, we invited people from
other companies and universities to review the specification. By August, we
had a design ready for public review, which was again carried out using elec-
tronic mail, courtesy of the Internet. Design of the sample server implemen-
tation started at this time. Phil Karlton and Susan Angebranndt of DECWSL
designed and implemented the device-independent parts of the server, and

xxvili

X WINDOW SYSTEM

Raymond Drewry and Todd Newman implemented the portable, machine-
independent graphics library. Jim Gettys acted as the Xlib architect and with
Ron Newman at MIT worked on the redesign and implementation of the X
library. Many other contributions came from DECWSL as well, such as
rewriting version 10 clients and the Xt toolkit intrinsics (another story in it-
self).

During the fall of 1986, Digital decided to base its entire desktop worksta-
tion strategy for ULTRIX, VMS, and MS-DOS on X. Although this was grat-
ifying to us, it also meant we had even more people to talk to. This resulted
in some delay, but also in a better design in the end. Ralph Swick of Digital
joined Project Athena during this period and played a vital role thoughout
version 11’s development. The last version 10 release was made available in
December of 1986.

In January of 1987, about 250 people attended the first X technical con-
ference, which was held at MIT. During the conference, eleven major com-
puter hardware and software vendors announced their support for X ver-
sion 11 at an unprecedented press conference.

Alpha test of version 11 started in February of 1987, and beta testing
started three months later at over 100 sites. Server back-ends and other code
contributions came from Apollo, Digital, Hewlett-Packard, IBM, Sun, and
the University of California at Berkeley. Tektronix loaned Todd Brunhoff to
MIT to help coordinate testing and integration, which was a godsend to us
all. Texas Instruments provided an implementation of a Common LISP in-
terface library, based on an interface specification by Bob Scheifler. We
made the first release of version 11 (V11R1) availz\ible on September 15,
1987.

At this point, MIT was thinking of getting out of the mainstream X devel-
opment, but at a meeting in June 1987, nine major computer companies
made it clear that they would like MIT to remain firmly in control of X. Over
the next few months, a proposal was put together to create the MIT X Con-
sortium, an open organization funded by the participants and with a charter
of supporting and controlling the development and evolution of the system.
The MIT X Consortium was created in January 1988, with Bob Scheifler as
its director. The X Consortium hosted the second annual X conference in
January, with approximately 900 people in attendance. The second release
of version 11 was available March 1, 1988. At the present time, the X Con-

Introduction Xxix

sortium consists of over 30 organizations, including almost all major US
computer vendors and many international vendors.

The Structure of This Book

This book consists of two parts: Part I is a reference manual for the C Lan-
guage X Interface library, also known as Xlib; and Part II is the X protocol
specification. The MIT X Consortium consider both the protocol and Xlib as
standards, with Xlib being the exclusive interface to the protocol for the C
programming language.

Part I consists of ten chapters. The first chapter provides a basic overview
and establishes conventions used throughout the book. Chapter 2 deals with
opening and closing connections and obtaining basic information about the
connected display. Chapters 3 and 4 explain how to create and manipulate
windows. Graphics capabilities are presented in chapters 5 and 6. Chapters
7 and 9 describe window manager functions and data, and chapter 8 ex-
plains events and event-handling functions. Finally, a variety of utility func-
tions for keyboard input, command line parsing, region arithmetic, and re-
source management are presented in chapter 10.

Part II is a concise, precise specification of the X protocol semantics. The
protocol specification is independent of any particular programming lan-
guage, and as such, is an appropriate starting point for creating interface li-
braries for other programming languages. C programmers will prefer the
Xlib reference to the protocol descriptions, although the protocol’s alternate
description may clarify points of confusion.

The glossary provides definitions of the terminology used elsewhere in the
book. The book also includes a number of appendixes:

Appendix A provides cross-reference information between protocol requests and
library functions.

L]

Appendix B provides the available predefined cursor shapes.

Appendix C provides information required to extend the X library.

Appendix D provides information about functions that may be available to ease
conversion of version 10 code to version 11.

e Appendix E provides the predefined keyboard symbol (KEYSYM) encodings.
* Appendix F provides the bit and byte description of the X protocol.

Part |. XLib—C Library X Interface

James Gettys Robert W. Scheifler Ron Newman

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was de-
signed at MIT. It runs under 4.3BSD UNIX, ULTRIX-32, many other
UNIX variants, VAX/VMS, MS/DOS, as well as several other operating sys-
tems.

X display servers run on computers with either monochrome or color
bitmap display hardware. The server distributes user input to and accepts
output requests from various client programs located either on the same ma-
chine or elsewhere in the network. Xlib is a C subroutine library that applica-
tion programs (clients) use to interface with the window system by means of
a stream connection. Although a client usually runs on the same machine as
the X server it is talking to, this need not be the case.

Xlib — C Language X Interface is a reference guide to the low-level C lan-
guage interface to the X Window System protocol. It is neither a tutorial nor
a user’s guide to programming the X Window System. Rather, it provides a
detailed description of each function in the library as well as a discussion of
the related background information. Xlib — C Language X Interface assumes
a basic understanding of a graphics window system and of the C program-
ming language. Other higher-level abstractions (for example, those pro-
vided by the toolkits for X) are built on top of the Xlib library. For further
information about these higher-level libraries, see the appropriate toolkit
documentation. The X Window System Protocol provides the definitive word
on the behavior of X. Although additional information appears here, the
protocol document is the ruling document.

1.1

XLIB

To provide an introduction to X programming, this chapter discusses:

Overview of the X Window System
Errors

Naming and argument conventions
Programming considerations

Conventions used in this document

Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that
are common to other window systems have different meanings in X. You
may find it helpful to refer to the glossary, which is located at the end of the
book.

The X Window System supports one or more screens containing overlap-
ping windows or subwindows. A screen is a physical monitor and hardware,
which can be either color or black and white. There can be multiple screens
for each display or workstation. A single X server can provide display ser-
vices for any number of screens. A set of screens for a single user with one
keyboard and one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the
top of each hierarchy is a root window, which covers each of the display
screens. Each root window is partially or completely covered by child win-
dows. All windows, except for root windows, have parents. There is usually
at least one window for each application program. Child windows may in
turn have their own children. In this way, an application program can create
an arbitrarily deep tree on each screen. X pfovides graphics, text, and raster
operations for windows.

A child window can be larger than its parent. That is, part or all of the
child window can extend beyond the boundaries of the parent, but all out-
put to a window is clipped by its parent. If several children of a window have
overlapping locations, one of the children is considered to be on top of or
raised over the others thus obscuring them. Output to areas covered by
other windows is suppressed by the window system unless the window has
backing store. If a window is obscured by a second window, the second win-
dow obscures only those ancestors of the second window, which are also an-
cestors of the first window.

Chapter 1. Introduction to Xlib 5

Root Window
pe======q- 1
1 1
1 A1 1
1 1
————— Leccama=d- J
A A2
_————
—————
1
1
1
1
B 1
1
1
emmmad
Visible Screen
@ Areas enclosed by dashed lines are not

viewable. Windows labeled A and B are

children of the root window. A.1 and A.2
are children of A; note that children are

clipped by their parent.

o @ B is lower than A in the stacking hierarchy.

Figure 1.1. Window hierarchy

A window has a border zero or more pixels in width, which can be any pat-
tern (pixmap) or solid color you like. A window usually but not always has a
background pattern, which will be repainted by the window system when
uncovered. Each window has its own coordinate system. Child windows ob-
scure their parents unless the child windows (of the same depth) have no
background, and graphic operations in the parent window usually are
clipped by the children.

X does not guarantee to preserve the contents of windows. When part or
all of a window is hidden and then brought back onto the screen, its contents
may be lost. The server then sends the client program an Expose event to
notify it that part or all of the window needs to be repainted. Programs must
be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Sin-
gle plane (depth 1) pixmaps are sometimes referred to as bitmaps. Pixmaps

XLIB

can be used in most graphics functions interchangeably with windows and
are used in various graphics operations to define patterns or tiles. Windows
and pixmaps together are referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These
requests later execute asynchronously on the X server. Functions that return
values of information stored in the server do not return (that is, they block)
until an explicit reply is received or an error occurs. You can provide an
error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow
the request with a call to XSync, which blocks until all previously buffered
asynchronous events have been sent and acted on. As an important side ef-
fect, the output buffer in Xlib is always flushed by a call to any function that
returns a value from the server or waits for input.

Many Xlib functions will return an integer resource 1D, which allows you
to refer to objects stored on the X server. These can be of type Window,
Font, Pixmap, Colormap, Cursor, and GContext, as defined in the file
<X11/X.h>.! These resources are created by requests and are destroyed
(or freed) by requests or when connections are closed. Most of these re-
sources are potentially sharable between applications, and in fact, windows
are manipulated explicitly by window manager programs. Fonts and cursors
are shared automatically across multiple screens. Fonts are loaded and un-
loaded as needed and are shared by multiple clients. Fonts are often cached
in the server. Xlib provides no support for sharing graphics contexts be-
tween applications.

Client programs are informed of events. Events may either be side effects
of a request (for example, restacking windows generates Expose events) or
completely asynchronous (for example, from the keyboard). A client pro-
gram asks to be informed of events. Because other applications can send
events to your application, programs must be prepared to handle (or ignore)
events of all types.

Input events (for example, a key pressed or the pointer moved) arrive
asynchronously from the server and are queued until they are requested by
an explicit call (for example, XNextEvent or XWindowEvent). In addition,
some library functions (for example, XRaiseWindow) generate Expose and

! The <> has the meaning defined by the # include statement of the C compiler and is a file
relative to a well-known directory. On UNIX-based systems, this is /usr/include.

Chapter 1. Introduction to Xlib 7

1.2

1.3

ConfigureRequest events. These events also arrive asynchronously, but
the client may wish to explicitly wait for them by calling XSync after calling
a function that can cause the server to generate events.

Errors

Some functions return Status, an integer error indication. If the function
fails, it returns a zero. If the function returns a status of zero, it has not up-
dated the return arguments. Because C does not provide multiple return
values, many functions must return their results by writing into client-passed
storage. By default, errors are handled either by a standard library function
or by one that you provide. Functions that return pointers to strings return
NULL pointers if the string does not exist.

The X server reports protocol errors at the time that it detects them. If
more than one error could be generated for a given request, the server can
report any of them.

Because Xlib usually does not transmit requests to the server immediately
(that is, it buffers them), errors can be reported much later than they actu-
ally occur. For debugging purposes, however, Xlib provides a mechanism
for forcing synchronous behavior (see section 8.12.1). When synchroniza-
tion is enabled, errors are reported as they are generated.

When Xlib detects an error, it calls an error handler, which your program
can provide. If you do not provide an error handler, the error is printed,
and your program terminates.

Naming and Argument Conventions within Xlib
Xlib follows a number of conventions for the naming and syntax of the func-
tions. Given that you remember what information the function requires,
these conventions are intended to make the syntax of the functions more
predictable.

The major naming conventions are:

To differentiate the X symbols from the other symbols, the library uses mixed
case for external symbols. It leaves lowercase for variables and all uppercase for
user macros, as per existing convention.

« All Xlib functions begin with a capital X.

¢ The beginnings of all function names and symbols are capitalized.

8

1.4

XLIB

All user-visible data structures begin with a capital X. More generally, anything
that a user might dereference begins with a capital X.

Macros and other symbols do not begin with a capital X. To distinguish them
from all user symbols, each word in the macro is capitalized.

All elements of or variables in a data structure are in lowercase. Compound
words, where needed, are constructed with underscores ().

The display argument, where used, is always first in the argument list.

All resource objects, where used, occur at the beginning of the argument list
immediately after the display argument.

When a graphics context is present together with another type of resource (most
commonly, a drawable), the graphics context occurs in the argument list after the
other resource. Drawables outrank all other resources.

Source arguments always precede the destination arguments in the argument list.
The x argument always precedes the y argument in the argument list.
The width argument always precedes the height argument in the argument list.

Where the x, y, width, and height arguments are used together, the x and y
arguments always precede the width and height arguments.

Where a mask is accompanied with a structure, the mask always precedes the
pointer to the structure in the argument list.

Programming Considerations

The major programming considerations are:

Keyboards are the greatest variable between different manufacturers’
workstations. If you want your program to be portable, you should be particularly
conservative here.

Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

The user should have control of his screen real estate. Therefore, you should
write your applications to react to window management rather than presume
control of the entire screen. What you do inside of your top-level window,
however, is up to your application. For further information, see chapter 9.

Coordinates and sizes in X are actually 16-bit quantities. They usually are
declared as an “int” in the interface (int is 16 bits on some machines). Values
larger than 16 bits are truncated silently. Sizes (width and height) are unsigned
quantities. This decision was taken to minimize the bandwidth required for a
given level of performance.

Chapter 1. Introduction to Xlib

1.5

Conventions Used in Xlib — C Language X Interface
This document uses the following conventions:

* Global symbols in Xlib — C Language X Interface are printed in this special
font. These can be either function names, symbols defined in include files, or
structure names. Arguments are printed in ialics.

Each function is introduced by a general discussion that distinguishes it from
other functions. The function declaration itself follows, and each argument is
specifically explained. General discussion of the function, if any is required,
follows the arguments. Where applicable, the last paragraph of the explanation
lists the possible Xlib error codes that the function can generate. For a complete
discussion of the Xlib error codes, see section 8.12.2.

¢ To eliminate any ambiguity between those arguments that you pass and those that
a function returns to you, the explanations for all arguments that you pass start
with the word specifies or, in the case of multiple arguments, the word specify. The
explanations for all arguments that are returned to you start with the word returns
or, in the case of multiple arguments, the word return. The explanations for all
arguments that you can pass and are returned start with the words specifies and
returns.

Any pointer to a structure that is used to return a value is designated as such by
the _return suffix as part of its name. All other pointers passed to these functions
are used for reading only. A few arguments use pointers to structures that are
used for both input and output and are indicated by using the _in_out suffix.

¢ Xlib defines the Boolean values of True and False.

10

2.1

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to
the X server. Once you have established a connection, you then can use the
Xlib macros and functions discussed in this chapter to return information
about the display. This chapter discusses how to:

Open (connect to) the display
Obtain information about the display, image format, and screen
Free client-created data

Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the
connection to the X server is closed.

Opening the Display
To open a connection to the X server that controls a display, use
XOpenDisplay.

Display *XOpenDisplay(display_name)
char *display..name;
display_name Specifies the hardware display name, which determines the display
and communications domain to be used. On a UNIX-based system,
if the display_name is NULL, it defaults to the value of the
DISPLAY environment variable.

Chapter 2. Display Functions 11

—

On UNIX-based systems, the display name or DISPLAY environment varia-
ble is a string in the format:

hostname:number.screen_number

hostname Specifies the name of the host machine on which the display is
physically attached. You follow the hostname with either a single
colon (:) or a double colon (::).

number Specifies the number of the display server on that host machine.
You may optionally follow this display number with a period (.). A
single CPU can have more than one display. Multiple displays are
usually numbered starting with zero.

screen_number Specifies the screen to be used on that server. Multiple screens
can be controlled by a single X server. The screen_number sets
an internal variable that can be accessed by using the
DefaultScreen macro or the XDefaultScreen function if you
are using languages other than C (see section 2.2.1).

For example, the following would specify screen 2 of display 0 on the ma-
chine named mit-athena:

mit-athena:0.2

The XOpenDisplay function returns a Display structure that serves as
the connection to the X server and that contains all the information about
that X server. XOpenDisplay connects your application to the X server
through TCP, UNIX domain, or DECnet communications protocols. If the
hostname is a host machine name and a single colon (:) separates the
hostname and display number, XOpenDisplay connects using TCP
streams. If the hostname is unix and a single colon (:) separates it from the
display number, XOpenDisplay connects using UNIX domain IPC
streams. If the hostname is not specified, Xlib uses whatever it believes is the
fastest transport. If the hostname is a host machine name and a double colon
(::) separates the hostname and display number, XOpenDisplay connects
using DECnet. A single X server can support any or all of these transport
mechanisms simultaneously. A particular Xlib implementation can support
many more of these transport mechanisms. '

If successful, XOpenDisplay returns a pointer to a Display structure,
which is defined in <X11/X1ib.h>. If XOpenDisplay does not succeed,
it returns NULL. After a successful call to XOpenDisplay, all of the screens

12

2.2

Note

2.2.1

.

XLIB

in the display can be used by the client. The screen number specified in the
display_name argument is returned by the DefaultScreen macro (or the
XDefaultScreen function). You can access elements of the Display
and Screen structures only by using the information macros or functions.
For information about using macros and functions to obtain information
from the Display structure, see section 2.2.1

X servers may implement various types of access control mechanisms (see
section 7.11).

Obtaining Information about the Display, Image Formats, or Screens
The Xlib library provides a number of useful macros and corresponding
functions that return data from the Display structure. The macros are
used for C programming, and their corresponding function equivalents are
for other language bindings. This section discusses the:

Display macros
Image format macros

Screen macros

All other members of the Display structure (that is, those for which no
macros are defined) are private to Xlib and must not be used. Applications
must never directly modify or inspect these private members of the
Display structure.

The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplay-
Planes, XDisplayWidthMM, and XDisplayHeightMM functions in the
next sections are misnamed. These functions really should be named
Screenwhatever and XScreenwhatever, not Displaywhatever or XDisplay-
whatever. Our apologies for the resulting confusion.

Display Macros
Applications should not directly modify any part of the Display and
Screen structures. The members should be considered read-only, although
they may change as the result of other operations on the display.

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both
can return.

Chapter 2. Display Functions 13

-
L

1

I

-

AllPlanes()
unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument
to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a
monochrome application. These pixel values are for permanently allocated
entries in the default colormap. The actual RGB (red, green, and blue) val-
ues are settable on some screens and, in any case, may not actually be black -
or white. The names are intended to convey the expected relative intensity
of the colors.

BlackPixel(display, screen_number)
unsigned long XBlackPixel(display, screen_number)
Display *display;
int screen_number;
Both return the black pixel value for the specified screen.
WhitePixel(display, screen_number)
unsigned long XWhitePixel(display, screen_number)
Display *display;
int screen__number;
Both return the white pixel value for the specified screen.

ConnectionNumber(display)

int XConnectionNumber(display)
Display *display;

Both return a connection number for the specified display. On a UNIX-
based system, this is the file descriptor of the connection.

DefaultColormap(display, screen_number)
Colormap XDefaultColormap(display, screen_number)

Display *display;
int screen_number;

14

B e

XLIB

Both return the default colormap ID for allocation on the specified screen.
Most routine allocations of color should be made out of this colormap.

DefaultDepth(display, screen_number)

int XDefaultDepth(display, screen—number)
Display *display;
int screen_number;

Both return the depth (number of planes) of the default root window for the
specified screen. Other depths may also be supported on this screen (see
XMatchVisualInfo).

DefaultGC(display, screen—number)

GC XDefaultGC(display, screen_number)
Display *display;
int screen_number;

Both return the default graphics context for the root window of the speci-
fied screen. This GC is created for the convenience of simple applications
and contains the default GC components with the foreground and back-
ground pixel values initialized to the black and white pixels for the screen,
respectively. You can modify its contents freely because it is not used in any
Xlib function. This GC should never be freed.

DefaultRootWindow(display)

Window XDefaultRootWindow(display)
Display *display;

Both return the root window for the default screen.
DefaultScreenOfDisplay(display)

Screen *XDefaultScreenOfDisplay(display)
Display *display;

Both return a pointer to the default screen.
ScreenOfDisplay(display, screen_number)

Screen *XScreenOfDisplay(display, screen_number)

Chapter 2. Display Functions 15

=

Display *display;
int screen._number;

Both return a pointer to the indicated screen.
DefaultScreen(display)

int XDefaultScreen(display)
Display *display;

Both return the default screen number referenced by the XOpenDisplay
function. This macro or function should be used to retrieve the screen num-
ber in applications that will use only a single screen.

DefaultVisual(display, screen—_number)

Visual *XDefaultVisual(display, screen_number)
Display *display;
int screen—_number;

Both return the default visual type for the specified screen. For further in-
formation about visual types, see section 3.1.

DisplayCells(display, screen_number)

int XDisplayCells(display, screen_number)
Display *display;
int screen_number;

Both return the number of entries in the default colormap.
DisplayPlanes(display, screen_number)

int XDisplayPlanes(display, screen_number)
Display *display;
int screen_number;

Both return the depth of the root window of the specified screen. For an ex-
planation of depth, see the glossary.

DisplayString(display)

char *XDisplayString(display)
Display *display;

16

]

T R e R Y e

XLIB

Both return the string that was passed to XOpenDisplay when the current
display was opened. On UNIX-based systems, if the passed string was
NULL, these return the value of the DISPLAY environment variable when
the current display was opened. These are useful to applications that invoke
the fork system call and want to open a new connection to the same display
from the child process as well as for printing error messages.

LastKnownRequestProcessed(display)

unsigned long XLastKnownRequestProcessed(display)
Display *display;

Both extract the full serial number of the last request known by Xlib to have
been processed by the X server. Xlib automatically sets this number when re-
plies, events, and errors are received.

NextRequest(display)

unsigned long XNextRequest(display)
Display *display;

Both extract the full serial number that is to be used for the next request.
Serial numbers are maintained separately for each display connection.

Protocol Version(display)

int XProtocolVersion(display)
Display *display;

Both return the major version number (11) of the X protocol associated with
the connected display.

ProtocolRevision(display)

int XProtocolRevision(display)
Display *display;

Both return the minor protocol revision number of the X server.
QLength(display)

int XQLength(display)
Display *display;

Chapter 2. Display Functions 17

—

1 1 1 I

2.2.2

Both return the length of the event queue for the connected display. Note
that there may be more events that have not been read into the queue yet
(see XEventsQueued).

RootWindow(display, screen_number)

Window XRootWindow(display, screen_number)
Display *display;
int screen_number;

Both return the root window. These are useful with functions that need a
drawable of a particular screen and for creating top-level windows.

ScreenCount(display)

int XScreenCount(display)
Display *display;

Both return the number of available screens.
ServerVendor(display)

char *XServerVendor(display)
Display *display;

Both return a pointer to a null-terminated string that provides some identifi-
cation of the owner of the X server implementation.

VendorRelease(display)

int XVendorRelease(display)
Display *display;

Both return a number related to a vendor’s release of the X server.

Image Format Macros

Applications are required to present data to the X server in a format that the
server demands. To help simplify applications, most of the work required to
convert the data is provided by Xlib (see sections 6.7 and 10.9).

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both re-
turn for the specified server and screen. These are often used by toolkits as
well as by simple applications.

18

]

I e

]

XLIB

ImageByteOrder(display)

int XImageByteOrder(display)
Display *dusplay;

Both specify the required byte order for images for each scanline unit in XY
format (bitmap) or for each pixel value in Z format. The macro or function
can return either LSBFirst or MSBFirst.

BitmapUnit(display)

int XBitmapUnit(display)
Display *display;

Both return the size of a bitmap’s scanline unit in bits. The scanline is calcu-
lated in multiples of this value.

BitmapBitOrder(display)

int XBitmapBitOrder(display)
Display *display;

Within each bitmap unit, the left-most bit in the bitmap as displayed on the
screen is either the least-significant or most-significant bit in the unit. This
macro or function can return LSBFirst or MSBFirst.

BitmapPad(display)

int XBitmapPad(display)
Display *display;

Each scanline must be padded to a multiple of bits returned by this macro or
function.

DisplayHeight(display, screen—number)
int XDisplayHeight(display, screen_number)
Display *display;
int screen_number;
Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM(display, screen_number)

int XDisplayHeightMM(display, screen_number)

Chapter 2. Display Functions ' 19

223

[e B B

Display *display;
int screen_number;

Both return the height of the specified screen in millimeters.
DisplayWidth(display, screen_number)
int XDisplayWidth(display, screen_number)
Display *display;
int screen._number;
Both return the width of the screen in pixels.

DisplayWidthMM(display, screen_number)

int XDisplayWidthMM(display, screen_number)
Display *display;
int screen_number;

Both return the width of the specified screen in millimeters.

Screen Information Macros

The following lists the C language macros, their corresponding function
equivalents that are for other language bindings, and what data they both
can return. These macros or functions all take a pointer to the appropriate
screen structure. :

BlackPixelOfScreen(screen)

unsigned long XBlackPixelOfScreen(screen)
Screen *screen;

Both return the black pixel value of the specified screen.
WhitePixelOfScreen(screen)

unsigned long XWhitePixelOfScreen(screen)
Screen *screen;

Both return the white pixel value of the specified screen.
CellsOfScreen(screen)

int XCellsOfScreen(screen)
Screen *screen;

I e B B

[

XLIB

Both return the number of colormap cells in the default colormap of the
specified screen.

DefaultColormapOfScreen(screen)

Colormap XDefaultColormapOfScreen(screen)
Screen *screen;

Both return the default colormap of the specified screen.
DefaultDepthOfScreen(screen)

int XDefaultDepthOfScreen(screen)
Screen *screen;

Both return the depth of the root window.
DefaultGCOfScreen(screen)

GC XDefaultGCOfScreen(screen)
Screen *screen;

Both return a default graphics context (GC) of the specified screen, which
has the same depth as the root window of the screen. The GC must never be
freed.

DefaultVisualOfScreen(screen)

Visual ¥XDefaultVisualOfScreen(screen)
Screen *screen;

Both return the default visual of the specified screen. For information on vis-
ual types, see section 3.1.

DoesBackingStore(screen)

int XDoesBackingStore(screen)
Screen *screen;

Both return a value indicating whether the screen supports backing stores.
The value returned can be one of WhenMapped, NotUseful, or Always
(see section 3.2.4).

Chapter 2. Display Functions ‘ 21

-

-

1 1 1 "

DoesSaveUnders(screen)

Bool XDoesSaveUnders(screen)
Screen *screen;

Both return a Boolean value indicating whether the screen supports save
unders. If True, the screen supports save unders. If False, the screen does
not support save unders (see section 3.2.5).

DisplayOfScreen(screen)

Display *XDisplayOfScreen(screen)
Screen *screen;

Both return the display of the specified screen.
EventMaskOfScreen(screen)

long XEventMaskOfScreen(screen)
Screen *screen;

Both return the event mask of the root window for the specified screen at
connection setup time.

WidthOfScreen(screen)

int XWidthOfScreen(screen)

Screen *screen;
Both return the width of the specified screen in pixels.
HeightOfScreen(screen)

int XHeightOfScreen(screen)
Screen *screen;

Both return the height of the specified screen in pixels.
WidthMMOfScreen(screen)

int XWidthMMOfScreen(screen)
Screen *screen;

Both return the width of the specified screen in millimeters.

N
]

1 1 [17]

]

XLIB

HeightMMOfScreen(screen)

int XHeightMMOfScreen(screen)
Screen *screen;

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)

int XMaxCmapsOfScreen(screen)
Screen *screen;

Both return the maximum number of installed colormaps supported by the

specified screen (see section 7.3).
MinCmapsOfScreen(screen)

int XMinCmapsOfScreen(screen)
Screen *screen;

Both return the minimum number of installed colormaps supported by the

specified screen (see section 7.3).
PlanesOfScreen(screen)

int XPlanesOfScreen(screen)
Screen *screen;

Both return the depth of the root window.
RootWindowOfScreen(screen)

Window XRootWindowOfScreen(screen)
Screen *screen;

Both return the root window of the specified screen.

Generating a NoOperation Protocol Request
To execute a NoOperation protocol request, use XNoOp .
XNoOp(display)

Display *display;
display ~ Specifies the connection to the X server.

Chapter 2. Display Functions 23

204

]

25

2.6

The XNoOp function sends a NoOperation protocol request to the X
server, thereby exercising the connection.

Freeing Client-Created Data
To free any in-memory data that was created by an Xlib function, use
XFree.

XFree(data)
char *data;

data Specifies a pointer to the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the speci-
fied data. You must use it to free any objects that were allocated by Xlib.

Closing the Display
To close a display or disconnect from the X server, use XCloseDisplay.

XCloseDisplay(display)
Display *display;
display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the
display specified in the Display structure and destroys all windows, re-
source IDs (Window, Font, Pixmap, Colormap, Cursor, and GContext),
or other resources that the client has created on this display, unless the close-
down mode of the resource has been changed (see XSetCloseDown-
Mode). Therefore, these windows, resource IDs, and other resources should
never be referenced again or an error will be generated. Before exiting, you
should call XCloseDisplay explicitly so that any pending errors are re-
ported as XCloseDisplay performs a final XSync operation.
XCloseDisplay can generate a BadGC error.

X Server Connection Close Operations

When the X server’s connection to a client is closed either by an explicit call
to XCloseDisplay or by a process that exits, the X server performs the fol-
lowing automatic operations:

¢ It disowns all selections owned by the client (see XSetSelectionOwner).

24

XLIB

It performs an XUngrabPointer and XUngrabKeyboara if the client has
actively grabbed the pointer or the keyboard.

It performs an XUngrabServer if the client has grabbed the server.
It releases all passive grabs made by the client.

It marks all resources (including colormap entries) allocated by the client either as
permanent or temporary, depending on whether the close-down mode is
RetainPermanent or RetainTemporary. However, this does not prevent other
client applications from explicitly destroying the resources (see
XSetCloseDownMode).

When the close-down mode is DestroyAll, the X server destroys all of a
client’s resources as follows:

It examines each window in the client’s save-set to determine if it is an inferior
(subwindow) of a window created by the client. (The save-set is a list of other
clients’ windows, which are referred to as save-set windows.) If so, the X server
reparents the save-set window to the closest ancestor so that the save-set window is
not an inferior of a window created by the client The reparenting leaves
unchanged the absolute coordinates (with respect to the root window) of the
upper-left outer corner of the save-set window.

It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server does this even if the save-set window was not an inferior
of a window created by the client.

It destroys all windows created by the client.

It performs the appropriate free request on each nonwindow resource created by
the client in the server (for example, Font, Pixmap, Cursor, Colormap, and
GContext).

It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes.
An X server goes through a cycle of having no connections and having some
connections. When the last connection to the X server closes as a result of a
connection closing with the close_mode of DestroyAll, the X server does
the following:

It resets its state as if it had just been started. The X server begins by destroying
all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode.

It deletes all but the predefined atom identifiers.

Chapter 2. Display Functions 25

o It deletes all properties on all root windows (see chapter 4).

o It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

o It restores the standard root tiles and cursors.
o It restores the default font path.

o It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-
down mode set to RetainPermanent or RetainTemporary.

26

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that
lets you view graphic output. Client applications can display overlapping and
nested windows on one or more screens that are driven by X servers on one
or more machines. Clients who want to create windows must first connect
their program to the X server by calling XOpenDisplay. This chapter be-
gins with a discussion of visual types and window attributes. The chapter
continues with a discussion of the Xlib functions you can use to:

Create windows

Destroy windows

Map windows

Unmap windows
Configure windows
Change the stacking order
Change window attributes

Translate window coordinates

This chapter also identifies the window actions that may generate events.
Note that it is vital that your application conform to the established con-
ventions for communicating with window managers for it to work well with
the various window managers in use (see section 9.1). Toolkits generally
adhere to these conventions for you, relieving you of the burden. Toolkits
also often supersede many functions in this chapter with versions of their

Chapter 3. Window Functions 27

3.1

own. Refer to the documentation for the toolkit you are using for more
information.

Visual Types

On some display hardware, it may be possible to deal with color resources in
more than one way. For example, you may be able to deal with a screen of ei-
ther 12-bit depth with arbitrary mapping of pixel to color (pseudo-color) or
24-bit depth with 8 bits of the pixel dedicated to each of red, green, and
blue. These different ways of dealing with the visual aspects of the screen are
called visuals. For each screen of the display, there may be a list of valid visual
types supported at different depths of the screen. Because default windows
and visual types are defined for each screen, most simple applications need
not deal with this complexity. Xlib provides macros and functions that re-
turn the default root window, the default depth of the default root window,
and the default visual type (see section 2.2.1 and XMatchVisualInfo).

Xlib uses a Visual structure that contains information about the possible
color mapping. The members of this structure pertinent to this discussion
are class, red_mask, green_mask, blue_mask, bits_per_rgb, and
map_entries. The class member specifies one of the possible visual classes of
the screen and can be StaticGray, StaticColor, TrueColor,
GrayScale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types
clearer. The screen can be color or grayscale, can have a colormap that is
writable or read-only, and can also have a colormap whose indices are de-
composed into separate RGB pieces, provided one is not on a grayscale
screen. This leads to the following diagram:

Color GrayScale
R/O R'W R/O R/W
Undecomposed Static Pseudo Static Gray
Colormap Color Color Gray Scale
Decomposed True Direct
Colormap Color Color

28

XLIB

Conceptually, as each pixel is read out of video memory for display on the
screen, it goes through a look-up stage by indexing into a colormap.
Colormaps can be manipulated arbitrarily on some hardware, in limited
ways on other hardware, and not at all on other hardware. The visual types
affect the colormap and the RGB values in the following ways:

» For PseudoColor, a pixel value indexes a colormap to produce independent
RGB values, and the RGB values can be changed dynamically.

e GrayScale is treated the same way as PseudoColor except that the primary that
drives the screen is undefined. Thus, the client should always store the same value
for red, green, and blue in the colormaps.

» For DirectColor, a pixel value is decomposed into separate RGB subfields, and
each subfield separately indexes the colormap for the corresponding value. The
RGB values can be changed dynamically.

e TrueColor is treated the same way as DirectColor except that the colormap
has predefined, read-only RGB values. These RGB values are server-dependent
but provide linear or near-linear ramps in each primary.

e StaticColor is treated the same way as PseudoColor except that the colormap
has predefined, read-only, server-dependent RGB values.

e StaticGray is treated the same way as StaticColor except that the RGB values
are equal for any single pixel value, thus resulting in shades of gray. StaticGray
with a two-entry colormap can be thought of as monochrome.

The red_mask, green__mask, and blue_mask members are only defined for
DirectColor and TrueColor. Each has one contiguous set of bits with no
intersections. The bits_per_rgb member specifies the log base 2 of the

Example 4 Bit Colormap

E = One Bit
Input Pixel 15 is
4 Bits '
D = Zero Bit
2" Entries
To Di
Possible Pixel Values o Display
Are 0 Through 15 0 o
Red Green Blue

Figure 3.1. Pseudo color, gray scale, static color or static gray

Chapter 3. Window Functions 29

Example 3 x 4 Colormap (12 Bits/Pixel)

15

v

Red

2™ Entries

Input Pixel
3 mBits /i3

15

Green

15

v

— Y Biue

Figure 3.2. Direct color

number of distinct color values (individually) of red, green, and blue. Actual
RGB values are unsigned 16-bit numbers. The map_entries member defines
the number of available colormap entries in a newly created colormap. For
DirectColor and TrueColor, this is the size of an individual pixel

subfield.
To obtain the visual ID from a Visual, use XVisualIDFromVisual.
l_ VisuallD XVisuallDFrom Visual (visual)
Visual *visual;
|_ visual Specifies the visual type.

The XVisualIDFromVisual function returns the visual ID for the speci-
fied visual type.

30

3.2

XLIB

Window Attributes
All Inputoutput windows have a border width of zero or more pixels, an
optional background, an event suppression mask (which suppresses propa-
gation of events from children), and a property list (see section 4.2). The
window border and background can be a solid color or a pattern, called a
tile. All windows except the root have a parent and are clipped by their par-
ent. If a window is stacked on top of another window, it obscures that other
window for the purpose of input. If a window has a background (almost all
do), it obscures the other window for purposes of output. Attempts to out-
put to the obscured area do nothing, and no input events (for example,
pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.2).

Both InputOutput and InputOnly windows have the following com-
mon attributes, which are the only attributes of an InputOnly window:

win-gravity

event-mask
do-not-propagate-mask
override-redirect

cursor

If you specify any other attributes for an InputOnly window, a BadMatch
error results.

InputOnly windows are used for controlling input events in situations
where InputOutput windows are unnecessary. InputOnly windows are
invisible; can only be used to control such things as cursors, input event gen-
eration, and grabbing; and cannot be used in any graphics requests. Note
that InputOnly windows cannot have InputOutput windows as inferi-
ors.

Windows have borders of a programmable width and pattern as well as a
background pattern or tile. Pixel values can be used for solid colors. The
background and border pixmaps can be destroyed immediately after creat-
ing the window if no further explicit references to them are to be made. The
pattern can either be relative to the parent or absolute. If Parent-
Relative, the parent’s background is used.

Chapter 3. Window Functions 31

When windows are first created, they are not visible (not mapped) on the
screen. Any output to a window that is not visible on the screen and that does
not have backing store will be discarded. An application may wish to create
a window long before it is mapped to the screen. When a window is eventu-
ally mapped to the screen (using XMapWindow), the X server generates an
Expose event for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and
position for a top-level window. Your program must be prepared to use the
actual size and position of the top window. It is not acceptable for a client ap-
plication to resize itself unless in direct response to a human command to do
so. Instead, either your program should use the space given to it, or if the
space is too small for any useful work, your program might ask the user to
resize the window. The border of your top-level window is considered fair
game for window managers.

To set an attribute of a window, set the appropriate member of the
XSetWindowAttributes structure and OR in the corresponding value
bitmask in your subsequent calls to XCreateWindow and XChange-
WindowAttributes, or use one of the other convenience functions that set
the appropriate attribute. The symbols for the value mask bits and the
XSetWindowAttributes structure are:

/* Window attribute value mask bits */

#define CWBackPixmap (1L<<0)
#define CWBackPixel (1L<<1)
#define CWBorderPixmap (1L<<?2)
#define CWBorderPixel (1L<<3)
#define CWBitGravity (1L<<4)
#define CWWinGravity (1L<<5)
#define CWBackingStore (1L<<6)
#define CWBackingPlanes (1L<<7)
#define CWBackingPixel (1L<<8)
#define CWOverrideRedirect (1L<<9)
#define CWSaveUnder (1IL<<10)
#define CWEventMask (IL<<1D)
#define CWDontPropagate (1L<<12)
#define CWColormap (1L<<13)

#define CWCursor (1L<<14)

32 XLIB

/¥ Values */
typedef struct {

Pixmap background_pixmap;

unsigned long background_pixel;
Pixmap border..pixmap;

unsigned long border_pixel;
int bit_gravity;

int win_gravity;

int backing__store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

long event_mask;
long do_not_propagate_mask;

Bool override_redirect;
Colormap colormap;

/* background, None, or
ParentRelative */

/* background pixel */

/* border of the window or
CopyFromParent */

/* border pixel value */

/* one of bit gravity values */

/* one of the window gravity values */

/* NotUseful, WhenMapped,
Always ¥

/* planes to be preserved if possible */

/* value to use in restoring planes */

/* should bits under be saved?
(popups) */

/* set of events that should be saved */

/* set of events that should not
propagate */

/* boolean value for override_redirect */

/* color map to be associated with
window */

Cursor cursor;

} XSetWindowAdttributes;

/* cursor to be displayed (or None) */

The following lists the defaults for each window attribute and indicates
whether the attribute is applicable to InputOutput and InputOnly win-

dows:

Attribute Default InputOutput InputOnly
background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No

Chapter 3. Window Functions 33

3.2.1

Attribute Default InputOutput InputOnly
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParert Yes No
cursor None Yes Yes
Background Attribute

Only InputOutput windows can have a background. You can set the back-
ground of an InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifies the pixmap to be
used for a window’s background. This pixmap can be of any size, although
some sizes may be faster than others. The background-pixel attribute of a
window specifies a pixel value used to paint a window’s background in a sin-
gle color.

You can set the background-pixmap to a pixmap, None (default), or
ParentRelative. You can set the background-pixel of a window to any
pixel value (no default). If you specify a background-pixel, it overrides ei-
ther the default background-pixmap or any value you may have set in the
background-pixmap. A pixmap of an undefined size that is filled with the
background-pixel is used for the background. Range checking is not per-
formed on the background pixel; it simply is truncated to the appropriate
number of bits.

If you set the background-pixmap, it overrides the default. The
background-pixmap and the window must have the same depth, or a
BadMatch error results. If you set background-pixmap to None, the win-
dow has no defined background. If you set the background-pixmap to
ParentRelative:

The parent window’s background-pixmap is used. The child window, however,
must have the same depth as its parent, or a BadMatch error results.

If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

A copy of the parent window’s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’s background-
pixmap is required.

34

3.2.2

XLIB

» The background tile origin always aligns with the parent window’s background

tile origin. If the background-pixmap is not ParentRelative, the background
tile origin is the child window’s origin.

Setting a new background, whether by setting background-pixmap or
background-pixel, overrides any previous background. The background-
pixmap can be freed immediately if no further explicit reference is made to
it (the X server will keep a copy to use when needed). If you later draw into
the pixmap used for the background, what happens is undefined because
the X implementation is free to make a copy of the pixmap or to use the
same pixmap.

When no valid contents are available for regions of a window and either
the regions are visible or the server is maintaining backing store, the server
automatically tiles the regions with the window’s background unless the win-
dow has a background of None. If the background is None, the previous
screen contents from other windows of the same depth as the window are
simply left in place as long as the contents come from the parent of the win-
dow or an inferior of the parent. Otherwise, the initial contents of the ex-
posed regions are undefined. Expose events are then generated for the re-
gions, even if the background-pixmap is None (see chapter 8).

Border Attribute

Only InputOutput windows can have a border. You can set the border of
an InputOutput window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifies the pixmap to be used
for a window’s border. The border-pixel attribute of a window specifies a
pixmap of undefined size filled with that pixel be used for a window’s bor-
der. Range checking is not performed on the background pixel; it simply is
truncated to the appropriate number of bits. The border tile origin is always
the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be
faster than others) or to CopyFromParent (default). You can set the
border-pixel to any pixel value (no default).

If you set a border-pixmap, it overrides the default. The border-pixmap
and the window must have the same depth, or a BadMatch error results. If
you set the border-pixmap to CopyFromParent, the parent window’s
border-pixmap is copied. Subsequent changes to the parent window’s bor-

Chapter 3. Window Functions 35

3.2.3

der attribute do not affect the child window. However, the child window must
have the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit refer-
ence is made to it. If you later draw into the pixmap used for the border,
what happens is undefined because the X implementation is free either to
make a copy of the pixmap or to use the same pixmap. If you specify a
border-pixel, it overrides either the default border-pixmap or any value you
may have set in the border-pixmap. All pixels in the window’s border will be
set to the border-pixel. Setting a new border, whether by setting border-
pixel or by setting border-pixmap, overrides any previous border.

Output to a window is always clipped to the inside of the window. There-
fore, graphics operations never affect the window border.

Gravity Attributes

The bit gravity of a window defines which region of the window should be
retained when an InputOutput window is resized. The default value for
the bit-gravity attribute is ForgetGravity. The window gravity of a win-
dow allows you to define how the InputOutput or InputOnly window
should be repositioned if its parent is resized. The default value for the win-
gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window
is moved or its border is changed, then the contents of the window are not
lost but move with the window. Changing the inside width or height of the
window causes its contents to be moved or lost (depending on the bit-gravity
of the window) and causes children to be reconfigured (depending on their
win-gravity). For a change of width and height, the (x, y) pairs are defined:

Grauity Direction Coordinates
NorthWestGravity 0, 0)
NorthGravity (Width/2, 0)
NorthEastGravity (Width, 0)
WestGravity (0, Height/2)
CenterGravity (Width/2, Height/2)
EastGravity (Width, Height/2)
SouthWestGravity (0, Height)
SouthGravity (Width/2, Height)

SouthEastGravity (Width, Height)

36

XLIB

When a window with one of these bit-gravity values is resized, the corre-
sponding pair defines the change in position of each pixel in the window.
When a window with one of these win-gravities has its parent window
resized, the corresponding pair defines the change in position of the window
within the parent. When a window is so repositioned, a GravityNotify
event is generated (see chapter 8).

A bit-gravity of StaticGravity indicates that the contents or origin
should not move relative to the origin of the root window. If the change in
size of the window is coupled with a change in position (x, y), then for bit-
gravity the change in position of each pixel is (—x, —y), and for win-gravity
the change in position of a child when its parent is so resized is (—x, —y).
Note that StaticGravity still only takes effect when the width or height
of the window is changed, not when the window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are
always discarded after a size change, even if a backing store or save under
has been requested. The window is tiled with its background and zero or
more Expose events are generated. If no background is defined, the exist-
ing screen contents are not altered. Some X servers may also ignore the spec-
ified bit-gravity and always generate Expose events.

NorthWest NorthEast
T
! Original
Window
—E Center }
<4—— Window
After Resize

SouthWest SouthEast |2

Figure 3.3. Window gravity

Chapter 3. Window Functions 37

3.24

3.25

A win-gravity of UnmapGravity is like NorthWestGravity (the win-
dow is not moved), except the child is also unmapped when the parent is
resized, and an UnmapNotify event is generated.

Backing Store Attribute

Some implementations of the X server may choose to maintain the contents
of InputOutput windows. If the X server maintains the contents of a win-
dow, the off-screen saved pixels are known as backing store. The backing
store advises the X server on what to do with the contents of a window. The
backing-store attribute can be set to NotUseful (default), WhenMapped, or
Rlways.

A backing-store attribute of NotUseful advises the X server that main-
taining contents is unnecessary, although some X implementations may still
choose to maintain contents and, therefore, not generate Expose events. A
backing-store attribute of ¥henMapped advises the X server that maintain-
ing contents of obscured regions when the window is mapped would be ben-
eficial. In this case, the server may generate an Expose event when the
window is created. A backing-store attribute of Always advises the X server
that maintaining contents even when the window is unmapped would be
beneficial. Even if the window is larger than its parent, this is a request to the
X server to maintain complete contents, not just the region within the parent
window boundaries. While the X server maintains the window’s contents,
Expose events normally are not generated, but the X server may stop main-
taining contents at any time.

When the contents of obscured regions of a window are being maintained,
regions obscured by noninferior windows are included in the destination of -
graphics requests (and source, when the window is the source). However, re-
gions obscured by inferior windows are not included.

Save Under Flag

Some server implementations may preserve contents of InputOutput win-
dows under other InputOutput windows. This is not the same as preserv-
ing the contents of a window for you. You may get better visual appeal if
transient windows (for example, pop-up menus) request that the system pre-
serve the screen contents under them, so the temporarily obscured applica-
tions do not have to repaint.

38

3.2.6

3.2.7

3.2.8

XLIB

You can set the save-under flag to True or False (default). If save-under
is True, the X server is advised that, when this window is mapped, saving the
contents of windows it obscures would be beneficial.

Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of
an InputOutput window hold dynamic data that must be preserved in
backing store and during save unders. The default value for the backing-
planes attribute is all bits set to 1. You can set backing pixel to specify what
bits to use in planes not covered by backing planes. The default value for the
backing-pixel attribute is all bits set to 0. The X server is free to save only the
specified bit planes in the backing store or the save under and is free to re-
generate the remaining planes with the specified pixel value. Any extrane-
ous bits in these values (that is, those bits beyond the specified depth of the
window) may be simply ignored. If you request backing store or save unders,
you should use these members to minimize the amount of off-screen
memory required to store your window.

Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this
InputOutputor InputOnly window (or, for some event types, inferiors of
that window). The do-not-propagate-mask attribute defines which events
should not be propagated to ancestor windows when no client has the event
type selected in this InputOutput or InputOnly window. Both masks are
the bitwise inclusive OR of one or more of the valid event mask bits. You can
specify that no maskable events are reported by setting NoEventMask (de-
fault).

Override Redirect Flag
To control window placement or to add decoration, a window manager often
needs to intercept (redirect) any map or configure request. Pop-up windows,
however, often need to be mapped without a window manager getting in the
way. To control whether an InputOutput or InputOnly window is to ig- -
nore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests
on this window should override a SubstructureRedirectMask on the

Chapter 3. Window Functions 39

3.2.9

3.2.10

3.3

parent. You can set the override-redirect flag to True or False (default).
Window managers use this information to avoid tampering with pop-up
windows (see also chapter 9).

Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors
of the InputOutput window. The colormap must have the same visual type
as the window, or a BadMatch error results. X servers capable of supporting
multiple hardware colormaps can use this information, and window manag-
er can use it for calls to XInstallColormap. You can set the colormap at-
tribute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s
colormap is copied and used by its child. However, the child window must
have the same visual type as the parent, or a BadMatch error results. The
parent window must not have a colormap of None, or a BadMatch error re-
sults. The colormap is copied by sharing the colormap object between the
child and parent, not by making a complete copy of the colormap contents.
Subsequent changes to the parent window’s colormap attribute do not affect
the child window.

Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is
in the InputOutput or InputOnly window. You can set the cursor to a
cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer
is in the InputOutput or InputOnly window, and any change in the par-
ent’s cursor will cause an immediate change in the displayed cursor. By call-
ing XFreeCursor, the cursor can be freed immediately as long as no fur-
ther explicit reference to it is made.

Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply
higher-level functions specifically for creating and placing top-level win-
dows, which are discussed in the appropriate toolkit documentation. If you
do not use a toolkit, however, you must provide some standard information

40

XLIB

or hints for the window.manager by using the Xlib predefined property
functions (see chapter 9).

If you use Xlib to create your own top-level windows (direct children of
the root window), you must observe the following rules so that all applica-
tions interact reasonably across the different styles of window manage-
ment:

You must never fight with the window manager for the size or placement of your
top-level window.

You must be able to deal with whatever size window you get, even if this means
that your application just prints a message like “Please make me bigger” in its
window.

You should only attempt to resize or move top-level windows in direct response to
a user request. If a request to change the size of a top-level window fails, you
must be prepared to live with what you get. You are free to resize or move the
children of top-level windows as necessary. (Toolkits often have facilities for
automatic relayout.)

If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

XCreateWindow is the more general function that allows you to set specific
window attributes when you create a window. XCreateSimpleWindow cre-
ates a window that inherits its attributes from its parent window.

The X server acts as if Input0Only windows do not exist for the purposes
of graphics requests, exposure processing, and VisibilityNotify
events. An InputOnly window cannot be used as a drawable (that is, as a
source or destination for graphics requests). InputOnly and Input-—
output windows act identically in other respects (properties, grabs, input
control, and so on). Extension packages can define other classes of win-
dows.

To create an unmapped window and set its window attributes, use
XCreateWindow.

Window XCreateWindow(display, parent, x, y, width, height, border_width, depth, class,
visual, valuemask, attributes)
Display *display;
Window parent;
nt x, y;

Chapter 3. Window Functions 41

unsigned int width, height;
unsigned int border—_width;

int depth;

unsigned int class;

Visual *visual

unsigned long valuemask;
XSetWindowAttributes *attributes;

display
parent
x

y

width
height

border_width

depth

class

visual

valuemask

attributes

Specifies the connection to the X server.
Specifies the parent window.

Specify the x and y coordinates, which are the top-left outside
corner of the created window’s borders and are relative to the
inside of the parent window’s borders.

Specify the width and height, which are the created window’s inside
dimensions and do not include the created window’s borders. The
dimensions must be nonzero, or a Badvalue error results.
Specifies the width of the created window’s border in pixels.
Specifies the window’s depth. A depth of CopyFromParent means
the depth is taken from the parent.

Specifies the created window’s class. You can pass InputOutput,
InputOnly, or CopyFromParent. A class of CopyFromParent
means the class is taken from the parent.

Specifies the visual type. A visual of CopyFronParent means the
visual type is taken from the parent.

Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid
attribute mask bits. If valuemask is zero, the attributes are ignored
and are not referenced.

Specifies the structure from which the values (as specified by the
value mask) are to be taken. The value mask should have the
appropriate bits set to indicate which attributes have been set in the
structure. ‘

The XCreateWindow function creates an unmapped subwindow for a spec-
ified parent window, returns the window ID of the created window, and

causes the X server to generate a CreateNotify event. The created win-

dow is placed on top in the stacking order with respect to siblings.

The border_width for an InputOnly window must be zero, or a
BadMatch error results. For class InputOutput, the visual type and depth

must be a combination supported for the screen, or a BadMatch error re-

sults. The depth need not be the same as the parent, but the parent must not

42

XLIB

be a window of class InputOnly, or a BadMatch error results. For an
InputOnly window, the depth must be zero, and the visual must be one
supported by the screen. If either condition is not met, a BadMatch error
results. The parent window, however, may have any depth and class. If you
specify any invalid window attribute for a window, a BadMatch error re-
sults.

The created window is not yet displayed (mapped) on the user’s display.
To display the window, call XMapWindow. The new window initially uses the
same cursor as its parent. A new cursor can be defined for the new window
by calling XDefineCursor. The window will not be visible on the screen
unless it and all of its ancestors are mapped and it is not obscured by any of
its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor,
BadMatch, BadPixmap, BadValue, and BadWindow errors.

To create an unmapped InputOutput subwindow of a given parent win-
dow, use XCreateSimpleWindow.

Window XCreateSimpleWindow(display, parent, x, v, width, height, border__width,
border, background)
Display *display;
Window parent;
int x, y;
unsigned int width, height;
unsigned int border_width;
unsigned long border;
unsigned long background;

display Specifies the connection to the X server.

parent Specifies the parent window.

x

y Specify the x and y coordinates, which are the top-left outside

corner of the new window’s borders and are relative to the inside
of the parent window’s borders.

width

height Specify the width and height, which are the created window’s inside
dimensions and do not include the created window’s borders. The
dimensions must be nonzero, or a BadValue error results.

border—_width ~ Specifies the width of the created window’s border in pixels.

border Specifies the border pixel value of the window.

background Specifies the background pixel value of the window.

Chapter 3. Window Functions 43

3.4

The XCreateSimpleWindow function creates an unmapped Input-
Output subwindow for a specified parent window, returns the window
ID of the created window, and causes the X server to generate a
CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings. Any part of the window that extends outside
its parent window is clipped. The border_width for an InputOnly window
must be zero, or a BadMatch error results. XCreateSimpleWindow inher-
its its depth, class, and visual from its parent. All other window attributes, ex-
cept background and border, have their default values.

XCreateSimpleWindow <can generate BadAlloc, BadMatch,
BadValue, and BadWindow errors.

Destroying Windows
Xlib provides functions that you can use to destroy a window or destroy all
subwindows of a window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroyWindow(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all
of its subwindows and causes the X server to generate a DestroyNotify
event for each window. The window should never be referenced again. If
the window specified by the w argument is mapped, it is unmapped auto-
matically. The ordering of the DestroyNotify events is such that for any
given window being destroyed, DestroyNotify is generated on any inferi-
ors of the window before being generated on the window itself. The order-
ing among siblings and across subhierarchies is not otherwise constrained. If
the window you specified is a root window, no windows are destroyed.
Destroying a mapped window will generate Expose events on other win-
dows that were obscured by the window being destroyed.
XDestroyWindow can generate a BadWindow error.

44

3.5

XLIB
To destroy all subwindows of a specified window, use XDestroy-
Subwindows.

XDestroySubwindows(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the
specified window, in bottom-to-top stacking order. It causes the X server to
generate a DestroyNotify event for each window. If any mapped
subwindows were actually destroyed, XDestroySubwindows causes the X
server to generate Expose events on the specified window. This is much
more efficient than deleting many windows one at a time because much of
the work need be performed only once for all of the windows, rather than
for each window. The subwindows should never be referenced again.
XDestroySubwindows can generate a BadWindow error.

Mapping Windows
A window is considered mapped if an XMapWindow call has been made on
it. It may not be visible on the screen for one of the following reasons:

It is obscured by another opaque window.
One of its ancestors is not mapped.

It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes
visible on the screen. A client receives the Expose events only if it has asked
for them. Windows retain their position in the stacking order when they are
unmapped. :

A window manager may want to control the placement of subwindows. If
SubstructureRedirectMask has been selected by a window manager on
a parent window (usually a root window), a map request initiated by other
clients on a child window is not performed, and the window manager is sent
a MapRequest event. However, if the override-redirect flag on the child
had been set to True (usually only on pop-up menus), the map request is
performed.

Chapter 3. Window Functions 45

A tiling window manager might decide to reposition and resize other cli-
ents’ windows and then decide to map the window to its final location. A win-
dow manager that wants to provide decoration might reparent the child into
a frame first. For further information, see section 3.2.8 and chapter 8. Only
a single client at a time can select for SubstructureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent
window. Then, any attempt to resize the window by another client is sup-
pressed, and the client receives a ResizeRequest event.

To map a given window, use XMapWindow.

l— XMapWindow(display, w)
Display *display;
Window w;
display Specifies the connection to the X server.
l_ w Specifies the window.

The XxMapWindow function maps the window and all of its subwindows that
have had map requests. Mapping a window that has an unmapped ancestor
does not display the window but marks it as eligible for display when the an-
cestor becomes mapped. Such a window is called unviewable. When all its
ancestors are mapped, the window becomes viewable and will be visible on
the screen if it is not obscured by another window. This function has no ef-
fect if the window is already mapped.

If the override-redirect of the window is False and if some other client
has selected SubstructureRedirectMask on the parent window, then
the X server generates a MapRequest event, and the XMapWindow function
does not map the window. Otherwise, the window is mapped, and the X
server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remem-
bered, the X server tiles the window with its background. If the window’s
background is undefined, the existing screen contents are not altered, and
the X server generates zero or more Expose events. If backing-store was
maintained while the window was unmapped, no Expose events are gener-
ated. If backing-store will now be maintained, a full-window exposure is al-
ways generated. Otherwise, only visible regions may be reported. Similar til-
ing and exposure take place for any newly viewable inferiors.

46

XLIB

If the window is an InputOutput window, XMapWindow generates
Expose events on each InputOutput window that it causes to be displayed.
If the client maps and paints the window and if the client begins processing
events, the window is painted twice. To avoid this, first ask for Expose
events and then map the window, so the client processes input events as
usual. The event list will include Expose for each window that has appeared
on the screen. The client’s normal response to an Expose event should be
to repaint the window. This method usually leads to simpler programs and
to proper interaction with window managers.

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

XMapRaised(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it
maps the window and all of its subwindows that have had map requests.
However, it also raises the specified window to the top of the stack. For addi-
tional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified win-
dow in top-to-bottom stacking order. The X server generates Expose events
on each newly displayed window. This may be much more efficient than
mapping many windows one at a time because the server needs to perform

Chapter 3. Window Functions 47

3.6

much of the work only once, for all of the windows, rather than for each win-
dow.
XMapSubwindows can generate a BadWindow error.

Unmapping Windows
Xlib provides functions that you can use to unmap a window or all
subwindows.

To unmap a window, use XUnmapWindow.

XUnmapWindow(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XUnmapWindow function unmaps the specified window and causes the
X server to generate an UnmapNotify event. If the specified window is al-
ready unmapped, XUnmapWindow has no effect. Normal exposure process-
ing on formerly obscured windows is performed. Any child window will no
longer be visible until another map call is made on the parent. In other
words, the subwindows are still mapped but are not visible until the parent
is mapped. Unmapping a window will generate Expose events on windows
that were formerly obscured by it.
XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmap-
Subwindows.

XUnmapSubwindows(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XUnmapSubwindows function unmaps all subwindows for the speci-
fied window in bottom-to-top stacking order. It causes the X server to gener-
ate an UnmapNotify event on each subwindow and Expose events on for-

48

3.7

XLIB

merly obscured windows. Using this function is much more efficient than
unmapping multiple windows one at a time because the server needs to per-
form much of the work only once, for all of the windows, rather than for
each window.

XUnmapSubwindows can generate a BadWindow error.

Configuring Windows

Xlib provides functions that you can use to move a window, resize a window,
move and resize a window, or change a window’s border width. To change
one of these parameters, set the appropriate member of the
XWindowChanges structure and OR in the corresponding value mask in
subsequent calls to XConfigureWindow. The symbols for the value mask
bits and the XWindowChanges structure are:

/* Configure window value mask bits */

#define CWX (1<<0)
#define CHY <<l
#define CWWidth (1<<2)
#define CWHeight 1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

/* Values */

typedef struct {
int X, y;
int width, height;
int border_width;
Window sibling;
int stack_mode;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates,
which are relative to the parent’s origin and indicate the position of the
upper-left outer corner of the window. The width and height members are
used to set the inside size of the window, not including the border, and must
be nonzero, or a BadValue error results. Attempts to configure a root win-
dow have no effect.

The border_width member is used to set the width of the border in pixels.
Note that setting just the border width leaves the outer-left corner of the

Chapter 3. Window Functions 49

window in a fixed position but moves the absolute position of the window’s
origin. If you attempt to set the border-width attribute of an InputOnly
window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking opera-
tions. The stack_mode member is used to set how the window is to be
restacked and can be set to Rbove, Below, TopIf, BottomIf, or
Opposite.

If the override-redirect flag of the window is False and if some other cli-
ent has selected SubstructureRedirectMask on the parent, the X server
generates a ConfigureRequest event, and no further processing is
performed. Otherwise, if some other client has selected Resize-
RedirectMask on the window and the inside width or height of the win-
dow is being changed, a ResizeRequest event is generated, and the cur-
rent inside width and height are used instead. Note that the override-
redirect flag of the window has no effect on ResizeRedirectMask and
that SubstructureRedirectMask on the parent has precedence over
ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is
restacked among siblings, and a ConfigureNotify event is generated if
the state of the window actually changes. GravityNotify events are gener-
ated after ConfigureNotify events. If the inside width or height of the
window has actually changed, children of the window are affected as speci-
fied.

If a window’s size actually changes, the window’s subwindows move ac-
cording to their window gravity. Depending on the window’s bit gravity, the
contents of the window also may be moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure pro-
cessing is performed on these formerly obscured windows, including the
window itself and its inferiors. As a result of increasing the width or height,
exposure processing is also performed on any new regions of the window
and any regions where window contents are lost.

The restack check (specifically, the computation for BottonI£, TopIf,
and Opposite) is performed with respect to the window’s final size and po-
sition (as controlled by the other arguments of the request), not its initial po-
sition. If a sibling is specified without a stack_mode, a BadMatch error re-
sults.

50

XLIB

If a sibling and a stack_mode are specified, the window is restacked as fol-

lows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

TopIf If the sibling occludes the window, the window is placed at the
top of the stack.

BottomIf If the window occludes the sibling, the window is placed at the
bottom of the stack.

Opposite If the sibling occludes the window, the window is placed at the

top of the stack. If the window occludes the sibling, the
window is placed at the bottom of the stack.

If a stack_mode is specified but no sibling is specified, the window is re-
stacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

TopIf If any sibling occludes the window, the window is placed at the
top of the stack.

BottomIf If the window occludes any sibling, the window is placed at the
bottom of the stack.

Opposite If any sibling occludes the window, the window is placed at the

top of the stack. If the window occludes any sibling, the
window is placed at the bottom of the stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use
XConfigureWindow.

XConfigureWindow(display, w, value—mask, values)
Display *display;
Window w;
unsigned int value_mask;
XWindowChanges *values;
display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
value_mask Specifies which values are to be set using information in the values
structure. This mask is the bitwise inclusive OR of the valid
configure window values bits.
values Specifies a pointer to the XWindowChanges structure.

Chapter 3. Window Functions 51

The XConfigureWindow function uses the values specified in the
XWindowChanges structure to reconfigure a window’s size, position, bor-
der, and stacking order. Values not specified are taken from the existing ge-
ometry of the window.

If a sibling is specified without a stack_mode or if the window is not actu-
ally a sibling, a BadMatch error results. Note that the computations for
BottonIf, TopIf, and Opposite are performed with respect to the win-
dow’s final geometry (as controlled by the other arguments passed to
XConfigureWindow), not its initial geometry. Any backing store contents
of the window, its inferiors, and other newly visible windows are either dis-
carded or changed to reflect the current screen contents (depending on the
implementation).

XConfigureWindow can generate BadMatch, BadValue, and Bad-
Window errors.

To move a window without changing its size, use XMoveWindow.

l_ XMoveWindow(display, w, x, y)
Display *dusplay;
Window w;
int x, y;
display Specifies the connection to the X server.
w Specifies the window to be moved.
x
y Specify the x and y coordinates, which define the new location of the
_ top-left pixel of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x
and y coordinates, but it does not change the window’s size, raise the win-
dow, or change the mapping state of the window. Moving a mapped window
may or may not lose the window’s contents depending on if the window is ob-
scured by nonchildren and if no backing store exists. If the contents of the
window are lost, the X server generates Expose events. Moving a mapped
window generates Expose events on any formerly obscured windows.

If the override-redirect flag of the window is Fa lse and some other client
has selected SubstructureRedirectMask on the parent, the X server
generates a ConfigureRequest event, and no further processing is per-
formed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

52

XLIB

To change a window’s size without changing the upper-left coordinate, use
XResizeWindow.

XResizeWindow(display, w, width, height)
Display *display;
Window w;
unsigned int width, height;
display Specifies the connection to the X server.
w Specifies the window.
width
height Specify the width and height, which are the interior dimensions of the
window after the call completes.

The XResizeWindow function changes the inside dimensions of the speci-
fied window, not including its borders. This function does not change the
window’s upper-left coordinate or the origin and does not restack the win-
dow. Changing the size of a mapped window may lose its contents and gen-
erate Expose events. If a mapped window is made smaller, changing its size
generates Expose events on windows that the mapped window formerly ob-
scured.

If the override-redirect flag of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server
generates a ConfigureRequest event, and no further processing is per-
formed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use XMoveResize-
Window.

XMoveResizeWindow(display, w, x, v, width, height)
Display *display;
Window w;
int x, y;
unsigned int width, height;
display Specifies the connection to the X server.
w Specifies the window to be reconfigured.
X
y Specify the x and y coordinates, which define the new position of the
window relative to its parent.
width
height Specify the width and height, which define the interior size of the window.

Chapter 3. Window Functions 53

3.8

The XMoveResizeWindow function changes the size and location of the
specified window without raising it. Moving and resizing a mapped window
may generate an Expose event on the window. Depending on the new size
and location parameters, moving and resizing a window may generate
Expose events on windows that the window formerly obscured.

If the override-redirect flag of the window is False and some other client
has selected SubstructureRedirectMask on the parent, the X server
generates a ConfigureRequest event, and no further processing is per-
formed. Otherwise, the window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindow-
BorderWidth.

XSetWindowBorderWidth(display, w, width)
Display *duisplay;
Window w;
unsigned int width;
display ~ Specifies the connection to the X server.
w Specifies the window.
width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s bor-
der width to the specified width.
XSetWindowBorderWidth can generate a BadWindow error.

Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack
windows.

To raise a window so that no sibling window obscures it, use
XRaiseWindow.

XRaiseWindow(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

54

XLIB

The XRaiseWindow function raises the specified window to the top of the
stack so that no sibling window obscures it. If the windows are regarded as
overlapping sheets of paper stacked on a desk, then raising a window is anal-
ogous to moving the sheet to the top of the stack but leaving its x and y loca-
tion on the desk constant. Raising a mapped window may generate Expose
events for the window and any mapped subwindows that were formerly ob-
scured.

If the override-redirect attribute of the window is False and some other
client has selected SubstructureRedirectMask on the parent, the X
server generates a ConfigureRequest event, and no processing is per-
formed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it does not obscure any sibling windows, use
XLowerWindow.

XLowerWindow(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of
the stack so that it does not obscure any sibling windows. If the windows are
regarded as overlapping sheets of paper stacked on a desk, then lowering a
window is analogous to moving the sheet to the bottom of the stack but leav-
ing its x and y location on the desk constant. Lowering a mapped window
will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other
client has selected SubstructureRedirectMask on the parent, the X
server generates a ConfigureRequest event, and no processing is per-
formed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

To circulate a subwindow up or down, use XCirculateSubwindows.

Chapter 3. Window Functions 55

=

XCirculateSubwindows(display, w, direction)
Display *display;
Window w;
int direction;
display Specifies the connection to the X server.
w Specifies the window.
direction Specifies the direction (up or down) that you want to circulate the
window. You can pass RaiseLowest or LowerHighest.

The XCirculateSubwindows function circulates children of the spec-
ified window in the specified direction. If you specify Raiselowest,
XCirculateSubwindows raises the lowest mapped child (if any) that is
occluded by another child to the top of the stack. If you specify
LowerHighest, XCirculateSubwindows lowers the highest mapped
child (if any) that occludes another child to the bottom of the stack. Expo-
sure processing is then performed on formerly obscured windows. If some
other client has selected SubstructureRedirectMask on the window,
the X server generates a CirculateRequest event, and no further pro-
cessing is performed. If a child is actually restacked, the X server generates
a CirculateNotify event.

XCirculateSubwindows can generate BadValue and BadWindow er-
YOrs.

To raise the lowest mapped child of a window that is partially or com-
pletely occluded by another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUp(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child
of the specified window that is partially or completely occluded by another
child. Completely unobscured children are not affected. This is a conve-
nience function equivalent to XCirculateSubwindows with Raise-
Lowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

56

XLIB
To lower the highest mapped child of a window that partially or com-
pletely occludes another child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown(display, w)
Display *display;

Window w; .
display Specifies the connection to the X server.
w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped
child of the specified window that partially or completely occludes another
child. Completely unobscured children are not affected. This is a con-
venience function equivalent to XCirculateSubwindows with Lower—
Highest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestack-
Windows.

XRestackWindows(display, windows, nwindows),
Display *display;
Window windows(];
int nwindows;
display Specifies the connection to the X server.
windows Specifies an array containing the windows to be restacked.
nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order speci-
fied, from top to bottom. The stacking order of the first window in the win-
dows array is unaffected, but the other windows in the array are stacked un-
derneath the first window, in the order of the array. The stacking order of
the other windows is not affected. For each window in the window array that
is not a child of the specified window, a BadMatch error results.

If the override-redirect attribute of a window is False and some other cli-
ent has selected SubstructureRedirectMask on the parent, the X server
generates ConfigureRequest events for each window whose override-
redirect flag is not set, and no further processing is performed. Otherwise,
the windows will be restacked in top to bottom order.

XRestackWindows can generate a BadWindow error.

Chapter 3. Window Functions 57

3.9

Changing Window Attributes

Xlib provides functions that you can use to set window attributes.
XChangeWindowAttributes is the more general function that allows
you to set omne or more window attributes provided by the
XSetWindowAttributes structure. The other functions described in this
section allow you to set one specific window attribute, such as a window’s
background.

To change one or more attributes for a given window, use
XChangeWindowAttributes.

XChangeWindowAttributes(display, w, valuemask, attributes)
Display *dusplay;
Window w;
unsigned long valuemask;
XSetWindowAttributes *attributes;
display Specifies the connection to the X server.
w Specifies the window.
valuemask Specifies which window attributes are defined in the attributes
argument. This mask is the bitwise inclusive OR of the valid attribute
mask bits. If valuemask is zero, the attributes are ignored and are not
referenced. The values and restrictions are the same as for
XCreateWindow.
attributes Specifies the structure from which the values (as specified by the value
mask) are to be taken. The value mask should have the appropriate
bits set to indicate which attributes have been set in the structure (see
section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function
uses the window attributes in the XSetWindowAttributes structure to
change the specified window attributes. Changing the background does not
cause the window contents to be changed. To repaint the window and its
background, use XClearWindow. Setting the border or changing the back-
ground such that the border tile origin changes causes the border to
be repainted. Changing the background of a root window to None or
ParentRelative restores the default background pixmap. Changing the
border of a root window to CopyFromParent restores the default border
pixmap. Changing the win-gravity does not affect the current position
of the window. Changing the backing-store of an obscured window to
WhenMapped or Always, or changing the backing-planes, backing-pixel, or

58

XLIB

save-under of a mapped window may have no immediate effect. Changing
the colormap of a window (that is, defining a new map, not changing the
contents of the existing map) generates 2 ColormapNotify event. Chang-
ing the colormap of a visible window may have no immediate effect on the
screen because the map may not be installed (see XInstallColormap).
Changing the cursor of a root window to None restores the default cursor.
Whenever possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks
are maintained separately. When an event is generated, it is reported to all
interested clients. However, only one client at a time can select for
SubstructureRedirectMask, ResizeRedirectMask, and Button-
PressMask. If a client attempts to select any of these event masks and some
other client has already selected one, a BadAccess error results. There is
only one do-not-propagate-mask for a window, not one per client.

XChangeWindowAttributes can generate BadAccess, BadColor,
BadCursor, BadMatch, BadPixmap, BadValue, and BadWindow
errors.

To set the background of a window to a given pixel, use
XSetWindowBackground.

XSetWindowBackground(display, w, background_pixel)
Display *display;

Window w;

unsigned long background_pixel;
display Specifies the connection to the X server.
w Specifies the window.

background__pixel Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window
to the specified pixel value. Changing the background does not cause the
window contents to be changed. XSetWindowBackground uses a pixmap
of undefined size filled with the pixel value you passed. If you try to change
the background of an InputOnly window, a BadMatch error results.

XSetWindowBackground can generate BadMatch and BadWindow
€rrors.

To set the background of a window to a given pixmap, use
XSetWindowBackgroundPixmap.

Chapter 3. Window Functions 59

=

Note

XSetWindowBackgroundPixmap(display, w, background—_pixmap)
Display *display;

Window w;
Pixmap background_pixmap;
display Specifies the connection to the X server.
w « Specifies the window.
background_pixmap Specifies the background pixmap, ParentRelative, or

None.

The XSetWindowBackgroundPixmap function sets the background
pixmap of the window to the specified pixmap. The background pixmap can
immediately be freed if no further explicit references to it are to be made.
If ParentRelative is specified, the background pixmap of the window’s
parent is used, or on the root window, the default background is restored. If
you try to change the background of an InputOnly window, a BadMatch
error results. If the background is set to None, the window has no defined
background.

XSetWindowBackgroundPixmap can generate BadMatch, Bad-
Pixmap, and BadWindow errors.

XSetWindowBackground and XSetWindowBackgroundPixmap do not
change the current contents of the window.

To change and repaint a window’s border to a given pixel, use
XSetWindowBorder.

XSetWindowBorder(display, w, border—pixel)
Display *display;

Window w;

unsigned long border_pixel;
display Specifies the connection to the X server.
w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the
pixel value you specify. If you attempt to perform this on an InputOnly
window, a BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindow errors.

60

3.10

XLIB
To change and repaint the border tile of a given window, use
XSetWindowBorderPixmap.

XSetWindowBorderPixmap(display, w, border_pixmap)
Display *display;

Window w;

Pixmap border—pixmap;
display Specifies the connection to the X server.
w Specifies the window.

border—pixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the
window to the pixmap you specify. The border pixmap can be freed imme-
diately if no further explicit references to it are to be made. If you specify
CopyFromParent, a copy of the parent window’s border pixmap is used. If
you attempt to perform this on an InputOnly window, a BadMatch error
results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and
BadWindow errors.

Translating Window Coordinates

Applications, mostly window managers, often need to perform a coordinate
transformation from the coordinate space of one window to another win-
dow or need to determine which subwindow a coordinate lies in.
XTranslateCoordinates fulfills these needs (and avoids any race condi-
tions) by asking the X server to perform this operation.

Bool XTranslateCoordinates (display, src—w, dest—w, src_x, src_y, dest_x_return,
dest_y_return, child_return)
Display *display;
Window src_w, dest_w;
int src_x, src—y;
int *dest_x_return, *dest_y_return;
Window *child__return;

display Specifies the connection to the X server.
STC—w Specifies the source window.

dest_w Specifies the destination window.

sre—x

sre_y Specify the x and y coordinates within the source window.

Chapter 3. Window Functions 61

L

dest_x_return

dest_y—return Return the x and y coordinates within the destination window.

child_return Returns the child if the coordinates are contained in a mapped
child of the destination window.

The XTranslateCoordinates function takes the src_x and src_y coordi-
nates relative to the source window’s origin and returns these coordinates to
dest_x_return and dest_y_return relative to the destination window’s ori-
gin. If XTranslateCoordinates returns zero, src_w and dest_w are on
different screens, and dest_x_ return and dest_y_ return are zero. If the co-
ordinates are contained in a mapped child of dest_w, that child is returned
to child_return. Otherwise, child_return is set to None.
XTranslateCoordinates can generate a BadWindow error.

62

41

L]

Chapter 4

Window Information
Functions

After you connect the display to the X server and create a window, you can
use the Xlib window information functions to:

Obtain information about a window
Manipulate property lists
Obtain and change window properties

Manipulate selections

Obtaining Window Information

Xlib provides functions that you can use to obtain information about the
window tree, the window’s current attributes, the window’s current geome-
try, or the current pointer coordinates. Because they are most frequently
used by window managers, these functions all return a status to indicate
whether the window still exists.

To obtain the parent, a list of children, and number of children for a given
window, use XQueryTree.

Status XQueryTree(display, w, root—return, parent_return, children_return,
nchildren_return)
Display *display;
Window w;
Window *root_return;
Window *parent_return;

Chapter 4. Window Information Functions 63

Window **children..return;
unsigned int *nchildren_return;

display Specifies the connection to the X server.
w Specifies the window whose list of children, root, parent, and
number of children you want to obtain.
root_return Returns the root window.
parent_return Returns the parent window.
children_return ~ Returns a pointer to the list of children.
L nchildren_retwrn Returns the number of children.

The XQueryTree function returns the root ID, the parent window ID, a
pointer to the list of children windows, and the number of children in the list
for the specified window. The children are listed in current stacking order,
from bottommost (first) to topmost (last). XQueryTree returns zero if it fails
and nonzero if it succeeds. To free this list when it is no longer needed, use
XFree.

To obtain the current attributes of a given window, use XGetWindow-

Attributes.
[_ Status XGetWindowAttributes(display, w, window_attributes_return)
Display *display;
Window w;
XWindowA.tributes *window_attributes_return;
display Specifies the connection to the X server.
w Specifies the window whose current attributes you want
to obtain.
window_attributes_return Returns the specified window’s attributes in the
L XWindowAttributes structure.

The XGetWindowAttributes function returns the current attributes for
the specified window to an XWindowAttributes structure.

|_ typedef struct {
int x, y; /* location of window */
int width, height; /* width and height of window */
int border_width; /* border width of window */
int depth; /* depth of window */
Visual *visual; /* the associated visual structure */
Window root; /* root of screen containing window */

int class; /* InputOutput, InputOnly*/

XLIB

int bit_gravity;

int win_gravity;

int backing_store;

unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under;

Colormap colormap;

Bool map_installed;

int map_state;

long all_event_masks;

long your_event_mask;

long do_not_propagate_mask;
Bool override_redirect;

Screen *screen

/* one of the bit gravity values */

/* one of the window gravity values */

/* NotUseful, WhenMapped, Always */

/* planes to be preserved if possible */

/* value to be used when restoring planes */

/* boolean, should bits under be saved? */

/* color map to be associated with window */

/* boolean, is color map currently
installed*/

/¥ IsUnmapped, IsUnviewable,
IsViewable %/

/* set of events all people have interest in*/

/* my event mask */

/* set of events that should not propagate */

/* boolean value for override-redirect */

/* back pointer to correct screen ¥/

L_ } XWindowAtrributes;

The x and y members are set to the upper-left outer corner relative to the
parent window’s origin. The width and height members are set to the inside
size of the window, not including the border. The border._width member is
‘set to the window’s border width in pixels. The depth member is set to the
depth of the window (that is, bits per pixel for the object). The visual mem-
ber is a pointer to the screen’s associated Visual structure. The root mem-
ber is set to the root window of the screen containing the window. The class
member is set to the window’s class and can be either InputOutput or
IhputOnly.

The bit_gravity member is set to the window’s bit gravity and can be one
of the following:

ForgetGravity

EastGravity
NorthWestGravity SouthWestGravity
NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

The win_gravity member is set to the window’s window gravity and can be
one of the following:

UnmapGravity
NorthWestGravity

EastGravity
SouthWestGravity

Chapter 4. Window Information Functions 65

NorthGravity SouthGravity
NorthEastGravity SouthEastGravity
WestGravity StaticGravity
CenterGravity

For additional information on gravity, see section 3.3.

The backing_store member is set to indicate how the X server should
maintain the contents of a window and can be WhenMapped, Always, or
NotUseful. The backing_planes member is set to indicate (with bits set to
1) which bit planes of the window hold dynamic data that must be preserved
in backing_stores and during save_unders. The backing_pixel member is
set to indicate what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member
is set to the colormap for the specified window and can be a colormap ID or
None. The map_installed member is set to indicate whether the colormap is
currently installed and can be True or False. The map_state member is
set to indicate the state of the window and can be IsUnmapped,
IsUnviewable, or IsViewable. IsUnviewable is used if the window is
mapped but some ancestor is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event
masks selected on the window by all clients. The your_event_mask member
is set to the bitwise inclusive OR of all event masks selected by the querying
client. The do_not_propagate_mask member is set to the bitwise inclusive
OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window
overrides structure control facilities and can be True or False. Window
manager clients should ignore the window if this member is True.

The screen member is set to a screen pointer that gives you a back pointer
to the correct screen. This makes it easier to obtain the screen information
without having to loop over the root window fields to see which field
matches.

XGetWindowAttributes can generate BadDrawable and BadWindow
€rrors.

To obtain the current geometry of a given drawable, use XGet-
Geometry.

66 XLIB

Status XGetGeometry(display, d, root_return, x_return, y_return, width_return,

Display *display;
Drawabile d;

height_return, border_width_return, depth_return)

Window *root_return;

int *x_return, *y_return;

unsigned int *width_return, *height_return,
unsigned int *border_width_return;
unsigned int *depth_return;

display

d
rool_return
x_return
y_return

width_return
height_return

border _width_return

depth_return

Specifies the connection to the X server.
Specifies the drawable, which can be a window or a pixmap.
Returns the root window.

Return the x and y coordinates that define the location of
the drawable. For a window, these coordinates specify the
upper-left outer corner relative to its parent’s origin. For
pixmaps, these coordinates are always zero.

Return the drawable’s dimensions (width and height). For a
window, these dimensions specify the inside size, not
including the border.

Returns the border width in pixels. If the drawable is a
pixmap, it returns zero.

Returns the depth of the drawable (bits per pixel for the
object).

The XGetGeometry function returns the root window and the current ge-
ometry of the drawable. The geometry of the drawable includes the x and y
coordinates, width and height, border width, and depth. These are de-
scribed in the argument list. It is legal to pass to this function a window

whose class is ITnputOnly.

To obtain the root window the pointer is currently on and the pointer co-

ordinates relative to the root’s origin, use XQueryPointer.

Bool XQueryPointer(display, w, root_return, child_return, root_x_return,

Display *display;
Window w;

T00t_y_return, win_x_return, win_y_return, mask_return)

Window *root_return, *child_return;
int *root_x_return, *root_y_return;

Chapter 4. Window Information Functions 67

4.2

int *win_x_return, *win_y_return;
unsigned int *mask_return;

display Specifies the connection to the X server.
w Specifies the window.
root_return Returns the root window that the pointer is in.

child_return Returns the child window that the pointer is located in, if any.

rool_x_return

root_y_return Return the pointer coordinates relative to the root window’s
origin.

win_x_return

win_y_return Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logi-
cally on and the pointer coordinates relative to the root window’s origin. If
XQueryPointer returns False, the pointer is not on the same screen as
the specified window, and XQueryPointer returns None to child_return
and zero to win_x_return and win_y_return. If XQueryPointer returns
True, the pointer coordinates returned to win_x_return and win_y_return
are relative to the origin of the specified window. In this case,
XQueryPointer returns the child that contains the pointer, if any, or else
None to child_return.

XQueryPointer returns the current logical state of the keyboard buttons
and the modifier keys in mask_return. It sets mask_return to the bitwise in-
clusive OR of one or more of the button or modifier key bitmasks to match
the current state of the mouse buttons and the modifier keys.

Note that the logical state of a device (as seen through Xlib) may lag the
physical state if device event processing is frozen (see section 7.4).

XQueryPointer can generate a BadWindow error.

Properties and Atoms

A property is a collection of named, typed data. The window system has a set
of predefined properties (for example, the name of a window, size hints, and
so on), and users can define any other arbitrary information and associate it
with windows. Each property has a name, which is an ISO Latin-1 string. For
each named property, a unique identifier (atom) is associated with it. A
property also has a type, for example, string or integer. These types are also
indicated using atoms, so arbitrary new types can be defined. Data of only

68

Note

XLIB

one type may be associated with a single property name. Clients can store
and retrieve properties associated with windows. For efficiency reasons, an
atom is used rather than a character string. XInternAtom can be used to
obtain the atom for property names.

A property is also stored in one of several possible formats. The X server
can store the information as 8-bit quantities, 16-bit quantities, or 32-bit
quantities. This permits the X server to present the data in the byte order
that the client expects.

If you define further properties of complex type, you must encode and de-
code them yourself. These functions must be carefully written if they are to
be portable. For further information about how to write a library extension,
see appendix C.

The type of a property is defined by an atom, which allows for arbitrary
extension in this type scheme.

Certain property names are predefined in the server for commonly
used functions. The atoms for these properties are defined in
<Xll/Xatom.h>. To avoid name clashes with user symbols, the #define
name for each atom has the XA_ prefix. For definitions of these properties,
see section 4.3. For an explanation of the functions that let you get and set
much of the information stored in these predefined properties, see
chapter 9.

You can use properties to communicate other information between appli-
cations. The functions described in this section let you define new properties
and get the unique atom IDs in your applications.

Although any particular atom can have some client interpretation within
each of the name spaces, atoms occur in five distinct name spaces within the
protocol:

« Selections

» Property names
¢ Property types
« Font properties

» Type of a ClientMessage event (none are built into the X server)

Chapter 4. Window Information Functions

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names are:

CUT_BUFFERO
CUT_BUFFERI
CUT_BUFFER2
CUT_BUFFER3
CUT_BUFFER4
CUT_BUFFERS
CUT_BUFFER6
CUT_BUFFER7
RGB_BEST_MAP
RGB_BLUE_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP

The built-in property types are:

ARC

ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER

RGB_RED_MAP
RESOURCE_MANAGER
WM_CLASS
WM_CLIENT_MACHINE
WM_COMMAND
WM_HINTS
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL_HINTS
WM_ZOOM_HINTS
WM_TRANSIENT_FOR

PIXMAP

POINT
RGB_COLOR_MAP
RECTANGLE
STRING

VISUALID
WINDOW
WM_HINTS
WM_SIZE_HINTS

The built-in font property names are:

MIN_SPACE
NORM_SPACE
MAX_SPACE
END_SPACE
SUPERSCRIPT_X
SUPERSCRIPT_Y
SUBSCRIPT_X

STRIKEOUT_DESCENT
STRIKEOUT_ASCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH
WEIGHT

POINT_SIZE

69

70

XLIB

SUBSCRIPT_Y RESOLUTION
UNDERLINE_POSITION COPYRIGHT
UNDERLINE_THICKNESS NOTICE
FONT_NAME FAMILY_NAME
FULL_NAME CAP_HEIGHT

For further information about font properties, see section 6.5.

To return an atom for a given name, use XInternAton.

Atom XInternAtom(display, atom_name, only_if_exists)
Display *display;
char *atom_name;,
Bool only_if_exists;
display Specifies the connection to the X server.
atom_name Specifies the name associated with the atom you want returned.
only_if_exists Specifies a Boolean value that indicates whether XInternAtom
creates the atom.

The XInternAton function returns the atom identifier associated with the
specified atom_name string. If only_if_exists is False, the atom is created
if it does not exist. Therefore, XInternAtonm can return None. You should
use a null-terminated ISO Latin-1 string for atom_name. Case matters; the
strings thing, Thing, and thinG all designate different atoms. The atom will
remain defined even after the client’s connection closes. It will become unde-
fined only when the last connection to the X server closes.
XInternAtom can generate BadAlloc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomNane.

char *XGetAtomName(display, atom)
Display *display;

Atom atom;
display Specifies the connection to the X server.
atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified
atom. To free the resulting string, call XFree.
XGetAtomName can generate a BadAtonm error.

Chapter 4. Window Information Functions 71

4.3 Obtaining and Changing Window Properties
You can attach a property list to every window. Each property has a name,
a type, and a value (see section 4.2). The value is an array of 8-bit, 16-bit, or
32-bit quantities, whose interpretation is left to the clients.
Xlib provides functions that you can use to obtain, change, update, or in-
terchange window properties. In addition, Xlib provides other utility func-
tions for predefined property operations (see chapter 9).

To obtain the type, format, and value of a property of a given window, use
XGetWindowProperty.

[— int XGetWindowProperty(display, w, property, long_offset, long_length, delete, req_type,
actual_type_return, actual_format_ return, nitems_return,
bytes_after_return, prop_return)

Display *display;

Window w;

Atom property;

long long_offset, long_length;
Bool delete;

Atom req_type;

Atom *actual_type_return;

int *actual_format_return;
unsigned long *nitems_return;
unsigned long *bytes_after_return;
unsigned char **prop_return;

display Specifies the connection to the X server.

w Specifies the window whose property you want to obtain.

property Specifies the property name.

long_offset Specifies the offset in the specified property (in 32-bit
quantities) where the data is to be retrieved.

long_length Specifies the length in 32-bit multiples of the data to be
retrieved.

delete Specifies a Boolean value that determines whether the
property is deleted.

req_—type Specifies the atom identifier associated with the property
type or AnyPropertyType.

actual_type_return Returns the atom identifier that defines the actual type of

the property.

actual_format_return ~ Returns the actual format of the property.

nitems_return Returns the actual number of 8-bit, 16-bit, or 32-bit items
stored in the prop_return data.

72

XLIB

bytes_after_return Returns the number of bytes remaining to be read in the
property if a partial read was performed.

prop_return Returns a pointer to the data in the specified format.

The XGetWindowProperty function returns the actual type of the prop-
erty; the actual format of the property; the number of 8-bit, 16-bit, or 32-bit
items transferred; the number of bytes remaining to be read in the property;
and a pointer to the data actually returned. XGetWindowProperty sets the
return arguments as follows:

If the specified property does not exist for the specified window,
XGetWindowProperty returns None to actual_type_return and the value zero to
actual_format_return and bytes_after_return. The nitems_return argument is
empty. In this case, the delete argument is ignored.

If the specified property exists but its type does not match the specified type,
XGetWindowProperty returns the actual property type to actual_type_return,
the actual property format (never zero) to actual_format_return, and the
property length in bytes (even if the actual_format_return is 16 or 32) to
bytes_after_return. It also ignores the delete argument. The nitems_return
argument is empty.

If the specified property exists and either you assign AnyPropertyType to the
req—type argument or the specified type matches the actual property type,
XGetWindowProperty returns the actual property type to actual_type_return
and the actual property format (never zero) to actual _format return. It also
returns a value to bytes_after_return and nitems_return, by defining the
following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

4 * long_ offset

N-1

MINIMUM(T, 4 * long_length)
=N-(I+L)

il

> -
Il

The returned value starts at byte index I in the property (indexing from zero), and
its length in bytes is L. If the value for long_offset causes L to be negative, a
BadValue error results. The value of bytes_after_return is A, giving the number of
trailing unread bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_return
(even if the property is zero length) and sets it to ASCII null so that simple
properties consisting of characters do not have to be copied into yet another

Chapter 4. Window Information Functions 73

string before use. If delete is True and bytes_after_retrun is zero,
XGetWindowProperty deletes the property from the window and gen-
erates a PropertyNotify event on the window.

The function returns Success if it executes successfully. To free the re-
sulting data, use XFree.

XGetWindowProperty can generate BadAtom, BadValue, and Bad-
Window errors.

To obtain a given window’s property list, use XListProperties.

|—_ Atom *XListProperties(display, w, num_prop_return)
Display *display;
Window w;
int *num_prop_return;
display Specifies the connection to the X server.
w Specifies the window whose property list you want to obtain.
|_ num_prop_return Returns the length of the properties array.

The XListProperties function returns a pointer to an array of atom
properties that are defined for the specified window or returns NULL if no
properties were found. To free the memory allocated by this function, use
XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChangeProperty.

[_ XChangeProperty(display, w, property, type, format, mode, data, nelements)
Display *display;
Window w;
Atom property, type;
int format;
int mode;
unsigned char *data;
int nelements;

display Specifies the connection to the X server.

w Specifies the window whose property you want to change.

property Specifies the property name.

type Specifies the type of the property. The X server does not interpret the

type but simply passes it back to an application that later calls
XGetWindowProperty.

74

XLIB

Jformat Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or
32-bit quantities. Possible values are 8, 16, and 32. This information
allows the X server to correctly perform byte-swap operations as
necessary. If the format is 16-bit or 32-bit, you must explicitly cast
your data pointer to a (char *) in the call to XChangeProperty.

mode Specifies the mode of the operation. You can pass PropModeReplace,
PropModePrepend, or PropModeAppend.

data Specifies the property data.

nelements Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified win-
dow and causes the X server to generate a PropertyNotify event on that
window. XChangeProperty performs the following:

If mode is PropModeReplace, XChangeProperty discards the previous
property value and stores the new data.

If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts
the specified data before the beginning of the existing data or onto the end of the
existing data, respectively. The type and format must match the existing property
value, or a BadMatch error results. If the property is undefined, it is treated as
defined with the correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain
until explicitly deleted, until the window is destroyed, or until the server re-
sets. For a discussion of what happens when the connection to the X server
is closed, see section 2.5. The maximum size of a property is server depen-
dent and can vary dynamically depending on the amount of memory the
server has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadARtom, BadMatch,
BadValue, and BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

XRotateWindowProperties(display, w, properties, num_prop, npositions)
Display *display;
Window w;
Atom properties] |;
int num_prop;
int npositions;
display Specifies the connection to the X server.
w Specifies the window.

Chagpter 4. Window Information Functions 75

L

4.4

properties Specifies the array of properties that are to be rotated.
num—prop Specifies the length of the properties array.
npositions Specifies the rotation amount.

The XRotateWindowProperties function allows you to rotate properties
on a window and causes the X server to generate PropertyNotify events.
If the property names in the properties array are viewed as being numbered
starting from zero and if there are num_prop property names in the list,
then the value associated with property name I becomes the value associated
with property name (I + npositions) mod N for all I from zero to N — 1.
The effect is to rotate the states by npositions places around the virtual ring
of property names (right for positive npositions, left for negative
npositions). If npositions mod N is nonzero, the X server generates a
PropertyNotify event for each property in the order that they are listed
in the array. If an atom occurs more than once in the list or no property with
that name is defined for the window, a BadMatch error results. If a
BadAtom or BadMatch error results, no properties are changed.

XRotateWindowProperties can generate BadAton, BadMatch, and
BadWindow errors.

To delete a property on a given window, use XDeleteProperty.

XDeleteProperty(display, w, property)
Display *display;
Window w;
Atom property;
display Specifies the connection to the X server.
w Specifies the window whose property you want to delete.
property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the
property was defined on the specified window and causes the X server to
generate a PropertyNotify event on the window unless the property does
not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

Selections
Selections are one method used by applications to exchange data. By using
the property mechanism, applications can exchange data of arbitrary types

76

XLIB

and can negotiate the type of the data. A selection can be thought of as an
indirect property with a dynamic type. That is, rather than having the prop-
erty stored in the X server, the property is maintained by some client (the
owner). A selection is global in nature (considered to belong to the user but
be maintained by clients) rather than being private to a particular window
subhierarchy or a particular set of clients.

Xlib provides functions that you can use to set, get, or request conversion
of selections. This allows applications to implement the notion of current se-
lection, which requires that notification be sent to applications when they no
longer own the selection. Applications that support selection often highlight
the current selection and so must be informed when another application has
acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection tar-
get type. This target type can be used to control the transmitted representa-
tion of the contents. For example, if the selection is “the last thing the user
clicked on” and that is currently an image, then the target type might specify
whether the contents of the image should be sent in XY format or Z format.

The target type can also be used to control the class of contents transmit-
ted, for example, asking for the “looks” (fonts, line spacing, indentation, and
so forth) of a paragraph selection, not the text of the paragraph. The target
type can also be used for other purposes. The protocol does not constrain
the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(display, selection, owner, time)
Display *display;
Atom selection;
Window owner;
Time time;
display Specifies the connection to the X server.
selection Specifies the selection atom.

owner Specifies the owner of the specified selection atom. You can pass a
window or None.
time Specifies the time. You can pass either a timestamp or CurrentTine.

The XSetSelectionOwner function changes the owner and last-change
time for the specified selection and has no effect if the specified time is ear-
lier than the current last-change time of the specified selection or is later

Chapter 4. Window Information Functions 77

than the current X server time. Otherwise, the last-change time is set to the
specified time, with CurrentTime replaced by the current server time. If
the owner window is specified as None, then the owner of the selection be-
comes None (that is, no owner). Otherwise, the owner of the selection be-
comes the client executing the request.

If the new owner (whether a client or None) is not the same as the current
owner of the selection and the current owner is not None, the current
owner is sent a SelectionClear event. If the client that is the owner of a
selection is later terminated (that is, its connection is closed) or if the owner
window it has specified in the request is later destroyed, the owner of the se-
lection automatically reverts to None, but the last-change time is not af-
fected. The selection atom is uninterpreted by the X server.
XGetSelectionOwner returns the owner window, which is reported in
SelectionRequest and SelectionClear events. Selections are global
to the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

l_ Window XGetSelectionOwner(display, selection)
Display *display;
Atom selection;
display Specifies the connection to the X server.
I_ selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated
with the window that currently owns the specified selection. If no selection
was specified, the function returns the constant None. If None is returned,
there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

To request conversion of a selection, use XConvertSelection.

|_ XConvertSelection(display, selection, target, property, requestor, time)
Display *display;
Atom selection, target;
Atom property;
Window requestor;
Time time;

78 XLIB

display Specifies the connection to the X server.
selection Specifies the selection atom.
target Specifies the target atom.

property Specifies the property name. You also can pass None.
requestor Specifies the requestor.
time Specifies the time. You can pass either a timestamp or CurrentTine.

XConvertSelection requests that the specified selection be converted to
the specified target type:

« If the specified selection has an owner, the X server sends a SelectionRequest
event to that owner.

¢ If no owner for the specified selection exists, the X server generates a
SelectionNotify event to the requestor with property None.

In either event, the arguments are passed on unchanged. There are two
predefined selection atoms: PRIMARY and SECONDARY.
XConvertSelection can generate BadAtom and BadWindow errors.

-

79

Chapter 5

Graphics Resource
Functions

After you connect your program to the X server by calling XOpenDisplay,
you can use the Xlib graphics resource functions to:

Create, copy, and destroy colormaps
Allocate, modify, and free color cells
Read entries in a colormap

Create and free pixmaps

Create, copy, change, and destroy graphics contexts

A number of resources are used when performing graphics operations in X.
Most information about performing graphics (for example, foreground
color, background color, line style, and so on) are stored in resources called
graphics contexts (GC). Most graphics operations (see chapter 6) take a GC
as an argument. Although in theory it is possible to share GCs between appli-
cations, it is expected that applications will use their own GCs when per-
forming operations. Sharing of GCs is highly discouraged because the li-
brary may cache GC state.

Each X window always has an associated colormap that provides a level of
indirection between pixel values and colors displayed on the screen. Many of
the hardware displays built today have a single colormap, so the primitives
are written to encourage sharing of colormap entries between applications.
Because colormaps are associated with windows, X will support displays with

80

5.1

XLIB

multiple colormaps and, indeed, different types of colormaps. If there are
not sufficient colormap resources in the display, some windows may not be
displayed in their true colors. A client or window manager can control which
windows are displayed in their true colors if more than one colormap is re-
quired for the color resources the applications are using.

Off-screen memory or pixmaps are often used to define frequently used
images for later use in graphics operations. Pixmaps are also used to define
tiles or patterns for use as window backgrounds, borders, or cursors. A
single bit-plane pixmap is sometimes referred to as a bitmap.

Note that some screens have very limited off-screen memory. Therefore,
you should regard off-screen memory as a precious resource.

Graphics operations can be performed to either windows or pixmaps,
which collectively are called drawables. Fach drawable exists on a single
screen and can only be used on that screen. GCs can also only be used with
drawables of matching screens and depths.

Colormap Functions

Xlib provides functions that you can use to manipulate a colormap. This sec-
tion discusses how to:

Create, copy, and destroy a colormap
Allocate, modify, and free color cells

Read entries in a colormap

The following functions manipulate the representation of color on the
screen. For each possible value that a pixel can take in a window, there is a
color cell in the colormap. For example, if a window is 4 bits deep, pixel val-
ues 0 through 15 are defined. A colormap is a collection of color cells. A
color cell consists of a triple of red, green, and blue. As each pixel is read out
of display memory, its value is taken and looked up in the colormap. The val-
ues of the cell determine what color is displayed on the screen. On a
multiplane display with a black-and-white monitor (with grayscale but not
color), these values can be combined to determine the brightness on the
screen.

Screens always have a default colormap, and programs typically allocate

Chapter 5. Graphics Resource Functions | 81

cells out of this colormap. You should not write applications that monopolize
color resources. On a screen that either cannot load the colormap or cannot
have a fully independent colormap, only certain kinds of allocations may
work. Depending on the hardware, one or more colormaps may be resident
(installed) at one time. To install a colormap, use XInstallColormap.
The DefaultColormap macro returns the default colormap. The
DefaultVisual macro returns the default visual type for the specified
screen. Colormaps are local to a particular screen. Possible visual types are
StaticGray, GrayScale, StaticColor, PseudoColor, True-
Color, or DirectColor (see section 3.1).

The functions discussed in this section operate on an XColor structure,
which contains:

I__ typedef struct {
unsigned long pixel; /* pixel value */
unsigned short red, green, blue; /* rgb values */
char flags; /* DoRed, DoGreen, DoBlue */
char pad;

!— } XColor;

The red, green, and blue values are scaled between 0 and 65535. On full in
a color is a value of 65535 independent of the number of bits actually used
in the display hardware. Half brightness in a color is a value of 32767, and
off is 0. This representation gives uniform results for color values across dif-
ferent screens. In some functions, the flags member controls which of the
red, green, and blue members is used and can be one or more of DoRed,
DoGreen, and DoBlue.

The introduction of color changes the view a programmer should take
when dealing with a bitmap display. For example, when printing text, you
write a pixel value, which is defined as a specific color, rather than setting or
clearing bits. Hardware will impose limits (the number of significant bits, for
example) on these values. Typically, one allocates color cells or sets of color
cells. If read-only, the pixel values for these colors can be shared among
multiple applications, and the RGB values of the cell cannot be changed. If
read/write, they are exclusively owned by the program, and the color cell as-
sociated with the pixel value may be changed at will.

82

5.11

XLIB

Creating, Copying, and Destroying Colormaps
To create a colormap for a screen, use XCreateColormap.

Colormap XCreateColormap(display, w, visual, alloc)
Display *display;

Window w;
Visual *visual;
int alloc;
display Specifies the connection to the X server.
w Specifies the window on whose screen you want to create a colormap.

visual Specifies a pointer to a visual type supported on the screen. If the visual
type is not one supported by the screen, a BadMatch error results.

alloc Specifies the colormap entries to be allocated. You can pass Al1locNone
or AllocAll.

The XCreateColormap function creates a colormap of the specified visual
type for the screen on which the specified window resides and returns the
colormap ID associated with it. Note that the specified window is only used
to determine the screen.

The initial values of the colormap entries are undefined for the visual
classes GrayScale, PseudoColor, and DirectColor. For Static-—
Gray, StaticColor, and TrueColor, the entries have defined values, but
those values are specific to the visual and are not defined by X. For
StaticGray, StaticColor, and TrueColor, alloc must be AllocNone, or a
BadMatch error results. For the other visual classes, if alloc is A11locNone,
the colormap initially has no allocated entries, and clients can allocate them.
For information about the visual types, see section 3.1.

If alloc is B11locA11l, the entire colormap is allocated writable. The initial
values of all allocated entries are undefined. For GrayScale and
PseudoColor, the effect is as if an XAllocColorCells call returned all
pixel values from zero to N — 1, where N is the colormap entries value in the
specified visual. For DirectColor, the effect is as if an XAlloc-
ColorPlanes call returned a pixel value of zero and red_mask,
green_mask, and blue_mask values containing the same bits as the corre-
sponding masks in the specified visual. However, in all cases, none of these
entries can be freed by using XFreeColors.

XCreateColormap can generate BadAlloc, BadMatch, BadValue,
and BadWindow errors.

Chapter 5. Graphics Resource Functions 83

To create a new colormap when the allocation out of a previously shared
colormap has failed because of resource exhaustion, use XCopy-
ColormapAndFree.

l—- Colormap XCopyColormapAndFree(display, colormap)
Display *display;
Colormap colormap;
display Specifies the connection to the X server.
’__ colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same vis-
ual type and for the same screen as the specified colormap and returns the
new colormap ID. It also moves all of the client’s existing allocation from the
specified colormap to the new colormap with their color values intact and
their read-only or writable characteristics intact and frees those entries in the
specified colormap. Color values in other entries in the new colormap are
undefined. If the specified colormap was created by the client with alloc set
toAllochAll, the new colormap is also created with A1lochll, all color val-
ues for all entries are copied from the specified colormap, and then all en-
tries in the specified colormap are freed. If the specified colormap was not
created by the client with AllocAll, the allocations to be moved are all
those pixels and planes that have been allocated by the client using
XAllocColor, XAllocNamedColor, XAllocColorCells, or XAlloc—
ColorPlanes and that have not been freed since they were allocated.

XCopyColormapAndFree can generate BadAlloc and BadColor
errors.

To set the colormap of a given window, use XSetWindowColormap.

(—_ XSetWindowColormap(display, w, colormap)
Display *display;
Window w;
Colormap colormap;
display Specifies the connection to the X server.
w Specifies the window.
L colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the
specified window. The colormap must have the same visual type as the win-
dow, or a BadMatch error results.

84

5.1.2

XLIB

XSetWindowColormap can generate BadColor, BadMatch, and
BadWindow errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap(display, colormap)

Display *display;

Colormap colormap;
display Specifies the connection to the X server.
colormap ~ Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the
colormap resource ID and the colormap and frees the colormap storage.
However, this function has no effect on the default colormap for a screen. If
the specified colormap is an installed map for a screen, it is uninstalled (see
XUninstallColormap). If the specified colormap is defined as the
colormap for a window (by XCreateWindow, XSetWindowColormap, or
XChangeWindowAttributes), XFreeColormap changes the colormap
associated with the window to None and generates a ColormapNotify
event. X does not define the colors displayed for a window with a colormap
of None.
XFreeColormap can generate a BadColor error.

Allocating, Modifying, and Freeing Color Cells
There are two ways of allocating color cells: explicitly as read-only entries by
pixel value or read/write, where you can allocate a number of color cells and
planes simultaneously. The read/write cells you allocate do not have defined
colors until set with XStoreColor or XStoreColors.

To determine the color names, the X server uses a color database. Al-
though you can change the values in a read/write color cell that is allocated
by another application, this is considered “antisocial” behavior.

To allocate a read-only color cell, use XAllocColor.

Status XAllocColor(display, colormap, screen_in_out)
Display *display;
Colormap colormap;
XColor *screen_in_out;

Chapter 5. Graphics Resource Functions 85

L

display Specifies the connection to the X server.
colormap Specifies the colormap.
screen—in_out Specifies and returns the values actually used in the colormap.

The XAllocColor function allocates a read-only colormap entry corre-
sponding to the closest RGB values supported by the hardware.
XAllocColor returns the pixel value of the color closest to the specified
RGB elements supported by the hardware and returns the RGB values actu-
ally used. The corresponding colormap cell is read-only. In addition,
XAllocColor returns nonzero if it succeeded or zero if it failed. Read-only
colormap cells are shared among clients. When the last client deallocates a
shared cell, it is deallocated. XAllocColor does not use or affect the flags
in the XColor structure.
XAllocColor can generate a BadColor error.

To allocate a read-only color cell by name and return the closest color sup-
ported by the hardware, use XAllocNamedColor.

Status XAllocNamedColor(display, colormap, color—name, screen_def_return,
exact_def—_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *screen_def_return, * exact_def_return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color_name Specifies the color name string (for example, red) whose color

definition structure you want returned.
screen_def_return ~ Returns the closest RGB values provided by the hardware.
exact—def_return Returns the exact RGB values.

The XARllocNamedColor function looks up the named color with respect
to the screen that is associated with the specified colormap. It returns both
the exact database definition and the closest color supported by the screen.
The allocated color cell is read-only. You should use the ISO Latin-1 encod-
ing; uppercase and lowercase do not matter.

XBllocNamedColor can generate a BadColor error.

86

XLIB

To look up the name of a color, use XLookupColor.

Status XLookupColor(display, colormap, color—_name, exact—_def_return,
screen—def_return)
Display *display;
Colormap colormap;
char *color_name;
XColor *exact_def_return, *screen_def_return;

display Specifies the connection to the X server.
colormap Specifies the colormap.
color—_name Specifies the color name string (for example, red) whose color

definition structure you want returned.
exact_def_return ~ Returns the exact RGB values.
screen_def_return Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with re-
spect to the screen associated with the specified colormap. It returns both
the exact color values and the closest values provided by the screen with re-
spect to the visual type of the specified colormap. You should use the ISO
Latin-1 encoding; uppercase and lowercase do not matter. XLookupColor
returns nonzero if the name existed in the color database or zero if it did not
exist.

To allocate read/write color cell and color plane combinations for a
PseudoColor model, use XAllocColorCells.

Example Allocation, 8 Bits/Pixel

1]
]

1
I

[T 1T 1T Ef

3 Pixels 2 Planes
Returned by XAllocColorCells

You Own These 12 Pixel Values
After Allocation

Figure 5.1. Request of 3 cells and two planes

Chapter 5. Graphics Resource Functions 87

l— Status XAllocColorCells(display, colormap, contig, plane_masks_return, nplanes,
pixels_return, npixels)
Display *display;
Colormap colormap;
Bool contig;
unsigned long plane_masks_return[];
unsigned int nplanes;
unsigned long pixels_return[];
unsigned int npixels;

display Specifies the connection to the X server.
colormap Specifies the colormap.
contig Specifies a Boolean value that indicates whether the planes

must be contiguous.
plane_mask_return ~ Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned
in the plane masks array.
pixels_return Returns an array of pixel values.
npixels Specifies the number of pixel values that are to be returned
l_ in the pixels_return array.

The XAllocColorCells function allocates read/write color cells. The
number of colors must be positive and the number of planes nonnegative, or
a BadValue error results. If ncolors and nplanes are requested, then
ncolors pixels and nplane plane masks are returned. No mask will have any
bits set to 1 in common with any other mask or with any of the pixels. By
ORing together each pixel with zero or more masks, ncolors * 2°Panes djs-
tinct pixels can be produced. All of these are allocated writable by the re-
quest. For GrayScale or PseudoColor, each mask has exactly one bit set
to 1. For DirectColor, each has exactly three bits set to 1. If contig is
True and if all masks are ORed together, a single contiguous set of bits set
to 1 will be formed for GrayScale or PseudoColor and three contiguous
sets of bits set to 1 (one within each pixel subfield) for DirectColor. The
RGB values of the allocated entries are undefined. XAllocColorCells re-
turns nonzero if it succeeded or zero if it failed.
XAllocColorCells can generate BadColor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use
XAllocColorPlanes.

88 XLIB

'_ Status X AllocColorPlanes(display, colormap, contig, pixels_return, ncolors, nreds,
ngreens, nblues, rmask_return, gmask_return, bmask_return)
Display *display;
Colormap colormap;
Bool contig;
unsigned long pixels_return[];
int ncolors;
int nreds, ngreens, nblues;,
unsigned long *rmask_return, *gmask_return, *bmask_return;

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be
contiguous.

pixels_return ~ Returns an array of pixel values. XAllocColorPlanes returns the
pixel values in this array.
ncolors Specifies the number of pixel values that are to be returned in the
pixels_return array.
nreds
ngreens
nblues Specify the number of red, green, and blue planes. The value you
pass must be nonnegative.
rmask—return '
gmask_return
L bmask_return Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must
be nonnegative, or a BadValue error results. If ncolors colors, nreds reds,
ngreens greens, and nblues blues are requested, ncolors pixels are returned;
and the masks have nreds, ngreens, and nblues bits set to 1, respectively. If
contig is True, each mask will have a contiguous set of bits set to 1. No mask
will have any bits set to 1 in common with any other mask or with any of the
pixels. For DirectColor, each mask will lie within the corresponding pixel
subfield. By ORing together subsets of masks with each pixel value,
ncolors * 2eds +mgreens + nblues) Jistinct pixel values can be produced. All of
these are allocated by the request. However, in the colormap, there are only
ncolors * 2 independent red entries, ncolors * 276"* independent green
entries, and ncolors * 2" jndependent blue entries. This is true even for
PseudoColor. When the colormap entry of a pixel value is changed (using
XStoreColors, XStoreColor, or XStoreNamedColor), the pixel is de-
composed according to the masks, and the corresponding independent en-

Chapter 5. Graphics Resource Functions 89

tries are updated. XAllocColorPlanes returns nonzero if it succeeded or
zero if it failed.
XAllocColorPlanes can generate BadColor and BadValue errors.

To store RGB values into colormap cells, use XStoreColors.
l—— XStoreColors(display, colormap, color, ncolors)

Display *display;
Colormap colormap;

XColor color(];
int ncolors;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies an array of color definition structures to be stored.
L ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel val-
ues specified in the pixel members of the XColor structures. You specify
which color components are to be changed by setting DoRed, DoGreen,
and/or DoBlue in the flags member of the XColor structures. If the
colormap is an installed map for its screen, the changes are visible immedi-
ately. XStoreColors changes the specified pixels if they are allocated writ-
able in the colormap by any client, even if one or more pixels generates an
error. If a specified pixel is not a valid index into the colormap, a BadvValue
error results. If a specified pixel either is unallocated or is allocated read-
only, a BadAccess error results. If more than one pixel is in error, the one
that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue
errors.

To store an RGB value in a single colormap cell, use XStoreColor.

l—- XStoreColor(display, colormap, color)
Display *display;
Colormap colormap;
XColor *color;
display Specifies the connection to the X server.

colormap Specifies the colormap.
L color Specifies the pixel and RGB values.

90

XLIB

The XStoreColor function changes the colormap entry of the pixel value
specified in the pixel member of the XColor structure. You specified this
value in the pixel member of the XColor structure. This pixel value must be
a read/write cell and a valid index into the colormap. If a specified pixel is
not a valid index into the colormap, a BadValue error results.
XStoreColor also changes the red, green, and/or blue color components.
You specify which color components are to be changed by setting DoRed,
DoGreen, and/or DoBlue in the flags member of the XColor structure. If
the colormap is an installed map for its screen, the changes are visible imme-
diately.

XStoreColor can generate BadAccess, BadColor, and BadValue
€errors.

To set the color of a pixel to a named color, use XStoreNamedColor.

XStoreNamedColor(display, colormap, color, pixel, flags)
Display *display;
Colormap colormap;
char *color;
unsigned long pixel;

int flags;
display Specifies the connection to the X server.
colormap Specifies the colormap.
color Specifies the color name string (for example, red).
pixel Specifies the entry in the colormap.
flags Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect
to the screen associated with the colormap and stores the result in the speci-
fied colormap. The pixel argument determines the entry in the colormap.
The flags argument determines which of the red, green, and blue compo-
nents are set. You can set this member to the bitwise inclusive OR of the bits
DoRed, DoGreen, and DoBlue. If the specified pixel is not a valid index into
the colormap, a BadValue error results. If the specified pixel either is
unallocated or is allocated read-only, a BadBccess error results. You
should use the ISO Latin-1 encoding; uppercase and lowercase do not mat-
ter.

Chapter 5. Graphics Resource Functions 91

501 03

XStoreNamedColor can generate BadAccess, BadColor, BadNanme,
and BadValue errors.

To free colormap cells, use XFreeColors.

XFreeColors(display, colormap, pixels, npixels, planes)
Display *display;
Colormap colormap;
unsigned long pixels[];

int npixels;
unsigned long planes;
display Specifies the connection to the X server.
colormap Specifies the colormap.
pixels Specifies an array of pixel values that map to the cells in the specified
colormap.
npixels Specifies the number of pixels.
planes Specifies the planes you want to free.

The XFreeColors function frees the cells represented by pixels whose val-
ues are in the pixels array. The planes argument should not have any bits set
to 1 in common with any of the pixels. The set of all pixels is produced by
ORing together subsets of the planes argument with the pixels. The request
frees all of these pixels that were allocated by the client (using XAlloc—
Color, XAllocNamedColor, XAllocColorCells, and XAllocColor-
Planes). Note that freeing an individual pixel obtained from
XBAllocColorPlanes may not actually allow it to be reused until all of its
related pixels are also freed.

All specified pixels that are allocated by the client in the colormap are
freed, even if one or more pixels produce an error. If a specified pixel is not
a valid index into the colormap, a BadValue error results. If a specified
pixel is not allocated by the client (that is, is unallocated or is only allocated
by another client), a BadAccess error results. If more than one pixel is in
error, the one that gets reported is arbitrary.

XFreeColors can generate BadAccess, BadColor, and BadValue er-
TOrS.

Reading Entries in a Colormap
The XQueryColor and XQueryColors functions return the RGB values
stored in the specified colormap for the pixel value you pass in the pixel

92

XLIB

member of the XColor structure(s). The values returned for an unallocated
entry are undefined. These functions also set the flags member in the
XColor structure to all three colors. If a pixel is not a valid index into the
specified colormap, a BadValue error results. If more than one pixel is in
error, the one that gets reported is arbitrary.

To query the RGB values of a single specified pixel value, use
XQueryColor.

XQueryColor(display, colormap, def_in_out)
Display *display;
Colormap colormap;
XColor *def_in_out;

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in the
structure.

The XQueryColor function returns the RGB values for each pixel in the
XColor structures and sets the DoRed, DoGreen, and DoBlue flags.
XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of an array of pixels stored in color structures,
use XQueryColors.

XQueryColors(display, colormap, defs—in_out, ncolors)
Display *display;
Colormap colormap;
XColor defs_in_out];
int ncolors;
display Specifies the connection to the X server.
colormap Specifies the colormap.
defs_in_out Specifies and returns an array of color definition structures for the
pixel specified in the structure.
neolors Specifies the number of XColor structures in the color definition
array.

The XQueryColors function returns the RGB values for each pixel in the
XColor structures and sets the DoRed, DoGreen, and DoBlue flags.
XQueryColors can generate BadColor and BadValue errors.

Chapter 5. Graphics Resource Functions 93

5.2

Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created.
Pixmaps are off-screen resources that are used for various operations, for
example, defining cursors as tiling patterns or as the source for certain raster
operations. Most graphics requests can operate either on a window or on a
pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmap.

Pixmap XCreatePixmap(display, d, width, height, depth)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int depth;
display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width

height Specify the width and height, which define the dimensions of the
pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and
depth you specified and returns a pixmap ID that identifies it. It is valid to
pass an InputOnly window to the drawable argument. The width and
height arguments must be nonzero, or a BadValue error results. The depth
argument must be one of the depths supported by the screen of the specified
drawable, or a BadValue error results.

The server uses the drawable argument to determine on which screen to
create the pixmap. The pixmap can be used only on this screen and only
with other drawables of the same depth (see XCopyPlane for an exception
to this rule). The initial contents of the pixmap are undefined.

XCreatePixmap can generate BadAlloc, BadDrawable, and Bad-
Value errors.

To free all storage associated with a specified pixmap, use
XFreePixmap.

XFreePixmap(display, pixmap)
Display *display;
Pixmap pixmap;

94

53

XLIB

display Specifies the connection to the X server.
pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the
pixmap ID and the pixmap. Then, the X server frees the pixmap storage
when there are no references to it. The pixmap should never be referenced
again.

XFreePixmap can generate a BadPixmap error.

Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs).
These include line width, line style, plane mask, foreground, background,
tile, stipple, clipping region, end style, join style, and so on. Graphics opera-
tions (for example, drawing lines) use these values to determine the actual
drawing operation. Extensions to X may add additional components to GCs.
The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not
resource IDs to allow Xlib to implement the transparent coalescing of
changes to GCs. For example, a call to XSetForeground of a GC followed
by a call to XSetLineAttributes results in only a single-change GC pro-
tocol request to the server. GCs are neither expected nor encouraged to be
shared between client applications, so this write-back caching should present
no problems. Applications cannot share GCs without external synchroniza-
tion. Therefore, sharing GCs between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the
XGCValues structure and OR in the corresponding value bitmask in your
subsequent calls to XCreateGC. The symbols for the value mask bits and the
XGCValues structure are:

/* GC attribute value mask bits */

#define GCFunction (1L<<0)
#define GCPlaneMask (1L<<1)
#define GCForeground (1L<<2)
#define GCBackground (1L<<3)
#define GCLineWidth (1L<<4)
#define GCLineStyle (1L<<b)
#define GCCapStyle (1L<<6)
#define GCJoinStyle (1L<<7)

#define GCFillStyle (1L<<8)

Chapter 5. Graphics Resource Functions

#define GCFillRule
#define GCTile
#define GCStipple
#define GCTileStipX0Origin
#define GCTileStipYOrigin
#define GCFont
#define GCSubwindowMode
#define GCGraphicsExposures
#define GCClipXOrigin
#define GCClipYOrigin
#define GCClipMask
#define GCDashOffset
#define GCDashList
#define GCArcMode
/* Values */
typedef struct {
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background,;
int line_width;
int line_style;

int cap_style;
int join_style;

int fill_style;

int fill_rule;

int arc_mode;
Pixmap tile;

Pixmap stipple;

int ts_x_origin;

int ts_y_origin;

Font font;

int subwindow_mode;

Bool graphics_exposures;

95

(1L<<9)

(1IL<<10)
(IL<<11)
(1L<<12)
(1L<<13)
(1L<<14)
(1L<<15)
(1IL<<16)
(1L<<17)
(1L<<18)
(1L<<19)
(1L<<20)
(1L<<21)
(1L<<22)

/* logical operation */

/* plane mask */

/* foreground pixel */

/* background pixel */

/* line width (in pixels) */

/* LineSolid, LineOnOffDash,
LineDoubleDash */

/* capNotLast, CapButt, CapRound,
CapProjecting */

/¥ JoinMiter, JoinRound,
JoinBevel¥/

/% FillSolid, FillTiled,
FillStippled,
FillOpagqueStippled*/

/* EvenOddRule, WindingRule */

/¥ ArcChord, ArcPieSlice */

/* tile pixmap for tiling operations */

/* stipple 1 plane pixmap for stippling */

/* offset for tile or stipple operations */

/* default text font for text operations */

/* ClipByChildren,
IncludeInferiors ¥/

/* boolean, should exposures be
generated */

96

XLIB

int clip_x_origin;
int clip_y—origin;
Pixmap clip_mask;
int dash__offset;
char dashes;

} XGCValues;

/* origin for clipping */

/* bitmap clipping; other calls for rects */
/* patterned/dashed line information */

The default GC values are:

Component Default

function GXcopy

plane_mask All ones

foreground 0

background 1

line_width 0

line_style LineSolid

cap_style CapButt

join_style JoinMiter

fill_style FillSolid

fill_rule EvenOddRule

arc_mode ArcPieSlice

tile Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this
pixmap) :

stipple Pixmap of unspecified size filled with ones

ts_x_origin 0

ts_y_origin 0

font <implementation dependent>

subwindow_mode ClipByChildren

graphics_exposures True

clip_x_origin 0

clip_y_origin 0

clip_mask None

dash_offset 0

dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be

useful in a window.

The function attributes of a GC are used when you update a section of a
drawable (the destination) with bits from somewhere else (the source). The

Chapter 5. Graphics Resource Functions 97

function in a GC defines how the new destination bits are to be computed
from the source bits and the old destination bits. GXcopy is typically the
most useful because it will work on a color display, but special applications
may use other functions, particularly in concert with particular planes of a
color display. The 16 GC functions, defined in <X11/X.h>, are:

Function Name Hex Code Operation

GXclear 0x0 0

GXand 0x1 src AND dst
GXandReverse 0x2 src AND NOT dst
GXcopy 0x3 src

GXandInverted 0x4 (NOT src) AND dst
GXnoop 0x5 dst

GXxor 0x6 src XOR dst

GXor 0x7 src OR dst

GXnor 0x8 (NOT src) AND (NOT dst)
GXequiv 0x9 (NOT src) XOR dst
GXinvert Oxa NOT dst

GXorReverse 0xb src OR (NOT dst)
GXcopyInverted 0xc NOT src
GXorInverted 0xd (NOT src) OR dst
GXnand Oxe (NOT src) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC.
The planes attribute is of type long, and it specifies which planes of the desti-
nation are to be modified, one bit per plane. A monochrome display has only
one plane and will be the least-significant bit of the word. As planes are
added to the display hardware, they will occupy more significant bits in the
plane mask.

In graphics operations, given a source and destination pixel, the result is
computed bitwise on corresponding bits of the pixels. That is, a Boolean op-
eration is performed in each bit plane. The plane_mask restricts the opera-
tion to a subset of planes. A macro constant A11Planes can be used to refer
to all planes of the screen simultaneously. The result is computed by the fol-
lowing:

((src FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

98

XLIB
A New
Squrce Dest{natlon Plane Mask Destination
Pixel Pixel Pixel
. ! = One Bit
D = Zero Bit

Xor

Function

Graphics
Context

Figure 5.2. Example graphics operation using function and plane mask (4
bits/pixel)

Range checking is not performed on the values for foreground, back-
ground, or plane_mask. They are simply truncated to the appropriate num-
ber of bits. The line-width is measured in pixels and either can be greater
than or equal to one (wide line) or can be the special value zero (thin line).

Wide lines are drawn centered on the path described by the graphics re-
quest. Unless otherwise specified by the join-style or cap-style, the bounding
box of a wide line with endpoints [x1, y1], [x2, y2] and width w is a rectangle
with vertices at the following real coordinates:

[x1—(w*sn/2), y1 + (w*cs/2)], [x1 4+ (w¥sn/2), y1 — (w*cs/2)],
[x2 — (w*sn/2), y2 + (w¥cs/2)], [x2+ (w#sn/2), y2 — (w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle
of the line. A pixel is part of the line and so is drawn if the center of the pixel
is fully inside the bounding box (which is viewed as having infinitely thin
edges). If the center of the pixel is exactly on the bounding box, it is part of
the line if and only if the interior is immediately to its right (x increasing di-
rection). Pixels with centers on a horizontal edge are a special case and are
part of the line if and only if the interior or the boundary is immediately
below (y increasing direction) and the interior or the boundary is immedi-
ately to the right (x increasing direction).

Chapter 5. Graphics Resource Functions 99

Thin lines (zero line-width) are one-pixel-wide lines drawn using an un-
specified, device-dependent algorithm. There are only two constraints on
this algorithm.

1. If a line is drawn unclipped from [x1,yl] to [x2,y2] and if another line is drawn
unclipped from [x1+dx,yl+dy] to {x2+dx,y2 +dy], a point [x,y] is touched by
drawing the first line if and only if the point [x + dx,y +dy] is touched by drawing
the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That
is, a point is touched in a clipped line if and only if the point lies inside the clipping
region and the point would be touched by the line when drawn unclipped.

A wide line drawn from [x1,y1] to [x2,y2] always draws the same pixels as a
wide line drawn from [x2,y2] to [x1,y1], not counting cap-style and join-style.
It is recommended that this property be true for thin lines, but this is not re-
quired. A line-width of zero may differ from a line-width of one in which
pixels are drawn. This permits the use of many manufacturers’ line drawing
hardware, which may run many times faster than the more precisely speci-
fied wide lines.

In general, drawing a thin line will be faster than drawing a wide line of
width one. However, because of their different drawing algorithms, thin
lines may not mix well aesthetically with wide lines. If it is desirable to obtain
precise and uniform results across all displays, a client should always use a
line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes
are filled differently than the odd dashes (see fill-style)
with CapButt style used where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to
all internal ends of the individual dashes, except
CapNotLast is treated as CapButt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a
line-width of zero the final end-point is not drawn.
CapButt The line is square at the endpoint (perpendicular to the

slope of the line) with no projection beyond.

100 XLIB

CapRound The line has a circular arc with the diameter equal to
the line-width, centered on the endpoint. (This is
equivalent to CapButt for line-width of zero.)

CapProjecting The line is square at the end, but the path continues
beyond the endpoint for a distance equal to half the
line-width. (This is equivalent to CapButt for line-width
of zero.)

The join-style defines how corners are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle.
However, if the angle is less than 11 degrees, then a
JoinBevel join-style is used instead.

JoinRound The corner is a circular arc with the diameter equal to
the line-width, centered on the joinpoint.
JoinBevel The corner has CapButt endpoint styles with the

triangular notch filled.

For a line with coincident endpoints (x1=x2, yl =y2), when the cap-style is
applied to both endpoints, the semantics depends on the line-width and the

cap-style:

CapNotLast thin The results are device-dependent, but the
desired effect is that nothing is drawn.

CapButt thin The results are device-dependent, but the

Butt Cap Projecting Cap Round Cap

Miter Join Bevel Join Round Join

Figure 5.3. Wide line cap and join styles

Chapter 5. Graphics Resource Functions 101

desired effect is that a single pixel is drawn.

CapRound thin The results are the same as for
CapButt/thin.

CapProjecting thin The results are the same as for Butt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the
endpoint, and with the diameter equal to the
line-width.

CapProjecting wide The closed path is a square, aligned with the

coordinate axes, centered at the endpoint,
and with the sides equal to the line-width.

For a line with coincident endpoints (x1 =x2, yl =y2), when the join-style is
applied at one or both endpoints, the effect is as if the line was removed
from the overall path. However, if the total path consists of or is reduced to
a single point joined with itself, the effect is the same as when the cap-style
is applied at both endpoints.

The tile/stipple and clip origins are interpreted relative to the origin of
whatever destination drawable is specified in a graphics request. The tile
pixmap must have the same root and depth as the GC, or a BadMatch error
results. The stipple pixmap must have depth one and must have the same
root as the GC, or a BadMatch error results. For stipple operations where
the fill-style is Fil1Stippled but not FillOpaqueStippled, the stipple
pattern is tiled in a single plane and acts as an additional clip mask to be
ANDed with the clip-mask. Although some sizes may be faster to use than
others, any size pixmap can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill re-
quests. For all text and fill réquests (for example, XDrawText, XDraw-
Textlb, XFillRectangle, XFillPolygon, and XFillArc); for line re-
quests with line-style LineSolid (for example, XDrawLine, XDraw-
Segments, XDrawRectangle, XDrawArc); and for the even dashes for
line requests with line-style LineOnOffDash or LineDoubleDash,
the following apply:

FillSolid Foreground
FillTiled Tile

102

XLIB

FillOpaqueStippled A tile with the same width and height as stipple,
but with background everywhere stipple has a zero
and with foreground everywhere stipple has a one

FillStippled ‘ Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are
controlled by the fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes
FillOpaqueStippled Same as for even dashes
FillStippled Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made.
If the pixmap is later used as the destination for a graphics request, the
change might or might not be reflected in the GC. If the pixmap is used si-
multaneously in a graphics request both as a destination and as a tile or stip-
ple, the results are undefined.

For optimum performance, you should draw as much as possible with the
same GC (without changing its components). The costs of changing GC com-
ponents relative to using different GCs depend upon the display hardware
and the server implementation. It is quite likely that some amount of GC in-
formation will be cached in display hardware and that such hardware can
only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns
that can be set with XSetDashes. Specifying a value of N is equivalent to
specifying the two-element list [N, N] in XSetDashes. The value must be
nonzero, or a BadValue error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask
is set to a pixmap, it must have depth one and have the same root as the GC,
or a BadMatch error results. If clip-mask is set to None, the pixels are always
drawn regardless of the clip origin. The clip-mask also can be set by calling
the XSetClipRectangles or XSetRegion functions. Only pixels where
the clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the
area covered by the clip-mask or where the clip-mask has a bit set to 0. The
clip-mask affects all graphics requests. The clip-mask does not clip sources.
The clip-mask origin is interpreted relative to the origin of whatever destina-
tion drawable is specified in a graphics request.

Chapter 5. Graphics Resource Functions 103

You can set the subwindow-mode to ClipByChildren or Include-
Inferiors. For ClipByChildren, both source and destination windows
are additionally clipped by all viewable InputOutput children. For
IncludeInferiors, neither source nor destination window is clipped by
inferiors. This will result in including subwindow contents in the source and
drawing through subwindow boundaries of the destination. The use of
IncludeInferiors on a window of one depth with mapped inferiors of
differing depth is not illegal, but the semantics are undefined by the core
protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in
XFillPolygon requests and can be set to EvenOddRule or Winding-
Rule. For EvenOddRule, a point is inside if an infinite ray with the point as
origin crosses the path an odd number of times. For ¥indingRule, a point
is inside if an infinite ray with the point as origin crosses an unequal number
of clockwise and counterclockwise directed path segments. A clockwise di-
rected path segment is one that crosses the ray from left to right as observed
from the point. A counterclockwise segment is one that crosses the ray from
right to left as observed from the point. The case where a directed line seg-
ment is coincident with the ray is uninteresting because you can simply
choose a different ray that is not coincident with a segment.

For both EvenOddRule and WindingRule, a point is infinitely small,
and the path is an infinitely thin line. A pixel is inside if the center point of
the pixel is inside and the center point is not on the boundary. If the center
point is on the boundary, the pixel is inside if and only if the polygon inte-
rior is immediately to its right (x increasing direction). Pixels with centers on
a horizontal edge are a special case and are inside if and only if the polygon
interior is immediately below (y increasing direction).

Polygon Before Fill Even Odd Rule Winding Rule

Figure 5.4. Fill rule

104

XLIB

Pie Slice Chord

Figure 5.5. Arc mode

The arc-mode controls filling in the XFillArcs function and can be set
to ArcPieSlice or ArcChord. For ArcPieSlice, the arcs are pie-slice
filled. For ArcChord, the arcs are chord filled.

The graphics-exposure flag controls GraphicsExpose event generation
for XCopyArea and XCopyPlane requests (and any similar requests de-
fined by extensions).

To create a new GC that is usable on a given screen with a depth of draw-
able, use XCreateGC.

GC XCreateGC(display, d, valuemask, values)
Display *display;
Drawable d;
unsigned long valuemask;
XGCValues *values;
display Specifies the connection to the X server.
d Specifies the drawable.
valuemask Specifies which components in the GC are to be set using the
information in the specified values structure. This argument is the
bitwise inclusive OR of one or more of the valid GC component mask
bits.
values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The
GC can be used with any destination drawable having the same root and
depth as the specified drawable. Use with other drawables results in a
BadMatch error.

XCreateGC can generate BadAlloc, BadDrawable, BadFont,
BadMatch, BadPixmap, and BadValue errors.)

Chapter 5. Graphics Resource Functions 105

—

To copy components from a source GC to a destination GC, use
XCopyGC.

XCopyGCi(display, src, valuemask, dest)
Display *display;
GC sre, dest;
unsigned long valuemask;
display Specifies the connection to the X server.
src Specifies the components of the source GC.
valuemask Specifies which components in the GC are to be copied to the
destination GC. This argument is the bitwise inclusive OR of one or
more of the valid GC component mask bits.
dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC
to the destination GC. The source and destination GCs must have the same
root and depth, or a BadMatch error results. The valuemask specifies which
component to copy, as for XCreateGC.

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC(display, gc, valuemask, values)
Display *display;
GC gg;
unsigned long valuemask;
XGCValues *values;
display Specifies the connection to the X server.
gc Specifies the GC.
valuemask Specifies which components in the GC are to be changed using
information in the specified values structure. This argument is the
bitwise inclusive OR of one or more of the valid GC component mask
bits.
values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask
for the specified GC. The values argument contains the values to be set. The
values and restrictions are the same as for XCreateGC. Changing the clip-
mask overrides any previous XSetClipRectangles request on the con-

text. Changing the dash-offset or dash-list overrides any previous

XSetDashes request on the context. The order in which components are

106

5.41

XLIB

verified and altered is server-dependent. If an error is generated, a subset of
the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch,
BadPixmap, and BadValue errors.

To free a given GC, use XFreeGC.

XFreeGC(display, gc)
Display *display;

GC gc;
display Specifies the connection to the X server.
gc Specifies the GC.

The XFreeGC function destroys the specified graphics context as well as all
the associated storage that was created by Xlib.
XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use
XGContextFromGC.

GContext XGContextFromGC(gc)
GC gc;
gc Specifies the GC for which you want the resource ID.

Using GC Convenience Routines
This section discusses how to set the:

¢ Foreground, background, plane mask, or function components
¢ Line attributes and dashes components

¢ Fill style and fill rule components

« Fill tile and stipple components

¢ Font component

¢ Clip region component

¢ Arc mode, subwindow mode, and graphics exposure components

Setting the Foreground, Background, Function, or Plane Mask
To set the foreground, background, plane mask, and function components
for a given GC, use XSetState.

Chapter 5. Graphics Resource Functions 107

I— XSetState(display, gc, foreground, background, function, plane_mask)
Display *display;
GC gc;
unsigned long foreground, background,
int function;
unsigned long plane_mask;
display Specifies the connection to the X server.
gc Specifies the GC.
foreground Specifies the foreground you want to set for the specified GC.
background Specifies the background you want to set for the specified GC.
Sfunction Specifies the function you want to set for the specified GC.
‘_ plane_mask Specifies the plane mask.

XSetState can generate BadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

‘—— XSetForeground(display, gc, foreground)
Display *display,
GC gg;
unsigned long foreground,
display Specifies the connection to the X server.
gc Specifies the GC.
L Joreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

r XSetBackground(display, gc, background)
Display *display;
GC gc;
unsigned long background;
display Specifies the connection to the X server.
gc Specifies the GC.
‘— background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given GC, use XSetFunction.

I—— XSetFunction(display, gc, function)
Display *display;

108 XLIB

GC gc;
int function;
display Specifies the connection to the X server.
gc Specifies the GC.
l__ function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadRlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

l__ XSetPlaneMask(display, gc, plane_mask)
Display *display;
GC gc;
unsigned long plane_mask;
display Specifies the connection to the X server.
gc Specifies the GC.
‘_ plane_mask Specifies the plane mask.

XSetPlaneMask can generate BadAlloc and BadGC errors.

5.4.2 Setting the Line Attributes and Dashes
To set the line drawing components of a given GC, use XSetLine-
Attributes.

l—— XSetLineAttributes(display, gc, line—width, line_style, cap_style, join_style)
Display *display;
GC gc;
unsigned int lne_width;
int line_style;
int cap_style;

int join_style;
display Specifies the connection to the X server.
gc Specifies the GC.

line_width ~ Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC. You can
pass LineSolid, LineOnOffDash, or LineDoubleDash.

cap—style Specifies the line-style and cap-style you want to set for the specified
GC. You can pass CapNotLast, CapButt, CapRound, or
CapProjecting.

Jjoin_style Specifies the line join-style you want to set for the specified GC. You

L can pass JoinMiter, JoinRound, or JoinBevel.

Chapter 5. Graphics Resource Functions 109

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue
errors.

To set the dash-offset and dash-list for dashed line styles of a given GC,
use XSetDashes.

F XSetDashes(display, gec, dash_offset, dash_list, n)
Display *display;
GC gc;
int dash_offset;
char dash_lisf];
int n;
display Specifies the connection to the X server.
8¢ Specifies the GC.
dash_offset Specifies the phase of the pattern for the dashed line-style you want
to set for the specified GC.
dash_list Specifies the dash-list for the dashed line-style you want to set for the
specified GC.
i_ n Specifies the number of elements in dash_list.

The XSetDashes function sets the dash-offset and dash-list attributes for
dashed line styles in the specified GC. There must be at least one element in
the specified dash_list, or a BadValue error results. The initial and alternat-
ing elements (second, fourth, and so on) of the dash_list are the even dashes,
and the others are the odd dashes. Each element specifies a dash length in
pixels. All of the elements must be nonzero, or a BadValue error results.
Specifying an odd-length list is equivalent to specifying the same list concate-
nated with itself to produce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many

==========o

F=========ﬁ

R

Figure 5.6. Dashes: 20 50 40 50 60 50 80 50 160 50

110

543

XLIB

pixels into the dash-list the pattern should actually begin in any single
graphics request. Dashing is continuous through path elements combined
with a join-style but is reset to the dash-offset each time a cap-style is applied
at a line endpoint.

The unit of measure for dashes is the same for the ordinary coordinate
system. Ideally, a dash length is measured along the slope of the line, but im-
plementations are only required to match this ideal for horizontal and verti-
cal lines. Failing the ideal semantics, it is suggested that the length be mea-
sured along the major axis of the line. The major axis is defined as the x axis
for lines drawn at an angle of between —45 and +45 degrees or between
315 and 225 degrees from the x axis. For all other lines, the major axis is the
y axis.

XSetDashes can generate BadAlloc, BadGC, and BadValue errors.

Setting the Fill Style and Fill Rule
To set the fill-style of a given GC, use XSetFillStyle.

XSetFillStyle(display, ge, fill_style)
Display *display;

GC gc;

int full_style;
display Specifies the connection to the X server.
gc Specifies the GC.

Sfill_style Specifies the fill-style you want to set for the specified GC. You can pass
FillSolid, FillTiled, FillStippled, or FillOpaqueStippled.

XSetFillStyle can generate BadRlloc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, fill_rule)
Display *display;
GC gc;
int fill_rule;
display Specifies the connection to the X server.
gc Specifies the GC.
Sll_rule Specifies the fill-rule you want to set for the specified GC. You can pass
EvenOddRule or WindingRule.

XSetFillRule can generate BadAlloc, BadGC, and BadValue errors.

Chapter 5. Graphics Resource Functions 111

5.4.4

Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of
specific sizes. Tiling and stippling operations that restrict themselves to those
specific sizes run much faster than such operations with arbitrary size pat-
terns. Xlib provides functions that you can use to determine the best size,
tile, or stipple for the display as well as to set the tile or stipple shape and the
tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQuery-
BestSize.

Status XQueryBestSize(display, class, which_screen, width, height, width_return,
height_return)
Display *display;
int class;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;
display Specifies the connection to the X server.
class Specifies the class that you are interested in. You can pass
TileShape, CursorShape, or StippleShape.
which_screen. Specifies any drawable on the screen.
width
height Specify the width and height.
width_return
height_return Return the width and height of the object best supported by the
display hardware.

The XQueryBestSize function returns the best or closest size to the speci-
fied size. For CursorShape, this is the largest size that can be fully displayed
on the screen specified by which_screen. For TileShape, this is the size that
can be tiled fastest. For StippleShape, this is the size that can be stippled
fastest. For CursorShape, the drawable indicates the desired screen. For
TileShape and StippleShape, the drawable indicates the screen and
possibly the window class and depth. An InputOnly window cannot be
used as the drawable for TileShape or StippleShape, or a BadMatch
error results.

XQueryBestSize can generate BadDrawable, BadMatch, and
BadValue errors.

112

XLIB

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTile(display, which_screen, width, height, width_return,
height_return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width—return, *height_return;

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width

height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the
display hardware.

The XQueryBestTile function returns the best or closest size, that is, the
size that can be tiled fastest on the screen specified by which_screen. The
drawable indicates the screen and possibly the window class and depth. If an
InputOnly window is used as the drawable, a BadMatch error results.
XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display, which_screen, width, height, width_return,
height__return)
Display *display;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return,

display Specifies the connection to the X server.
which_screen Specifies any drawable on the screen.
width

height Specify the width and height.

width_return
height_return Return the width and height of the object best supported by the
display hardware.

The XQueryBestStipple function returns the best or closest size, that is,
the size that can be stippled fastest on the screen specified by which_screen.
The drawable indicates the screen and possibly the window class and depth.
If an InputOnly window is used as the drawable, a BadMatch error results.

Chapter 5. Graphics Resource Functions 113

XQueryBestStipple can generate BadDrawable and BadMatch
€rrors.

To set the fill tile of a given GC, use XSetTile.

'—_ XSetTile(display, gc, tile)
Display *display;
GC gc;
Pixmap tile;
display Specifies the connection to the X server.
gc Specifies the GC.
L‘ tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.
XSetTile can generate BadAlloc, BadGC, BadMatch, and Bad-
Pixmap errors.

To set the stipple of a given GC, use XSetStipple.

lﬁ XSetStipple(display, g, stipple)
Display *display;
GC gc;
Pixmap stipple;
display Specifies the connection to the X server.
gc Specifies the GC.
L stipple Specifies the stipple you want to set for the specified GC.

The stipple and GC must have the same depth, or a BadMatch error results.
XSetStipple can generate BadAlloc, BadGC, BadMatch, and Bad-
Pixmap errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin.

‘_ XSetTSOrigin(display, gc, ts—x_origin, ts_y_origin)
Display *display;
GC gc;
int ts_x_origin, ts_y_origin;
display Specifies the connection to the X server.
g¢ Specifies the GC.
ts_x_origin

I_— ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

114

5.4.5

5.4.6

XLIB

When graphics requests call for tiling or stippling, the parent’s origin will be
interpreted relative to whatever destination drawable is specified in the
graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

Setting the Current Font
To set the current font of a given GC, use XSetFont.

XSetFont(display, gc, font)
Display *display;
GC gc;
Font font;
display Specifies the connection to the X server.
gc Specifies the GC.
Jfont Specifies the font.

XSetFont can generate BadAlloc, BadFont, and BadGC errors.
Setting the Clip Region
Xlib provides functions that you can use to set the clip-origin and the clip-
mask or set the clip-mask to a list of rectangles.
To set the clip-origin of a given GC, use XSetClipOrigin.

XSetClipOrigin(display, ge, clip_x_origin, clip_y_origin)
Display *display;

GC gc;

int clip__x_origin, clip__y_origin;
display Specifies the connection to the X server.
gc Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destina-
tion drawable is specified in the graphics request.
XSetClipOrigin can generate BadAlloc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use
XSetClipMask.

Chapter 5. Graphics Resource Functions 115

|_— XSetClipMask(display, gc, pixmap)
Display *display;
GC gc;
Pixmap pixmap;
display Specifies the connection to the X server.
gc Specifies the GC.
L pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless
of the clip-origin).

XSetClipMask can generate BadAlloc, BadGC, BadMatch, and
BadValue errors.

To set the clip-mask of a given GC to the specified list of rectangles, use
XSetClipRectangles.

‘7 XSetClipRectangles(display, ge, clip—x_origin, clip_y_origin, reciangles, n, ordering)
Display *display;
GC gc;
int clip_x_origin, clip_y—origin;
XRectangle rectangles(];

int n;

int ordering;
display Specifies the connection to the X server.
g¢ Specifies the GC.

clip_x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

rectangles Specifies an array of rectangles that define the clip-mask.

n Specifies the number of rectangles.

ordering Specifies the ordering relations on the rectangles. You can pass
L Unsorted, YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified
graphics context to the specified list of rectangles and sets the clip origin.
The output is clipped to remain contained within the rectangles. The clip-
origin is interpreted relative to the origin of whatever destination drawable
is specified in a graphics request. The rectangle coordinates are interpreted
relative to the clip-origin. The rectangles should be nonintersecting, or the
graphics results will be undefined. Note that the list of rectangles can be
empty, which effectively disables output. This is the opposite of passing

116

5.4.7

XLIB

None as the clip-mask in XCreateGC, XChangeGC, and XSet-
ClipMask.

If known by the client, ordering relations on the rectangles can be speci-
fied with the ordering argument. This may provide faster operation by the
server. If an incorrect ordering is specified, the X server may generate a
BadMatch error, but it is not required to do so. If no error is generated, the
graphics results are undefined. Unsorted means the rectangles are in arbi-
trary order. YSorted means that the rectangles are nondecreasing in their
Y origin. YXSorted additionally constrains YSorted order in that all
rectangles with an equal Y origin are nondecreasing in their X origin.
YXBanded additionally constrains YXSorted by requiring that, for every
possible Y scanline, all rectangles that include that scanline have an identical
Y origins and Y extents.

XSetClipRectangles can generate BadRlloc, BadGC, BadMatch,
and BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic.
For information about these functions, see chapter 10.

Setting the Arc Mode, Subwindow Mode, and Graphics Exposure
To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode(display, gc, arc_mode)
Display *display;

GC gc;

int arc_mode;
display Specifies the connection to the X server.
gc Specifies the GC.

arc_mode Specifies the arc mode. You can pass ArcChord or ArcPieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(display, ge, subwindow_mode)
Display *display;
GC gc;
int subwindow_mode;

Chapter 5. Graphics Resource Functions 117

L

display Specifies the connection to the X server.

gc Specifies the GC.

subwindow_mode Specifies the subwindow mode. You can pass ClipByChildren
or IncludeInferiors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue
€rrors.

To set the graphics-exposures flag of a given GC, use XSet-
GraphicsExposures.

XSetGraphicsExposures(display, gc, graphics—exposures)
Display *display;

GC gc;

Bool graphics_exposures;
display Specifies the connection to the X server.
gc Specifies the GC.

graphics—exposures Specifies a Boolean value that indicates whether you want
GraphicsExpose and NoExpose events to be reported when
calling XCopyArea and XCopyPlane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and Bad-
Value errors.

118

6.1

Chapter 6

Graphics Functions

Once you have connected the display to the X server, you can use the Xlib
graphics functions to:

Clear and copy areas

Draw points, lines, rectangles, and arcs

Fill areas

Manipulate fonts

Draw text

Transfer images between clients and the server

Manipulate cursors

If the same drawable and GC is used for each call, Xlib batches back-to-back
calls to XDrawPoint, XDrawLine, XDrawRectangle, XFillArc, and
X¥FillRectangle. Note that this reduces the total number of requests sent
to the server.

Clearing Areas

Xlib provides functions that you can use to clear an area or the entire win-
dow. Because pixmaps do not have defined backgrounds, they cannot be
filled by using the functions described in this section. Instead, to accomplish
an analogous operation on a pixmap, you should use XFillRectangle,
which sets the pixmap to a known value.

Chapter 6. Graphics Functions 119

—

L

To clear a rectangular area of a given window, use XClearArea.

XClearArea(display, w, x, y, width, height, exposures)
Display *display;
Window w;
int x, y;
unsigned int width, height;
Bool exposures;

display Specifies the connection to the X server.

w Specifies the window.

x

y Specify the x and y coordinates, which are relative to the origin of the
window and specify the upper-left corner of the rectangle.

width

height Specify the width and height, which are the dimensions of the
rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to be
generated.

The XClearArea function paints a rectangular area in the specified win-
dow according to the specified dimensions with the window’s background
pixel or pixmap. The subwindow-mode effectively is ClipByChildren. If
width is zero, it is replaced with the current width of the window minus x. If
height is zero, it is replaced with the current height of the window minus y.
If the window has a defined background tile, the rectangle clipped by any
children is filled with this tile. If the window has background None, the con-
tents of the window are not changed. In either case, if exposures is True,
one or more Expose events are generated for regions of the rectangle that
are either visible or are being retained in a backing store. If you specify a
window whose class is InputOnly, a BadMatch error results.

XClearArea can generate BadMatch, BadValue, and BadWindow
€errors.

To clear the entire area in a given window, use XClearWindow.

XClearWindow(display, w)
Display *display;

Window w;
display ~ Specifies the connection to the X server.
w Specifies the window.

120

6.2

XLIB

The XClearWindow function clears the entire area in the specified window
and is equivalent to XClearArea (display, w, 0, 0, 0, 0, False). If the win-
dow has a defined background tile, the rectangle is tiled with a plane-mask
of all ones and GXcopy function. If the window has background None, the
contents of the window are not changed. If you specify a window whose class
is InputOnly, a BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawables of the same root and depth, use
XCopyArea.

XCopyArea(display, src, dest, gc, src—x, src_y, width, height, dest_x, dest_y)
Display *display;
Drawable src, dest;
GC gc;
int src_x, src_y;
unsigned int width, height;
int dest_x, dest_y;
display ~ Specifies the connection to the X server.
sre

dest Specify the source and destination rectangles to be combined.
gc Specifies the GC.
sre_x

sre—y Specify the x and y coordinates, which are relative to the origin of the
source rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the
source and destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

The XCopyArea function combines the specified rectangle of src with the
specified rectangle of dest. The drawables must have the same root and
depth, or a BadMatch error results.

If regions of the source rectangle are obscured and have not been retained
in backing store or if regions outside the boundaries of the source drawable

Chapter 6. Graphics Functions 121

are specified, those regions are not copied. Instead, the following occurs on
all corresponding destination regions that are either visible or are retained
in backing store. If the destination is a window with a background other than
None, corresponding regions of the destination are tiled with that back-
ground (with plane-mask of all ones and GXcopy function). Regardless of
tiling or whether the destination is a window or a pixmap, if graphics-
exposures is True, then GraphicsExpose events for all corresponding
destination regions are generated. If graphics-exposures is True but no
GraphicsExpose events are generated, a NoExpose event is generated.
Note that by default graphics-exposures is True in new GCs.

This function uses these GC components: function, plane-mask,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-
mask.

XCopyArea can generate BadDrawable, BadGC, and BadMatch er-
TOrs.

To copy a single bit plane of a given drawable, use XCopyPlane.

’— XCopyPlane(display, src, dest, ge, src—x, src—y, widih, height, desi_x, dest_y, plane)

Display *display;
Drawable src, dest;
GC gc;
nt src_x, src—y;
unsigned int width, height;
int dest_x, dest_y;
unsigned long plane;

display ~ Specifies the connection to the X server.

sre

dest Specify the source and destination rectangles to be combined.
g¢ Specifies the GC.
sre—x

Sre—y Specify the x and y coordinates, which are relative to the origin of the
source rectangle and specify its upper-left corner.

width

height Specify the width and height, which are the dimensions of both the
source and destination rectangles.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of the
destination rectangle and specify its upper-left corner.

I— plane Specifies the bit plane. You must set exactly one bit to 1.

122

6.3

XLIB

The XCopyPlane function uses a single bit plane of the specified source rec-
tangle combined with the specified GC to modify the specified rectangle of
dest. The drawables must have the same root but need not have the same
depth. If the drawables do not have the same root, a BadMatch error
results. If plane does not have exactly one bit set to 1 and the value of plane
must be less that 27, where n is the depth of src, a BadvValue error
results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectan-
gle of dest and with a size specified by the source region. It uses the
foreground/background pixels in the GC (foreground everywhere the bit
plane in src contains a bit set to 1, background everywhere the bit plane in
src contains a bit set to 0) and the equivalent of a CopyArea protocol request
is performed with all the same exposure semantics. This can also be thought
of as using the specified region of the source bit plane as a stipple with a fill-
style of FillOpaqueStipplead for filling a rectangular area of the destina-
tion.

This function uses these GC components: function, plane-mask, fore-
ground, background, subwindow-mode, graphics-exposures, clip-x-origin,
clip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

Drawing Points, Lines, Rectangles, and Arcs
Xlib provides functions that you can use to draw:

A single point or multiple points
A single line or multiple lines
A single rectangle or multiple rectangles

A single arc or multiple arcs

Some of the functions described in the following sections use these struc-
tures:

typedef struct {
short x1, yl1, x2, y2;
} XSegment;

Chapter 6. Graphics Functions 123

-

6.3.1

typedef struct {
short x, y;
} XPoint;

typedef struct {

short x, y;

unsigned short width, height;
} XRectangle;

typedef struct {

short x, y;

unsigned short width, height;

short anglel, angle2; /* Degrees * 64 */
} XArg;

All x and y members are signed integers. The width and height members are
16-bit unsigned integers. You should be careful not to generate coordinates
and sizes out of the 16-bit ranges, because the protocol only has 16-bit fields
for these values.

Drawing Singie and Multiple Points
To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint(display, d, gc, x, v)
Display *display;

Drawable d;

GC gc;

int x, y;
display Specifies the connection to the X server.
d Specifies the drawable.

gc Specifies the GC.

Y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints(display, d, ge, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;

124

6.3.2

XLIB

int npoints;

int mode;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

points Specifies a pointer to an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

The XDrawPoint function uses the foreground pixel and function compo-
nents of the GC to draw a single point into the specified drawable;
XDrawPoints draws multiple points this way. CoordModeOrigin treats all
coordinates as relative to the origin, and CoordModePrevious treats all co-
ordinates after the first as relative to the previous point. XDrawPoints
draws the points in the order listed in the array.

Both functions use these GC components: function, plane-mask, fore-
ground, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors.
XDrawPoints can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

Drawing Single and Multiple Lines
To draw a single line between two points in a given drawable, use
XDrawLine.

XDrawLine(display, d, gc, x1, y1, x2, y2)
Display *display;
Drawable d;
GC gc;
int x1, y1, x2, y2;
display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

xI

vl

x2

32 Specify the points (x1, y1) and (x2, y2) to be connected.

Chapter 6. Graphics Functions

—

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines(display, d, gc, points, npoints, mode)
Display *display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;
display ~ Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
points Specifies a pointer to an array of points.
npoints Specifies the number of points in the array.
mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

To draw multiple, unconnected lines in a given drawable,
XDrawSegments.

XDrawSegments(display, d, gc, segments, nsegments)
Display *display;
Drawable d;
GC gc;
XSegment *segments;
int nsegments;

display Specifies the connection to the X server.
d Specifies the drawable.
g¢ Specifies the GC.

segments Specifies a pointer to an array of segments.
nsegments Specifies the number of segments in the array.

125

use

The XDrawLine function uses the components of the specified GC to draw
a line between the specified set of points (x1, yl) and (x2, y2). It does not

perform joining at coincident endpoints. For any given line, XDrawLine

does not draw a pixel more than once. If lines intersect, the intersecting

pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to

draw npoints — 1 lines between each pair of points (point[i], point[i+ 1]) in

the array of XPoint structures. It draws the lines in the order listed in the

array. The lines join correctly at all intermediate points, and if the first and

last points coincide, the first and last lines also join correctly. For any given

126

6.3.3

XLIB

line, XDrawLines does not draw a pixel more than once. If thin (zero line-
width) lines intersect, the intersecting pixels are drawn multiple times. If
wide lines intersect, the intersecting pixels are drawn only once, as though
the entire PolyLine protocol request were a single, filled shape.
CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the
previous point.

The XDrawSegments function draws multiple, unconnected lines. For
each segment, XDrawSegments draws a line between (x1, y1) and (x2, y2).
It draws the lines in the order listed in the array of XSegment structures and
does not perform joining at coincident endpoints. For any given line,
XDrawSegments does not draw a pixel more than once. If lines intersect,
the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-
width, line-style, cap-style, fill-style, subwindow-mode, clip-x-origin, clip-y-
origin, and clip-mask. The XDrawLines function also uses the join-style GC
component. All three functions also use these GC mode-dependent compo-
nents: foreground, background, tile, stipple, tile-stipple—g—origin,
tile-stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate Bad-
Drawable, BadGC, and BadMatch errors. XDrawLines also can generate
BadValue errors.

Drawing Single and Multiple Rectangles
To draw the outline of a single rectangle in a given drawable, use
XDrawRectangle.

XDrawRectangle(display, d, gc, x, y, width, height)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

Chapter 6. Graphics Functions 127

Specify the x and y coordinates, which specify the upper-left corner of
the rectangle.

width

height Specify the width and height, which specify the dimensions of the

‘_ rectangle.

To draw the outline of multiple rectangles in a given drawable, use
XDrawRectangles.

!_\ XDrawRectangles(display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle rectangles[];
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.
l— nrectangles Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the out-
lines of the specified rectangle or rectangles as if a five-point PolyLine pro-
tocol request were specified for each rectangle:

[x,y] [x + width,y] [x + width,y + height] [x,y + height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel
more than once. XDrawRectangles draws the rectangles in the order listed
in the array. If rectangles intersect, the intersecting pixels are drawn multi-
ple times.

Both functions use these GC components: function, plane-mask, line-
width, line-style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-
y-origin, and clip-mask. They also use these GC mode-dependent com-
ponents: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate Bad—
Drawable, BadGC, and BadMatch errors.

128

6.3.4

XLIB

Drawing Single and Multiple Arcs
To draw a single arc in a given drawable, use XDrawArc.

XDrawArc(display, d, gc, x, y, width, height, anglel, angle2)
Display *display;
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int anglel, angle2;

display
d

8¢
X

width
height
anglel

angle2

Specifies the connection to the X server.
Specifies the drawable.
Specifies the GC.

Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the bounding rectangle.

Specify the width and height, which are the major and minor axes of the
arc.

Specifies the start of the arc relative to the three-o’clock position from
the center, in units of degrees * 64.

Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs(display, d, ge, arcs, narcs)
Display *display;

Drawable d;

GC gc;

XArc *arcs;

int narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
arcs Specifies a pointer to an array of arcs.
narcs Specifies the number of arcs in the array.

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws

multiple circular or elliptical arcs. Each arc is specified by a rectangle and

two angles. The center of the circle or ellipse is the center of the rectangle,

Chapter 6. Graphics Functions 129

and the major and minor axes are specified by the width and height. Positive
angles indicate counterclockwise motion, and negative angles indicate clock-
wise motion. If the magnitude of angle2 is greater than 360 degrees,
XDrawArc or XDrawArcs truncates it to 360 degrees.
For an arc specified as [x, y, width, height, anglel, angle2], the origin of
width height
> yF
2 2
path describing the entire circle or ellipse intersects the horizontal axis
height

x+ , and the infinitely thin

the major and minor axes is at

height
2

and intersects the vertical axis at

and |x+width, y+

at [x, y+

width

width . . .
x+ 9 y+height|. These coordinates can be fractional

2
and so are not truncated to discrete coordinates. The path should be defined
by the ideal mathematical path. For a wide line with line-width lw, the
bounding outlines for filling are given by the two infinitely thin paths con-
sisting of all points whose perpendicular distance from the path of the circle/
ellipse is equal to lw/2 (which may be a fractional value). The cap-style and
join-style are applied the same as for a line corresponding to the tangent of
the circle/ellipse at the endpoint.

For an arc specified as [x, y, width, height, anglel, angle2], the angles must be
specified in the effectively skewed coordinate system of the ellipse (for a cir-
cle, the angles and coordinate systems are identical). The relationship be-
tween these angles and angles expressed in the normal coordinate system of

x+ an

> Y

the screen (as measured with a protractor) is as follows:

(xy) An =45°
. gle1=45
Width
Y% ' P
Height » 3 O'clock

A o
Angle 2 = 270

Figure 6.1. XDrawArc (DPY, W, GC, width, height, 45%64, 270%64)

130

XLIB

skewed-angle = atan |tan(normal-angle)* + adjust

th
height
The skewed-angle and normal-angle are expressed in radians (rather than in
degrees scaled by 64) in the range [0, 27] and where atan returns a value in

i
2’9

the range and adjust is:

0 for normal-angle in the range |0, g]
. T 3
T for normal-angle in the range > ?}
. 3
2% for normal-angle in the range o 2w

For any given arc, XDrawlArc and XDrawArcs do not draw a pixel more
than once. If two arcs join correctly and if the line-width is greater than zero
and the arcs intersect, XDrawArc and XDrawArcs do not draw a pixel more
than once. Otherwise, the intersecting pixels of intersecting arcs are drawn
multiple times. Specifying an arc with one endpoint and a clockwise extent
draws the same pixels as specifying the other endpoint and an equivalent
counterclockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following
arc, the two arcs will join correctly. If the first point in the first arc coincides
with the last point in the last arc, the two arcs will join correctly. By specify-
ing one axis to be zero, a horizontal or vertical line can be drawn. Angles are
computed based solely on the coordinate system and ignore the aspect ratio.

Both functions use these GC components: function, plane-mask,
line-width, line-style, cap-style, join-style, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. They also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawBArcs can generate BadDrawable, BadGC, and
BadMatch errors.

Chapter 6. Graphics Functions 131

6.4 Filling Areas

Xlib provides functions that you can use to fill:

« A single rectangle or multiple rectangles
* A single polygon

e A single arc or multiple arcs

6.4.1 Filling Single and Multiple Rectangles
To fill a single rectangular area in a given drawable, use XFill-
Rectangle.

i— XFillRectangle(display, d, gc, x, y, width, height)
Display *dusplay;
Drawable d;
GC gc;
int x, y;
unsigned int widih, height,
display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the

drawable and specify the upper-left corner of the rectangle.
widih
height Specify the width and height, which are the dimensions of the rectangle

I__ to be filled.

To fill multiple rectangular areas in a given drawable, use XFill-
Rectangles.

f— XFillRectangles(display, d, gc, rectangles, nrectangles)
Display *display;
Drawable d;
GC gc;
XRectangle *rectangles;
int nrectangles;

display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

rectangles Specifies a pointer to an array of rectangles.
nrectangles Specifies the number of rectangles in the array.

132

6.4.2

XLIB

The XFillRectangle and XFillRectangles functions fill the specified
rectangle or rectangles as if a four-point Fil1Polygon protocol request
were specified for each rectangle:

[x,y] [x+ width,y] [x + width,y + height] [x,y + height]

Each function uses the x and y coordinates, width and height dimensions,
and GC you specify. A

XFillRectangles fills the rectangles in the order listed in the array. For
any given rectangle, XFillRectangle and XFillRectangles do not
draw a pixel more than once. If rectangles intersect, the intersecting pixels
are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use
these GC mode-dependent components: foreground, background, tile, stip-
ple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate Bad-
Drawable, BadGC, and BadMatch errors.

Filling a Single Polygon
To fill a polygon area in a given drawable, use XFillPolygon.

XFillPolygon(display, d, gc, points, npoinis, shape, mode)
Display *display;
Drawable d;
GC gc;
XPoint *poinis;
int npoints;

int shape;

int mode;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

poinis Specifies a pointer to an array of points.

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve performance. You can
pass Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or
CoordModePrevious.

Chapter 6. Graphics Functions 133

6.4.3

XFillPolygon fills the region closed by the specified path. The path is
closed automatically if the last point in the list does not coincide with the first
point. XFillPolygon does not draw a pixel of the region more than once.
CoordModeOrigin treats all coordinates as relative to the origin, and
CoordModePrevious treats all coordinates after the first as relative to the
previous point.

Depending on the specified shape, the following occurs:

If shape is Complex, the path may self-intersect.

If shape is Convex, the path is wholly convex. If known by the client, specifying
Convex can improve performance. If you specify Convex for a path that is not
convex, the graphics results are undefined.

If shape is Nonconvex, the path does not self-intersect, but the shape is not
wholly convex. If known by the client, specifying Nonconvex instead of Complex
may improve performance. If you specify Nonconvex for a self-intersecting path,
the graphics results are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting poly-
gons. .

This function uses these GC components: function, plane-mask, fill-style,
fill-rule, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also
uses these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

XFillArc(display, d, gc, x, y, widih, height, anglel, angle2)
Display *display;
Drawable d;
GC ge;
nt x, y;
unsigned int width, height;
int anglel, angle2;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

134

XLIB

x

Y Specify the x and y coordinates, which are relative to the origin of the
drawable and specify the upper-left corner of the bounding rectangle.

wedth

height Specify the width and height, which are the major and minor axes of the

arc.

anglel Specifies the start of the arc relative to the three-o’clock position from
the center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in
units of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcs(display, d, gc, arcs, narcs)
Display *display;

Drawable d;
GC gc;
XArc *arcs;
int narcs;
display Specifies the connection to the X server.
d Specifies the drawable.
g Specifies the GC.
arcs Specifies a pointer to an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infi-
nitely thin path described by the specified arc and, depending on the arc-
mode specified in the GC, one or two line segments. For ArcChord, the
single line segment joining the endpoints of the arc is used. For Arc-
PieSlice, the two line segments joining the endpoints of the arc with the
center point are used. XFillArcs fills the arcs in the order listed in the
array. For any given arc, XFillArc and XFillArcs do not draw a pixel
more than once. If regions intersect, the intersecting pixels are drawn multi-
ple times.

Both functions use these GC components: function, plane-mask, fill-style,
arc-mode, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.
They also use these GC mode-dependent components: foreground, back-
ground, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and
BadMatch errors.

Chapter 6. Graphics Functions 135

6.5 Font Metrics
A font is a graphical description of a set of characters that are used to in-
crease efficiency whenever a set of small, similar sized patterns are repeat-
edly used.
This section discusses how to:

e Load and free fonts

¢ Obtain and free font names

¢ Set and retrieve the font search path
« Compute character string sizes

» Return logical extents

* Query character string sizes

The X server loads fonts whenever a program requests a new font. The
server can cache fonts for quick lookup. Fonts are global across all screens in
a server. Several levels are possible when dealing with fonts. Most applica-
tions simply use XLoadQueryFont to load a font and query the font met-
rics.

Characters in fonts are regarded as masks. Except for image text requests,
the only pixels modified are those in which bits are set to 1 in the character.

—
¢ RBearing
LBearing
'
Ascent
3 / Origin
1] vd
T 1T Baseline
Descent - i]
sl New
Y o
ok - Origin
Width

Figure 6.2. XCharStruct components

136

XLIB

This means that it makes sense to draw text using stipples or tiles (for exam-

ple, many menus gray-out unusable entries).
The XFontStruct structure contains all of the information for the font

and consists of the font-specific information as well as a pointer to an array
of XCharStruct structures for the characters contained in the font. The
XFontStruct, XFontProp, and XCharStruct structures contain:

typedef struct {

short lbearing;

short rbearing;

short width;

short ascent;

short descent;

unsigned short attributes;
} XCharStruct;

typedef struct {
Atom name;
unsigned long card32;
} XFontProp;

typedef struct {
unsigned char bytel;
unsigned char byte2;
} XChar2b;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_bytel;
unsigned max_bytel;
Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;

XCharStruct min_bounds;

XCharStruct max_bounds;

/* origin to left edge of raster */

/* origin to right edge of raster */

/* advance to next char’s origin */

/* baseline to top edge of raster */

/* baseline to bottom edge of raster */
/* per char flags (not predefined) */

/* normal 16 bit characters are two bytes */

/* hook for extension to hang data */
/* Font id for this font */
/* hint about the direction font is painted */
/* first character */
/* last character */
/* first row that exists */
/* last row that exists */
/* flag if all characters have nonzero size */
/* char to print for undefined character */
/* how many properties there are */
/* pointer to array of additional
properties */
/* minimum bounds over all existing
char */
/* maximum bounds over all existing
char */

Chapter 6. Graphics Functions 137

XCharStruct *per_char; /* first_char to last_char information */

int ascent; /* logical extent above baseline for
spacing */

int descent; /* logical descent below baseline for
spacing */

} XFontStruct;

X supports single byte/character, two bytes/character matrix, and 16-bit
character text operations. Note that any of these forms can be used with a
font, but a single byte/character text request can only specify a single byte
(that is, the first row of a 2-byte font). You should view 2-byte fonts as a two-
dimensional matrix of defined characters: bytel specifies the range of de-
fined rows and byte2 defines the range of defined columns of the font. Sin-
gle byte/character fonts have one row defined, and the byte2 range specified
in the structure defines a range of characters.

The bounding box of a character is defined by the XCharStruct of that
character. When characters are absent from a font, the default_char is used.
When fonts have all characters of the same size, only the information in the
XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

The direction member can be either FontLeftToRight or FontRightToLeft.
It is just a hint as to whether most XCharStruct elements have a positive
(FontLeftToRight) or a negative (FontRightToLeft) character width metric.
The core protocol defines no support for vertical text.

If the min_bytel and max_bytel members are both zero, min_char_or_byte2
specifies the linear character index corresponding to the first element of the
per—char array, and max_char_or_byte2 specifies the linear character index of
the last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character ind¢x values

corresponding to the per_char array element N (counting from 0) are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2

where:

D = max_char_or_byte2 — min_char_or_byte2 + 1

I

integer division

—
I

integer modulus

138

XLIB

o If the per_char pointer is NULL, all glyphs between the first and last character
indexes inclusive have the same information, as given by both min_bounds and
max_bounds.

If all_chars_exist is True, all characters in the per_char array have nonzero
bounding boxes.

The default_char member specifies the character that will be used when an
undefined or nonexistent character is printed. The default_char is a 16-bit
character (not a 2-byte character). For a font using 2-byte matrix format, the
default_char has bytel in the most-significant byte and byte2 in the
least-significant byte. If the default_char itself specifies an undefined or
nonexistent character, no printing is performed for an undefined or nonexistent
character.

The min_bounds and max_bounds members contain the most extreme values of
each individual XCharStruct component over all elements of this array (and
ignore nonexistent characters). The bounding box of the font (the smallest
rectangle enclosing the shape obtained by superimposing all of the characters at
the same origin [x,y]) has its upper-left coordinate at:

[x + min_bounds.lbearing, y — max_bounds.ascent]
Its width is:
max_bounds.rbearing — min_bounds.lbearing
Its height is:

max_bounds.ascent + max_bounds.descent

The ascent member is the logical extent of the font above the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

The descent member is the logical extent of the font at or below the baseline that
is used for determining line spacing. Specific characters may extend beyond this.

If the baseline is at Y-coordinate y, the logical extent of the font is inclusive
between the Y-coordinate values (y — font.ascent) and (y + font.descent — 1).
Typically, the minimum interline spacing between rows of text is given by
ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the
smallest rectangle that encloses the character’s shape) described in terms of
XCharStruct components is a rectangle with its upper-left corner at:

Chapter 6. Graphics Functions 139

[x + Ibearing, y — ascent]
Its width is:
rbearing — lbearing
Its height is:
ascent + descent
The origin for the next character is defined to be:
[x + width, y]

The Ibearing member defines the extent of the left edge of the character ink
from the origin. The rbearing member defines the extent of the right edge
of the character ink from the origin. The ascent member defines the extent
of the top edge of the character ink from the origin. The descent member
defines the extent of the bottom edge of the character ink from the origin.
The width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically
viewed as being the scanline just below nondescending characters. When de-
scent is zero, only pixels with Y-coordinates less than y are drawn, and the
origin is logically viewed as being coincident with the left edge of a
nonkerned character. When lbearing is zero, no pixels with X-coordinate
less than x are drawn. Any of the XCharStruct metric members could be
negative. If the width is negative, the next character will be placed to the left
of the current origin.

The X protocol does not define the interpretation of the attributes mem-
ber in the XCharStruct structure. A nonexistent character is represented
with all members of its XCharStruct set to zero.

A font is not guaranteed to have any properties. The interpretation of the
property value (for example, long or unsigned long) must be derived from
a priort knowledge of the property. When possible, fonts should have at least
the properties listed in the following table. With atom names, uppercase and
lowercase matter. The following built-in property atoms can be found in
<Xll/Xatom.h>:

140

XLIB

Property Name

Type

Description

MIN_.SPACE

NORM_SPACE

MAX_SPACE

END_SPACE

SUPERSCRIPT_X
SUPERSCRIPT_Y

SUBSCRIPT_X
SUBSCRIPT_Y

UNDERLINE_POSITION

UNDERLINE_THICKNESS

STRIKEOUT_ASCENT
STRIKEOUT_DESCENT

ITALIC_ANGLE

unsigned
unsigned
unsigned
unsigned

int

int

int

unsigned

int

int

The minimum interword
spacing, in pixels.

The normal interword spacing,
in pixels.

The maximum interword
spacing, in pixels.

The additional spacing at the
end of sentences, in pixels.
Offset from the character origin
where superscripts should begin,
in pixels. If the origin is at [x,y],
then superscripts should begin
at [x + SUPERSCRIPT_X,y —
SUPERSCRIPT_Y].

Offset from the character origin
where subscripts should begin,
in pixels. If the origin is at [x,y],
then subscripts should begin at
[x + SUPERSCRIPT_X,y +
SUPERSCRIPT_Y].

Y offset from the baseline to the
top of an underline, in pixels. If
the baseline is Y-coordinate vy,
then the top of the underline is at
(y + UNDERLINE_POSITION).
Thickness of the underline, in
pixels.

Vertical extents for boxing or
voiding characters, in pixels. If
the baseline is at Y-coordinate vy,
then the top of the strikeout box
is at

(y — STRIKEOUT_ASCENT),
and the height of the box is
(STRIKEOUT_ASCENT +
STRIKEOUT_DESCENT).

The angle of the dominant staffs
of characters in the font, in
degrees scaled by 64, relative to
the three-o’clock position from

Chapter 6. Graphics Functions 141

6.5.1

Property Name Type Description

the character origin, with
positive indicating
counterclockwise motion (as in
XDrawArc).

X_HEIGHT int 1 ex as in TeX, but expressed in
units of pixels. Often the height
of lowercase x.

QUAD_WIDTH int 1 em as in TeX, but expressed in
units of pixels. Often the width
of the digits 0-9.

CAP_HEIGHT int Y offset from the baseline to the
top of the capital letters,
ignoring accents, in pixels. If the
baseline is at Y-coordinate vy,
then the top of the capitals is at
(y — CAP_HEIGHT).

WEIGHT unsigned The weight or boldness of the
font, expressed as a value
between 0 and 1000.

POINT_SIZE unsigned The point size of this font at the
ideal resolution, expressed in
1/10 points.

RESOLUTION unsigned The number of pixels per point,
expressed in 1/100, at which this
font was created.

Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information,
unload fonts, and free font information. A few font functions use a
GContext resource ID or a font ID interchangeably.

To load a given font, use XLoadFont.

Font XLoadFont(display, name)
Display *display;
char *name;
display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

142

XLIB

The XLoadFont function loads the specified font and returns its associated
font ID. The name should be ISO Latin-1 encoding; uppercase and lower-
case do not matter. If XLoadFont was unsuccessful at loading the specified
font, a BadName error results. Fonts are not associated with a particular
screen and can be stored as a component of any GC. When the font is no
longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, font_ID)

Display *display;

XID font_ID;
display Specifies the connection to the X server.
foni_ID Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct struc-
ture, which contains information associated with the font. You can query a
font or the font stored in a GC. The font ID stored in the XFontStruct
structure will be the GContext ID, and you need to be careful when using
this ID in other functions (see XGContextFromGC). To free this data, use
XFreeFontInfo.

To perform a XLoadFont and XQueryFont in a single operation, use
XLoadQueryFont.

XFontStruct *XLoadQueryFont(display, name)
Display *display;
char *name;
display Specifies the connection to the X server.
name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for access-
ing a font. XLoadQueryFont both opens (loads) the specified font and re-
turns a pointer to the appropriate XFontStruct structure. If the font does
not exist, XLoadQueryFont returns NULL.

XLoadQueryFont can generate a BadAlloc error.

Chapter 6. Graphics Functions 143

To unload the font and free the storage used by the font structure that was
allocated by XQueryFont or XLoadQueryFont, use XFreeFont.

l__ XFreeFont(display, font_struct)
Display *display;
XFontStruct *font_struct;
display Specifies the connection to the X server.
L font_struct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource
ID and the specified font and frees the XFontStruct structure. The font it-
self will be freed when no other resource references it. The data and the
font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

r Bool XGetFontProperty(font_siruct, atom, value_return)
XFontStruct *font_struct;
Atom atom;
unsigned long *value_return;
Jfont_struct Specifies the storage associated with the font.
atom Specifies the atom for the property name you want returned.
L value_return Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function re-
turns the value of the specified font property. XGetFontProperty also re-
turns False if the property was not defined or True if it was defined. A set
of predefined atoms exists for font properties, which can be found in

~<Xll/Xatom.h>. This set contains the standard properties associated with
a font. Although it is not guaranteed, it is likely that the predefined font
properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

I—— XUnloadFont(display, font)
Display *display;
Font font;
display ~ Specifies the connection to the X server.

l— font Specifies the font.

144

6.5.2

XLIB

The XUnloadFont function deletes the association between the font re-

source ID and the specified font. The font itself will be freed when no other

resource references it. The font should not be referenced again.
XUnloadFont can generate a BadFont error.

Obtaining and Freeing Font Names and Information
You obtain font names and information by matching a wildcard specification
when querying a font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts(display, pattern, maxnames, actual_count_return)
Display *display;
char *pattern;
int maxnames;
int *actual__count_return;
display Specifies the connection to the X server.
pattern Specifies the null-terminated pattern string that can contain
wildcard characters.
maxnames Specifies the maximum number of names to be returned.
actual_count_return Returns the actual number of font names.

The XListFonts function returns an array of available font names (as con-
trolled by the font search path; see XSetFontPath) that match the string
you passed to the pattern argument. The string should be ISO Latin-1;
uppercase and lowercase do not matter. Each string is terminated by an
ASCII null. The pattern string can contain any characters, but each asterisk
(*) is a wildcard for any number of characters, and each question mark (?) is
a wildcard for a single character. The client should call XFreeFontNames
when finished with the result to free the memory.

To free a font name array, use XFreeFontNanes.

XFreeFontNames(lust)
char *lisi[];
list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by
XListFonts or XListFontsWithInfo.

Chapter 6. Graphics Functions 145

—

To obtain the names and information about available fonts, use
XListFontsWithInfo.

char **XListFontsWithInfo(display, pattern, maxnames, couni_return, info_return)
Display *display;
char *pattern;
int maxnames;
int *count_return;
XFontStruct **info_return;

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain
wildcard characters.

maxnames Specifies the maximum number of names to be returned.

couni_return Returns the actual number of matched font names.
info_return Returns a pointer to the font information.

The XListFontsWithInfo function returns a list of font names that
match the specified pattern and their associated font information. The list of
names is limited to size specified by maxnames. The information returned
for each font is identical to what XLoadQueryFont would return except
that the per-character metrics are not returned. The pattern string can con-
tain any characters, but each asterisk (¥) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. To
free the allocated name array, the client should call XFreeFontNames. To
free the the font information array, the client should call XFree-
FontInfo.

To free the font information array, use XFreeFontInfo.

XFreeFontInfo(rames, free_info, actual _count)
char **names,
XFontStruct *free_info;
int actual_count;

names Specifies the list of font names returned by XListFonts—
WithInfo.

Sree_info Specifies the pointer to the font information returned by
XListFontsWithInfo.

actual_count Specifies the actual number of matched font names returned by
XListFontsWithInfo.

146

6.5.3

=

XLIB

Setting and Retrieving the Font Search Path
To set the font search path, use XSetFontPath.

XSetFontPath(display, directories, ndirs)
Display *display;
char **directories;
int ndirs;
display Specifies the connection to the X server.
directories Specifies the directory path used to look for a font. Setting the path to
the empty list restores the default path defined for the X server.
ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font
lookup. There is only one search path per X server, not one per client. The
interpretation of the strings is operating system dependent, but they are in-
tended to specify directories to be searched in the order listed. Also, the con-
tents of these strings are operating system dependent and are not intended
to be used by client applications. Usually, the X server is free to cache font
information internally rather than having to read fonts from files. In addi-
tion, the X server is guaranteed to flush all cached information about fonts
for which there currently are no explicit resource IDs allocated. The
meaning of an error from this request is operating system dependent.
XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

char **XGetFontPath(display, npaths_return)

Display *display;

int *npaths_return;
display Specifies the connection to the X server.
npaths_return ~ Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings con-
taining the search path. When it is no longer needed, the data in the font
path should be freed by using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath(list)
char **[ist;
lst Specifies the array of strings you want to free.

Chapter 6. Graphics Functions 147

The XFreeFontPath function frees the data allocated by XGet-
FontPath.

6.5.4 Computing Character String Sizes
Xlib provides functions that you can use to compute the width, the logical
extents, and the server information about 8-bit and 2-byte text strings. The
width is computed by adding the character widths of all the characters. It
does not matter if the font is an 8-bit or 2-byte font. These functions return
the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

(_ int XTextWidth(font_struct, string, count)
XFontStruct *font_struct;
char *string;

int count;
Sfoni_struct Specifies the font used for the width computation.
string Specifies the character string.
|_ count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidthik.

int X TextWidth 16(foni_struct, string, count)
XFontStruct *font_struct;
XChar2b *string;

int count;
foni_struct Specifies the font used for the width computation.
string Specifies the character string.
l_— count Specifies the character count in the specified string.

6.5.5 Computing Logical Extents
To compute the bounding box of an 8-bit character string in a given font, use
XTextExtents.

‘_— XTextExtents(foni_struct, string, nchars, direction_return, font_ascent_return,
Jfoni_descent_return, overall_veturn)
XFontStruct *font_struct;
char *string;
int nchars;

148

XLIB

int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

Jont_struct Specifies a pointer to the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.
direction—_return Returns the value of the direction hint (FontLeftToRight

or FontRightToLeft).

font_ascent_return ~ Returns the font ascent.

Jfoni_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

To compute the bounding box of a 2-byte character string in a given font,
use XTextExtentslet.

XTextExtents16(font_struct, string, nchars, direction_return, font_ascent_return,
Jont_descent_return, overall_return)
XFontStruct *font_struct;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *foni_descent_return;
XCharStruct *overall _return;

Joni_struct Specifies a pointer to the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.
direction—return Returns the value of the direction hint (FontLeftToRight

or FontRightToLeft).

font_ascent_return ~ Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

TheXTextExtentsand XTextExtentslt functions perform the size com-
putation locally and, thereby, avoid the round-trip overhead of XQuery-
TextExtents and XQueryTextExtentslt. Both functions return an
XCharStruct structure, whose members are set to the values as follows.
The ascent member is set to the maximum of the ascent metrics of all
characters in the string. The descent member is set to the maximum of the
descent metrics. The width member is set to the sum of the character-width

Chapter 6. Graphics Functions 149

6.5.6

metrics of all characters in the string. For each character in the string, let W
be the sum of the character-width metrics of all characters preceding it in the
string. Let L be the left-side-bearing metric of the character plus W. Let R be
the right-side-bearing metric of the character plus W. The lbearing member
is set to the minimum L of all characters in the string. The rbearing member
is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,
each XCharz2b structure is interpreted as a 16-bit number with bytel as the
most-significant byte. If the font has no defined default character, undefined
‘characters in the string are taken to have all zero metrics.

Querying Character String Sizes
To query the server for the bounding box of an 8-bit character string in a
given font, use XQueryTextExtents.

XQueryTextExtents(display, font_ID, string, nchars, direction_return,
Sfont_ascent_return, foni_descent_return, overall _return)
Display *dusplay;
XID font_ID;
char *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent_return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

font_ID Specifies either the font ID or the GContext ID that contains
the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight

or FontRightToLeft).

font_ascent_return ~ Returns the font ascent.

font_descent_return Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct
structure.

To query the server for the bounding box of a 2-byte character string in a
given font, use XQueryTextExtentslek.

150

-

XLIB

XQueryTextExtents16(display, foni_ID, string, nchars, direction_return,
Jfont_ascent_return, foni_descent_return, overall_return)
Display *display;
XID font_ID;
XChar2b *string;
int nchars;
int *direction_return;
int *font_ascent_return, *font_descent.__return;
XCharStruct *overall_return;

display Specifies the connection to the X server.

Jont_ID Specifies either the font ID or the GContext ID that contains
the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_return Returns the value of the direction hint (FontLeftToRight

or FontRightToLeft).

Jfoni_ascent_return ~ Returns the font ascent.

font_descent_return Returns the font descent.

overall__return Returns the overall size in the specified XCharStruct
structure.

The XQueryTextExtents and XQueryTextExtentslk functions return
the bounding box of the specified 8-bit and 16-bit character string in the
specified font or the font contained in the specified GC. These functions
query the X server and, therefore, suffer the round-trip overhead that is
avoided by XTextExtents and XTextExtentslk. Both functions return
a XCharStruct structure, whose members are set to the values as fol-
lows.

The ascent member is set to the maximum of the ascent metrics of all
characters in the string. The descent member is set to the maximum of the
descent metrics. The width member is set to the sum of the character-width
metrics of all characters in the string. For each character in the string, let W
be the sum of the character-width metrics of all characters preceding it in the
string. Let L be the left-side-bearing metric of the character plus W. Let R be
the right-side-bearing metric of the character plus W. The lbearing member
is set to the minimum L of all characters in the string. The rbearing member
is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing,
each XChare2b structure is interpreted as a 16-bit number with bytel as the

Chapter 6. Graphics Functions 151

6.6

most-significant byte. If the font has no defined default character, undefined
characters in the string are taken to have all zero metrics.

XQueryTextExtents and XQueryTextExtentslb can generate Bad—
Font and BadGC errors.

Drawing Text
This section discusses how to draw:

Complex text
Text characters

Image text characters

The fundamental text functions XDrawText and XDrawText1lk use the fol-
lowing structures.

typedef struct {

char *chars; /* pointer to string */

int nchars; /* number of characters */

int delta; /* delta between strings */

Font font; /* Font to print it in, None don’t change */

} XTextltem;

typedef struct {
XChar2b *chars; /* pointer to two-byte characters */

int nchars; /* number of characters */
int delta; /* delta between strings */
Font font; /* font to print it in, None don’t change */

} XTextItem16;

If the font member is not None, the font is changed before printing and also
is stored in the GC. If an error was generated during text drawing, the previ-
ous items may have been drawn. The baseline of the characters is drawn
starting at the x and y coordinates that you pass in the text drawing func-
tions.

For example, consider the background rectangle drawn by XDrawImage-
String. If you want the upper-left corner of the background rectangle
to be at pixel coordinate (x,y), pass the (x,y + ascent) as the baseline origin
coordinates to the text functions. The ascent is the font ascent, as given in
the XFontStruct structure. If you want the lower-left corner of the back-

152

6.6.1

XLIB

ground rectangle to be at pixel coordinate (x,y), pass the (x,y — descent + 1)
as the baseline origin coordinates to the text functions. The descent is the
font descent, as given in the XFontStruct structure.

Drawing Complex Text
To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText(display, d, ge, x, y, items, nitems)
Display *display;

Drawable d;
GC gc;
int x, y;
XTextltem *items;
int nitems;
display ~ Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
Y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
ttems Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawTextlb.

XDrawText16(display, d, gc, x, v, items, nitems)
Display *display;

Drawable d;
GC gc;
int x, y;
XTextltem16 *items;
int nitems;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
items Specifies a pointer to an array of text items.

nitems Specifies the number of text items in the array.

Chapter 6. Graphics Functions 153

6.6.2

The XDrawTextlk function is similar to XDrawText except that it uses
2-byte or 16-bit characters. Both functions allow complex spacing and font
shifts between counted strings.

Each text item is processed in turn. A font member other than None in an
item causes the font to be stored in the GC and used for subsequent text. A
text element delta specifies an additional change in the position along the x
axis before the string is drawn. The delta is always added to the character or-
igin and is not dependent on any characteristics of the font. Each character
image, as defined by the font in the GC, is treated as an additional mask for
a fill operation on the drawable. The drawable is modified only where the
font character has a bit set to 1. If a text item generates a BadFont error, the
previous text items may have been drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing,
each XChareb structure is interpreted as a 16-bit number with bytel as the
most-significant byte.

Both functions use these GC components: function, plane-mask, fill-style,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawTextlb can generate BadDrawable, BadFont,
BadGC, and BadMatch errors.

Drawing Text Characters
To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
char *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

154

6.6.3

XLIB

string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawStringlé.

XDrawString 16(display, d, g, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
x
Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an addi-
tional mask for a fill operation on the drawable. The drawable is modified
only where the font character has a bit set to 1. For fonts defined with 2-byte
matrix indexing and used with XDrawStringlk, each byte is used as a
byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style,
font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also
use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawStringlk can generate BadDrawable,
BadGC, and BadMatch errors.

Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text
in which both the foreground and background bits of each character are
painted. This prevents annoying flicker on many displays.

Chapter 6. Graphics Functions 155

—

To draw 8-bit image text characters in a given drawable, use XDraw-
ImageString.

XDrawlImageString(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC ggc;
nt x, y;
char *string;
int length;
display Specifies the connection to the X server.

d Specifies the drawable.
gc Specifies the GC.
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.
string Specifies the character string.
length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDraw-
ImageStringlek.

XDrawlmageString16(display, d, gc, x, y, string, length)
Display *display;
Drawable d;
GC gc;
int x, y;
XChar2b *string;
int length;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.

y Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDrawImageStringlb function is similar to XDrawImageString ex-
cept that it uses 2-byte or 16-bit characters. Both functions also use both the
foreground and background pixels of the GC in the destination.

156

6.7

XLIB

The effect is first to fill a destination rectangle with the background pixel
defined in the GC and then to paint the text with the foreground pixel. The
upper-left corner of the filled rectangle is at:

[x, y — font-ascent]
The width is:
overall-width
The height is:
font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned
by XQueryTextExtents using gc and string. The function and fill-style de-
fined in the GC are ignored for these functions. The effective function is
GXcopy, and the effective fill-style is Fi11Solid.

For fonts defined with 2-byte matrix indexing and used with XDraw-
ImageString, each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, back-
ground, font, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

X¥DrawImageString and XDrawImageStringlk can generate Bad-
Drawable, BadGC, and BadMatch errors.

Transferring Images between Client and Server
Xlib provides functions that you can use to transfer images between a client
and the server. Because the server may require diverse data formats, Xlib
provides an image object that fully describes the data in memory and that
provides for basic operations on that data. You should reference the data
through the image object rather than referencing the data directly. How-
ever, some implementations of the Xlib library may efficiently deal with fre-
quently used data formats by replacing functions in the procedure vector
with special case functions. Supported operations include destroying the
image, getting a pixel, storing a pixel, extracting a subimage of an image,
and adding a constant to an image (see chapter 10).

All the image manipulation functions discussed in this section make use of
the XImage data structure, which describes an image as it exists in the cli-
ent’s memory.

Chapter 6. Graphics Functions 157

I—— typedef struct _XImage {
int width, height; /* size of image */
int xoffset; /* number of pixels offset in X direction */
int format; /¥ XYBitmap, XYPixmap, ZPixmap *
char *data; /* pointer to image data */
int byte_order; /* data byte order, LSBFirst, MSBFirst */
int bitmap_unit; /* quant, of scanline 8,16, 32 */
int bitmap_bit_order; /* LSBFirst, MSBFirst */
int bitmap_pad; /%8, 16, 32 either XYPixmap or ZPixmap */
int depth; /* depth of image */
int bytes_per_line; /* accelerator to next scanline */
int bits_per_pixel; /* bits per pixel (zPixmap) */
unsigned long red_mask; /* bits in z arrangement */

unsigned long green_mask;
unsigned long blue_mask;
char *obdata; /* hook for the object routines to hang on */
struct funcs { /* image manipulation routines */
struct —XImage *(*create_image)();
int (*destroy_image)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();
1

[— } XImage;

You may request that some of the members (for example, height, width, and
xoffset) be changed when the image is sent to the server. That is, you may
send a subset of the image. Other members (for example, byte_order,
bitmap_unit, and so forth) are characteristics of both the image and the
server. If these members differ between the image and the server,
XPutImage makes the appropriate conversions. The first byte of the first
scanline of plane n is located at the address

(data + (n * height * bytes_per_line)).
To combine an image in memory with a rectangle of a drawable on the dis-
play use XPutImage.
I__ XPutlmage(display, d, gc, image, sre_x, src_y, dest_x, dest_y, width, height)

Display *display;
Drawable d;

158

XLIB

GC gc;
XImage *image;
int src—x, src_y;
int dest_x, dest_y;
unsigned int widih, height;
display Specifies the connection to the X server.
d Specifies the drawable.
gc Specifies the GC.
image Specifies the image you want combined with the rectangle.
src..x Specifies the offset in X from the left edge of the image defined by the
XImage data structure.
STC—y Specifies the offset in Y from the top edge of the image defined by the
XImage data structure.
dest_x
dest_y Specify the x and y coordinates, which are relative to the origin of the
drawable and are the coordinates of the subimage.
width
height Specify the width and height of the subimage, which define the
dimensions of the rectangle.

The XPutImage function combines an image in memory with a rectangle of
the specified drawable. If XYBitmap format is used, the depth must be one,
or a BadMatch error results. The foreground pixel in the GC defines the
source for the one bits in the image, and the background pixel defines the
source for the zero bits. For XYPixmap and ZPixmap, the depth must match
the depth of the drawable, or a BadMatch error results. The section of the
image defined by the src_x, src_y, width, and height arguments is drawn on
the specified part of the drawable.

This function uses these GC components: function, plane-mask,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground and background.

XPutImage can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

To return the contents of a rectangle in a given drawable on the display,
use XGetImage. This function specifically supports rudimentary screen
dumps.

Chapter 6. Graphics Functions 159

,_ XImage *XGetImage(display, d, x, y, width, height, plane_mask, format)
Display *display;
Drawable d;
int x, y;
unsigned int width, height;
long plane_mask;

int format;

display Specifies the connection to the X server.

d Specifies the drawable.

x

y Specify the x and y coordinates, which are relative to the origin of
the drawable and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the

dimensions of the rectangle.
plane_mask Specifies the plane mask.
Sformat Specifies the format for the image. You can pass XYPixmap or

l_— ZPixmap.

The XGetImage function returns a pointer to an XImage structure. This
structure provides you with the contents of the specified rectangle of the
drawable in the format you specify. If the format argument is XYPixmap,
the image contains only the bit planes you passed to the plane_mask argu-
ment. If the plane_mask argument only requests a subset of the planes of
the display, the depth of the returned image will be the number of planes re-
quested. If the format argument is ZPixmap, XGetImage returns as zero
the bits in all planes not specified in the plane_mask argument. The func-
tion performs no range checking on the values in plane_mask and ignores
extraneous bits.

XGetImage returns the depth of the image to the depth member of the
XImage structure. The depth of the image is as specified when the drawable
was created, except when getting a subset of the planes in XYPixmap format,
when the depth is given by the number of bits set to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained
within the pixmap, or a BadMatch error results. If the drawable is a win-
dow, the window must be viewable, and it must be the case that if there were
no inferiors or overlapping windows, the specified rectangle of the window
would be fully visible on the screen and wholly contained within the outside

160

XLIB

edges of the window, or a BadMatch error results. Note that the borders of
the window can be included and read with this request. If the window has
backing-store, the backing-store contents are returned for regions of the
window that are obscured by noninferior windows. If the window does not
have backing-store, the returned contents of such obscured regions are un-
defined. The returned contents of visible regions of inferiors of a different
depth than the specified window’s depth are also undefined. The pointer
cursor image is not included in the returned contents.

XGetImage can generate BadDrawable, BadMatch, and BadValue
errors.

To copy the contents of a rectangle on the display to a location within a
preexisting image structure, use XGetSubImage.

XImage *XGetSublmage(display, d, x, y, width, height, plane_mask, format, dest_image,
dest_x, dest_y)
Display *display;
Drawable d;
int x, y;
unsigned int width, height;
unsigned long plane_mask;
int format;
XImage *dest_image;
int dest_x, dest_y;

display Specifies the connection to the X server.

d Specifies the drawable.

X

y Specify the x and y coordinates, which are relative to the origin of
the drawable and define the upper-left corner of the rectangle.

width

height Specify the width and height of the subimage, which define the

dimensions of the rectangle.
plane_mask Specifies the plane mask.

Jformat Specifies the format for the image. You can pass XYPixmap or
ZPixmap.

dest_image Specifies the destination image.

dest_x

dest_y Specify the x and y coordinates, which are relative to the origin of

the destination rectangle, specify its upper-left corner, and
determine where the subimage is placed in the destination image.

Chapter 6. Graphics Functions 161

6.8

The XGetSubImage function updates dest_image structure with the speci-
fied subimage in the same manner as XGetImage. If the format argument
is XYPixmap, the image contains only the bit planes you passed to the
plane_mask argument. If the format argument is ZPixmap, XGet-
SubImage returns as zero the bits in all planes not specified in the
plane_mask argument. The function performs no range checking on the
values in plane_mask and ignores extraneous bits. As a convenience,
XGetSubImage returns a pointer to the same XImage structure specified by
dest_image.

The depth of the destination XImage structure must be the same as that
of the drawable. If the specified subimage does not fit at the specified loca-
tion on the destination image, the right and bottom edges are clipped. If the
drawable is a pixmap, the given rectangle must be wholly contained within
the pixmap, or a BadMatch error results. If the drawable is a window, the
window must be viewable, and it must be the case that if there were no inferi-
ors or overlapping windows, the specified rectangle of the window would be
fully visible on the screen and wholly contained within the outside edges of
the window, or a BadMatch error results. If the window has backing-store,
then the backing-store contents are returned for regions of the window that
are obscured by noninferior windows. If the window does not have backing-
store, the returned contents of such obscured regions are undefined. The
returned contents of visible regions of inferiors of a different depth than the
specified window’s depth are also undefined.

XGetSubImage can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

Cursors
This section discusses how to:

Create a cursor
Change or destroy a cursor

Define the cursor for a window

Each window can have a different cursor defined for it. Whenever the
pointer is in a visible window, it is set to the cursor defined for that window.
If no cursor was defined for that window, the cursor is the one defined for
the parent window.

162

6.8.1

XLIB

From X’s perspective, a cursor consists of a cursor source, mask, colors,
and a hotspot. The mask pixmap determines the shape of the cursor and
must be a depth of one. The source pixmap must have a depth of one, and
the colors determine the colors of the source. The hotspot defines the point
on the cursor that is reported when a pointer event occurs. There may be
limitations imposed by the hardware on cursors as to size and whether a
mask is implemented. XQueryBestCursor can be used to find out what
sizes are possible. It is intended that most standard cursors will be stored as
a special font.

Creating a Cursor

Xlib provides functions that you can use to create a font, bitmap, or glyph
cursor.

To create a cursor from a standard font, use XCreateFontCursor.

#include <X11/cursorfont.h>
Cursor XCreateFontCursor(display, shape)
Display *display;
unsigned int shape;
display Specifies the connection to the X server.
shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor.
Applications are encouraged to use this interface for their cursors because
the font can be customized for the individual display type. The shape argu-
ment specifies which glyph of the standard fonts to use.

The hotspot comes from the information stored in the cursor font. The
initial colors of a cursor are a black foreground and a white background (see
XRecolorCursor). For further information about cursor shapes, see ap-
pendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor(display, source, mask, foreground_color,
background._color, x, y)
Display *display;
Pixmap source;

Chapter 6. Graphics Functions 163

Pixmap mask;

XColor *foreground—color;
XColor *background_color;
unsigned int x, y;

display Specifies the connection to the X server.
source Specifies the shape of the source cursor.
mask Specifies the cursor’s source bits to be displayed or None.

Joreground_color Specifies the RGB values for the foreground of the source.
background_color ~ Specifies the RGB values for the background of the source.
X

y Specify the x and y coordinates, which indicate the hotspot
relative to the source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cur-
sor ID associated with it. The foreground and background RGB values must
be specified using foreground_color and background_color, even if the X
server only hasa StaticGray or GrayScale screen. The foreground color
is used for the pixels set to 1 in the source, and the background color is used
for the pixels set to 0. Both source and mask, if specified, must have depth
one (or a BadMatch error results) but can have any root. The mask argu-
ment defines the shape of the cursor. The pixels set to 1 in the mask define
which source pixels are displayed, and the pixels set to 0 define which pixels
are ignored. If no mask is given, all pixels of the source are displayed. The
mask, if present, must be the same size as the pixmap defined by the source
argument, or a BadMatch error results. The hotspot must be a point within
the source, or a BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet dis-
play limitations. The pixmaps can be freed immediately if no further explicit
references to them are to be made. Subsequent drawing in the source or
mask pixmap has an undefined effect on the cursor. The X server might or
might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap er-
rors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

l—_‘ Cursor XCreateGlyphCursor(display, source—font, mask—_font, source_char, mask—char,
Joreground_color, background_color)
Display *display;
Font source_font, mask_font;

164

6.8.2

XLIB

unsigned int source_char, mask_char;
XColor *foreground_color;
XColor *background_color;

display Specifies the connection to the X server.
source—font Specifies the font for the source glyph.
mask_font Specifies the font for the mask glyph or None.
source_char Specifies the character glyph for the source.
mask_char Specifies the glyph character for the mask.

foreground_color ~ Specifies the RGB values for the foreground of the source.
background_color Specifies the RGB values for the background of the source.

The XCreateGlyphCursor function is similar to XCreatePixmap-
Cursor except that the source and mask bitmaps are obtained from the
specified font glyphs. The source_char must be a defined glyph in
source_font, or a BadValue error results. If mask_font is given, mask_char
must be a defined glyph in mask_font, or a BadValue error results. The
mask_font and character are optional. The origins of the source_char and
mask_char (if defined) glyphs are positioned coincidently and define the
hotspot. The source_char and mask_char need not have the same bounding
box metrics, and there is no restriction on the placement of the hotspot rela-
tive to the bounding boxes. If no mask_char is given, all pixels of the source
are displayed. You can free the fonts immediately by calling XFreeFont if
no further explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel
member in the most-significant byte and the byte2 member in the least-
significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and Bad-
Value errors.

Changing and Destroying Cursors
Xlib provides functions that you can use to change the cursor color, destroy
the cursor, and determine the best cursor size.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursor(display, cursor, foreground_color, background_color)
Display *display;
Cursor cursor;
XColor *foreground_color, *background_color;

Chapter 6. Graphics Functions 165,

L

display Specifies the connection to the X server.

cursor Specifies the cursor.

Sforeground_color ~ Specifies the RGB values for the foreground of the source.
background_color ~ Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor,
and if the cursor is being displayed on a screen, the change is visible immedi-
ately.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor. -

XFreeCursor(display, cursor)

Display *display;

Cursor cursor;
display Specifies the connection to the X server.
cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor re-
source ID and the specified cursor. The cursor storage is freed when no
other resource references it. The specified cursor ID should not be referred
to again.

XFreeCursor can generate a BadCursor error.

To determine useful cursor sizes, use XQueryBestCursor.

Status XQueryBestCursor(display, d, width, height, width_return, height_return)
Display *display;
Drawable d;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

d Specifies the drawable, which indicates the screen.

width :

height Specify the width and height of the cursor that you want the size

information for.

width_return

height_return Return the best width and height that is closest to the specified
width and height.

166

6.8.3

XLIB

Some displays allow larger cursors than other displays. The XQuery-
BestCursor function provides a way to find out what size cursors are actu-
ally possible on the display. It returns the largest size that can be displayed.
Applications should be prepared to use smaller cursors on displays that can-
not support large ones.

XQueryBestCursor can generate 2 BadDrawable error.

Defining the Cursor
Xlib provides functions that you can use to define or undefine the cursor
that should be displayed in a window.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor(display, w, cursor)
Display *display;
Window w;
Cursor cursor;
display Specifies the connection to the X server.
w Specifies the window.
cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cur-
sor is None, it is equivalent to XUndefineCursor.
XDefineCursor can generate BadCursor and BadWindow errors.

To undefine the cursor in a given window, use XUndefineCursor.

XUndefineCursor(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window.

The XUndefineCursor undoes the effect of a previous XDefineCursor

for this window. When the pointer is in the window, the parent’s cursor will

now be used. On the root window, the default cursor is restored.
XUndefineCursor can generate a BadWindow error.

167

Chapter 7

Window Manager
Functions

Although it is difficult to categorize functions as application only or window
manager only, the functions in this chapter are most often used by window
managers. It is not expected that these functions will be used by most appli-
cation programs. You can use the Xlib window manager functions to:

¢ Change the parent of a window

« Control the lifetime of a window

» Determine resident colormaps

e Grab the pointer

e Grab the keyboard

¢ Grab the server

» Control event processing

* Manipulate the keyboard and pointer settings
¢ Control the screen saver

¢ Control host access

71 Changing the Parent of a Window
To change a window’s parent to another window on the same screen, use
XReparentWindow.

l_ XReparentWindow(display, w, parent, x, y)
Display *display;
Window w;

168

7.2

XLIB

Window parent;
int x, y;
display Specifies the connection to the X server.
w Specifies the window.
parent Specifies the parent window.
x
Y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically per-
forms an UnmapWindow request on it, removes it from its current position
in the hierarchy, and inserts it as the child of the specified parent. The win-
dow is placed in the stacking order on top with respect to sibling win-
dows.

After reparenting the specified window, XReparentWindow causes the X
server to generate a ReparentNotify event. The override_redirect mem-
ber returned in this event is set to the window’s corresponding attribute.
Window manager clients usually should ignore this window if this member
is set to True . Finally, if the specified window was originally mapped, the X
server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly ob-
scured windows. The X server might not generate Expose events for re-
gions from the initial UnmapWindow request that are immediately obscured
by the final MapWindow request. A BadMatch error results if:

The new parent window is not on the same screen as the old parent window.

The new parent window is the specified window or an inferior of the specified
window.

The specified window has a ParentRelative background, and the new parent
window is not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are in-
feriors of one of the client’s windows at connection close, should not be de-
stroyed and should be remapped if they are unmapped. For further infor-
mation about close-connection processing, see section 2.6. To allow an
application’s window to survive when a window manager that has repar-

Chapter 7. Window Manager Functions 169

ented a window fails, Xlib provides the save-set functions that you can use to
control the longevity of subwindows that are normally destroyed when the
parent is destroyed. For example, a window manager that wants to add deco-
ration to a window by adding a frame might reparent an application’s win-
dow. When the frame is destroyed, the application’s window should not be
destroyed but be returned to its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they
are destroyed.

To add or remove a window from the client’s save-set, use XChange-
SaveSet.

I_ XChangeSaveSet(display, w, change_mode)
Display *display;
Window w;
int change_mode;
display Specifies the connection to the X server.
w Specifies the window that you want to add to or delete from the
client’s save-set.
change_mode Specifies the mode. You can pass SetModeInsert or
L SetModeDelete.

Depending on the specified mode, XChangeSaveSet either inserts or de-
letes the specified window from the client’s save-set. The specified window
must have been created by some other client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and Bad-
Window errors.

To add a window to the client’s save-set, use XAddToSaveSet.

|_ XAddToSaveSet(display, w)
Display *display;
Window w;
display Specifies the connection to the X server.
L_ w Specifies the window that you want to add to the client’s save-set.

The XAddToSaveSet function adds the specified window to the client’s
save-set. The specified window must have been created by some other client,
or a BadMatch error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

170

7.3

XLIB
To remove a window from the client’s save-set, use XRemove-
FromSaveSet.

XRemoveFromSaveSet(display, w)
Display *display;

Window w;
display Specifies the connection to the X server.
w Specifies the window that you want to delete from the client’s save-set.

The XRemoveFromSaveSet function removes the specified window from
the client’s save-set. The specified window must have been created by some
other client, or a BadMatch error results.

XRemoveFromSaveSet can generate BadMatch and BadWindow
errors.

Determining Resident Colormaps
Xlib provides functions that you can use to install a colormap, uninstall a
colormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an or-
dered list and is called the required list. The length of the required list is at
most M, where M is the minimum number of installed colormaps specified
for the screen in the connection setup. The required list is maintained as fol-
lows. When a colormap is specified to XInstallColormap, it is added to
the head of the list; the list is truncated at the tail, if necessary, to keep its
length to at most M. When a colormap is specified to XUninstall-
Colormap and it is in the required list, it is removed from the list. A
colormap is not added to the required list when it is implicitly installed by the
X server, and the X server cannot implicitly uninstall a colormap that is in
the required list.

To install a colormap, use XInstallColormap.

XInstallColormap(display, colormap)

Display *display;

Colormap colormap;
display Specifies the connection to the X server.
colormap Specifies the colormap.

Chapter 7. Window Manager Functions 171

The XInstallColormap function installs the specified colormap for its as-
sociated screen. All windows associated with this colormap immediately dis-
play with true colors. You associated the windows with this colormap when
you created them by calling XCreateWindow, XCreateSimpleWindow,
XChangeWindowAttributes, or XSetWindowColormap.

If the specified colormap is not already an installed colormap, the X server
generates a ColormapNotify event on each window that has that
colormap. In addition, for every other colormap that is installed as a result
of a call to XInstallColormap, the X server generates a Colormap—
Notify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

‘— XUninstallColormap(display, colormap)
Display *display;
Colormap colormap;
display Specifies the connection to the X server.
L_ colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from
the required list for its screen. As a result, the specified colormap might be
uninstalled, and the X server might implicitly install or uninstall additional
colormaps. Which colormaps get installed or uninstalled is server-
dependent except that the required list must remain installed.

If the specified colormap becomes uninstalled, the X server generates a
ColormapNotify event on each window that has that colormap. In addi-
tion, for every other colormap that is installed or uninstalled as a result of a
call to XUninstallColormap, the X server generates a Colormap-
Notify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use
XListInstalledColormaps.

|_- Colormap *XListInstalledColormaps(display, w, num—_return)
Display *display;
Window w;
int *num_return;

172

7.4

XLIB
display Specifies the connection to the X server.
w Specifies the window that determines the screen.

num—return ~ Returns the number of currently installed colormaps.

The XListInstalledColormaps function returns a list of the currently
installed colormaps for the screen of the specified window. The order of the
colormaps in the list is not significant and is no explicit indication of the re-
quired list. When the allocated list is no longer needed, free it by using
XFree.)
XListInstalledColormaps can generate a BadWindow error.

Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer,
which usually is a mouse. Window managers most often use these facilities to
implement certain styles of user interfaces. Some toolkits also need to use
these facilities for special purposes.

Usually, as soon as keyboard and mouse events occur, the X server deliv-
ers them to the appropriate client, which is determined by the window and
input focus. The X server provides sufficient control over event delivery to
allow window managers to support mouse ahead and various other styles of
user interface. Many of these user interfaces depend upon synchronous de-
livery of events. The delivery of pointer and keyboard events can be con-
trolled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to
the grabbing client rather than the normal client who would have received
the event. If the keyboard or pointer is in asynchronous mode, further
mouse and keyboard events will continue to be processed. If the keyboard or
pointer is in synchronous mode, no further events are processed until the
grabbing client allows them (see XA1lowEvents). The keyboard or pointer
is considered frozen during this interval. The event that triggered the grab
can also be replayed.

Note that the logical state of a device (as seen by client applications) may
lag the physical state if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs
when a single client grabs the keyboard and/or pointer explicitly (see
XGrabPointer and XGrabKeyboard). A passive grab occurs when clients
grab a particular keyboard key or pointer button in a window, and the grab

Chapter 7. Window Manager Functions 173

will activate when the key or button is actually pressed. Passive grabs are con-
venient for implementing reliable pop-up menus. For example, you can
guarantee that the pop-up is mapped before the up pointer button event oc-
curs by grabbing a button requesting synchronous behavior. The down
event will trigger the grab and freeze further processing of pointer events
until you have the chance to map the pop-up window. You can then allow
further event processing. The up event will then be correctly processed rela-
tive to the pop-up window.

For many operations, there are functions that take a time argument. The
X server includes a timestamp in various events. One special time, called
CurrentTime, represents the current server time. The X server maintains
the time when the input focus was last changed, when the keyboard was last
grabbed, when the pointer was last grabbed, or when a selection was last
changed. Your application may be slow reacting to an event. You often need
some way to specify that your request should not occur if another applica-
tion has in the meanwhile taken control of the keyboard, pointer, or selec-
tion. By providing the timestamp from the event in the request, you can ar-
range that the operation not take effect if someone else has performed an
operation in the meanwhile.

A timestamp is a time value, expressed in milliseconds. It typically is the
time since the last server reset. Timestamp values wrap around (after about
49.7 days). The server, given its current time is represented by timestamp T,
always interprets timestamps from clients by treating half of the timestamp
space as being later in time than T. One timestamp value, named
CurrentTime, is never generated by the server. This value is reserved for
use in requests to represent the current server time.

For many functions in this section, you pass pointer event mask bits. The
valid pointer event mask bits are: ButtonPressMask, ButtonRelease—
Mask, EnterWindowMask, LeaveWindowMask, PointerMotion-
Mask, PointerMotionHintMask, ButtonlMotionMask, ButtonZ-
MotionMask, ButtondMotionMask, Button4MotionMask, ButtonS—
MotionMask, ButtonMotionMask, and KeyMapStateMask. For other
functions in this section, you pass keymask bits. The valid keymask bits
are: ShiftMask, LockMask, ControlMask, ModlMask, ModZ2Mask,
Mod3Mask, Mod4Mask, and ModSMask.

174 XLIB

To grab the pointer, use XGrabPointer.

|_ int XGrabPointer(display, grab_window, owner—_events, eveni_mask, pointer—mode,
keyboard_mode, confine_to, cursor, time)
Display *display;
Window grab_window;
Bool owner_events;
unsigned int event_mask;
int pointer—mode, keyboard_mode;
Window confine_to;
Cursor cursor;
Time time;
display Specifies the connection to the X server.
grab_window Specifies the grab window.
owner—events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.
event_mask Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask bits.
pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.
keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

confine—to Specifies the window to confine the pointer in or None.
cursor Specifies the cursor that is to be displayed during the grab or None.
time Specifies the time. You can pass either a timestamp or

I_ CurrentTime.

The XGrabPointer function actively grabs control of the pointer and re-
turns GrabSuccess if the grab was successful. Further pointer events are
reported only to the grabbing client. XGrabPointer overrides any active
pointer grab by this client. If owner_events is False, all generated pointer
events are reported with respect to grab_window and are reported only if
selected by event_mask. If owner_events is True and if a generated pointer
event would normally be reported to this client, it is reported as usual. Oth-
erwise, the event is reported with respect to the grab_window and is re-
ported only if selected by event_mask. For either value of owner_events, un-
reported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing con-
tinues as usual. If the pointer is currently frozen by this client, the processing
of events for the pointer is resumed. If the pointer_mode is

Chapter 7. Window Manager Functions 175

GrabModeSync, the state of the pointer, as seen by client applications, ap-
pears to freeze, and the X server generates no further pointer events until
the grabbing client calls XAllowEvents or until the pointer grab is re-
leased. Actual pointer changes are not lost while the pointer is frozen; they
are simply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is
unaffected by activation of the grab. If the keyboard_mode is
GrabModeSync, the state of the keyboard, as seen by client applications, ap-
pears to freeze, and the X server generates no further keyboard events until
the grabbing client calls XAllowEvents or until the pointer grab is re-
leased. Actual keyboard changes are not lost while the pointer is frozen; they
are simply queued in the server for later processing.

If a cursor is specified, it is displayed regardless of what window the
pointer is in. If None is specified, the normal cursor for that window is dis-
played when the pointer is in grab_window or one of its subwindows; other-
wise, the cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay con-
tained in that window. The confine_to window need have no relationship to
the grab_window. If the pointer is not initially in the confine_to window, it
is warped automatically to the closest edge just before the grab activates and
enter/leave events are generated as usual. If the confine_to window is subse-
quently reconfigured, the pointer is warped automatically, as necessary, to
keep it contained in the window.

The time argument allows you to avoid certain circumstances that come
up if applications take a long time to respond or if there are long network
delays. Consider a situation where you have two applications, both of which
normally grab the pointer when clicked on. If both applications specify the
timestamp from the event, the second application may wake up faster and
successfully grab the pointer before the first application. The first applica-
tion then will get an indication that the other application grabbed the
pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the
confine_to window lies completely outside the boundaries of the root win-
dow, XGrabPointer fails and returns GrabNotViewable. If the pointer is
actively grabbed by some other client, it fails and returns
AlreadyGrabbed. If the pointer is frozen by an active grab of another cli-

176

XLIB

ent, it fails and returns GrabFrozen. If the specified time is earlier than the
last-pointer-grab time or later than the current X server time, it fails and re-
turns GrabInvalidTime. Otherwise, the last-pointer-grab time is set to the
specified time (CurrentTime is replaced by the current X server time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow
€errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer(display, time)
Display *display;

Time time;
display ~ Specifies the connection to the X server.
time Specifies the time. You can pass either a timestamp or CurrentTine.

The XUngrabPointer function releases the pointer and any queued events
if this client has actively grabbed the pointer from XGrabPointer,
XGrabButton, or from a normal button press. XUngrabPointer does not
release the pointer if the specified time is earlier than the last-pointer-grab
time or is later than the current X server time. It also generates
EnterNotify and LeaveNotify events. The X server performs an
UngrabPointer request automatically if the event window or confine_to
window for an active pointer grab becomes not viewable or if window
reconfiguration causes the confine_to window to lie completely outside the
boundaries of the root window.

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab(display, eveni_mask, cursor, time)
Display *display;
unsigned int eveni_mask;
Cursor cursor;
Time time; ‘
display Specifies the connection to the X server.
event_mask Specifies which pointer events are reported to the client. The mask is
the bitwise inclusive OR of the valid pointer event mask bits.

cursor Specifies the cursor that is to be displayed or None.
time Specifies the time. You can pass either a timestamp or
CurrentTime.

Chapter 7. Window Manager Functions 177

The XChangeActivePointerGrab function changes the specified dy-
namic parameters if the pointer is actively grabbed by the client and if the
specified time is no earlier than the last-pointer-grab time and no later than

the current X server time. This function has no effect on the passive parame-

ters of a XGrabButton. The interpretation of event_mask and cursor is the

same as described in XGrabPointer.
XChangeActivePointerGrab can generate BadCursor and Bad-

Value errors.

To grab a pointer button, use XGrabButton.

XGrabButton(display, button, modifiers, grab_window, owner_events, event_mask,
pointer—_mode, keyboard—mode, confine—to, cursor)

Display *display;

unsigned int bulton;

unsigned int modifiers;

Window grab_window;

Bool owner_events;

unsigned int event_mask;

int pointer—mode, keyboard_mode;
Window confine..to;

Cursor cursor;

display

button
modifiers
grab_window
owner—events
event_mask
pointer_mode

keyboard_mode

confine_to

CUrsor

Specifies the connection to the X server.

Specifies the pointer button that is to be grabbed or AnyButton.
Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

Specifies which pointer events are reported to the client. The
mask is the bitwise inclusive OR of the valid pointer event mask bits.
Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

Specifies the window to confine the pointer in or None.

Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the
pointer is actively grabbed (as for XGrabPointer), the last-pointer-grab

178

XLIB

time is set to the time at which the button was pressed (as transmitted in the
ButtonPress event), and the ButtonPress event is reported if all of the
following conditions are true:

The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys
are logically down.

The grab_window contains the pointer.
The confine_to window (if any) is viewable.

A passive grab on the same button/key combination does not exist on any ancestor
of grab_window.

The interpretation of the remaining arguments is as for XGrabPointer.
The active grab is terminated automatically when the logical state of the
pointer has all buttons released (independent of the state of the logical mod-
ifier keys).

Note that the logical state of a device (as seen by client applications) may
lag the physical state if device event processing is frozen.

This request overrides all previous grabs by the same client on the
same button/key combinations on the same window. A modifiers of
AnyModifier is equivalent to issuing the grab request for all possible modi-
fier combinations (including the combination of no modifiers). It is not re-
quired that all modifiers specified have currently assigned KeyCodes. A but-
ton of AnyButton is equivalent to issuing the request for all possible
buttons. Otherwise, it is not required that the specified button currently be
assigned to a physical button.

If some other client has already issued a XGrabButton with the same
button/key combination on the same window, a BadAccess error results.
When using AnyModifier or AnyButton, the request fails completely, and
a BadAccess error results (no grabs are established) if there is a conflicting
grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadvValue, and BadWindow
errors.

To ungrab a pointer button, use XUngrabButton.

Chapter 7. Window Manager Functions 179

—

7‘5

XUngrabButton(display, button, modifiers, grab_window)
Display *display;
unsigned int button;
unsigned int modifiers;
Window grab_window;

display Specifies the connection to the X server.
button Specifies the pointer button that is to be released or AnyButton.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.
grab_window Specifies the grab window.

The XUngrabButton function releases the passive button/key combination
on the specified window if it was grabbed by this client. A modifiers of
AnyModifier is equivalent to issuing the ungrab request for all possible
modifier combinations, including the combination of no modifiers. A button
of AnyButton is equivalent to issuing the request for all possible buttons.
XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadvValue and BadWindow errors.

Keyboard Grabbing
Xlib provides functions that you can use to grab or ungrab the keyboard as
well as allow events.

For many functions in this section, you pass keymask bits. The valid
keymask bits are: ShiftMask, LockMask, ControlMask, ModlMask,
Mod2Mask, Mod3dMask, Mod4Mask, and ModSMask.

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard(display, grab—window, owner_events, pointer_mode, keyboard_mode,
time)
Display *display;
Window grab_window;
Bool owner_events;
int pointer_mode, keyboard_mode;
Time time;
display Specifies the connection to the X server.
grab_window Specifies the grab window.
owner_events Specifies a Boolean value that indicates whether the pointer
events are to be reported as usual or reported with respect to the
grab window if selected by the event mask.

180

XLIB

pointer—mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeAsync.

time Specifies the time. You can pass either a timestamp or
CurrentTime.)

The XGrabKeyboard function actively grabs control of the keyboard and
generates FocusIn and FocusOut events. Further key events are reported
only to the grabbing client. XGrabKeyboard overrides any active keyboard
grab by this client. If owner_events is False, all generated key events are
reported with respect to grab_window. If owner_events is True and if a
generated key event would normally be reported to this client, it is reported
normally; otherwise, the event is reported with respect to the grab_window.
Both KeyPress and KeyRelease events are always reported, independent
of any event selection made by the client.

If the keyboard_mode argument is GrabModeAsync, keyboard event
processing continues as usual. If the keyboard is currently frozen by this cli-
ent, then processing of keyboard events is resumed. If the keyboard _mode
argument is GrabModeSync, the state of the keyboard (as seen by client ap-
plications) appears to freeze, and the X server generates no further key-
board events until the grabbing client issues a releasing XAllowEvents call
or until the keyboard grab is released. Actual keyboard changes are not lost
while the keyboard is frozen; they are simply queued in the server for later
processing.

If pointer_mode is GrabModeAsync, pointer event processing is unaf-
fected by activation of the grab. If pointer_mode is GrabModeSync, the
state of the pointer (as seen by client applications) appears to freeze, and the
X server generates no further pointer events until the grabbing client issues
a releasing XAllowEvents call or until the keyboard grab is released. Ac-
tual pointer changes are not lost while the pointer is frozen; they are simply
queued in the server for later processing.

If the keyboard is actively grabbed by some other client, X6rabKeyboard
fails and returns AlreadyGrabbed. If grab_window is not viewable, it fails
and returns GrabNotViewable. If the keyboard is frozen by an active grab
of another client, it fails and returns GrabFrozen. If the specified time is
earlier than the last-keyboard-grab time or later than the current X server

Chapter 7. Window Manager Functions 181

time, it fails and returns GrabInvalidTime. Otherwise, the last-keyboard-
grab time is set to the specified time (CurrentTime is replaced by the cur-
rent X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

l_ XUngrabKeyboard(display, time)
Display *display;
Time time;
display Specifies the connection to the X server.
‘_ time Specifies the time. You can pass either a timestamp or CurrentTine.

The XUngrabKeyboard function releases the keyboard and any queued
events if this client has it actively grabbed from either X6rabKeyboard or
XGrabKey. XUngrabKeyboard does not release the keyboard and any
queued events if the specified time is earlier than the last-keyboard-grab
time or is later than the current X server time. It also generates FocusIn
and FocusOut events. The X server automatically performs an Ungrab-
Keyboarad request if the event window for an active keyboard grab becomes
not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

‘_ XGrabKey(display, keycode, modifiers, grab_window, owner—events, pointer_mode,

keyboard_mode)

Display *display;

int keycode;

unsigned int modifiers;

Window grab_window;

Bool owner_events;

int pointer_mode, keyboard—mode;

display Specifies the connection to the X server.
keycode Specifies the KeyCode or AnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the

bitwise inclusive OR of the valid keymask bits.

grab_window Specifies the grab window.

owner—events Specifies a Boolean value that indicates whether the pointer events
are to be reported as usual or reported with respect to the grab
window if selected by the event mask.

182

XLIB

pointer_mode Specifies further processing of pointer events. You can pass
GrabModeSync or GrabModeAsync.

keyboard_mode Specifies further processing of keyboard events. You can pass
GrabModeSync or GrabModeBAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the
future, the keyboard is actively grabbed (as for XGrabKeyboarad), the last-
keyboard-grab time is set to the time at which the key was pressed (as trans-
mitted in the KeyPress event), and the KeyPress event is reported if all of
the following conditions are true:

The keyboard is not grabbed and the specified key (which can itself be a modifier
key) is logically pressed when the specified modifier keys are logically down, and
no other modifier keys are logically down.

Either the grab_window is an ancestor of (or is) the focus window, or the
grab_window is a descendant of the focus window and contains the pointer.

A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard.
The active grab is terminated automatically when the logical state of the key-
board has the specified key released (independent of the logical state of the
modifier keys).

Note that the logical state of a device (as seen by client applications) may
lag the physical state if device event processing is frozen.

A modifiers argument of AnyModifier is equivalent to issuing the re-
quest for all possible modifier combinations (including the combination of
no modifiers). It is not required that all modifiers specified have currently
assigned KeyCodes. A keycode argument of AnyKey is equivalent to issuing

" the request for all possible KeyCodes. Otherwise, the specified keycode must

be in the range specified by min_keycode and max_keycode in the connec-
tion setup, or a BadValue error results.

If some other client has issued a XGrabKey with the same key combination
on the same window, a BadAccess error results. When using Any-
Modifier or AnyKey, the request fails completely, and a BadAccess error
results (no grabs are established) if there is a conflicting grab for any combi-
nation.

Chapter 7. Window Manager Functions 183

XGrabKey can generate BadAccess, BadValue, and BadWindow
€rrors.

To ungrab a key, use XUngrabKey.

I— XUngrabKey(display, keycode, modifiers, grab_window)
Display *display;
int keycode;
unsigned int modifiers;
Window grab_window;

display Specifies the connection to the X server.
keycode Specifies the KeyCode or RnyKey.
modifiers Specifies the set of keymasks or AnyModifier. The mask is the
bitwise inclusive OR of the valid keymask bits.
l_ grab_window Specifies the grab window.

The XUngrabKey function releases the key combination on the specified
window if it was grabbed by this client. It has no effect on an active grab. A
modifiers of AnyModifier is equivalent to issuing the request for all possi-
ble modifier combinations (including the combination of no modifiers). A
keycode argument of AnyKey is equivalent to issuing the request for all pos-
sible key codes.

XUngrabKey can generate BadvValue and BadWindow errors.

To allow further events to be processed when the device has been frozen,
use XAllowEvents.

|__ X AllowEvents(display, event_mode, time)
Display *display;
int event_mode;
Time time;
display Specifies the connection to the X server.
evenl_mode Specifies the event mode. You can pass BsyncPointer,
SyncPointer, AsyncKeyboard, SyncKeyboard, ReplayPointer,
ReplayKeyboard, AsyncBoth, or SyncBoth.
L— time Specifies the time. You can pass either a timestamp or CurrentTine.

The XAllowEvents function releases some queued events if the client has
caused a device to freeze. It has no effect if the specified time is earlier than
the last-grab time of the most recent active grab for the client or if the speci-

184

XLIB

fied time is later than the current X server time. Depending on the

event_mode argument, the following occurs:

AsyncPointer

SyncPointer

ReplayPointer

AsyncKeyboard

SyncKeyboard

If the pointer is frozen by the client, pointer event
processing continues as usual. If the pointer is frozen
twice by the client on behalf of two separate grabs,
AsyncPointer thaws for both. AsyncPointer has no
effect if the pointer is not frozen by the client, but the
pointer need not be grabbed by the client.

If the pointer is frozen and actively grabbed by the
client, pointer event processing continues as usual until
the next ButtonPress or ButtonRelease event is
reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event causes
the pointer grab to be released, the pointer does not
freeze. SyncPointer has no effect if the pointer is not
frozen by-the client or if the pointer is not grabbed by
the client.

If the pointer is actively grabbed by the client and is
frozen as the result of an event having been sent to the
client (either from the activation of a XGrabButton or
from a previous XAllowEvents with mode Sync-
Pointer but not from a XGrabPointer), the pointer
grab is released and that event is completely
reprocessed. This time, however, the function ignores
any passive grabs at or above (towards the root of) the
grab_window of the grab just released. The request has
no effect if the pointer is not grabbed by the client or if
the pointer is not frozen as the result of an event.

If the keyboard is frozen by the client, keyboard event
processing continues as usual. If the keyboard is frozen
twice by the client on behalf of two separate grabs,
AsyncKeyboard thaws for both. AsyncKeyboard has
no effect if the keyboard is not frozen by the client, but
the keyboard need not be grabbed by the client.

If the keyboard is frozen and actively grabbed by the
client, keyboard event processing continues as usual until
the next KeyPress or KeyRelease event is reported to
the client. At this time, the keyboard again appears to
freeze. However, if the reported event causes the
keyboard grab to be released, the keyboard does not
freeze. SyncKeyboard has no effect if the keyboard is

Chapter 7. Window Manager Functions 185

ReplayKeyboard

SyncBoth

AsyncBoth

not frozen by the client or if the keyboard is not
grabbed by the client.

If the keyboard is actively grabbed by the client and is
frozen as the result of an event having been sent to the
client (either from the activation of a XGrabKey or from
a previous XAllowEvents with mode SyncKeyboard
but not from a XGrabKeyboarad), the keyboard grab is
released and that event is completely reprocessed. This
time, however, the function ignores any passive grabs at
or above (towards the root of) the grab_window of the
grab just released. The request has no effect if the
keyboard is not grabbed by the client or if the keyboard
is not frozen as the result of an event.

If both pointer and keyboard are frozen by the client,
event processing for both devices continues as usual
until the next ButtonPress, ButtonRelease,
KeyPress, or KeyRelease event is reported to the
client for a grabbed device (button event for the pointer,
key event for the keyboard), at which time the devices
again appear to freeze. However, if the reported event
causes the grab to be released, then the devices do not
freeze (but if the other device is still grabbed, then a
subsequent event for it will still cause both devices to
freeze). SyncBoth has no effect unless both pointer and
keyboard are frozen by the client. If the pointer or
keyboard is frozen twice by the client on behalf of two
separate grabs, SyncBoth thaws for both (but a
subsequent freeze for SyncBoth will only freeze each
device once).

If the pointer and the keyboard are frozen by the client,
event processing for both devices continues as usual. If a
device is frozen twice by the client on behalf of two
separate grabs, AsyncBoth thaws for both. AsyncBoth
has no effect unless both pointer and keyboard are
frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on

the processing of keyboard events. AsyncKeyboard, SyncKeyboard,

and ReplayKeyboard have no effect on the processing of pointer events. It

is possible for both a pointer grab and a keyboard grab (by the same or dif-

ferent clients) to be active simultaneously. If a device is frozen on behalf of

either grab, no event processing is performed for the device. It is possible

186

7.6

—

1.7

XLIB

for a single device to be frozen because of both grabs. In this case, the freeze
must be released on behalf of both grabs before events can again be pro-
cessed.

XAllowEvents can generate a BadValue error.

Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server.
These functions can be used to control processing of output on other con-
nections by the window system server. While the server is grabbed, no pro-
cessing of requests or close downs on any other connection will occur. A cli-
ent closing its connection automatically ungrabs the server. Although
grabbing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XGrabServer(display)
Display *display;
display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close
downs on all other connections than the one this request arrived on. You
should not grab the X server any more than is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer(display)
Display *display;
display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close
downs on other connections. You should avoid grabbing the X server as
much as possible.

Miscellaneous Control Functions
This section discusses how to:

» Control the input focus
« Control the pointer

« Kill clients

Chapter 7. Window Manager Functions 187

7.71

Controlling Input Focus
Xlib provides functions that you can use to move the pointer position as well
as to set and get the input focus.

To move the pointer to an arbitrary point on the screen, use
XWarpPointer.

XWarpPointer(display, src—w, destw, src_x, src_y, src—width, src_height, dest_x, dest_y)
Display *display;
Window src_w, dest_w;
int src—x, src_y;
unsigned int src_width, src_height;
int dest_x, dest_y;

display Specifies the connection to the X server.

sTc—w Specifies the source window or None.

dest_w Specifies the destination window or None.

sre—x

sre—y

src_width

src_height Specify a rectangle in the source window.

dest_x

dest_y Specify the x and y coordinates within the destination window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x,
dest_y) relative to the current position of the pointer. If dest_w is a window,
XWarpPointer moves the pointer to the offsets (dest_x, dest_y) relative to
the origin of dest_w. However, if src_w is a window, the move only takes
place if the specified rectangle src_w contains the pointer.

The src_x and src_y coordinates are relative to the origin of src_w. If
src_height is zero, it is replaced with the current height of src_w minus
src_y. If src_width is zero, it is replaced with the current width of src_w
minus Src_x.

There is seldom any reason for calling this function. The pointer should
normally be left to the user. If you do use this function, however, it gen-
erates events just as if the user had instantaneously moved the pointer from
one position to another. Note that you cannot use XWarpPointer to move
the pointer outside the confine_to window of an active pointer grab. An at-
tempt to do so will only move the pointer as far as the closest edge of the
confine_to window.

188

XLIB
XWarpPointer can generate a BadWindow error.

To set the input focus, use XSetInputFocus.

XSetInputFocus(display, focus, revert_to, time)
Display *display;
Window focus;
int revert_to;
Time time;
display Specifies the connection to the X server.
Jocus Specifies the window, PointerRoot, or None.
reveri_to Specifies where the input focus reverts to if the window becomes not
viewable. You can pass RevertToParent, RevertToPointerRoot, or
RevertToNone.
teme Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetInputFocus function changes the input focus and the last-focus-
change time. It has no effect if the specified time is earlier than the current
last-focus-change time or is later than the current X server time. Otherwise,
the last-focus-change time is set to the specified time (CurrentTime is re-
placed by the current X server time). XSetInputFocus causes the X server
to generate FocusIn and FocusOut events.

Depending on the focus argument, the following occurs:

If focus is None, all keyboard events are discarded until a new focus window is
set, and the revert_to argument is ignored.

If focus is a window, it becomes the keyboard’s focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors,
the event is reported as usual. Otherwise, the event is reported relative to the
focus window.

If focus is PointerRoot, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case,
the revert_to argument is ignored.

The specified focus window must be viewable at the time XSetInputFocus
is called, or a BadMatch error results. If the focus window later becomes not
viewable, the X server evaluates the revert_to argument to determine the
new focus window as follows:

If revert_to is RevertToParent, the focus reverts to the parent (or the closest
viewable ancestor), and the new revert_to value is taken to be RevertToNone.

Chapter 7. Window Manager Functions 189

71.7.2

o If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to
PointerRoot or None, respectively. When the focus reverts, the X server
generates FocusIn and FocusoOut events, but the last-focus-change time is not
affected.

XSetInputFocus can generate BadMatch, BadValue, and BadWindow

€Irrors.

To obtain the current input focus, use XGetInputFocus.

XGetInputFocus(display, focus_return, revert_to_return)

Display *display;

Window *focus_return;

int *revert_to_return;
display Specifies the connection to the X server.
Sfocus_return Returns the focus window, PointerRoot, or None.
revert_to_return Returns the current focus state (RevertToParent,

RevertToPointerRoot, or RevertToNone).

The XGetInputFocus function returns the focus window and the current
focus state.

Killing Clients
Xlib provides functions that you can use to control the lifetime of resources
owned by a client or to cause the connection to a client to be destroyed.

To change a client’s close-down mode, use XSetCloseDownMode.

XSetCloseDownMode(display, close_mode)
Display *display;
int close_mode;
display Specifies the connection to the X server.
close_mode Specifies the client close-down mode. You can pass DestroyAall,
RetainPermanent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s re-
sources at connection close. A connection starts in DestroyA1l mode. For
information on what happens to the client’s resources when the close_mode
argument is RetainPermanent or RetainTemporary, see section 2.6.
XSetCloseDownMode can generate a BadValue error.

190

7.8

XLIB

To destroy a client, use XKillClient.

XKillClient(display, resource)
Display *display;
XID resource;
display Specifies the connection to the X server.
resource Specifies any resource associated with the client that you want to destroy
or AllTemporary.

The XKillClient function forces a close-down of the client that created
the resource if a valid resource is specified. If the client has already termi-
nated in either RetainPermanent or RetainTemporary mode, all of the
client’s resources are destroyed. If BAllTemporary is specified, the re-
sources of all clients that have terminated in RetainTemporary are de-
stroyed (see section 2.6). This permits implementation of window manager
facilities that aid debugging. A client can set its close-down mode to
RetainTemporary. If the client then crashes, its windows would not be de-
stroyed. The programmer can then inspect the application’s window tree
and use the window manager to destroy the zombie windows.
XKillClient can generate a BadValue error.

Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, ob-
tain a list of the auto-repeat keys, turn keyboard auto-repeat on or off, ring
the bell, set or obtain the pointer button or keyboard mapping, and obtain
a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click,
pointer behavior, and so on. The default values for many of these functions
are determined by command line arguments to the X server and, on UNIX-
based systems, are typically set in the /etc/ttys file. Not all implementa-
tions will actually be able to control all of these parameters.

The XChangeKeyboardControl function changes control of a key-
board and operates on a XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<I)
#define KBBellPitch (1L<<?)

#define KBBellDuration (1L<<3)

Chapter 7. Window Manager Functions 191

#define KBLed
#define KBLedMode
#define KBKey
#define KBAutoRepeatMode
/* Values */
typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode; /* LedModeOn, LedModeQff */
int key;
int auto_repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,
AutoRepeatModeDefault */

1L<<4)
1L<<5)
1L<<6)

(
(
(
(1L<<7)

i_ } XKeyboardControl;

The key_click_percent member sets the volume for key clicks between 0
(off) and 100 (loud) inclusive, if possible. A setting of —1 restores the de-
fault. Other negative values generate a BadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100
(loud) inclusive, if possible. A setting of — 1 restores the default. Other nega-
tive values generate a BadValue error. The bell_pitch member sets the
pitch (specified in Hz) of the bell, if possible. A setting of — 1 restores the de-
fault. Other negative values generate a BadValue error. The bell_duration
member sets the duration of the bell specified in milliseconds, if possible. A
setting of —1 restores the default. Other negative values generate a
BadValue error.

If both the led_mode and led members are specified, the state of that LED
is changed, if possible. The led_mode member can be set to LedModeOn or
LedModeOff. If only led_mode is specified, the state of all LEDs are
changed, if possible. At most 32 LEDs numbered from one are supported.
No standard interpretation of LEDs is defined. If led is specified without
led_mode, a BadMatch error results.

If both the auto_repeat_mode and key members are specified, the
auto_repeat_mode of that key is changed (according to AutoRepeat-
ModeOn, AutoRepeatModeOff, or AutoRepeatModeDefault), if possi-
ble. If only auto_repeat_mode is specified, the global auto_repeat_mode
for the entire keyboard is changed, if possible, and does not affect the per

192

XLIB

key settings. If a key is specified without an auto_repeat_mode, a BadMatch
error results. Each key has an individual mode of whether or not it should
auto-repeat and a default setting for that mode. In addition, there is a global
mode of whether auto-repeat should be enabled or not and a default setting
for that mode. When global mode is AutoRepeatModeOn, keys should obey
their individual auto-repeat modes. When global mode is AutoRepeat-
ModeOff, no keys should auto repeat. An auto-repeating key generates al-
ternating KeyPress and KeyRelease events. When a key is used as a mod-
ifier, it is desirable for the key not to auto-repeat, regardless of its auto-
repeat setting.

A bell generator connected with the console but not directly on a keyboard
is treated as if it were part of the keyboard. The order in which controls are
verified and altered is server-dependent. If an error is generated, a subset of
the controls may have been altered.

XChangeKeyboardControl(display, value_mask, values)
Display *display;
unsigned long value_mask;
XKeyboardControl *values;

display Specifies the connection to the X server.
value_mask Specifies one value for each bit set to 1 in the mask.
values Specifies which controls to change. This mask is the bitwise inclusive

OR of the valid control mask bits.

The XChangeKeyboardControl function controls the keyboard charac-
teristics defined by the XKeyboardControl structure. The value_mask ar-
gument specifies which values are to be changed.

XChangeKeyboardControl can generate BadMatch and BadValue
errors.

To obtain the current control values for the keyboard, use
XGetKeyboardControl.

typedef struct {
int key_click_percent;
int bell _percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;

Chapter 7. Window Manager Functions 193

int global_auto_repeat;
char auto_repeats[32];
} XKeyboardState;

XGetKeyboardControl(display, values—_return)
Display *display;
XKeyboardState *values_return;

display Specifies the connection to the X server.
values_return Returns the current keyboard controls in the specified
l XKeyboardState structure.

The XGetKeyboardControl function returns the current control values
for the keyboard to the XKeyboardState structure.

For the LEDs, the least-significant bit of led_mask corresponds to LED
one, and each bit set to 1 in led_mask indicates an LED that is lit. The
global__auto_repeat member can be set to ButoRepeatModeOn or
RutoRepeatModeOff. The auto_repeats member is a bit vector. Each bit
set to 1 indicates that auto-repeat is enabled for the corresponding key. The
vector is represented as 32 bytes. Byte N (from 0) contains the bits for keys
8N to 8N + 7 with the least-significant bit in the byte representing key 8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

I—— XAutoRepeatOn(display)
Display *display;
l__ display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on
the specified display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

|_ XAutoRepeatOff(display)
Display *display;
I_ display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on
the specified display. :

To ring the bell, use XBell.

194

XLIB

XBell(display, percent)
Display *display;
int percent;
display Specifies the connection to the X server.
percent Specifies the volume for the bell, which can range from — 100 to 100
inclusive.

The XBell function rings the bell on the keyboard on the specified display,
if possible. The specified volume is relative to the base volume for the key-
board. If the value for the percent argument is not in the range — 100 to 100
inclusive, a BadValue error results. The volume at which the bell rings
when the percent argument is nonnegative is:

base — [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative
is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.
XBell can generate a BadValue error.

To obtain a bit vector that describes the state of the keyboard, use
XQueryKeymap.

XQueryKeymap(display, keys—return)
Display *display;
char keys_return[32];
display Specifies the connection to the X server.
keys_return Returns an array of bytes that identifies which keys are pressed
down. Each bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the
keyboard, where each bit set to 1 indicates that the corresponding key is cur-
rently pressed down. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7 with the least-significant bit in the
byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may
lag the physical state if device event processing is frozen.

Chapter 7. Window Manager Functions 195

-

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping(display, map, nmap)
Display *display;
unsigned char map[];
int nmap;
display Specifies the connection to the X server.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it
succeeds, the X server generates a MappingNotify event, and XSet-
PointerMapping returns MappingSuccess. Elements of the list are in-
dexed starting from one. The length of the list must be the same as
XGetPointerMapping would return, or a BadValue error results. The
index is a core button number, and the element of the list defines the effec-
tive number. A zero element disables a button, and elements are not re-
stricted in value by the number of physical buttons. However, no two ele-
ments can have the same nonzero value, or a BadValue error results. If any
of the buttons to be altered are logically in the down state,
XSetPointerMapping returns MappingBusy, and the mapping is not
changed.
XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.
int XGetPointerMapping(display, map_return, nmap)

Display *display;
unsigned char map_return[];

int nmap;
display Specifies the connection to the X server.
map—return Returns the mapping list.
nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the
pointer. Elements of the list are indexed starting from one. XGet-—
PointerMapping returns the number of physical buttons actually on the
pointer. The nominal mapping for a pointer is the identity mapping:
map[i]=i. The nmap argument specifies the length of the array where the

196

XLIB

pointer mapping is returned, and only the first nmap elements are returned
in map_return.

To control the pointer’s interactive feel, use XChangePointer-
Control.

XChangePointerControl(display, do—accel, do_threshold, accel _numerator,
accel_denominator, threshold)
Display *display;
Bool do_accel, do_threshold;
int accelnumerator, accel_denominator;
int threshold;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for
the accel_numerator or accel _denominator are used.

do_threshold Specifies a Boolean value that controls whether the value for
the threshold is used.

accel_numerator Specifies the numerator for the acceleration multiplier.

accel_denominator ~ Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device
moves. The acceleration, expressed as a fraction, is a multiplier for move-
ment. For example, specifying 3/1 means the pointer moves three times as
fast as normal. The fraction may be rounded arbitrarily by the X server. Ac-
celeration only takes effect if the pointer moves more than threshold pixels
at once and only applies to the amount beyond the value in the threshold ar-
gument. Setting a value to —1 restores the default. The values of the
do_accel and do_threshold arguments must be True for the pointer values
to be set, or the parameters are unchanged. Negative values (other than —1)
generate a BadValue error, as does a zero value for the accel_denominator
argument.
XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControl.

XGetPointerControl(display, accel_numerator_return, accel_denominator_return,
threshold_—return)
Display *dusplay;
int *accel_numerator_return, *accel_denominator_return;

Chapter 7. Window Manager Functions 197

7.9

int *threshold_return;

display Specifies the connection to the X server. .

accel_numerator—return Returns the numerator for the acceleration multiplier.

accel_denominator_return Returns the denominator for the acceleration
multiplier.

threshold_return Returns the acceleration threshold.

The XGetPointerControl function returns the pointer’s current acceler-
ation multiplier and acceleration threshold.

Keyboard Encoding

Most applications will find the simple interface XLookupString, which
performs simple translation of a key event to an ASCII string, most useful.
Keyboard-related utilities are discussed in chapter 10. The following section
explains how to completely control the bindings of symbols to keys and mod-
ifiers.

A KeyCode represents a physical (or logical) key. KeyCodes lie in the in-
clusive range [8,255)]. A KeyCode value carries no intrinsic information, al-
though server implementors may attempt to encode geometry (for example,
matrix) information in some fashion so that it can be interpreted in a server-
dependent fashion. The mapping between keys and KeyCodes cannot be
changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of de-
fined KeySyms include the ISO Latin character sets (1—4), Katakana, Arabic,
Cyrillic, Greek, Technical, Special, Publishing, APL, Hebrew, and a special
miscellany of keys found on keyboards (Return, Help, Tab, and so on). To
the extent possible, these sets are derived from international standards. In
areas where no standards exist, some of these sets are derived from Digital
Equipment Corporation standards. The list of defined symbols can be found
in <Xll/keysymdef.h>. Unfortunately, some C preprocessors have limits
on the number of defined symbols. If you must use KeySyms not in the Latin
1-4, Greek, and miscellaneous classes, you may have to define a symbol for
those sets. Most applications usually only include <X11l/keysym.h>, which
defines symbols for ISO Latin 1-4, Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The length of the list
can vary with each KeyCode. The list is intended to convey the set of symbols
on the corresponding key. By convention, if the list contains a single KeySym

198

XLIB

and if that KeySym is alphabetic and case distinction is relevant for it, then
it should be treated as equivalent to a two-element list of the lowercase and
uppercase KeySyms. For example, if the list contains the single KeySym for
uppercase A, the client should treat it as if it were a pair with lowercase a as
the first KeySym and uppercase A as the second KeySym.

For any KeyCode, the first KeySym in the list should be chosen as the in-
terpretation of a KeyPress when no modifier keys are down. The second
KeySym in the list normally should be chosen when the Shift modifier is on
or when the Lock modifier is on and Lock is interpreted as ShiftLock. When
the Lock modifier is on and is interpreted as CapsLock, it is suggested that
the Shift modifier first be applied to choose a KeySym. However, if that
KeySym is lowercase alphabetic, the corresponding uppercase KeySym
should be used instead. Other interpretations of CapsLock are possible; for
example, it may be viewed as equivalent to ShiftLock, but only applying
when the first KeySym is lowercase alphabetic and the second KeySym is the
corresponding uppercase alphabetic. No interpretation of KeySyms beyond
the first two in a list is suggested here. No spatial geometry of the symbols on
the key is defined by their order in the KeySym list, although a geometry
might be defined on a vendor-specific basis. The X server does not use the
mapping between KeyCodes and KeySyms. Rather, it stores it merely for
reading and writing by clients.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.
XDisplayKeycodes(display, min_keycodes_return, max_keycodes—return)

Display *display;
int *min_keycodes—_return, max_keycodes_return;

display Specifies the connection to the X server.
min_keycodes—return Returns the minimum number of KeyCodes.
max_keycodes_return Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max-
keycodes supported by the specified display. The minimum number of
KeyCodes returned is never less than 8, and the maximum number of
KeyCodes returned is never greater than 255. Not all KeyCodes in this
range are required to have corresponding keys.

Chapter 7. Window Manager Functions 199

—

To obtain the symbols for the specified KeyCodes, use
XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(display, first_keycode, keycode_count,
keysyms_per_keycode_return)
Display *display;
KeyCode first_keycode;
int keycode_count;
int *keysyms_per_keycode_return;

display Specifies the connection to the X server.

Sirst_keycode Specifies the first KeyCode that is to be returned.

keycode_—count Specifies the number of KeyCodes that are to be
returned.

keysyms_per_keycode_return Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the speci-
fied number of KeyCodes starting with first_keycode. The value specified in
first_keycode must be greater than or equal to min_keycode returned by
XDisplayKeycodes or a BadValue error results. In addition, the follow-
ing expression must be less than or equal to max_keycode returned by
XDisplayKeycodes:

first_keycode + keycode_count — 1

If this is not the case, a BadValue error results. The number of elements in
the KeySyms list is:

keycode_count * keysyms_per_keycode_return

KeySym number N, counting from zero, for KeyCode K has the following
index in the list, counting from zero:

(K — first_code) * keysyms_per_code_return + N

The X server arbitrarily chooses the keysyms_per_keycode_return value to
be large enough to report all requested symbols. A special KeySym value of
NoSymbol is used to fill in unused elements for individual KeyCodes. To
free the storage returned by XGetKeyboardMapping, use XFree.
XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

200

XLIB

XChangeKeyboardMapping(display, first_keycode, keysyms_per_keycode, keysyms,

num—_codes)

Display *display;

int first_keycode;

int keysyms_—per_keycode;

KeySym *keysyms;.

int num—_codes;
display Specifies the connection to the X server.
Sfirst_keycode Specifies the first KeyCode that is to be changed.
keysyms_per_keycode Specifies the number of KeySyms per KeyCode.
keysyms Specifies a pointer to an array of KeySyms.
num—codes Specifies the number of KeyCodes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the
specified number of KeyCodes starting with first_keycode. The symbols for
KeyCodes outside this range remain unchanged. The number of elements in
keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode
returned by XDisplayKeycodes, or a BadValue error results. In addi-
tion, the following expression must be less than or equal to max_keycode re-
turned by XDisplayKeycodes, or a BadValue error results:

first_keycode + num_codes — 1

KeySym number N, counting from zero, for KeyCode K has the following
index in keysyms, counting from zero:

(K — first_keycode) * keysyms_per_keycode + N

The specified keysyms._per_keycode can be chosen arbitrarily by the client
to be large enough to hold all desired symbols. A special KeySym value of
NoSymbol should be used to fill in unused elements for individual
KeyCodes. It is legal for NoSymbol to appear in nontrailing positions of the
effective list for a KeyCode. XChangeKeyboardMapping generates a
MappingNotify event.

There is no requirement that the X server interpret this mapping. It is
merely stored for reading and writing by clients.

Chapter 7. Window Manager Functions 201

XChangeKeyboardMapping can generate BadAlloc and BadValue
errors.

The next four functions make use of the XModifierKeymap data struc-
ture, which contains:

|— typedef struct {

int max_keypermod; /* This server’s max number of keys per
modifier */
KeyCode *modifiermap; /* An 8 by max_keypermod array of the

modifiers */
|_ } XModifierKeymap;

To create an XModifierKeymap structure, use XNewModifiermap.

XModifierKeymap *XNewModifiermap(max_keys_per_mod)
int max_keys_per_mod,
max—_keys—per—_mod Specifies the number of KeyCode entries preallocated to the
modifiers in the map.

The XNewModifiermap function returns a pointer to an XModifier-
Keymap structure for later use.

To add a new entry to an XModifierKeymap structure, use
XInsertModifiermapEntry.

I_ XModifierKeymap *XInsertModifiermapEntry(modmap, keycode—entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;
int modifier;

modmap Specifies a pointer to the XModifierKeymap structure.
keycode—entry Specifies the KeyCode.
I_ modifier Specifies the modifier.

The XInsertModifiermapEntry function adds the specified KeyCode to
the set that controls the specified modifier and returns the resulting
XModifierKeymap structure (expanded as needed).

To delete an entry from an XModifierKeymap structure, use
XDeleteModifiermapEntry.

202

XLIB

XModifierKeymap *XDeleteModifiermapEntry(modmap, keycode—entry, modifier)
XModifierKeymap *modmap;
KeyCode keycode_entry;

int modifier;
modmap Specifies a pointer to the XModifierKeymap structure.
keycode_entry Specifies the KeyCode.
modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode
from the set that controls the specified modifier and returns a pointer to the
resulting XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifiermap(modmap)
XModifierKeymap *modmap;
modmap Specifies a pointer to the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap
structure.

To set the KeyCodes to be used as modifiers, use XSetModifier—
Mapping.

int XSetModifierMapping(display, modmap)
Display *display;
XModifierKeymap *modmap;
display Specifies the connection to the X server.
modmap Specifies a pointer to the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys
(if any) that are to be used as modifiers. If it succeeds, the X server generates
aMappingNotify event, and XSetModifierMapping returns Mapping-
Success. X permits at most eight modifier keys. If more than eight are
specified in the XModifierKeymap structure, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains
eight sets of max_keypermod KeyCodes, one for each modifier in the order
Shift, Lock, Control, Modl, Mod2, Mod3d, Mod4, and ModS. Only
nonzero KeyCodes have meaning in each set, and zero KeyCodes are ig-
nored. In addition, all of the nonzero KeyCodes must be in the range speci-
fied by min_keycode and max_keycode in the Display structure, or a

Chapter 7. Window Manager Functions 203

7.10

BadValue error results. No KeyCode may appear twice in the entire map,
or a BadValue error results.

An X server can impose restrictions on how modifiers can be changed, for
example, if certain keys do not generate up transitions in hardware, if auto-
repeat cannot be disabled on certain keys, or if multiple modifier keys are
not supported. If some such restriction is violated, the status reply is
MappingFailed, and none of the modifiers are changed. If the new
KeyCodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are in the logically down state,
XSetModifierMapping returns MappingBusy, and none of the modifi-
ers is changed.

XSetModifierMapping can generate BadAlloc and BadvValue er-
rors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping(display)
Display *display;
display ~ Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created
XModifierKeymap structure that contains the keys being used as modifi-
ers. The structure should be freed after use by calling XFree-
Modifiermap. If only zero values appear in the set for any modifier, that
modifier is disabled.

Screen Saver Control
Xlib provides functions that you can use to set, force, activate, or reset the
screen saver and to obtain the current screen saver values.

To set the screen saver, use XSetScreenSaver.

XSetScreenSaver(display, timeout, interval, prefer_blanking, allow_exposures)
Display *display;
int timeout, interval,
int prefer_blanking;
int allow_exposures;
display Specifies the connection to the X server.
timeout Specifies the timeout, in seconds, until the screen saver turns on.

204

XLIB

interval Specifies the interval between screen saver alterations.

prefer_blanking Specifies how to enable screen blanking. You can pass
DontPreferBlanking, PreferBlanking, or
DefaultBlanking.

allow_exposures Specifies the screen save control values. You can pass
DontAllowExposures, RAllowExposures, or
DefaultExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the
screen saver, and a timeout of —1 restores the default. Other negative values
generate a BadValue error. If the timeout value is nonzero,
XSetScreenSaver enables the screen saver. An interval of 0 disables the
random-pattern motion. If no input from devices (keyboard, mouse, and so
on) is generated for the specified number of timeout seconds once the screen
saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video
blanking, the screen simply goes blank. Otherwise, if either exposures are al-
lowed or the screen can be regenerated without sending Expose events to
clients, the screen is tiled with the root window background tile randomly re-
origined each interval minutes. Otherwise, the screens’ state does not
change, and the screen saver is not activated. The screen saver is deactivated,
and all screen states are restored at the next keyboard or pointer input or at
the next call to XForceScreenSaver with mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change,
the interval argument serves as a hint about how long the change period
should be, and zero hints that no periodic change should be made. Examples
of ways to change the screen include scrambling the colormap periodically,
moving an icon image around the screen periodically, or tiling the screen
with the root window background tile, randomly re-origined periodically.

XSetScreenSaver can generate a BadValue error.

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver(display, mode)
Display *display;
int mode;
display Specifies the connection to the X server.
mode Specifies the mode that is to be applied. You can pass
ScreenSaverActive or ScreenSaverReset.

Chapter 7. Window Manager Functions 205

If the specified mode is ScreenSaverActive and the screen saver cur-
rently is deactivated, XForceScreenSaver activates the screen saver even
if the screen saver had been disabled with a timeout of zero. If the specified
mode is ScreenSaverReset and the screen saver currently is enabled,
XForceScreenSaver deactivates the screen saver if it was activated, and
the activation timer is reset to its initial state (as if device input had been re-
ceived).
XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.
X ActivateScreenSaver(display)
Display *display;
display Specifies the connection to the X server.
To reset the screen saver, use XResetScreenSaver.
XResetScreenSaver(display)

Display *display;
display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

I N N

XGetScreenSaver(display, timeout_return, interval_return, prefer_blanking_return,
allow_exposures—_return)
Display *display;
int *timeout_return, *interval_return;
int *prefer_blanking_return;
int *allow_exposures_return;

display Specifies the connection to the X server.

timeout_return Returns the timeout, in minutes, until the screen saver
turns on.

interval_return Returns the interval between screen saver invocations.

prefer_blanking_return Returns the current screen blanking preference
(DontPreferBlanking, PreferBlanking, or
DefaultBlanking).
allow_exposures—_return ~ Returns the current screen save control value
(DontRAllowExposures, AllowExposures, or
I_ DefaultExposures).

206

7.11

7.11.1

-

XLIB

Controlling Host Access
This section discusses how to:

Add, get, or remove hosts from the access control list

Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the
resource ID of a resource, you can manipulate it. To provide some minimal
level of protection, however, connections are permitted only from machines
you trust. This is adequate on single-user workstations but obviously breaks
down on timesharing machines. Although provisions exist in the X protocol
for proper connection authentication, the lack of a standard authentication
server leaves host-level access control as the only common mechanism.
The initial set of hosts allowed to open connections typically consists of:

The host the window system is running on.

On UNIX-based systems, each host listed in the /etc/X?.hosts file. The ?
indicates the number of the display. This file should consist of host names
separated by newlines. DECnet nodes must terminate in :: to distinguish them
from Internet hosts.

If a host is not in the access control list when the access control mechanism
is enabled and if the host attempts to establish a connection, the server re-
fuses the connection. To change the access list, the client must reside on the
same host as the server and/or must have been granted permission in the ini-
tial authorization at connection setup.

Servers also can implement other access control policies in addition to or
in place of this host access facility. For further information about other ac-
cess control implementations, see part B, X Window System Protocol.

Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from
the access control list. All the host access control functions use the
XHostAddress structure, which contains:

typedef struct {
int family; /* for example FamilyInternet */
int length; /* length of address, in bytes */

Chapter 7. Window Manager Functions 207

L

char *address; /* pointer to where to find the address */
} XHostAddress;

The family member specifies which protocol address family to use (for ex-
ample, TCP/IP or DECnet) and can be FamilyInternet, Family-
DECnet, or FamilyChaos. The length member specifies the length of the
address in bytes. The address member specifies a pointer to the address.

For TCP/1P, the address should be in network byte order. For the DECnet
family, the server performs no automatic swapping on the address bytes. A
Phase IV address is two bytes long. The first byte contains the least-
significant eight bits of the node number. The second byte contains the
most-significant two bits of the node number in the least-significant two bits
of the byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.

XAddHost(display, host)

Display *display;

XHostAddress *host;
display Specifies the connection to the X server.
host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for
that display. The server must be on the same host as the client issuing the
command, or a BadAccess error results.

XRddHost can generate BadAccess and BadValue errors.

To add muluple hosts at one time, use XAddHosts.

XAddHosts(display, hosts, num._hosts)

Display *display;

XHostAddress *hosts;

int num_hosts;
display Specifies the connection to the X server.
hosts Specifies each host that is to be added.
num—hosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list
for that display. The server must be on the same host as the client issuing the
command, or a BadAccess error results.

208

XLIB
XBRddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts(display, nhosts—return, state_return)
Display *display;
int *nhosts_return;
Bool *state_return;

display Specifies the connection to the X server.
nhosts_return ~ Returns the number of hosts currently in the access control list.
state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as
whether the use of the list at connection setup was enabled or disabled.
XListHosts allows a program to find out what machines can make connec-
tions. It also returns a pointer to a list of host structures that were allocated
by the function. When no longer needed, this memory should be freed by
calling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(display, host)

Display *display;

XHostAddress *host;
display Specifies the connection to the X server.
host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access con-
trol list for that display. The server must be on the same host as the client
process, or a BadAccess error results. If you remove your machine from
the access list, you can no longer connect to that server, and this operation
cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(display, hosts, num__hosts)
Display *display;
XHostAddress *hosts;
int num_hosts;

Chapter 7. Window Manager Functions 209

L

7.11.2

display Specifies the connection to the X server.
hosts Specifies each host that is to be removed.
num_hosts Specifies the number of hosts.

The XRemoveHosts function removes each specified host from the access
control list for that display. The X server must be on the same host as the cli-
ent process, or a BadAccess error results. If you remove your machine
from the access list, you can no longer connect to that server, and this opera-
tion cannot be reversed unless you reset the server.

XRemoveHosts can generate BadAccess and BadValue errors.

Changing, Enabling, or Disabling Access Control
Xlib provides functions that you can use to enable, disable, or change access
control.

For these functions to execute successfully, the client application must re-
side on the same host as the X server and/or have been given permission in
the initial authorization at connection setup.

To change access control, use XSetAccessControl.

XSetAccessControl(display, mode)
Display *display;
int mode;
display Specifies the connection to the X server.
mode Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the
access control list at each connection setup.
XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControl(display)
Display *display;
display Specifies the connection to the X server.

The XEnablelccessControl function enables the use of the access con-
trol list at each connection setup.
XEnableAccessControl can generate a BadAccess error.

210 XLIB

To disable access control, use XDisableAccessControl.

’— XDisableAccessControl(display)
Display *display;
l_ display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access con-
trol list at each connection setup.
XDisableAccessControl can generate a BadAccess error.

211

Chapter 8

Events and
Event-Handling
Functions

A client application communicates with the X server through the connection
you establish with the XOpenDisplay function. A client application sends
requests to the X server over this connection. These requests are made by
the Xlib functions that are called in the client application. Many Xlib func-
tions cause the X server to generate events, and the user’s typing or moving
the pointer can generate events asynchronously. The X server returns
events to the client on the same connection.

This chapter begins with a discussion of the following topics associated
with events:

¢ Event types
* Event structures
« Event mask

« Event processing
It then discusses the Xlib functions you can use to:

* Select events

« Handle the output buffer and the event queue
« Select events from the event queue

¢ Send and get events

« Handle error events

212

Note

8.1

XLIB

Some toolkits use their own event-handling functions and do not allow you
to interchange these event-handling functions with those in Xlib. For further
information, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what
to do with it, execute some amount of code that results in changes to the dis-
play, and then wait for the next event.

Event Types

An event is data generated asynchronously by the X server as a result of
some device activity or as side effects of a request sent by an Xlib function.
Device-related events propagate from the source window to ancestor win-
dows until some client application has selected that event type or until the
event is explicitly discarded. The X server generally sends an event to a cli-
ent application only if the client has specifically asked to be informed of that
event type, typically by setting the event-mask attribute of the window. The
mask can also be set when you create a window or by changing the window’s
event-mask. You can also mask out events that would propagate to ancestor
windows by manipulating the do-not-propagate mask of the window’s attri-
butes. However, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For
each event type, a corresponding constant name is defined in <X11/X.h>,
which is used when referring to an event type. The following table lists the
event category and its associated event type or types. The processing associ-
ated with these events is discussed in section 8.4.

Event Category Event Type

Keyboard events KeyPress, KeyRelease

Pointer events) ButtonPress, ButtonRelease,
MotionNotify

Window crossing events EnterNotify, LeaveNotify

Input focus events FocusIn, FocusOut

Keymap state notification event KeymapNotify

Exposure events Expose, GraphicsExpose, NoExpose

Structure control events CirculateRequest, ConfigureRequest,

MapRequest, ResizeRequest

Chapter 8. Events and Event-Handling Functions 213

8.2

Event Category Event Type

Window state notification events CirculateNotify, ConfigureNotify,
CreateNotify, DestroyNotify,
GravityNotify, MapNotify,
MappingNotify, ReparentNotify,
UnmapNotify, VisibilityNotify

Colormap state notification event ColormapNotify

Client communication events ClientMessage, PropertyNotify,
SelectionClear, SelectionNotify,
SelectionRequest

Event Structures
For each event type, a corresponding structure is declared in

<X11/X1ib.h>. All the event structures have the following common
members:

typedef struct {

int type;

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
} XAnyEvent;

The type member is set to the event type constant name that uniquely identi-
fies it. For example, when the X server reports a GraphicsExpose event to
a client application, it sends an XGraphicsExposeEvent structure with the
type member set to GraphicsExpose. The display member is set to a
pointer to the display the event was read on. The send_event member is set
to True if the event came from a SendEvent protocol request. The serial
member is set from the serial number reported in the protocol but ex-
panded from the 16-bit least-significant bits to a full 32-bit value. The win-
dow member is set to the window that is most useful to toolkit dispatch-
ers.

The X server can send events at any time in the input stream. Xlib stores
any events received while waiting for a reply in an event queue for later use.
Xlib also provides functions that allow you to check events in the event
queue (see section 8.7).

214 XLIB

In addition to the individual structures declared for each event type, the
XEvent structure is a union of the individual structures declared for each
event type. Depending on the type, you should access members of each
event by using the XEvent union.

l_— typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvent xunmap;
XMapEvent xmap;
XMapRequestEvent xmaprequest;
XReparentEvent xreparent;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvent xresizerequest;
XConfigureRequestEvent xconfigurerequest;
XCirculateEvent xcirculate;
XCirculateRequestEvent xcirculaterequest;
XPropertyEvent xproperty;
XSelectionClearEvent xselectionclear;
XSelectionRequestEvent xselectionrequest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror;
XKeymapEvent xkeymap;
long pad[24];

l_ } XEvent;

Chapter 8. Events and Event-Handling Functions 215

83

An XEvent structure’s first entry always is the type member, which is set to
the event type. The second member always is the serial number of the proto-
col request that generated the event. The third member always is
send_event, which is a Bool that indicates if the event was sent by a different
client. The fourth member always is a display, which is the display that the
event was read from. Except for keymap events, the fifth member always is
a window, which has been carefully selected to be useful to toolkit dispatch-
ers. To avoid breaking toolkits, the order of these first five entries is not to
change. Most events also contain a time member, which is the time at which
an event occurred. In addition, a pointer to the generic event must be cast
before it is used to access any other information in the structure.

Event Masks

Clients select event reporting of most events relative to a window. To do this,
pass an event mask to an Xlib event-handling function that takes an
event_mask argument. The bits of the event mask are defined in
<X11/X.h>. Each bit in the event mask maps to an event mask name,
which describes the event or events you want the X server to return to a cli-
ent application.

Unless the client has specifically asked for them, most events are not re-
ported to clients when they are generated. Unless the client suppresses them
by setting graphics-exposures in the GC to False, GraphicsExpose and
NoExpose are reported by default as a result of XCopyPlane and
XCopyArea. SelectionClear, SelectionRequest, Selection-
Notify, or ClientMessage cannot be masked. Selection related events
are only sent to clients cooperating with selections (see section 4.4). When
the keyboard or pointer mapping is changed, MappingNotify is always
sent to clients.

The following table lists the event mask constants you can pass to the
event_mask argument and the circumstances in which you would want to
specify the event mask:

Event Mask Circumstances
NoEventMask No events wanted
KeyPressMask Keyboard down events wanted

KeyReleaseMask Keyboard up events wanted

216

8.4

XLIB
Event Mask Circumstances
ButtonPressMask Pointer button down events wanted
ButtonReleaseMask Pointer button up events wanted
EnterWindowMask Pointer window entry events wanted
LeaveWindowMask Pointer window leave events wanted
PointerMotionMask Pointer motion events wanted
PointerMotionHintMask Pointer motion hints wanted
ButtonlMotionMask Pointer motion while button 1 down
Button2MotionMask Pointer motion while button 2 down
Button3MotionMask Pointer motion while button 3 down
Button4MotionMask Pointer motion while button 4 down
ButtonSMotionMask Pointer motion while button 5 down
ButtonMotionMask Pointer motion while any button down
KeymapStateMask Keyboard state wanted at window entry and
focus in
ExposureMask Any exposure wanted
VisibilityChangeMask Any change in visibility wanted
StructureNotifyMask Any change in window structure wanted

ResizeRedirectMask
SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask

Redirect resize of this window
Substructure notification wanted
Redirect structure requests on children
Any change in input focus wanted
Any change in property wanted:

Any change in colormap wanted

OwnerGrabButtonMask Automatic grabs should activate with

owner_events set to True

Event Processing
The event reported to a client application during event processing depends
on which event masks you provide as the event-mask attribute for a window.
For some event masks, there is a one-to-one correspondence between the
event mask constant and the event type constant. For example, if you pass
the event mask ButtonPressMask, the X server sends back only
ButtonPress events. Most events contain a time member, which is the time
at which an event occurred.

In other cases, one event mask constant can map to several event type
constants. For example, if you pass the event mask Substructure-
NotifyMask, the X server can send back CirculateNotify,

Chapter 8. Events and Event-Handling Functions 217

8.4.1

8.4.1.1

ConfigureNotify, CreateNotify, DestroyNotify, Gravity-
Notify, MapNotify, ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example,
if you pass either PointerMotionMask or ButtonMotionMask, the X
server sends back a MotionNotify event.

The table on pages 218 and 219 lists the event mask, its associated event
type or types, and the structure name associated with the event type. Some
of these structures actually are typedefs to a generic structure that is shared
between two event types. Note that N.A. appears in columns for which the
information is not applicable.

The sections that follow describe the processing that occurs when you se-
lect the different event masks. The sections are organized according to these
processing categories:

Keyboard and pointer events
Window crossing events

Input focus events

Keymap state notification events
Exposure events

Window state notification events
Structure control events
Colormap state notification events

Client communication events

Keyboard and Pointer Events
This section discusses:

Pointer button events

Keyboard and pointer events

Pointer Button Events
The following describes the event processing that occurs when a pointer but-
ton press is processed with the pointer in some window w and when no active
pointer grab is in progress.

The X server searches the ancestors of w from the root down, looking for
a passive grab to activate. If no matching passive grab on the button exists,

Event Mask Event Type Structure Generic Structure
ButtonMotionMask MotionNotify XPointerMovedEvent XMotionEvent
ButtonlMotionMask
Button2MotionMask
Button3dMotionMask
Button4MotionMask
ButtonSMotionMask
ButtonPressMask ButtonPress XButtonPressedEvent XButtonEvent
ButtonReleaseMask ButtonRelease XButtonReleasedEvent XButtonEvent
ColormapChangelMask ColormapNotify XColormapEvent
EnterWindowMask EnterNotify XEnterWindowEvent XCrossingEvent
LeaveWindowMask LeaveNotify XLeaveWindowEvent XCrossingEvent
ExposureMask Expose XExposeEvent
GCGraphicsExposure in GC GraphicsExpose XGraphicsExposeEvent
NoExpose XNoExposeEvent
FocusChangeMask FocusIn XFocusInEvent XFocusChangeEvent
FocusOut XFocusOutEvent XFocusChangeEvent
KeymapStateMask KeymapNotify XKeymapEvent
KeyPressMask KeyPress XKeyPressedEvent XKeyEvent
KeyReleaseMask KeyRelease XKeyReleasedEvent XKeyEvent
OwnerGrabButtonMask N.A. N.A.
PointerMotionMask MotionNotify XPointerMovedEvent XMotionEvent
PointerMotionHintMask N.A. N.A.
PropertyChangelMask PropertyNotify XPropertyEvent
ResizeRedirectMask ResizeRequest XResizeRequestEvent
StructureNotifyMask CirculateNotify XCirculateEvent
ConfigureNotify XConfigureEvent

DestroyNotify

XDestroyWindowEvent

81¢

SubstructureNotifyMask

SubstructureRedirectMask

N.A.
N.A.
N.A.
N.A.
N.A.
VisibilityChangeMask

GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateNotify
ConfiqureNotify
CreateNotify
DestroyNotify
GravityNotify
MapNotify
ReparentNotify
UnmapNotify
CirculateRequest
ConfigureRequest
MapRequest
ClientMessage
MappingNotify
SelectionClear
SelectionNotify
SelectionRequest
VisibilityNotify

XGravityEvent
XMapEvent
XReparentEvent
XUnmapEvent
XCirculateEvent
XConfigureEvent
XCreateWindowEvent
XDestroyWindowEvent
X¥GravityEvent
XMapEvent
XReparentEvent
XUnmapEvent
XCirculateRequestEvent
XConfigureRequestEvent
XMapRequest fvent
XClientMessageEvent
XMappingEvent
XSelectionClearEvent
XSelectionEvent
XSelectionRequestEvent
XVisibilityEvent

616

220

8.4.1.2

XLIB

the X server automatically starts an active grab for the client receiving the
event and sets the last-pointer-grab time to the current server time. The ef-
fect is essentially equivalent to an XGrabButton with these client passed ar-
guments:

Argument Value

w The event window

event_mask The client’s selected pointer events on the event window

pointer_mode GrabModeAsync

keyboard_mode GrabModeAsync

owner—_events True, if the client has selected OwnerGrabButtonMask on the
event window, otherwise False

confine_to None

cursor None

The active grab is automatically terminated when the logical state of the
pointer has all buttons released. Clients can modify the active grab by calling
XUngrabPointer and XChangeActivePointerGrab.

Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events
KeyPress and KeyRelease and the pointer events ButtonPress,
ButtonRelease, and MotionNotify. For information about the key-
board event-handling utilities, see chapter 10.

The X server reports KeyPress or KeyRelease events to clients wanting
information about keys that logically change state. Note that these events are
generated for all keys, even those mapped to modifier bits. The X server re-
ports ButtonPress or ButtonRelease events to clients wanting informa-
tion about buttons that logically change state.

The X server reports MotionNotify events to clients wanting informa-
tion about when the pointer logically moves. The X server generates this
event whenever the pointer is moved and the pointer motion begins and
ends in the window. The granularity of MotionNotify events is not guar-
anteed, but a client that selects this event type is guaranteed to receive at
least one event when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device
event processing is frozen.

Chapter 8. Events and Event-Handling Functions 221

To receive KeyPress, KeyRelease, ButtonPress, and Button-
Release events, set KeyPressMask, KeyReleaseMask, Button-
PressMask, and ButtonReleaselMask bits in the event-mask attribute of
the window.

To receive MotionNotify events, set one or more of the following event
mask bits in the event-mask attribute of the window.

ButtonlMotionMask The client application receives MotionNotify
Button2MotionMask events only when one or more of the specified
Button3MotionMask buttons is pressed.

Button4MotionMask

ButtonSMotionMask

ButtonMotionMask The client application receives MotionNotify

events only when at least one button is pressed.

PointerMotionMask The client application receives MotionNotify
events independent of the state of the pointer
buttons.

PointerMotionHint If PointerMotionHintMask is selected, the X

server is free to send only one MotionNotify event
(with the is__hint member of the XPointerMoved
Event structure set to NotifyHint) to client for
the event window, until either the key or button
state changes, the pointer leaves the event window,
or the client calls XQueryPointer or XGetMotion-
Events. The server still may send MotionNotify
events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The
window used by the X server to report these events depends on the window’s
position in the window hierarchy and whether any intervening window pro-
hibits the generation of these events. Starting with the source window, the X
server searches up the window hierarchy until it locates the first window
specified by a client as having an interest in these events. If one of the inter-
vening windows has its do-not-propagate-mask set to prohibit generation of
the event type, the events of those types will be suppressed. Clients can mod-
ify the actual window used for reporting by performing active grabs and, in
the case of keyboard events, by using the focus window.

222 XLIB

The structures for these event types contain:

f— typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int X, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same_screen;

} XButtonEvent;

/* ButtonPress or ButtonRelease */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* “event” window it is reported relative to */
/* root window that the event occurred on */
/* child window */

/* milliseconds */

/* pointer x, y coordinates in event window */
/* coordinates relative to root */

/* key or button mask */

/* detail */

/* same screen flag */

typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send__*/ event;
Display *display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int X_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

} XKeyEvent;

/* KeyPress or KeyRelease ¥/

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* “event” window it is reported relative to */
/* root window that the event occurred on */
/* child window */

/* milliseconds */

/* pointer x, y coordinates in event window */
/* coordinates relative to root */

/* key or button mask */

/* detail */

/* same screen flag */

typedef XKeyEvent XKeyPressedEvent;
typedef XKeyEvent XKeyReleasedEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;

/* MotionNotify */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

Chapter 8. Events and Event-Handling Functions 223

Window window; /* “event” window reported relative to */
Window root; /¥ root window that the event occurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* pointer x, y coordinates in event window */
int x_root, y_root; /¥ coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */
} XMotionEvent;
I_ typedef XMotionEvent XPointerMovedEvent;

These structures have the following common members: window, root,
subwindow, time, X, y, X_root, y_root, state, and same_screen. The window
member is set to the window on which the event was generated and is re-
ferred to as the event window. As long as the conditions previously discussed
are met, this is the window used by the X server to report the event. The root
member is set to the source window’s root window. The x_root and y_root
members are set to the pointer’s coordinates relative to the root window’s or-
igin at the time of the event.

The same_screen member is set to indicate whether the event window is
on the same screen as the root window and can be either True or False. If
True, the event and root windows are on the same screen. If False, the
event and root windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow
member of the structure is set to the child of the event window that is the
source member or an ancestor of it. Otherwise, the X server sets the
subwindow member to None. The time member is set to the time when the
event was generated and is expressed in milliseconds.

If the event window is on the same screen as the root window, the x and
y members are set to the coordinates relative to the event window’s origin.
Otherwise, these members are set to zero.

The state member is set to indicate the logical state of the pointer buttons
and modifier keys just prior to the event which is the bitwise inclusive OR of
one or more of the button or modifier key masks: ButtonlMask,
ButtoneMask, Button3dMask, Button4Mask, ButtonSMask, Shift-
Mask, LockMask, ControlMask, ModlMask, ModZ2Mask, Mod3iMask,
Mod4Mask, and ModSMask.

224

8.4.2

XLIB

Each of these structures also has a member that indicates the detail. For
the XKeyPressedEvent and XKeyReleasedEvent structures, this mem-
ber is called keycode. It is set to a number that represents a physical key on
the keyboard. The keycode is an arbitrary representation for any key on the
keyboard (see chapter 7).

For the XButtonPressedEvent and XButtonReleasedEvent struc-
tures, this member is called button. It represents the pointer button that
changed state and can be the Buttonl, Buttong, Button3, Button4, or
Buttons value. For the XPointerMovedEvent structure, this member is
called is_hint. It can be set to NotifyNormal or NotifyHint.

Window Entry/Exit Events

This section describes the processing that occurs for the window crossing
events EnterNotify and LeaveNotify. If a pointer motion or a window
hierarchy change causes the pointer to be in a different window than before,
the X server reports EnterNotify or LeaveNotify events to clients who
have selected for these events. All EnterNotify and LeaveNotify events
caused by a hierarchy change are generated after any hierarchy event
(UnmapNotify, MapNotify, ConfigureNotify, GravityNotify,
CirculateNotify) caused by that change; however, the X protocol does
not constrain the ordering of EnterNotify and LeaveNotify events with
respect to FocusOut, VisibilityNotify, and Expose events.

This contrasts with MotionNotify events, which are also generated
when the pointer moves but only when the pointer motion begins and ends
in a single window. An EnterNotify or LeaveNotify event also can be
generated when some client application calls XGrabPointer and
XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the Enter-
WindowMask or LeaveWindowMask bits of the event-mask attribute of the
window.

The structure for these event types contains:

typedef struct {

int type; /* EnterNotify or LeaveNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window; /* “event” window reported relative to */

Chapter 8. Events and Event-Handling Functions 225

Window root; /* root window that the event occurred on */

Window subwindow; /* child window */

Time time; /* milliseconds */

int X, y; /* pointer x, y coordinates in event window */

int x_root, y_root; /* coordinates relative to root */

int mode; /* NotifyNormal, NotifyGrab,
NotifyUngrab */

int detail; /* NotifyAncestor, NotifyVirtual,

NotifyInferior, NotifyNonlinear,
NotifyNonlinearVirtual */

Bool same_screen; /* same screen flag */
Bool focus; /* boolean focus */
unsigned int state; /* key or button mask */

} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvent;
I_ typedef XCrossingEvent XLeaveWindowEvent;

The window member is set to the window on which the EnterNotify or
LeaveNotify event was generated and is referred to as the event window.
This is the window used by the X server to report the event, and is relative
to the root window on which the event occurred. The root member is set to
the root window of the screen on which the event occurred.

For a LeaveNotify event, if a child of the event window contains the ini-
tial position of the pointer, the subwindow component is set to that child.
Otherwise, the X server sets the subwindow member to None. For an
EnterNotify event, if a child of the event window contains the final
pointer position, the subwindow component is set to that child or None.

The time member is set to the time when the event was generated and is
expressed in milliseconds. The x and y members are set to the coordinates
of the pointer position in the event window. This position is always the point-
er’s final position, not its initial position. If the event window is on the same
screen as the root window, x and y are the pointer coordinates relative to the
event window’s origin. Otherwise, x and y are set to zero. The x_root and
y-root members are set to the pointer’s coordinates relative to the root win-
dow’s origin at the time of the event.

The same_screen member is set to indicate whether the event window is
on the same screen as the root window and can be either True or False. If
True, the event and root windows are on the same screen. If False, the
event and root windows are not on the same screen.

226

8.4.2.1

XLIB

The focus member is set to indicate whether the event window is the focus
window or an inferior of the focus window. The X server can set this mem-
ber to either True or False. If True, the event window is the focus window
or an inferior of the focus window. If False, the event window is not the
focus window or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and
modifier keys just prior to the event. The X server can set this member to the
bitwise inclusive OR of one or more of the button or modifier key masks:
ButtonlMask, ButtonZMask, Button3iMask, Button4Mask, Button5—
Mask, ShiftMask, LockMask, ControlMask, ModlMask, ModZ2Mask,
Mod3iMask, Mod4Mask, Mod5Mask.

The mode member is set to indicate whether the events are normal events,
pseudo-motion events when a grab activates, or pseudo-motion events when
a grab deactivates. The X server can set this member to NotifyNormal,
NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be
NotifyAncestor, NotifyVirtual, NotifyInferior, Notify-
Nonlinear, or NotifyNonlinearVirtual.

Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer
moves from one window to another window. Normal events are identified by
XEnterWindowEvent or XLeaveWindowEvent structures whose mode
member is set to NotifyNormal.

When the pointer moves from window A to window B and A is an inferior of B,

the X server does the following:

— It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyAncestor.

— It generates a LeaveNotify event on each window between window A and
window B, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyVirtual.

— It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyInferior.

When the pointer moves from window A to window B and B is an inferior of A,

the X server does the following:

— It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyInferior.

Chapter 8. Events and Event-Handling Functions 227

8.4.2.2

— It generates an EnterNotify event on each window between window A and
window B, exclusive, with the detail member of each XEnterWindowEvent
structure set to NotifyVirtual.

— It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyAncestor.

When the pointer moves from window A to window B and window C is their least

common ancestor, the X server does the following:

— It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyNonlinear.

— It generates 4 LeaveNotify event on each window between window A and
window C, exclusive, with the detail member of each XLeaveWindowEvent
structure set to NotifyNonlinearVirtual.

— It generates an EnterNotify event on each window between window C and
window B, exclusive, with the detail member of each XEnterWindowEvent
structure set to NotifyNonlinearVirtual.

— It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

When the pointer moves from window A to window B on different screens, the X

server does the following:

— It generates a LeaveNotify event on window A, with the detail member of
the XLeaveWindowEvent structure set to NotifyNonlinear.

— If window A is not a root window, it generates a LeaveNotify event on each
window above window A up to and including its root, with the detail member
of each XLeaveWindowEvent structure set to NotifyNonlinearvVirtual.

— If window B is not a root window, it generates an EnterNotify event on each
window from window B’s root down to but not including window B, with the
detail member of each XEnterWindowEvent structure set to Notify—
NonlinearVirtual.

— It generates an EnterNotify event on window B, with the detail member of
the XEnterWindowEvent structure set to NotifyNonlinear.

Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are gener-
ated when a pointer grab activates or deactivates. Events in which the
pointer grab activates are identified by XEnterWindowEvent or XLeave-
WindowEvent structures whose mode member is set to NotifyGrab.
Events in which the pointer grab deactivates are identified by

228

8.4.3

XLIB

XEnterWindowEvent or XLeaveWindowEvent structures whose mode
member is set to NotifyUngrab (see XGrabPointer).

When a pointer grab activates after any initial warp into a confine_to window and
before generating any actual ButtonPress event that activates the grab, G is the
grab_window for the grab, and P is the window the pointer is in, the X server
does the following:

— It generates EnterNotify and LeaveNotify events (see section 8.4.2.1) with
the mode members of the XEnterWindowEvent and XLeaveWindowEvent
structures set to NotifyGrab. These events are generated as if the pointer
were to suddenly warp from its current position in P to some position in G.
However, the pointer does not warp, and the X server uses the pointer position
as both the initial and final positions for the events.

When a pointer grab deactivates after generating any actual ButtonRelease
event that deactivates the grab, G is the grab_window for the grab, and P is the
window the pointer is in, the X server does the following:

— It generates EnterNotify and LeaveNotify events (see section 8.4.2.1) with
the mode members of the XEnterWindowEvent and XLeaveWindowEvent
structures set to NotifyUngrab. These events are generated as if the pointer
were to suddenly warp from some position in G to its current position in P.
However, the pointer does not warp, and the X server uses the current pointer
position as both the initial and final positions for the events.

Input Focus Events
This section describes the processing that occurs for the input focus events
FocusIn and FocusOut. The X server can report FocusIn or FocusOut
events to clients wanting information about when the input focus changes.
The keyboard is always attached to some window (typically, the root window
or a top-level window), which is called the focus window. The focus window
and the position of the pointer determine the window that receives keyboard
input. Clients may need to know when the input focus changes to control
highlighting of areas on the screen.

To receive FocusIn or FocusOut events, set the FocusChangeMask bit
in the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type; /* FocusIn or FocusOut */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */

Chapter 8. Events and Event-Handling Functions 229

8.4.3.1

L]

Display *display; /* Display the event was read from */

Window window; /* window of event */

int mode; /* NotifyNormal, NotifyGrab,
NotifyUngrab */

int detail; /* NotifyAncestor, NotifyVirtual,

NotifyInferior, NotifyNonlinear,
NotifyNonlinearVirtual, NotifyPointer,
NotifyPointerRoot, NotifyDetailNone */

} XFocusChangeEvent;

typedef XFocusChangeEvent XFocusInEvent;

typedef XFocusChangeEvent XFocusOutEvent;

The window member is set to the window on which the FocusIn or
FocusOut event was generated. This is the window used by the X server to
report the event. The mode member is set to indicate whether the focus
events are normal focus events, focus events while grabbed, focus events
when a grab activates, or focus events when a grab deactivates. The X server
can set the mode member to NotifyNormal, NotifyWhileGrabbed,
NotifyGrab, or NotifyUngrab.

All FocusoOut events caused by a window unmap are generated after any
UnmapNotify event; however, the X protocol does not constrain the order-
ing of FocusOut events with respect to generated EnterNotify,
LeaveNotify, VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the no-
tify detail and can be NotifyRncestor, NotifyVirtual, Notify-
Inferior, NotifyNonlinear, NotifyNonlinearVirtual, Notify-
Pointer, NotifyPointerRoot, or NotifyDetailNone.

Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or
XFocusOutEvent structures whose mode member 1is set to
NotifyNormal. Focus events while grabbed are identified by
XFocusInEvent or XFocusOutEvent structures whose mode member is
set to NotifyWhileGrabbed. The X server processes normal focus and
focus events while grabbed according to the following:

When the focus moves from window A to window B, A is an inferior of B, and
the pointer is in window P, the X server does the following:

230 XLIB

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

— It generates a FocusOut event on each window between window A and
window B, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyVirtual.

— It generates a FocusIn event on window B, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

— If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a FocusIn event on each
window below window B, down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

» When the focus moves from window A to window B, B is an inferior of A, and
the pointer is in window P, the X server does the following:
— If window P is an inferior of window A but P is not an inferior of window B or
an ancestor of B, it generates a FocusOut event on each window from window
P up to but not including window A, with the detail member of each
XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyInferior.

— It generates a FocusIn event on each window between window A and window
B, exclusive, with the detail member of each XFocusInEvent structure set to
NotifyVirtual.

— It generates a FocusIn event on window B, with the detail member of the
XFocusInEvent structure set to NotifyAncestor.

e When the focus moves from window A to window B, window C is their least
common ancestor, and the pointer is in window P, the X server does the
following:

— If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail
member of the XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

— It generates a FocusOut event on each window between window A and
window C, exclusive, with the detail member of each XFocusOutEvent
structure set to NotifyNonlinearVirtual.

— It generates a FocusIn event on each window between G and B, exclusive,
with the detail member of each XFocusInEvent structure set to Notify—
NonlinearVirtual.

Chapter 8. Events and Event-Handling Functions 231

— It generates a FocusIn event on window B, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

— If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail
member of the XFocusInEvent structure set to NotifyPointer.

e When the focus moves from window A to window B on different screens and the
pointer is in window P, the X server does the following:
— If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

— If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member
of each XFocusOutEvent structure set to NotifyNonlinearvVirtual.

— If window B is not a root window, it generates a FocusIn event on each
window from window B’s root down to but not including window B, with the
detail member of each XFocusInEvent structure set to Notify—
NonlinearVirtual.

— It generates a FocusIn event on window B, with the detail member of each
XFocusInEvent structure set to NotifyNonlinear.

— If window P is an inferior of window B, it generates a FocusIn event on each
window below window B down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

* When the focus moves from window A to PointerRoot (events sent to the
window under the pointer) or None (discard), and the pointer is in window P, the
X server does the following:

— If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

— If window A is not a root window, it generates a FocusOut event on each
window above window A up to and including its root, with the detail member
of each XFocusOutEvent structure set to NotifyNonlinearvVirtual.

— It generates a FocusIn event on the root window of all screens, with the detail
member of each XFocusInEvent structure set to NotifyPointerRoot (or
NotifyDetailNone).

232

XLIB

— If the new focus is PointerRoot, it generates a FocusIn event on each
window from window P’s root down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

When the focus moves from PointerRoot (events sent to the window under the

pointer) or None to window A, and the pointer is in window P, the X server does

the following:

— If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P’s root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to NotifyPointerRoot (or Notify—
DetailNone).

— If window A is not a root window, it generates a FocusIn event on each
window from window A’s root down to but not including window A, with the
detail member of each XFocusInEvent structure set to Notify-
NonlinearVirtual.

— It generates a FocusIn event on window A, with the detail member of the
XFocusInEvent structure set to NotifyNonlinear.

— If window P is an inferior of window A, it generates a FocusIn event on each
window below window A down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

When the focus moves from PointerRoot (events sent to the window under the

pointer) to None (or vice versa), and the pointer is in window P, the X server does

the following:

— If the old focus is PointerRoot, it generates a FocusOut event on each
window from window P up to and including window P’s root, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

— It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to either NotifyPointerRoot or
NotifyDetailNone.

— It generates a FocusIn event on all root windows, with the detail member of
each XFocusInEvent structure set to NotifyDetailNone or Notify-
PointerRoot.

— If the new focus is PointerRoot, it generates a FocusIn event on each
window from window P’s root down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

Chapter 8. Events and Event-Handling Functions 233

8.4.3.2 Focus Events Generated by Grabs

8.4.4

Focus events in which the keyboard grab activates are identified by
XFocusInEvent or XFocusOutEvent structures whose mode member is
set to NotifyGrab. Focus events in which the keyboard grab deactivates are
identified by XFocusInEvent or XFocusOutEvent structures whose
mode member is set to NotifyUngrab (see XGrabKeyboard).

When a keyboard grab activates before generating any actual KeyPress event

that activates the grab, G is the grab_window, and F is the current focus, the X

server does the following:

— It generates FocusIn and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyGrab. These
events are generated as if the focus were to change from F to G.

When a keyboard grab deactivates after generating any actual KeyRelease event

that deactivates the grab, G is the grab_window, and F is the current focus, the X

server does the following:

— It generates FocusIn and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyUngrab.
These events are generated as if the focus were to change from G to F.

Keymap State Notification Events
The X server can report KeymapNotify events to clients that want informa-
tion about changes in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the
event-mask attribute of the window. The X server generates this event im-
mediately after every EnterNotify and FocusIn event.

The structure for this event type contains:

/* generated on EnterWindow and FocusIn when KeymapState selected */
typedef struct {

int type; /* KeymapNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
char key_.vector[32];
} XKeymapZEvent;

The window member is not used but is present to aid some toolkits. The
key_vector member is set to the bit vector of the keyboard. Each bit set to 1

234

8‘405

8040501

XLIB

indicates that the corresponding key is currently pressed. The vector is rep-
resented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to
8N + 7 with the least-significant bit in the byte representing key 8N.

Exposure Events

The X protocol does not guarantee to preserve the contents of window re-
gions when the windows are obscured or reconfigured. Some implementa-
tions may preserve the contents of windows. Other implementations are free
to destroy the contents of windows when exposed. X expects client applica-
tions to assume the responsibility for restoring the contents of an exposed
window region. (An exposed window region describes a formerly obscured
window whose region becomes visible.) Therefore, the X server sends
Expose events describing the window and the region of the window that has
been exposed. A naive client application usually redraws the entire window.
A more sophisticated client application redraws only the exposed region.

Expose Events
The X server can report Expose events to clients wanting information about
when the contents of window regions have been lost. The circumstances in
which the X server generates Expose events are not as definite as those for
other events. However, the X server never generates Expose events on win-
dows whose class you specified as InputOnly. The X server can generate
Expose events when no valid contents are available for regions of a window
and either the regions are visible, the regions are viewable and the server is
(perhaps newly) maintaining backing store on the window, or the window is
not viewable but the server is (perhaps newly) honoring the window’s
backing-store attribute of Always or ¥henMapped. The regions decompose
into an (arbitrary) set of rectangles, and an Expose event is generated for
each rectangle. For any given window, the X server guarantees to report
contiguously all of the regions exposed by some action that causes Expose
events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask
attribute of the window.

The structure for this event type contains:

Chapter 8. Events and Event-Handling Functions 235

—

8.4.5.2

typedef struct {

int type; /* Expose */

unsigned long serial; I* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

int x, y;

int width, height;

int count; /* if nonzero, at least this many more */

} XExposeEvent;

The window member is set to the exposed (damaged) window. The x and y
members are set to the coordinates relative to the window's origin and indi-
cate the upper-left corner of the rectangle. The width and height members
are set to the size (extent) of the rectangle. The count member is set to the
number of Expose events that are to follow. If count is zero, no more
Expose events follow for this window. However, if count is nonzero, at least
that number of Expose events (and possibly more) follow for this window.
Simple applications that do not want to optimize redisplay by distinguishing
between subareas of its window can just ignore all Expose events with
nonzero counts and perform full redisplays on events with zero counts.

GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting infor-
mation about when a destination region could not be computed during cer-
tain graphics requests: XCopyArea or XCopyPlane. The X server gener-
ates this event whenever a destination region could not be computed due to
an obscured or out-of-bounds source region. In addition, the X server
guarantees to report contiguously all of the regions exposed by some graph-
ics request (for example, copying an area of a drawable to a destination
drawable).

The X server generates a NoExpose event whenever a graphics request
that might produce a GraphicsExpose event does not produce any. In
other words, the client is really asking for a GraphicsExpose event but in-
stead receives a NOExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the
graphics-exposure attribute of the graphics context to True. You also can

236

XLIB

set the graphics-expose attribute when creating a graphics context using
XCreateGC or by calling XSetGraphicsExposures.
The structures for these event types contain:

typedef struct {

int type;

unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int X, y;

int width, height;
int count;

int major_code;

int minor_code;

} XGraphicsExposeEvent;

typedef struct {

int type;

unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int major_code;

int minor_code;

/* GraphicsExpose */

/% # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */
/* core is CopyArea or CopyPlane */
/* not defined in the core */

/* NoExpose */

/* # of last request processed by server */

/* true if this came from a SendEvent request */
/* Display the event was read from */

/* core is CopyArea or CopyPlane */
/* not defined in the core */

} XNoExposeEvent;

Both structures have these common members: drawable, major_code, and
minor_code. The drawable member is set to the drawable of the destination
region on which the graphics request was to be performed. The major_code
member is set to the graphics request initiated by the client and can be either
X_CopyArea or X_CopyPlane. If it is X_CopyArea, a call to XCopyArea
initiated the request. If it is X_CopyPlane, a call to XCopyPlane initiated
the request. These constants are defined in <X11/Xproto.h>. The
minor_code member, like the major_code member, indicates which graph-
ics request was initiated by the client. However, the minor_code member is
not defined by the core X protocol and will be zero in these cases, although
it may be used by an extension.

The XGraphicsExposeEvent structure has these additional members:

Chapter 8. Events and Event-Handling Functions 237

8.4.6

8.4.6.1

L]

X, ¥, width, height, and count. The x and y members are set to the coordi-
nates relative to the drawable’s origin and indicate the upper-left corner of
the rectangle. The width and height members are set to the size (extent) of
the rectangle. The count member is set to the number of GraphicsExpose
events to follow. If count is zero, no more GraphicsExpose events follow
for this window. However, if count is nonzero, at least that number of
GraphicsExpose events (and possibly more) are to follow for this win-
dow.

Window State Change Events
The following sections discuss:

CirculateNotify events
ConfigureNotify events
CreateNotify events
DestroyNotify events
GravityNotify events
MapNotify events
MappingNotify events
ReparentNotify events
UnmapNotify events

VisibilityNotify events

CirculateNotify Events

The X server can report CirculateNotify events to clients wanting infor-
mation about when a window changes its position in the stack. The X server
generates this event type whenever a window is actually restacked as a result
of a client application calling XCirculateSubwindows, XCirculate—
SubwindowsUp, or XCirculateSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substructure-
NotifyMask bit in the event-mask attribute of the parent window (in which
case, circulating any child generates an event).

238

-

8.4.62

XLIB

The structure for this event type contains:

typedef struct {

int type; /* CirculateNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
} XCirculateEvent;

The event member is set either to the restacked window or to its parent, de-
pending on whether StructureNofify or SubstructureNotify was
selected. The window member is set to the window that was restacked. The
place member is set to the window’s position after the restack occurs
and is either PlaceOnTop or PlaceOnBottom. If it is Place-
onTop, the window is now on top of all siblings. If it is PlaceOnBotton, the
window is now below all siblings.

ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting infor-
mation about actual changes to a window’s state, such as size, position, bor-
der, and stacking order. The X server generates this event type whenever
one of the following configure window requests made by a client application
actually completes:

A window’s size, position, border, and/or stacking order is reconfigured by calling
XConfigureWindow.

The window’s position in the stacking order is changed by calling XLowerWindow,
XRaiseWindow, or XRestackWindows.

A window is moved by calling XMoveWindow.
A window’s size is changed by calling XResizeWindow.
A window’s size and location is changed by calling XMoveResizeWindow.

A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

* A window’s border width is changed by calling XSetWindowBorderWidth.

Chapter 8. Events and Eveni-Handling Functions 239

To receive ConfigureNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substructure-
NotifyMask bit in the event-mask attribute of the parent window (in which
case, configuring any child generates an event).

The structure for this event type contains:

I_ typedef struct { A
int type; /* ConfigureNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

int x, y;

int width, height;

int border_width;

Window above;

Bool override_redirect;
_ ' } XConfigureEvent;

The event member is set either to the reconfigured window or to its parent,
depending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window whose size, position, bor-
der, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the parent win-
dow’s origin and indicate the position of the upper-left outside corner of the
window. The width and height members are set to the inside size of the win-
dow, not including the border. The border_width member is set to the width
of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking op-
erations. If the X server sets this member to None, the window whose state
was changed is on the bottom of the stack with respect to sibling windows.
However, if this member is set to a sibling window, the window whose state
was changed is placed on top of this sibling window.

The override_redirect member is set to the override-redirect attribute of
the window. Window manager clients normally should ignore this window if
the override_redirect member is True.

240

8.4.6.3

8.4.6.4

XLIB

CreateNotify Events

The X server can report CreateNotify events to clients wanting informa-
tion about creation of windows. The X server generates this event when-
ever a client application creates a window by calling XCreateWindow or
XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask
bit in the event-mask attribute of the window. Creating any children then
generates an event.

The structure for the event type contains:

typedef struct {

int type; /* CreateNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /% true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent; /* parent of the window */

Window window; /* window id of window created */

int X, y; /* window location */

int width, height; /* size of window */

int border_width; /* border width */

Bool override_redirect; /* creation should be overridden */

} XCreateWindowEvent;

The parent member is set to the created window’s parent. The window
member specifies the created window. The x and y members are set to the
created window’s coordinates relative to the parent window’s origin and in-
dicate the position of the upper-left outside corner of the created window.
The width and height members are set to the inside size of the created win-
dow (not including the border) and are always nonzero. The border_width
member is set to the width of the created window’s border, in pixels. The
override_redirect member is set to the override-redirect attribute of the win-
dow. Window manager clients normally should ignore this window if the
override_redirect member is True.

DestroyNotify Events

The X server can report DestroyNotify events to clients wanting infor-
mation about which windows are destroyed. The X server generates this
event whenever a client application destroys a window by calling
XDestroy Window or XDestroySubwindows.

Chapter 8. Events and Event-Handling Functions 241

8.4.6.5

The ordering of the DestroyNotify events is such that for any given
window, DestroyNotify is generated on all inferiors of the window before
being generated on the window itself. The X protocol does not constrain the
ordering among siblings and across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substructure-
NotifyMask bit in the event-mask attribute of the parent window (in which
case, destroying any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* DestroyNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_—event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
} XDestroyWindowEvent;

The event member is set either to the destroyed window or to its parent, de-
pending on whether StructureNotify or SubstructureNotify was
selected. The window member is set to the window that is destroyed.

GravityNotify Events

The X server can report GravityNotify events to clients wanting infor-
mation about when a window is moved because of a change in the size of its
parent. The X server generates this event whenever a client application actu-
ally moves a child window as a result of resizing its parent by calling
XConfigureWindow, XMoveResizeWindow, or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substructure-
NotifyMask bit in the event-mask attribute of the parent window (in which
case, any child that is moved because its parent has been resized generates an
event).

The structure for this event type contains:

typedef struct {
int type; /* GravityNotify */
unsigned long serial; /* # of last request processed by server */

242

8.4.6.6

XLIB
Bool send__event; /% true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;
Window window;
int x, y;

} XGravityEvent;

The event member is set either to the window that was moved or to its par-
ent, depending on whether StructureNotify or SubstructureNotify
was selected. The window member is set to the child window that was moved.
The x and y members are set to the coordinates relative to the new parent
window’s origin and indicate the position of the upper-left outside corner of
the window.

MapNotify Events

The X server can report MapNotify events to clients wanting information
about which windows are mapped. The X server generates this event type
whenever a client application changes the window’s state from unmapped to
mapped by calling XMapWindow, XMapRaised, XMapSubwindows,
XReparentWindow, or as a result of save-set processing.

To receive MapNotify events, set the StructureNotifyMask bitin the
event-mask attribute of the window or the SubstructureNotifyMask bit
in the event-mask attribute of the parent window (in which case, mapping
any child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* MapNotify ¥/

unsigned long serial; /* # of last request processed by server */

Bool send._event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool override_redirect; /* boolean, is override set . . .*/
} XMapEvent;

The event member is set either to the window that was mapped or to its par-
ent, depending on whether StructureNotifyor SubstructureNotify
was selected. The window member is set to the window that was mapped.
The override_redirect member is set to the override-redirect attribute of the

Chapter 8. Events and Event-Handling Functions 243

8.4.6.7

window. Window manager clients normally should ignore this window if the
override-redirect attribute is True, because these events usually are gener-
ated from pop-ups, which override structure control.

MappingNotify Events

The X server reports MappingNotify events to all clients. There is no
mechanism to express disinterest in this event. The X server generates this
event type whenever a client application successfully calls:

XSetModifierMapping to indicate which KeyCodes are to be used as modifiers
XChangeKeyboardMapping to change the keyboard mapping

XSetPointerMapping to set the pointer mapping
The structure for this event type contains:

typedef struct {

int type; /* MappingNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* unused */
int request; /* one of MappingModifier, MappingKeyboard,
MappingPointer */
int first_keycode; * first keycode */
int count; /* defines range of change w. first_keycode*/
} XMappingEvent;

The request member is set to indicate the kind of mapping change that oc-
curred and can be MappingModifier, MappingKeyboard, Mapping-
Pointer. If it is MappingModifier, the modifier mapping was changed.
If it is MappingKeyboard, the keyboard mapping was changed. If it is
MappingPointer, the pointer button mapping was changed. The
first_keycode and count members are set only if the request member was set
to MappingKeyboard. The number in first_keycode represents the first
number in the range of the altered mapping, and count represents the num-
ber of keycodes altered.

To update the client application’s knowledge of the keyboard, you should
call XRefreshKeyboardMapping.

244

8.4.68

8.4.6.9

XLIB

ReparentNotify Events

The X server can report ReparentNotify events to clients wanting infor-
mation about changing a window’s parent. The X server generates this event
whenever a client application calls XReparentWindow and the window is
actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask
bit in the event-mask attribute of the window or the Substructure-
NotifyMask bitin the event-mask attribute of either the old or the new par-
ent window (in which case, reparenting and child generates an event).

The structure for this event type contains:

typedef struct {

int type; /* ReparentNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Window parent;

int X, y;

Bool override_redirect;
} XReparentEvent;

The event member is set either to the reparented window or to its old or new
parent, depending on whether StructureNotify or Substructure-
Notify was selected. The window member is set to the window that was
reparented. The parent member is set to the new parent window. The x and
y members are set to the reparented window’s coordinates relative to the
new parent window’s origin and define the upper-left outer corner of the
reparented window. The override_redirect member is set to the override-
redirect attribute of the window specified by the window member. Window
manager clients normally should ignore this window if the override_redirect
member is True. ‘

UnmapNotify Events

The X server can report UnmapNotify events to clients wanting informa-
tion about which windows are unmapped. The X server generates this event
type whenever a client application changes the window’s state from mapped
to unmapped.

Chapter 8. Events and Event-Handling Functions 245

To receive UnmapNotify events, set the StructureNotifyMask bit in
the event-mask attribute of the window or the SubstructureNotifyMask
bit in the event-mask attribute of the parent window (in which case,
unmapping any child window generates an event).

The structure for this event type contains:

|_ typedef struct {
int type; /* UnmapNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window event;

Window window;

Bool from_configure;
|_ } XUnmapkEvent;

The event member is set either to the unmapped window or to its parent,
depending on whether StructureNotify or SubstructureNotify
was selected. This is the window used by the X server to report the event.
The window member is set to the window that was unmapped. The
from_configure member is set to True if the event was generated as a result
of a resizing of the window’s parent when the window itself had a
win_gravity of UnmapGravity.

8.4.6.10 VisibilityNotify Events
The X server can report VisibilityNotify events to clients wanting any
change in the visibility of the specified window. A region of a window is visi-
ble if someone looking at the screen can actually see it. The X server gener-
ates this event whenever the visibility changes state. However, this event is
never generated for windows whose class is InputOnly.

All visibilityNotify events caused by a hierarchy change are gener-
ated after any hierarchy event (UnmapNotify, MapNotify, Configure-
Notify, GravityNotify, CirculateNotify) caused by that change.
Any VisibilityNotify event on a given window is generated before any
Expose events on that window, but it is not required that all
VisibilityNotify events on all windows be generated before all Expose
events on all windows. The X protocol does not constrain the ordering of

246

8.4.7

XLIB

VisibilityNotify events with respect to FocusOut, EnterNotify,and
LeaveNotify events.

To receive VisibilityNotify events, set the Visibility-
ChangeMask bit in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {

int type; /* VisibilityNotify */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The
state member is set to the state of the window’s visibility and can
be VisibilityUnobscured, VisibilityPartiallyObscured, or
VisibilityFullyObscured. The X server ignores all of a window’s
subwindows when determining the visibility state of the window and pro-
cesses VisibilityNotify events according to the following:

When the window changes state from partially obscured, fully obscured, or not
viewable to viewable and completely unobscured, the X server generates the event
with the state member of the XVisibilityEvent structure set to Visibility-
Unobscured.

When the window changes state from viewable and completely unobscured or not
viewable to viewable and partially obscured, the X server generates the event with
the state member of the XVisibilityEvent structure set to Visibility-
PartiallyObscured.

When the window changes state from viewable and completely unobscured,
viewable and partially obscured, or not viewable to viewable and fully obscured,
the X server generates the event with the state member of the XVisibility-
Event structure set to VisibilityFullyObscured.

Structure Control Events
This section discusses:

e CirculateRequest events

e ConfigureRequest events

Chapter 8. Events and Event-Handling Functions 247

* MapRequest events

s ResizeRequest events

8.4.7.1 CirculateRequest Events

The X server can report CirculateRequest events to clients wanting in-
formation about when another client initiates a circulate window request on
a specified window. The X server generates this event type whenever a client
initiates a circulate window request on a window and a subwindow actually
needs to be restacked. The client initiates a circulate window request on the
window by calling XCirculateSubwindows, XCirculateSubwindows-
Up, or XCirculateSubwindowsDown.

To receive CirculateRequest events, set the Substructure-
RedirectMask in the event-mask attribute of the window. Then, in the fu-
ture, the circulate window request for the specified window is not executed,
and thus, any subwindow’s position in the stack is not changed. For example,
suppose a client application calls XCirculateSubwindowsUp to
raise a subwindow to the top of the stack. If you had selected
SubstructureRedirectMask on the window, the X server reports to you
aCirculateRequest event and does not raise the subwindow to the top of
the stack.

The structure for this event type contains:

I_—— typedef struct {
int type; /* CirculateRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;

Window window;

int place; /* PlaceOnTop, PlaceOnBottom */
\— } XCirculateRequestEvent;

The parent member is set to the parent window. The window member is set
to the subwindow to be restacked. The place member is set to what the new
position in the stacking order should be and is either PlaceOnTop or
PlaceOnBottom. Ifitis PlaceOnTop, the subwindow should be on top of
all siblings. If it is PlaceOnBottom, the subwindow should be below all sib-
lings.

248

8.4.7.2

L

XLIB

ConfigureRequest Events

The X server can report ConfigureRequest events to clients wanting in-
formation about when a different client initiates a configure window request
on any child of a specified window. The configure window request attempts
to reconfigure a window’s size, position, border, and stacking order. The X
server generates this event whenever a different client initiates a configure
window request on a window by calling XConfigureWindow, XLower—
Window, XRaiseWindow, XMapRaised, XMoveResizeWindow, XMove-—
Window, XResizeWindow, XRestackWindows, or XSetWindow-
BorderWidth.

To receive ConfigureRequest events, set the Substructure-
RedirectMask bit in the event-mask attribute of the window.
ConfigureRequest events are generated when a ConfigureWindow
protocol request is issued on a child window by another client. For example,
suppose a client application calls XLowerWindow to lower a window. If you
had selected SubstructureRedirectMask on the parent window and if
the override-redirect attribute of the window 1s set to False, the X server
reports a ConfigureRequest event to you and does not lower the speci-
fied window.

The structure for this event type contains:

typedef struct {

int type; /¥ configureRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent
request */

Display *display; /* Display the event was read from */

Window parent;
Window window;
int X, y;
int width, height;
int border_width;
Window above;
int detail; /* Above, Below, TopIf, BottomIf,
Opposite *
unsigned long value_mask;
} XConfigureRequestEvent;

Chapter 8. Events and Event-Handling Functions 249

8.4.7.3

The parent member is set to the parent window. The window member is set
to the window whose size, position, border width, and/or stacking order is to
be reconfigured. The value_mask member indicates which components
were specified in the ConfigureWindow protocol request. The corre-
sponding values are reported as given in the request. The remaining values
are filled in from the current geometry of the window, except in the case of
above (sibling) and detail (stack-mode), which are reported as Above and
None, respectively, if they are not given in the request.

MapRequest Events

The X server can report MapRequest events to clients wanting information
about a different client’s desire to map windows. A window is considered
mapped when a map window request completes. The X server generates this
event whenever a different client initiates a map window request on an
unmapped window whose override_redirect member is set to False. Cli-
ents initiate map window requests by calling XMapWindow, XMapRaised,
or XMapSubwindows.

To receive MapRequest events, set the SubstructureRedirectMask
bit in the event-mask attribute of the window. This means another client’s at-
tempts to map a child window by calling one of the map window request
functions is intercepted, and you are sent a MapRequest instead. For exam-
ple, suppose a client application calls XMapWindow to map a window. If you
(usually a window manager) had selected SubstructureRedirectMask
on the parent window and if the override-redirect attribute of the window is
set to False, the X server reports a MapRequest event to you and does not
map the specified window. Thus, this event gives your window manager cli-
ent the ability to control the placement of subwindows.

The structure for this event type contains:

typedef struct {

int type; /* MapRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window parent;
Window window;
} XMapRequestEvent;

250

8.4.74

8.4.8

.

XLIB

The parent member is set to the parent window. The window member is set
to the window to be mapped.

ResizeRequest Events

The X server can report ResizeRequest events to clients wanting infor-
mation about another client’s attempts to change the size of a window. The
X server generates this event whenever some other client attempts to change
the size of the specified window by calling XConfiqureWindow, XResize-
Window, or XMoveResizeWindow.

To receive ResizeRequest events, set the ResizeRedirect bit in the
event-mask attribute of the window. Any attempts to change the size by
other clients are then redirected.

The structure for this event type contains:

typedef struct {
int type; /* ResizeRequest */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
int width, height;
} XResizeRequestEvent;

The window member is set to the window whose size another client at-
tempted to change. The width and height members are set to the inside size
of the window, excluding the border.

Colormap State Change Events

The X server can report ColormapNotify events to clients wanting infor-
mation about when the colormap changes and when a colormap is installed
or uninstalled. The X server generates this event type whenever a client ap-
plication:

Changes the colormap member of the XSetWindowAttributes structure by
calling XChangeWindowAttributes, XFreeColormap, or XSetWindow-
Colormap

Installs or uninstalls the colormap by calling XInstallColormap or
XUninstallColormap

Chapter 8. Events and Event-Handling Functions 251

=

8.4.9

To receive ColormapNotify events, set the ColormapChangeMask bit in
the event-mask attribute of the window.
The structure for this event type contains:

typedef struct {

int type; /* ColormapNotify */

unsigned long serial; /% # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

‘Window window;

Colormap colormap; /* colormap or None */

Bool new;

int state; /* ColormapInstalled,

ColormapUninstalled */
} XColormapEvent;

The window member is set to the window whose associated colormap is
changed, installed, or uninstalled. For a colormap that is changed, installed,
or uninstalled, the colormap member is set to the colormap associated with
the window. For a colormap that is changed by a call to XFreeColornap,
the colormap member is set to None. The new member is set to indicate
whether the colormap for the specified window was changed or installed or
uninstalled and can be True or False. If it is True, the colormap was
changed. If it is False, the colormap was installed or uninstalled. The state
member is always set to indicate whether the colormap is installed
or uninstalled and can be ColormapInstalled or Colormap-
Uninstalled.

Client Communication Events
This section discusses:

ClientMessage events
PropertyNotify events
SelectionClear events
SelectionNotify events

SelectionRequest events

252

8.4.9.1

-

8.4.9.2

XLIB

ClientMessage Events

The X server generates ClientMessage events only when a client calls the
function XSendEvent.

The structure for this event type contains:

typedef struct {

int type; /¥ ClientMessage ¥/

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom message_type;
int format;
union {
char b[20];
short s[10];
long 1[5];
} data;
} XClientMessageEvent;

The window member is set to the window to which the event was sent. The
message_type member is set to an atom that indicates how the data should
be interpreted by the receiving client. The format member is set to 8, 16, or
32 and specifies whether the data should be viewed as a list of bytes, shorts,
or longs. The data member is a union that contains the members b, s, and 1.
The b, s, and 1 members represent data of 20 8-bit values, 10 16-bit values,
and 5 32-bit values. Particular message types might not make use of all these
values. The X server places no interpretation on the values in the
message.-.type or data members.

PropertyNotify Events
The X server can report PropertyNotify events to clients wanting infor-
mation about property changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit
in the event-mask attribute of the window.

The structure for this event type contains:

typedef struct {
int type; /* PropertyNotify */
unsigned long serial; /* # of last request processed by server */

Chapter 8. Events and Event-Handling Functions 253

804‘903

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;

Atom atom;

Time time;

int state; /¥ PropertyNewValue or PropertyDelete */

} XPropertyEvent;

The window member is set to the window whose associated property was
changed. The atom member is set to the property’s atom and indicates which
property was changed or desired. The time member is set to the server time
when the property was changed. The state member is set to indicate whether
the property was changed to a new value or deleted and can be
PropertyNewValue or PropertyDelete. The state member is set to
PropertyNewValue when a property of the window is changed using
XChangeProperty or XRotateWindowProperties (even when adding
zero-length data using XChangeProperty) and when replacing all or part
of a property with identical data using XChangeProperty or XRotate—
WindowProperties. The state member is set to Property-
Deleted when a property of the window is deleted using XDelete-
Property or, if the delete argument is True, XGetWindow-
Property.

SelectionClear Events
The X server reports SelectionClear events to the current owner of a se-
lection. The X server generates this event type on the window losing owner-
ship of the selection to a new owner. This sequence of events could occur
whenever a client calls XSetSelectionOwner.

The structure for this event type contains:

typedef struct {
int type; /* SelectionClear */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

254

8494

XLIB

The window member is set to the window losing ownership of the selection.
The selection member is set to the selection atom. The time member is set to
the last change time recorded for the selection. The owner member is
the window that was specified by the current owner in its XSet-
SelectionOwner call.

SelectionRequest Events
The X server reports SelectionRequest events to the owner of a selec-
tion. The X server generates this event whenever a client requests a selection
conversion by calling XConvertSelection and the specified selection is
owned by a window.

The structure for this event type contains:

typedef struct {

int type; /* SelectionRequest */

unsigned long serial; /* # of last request processed by server */

Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window owner;
Window requestor;
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

The owner member is set to the window owning the selection and is the win-
dow that was specified by the current owner in its XSetSelectionOwner
call. The requestor member is set to the window requesting the selection.
The selection member is set to the atom that names the selection. For exam-
ple, PRIMARY is used to indicate the primary selection. The target member
is set to the atom that indicates the type the selection is desired in. The prop-
erty member can be a property name or None. The time member is set
to the time and is a timestamp or CurrentTime from the Convert-
Selection request.
The client who owns the selection should do the following:

The owner client should convert the selection based on the atom contained in the
target member.

Chapter 8. Events and Event-Handling Functions 255

8.49.5

« If a property was specified (that is, the property member is set), the owner client
should store the result as that property on the requestor window and then send a
SelectionNotify event to the requestor by calling XSendEvent with an empty
event-mask; that is, the event should be sent to the creator of the requestor window.

« If None is specified as the property, the owner client should choose a property
name on the requestor window and then send a SelectionNotify event giving
the actual name.

o If the selection cannot be converted as requested, the owner client should send a
SelectionNotify event with the property set to None.

SelectionNotify Events

This event is generated by the X server in response to a
ConvertSelection protocol request when there is no owner for the selec-
tion. When there is an owner, it should be generated by the owner of the se-
lection by using XSendEvent. The owner of a selection should send this
event to a requestor when a selection has been converted and stored as a
property or when a selection conversion could not be performed (which is
indicated by setting the property member to None).

If None is specified as the property in the ConvertSelection protocol
request, the owner should choose a property name, store the result as that
property on the requestor window, and then send a SelectionNotify
giving that actual property name.

The structure for this event type contains:

typedef struct {
int type; /* SelectionNotify */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display *display; /* Display the event was read from */

Window requestor;
Atom selection;
Atom target;
Atom property; /* atom or None */
Time time;
} XSelectionEvent;

The requestor member is set to the window associated with the requestor of
the selection. The selection member is set to the atom that indicates the selec-
tion. For example, PRIMARY is used for the primary selection. The target

256

8.5

L]

XLIB

member is set to the atom that indicates the converted type. For example,
PIXMAP is used for a pixmap. The property member is set to the atom that
indicates which property the result was stored on. If the conversion failed,
the property member is set to None. The time member is set to the time the
conversion took place and can be a timestamp or CurrentTime.

Selecting Events

There are two ways to select the events you want reported to your client
application. One way is to set the event_mask member of the XSet-
WindowAttributes structure when you call XCreateWindow and
XChangeWindowAttributes. Another way is to use XSelectInput.

XSelectInput(display, w, event_mask)
Display *display;

Window w;
long event_mask;
display Specifies the connection to the X server.
w Specifies the window whose events you are interested in.

eveni_mask Specifies the event mask.

The XSelectInput function requests that the X server report the events
associated with the specified event mask. Initially, X will not report any of
these events. Events are reported relative to a window. If a window is not in-
terested in a device event, it usually propagates to the closest ancestor that is
interested, unless the do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call
for the same window but not for other clients. Multiple clients can select for
the same events on the same window with the following restrictions:

Multiple clients can select events on the same window because their event masks
are disjoint. When the X server generates an event, it reports it to all interested
clients.

Only one client at a time can select CirculateRequest, ConfigureRequest, or
MapRequest events, which are associated with the event mask Substructure-
RedirectMask.

Only one client at a time can select a ResizeRequest event, which is associated
with the event mask ResizeRedirectMask.

Only one client at a time can select a ButtonPress event, which is associated with
the event mask ButtonPressMask.

Chapter 8. Events and Event-Handling Functions 257

8.6

The server reports the event to all interested clients.
XSelectInput can generate a BadWindow error.

Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions
described in this section flush the output buffer if the function would block
or not return an event. That is, all requests residing in the output buffer that
have not yet been sent are transmitted to the X server. These functions dif-
fer in the additional tasks they might perform.

To flush the output buffer, use XFlush.

XFlush(display)
Display *display;
display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applications
need not use this function because the output buffer is automatically flushed
as needed by calls to XPending, XNextEvent, and XWindowEvent. Events
generated by the server may be enqueued into the library’s event queue.

To flush the output buffer and then wait until all requests have been pro-
cessed, use XSync.

XSync(display, discard)
Display *display;
Bool discard;
display ~ Specifies the connection to the X server.
discard Specifies a Boolean value that indicates whether XSync discards all
events on the event queue.

The XxSync function flushes the output buffer and then waits until all re-
quests have been received and processed by the X server. Any errors gener-
ated must be handled by the error handler. For each error event received
and processed by the X server, XSync calls the client application’s error han-
dling routine (see section 8.12.2). Any events generated by the server are
enqueued into the library’s event queue.

Finally, if you passed False, XSync does not discard the events in the
queue. If you passed True, XSync discards all events in the queue, includ-

258

8.7

XLIB

ing those events that were on the queue before XSync was called. Client ap-
plications seldom need to call XSync.

Event Queue Management

Xlib maintains an event queue. However, the operating system also may be
buffering data in its network connection that is not yet read into the event
queue.

To check the number of events in the event queue, use XEvents-—
Queued.

int XEventsQueued(display, mode)
Display *display;
int mode;
display Specifies the connection to the X server.
mode Specifies the mode. You can pass QueuedAlready, QueuedAfterFlush,
or QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number of
events already in the event queue (and never performs a system call). If
mode is QueuedAfterFlush, XEventsQueued returns the number of
events already in the queue if the number is nonzero. If there are no events
in the queue, XEventsQueued flushes the output buffer, attempts to read
more events out of the application’s connection, and returns the number
read. If mode is QueuedAfterReading, XEventsQueued returns the
number of events already in the queue if the number is nonzero. If there are
no events in the queue, XEventsQueued attempts to read more events out
of the application’s connection without flushing the output buffer and re-
turns the number read.

XEventsQueued always returns immediately without I/O if there are
events already in the queue. XEventsQueued with mode QueuedAfter-
Flush is identical in behavior to XPending. XEventsQueued with mode
QueuedAlready is identical to the XQLength function.

To return the number of events that are pending, use XPending.

int XPending(display)
Display *display;
display Specifies the connection to the X server.

Chapter 8. Events and Event-Handling Functions 259

8.8

L]

8.8.1

The XPending function returns the number of events that have been re-
ceived from the X server but have not been removed from the event queue.
XPending is identical to XEventsQueued with the mode Queued-
AfterFlush specified.

Manipulating the Event Queue
Xlib provides functions that let you manipulate the event queue. The next
three sections discuss how to:

Obtain events, in order, and remove them from the queue
Peek at events in the queue without removing them

Obtain events that match the event mask or the arbitrary predicate procedures
that you provide

Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

XNextEvent(display, event_return)

Display *display;

XEvent *event_return;
display Specifies the connection to the X server.
event_return Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into
the specified XEvent structure and then removes it from the queue. If the
event queue is empty, XNextEvent flushes the output buffer and blocks
until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent(display, event_return)
Display *display;
XEvent *evenit_return;
display Specifies the connection to the X server.
event—return Returns a copy of the matched event’s associated structure.

The XPeekEvent function returns the first event from the event queue, but
it does not remove the event from the queue. If the queue is empty,
XPeekEvent flushes the output buffer and blocks until an event is received.

260

8.8.2

XLIB

It then copies the event into the client-supplied XEvent structure without
removing it from the event queue.

Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predi-
cate procedure that determines if an event matches what you want. Your
predicate procedure must decide only if the event is useful and must not call
Xlib functions. In particular, a predicate is called from inside the event rou-
tine, which must lock data structures so that the event queue is consistent in
a multi-threaded environment.

The predicate procedure and its associated arguments are:
Bool (*predicate)(display, event, arg)

Display *display;
XEvent *event;

char *arg;
display ~ Specifies the connection to the X server.
event Specifies a pointer to the XEvent structure.
arg Specifies the argument passed in from the XIfEvent,XCheckIfEvent,

or XPeekIfEvent function.

The predicate procedure is called once for each event in the queue until it
finds a match. After finding a match, the predicate procedure must return
True. If it did not find a match, it must return False.

To check the event queue for a matching event and, if found, remove the
event from the queue, use XIfEvent.

XIfEvent(display, event_return, predicate, arg)
Display *display;
XEvent *eveni_return;
Bool (*predicate)();

char *arg;
display Specifies the connection to the X se